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Preface

Every attempt to employ mathematical methods in the study of chemical questions
must be considered profoundly irrational and contrary to the spirit of chemistry. If
mathematical analysis should ever hold a prominent place in chemistry – an
aberration which is happily almost impossible – it would occasion a rapid and
widespread degeneration of that science.

Augustus Compte, French philosopher, 1798–1857; in Philosophie Positive,
1830.

A dissenting view:

The more progress the physical sciences make, the more they tend to enter the
domain of mathematics, which is a kind of center to which they all converge. We
may even judge the degree of perfection to which a science has arrived by the
facility to which it may be submitted to calculation.

Adolphe Quetelet, French astronomer, mathematician, statistician, and sociolo-

gist, 1796–1874, writing in 1828.

This second edition differs from the first in these ways:

1. The typographical errors that were found in the first edition have been (I hope)

corrected.

2. Those equations that should be memorized are marked by an asterisk, for

example *(2.1).

3. Sentences and paragraphs have frequently been altered to clarify an explanation.

4. The biographical footnotes have been updated as necessary.

5. Significant developments since 2003, up to near mid-2010, have been added and

referenced in the relevant places.

6. Some topics not in first edition, solvation effects, how to do CASSCF calcula-

tions, and transition elements, have been added.

As might be inferred from the word Introduction, the purpose of this book is to

teach the basics of the core concepts and methods of computational chemistry. This

is a textbook, and no attempt has been made to please every reviewer by dealing

with esoteric “advanced” topics. Some fundamental concepts are the idea of a
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potential energy surface, the mechanical picture of a molecule as used in molecular

mechanics, and the Schrödinger equation and its elegant taming with matrix

methods to give energy levels and molecular orbitals. All the needed matrix algebra

is explained before it is used. The fundamental methods of computational chemistry

are molecular mechanics, ab initio, semiempirical, and density functional methods.

Molecular dynamics and Monte Carlo methods are only mentioned; while these are

important, they utilize fundamental concepts and methods treated here. I wrote the

book because there seemed to be no text quite right for an introductory course in

computational chemistry suitable for a fairly general chemical audience; I hope it

will be useful to anyone who wants to learn enough about the subject to start

reading the literature and to start doing computational chemistry. There are excel-

lent books on the field, but evidently none that seeks to familiarize the general

student of chemistry with computational chemistry in the same sense that standard

textbooks of those subjects make organic or physical chemistry accessible. To that

end the mathematics has been held on a leash; no attempt is made to prove that

molecular orbitals are vectors in Hilbert space, or that a finite-dimensional inner-

product space must have an orthonormal basis, and the only sections that the

nonspecialist may justifiably view with some trepidation are the (outlined) deriva-

tion of the Hartree–Fock and Kohn–Sham equations. These sections should be read,

if only to get the flavor of the procedures, but should not stop anyone from getting

on with the rest of the book.

Computational chemistry has become a tool used in much the same spirit as

infrared or NMR spectroscopy, and to use it sensibly it is no more necessary to be

able to write your own programs than the fruitful use of infrared or NMR spectros-

copy requires you to be able to able to build your own spectrometer. I have tried to

give enough theory to provide a reasonably good idea of how the programs work. In

this regard, the concept of constructing and diagonalizing a Fock matrix is intro-

duced early, and there is little talk of secular determinants (except for historical

reasons in connection with the simple Hückel method). Many results of actual

computations, most of them specifically for this book, are given. Almost all the

assertions in these pages are accompanied by literature references, which should

make the text useful to researchers who need to track down methods or results, and

students (i.e. anyone who is still learning anything) who wish to delve deeper. The

material should be suitable for senior undergraduates, graduate students, and novice

researchers in computational chemistry. A knowledge of the shapes of molecules,

covalent and ionic bonds, spectroscopy, and some familiarity with thermodynamics

at about the level provided by second- or third-year undergraduate courses is

assumed. Some readers may wish to review basic concepts from physical and

organic chemistry.

The reader, then, should be able to acquire the basic theory and a fair idea of the

kinds of results to be obtained from the common computational chemistry techni-

ques. You will learn how one can calculate the geometry of a molecule, its IR and

UV spectra and its thermodynamic and kinetic stability, and other information

needed to make a plausible guess at its chemistry.
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Computational chemistry is accessible. Hardware has become far cheaper than it

was even a few years ago, and powerful programs previously available only for

expensive workstations have been adapted to run on relatively inexpensive personal

computers. The actual use of a program is best explained by its manuals and by

books written for a specific program, and the actual directions for setting up the

various computations are not given here. Information on various programs is

provided in Chapter 9. Read the book, get some programs and go out and do

computational chemistry.

You may make mistakes, but they are unlikely to put you in the same kind of

danger that a mistake in a wet lab might.

It is a pleasure acknowledge the help of:

Professor Imre Csizmadia of the University of Toronto, who gave unstintingly of

his time and experience,

The students in my computational and other courses,

The generous and knowledgeable people who subscribe to CCL, the computational

chemistry list, an exceedingly helpful forum anyone seriously interested in the

subject,

My editor for the first edition at Kluwer, Dr Emma Roberts, who was always most

helpful and encouraging,

Professor Roald Hoffmann of Cornell University, for his insight and knowledge on

sometimes arcane matters,

Professor Joel Liebman of the University of Maryland, Baltimore County for

stimulating discussions,

Professor Matthew Thompson of Trent University, for stimulating discussions

The staff at Springer for the second edition: Dr Sonia Ojo who helped me to initiate

the project, and Mrs Claudia Culierat who assumed the task of continuing to assist

me in this venture and was always extremely helpful.

No doubt some names have been, unjustly, inadvertently omitted, for which I

tender my apologies.

Ontario, Canada E. Lewars

April 2010
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Chapter 1

An Outline of What Computational

Chemistry Is All About

Knowledge is experiment’s daughter

Leonardo da Vinci, in Pensieri, ca. 1492

Nevertheless:

Abstract You can calculate molecular geometries, rates and equilibria, spectra,

and other physical properties. The tools of computational chemistry are molecular

mechanics, ab initio, semiempirical and density functional methods, and molecular

dynamics. Computational chemistry is widely used in the pharmaceutical industry

to explore the interactions of potential drugs with biomolecules, for example by

docking a candidate drug into the active site of an enzyme. It is also used to

investigate the properties of solids (e.g. plastics) in materials science. It does not

replace experiment, which remains the final arbiter of truth about Nature.

1.1 What You Can Do with Computational Chemistry

Computational chemistry (also called molecular modelling; the two terms mean

about the same thing) is a set of techniques for investigating chemical problems on

a computer. Questions commonly investigated computationally are:

Molecular geometry: the shapes of molecules – bond lengths, angles and

dihedrals.

Energies of molecules and transition states: this tells us which isomer is favored

at equilibrium, and (from transition state and reactant energies) how fast a reaction

should go.

Chemical reactivity: for example, knowing where the electrons are concentrated

(nucleophilic sites) and where they want to go (electrophilic sites) enables us to

predict where various kinds of reagents will attack a molecule.

IR, UV and NMR spectra: these can be calculated, and if the molecule is

unknown, someone trying to make it knows what to look for.

E.G. Lewars, Computational Chemistry,
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1



The interaction of a substrate with an enzyme: seeing how a molecule fits into

the active site of an enzyme is one approach to designing better drugs.

The physical properties of substances: these depend on the properties of indivi-

dual molecules and on how the molecules interact in the bulk material. For

example, the strength and melting point of a polymer (e.g. a plastic) depend on

how well the molecules fit together and on how strong the forces between them are.

People who investigate things like this work in the field of materials science.

1.2 The Tools of Computational Chemistry

In studying these questions computational chemists have a selection of methods at

their disposal. The main tools available belong to five broad classes:

Molecular mechanics is based on a model of a molecule as a collection of balls

(atoms) held together by springs (bonds). If we know the normal spring lengths

and the angles between them, and how much energy it takes to stretch and bend

the springs, we can calculate the energy of a given collection of balls and springs,

i.e. of a given molecule; changing the geometry until the lowest energy is found

enables us to do a geometry optimization, i.e. to calculate a geometry for the

molecule. Molecular mechanics is fast: a fairly large molecule like a steroid (e.g.

cholesterol, C27H46O) can be optimized in seconds on a good personal computer.

Ab Initio calculations (ab initio, Latin: “from the start”, i.e. from first princi-

ples”) are based on the Schr€odinger equation. This is one of the fundamental

equations of modern physics and describes, among other things, how the electrons

in a molecule behave. The ab initio method solves the Schr€odinger equation for a

molecule and gives us an energy and wavefunction. The wavefunction is a mathe-

matical function that can be used to calculate the electron distribution (and, in

theory at least, anything else about the molecule). From the electron distribution we

can tell things like how polar the molecule is, and which parts of it are likely to be

attacked by nucleophiles or by electrophiles.

The Schr€odinger equation cannot be solved exactly for any molecule with more

than one (!) electron. Thus approximations are used; the less serious these are, the

“higher” the level of the ab initio calculation is said to be. Regardless of its level, an

ab initio calculation is based only on basic physical theory (quantum mechanics)

and is in this sense “from first principles”.

Ab initio calculations are relatively slow: the geometry and IR spectra (¼ the

vibrational frequencies) of propane can be calculated at a reasonably high level in

minutes on a personal computer, but a fairly large molecule, like a steroid, could

take perhaps days. The latest personal computers, with 2 or more GB of RAM and a

thousand or more gigabytes of disk space, are serious computational tools and now

compete with UNIX workstations even for the demanding tasks associated with

high-level ab initio calculations. Indeed, one now hears little talk of “workstations”,

machines costing ca. $15,000 or more [1].
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Semiempirical calculations are, like ab initio, based on the Schr€odinger equation.
However, more approximations are made in solving it, and the very complicated

integrals that must be calculated in the ab initio method are not actually evaluated

in semiempirical calculations: instead, the program draws on a kind of library of

integrals that was compiled by finding the best fit of some calculated entity like

geometry or energy (heat of formation) to the experimental values. This plugging of
experimental values into a mathematical procedure to get the best calculated values is

called parameterization (or parametrization). It is the mixing of theory and experi-

ment that makes the method “semiempirical”: it is based on the Schr€odinger equa-
tion, but parameterized with experimental values (empiricalmeans experimental). Of

course one hopes that semiempirical calculations will give good answers for mole-

cules for which the program has not been parameterized.

Semiempirical calculations are slower than molecular mechanics but much

faster than ab initio calculations. Semiempirical calculations take roughly 100

times as long as molecular mechanics calculations, and ab initio calculations take

roughly 100–1,000 times as long as semiempirical. A semiempirical geometry

optimization on a steroid might take seconds on a PC.

Density functional calculations (DFT calculations, density functional theory)

are, like ab initio and semiempirical calculations, based on the Schr€odinger equa-
tion However, unlike the other two methods, DFT does not calculate a conventional

wavefunction, but rather derives the electron distribution (electron density function)
directly. A functional is a mathematical entity related to a function.

Density functional calculations are usually faster than ab initio, but slower than

semiempirical. DFT is relatively new (serious DFT computational chemistry goes

back to the 1980s, while computational chemistry with the ab initio and semiem-

pirical approaches was being done in the 1960s).

Molecular dynamics calculations apply the laws of motion to molecules. Thus

one can simulate the motion of an enzyme as it changes shape on binding to a

substrate, or the motion of a swarm of water molecules around a molecule of solute;

quantum mechanical molecular dynamics also allows actual chemical reactions to

be simulated.

1.3 Putting It All Together

Very large biological molecules are studied mainly with molecular mechanics,

because other methods (quantum mechanical methods, based on the Schr€odinger
equation: semiempirical, ab initio and DFT) would take too long. Novel molecules,

with unusual structures, are best investigated with ab initio or possibly DFT

calculations, since the parameterization inherent in MM or semiempirical methods

makes them unreliable for molecules that are very different from those used in the

parameterization. DFT is relatively new and its limitations are still unclear.

Calculations on the structure of largemolecules like proteins orDNA are donewith

molecular mechanics. The motions of these large biomolecules can be studied with
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molecular dynamics. Key portions of a large molecule, like the active site of an

enzyme, can be studied with semiempirical or even ab initio methods. Moderately

large molecules like steroids can be studied with semiempirical calculations, or if one

is willing to invest the time, with ab initio calculations. Of course molecular mech-

anics can be used with these too, but note that this technique does not give informa-

tion on electron distribution, so chemical questions connected with nucleophilic or

electrophilic behaviour, say, cannot be addressed by molecular mechanics alone.

The energies of molecules can be calculated by MM, SE, ab initio or DFT. The

method chosen depends very much on the particular problem. Reactivity, which

depends largely on electron distribution, must usually be studied with a quantum-

mechanical method (SE, ab initio or DFT). Spectra are most reliably calculated by ab

initio or DFT methods, but useful results can be obtained with SE methods, and some

MMprograms will calculate fairly good IR spectra (balls attached to springs vibrate!).

Docking a molecule into the active site of an enzyme to see how it fits is an

extremely important application of computational chemistry. One could manipulate

the substrate with a mouse or a kind of joystick and try to fit it (dock it) into the

active site, with a feedback device enabling you to feel the forces acting on the

molecule being docked, but automated docking is now standard. This work is

usually done with MM, because of the large molecules involved, although selected

portions of the biomolecules can be studied by one of the quantum mechanical

methods. The results of such docking experiments serve as a guide to designing

better drugs, molecules that will interact better with the desired enzymes but be

ignored by other enzymes.

Computational chemistry is valuable in studying the properties of materials, i.e.

in materials science. Semiconductors, superconductors, plastics, ceramics – all

these have been investigated with the aid of computational chemistry. Such studies

tend to involve a knowledge of solid-state physics and to be somewhat specialized.

Computational chemistry is fairly cheap, it is fast compared to experiment, and it

is environmentally safe (although the profusion of computers in the last decade has

raised concern about the consumption of energy [2] and the disposal of obsolescent

machines [3]). It does not replace experiment, which remains the final arbiter of

truth about Nature. Furthermore, to make something – new drugs, new materials –

one has to go into the lab. However, computation has become so reliable in some

respects that, more and more, scientists in general are employing it before embar-

king on an experimental project, and the day may come when to obtain a grant for

some kinds of experimental work you will have to show to what extent you have

computationally explored the feasibility of the proposal.

1.4 The Philosophy of Computational Chemistry

Computational chemistry is the culmination (to date) of the view that chemistry is

best understood as the manifestation of the behavior of atoms and molecules, and

that these are real entities rather than merely convenient intellectual models [4]. It is
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a detailed physical and mathematical affirmation of a trend that hitherto found its

boldest expression in the structural formulas of organic chemistry [5], and it is the

unequivocal negation of the till recently trendy assertion [6] that science is a kind of

game played with “paradigms” [7].

In computational chemistry we take the view that we are simulating the beha-

viour of real physical entities, albeit with the aid of intellectual models; and that as

our models improve they reflect more accurately the behavior of atoms and

molecules in the real world.

1.5 Summary

Computational chemistry allows one to calculate molecular geometries, reactiv-

ities, spectra, and other properties. It employs:

Molecular mechanics – based on a ball-and-springs model of molecules

Ab initio methods – based on approximate solutions of the Schr€odinger equation
without appeal to fitting to experiment

Semiempirical methods – based on approximate solutions of the Schr€odinger
equation with appeal to fitting to experiment (i.e. using parameterization)

Density functional theory (DFT) methods – based on approximate solutions of the

Schr€odinger equation, bypassing the wavefunction that is a central feature of ab

initio and semiempirical methods

Molecular dynamics methods study molecules in motion.

Ab initio and the faster DFT enable novel molecules of theoretical interest to be

studied, provided they are not too big. Semiempirical methods, which are much

faster than ab initio or even DFT, can be applied to fairly large molecules (e.g.

cholesterol, C27H46O), while molecular mechanics will calculate geometries and

energies of very large molecules such as proteins and nucleic acids; however,

molecular mechanics does not give information on electronic properties. Computa-

tional chemistry is widely used in the pharmaceutical industry to explore the inter-

actions of potential drugs with biomolecules, for example by docking a candidate

drug into the active site of an enzyme. It is also used to investigate the properties of

solids (e.g. plastics) in materials science.
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4. The physical chemist Wilhelm Ostwald (Nobel Prize 1909) was a disciple of the philosopher

Ernst Mach. Like Mach, Ostwald attacked the notion of the reality of atoms and molecules

(“Nobel Laureates in Chemistry, 1901–1992”, James LK (ed) American Chemical Society and

the Chemical Heritage Foundation, Washington, DC, 1993) and it was only the work of Jean

Perrin, published in 1913, that finally convinced him, perhaps the last eminent holdout against

the atomic theory, that these entities really existed (Perrin showed that the number of tiny

particles suspended in water dropped off with height exactly as predicted in 1905 by Einstein,

who had derived an equation assuming the existence of atoms). Ostwald’s philosophical

outlook stands in contrast to that of another outstanding physical chemist, Johannes van der

Waals, who staunchly defended the atomic/molecular theory and was outraged by the Machian

positivism of people like Ostwald. See Ya Kipnis A, Yavelov BF, Powlinson JS (1996) Van der

Waals and molecular science. Oxford University Press, New York. For the opposition to and

acceptance of atoms in physics see: Lindley D (2001) Boltzmann’s atom. the great debate that

launched a revolution in physics. Free Press, New York; and Cercignani C (1998) Ludwig

Boltzmann: the man who trusted atoms. Oxford University Press, New York. Of course, to

anyone who knew anything about organic chemistry, the existence of atoms was in little doubt

by 1910, since that science had by that time achieved significant success in the field of

synthesis, and a rational synthesis is predicated on assembling atoms in a definite way

5. For accounts of the history of the development of structural formulas see Nye MJ (1993) From

chemical philosophy to theoretical chemistry. University of California Press, Berkeley, CA;

Russell CA (1996) Edward Frankland: chemistry, controversy and conspiracy in Victorian

England. Cambridge University Press, Cambridge

6. (a) An assertion of the some adherents of the “postmodernist” school of social studies; see

Gross P, Levitt N (1994) The academic left and its quarrels with science. John Hopkins

University Press, Baltimore, MD; (b) For an account of the exposure of the intellectual vacuity

of some members of this school by physicist Alan Sokal’s hoax see Gardner M (1996) Skeptical

Inquirer 20(6):14

7. (a) A trendy word popularized by the late Thomas Kuhn in his book – Kuhn TS (1970) The

structure of scientific revolutions. University of Chicago Press, Chicago, IL. For a trenchant

comment on Kuhn, see ref. [6b]. (b) For a kinder perspective on Kuhn, see Weinberg S (2001)

Facing up. Harvard University Press, Cambridge, MA, chapter 17

Added in press:

8. Fantacci S, Amat A, Sgamellotti A (2010) Computational chemistry, art, and our cultural

heritage. Acc Chem Res 43:802

Easier Questions

1. What does the term computational chemistry mean?

2. What kinds of questions can computational chemistry answer?

3. Name the main tools available to the computational chemist. Outline (a few

sentences for each) the characteristics of each.

4. Generally speaking, which is the fastest computational chemistry method

(tool), and which is the slowest?

5. Why is computational chemistry useful in industry?

6. Basically, what does the Schr€odinger equation describe, from the chemist’s

viewpoint?

7. What is the limit to the kind of molecule for which we can get an exact solution

to the Schr€odinger equation?
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8. What is parameterization?

9. What advantages does computational chemistry have over “wet chemistry”?

10. Why can’t computational chemistry replace “wet chemistry”?

Harder Questions

Discuss the following, and justify your conclusions.

1. Was there computational chemistry before electronic computers were

available?

2. Can “conventional” physical chemistry, such as the study of kinetics, thermo-

dynamics, spectroscopy and electrochemistry, be regarded as a kind of compu-

tational chemistry?

3. The properties of a molecule that are most frequently calculated are geometry,

energy (compared to that of other isomers), and spectra. Why is it more of a

challenge to calculate “simple” properties like melting point and density?

Hint: is there a difference between a molecule X and the substance X?

4. Is it surprising that the geometry and energy (compared to that of other

isomers) of a molecule can often be accurately calculated by a ball-and-springs

model (molecular mechanics)?

5. What kinds of properties might you expect molecular mechanics to be unable

to calculate?

6. Should calculations from first principles (ab initio) necessarily be preferred to

those which make some use of experimental data (semiempirical)?

7. Both experiments and calculations can give wrong answers. Why then should

experiment have the last word?

8. Consider the docking of a potential drug molecule X into the active site of an

enzyme: a factor influencing how well X will “hold” is clearly the shape of X;

can you think of another factor?

Hint: molecules consist of nuclei and electrons.

9. In recent years the technique of combinatorial chemistry has been used to

quickly synthesize a variety of related compounds, which are then tested for

pharmacological activity (S. Borman, Chemical and Engineering News: 2001,

27 August, p. 49; 2000, 15 May, p. 53; 1999, 8 March, p. 33). What are the

advantages and disadvantages of this method of finding drug candidates,

compared with the “rational design” method of studying, with the aid of

computational chemistry, how a molecule interacts with an enzyme?

10. Think up some unusual molecule which might be investigated computation-

ally. What is it that makes your molecule unusual?
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Chapter 2

The Concept of the Potential Energy Surface

Everything should be made as simple as possible, but not simpler.

Albert Einstein

Abstract The potential energy surface (PES) is a central concept in computational

chemistry. A PES is the relationship – mathematical or graphical – between

the energy of a molecule (or a collection of molecules) and its geometry. The

Born–Oppenheimer approximation says that in a molecule the nuclei are essentially

stationary compared to the electrons. This is one of the cornerstones of computa-

tional chemistry because it makes the concept of molecular shape (geometry)

meaningful, makes possible the concept of a PES, and simplifies the application

of the Schr€odinger equation to molecules by allowing us to focus on the electronic

energy and add in the nuclear repulsion energy later; this third point, very important

in practical molecular computations, is elaborated on in Chapter 5. Geometry

optimization and transition state optimization are explained.

2.1 Perspective

We begin a more detailed look at computational chemistry with the potential energy

surface (PES) because this is central to the subject. Many important concepts that

might appear to be mathematically challenging can be grasped intuitively with the

insight provided by the idea of the PES [1].

Consider a diatomic molecule AB. In some ways a molecule behaves like balls

(atoms) held together by springs (chemical bonds); in fact, this simple picture is the

basis of the important method molecular mechanics, discussed in Chapter 3. If we

take a macroscopic balls-and-spring model of our diatomic molecule in its normal

geometry (the equilibrium geometry), grasp the “atoms” and distort the model by

stretching or compressing the “bonds”, we increase the potential energy of the

molecular model (Fig. 2.1). The stretched or compressed spring possesses energy,

by definition, since we moved a force through a distance to distort it. Since the

E.G. Lewars, Computational Chemistry,
DOI 10.1007/978-90-481-3862-3_2, # Springer ScienceþBusiness Media B.V. 2011
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model is motionless while we hold it at the new geometry, this energy is not kinetic

and so is by default potential (“depending on position”). The graph of potential

energy against bond length is an example of a potential energy surface. A line

is a one-dimensional “surface”; we will soon see an example of a more familiar

two-dimensional surface rather than the line of Fig. 2.1.

Real molecules behave similarly to, but differ from our macroscopic model in

two relevant ways:

1. They vibrate incessantly (as we would expect from Heisenberg’s uncertainty

principle: a stationary molecule would have an exactly defined momentum and

position) about the equilibrium bond length, so that they always possess kinetic

energy (T) and/or potential energy (V): as the bond length passes through the

equilibrium length, V ¼ 0, while at the limit of the vibrational amplitude, T ¼ 0;

at all other positions both T and V are nonzero. The fact that a molecule is never

actually stationary with zero kinetic energy (it always has zero point energy;
Section 2.5) is usually shown on potential energy/bond length diagrams by draw-

ing a series of lines above the bottom of the curve (Fig. 2.2) to indicate the

possible amounts of vibrational energy the molecule can have (the vibrational
levels it can occupy). A molecule never sits at the bottom of the curve, but rather

occupies one of the vibrational levels, and in a collection of molecules the levels

are populated according to their spacing and the temperature [2]. We will

usually ignore the vibrational levels and consider molecules to rest on the actual

potential energy curves or (see below) surfaces.

2. Near the equilibrium bond length qe the potential energy/bond length curve

for a macroscopic balls-and-spring model or a real molecule is described

fairly well by a quadratic equation, that of the simple harmonic oscillator

ðE ¼ ð1=2ÞK ðq� qeÞ2, where k is the force constant of the spring). However,

the potential energy deviates from the quadratic (q2) curve as we move away

from qe (Fig. 2.2). The deviations from molecular reality represented by this

anharmonicity are not important to our discussion.

energy

0 bond length, q
qe

Fig. 2.1 The potential

energy surface for a diatomic

molecule. The potential

energy increases if the bond

length q is stretched or

compressed away from its

equilibrium value qe. The
potential energy at qe (zero
distortion of the bond length)

has been chosen here as the

zero of energy
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Figure 2.1 represents a one-dimensional PES in the two-dimensional graph of

E vs. q. A diatomic molecule AB has only one geometric parameter for us to vary,

the bond length qAB. Suppose we have a molecule with more than one geometric

parameter, for example water: the geometry is defined by two bond lengths and a

bond angle. If we reasonably content ourselves with allowing the two bond lengths

to be the same, i.e. if we limit ourselves to C2v symmetry (two planes of symmetry

and a two-fold symmetry axis; see Section 2.6) then the PES for this triatomic

molecule is a graph of E versus two geometric parameters, q1 ¼ the O–H bond

length, and q2 ¼ the H–O–H bond angle (Fig. 2.3). Figure 2.3 represents a two-

dimensional PES (a normal surface is a 2-D object) in the three-dimensional graph;

we could make an actual 3-D model of this drawing of a 3-D graph of E versus

q1 and q2.
We can go beyond water and consider a triatomic molecule of lower symmetry,

such as HOF, hypofluorous acid. This has three geometric parameters, the H–O and

O–F lengths and the H–O–F angle. To construct a Cartesian PES graph for HOF

analogous to that for H2O would require us to plot E vs. q1 ¼ H–O, q2 ¼ O–F, and

q3 ¼ angle H–O–F. We would need four mutually perpendicular axes (for E, q1, q2,
q3, Fig. 2.4), and since such a four-dimensional graph cannot be constructed in our

three-dimensional space we cannot accurately draw it. The HOF PES is a 3-D

“surface” of more than two dimensions in 4-D space: it is a hypersurface, and

potential energy surfaces are sometimes called potential energy hypersurfaces.

Despite the problem of drawing a hypersurface, we can define the equation E ¼ f
(q1, q2, q3) as the potential energy surface for HOF, where f is the function that

describes how E varies with the q’s, and treat the hypersurface mathematically. For

example, in the AB diatomic molecule PES (a line) of Fig. 2.1 the minimum

energy

0

quadratic curve

.

.

.

vibrational levels

true molecular
potential energy
curve

bond length, q
qe

Fig. 2.2 Actual molecules do not sit still at the bottom of the potential energy curve, but instead

occupy vibrational levels. Also, only near qe, the equilibrium bond length, does the quadratic curve

approximate the true potential energy curve
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potential energy geometry is the point at which dE/dq ¼ 0. On the H2O PES

(Fig. 2.3) the minimum energy geometry is defined by the point Pm, corresponding

to the equilibrium values of q1 and q2; at this point dE/dq1 ¼ dE/dq2 ¼ 0. Although

hypersurfaces cannot be faithfully rendered pictorially, it is very useful to a

computational chemist to develop an intuitive understanding of them. This can be

gained with the aid of diagrams like Figs. 2.1 and 2.3, where we content ourselves

with a line or a two-dimensional surface, in effect using a slice of a multidimen-

sional diagram. This can be understood by analogy: Fig. 2.5 shows how 2-D slices

angle
H H

O

O
H H

energy

.

Pmin

q1 = O    H bond length

q1 = 0.958 Å

q2 = 104.5°
q2 = 

Fig. 2.3 The H2O potential energy surface. The point Pmin corresponds to the minimum-energy

geometry for the three atoms, i.e. to the equilibrium geometry of the water molecule

energy

q3

q2

q1

Fig. 2.4 To plot energy

against three geometric

parameters in a Cartesian

coordinate system we would

need four mutually

perpendicular axes. Such a

coordinate system cannot be

actually constructed in our

three-dimensional space.

However, we can work with

such coordinate systems, and

the potential energy surfaces

in them, mathematically
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can be made of the 3-D diagram for water. The slice could be made holding one or

the other of the two geometric parameters constant, or it could involve both of them,

giving a diagram in which the geometry axis is a composite of more than one

geometric parameter. Analogously, we can take a 3-D slice of the hypersurface for

HOF (Fig. 2.6) or even a more complex molecule and use an E versus q1, q2
diagram to represent the PES; we could even use a simple 2D diagram, with q
representing one, two or all of the geometric parameters. We shall see that these 2D

and particularly 3D graphs preserve qualitative and even quantitative features of the

mathematically rigorous but unvisualizable E ¼ f(q1, q2, . . . qn) n-dimensional

hypersurface.

2.2 Stationary Points

Potential energy surfaces are important because they aid us in visualizing and under-

standing the relationship between potential energy and molecular geometry, and in

understanding how computational chemistry programs locate and characterize structures

angle
H H

O

O
H Henergy

slice parallel to bond length axis

energy

energy

bond length

2D surface

1D "surface"

bond angle

1D "surface"

slice parallel to
angle axis

q2 =

q1 = O    H bond length

Fig. 2.5 Slices through a 2D potential energy surface give 1D surfaces. A slice that is parallel to

neither axis would give a plot of geometry versus a composite of bond angle and bond length, a

kind of average geometry
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of interest. Among the main tasks of computational chemistry are to determine the

structure and energy of molecules and of the transition states involved in chemical

reactions: our “structures of interest” are molecules and the transition states linking

them. Consider the reaction

O

O O

transition state

reaction (2.1)

O

O O
isoozone

+
O

–O O

ozone

A priori, it seems reasonable that ozone might have an isomer (call it isoozone)

and that the two could interconvert by a transition state as shown in Reaction (2.1).

We can depict this process on a PES. The potential energy Emust be plotted against

only two geometric parameters, the bond length (we may reasonably assume that

the two O–O bonds of ozone are equivalent, and that these bond lengths remain

equal throughout the reaction) and the O–O–O bond angle. Figure 2.7 shows the

PES for Reaction (2.1), as calculated by the AM1 semiempirical method (Chapter

6; the AM1 method is unsuitable for quantitative treatment of this problem, but the

potential energy surface shown makes the point), and shows how a 2D slice from

H
O

F

energy

Pmin

q2 = O    F bond length

q1 = O    H bond length

Fig. 2.6 A potential energy surface (PES) for HOF. Here the HOF angle is not shown. This

picture could represent one of two possibilities: the angle might be the same (some constant,

reasonable value) for every calculated point on the surface; this would be an unrelaxed or rigid

PES. Alternatively, for each calculated point the geometry might be that for the best angle

corresponding to the other two parameters, i.e. the geometry for each calculated point might be

fully optimized (Section 2.4); this would be a relaxed PES
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this 3D diagram gives the energy/reaction coordinate type of diagram commonly

used by chemists. The slice goes along the lowest-energy path connecting ozone,

isoozone and the transition state, that is, along the reaction coordinate, and the

horizontal axis (the reaction coordinate) of the 2D diagram is a composite of O–O

bond length and O–O–O angle. In most discussions this horizontal axis is left

quantitatively undefined; qualitatively, the reaction coordinate represents the

O

O

OO
O O

O

O O
energy

transition state

2.0

60°

120.9°

global minimum
OZONE

1.060
80

100
120

140
160

K
J m

ol –1

1.
31

6
1.160

relative minimum
iSOOZONE

O-O-O angle, degrees
0-

0,
 Å

intrinsic reaction coordinate (IRC)

Fig. 2.7 The ozone/isoozone potential energy surface (calculated by the AM1 method; Chapter

6), a 2D surface in a 3D diagram. The dashed line on the surface is the reaction coordinate

(intrinsic reaction coordinate, IRC). A slice through the reaction coordinate gives a 1D “surface” in

a 2D diagram. The diagram is not meant to be quantitatively accurate
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progress of the reaction. The three species of interest, ozone, isoozone, and the

transition state linking these two, are called stationary points. A stationary point on

a PES is a point at which the surface is flat, i.e. parallel to the horizontal line

corresponding to the one geometric parameter (or to the plane corresponding to two

geometric parameters, or to the hyperplane corresponding to more than two geo-

metric parameters). A marble placed on a stationary point will remain balanced, i.e.

stationary (in principle; for a transition state the balancing would have to be

exquisite indeed). At any other point on a potential surface the marble will roll

toward a region of lower potential energy.

Mathematically, a stationary point is one at which the first derivative of the

potential energy with respect to each geometric parameter is zero1:

@ E

@ q1
¼ @ E

@ q2
¼ � � � ¼ 0 (*2.1)

Partial derivatives, ∂E/∂q, are written here rather than dE/dq, to emphasize that

each derivative is with respect to just one of the variables q of which E is a function.

Stationary points that correspond to actual molecules with a finite lifetime (in

contrast to transition states, which exist only for an instant), like ozone or isoozone,

are minima, or energy minima: each occupies the lowest-energy point in its region

of the PES, and any small change in the geometry increases the energy, as indicated

in Fig. 2.7. Ozone is a global minimum, since it is the lowest-energy minimum on

the whole PES, while isoozone is a relative minimum, a minimum compared only to

nearby points on the surface. The lowest-energy pathway linking the two minima,

the reaction coordinate or intrinsic reaction coordinate (IRC; dashed line in

Fig. 2.7) is the path that would be followed by a molecule in going from one

minimum to another should it acquire just enough energy to overcome the activa-

tion barrier, pass through the transition state, and reach the other minimum. Not all

reacting molecules follow the IRC exactly: a molecule with sufficient energy can

stray outside the IRC to some extent [3].

Inspection of Fig. 2.7 shows that the transition state linking the two minima

represents a maximum along the direction of the IRC, but along all other directions

it is a minimum. This is a characteristic of a saddle-shaped surface, and the

transition state is called a saddle point (Fig. 2.8). The saddle point lies at the

“center” of the saddle-shaped region and is, like a minimum, a stationary point,

since the PES at that point is parallel to the plane defined by the geometry parameter

axes: we can see that a marble placed (precisely) there will balance. Mathemati-

cally, minima and saddle points differ in that although both are stationary points

(they have zero first derivatives; Eq. 2.1), a minimum is a minimum in all direc-

tions, but a saddle point is a maximum along the reaction coordinate and a

minimum in all other directions (examine Fig. 2.8). Recalling that minima and

maxima can be distinguished by their second derivatives, we can write:

1Equations marked with an asterisk are those which should be memorized.
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For a minimum

@2E

@q2
> 0 (*2.2)

for all q.
For a transition state

@2E

@q2
> 0 (*2.3)

for all q, except along the reaction coordinate, and

@2E

@q2
< 0 (*2.4)

along the reaction coordinate.
The distinction is sometimes made between a transition state and a transition

structure [4]. Strictly speaking, a transition state is a thermodynamic concept, the

species an ensemble of which are in a kind of equilibrium with the reactants in

Eyring’s2 transition-state theory [5]. Since equilibrium constants are determined by

free energy differences, the transition structure, within the strict use of the term, is a

free energy maximum along the reaction coordinate (in so far as a single species can

minimum

transition state

transition state
region

reaction coordinate

energy

Fig. 2.8 A transition state or saddle point and a minimum. At both the transition state and the

minimum ∂E/∂q ¼ 0 for all geometric coordinates q (along all directions). At the transition state

∂E2/∂q2< 0 for q¼ the reaction coordinate and> 0 for all other q (along all other directions). At a
minimum ∂E2/∂q2 > 0 for all q (along all directions)

2Henry Eyring, American chemist. Born Colonia Juarárez, Mexico, 1901. Ph.D. University of

California, Berkeley, 1927. Professor Princeton, University of Utah. Known for his work on the

theory of reaction rates and on potential energy surfaces. Died Salt Lake City, Utah, 1981.
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be considered representative of the ensemble). This species is also often (but not

always [5]) also called an activated complex. A transition structure, in strict usage,
is the saddle point (Fig. 2.8) on a theoretically calculated (e.g. Fig. 2.7) PES.

Normally such a surface is drawn through a set of points each of which represents

the enthalpy of a molecular species at a certain geometry; recall that free energy

differs from enthalpy by temperature times entropy. The transition structure is thus

a saddle point on an enthalpy surface. However, the energy of each of the calculated

points does not normally include the vibrational energy, and even at 0 K a molecule

has such energy (zero point energy: Fig. 2.2, and Section 2.5). The usual calculated

PES is thus a hypothetical, physically unrealistic surface in that it neglects vibra-

tional energy, but it should qualitatively, and even semiquantitatively, resemble the

vibrationally-corrected one since in considering relative enthalpies ZPEs at least

roughly cancel. In accurate work ZPEs are calculated for stationary points and

added to the “frozen-nuclei” energy of the species at the bottom of the reaction

coordinate curve in an attempt to give improved relative energies which represent

enthalpy differences at 0 K (and thus, at this temperature where entropy is zero, free

energy differences also; Fig. 2.19). It is also possible to calculate enthalpy and

entropy differences, and thus free energy differences, at, say, room temperature

(Section 5.5.2). Many chemists do not routinely distinguish between the two terms,

and in this book the commoner term, transition state, is used. Unless indicated

otherwise, it will mean a calculated geometry, the saddle point on a hypothetical

vibrational-energy-free PES.

The geometric parameter corresponding to the reaction coordinate is usually a

composite of several parameters (bond lengths, angles and dihedrals), although for

some reactions one two may predominate. In Fig. 2.7, the reaction coordinate is a

composite of the O–O bond length and the O–O–O bond angle.

A saddle point, the point on a PES where the second derivative of energy with

respect to one and only geometric coordinate (possibly a composite coordinate) is

negative, corresponds to a transition state. Some PES’s have points where the

second derivative of energy with respect to more than one coordinate is negative;

these are higher-order saddle points or hilltops: for example, a second-order saddle

point is a point on the PES which is a maximum along two paths connecting

stationary points. The propane PES, Fig. 2.9, provides examples of a minimum, a

transition state and a hilltop – a second-order saddle point in this case. Figure 2.10

shows the three stationary points in more detail. The “doubly-eclipsed” conforma-

tion (Fig. 2.10a) in which there is eclipsing as viewed along the C1–C2 and the

C3–C2 bonds (the dihedral angles are 0� viewed along these bonds) is a second-

order saddle point because single bonds do not like to eclipse single bonds and

rotation about the C1–C2 and the C3–C2 bonds will remove this eclipsing: there are

two possible directions along the PES which lead, without a barrier, to lower-energy

regions, i.e. changing the H–C1/C2–C3 dihedral and changing the H–C3/C2–C1

dihedral. Changing one of these leads to a “singly-eclipsed” conformation

(Fig. 2.10b) with only one offending eclipsing CH3–CH2 arrangement, and this is

a first-order saddle point, since there is now only one direction along the PES which

leads to relief of the eclipsing interactions (rotation around C3–C2). This route
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gives a conformation C which has no eclipsing interactions and is therefore a

minimum. There are no lower-energy structures on the C3H8 PES and so C is the

global minimum.

The geometry of propane depends on more than just two dihedral angles, of

course; there are several bond lengths and bond angles and the potential energy will

vary with changes in all of them. Figure 2.9 was calculated by varying only the

dihedral angles associated with the C1–C2–C3–C4 bonds, keeping the other

geometrical parameters the same as they are in the all-staggered conformation. If

at every point on the dihedral/dihedral grid all the other parameters (bond lengths

and angles) had been optimized (adjusted to give the lowest possible energy, for

that particular calculational method; Section 2.4), the result would have been a

relaxed PES. In Fig. 2.9 this was not done, but because bond lengths and angles

change only slightly with changes in dihedral angles the PES would not be altered

much, while the time required for the calculation (for the potential energy surface
scan) would have been greater. Figure 2.9 is a nonrelaxed or rigid PES, albeit not

very different, in this case, from a relaxed one.

Chemistry is essentially the study of the stationary points on potential energy

surfaces: in studying more or less stable molecules we focus on minima, and

in investigating chemical reactions we study the passage of a molecule from a

A, hilltop

B, transition state

C, minimum
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Fig. 2.9 The propane potential energy surface as the two HCCC dihedrals are varied (calculated

by the AM1 method, Chapter 6). Bond lengths and angles were not optimized as the dihedrals

were varied, so this is not a relaxed PES; however, changes in bond lengths and angles from

one propane conformation to another are small, and the relaxed PES should be very similar to

this one
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minimum through a transition state to another minimum. There are four known

forces in nature: the gravitational force, the strong and the weak nuclear forces, and

the electromagnetic force. Celestial mechanics studies the motion of stars and

planets under the influence of the gravitational force and nuclear physics studies

the behaviour of subatomic particles subject to the nuclear forces. Chemistry is

concerned with aggregates of nuclei and electrons (with molecules) held together

by the electromagnetic force, and with the shuffling of nuclei, followed by their
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Fig. 2.10 The stationary points on the propane potential energy surface. Hydrogens at the end of

CH bonds are omitted for clarity
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obedient retinue of electrons, around a potential energy surface under the influence

of this force (with chemical reactions).

The concept of the chemical potential energy surface apparently originated with

R. Marcelin [6]: in a dissertation-long paper (111 pages) he laid the groundwork for

transition-state theory 20 years before the much better-known work of Eyring [5,7].

The importance of Marcelin’s work is acknowledged by Rudolph Marcus in his

Nobel Prize (1992) speech, where he refers to “. . .Marcelin’s classic 1915 theory

which came within one small step of the transition state theory of 1935.” The paper

was published the year after the death of the author, who seems to have died in

World War I, as indicated by the footnote “Tué à l’ennemi en sept 1914”. The first

potential energy surface was calculated in 1931 by Eyring and Polanyi,3 using a

mixture of experiment and theory [8].

The potential energy surface for a chemical reaction has just been presented as a

saddle-shaped region holding a transition state which connects wells containing

reactant(s) and products(s) (which species we call the reactant and which the

product is inconsequential here). This picture is immensely useful, and may well

apply to the great majority of reactions. However, for some reactions it is deficient.

Carpenter has shown that in some cases a reactive intermediate does not tarry in a

PES well and then proceed to react. Rather it appears to scoot over a plateau-shaped

region of the PES, retaining a memory (“dynamical information”) of the atomic

motions it acquired when it was formed. When this happens there are two (say)

intermediates with the same crass geometry, but different atomic motions, leading

to different products. The details are subtle, and the interested reader is commended

to the relevant literature [9].

2.3 The Born–Oppenheimer Approximation

A potential energy surface is a plot of the energy of a collection of nuclei and

electrons against the geometric coordinates of the nuclei – essentially a plot of

molecular energy versus molecular geometry (or it may be regarded as the mathe-

matical equation that gives the energy as a function of the nuclear coordinates). The

nature (minimum, saddle point or neither) of each point was discussed in terms of

the response of the energy (first and second derivatives) to changes in nuclear

coordinates. But if a molecule is a collection of nuclei and electrons why plot

energy versus nuclear coordinates – why not against electron coordinates? In other
words, why are nuclear coordinates the parameters that define molecular geometry?

The answer to this question lies in the Born–Oppenheimer approximation.

3Michael Polanyi, Hungarian-British chemist, economist, and philosopher. Born Budapest 1891.

Doctor of medicine 1913, Ph.D. University of Budapest, 1917. Researcher Kaiser-Wilhelm

Institute, Berlin, 1920–1933. Professor of chemistry, Manchester, 1933–1948; of social studies,

Manchester, 1948–1958. Professor Oxford, 1958–1976. Best known for book “Personal

Knowledge”, 1958. Died Northampton, England, 1976.
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Born4 and Oppenheimer5 showed in 1927 [10] that to a very good approximation

the nuclei in a molecule are stationary with respect to the electrons. This is a

qualitative expression of the principle; mathematically, the approximation states

that the Schr€odinger equation (Chapter 4) for a molecule may be separated into an

electronic and a nuclear equation. One consequence of this is that all (!) we have to

do to calculate the energy of a molecule is to solve the electronic Schr€odinger
equation and then add the electronic energy to the internuclear repulsion (this latter

quantity is trivial to calculate) to get the total internal energy (see Section 4.4.1). A

deeper consequence of the Born–Oppenheimer approximation is that a molecule

has a shape.

The nuclei see the electrons as a smeared-out cloud of negative charge which

binds them in fixed relative positions (because of the mutual attraction between

electrons and nuclei in the internuclear region) and which defines the (somewhat

fuzzy) surface [11] of the molecule (see Fig. 2.11). Because of the rapid motion of

the electrons compared to the nuclei the “permanent” geometric parameters of the

molecule are the nuclear coordinates. The energy (and the other properties) of a

molecule is a function of the electron coordinates (E ¼ C(x, y, z of each electron);

Section 5.2), but depends only parametrically on the nuclear coordinates, i.e. for

each geometry 1, 2, . . . there is a particular energy: E1 ¼C1(x, y, z. . .), E2 ¼C2 (x,
y, z. . .); cf. xn, which is a function of x but depends only parametrically on the

particular n.

r1
r2

r3
a1

a2

Fig. 2.11 The nuclei in a molecule see a time-averaged electron cloud. The nuclei vibrate about

equilibrium points which define the molecular geometry; this geometry can be expressed simply as

the nuclear Cartesian coordinates, or alternatively as bond lengths and angles r and a here) and

dihedrals, i.e. as internal coordinates. As far as size goes, the experimentally determined van der

Waals surface encloses about 98% of the electron density of a molecule

4Max Born, German-British physicist. Born in Breslau (now Wroclaw, Poland), 1882, died in

G€ottingen, 1970. Professor Berlin, Cambridge, Edinburgh. Nobel Prize, 1954. One of the founders

of quantum mechanics, originator of the probability interpretation of the (square of the) wave-

function (Chapter 4).
5J. Robert Oppenheimer, American physicist. Born in New York, 1904, died in Princeton 1967.

Professor California Institute of Technology. Fermi award for nuclear research, 1963. Important

contributions to nuclear physics. Director of the Manhattan Project 1943–1945. Victimized as a

security risk by senator Joseph McCarthy’s Un-American Activities Committee in 1954. Central

figure of the eponymous PBS TV series (Oppenheimer: Sam Waterston).
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Actually, the nuclei are not stationary, but execute vibrations of small amplitude

about equilibrium positions; it is these equilibrium positions that we mean by the

“fixed” nuclear positions. It is only because it is meaningful to speak of (almost)

fixed nuclear coordinates that the concepts of molecular geometry or shape and of

the PES are valid [12]. The nuclei are much more sluggish than the electrons

because they are much more massive (a hydrogen nucleus is about 2,000 more

massive than an electron).

Consider the molecule H3
+, made up of three protons and two electrons. Ab

initio calculations assign it the geometry shown in Fig. 2.12. The equilibrium

positions of the nuclei (the protons) lie at the corners of an equilateral triangle

and H3
þ has a definite shape. But suppose the protons were replaced by positrons,

which have the same mass as electrons. The distinction between nuclei and elec-

trons, which in molecules rests on mass and not on some kind of charge chauvinism,

would vanish. We would have a quivering cloud of flitting particles to which a

shape could not be assigned on a macroscopic time scale.

A calculated PES, which we might call a Born–Oppenheimer surface, is nor-

mally the set of points representing the geometries, and the corresponding energies,

of a collection of atomic nuclei; the electrons are taken into account in the calcula-

tions as needed to assign charge and multiplicity (multiplicity is connected with the

number of unpaired electrons). Each point corresponds to a set of stationary nuclei,

and in this sense the surface is somewhat unrealistic (see Section 2.5).

2.4 Geometry Optimization

The characterization (the “location” or “locating”) of a stationary point on a PES,

that is, demonstrating that the point in question exists and calculating its geometry

and energy, is a geometry optimization. The stationary point of interest might be a

minimum, a transition state, or, occasionally, a higher-order saddle point. Locating

a minimum is often called an energy minimization or simply a minimization, and

0.851 Å 0.851 Å

0.851 Å

H

H H

–

–

++

+

The H3
+ cation: 3 protons, 2 electrons

Definite geometry

make the masses of the
nuclei and electrons equal

No definite geometry

Fig. 2.12 A molecule has a definite shape because unlike the electrons, the nuclei are (relatively)

stationary (since they are much more massive). If the masses of the nuclei and the electrons could

be made equal, the distinction in lethargy would be lost, and the molecular geometry would

dissolve
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locating a transition state is often referred to specifically as a transition state

optimization. Geometry optimizations are done by starting with an input structure

that is believed to resemble (the closer the better) the desired stationary point and

submitting this plausible structure to a computer algorithm that systematically

changes the geometry until it has found a stationary point. The curvature of the

PES at the stationary point, i.e. the second derivatives of energy with respect to the

geometric parameters (Section 2.2) may then be determined (Section 2.5) to

characterize the structure as a minimum or as some kind of saddle point.

Let us consider a problem that arose in connection with an experimental study.

Propanone (acetone) was subjected to ionization followed by neutralization of the

radical cation, and the products were frozen in an inert matrix and studied by IR

spectroscopy [13]. The spectrum of the mixture suggested the presence of the enol

isomer of propanone, 1-propen-2-ol (Reaction 2.2):

C

Reaction 2

O

C

OH

H3C H2CCH3 CH3

To confirm (or refute) this the IR spectrum of the enol might be calculated (see

Section 2.5 and the discussions of the calculation of IR spectra in subsequent

chapters). But which conformer should one choose for the calculation? Rotation

about the C–O and C–C bonds creates six plausible stationary points (Fig. 2.13),

O O

O O

O

2 3

45

6
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H
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H
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H

H

HH

H H

H

H H

O

1 H
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H
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H

H

Fig. 2.13 The plausible

stationary points on the

propenol potential energy

surface. A PES scan

(Fig. 2.14) indicated that 1 is

the global minimum and 4 is a

relative minimum, while

2 and 3 are transition states

and 5 and 6 are hilltops. AM1

calculations gave relative

energies for 1, 2, 3 and 4 of 0,

0.6, 14 and 6.5 kJ mol�1,

respectively (5 and 6 were not

optimized). The arrows
represent one-step (rotation

about one bond) conversion

of one species into another

24 2 The Concept of the Potential Energy Surface



and a PES scan (Fig. 2.14) indicated that there are indeed six such species.

Examination of this PES shows that the global minimum is structure 1 and that

there is a relative minimum corresponding to structure 4. Geometry optimization

starting from an input structure resembling 1 gave a minimum corresponding to 1,

while optimization starting from a structure resembling 4 gave another, higher-

energy minimum, resembling 4. Transition-state optimizations starting from appro-

priate structures yielded the transition states 2 and 3. These stationary points were

all characterized as minima or transition states by second-derivative calculations

(Section 2.5) (the species 5 and 6were not located). The calculated IR spectrum of 1

(using the ab initio HF/6–31G* method – Chapter 5) was in excellent agreement

with the observed spectrum of the putative propenol.

This illustrates a general principle: the optimized structure one obtains is that

closest in geometry on the PES to the input structure (Fig. 2.15). To be sure we have

found a global minimum we must (except for very simple or very rigid molecules)

search a potential energy surface (there are algorithms that will do this and locate

the various minima). Of course we may not be interested in the global minimum; for

example, if we wish to study the cyclic isomer of ozone (Section 2.2) we will use as

Fig. 2.14 The 1-propen-2-ol potential energy surface (calculated by the AM1 method) (see

Fig. 2.13)
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input an equilateral triangle structure, probably with bond lengths about those of an

O–O single bond.

In the propenol example, the PES scan suggested that to obtain the global

minimum we should start with an input structure resembling 1, but the exact values

of the various bond lengths and angles were unknown (the exact values of even the

dihedrals was not known with certainty, although general chemical knowledge

made H–O–C–C ¼ H–C-C¼C ¼ 0� seem plausible). The actual creation of input

structures is usually done nowadays with an interactive mouse-driven program,

in much the same spirit that one constructs plastic models or draws structures

on paper. An older alternative is to specify the geometry by defining the various

bond lengths, angles and dihedrals, i.e. by using a so-called Z-matrix (internal

coordinates).

To move along the PES from the input structure to the nearest minimum is

obviously trivial on the one-dimensional PES of a diatomic molecule: one simply

changes the bond length till that corresponding to the lowest energy is found.

On any other surface, efficient geometry optimization requires a sophisticated

algorithm. One would like to know in which direction to move, and how far in

that direction (Fig. 2.16). It is not possible, in general, to go from the input structure

to the proximate minimum in just one step, but modern geometry optimization

algorithms commonly reach the minimum within about ten steps, given a reason-

able input geometry. The most widely-used algorithms for geometry optimization

[14] use the first and second derivatives of the energy with respect to the geometric

parameters. To get a feel for how this works, consider the simple case of a

one-dimensional PES, as for a diatomic molecule (Fig. 2.17). The input structure

is at the point Pi(Ei, qi) and the proximate minimum, corresponding to the

optimized structure being sought, is at the point Po(Eo, qo). Before the optimization

energy

geometry

TS

B

A

B′

A′

several steps
several steps

Fig. 2.15 Geometry optimization to a minimum gives the minimum closest to the input structure.

The input structure A0 is moved toward the minimum A, and B0 toward B. To locate a transition

state a special algorithm is usually used: this moves the initial structure A0 toward the transition

state TS. Optimization to each of the stationary points would probably actually require several

steps (see Fig. 2.16)
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energy

geometry

geometry

optimized structure

.

input structure

Fig. 2.16 An efficient optimization algorithm knows approximately in which direction to move

and how far to step, in an attempt to reach the optimized structure in relatively few (commonly

about five to ten) steps

bond length, q
0

qe

E

E – E0 = k(q – q0)2

Input structure
Pi (Ei, qi)

Equilibrium (optimized) structure
Po(E0, q0)

Fig. 2.17 The potential energy of a diatomic molecule near the equilibrium geometry is approxi-

mately a quadratic function of the bond length. Given an input structure (i.e. given the bond length

qi), a simple algorithm would enable the bond length of the optimized structure to be found in one

step, if the function were strictly quadratic
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has been carried out the values of Eo and qo are of course unknown. If we assume

that near a minimum the potential energy is a quadratic function of q, which is a

fairly good approximation, then

E� Eo ¼ k ðq� qoÞ2 (2.5)

At the input point ðdE=dqÞi ¼ 2kðqi � qoÞ (2.6)

At all points d2E=dq2 ¼ 2k ð¼ force constantÞ (2.7)

FromEqs: ð2:6Þ and ð2:7Þ; ðdE=dqÞi ¼ ðd2E=dq2Þ ðqi � qoÞ (2.8)

and qo ¼ qi � ðdE=dqÞi=ðd2E=dq2Þ (2.9)

Equation 2.9 shows that if we know (dE/dq)i, the slope or gradient of the PES

at the point of the initial structure, (d2E/dq2), the curvature of the PES (which for

a quadratic curve E(q) is independent of q) and qi, the initial geometry, we

can calculate qo, the optimized geometry. The second derivative of potential energy

with respect to geometric displacement is the force constant for motion along

that geometric coordinate; as we will see later, this is an important concept in

connection with calculating vibrational spectra.

For multidimensional PES’s, i.e. for almost all real cases, far more sophisticated

algorithms are used, and several steps are needed since the curvature is not exactly

quadratic. The first step results in a new point on the PES that is (probably) closer to

the minimum than was the initial structure. This new point then serves as the initial

point for a second step toward the minimum, etc. Nevertheless, most modern

geometry optimization methods do depend on calculating the first and second

derivatives of the energy at the point on the PES corresponding to the input

structure. Since the PES is not strictly quadratic, the second derivatives vary from

point to point and are updated as the optimization proceeds.

In the illustration of an optimization algorithm using a diatomic molecule,

Eq. 2.9 referred to the calculation of first and second derivatives with respect to

bond length, which latter is an internal coordinate (inside the molecule). Optimi-

zations are actually commonly done using Cartesian coordinates x, y, z. Consider
the optimization of a triatomic molecule like HOF in a Cartesian coordinate

system. Each of the three atoms has an x, y and z coordinate, giving nine geometric

parameters, q1, q2, . . . , q9; the PES would be a nine-dimensional hypersurface on

a 10D graph. We need the first and second derivatives of E with respect to each of

the nine q’s, and these derivatives are manipulated as matrices. Matrices are

discussed in Section 4.3.3; here we need only know that a matrix is a rectangular

array of numbers that can be manipulated mathematically, and that they provide a

convenient way of handling sets of linear equations. The first-derivative matrix,

the gradient matrix, for the input structure can be written as a column matrix
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gi ¼

@E=@q1ð Þi
@E=@q2ð Þi

..

.

@E=@q9ð Þi

0
BBB@

1
CCCA (2.10)

and the second-derivative matrix, the force constant matrix, is

H ¼

@2E=@q1q1 @2E=@q1q1 � � � @2E=@q1q9
@2E=@q2q1

..

.

@2E=@q2q2 � � �
..
. � � �

@2E=@q2q9

..

.

@2E=@q9q1 @2E=@q9q2 � � � @2E=@q9q9

0
BBBB@

1
CCCCA (2.11)

The force constant matrix is called the Hessian.6 The Hessian is particularly

important, not only for geometry optimization, but also for the characterization of

stationary points as minima, transition states or hilltops, and for the calculation of

IR spectra (Section 2.5). In the Hessian ∂2E/∂q1q2 ¼ ∂2E/∂q2q1, as is true for all
well-behaved functions, but this systematic notation is preferable: the first subscript

refers to the row and the second to the column. The geometry coordinate matrices

for the initial and optimized structures are

qi ¼
qi1
qi2
..
.

qi9

0
BBB@

1
CCCA (2.12)

and

qo ¼

qo1
qo2

..

.

qo9

0
BBB@

1
CCCA (2.13)

The matrix equation for the general case can be shown to be:

qo ¼ qi �H�1 gi (2.14)

which is analogous to Eq. 2.9 for the optimization of a diatomic molecule, which

could be written

qo ¼ qi � ðd2E=dq2Þ�1ðdE=dqÞi

6Ludwig Otto Hesse, 1811–1874, German mathematician.

2.4 Geometry Optimization 29



For n atoms we have 3n Cartesians; qo, qi and gi are 3n� 1 column matrices and

H is a 3n� 3n square matrix; multiplication by the inverse ofH rather than division

byH is used because matrix division is not defined. Equation 2.14 shows that for an

efficient geometry optimization we need an initial structure (for qi), initial gradients

(for gi) and second derivatives (forH). With an initial “guess” for the geometry (for

example from a model-building program followed by molecular mechanics) as

input, gradients can be readily calculated analytically (from the derivatives of the

molecular orbitals and the derivatives of certain integrals). An approximate initial

Hessian is often calculated from molecular mechanics (Chapter 3). Since the PES is

not really exactly quadratic, the first step does not take us all the way to the

optimized geometry, corresponding to the matrix qo. Rather, we arrive at q1, the

first calculated geometry; using this geometry a new gradient matrix and a new

Hessian are calculated (the gradients are calculated analytically and the second

derivatives are updated using the changes in the gradients – see below). Using q1
and the new gradient and Hessian matrices a new approximate geometry matrix q2
is calculated. The process is continued until the geometry and/or the gradients (or

with some programs possibly the energy) have ceased to change appreciably.

As the optimization proceeds the Hessian is updated by approximating each

second derivative as a ratio of finite increments:

@2E

@qi@qj
� Dð@E=@qjÞ

Dqi
(2.15)

i.e. as the change in the gradient divided by the change in geometry, on going from the

previous structure to the latest one. Analytic calculation of second derivatives is

relatively time-consuming and is not routinely done for each point along the optimi-

zation sequence, in contrast to analytic calculation of gradients. A fast lower-level

optimization, for a minimum or a transition state, usually provides a goodHessian and

geometry for input to a higher-level optimization [15]. Finding a transition state (i.e.

optimizing an input structure to a transition state structure) is a more challenging

computational problem than finding a minimum, as the characteristics of the PES at

the former are more complicated than at a minimum: at the transition state the surface

is a maximum in one direction and a minimum in all others, rather than simply a

minimum in all directions. Nevertheless, modifications of the minimum-search algo-

rithm enable transitions states to be located, albeit often with less ease than minima.

2.5 Stationary Points and Normal-Mode Vibrations – Zero

Point Energy

Once a stationary point has been found by geometry optimization, it is usually

desirable to check whether it is a minimum, a transition state, or a hilltop. This is

done by calculating the vibrational frequencies. Such a calculation involves finding

the normal-mode frequencies; these are the simplest vibrations of the molecule,
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which, in combination, can be considered to result in the actual, complex vibrations

that a real molecule undergoes. In a normal-mode vibration all the atoms move in

phase with the same frequency: they all reach their maximum and minimum

displacements and their equilibrium positions at the same moment. The other

vibrations of the molecule are combinations of these simple vibrations. Essentially,

a normal-modes calculation is a calculation of the infrared spectrum, although the

experimental spectrum is likely to contain extra bands resulting from interactions

among normal-mode vibrations.

A nonlinear molecule with n atoms has 3n� 6 normal modes: the motion of each

atom can be described by three vectors, along the x, y, and z axes of a Cartesian

coordinate system; after removing the three vectors describing the translational

motion of the molecule as a whole (the translation of its center of mass) and the

three vectors describing the rotation of the molecule (around the three principal

axes needed to describe rotation for a three-dimensional object of general geome-

try), we are left with 3n � 6 independent vibrational motions. Arranging these in

appropriate combinations gives 3n� 6 normal modes. A linear molecule has 3n� 5

normal modes, since we need subtract only three translational and two rotational

vectors, as rotation about the molecular axis does not produce a recognizable

change in the nuclear array. So water has 3n � 6 ¼ 3(3) � 6 ¼ 3 normal modes,

and HCN has 3n� 5¼ 3(3)� 5¼ 4 normal modes. For water (Fig. 2.18) mode 1 is

a bending mode (the H–O–H angle decreases and increases), mode 2 is a symmetric

stretching mode (both O–H bonds stretch and contract simultaneously) and mode 3

is an asymmetric stretching mode (as the O–H1 bond stretches the O–H2 bond

contracts, and vice versa). At any moment an actual molecule of water will be

undergoing a complicated stretching/bending motion, but this motion can be con-

sidered to be a combination of the three simple normal-mode motions.

Consider a diatomic molecule A–B; the normal-mode frequency (there is only

one for a diatomic, of course) is given by [16]:

en ¼ 1

2pc

k

m

� �1=2

(*2.16)

where ~n¼ vibrational “frequency”, actually wavenumber, in cm�1; from deference

to convention we use cm�1 although the cm is not an SI unit, and so the other units

will also be non-SI; ~n signifies the number of wavelengths that will fit into one cm.

The symbol n is the Greek letter nu, which resembles an angular vee; en could be

O
H H

O
H H

O
H H

1595 cm–1

bend
3652 cm–1

symmetric stretch
3756 cm–1

asymmetric stretch

Fig. 2.18 The normal-mode vibrations of water. The arrows indicate the directions in which the

atoms move; on reaching the maximum amplitude these directions are reversed
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read “nu tilde”; �n, “nu bar”, has been used less frequently. c¼ velocity of light, k¼
force constant for the vibration, m¼ reduced mass of the molecule¼ (mAmB)/(mA +

mB); mA and mB are the masses of A and B.

The force constant k of a vibrational mode is a measure of the “stiffness” of the

molecule toward that vibrational mode – the harder it is to stretch or bend the

molecule in the manner of that mode, the bigger is that force constant (for a

diatomic molecule k simply corresponds to the stiffness of the one bond). The

fact that the frequency of a vibrational mode is related to the force constant for the

mode suggests that it might be possible to calculate the normal-mode frequencies of

a molecule, that is, the directions and frequencies of the atomic motions, from its

force constant matrix (its Hessian). This is indeed possible: matrix diagonalization
of the Hessian gives the directional characteristics (which way the atoms are

moving), and the force constants themselves, for the vibrations. Matrix diagonali-

zation (Section 4.3.3) is a process in which a square matrix A is decomposed into

three square matrices, P, D, and P�1: A¼ PDP�1. D is a diagonal matrix: as with k

in Eq. 2.17 all its off-diagonal elements are zero. P is a premultiplying matrix and

P�1 is the inverse of P. When matrix algebra is applied to physical problems, the

diagonal row elements of D are the magnitudes of some physical quantity, and each

column of P is a set of coordinates which give a direction associated with that

physical quantity. These ideas are made more concrete in the discussion accom-

panying Eq. 2.17, which shows the diagonalization of the Hessian matrix for a

triatomic molecule, e.g. H2O.

H ¼
@2E=@q1q1 @2E=@q1q2 � � � @2E=@q1q9
@2E=@q2q1 @2E=@q2q2 � � � @2E=@q2q9

..

. ..
. � � � ..

.

@2E=@q9q1 @2E=@q9q2 � � � @2E=@q9q9

0
BBB@

1
CCCA

¼

q11 q12 � � � q19

q21 q22 � � � q29

..

.

q91 q92 � � � q99

0
BBBB@

1
CCCCA

k1 0 � � � 0

0 k2 � � � 0

..

.

0 0 � � � k9

0
BBBB@

1
CCCCAP�1

P k

(2.17)

Equation 2.17 is of the form A ¼ PDP�1. The 9 � 9 Hessian for a triatomic

molecule (three Cartesian coordinates for each atom) is decomposed by diagona-

lization into a P matrix whose columns are “direction vectors” for the vibrations

whose force constants are given by the k matrix. Actually, columns 1, 2 and 3 of P

and the corresponding k1, k2 and k3 of k refer to translational motion of the

molecule (motion of the whole molecule from one place to another in space);

these three “force constants” are nearly zero. Columns 4, 5 and 6 of P and the

corresponding k4, k5 and k6 of k refer to rotational motion about the three principal
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axes of rotation, and are also nearly zero. Columns 7, 8 and 9 of P and the

corresponding k7, k8 and k9 of k are the direction vectors and force constants,

respectively, for the normal-mode vibrations: k7, k8 and k9 refer to vibrational

modes 1, 2 and 3, while the seventh, eighth, and nineth columns of P are composed

of the x, y and z components of vectors for motion of the three atoms in mode 1

(column 7), mode 2 (column 8), and mode 3 (column 9). “Mass-weighting” the

force constants, i.e. taking into account the effect of the masses of the atoms (cf.

Eq. 2.16 for the simple case of a diatomic molecule), gives the vibrational frequen-

cies. The P matrix is the eigenvector matrix and the k matrix is the eigenvalue
matrix from diagonalization of the Hessian H. “Eigen” is a German prefix meaning

“appropriate, suitable, actual” and is used in this context to denote mathematically

appropriate entities for the solution of a matrix equation. Thus the directions of the

normal-mode frequencies are the eigenvectors, and their magnitudes are the mass-

weighted eigenvalues, of the Hessian.

Vibrational frequencies are calculated to obtain IR spectra, to characterize

stationary points, and to obtain zero point energies (below). The calculation of

meaningful frequencies is valid only at a stationary point and only using the same

method that was used to optimize to that stationary point (for example an ab initio

method with a particular correlation level and basis set – see Chapter 5). This is

because (1) the use of second derivatives as force constants presupposes that the

PES is quadratically curved along each geometric coordinate q (Fig. 2.2) but it is

only near a stationary point that this is true, and (2) use of a method other than that

used to obtain the stationary point presupposes that the PES’s of the two methods

are parallel (that they have the same curvature) at the stationary point. Of course,

“provisional” force constants at nonstationary points are used in the optimization

process, as the Hessian is updated from step to step. Calculated IR frequencies are

usually somewhat too high, but (at least for ab initio and density functional

calculations) can be brought into reasonable agreement with experiment by multi-

plying them by an empirically determined factor, commonly about 0.9 [17] (see the

discussion of frequencies in Chapters 5–7).

A minimum on the PES has all the normal-mode force constants (all the

eigenvalues of the Hessian) positive: for each vibrational mode there is a restoring

force, like that of a spring. As the atoms execute the motion, the force pulls and

slows them till they move in the opposite direction; each vibration is periodic, over

and over. The species corresponding to the minimum sits in a well and vibrates

forever (or until it acquires enough energy to react). For a transition state, however,

one of the vibrations, that along the reaction coordinate, is different: motion of the

atoms corresponding to this mode takes the transition state toward the product or

toward the reactant, without a restoring force. This one “vibration” is not a periodic

motion but rather takes the species through the transition state geometry on a one-

way journey. Now, the force constant is the first derivative of the gradient or slope

(the derivative of the first derivative); examination of Fig. 2.8 shows that along the

reaction coordinate the surface slopes downward, so the force constant for this

mode is negative. A transition state (a first-order saddle point) has one and only one

negative normal-mode force constant (one negative eigenvalue of the Hessian).
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Since a frequency calculation involves taking the square root of a force constant

(Eq. 2.16), and the square root of a negative number is an imaginary number, a

transition state has one imaginary frequency, corresponding to the reaction coordi-

nate. In general an nth-order saddle point (an nth-order hilltop) has n negative

normal-mode force constants and so n imaginary frequencies, corresponding to

motion from one stationary point of some kind to another.

A stationary point could of course be characterized just from the number of

negative force constants, but the mass-weighting requires much less time than

calculating the force constants, and the frequencies themselves are often wanted

anyway, for example for comparison with experiment. In practice one usually

checks the nature of a stationary point by calculating the frequencies and seeing

how many imaginary frequencies are present; a minimum has none, a transition

state one, and a hilltop more than one. If one is seeking a particular transition state

the criteria to be satisfied are:

1. It should look right. The structure of a transition state should lie somewhere

between that of the reactants and the products; for example, the transition state

for the unimolecular isomerization of HCN to HNC shows an H bonded to both

C and N by an unusually long bond, and the CN bond length is in-between that of

HCN and HNC.

2. It must have one and only one imaginary frequency (some programs indicate

this as a negative frequency, e.g. �1,900 cm�1 instead of the correct 1,900i
(i ¼ ffip

(�1)).

3. The imaginary frequency must correspond to the reaction coordinate. This is

usually clear from animation of the frequency (the motion, stretching, bending,

twisting, corresponding to a frequency may be visualized with a variety of

programs). For example, the transition state for the unimolecular isomerization

of HCN to HNC shows an imaginary frequency which when animated clearly

shows the H migrating between the C and the N. Should it not be clear from

animation which two species the transition state connects, one may resort to an

intrinsic reaction coordinate (IRC) calculation [18]. This procedure follows the

transition state downhill along the IRC (Section 2.2), generating a series of

structures along the path to the reactant or product. Usually it is clear where the

transition state is going without following it all the way to a stationary point.

4. The energy of the transition state must be higher than that of the two species it

connects.

Besides indicating the IR spectrum and providing a check on the nature of

stationary points, the calculation of vibrational frequencies also provides the

zero-point energy (ZPE; most programs will calculate this automatically as part

of a frequency job). The ZPE is the energy a molecule has even at absolute zero

(Fig. 2.2), as a consequence of the fact that even at this temperature it still vibrates

[2]. The ZPE of a species is usually not small compared to activation energies or

reaction energies, but ZPEs tend to cancel out when these energies are calculated

(by subtraction), since for a given reaction the ZPE of the reactant, transition state

and product tend to be roughly the same. However, for accurate work the ZPE
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should be added to the “total” (electronic þ nuclear repulsion) energies of species

and the ZPE-corrected energies should then be compared (Fig. 2.19). Like the

frequencies, the ZPE is usually corrected by multiplying it by an empirical factor;

this is sometimes the same as the frequency correction factor, but slightly different

factors have been recommended [17].

The Hessian that results from a geometry optimization was built up in steps from

one geometry to the next, approximating second derivatives from the changes in

gradients (Eq. 2.15). This Hessian is not accurate enough for the calculation of

H C N

HC N

H

C N

47.22

0

219

52.2
0

202

49.7

raw ab initio energy

ZPE

corrected ab initio energy

–92.87520
0.01798

–92.85722

–92.79195
0.01161

–92.78034

–92.85533
0.01705

–92.83828

ZPE
0.01798 × 2626

using the raw energies

Reaction profile
using the ZPE-corrected energies

energy

reaction coordinate

44.77

30.49

Fig. 2.19 Correcting relative energies for zero-point energy (ZPE). These are ab initio HF/6-

31G* (Chapter 5) results for the HCN! HNC reaction. The corrections are most simply made by

adding the ZPE to the raw energy (in energy units called Hartrees or atomic units), to get the

corrected energies. Using corrected or uncorrected energies, relative energies are obtained by

setting the energy of one species (usually that of lowest energy) equal to zero. Finally, energy

differences in Hartrees were multiplied by 2,626 to get kJ mol�1. The ZPEs are also shown here in

kJ mol�1, just to emphasize that they are not small compared to reaction energies or activation

energies, but tend to cancel; for accurate work ZPE-corrected energies should be used
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frequencies and ZPE’s. The calculation of an accurate Hessian for a stationary point

can be done analytically or numerically. Accurate numerical evaluation approx-

imates the second derivative as in Eq. 2.15, but instead of D(∂V/∂q) and Dq being

taken from optimization iteration steps, they are obtained by changing the position

of each atom of the optimized structure slightly (Dq ¼ about 0.01 Å) and calculat-

ing analytically the change in the gradient at each geometry; subtraction gives

D(∂V/∂q). This can be done for a change in one direction only for each atom

(method of forward differences) or more accurately by going in two directions

around the equilibrium position and averaging the gradient change (method of

central differences). Analytical calculation of ab initio frequencies is much faster

than numerical evaluation, but demands on computer hard drive space may make

numerical calculation the only recourse at high ab initio levels (Chapter 5).

2.6 Symmetry

Symmetry is important in theoretical chemistry (and even more so in theoretical

physics), but our interest in it here is bounded by modest considerations: we want to

see why symmetry is relevant to setting up a calculation and interpreting the results,

and to make sense of terms like C2v, Cs, etc., which are used in various places in this

book. Excellent expositions of symmetry are given by, for example, Atkins [19] and

Levine [20].

The symmetry of a molecule is most easily described by using one of the

standard designations like C2v, Cs. These are called point groups (Schoenflies

point groups) because when symmetry operations (below) are carried out on a

molecule (on any object) with symmetry, at least one point is left unchanged. The

classification is according to the presence of symmetry elements and corresponding

symmetry operations. The main symmetry elements are mirror planes (symmetry

planes), symmetry axes, and an inversion center; other symmetry elements are the

entire object, and an improper rotation axis. The operation corresponding to a

mirror plane is reflection in that plane, the operation corresponding to a symmetry

axis is rotation about that axis, and the operation corresponding to an inversion

center is moving each point in the molecule along a straight line to that center then

moving it further, along the line, an equal distance beyond the center. The “entire

object” element corresponds to doing nothing (a null operation); in common

parlance an object with only this symmetry element would be said to have no

symmetry. The improper rotation axis corresponds to rotation followed by a

reflection through a plane perpendicular to that rotation axis. We are concerned

mainly with the first three symmetry elements. The examples below are shown in

Fig. 2.20.

C1Amolecule with no symmetry elements at all is said to belong to the group C1

(to have “C1 symmetry”). The only symmetry operation such a molecule permits is

the null operation – this is the only operation that leaves it unmoved. An example is

CHBrClF, with a so-called asymmetric atom; in fact, most molecules have no
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symmetry – just think of steroids, alkaloids, proteins, most drugs. Note that a

molecule does not need an “asymmetric atom” to have C1 symmetry: HOOF in

the conformation shown is C1 (has no symmetry).

Cs A molecule with only a mirror plane belongs to the group Cs. Example: HOF.

Reflection in this plane leaves the molecule apparently unmoved.

C2 A molecule with only a C2 axis belongs to the group C2. Example: H2O2 in

the conformation shown. Rotation about this axis through 360� gives the same

orientation twice. Similarly C3, C4, etc. are possible.

C2v A molecule with two mirror planes whose intersection forms a C2 axis

belongs to the C2v group. Example: H2O. Similarly NH3 is C3v, pyramidane is C4v,

and HCN is C1v.

Ci A molecule with only an inversion center (center of symmetry) belongs to the

group Ci. Example: meso-tartaric acid in the conformation shown. Moving any

point in the molecule along a straight line to this center, then continuing on an equal

distance leaves the molecule apparently unchanged.

C2h A molecule with a C2 axis and a mirror plane horizontal to this axis is C2h (a

C2h object will also perforce have an inversion center). Example: (E)-1,2-difluor-
oethene. Similarly B(OH)3 is C3h.

D2 A molecule with a C2 axis and two more C2 axes, perpendicular to that axis,

has D2 symmetry. Example: the tetrahydroxycyclobutadiene shown. Similarly, a

molecule with a C3 axis (the principal axis) and three other perpendicular C2 axes is

D3.

D2h A molecule with a C2 axis and two perpendicular C2 axes (as for D2 above),

plus a mirror plane is D2h. Examples: ethene, cyclobutadiene. Similarly, a C3 axis

(the principal axis), three perpendicular C2 axes and a mirror plane horizontal to the

principal axis confer D3h symmetry, as in the cyclopropenyl cation. Similarly,

benzene is D6h, and F2 is D1h.

D2dAmolecule is D2d if it has a C2 axis and two perpendicular C2 axes (as for D2

above), plus two “dihedral” mirror planes; these are mirror planes that bisect two C2

axes (in general, that bisect the C2 axes perpendicular to the principal axis).

Example: allene (propadiene). Staggered ethane is D3d (it has D3 symmetry ele-

ments plus three dihedral mirror planes. Dnd symmetry can be hard to spot.

Molecules belonging to the cubic point groups can, in some sense, be fitted

symmetrically inside a cube. The commonest of these are Td, Oh and I; they will be

simply exemplified:

Td This is tetrahedral symmetry. Example: CH4.

Oh This might be considered “cubic symmetry”. Example: cubane, SF6.

I Also called icosahedral symmetry. Example: buckminsterfullerene.

Less-common groups are S4, and the cubic groups T, Th (dodecahedrane is Th)

and O (see [19,20]). Atkins [19] and Levine [20] give flow charts which

make it relatively simple to assign a molecule to its point group, and Atkins

provides pictures of objects of various symmetries which often make it possible

to assign a point group without having to examine the molecule for its symmetry

elements.
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We saw above that most molecules have no symmetry. So why is a knowledge of

symmetry important in chemistry? Symmetry considerations are essential in the

theory of molecular electronic (UV) spectroscopy and sometimes in analyzing in

detail molecular wavefunctions (Chapter 4), but for us the reasons are more

pragmatic. A calculation run on a molecule whose input structure has the exact

symmetry that the molecule should have will tend to be faster and will yield a

“better” (see below) geometry than one run on an approximate structure, however

close this may be to the exact one. Input molecular structures for a calculation are

usually created with an interactive graphical program and a computer mouse: atoms

are assembled into molecules much as with a model kit, or the molecule might be

drawn on the computer screen. If the molecule has symmetry (if it is not is not C1)

this can be imposed by optimizing the geometry with molecular mechanics

(Chapter 3). Now consider water: we would of course normally input the H2O

molecule with its exact equilibrium C2v symmetry, but we could also alter the input

structure slightly making the symmetry Cs (three atoms must lie in a plane). The C2v

structure has two degrees of freedom: a bond length (the two bonds are the same

length) and a bond angle. The Cs structure has three degrees of freedom: two bond

lengths and a bond angle. The optimization algorithm has more variables to cope

with in the case of the lower-symmetry structure.

What do we mean by a better geometry? Although a successful geometry

optimization will give essentially the same geometry from a slightly distorted

input structure as from one with the perfect symmetry of the molecule in question,

corresponding bond lengths and angles (e.g. the four C–H bonds and the two HCH

angles of ethene) will not be exactly the same. This can confuse an analysis of the

geometry, and carries over into the calculation of other properties like, say, charges

on atoms – corresponding atoms should have exactly the same charges. Thus both

esthetic and practical considerations encourage us to aim for the exact symmetry

that the molecule should possess.

2.7 Summary

The potential energy surface (PES) is a central concept in computational chemistry.

A PES is the relationship – mathematical or graphical – between the energy of a

molecule (or a collection of molecules) and its geometry.

Stationary points on a PES are points where ∂E/∂q ¼ 0 for all q, where
q is a geometric parameter. The stationary points of chemical interest are

minima (∂2E/∂qiqj > 0 for all q) and transition states or first-order saddle points;

∂2E/∂qiqj < 0 for one q, along the reaction coordinate (intrinsic reaction coordi-

nate, IRC), and > 0 for all other q. Chemistry is the study of PES stationary points

and the pathways connecting them.

The Born–Oppenheimer approximation says that in a molecule the nuclei are

essentially stationary compared to the electrons. This is one of the cornerstones

of computational chemistry because it makes the concept of molecular shape
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(geometry) meaningful, makes possible the concept of a PES, and simplifies the

application of the Schr€odinger equation to molecules by allowing us to focus on the

electronic energy and add in the nuclear repulsion energy later; this third point, very

important in practical molecular computations, is elaborated on in Chapter 5.

Geometry optimization is the process of starting with an input structure “guess”

and finding a stationary point on the PES. The stationary point found will normally

be the one closest to the input structure, not necessarily the global minimum. A

transition state optimization usually requires a special algorithm, since it is more

demanding than that required to find a minimum. Modern optimization algorithms

use analytic first derivatives and (usually numerical) second derivatives.

It is usually wise to check that a stationary point is the desired species

(a minimum or a transition state) by calculating its vibrational spectrum (its

normal-mode vibrations). The algorithm for this works by calculating an accurate

Hessian (force constant matrix) and diagonalizing it to give a matrix with the

“direction vectors” of the normal modes, and a diagonal matrix with the force

constants of these modes. A procedure of “mass-weighting” the force constants

gives the normal-mode vibrational frequencies. For a minimum all the vibrations

are real, while a transition state has one imaginary vibration, corresponding to

motion along the reaction coordinate. The criteria for a transition state are appear-

ance, the presence of one imaginary frequency corresponding to the reaction

coordinate, and an energy above that of the reactant and the product. Besides

serving to characterize the stationary point, calculation of the vibrational frequen-

cies enables one to predict an IR spectrum and provides the zero-point energy

(ZPE). The ZPE is needed for accurate comparisons of the energies of isomeric

species. The accurate Hessian required for calculation of frequencies and ZPE’s can

be obtained either numerically or analytically (faster, but much more demanding of

hard drive space).
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Easier Questions

1. What is a potential energy surface (give the two viewpoints)?

2. Explain the difference between a relaxed PES and a rigid PES.

3. What is a stationary point? What kinds of stationary points are of interest to

chemists, and how do they differ?

4. What is a reaction coordinate?

5. Show with a sketch why it is not correct to say that a transition state is a

maximum on a PES.

6. What is the Born–Oppenheimer approximation, and why is it important?

7. Explain, for a reaction A ! B, how the potential energy change on a PES is

related to the enthalpy change of the reaction. What would be the problem with

calculating a free energy/geometry surface?

Hint: Vibrational frequencies are normally calculated only for stationary

points.

8. What is geometry optimization? Why is this process for transition states (often

called transition state optimization) more challenging than for minima?

9. What is a Hessian? What uses does it have in computational chemistry?

10. Why is it usually good practice to calculate vibrational frequencies where practi-

cal, although this often takes considerably longer than geometry optimization?

Harder Questions

1. The Born–Oppenheimer principle is often said to be a prerequisite for the

concept of a potential energy surface. Yet the idea of a potential energy surface

(Marcelin 1915) predates the Born–Oppenheimer principle (1927). Discuss.

2. How high would you have to lift a mole of water for its gravitational potential

energy to be equivalent to the energy needed to dissociate it completely into

hydroxyl radicals and hydrogen atoms? The strength of the O–H bond is about

400 kJ mol�1; the gravitational acceleration g at the Earth’s surface (and out to
hundreds of kilometres) is about 10 m s�2. What does this indicate about the

role of gravity in chemistry?

3. If gravity plays no role in chemistry, why are vibrational frequencies different

for, say, C–H and C–D bonds?

4. We assumed that the two bond lengths of water are equal. Must an acyclic

molecule AB2 have equal A–B bond lengths? What about a cyclic molecule

AB2?

5. Why are chemists but rarely interested in finding and characterizing second-

order and higher saddle points (hilltops)?

6. What kind(s) of stationary points do you think a second-order saddle point

connects?
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7. If a species has one calculated frequency very close to 0 cm�1 what does that

tell you about the (calculated) potential energy surface in that region?

8. The ZPE of many molecules is greater than the energy needed to break a bond;

for example, the ZPE of hexane is about 530 kJ mol�1, while the strength of a

C–C or a C–H bond is only about 400 kJ mol�1. Why then do such molecules

not spontaneously decompose?

9. Only certain parts of a potential energy surface are chemically interesting:

some regions are flat and featureless, while yet other parts rise steeply and are

thus energetically inaccessible. Explain.

10. Consider two potential energy surfaces for the HCN ⇌ HNC reaction: A, a
plot of energy versus the H–C bond length, and B, a plot of energy versus the

HNC angle. Recalling that HNC is the higher-energy species, sketch qualita-

tively the diagrams for A and B.
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Chapter 3

Molecular Mechanics

We don’t give a damn where the electrons are.

Words to the author, from the president of a well-known chemical company, emphasizing

his firm’s position on basic research

Abstract Molecular mechanics (MM) rests on a view of molecules as balls held

together by springs. The potential energy of a molecule can be written as the sum of

terms involving bond stretching, angle bending, dihedral angles and nonbonded

interactions. Giving these terms explicit mathematical forms constitutes devising a

forcefield, and giving actual numbers to the constants in the forcefield constitutes

parameterizing the field. An example is given of the devising and parameterization

of an MM forcefield. Calculations on biomolecules is a very important application

of MM, and the pharmaceutical industry designs new drugs with the aid of MM.

Organic synthesis now makes considerable use of MM, which enables chemists to

estimate which products are likely to be favored and to devise more realistic routes

to a target molecule. In molecular dynamics MM is used to generate the forces

acting on molecules and hence to calculate their motions.

3.1 Perspective

Molecular mechanics (MM) [1] is based on a mathematical model of a molecule as

a collection of balls (corresponding to the atoms) held together by springs

(corresponding to the bonds) (Fig. 3.1). Within the framework of this model, the

energy of the molecule changes with geometry because the springs resist being

stretched or bent away from some “natural” length or angle, and the balls resist

being pushed too closely together. The mathematical model is thus conceptually

very close to the intuitive feel for molecular energetics that one obtains when

manipulating molecular models of plastic or metal: the model resists distortions

(it may break!) from the “natural” geometry that corresponds to the bond lengths
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and angles imposed by the manufacturer, and in the case of space-filling models

atoms cannot be forced too closely together. The MM model clearly ignores

electrons.

The principle behind MM is to express the energy of a molecule as a function of

its resistance toward bond stretching, bond bending, and atom crowding, and to use

this energy equation to find the bond lengths, angles, and dihedrals corresponding to

the minimum-energy geometry – or more precisely, to the various possible potential

energy surface minima (Chapter 2). In other words, MM uses a conceptually

mechanical model of a molecule to find its minimum-energy geometry (for flexible

molecules, the geometries of the various conformers). The form of the mathemati-

cal expression for the energy, and the parameters in it, constitute a forcefield, and
molecular mechanics methods are sometimes called forcefield methods. The term

arises because the negative of the first derivative of the potential energy of a particle

with respect to displacement along some direction is the force on the particle; a

“forcefield” E(x, y, z coordinates of atoms) can be differentiated to give the force on

each atom.

The method makes no reference to electrons, and so cannot (except by some kind

of empirical algorithm) throw light on electronic properties like charge distribu-

tions or nucleophilic and electrophilic behaviour. Note that MM implicitly uses the

Born–Oppenheimer approximation, for only if the nuclei experience what amounts

to a static attractive force, whether from electrons or springs, does a molecule have

a distinct geometry (Section 2.3).

An important point, which students sometimes have a problem with, is that the

concept of a bond is central to MM, but not essential – although often useful – in

electronic structure calculations. In MM a molecule is defined by the atoms and the

bonds, which latter are regarded almost literally as springs holding the atoms

together. Usually, bonds are placed where the rules for drawing structural formulas

require them, and to do a MM calculation you must specify each bond as single,

double, etc., since this tells the program how strong a bond to use (Sections 3.2.1

and 3.2.2). In an electronic structure calculation–ab initio (Chapter 5), semiempiri-

cal (Chapter 6), and density functional theory (Chapter 7) – a molecule is defined by

the relative positions of its atomic nuclei, the charge, and the “multiplicity” (which

C C
C

H

H

H

H

H

H H

H

Fig. 3.1 Molecular mechanics (the forcefield method) considers a molecule to be a collection of

balls (the atoms) held together by springs (the bonds)
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follows easily from the number of unpaired electrons). An oxygen nucleus and two

protons with the right x, y, z coordinates, enough electrons for no charge, and

multiplicity one (no unpaired electrons) is a water molecule. There is no need to

mention bonds here, although the chemist might wish to somehow extract this

useful concept from this picture of nuclei and electrons. This can be done by

calculating the electron density and associating a bond with, for example, a path

along which electron density is concentrated, but there is no unique definition of a

bond in electronic structure theory. It is worth noting, too, that in some graphical

interfaces used in computational chemistry bonds are specified by the user, while in

others they are shown by the program depending on the separation of pairs of atoms.

The novice may find it disconcerting to see a specified bond still displayed even

when a change in geometry has moved a pair of atoms far apart, or to see a bond

vanish when a pair has moved beyond the distance recognized by some fudge factor.

Historically [2], molecular mechanics seems to have begun as an attempt to

obtain quantitative information about chemical reactions at a time when the possi-

bility of doing quantitative quantum mechanical (Chapter 4) calculations on any-

thing much bigger than the hydrogen molecule seemed remote. Specifically, the

principles of MM, as a potentially general method for studying the variation of the

energy of molecular systems with their geometry, were formulated in 1946 by

Westheimer1 and Meyer [3a], and by Hill [3b]. In this same year Dostrovsky,

Hughes2 and Ingold3 independently applied molecular mechanics concepts to the

quantitative analysis of the SN2 reaction, but they do not seem to have recognized

the potentially wide applicability of this approach [3c]. In 1947 Westheimer [3d]

published detailed calculations in which MM was used to estimate the activation

energy for the racemization of biphenyls.

Major contributors to the development of MM have been Schleyer4 [2b, c] and

Allinger5 [1c, d]; one of Allinger’s publications on MM [1d] is, according to the

Citation Index, one of the most frequently cited chemistry papers. The Allinger

group has, since the 1960s, been responsible for the development of the

“MM-series” of programs, commencing with MM1 and continuing with the cur-

rently widely-usedMM2 andMM3, and MM4 [4]. MM programs [5] like Sybyl and

UFF will handle molecules involving much of the periodic table, albeit with some

loss of accuracy that one might expect for trading breadth for depth, and MM is

1Frank H. Westheimer, born Baltimore, Maryland, 1912. Ph.D. Harvard 1935. Professor University

of Chicago, Harvard. Died 2007.
2Edward D. Hughes, born Wales, 1906. Ph.D. University of Wales, D.Sc. University of London.

Professor, London. Died 1963.
3Christopher K. Ingold, born London 1893. D.Sc. London 1921. Professor Leeds, London.

Knighted 1958. Died London 1970.
4Paul von R. Schleyer, born Cleveland, Ohio, 1930. Ph.D. Harvard 1957. Professor Princeton;

institute codirector and professor University of Erlangen-N€urnberg, 1976–1998. Professor University
of Georgia.
5Norman L. Allinger, born Rochester New York, 1930. Ph.D. University of California at Los

Angeles, 1954. Professor Wayne State University, University of Georgia.
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the most widely-used method for computing the geometries and energies of

large biological molecules like proteins and nucleic acids (although recently semi-

empirical (Chapter 6) and even ab initio (Chapter 5) methods have begun to be

applied to these large molecules.

3.2 The Basic Principles of Molecular Mechanics

3.2.1 Developing a Forcefield

The potential energy of a molecule can be written

E ¼
X
bonds

Estretch þ
X
angles

Ebend þ
X

dihedrals

Etorsion þ
X
pairs

Enonbond (*3.1)

where Estretch etc. are energy contributions from bond stretching, angle bending,

torsional motion (rotation) around single bonds, and interactions between atoms or

groups which are nonbonded (not directly bonded together). The sums are over all

the bonds, all the angles defined by three atoms A–B–C, all the dihedral angles

defined by four atoms A–B–C–D, and all pairs of significant nonbonded interac-

tions. The mathematical form of these terms and the parameters in them constitute a

particular forcefield. We can make this clear by being more specific; let us consider

each of these four terms.

Δ l = l – leq

Δ a = a – aeq

aeq

a

+

leq

l

Δ l or Δ a0

energy

Fig. 3.2 Changes in bond lengths or in bond angles result in changes in the energy of a molecule.

Such changes are handled by the Estretch and Ebend terms in the molecular mechanics forcefield.

The energy is approximately a quadratic function of the change in bond length or angle
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The Bond Stretching Term The increase in the energy of a spring (remember

that we are modelling the molecule as a collection of balls held together by springs)

when it is stretched (Fig. 3.2) is approximately proportional to the square of the

extension:

DEstretch ¼ kstretchðl� leqÞ2

kstretch ¼ the proportionality constant (actually one-half the force constant of the
spring or bond [6]; but note the warning about identifying MM force constants with

the traditional force constant from, say, spectroscopy – see Section 3.3); the bigger

kstretch, the stiffer the bond/spring – the more it resists being stretched.

l ¼ length of the bond when stretched.

leq ¼ equilibrium length of the bond, its “natural” length.

If we take the energy corresponding to the equilibrium length leq as the zero of

energy, we can replace DEstretch by Estretch:

Estretch ¼ kstretchðl� leqÞ2 (*3.2)

The Angle Bending Term The increase in energy of system ball-spring-ball-

spring-ball, corresponding to the triatomic unit A–B–C (the increase in “angle

energy”) is approximately proportional to the square of the increase in the angle

(Fig. 3.2); analogously to Eq. 3.2:

Ebend ¼ kbendða� aeqÞ2 (*3.3)

kbend ¼ a proportionality constant (one-half the angle bending force constant [6];

note the warning about identifying MM force constants with the traditional force

constant from, say, spectroscopy – see Section 3.3)) a ¼ size of the angle when

distorted aeq ¼ equilibrium size of the angle, its “natural” value.

The Torsional Term Consider four atoms sequentially bonded: A–B–C–D

(Fig. 3.3). The dihedral angle or torsional angle of the system is the angle between

the A–B bond and the C–D bond as viewed along the B–C bond. Conventionally

this angle is considered positive if regarded as arising from clockwise rotation

(starting with A–B covering or eclipsing C–D) of the back bond (C–D) with respect

to the front bond (A–B). Thus in Fig. 3.3 the dihedral angle A–B–C–D is 60�

(it could also be considered as being �300�). Since the geometry repeats itself

every 360�, the energy varies with the dihedral angle in a sine or cosine pattern, as

shown in Fig. 3.4 for the simple case of ethane. For systems A–B–C–D of lower

symmetry, like butane (Fig. 3.5), the torsional potential energy curve is more

complicated, but a combination of sine or cosine functions will reproduce the curve:

Etorsion ¼ ko þ
Xn
r¼1

kr½1þ cosðryÞ� (*3.4)

3.2 The Basic Principles of Molecular Mechanics 49



The Nonbonded Interactions Term This represents the change in potential

energy with distance apart of atoms A and B that are not directly bonded (as in

A–B) and are not bonded to a common atom (as in A–X–B); these atoms, separated

by at least two atoms (A–X–Y–B) or even in different molecules, are said to be

nonbonded (with respect to each other). Note that the A-B case is accounted for by

the bond stretching term Estretch, and the A–X–B term by the angle bending term

Ebend, but the nonbonded term Enonbond is, for the A–X–Y–B case, superimposed

upon the torsional term Etorsion: we can think of Etorsion as representing some factor

inherent to resistance to rotation about a (usually single) bond X–Y (MM does not

attempt to explain the theoretical, electronic basis of this or any other effect), while

for certain atoms attached to X and Y there may also be nonbonded interactions.

A

B C

D

A D

B C

60°A

D

B C

A

B C

D

dihedral angle = 0° dihedral angle = 60°

rotate C-D bond
about the B-C bond

Fig. 3.3 Dihedral angles (torsional angles) affect molecular geometries and energies. The energy

is a periodic (cosine or combination of cosine functions) function of the dihedral angle; see e.g.

Figs. 3.4 and 3.5

H

C C

H

H
H

H
H

HCCH dihedral, degrees

energy
kJ mol–1

0 60 120 180

10

12 kJ mol–1

D3d D3dD3h D3h

Fig. 3.4 Variation of the energy of ethane with dihedral angle. The curve can be represented as a

cosine function
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The potential energy curve for two nonpolar nonbonded atoms has the general

form shown in Fig. 3.6. A simple way to approximate this is by the so-called

Lennard-Jones 12–6 potential [7]:

Enonbond ¼ knb
s
r

� �12
� s

r

� �6� �
(*3.5)

r ¼ the distance between the centers of the nonbonded atoms or groups.

The function reproduces the small attractive dip in the curve (represented by the

negative term) as the atoms or groups approach one another, then the very steep rise

in potential energy (represented by the positive, repulsive term raised to a large

power) as they are pushed together closer than their van der Waals radii. Setting dE/
dr¼ 0, we find that for the energy minimum in the curve the corresponding value of

r is rmin ¼ 21=6s,

i.e: s ¼ 2�1=6rmin (3.6)

If we assume that this minimum corresponds to van der Waals contact of the

nonbonded groups, then rmin ¼ (RA + RB), the sum of the van der Waals radii of the

groups A and B. So

21=6s ¼ ðRA þ RBÞ

MeMe
Me

Me

Me

Me
Me

Me

CH3H3C

C C
H

H H
H

CCCC dihedral, degrees

energy
kJ mol–1

0 60 120 180

10

20

25 kJ mol–1

3 kJ mol–1

14 kJ mol–1

Fig. 3.5 Variation of the energy of butane with dihedral angle. The curve can be represented by a

sum of cosine functions
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and so

s ¼ 2�1=6ðRA þ RBÞ ¼ 0:89 ðRA þ RBÞ (3.7)

Thus s can be calculated from rmin or estimated from the van der Waals radii.

Setting E ¼ 0, we find that for this point on the curve r ¼ s,

i.e: s ¼ rðE ¼ 0Þ (3.8)

If we set r ¼ rmin ¼ 21=6s (from Eq. 3.6) in Eq. 3.5, we find

Eðr ¼ rminÞ ¼ ð�1=4Þknb

i.e.

knb ¼ �4Eðr ¼ rminÞ (3.9)

So knb can be calculated from the depth of the energy minimum.

In deciding to use equations of the form (3.2), (3.3), (3.4) (3.5) we have decided

on a particular MM forcefield. There are many alternative forcefields. For example,

.
RB

. RA

r

A B

0

energy

r

rmin = (RA + RB)

Emin

Fig. 3.6 Variation of the

energy of a molecule with

separation of nonbonded

atoms or groups. Atoms/

groups A and B may be in the

same molecule (as indicated

here) or the interaction may

be intermolecular. The

minimum energy occurs at

van der Waals contact. For

small nonpolar atoms or

groups the minimum energy

point represents a drop of a

few kJ mol�1 (Emin¼�1.2 kJ

mol�1 for CH4/CH4), but

short distances can make

nonbonded interactions

destabilize a molecule by

many kJ mol�1
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we might have chosen to approximate Estretch by the sum of a quadratic and a cubic

term:

Estretch ¼ kstretchðl� leqÞ2 þ kðl� leqÞ3

This gives a somewhat more accurate representation of the variation of energy

with length. Again, we might have represented the nonbonded interaction energy by

a more complicated expression than the simple 12–6 potential of Eq. 3.5 (which is

by no means the best form for nonbonded repulsions). Such changes would repre-

sent changes in the forcefield.

3.2.2 Parameterizing a Forcefield

We can now consider putting actual numbers, kstretch, leq, kbend, etc., into Eqs. 3.2,

3.3, 3.4 and 3.5, to give expressions that we can actually use. The process of

finding these numbers is called parameterizing (or parametrizing) the forcefield.

The set of molecules used for parameterization, perhaps 100 for a good forcefield, is

called the training set. In the purely illustrative example below we use just ethane,

methane and butane.

Parameterizing the Bond Stretching Term A forcefield can be parameterized

by reference to experiment (empirical parameterization) or by getting the numbers

from high-level ab initio or density functional calculations, or by a combination of

both approaches. For the bond stretching term of Eq. 3.2 we need kstretch and leq.
Experimentally, kstretch could be obtained from IR spectra, as the stretching fre-

quency of a bond depends on the force constant (and the masses of the atoms

involved) [8], and leq could be derived from X-ray diffraction, electron diffraction,

or microwave spectroscopy [9].

Let us find kstretch for the C/C bond of ethane by ab initio (Chapter 5) calcula-

tions. Normally high-level ab initio calculations would be used to parameterize a

forcefield, but for illustrative purposes we can use the low-level but fast STO-3G

method [10]. Equation 3.2 shows that a plot of Estretch against (l–leq)
2 should be

linear with a slope of kstretch. Table 3.1 and Fig. 3.7 show the variation of the energy

Table 3.1 Change in energy as the C–C bond in CH3–CH3 is stretched away from its equilibrium

length. The calculations are ab initio (STO-3G; Chapter 5). Bond lengths are in Å

C–C length, l l � leq (l � leq)
2 Estretch, kJ mol�1

1.538 0 0 0

1.550 0.012 0.00014 0.29

1.560 0.022 0.00048 0.89

1.570 0.032 0.00102 1.86

1.580 0.042 0.00176 3.15

1.590 0.052 0.00270 4.75

1.600 0.062 0.00384 6.67
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of ethane with stretching of the C/C bond, as calculated by the ab initio STO-3G

method. The equilibrium bond length has been taken as the STO-3G length:

leqðC� CÞ ¼ 1:538 Å (3.10)

The slope of the graph is

kstretch(C� C) = 1,735 kJ mol�1Å
�2

(3.11)

Similarly, the CH bond of methane was stretched using ab initio STO-3G

calculations; the results are

leq0 ðC� H) = 1:083Å (3.12)

kstretch(C� H)1.934 kJ mol�1 Å
�2

(3.13)

Parameterizing the Angle Bending Term From Eq. 3.3, a plot of Ebend against

(a–aeq)
2 should be linear with a slope of kbend. From STO-3G calculations on

bending the H–C–C angle in ethane we get (cf. Table 3.1 and Fig. 3.7)

aeqðHCCÞ ¼ 110:7� (3.14)

kbendðHCCÞ ¼ 0:093 kJmol�1deg�2 (3.15)

(l – leq)2, Å2
0

Estretch, kJ mol–1

0.001 0.002 0.003 0.004

1

2

3

4

5

6

7

Fig. 3.7 Energy vs. the square of the extension of the C–C bond in CH3–CH3. The data in

Table 3.1 were used
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Calculations on staggered butane gave for the C–C–C angle

aeqðCCCÞ ¼ 112:5� (3.16)

kbendðCCCÞ ¼ 0:110KJmol�1deg�2 (3.17)

Parameterizing the Torsional Term For the ethane case (Fig. 3.4), the equation

for energy as a function of dihedral angle can be deduced fairly simply by adjusting

the basic equation E ¼ cos y to give E ¼ 1/2Emax[1 + cos3(y + 60)].

For butane (Fig. 3.5), using Eq. 3.4 and experimenting with a curve-fitting

program shows that a reasonably accurate torsional potential energy function can

be created with five parameters, k0 and k1–k4:

EtorsionðCH3CH2 � CH2CH3Þ ¼ k0 þ
X4
r¼1

kr½1þ cosðryÞ� (3.18)

The values of the parameters k0–k5 are given in Table 3.2. The calculated curve

can be made to match the experimental one as closely as desired by using more

terms (Fourier analysis).

Parameterizing the Nonbonded Interactions Term To parameterize Eq. 3.5 we

might perform ab initio calculations in which the separation of two atoms or groups

in different molecules (to avoid the complication of concomitant changes in bond

lengths and angles) is varied, and fit Eq. 3.5 to the energy vs. distance results. For

nonpolar groups this would require quite high-level calculations (Chapter 5), as van

der Waals or dispersion forces are involved. We shall approximate the nonbonded

interactions of methyl groups by the interactions of methane molecules, using

experimental values of knb and s, derived from studies of the viscosity or the

compressibility of methane. The two methods give slightly different values [7b],

but we can use the values

knb ¼ 4:7 kJ mol�1 (3.19)

Table 3.2 The experimental potential energy values for rotation about the central C–C

bond of CH3CH2–CH2CH3 can be approximated by EtorsionðCH3CH2 � CH2CH3Þ ¼ k0þP4
r¼1

kr ½1þ cosðryÞ� with k0 ¼ 20.1, k1 ¼ �4.7, k2 ¼ 1.91, k3 ¼ �7.75, k4 ¼ 0.58. Experimental

energy values at 30�, 90�, and 150� were interpolated from those at 0�, 60�, 120�, and 180�;
energies are in kJ mol�1

y (deg) E (calculated) E (experimental)

0 0.15 0

30 6.7 7.0

60 14 14

90 8.8 9.0

120 3.5 3.3

150 15 15

180 25 25
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and

s ¼ 3:85 Å (3.20)

Summary of the Parameterization of the Forcefield Terms The four terms of

Eq. 3.1 were parameterized to give:

EstretchðC� C) ¼ 1735ðl� 1:538Þ2 (3.21)

EstretchðC� HÞ ¼ 1934ðl� 1:083Þ2 (3.22)

EbendðHCHÞ ¼ 0:093ða� 110:7Þ2 (3.23)

EbendðCCCÞ ¼ 0:110ða� 112:5Þ2 (3.24)

EtorsionðCH3CCCH3Þ ¼ k0 þ
X4
r¼1

kr½1þ cosðryÞ� (3.25)

The parameters k of Eq. 3.25 are given in Table 3.2.

EnonbondðCH3=CH3Þ ¼ 4:7
3:85

r

� �12

� 3:85

r

� �6
" #

(3.26)

Note that this parameterization is only illustrative of the principles involved;

any really viable forcefield would actually be much more sophisticated. The kind

we have developed here might at the very best give crude estimates of the energies

of alkanes. An accurate, practical forcefield would be parameterized as a best fit

to many experimental and/or calculational results, and would have different para-

meters for different kinds of bonds, e.g. C–C for acyclic alkanes, for cyclobutane

and for cyclopropane. A forcefield able to handle not only hydrocarbons would

obviously need parameters involving elements other than hydrogen and carbon.

Practical forcefields also have different parameters for various atom types, like sp3

carbon vs. sp2 carbon, or amine nitrogen vs. amide nitrogen. In other words, a

different value would be used for, say, stretching involving an sp3/sp3 C–C bond

than for an sp2/sp2 C–C bond. This is clearly necessary since the force constant of a

bond depends on the hybridization of the atoms involved; the IR stretch frequency

for the sp3C/sp3C bond comes at roughly 1,200 cm�1, while that for the sp2C/sp2C
bond is about 1,650 cm�1 [8]. Since the vibrational frequency of a bond is

proportional to the square root of the force constant, the force constants are in the

ratio of about (1,650/1,200)2 ¼ 1.9; for corresponding atoms, force constants are in

fact generally roughly proportional to bond order (double bonds and triple bonds

are about two and three times as stiff, respectively, as the corresponding single

bonds). Some forcefields account for the variation of bond order with conformation
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(twisting p orbitals out of alignment reduces their overlap) by performing a simple

PPP molecular orbital calculation (Chapter 6) to obtain the bond order.

A sophisticated forcefield might also consider H/H nonbonded interactions

explicitly, rather than simply subsuming them into methyl/methyl interactions

(combining atoms into groups is the feature of a united atom forcefield). Further-

more, nonbonding interactions between polar groups need to be accounted for in a

field not limited to hydrocarbons. These are usually handled by the well-known

potential energy/electrostatic charge relationship

E ¼ kðq1q2=rÞ

which has also been used to model hydrogen bonding [11].

A subtler problem with the naive forcefield developed here is that stretching,

bending, torsional and nonbonded terms are not completely independent. For

example, the butane torsional potential energy curve (Fig. 3.5) does not apply

precisely to all CH3–C–C–CH3 systems, because the barrier heights will vary

with the length of the central C–C bond, obviously decreasing (other things being

equal) as the bond is lengthened, since there will be a decrease in the interactions

(whatever causes them) between the CH3’s and H’s on one of the carbons of the

central C–C and those on the other carbon. This could be accounted for by making

the k’s of Eq. 3.25 a function of the X–Y length. Actually, partitioning the energy of

a molecule into stretching, bending, etc. terms is somewhat formal; for example, the

torsional barrier in butane can be considered to be partly due to nonbonded

interactions between the methyl groups. It should be realized that there is no one,

right functional form for an MM forcefield (see, e.g., [1b]); accuracy, versatility and

speed of computation are the deciding factors in devising a forcefield.

3.2.3 A Calculation Using Our Forcefield

Let us apply the naive forcefield developed here to comparing the energies of two

2,2,3,3-tetramethylbutane ((CH3)3CC(CH3)3, i.e. t-Bu-Bu-t) geometries. We com-

pare the energy of structure 1 (Fig. 3.8) with all the bond lengths and angles at our

“natural” or standard values (i.e. at the STO-3G values we took as the equilibrium

bond lengths and angles in Section 3.2.2) with that of structure 2, where the central

C-C bond has been stretched from 1.538 Å to 1.600 Å, but all other bond lengths, as

well as the bond angles and dihedral angles, are unchanged. Figure 3.8 shows the

nonbonded distances we need, which would be calculated by the program from

bond lengths, angles and dihedrals. Using Eq. 3.1:

E ¼
X
bonds

Estretch þ
X
angles

Ebend þ
X

dihedrals

Etorsion þ
X
pairs

Enonbond

 !
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For structure 1

X
bonds

EstretchðC� CÞ ¼ 7� 1; 735 ð1:538� 1:538Þ2 ¼ 0

Bond stretch contribution cf: structure with leq ¼ 1:538

X
bonds

EstretchðC� HÞ ¼ 18� 1934 ð1:083� 1:083Þ2 ¼ 0

Bond stretch contribution cf: structure with leq ¼ 1:083

X
angles

EbendðHCHÞ ¼ 18� 0:093ð110:7� 110:7Þ2 ¼ 0

Bond bend contribution cf: structure with aeq ¼ 110:70

X
angles

EbendðCCCÞ ¼ 12� 0:110 ð112:5� 112:5Þ2 ¼ 0

Bond bend contribution cf: structure with aeq ¼ 112:50

X
dihedrals

EtorsionðCH3CCCH3Þ ¼ 6� 3:5 ¼ 21:0

Torsional contribution cf: structure with no gauche � butane interactions

Actually, nonbonding interactions are already included in the torsional term

(as gauche–butane interactions); we might have used an ethane-type torsional

function and accounted for CH3/CH3 interactions entirely with nonbonded

terms. However, in comparing calculated relative energies the torsional term will

cancel out.

C C

3.974

3.120

C C

CH3

CH3
CH3

CH3

CH3

H3C
H3C

H3C

H3C
H3C

H3C

3.931

3.065

stretch central C-C bond
CH3

1.538 Å
1.600 Å

keeping bond angles and
other bond lengths constant

1 2

Fig. 3.8 Structures for a simple MM “by hand” calculation on the effect of changing the central

C–C length of (CH3)3C–C(CH3)3 from 1.538 Å to 1.600 Å
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P
nonbond

Enonbondðanti� CH3=CH3Þ þ
P

nonbond

Enonbondðgauche� CH3=CH3Þ

¼ 3� 4:7
3:85

3:931

� �12

� 3:85

3:931

� �6
" #

þ 6� 4:7
3:85

3:065

� �12

� 3:85

3:065

� �6
" #

¼ 3� ð�0:487Þ þ 6� ð54:05Þ ¼ �1:463þ 324:3 ¼ 323 kJ mol�1

nonbonding contribution cf: structure with noninteracting CH
=
3 S

Etotal ¼ Estretch þ Ebend þ Etorsion ¼ 0þ 0þ 21:0þ 323 kJmol�1 ¼ 344 kJmol�1

For structure 2X
bonds

EstretchðC� CÞ ¼ 6� 1735ð1:538� 1:538Þ2 þ 1� 1; 735ð1:600� 1:538Þ2

¼ 0þ 6:67 ¼ 6:67 kJ mol�1

Bond stretch contribution cf: structure with leq ¼ 1:538X
bonds

EstretchðC� HÞ ¼ 18� 1; 934ð1:083� 1:083Þ2 ¼ 0

Bond stretch contribution cf: structure with leq ¼ 1:083X
angles

EbendðHCHÞ ¼ 18� 0:093ð110:7� 110:7Þ2 ¼ 0

Bond bend contribution cf: structure with aeq ¼ 110:70X
angles

EbendðCCCÞ ¼ 12� 0:110ð112:5� 112:5Þ2 ¼ 0

Bond bend contribution cf: structure with aeq ¼ 112:50X
dihedrals

EtorsionðCH3CCCH3Þ ¼ 6� 3:5 ¼ 21:0

Torsional contribution cf: structure with no gauche � butane interactions

The stretching and bending terms for structure 2 are the same as for structure 1,

except for the contribution of the central C-C bond; strictly speaking, the torsional

term should be smaller, since the opposing C(CH3) groups have been moved apart.

X
nonbond

Enonbondðanti� CH3/CH3Þ þ
X

nonbond

Enonbondðgauche� CH3=CH3Þ

¼ 3� 4:7
3:85

3:974

� �12

� 3:85

3:974

� �6
" #

þ 6� 4:7
3:85

3:120

� �12

� 3:85

3:120

� �6
" #

¼ 3� ð�0:673Þ þ 6� ð41:97Þ ¼ �2:019þ 251:8

¼ 250kJ mol�1

nonbonding contribution cf: structure with noninteracting CH
=

3 s
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Etotal ¼ Estretch þ Ebend þ Etorsion ¼ 6:67þ 0þ 21:0þ 250 kJmol�1

¼ 277 kJmol�1

So the relative energies are calculated to be

Eðstructure 2Þ � Eðstructure 1Þ ¼ 277� 344 kJ mol�1 ¼ �67 kJ mol�1

This crude method predicts that stretching the central C/C bond of

2,2,3,3-tetramethylbutane from the approximately normal sp3–C–sp3–C length of

1.583 Å (structure 1) to the quite “unnatural” length of 1.600 Å (structure 2) will

lower the potential energy by 67 kJ mol�1, and indicates that the drop in energy is

due very largely to the relief of nonbonded interactions. A calculation using

the accurate forcefield MM3 [12] gave an energy difference of 54 kJ mol�1 between

a “standard” geometry approximately like structure 1, and a fully optimized
geometry, which had a central C/C bond length of 1.576 Å. The surprisingly

good agreement is largely the result of a fortuitous cancellation of errors, but this

does not gainsay the fact that we have used our forcefield to calculate something

of chemical interest, namely the relative energy of two molecular geometries.

In principle, we could have found the minimum-energy geometry according

to this forcefield, i.e. we could have optimized the geometry (Chapter 2). Geometry

optimization is in fact the main use of MM, and modern programs employ analy-

tical first and second derivatives of the energy with respect to the geometric

coordinates for this (Chapter 2).

3.3 Examples of the Use of Molecular Mechanics

If we consider the applications of MM from the viewpoint of the goals of those who

use it, then the main applications have been:

1. To obtain reasonable input geometries for lengthier (ab initio, semiempirical or

density functional) kinds of calculations.

2. To obtain good geometries (and perhaps energies) for small- to medium-sized

molecules.

3. To calculate the geometries and energies of very large molecules, usually

polymeric biomolecules (proteins and nucleic acids).

4. To generate the potential energy function under which molecules move, for

molecular dynamics or Monte Carlo calculations.

5. As a (usually quick) guide to the feasibility of, or likely outcome of, reactions in

organic synthesis.

Examples of these five facets of the use of MM will be given.
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3.3.1 To Obtain Reasonable Input Geometries for Lengthier
(Ab Initio, Semiempirical or Density Functional)
Kinds of Calculations

The most frequent use of MM is probably to obtain reasonable starting structures

for ab initio, semiempirical, or DFT (Chapters 5, 6 and 7) calculations. Nowadays

this is usually done by building the molecule with an interactive builder in a

graphical user interface, with which the molecule is assembled by clicking atoms

or groups together, much as one does with a “real” model kit. A click of the mouse

then invokes MM and provides, in most cases, a reasonable geometry. The resulting

MM-optimized structure is then subjected to an ab initio, etc. calculation.

By far the main use of MM is to find reasonable geometries for “normal”

molecules, but it has also been used to investigate transition states. The calculation

of transition states involved in conformational changes is a fairly straightforward

application of MM, since “reactions” like the interconversion of butane or cyclo-

hexane conformers do not involve the deep electronic reorganization that we call

bond-making or bond-breaking. The changes in torsional and nonbonded interac-

tions that accompany them are the kinds of processes that MM was designed to

model, and so good transition state geometries and energies can be expected for

this particular kind of process; transition state geometries cannot be (readily)

measured, but the MM energies for conformational changes agree well with

experiment: indeed, one of the two very first applications of MM [3a, d] was

to the rotational barrier in biphenyls (the other was to the SN2 reaction [3c]).

Since MM programs are usually not able to optimize an input geometry toward a

saddle point (see below), one normally optimizes to a minimum subject to the

symmetry constraint expected for the transition state. Thus for ethane, optimization

to a minimum within D3h symmetry (i.e. by constraining the HCCH dihedral to be

0�, or by starting with a structure of exactly D3h symmetry) will give the transition

state, while optimization with D3d symmetry gives the ground-state conformer

(Fig. 3.9). Optimizing an input C2v cyclohexane structure (Fig. 3.10) gives the

stationary point nearest this input structure, which is the transition state for inter-

conversion of enantiomeric twist cyclohexane conformers.

There are several examples of the application of MM to actual chemical reac-

tions, as distinct from conformational changes; the ones mentioned here are taken

from the review by Eksterowicz and Houk [13]. The simplest way to apply MM to

transition states is to approximate the transition state by a ground-state molecule.

This can sometimes give surprisingly good results. The rates of solvolysis of

compounds RX to the cation correlated well with the energy difference between

the hydrocarbon RH, which approximates RX, and the cation Rþ, which approx-

imates the transition state leading to this cation. This is not entirely unexpected, as

the Hammond postulate [14] suggests that the transition state should resemble the

cation. In a similar vein, the activation energy for solvolysis has been approximated

as the energy difference between a “methylalkane”, with CH3 corresponding to X in
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RX, and a ketone, the sp2 carbon of which corresponds to the incipient cationic

carbon of the transition state.

One may wish a more precise approximation to the transition state geometry

than is represented by an intermediate or a compound somewhat resembling the

transition state. This can sometimes be achieved by optimizing to a minimum,

subject to the constraint that the bonds being made and broken have lengths

D3h

Input structure with this symmetry will be
optimized to the transition state

Input structures not of D3h symmetry will
be optimized to the minimum-energy
conformation

energy

dihedral angle

Fig. 3.9 Optimizing ethane within D3h symmetry (i.e. by constraining the HCCH dihedral to

be 0�, or by inputting a structure with exact D3h symmetry) will give the transition state, while

optimization without requiring D3d symmetry gives the ground-state conformer

reaction coordinate

energy

D3d
chair

C2v
boat

C2
twist, or twist-boat

A C2v input structure will be optimized to
the transition state linking the C2 conformers

Cs
halfchair

Fig. 3.10 Optimizing cyclohexane within C2v symmetry gives a transition state, not one of the

minima
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believed (e.g. from quantum mechanical calculations on simple systems, or from

chemical intuition) to approximate those in the transition state, and with appropriate

angles and dihedrals also constrained. With luck this will take the input structure to

a point on the potential energy surface near the saddle point. For example, an

approximation to the geometry of the transition state for formation of cyclohexene

in the Diels–Alder reaction of butadiene with ethene can be achieved (Fig. 3.11) by

essentially building a boat conformation of cyclohexene, constraining the two

forming C/C bonds to about 2.1 Å, and optimizing, using the CH2 bridge (later

removed) to avoid twisting and to maintain Cs symmetry; optimization with a

dihedral constraint removes steric conflict between two hydrogens and gives a

reasonable starting structure for, say, an ab initio optimization.

The most sophisticated approach to locating a transition state with MMwould be

to use an algorithm that optimizes the input structure to a true saddle point, that is to

a geometry characterized by a Hessian with one and only one negative eigenvalue

(Chapter 2). To do this the MM program would have to be able not only to calculate

second derivatives, but should also be parameterized for the partial bonds in

transition states. This is a feature lacking in standard MM forcefields, which are

not, in general, used to calculate transition states.

MM has been used to study the transition states involved in SN2 reactions,

hydroborations, cycloadditions (mainly the Diels–Alder reaction), the Cope and

Claisen rearrangements, hydrogen transfer, esterification, nucleophilic addition to

H2C

3

C2v

C
H H

C
H H

make a C / C double bond;
set constraints on two C / C
bonds

constrain to
(2.1 Å)

constrain to
(2.1 Å)

butadiene

ethene

H
HH

H

H
H

H

H

H

H

2.1 Å

2.1 Å

2.1 Å

2.1 Å

2.1 Å
2.1 Å

from 

start with chair cyclohexane attach a CH2 1,4

Cf. the transition state

1 2

4

optimize

optimize
optimize

5

C
H H

6

H HHH

remove CH2, set 1, 2, 3, 4 dihedral to 0

1
2 34

7

H
H

HH

Cs

Cs

Fig. 3.11 Using molecular mechanics to get the (approximate) transition state for the Diels–Alder

reaction of butadiene with ethene. This procedure gives a structure with the desirable Cs, rather

than a lower, symmetry
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carbonyl groups and electrophilic C/C bonds, radical addition to alkenes, aldol

condensations, and various intramolecular reactions [13].

3.3.2 To Obtain Good Geometries (and Perhaps Energies)
for Small- to Medium-Sized Molecules

Molecular mechanics can provide excellent geometries for small (roughly C1 to

about C10) and medium-sized (roughly C11 to C100) organic molecules. It is by no

means limited to organic molecules, as forcefields like SYBYL and UFF [5] have

been parameterized for most of the periodic table, but the great majority of MM

calculations have been done on organics, probably largely because MM was the

creation of organic chemists (this is probably because the concept of geometric

structure has long been central in organic chemistry). The two salient features of

MM calculations on small to medium-sized molecules is that they are fast and they
can be very accurate. Times required for a geometry optimization of unbranched

C20H42, of C2h symmetry, with the Merck Molecular Force Field (MMFF), the

semiempirical AM1 (Chapter 6) and the ab initio HF/3–21G (Chapter 5) methods,

as implemented with the program SPARTAN [15], were 1.2 s, 16 s, and 57 min,

respectively (on an obsolescent machine a few years ago; these times would now

by shorter by a factor of at least 2). Clearly as far as speed goes there is no contest

between the methods, and the edge in favor of MM increases with the size of the

molecule. In fact, MM was till recently the only practical method for calculations

on molecules with more than about 100 heavy atoms (in computational chemistry

a heavy atom is any atom heavier than helium). Even programs not designed

specifically for macromolecules will handle molecules with thousands of atoms

on a good PC.

MM energies can be very accurate for families of compounds for which the
forcefield has been parameterized. Appropriate parameterization permits calcula-

tion of DHf
0 (heat of formation, enthalpy of formation) in addition to strain energy

[1f]. For the MM2 program (see below), for standard hydrocarbons DHf
0 errors are

usually only 0–4 kJ mol�1, which is comparable to experimental error, and for

oxygen containing organics the errors are only 0–8 kJ mol�1 [16]; the errors in MM

conformational energies are often only about 2 kJ mol�1 [17]. MM geometries are

usually reasonably good for small to medium-sized molecules [4, 9a, 18]; for the

MM3 program (see below) the RMS error in bond lengths for cholesteryl acetate

was only about 0.007 Å [4a]. “Bond length” is, if unqualified, somewhat imprecise,

since different methods of measurement give somewhat different values [4a, 9]

(Section 5.5.1). MM geometries are routinely used as input structures for quantum-

mechanical calculations, but in fact the MM geometry and energy are in some cases

as good as or better than those from a “higher-level” calculation [19]. The bench-

mark MM programs for small to medium-sized molecules are probably MM3 and

MM4 [4, 5]; the Merck Molecular Force Field (MMFF) [20] is likely to become

very popular too, not least because of its implementation in SPARTAN [15].
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3.3.3 To Calculate the Geometries and Energies of Very
Large Molecules, Usually Polymeric Biomolecules
(Proteins and Nucleic Acids)

Next to generating geometries and energies of small to medium-sized molecules,

the main use of MM is to model polymers, mainly biopolymers (proteins, nucleic

acids, polysaccharides). Forcefields have been developed specifically for this; two

of the most widely-used of these are CHARMM (Chemistry at HARvard using

Molecular Mechanics) [21] (the academic version; the commercial version is

CHARMm) and the forcefields in the computational package AMBER (Assisted

Model Building with Energy Refinement) [22]. CHARMM was designed to deal

with biopolymers, mainly proteins, but has been extended to handle a range of small

molecules. AMBER is perhaps the most widely used set of programs for biological

polymers, being able to model proteins, nucleic acids, and carbohydrates. Programs

like AMBER and CHARMM that model large molecules have been augmented

with quantum mechanical methods (semiempirical [23] and even ab initio [24]) to

investigate small regions where treatment of electronic processes like transition

state formation may be critical.

An extremely important aspect of the modelling (which is done largely with

MM) of biopolymers is designing pharmacologically active molecules that can fit

into active sites (the pharmacophores) of biomolecules and serve as useful drugs.

For example, a molecule might be designed to bind to the active site of an enzyme

and block the undesired reaction of the enzyme with some other molecule. Pharma-

ceutical chemists computationally craft a molecule that is sterically and electrostat-

ically complementary to the active site, and try to dock the potential drug into the

active site. The binding energy of various candidates can be compared and the most

promising ones can then be synthesized, as the second step on the long road to a

possible new drug. The computationally assisted design of new drugs and the study

of the relationship of structure to activity (quantitative structure-activity relation-

ships, QSAR) is one of the most active areas of computational chemistry [25].

3.3.4 To Generate the Potential Energy Function Under
Which Molecules Move, for Molecular Dynamics
or Monte Carlo Calculations

Programs like those in AMBER are used not only for calculating geometries and

energies, but also for simulating molecular motion, i.e. for molecular dynamics

[26], and for calculating the relative populations of various conformations or other

geometric arrangements (e.g. solvent molecule distribution around a macromole-

cule) in Monte Carlo simulations [27]. In molecular dynamics Newton’s laws of

motion are applied to molecules moving in a molecular mechanics forcefield,

although relatively small parts of the system (system: with biological molecules
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in particular modelling is often done not on an isolated molecule but on a molecule

and its environment of solvent and ions) may be simulated with quantum mechanical

methods [23, 24]. In Monte Carlo methods random numbers decide how atoms or

molecules are moved to generate new conformations or geometric arrangements

(“states”) which are then accepted or rejected according to some filter. Tens of

thousands (or more) of states are generated, and the energy of each is calculated by

MM, generating a Boltzmann distribution.

3.3.5 As a (Usually Quick) Guide to the Feasibility of, or Likely
Outcome of, Reactions in Organic Synthesis

In the past 15 years or so MM has become widely used by synthetic chemists,

thanks to the availability of inexpensive computers (even very modest personal

computers will easily run MM programs) and user-friendly and relatively inexpen-

sive programs [5]. Since MM can calculate the energies and geometries of ground

state molecules and (within the limitations alluded to above) transition states, it

can clearly be of great help in planning syntheses. To see which of two or more

putative reaction paths should be favored, one might (1) use MM like a hand-held

model: examine the molecule for factors like steric hindrance or proximity of

reacting groups, or (2) approximate the transition states for alternative reactions

using an intermediate or some other plausible proxy (cf. the treatment of solvolysis

in the discussion of transition states above), or (3) attempt to calculate the

energies of competing transition states (cf. the above discussion of transition state

calculations).

The examples given here of the use of MM in synthesis are taken from the

review by Lipkowitz and Peterson [28]. In attempts to simulate the metal-binding

ability of biological acyclic polyethers, the tricyclic 1 (Fig. 3.12) and a tetracyclic

analogue were synthesized, using as a guide the indication from MM that these

molecules resemble the cyclic polyether 18-crown-6, which binds the potassium

ion; the acyclic compounds were found to be indeed comparable to the crown ether

in metal-binding ability.

Enediynes like 2 (Fig. 3.12) are able to undergo cyclization to a phenyl-type

diradical 3, which in vivo can attack DNA; in molecules with an appropriate

triggering mechanism this forms the basis of promising anticancer activity. The

effect of the length of the constraining chain (i.e. of n in 2) on the activation energy
was studied by MM, aiding the design of compounds (potential drugs) that were

found to be more active against tumors than are naturally-occurring enediyne

antibiotics.

To synthesize the very strained tricyclic system of 4 (Fig. 3.12), a photochemical

Wolff rearrangement was chosen when MM predicted that the skeleton of 4 should

be about 109 kJ mol�1 less stable than that of the available 5. Photolysis of the

diazoketone 6 gave a high-energy carbene which lay above the carbon skeleton of
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4 and so was able to undergo Wolff rearrangement ring contraction to the ketene

precursor of 4.

A remarkable (and apparently still unconfirmed) prediction of MM is the claim

that the perhydrofullerene C60H60 should be stabler with some hydrogens inside the
cage [29].

3.4 Geometries Calculated by MM

Figure 3.13 compares geometries calculated with the Merck Molecular Force Field

(MMFF) with those from a reasonably high-level ab initio calculation (MP2(fc)/

6–31G*; Chapter 5) and from experiment. The MMFF is a popular forcefield,

applicable to a wide variety of molecules. Popular prejudice holds that the ab initio

method is “higher” than molecular mechanics and so should give superior geome-

tries. The set of 20 molecules in Fig. 3.13 is also used in Chapters 5, 6, and 7,

to illustrate the accuracy of ab initio, semiempirical, and density functional calcula-

tions in obtaining molecular geometries. The data in Fig. 3.13 are analyzed in

Table 3.3. Table 3.4 compares dihedral angles for eight molecules, which are also

used in Chapters 5, 6, and 7.

(CH2)n
(CH2)n

2

.

.

3

O

H H
O

H

O

H

1

HO

5

H
O

N2

6

H

4

Fig. 3.12 Some molecules (1, 2, 4) which have been synthesized with the aid of molecular

mechanics
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This survey suggests that:

For common organic molecules the Merck Molecular Force Field is nearly as

good as the ab initio MP2(fc)/6–31G* method for calculating geometries. Both

H H
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Fig. 3.13 A comparison of some MMFF, MP2(fc)/6–31G* and experimental geometries.

Calculations are by the author and experimental geometries are from ref. [30a]. Note that all CH

bonds are ca. 1 Å, all other bonds range from ca. 1.2–1.8 Å, and all bond angles (except for linear

molecules) are ca. 90��120�
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(Å

)
B
o
n
d
an
g
le

er
ro
rs
,
a
-a

e
x
p

O
–
H
,
N
–
H
,
S
–
H

C
–
C

C
–
O
,
N
,
F
,
C
l,
S

A
n
g
le
s

M
eO

H
H
2
O

M
e 2
C
O

M
eO

H
H
2
O
(H

O
H
)

�0
.0
0
1
/�

0
.0
0
4

0
.0
1
1
/0
.0
1
1

�0
.0
0
2
/0
.0
0
6

�0
.0
0
5
/0
.0
0
7

�0
.5
/�

0
.6

�0
.0
0
1
/0
.0
0
3

H
C
H
O

H
2
O
2

C
H
3
C
H
3

H
C
H
O

H
2
O
2
(H

O
O
)

�0
.0
1
4
/�

0
.0
1
2

0
.0
1
1
/0
.0
1
1

�0
.0
1
9
/�

0
.0
0
5

0
.0
1
7
/0
.0
1
3

�3
.2
/�

1
.4

M
eF

M
eO

H
C
H
2
C
H
2

M
eF

M
eO

H
(H

C
O
)

�0
.0
0
8
/�

0
.0
0
8

0
.0
0
9
/0
.0
0
7

�0
.0
1
3
/�

0
.0
1
7
/�

0
.0
0
2

�0
.0
0
8
/0
.0
0
9

1
.8
/�

0
.9

(C
O
H
)

�0
.9
/�

0
.6

H
C
N

H
O
F

H
C
C
H

H
C
N

H
C
H
O
(H

C
H
)

0
.0
0
0
/0
.0
0
4

0
.0
0
6
/0
.0
1
3

�0
.0
0
3
/0
.0
1
5

0
.0
0
7
/0
.0
2
4

�1
.0
/�

0
.9

M
eN

H
2

M
eN

H
2

C
H
3
C
H
2
C
H
3

M
eN

H
2

M
eF

(H
C
H
)

�0
.0
0
5
/0
.0
0
1

0
.0
0
9
/0
.0
0
8

�0
.0
0
7
/0
.0
0
0

�0
.0
1
9
/�

0
.0
0
6

�0
.4
/�

0
.8

�0
.0
0
5
/�

0
.0
0
7

C
H
3
C
H
3

H
O
C
l

C
H
2
C
H
C
H
3

M
e 2
C
O

H
O
F
(H

O
F
)

�0
.0
0
2
/�

0
.0
0
3

�0
.0
0
3
/0
.0
0
4

�0
.0
0
8
/�

0
.0
0
2

0
.0
0
8
/0
.0
0
6

1
3
.6
/0
.4

0
.0
2
1
/0
.0
2
0

C
H
2
C
H
2

H
2
S

H
C
C
C
H
3

M
eC

l
M
eN

H
2
(H

C
N
)

0
.0
0
0
/0
.0
0
0

0
.0
0
5
/0
.0
0
4

0
.0
0
4
/0
.0
0
4

�0
.0
1
4
/�

0
.0
0
2

�3
.3
/1
.5

�0
.0
0
5
/0
.0
1
4

C
H
C
H

M
eS
H

M
eS
H

M
e 2
C
O

(C
C
C
)

0
.0
0
5
/0
.0
0
5

0
.0
0
5
/0
.0
0
5

�0
.0
1
5
/�

0
.0
0
3

�0
.5
/�

0
.8

M
eC

l
M
e 2
S
O

C
H
3
C
H
3
(H

C
H
)

�0
.0
0
4
/�

0
.0
0
7

0
.0
1
0
/0
.0
1
0

0
.6
/�

0
.1

M
eS
H

C
H
2
C
H
2
(H

C
H
)

0
.0
0
2
/0
.0
0
0

0
.1
/�

1
.2

0
.0
0
2
/�

0
.0
0
1

(c
on

ti
nu

ed
)

3.4 Geometries Calculated by MM 69



T
a
b
le

3
.3

(c
o
n
ti
n
u
ed
)

C
–
H

B
o
n
d
le
n
g
th

er
ro
rs
,
r-
r e
x
p
(Å
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methods give good geometries, but while these molecular mechanics calculations

all take effectively about one second, MP2 geometry optimizations on these

molecules require typically a minute or so. For larger molecules where MP2

would need hours, MM calculations might still take only seconds. Note, however,

that ab initio methods provide information that molecular mechanics cannot, and

are far more reliable for molecules outside those of the kind used in the MM

training set (Section 3.2.2). The worst MMFF bond length deviation from experiment

among the 20 molecules is 0.021 Å (the C¼C bond of propene; the MP2 deviation is

0.020 Å); most of the other errors are ca. 0.01 Å or less. The worst bond angle error

is 13.6�, for HOF, and for HOCl the deviation is 7.9�, the second worst angle error

in the set. This suggests a problem for the MMFF with X–O–Halogen angles, but

while for CH3OF deviation from the MP2 angle (which is likely to be close to

experiment) is MMFF–MP2¼ 110.7� � 102.8� ¼ 7.9�, for CH3OCl the deviation is

only 112.0� � 109.0� ¼ 3.0�.
MMFF dihedral angles are remarkably good, considering that torsional barriers

are believed to arise from subtle quantum mechanical effects. The worst dihedral

angle error is 10�, for HOOH, and the second worst, �5.0�, is for the analogous

HSSH. The (granted, low-level) ab initio HF/3–21G (Chapter 5) and semiempirical

PM3 (Chapter 6) methods also have trouble with HOOH, predicting a dihedral

Table 3.4 MMFF, MP2(fc)/6–31G* and experimental dihedral angles (deg)

Dihedral angles Errors

Molecule MMFF MP2/6–31G* Exp.

HOOH 129.4 121.3 119.1 [30a] 10/2.2

FOOF 90.7 85.8 87.5 [30b] 3.2/�1.7

FCH2CH2F 72.1 69.0 73 [30b] �1.0/�4

(FCCF)

FCH2CH2OH 65.9

(FCCO) 53.5 60.1 64.0 [30c] 1.9/�3.9

(HOCC) 54.1 54.6 [30c] �1.1/�0.5

ClCH2CH2OH

(ClCCO) 65.7 65.0 63.2 [30b] 2.5/1.8

(HOCC) 56.8 64.3 58.4 [30b] �1.6/5.9

ClCH2CH2F

(ClCCF) 69.8 65.9 68 [30b] 1.8/�2.1

HSSH 84.2 90.4 90.6 [30a] �6.4/�0.2

FSSF 82.9 88.9 87.9 [30b] �5.0/1.0

Deviations:

5þ, 5�/4þ, 6�
mean of 10:

3.5/2.3;

Errors are given in the Errors column as MMFF/MP2/6–31G*. A minus sign means that the

calculated value is less than the experimental. The numbers of positive and negative deviations

from experiment and the average errors (arithmetic means of the absolute values of the errors) are

summarized at the bottom of the Errors column. Calculations are by the author; references to

experimental measurements are given for each measurement. The AM1 and PM3 dihedrals vary by
a fraction of a degree depending on the input dihedral. Some molecules have calculated minima at

other dihedrals in addition to those given here, e.g. FCH2CH2F at FCCF 180�.
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angle of 180�. For those dihedrals not involving OO or SS bonds, (an admittedly

small selection), the MMFF errors are only ca. 1�–2�, cf. ca. 2�–6� for MP2.

3.5 Frequencies and Vibrational Spectra Calculated by MM

Any method that can calculate the energy of a molecular geometry can in principle

calculate vibrational frequencies, since these can be obtained from the second

derivatives of energy with respect to molecular geometry (Section 2.5), and the

masses of the vibrating atoms. Some commercially available molecular mechanics

programs, for example the Merck Molecular Force Field as implemented in

SPARTAN [15], can calculate frequencies. Frequencies are useful (Section 2.5)

(1) for characterizing a species as a minimum (no imaginary frequencies) or a

transition state or higher-order saddle point (one or more imaginary frequencies),

(2) for obtaining zero-point energies to correct frozen-nuclei energies (Section 2.2),

and (3) for interpreting or predicting infrared spectra.

1. Characterizing a species. This is not often done with MM, because MM is used

mostly to create input structures for other kinds of calculations, and to study

known (often biological) molecules. Nevertheless MM can yield information

on the curvature of the potential energy surface (see Chapter 2), as calculated

by that particular forcefield, anyway, at the point in question. For example, the

MMFF-optimized geometries of D3d (staggered) and D3h (eclipsed) ethane

(Figs. 3.3, 3.4) show, respectively, no imaginary frequencies and one imaginary

frequency, the latter corresponding to rotation about the C/C bond. Thus the

MMFF (correctly) predicts the staggered conformation to be a minimum, and

the eclipsed to be a transition state connecting successive minima along the

torsional reaction coordinate. Again, calculations on cyclohexane conforma-

tions with the MMFF correctly give the boat an imaginary frequency

corresponding to a twisting motion leading to the twist conformation, which

latter has no imaginary frequencies (Fig. 3.10). Although helpful for character-

izing conformations, particularly hydrocarbon conformations, MM is less

appropriate for species in which bonds are being formed and broken. For

example, the symmetrical (D3h) species in the F� þ CH3–F SN2 reaction,

with equivalent C/F partial bonds, is incorrectly characterized by the MMFF

as a minimum rather than a transition state, and the C/C bonds are calculated to

be 1.289 Å long, cf. the value of ca. 1.8 Å from methods known to be

trustworthy for transition states.

2. Obtaining zero-point energies (ZPEs). ZPEs are essentially the sum of the

energies of each normal-mode vibration. They are added to the raw energies

(the frozen-nuclei energies, corresponding to the stationary points on a

Born–Oppenheimer surface; Section 2.3) in accurate calculations of relative

energies using ab initio (Chapter 5) or DFT (Chapter 7) methods. However,
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the ZPEs used for such corrections are usually obtained from an ab initio or

DFT calculation.

3. Infrared spectra. The ability to calculate the energies (cm�1) and relative

intensities of molecular vibrations amounts to being able to calculate infrared

spectra. MM as such cannot calculate the intensities of vibrational modes, since

these involve changes in dipole moments (Section 5.5.3), and dipole moment is

related to electron distribution, a concept that lies outside MM. However,

approximate intensities can be calculated by assigning dipole moments to

bonds or charges to atoms, and such methods have been implemented in MM

programs [31]. Figures 3.14, 3.15, 3.16, and 3.17 compare the experimental IR

spectra (taken in the gas phase by the author) of acetone, benzene, dichloro-

methane and methanol with those calculated with the MMFF program and by the

“higher”, computationally much more demanding, ab initio MP2(fc)/6–31G*

method (Chapter 5). In Chapters 5, 6, and 7, spectra for these four molecules,

calculated by ab initio, semiempirical, and density functional methods, respec-

tively, are given. MP2 spectra seem to generally match experiment better than

those from MM, but the latter method furnishes a rapid way of obtaining

approximate IR spectra. For a series of related compounds, MM might be a

reasonable way to quickly investigate trends in frequencies and intensities.

Extensive surveys of MMFF and MM4 frequencies showed that MMFF root-

mean-square errors are ca. 60 cm�1, and MM4 errors 25 � 52 cm�1 [5b].

3.6 Strengths and Weaknesses of Molecular Mechanics

3.6.1 Strengths

MM is fast, as shown by the times for optimization of C20H42 in Section 3.3. The

speed of MM is not always at the expense of accuracy: for the kinds of molecules

for which it has been parameterized, it can rival or surpass experiment in the

reliability of its results (Sections 3.3 and 3.4). MM is undemanding in its hardware

requirements: MM calculations on standard personal computers are quite practical.

The characteristics of speed, (frequent) accuracy and modest computer require-

ments have given MM a place in many modelling programs.

Because of its speed and the availability of parameters for almost all the

elements (Section 3.3), MM – even when it does not provide very accurate

geometries – can supply reasonably good input geometries for semiempirical, ab

initio or density functional calculations, and this is one of its main applications. The

fairly recent ability of MM programs to calculate IR spectra with some accuracy

[16, 32] may presage an important application, since frequency calculation by

quantum mechanical methods usually requires considerably more time than geom-

etry optimization). Note that MM frequencies should be calculated using the MM

geometry – unfortunately, MM can’t be used as a shortcut to obtaining frequencies

for a species optimized by a quantum mechanical calculation (ab initio, density
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functional or semiempirical), since frequencies must be calculated using the same

method used for the geometry optimization (Section 2.5).

3.6.2 Weaknesses

The possible pitfalls in using MM are discussed by Lipkowitz [33]. The weaknesses

stem from the fact that it ignores electrons. The philosophy behind MM is to think

of a molecule as a collection of atoms subject to forces and to use any practical

mathematical treatment of these forces to express the energy in terms of the

geometric parameters. By parameterization MM can “calculate” electronic proper-

ties; for example, using bond dipoles it can find a dipole moment for a molecule,

and using values that have been calculated for various atom types by quantum

mechanics it can assign charges to atoms. However, such results are obtained purely

by analogy, and their reliability can be negated by unexpected electronic factors to
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which MM is oblivious. MM cannot provide information about the shapes and

energies of molecular orbitals nor about related phenomena such as electronic

spectra.

Because of the severely empirical nature of MM, interpreting MM parameters in

terms of traditional physical concepts is dangerous; for example, the bond-stretching

and angle-bending parameters cannot rigorously be identified with spectroscopic

force constants [33]; Lipkowitz suggests that the MM proportionality constants

(Section 3.2.1) be called potential constants. Other dangers in using MM are:

1. Using an inappropriate forcefield: a field parameterized for one class of com-

pounds is not likely to perform well for other classes.

2. Transferring parameters from one forcefield to another. This is usually not

valid.

3. Optimizing to a stationary point that may not really be a minimum (it could be a

“maximum”, a transition state), and certainly may not be a global minimum

(Chapter 2). If there is reason to be concerned that a structure is not a minimum,
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alter it slightly by bond rotation and reoptimize; a transition state should slide

down toward a nearby minimum (e.g. eclipsed ethane altered slightly from the

D3h geometry and optimized goes to the staggered conformer (g. 3.9).

4. Being taken in by vendor hype: MM programs, more so than semiempirical ones

and unlike ab initio or DFT programs, are ruled by empirical factors (the form of

the forcefield and the parameters used in it), and vendors do not usually caution

buyers about potential deficiencies.

5. Ignoring solvent and nearby ions: for polar molecules using the in vacuo

structure can lead to quite wrong geometries and energies. This is particularly

important for biomolecules. One way to mitigate this problem is to explicitly

add solvent molecules or ions to the system, which can considerably increase

the time for a calculation. Another might be to subject various plausible in

vacuo-optimized conformations to single-point (no geometry optimization)

calculations that simulate the effect of solvent and take the resulting energies
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as being more reliable than the in vacuo ones. Solvent effects are discussed in

Chapter 8 Section 8.1.

6. Lack of caution about comparing energies calculated with MM. The method

calculates the energy of a molecule relative to a hypothetical strainless idealiza-

tion of the molecule. Using MM to calculate the relative energy of two isomers

by comparing their strain energies (the normal MM energies) is dangerous

because the two strain energies are not necessarily relative to the same hypo-

thetical unstrained species (strain energies are not an unambiguous observable

[34]). This is particularly true for functional group isomers, like (CH3)2O/

CH3CH2OH and CH3COCH3/H2C¼C(OH)CH3, which have quite different

atom types. For isomers consisting of the same kinds of atoms (alkanes cf.

alkanes, say), and especially for conformational isomers and E/Z isomers

(geometric isomers), a good MM forcefield should give strain energies which

reasonably represent relative enthalpies. For example, the MMFF gives for

CH3COCH3/H2C¼C(OH)CH3 strain energies of 6.9/–6.6 kJ mol–1, i.e. relative
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energies of 0/–13 kJ mol–1, but the experimental value is ca. 0/44 kJ mol–1, i.e.

H2C¼C(OH)CH3 is much the higher-energy molecule. On the other hand, the

MMFF yields for gauche–butane/anti-butane strain energies of –21.3/–18.0 kJ

mol–1, i.e. relative energies of 0/3.3 kJ mol–1, reasonably close to the experi-

mental value of 0/2.8 kJ mol–1. For chair (D2d), twist (D2), and boat (C2v)

cyclohexane, the MMFF strain energies are –14.9, 9.9 and 13.0 kJ mol–1, i.e.

relative energies of 0, 24.8 and 27.9 kJ mol–1, cf. the experimental the estimates

of 0, 24 and 29 kJ mol–1. MM programs can be parameterized to give, not just

strain energy, but enthalpies of formation [1f], and the use of these enthalpies

should make possible energy comparisons between isomers of disparate

structural kinds.

Although chemists often compare stabilities of isomers using enthalpies, we

should remember that equilibria are actually determined by free energies. The

lowest-enthalpy isomer is not necessarily the one of lowest free energy: a

higher-enthalpy molecule may have more vibrational and torsional motion

(it may be springier and floppier) and thus possess more entropy and hence

have a lower free energy. Free energy has an enthalpy and an entropy compo-

nent, and to calculate the latter, one needs the vibrational frequencies. Programs

that calculate frequencies will usually also provide entropies, and with

parameterization for enthalpy this can permit the calculation of free energies.

Note that the species of lowest free energy is not always the major one present:

one low-energy conformation could be outnumbered by one hundred of higher

energy, each demanding its share of the Boltzmann pie.

7. Assuming that the major conformation determines the product. In fact, in a

mobile equilibrium the product ratio depends on the relative reactivities, not

relative amounts, of the conformers (the Curtin-Hammett principle [35]).

8. Failure to exercise judgement: small energy differences (say up to 10–20 kJ

mol�1) mean nothing in many cases. The excellent energy results referred to in

Section 3.3 can be expected only for families of molecules (usually small to

medium-sized) for which the forcefield has been parameterized.

Many of the above dangers can be avoided simply by performing test calcula-

tions on systems for which the results are known (experimentally, or “known”

from high-level quantum mechanical calculations). Such a reality check can have

salutary effects on the reliability of one’s results, and not only with reference to

molecular mechanics.

3.7 Summary

This chapter explains the basic principles of molecular mechanics (MM), which rests

on a view of molecules as balls held together by springs. MM began in the 1940s

with attempts to analyze the rates of racemization of biphenyls and of SN2 reactions.

The potential energy of a molecule can be written as the sum of terms involving

bond stretching, angle bending, dihedral angles and nonbonded interactions. Giving

these terms explicit mathematical forms constitutes devising a forcefield, and
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giving actual numbers to the constants in the forcefield constitutes parameterizing

the field. An example is given of the devising and parameterization of an MM

forcefield.

MM is widely used to create reasonable geometries for input to other calculations.

Such calculations are fast and can be very accurate, provided that the forcefield has

been carefully parameterized for the types of molecules under study. Calculations on

biomolecules is a very important application of MM; the pharmaceutical industry

designs new drugs with the aid of MM: for example, examining how various

candidate drugs fit into the active sites of biomolecules (docking) and the related

aspect of QSAR are of major importance. MM is of some limited use in calculating

the geometries and energies of transition states. Organic synthesis now makes

considerable use of MM, which enables chemists to estimate which products are

likely to be favored and to devise more realistic routes to a target molecule than was

hitherto possible. In molecular dynamics MM is used to generate the forces acting on

molecules and hence to calculate their motions, and in Monte Carlo simulations MM

is used to calculate the energies of the many randomly generated states.

MM is fast, it can be accurate, it is undemanding of computer power, and it

provides reasonable starting geometries for quantum mechanical calculations. It

ignores electrons, and so can provide parameters like dipole moment only by

analogy. One must be cautious about the applicability of MM parameters to the

problem at hand. Stationary points from MM, even when they are relative minima,

may not be global minima. Ignoring solvent effects can give erroneous results for

polar molecules. MM gives strain energies, the difference of which for structurally

similar isomers represent enthalpy differences; parameterization to give enthalpies

of formation is possible. Strictly speaking, relative amounts of isomers depend on

free energy differences. The major conformation (even when correctly identified) is

not necessarily the reactive one.
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Easier Questions

1. What is the basic idea behind molecular mechanics?

2. What is a forcefield?

3. What are the two basic approaches to parameterizing a forcefield?

4. Why does parameterizing a forcefield for transition states present special

problems?

5. What is the main advantage of MM, generally speaking, over the other methods

of calculating molecular geometries and relative energies?

6. Why is it not valid in all cases to obtain the relative energies of isomers by

comparing their MM strain energies?

7. What class of problems cannot be dealt with by MM?

8. Give four applications for MM. Which is the most widely used?

9. MM can calculate the values (cm�1) of vibrational frequencies, but without

“outside assistance” it can’t calculate their intensities. Explain.

10. Why is it not valid to calculate a geometry by some slower (e.g. ab initio)

method, then use that geometry for a fast MM frequency calculation?

Harder Questions

1. One big advantage of molecular mechanics over other methods of calculating

geometries and relative energies is speed. Does it seem likely that continued

increases in computer speed could make MM obsolete?

2. Do you think it is possible (in practical terms? In principle?) to develop a

forcefield that would accurately calculate the geometry of any kind of mole-

cule?

3. What advantages or disadvantages are there to parameterizing a forcefield with

the results of “high-level” calculations rather than the results of experiments?

4. Would you dispute the suggestion that no matter how accurate a set of MM

results might be, they cannot provide insight into the factors affecting a

chemical problem, because the “ball and springs” model is unphysical?

5. Would you agree that hydrogen bonds (e.g. the attraction between two water

molecules) might be modelled in MM as weak covalent bonds, as strong van

der Waals or dispersion forces, or as electrostatic attractions? Is any one of

these three approaches to be preferred in principle?

6. Replacing small groups by “pseudoatoms” in a forcefield (e.g. CH3 by an

“atom” about as big) obviously speeds up calculations. What disadvantages

might accompany this simplification?

7. Why might the development of an accurate and versatile forcefield for inor-

ganic molecules be more of a challenge than for organic molecules?

82 3 Molecular Mechanics



8. What factor(s) might cause an electronic structure calculation (e.g. ab initio or

DFT) to give geometries or relative energies very different from those obtained

from MM?

9. Compile a list of molecular characteristics/properties that cannot be calculated

purely by MM.

10. How many parameters do you think a reasonable forcefield would need to

minimize the geometry of 1,2-dichloroethane?
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Chapter 4

Introduction to Quantum Mechanics

in Computational Chemistry

It is by logic that we prove, but by intuition that we discover.

J.H. Poincaré, ca. 1900

Abstract A historical view demystifies the subject. The focus is strongly on

chemistry. The application of quantum mechanics (QM) to computational chemis-

try is shown by explaining the Schr€odinger equation and showing how this equation

led to the simple H€uckel method, from which the extended H€uckel method

followed. This sets the stage well for ab initio theory, in Chapter 5.

QM grew out of studies of blackbody radiation and of the photoelectric effect.

Besides QM, radioactivity and relativity contributed to the transition from classical

to modern physics. The classical Rutherford nuclear atom, the Bohr atom, and the

Schr€odinger wave-mechanical atom are discussed. Hybridization, wavefunctions,

Slater determinants and other basic concepts are explained. For obtaining eigen-

vectors and eigenvalues from the secular equations the elegant and simple matrix

diagonalization method is explained and used. All the necessary mathematics is

explained.

4.1 Perspective

Chapter 1 outlined the tools that computational chemists have at their disposal,

Chapter 2 set the stage for the application of these tools to the exploration of

potential energy surfaces, and Chapter 3 introduced one of these tools, molecular

mechanics. In this chapter you will be introduced to quantum mechanics, and to

quantum chemistry, the application of quantum mechanics to chemistry. Molecular

mechanics is based on classical physics, physics before modern physics; one of the
cornerstones of modern physics is quantum mechanics, and ab initio (Chapter 5),

semiempirical (Chapter 6), and density functional (Chapter 7) methods belong to

quantum chemistry. This chapter is designed to ease the way to an understanding of
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the role of quantum mechanics in computational chemistry. The word quantum
comes from Latin (quantus, “how much?”, plural quanta) and was first used in our

sense by Max Planck in 1900, as an adjective and noun, to denote the constrained

quantities or amounts in which in which energy can be emitted or absorbed.

Although the term quantum mechanics was apparently first used by Born (of the

Born–Oppenheimer approximation, Section 2.3) in 1924, in contrast to classical

mechanics, the matrix algebra and differential equation techniques that we now

associate with the term were presented in 1925 and 1926 (Section 4.2.6).

“Mechanics” as used in physics is traditionally the study of the behavior of

bodies under the action of forces like, e.g., gravity (celestial mechanics). Molecules

are made of nuclei and electrons, and quantum chemistry deals, fundamentally,

with the motion of electrons under the influence of the electromagnetic force

exerted by nuclear charges. An understanding of the behavior of electrons in

molecules, and thus of the structures and reactions of molecules, rests on quantum

mechanics and in particular on that adornment of quantum chemistry, the Schr€odinger
equation. For that reason we will consider in outline the development of quantum

mechanics leading up to the Schr€odinger equation, and then the birth of quantum

chemistry with (at least as far as molecules of reasonable size goes) the application

of the Schr€odinger equation to chemistry by H€uckel. This simple H€uckel method is

currently disdained by some theoreticians, but its discussion here is justified by the

fact that (1) it continues to be useful in research and (2) it “is immensely useful as a

model, today . . . Because it is the model which preserves the ultimate physics, that

of nodes in wave functions. It is the model which throws away absolutely every-

thing except the last bit, the only thing that if thrown away would leave nothing. So

it provides fundamental understanding.”1 A discussion of a generalization of the

simple H€uckel method, the extended H€uckel method, sets the stage for Chapter 5.

The historical approach used here, although perforce somewhat superficial, may

help to ameliorate the apparent arbitrariness of certain features of quantum chemis-

try [1, 2]. An excellent introduction to quantum chemistry is the text by Levine [3].

Our survey of the factors that led to modern physics and quantum chemistry will

follow the sequence:

1. The origins of quantum theory: blackbody radiation and the photoelectric effect

2. Radioactivity (brief)

3. Relativity (very brief)

4. The nuclear atom

5. The Bohr atom

6. The wave mechanical atom and the Schr€odinger equation

1Personal communication from Professor Roald Hoffmann, 2002 February 13. See too

Section 4.4.1, footnote.
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4.2 The Development of Quantum Mechanics.

The Schr€odinger Equation

4.2.1 The Origins of Quantum Theory: Blackbody Radiation
and the Photoelectric Effect

Three discoveries mark the transition from classical to modern physics: quantum

theory, radioactivity, and relativity (Fig. 4.1). Quantum theory had its origin in the

study of blackbody radiation and the photoelectric effect.

4.2.1.1 Blackbody Radiation

A blackbody is one that is a perfect absorber of radiation: it absorbs all the radiation

falling on it, without reflecting any. More relevant for us, the radiation emitted by a

hot blackbody depends (as far as the distribution of energy with wavelength goes)

only on the temperature, not on the material the body is made of, and is thus

amenable to relatively simple analysis. The sun is approximately a blackbody; in

the lab a good source of blackbody radiation is a furnace with blackened insides and

a small aperture for the radiation to escape. In the second half of the nineteenth

century the distribution of energy with respect to wavelength that characterizes

blackbody radiation was studied, in research that is associated mainly with Lummer

and Pringsheim [1]. They plotted the flux DF (in modern SI units, J s�1 m�2) per

wavelength emitted by a blackbody over a wavelength range Dl versus the wave-

length, for various temperatures (Fig. 4.2): DF/Dl versus l. The result is a histo-

gram or bar graph in which the area of each rectangle is (DF/Dl)Dl ¼ DF and

represents the flux (energy per second per unit area) emitted in the wavelength

range covered by that Dl; DF/Dl can be called the flux density for that particular

classical physics (physics before 1900)

mechanics
Galileo, Newton, etc.

optics
Newton, Huygens, Young

electromagnetism
Faraday, Maxwell

modern physics (after 1900)

quantum theory
Planck, Einstein, etc.

radioactivity
Becquerel

relativity
Einstein

blackbody
radiation photoelectric

effect

Fig. 4.1 The discoveries marking the transition from classical to modern to physics. Although

radioactivity was discovered in 1896, its understanding had to wait for relativity and quantum

theory
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wavelength range Dl. The total area of all the rectangles is the total flux emitted

over its whole wavelength range by the blackbody. As Dl approaches zero (note

that for the nonmonochromatic radiation from a blackbody the flux at a particular
wavelength is essentially zero) the histogram approaches being a smooth curve, the

ratio of finite increments approximates a derivative, and we can ask: what is the

function (Fig. 4.2) dF/dl¼ f(l)? In the answer to this question lay the beginnings of
quantum theory.

Late nineteenth century physics, classical physics at its zenith, predicted that the

flux density emitted by a blackbody should rise without limit as the wavelength

decreases. This is because classical physics held that radiation of a particular fre-

quency was emitted by oscillators (atoms or whatever) vibrating with that frequency,

and that the average energy of an oscillator was independent of its frequency; since the

number of possible frequencies increases without limit, the flux density (energy per

second per unit area per wavelength interval) from the blackbody should rise without

limit toward higher frequencies or shorter wavelengths, into the ultraviolet, and so the

total flux (energy per second per unit area) should be infinite. This is clearly absurd and

was recognized as being absurd; in fact, it was called “the ultraviolet catastrophe” [1].

To understand the nature of blackbody radiation and to escape the ultraviolet catas-

trophe, physicists in the 1890s tried to find the function (Fig. 4.2) f(l).
Without breaking with classical physics, Wien had found a theoretical equation

that fit the Lummer–Pringsheim curve at relatively short wavelengths, and Rayleigh

and Jeans one that fit at relatively long wavelengths. Max Planck2 adopted a

different approach: he found, in 1900, a purely empirical equation dF/dl ¼ f(l)

FACT

ΔF

Δλ

ΔF

Δλ

CLASSICAL PHYSICS
(FALSE)

λ λ

Fig. 4.2 In the limit the bar graph becomes a curve, the graph of f(l) versus l, where

f ðlÞ ¼ lim
Dl!0

DF
Dl ¼ dF

dl , essentially intensity of radiation versus wavelength. Planck’s efforts to find

the function f(l) led to the quantum theory

2Max Planck, born Kiel, Germany, 1858. Ph.D. Berlin 1879. Professor, Kiel, Berlin. Nobel Prize in

physics for quantum theory of blackbody radiation 1918. Died G€ottingen, 1947.
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that fit the facts, and then tried to interpret the equation theoretically. To do this he

had to make two assumptions:

1. The total energy possessed by the oscillators in the frequency range n þ dn (n is
the Greek letter nu, commonly used for frequency, not to be confused with v,
vee, commonly used for velocity) is proportional to the frequency:

Etot ðnþ dnÞ / n (4.1)

2. The emission or absorption of radiation of frequency n by the collection of

oscillators is caused by jumps between energy levels, with loss or gain of a

quantity of energy kn:

DE ¼ kn (4.2)

The constant k, now recognized as a fundamental constant of nature, 6.626 �
10�34 J s particle�1, is called Planck’s constant, and is denoted by h, so Eq. 4.2

becomes

DE ¼ hn �(4:3)

Why the letter h? Evidently because h is sometimes used in mathematics to

denote infinitesimals and Planck intended to let this quantity go to zero (this was

suggested to me by the late Professor Philip Morrison of MIT). In the event, it

turned out to be small but finite. Apparently the letter was first used to denote the

new constant in a talk given by Planck at a meeting (Sitzung) of the German

Physical Society in Berlin, on 14 December 1900 [4]. The interpretation of

Eq. 4.3, a fundamental equation of quantum theory, as meaning that the energy

represented by radiation of frequency n is absorbed and emitted in quantized

amounts hn (definite, constrained amounts; jerkily rather than continuously) was,

ironically, apparently never fully accepted by Planck [5]. Planck’s constant is a

measure of the graininess of our universe: because it is so small processes

involving energy changes often seem to take place smoothly, but on an ultrami-

croscopic scale the graininess is there [6]. The constant h is the hallmark of

quantum expressions, and its finite value distinguishes our universe from a

nonquantum one.

4.2.1.2 The Photoelectric Effect

An apparently quite separate (but in science no two phenomena are really ever

unrelated) phenomenon that led to Eq. 4.3, which is to say to quantum theory, is the

photoelectric effect: the ejection of electrons from a metal surface exposed to light.

4.2 The Development of Quantum Mechanics. The Schr€odinger Equation 89



The first inkling of this phenomenon was due to Hertz,3 who in 1888 noticed that

the potential needed to elicit a spark across two electrodes decreased when ultravi-

olet light shone on the negative electrode. Beginning in 1902, the photoelectric

effect was first studied systematically by Lenard,4 who showed that the phenome-

non observed by Hertz was due to electron emission.

Facts (Fig. 4.3) that classical physics could not explain were the existence of a

threshold frequency for electron ejection, that the kinetic energy of the electrons is

linearly related to the frequency of the light, and the fact that the electron flux

(electrons per unit area per second) is proportional to the intensity of the light.

Classical physics predicted that the electron flux should be proportional to the light

frequency, decreasing with a decrease in frequency, but without sharply falling to

zero below a certain frequency, and that the kinetic energy of the electrons should

be proportional to the intensity of the light, not the frequency.

These facts were explained by Einstein5 in 1905 in a way that now appears very

simple, but in fact relies on concepts that were at the time revolutionary. Einstein

went beyond Planck and postulated that not only was the process of absorption and

emission of light quantized, but that light itself was quantized, consisting in effect

of particles of energy

kinetic energy
of the emitted electrons,
1 / 2 mv2

0

1 / 2 mv2  = h     –W

–W

frequency,     , of the light 

Fig. 4.3 The photoelectric effect. Einstein explained the effect by extending to light Planck’s idea

of the absorption and emission of energy in discrete amounts: he postulated that light itself

consisted of discrete particles

3Heinrich Hertz, born Hamburg, Germany, 1857. Ph.D. Berlin, 1880. Professor, Karlsruhe, Bonn.

Discoverer of radio waves. Died Bonn, 1894.
4Philipp Lenard, German physicist, born Pozsony, Austria-Hungary (now Bratislava, Slovakia),

1862. Ph.D. Heidelberg 1886. Professor, Heidelberg. Nobel Prize in physics 1905, for work on

cathode rays. Lenard supported the Nazis and rejected Einstein’s theory of relativity. Died

Messelhausen, Germany, 1947.
5Albert Einstein, German–Swiss–American physicist. Born Ulm, Germany, 1879. Ph.D. Z€urich
1905. Professor Z€urich, Prague, Berlin; Institute for Advanced Studies, Princeton, New Jersey.

Nobel Prize in physics 1921 for theory of the photoelectric effect. Best known for the special

(1905) and general (1915) theories of relativity. Died Princeton, 1955.
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Eparticle ¼ hv

v ¼ frequency of the light
(4.4)

These particles became known as photons (the word was coined by Gilbert Lewis,

ca. 1923, but his photon was not the particle of modern physics). If the energy of the

photon before it removes an electron from the metal is equal to the energy required to

tear the electron free of the metal, plus the kinetic energy of the free electron, then

hv ¼ W þ 1=2mev
2 (4.5)

W ¼ work function of the metal, energy needed to remove an electron (with no

energy left over), me ¼ mass of an electron, v ¼ velocity of electron ejected by the

photon, 1=2me v
2 ¼ kinetic energy of the free electron

Rearranging Eq. 4.5:

1=2mev
2 ¼ hv�W (4.6)

Thus a plot of the kinetic energies of the electrons 1=2mev
2ð Þ versus the frequency

n of the light should be a straight line of positive slope (h; this is one way to

find Planck’s constant) intersecting the n axis at a positive value (n ¼ W/h), as
experiment indeed showed (Fig. 4.3).

Planck’s explanation of the blackbody radiation curves (1900 [4]) and Einstein’s

explanation of the facts of the photoelectric effect (1905 [7]) indicated that the

flow of energy in physical processes did not take place continuously, as had

been believed, but rather jerkily, in discrete jumps, quantum by quantum. The

contributions of Planck and Einstein were the signal developments marking the

birth of quantum theory and the transition from classical to modern physics.

4.2.2 Radioactivity

Brief mention of radioactivity is in order because it, along with quantum mechanics

and relativity, transformed classical into modern physics. Radioactivity was

discovered by Becquerel in 1896. However, an understanding of how materials

like uranium and radium could emit, over the years, a million times more energy

than would be permitted by chemical reactions, had to await Einstein’s special

theory of relativity (Section 4.2.3), which showed that a tiny, unnoticeable decrease

in mass represented the release of a large amount of energy.

4.2.3 Relativity

Relativity is relevant to computational chemistry because it must often be explicitly

taken into account in accurate calculations involving atoms heavier than about
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chlorine or bromine (see below) and because, strictly speaking, the Schr€odinger
equation, the fundamental equation of quantum chemistry, is an approximation to a

relativistic equation, the Dirac6 equation.

Relativity was discovered in by Einstein in 1905, when he formulated the special

theory of relativity, which deals with nonaccelerated motion in the absence of

significant gravitational fields (general relativity, published by Einstein in 1915,

is concerned with accelerated motion and gravitation). Special relativity predicted a

relationship between mass and energy, the famous E ¼ mc2 equation and, of more

direct relevance to computational chemistry, showed that the mass of a particle

increases with its velocity, dramatically so near the velocity of light. In heavier

elements the inner electrons are moving at a significant fraction of the speed of

light, and the relativistic increase in their masses affects the chemistry of these

elements (actually, some physicists do not like to think in terms of rest mass

and relativistic mass, but that is a controversy that need not concern us here).

In computational chemistry relativistic effects on electrons are usually accounted

for by what are called effective core potentials or pseudopotentials (Chapter 5,

Section 5.3.3.7, and Chapter 8, Section 8.3).

4.2.4 The Nuclear Atom

The “nuclear atom” is the picture of the atom as a positive nucleus surrounded by

negative electrons. Although the idea of atoms in speculative philosophy goes back

to at least the time of Democritus,7 the atom as the basis of a scientifically credible

theory emerges only in nineteenth century, with the rationalization by Dalton8 in

1808 of the law of definite proportions. Nevertheless, atoms were regarded by many

scientists of the positivist school of Ernst Mach as being at best a convenient

hypothesis, despite the success of the atomistic Maxwell–Boltzmann9 kinetic

6Paul Adrien Maurice Dirac, born Bristol, England, 1902. Ph.D. Cambridge, 1926. Professor,

Cambridge, Dublin Institute for Advanced Studies, University of Miami, Florida State University.

Nobel prize in physics 1933 (shared with Schr€odinger). Known for his mathematical elegance, for

connecting relativity with quantum theory, and for predicting the existence of the positron. Died

Tallahassee, Florida, 1984.
7Democritus, Greek philosopher, born Abdera, Thrace (the eastern Balkans) ca. 470 BC. Died ca.

370 BC.
8John Dalton, born Eaglesfield, England, 1766. Considered the founder of quantitative chemical

atomic theory: law of definite proportions, pioneered determination of atomic weights. Cofounder

of British Association for the Advancement of Science. Died Manchester, England, 1844.
9Ludwig Boltzmann, born Vienna 1844. Ph.D. Vienna. Professor Graz, Vienna. Developed the

kinetic theory of gases independently of Maxwell (viz., Boltzmann constant’s, k). Firm supporter

of the atomic theory in opposition to Mach and Ostwald, helped develop concept of entropy (S).
Died Duino, Austria (now in Italy), 1906 (suicide incurred by depression). Inscribed on

gravestone: S ¼ k log W.
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theory of gases and it was not until 1908, when Perrin’s10 experiments confirmed

Einstein’s atomistic analysis of Brownian motion that the reality of atoms was at

last accepted by such eminent holdouts as Boltzmann’s opponent Ostwald.11

The atom has an internal structure; it is thus not “atomic” in the Greek sense and

is more than the mere restless particle of kinetic theories of gases or of Brownian

motion. This was shown by two lines of work: the study of the passage of electricity

through gases and the behavior of certain solutions. The study of the passage of

electricity through gases at low pressure was a very active field of research in the

nineteenth century and only a few of the pioneers in what we can now see as the

incipient field of subatomic physics will be mentioned here. The observation by

Pl€ucker in 1858 of a fluorescent glow near the cathode on the glass walls of a

current-carrying evacuated tube was one of the first inklings that particles might be

elicited from atoms. That these were indeed particles rather than electromagnetic

rays was indicated by Crookes in the 1870s, by showing that they could be deflected

by a magnet. Goldstein showed in 1886 the presence of particles of opposite charge

to those emitted from the cathode, and christened the latter “cathode rays”. That the

cathode rays were negative particles was proved by Perrin in 1895, when he showed

that they imparted a charge to an object on which they fell. Further evidence of the

particle nature of cathode rays came at around the same time from Thomson,12 who

showed (1897) that they are deflected in the expected direction by an electric field.

Thomson also measured their mass-to-charge ratio and from the smallest possible

value of charge in electrochemistry calculated the mass of these particles to be

about 1/1,837 of the mass of a hydrogen atom. Lorentz later applied the name

“electron” to the particle, adopting a term that had been appropriated from the

Greek by Stoney for a unit of electric current (elektron: amber, which acquires a

charge when rubbed). Thomson has been called the discoverer of the electron.

It was perhaps Thomson who first suggested a specific structure for the atom in

terms of subatomic particles. His “plum pudding” model (ca. 1900), which placed

electrons in a sea of positive charge, like raisins in a pudding., accorded with the

then-known facts in evidently permitting electrons to be removed under the influ-

ence of an electric potential. The modern picture of the atom as a positive nucleus

with extranuclear electrons was proposed by Rutherford13 in 1911. It arose from

10Jean Perrin, born Lille, France, 1870. Ph.D. École Normal Supérieure, Paris. Professor Univer-

sity of Paris. Nobel Prize in physics 1923. Died New York, 1942.
11Wilhelm Friedrich Ostwald, German chemist, born Riga, Latvia, 1853. Ph.D. Dorpat, Estonia.

Professor Riga, Leipzig. A founder of physical chemistry, opponent of the atomic theory till

convinced by the work of Einstein and Perrin. Nobel Prize in chemistry 1909. Died near Leipzig,

1932.
12Sir Joseph John Thomson, born near Manchester, 1856. Professor, Cambridge. Nobel Prize in

physics 1906. Knighted 1908. Died Cambridge, 1940.
13Ernest Rutherford (Baron Rutherford), born near Nelson New Zealand, 1871. Studied at Cam-

bridge under J. J. Thomson. Professor McGill University (Montreal), Manchester, and Cambridge.

Nobel prize in chemistry 1908 for work on radioactivity, alpha particles, and atomic structure.

Knighted 1914. Died London, 1937.
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experiments in which alpha particles from a radioactive sample were shot through

very thin gold foil. Most of the time the particles passed through, but occasionally

one bounced back, indicating that the foil was mostly empty space, but that present

were particles which were small and, compared to the mass of the electron (which

was much too light to stop an alpha particle), massive. From these experiments

emerged our picture of the atom as consisting of a small, relatively massive positive

nucleus surrounded by electrons: the nuclear atom. Rutherford gave the name

proton (from Greek protoz, primary or first) to the least massive of these nuclei

(the hydrogen nucleus).

There is another thread to the development of the concept of the atom as a

composite of subatomic particles. The enhanced effect of electrolytes (solutes that

provide electrically conducting solutions) on boiling and freezing points and on the

osmotic pressure of solutions led Arrhenius14 in 1884 to propose that these sub-

stances exist in water as atoms or groups of atoms with an electric charge. Thus

sodium chloride in solution would not, as was generally held, exist as NaCl

molecules but rather as a positive sodium “atom” and a negative chlorine “atom”;

the presence of two particles instead of the expected one accounted for the

enhanced effects. The ability of atoms to lose or gain charge hinted at the existence

of some kind of subatomic structure, and although the theory was not warmly

received (Arrhenius was almost failed on his Ph.D. exam), the confirmation by

Thomson (ca. 1900) that the atom contains electrons made acceptable the concept

of charged atoms with chemical properties quite different from those of the neutral

ones. Arrhenius was awarded the Nobel Prize for his (albeit significantly modified)

Ph.D. work.

4.2.5 The Bohr Atom

The nuclear atom as formulated by Rutherford faced a serious problem: the

electrons orbit the nucleus like planets orbiting the Sun. An object engaged in

circular (or elliptical) motion experiences an acceleration because its direction is

changing and thus its velocity, which unlike speed is a vector, is also changing. An

electron in circular motion about a nucleus would experience an acceleration

toward the nucleus, and since from Maxwell’s equations of electromagnetism an

accelerated electric charge radiates away energy, the electron should lose energy by

spiralling in toward the nucleus, ending up there, with no kinetic and potential

energy; calculations show this should happen in a fraction of a second [8].

14Svante Arrhenius, born near Uppsala, Sweden, 1859. Ph.D. University of Stockholm. Nobel

Prize in chemistry 1903. Professor Stockholm. Died Stockholm 1927.
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A way out of this dilemma was suggested by Bohr15 in 1913 [9, 10]. He retained

the classical picture of electrons orbiting the nucleus in accord with Newton’s laws,

but subject to the constraint that the angular momentum of an electron must be an

integral multiple of h/2p:

mvr ¼ n h=2pð Þ; n ¼ 1; 2; 3; (4.7)

m¼ electron mass

v ¼ electron velocity

r ¼ radius of electron orbit

h ¼ Planck’s constant

Equation 4.7 is the Bohr postulate, that electrons can defy Maxwell’s laws

provided they occupy an orbit whose angular momentum (corresponding to an

orbit of appropriate radius) satisfies Eq. 4.7. The Bohr postulate is not based on a

whim, as most textbooks imply, but rather follows from: (1) the Plank equation

Eq. 4.3, DE ¼ hn and (2) starting with an orbit of large radius such that the motion

is essentially linear and classical physics applies, as no acceleration is involved,

then extrapolating to small-radius orbits. The fading of quantum-mechanical

equations into their classical analogues as macroscopic conditions are approached

is called the correspondence principle [11].

Using the postulate of Eq. 4.7 and classical physics, Bohr derived an equation

for the energy of an orbiting electron in a one-electron atom (a hydrogenlike atom,

H or Heþ, etc.) in terms of the charge on the nucleus and some constants of nature.

Starting with the total energy of the electron as the sum of its kinetic and potential

energies:

Et ¼ 1

2
mv2 � Ze2

4p e
0
r

(4.8)

Z¼ nuclear charge (1 for H, 2 for He, etc.), e¼ electron charge, e0 ¼ permitivity of

the vacuum.

Using force ¼ mass � acceleration:

Ze2

4 p e0 r2
¼ mv2

r
(4.9)

i.e.

Ze2

4 p e0 r
¼ mv2 (4.10)

15Niels Bohr, born Copenhagen, 1885. Ph.D. University of Copenhagen. Professor, University of

Copenhagen. Nobel Prize in physics 1922. Founder of the “Copenhagen school” interpretation of

quantum theory. Died Copenhagen, 1962.
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So from Eq. 4.8

Et ¼ 1

2
mv2 � mv2 ¼ � 1

2
mv2 (4.11)

From Eqs. 4.7 and 4.10:

v ¼ Ze2

2 e0n h
(4.12)

So from Eqs. 4.11 and 4.12:

Et ¼ � Z2 e 4m

8 e02n 2h2
(4.13)

Equation 4.13 expresses the total (kinetic plus potential) energy of the electron

of a hydrogenlike atom in terms of four fundamental quantities of our universe:

electron charge, electron mass, the permittivity of empty space, and Planck’s

constant. From Eq. 4.13 the energy change involved in emission or absorption of

light by a hydrogenlike atom is simply

DE ¼ Et2 � Et1 ¼ mZ 2e4

8 e02h2
1

n12
� 1

n22

� �
(4.14)

where DE is the energy of a state characterized by quantum number n2, minus the

energy of a state characterized by quantum number n1. Note that from Eq. 4.13 the

total energy increases (becomes less negative) as n increases (¼ 1, 2, 3, . . .), so
higher-energy states are associated with higher quantum numbers n and DE > 0

corresponds to absorption of energy and DE < 0 to emission of energy. The Planck

relation between the amount of radiant energy absorbed or emitted and its

frequency (DE ¼ hn, Eq. 4.3), Eq. 4.14 enables one to calculate the frequencies

of spectroscopic absorption and emission lines for hydrogenlike atoms. The agree-

ment with experiment is excellent, and the same is true too for the calculated

ionization energies of hydrogenlike atoms (DE for n2 ¼ 1 in Eq. 4.14).

4.2.6 The Wave Mechanical Atom and the Schr€odinger Equation

The Bohr approach works well for hydrogenlike atoms, atoms with one electron:

hydrogen, singly-ionized helium, doubly-ionized lithium, etc. However, it showed

96 4 Introduction to Quantum Mechanics in Computational Chemistry



many deficiencies for other atoms, which is to say, almost all atoms of interest other

than hydrogen. The problems with the Bohr atom for these cases were:

1. There were lines in the spectra corresponding to transitions other than simply

between two n values (cf. Eq. 4.14). This was rationalized by Sommerfeld in

1915, by the hypothesis of elliptical rather than circular orbits, which essentially

introduced a new quantum number k, a measure of the eccentricity of the

elliptical orbit. Electrons could have the same n but different k’s, increasing
the variety of possible electronic transitions; k is related to what we now call the

azimuthal quantum number, l; l ¼ k � 1).

2. There were lines in the spectra of the alkali metals that were not accounted for by

the quantum numbers n and k. In 1925 Goudsmit and Uhlenbeck showed that

these could be explained by assuming that the electron spins on an axis; the

magnetic field generated by this spin around an axis could reinforce or oppose

the field generated by the orbital motion of the electron around the nucleus. Thus

for each n and k there are two closely-spaced “magnetic levels”, making possible

new, closely-spaced spectral lines. The spin quantum number,ms¼þ1/2 or�1/2,

was introduced to account for spin.

3. There were new lines in atomic spectra in the presence of an external magnetic

field (not to be confused with the fields generated by the electron itself). This

Zeeman effect (1896) was accounted for by the hypothesis that the electron

orbital plane can take up only a limited number of orientations, each with a

different energy, with respect to the external field. Each orientation was asso-

ciated with a magnetic quantum numbermm (often designatedm)¼�l,�(l� 1),...,

(l� 1), l). Thus in an external magnetic field the numbers n, k (later l) and ms are

insufficient to describe the energy of an electron and new transitions, invoking

mm, are possible.

The only quantum number that flows naturally from the Bohr approach is the

principal quantum number, n; the azimuthal quantum number l (a modified k), the
spin quantum number ms and the magnetic quantum number mm are all ad hoc,

improvised to meet an experimental reality. Why should electrons move in ellipti-

cal orbits that depend on the principal quantum number n? Why should electrons

spin, with only two values for this spin?Why should the orbital plane of the electron

take up with respect to an external magnetic field only certain orientations, which

depend on the azimuthal quantum number? All four quantum numbers should

follow naturally from a satisfying theory of the behaviour of electrons in atoms.

The limitations of the Bohr theory arise because it does not reflect a fundamental

facet of nature, namely the fact that particles possess wave properties. These limi-

tations were transcended by the wave mechanics of Schr€odinger,16 when he devised
his famous equation in 1926 [12, 13]. Actually, the year before the Schr€odinger

16Erwin Schr€odinger, born Vienna, 1887. Ph.D. University of Vienna. Professor Stuttgart, Berlin,

Graz (Austria), School for Advanced Studies Dublin, Vienna. Nobel Prize in physics 1933 (shared

with Dirac). Died Vienna, 1961.
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equation was published, Heisenberg17 published his matrix mechanics approach to

calculating atomic (and in principle molecular) properties. The matrix approach is

at bottom equivalent to Schr€odinger’s use of differential equations, but the latter has
appealed to chemists more because, like physicists of the time, they were unfamiliar

with matrices (Section 4.3.3), and because the wave approach lends itself to a

physical picture of atoms and molecules while manipulating matrices perhaps tends

to resemble numerology. Matrix mechanics and wave mechanics are usually said to

mark the birth of quantummechanics (1925, 1926), as distinct from quantum theory

(1900). We can think of quantum mechanics as the rules and equations used to

calculate the properties of molecules, atoms, and subatomic particles.

Wave mechanics grew from the work of de Broglie,18 who in 1923 was led to

this “wave-particle duality” by his ability to deduce the Wien blackbody equation

(Section 4.2.1) by treating light as a collection of particles (“light quanta”) analo-

gous to an ideal gas [14]. This suggested to de Broglie that light (traditionally

considered a wave motion) and the atoms of an ideal gas were actually not

fundamentally different. He derived a relationship between the wavelength of

a particle and its momentum, by using the time-dilation principle of special

relativity, and also from an analogy between optics and mechanics. The reasoning

below, while perhaps less profound than de Broglie’s, may be more accessible.

From the special theory of relativity, the relation between the energy of a photon

and its mass is

Ep ¼ mc2 �(4:15)

where c is the velocity of light. From the Planck equation 4.3 for the emission and

absorption of radiation, the energy Ep of a photon may be equated with the energy

change DE of an oscillator, and we may write

Ep ¼ hn �(4:16)

From Eqs. 4.15 and 4.16

mc2 ¼ hn (4.17)

Since n ¼ c/l, Eq. 4.17 can be written

mc ¼ h=l (4.18)

17 Werner Heisenberg, born W€urzburg, Germany, 1901. Ph.D. Munich, 1923. Professor, Leipzig

University, Max Planck Institute. Nobel Prize 1932 for his famous uncertainty principle of 1927.

Director of the German atomic bomb/reactor project 1939–1945. Held various scientific adminis-

trative positions in postwar (Western) Germany 1945–1970. Died Munich 1976.
18Louis de Broglie, born Dieppe, 1892. Ph.D. University of Paris. Professor Sorbonne, Institut

Henri Poincaré (Paris). Nobel Prize in physics 1929. Died Paris, 1987.
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and because the product of mass and velocity is momentum, Eq. 4.18 can be written

pp ¼ h=l (4.19)

relating the momentum of a photon (in its particle aspect) to its wavelength (in its

wave aspect). If Eq. 4.19 can be generalized to any particle, then we have

p ¼ h=l �(4.20)

relating the momentum of a particle to its wavelength; this is the de Broglie

equation.

If a particle has wave properties it should be describable by somehow combining

the de Broglie equation and a classical wave equation. A highly developed nine-

teenth century mathematical theory of waves was at Schr€odinger’s disposal, and the
union of a classical wave equation with Eq. 4.20 was one of the ways that he derived

his wave equation. Actually, it is said that the Schr€odinger equation cannot actually
be derived, but is rather a postulate of quantum mechanics that can only be justified

by the fact that it works [15]; this fine philosophical point will not be pursued here.

Of his three approaches [15], Schr€odinger’s simplest is outlined here. A standing

wave (one with fixed ends like a vibrating string or a sound wave in a flute) whose

amplitude varies with time and with the distance from the ends is described by

d2f ðxÞ
dx2

¼ � 4p2

l2
f ðxÞ (4.21)

f(x) ¼ amplitude of the wave, x ¼ distance from some chosen origin, l ¼ wave-

length

From Eq. 4.20:

l ¼ h=mv (4.22)

l ¼ wavelength of particle of mass m and velocity v
Identifying the wave with a particle and substituting for l from Eq. 4.22 into

Eq. 4.21:

d2f ðxÞ
dx2

¼ � 4p2m2v2

h2
f ðxÞ (4.23)

Since the total energy of the particle is the sum of its kinetic and potential

energies:

Ekin ¼ E� Epot ¼ E� V (4.24)
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E ¼ total energy of the particle and V ¼ potential energy (the usual symbol), i.e.

1

2
mv2 ¼ E� V (4.25)

Substituting Eq. 4.25 for mv2 into Eq. 4.23:

d2f ðxÞ
dx2

¼ � 8p2m
h2

E� Vð Þf ðxÞ (4.26)

f(x) ¼ amplitude of the particle/wave at a distance x from some chosen origin,

m ¼ mass of the particle, E ¼ total energy (kinetic þ potential) of the particle,

V ¼ potential energy of the particle (possibly a function of x).
This is the Schr€odinger equation for one-dimensional motion along the spatial

coordinate x. It is usually written

d2c
dx2

þ 8p2m
h2

E� Vð Þc ¼ 0 (4.27)

c ¼ amplitude of the particle/wave at a distance x from some chosen origin

The one-dimensional Schr€odinger equation is easily elevated to three-dimen-

sional status by replacing the one-dimensional operator d2/dx2 by its three-dimen-

sional analogue

@2

@x2
þ @2

@y2
þ @2

@z2
¼ r2 (4.28)

r2 is the Laplacian operator “del squared.” Replacing d2/dx2 by r2, Eq. 4.27

becomes

r2cþ 8p2m
h2

E� Vð Þc ¼ 0 �(4:29)

This is a common way of writing the Schr€odinger equation. It relates the

amplitude c of the particle/wave to the mass m of the particle, its total energy E
and its potential energy V. The meaning of c itself is, arguably, unknown [2] but the

currently popular interpretation of c2, due to Born (Section 2.3) and Pauli19 is that it

is proportional to the probability of finding the particle near a point P(x, y, z) (recall
that c is a function of x, y, z):

Prob ðdx; dy; dzÞ ¼ c2 dx dy dz �(4:30)

Prob ðVÞ ¼
Z
V

c2 dx dy dz (4.31)

19Wolfgang Pauli, born Vienna, 1900. Ph.D. Munich 1921. Professor Hamburg, Zurich, Princeton,

Zurich, . Best known for the Pauli exclusion principle. Nobel Prize 1945.Died Zurich 1958.
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The probability of finding the particle in an infinitesimal cube of sides dx, dy, dz
is c2dxdydz, and the probability of finding the particle somewhere in a volume V
is the integral over that volume of c2 with respect to dx, dy, dz (a triple integral);

c2 is thus a probability density function, with units of probability per unit volume.

Born’s interpretation was in terms of the probability of a particular state, Pauli’s the

chemist’s usual view, that of a particular location.

The Schr€odinger equation overcame the limitations of the Bohr approach (see

the beginning of Section 4.2.6): the quantum numbers follow naturally from it

(actually the spin quantum number ms requires a relativistic form of the Schr€odinger
equation, the Dirac equation, and electron “spin” is apparently not really due to the

particle spinning like a top). The Schr€odinger equation can be solved in an exact

analytical way only for one-electron systems like the hydrogen atom, the helium

monocation and the hydrogen molecule ion, but the mathematical approach is

complicated and of no great relevance to the application of this equation to the

study of serious molecules. However a brief account of the results for hydrogenlike

atoms is in order.

The standard approach to solving the Schr€odinger equation for hydrogenlike
atoms involves transforming it from Cartesian (x, y, z) to polar coordinates (r, y, ’),
since these accord more naturally with the spherical symmetry of the system. This

makes it possible to separate the equation into three simpler equations, f(r) ¼ 0,

f(y) ¼ 0, and f(’) ¼ 0. Solution of the f(r) equation gives rise to the n quantum

number, solution of the f(y) equation to the l quantum number, and solution of the

f(’) equation to the mm (often simply called m) quantum number. For each specific

n¼ n0, l¼ l0 and mm¼ mm
0 there is a mathematical function obtained by combining

the appropriate f(r), f(y) and f(’):

cðr; y; ’; n0; I0; m0
mÞ¼ f ðrÞf ðyÞf ð’Þ (4.32)

The function c(r, y, ’) (clearly c could also be expressed in Cartesians),

depends functionally on r, y, ’ and parametrically on n, l and mm: for each

particular set (n0, l0, mm
0) of these numbers there is a particular function with the

spatial coordinates variables r, y, ’ (or x, y, z). A function like ksinx is a function of
x and depends only parametrically on k. This c function is an orbital (“quasi-orbit”;
the term was invented by Mulliken, Section 4.3.4), and you are doubtless familiar

with plots of its variation with the spatial coordinates. Plots of the variation of

c2 with spatial coordinates indicate variation of the electron density (recall the

Born interpretation of the wavefunction) in space due to an electron with quantum

numbers n0, l0 and mm
0. We can think of an orbital as a region of space occupied by

an electron with a particular set of quantum numbers, or as a mathematical function

c describing the energy and the shape of the spatial domain of an electron. For an

atom or molecule with more than one electron, the assignment of electrons to

orbitals is an (albeit very useful) approximation, since orbitals follow from solution

of the Schr€odinger equation for a hydrogen atom.

The Schr€odinger equation that we have been talking about is actually the time-
independent (and nonrelativistic) Schr€odinger equation: the variables in the equa-

tion are spatial coordinates, or spatial and spin coordinates (Section 5.2.3.1) when
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electron spin is taken into account. The time-independent equation is the one most

widely-used in computational chemistry, but the more general time-dependent
Schr€odinger equation, which we shall not examine, is important in certain applica-

tions, like some treatments of the interaction of a molecule with light, since light

(radiation) is composed of time-varying electric and magnetic fields. The time-

dependent density functional theory method of calculating UV spectra (Chapter 7)

is based on the time-dependent Schr€odinger equation.

4.3 The Application of the Schr€odinger Equation
to Chemistry by H€uckel

4.3.1 Introduction

The quantum mechanical methods described in this book are all molecular orbital

(MO) methods, or oriented toward the molecular orbital approach: ab initio and

semiempirical methods use the MO method, and density functional methods are

oriented toward the MO approach. There is another approach to applying the

Schr€odinger equation to chemistry, namely the valence bond method. Basically

the MO method allows atomic orbitals to interact to create the molecular orbitals of

a molecule, and does not focus on individual bonds as shown in conventional

structural formulas. The VB method, on the other hand, takes the molecule,

mathematically, as a sum (linear combination) of structures each of which corre-

sponds to a structural formula with a certain pairing of electrons [16]. The MO

method explains in a relatively simple way phenomena that can be understood only

with difficulty using the VB method, like the triplet nature of dioxygen or the fact

that benzene is aromatic but cyclobutadiene is not [17]. With the application of

computers to quantum chemistry the MO method almost eclipsed the VB approach,

but the latter has in recent years made a limited comeback [18].

The first application of quantitative quantum theory to chemical species signifi-

cantly more complex than the hydrogen atom was the work of H€uckel20 on unsatu-

rated organic compounds, in 1930–1937 [19]. This approach, in its simplest form,

focuses on the p electrons of double bonds, aromatic rings and heteroatoms.

Although H€uckel did not initially explicitly consider orbital hybridization (the

concept is usually credited to Pauling,21 1931 [20]), the method as it became widely

applied [21] confines itself to planar arrays of sp2-hybridized atoms, usually carbon

atoms, and evaluates the consequences of the interactions among the p electrons

(Fig. 4.4). Actually, the simple H€uckel method has been occasionally applied to

20Erich H€uckel, born Berlin, 1896. Ph.D. G€ottingen. Professor, Marburg. Died Marburg, 1980.
21Linus Pauling, born Portland, Oregon, 1901. Ph.D. Caltech. Professor, Caltech. Known for work

in quantum chemistry and biochemistry, campaign for nuclear disarmament, and controversial

views on vitamin C. Nobel Prize for chemistry 1954, for peace 1963. Died near Big Sur,

California, 1994.
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nonplanar systems [22]. Because of the importance of the concept of hybridization

in the simple H€uckel method a brief discussion of this concept is warranted.

4.3.2 Hybridization

Hybridization is the mixing of orbitals on an atom to produce new, “hybridized” (in

the spirit of the biological use of the term), atomic orbitals. This is done mathemat-

ically but can be appreciated pictorially (Fig. 4.5). One way to justify the procedure

theoretically is to recognize that atomic orbitals are vectors in the generalized
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Fig. 4.5 Hybridization is forming new atomic orbitals, on an atom, by mathematically mixing

(combining) “original” atomic orbitals on that atom. Mixing two orbitals gives two hybrid orbitals,

and in general n AOs give n hybrid AOs. Orbitals are mathematical functions and so can be added

and subtracted as shown in the figure
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Fig. 4.4 The simple H€uckel
method is used mainly for
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mathematical sense of being elements of a vector space [23] (if not in the restricted

sense of the physicist as physical entities with magnitude and direction); it is

therefore permissible to take linear combinations of these vectors to produce new

members of the vector space. A good, brief introduction to hybridization is given by

Streitwieser [24].

In a familiar example, a 2s orbital can be mixed with three 2p orbitals to give

four hybrid orbitals; this can be done in an infinite number of ways, such as (from

now on f will be used for atomic orbitals and c for molecular orbitals):

f1 ¼ 1
2
ðsþ px þ py þ pzÞ

f2 ¼ 1
2
ðsþ px þ py � pzÞ

f3 ¼ 1
2
ðsþ px � py � pzÞ

f4 ¼ 1
2
ðsþ px � py þ pzÞ

(4.33)

or

fa ¼ 1
2
ðsþ px þ 21=2pzÞ

fb ¼ 1
2
ðsþ px � 21=2pzÞ

fc ¼ 1
2
ðs� px þ 21=2pyÞ

fd ¼ 1
2
ðs� px � 21=2pyÞ

(4.34)

Both the set (4.33) and the set (4.34) consist of four sp3 orbitals, since the

electron density contributions from the component s and p orbitals to the hybrid

is, in each case (considering the squares of the coefficients; recall the Born

interpretation of the square of a wavefunction, Section 4.2.6) in the ratio 1:3,

i.e. 1/4 : 3(1/4) and 1/4 : (1/4 + 2/4), and in each set we have used a total of one

s orbital, and one each of the px, py and pz orbitals. The total electron density from

each component orbital is unity, e.g. for s, 4(1/4).
Hybridization is purely a mathematical procedure, originally invented to

reconcile the quantum mechanical picture of electron density in s, p, etc. orbitals
with traditional views of directed valence. For example, it is sometimes said that

in the absence of hybridization combining a carbon atom with four unpaired

electrons with four hydrogen atoms would give a methane molecule with three

equivalent, mutually perpendicular bonds and a fourth, different, bond (Fig. 4.6).

Actually, this is incorrect: the 2s and three 2p orbitals of an unhybridized carbon

along with the four 1s orbitals of four hydrogen atoms provide, without invoking

hybridization, a tetrahedrally symmetrical valence electron distribution that leads

to tetrahedral methane with four equivalent bonds (Fig. 4.6). In fact, it has been

said “It is sometimes convenient to combine aos [atomic orbitals] to form hybrid

orbitals that have well defined directional character and then to form mos

[molecular orbitals] by combining these hybrid orbitals. This recombination of

aos to form hybrids is never necessary ...” [25]. Interestingly, the MOs accom-

modating the four highest-energy electron pairs of methane (the eight valence
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electrons) are not equivalent in energy (not degenerate). This is an experimental

fact that can be shown by photoelectron spectroscopy [26]. Instead of four orbitals of

the same energy we have three degenerate orbitals and one lower in energy (and of

course the almost undisturbed 1s core orbital of carbon). This surprising arrange-

ment is a consequence of the fact that symmetry requires one combination (i.e. one

MO) of carbon and hydrogen orbitals (essentially a weighted sum of the C2s and the
four H1s orbitals) to be unique and the other three AO combinations (the other three

MOs) to be degenerate (they involve the C2p and the H1s orbitals) [26, 27]. It must

be emphasized that although the methane valence orbitals are energetically differ-
ent, the electron and nuclear distribution is tetrahedrally symmetrical – the molecule

indeed has Td (Section 2.6) symmetry. The four MOs formed directly from AOs

are the canonicalMOs. They are delocalized (spread out over the molecule), and do

not correspond to the familiar four bonding Csp3/H1s MOs, each of which is

localized between the carbon nucleus and a hydrogen nucleus. However, the

canonical MOs can be mathematically manipulated to give the familiar localized

MOs (Section 5.2.3.1).

x

z

y

2px

2py

2pz

2s

C

H

H

H
H

+ 4 H atoms
(no hybridization)

C

H

H
H

H

One C-H bond somehow skewed,
and different in length and strength
from the others, which are mutually

perpendicular, like the p orbitals

WRONG RIGHT

The four C-H bonds
tetrahedrally oriented

and of equal length and
strength

Fig. 4.6 Hybridization is not needed to explain bonding, e.g. the tetrahedral geometry of methane
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Another example illustrates a situation somewhat similar to that we saw with

methane, and what was until some years ago a serious controversy: the best way to

represent the carbon/carbon double bond [28]. The currently popular way to

conceptualize the C¼C bond has it resulting from the union of two sp2-hybridized
carbon atoms (Fig. 4.7); the sp2 orbitals on each carbon overlap end-on forming a s
bond and the p orbitals on each carbon overlap sideways forming a p bond. Note

that the usual depiction of a carbon p orbital is unrealistically spindle-shaped,

necessitating depicting overlap with connecting lines as in Fig. 4.7. Figure 4.8

shows a picture in better accord with the calculated electron density in the p orbital,
i.e. corresponding to the square of the wavefunction. The two leftover sp2 orbitals
can be used to bond to, say, hydrogen atoms, as shown. From this viewpoint the

double bond is thus composed of a s bond and a p bond. However, this is not the

only way to represent the C¼C bond. One can, for example, mathematically

construct a carbon atom with two sp2 orbitals and two sp5 orbitals; the union of

two such carbons gives a double bond formed from two sp5/sp5 bonds (Fig. 4.9),
rather than from a s bond and a p bond. Which is right? They are only different

ways of viewing the same thing: the electron density in the C¼C bond decreases

smoothly from the central C/C axis in both models (Fig. 4.10), and the experimental
13C/H NMR coupling constant for the C-H bond would, in both models, be

predicted to correspond to about 33% s character in the orbital used by carbon to

bond to hydrogen [29]. The ability of the hybridization concept to correlate and

C C
H

H

C

H

H

C

Csp2 / H1s overlap

Csp2 / H1s overlap

H

H

C

H

H

C

and

H

H

H

H

Csp2 / Csp2 overlap
(the sigma bond)

Cp / Cp overlap, equal above
and below the C2H4 plane
(the pi bond)

i.e.

Fig. 4.7 The currently popular view of the C/C double bond: an sp2/sp2 s bond and a p/p p bond.

Compare this with Figs. 4.8 and 4.9
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rationalize acidities of hydrocarbons in terms of the s character of the carbon orbital
in a C–H bond [29] is an example of the usefulness of this idea. Most of the systems

studied by the simple H€uckel method are essentially flat, as expected for sp2 arrays,
and many properties of these molecules can be at least qualitatively understood by

considering the in-plane s electrons of the overlapping sp2 orbitals to simply

represent a framework that holds the perpendicular p orbitals, in which we are

interested, in an orientation allowing neighboring p orbitals to overlap.

and C

H

H

Csp 2 / H1s overlap

Csp 2 / H1s overlap

sp 5

sp 5

C

H

H

C

H

H

C

H

H

one sp 5 / sp 5 bond

another sp 5 / sp 5 bond
two banana bonds

1

6 6

5
pf (sp 5) = 

f (sp 2) = 

s +

1

3

2

3
s + p

Fig. 4.9 The C/C double bond can be built from two sp5 orbitals. The result is the same as using

a s bond and a p bond (Fig. 4.7): see Fig. 4.10

x

z

+

–

C CC C

CC than like this:

The C 2p electron
density (the square of
the wavefunction) looks
more like this: 

The wavefunction
itself looks like

Hence p / p overlap looks like this: rather than like this:

Fig. 4.8 The electron density is represented by the square of the mathematical function we call

the orbital. A carbon 2p orbital is actually more buxom than its conventional representation, and

two 2p orbitals overlap better than the usual picture, e.g. Fig. 4.7, suggests
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Before moving on to H€uckel theory we take a look at matrices, since matrix

algebra is the simplest and most elegant way to handle the linear equations that arise

when MO theory is applied to chemistry.

4.3.3 Matrices and Determinants

Matrix algebra was invented by Cayley22 as a systematic way of dealing with

systems of linear equations. The single equation in one unknown

ax ¼ b

has the solution x ¼ a�1b

C CC C +

C C

C C C C+

C C

pi bond

sigma bond
sp 5 / sp 5 bond

sp 5 / sp 5 bond

Approximately

But more like

Fig. 4.10 The model of a C/C double bond as a s/p bond is at bottom really equivalent to the

sp5/sp5 þ sp5/sp5 model: both result in the same electron distribution, which is the physically

significant thing. There are no gaps in electron density between the carbons: as the contribution to

density from the s bond (or one of the sp5/sp5 bonds) falls off, the contribution from the p bond (or

the other sp5/sp5 bond) increases. The electron density falls off smoothly with distance from the

C/C axis. For some purposes one of the models, s/p or bent (banana) bonds, may be more useful

22Arthur Cayley, lawyer and mathematician, born Richmond, England, 1821. Graduated Cam-

bridge. Professor, Cambridge. After Euler and Gauss, history’s most prolific author of mathemati-

cal papers. Died Cambridge, 1895.
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Consider next the system of two equations in two unknowns

1.
a11xþ a12 y ¼ c1

2.
a21xþ a22y ¼ c2

The subscripts of the unknowns coefficients a indicate row 1, column 1, row 1,

column 2, etc. We’ll see that using matrices the solutions (the values of x and y) can
be expressed in a way analogous to that for the equation ax ¼ b.

A matrix is a rectangular array of “elements” (numbers, derivatives, etc.) that

obeys certain rules of addition, subtraction, and multiplication. Curved or angular

brackets are used to denote a matrix:

1 2

7 2

� � 5

2

0

0
B@

1
CA 0 0 7 4ð Þ

2� 2matrix 3� 1matrix 1� 4matrix

or:

1 2

7 2

� � 5

2

0

2
4
3
5 0 0 7 4½ �

Do not confuse matrices with determinants (below), which are written with

straight lines, e.g.

1 2

7 3

����
����

is a determinant, not a matrix. This determinant represents the number 1 � 3 � 2�
7¼ 3� 14¼�11. In contrast to a determinant, a matrix is not a number, but rather

an operator (although some would consider matrices to be generalizations of

numbers, with e.g. the 1 � 1 matrix (3) ¼ 3). An operator acts on a function (or a

vector) to give a new function, e.g. d/dx acts on (differentiates) f(x) to give f 0(x):

d

dx
f ðxÞ ¼ df ðxÞ

dx
¼ f 0ðxÞ

and the square root operator acts on y2 to give y. When we have done matrix

multiplication you will see that a matrix can act on a vector and rotate it through an

angle to give a new vector.

Let’s look at matrix addition, subtraction, multiplication by scalars, and matrix

multiplication (multiplication of a matrix by a matrix).
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4.3.3.1 Addition and Subtraction

Matrices of the same size (2 � 2 and 2� 2, 3� 1 and 3� 1, etc.) can be added just

by adding corresponding elements:

2 1

7 4

� �
þ 1 3

5 6

� �
¼ 2þ 1 1þ 3

7þ 5 4þ 6

� �
¼ 3 4

12 10

� �
7

0

3

0
B@

1
CAþ

4

4

1

0
B@

1
CA ¼

7þ 4

0þ 4

3þ 1

0
B@

1
CA ¼

11

4

4

0
B@

1
CA

Subtraction is similar:

2 1

7 4

� �
� 1 3

5 6

� �
¼ 2� 1 1� 3

7� 5 4� 6

� �
¼ 1 �2

2 �2

� �

4.3.3.2 Multiplication by a Scalar

A scalar is an ordinary number (in contrast to a vector or an operator), e.g. 1, 2,
ffip
2,

1.714, p, etc. To multiply a matrix by a scalar we just multiply every element by the

number:

2
2 1

7 4

� �
¼ 2� 2 2� 1

2� 7 2� 4

� �
¼ 4 2

14 8

� �

4.3.3.3 Matrix Multiplication

We could define matrix multiplication to be analogous to addition: simply

multiplying corresponding elements. After all, in mathematics any rules are

permitted, as long as they do not lead to contradictions. However, as we shall

see in a moment, for matrices to be useful in dealing with simultaneous equations

we must adopt a slightly more complex multiplication rule. The easiest way to

understand matrix multiplication is to first define series multiplication. If series

a ¼ Sa ¼ a1 a2 a3 . . . , and series b ¼ Sb ¼ b1 b2 b3 . . . then we define the series

product as

SaSb ¼ a1b1 þ a2b2 þ a3b3 þ :::
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So for example, if Sa ¼ 5 2 1 and Sb ¼ 3 6 2

then Sa Sb ¼ 5(3) þ 2(6) þ 1(2) ¼ 15 þ 12 þ 2 ¼ 29

Now it’s easy to understand matrix multiplication: ifAB¼C, whereA, B, andC

are matrices, then element i, j of the product matrix C is the series product of row i
of A and column j of B. For example

AB ¼ 1 3

7 2

� �
2 4

5 6

� �
¼ 1ð2Þ þ 3ð5Þ 1ð4Þ þ 3ð6Þ

7ð2Þ þ 2ð5Þ 7ð4Þ þ 2ð6Þ
� �

¼ 17 22

24 40

� �

(With practice, you can multiply simple matrices in your head.) Note that matrix

multiplication is not commutative: AB is not necessarily BA, e.g.

BA ¼ 2 4

5 6

� �
1 3

7 2

� �
¼ 2ð1Þ þ 4ð7Þ 2ð3Þ þ 4ð2Þ

5ð1Þ þ 6ð7Þ 5ð3Þ þ 6ð2Þ
� �

¼ 30 14

47 27

� �

(two matrices are identical if and only if their corresponding elements are the

same). Note that two matrices may be multiplied together only if the number of

columns of the first equals the number of rows of the second. Thus we can multiply

A(2 � 2)B(2 � 2), A(2 � 2)B(2 � 3), A(3 � 1)B(1 � 3), and so on. A useful

mnemonic is (a � b)(b � c) ¼ (a � c), meaning, for example that A(2 � 1) times

B(1 � 2) gives C(2 � 2):

5

2

� �
0 3ð Þ ¼ 5ð0Þ 5ð3Þ

2ð0Þ 2ð3Þ
� �

¼ 0 15

0 6

� �

It is helpful to know beforehand the size i.e. (2 � 2), (3 � 3), whatever, of the

matrix you will get on multiplication.

To get an idea of why matrices are useful in dealing with systems of linear

equations, let’s go back to our system of equations

1.
a11xþ a12y ¼ c1

2.
a21xþ a22y ¼ c2

Provided certain conditions are met this can be solved for x and y, e.g. by solving (1)
for x in terms of y then substituting for x in (2) etc. Now consider the equations from

the matrix viewpoint. Since

AB ¼ a11 a12
a21 a22

� �
x
y

� �
¼ a11x a12y

a21x a22y

� �

clearly AB corresponds to the left hand side of the system, and the system can be

written
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AB ¼ C where C ¼ c1
c2

� �

A is the coefficients matrix, B is the unknowns matrix, and C is the constants

matrix. Now, if we can find a matrix A�1 such that A�1 AB ¼ B (analogous to the

numbers a�1ab ¼ b) then

A�1 AB ¼ A�1C i.e: B ¼ A�1C

Thus the unknowns matrix is simply the inverse of the coefficients matrix times

the constants matrix. Note that we multiplied by A�1 on the left (A�1AB ¼ A�1C),

which is not the same as multiplying on the right, which would give ABA
�1 ¼

CA�1; this is not necessarily the same as B.

To see that a matrix can act as an operator consider the vector from the origin to

the point P(3,4). This can be written as a column matrix, and multiplying it by the

rotation matrix shown transforms it (rotates it) into another matrix:

vector
new, rotated
vector

x

y

x

y
3
4 –4

 3

0
1

multiply on the left
by rotation matrix

0
–1

4.3.3.4 Some Important Kinds of Matrices

These matrices are particularly important in computational chemistry:

1. The zero matrix (the null matrix)

2. Diagonal matrices

3. The unit matrix (the identity matrix)

4. The inverse of another matrix

5. Symmetric matrices

6. The transpose of another matrix

7. Orthogonal matrices

1. The zero matrix or null matrix, 0, is any matrix with all its elements zero.

Examples:

0 0

0 0

� �
0 0 0

0 0 0

� �
0 0 0 0ð Þ

Clearly, multiplication by the zero matrix (when the (a� b)(b� c) mnemonic

permits multiplication) gives a zero matrix.
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2. A diagonal matrix is a square matrix that has all its off-diagonal elements zero;

the (principal) diagonal runs from the upper left to the lower right.

Examples:

2 0

0 4

� � 3 0 0

0 6 0

0 0 1

0
@

1
A 0 0 0

0 0 0

0 0 0

0
@

1
A

3. The unit matrix or identity matrix 1 or I is a diagonal matrix whose diagonal

elements are all unity. Examples:

ð1Þ 1 0

0 1

� � 1 0 0

0 1 0

0 0 1

0
@

1
A

Since diagonal matrices are square, unit matrices must be square (but zero

matrices can be any size). Clearly, multiplication (when permitted) by the unit

matrix leaves the other matrix unchanged: 1A ¼ A1 ¼ A.

4. The inverse A
�1 of another matrix A is the matrix that, multiplied A, on the

left or right, gives the unit matrix: A�1A ¼ AA�1 ¼ 1. Examples:

If A ¼ 1 2

3 4

� �
then A�1 ¼ �2 1

3=2 �1=2

� �

Check it out.

5. A symmetric matrix is a square matrix for which aij ¼ aji for each element.

Examples:

1 4

4 3

� �
a12 ¼ a21 ¼ 4

2 7 1

7 3 5

1 5 4

0
@

1
A a12 ¼ a21 ¼ 7; etc:

Note that a symmetric matrix is unchanged by rotation about its principal

diagonal. The complex-number analogue of a symmetric matrix is a Hermitian
matrix (after the mathematician Charles Hermite); this has aij ¼ aji*, e.g. if
element (2,3) ¼ a þ bi, then element (3,2) ¼ a � bi, the complex conjugate of

element (2,3); i ¼ ffip�1. Since all the matrices we will use are real rather than

complex, attention has been focussed on real matrices here.

6. The transpose (AT or Ã) of a matrix A is made by exchanging rows and columns.

Examples:

If A ¼ 2 3

4 7

� �
then AT ¼ 2 4

3 7

� �

If A ¼ 2 1 6

1 7 2

� �
then AT ¼

2 1

1 7

6 2

0
@

1
A
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Note that the transpose arises from twisting the matrix around to interchange

rows and columns. Clearly the transpose of a symmetric matrix A is the same

matrix A. For complex-number matrices, the analogue of the transpose is the

conjugate transpose A{; to get this form A*, the complex conjugate of A, by

converting each complex number element a þ bi in A to its complex conjugate

a – bi, then switch the rows and columns ofA* to get (A*)T¼A{. Physicists call

A{ the adjoint of A, but mathematicians use adjoint to mean something else.

7. An orthogonal matrix is a square matrix whose inverse is its transpose: ifA�1¼ AT

then A is orthogonal. Examples:

A1 ¼ 1=
p
2 �1=

p
2

1=
p
2 1=

p
2

� �
A2 ¼

1=
p
6 �1=

p
2 �1=

p
3

2=
p
6 0 1=

p
3

1=
p
6 1=

p
2 �1=

p
3

0
@

1
A

We saw that for the inverse of a matrix, A�1A¼ AA�1¼ 1, so for an orthogonal

matrix ATA ¼ AAT ¼ 1, since here the transpose is the inverse. Check this out for

the matrices shown. The complex analogue of an orthogonal matrix is a unitary
matrix; its inverse is its conjugate transpose.

The columns of an orthogonal matrix are orthonormal vectors. This means that if

we let each column represent a vector, then these vectors are mutually orthogonal

and each one is normalized. Two or more vectors are orthogonal if they are

mutually perpendicular (i.e. at right angles), and a vector is normalized if it is of

unit length. Consider the matrix A1 above. If column 1 represents the vector v1 and

column 2 the vector v2, then we can picture these vectors like this (the long side of a

right triangle is of unit length if the squares of the other sides sum to 1):

x

y

0

v1v2

1_1

2
1_

2
1_

2
1_

–
2
1_

v1 =
2
1_

2
1_

–
2
1_

v2 =
2
1_

The two vectors are orthogonal: from the diagram the angle between them

is clearly 90� since the angle each makes with, say, the x-axis is 45�. Alternatively,
the angle can be calculated from vector algebra: the dot product (scalar product) is

v1 � v2 ¼ jv1kv2j cos y

where |v| (“mod v”) is the absolute value of the vector, i.e. its length:

jvj ¼ ðv2x þ v2yÞ1=2 ðor ðv2x þ v2y þ v2z Þ1=2 for a 3D vectorÞ:

Each vector is normalized, i.e. jv1j ¼ jv2j ¼ ð1
2
þ 1

2
Þ1=2 ¼ 1.
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The dot product is also

v1 � v2 ¼ v1xv2x þ v1yv2y ðwith an obvious extension to 3D spaceÞ
i.e.

cos y ¼ ðv1xv2x þ v1yv2yÞ=jv1 v2k j

¼
��

1p
2

��
� 1p

2

�
þ
�

1p
2

��
1p
2

��
=ð1Þð1Þ ¼ 0

and so

y ¼ 90�

Likewise, the three columns of the matrix A2 above represent three mutually

perpendicular, normalized vectors in 3D space. A better name for an orthogonal

matrix would be an orthonormal matrix. Orthogonal matrices are important in

computational chemistry because molecular orbitals can be regarded as orthonor-

mal vectors in a generalized n-dimensional space (Hilbert space, after the mathe-

matician David Hilbert). We extract information about molecular orbitals from

matrices with the aid of matrix diagonalization.

4.3.3.5 Matrix Diagonalization

Modern computer programs use matrix diagonalization to calculate the energies

(eigenvalues) of molecular orbitals and the sets of coefficients (eigenvectors) that
help define their size and shape. We met these terms, and matrix diagonalization,

briefly in Section 2.5; “eigen” means suitable or appropriate, and we want solutions

of the Schr€odinger equation that are appropriate to our particular problem. If a

matrix A can be writtenA¼ PDP�1, whereD is a diagonal matrix (you could call P

and P�1 pre- and postmultiplying matrices), then we say that A is diagonalizable
(can be diagonalized). The process of finding P and D (getting P�1 from P is simple

for the matrices of computational chemistry – see below) is matrix diagonalization.
For example

if A¼ 4 �2

1 1

� �
then P¼ 1 2

1 1

� �
; D¼ 2 0

0 3

� �
; and P�1 ¼ �1

1

2

�2

� �

Check it out. Linear algebra texts describe an analytical procedure using deter-

minants, but computational chemistry employs a numerical iterative procedure

called Jacobi matrix diagonalization, or some related method, in which the

off-diagonal elements are made to approach zero.

Now, it can be proved that if and only if A is a symmetric matrix (or more

generally, if we are using complex numbers, a Hermitian matrix – see symmetric

matrices, above), then P is orthogonal (or more generally, unitary – see orthogonal

matrices, above) and so the inverse P�1 of the premultiplying matrix P is simply the
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transpose of P, PT (or more generally, what computational chemists call the

conjugate transpose A{ – see transpose, above). Thus

if A ¼ 0 1

1 0

� �
then

P ¼ 0:707 0:707

0:707 �0:707

� �
; D ¼ 1 0

0 �1

� �
; P�1 ¼ 0:707 0:707

0:707 �0:707

� �

(In this simple example the transpose of P happens to be identical with P). In the

spirit of numerical methods 0.707 is used instead of 1/
ffip
2. A matrix like A above,

for which the premultiplying matrix P is orthogonal (and so for which P�1 ¼ PT) is

said to be orthogonally diagonalizable. The matrices we will use to get molecular

orbital eigenvalues and eigenvectors are orthogonally diagonalizable. A matrix is

orthogonally diagonalizable if and only if it is symmetric; this has been described as

“one of the most amazing theorems in linear algebra” (see Roman S (1988) An

introduction to linear algebra with applications. Harcourt Brace, Orlando, p 408)

because the concept of orthogonal diagonalizability is not simple, but that of a

symmetric matrix is very simple.

4.3.3.6 Determinants

A determinant is a square array of elements that is a shorthand way of writing a sum

of products; if the elements are numbers, then the determinant is a number. Examples:

a11 a12

a21 a22

�����
����� ¼ a11a22 � a12a21;

5 2

4 3

�����
����� ¼ 5ð3Þ � 2ð4Þ ¼ 7

As shown here, a 2 � 2 determinant can be expanded to show the sum it

represents by “cross multiplication”. A higher-order determinant can be expanded

by reducing it to smaller determinants until we reach 2 � 2 determinants; this is

done like this:

2 1 3 0

1 7 3 5

3 4 6 1

1 8 2 �2

���������

���������
¼ 2

7 3 5

4 6 1

8 2 �2

�������
�������� 1

1 3 5

3 6 1

1 2 �2

�������
�������þ 3

1 7 5

3 4 1

1 8 �2

�������
�������

� 0

1 7 3

3 4 6

1 8 2

�������
�������

Here we started with element (1,1) and moved across the first row. The first of

the above four terms is 2 times the determinant formed by striking out the row and
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column in which 2 lies, the second term is minus one times the determinant formed

by striking out the row and column in which 1 lies, the third term is plus 3 times the

determinant formed by striking out the row and column in which 3 lies, and the

fourth term is minus 0 times the determinant formed by striking out the row and

column in which 0 lies; thus starting with the element of row 1, column 1, we move

along the row and multiply by þ1, �1, þ1, �1. It is also possible to start at, say

element (2,1), the number 1, and move across the second row (�, þ, �, þ), or to

start at element (1,2) and go down the column (�, þ, �, þ), etc. One would likely

choose to work along a row or column with the most zeroes. The (n � 1) � (n � 1)

determinants formed in expanding an n � n determinant are called minors, and a

minor with its appropriate þ or � sign is a cofactor. Expansion of determinants

using minors/cofactors is called Lagrange expansion (Joseph Louis Lagrange

1773). There are also other approaches to expanding determinants, such as manip-

ulating them to make all the elements but one of a row or column zero; see any text

on matrices and determinants. The third-order determinants in the example above

can be reduced to second-order ones and so the fourth-order determinant can be

evaluated as a single number. Obviously every determinant has a corresponding

square matrix and every square matrix has a corresponding determinant, but a

determinant is not a matrix; it is a function of a matrix, a rule that tells us how to

take the set of numbers in a matrix and get a new number. Approaches to the study

of determinants were made by Seki in Japan and Leibnitz in Europe, both in 1683.

The word “determinant” was first used in our sense by Cauchy (1812), who also

wrote the first definitive treatment of the topic.

4.3.3.7 Some Properties of Determinants

These are stated in terms of rows, but also hold for columns; D is “the determinant”.

1. If each element of a row is zero, D is zero (obvious from Lagrange expansion).

2. Multiplying each element of a row by k multiplies D by k (obvious from

Lagrange expansion).

3. Switching two rows changes the sign of D (since this changes the sign of each

term in the expansion).

4. If two rows are the same D is zero. (follows from 3, since if n ¼ �n, n must be

zero.

5. If the elements of one row are a multiple of those of another, D is zero (follows

from 2 and 4).

6. Multiplying a row by k and adding it (adding corresponding elements) to another

row causes no further change in D (in the Laplace expansion the terms without k
cancel).

7. A determinant A can be written as the sum of two determinants B and C which

differ only in row i in accordance with this rule: if row i of A is bi1 þ ci1 bi2 þ ci2
. . . then row i of B is bi1 bi2 . . . and row i of C is ci1 ci2 . . .An example makes this

clear; with row i ¼ row 3:
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1 3 6

5 4 2

8 11 9

������
������ ¼

1 3 6

5 4 2

5þ 3 7þ 4 4þ 5

������
������ ¼

1 3 6

5 4 2

5 7 4

������
������þ

1 3 6

5 4 2

3 4 5

������
������

4.3.4 The Simple H€uckel Method – Theory

The derivation of the H€uckel method (SHM, or simple H€uckel theory, SHT; also
called H€uckel molecular orbital method, HMO method) given here is not rigorous

and has been strongly criticized [30a]; nevertheless it has the advantage of showing

how with simple arguments one can use the Schr€odinger equation to develop, more

by a plausibility argument than a proof, a method that gives useful results and which

can be extended to more powerful methods with the retention of many useful

concepts from the simple approach.

The Schr€odinger equation (Section 4.2.6, Eq. 4.29)

r2cþ 8p2m
h2

ðE� VÞc ¼ 0

can after very simple algebraic manipulation be rewritten

� h2

8p2m
r2 þ V

� �
c ¼ Ec (4.35)

This can be abbreviated to the seductively simple-looking form

Ĥc ¼ Ec �(4:36)

where

Ĥ ¼ h2

8p2m
r2 þ V

� �
�(4:37)

The symbol Ĥ (“H hat” or “H peak”) is an operator (Section 4.3.3): it specifies that

an operation is to be performed on c, and Eq. 4.36 says that the result of the

operation will be Emultiplied by c. The operation to be performed on c (i.e. c(x,y,
z)) is “differentiate it twice with respect to x, to y and to z, add the partial

derivatives, and multiply the sum by �h2/8p2m; then add this result to V times c”
(now you can see why symbols replaced words in mathematical discourse). The

notation Ĥc means Ĥ of c, not Ĥ times c.
Equation 4.36 says that an operator (Ĥ) acting on a function (c) equals a constant

(E) times the function (“H hat of psi equals E psi”). Such an equation
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Ôf ¼ kf ; Ô ¼ operator (4.38)

is called an eigenvalue equation. The functions f and constants k that satisfy

Eq. (4.38) are eigenfunctions and eigenvalues, respectively, of the operator Ô.
The operator Ĥ is called the Hamiltonian operator, or simply the Hamiltonian.

The term is named after the mathematician Sir William Rowan Hamilton, who

formulated Newton’s equations of motion in a manner analogous to the quantum

mechanical equation 4.36. Eigenvalue equations are very important in quantum

mechanics, and we shall again meet eigenfunctions and eigenvalues.

The eigenvalue formulation of the Schr€odinger equation is the starting point

for our derivation of the H€uckel method. We will apply Eq. 4.36 to molecules,

so in this context Ĥ and c are the molecular Hamiltonian and wavefunction,

respectively.

From

Ĥc ¼ Ec

we get

cĤc ¼ Ec2 (4.39)

Note that this is not the same as Ĥc2 ¼ Ec2, just as x df(x)/dx, say, is not the
same as dxf(x)/dx. Integrating and rearranging we get

E ¼
R
cĤcdvR
c2dv

(4.40)

The integration variable dv indicates integration with respect to spatial coordi-

nates (x, y, z in a Cartesian coordinate system), and integration over all of space is

implied, since that is the domain of an electron in a molecule, and thus the

domain of the variables of the function c. One might wonder why not simply

use E ¼ Ĥc/c; the problems with this function are that it goes to infinity as c
approaches zero, and it is not well-behaved with regard to finding a minimum by

differentiation.

Next we approximate the molecular wavefunction c as a linear combination of

atomic orbitals (LCAO). The molecular orbital (MO) concept as a tool in interpret-

ing electronic spectra was formalized by Mulliken23 starting in 1932 and building

on earlier (1926) work by Hund24 [31] (recall that Mulliken coined the word

23Robert Mulliken, born Newburyport, Massachusetts, 1896. Ph.D. University of Chicago. Pro-

fessor New York University, University of Chicago, Florida State University. Nobel Prize in

chemistry 1966, for the MO method. Died Arlington, Virginia, 1986.
24Friedrich Hund, born Karlsruhe, Germany, 1896. Ph.D. Marburg, 1925, Professor Rostock,

Leipzig, Jena, Frankfurt, G€ottingen. Died G€ottingen, 1997.
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orbital). The postulate behind the LCAO approach is that an MO can be “synthe-

sized” by combining simpler functions, now called basis functions; these functions
comprise a basis set. This way of calculating MOs is based on suggestions of

Pauling (1928) [32] and Lennard–Jones25 (1929) [33]. Perhaps the most important

early applications of the LCAO method were the simple H€uckel method (1931)

[19], in which p AOs orbitals are combined to give p AOs (probably the first time

that the MOs of relatively big molecules were represented as a weighted sum of

AOs with optimized coefficients), and the treatment of all the lower electronic

states of the hydrogen molecule by Coulson26 and Fischer (1949) [34]. The basis

functions are usually located on the atoms of the molecule, and may or may not (see

the discussion of basis functions in Section 5.3) be conventional atomic orbitals.

The wavefunction can in principle be approximated as accurately as desired by

using enough suitable basis functions. In this simplified derivation of the H€uckel
method we at first consider a molecule with just two atoms, with each atom

contributing one basis function to the MO. Combining basis functions on different

atoms to give MOs spread over the molecule is somewhat analogous to combining

atomic orbitals on the same atom to give hybrid atomic orbitals (Section 4.3.2) [27].

The combination of n basis functions always gives nMOs, as indicated in Fig. 4.11,

and we expect two MOs for the two-atomic-orbital diatomic molecule we are

using here.

Using the LCAO approximation

c ¼ c1f1 þ c2f2 (4.41)

where f1 and f2 are basis functions on atoms 1 and 2, and c1 and c2 are weight-

ing coefficients to be adjusted to get the best c, and substituting into Eq. 4.40

we get

E ¼
R ðc1f1 þ c2f2ÞĤðc1f1 þ c2f2ÞdvR ðc1f1 þ c2f2Þ2dv

(4.42)

If we multiply out the terms in Eq. 4.42 we get

E ¼ c21H11 þ 2c1c2H12 þ c22H22

c21S11 þ 2c1c2S12 þ c22S22
(4.43)

25John Edward Lennard-Jones, born Leigh, Lancaster, England, 1894. Ph.D. Cambridge, 1924.

Professor Bristol. Best known for the Lennard–Jones potential function for nonbonded atoms.

Died Stoke-on-Trent, England, 1954.
26Charles A. Coulson, born Worcestershire, England, 1910. Ph.D. Cambridge, 1935. Professor of

theoretical physics, King’s College, London; professor of mathematics, Oxford; professor of

theoretical chemistry, Oxford. Died Oxford, 1974. Best known for his book "Valence" (the 1st

Ed., 1952).
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where Z
f1Ĥf1dv ¼ H11Z
f1Ĥf2dv ¼ H12 ¼

Z
f2Ĥf1dv ¼ H21Z

f2Ĥf2dv ¼ H22Z
f2

1
dv ¼ S11Z

f1 f2dv ¼ S12 ¼
Z

f2 f1dv ¼ S21Z
f2
2dv ¼ S22

(4.44)

Note that in Eqs. 4.43 and 4.44 the Hij are not operators hence are not given hats;

they are integrals involving Ĥ and basis functions f.
For any particular molecular geometry (i.e. nuclear configuration: Section 2.3,

the Born–Oppenheimer approximation) the energy of the ground electronic

state is the minimum energy possible for that particular nuclear arrangement

and the collection of electrons that goes with it. Our objective now is to minimize

the energy with respect to the basis set coefficients. We want to find the c’s
corresponding to the minimum on an energy versus c’s potential energy surface.

To do this we follow a standard calculus procedure: set ∂E/∂c1 equal to zero,

explore the consequences, then repeat for ∂E/∂c2. In theory, setting the first

derivatives equal to zero guarantees only that we will find in “MO space”

(an abstract space defined by an energy axis and two or more coefficient axes)

a stationary point (cf. Section 2.2), but examining the second derivatives shows

that the procedure gives an energy minimum if all or most of the electrons are

in bonding MOs, which is the case for most real molecules [35]. Write Eq. 4.43 as

E c21S11 þ 2c1c2S12 þ c22S22
� 	 ¼ c21H11 þ 2c1c2H12 þ c22H22 (4.45)

and differentiate with respect to c1:

@E

@c1

� �
c21S11 þ 2c1c2S12 þ c22S22
� 	þ Eð2c1S11 þ 2c2S22Þ ¼ 2c1H11 þ 2c2H12

Set @E=@c1 ¼ 0:

Eð2c1S11 þ 2c2S22Þ ¼ 2c1H11 þ 2c2H12

This can be written

ðH11 � ES11Þc1 þ ðH12 � ES12Þc2 ¼ 0 (4.46)
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The analogous procedure, beginning with Eq. 4.45 and differentiating with

respect to c2 leads to

ðH12 � ES12Þc1 þ ðH22 � ES22Þc2 ¼ 0 (4.47)

Equation 4.47 can be written as Eq. 4.48

ðH21 � ES21Þc1 þ ðH22 � ES22Þc2 ¼ 0 (4.48)

since as shown in Eqs. 4.44 H12 ¼ H21 and S12 ¼ S21, and the form used in Eq. 4.48

is preferable because it makes it easy to remember the pattern for the two-basis
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Fig. 4.11 Linear combination of n atomic orbitals (or, more generally, basis functions) gives n
MOs. The coefficients c are weighting factors that determine the magnitude and the sign of the

contribution from each basis function. The functions contributing to the MO change sign at a node

(actually a nodal plane) and the energy of the MOs increases with the number of nodes
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function system examined here and for the generalization (see below) to n basis

functions. Equations 4.46 and 4.48 form a system of simultaneous linear equations:

ðH11 � ES11Þc1 þ ðH12 � ES12Þc2 ¼ 0

ðH21 � ES21Þc1 þ ðH22 � ES22Þc2 ¼ 0

(4.49)

The pattern is that the subscripts correspond to the row and column in which they

lie; this is literally true for the matrices and determinants we will consider later, but

even for the system of equations 4.49 we note that in the first equation (“row 1”), the

coefficient of c1 has the subscripts 11 (row 1, column 1) and the coefficient of c2 has
the subscripts 12 (row 1, column 2), while in the second equation (“row 2”) the

coefficient of c1 has the subscripts 21 (row 2, column 1) and the coefficient of c2 has
the subscripts 22 (row 2, column 2).

The system of equations 4.49 are called secular equations, because of a supposed

resemblance to certain equations in astronomy that treat the long-term motion of the

planets; from the Latin saeculum, a long period of time (not to be confused with

secular meaning worldly as opposed to religious, which is from the Latin secularis,
worldly, temporal). From the secular equations we can find the basis function

coefficients c1 and c2, and thus the MOs c, since the c’s and the basis functions f
make up the MOs (Eq. 4.41). The simplest, most elegant and most powerful way to

get the coefficients and energies of the MOs from the secular equations is to use

matrix algebra (Section 4.3.3). The following exposition may seem a little involved,

but it must be emphasized that in practice the matrix method is implemented

automatically on a computer, to which it is highly suited.

The secular equations 4.49 are equivalent to the single matrix equation

H11 � ES11 H12 � ES12
H21 � ES21 H22 � ES22

� �
c1
c2

� �
¼ 0

0

� �
(4.50)

Since the H � ES matrix is an H matrix minus an ES matrix, and since the ES
matrix is the product of an S matrix and the scalar E, Eq. 4.50 can be written:

H11 H12

H21 H22

� �� �
� S11 S12

S21 S22

� �
E

c1
c2

� �
¼ 0

0

� �
(4.51)

which can be more concisely rendered as

½H� SE�c ¼ 0 (4.52)

and Eq. 4.52 can be written

Hc ¼ SEc (4.53)
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H and S are square matrices and c and 0 are column matrices (Eq. 4.51), and E is

a scalar (an ordinary number). We have been developing these equations for a

system of two basis functions, so there should be two MOs, each with its own

energy and its own pair of c’s (Fig. 4.11). We need two energy values and four c’s:
we want to be able to calculate c11 and c21 of c1 (MO1, energy level 1) and c12 and
c22 of c2 (MO2, 0 energy level; in keeping with common practice the energies of the

MOs are designated e1 and e2. Equation 4.53 can be extended (our simple derivation

shortchanges us here) [36] to encompass the four c’s and two e’s; the result is

HC ¼ SC« �(4:54)

We now have only square matrices; in Eq. 4.53 cwas a column matrix and Ewas

not a matrix, but rather a scalar – an ordinary number. The matrices are (four

equations Eqs (4.55)):

H ¼ H11 H12

H21 H22

� �

C ¼ c11 c12

c21 c22

� �

S ¼ S11 S12

S21 S22

� �

e ¼ e1 0

0 e2

� �
�(4:55)

The H matrix is an energy-elements matrix, the Fock27 matrix, whose elements

are integrals Hij (Eqs. 4.44). Fock actually pointed out the need to take electron spin

into account in more elaborate calculations than the simple H€uckel method; we will

meet “real” Fock matrices in Chapter 5. For now, we just note that in the simple

(and extended) H€uckel methods as an ad hoc prescription at most two electrons,

paired, are allowed in each MO. Each Hij represents some kind of energy term,

since Ĥ is an energy operator (Section 4.3.3). The meaning of the Hij’s is discussed

later in this section.

The C matrix is the coefficient matrix, whose elements are the weighting factors

cij that determine to what extent each basis function f (roughly, each atomic orbital

on an atom) contributes to each MO c. Thus c11 is the coefficient of f1 in c1, c21 the
coefficient of f2 in c1, etc., with the first subscript indicating the basis function and

the second subscript the MO (Fig. 4.11). In each column of C the c’s belong to the

same MO.

27Vladimer Fock, born St. Petersburg, 1898. Ph.D. Petrograd University, 1934. Professor Lenin-

grad University, also worked at various institutes in Moscow. Worked on quantum mechanics and

relativity, e.g. the Klein–Fock equation for particles with spin in an electromagnetic field. Died

Leningrad, 1974.
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The S matrix is the overlap matrix, whose elements are overlap integrals Sij
which are a measure of how well pairs of basis functions (roughly, atomic orbitals)

overlap. Perfect overlap, between identical functions on the same atom, corre-

sponds to Sii ¼ 1, while zero overlap, between different functions on the same

atom or well-separated functions on different atoms, corresponds to Sij ¼ 0.

The diagonal e matrix is an energy-levels matrix, whose diagonal elements are

MO energy levels ei, corresponding to the MOs ci. Each ei is ideally the negative of
the energy needed to remove an electron from that orbital, i.e. the negative of the

ionization energy for that orbital. Thus it is ideally the energy of an electron

attracted to the nuclei and repelled by the other electrons, relative to the energy

of that electron and the corresponding ionized molecule, infinitely separated from

one another. This is seen by the fact that photoelectron spectra correlate well with

the energies of the occupied orbitals, in more elaborate (ab initio) calculations [26].

In simple H€uckel calculations, however, the quantitative correlation is largely lost.

Now suppose that the basis functions f had these properties (the H and S
integrals, involving f, are defined in Eqs. 4.44):

S11 ¼ 1

S12 ¼ S21 ¼ 0

S22 ¼ 1

(4.56)

More succinctly, suppose that

Sij ¼ dij (4.57)

where dij is the Kronecker delta (Leopold Kronecker, German mathematician, ca.

1860) which has the property of being 1 or 0 depending on whether i and j are the
same or different. Then the S matrix (Eqs. 4.55) would be

S ¼ 1 0

0 1

� �
(4.58)

Since this is a unit matrix Eq. 4.54 would become

HC ¼ Ce (4.59)

and by multiplying on the right by the inverse of C we get

H ¼ CeC�1 �(4:60)

So from the definition of matrix diagonalization, diagonalization of theHmatrix

will give the C and the « matrices, i.e. will give the coefficients c and the MO
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energies e (Eqs. 4.55), if Sij ¼ dij (Eq. 4.57). This is a big if, and in fact it is not true.
Sij ¼ dij would mean that the basis functions are both orthogonal and normalized,

i.e. orthonormal. Orthogonal atomic (or molecular) orbitals or functions f have

zero net overlap (Fig. 4.12), corresponding to
R
fifjdv ¼ 0. A normalized orbital

or function f has the property
R
ffdv ¼ 1. We can indeed use a set of normalized

basis functions: a suitable normalization constant k applied to an unnormalized

basis function f0 will ensure normalization (f ¼ kf0). However, we cannot

choose a set of orthogonal atom-centered basis functions, because orthogonality

implies zero overlap between the two functions in question, and in a molecule

the overlap between pairs of basis functions will depend on the geometry of

the molecule (Fig. 4.12). (However, as we will see later, the basis functions can

be manipulated mathematically to give combinations of the original functions

which are orthonormal).

The assumption of basis function orthonormality is a drastic approximation, but

it greatly simplifies the H€uckel method, and in the present context it enables us to

reduce Eq. 4.54 to Eq. 4.59, and thus to obtain the coefficients and energy levels by

diagonalizing the Fock matrix. Later we will see that in the absence of the

orthogonality assumption the set of basis functions can be mathematically trans-

formed so that a modified Fock matrix can be diagonalized; in the simple H€uckel
method we are spared this transformation. In the matrix approach to the H€uckel
method, then, we must diagonalize the Fock matrix H; to do this we have to assign

numbers to the matrix elements Hij, and this brings us to other simplifying assump-

tions of the SHM, concerning the Hij.

In the SHM the energy integralsHij are approximated as just three quantities (the

units are, e.g., kJ mol�1):

C1

C2

C3

* = +,  .or –

C

C

C

H
H

H

H

H

a twisted allyl species *

+

+ +
+

–

–

–

Fig. 4.12 We cannot simply choose a set of orthonormal basis functions, because in a typical

molecule many pairs of basis functions will not be orthogonal, i.e. will not have zero overlap. In

the allyl species shown, the 2s and the 2p functions (i.e. AOs) on C1 are orthogonal (the þ part of

the p orbital cancels the � part in overlap with the s orbital; in general AOs on the same atom are

orthogonal), and the 2p functions on C2 and C3 are also orthogonal, if their axes are at right angles.

However, the C1(2s)/C2(2p) and the C1(2p)/C2(2p) pairs are not orthogonal
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a, the coulomb integralZ
fiĤfidv ¼ Hii ¼ a i:e: basis functions on the same atom; �(4:61a)

b, the bond integral or resonance integralZ
fiĤfjdv ¼ Hij ¼

Z
fjĤfidv ¼ Hji ¼ b �(4:61b)

for basis functions on adjacent atoms;Z
fiĤfjdv ¼ Hij ¼

Z
fjĤfidv ¼ Hji ¼ 0 �(4:61c)

for basis functions neither on the same or on adjacent atoms.

To give these approximations some physical significance, we must realize that in

quantum mechanical calculations the zero of energy is normally taken as

corresponding to infinite separation of the particles of a system. In the simplest

view, a, the coulomb integral, is the energy of the molecule relative to a zero of

energy taken as the electron and basis function (i.e. AO; in the simple H€uckel
method, f is usually a carbon p AO) at infinite separation. Since the energy of the

system actually decreases as the electron falls from infinity into the orbital, a is

negative (Fig. 4.13). The negative of a, in this view, is the ionization energy (a

positive quantity) of the orbital (the ionization energy of the orbital is defined as the

energy needed to remove an electron from the orbital to an infinite distance away).

C

C C
a = Hii < 0 kJ mol–1

b = Hij < 0 kJ mol–1

0

Energy

e–
electron falls from infinite
distance into a p AO on C electron falls from infinite

distance into a MO formed
by overlap of two p AOs on
adjacent carbons

Fig. 4.13 The coulomb integral a is most simply (but not too accurately) viewed as the energy of

an electron in a carbon 2p orbital, relative to its energy an infinite distance away. The bond integral
(resonance integral) b is most simply (but not too accurately) viewed as the energy of an electron

in an MO formed by adjacent 2p orbitals, relative to its energy an infinite distance away
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The quantity b, the bond integral or resonance integral, is, in the simplest view,

the energy of an electron in the overlap region (roughly, a two-center MO) of

adjacent p orbitals relative to a zero of energy taken as the electron and two-center

MO at infinite separation. Like a, b is a negative energy quantity. A rough, naive

estimate of the value of bwould be the average of the ionization energies (a positive

quantity) of the two adjacent AOs, multiplied by some fraction to allow for the fact

that the two orbitals do not coincide but are actually separated. These views of a and
b are oversimplifications [30].

We derived the 2 � 2 matrices of Eqs. 4.55 starting with a two-orbital system.

These results can be generalized to n orbitals:

H ¼

H11 H12 . . . H1n

H21 H22 . . . H2n

..

. ..
.

. . . ..
.

Hn1 Hn2 . . . Hnn

0
BBBB@

1
CCCCA (4.62)

The H elements of Eq. 4.62 become a, b, or 0 according to the rules of Eqs. 4.61.
This will be clear from the examples in Fig. 4.14.
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Fig. 4.14 Some conjugated molecules, their p orbital arrays, simplified representations of the

molecules, and their simple H€uckel Fock matrices. Same-atom interactions are a, adjacent-atom
interactions are b, and all other interactions are 0. To diagonalize the matrices, we use a ¼ 0 and

b ¼ �1
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The computer algorithms for matrix diagonalization use some version of the

Jacobi rotation method [37], which proceeds by successive numerical approxima-

tions (textbooks describe a diagonalization method based on expanding the deter-

minant corresponding to the matrix; this is not used in computational chemistry).

Therefore in order to diagonalize our Fock matrices we need numbers in place of a
and b. In methods more advanced than the SHM, like the extended H€uckel method

(EHM), other semiempirical methods, and ab initio methods, the Hij integrals are

calculated to give numerical (in energy units) values. In the SHM we simply use

energy values in |b| units relative to a (recall that b is a negative quantity: Fig. 4.13).

The matrix of Fig. 4.14a then becomes

H ¼ a b
b a

� �
¼ 0 �1

�1 0

� �
(4.63)

An electron in an MO represented by a 1,2-type interaction is lower in energy

than one in a p orbital (1,1-type interaction) by one |b| energy unit. Similarly, the H

matrix of Fig. 4.14b becomes

H ¼
0 �1 0

�1 0 �1

0 �1 0

0
B@

1
CA (4.64)

and the H matrix of Fig. 4.14c becomes

H ¼
0 �1 0 �1

�1 0 �1 0

0 �1 0 �1

�1 0 �1 0

0
BB@

1
CCA (4.65)

The H matrices can be written down simply by setting all i, i-type interactions

equal to 0, and all i, j-type interactions equal to �1 where i and j refer to atoms that

are bonded together, and equal to 0 when i and j refer to atoms that are not bonded

together.

Diagonalization of the two-basis-function matrix of Eq. 4.63 gives

H ¼ 0 �1

�1 0

� �
¼ 0:707 0:707

0:707 �0:707

� � �1 0

0 1

� �
0:707 0:707

0:707 �0:707

� �
C e C�1

(4.66)

Comparing Eq. 4.66 with Eq. 4.60, we see that we have obtained the matrices we

want: the coefficients matrix C and the MO energy levels matrix «. The columns of
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C are eigenvectors, and the diagonal elements of « are eigenvalues; cf. Eq. 4.38 and

the associated discussion of eigenfunctions and eigenvalues. The result of

Eq. (4.66) is readily checked by actually multiplying the matrices (multiplication

here is aided by knowing that an analytical rather than numerical diagonalization

shows that�0.707 are approximations to 1/
ffip
2). Note that CC�1¼ 1, and that C�1

is the transpose of C. The first eigenvector of C, the left-hand column, corresponds

to the first eigenvalue of «, the top left element; the second eigenvector corresponds

to the second eigenvalue. The individual eigenvectors, v1 and v2, are column

matrices:

0:707

0:707

� �
	 �1 and

0:707

�0:707

� �
	 1

v1 v2

(4.67)

Figure 4.15 shows a common way of depicting the results for this two-orbital

calculation. Since the coefficients are weighting factors for the contributions of the

basis functions to the MOs (Fig. 4.11 and associated discussion), the c’s of

eigenvector v1 combine with the basis functions to give MO1 (c1) and the c’s of
eigenvector v2 combine with these same basis functions to give MO2 (c2). MOs

below a are bonding and MOs above a are antibonding. The «matrix translates into

an energy level diagram with c1 of energy a + b and c2 of energy a � b, i.e. the
MOs lie one |b| unit below and one |b| above the nonbonding a level. Since b, like a,
is negative, the a + b and a � b levels are of lower and higher energy, respectively,

than the nonbonding a level.

C C

+

–

+

–

+

– +

–

C C

nonbonding level

bonding MO

antibonding MO

energy

e = 1

e = –1

y 2 = 0.707   1 – 0.707   2

a - b

a + b

a 

f f

y 2 = 0.707   1 + 0.707   2f f

Fig. 4.15 The p molecular orbitals and p energy levels for a two-p-orbital system in the simple

H€uckel method. The MOs are composed of the basis functions (two p AOs) and the eigenvectors,

while the energies of the MOs follow from the eigenvalues (Eq. 4.66). The paired arrows represent

a pair of electrons of opposite spin (in the electronic ground state of the neutral ethene molecule c1

is occupied and c2 is empty)
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Diagonalization of the three-basis function matrix of Eq. 4.64 gives

0 �1 0

�1 0 �1

0 �1 0

0
B@

1
CA¼

0:500 0:707 0:500

0:707 0 �0:707

0:500 �0:707 0:500

0
B@

1
CA

�1:414 0 0

0 0 0

0 0 1:414

0
B@

1
CA

0:500 0:707 0:500

0:707 0 �0:707

0:500 �0:707 0:500

0
B@

1
CA

v1 v2 v3

C

e1; 0; 0

0; e2; 0

0; 0; e3
e C�1

(4.68)

The energy levels and MOs corresponding to these results are shown in

Fig. 4.16.

Diagonalization of the four-basis-function matrix of Eq. 4.65 gives

+

–

+

–

+

–
C

C
C

+

–
+

–
+

–
C

C
C

+

– +

–

C
C

C

energy

e = 1.414    antibonding MO

e = 0    nonbonding MO

a -b

a +b

a

y 3 = 0.500    1 – 0.707    2 + 500    3

y 2 = 0.700    1 + 0.000    2 – 0.700    3

f

f f f

e = –1.414    bonding MO

y 3 = 0.500    1 + 0.707    2 + 0.500    3f f f

f f

Fig. 4.16 The pmolecular orbitals and p energy levels for an acyclic three-p-orbital system in the

simple H€uckel method. The MOs are composed of the basis functions (three p AOs) and

the eigenvectors (the c’s), while the energies of the MOs follow from the eigenvalues

(Eq. 4.68). In the drawings of the MOs, the relative sizes of the AOs in each MO suggest the

relative contribution of each AO to that MO. This diagram is for the propenyl radical. The paired
arrows represent a pair of electrons of opposite spin, in the fully-occupied lowest MO, c1, and the

single arrow represents an unpaired electron in the nonbonding MO, c2; the highest p MO, c3, is

empty in the radical
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0 �1 0 �1

�1 0 �1 0

0 �1 0 �1

�1 0 �1 0

0
BBB@

1
CCCA¼

0:500 0:500 0:500 0:500

0:500 �0:500 0:500 �0:500

0:500 �0:500 �0:500 0:500

0:500 0:500 �0:500 �0:500

0
BBB@

1
CCCA

�2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2

0
BBB@

1
CCCA

0:500 0:500 0:500 0:500

0:500 �0:500 �0:500 0:500

0:500 0:500 �0:500 �0:500

0:500 �0:500 0:500 �0:500

0
BBB@

1
CCCA

v1 v2 v3 v4

e1 0 0 0

0 e2 0 0

0 0 e3 0

0 0 0 e4
C e C�1 ð4:69Þ

The energy levels and MOs from these results are shown in Fig. 4.17. Note that all

these matrix diagonalizations yield orthonormal eigenvectors: vi�vi¼ 1 and vi�vj¼ 0,

as required the fact that the Fock matrices are symmetric (see the discussion of matrix

diagonalization in Section 4.3.3).
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C C

energy

+

bonding MO

antibonding MO

nonbonding MOs

e = –2

e = 2

e = 0 e = 0

y 4  = 0.500 j1 – 0.500 j2 + 0.500 j3 – 0.500 j4

y 3  = 0.500 j1 + 0.500 j2 – 0.500 j3 – 0.500 j4

y 2  = 0.500 j1 – 0.500 j2 – 0.500 j3 + 0.500 j4

y 1  = 0.500 j1 + 0.500 j2 + 0.500 j3 + 0.500 j4

a - 2b

a + 2b

a - b

a + b

a

Fig. 4.17 The p molecular orbitals and p energy levels for a cyclic four-p-orbital system in the

simple H€uckel method. The MOs are composed of the basis functions (four p AOs) and the

eigenvectors, while the energies of the MOs follow from the eigenvalues (Eq. 4.69). This particular

diagram is for the square cyclobutadiene molecule. The paired arrows represent a pair of electrons
of opposite spin, in the fully-occupied lowest MO, c1, and the single arrows represents unpaired
electrons of the same spin, one in each of the two nonbonding MOs, c2 and c3; the highest pMO,

c4, is empty in the neutral molecule
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4.3.5 The Simple H€uckel Method – Applications

Applications of the SHM are discussed in great detail in several books [21]; here we

will deal only with those applications which are needed to appreciate the utility of

the method and to smooth the way for the discussion of certain topics (like bond

orders and atomic charges) in later chapters. We will discuss: the nodal properties

of the MOs; stability as indicated by energy levels and aromaticity (the 4nþ 2 rule);

resonance energies; and bond orders and atomic charges.

4.3.5.1 The Nodal Properties of the MOs

A node of an MO is a plane at which, as we proceed along the sequence of basis

functions, the sign of the wavefunction changes (Figs. 4.15–4.17). For a given

molecule, the number of nodes in the p orbitals increases with the energy. In the

two-orbital system (Fig. 4.15), c1 has zero nodes and c2 has one node. In the three-

orbital system (Fig. 4.16), c1, c2 and c3 have zero, one and two nodes, respec-

tively. In the cyclic four-orbital system (Fig. 4.17), c1 has zero nodes, c2 and c3,

which are degenerate (of the same energy) each have one node (one nodal plane),

and c4 has two nodes. In a given molecule, the energy of the MOs increases with

the number of nodes. The nodal properties of the SHM p orbitals form the basis of

one of the simplest ways of understanding the predictions of the Woodward–Hoff-

mann orbital symmetry rules [38]. For example, the thermal conrotatary and

disrotatary ring closure/opening of polyenes can be rationalized very simply in

terms of the symmetry of the highest occupied p MO of the open-chain species.

That the highest p MO should dominate the course of this kind of reaction is

indicated by more detailed considerations (including extended H€uckel calculations)
[38]. Figure 4.18 shows the situation for the ring closure of a 1,3-butadiene to a

cyclobutene. The phase (+ or�) of the p HOMO (c2) at the end carbons (the atoms

that bond) is opposite on each face, because this orbital has one node in the middle

of the C4 chain. You can see this by sketching the MO as the four AOs contributing

to it, or even – remembering the node – drawing just the end AOs. For the electrons

in c2 to bond, the end groups must rotate in the same sense (conrotation) to bring

orbital lobes of the same phase together. Remember that plus and minus phase has

nothing to do with electric charge, but is a consequence of the wave nature of

electrons (Section 4.2.6): two electron waves can reinforce one another and form a

bonding pair if they are “vibrating in phase”; an out-of-phase interaction represents

an antibonding situation. Rotation in opposite senses (disrotation) would bring

opposite-phase lobes together, an antibonding situation. The mechanism of the

reverse reaction is simply the forward mechanism in reverse, so the fact that the

thermodynamically favored process is the ring-opening of a cyclobutene simply

means that the cyclobutene shown would open to the butadiene shown on heating.

Photochemical processes can also be accommodated by the Woodward–Hoffmann

orbital symmetry rules if we realize that absorption of a photon creates an electron-

ically excited molecule in which the previous lowest unoccupied MO (LUMO) is
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now the HOMO. For more about orbital symmetry and chemical reactions see e.g.

the book by Woodward and Hoffmann [38].

4.3.5.2 Stability as Indicated by Energy Levels, and Aromaticity

The MO energy levels obtained from an SHM calculation must be filled with

electrons according to the species under consideration. For example, the neutral

ethene molecule has two p electrons, so the diagrams of Fig. 4.19a (cf. Fig. 4.15)

with one, two and three p electrons, would refer to the cation, the neutral and the

anion. We might expect the neutral, with its bonding p orbital c1 full and its

antibonding p orbital c2 empty, to be resistant to oxidation (which would require

removing electronic charge from the low-energy c1) and to reduction (which would

require adding electronic charge to the high-energy c2).
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– +
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+ –

+–
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C C C C
+

–
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+
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–
–
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H
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–
–

same

energy

and

y 4

y 3

y 2

y 2

y 1

Fig. 4.18 The stereochemistry of many reactions is easily predicted from the symmetry of

molecular orbitals, usually the highest occupied p MO (p HOMO). In the ring closure of 1,3-

butadiene to cyclobutene the phase (þ or �) of the HOMO (c2) at the end carbons (the atoms that

bond) is such that closure must occur in a conrotatory sense, giving a definite stereochemical

outcome. In the example above there is only one product. The reverse process is actually

thermodynamically favored, and the cis dimethyl cyclobutene opens to the cis, trans diene. No
attempt is made here to show quantitatively the positions of the energy levels or to size the AOs

according to their contributions to the MOs
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Fig. 4.19 Filling p MOs with electrons
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The propenyl (allyl) system has two, three or four p electrons, depending on

whether we are considering the cation, radical or anion (Fig. 4.19b; cf. Fig. 4.16).

The cation might be expected to be resistant to oxidation, which requires removing

an electron from a low-lying p orbital (c1) and to be moderately readily reduced, as

this involves adding an electron to the nonbonding p orbital c2, a process that

should not be strongly favorable or unfavorable. The radical should be easier to

oxidize than the cation, for this requires removing an electron from a nonbonding,

rather than a lower-lying bonding, orbital, and the ease of reduction of the radical

should be roughly comparable to that of the cation, as both can accommodate an

electron in a nonbonding orbital. The anion should be oxidized with an ease

comparable to that of the radical (removal of an electron from the nonbonding

c2), but be harder to reduce (addition of an electron to the antibonding c3).

The cyclobutadiene system (Fig. 4.19c; cf. Fig. 4.17) can be envisaged with,

amongst others, two (the dication), four (the neutral molecule) and six p (the

dianion) electrons. The predictions one might make for these the behavior of

these three species toward redox reactions are comparable to those just outlined

for the propenyl cation, radical and anion, respectively (note the analogous occu-

pancy of bonding, nonbonding and antibonding orbitals). The neutral cyclobuta-

diene molecule is, however, predicted by the SHM to have an unusual electronic

arrangement for a diene: in filling the p orbitals, from the lowest-energy one up, one

puts electrons of the same spin into the degenerate c2 and c3 in accordance with

Hund’s rule of maximum multiplicity. Thus the SHM predicts that cyclobutadiene

will be a diradical, with two unpaired electrons of like spin. Actually, more

advanced calculations [39] indicate, and experiment confirms, that cyclobutadiene

is a singlet molecule with two single and two double C/C bonds. A square

cyclobutadiene diradical with four bond order 1.5 C/C bonds would distort to a

rectangular, closed-shell (i.e. no unpaired electrons) molecule with two single and

two double bonds (Fig. 4.20). This could have been predicted by augmenting the

SHM result with a knowledge of the phenomenon known as the Jahn–Teller effect

[40]: cyclic systems (and certain others) with an odd number of electrons in

degenerate (equal-energy) MOs will distort to remove the degeneracy.

What general pattern of molecular orbitals emerges from the SHM? Acyclic p
systems (ethene, the propenyl system, 1,3-butadiene, etc.), have MOs distributed

singly and evenly on each side of the nonbonding level; the odd-AO systems also

have one nonbonding MO (Fig. 4.21). Cyclic p systems (the cyclopropenyl system,

cyclobutadiene, the cyclopentadienyl system, benzene, etc.) have a lowest MO and

pairs of degenerate MOs, ending with one highest or a pair of highest MOs,

depending on whether the number of MOs is even or odd. The total number of

MOs is always equal to the number of basis functions, which in the SHM is, for

organic polyenes, the number of p orbitals (Fig. 4.21). The pattern for cyclic

systems can be predicted qualitatively simply by sketching the polygon, with one

vertex down, inside a circle (Fig. 4.22). If the circle is of radius 2|b| the energies can
even be calculated by trigonometry [41]. It follows from this pattern that cyclic

species (not necessarily neutral) with 2, 6, 10, ... p electrons have filled p MOs and

might be expected to show particular stability, analogously to the filled AOs of the
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unreactive noble gases (Fig. 4.23). The archetype of such molecules is, of course,

benzene, and the stability is associated with the general collection of properties

called aromaticity [17]. These results, which were first perceived by H€uckel [19]
(1931–1937), are summarized in a rule called the 4n + 2 rule or H€uckel’s rule,

although the 4n + 2 formulation was evidently actually due to Doering and Knox

(1954) [42]. This says that cyclic arrays of sp2-hybridized atoms with 4n + 2 p
electrons are characteristic of aromatic molecules; the canonical aromatic molecule

benzene with six p electrons corresponds to n ¼ 1. For neutral molecules with

formally fully conjugated perimeters this amounts to saying that those with an odd

number of C/C double bonds are aromatic and those with an even number are

antiaromatic (see Section 4.3.5.3).

H€uckel’s rule has been abundantly verified [17] notwithstanding the fact that the
SHM, when applied without regard to considerations like the Jahn–Teller effect

(see above) incorrectly predicts 4n species like cyclobutadiene to be triplet diradi-

cals. The H€uckel rule also applies to ions; for example, the cyclopropenyl system

two p electrons, the cyclopropenyl cation, corresponds to n ¼ 0, and is strongly

aromatic. Other aromatic species are the cyclopentadienyl anion (six p electrons, n
¼ 1; H€uckel predicted the enhanced acidity of cyclopentadiene) and the cyclohep-

tatrienyl cation. Only reasonably planar species can be expected to provide the AO

overlap need for cyclic electron delocalization and aromaticity, and care is needed

in applying the rule. Electron delocalization and aromaticity within the SHM have

recently been revisited [43].

Jahn-Teller-
type distotion

(pseudo-Jahn-Teller
distortion)

i.e.

bond order 1.5

square

bond order 1

bond order 2

rectangular
energy

nonbonding level

Fig. 4.20 Cyclic systems with degenerate energy levels tend to undergo a geometric distortion

to remove the degeneracy, a consequence of the Jahn–Teller theorem
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4.3.5.3 Resonance Energies

The SHM permits the calculation of a kind of stabilizing energy, or, more accu-

rately, an energy that reflects the stability of molecules. This energy is calculated by

comparing the total electronic energy of the molecule in question with that of a

reference compound, as shown below for the propenyl systems, cyclobutadiene,

and the cyclobutadiene dication.

cyclic species

nonbonding level

C5 C6 C7C4C3

0

acyclic species

nonbonding level

C2 C6C5C4C3

a-2b

a-b

a+b

a+2b

0

a-2b

a-b

a+b

a+2b

Fig. 4.21 The MO pattern for acyclic and cyclic p systems, as predicted by the simple H€uckel
method
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The propenyl cation, Fig. 4.19b; cf. Fig. 4.16. If we take the total p electronic

energy of a molecule to be simply the number of electrons in a p MO times the

energy level of the orbital, summed over occupied orbitals (a gross approximation,

as it ignores interelectronic repulsion), then for the propenyl cation

Epðprop: cationÞ ¼ 2ðaþ 1:414bÞ ¼ 2aþ 2:828b

We want to compare this energy with that of two electrons in a normal molecule

with no special features (the propenyl cation has the special feature of a formally

empty p orbital adjacent to the formal C/C double bond), and we choose neutral

ethene for our reference energy (Fig. 4.15)

EpðreferenceÞ ¼ 2ðaþ bÞ ¼ 2aþ 2b

The stabilization energy is then

E(stab, cation) ¼ Epðprop: cationÞ � EpðreferenceÞ
¼ ð2aþ 2:828 bÞ � ð2aþ 2bÞ ¼ 0:828b

nonbonding level,.. ..

a - b a - b
a  -  b

a - 2 b

a -  b

a + 2 b a + 2 b

a  +  b a + b

a + 2 b

a aa

a + 2 b

a – 2b
a – 1.618b

a  + 0.618 b a  + 0.618 b

a – 1.618 b

Fig. 4.22 A useful mnemonic for getting the simple H€uckel method pattern for cyclic p systems.

Setting the radius of the circle at 2|b|, the energy separations from the nonbonding level can even

be calculated by trigonometry
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a + 2 b
a + 2 b

a + 0.618 b

a – 1.618 b
a – 2 b
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a + 0.618 b

a + 2 b

a + b a + b
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a – 1.618 b
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++
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Fig. 4.23 H€uckel’s rule says that cyclic p systems with 4n þ 2 p electrons (n ¼ 0, 1, 2, . . .; 4n þ
2 ¼ 2, 6, 10, . . .) should be especially stable, since they have all bonding levels full and all

antibonding levels empty. The special stability is usually equated with aromaticity. Shown here are

the cyclopropenyl cation, the cyclobutadiene dication, the cyclopentadienyl anion, and benzene;

formal structures are given for these species – the actual molecules do not have single and double

bonds, but rather electron delocalization makes all C/C bonds the same
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Since b is negative, the p-electronic energy of the propenyl cation is calculated

to be below that of ethene: providing an extra, formally empty p orbital for the

electron pair causes the energy to drop. Actually, resonance energy is usually

presented as a positive quantity, e.g. “100 kJ mol�1”. We can interpret this as

100 kJ mol�1 below a reference system. To avoid a negative quantity in SHM

calculations like these, we can use |b| instead of b.
The propenyl radical, Fig. 4.16. The total p electronic energy by the SHM is

Epðprop: radicalÞ ¼ 2ðaþ 1:414bÞ þ a ¼ 3aþ 2:828b

For the reference energy we use one ethene molecule and one nonbonding

p electron (like the electron in a methyl radical):

EpðreferenceÞ ¼ ð2aþ 2bÞ þ a ¼ 3aþ 2b

The stabilization energy is then

E(stab, radical) ¼ Epðprop: radicalÞ � EpðreferenceÞ
¼ ð3aþ 2:828bÞ � ð3aþ 2bÞ ¼ 0:828b

The propenyl anion. An analogous calculation (cf. Fig. 4.16, with four electrons

for the anion) gives

E(stab anion) ¼ Epðprop: anionÞ � EpðreferenceÞ
¼ ð4aþ 2:828bÞ � ð4aþ 2bÞ ¼ 0:828b

Thus the SHM predicts that all three propenyl species will be lower in energy

than if the p electrons were localized in the formal double bond and (for the radical

and anion) in one p orbital. Because this lower energy is associated with the ability

of the electrons to spread or be delocalized over the whole p system, what we have

called E(stab) is often denoted as the delocalization energy, and designated ED.

Note that ER (resonance energy, or ED, delocalization energy) is always some

multiple of b (or is zero). Since electron delocalization can be indicated by the

familiar resonance symbolism the H€uckel delocalization energy is often equated

with resonance energy, and designated ER. The accord between calculated delocal-

ization and the ability to draw resonance structures is not perfect, as indicated by the

next example.

Cyclobutadiene (Fig. 4.17). The total p electronic energy is

EpðcyclobutadieneÞ ¼ 2ðaþ 2b) + 2 a ¼ 4aþ 4b

Using two ethene molecules as our reference system:

EpðreferenceÞ ¼ 2aþ 2b
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and so for E(stab) (¼ ED or ER) we get

E(stap, cyclobutadiene) ¼ EpðcyclobutadieneÞ � EpðreferenceÞ
¼ ð4aþ 4bÞ � ð4aþ 4bÞ ¼ 0

Cyclobutadiene is predicted by this calculation to have no resonance energy,

although we can readily draw two “resonance structures” exactly analogous to the

Kekulé structures of benzene. The SHM predicts a resonance energy of 2b for

benzene. Equating 2|b| with the commonly-quoted resonance energy of 150 kJ mol�1

(36 kcal mol�1) for benzene gives a value of 75 kJ mol�1 for |b|, but this should be

taken with more than a grain of salt, for outside a closely related series of

molecules, b has little or no quantitative meaning [44]. However, in contrast to

the failure of simple resonance theory in predicting aromatic stabilization (and

other chemical phenomena) [45], the SHM is quite successful.

The cyclobutadiene dication (cf. Fig. 4.17). The total p electronic energy is

EpðdicationÞ ¼ 2ðaþ 2bÞ ¼ 2aþ 4b

Using one ethene molecule as the reference:

EpðreferenceÞ ¼ 2aþ 2b

and so

E(stab, dication) ¼ EpðdicationÞ � EpðreferenceÞ
¼ ð2aþ 4bÞ � ð2aþ 2bÞ ¼ 2b

Thus the stabilization energy calculation agrees with the deduction from the

disposition of filled MOs (i.e. with the 4nþ 2 rule) that the cyclobutadiene dication

should be stabilized by electron delocalization, which is in some agreement with

experiment [46].

More sophisticated calculations indicate that cyclic 4n systems like cyclobuta-

diene (where planar; cyclooctatetraene, for example, is buckled by steric factors

and is simply an ordinary polyene) are actually destabilized by p electronic effects:

their resonance energy is not just zero, as predicted by the SHM, but less than zero.

Such systems are antiaromatic [17, 46].

4.3.5.4 Bond Orders

The meaning of this term is easy to grasp in a qualitative, intuitive way: an ideal

single bond has a bond order of one, and ideal double and triple bonds have bond

orders of two and three, respectively. Invoking Lewis electron-dot structures, one

might say that the order of a bond is the number of electron pairs being shared

between the two bonded atoms. Calculated quantummechanical bond orders should
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be more widely applicable than those from the Lewis picture, because electron pairs

are not localized between atoms in a clean pairwise manner; thus a weak bond, like

a hydrogen bond or a long single bond, might be expected to have a bond order of

less than one. However, there is no unique definition of bond order in computational

chemistry, because there seems to be no single, correct method to assign electrons

to particular atoms or pairs of atoms [47]. Various quantum mechanical definitions

of bond order can be devised [48], based on basis-set coefficients. Intuitively, these

coefficients for a pair of atoms should be relevant to calculating a bond order, since

the bigger the contribution two atoms make to the wavefunction (whose square is a

measure of the electron density; Section 4.2.6), the bigger should be the electron

density between them. In the SHM the order of a bond between two atoms Ai and Bj

is defined as

Bi;j ¼ 1þ
X
all occ

ncicj (4.70)

Here the 1 denotes the single bond of the ubiquitous spectator s bond framework,

which is taken as always contributing a s bond order of unity. The other term is the

p bond order; its value is obtained by summing over all the occupied MOs the

number of electrons n in each of these MOs times the product of the c’s of the two
atoms for each MO. This is illustrated in these examples:

Ethene. The occupied orbital is c1, which has 2 electrons), and the coefficients

of c1 and c2 for this orbital are 0.707, 0.707 (Eq. 4.66). Thus

Bi;j ¼ 1þ
X
all occ

ncicj ¼ 1þ 2ð0:707Þ0:707 ¼ 1þ 1:000 ¼ 2:000

which is reasonable for a double bond. The order of the s bond is 1 and that of the

p bond is 1.

The ethene radical anion. The occupied orbitals are c1, which has 2 electrons,

and c2, which has 1 electron; the coefficients of c1 and c2 for c1 are 0.707, 0.707

and for c2, 0.707, �0.707 (Eq. 4.66). Thus

Bi;j ¼ 1þ
X
all occ

ncicj ¼ 1þ 2ð0:707Þ0:707þ 1ð0:707Þð�0:707Þ

¼ 1þ 1� 0:500 ¼ 1:500

The p bond order of 0.500 (1.500 � s bond order) accords with two electrons in

the bonding MO and one electron in the antibonding orbital.

4.3.5.5 Atomic Charges

In an intuitive way, the charge on an atom might be thought to be a measure of the

extent to which the atom repels or attracts a charged probe near it, and to be
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measurable from the energy it takes to bring a probe charge from infinity up to near

the atom. However, this would tell us the charge at a point outside the atom, for

example a point on the van der Waals surface of the molecule, and the repulsive or

attractive forces on the probe charge would be due to the molecule as a whole.

Although atomic charges in molecules are generally considered to be experimen-

tally unmeasurable (but see Chapter 5, section 5.5.4, Charges and bond orders),
chemists find the concept very useful (thus calculated charges are used to parame-

terize molecular mechanics force fields – Chapter 3), and much effort has gone into

designing various definitions of atomic charge [48, 49]. Intuitively, the charge on an

atom should be related to the basis set coefficients of the atom, since the more the

atom contributes to a multicenter wavefunction (one with contributions from basis

functions on several atoms), the more it might be expected to lose electronic charge

by delocalization into the rest of the molecule (cf. the discussion of bond order

above). In the SHM the charge on an atom Ai is defined as (cf. Eq. 4.70)

qi ¼ 1�
X
all occ

nc2i (4.71)

The summation term is the charge density, and is a measure of the electronic

charge on the molecule due to the p electrons. For example, having no p electrons

(an empty p orbital, formally a cationic carbon) would mean a p electron charge

density of zero; subtracting this from unity gives a charge on the atom ofþ1. Again,

having two p electrons in a p orbital would mean a p electron charge density of 2 on

the atom; subtracting this from unity gives a charge on the atom of �1 (a filled

p orbital, formally an anionic carbon). The application of Eq. 4.71 will be illustrated

using methylenecyclopropene (Fig. 4.24).

4.3.5.6 Methylenecyclopropene

q1 ¼ 1�
X
all occ

nc21 ¼ 1� 2ð0:282Þ2 þ 2ð0:815Þ2
h i

¼ 1� 1:487 ¼ �0:487

q2 ¼ 1�
X
all occ

nc22 ¼ 1� 2ð0:612Þ2 þ 2ð0:254Þ2
h i

¼ 1� 0:878 ¼ 0:122

q3 ¼ q4 ¼ 1�
X
all occ

nc23 ¼ 1� 2ð0:523Þ2 þ 2ð�0:368Þ2
h i

¼ 1� 0:817 ¼ 0:182

The results of this charge calculation are summarized in Fig. 4.24; the negative

charge on the exocyclic carbon and the positive charges on the ring carbons are in

accord with the resonance picture (Fig. 4.24), which invokes a contribution from

the aromatic cyclopropenyl cation [50]. Note that the charges sum to (essentially)

zero, as they must for a neutral molecule (the hydrogens, which actually also carry
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charges, have been excluded from consideration here). A high-level calculation

places a total charge (carbon plus hydrogen) – albeit defined in a different way – of

�0.37 on the CH2 group and þ0.37 on the ring (cf. �0.487 and +0.487 for the

exocyclic carbon and the ring carbons in the SHM calculation).

There are many other applications of the SHM [21c, e] including fairly recent

and perhaps unexpected ones such as correlation with UV solvent shifts [51] and

even physicochemical properties [52].

4.3.6 Strengths and Weaknesses of the Simple
H€uckel Method

4.3.6.1 Strengths

The SHM has been extensively used to correlate, rationalize, and predict many

chemical phenomena, having been applied with surprising success to dipole

moments, ESR spectra, bond lengths, redox potentials, ionization energies, UV

and IR spectra, aromaticity, acidity/basicity, and reactivity, and specialized books

on the SHM should be consulted for details [21, 22]. The method will give probably

give some insight into any phenomenon that involves predominantly the p electron

systems of conjugated molecules. The SHM may have been underrated [53] and

reports of its death are probably exaggerated. However, the SHM is not used

very much in research nowadays, partly because more sophisticated p electron

–
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Fig. 4.24 The SHM charges on the atoms of a molecule can be calculated from the number of

electrons in each occupied MO and the coefficients of these MOs. The predicted dipolar nature of

methylenecyclopropene has been ascribed to a cyclopropenyl-cation-like resonance contributor
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approaches like the PPP method (Section 6.2.2) are available, but mainly because of

the phenomenal success of all-valence-electron semiempirical methods (Chapter 6),

which are applicable to quite large molecules, and of the increasing power of

all-electron ab initio (Chapter 5) and DFT (Chapter 7) methods.

4.3.6.2 Weaknesses

The defects of the SHM arise from the fact that it treats only p electrons, and these

only very approximately. The basic H€uckel method described here has been

augmented in an attempt to handle non-p substituents, e.g. alkyl groups, halogen

groups, etc., and heteroatoms instead of carbon. This has been done by treating the

substituents as p centers and embodying empirically altered values of a and b, so
that in the Fock matrix values other than �1 and 0 appear. However, the values of

these modified parameters that have been employed vary considerably [54], which

tends to diminish one’s confidence in their reliability.

The approximations in the SHM are its peremptory treatment of the overlap

integrals S (Section 4.3.4, discussion in connection with Eqs. 4.55), its drastic

truncation of the possible values of the Fock matrix elements into just a, b and

0 (Section 4.3.4, discussion in connection with Eqs. 4.61), its complete neglect of

electron spin, and its glossing over (although not exactly ignoring) interelectronic

repulsion by incorporating this into the a and b parameters.

The overlap integrals S are divided into just two classes:

Z
fi fjdv ¼ Sij ¼ 1 or 0

depending on whether the orbitals on the atoms i and j are on the same or

different atoms. This approximation, as explained earlier, reduces the matrix

form of the secular equations to standard eigenvalue form HC ¼ C« (Eq. 4.59),

so that the Fock matrix can (after giving its elements numerical values) be

diagonalized without further ado (the ado is explained in Section 4.4.1, in

connection with the extended H€uckel method). In the older determinant, as

opposed to matrix, treatment (Section 4.3.7), the approximation greatly simplifies

the determinants. In fact, however, the overlap integral between adjacent carbon

p orbitals is ca. 0.24 [55].

Setting the Fock matrix elements equal to just a, b and 0: Setting

Z
fi Ĥfjdv ¼ Hij ¼ a; b or 0

depending on whether the orbitals on the atoms i and j are on the same, adjacent or

further-removed atoms is an approximation, because all the Hii terms are not the

same, and all the adjacent-atom Hij terms are not the same either; these energies

depend on the environment of the atom in the molecule; for example, atoms in the
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middle of a conjugated chain should have different Hii and Hij parameters than ones

at the end of the chain. Of course, this approximation simplifies the Fock matrix

(or the determinant in the old determinant method, Section 4.3.7).

The neglect of electron spin and the deficient treatment of interelectronic

repulsion is obvious. In the usual derivation (Section 4.3.4): in Eq. 4.40 the

integration is carried out with respect to only spatial coordinates (ignoring spin

coordinates; contrast ab initio theory, Section 5.2), and in calculating p energies

(Section 4.3.5.3) we simply took the sum of the number of electrons in each

occupied MO times the energy level of the MO. However, the energy of an MO

is the energy of an electron in the MO moving in the force field of the nuclei and

all the other electrons (as pointed out in Section 4.3.4, in explaining the matrices

of Eqs. 4.55). If we calculate the total electronic energy by simply summing MO

energies times occupancy numbers, we are assuming, wrongly, that the electron

energies are independent of one another, i.e. that the electrons do not interact. An

energy calculated in this way is said to be a sum of one-electron energies. The

resonance energies calculated by the SHM can thus be only very rough, unless

the errors tend to cancel in the subtraction step, which in fact probably occurs to

some extent (this is presumably why the method of Hess and Schaad for

calculating resonance energies works so well [53]). The neglect of electron

repulsion and spin in the usual derivation of the SHM is discussed in reference

[30a].

4.3.7 The Determinant Method of Calculating the H€uckel c’s
and Energy Levels

An older method of obtaining the coefficients and energy levels from the secular

equations (Eqs. 4.49 for a two-basis-function system) utilizes determinants rather

than matrices. The method is much more cumbersome than the matrix diagonaliza-

tion approach of Section 4.3.4, but in the absence of cheap, readily-available

computers (matrix diagonalization is easily handled by a personal computer) its

erstwhile employment may be forgiven. It is outlined here because traditional

presentations of the SHM [21] use it.

Consider again the secular equations 4.49:

ðH11 � HS11Þc1 þ ðH12 � ES12Þc2 ¼ 0

ðH21 � HS21Þc1 þ ðH22 � ES22Þc2 ¼ 0

By considering the requirements for nonzero values of c1 and c2 we can find

how to calculate the c’s and the molecular orbital energies (since the coefficients are

weighting factors that determine how much each basis function contributes to the

MO, zero c’s would mean no contributions from the basis functions and hence no

MOs; that would not be much of a molecule). Consider the system of linear

equations
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A11x1 þ A12x2 ¼ b1

A21x1 þ A22x2 ¼ b2

Using determinants:

x1 ¼

b1 A12

b2 A22

�����
�����

D

x2 ¼

A11 b1

A21 b2

�����
�����

D

D ¼
A11 A12

A21 A22

�����
�����

where D is the determinant of the system.
If b1 ¼ b2 ¼ 0 (the situation in the secular equations), then in the equations

for x1 and x2 the numerator is zero, and so x1 ¼ 0/D and x2 ¼ 0/D. The only way

that x1 and x2 can be nonzero in this case is that the determinant of the system be

zero, i.e.

D ¼ 0

for then x1 ¼ 0/0 and x2 ¼ 0/0, and 0/0 can have any finite value; mathematicians

call it indeterminate. This is easy to see:

Let

0

0
¼ a

then

a� 0 ¼ 0

which is true for any finite value of a.
So for the secular equations the requirement that the c’s be nonzero is that the

determinant of the system be zero:

D ¼ H11 � ES11 H12 � ES12

H21 � ES21 H22 � ES22

�����
����� ¼ 0 (4.72)
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Equation 4.74 can be generalized to n basis functions (cf. the matrix of Eq. 4.62):

H11 � ES11 H12 � ES12 � � � H1n� ES1n

H21 � ES21 H22 � ES22 � � � H2n� ES2n

..

. ..
. � � � ..

.

Hn1 � ESn1 Hn2 � ESn2 � � � Hnn � ESnn

����������

����������
¼ 0 (4.73)

If we invoke the SHM simplification of orthogonality of the S integrals

(pp. 37–39), then Sii ¼ 1 and Sij ¼ 0 and Eq. 4.73 becomes

H11 � E H12 � � � H1n

H21 H22 � E � � � H2n

..

. ..
. � � � ..

.

Hn1 Hn2 � � � Hnn � E

����������

����������
¼ 0 (4.74)

Substituting a, b and 0 for the appropriate H’s (Eqs. 4.61a, b, c) we get

a� E b . . . 0

b a� E . . . 0

..

. ..
.

. . . ..
.

0 0 . . . a� E

����������

����������
¼ 0 (4.75)

The diagonal terms will always be a � E, but the placement of b and 0 will

depend on which i, j terms are adjacent and which are further-removed, which

depends on the numbering system chosen (see below). Since multiplying or divid-

ing a determinant by a number is equivalent to multiplying or dividing the elements

of one row or column by that number (Section 4.3.3), multiplying both sides of

Eq. 4.75 by 1/b n times, i.e. by (1/b)n gives

ð a� EÞ=b 1 . . . 0

1 ða� EÞ=b . . . 0

..

. ..
.

. . . ..
.

0 0 . . . ða� E Þ=b

����������

����������
¼ 0 (4.76)

Finally, if we define (a�E)/b ¼ x, we get

x 1 . . . 0

1 x . . . 0

..

. ..
.

. . . ..
.

0 0 . . . x

����������

����������
¼ 0 (4.77)
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The diagonal terms are always x but the off-diagonal terms, 1 for adjacent and

0 for nonadjacent orbital pairs, depend on the numbering (which does not affect the

results: Fig. 4.25). Any specific determinant of the type in Eq. 4.77 can be expanded

into a polynomial of order n (where the determinant is of order n � n), making

Eq. 4.77 yield polynomial equation:

xn þ a1x
n�1 þ a2x

n�2 þ � � � an ¼ 0 (4.78)

The polynomial can be solved for x and then the energy levels can be found from
(a � E)/b ¼ x, i.e. from

E ¼ a� bx (4.79)

The coefficients can then be calculated from the energy levels by substituting

the E’s into one of the secular equations, finding the ratio of the c’s, and normalizing

to get the actual c’s. An example will indicate how the determinant method can be

implemented.

Consider the propenyl system. In the secular determinant the i,i-type interactions
will be represented by x, adjacent i, j-type interactions by 1 and nonadjacent i, j-type
interactions by 0. For the determinantal equation we can write (Fig. 4.25)

1

23

1

2 x 1 0

1 x 1

0 1 x
3

x 1 1

1 x 0

1 0 x

= x 3 – 2x

= x 3 – 2x

x    1 1

1    x  1

1 1  x

1

2 3

Fig. 4.25 The determinants corresponding to different numbering patterns can seem to differ, but

on expansion they give the same polynomial
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x 1 0

1 x 1

0 1 x

�������
������� ¼ 0 (4.80)

(compare this with the Fock matrix for the propenyl system). Solving this equation

(see Section 4.3.3):

x 1 0

1 x 1

0 1 x

�������
������� ¼ x

x 1

1 x

�����
������ 1

1 1

0 x

�����
�����þ 1

1 x

0 1

�����
�����

¼ xðx2 � 1Þ � ðx� 0Þ þ 0 ¼ x3 � x� x ¼ x3 � 2x ¼ 0 (4.81)

This cubic can be factored (but in general polynomial equations require numeri-

cal approximation methods):

xðx2 � 2Þ ¼ 0 so x ¼ 0 and x2 � 2 ¼ 0 or x ¼ �p
2

From (a � E)/b ¼ x, E ¼ a � xb and

x ¼ 0 leads to E ¼ a

x ¼ þp
2 leads to E ¼ a�p

2b

x ¼ �p
2 leads to E ¼ aþp

2b

So we get the same energy levels as from matrix diagonalization (
ffip
2 ¼ 1.414).

To find the coefficients we substitute the energy levels into the secular equations;

for the propenyl system these are, projecting from the secular equations for a

two-orbital system, Eqs. 4.49:

ðH11 � ES11Þc1 þ ðH12 � ES12Þc2 þ ðH13 � ES13Þc3 ¼ 0

ðH21 � ES21Þc1 þ ðH22 � ES22Þc2 þ ðH23 � ES23Þc3 ¼ 0

ðH31 � ES31Þc1 þ ðHS32 � ES32Þc2 þ ðH33 � ES33Þc3 ¼ 0

(4.82)

These can be simplified (Eqs. 4.57, 4.61) to

ða� EÞc1 þ bc2 þ 0c3 ¼ 0

bc1 þ ða� EÞc2 þ bc3 ¼ 0

0c1 þ bc2 þ ða� EÞc3 ¼ 0

(4.83)

For the energy level E ¼ aþp
2b (MO level 1, c1), substituting into the first

secular equation we get
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�p
2bc11 þ bc21 ¼ 0; so c21=c11 ¼ p

2

(Recall the cij notation; c11 is the coefficient for atom 1 in c1, c21 is the

coefficient for atom 2 in c1, etc.). Substituting E ¼ a +
ffip
2b into the second

secular equation we get

� bc11 þ bc31 ¼ 0; so c11 ¼ c31

We now have the relative values of the c’s:

c11=c11 ¼ 1; c21=c11 ¼ p
2; c31=c11 ¼ 1 (4.84)

To find the actual values of the c’s, we utilize the fact that the MO (we are

talking about MO level 1, c1) must be normalized:Z
c2
1dv ¼ 1 (4.85)

Now, from the LCAO method

c1 ¼ c11 f1 þ c21 f2 þ c31 f3 (4.86)

Therefore

c2
1 ¼ c211 f2

1 þ c221 f
2
2 þ c231 f2

3 þ 2c11c21 f1 f2

þ 2c11c31 f1 f3 þ 2c21c31 f2 f3 (4.87)

So from Eq. 4.87, and recalling that in the SHM we pretend that the basis

functions f are orthonormal, i.e. that Sij ¼ dij, we getZ
c2
1dv ¼ c211 þ c221 þ c231 ¼ 1 (4.88)

Using the ratios of the c’s from Eq. 4.84:

c211
c211

þ c221
c211

þ c231
c211

¼ 1

c211

i.e.

12 þ
ffiffiffi
2

p
 �2
þ 12 ¼ 1

c211

and so

c11 ¼ 1

2
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and

c21 ¼
ffiffiffi
2

p
 �
c11 ¼ 1ffiffiffi

2
p

and

c31 ¼ c11 ¼ 1

By substituting into the secular equations 4.83 the E values for c2 and c3 we

could find the ratios of the c’s for c2 and c3 and with the aid of the orthonormaliza-

tion equation analogous to Eq. 4.88 we could get the actual values of c12, c22, c32
and c13, c23, and c33. Although this somewhat clumsy way of finding the c’s from
the energy levels was streamlined (see e.g. [21d]), the determinant method has been

replaced by matrix diagonalization implemented in a computer program.

4.4 The Extended H€uckel Method

4.4.1 Theory

In the simple H€uckel method, as in all modern molecular orbital methods, a Fock

matrix is diagonalized to give coefficients (which with the basis set give the wave-

functions of the molecular orbitals) and energy levels (i.e. molecular orbital energies).

The SHM and the extended H€uckel method (EHM, extended H€uckel theory, EHT)
differ in how the elements of the Fockmatrix are obtained and how the overlap matrix

is treated. The EHM was popularized and widely applied by Hoffmann28 [56],

although earlier work using the approach had been done byWolfsberg and Helmholz

[57]. We now compare point by point the SHM and the EHM.

4.4.1.1 Simple H€uckel Method

1. Basis set is limited to p orbitals. Each element of the Fock matrixH is an integral

that represents an interaction between two orbitals. The orbitals are in almost all

cases a set of p orbitals (usually carbon 2p) supplied by an sp2 framework, with

the p orbital axes parallel to one another and perpendicular to the plane of the

framework. In other words, the set of basis orbitals – the basis set – is limited (in

28Roald Hoffmann, born Zloczow, Poland, 1937. Ph.D. Harvard, 1962, Professor, Cornell. Nobel

Prize 1981(shared with Kenichi Fukui; Section 7.3.5) for work with organic chemist Robert B.

Woodward, showing how the symmetry of molecular orbitals influences the course of chemical

reactions (the Woodward–Hoffmann rules or the conservation of orbital symmetry). Main expo-

nent of the extended H€uckel method. He has written poetry, and several popular books on

chemistry.
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the great majority of cases) to pz orbitals (taking the framework plane, i.e. the

molecular plane, to be the xy plane).
2. Orbital interaction energies are limited to a, b and 0. The Fock matrix orbital

interactions are limited to a, b and 0, depending on whether the Hij interaction is,

respectively i,i, adjacent, or further-removed. The value of b does not vary

smoothly with the separation of the orbitals, although logically it should

decrease continuously to zero as the separation increases.

3. Fock matrix elements are not actually calculated. The Fock matrix elements are

not any definite physical quantities, but rather energy levels relative to a in units
of |b|, making them 0 or �1. One can try to estimate a and b, but the SHM does

not define them quantitatively.

4. Overlap integrals are limited to 1 or 0. We pretend that the overlap matrix S is a

unit matrix, by setting Sij¼ dij. This enables us to simplifyHC¼ SC« (Eq. 4.54)

to the standard eigenvalue formHC¼ C« (Eq. 4.59) and soH ¼ C«C�1, which

is the same as saying that the SHM Fock matrix is directly diagonalized to give

the c’s and e’s.

Now compare these four points with the corresponding features of the EHM:

4.4.1.2 Extended H€uckel Method

1. All valence s and p orbitals are used in the basis set. As in the SHM each

element of the Fock matrix is an integral representing an interaction between

two orbitals; however, in the EHM the basis set is not just a set of 2pz orbitals but
rather the set of valence-shell orbitals of each atom in the molecule (the deriva-

tion of the secular equations says nothing about what kinds of orbitals we are

considering). Thus each hydrogen atom contributes a 1s orbital to the basis set

and each carbon atom a 2s and three 2p orbitals. Lithium and beryllium,

although they have no 2p electrons, are assigned a 2s and three 2p orbitals

(experience shows that this works better than omitting these basis functions) so

the atoms from lithium to fluorine each contribute a 2s and three 2p orbitals. A

basis set like this, which uses the normal valence orbitals of atoms, is called a

minimal valence basis set.
2. Orbital interaction energies are calculated and vary smoothly with geometry.

The EHM Fock matrix orbital interactions Hij are calculated in a way that

depends on the distance apart of the orbitals, so their values vary smoothly

with orbital separation.

3. Fock matrix elements are actually calculated. The EHM Fock matrix elements

are calculated from well-defined physical quantities (ionization energies) with

the aid of well-defined mathematical functions (overlap integrals), and so are

closely related to ionization energies and have definite quantitative values.

4. Overlap integrals are actually calculated. We do not in effect ignore the overlap

matrix, i.e. we do not set it equal to a unit matrix. Instead, the elements of the

overlap matrix are calculated, each Sij depending on the distance apart of the
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atoms i and j, which has the important consequence that the S values depend on

the geometry of the molecule. Since S is not taken as a unit matrix, we cannot go

directly from HC ¼ SC« to HC ¼ C« and thus we cannot simply diagonalize

the EHM Fock to get the c’s and e’s.

These four points are elaborated on below.

1. Use of a minimal valence basis set in the EHM is more realistic than treating just

the 2pz orbitals, since all the valence electrons in a molecule are likely to be

involved in determining its properties. Further, the SHM is largely limited to p
systems, i.e. to alkenes and aromatics and derivatives of these with attached p
electron groups, but the EHM, in contrast, can in principle be applied to any

molecule. The use of a minimal valence basis set makes the Fock matrix much

larger than in the “corresponding” SHM calculation. For example in an

SHM calculation on ethene, only two orbitals are used, the 2pz on C1 and the

2pz on C2, and the SHM Fock matrix is (using the compact Dirac notation

fi Ĥ
�� ��fj

D E
¼ R fiĤfjdv

�

HðSHMÞ ¼
C1ð2pzÞjĤjC1ð2pzÞ
� 


C1ð2pzÞjĤjC2ð2pzÞ
� 


C2ð2pzÞjĤjC1ð2pzÞ
� 


C2ð2pzÞjĤjC2ð2pzÞ
� 


 !

¼ 0 �1

�1 0

� �
2 � 2 matrix

(4.89)

To write down the EHM Fock matrix, let us label the valence orbitals like this:

H1ð1sÞ f1 C1ð2sÞ f5 C1ð2pxÞ f7 C1ð2pyÞ f9 C1ð2pxÞ f11

H2ð1sÞ f2 C2ð2sÞ f6 C2ð2pxÞ f8 C2ð2pyÞ f10 C2ð2pzÞ f12

H3ð1sÞ f3

H4ð1sÞ f4

Then

HðEHMÞ ¼

f1jĤjf1

� 

f1jĤjf2

� 

. . . f1jĤjf12

� 

f2jĤjf1

� 

f2jĤjf2

� 

. . . f2jĤjf12

� 

..
. ..

.
. . . ..

.

f12jĤjf1

� 

f12jĤjf2

� 

. . . f12jĤjf12

� 


0
BBBBBBB@

1
CCCCCCCA

12 � 12 matrix

(4.90)
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The SHM and EHM basis sets are shown in Fig. 4.26.

2. The EHM Fock matrix interactions i,j do not have just two values (a or b) as
in the SHM, but are functions of the orbitals (the basis functions) fi and fj and

of the separation of these orbitals, as explained in (3) below.

3. The EHM matrix elements fiĤfi

� 

and fiĤfj

D E
are calculated (rather than set

equal to 0 or�1), although the calculation is a simple one using overlap integrals

and experimental ionization energies; in ab initio calculations (Chapter 5) and

more advanced semiempirical calculations (Chapter 6), the mathematical form

of Ĥ taken into account. The i,i-type interactions are taken as being proportional
to the negative of the ionization energy [58] of the orbital fi and the i,j-type
interactions as being proportional to the overlap integral between fi and fj and

the negative of the average of the ionization energies Ii and Ij of fi and fj (the

negative of the orbital ionization energy is the energy of an electron in the

orbital, compared to the zero of energy of the electron and the ionized species

infinitely separated and at rest):

fiĤfi

� 
 ¼ �Ii (4.91)

fiĤfj

D E
¼ � 1

2
KSijðIi þ IjÞ (4.92)

A proportionality constant K of about 2 is commonly used.

For H(1s), C(2s) and C(2p), experiment shows

I H(1s)ð Þ ¼ 13:6 eV, I C(2s)ð Þ ¼ 20:8 eV, I C(2p)ð Þ ¼ 11:3 eV (4.93)

The overlap integrals are calculated using Slater-type (Section 5.3.2) functions

for the basis functions, e.g.

C C

H

H H

H

C C

The simple Hückel method basis set for ethene.
Each carbon has one 2p basis function.
C2H4 has two basis functions

The extended Hückel method basis set for ethene.
Each carbon has one 2s and three 2p basis functions.
Each H has one 1s basis function.
C2H4 has 12 basis functions.

H

H H

H

Fig. 4.26 The simple H€uckel method normally uses only one basis function per “heavy atom”:

only one 2p orbital on each carbon, oxygen, nitrogen, etc., ignoring the hydrogens. The extended

H€uckel method uses for each carbon, oxygen, nitrogen, etc., a 2s and three 2p orbitals, and for each
hydrogen a 1s orbital. This is called a minimal valence basis set
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fð1sÞ ¼ z31
p

� �1
2

exp �z1 r� R1sj jð Þ (4.94)

fð2sÞ ¼ z52
96p

� �1
2

r� R2sj j exp �z2 r� R2s1j j
2

� �
(4.95)

where the parameters z depend on the particular atom (H, C, etc.) and orbital

(1s, 2s, etc.). The variable r � R is the distance of the electron from the atomic

nucleus on which the function is centered; r is the vector from the origin of the

Cartesian coordinate system to the electron, and R is the vector from the origin

to the nucleus on which the basis function is centered:

r� RAj j ¼ ðx� xAÞ2 þ ðy� yAÞ2 þ ðz� zAÞ2
h i1

2

(4.96)

where (xA, yA, zA) are the coordinates of the nucleus bearing the Slater function.
The Slater function is thus a function of three variables x,y,z and depends

parametrically on the location (xA, yA, zA) of the nucleus A on which it is

centered. The Fock matrix elements are thus calculated with the aid of overlap

integrals whose values depend the location of the basis functions; this means that

the molecular orbitals and their energies will depend on the actual geometry used

in the input, whereas in a simple H€uckel calculation, the MOs and their energies

depend only on the connectivity of the molecule).

4. The overlap matrix S in the EHM is not simply treated as a unit matrix, in effect

ignoring it, for the purpose of diagonalizing the Fock matrix. Rather, the overlap

integrals are actually evaluated, not only to help calculate the Fock elements,

but also to reduce the equation HC ¼ SC« to the standard eigenvalue form

HC ¼ C«. This is done in the following way. Suppose the original set of basis

functions {fi} could be transformed by some process into an orthonormal set
{f0

i} (since atom-centered basis functions can’t be orthogonal, as explained in

Section 4.3.4, the new set must be delocalized over several centers and is in fact

a linear combination of the atom-centered set) such that with a new set of

coefficients c0 we have LCAO molecular orbitals with the same energy levels

as before, i.e.

S0ij ¼
Z

f0
if

0
jdv ¼ dij (4.97)

where dij is the Kronecker delta (Eq. 4.57). The result of the process referred to

above is

HC ¼ SC« ����!Process
H0 C0 ¼ S0 C0 « (4.98)
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(«, not «0, as the energy will not depend on manipulation of a given set of basis

functions) where the matrices H, C, S and « were defined in Section 4.3.4

(Eqs. 4.55) and H0 and S0 are analogous to H and S with f0 in place of f and C0

is the matrix of coefficients c0 that satisfies the equation with the energy levels e (the
elements of «) being the same as in the original equation HC ¼ SC«. Since from

Eq. 4.97 S0 ¼ 1, the unit matrix (Section 4.3.3), Eq. 4.98 simplifies to

HC ¼ SC« ����!Process
H0 C0 ¼ C0 « (4.99)

The Process that effects the transformation is called orthogonalization, since the
result is to make the basis functions orthogonal. The favored orthogonalization

procedure in computational chemistry, which I will now describe, is L€owdin
orthogonalization (after the quantum chemist Per-Olov L€owdin).

Define a matrix C0 such that

C0 ¼ S1=2C i.e: C ¼ S�1=2C0 (4.100)

(By multiplying on the left by S
�1/2 and noting that S�1/2

S
1/2 ¼ S

0 ¼ 1).

Substituting Eq. 4.100 into HC ¼ SC« and multiplying on the left by S�1/2

we get

S�1=2HS�1=2C0 ¼ S�1=2SS�1=2C0e (4.101)

Let

S�1=2HS�1=2 ¼ H0 (4.102)

and note that S�1=2SS�1=2 ¼ S1=2S�1=2 ¼ 1

Then we have from Eqs. 4.101 and 4.102

H0C0 ¼ 1C0e

i.e.

H0C0 ¼ C0e (4.103)

Thus the orthogonalizing process of Eq. 4.99 (or rather one possible orthogonal-

ization process, L€owdin orthogonalization) is the use of an orthogonalizing matrix
S�1/2 to transform H by pre- and postmultiplication (Eq. 4.102) into H0.H0 satisfies
the standard eigenvalue equation (Eq. 4.103), so
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H0 ¼ C0eC
0�1 (4.104)

In other words, using S�1/2 we transform the original Fock matrix H, which is

not directly diagonalizable to eigenvector and eigenvalue matrices C and «, into a

related matrixH0 which is diagonalizable to eigenvector and eigenvalue matricesC0

and «. The matrix C0 is then transformed to the desired C by multiplying by S
�1/2

(Eq. 4.100). So without using the drastic S ¼ 1 approximation we can use matrix

diagonalization to get the coefficients and energy levels from the Fock matrix.

The orthogonalizing matrix S�1/2 is calculated from S: the integrals S are

calculated and assembled into S, which is then diagonalized:

S ¼ PDP�1 (4.105)

Now it can be shown that any function of a matrix A can be obtained by taking

the same function of its corresponding diagonal alter ego and pre- and postmulti-

plying by the diagonalizing matrix P and its inverse P�1:

f ðAÞ ¼ Pf ðDÞP�1 (4.106)

and diagonal matrices have the nice property that f(D) is the diagonal matrix whose

diagonal element i,,j ¼ f(element i,j of D). So the inverse square root of D is the

matrix whose elements are the inverse square roots of the corresponding elements

of D. Therefore

S�1=2 ¼ PD�1=2P�1 (4.107)

and to find D�1/2 we (or rather the computer) simply take the inverse square root of

the diagonal (i.e. the nonzero) elements of D. To summarize: S is diagonalized to

give P, P�1 and D, D is used to calculate D�1/2, then the orthogonalizing matrix

S�1/2 is calculated (Eq. 4.107) from P, D�1/2 and P�1. The orthogonalizing matrix

is then used to convert H to H0 (Eq. 4.102), which can be diagonalized to give the

eigenvalues and the eigenvectors (Section 4.4.2).

4.4.1.3 Review of the EHM Procedure

The EHM procedure for calculating eigenvectors and eigenvalues, i.e. coefficients

(or in effect molecular orbitals – the c’s along with the basis functions comprise the

MOs) and energy levels, bears several important resemblances to that used in more

advanced methods (Chapters 5 and 6) and so is worth reviewing.

1. An input structure (a molecular geometry) must be specified and submitted to

calculation. The geometry can be specified in Cartesian coordinates (probably

the usual way nowadays) or as bond lengths, angles and dihedrals (internal
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coordinates), depending on the program. In practice a virtual molecule would

likely be created with an interactive model-building program (usually by click-

ing together groups and atoms) which would then supply the EHM program with

either Cartesian or internal coordinates.

2. The EHM program calculates the overlap integrals S and assembles the overlap

matrix S.

3. The program calculates the Fock matrix elements Hij ¼ fijĤjfj

D E
(Eqs. 4.91

and 4.92) using stored values of ionization energies I, the overlap integrals S,
and the proportionality constant K of that particular program. The matrix ele-

ments are assembled into the Fock matrix H.

4. The overlap matrix is diagonalized to give P, D and P�1 (Eq. 4.105) and D�1/2 is

then calculated by finding the inverse square roots of the diagonal elements ofD.

The orthogonalizing matrix S�1/2 is then calculated from P, D�1/2 and P�1

(Eq. 4.107).

5. The Fock matrixH in the atom-centered nonorthogonal basis {f} is transformed

into the matrix H0 in the delocalized, linear combination orthogonal basis {f0}
by pre- and postmultiplying H by the orthogonalizing matrix S�1/2 (Eq. 4.102).

6. H0 is diagonalized to give C0, « and C0�1 (Eq. 4.104). We now have the energy

levels e (the diagonal elements of the « matrix).

7. C0 must be transformed to give the coefficients c of the original, atom-centered

set of basis functions {f} in the MOs (i.e. to convert the elements c0 to c). To get
the c’s in the MOs cj ¼ c1jf1 þ c2jf2 þ. . . , we transform C0 to C by

premultiplying by S�1/2 (Eq. 4.100).

4.4.1.4 Molecular Energy and Geometry Optimization in the Extended

H€uckel Method

Steps 1–7 take an input geometry and calculate its energy levels (the elements of « )

and their MOs or wavefunctions (the c’s; from the c’s, the elements of C, and the

basis functions f). Now, clearly any method in which the energy of a molecule

depends on its geometry can in principle be used to find minima and transition states

(see Chapter 2). This brings us to the matter of how the EHM calculates the energy

of a molecule. The energy of a molecule, that is, the energy of a particular nuclear

configuration on the potential energy surface, is the sum of the electronic energies

and the internuclear repulsions (Eelectronic þ VNN).

In comparing the energies of isomers, or of two geometries of the same mole-

cule, one should, strictly, compare Etotal ¼ Eelectronic þ VNN. The electronic energy

is the sum of kinetic energy and potential energy (electron–electron repulsion and

electron–nucleus attraction) terms. The internuclear repulsion, due to all pairs of

interacting nuclei and trivial to calculate, is usually represented by V, a symbol for

potential energy. The EHM ignores VNN. Furthermore, the method calculates elec-

tronic energy simply as the sum of one-electron energies (Section 4.4.4.2, Weak-

nesses), ignoring electron–electron repulsion. Hoffmann’s tentative justification
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[56a] for ignoring internuclear repulsion and using a simple sum of one-electron

energies was that when the relative energies of isomers are calculated, by subtract-

ing two values of Etotal, the electron repulsion and nuclear repulsion terms approxi-

mately cancel, i.e. that changes in energy that accompany changes in geometry are

due mainly to alterations of the MO energy levels. Actually, it seems that the (quite

limited) success of the EHM in predicting molecular geometry is due to the fact that

Etotal is approximately proportional to the sum of the occupied MO energies; thus

although the EHM energy difference is not equal to the difference in total energies,

it is (or tends to be) approximately proportional to this difference [59]. In any case,

the real strength of the EHM lies in the ability of this fast and widely applicable

method to assist chemical intuition, if provided with a reasonable molecular

geometry.

4.4.2 An Illustration of the EHM: the Protonated Helium
Molecule

Protonation of a helium atom gives He–H+, the helium hydride cation, the simplest

heteronuclear molecule [60]. Conceptually, of course, this can also be formed by

the union of a helium dication and a hydride ion, or a helium cation and a hydrogen

atom:

He: þ Hþ ! He:Hþ

or He2þ þ :H� ! He:Hþ

or Heþ
 þ 
H ! He:Hþ

Its lower symmetry makes this molecule better than H2 for illustrating molecular

quantum mechanical calculations (most molecules have little or no symmetry).

Following the prescription in points 1–7:

1. Input structure

We choose a plausible bond length: 0.800 Å (the H–H bond length is 0.742 Å

and the H–X bond length is ca. 1.0 Å, where X is a “first-row” element

(in quantum chemistry, first-row means Li to F, not H and He). The Cartesian

coordinates could be written H1(0,0,0), He2(0,0, 0.800).

2. Overlap integrals and overlap matrix

The minimal valence basis set here consists of the hydrogen 1s orbital (f1) and

the helium 1s orbital (f2). The needed integrals are S11 ¼ S22 and S12 ¼ S21,
where Sij ¼

Ð
fi fjdv. The Slater functions for f1 and f2 are [61]

f1ðH1sÞ ¼
z3
H

p

 !1=2

e�zHjr�RHj (4.108)
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and

f2ðHe1sÞ ¼
z3
He

p

 !1=2

e�zHjr�RHej (4.109)

Reasonable values [60] are zH ¼ 1.24 Bohr�1 and zHe ¼ 2.0925 Bohr�1, if r is in
atomic units, a.u. (see Section 5.2.2); 1 a.u.¼ 0.5292 Å. The overlap integrals are

S11 ¼ S22 ¼ 1 (as must be the case if f1 and f2 are normalized)

and S12 ¼ S21 ¼ 0.435 (for all well-behaved functions
R
f1f2dq ¼ R f2f1dq).

The overlap matrix is thus

S ¼ 1 0:435
0:435 1

� �
(4.110)

3. Fock matrix

We need the matrix elements H11 ¼ H22 and H12 ¼ H21, where the integrals

Hij ¼ <fijĤjfj> are not actually calculated from first principles but rather are

estimated with the aid of overlap integrals and orbital ionization energies:

fijĤjfi

� 
 ¼ �Ii

fijĤjfj

D E
¼ � 1

2
KSijðIi þ IjÞ

Using simply the ionization energies [cf. 58]:

IðHÞ ¼ I1 ¼ 13:6 eV, IðHeÞ ¼ I2 ¼ 24:6 eV

Hoffmann used in his initial calculations [56a] K ¼ 1.75.

So

H11 ¼ 13:6 eV

H12 ¼ H21 ¼ �1=2ð1:75Þð0:435Þð13:6þ 24:6Þ ¼ �14:5

H22 ¼ �24:6

And the Fock matrix is

H ¼ �13:6 �14:5
�14:5 �24:6

� �
(4.111)
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4. Orthogonalizing matrix

As explained above, we (a) diagonalize S, (b) calculate D�1/2, then (c) calculate

the orthogonalizing matrix S�1/2:

(a) Diagonalize S

S¼ 1 0:435

0:435 1

� �
¼ 0:707 0:707

0:707 �0:707

� �
1:435 0

0 0:565

� �
0:707 0:707

0:707 �0:707

� �
P D P�1

(4.112)

(b) Calculate D�1/2

D�1=2 ¼ 1:435�1=2 0

0 0:565�1=2

� �
¼ 0:835 0

0 1:330

� �
(4.113)

(c) Calculate the orthogonalizing matrix S�1/2

S�1=2¼ 0:707 0:707

0:707 �0:707

� �
0:835 0

0 1:330

� �
0:707 0:707

0:707 �0:707

� �
¼ 1:083 �0:248

�0:248 1:083

� �
P D�1=2 P�1

(4.114)

5. Transformation of the original Fock matrix H to H0

Using Eq. 4.102:

H0¼ 1:083 �0:248

�0:248 1:083

� � �13:6 �14:5

�14:5 �24:6

� �
1:083 �0:248

�0:248 1:083

� �
¼ �9:67 �7:65

�7:68 �21:74

� �
S�1=2 H S�1=2

(4.115)

6. Diagonalization of H0

From Eq. 4.104 (H0 ¼ C0«C0�1), diagonalization of H0 gives an eigenvector

matrix C0 and the eigenvalue matrix «; the columns of C0 are the coefficients of
the transformed, orthonormal basis functions:

H0 ¼ �9:67 �7:65

�7:68 �21:74

� �
¼ 0:436 0:899

0:900 �0:437

� � �25:5 0

0 �5:95

� �
0:436 0:900

0:899 �0:437

� �
C0 e C0�1

(4.116)
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We now have the energy levels (�25.5 and �5.95 eV), but the eigenvectors

of C0 must be transformed to give us the coefficients of the original, nonortho-

gonal basis functions.

7. Transformation of C0 to C

Using Eq. 4.100, ( C ¼ S�1/2C0):

C ¼ 1:083 �0:248

�0:248 1:083

� �
0:436 0:899

0:900 �0:437

� �
¼ 0:249 1:082

0:867 �0:696

� �
S�1=2 C0

(4.117)

Note that unlike the case in the SHM, the sum of the squares of the c’s for an MO

does not equal 1, since overlap integrals Sij for basis functions on different atoms

are not set equal to 0; in other words, the basis functions are not assumed to be

orthogonal, and the overlap matrix is not a unit matrix. Thus for c1:

c1 ¼ c1f1 þ c2f2; soZ
c2
1dv ¼

Z
c21f

2
1 þ 2c1c2f1 f2 þ c22 f

2
2

� 	
dv ¼ 1

since the probability of finding an electron in c1 somewhere in space is 1. The basis

functions f are normalized, so

c21 þ 2c1c2S12 þ c22 ¼ 1; i.e:

c21 þ c22 ¼ 1� 2c1c2S12

not ¼ 1 as on the simple H€uckel method.

4.4.3 The Extended H€uckel Method – Applications

The EHM was initially applied to the geometries (including conformations) and

relative energies of hydrocarbons [56a], but the calculation of these two basic

chemical parameters is now much better handled by semiempirical methods like

AM1 and PM3 (Chapter 6) and by ab initio (Chapter 5) and DFT (Chapter 7)

methods. The main use of the EHM nowadays is to study large, extended systems

[62] like polymers, solids and surfaces. Indeed, of four papers by Hoffmann and

coworkers in the Journal of the American Chemical Society in 1995, using the

EHM, three applied it to such polymeric systems [63]. The ability of the method to

illuminate problems in solid-state science makes it useful to physicists. Even when

not applied to polymeric systems, the EHM is frequently used to study large,

4.4 The Extended H€uckel Method 163



heavy-metal-containing molecules [64] that might not be very amenable to ab initio

or to other semiempirical approaches (see Chapter 8, Section 8.3.4).

4.4.4 Strengths and Weaknesses of the Extended H€uckel Method

4.4.4.1 Strengths

One big advantage of the EHM over ab initio methods (Chapter 5), more elaborate

semiempirical methods (Chapter 6), and density functional theory (DFT) methods

(Chapter 7), is that the EHM can be applied to very large systems, and can treat

almost any element since the only element-specific parameter needed is an ioniza-

tion energy, which is usually available. In contrast, more elaborate semiempirical

methods have not been parameterized for as many elements (although recent para-

meterizations of PM3 and MNDO for transition metals make these much more

generally useful than hitherto – Section 6.2.6.7). For ab initio and DFT methods,

basis sets may not be available for elements of interest, and besides, ab initio and

even DFT methods are hundreds of times slower than the EHM and thus limited to

much smaller systems. The applicability of the EHM to large systems and a wide

variety of elements is one reason why it has been extensively applied to polymeric

and solid-state structures. The EHM is faster than more elaborate semiempirical

methods because calculation of the Fock matrix elements is so simple and because

this matrix needs to be diagonalized only once to yield the eigenvalues and

eigenvectors; in contrast, semiempirical methods like AM1 and PM3 (Chapter 6),

as well as ab initio calculations, require repeated matrix diagonalization because the

Fockmatrix must be iteratively refined in the SCF procedure (e.g. Section 5.2.3.6.5).

The spartan reliance of the EHM on empirical parameters helps to make it

relatively easy (in the right hands) to interpret its results, which depend, in the

last analysis, only on geometry (which affects overlap integrals) and ionization

energies. With a strong dose of chemical intuition this has enabled the method to

yield powerful insights, such as counterintuitive orbital mixing [65], and the very

powerful Woodward–Hoffmann rules [38].

The applicability to large systems, including polymers and solids, containing

almost any kind of atom, and the relative transparency of the physical basis of the

results, are the main advantages of the EHM.

Surprisingly for such a conceptually simple method, the EHM has a theoreti-

cally-based advantage over otherwise more elaborate semiempirical methods like

AM1 and PM3, in that it treats orbital overlap properly: those other methods use the

“neglect of differential overlap” or NDO approximation (Section 6.2), meaning that

they take Sij ¼ dij, as in the simple H€uckel method. This can lead to superior results

from the EHM [66].

The EHM is a very valuable teaching tool because it follows straightforwardly

from the simple H€uckel method yet uses overlap integrals and matrix orthogonali-

zation in the same fashion as the mathematically more elaborate ab initio method.

164 4 Introduction to Quantum Mechanics in Computational Chemistry



Finally, the EHM, albeit more elaborately parameterized than in its original

incarnation, has been claimed to offer some promise as a serious competitor to

the very useful and popular semiempirical AM1 method (Section 6.2.5.5) for

calculating molecular geometries [67].

4.4.4.2 Weaknesses

The weaknesses of the standard EHM probably arise at least in part from the fact

that it does not (contrast the ab initio method, Chapter 5) take into account electron

spin or electron–electron repulsion, ignores the fact that molecular geometry is

partly determined by internuclear repulsion, and makes no attempt to overcome

these defects by parameterization (unlike the variation which, with the aid of

careful parameterization, has been claimed to give good geometries [67]).

The standard EHM gives, by and large, poor geometries and energies. Although

it predicts a C–H bond length of ca. 1.0 Å, it yields C/C bond lengths of 1.92, 1.47

and 0.85 Å for ethane, ethene and ethyne, respectively, cf. the actual values of 1.53,

1.33 and 1.21 Å, and although the favored conformation of an alkane is usually

correctly identified, the energy barriers and differences are generally at best in only

modest agreement with experiment. Because of this inability to reliably calculate

geometries, EHM calculations are usually not used for geometry optimizations,

but rather utilize experimental geometries.

4.5 Summary

This chapter introduces the application of quantum mechanics (QM) to computa-

tional chemistry by outlining the development of QM up to the Schr€odinger
equation and then showing how this equation led to the simple H€uckel method,

from which the extended H€uckel method followed.

QM teaches, basically, that energy is quantized: absorbed and emitted in discrete

packets (quanta) of magnitude hn, where h is Planck’s constant and n (Greek nu)
is the frequency associated with the energy. QM grew out of studies of blackbody

radiation and of the photoelectric effect. Besides QM, radioactivity and relativity

contributed to the transition from classical to modern physics. The classical

Rutherford nuclear atom suffered from the deficiency that Maxwell’s electro-

magnetic theory demanded that its orbiting electrons radiate away energy and

swiftly fall into the nucleus. This problem was countered by Bohr’s quantum

atom, in which an electron could orbit stably if its angular momentum was an

integral multiple of h/2p. However, the Bohr model contained several ad hoc fixes

and worked only for the hydrogen atom. The deficiencies of the Bohr atom were

surmounted by Schr€odinger’s wave mechanical atom; this was based on a combi-

nation of classical wave theory and the de Broglie postulate that any particle is
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associated with a wavelength l¼ h/p, where p is the momentum. The four quantum

numbers follow naturally from the wave mechanical treatment and the model does

not break down for atoms beyond hydrogen.

H€uckel was the first to apply QM to species significantly more complex than the

hydrogen atom. The H€uckel approach is treated nowadays within the framework of

the concept of hybridization: the p electrons in p orbitals are taken into account and
the s electrons in an sp2 framework are ignored. Hybridization is a purely mathe-

matical convenience, a procedure in which atomic (or molecular) orbitals are

combined to give new orbitals; it is analogous to the combination of simple vectors

to give new vectors (an orbital is actually a kind of vector).

The simple H€uckel method (SHM, simple H€uckel theory, SHT, H€uckel molecu-

lar orbital method, HMO method) starts with the Schr€odinger equation in the form

Ĥc ¼ Ec where Ĥ is a Hamiltonian operator, c is a MO wavefunction and E is the

energy of the system (atom or molecule). By expressing c as a linear combination

of atomic orbitals (LCAO) and minimizing E with respect to the LCAO coefficients

one obtains a set of simultaneous equations, the secular equations. These are

equivalent to a single matrix equation, HC ¼ SC«; H is an energy matrix, the

Fock matrix, C is the matrix of the LCAO coefficients, S is the overlap matrix and

« is a diagonal matrix whose nonzero, i.e. diagonal, elements are the MO energy

levels. The columns of C are called eigenvectors and the diagonal elements of « are

called eigenvalues. By the drastic approximation S ¼ 1 (1 is the unit matrix), the

matrix equation becomes HC ¼ C«, i.e. H ¼ C« C�1 which is the same as saying

that diagonalization ofH givesC and «, i.e. gives the MO coefficients in the LCAO,

and the MO energies. To get numbers for H the SHM reduces all the Fock matrix

elements to a (the coulomb integral, for AOs on the same atom) and b (the bond

integral or resonance integral, for AOs not on the same atom; for nonadjacent atoms

b is set ¼ 0). To get actual numbers for the Fock elements, a and b are defined as

energies relative to a, in units of |b|; this makes the Fock matrix consist of just 0’s

and �1’s, where the 0’s represent same-atom interactions and nonadjacent-atom

interactions, and the �1’s represent adjacent-atom interactions. The use of just two

Fock elements is a big approximation. The SHM Fock matrix is easily written down

just by looking at the way the atoms in the molecule are connected.

Applications of the SHM include predicting:

The nodal properties of the MOs, very useful in applying the Woodward–Hoffmann

rules.

The stability of a molecule based on its filled and empty MOs, and its delocalization

energy or resonance energy, based on a comparison of its total p-energy with

that of a reference system. The pattern of filled and empty MOs led to H€uckel’s
rule (the 4n þ 2 rule) which says that planar molecules with completely

conjugated p orbitals containing 4n þ 2 electrons should be aromatic.

Bond orders and atom charges, which are calculated from the AO coefficients of the

occupied pMOs (in the SHM LCAO treatment, p AOs are basis functions that

make up the MOs).
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The strengths of the SHM lie in the qualitative insights it gives into the effect

of molecular structure on p orbitals. Its main triumph in this regard was its

spectacularly successful prediction of the requirements for aromaticity (the H€uckel
4n þ 2 rule).

The weaknesses of the SHM arise from the fact that it treats only p electrons

(limiting its applicability largely to planar sp2 arrays), its all-or-nothing treatment

of overlap integrals, the use of just two values for the Fock integrals, and its neglect

of electron spin and interelectronic repulsion. Because of these approximations it is

not used for geometry optimizations and its quantitative predictions are sometimes

viewed with suspicion. For obtaining eigenvectors and eigenvalues from the secular

equations an older and inelegant alternative to matrix diagonalization is the use of

determinants.

The extended H€uckel method (EHM, extended H€uckel theory, EHT) follows
from the SHM by using a basis set that consists not just of p orbitals, but rather of all
the valence AOs (a minimal valence basis set), by calculating (albeit very empiri-

cally) the Fock matrix integrals, and by explicitly calculating the overlap matrix S

(whose elements are also used in calculating the Fock integrals). Because S is not

taken as a unit matrix, the equation HC ¼ SC«must be transformed to one without

S before matrix diagonalization can be applied. This is done by a matrix multipli-

cation process called orthogonalization, involving S�1/2, which converts the origi-

nal Fock matrix H, based on nonorthogonal atom-centered basis functions, into a

Fock matrix H0, based on orthogonal linear combinations of the original basis

functions. With these new basis functions, H0C0 ¼ C0«, i.e H0 ¼ C0« C0�1, so

that diagonalization ofH0 gives the eigenvectors (of the new basis functions, which

are transformed back to those corresponding to the original set: C0 ! C) and

eigenvalues of H.

Because the overlap integrals needed by the EHM depend on molecular geome-

try, the method can in principle be used for geometry optimization, although for the

conventional EHM the results are generally poor, so known geometries are used as

input. Applications of the EHM involve largely the study of big molecules and

polymeric systems, often containing heavy metals.

The strengths of the EHM derive from its simplicity: it is very fast and so can be

applied to large systems; the only empirical parameters needed are (valence-state)

ionization energies, which are available for a wide range of elements; the results of

calculations lend themselves to intuitive interpretation since they depend only on

geometry and ionization energies, and on occasion the proper treatment of overlap

integrals even gives better results than those from more elaborate semiempirical

methods. The fact that the EHM is conceptually simple yet incorporates several

features of more sophisticated methods enables it to serve as an excellent introduc-

tion to quantum mechanical computational methods.

The weaknesses of the EHM are due largely to its neglect of electron spin and

electron-electron repulsion and the fact that it bases the energy of a molecule simply

on the sum of the one-electron energies of the occupied orbitals, which ignores

electron–electron repulsion and internuclear repulsion; this is at least partly the

reason it usually gives poor geometries.
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Easier Questions

1. What do you understand by the term quantum mechanics?

2. Outline the experimental results that led to quantum mechanics.

3. What approximations are used in the simple H€uckel method?

4. How could the SHM Fock matrix for 1,3-butadiene be modified in an attempt to

recognize the fact that the molecule has, formally anyway, two double bonds

and one single bond?

5. What are the most important kinds of results that can be obtained from H€uckel
calculations?

6. Write down the simple H€uckel Fock matrices (in each case using a, b and 0,

and 0, �1 and 0) for: (1) the pentadienyl radical (2) the cyclopentadienyl

radical (3) trimethylenemethane, C(CH2)3 (4) trimethylenecyclopropane (5)

3-methylene-1,4-pentadiene.

7. The SHM predicts the propenyl cation, radical and anion to have the same

resonance energy (stabilization energy). Actually, we expect the resonance

energy to decrease as we add p electrons; why should this be the case?

8. What molecular feature cannot be obtained at all from the simple H€uckel
method? Why?

9. List the differences between the underlying theory of the simple H€uckel
method and the extended H€uckel method.

10. A 400� 400 matrix is easily diagonalized. Howmany carbons would an alkane

have for its EHM Fock matrix to be 400 � 400 (or just under this size)? How

many carbons would a (fully) conjugated polyene have if its SHM Fock matrix

were 400 � 400?

Harder Questions

1. Do you think it is reasonable to describe the Schr€odinger equation as a

postulate of quantum mechanics? What is a postulate?

2. What is the probability of finding a particle at a point?

3. Suppose we tried to simplify the simple H€uckel method even further, by

ignoring all interactions i, j; i 6¼ j (ignoring adjacent instead interactions of

setting them ¼ b). What effect would this have on energy levels? Can you see

the answer without looking at a matrix or determinant?

4. How might the i,j-type interactions in the simple H€uckel Fock matrix be made

to assume values other than just �1 and 0?

5. What is the result of using as a reference system for calculating the resonance

energy of cyclobutadiene, not two ethene molecules, but 1,3-butadiene? What

does this have to do with antiaromaticity? Is there any way to decide if one

reference system is better than another?
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6. What is the problem with unambiguously defining the charge on an atom in a

molecule?

7. It has been reported that the extended H€uckel method can be parameterized to

give good geometries. Do you think this might be possible for the simple

H€uckel method? Why or why not?

8. Give the references to a journal paper that used the SHM, and one that used the

EHM, within the last decade. Give an abstract of each paper.

9. The ionization energies usually used to parameterize the EHM are not ordinary

atomic ionization energies, but rather valence-state atomic orbital ionization

energies (VSAO ionization energies). What does the term “valence state” mean

here? Should the VSAO ionization energies of the orbitals of an atom depend

somewhat on the hybridization of the atom? In what way?

10. Which should require more empirical parameters: a molecular mechanics force

field (Chapter 3) or an extended H€uckel method program? Explain.
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Chapter 5

Ab initio Calculations

“I could have done it in a much more complicated way”, said the Red Queen,

immensely proud.

Attributed, probably apocryphally, to Lewis Carroll

Abstract Ab initio calculations rest on solving the Schr€odinger equation; the

nature of the necessary approximations determines the level of the calculation. In

the simplest approach, the Hartree–Fock method, the total molecular wavefunction

C is approximated as a Slater determinant composed of occupied spin orbitals. To

use these in practical calculations the spatial orbitals are approximated as a linear

combination (a weighted sum) of basis functions. Electron correlation methods are

also discussed. The main uses of the ab initio method are calculating molecular

geometries, energies, vibrational frequencies, spectra, ionization potentials and

electron affinities, and properties like dipole moments which are connected with

electron distribution. These calculations find theoretical and practical applications,

since, for example, enzyme–substrate interactions depend on shapes and charge

distributions, reaction equilibria and rates depend on energy differences, and

spectroscopy plays an important role in identifying and understanding novel mole-

cules. The visualization of calculated phenomena can be very important in inter-

preting results.

5.1 Perspective

Chapter 4 showed how quantum mechanics was first applied to molecules of

real chemical interest (pace chemical physics) by Erich H€uckel, and how the

extension of the simple H€uckel method by Hoffmann gave a technique of consider-

able usefulness and generality, the extended H€uckel method. The simple and the

extended H€uckel methods (SHM and EHM) are both based on the Schr€odinger
equation, and this makes them quantum mechanical methods. Both depend on

E.G. Lewars, Computational Chemistry,
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reference to experimental quantities (i.e. on parameterization against experiment)

to give actual values of calculated parameters: the SHM gives energy levels in

terms of a parameter b which we could try to assign a value by comparison with

experiment (actually the results of SHM calculations are usually left in terms of b),
while the EHM needs experimental ionization energies to calculate the Fock matrix

elements. The need for parameterization against experiment makes the SHM and

the EHM semiempirical (“semiexperimental”) theories. In this chapter we deal with

a quantum mechanical approach that does not rely on calibration against measured

chemical parameters and is therefore called ab initio [1, 2] meaning “from the first”,

from first principles. It is true that ab initio calculations give results in terms of

fundamental physical constants – Planck’s constant, the speed of light, the charge of

the electron – that must be measured to obtain their actual numerical values, but a

chemical theory could hardly be expected to calculate the fundamental physical

parameters of our universe (for that task we might be content to defer to something

like string theory).

5.2 The Basic Principles of the ab initio Method

5.2.1 Preliminaries

In Chapter 4 we saw that wavefunctions and energy levels could be obtained by

diagonalizing a Fock matrix: the equation

H ¼ CeC�1 �ð5:1Þ

is just another way of saying that diagonalization of H gives the coefficients or

eigenvectors (the columns of C that, combined with the basis functions, yield the

wavefunctions of the molecular orbitals) and the energy levels or eigenvalues (the

diagonal elements of e). Eq. 5.1 followed from

HC ¼ SCe �ð5:2Þ

which gives Eq. 5.1 when S is approximated as a unit matrix (simple H€uckel
method, Section 4.3.4) or when the original Fock matrix is transformed into H

(into H0 in the notation of 4.4.1.2) using an orthogonalizing matrix calculated from

S (extended H€uckel method, Section 4.4.1). To do a simple or an extended H€uckel
calculation the algorithm assembles the Fock matrix H and diagonalizes it. This is

also how an ab initio calculation is done; the essential difference compared to the

H€uckel methods lies in the evaluation of the matrix elements.
In the simple H€uckel method the Fock matrix elementsHij are not calculated, but

are instead set equal to 0 or �1 according to simple rules based on atomic

connectivity (Section 4.3.4); in the extended H€uckel method the Hij are calculated
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from the relative positions (through Sij) of the orbitals or basis functions and

the ionization energies of these orbitals (Section 4.4.1); in neither case is Hij

calculated from first principles. Section 4.3.4, Eqs. 4.44 imply that Hij is:

Hij ¼
Z

fiĤfjdv �ð5:3Þ

In ab initio calculations Hij is calculated from Eq. 5.3 by actually performing the

integration using explicit mathematical expressions for the basis functions fi and fj

and the Hamiltonian operator Ĥ; of course the integration is done by a computer

following a detailed algorithm. How this algorithm works will now be outlined.

5.2.2 The Hartree SCF Method

The simplest kind of ab initio calculation is a Hartree–Fock (HF) calculation.

Modern molecular HF calculations grew out of calculations first performed on

atoms by Hartree1 in 1928 [3]. The problem that Hartree addressed arises from

the fact that for any atom (or molecule) with more than one electron an exact

analytic solution of the Schr€odinger equation (Section 4.3.2) is not possible,

because of the electron–electron repulsion term(s). Thus for the helium atom the

Schr€odinger equation (cf. Section 4.3.4, Eqs. 4.36 and 4.37) is, in SI units

� h2

8p2m
ðr2

1 þr2
2Þ �

Ze2

4pe0r1
� Ze2

4pe0r2
þ e2

4pe0r12

� �
C ¼ EC ð5:4Þ

Here m is the mass (kg) of the electron, e is the charge (coulombs, positive) of

the proton (¼ minus the charge on the electron), the variables r1, r2, and r12 are the
distances (m) of electrons 1 and 2 from the nucleus, and from each other, Z ¼ 2 is

the number of protons in the nucleus, and e0 is something called the permitivity of

empty space; the factor 4pe0 is needed to make SI units consistent. The force (N)

between charges q1 and q2 separated by r is q1q2/4pe0 r
2, so the potential energy (J)

of the system is q1q2/4pe0 r (energy is force � distance).

Hamiltonians can be written much more simply by using atomic units. Let’s take
Planck’s constant, the electron mass, the proton charge, and the permitivity of space

as the building blocks of a system of units in which h/2p, m, e, and 4pe0 are

numerically equal to 1 (i.e. h ¼ 2p, m ¼ 1, e ¼ 1, and e0 ¼ 1/4p; the numerical

values of physical constants are always dependent on our system of units). These

1Douglas Hartree, born Cambridge, England, 1897. Ph.D. Cambridge, 1926. Professor applied

mathematics, theoretical physics, Manchester, Cambridge. Died Cambridge, 1958.
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(h/2p, m, e, and 4pe0) are the units of angular momentum, mass, charge, and

permitivity in the system of atomic units. In this system Eq. 5.4 becomes

� 1

2
r2

1 �
1

2
r2

2 �
Z

r1
� Z

r2
þ 1

r12

� �
C ¼ EC ð5:5Þ

Using atomic units simplifies writing quantum-mechanical expressions, and also

means that the numerical (in these units) results of calculations are independent of

the currently accepted values of physical constants in terms of kilograms, cou-

lombs, meters, and seconds (of course, when we convert from atomic to SI units we

must use accepted SI values of m, e, etc). The atomic units of energy and length are

particularly important to us. We can get the atomic unit of a quantity by combining

h/2p, m, e, and 4pe0 to give the expression with the required dimensions. The

atomic units of length and energy, the bohr and the hartree, turn out to be:

Length: 1 bohr ¼ a0 ¼ 4pe0(h/2p)
2/me2 ¼ e0h

2/pme2 ¼ 0.05292 nm ¼ 0.5292 Å

Energy: 1 hartree ¼ Eh (or h) ¼ e2/4pe0a0; 1 h/particle ¼ 2625.5 kJ mol�1

The bohr is the radius of a hydrogen atom in the Bohr model (Section 4.2.5), or the

most probable distance of the electron from the nucleus in the fuzzier Schr€odinger
picture (Section 4.2.6). The hartree is the energy needed to move a stationary electron

1 bohr distant from a proton away to infinity. The energy of a hydrogen atom, relative

to infinite proton/electron separation as zero, is �½ hartree: the potential energy is

�1 h and the kinetic energy (always positive) is 0.5 h. Note that atomic units derived

by starting with the old Gaussian system (cm, grams, statC) differ by a 4pe0 factor
from the SI-derived ones.

The Hamiltonian

Ĥ ¼ � 1

2
r2

1 �
1

2
r2

2 �
Z

r1
� Z

r2
þ 1

r12
�ð5:6Þ

consists of five terms, signifying (Fig. 5.1) from left to right: the kinetic energy of

electron 1, the kinetic energy of electron 2, the potential energy of the attraction

of the nucleus (charge Z¼ 2) for electron 1, the potential energy of the attraction of

the nucleus for electron 2, and the potential energy of the repulsion between

electron 1 and electron 2. Actually this is not the exact Hamiltonian, for it neglects

effects due to relativity and to magnetic interactions such as spin–orbit coupling

[4]; these effects are rarely important in calculations involving lighter atoms,

say those in the first two or three full rows of the periodic table (up to about

chlorine or bromine). Relativistic quantum chemical calculations will be briefly

discussed later. The wavefunction c is the “total”, overall wavefunction of the atom

and can be approximated, as we will see later for molecular HF calculations, as a

combination of wavefunctions for various energy levels. The problem with solving

Eq. 5.5 exactly arises from the 1/r12 term. This makes it impossible to separate the
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Schr€odinger equation for helium into two 1-electron equations which, like the

hydrogen atom equation, could be solved exactly (for treatments of the hydrogen

and helium atoms see the appropriate sections of references 1). This problem arises

in any system with three or more interacting moving objects, whether subatomic

particles or planets. In fact the many-body problem is an old one even in classical

mechanics, going back to eighteenth century studies in celestial mechanics [5]. The

three-particle hydrogen molecule ion, HH�+, with two heavy particles and one light

one, can be solved “exactly” – but only within the Born–Oppenheimer approxima-

tion [6]. The impossibility of an analytic solution to polyelectronic systems

prompted Hartree’s approach to calculating wavefunctions and energy levels for

atoms.

Hartree’s method was to write a plausible approximate polyelectronic wavefunc-

tion (a “guess”) for an atom as the product of one-electron wavefunctions:

C0 ¼ c0ð1Þc0ð2Þc0ð3Þ . . .c0ðnÞ ð5:7Þ

This function is called a Hartree product. Here C0 is a function of the coordi-

nates of all the electrons in the atom, c0(1) is a function of the coordinates of

electron 1, c0(2) is a function of the coordinates of electron 2, etc.; the one-electron

functions c0(1), c0(2), etc. are called atomic orbitals (molecular orbitals if we were

dealing with a molecule). The initial guess, c0, is our zeroth approximation to the

true total wavefunction c, zeroth because we have not yet started to refine it with

the Hartree process; it is based on the zeroth approximations c0(1), c0(2), etc. To

apply the Hartree process we first solve for electron 1 a one-electron Schr€odinger
equation in which the electron–electron repulsion comes from electron 1 and an

average, smeared-out electrostatic field calculated from c0(2), c0(3), . . . , c0(n),
due to all the other electrons. The only moving particle in this equation is electron 1.

–1 / 2∇2
2

–1 / 2∇1
2

kinetic energy potential energy from attraction, stabilizing

potential energy from repulsion, destabilizing

+ +

–

–

electron 1

electron 2

1 / r12

Z = 2

–Z / r1

–Z / r2

Fig. 5.1 The terms in the helium atom Hamiltonian, Ĥ ¼ � 1
2
r2

1 � 1
2
r2

2 � Z
r1
� Z

r2
þ 1

r12
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Solving this equation gives c1(1), an improved version of c0(1). We next solve for

electron 2 a one-electron Schr€odinger equation with electron 2 moving in an

average field due to the electrons of c1(1), c0(3), . . . , c0(n), continuing to electron
nmoving in a field due to c1(1), c1(2), . . . , c1(n� 1). This completes the first cycle

of calculations and gives

C1 ¼ c1ð1Þc1ð2Þc1ð3Þ . . .c1ðnÞ ð5:8Þ

Repetition of the cycle gives

C2 ¼ c2ð1Þc2ð2Þc2ð3Þ . . .c2ðnÞ ð5:9Þ

The process is continued for k cycles till we have a wavefunction ck and/or

an energy calculated from ck that are essentially the same (according to some

reasonable criterion) as the wavefunction and/or energy from the previous cycle.

This happens when the functions c(1), c(2), . . . , c(n) are changing so little from

one cycle to the next that the smeared-out electrostatic field used for the electron–

electron potential has (essentially) ceased to change. At this stage the field of cycle

k is essentially the same as that of cycle k � 1, i.e. it is “consistent with” this

previous field, and so the Hartree procedure is called the self-consistent-field-
procedure, which is usually abbreviated as the SCF procedure.

There are two problems with the Hartree product of Eq. 5.7. Electrons have a

property called spin, among the consequences of which is that not more than two

electrons can occupy one atomic or molecular orbital (this is one statement of the

Pauli exclusion principle (Section 4.2.6). In the Hartree approach we acknowledge

this only in an ad hoc way, simply by not placing more than two electrons in any of

the component orbitals c that make up our (approximate) total wavefunction c.
Another problem comes from the fact that electrons are indistinguishable. If we

have a wavefunction of the coordinates of two or more indistinguishable particles,

then switching the positions of two of the particles, i.e. exchanging their coordi-

nates, must either leave the function unchanged or change its sign. This is because

all physical manifestations of the wavefunction must be unchanged on switching

indistinguishable particles, and these manifestations depend only on its square
(more strictly on the square of its absolute value, i.e. on jcj2, to allow for the fact

that c may be a complex, as distinct from a real, function). This should be clear

from the equations below for a two-particle function:

If Ca ¼ f ðx1; y1; z1; x2; y2; z2Þ

and Cb ¼ f ðx2; y2; z2; x1; y1; z1Þ

then jCaj2 ¼ jCbj2 if and only if Cb ¼ Ca or Cb ¼ �Ca

If switching the coordinates of two of the particles leaves the function

unchanged, it is said to be symmetric with respect to particle exchange, while if

the function changes sign it is said to be antisymmetric with respect to particle
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exchange. Comparing the predictions of theory with the results of experiment

shows [7] that electronic wavefunctions are actually antisymmetric with respect

to exchange (such particles are called fermions, after the physicist Enrico Fermi;

particles like photons whose wavefunctions are exchange-symmetric are called

bosons, after the physicist S. Bose). Any rigorous attempt to approximate the wave-

function c should use an antisymmetric function of the coordinates of the electrons

1, 2, . . . n, but the Hartree product is symmetric rather than antisymmetric; for

example, if we approximate a helium atom wavefunction as the product of two

hydrogen atom 1s orbitals, then ifca¼ 1s(x1, y1, z1)1s(x2, y2, z2) andcb¼ 1s(x2, y2, z2)
1s( x1, y1, z1), then ca ¼ cb.

These defects of the Hartree SCF method were corrected by Fock (Section 4.3.4)

and by Slater2 in 1930 [8], and Slater devised a simple way to construct a total

wavefunction c from one-electron functions (i.e. orbitals) such that c will be

antisymmetric to electron switching. Hartree’s iterative, average-field approach

supplemented with electron spin and antisymmetry leads to the Hartree–Fock

equations.

5.2.3 The Hartree–Fock Equations

5.2.3.1 Slater Determinants

The Hartree wavefunction (above) is a product of one-electron functions called

orbitals, or, more precisely, spatial orbitals: these are functions of the usual space
coordinates x, y, z. The Slater wavefunction is composed, not just of spatial orbitals,

but of spin orbitals. A spin orbital c (spin) is the product of a spatial orbital and a

spin function, a or b: The spin orbitals corresponding to a given spatial orbital are

cðspin aÞ ¼ cðspatialÞa ¼ cðx; y; zÞa
and cðspin bÞ ¼ cðspatialÞb ¼ cðx; y; zÞb

As the function c(spatial) has as its variables the coordinates x, y, z, so the spin

functions a and b have as their variables a spin coordinate, sometimes denoted x
(Greek letter kzi or zi) or o (Greek omega). We know that a wavefunction c fits in

with an operator and eigenvalues, say the energy operator and energy eigenvalues,

according to the equation Ĥc ¼ Ec. Analogously, the spin functions a and b are

2John Slater, born Oak Park, Illinois, 1900. Ph.D. Harvard, 1923. Professor of physics, Harvard,

1924–1930; MIT 1930–1966; University of Florida at Gainesville, 1966–1976. Author of 14

textbooks, contributed to solid-state physics and quantum chemistry, developed X-alpha method

(early density functional theory method). Died Sanibel Island, Florida, 1976.
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associated with the spin operator Ŝz according to Ŝza ¼ ½(h/2p)a and Ŝzb ¼
�½(h/2p)b. Unlike most other functions, then, a and b each have only one

eigenvalue, ½(h/2p) and �½(h/2p), respectively. A spin function has the peculiar

property that it is zero unless x ¼ ½ (a spin function) or x ¼ �½(b spin function).

A function that is zero everywhere except at one value of its variable, where it

spikes sharply, is a delta function (usually ascribed to Dirac – Section 4.2.3). Since

the spin function c(spin a or b) describing an electron exists only when the spin

variable x¼ �½, these two values can be considered the allowed values of the spin

quantum number ms mentioned in Section 4.2.6. Sometimes an electron with spin

quantum number ½ (“an electron with spin ½”) is called an a electron, and said to

have up spin, and an electron with spin �½ is called a b electron, and said to have

down spin. Up and down electrons are often denoted by arrows " and #, respec-
tively. A nice, brief treatment of the delta function and of the mathematical

treatment of the spin functions is given by Levine [9].

The Slater wavefunction differs from the Hartree function not only in being

composed of spin orbitals rather than just spatial orbitals, but also in the fact that it

is not a simple product of one-electron functions, but rather a determinant (Sec-
tion 4.3.3) whose elements are these functions. To construct a Slater wavefunction

(Slater determinant) for a closed-shell species (the only kind we consider in any

detail here), we use each of the occupied spatial orbitals to make two spin orbitals,

by multiplying the spatial orbital by a and, separately, by b. The spin orbitals are

then filled with the available electrons. An example should make the procedure

clear (Fig. 5.2). Suppose we wish to write a Slater determinant for a four-electron

used with "electron 1" to make row 1
y1(1)a(1)  y1(1)b(1)  y2(1)a(1)  y2(1)b(1)

used with "electron 2" to make row 2
y1(2)a(2)  y1(2)b(2)  y2(2)a(2)  y2(2)b(2)

used with "electron 3" to make row 3
y1(3)a(3)  y1(3)b(3)  y2(3)a(3)  y2(3)b(3)

used with "electron 4" to make row 4
y1(4)a(4)  y1(4)b(4)  y2(4)a(4)  y2(4)b(4)

y1

y2 y2a

y1b

y2b

y1a

y3

y4

y5

energy

Fig. 5.2 A Slater determinant is made from spin orbitals derived from the occupied spatial

molecular orbitals and two spin functions, a and b
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closed-shell system. We need two spatial molecular orbitals, since each can hold a

maximum of two electrons; each spatial orbital c(spatial) is used to make two spin

orbitals, c(spatial)a and c(spatial)b (alternatively, each spatial orbital could be

thought of as a composite of two spin orbitals, which we are separating and using to

build the determinant). Along the first (top) row of a determinant we write succes-

sively the first a spin orbital, the first b spin orbital, the second a spin orbital, and

the second b spin orbital, using up our occupied spatial (and thus spin) orbitals.

Electron 1 is then assigned to all four spin orbitals of the first row – in a sense it is

allowed to roam among these four spin orbitals [10]. The second row of the

determinant is the same as the first, except that it refers to electron 2 rather than

electron 1; likewise the third and fourth rows refer to electrons three and four,

respectively. The result is the determinant of Eq. 5.10.

C ¼ 1ffiffiffiffi
4!

p

c1ð1Það1Þ c1ð1Þbð1Þ c2ð1Það1Þ c2ð1Þbð1Þ
c1ð2Það2Þ c1ð2Þbð2Þ c2ð2Það2Þ c2ð2Þbð2Þ
c1ð3Það3Þ c1ð3Þbð3Þ c2ð3Það3Þ c2ð3Þbð3Þ
c1ð4Það4Þ c1ð4Þbð4Þ c2ð4Það4Þ c2ð4Þbð4Þ

����������

����������
�ð5:10Þ

(The 1/√4! factor ensures that the wavefunction is normalized, i.e. that jCj2 inte-
grated over all space¼ 1 [11]). This Slater determinant ensures that there are no more

than two electrons in each spatial orbital, since for each spatial orbital there are only

two 1-electron spin functions, and it ensures thatC is antisymmetric since switching

two electrons amounts to exchanging two rows of the determinant, and this changes

its sign (Section 4.3.3). Note that instead of assigning the electrons successively to

row 1, row 2, etc., we could have placed them in column 1, column 2, etc.: C0 of
Eq. 5.11 ¼ C of Eq. 5.10. Some authors use the row format for the electrons, others

the column format.

C0 ¼ 1ffiffiffiffi
4!

p

c1ð1Það1Þ c1ð2Það2Þ c1ð3Það3Þ c1ð4Það4Þ
c1ð1Þbð1Þ c1ð2Þbð2Þ c1ð3Þbð3Þ c1ð4Þbð4Þ
c2ð1Það1Þ c2ð2Það2Þ c2ð3Það3Þ c2ð4Það4Þ
c2ð1Þbð1Þ c2ð2Þbð2Þ c2ð3Þbð3Þ c2ð4Þbð4Þ

����������

����������
ð5:11Þ

Slater determinants enforce the Pauli exclusion principle, which forbids any two

electrons in a system to have all quantum numbers the same. This is readily seen for

an atom: if the three quantum numbers n, l and mm of c(x, y, z) (Section 4.2.6) and

the spin quantum number ms of a or b were all the same for any electron, two rows

(or columns, in the alternative formulation) would be identical and the determinant,

hence the wavefunction, would vanish (Section 4.3.3).

For 2n electrons (we are limiting ourselves for now to even-electron species, as

the theory for these is simpler) the general form of a Slater determinant is clearly the

2n � 2n determinant
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C2n¼ 1ffiffiffiffiffiffiffiffiffiffið2nÞ!p

�
c1ð1Það1Þ c1ð1Þbð1Þ c2ð1Það1Þ c2ð1Þbð1Þ ��� cnð1Þbð1Þ
c1ð2Það2Þ c1ð2Þbð2Þ c2ð2Það2Þ c2ð2Þbð2Þ ��� cnð2Þbð2Þ

..

. ..
. ..

. ..
.

c1ð2nÞað2nÞ c1ð2nÞbð2nÞ c2ð2nÞað2nÞ c2ð2nÞbð2nÞ ��� cnð2nÞbð2nÞ

���������

���������
ð5:12Þ

The Slater determinant for the total wavefunction C of a 2n-electron atom or

molecule is a 2n � 2n determinant with 2n rows due to the 2n electrons and 2n
columns due to the 2n spin orbitals (you can interchange the row/column format);

since these are closed-shell species, the number of spatial orbitals c is half the

number of electrons. We use the lowest n occupied spatial orbitals (the lowest 2n
spin orbitals) to make the determinant.

The determinant (¼ total molecular wavefunction C) just described will lead to

(remainder of Section 5.2) n occupied, and a number of unoccupied, component

spatial molecular orbitals c. These orbitals c from the straightforward Slater

determinant are called canonical (in mathematics the word means “in simplest or

standard form”) molecular orbitals. Since each occupied spatial c can be thought of

as a region of space which accommodates a pair of electrons, we might expect that

when the shapes of these orbitals are displayed (“visualized”; Section 5.5.6) each

one would look like a bond or a lone pair. However, this is often not the case; for

example, we do not find that one of the canonical MOs of water connects the O with

one H, and another canonical MO connects the O with another H. Instead most of

these MOs are spread over much of a molecule, i.e. delocalized (lone pairs, unlike

conventional bonds, do tend to stand out). However, it is possible to combine the

canonical MOs to get localized MOs which look like our conventional bonds and

lone pairs. This is done by using the columns (or rows) of the SlaterC to create aC
with modified columns (or rows): if a column/row of a determinant is multiplied by

k and added to another column/row, the determinant remains kD (Section 4.3.3).

We see that if this is applied to the Slater determinant with k ¼ 1, we will get a

“new” determinant corresponding to exactly the same total wavefunction, i.e. to the

same molecule, but built up from different component occupied MOs c. The newC
and the new c’s are no less or more correct than the previous ones, but by

appropriate manipulation of the columns/rows the c’s can be made to correspond

to our ideas of bonds and lone pairs. These localized MOs are sometimes useful.

5.2.3.2 Calculating the Atomic or Molecular Energy

The next step in deriving the Hartree–Fock equations is to express the energy of the

molecule or atom in terms of the total wavefunction C; the energy will then be

minimized with respect to each of the component molecular (or atomic; an atom is a
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special case of a molecule) spin orbitals ca and cb (cf. the minimization of energy

with respect to basis function coefficients in Section 4.3.4). The derivation of these

equations involves considerable algebraic manipulation, which is at times hard to

follow without actually writing out the intermediate expressions. The procedure has

been summarized by Pople and Beveridge [12], and a less condensed account is

given by Lowe [13].

It follows from the Schr€odinger equation that the energy of a system is given by

E ¼
R
C�ĤCdtR
C�Cdt

ð5:13Þ

This is similar to Eq. 4.40 in Chapter 4, but here the total wavefunction C has

been specified, and allowance has been made for the possibility of C being a

complex function by utilizing its complex conjugate C*; this ensures that E, the
energy of the atom or molecule, will be real. IfC is complex thenC 2dt will not be
a real number, while C*Cdt ¼ |C|2dt will, as must be the case for a probability.

Integration is with respect to three spatial coordinates and one spin coordinate, for

each electron. This is symbolized by dt (t¼ Greek tau), which means dxdydzdx, so
for a 2n-electron system these integrals are actually 4 � 2n-fold, each electron

having its set of four coordinates. We assume the use of orthonormal functions

(Section 4.3.4), since this makes several integrals disappear in the derivation of the

energy. Working with the usual normalized wavefunctions makes the denominator

unity, and Eq. 5.13 can then be written

E ¼
Z

C�ĤCdt

or using the more compact Dirac notation for integrals (Section 4.4.1)

E ¼ CjĤjC� 	 ð5:14Þ

In Eq. 5.14 it is understood that the firstC is actuallyC*, and that the integration

variables are the space and spin coordinates. The vertical bars are only to visually

separate the operator from the two functions, supposedly for clarity.

We next substitute into Eq. 5.14 the Slater determinant for C (and C*) and the

explicit expression for the Hamiltonian. A simple extension of the helium Hamil-

tonian of Eq. 5.5 to a molecule with 2n electrons and m atomic nuclei (the mth
nucleus has charge Zm) gives

Ĥ ¼
X2n
i¼1

� 1

2
r2

i �
X
all m;i

Zm
rmi

þ
X
all i;j

1

rij
ð5:15Þ

Just like the helium Hamiltonian, the molecular Hamiltonian Ĥ in Eq. 5.15 is

composed (from left to right) of electron kinetic energy terms, nucleus–electron
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attraction potential energy terms, and electron–electron repulsion potential energy

terms (cf. Fig. 5.1). This is actually the electronicHamiltonian, since nucleus-nucleus

repulsion potential energy terms have been omitted; from the Born–Oppenheimer

approximation (Section 2.3) these can simply be added to the electronic energy after

this has been calculated, giving the total molecular energy for a molecule with

“frozen nuclei” (calculation of the vibrational energy, the zero-point energy, is

discussed later). Calculation of the internuclear potential energy is trivial:

VNN ¼
X
all m;n

ZmZn
rmn

ð5:16Þ

Substituting into Eq. 5.14 the Slater determinant and the molecular Hamiltonian

gives, after much algebraic manipulation

E ¼ 2
Xn
i¼1

Hii þ
Xn
i¼1

Xn
j¼1

ð2Jij � KijÞ ð5:17Þ

for the electronic energy of a 2n-electron molecule (the sums are over the n
occupied spatial orbitals c). The terms in Eq. 5.17 have these meanings:

Hii ¼
Z

c�
i ð1ÞĤ

coreð1Þcið1Þdv ð5:18Þ

where

Ĥcoreð1Þ ¼ � 1

2
r2

1 �
X
all m

Zm
rm1

ð5:19Þ

The operator Ĥcore is so called because it leads to Hii, the electronic energy of a

single electron moving simply under the attraction of a nuclear “core”, with all the

other electrons stripped away; Hii is the electronic energy of, for example, H, He+,

Hþ
2 , or CH

9þ
4 (of course, it is different for these various species). Note that Ĥcore(1)

represents the kinetic energy of electron 1 plus the potential energy of attraction of

that electron to each of the nuclei m; the 1 in parentheses in these equations is just

a label showing that the same electron is being considered in c�
i , ci and Ĥcore

(we could have used, say, 2 instead). The integration in Eq. 5.18 is respect to spatial

coordinates only, (dv ¼ dxdydz, not dt) because spin coordinates have been “inte-

grated out”: on integration, i.e. on summation over the discrete spin variable, these

give 0 or 1 [12, 14]. We are left with the three spatial coordinates as integration

variables (x, y, z) for the electron and so the integral (5.18) is threefold.

Jij ¼
Z

c�
i ð1Þcið1Þ

1

r12

� �
c�
j ð2Þcjð2Þdv1dv2 ð5:20Þ
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J is called a coulomb integral; it represents the electrostatic (i.e. coulombic)

repulsion between an electron in ci and one in cj, i.e. between the charge clouds of

orbitals ci and cj. This may be clearer if one considers the integral as a sum of

potential energy terms involving repulsion between infinitesimal volume elements

dv (Fig. 5.3). The 1 and 2 are just labels showing we are considering two electrons.
The integrals J and K allow each electron to experience the average electrostatic

repulsion of a charge cloud due to all the other electrons. This pretence that

electron–electron repulsion occurs between an electron and a charge cloud rather

than between all possible pairs of electrons as point particles is the major deficiency
of the Hartree–Fock method and transcending this approximation is the reason for

the development of the post-Hartree–Fock methods discussed later. Since J repre-
sents potential energy corresponding to a destabilizing electrostatic repulsion, it is

positive. As for Hii in Eq. 5.18, the integration is with respect to spatial coordinates

because the spin coordinates have been integrated out. There are six integration

variables, x, y, z for electron 1 (dv1) and x, y, z for electron 2 (dv2), and so the integral
(5.20) is sixfold. Note that the ab initio coulomb integral J is not the same as what we

called a coulomb integral in simple H€uckel theory; that was a ¼ R fiĤfidv
(Eq. 4.61a) and represents at least very crudely the energy of an electron in the

p orbital fi (Section 4.3.4). The ab initio coulomb integral can also be written

Jij ¼
Z

c�
i ð1Þc�

j ð2Þ
1

r12

� �
cið1Þcjð2Þdv1dv2 ð5:21Þ

but unlike Eq. 5.20 this does not notationally emphasize the repulsion (invoked

by the 1/r12 operator) between electron 1 and electron 2, on the left and right,

respectively, of 1/r12 in Eq. 5.20.

yi yj

contains electron 1 contains electron 2

dv2

Potential energy between dv1 and dv2 is yi (1) yi (1) dv1        yj (2) yj (2) dv2 

(product of the charges divided by their distance apart)

volume dv1 contains
charge yi (1) yi (1) dv1

volume dv2 contains
charge yj (2) yj (2) dv2

dv1

r12

1

Fig. 5.3 The coulomb integral (J integral) represents the electrostatic repulsion between two

charge clouds, due to electron 1 in orbital ci and electron 2 in orbital cj.Jij ¼
R
c�
i ð1Þcið1Þ



1
r12

�
c�
j ð2Þcjð2Þdv1dv2
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Kij ¼
Z

c�
i ð1Þc�

j ð2Þ
1

r12

� �
cið2Þcjð1Þdv1dv2 ð5:22Þ

K is called an exchange integral; mathematically, it arises from Slater determinant

expansion terms that differ only in exchange of electrons. Note that the terms on

either side of 1/r12 differ by exchange of electrons. It is often said to have no simple

physical interpretation, and even to represent an “exchange force”, but looking at

Eq. 5.17, we see we can regard K as a kind of correction to J, reducing the effect of J
(both J and K are positive, with K smaller), i.e. reducing the electrostatic potential

energy due to the mutual ci, cj charge cloud repulsion referred to above in connec-

tion with J and K. This reduction in repulsion arises because as particles with an

antisymmetric wavefunction, two electrons can’t occupy the same spin orbital

(roughly, can’t be at the same point in space), and can occupy the same spatial

orbital only if they have opposite spins. Thus two electrons of the same spin avoid

each other more assiduously than expected only from the coulombic repulsion that is

taken into account by J. We could consider the summed 2J� K terms of Eq. 5.17 to

be the true coulombic repulsion (within the charge cloud model), corrected for

electron spin, i.e. corrected for the Pauli exclusion principle effect. The J and K
interactions are shown in Fig. 5.4 for a four-electron molecule, the smallest closed-

shell system in which K integrals arise. A detailed exposition of the significance of

the Hartree– Fock integrals is given by Dewar [15]. Note that outside the nucleus the

only significant forces in atoms and molecules are electrostatic; there are no vague

“quantum-mechanical forces” in chemistry [16]. Chemical reactions involve the

shuffling of atomic nuclei under the influence of the electromagnetic force.

4 J integrals
(between electrons in different
spatial MOs)

2 K integrals
(between electrons of the same spin)

Fig. 5.4 The J integrals represent interactions between electrons in different spatial orbitals; the

K integrals represent interactions between electrons of the same spin
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5.2.3.3 The Variation Theorem (Variation Principle)

The energy calculated from Eq. 5.14 is the expectation value of the energy operator
Ĥ, i.e. the expectation value of the Hamiltonian operator. In quantum mechanics an

integral of a wavefunction “over” an operator, like CjĤjC� 	
in Eq. 5.14, is the

expectation value of that operator. The expectation value is the value (strictly,

the quantum-mechanical average value) of the physical quantity represented by the

operator. Every “observable”, i.e. every measurable property of a system, is thought

to have a quantum mechanical operator from which the property could be calcu-

lated, at least in principle, by integrating the wavefunction over the operator. The

expectation value of the energy operator Ĥ (for which a better symbol might have

been Ê) is the energy E of the molecule or atom. Of course this energy will be the

exact, true energy of the molecule only if the wavefunction C and the Hamiltonian

Ĥ are exact. The variation theorem states that the energy calculated from Eq. 5.14
must be greater than or equal to the true ground-state energy of the molecule. The
theorem [17] (it can be stated more rigorously, specifying that Ĥ must be time-

independent and C must be normalized and well-behaved) assures us that any

ground state (we examine electronic ground states much more frequently than we

do excited states) energy we calculate “variationally”, i.e. using Eq. 5.14, must be

greater than or equal to the true energy of the molecule. This is useful because it

tells us that a test for the quality of a wavefunction is the value of the energy

calculated from it variationally: the lower the better. We can try to improve our

wavefunction, checking the variational energy against that from previous functions.

In practice, any molecular wavefunction we insert into Eq. 5.14 is always only an

approximation to the true wavefunction and so the variationally calculated molecu-

lar energy will always be greater than the true energy. The Hartree–Fock energy

is variational, but as we will see, not all quantum chemical energies are. The

Hartree–Fock energy levels off at a value above the true energy as the Hartree–Fock

wavefunction, based on a Slater determinant, is improved; this is discussed in

Section 5.5, in connection with post-Hartree–Fock methods.

5.2.3.4 Minimizing the Energy; the Hartree–Fock Equations

The Hartree–Fock equations are obtained from Eq. 5.17 by minimizing the energy

with respect to the atomic or molecular orbitals c. The minimization is carried out

with the constraint that the orbitals remain orthonormal, for orthonormality was

imposed in deriving Eq. 5.17. Minimizing a function subject to a constraint can be

done using the method of undetermined Lagrangian multipliers [18]. For ortho-

normality the overlap integrals S must be constants (¼ dij, i.e. 0 or 1) and at the

minimum the energy is constant (¼ Emin). Thus at Emin any linear combination of E
and Sij is constant:

Eþ
Xn
i¼1

Xn
j¼1

lijSij ¼ constant ð5:23Þ
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where lij are the Lagrangian multipliers; we don’t know what they are, physically,

yet (after all, they are “undetermined”). Differentiating with respect to the c’s (each
c is a function of x, y, z) of the S’s:

dEþ d
Xn
i¼1

Xn
j¼1

lijSij ¼ 0 ð5:24Þ

Substituting the expression for E from Eq. 5.17 into Eq. 5.24 we get

2
Xn
i¼1

dHii þ
Xn
i¼1

Xn
j¼1

ð2dJij � dKijÞ þ
Xn
i¼1

Xn
j¼1

lijdSij ¼ 0 ð5:25Þ

Note that this procedure of minimizing the energy with respect to the molecular
orbitals c is somewhat analogous to the minimization of energy with respect to the

atomic orbital coefficients c in the less rigorous procedure which gave the H€uckel
secular equations in Section 4.3.4. It is also somewhat similar to finding a relative

minimum on a PES (Section 2.4), but with energy in that case being varied with

respect to geometry rather than parameters of MOs. Since the procedure starts with

Eq. 5.14 and varies the MO’s to find the minimum value of E, it is called the

variation method; the variation theorem/principle (Section 5.2.3.3) assures us that

the energy we calculate from the results will be greater than or equal to the true

energy.

From the definitions of Hii, Jij, Kij and Sij we get

dHii ¼
Z

dc�
i ð1ÞĤ

coreð1Þcið1Þdv1 þ
Z

c�
i ð1ÞĤ

coreð1Þdcið1Þdv1 ð5:26Þ

dJij ¼
Z

dc�
i ð1ÞĴjð1Þcið1Þdv1 þ

Z
dc�

j ð1ÞĴið1Þcjð1Þdv1 þ complex conjugate

ð5:27Þ

dKij ¼
Z

dc�
i ð1ÞK̂jð1Þcið1Þdv1 þ

Z
dc�

j ð1ÞK̂ið1Þcjð1Þdv1 þ complex conjugate

ð5:28Þ

where

Ĵið1Þ ¼
Z

c�
i ð2Þ

1

r12

� �
cið2Þdv2 ð5:29Þ

and

K̂ið1Þcjð1Þ ¼ cið1Þ
Z

c�
i ð2Þ

1

r12

� �
cjð2Þdv2 ð5:30Þ
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and similarly for Ĵj and K̂j.

dSij ¼
Z

dc�
i ð1Þcjð1Þdv1 þ c�

i ð1Þdcjð1Þv1 ð5:31Þ

Using for dH, dJ, dK and dS the expressions in Eqs. 5.26–5.28 and 5.31, Eq. 5.25
becomes

2
Xn
i¼1

Z
dc�

i ð1Þ½Ĥ
coreð1Þcið1Þ þ

Xn
j¼1

ð2Ĵjð1Þ � K̂jð1ÞÞcið1Þ þ
1

2

Xn
j¼1

lijcjð1Þ�dv

þ complex conjugate ¼ 0

ð5:32Þ

Since the MOs can be varied independently, and the expression on the left side is

zero, both parts of Eq. 5.32 (the part shown and the complex conjugate) equal zero.

It can be shown that a consequence of

2
Xn
i¼1

Z
dc�

i ð1Þ½Ĥ
coreð1Þcið1Þ þ

Xn
j¼1

ð2Ĵjð1Þ � K̂jð1ÞÞcið1Þ þ
1

2

Xn
j¼1

lijcjð1Þ�dv¼ 0

ð5:33Þ

is that

Ĥcoreð1Þcið1Þ þ
Xn
j¼1

ð2Ĵjð1Þ � K̂jð1ÞÞcið1Þ þ
1

2

Xn
j¼1

lijcjð1Þdv ¼ 0

i.e.

½Ĥcoreð1Þ þ
Xn
j¼1

ð2Ĵjð1Þ � K̂jð1ÞÞ�cið1Þ ¼ � 1

2

Xn
j¼1

lijcjð1Þ ð5:34Þ

Eq. 5.34 can be written

F̂cið1Þ ¼ � 1

2

Xn
j¼1

lijcjð1Þ ð5:35Þ

where F̂ is the Fock operator:

F̂ ¼ Ĥcoreð1Þ þ
Xn
j¼1

ð2Ĵjð1Þ � K̂jð1ÞÞ ð5:36Þ
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We want an eigenvalue equation because (cf. Section 4.3.4) we hope to be able

to use the matrix form of a series of such equations to invoke matrix diagonalization

to get eigenvalues and eigenvectors. Equation (5.35) is not quite an eigenvalue

equation, because it is not of the form operation on function ¼ k � function, but

rather operation on function ¼ sum of (k � functions). However, by transforming

the molecular orbitals c to a new set the equation can be put in eigenvalue form

(with a caveat, as we shall see). Equation 5.35 represents a system of equations

F̂c1ð1Þ ¼ � 1

2
½l11c1ð1Þ þ l12c2ð1Þ þ l13c3ð1Þ þ � � � þ l1ncnð1Þ� i ¼ 1

F̂c2ð1Þ ¼ � 1

2
½l21c1ð1Þ þ l22c2ð1Þ þ l23c3ð1Þ þ � � � þ l2ncnð1Þ� i ¼ 2

..

.

F̂cnð1Þ ¼ � 1

2
½ln1c1ð1Þ þ ln2c2ð1Þ þ ln3c3ð1Þ þ � � � þ lnncnð1Þ� i ¼ n

ð5:37Þ

There are n spatial orbitalsc since we are considering a system of 2n electrons and
each orbital holds two electrons. The 1 in parentheses on each orbital emphasizes that

each of these n equations is a one-electron equation, dealing with the same electron

(we could have used a 2 or a 3, etc.), i.e. the Fock operator (Eq. 5.36) is a one-electron

operator, unlike the general electronic Hamiltonian operator of Eq. 5.15, which is a

multi-electron operator (a 2n electron operator for our specific case). The Fock

operator acts on a total of n spatial orbitals, the c1, c2, . . . , cn in Eq. 5.35.

The series of equations Eqs. 5.37 can be written as the single matrix equation (cf.

Chapter 4, Eq. 4.50)

F̂

c1ð1Þ
c2ð1Þ
c3ð1Þ

..

.

cnð1Þ

0
BBBBB@

1
CCCCCA ¼ � 1

2

l11 l12 l13 . . . l1n
l21 l22 l23 . . . l2n
..
. ..

.
. . . ..

.

ln1 ln2 ln3 . . . lnn

0
BBB@

1
CCCA

c1ð1Þ
c2ð1Þ
c3ð1Þ

..

.

cnð1Þ

0
BBBBB@

1
CCCCCA ð5:38Þ

i.e.

F̂c ¼ � 1

2
Lc ð5:39Þ

In Eqs. 5.37, each equation will be of the form F̂ci ¼ kci, which is what we want, if

all the lij ¼ 0 except for i ¼ j (for example, in the first equation

F̂cið1Þ ¼ �ð1=2Þl11c1ð1Þ if the only nonzero l is l11). This will be the case if

in Eq. 5.39 L is a diagonal matrix. It can be shown that L is diagonalizable

(Section 4.3.3), i.e. there exist matrices P, P�1 and a diagonal matrix L0 such that

L ¼ PL0P�1 ð5:40Þ
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Substituting L from Eq. 5.40 into Eq. 5.39:

F̂c ¼ � 1

2
PL0P�1c ð5:41Þ

Multiplying on the left by P�1 and on the right by P we get

F̂P�1cP ¼ � 1

2
ðP�1PÞL0ðP�1cPÞ

which, since P�1P ¼ 1 can be written

F̂c0 ¼ � 1

2
L0c0 ð5:42Þ

where

c0 ¼ P�1cP ð5:43Þ

We may as well remove the �1/2 factor by incorporating it into L0, and we can

omit the prime fromC (had we been prescient we could have started the derivation
using primes then written C ¼ P�1C0P for Eq. 5.43). Equation 5.42 then becomes

(notationally anticipating the soon-to-be-apparent fact that the diagonal matrix is an

energy-level matrix)

F̂c ¼ «c ð5:44Þ

where

e ¼
ð�1=2Þl11 0 0 . . . 0

0 ð�1=2Þl22 0 . . . 0

..

. ..
.

. . . ..
.

0 0 0 . . . ð�1=2Þlnn

0
BBB@

1
CCCA ð5:45Þ

Equation 5.44 is the compact form of Eq. 5.38. Thus

F̂

c1ð1Þ
c2ð1Þ
c3ð1Þ

..

.

cnð1Þ

0
BBBBB@

1
CCCCCA ¼

e1 0 0 . . . 0

0 e2 0 . . . 0

..

. ..
.

. . . ..
.

0 0 0 . . . en

0
BBB@

1
CCCA

c1ð1Þ
c2ð1Þ
c3ð1Þ

..

.

cnð1Þ

0
BBBBB@

1
CCCCCA ð5:46Þ

where the superfluous double subscripts on the e’s have been replaced by single

ones. Equations 5.44/5.46 are the matrix form of the system of equations
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F̂c1ð1Þ ¼ e1c1ð1Þ
F̂c2ð1Þ ¼ e2c2ð1Þ
F̂c3ð1Þ ¼ e3c3ð1Þ

..

.

F̂cnð1Þ ¼ encnð1Þ

�ð5:47Þ

These equations (5.47) are the Hartree–Fock equations; the matrix form is

Eq. 5.44 or Eq. 5.46. By analogy with the Schr€odinger equation Ĥ c ¼ Ec, we
see that they show that the Fock operator acting on a one-electron wavefunction (an

atomic or molecular orbital) generates an energy value times the wavefunction.

Thus the Lagrangian multipliers lii turned out to be (with the �1/2 factor) the

energy values associated with the orbitals ci. Unlike the Schr€odinger equation the

Hartree–Fock equations are not quite eigenvalue equations (although they are

closer to this ideal than is Eq. 5.35), because in F̂ci ¼ kci the Fock operator F̂ is

itself dependent on ci; in a true eigenvalue equation the operator can be written

down without reference to the function on which it acts. The significance of the

Hartree–Fock equations is discussed in the next section.

5.2.3.5 The Meaning of the Hartree–Fock Equations

The Hartree–Fock equations (5.47) (in matrix form Eqs. 5.44 and 5.46) are pseu-
doeigenvalue equations asserting that the Fock operator F̂ acts on a wavefunction ci

to generate an energy value ei, times ci. Pseudoeigenvalue because, as stated above,
in a true eigenvalue equation the operator is not dependent on the function on which

it acts; in the Hartree–Fock equations F̂ depends on c because (Eq. 5.36) the

operator contains Ĵ and K̂, which in turn depend (Eqs. 5.29 and 5.30) on c. Each
of the equations in the set (5.47) is for a single electron (“electron 1” is indicated,

but any ordinal number could be used), so the Hartree–Fock operator F̂ is a one-

electron operator, and each spatial molecular orbital c is a one-electron function (of

the coordinates of the electron). Two electrons can be placed in a spatial orbital

because the full description of each of these electrons requires a spin function a or b
(Section 5.2.3.1) and each electron “moves in” a different spin orbital. The result is

that the two electrons in the spatial orbital c do not have all four quantum numbers

the same (for an atomic 1s orbital, for example, one electron has quantum numbers

n¼ 1, l¼ 0,m¼ 0 and s¼ 1/2, while the other has n¼ 1, l¼ 0,m¼ 0 and s¼�1/2),

and so the Pauli exclusion principle is not violated.

The functions c are the spatial molecular (or atomic) orbitals or wavefunctions

that (along with the spin functions) make up the overall or total molecular (or

atomic) wavefunction c, which can be written as a Slater determinant (Eq. 5.12).

Concerning the energies ei, from the fact that

ei ¼
Z

ciF̂cidv ð5:48Þ
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(this follows simply from multiplying both sides of a Hartree–Fock equation by

ci and integrating, noting that ci is normalized) and the definition of F̂ (Eq. 5.36)

we get

ei ¼
Z

cið1ÞĤ
coreð1Þcið1Þdvþ

Xn
j¼1

ð2Jijð1Þ � Kijð1ÞÞ ð5:49Þ

i.e.

ei ¼ Hcore
ii þ

Xn
j¼1

ð2Jijð1Þ � Kijð1ÞÞ ð5:50Þ

(the operators Ĵ and K̂ in Eq. 5.36 have been transformed by integration into

the integrals J and K in Eq. 5.49). Equation 5.50 shows that ei is the energy of an

electron in ci subject to interaction with all the other electrons in the molecule:

Hcore
ii (p. 13) is the energy of the electron due only to its motion (kinetic energy) and

to the attraction of the nuclear core (electron–nucleus potential energy), while the

sum of 2J� K terms represents the exchange-corrected (via K) coulombic repulsion

(through J) energy resulting from the interaction of the electron with all the other

electrons in the molecule or atom [19].

In principle the equations 5.47 allow us to calculate the molecular orbitals

(MO’s) c and the energy levels e. We could start with “guesses” (possibly obtained

by intuition or analogy) of the MO’s (the zeroth approximation to the MOs) and use

these to construct the operator F̂ (Eq. 5.36), then allow F̂ to operate on the guesses

to yield energy levels (the first approximation to the ei) and new, improved func-

tions (the first calculated approximations to the ci). Using the improved functions in

F̂ and operating on these gives the second approximations to the ci and ei, and the

process is continued until ci and ei no longer change (within preset limits), which

occurs when the smeared-out electrostatic field represented in Eq. 5.17 by∑∑(2J� K)
(cf. Fig. 5.3) ceases to change appreciably – is consistent from one iteration cycle to

the next, i.e. is self-consistent. How do we know that iterations improve psi and

epsilon? This is usually, but not invariably, the case [20]; in practice “initial guess”

solutions to the Hartree–Fock equations usually converge fairly smoothly to give

the best wavefunction and orbital energies (and thus total energy) that can be

obtained by the HF method from the particular kind of guess wavefunction (e.g.

basis set; Section 5.2.3.6.5).

To expand a bit on Dewar’s cautious endorsement of the SCF procedure [20]

(“SCF calculations are by no means foolproof; ...Usually one finds a reasonably

rapid convergence to the required solution”): occasionally a wavefunction is

obtained that is not the best one available from the chosen basis set. This

phenomenon is called wavefunction instability. To see how this could happen

note that the SCF method is an optimization procedure somewhat analogous to

geometry optimization (Section 2.4). In geometry optimization we seek a relative

minimum or a transition state on a hypersurface in a mathematical energy versus

nuclear coordinates space defined by E¼ f (nuclear coordinates); in wavefunction
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optimization we seek a global minimum on a hypersurface in an energy versus

basis function coefficients space defined by C ¼ f(basis function coefficients).

The wavefunction found may correspond to a point on the hypersurface that is not

even a minimum, but rather a saddle point. Even if it is the global minimum, if we

are using a restricted Hartree–Fock (RHF) wavefunction rather than an unre-

stricted (UHF) one (end of Section 5.2.3.6.5), there are cases in which a lower

energy will be obtained by switching to a UHF function. The RHF function is then

said to show external or triplet instability. If within the type of wavefunction we

are using (RHF or UHF) a better function can be found by moving to another point

on the hypersurface, away from a saddle point or a higher-energy minimum, the

wavefunction is said to show internal instability. There are algorithms that will

test for wavefunction instability and alter coefficients to obtain the best wave-

function from the chosen basis set. Seeger and Pople pioneered the mathematical

analysis of and some cures for wavefunction instability [21], and in more chemi-

cal language Dahareng and Dive have examined about 80 molecules for the

phenomenon and offer some generalizations [22]. Instability can occur also

with post-Hartree–Fock (correlated) (Section 5.4) wavefunctions [23]. Chemists

do not routinely test for wavefunction stability, and indeed it is rarely a problem

except for unusual molecules, e.g. p-benzyne [24]. However, when investigating

exotic (as judged by the experienced chemist) molecules, it is good practice to

carry out this check.

The Hartree–Fock SCF method is, of course, in exactly the same spirit as

the procedure described in Section 5.2.2 using the Hartree product as our total or

overall wavefunction C. The main difference between the two methods is that the

Hartree–Fock method representsC as a Slater determinant of component spin MOs

rather than as a simple product of spatial MOs, and a consequence of this is that the

calculation of the average coulombic field in the Hartree method involves only the

coulomb integral J, but in the Hartree–Fock modification we need the coulomb

integral J and the exchange integral K, which arises from Slater determinant terms

that differ in exchange of electrons. Because K acts as a kind of “Pauli correction”

to the classical electrostatic repulsion, reminding the electrons that two of them of

the same spin cannot occupy the same spatial orbital, electron–electron repulsion is

less in the Hartree–Fock method than if a simple Hartree product were used. Of

course K does not arise in calculations involving no electrons of like spin, as in H2

or (Sections 4.4.2 and 5.2.3.6.5) HHe+, which have only two, paired-spin, electrons.

At the end of the iterative procedure we have the MO’s ci and their corresponding

energy levels ei, and the total wavefunction C, the Slater determinant of the ci’s.

The ei can be used to calculate the total electronic energy of the molecule, and

the MO’s ci are useful heuristic approximations to the electron distribution, while

the total wavefunction C can in principle be used to calculate anything about the

molecule, as the expectation value of some operator. Applications of the energy

levels and the MO’s are given in Section 5.4.
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5.2.3.6 Basis Functions and the Roothaan–Hall Equations

5.2.3.6.1 Deriving the Roothaan–Hall Equations

As they stand, the Hartree–Fock equations 5.44, 5.46 or 5.47 are not very useful for

molecular calculations, mainly because (1) they do not prescribe a mathematically

viable procedure getting the initial guesses for the MO wavefunctions ci, which we

need to initiate the iterative process (Section 5.2.3.5), and (2) the wavefunctions

may be so complicated that they contribute nothing to a qualitative understanding

of the electron distribution.

For calculations on atoms, which obviously have much simpler orbitals than

molecules, we could use for the c’s atomic orbital wavefunctions based on the

solution of the Schr€odinger equation for the hydrogen atom (taking into account the

increase of atomic number and the screening effect of inner electrons on outer ones

[25]). This yields the atomic wavefunctions as tables of c at various distances from

the nucleus. This is not a suitable approach for molecules because among molecules

there is no prototype species occupying a place analogous to that of the hydrogen

atom in the hierarchy of atoms, and as indicated above it does not readily lend itself

to an interpretation of how molecular properties arise from the nature of the

constituent atoms.

In 1951 Roothaan and Hall independently pointed out [26] that these problems

can be solved by representing MO’s as linear combinations of basis functions (just

as in the simple H€uckel method, in Chapter 4, the p MO’s are constructed from

atomic p orbitals). Roothaan’s paper was more general and more detailed than

Hall’s, which was oriented to semiempirical calculations and alkanes, and the

method is sometimes called the Roothaan method. For a basis-function expansion

of MO’s we write

c1 ¼ c11f1 þ c21f2 þ c31f3 þ � � � þ cm1fm

c2 ¼ c12f1 þ c22f2 þ c32f3 þ � � � þ cm2fm

c3 ¼ c13f1 þ c23f2 þ c33f3 þ � � � þ cm3fm

..

.

cm ¼ c1mf1 þ c2mf2 þ c3mf3 þ � � � þ cmmfm

�ð5:51Þ

In devising a more compact notation for this set of equations it is very helpful to

use different subscripts to denote the MO’s c and the basis functions f. Conven-
tionally, Roman letters have been used for the c’s and Greek letters for the f’s, or
i, j, k, l, . . . for the c’s and r, s, t, u, . . . for the f’s. The latter convention will be

adopted here, and we can write the equations (5.51) as
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s=1

m

m basis functions s th basis function 

c of the s th basis function of i th MO 

i = 1, 2, 3, ..., m (m MOs) yi  =  ∑csi  fs 

i th MO

ð5:52Þ

We are expanding each MO c in terms of m basis functions. The basis functions

are usually (but not necessarily) located on atoms, i.e. for the function f(x, y, z),
where x, y, z are the coordinates of the electron being treated by this one-electron

function, the distance of the electron from the nucleus is:

r ¼ ½ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2�1=2 ð5:53Þ

where x0, y0, z0 are the coordinates of the atomic nucleus in the coordinate system

used to define the geometry of the molecule. Because each basis function may

usually be regarded (at least vaguely) as some kind of atomic orbital, this linear

combination of basis functions approach is commonly called a linear combination

of atomic orbitals (LCAO) representation of the MO’s, as in the simple and

extended H€uckel methods (Sections 4.3.4. and 4.4.1). The set of basis functions

used for a particular calculation is called the basis set.
We need at least enough spatial MO’s c to accommodate all the electrons in the

molecule, i.e. we need at least n c’s for the 2n electrons (recall that we are dealing

with closed-shell molecules). This is ensured because even the smallest basis

sets used in ab initio calculations have for each atom at least one basis function

corresponding to each orbital conventionally used to describe the chemistry of the

atom, and the number of basis functions f is equal to the number of (spatial) MOs c
(Section 4.3.4). An example will make this clear: for an ab initio calculation on

CH4, the smallest basis set would specify for C:

fðC; 1sÞ;fðC; 2sÞ;fðC; 2pxÞ;fðC; 2pyÞ;fðC; 2pzÞ

and for each H:

fðH; 1sÞ

These nine basis functions f (5 on C and 4 � 1 ¼ 4 on H) create nine spatial

MO’s c, which could hold 18 electrons; for the ten electrons of CH4 we need only

five spatial MO’s. There is no upper limit to the size of a basis set: there are

commonly many more basis functions, and hence MO’s, than are needed to hold all

the electrons, so that there are usually many unoccupied MO’s. In other words, the

number of basis functions m in the expansions (5.52) can be much bigger than the
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number n of pairs of electrons in the molecule, although only the n occupied spatial
orbitals are used to construct the Slater determinant which represents the HF

wavefunction (Section 5.2.3.1). This point, and basis sets, are discussed further in

Section 5.3.

To continue with the Roothaan–Hall approach, we substitute the expansion

(5.52) for the c’s into the Hartree–Fock equations 5.47, getting (we will work

withm, not n, HF equations since there is one such equation for each MO, and ourm
basis functions will generate m MO’s):

Xm
s¼1

cs1F̂fsj ¼ e1
Xm
sj¼1

cs1fs

Xm
s¼1

cs2F̂fs ¼ e2
Xm
s¼1

cs2fs

..

.

Xm
s¼1

csmF̂fs ¼ em
Xm
s¼1

csmF̂fs

ð5:54Þ

(F̂ operates on the functions f, not on the c’s, which have no variables x, y, z).
Multiplying each of these m equations by f1, f2, . . . , fm, (or f1* etc. if the f’s are
complex functions, as is occasionally the case) and integrating, we get m sets of

equations (one for each of the basis functions f).
Basis function f1 gives

Xm
s¼1

cs1F1s ¼ e1
Xm
s¼1

cs1S1s

Xm
sj¼1

cs2F1s ¼ e2
Xm
s¼1

cs2S1s

..

.

Xm
s¼1

csmF1s ¼ em
Xm
s¼1

csmS1s

ð5:54‐1Þ

where

Frs ¼
Z

frF̂fsdv and Srs ¼
Z

frfsdv ð5:55Þ
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Basis function f2 gives

Xm
s¼1

cs1F2s ¼ e1
Xm
s¼1

cs1S2s

Xm
s¼1

cs2F2s ¼ e2
Xm
s¼1

cs2S2s

..

.

Xm
s¼1

csmF2s ¼ em
Xm
s¼1

csmS2s

ð5:54‐2Þ

Finally, basis function fm gives

Xm
s¼1

cs1Fms ¼ e1
Xm
s¼1

cs1Sms

Xm
s¼1

cs2Fms ¼ e2
Xm
s¼1

cs2Sms

..

.

Xm
s¼1

csmFms ¼ em
Xm
s¼1

csmSms

ð5:54‐mÞ

In them sets of equations 5.54-1–5.54-m each set itself containsm equations (the

subscript of e, for example, runs from 1 to m), for a total of m � m equations. These

equations are the Roothaan–Hall version of the Hartree–Fock equations; they were

obtained by substituting for the MO’s c in the HF equations a linear combination of

basis functions (f’s weighted by c’s). The Roothaan–Hall equations are usually

written more compactly, as

Xm
s¼1

Frscsi ¼
Xm
s¼1

Srscsiei r ¼ 1; 2; 3; . . . ;m;

ðfor each i ¼ 1; 2; 3; . . . ;mÞ
ð5:56Þ

We have m � m equations because each of the m spatial MO’s c we used (recall

that there is one HF equation for each c, Eqs. 5.47) is expanded with m basis

functions. The Roothaan–Hall equations connect the basis functions f (contained in

the integrals F and S, Eqs. 5.55, above), the coefficients c, and the MO energy levels

e. Given a basis set {fs, s ¼ 1, 2, 3, . . . , m} they can be used to calculate the c’s,
and thus the MOs c (Eq. 5.52) and the MO energy levels e. The overall electron

distribution in the molecule can be calculated from the total wavefunctionC, which
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can be written as a Slater determinant of the “component” spatial wavefunctions c
(by including spin functions), and in principle anyway, any property of a molecule

can be calculated fromC. The component wavefunctions c and their energy levels

e are extremely useful, as chemists rely heavily on concepts like the shape and

energies of, for example, the HOMO and LUMO of a molecule (MO concepts are

reviewed in Chapter 4). The energy levels enable (with a correction term) the total

energy of a molecule to be calculated, and so the energies of molecules can be

compared and reaction energies and activation energies can be calculated. The

Roothaan–Hall equations, then, are a cornerstone of modern ab initio calculations,

and the procedure for solving them is outlined next. These ideas are summarized

pictorially in Fig. 5.5.

The fact that the Roothaan–Hall equations Eqs. 5.56 are actually a total ofm�m
equations suggests that they might be expressible as a single matrix equation, since

the single matrix equation AB ¼ 0, where A and B are m � m matrices, represents

m � m “simple” equations, one for each element of the product matrix AB (work it

out for two 2 � 2 matrices). A single matrix equation would be easier to work with

than m2 equations and might allow us to invoke matrix diagonalization as in

the case of the simple and extended H€uckel methods (Sections 4.3.4 and 4.4.1).

To subsume the sets of equations 5.54-1–5.54-m, i.e. Eqs. 5.56, into one matrix

weighted sum

energyMO #

Using, e.g., a set of 4 basis functions:

y4 e4

y3 e3

y2 e2

y1 e1

(the weighting factors are the MO coefficients c){ f1, f2, f3, f4}

y1(1)a(1)  y1(1)b(1)  y2(1)a(1)  y2(1)b(1)

y1(4)a(4)  y1(4)b(4)  y2(4)a(4)  y2(4)b(4)

y1(3)a(3)  y1(3)b(3)  y2(3)a(3)  y2(3)b(3)

y1(2)a(2)  y1(2)b(2)  y2(2)a(2)  y2(2)b(2)

If there are 4 electrons in the molecule, then y1 and y2
are occupied (and y3 and y4 are virtual orbitals). The
occupied orbitals are used to construct the total wavefunction,
as a Slater determinant of spin orbitals.

ψ =

Fig. 5.5 Pictorial representation of basis functions, MO’s, total wavefunction, and energy levels
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equation, we might (eschewing a rigorous deductive approach) suspect that the

matrix form is the fairly obvious possibility

FC ¼ SCe *ð5:57Þ

Here F,C and Swould have to bem�mmatrices, since there arem2 F’s, c’s and
S’s, and e would be anm� m diagonal matrix with the nonzero elements e1, e2, . . . ,
em, since e must contain only m elements, but has to be m � m to make the right

hand side matrix product the same size as that on the left.

This is easily checked: the left hand side of Eq. 5.57 is

FC ¼

F11 F12 F13 � � � F1m

F21 F22 F23 � � � F2m

..

. ..
.

. . . ..
.

Fm1 Fm2 Fm3 � � � Fmm

0
BBBB@

1
CCCCA

c11 c12 c13 � � � c1m

c21 c22 c23 � � � c2m

..

. ..
.

. . . ..
.

cm1 cm2 cm3 � � � cmm

0
BBBB@

1
CCCCA

¼
F11c11 þ F12c21 þ F13c31 � � � F11c12 þ F12c22 þ F13c32 � � � � � �
F21c11 þ F22c21 þ F23c31 � � � F21c12 þ F22c22 þ F23c33 � � � � � �

..

.

0
B@

1
CA

ð5:58Þ

The right hand side of Eq. 5.57 is

SCe ¼

S11 S12 � � � S1m

S21 S22 � � � S2m

..

. ..
. � � � ..

.

Sm1 Sm2 � � � Smm

0
BBBB@

1
CCCCA

c11 c12 � � � c1m

c21 c22 � � � c2m

..

. ..
. � � � ..

.

cm1 cm2 � � � cmm

0
BBBB@

1
CCCCA

e11 0 � � � 0

0 e22 � � � 0

..

. ..
. � � � ..

.

0 0 � � � emm

0
BBBB@

1
CCCCA

¼
S11c11 þ S12c21 þ S13c31 � � � S11c12 þ S12c22 þ S13c32 � � � � � �
S21c11 þ S22c21 þ S23c31 � � � S21c12 þ S22c22 þ S23c33 � � � � � �

..

.

0
BB@

1
CCAe

¼
e1ðS11c11 þ S12c21 þ S13c31 � � �Þ e2ðS11c12 þ S12c22 þ S13c32 � � �Þ � � �
e1ðS21c11 þ S22c21 þ S23c31 � � �Þ e2ðS21c12 þ S22c22 þ S23c33 � � �Þ � � �

..

.

0
BB@

1
CCA

ð5:59Þ
Now compare FC (5.58) and SCe (5.59). Comparing element a11 of FC (multi-

plied out to give a single matrix as shown in Eq. 5.58) with element a11 of

SCe (multiplied out to give a single matrix as shown in Eq. 5.59) we see that if
FC ¼ SCe, i.e. if Eq. 5.57 is true, then

202 5 Ab initio Calculations



F11c11 þ F12c21 þ F13c31 þ � � � ¼ eðS11c11 þ S12c21 þ S13c31 þ � � �Þ

i.e.

Xm
s¼1

csiFrs ¼ e
Xm
s¼1

csiSrs ð5:60Þ

But this is the first equation of the set (5.53-1). Continuing in this way we see

that matching each element of (the multiplied-out) matrix FC (5.58) with the

corresponding element of (the multiplied-out) matrix SC« gives one of the equa-

tions of the set 5.54-1 to (5.54-m), i.e. of the set (5.56). This can be so only if FC ¼
SCe, so this matrix equation is indeed equivalent to the set of equations (5.56).

Now we have FC ¼ SCe (5.57), the matrix form of the Roothaan–Hall equa-

tions. These equations are sometimes called the Hartree–Fock–Roothaan equations,

and, often, the Roothaan equations, as Roothaan’s exposition was the more detailed

and addresses itself more clearly to a general treatment of molecules. Before

showing how they are used to do ab initio calculations, a brief review of how we

got these equations is in order.

Summary of the derivation of the Roothaan–Hall equations.

1. The total wavefunction C of an atom or molecule was expressed as a Slater

determinant of spin MO’s c(spatial)a and c(spatial)b, Eq. 5.12.
2. From the Schr€odinger equation we got an expression for the electronic energy of

the atom or molecule, E ¼ CjĤjC� 	
, Eq. 5.14.

3. Substituting the Slater determinant for the total molecular wavefunction C and

inserting the explicit form of the Hamiltonian operator Ĥ into (5.14) gave the

energy in terms of the spatial MO’s c, (Eq. 5.17):

E ¼ 2
Xn
i¼1

Hii þ
Xn
i¼1

Xn
j¼1

ð2Jij � KijÞ:

4. Minimizing E in Eq. 5.17 with respect to the c’s (to find the best c’s) gave the
Hartree–Fock equations F̂c ¼ ec (5.44).

5. Substituting into the Hartree–Fock equations F̂c ¼ ec (5.44) the Roothaan–Hall

linear combination of basis functions (LCAO) expansions ci ¼
P

csifs (5.52)

for the MO’s c gave the Roothaan–Hall equations (Eqs. 5.56), which can be

written compactly as FC ¼ SCe (Eqs. 5.57).

5.2.3.6.2 Using the Roothaan–Hall Equations to do ab initio Calculations – the

SCF Procedure

The Roothaan–Hall equations FC ¼ SCe (Eqs. 5.57) (F, C, S and e are defined in

connection with Eqs. 5.58 and 5.59; the matrix elements F and S are defined by

Eqs. 5.54 and 5.55) are of the same matrix form as Eq. 4.54, HC ¼ SCe, in the
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simple H€uckel method (Section 4.3.3) and the extended H€uckel (Section 4.4.1)

method. Here, however, we have seen (in outline) how the equation may be

rigorously derived. Also, unlike the case in the H€uckel methods the Fock matrix

elements are rigorously defined theoretically: from Eqs. 5.55

Frs ¼
Z

frF̂fsdv ð5:61 ¼ 4:54Þ

and Eq. 5.36

F̂ ¼ Ĥcoreð1Þ þ
Xn
j¼1

ð2Ĵjð1Þ � K̂jð1ÞÞ ð5:62 ¼ 5:36Þ

it follows that

Frs ¼
Z

fr Ĥ
coreð1Þ þ

Xn
j¼1

ð2Ĵjð1Þ � K̂jð1ÞÞ
" #

fsdv ð5:63Þ

where

Ĥcoreð1Þ ¼ � 1

2
r2

1 �
X
all m

Zm
rm1

ð5:64 ¼ 5:19Þ

Ĵjð1Þ ¼
Z

c�
j ð2Þ

1

r12

� �
cjð2Þdv2 ð5:65 ¼ 5:29Þ

and

K̂ið1Þcjð1Þ ¼ cið1Þ
Z

c�
i ð2Þ

1

r12

� �
cjð2Þdv2 ð5:66 ¼ 5:30Þ

To use the Roothaan–Hall equations we want them in standard eigenvalue-like

form so that we can diagonalize the Fock matrix F of Eq. 5.57 to get the coefficients

c and the energy levels e, just as we did in connection with the extended H€uckel
method (Section 4.4.1). The procedure for diagonalizing F and extracting the c’s
and e’s and is exactly the same as that explained for the extended H€uckel method

(although here the cycle is iterative, i.e. repetitive, see below):

1. The overlap matrix S is calculated and used to calculate an orthogonalizing

matrix S�1/2, as in Eq. 4.107:

S ! D ! S�1=2 ð5:67Þ

2. S�1/2 is used to convert F to F0 (cf. Eq. 4.104):

F0 ¼ S�1=2FS�1=2 ð5:68Þ
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The transformed Fock matrix F0 satisfies

F0 ¼ C0eC0�1 ð5:69Þ

(cf. Eq. 4.104). The overlap matrix S is readily calculated, so if F can be

calculated it can be transformed to F0, which can be diagonalized to give C0

and e, which latter yields the MO energy levels ei.
3. Transformation of C0 to C (Eq. 4.100) gives the coefficients csi in the expansion

of the MO’s c in terms of basis functions f:

C ¼ S�1=2C0 ð5:70Þ

Equations 5.63–5.66 show that to calculate F, i.e. each of the matrix elements F,
we need the wavefunctions ci, because Ĵ and K̂, the coulomb and exchange

operators (Eq. (5.65) and Eq. (5.66)), are defined in terms of the c’s. It looks like
we are faced with a dilemma: the point of calculating F is to get (besides the e’s) the
c’s (the c’s with the chosen basis set {f} make up the c’s), but to get Fwe need the

c’s. The way out of this is to start with a set of approximate c’s, e.g. from an

extended H€uckel calculation, which needs no c’s to begin with because the

extended H€uckel “Fock” matrix elements are calculated from experimental ioniza-

tion potentials (Section 4.4.1). These c’s, the initial guess, are used with the basis

functions f to in effect (Section 5.2.3.6.3) calculate initial MO wavefunctions c,
which are used to calculate the F elements Frs. Transformation of F to F0 and
diagonalization gives a “first- cycle” set of e’s and (after transformation of C0 to C)
a first-cycle set of c’s. These c’s are used to calculate new Frs, i.e. a new F, and this

gives a second-cycle set of e’s and c’s. The process is continued until things–the e’s,
the c’s (as the density matrix – Section 5.2.3.6.3), the energy, or, more usually, some

combination of these – stop changing within certain pre-defined limits, i.e. until the

cycles have essentially converged on the limiting e’s and c’s. Typically, about ten
cycles are needed to achieve convergence. It is because the operator F̂ depends on

the functions f on which it acts, making an iterative approach necessary, that the

Roothaan–Hall equations, like the Hartree–Fock equations, are called pseudoei-

genvalue (see end of Section 5.2.3.4 and start of Section 5.2.3.5).

Now, in the Hartree–Fock method (the Roothaan–Hall equations represent one

implementation of the Hartree–Fock method) each electron moves in an average
field due to all the other electrons (see the discussion in connection with Fig. 5.3,

Section 5.2.3.2). As the c’s are refined the MO wavefunctions improve and so

this average field that each electron feels improves (since J and K, although not

explicitly calculated (Section 5.2.3.6.3) improve with the c’s ). When the c’s no
longer change the field represented by this last set of c’s is (practically) the same

as that of the previous cycle, i.e. the two fields are “consistent” with one another,

i.e. “self-consistent”. This Roothaan–Hall–Hartree–Fock iterative process (initial

guess, first F, first-cycle c’s, second F, second-cycle c’s, third F, etc.) is therefore a
self-consistent-field procedure or SCF procedure, like the Hartree–Fock procedure
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of Section 5.2.2. The terms “Hartree–Fock calculations/method” and “SCF calcula-

tions/method” are in practice synonymous. The key point to the iterative nature of
the SCF procedure is that to get the c’s (for the MO’s c) and the MO e’s we

diagonalize a Fock matrix F, but to calculate F we need an initial guess for the c’s
and we then improve the c’s by repeatedly recalculating and diagonalizing F. The

procedure is summarized in Fig. 5.6. Note that in the simple and extended H€uckel
methods we do not need the c’s to calculate F, and there is no iterative refinement of

the c’s, so these are not SCF methods; other semiempirical procedures, however

(Chapter 6) do use the SCF approach. A corollary of the SCF procedure is that the

molecular orbitals c to be filled are chosen before calculation of these orbitals. This
is clear from the fact that the MO coefficients of the filled orbitals are used to

construct the elements of the density matrix (Section 5.2.3.6.4). In contrast, in the

simple and extended H€uckel methods the MOs are calculated with the aid of a

coefficients-free prescription and simply filled according to the electronic state

desired (from the bottom up for the ground state).

1   Define molecule

2   calculate integrals

3   calculate othogonalizing
     matrix

4    calculate initial
      Fock matrix

5   transform Fock matrix

6   diagonalize Fock matrix

7   transform c ′s

8   compare parameters
     with previous ones

Specify geometry, charge and electronic state,
e.g. CH4 cartesian coordinates, charge = 0, singlet
or    CH4 cartesian coordinates, charge = 0, triplet, etc.

Step 1

Choose a basis set.
Start the calculation.

Program calculates integrals: kinetic energy, potential energy, and
overlap integrals.

Step 2

Program calculates orthogonalizing matrix using overlap matrix (composed of
overlap integrals).

Step 3

Program calculates initial Fock matrix using kinetic energy and potential energy integrals
and an initial guess of basis set coefficients (initial guess from, e.g., an extended
Hückel calculation; the guess c ′s usually have to be "projected" to the ab initio basis,
which is almost always bigger than that used for the guess calculation).

Step 4

Program uses orthogonalizing matrix to transform Fock matrix to one based on an
orthonormal set of functions derived from the original atom-centered basis functions.

Step 5

Program diagonalizes Fock matrix to get c ′s (based on the orthonormal, derived basis
set) and energy levels.

Step 6

Program transforms the c ′s to a set based on the original, atom-centered basis functions. 

Step 7

Program compares c ′s (and / or energy, or other parameters) with the previous set; if the
match is not close enough, another SCF cycle, steps 4–8, is done, using as input for
step 4 the latest c's. If the match is close enough, the iterations stop.

Step 8

Fig. 5.6 Summary of the steps in the Hartree–Fock–Roothaan–Hall SCF procedure
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5.2.3.6.3 Using the Roothaan–Hall Equations to do ab initio Calculations – the

Equations in terms of the c’s and f’s of the LCAO Expansion

The key process in the HF ab initio calculation of energies and wavefunctions is

calculation of the Fock matrix, i.e. of the matrix elements Frs (Section 5.2.3.6.2).

Equation (5.63) expresses these in terms of the basis functions f and the

operators Ĥcore, Ĵ and K̂, but the Ĵ and K̂ operators (Eqs. 5.28 and 5.31) are

themselves functions of the MO’s c and therefore of the c’s and the basis

functions f. Obviously the Frs can be written explicitly in terms of the c’s and
f’s; such a formulation enables the Fock matrix to be efficiently calculated from

the coefficients and the basis functions without explicitly evaluating the opera-

tors Ĵ and K̂ after each iteration. This formulation of the Fock matrix will now be

explained.

To see more clearly what is required, write Eq. 5.63 as

Frs ¼ frð1ÞjĤ
coreð1Þjfsð1Þ

D E
þ
Xn
j¼1

2 frð1ÞjĴjð1Þfsð1Þ
� 	� frð1ÞjK̂jð1Þjfsð1Þ

� 	� 

ð5:71Þ

using the compact Dirac notation. The operator Ĥcore(1) involves only the Laplacian

differentiation operator, atomic numbers and electron coordinates, so we do not have

to consider substituting the Roothaan-hall c’s and f’s into Ĥcore. The operators Ĵ and

K̂ invoke two integrals which we now consider. The first integral, from Eq. (5.65), is

Ĵjð1Þfsð1Þ ¼ fsð1Þ
Z c�

j ð2Þcjð2Þ
r12

dv2

Substituting for c*j (2) the basis function expansion ∑c*tjf
*
t (2) and for cj (2) the

expansion ∑cujfu(2) (cf. Eq. 5.52):

Ĵjð1Þfsð1Þ ¼ fsð1Þ
Xm
t¼1

Xm
u¼1

c�tjcuj
Z

f�
t ð2Þfuð2Þ

r12
dv2

where the double sum arises because we multiply the c* sum by the c sum. To get

the desired expression for hfr(1)|Ĵ(1)fs(1)i (usually written hfr(1)|Ĵ(1)|fs(1)i) we
multiply this by f�

r (1) and integrate with respect to the coordinates of electron 1,

getting:

frð1ÞjĴjð1Þfsð1Þ
� 	 ¼Xm

t¼1

Xm
u¼1

c�tjcuj
Z Z

f�
r ð1Þfsð1Þf�

t ð2Þfuð2Þ
r12

dv1dv2
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Note that this is really a sixfold integral, since there are three variables (x1, y1, z1)
for electron 1, and three (x2, y2, z2) for electron 2, represented by dv1 and dv2
respectively. This equation can be written more compactly as

frð1ÞjĴjð1Þfsð1Þ
� 	 ¼Xm

t¼1

Xm
u¼1

c�tjcujðrsjtuÞ ð5:72Þ

The notation

ðrsjtuÞ ¼
Z Z

f�
r ð1Þfsð1Þf�

t ð2Þfuð2Þ
r12

dv1dv2 ð5:73Þ

is a common shorthand for this kind of integral, which is called a two-electron
repulsion integral (or two-electron integral, or electron repulsion integral); the phy-

sical significance of these is outlined in Section 5.2.3.6.4). This parentheses notation

should not be confused with the Dirac bra-ket notation, j ða braÞ and jh i ða ketÞ:
by definition

f jgh i ¼
Z

f �ðqÞgðqÞdq ð5:74Þ

so

rsjtuh i ¼
Z

ðfrð1Þfsð1ÞÞ�ftð1Þfuð1Þdv1 ð5:75Þ

Actually, several notations have been used for the integrals of Eq. 5.73 and for

other integrals; make sure to ascertain which symbolism a particular author is using.

The second integral, from Eq. 5.66, is

K̂jð1Þfsð1Þ ¼ cjð1Þ
Z c�

j ð2Þfsð2Þ
r12

dv2

Substituting for cj(1) the basis function expansion ∑cujfu(1) and for c*j (2) the
expansion

P
c�tjf

�
t ð2Þ (cf. Eq. 5.52):

K̂jð1Þfsð1Þ ¼ fuð1Þ
Xm
t¼1

Xm
u¼1

c�tjcuj
Z

f�
t ð2Þfsð2Þ

r12
dv2

To get the desired expression for frð1ÞK̂ð1Þfsð1Þ
� 	

we multiply this by f�
r (1)

and integrate with respect to the coordinates of electron 1:

frð1ÞjK̂jð1Þfsð1Þ
� 	 ¼Xm

t¼1

Xm
u¼1

c�tjcuj
Z Z

f�
r ð1Þfuð1Þf�

t ð2Þfsð2Þ
r12

dv1dv2
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which can be written more compactly as

frð1ÞjK̂jð1Þfsð1Þ
� 	 ¼Xm

t¼1

Xm
u¼1

c�tjcujðrujtsÞ ð5:76Þ

where of course (cf. (5.73))

ðrujtsÞ ¼
Z Z

f�
r ð1Þfuð1Þf�

t ð2Þfsð2Þ
r12

dv1dv2 ð5:77Þ

Substituting Eqs. 5.72 and 5.76 for frð1ÞjĴð1Þfsð1Þ
� 	

and frð1ÞjK̂ð1Þfsð1Þ
� 	

into Eq. 5.71 for Frs we get

Frs ¼ frð1ÞjĤ
coreð1Þjfsð1Þ

D E
þ
Xn
j¼1

2
Xm
t¼1

Xm
u¼1

c�tjcujðrsjtuÞ �
Xm
t¼1

Xm
u¼1

c�tjcujðrsjtuÞ
" #

i.e.

Frs ¼ Hcore
rs ð1Þ þ

Xm
t¼1

Xm
u¼1

Xn
j¼1

c�tjcuj½2ðrsjtuÞ � ðrujtsÞ� ð5:78Þ

where the integral of the operator Ĥcore over the basis functions has been written

Hcore
rs ð1Þ ¼ frð1ÞjĤ

coreð1Þjfsð1Þ
D E

ð5:79Þ

with Ĥcore defined by Eq. 5.64 ¼ 5.19.

Equation 5.78, with its ancillary definitions Eqs. 5.73, 5.77 and 5.79, is what we

wanted: the Fockmatrix elements in terms of the basis functionsf and their weighting

coefficients c, for a closed-shell molecule;m is the number of basis functions.We can

use Eq. 5.78 to calculate MO’s and energy levels (Section 5.2.3.6.2). Given a basis set

and molecular geometry (the integrals depend on molecular geometry, as will be

illustrated) and starting with an initial guess at the c’s, one (or rather the computer

algorithm) calculates the matrix elements Frs, assembles them into the Fock matrix F,

etc. (Section 5.2.3.6.2 and Fig. 5.6) Let us now examine certain details connected with

Eq. 5.78 and this procedure.

5.2.3.6.4 Using the Roothaan–Hall Equations to do ab initio Calculations – Some

Details

Equation 5.78 is normally modified by subsuming the c’s into Ptu, the elements of

the density matrix P:
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P ¼
P11 P12 P13

..

.
P1m

P21 P22 P23 � � � P2m

..

. ..
.

. . . ..
.

Pm1 Pm2 Pm3 � � � Pmm

0
BBBB@

1
CCCCA ð5:80Þ

where the density matrix elements are

Ptu ¼ 2
Xn
j¼1

c�tjcuj t ¼ 1; 2; . . . ;m and u ¼ 1; 2; . . . ;m �ð5:81Þ

(sometimes P is defined as ∑c*c). From Eqs. 5.78 and 5.81:

Frs ¼ Hcore
rs ð1Þ þ

Xm
t¼1

Xm
u¼1

Ptu ðrsjtuÞ � 1

2
ðrujtsÞ

� �
�ð5:82Þ

Equation 5.82, a slight modification of Eq. 5.78, is the key equation in

calculating the ab initio Fock matrix (you need memorize this equation only to

the extent that the Fock matrix element consists of Hcore, P, and the two-electron

integrals). Each density matrix element Ptu represents the coefficients c for a

particular pair of basis functions ft and fu, summed over all the occupied MO’s

ci (i ¼ 1, 2, . . . , n). We use the density matrix here just as a convenient way to

express the Fock matrix elements, and to formulate the calculation of properties

arising from electron distribution (Section 5.5.4), although there is far more to the

density matrix concept [27]. Equation 5.82 enables the MO wavefunctions c
(which are linear combinations of the c’s and f’s) and their energy levels e to
be calculated by iterative diagonalization of the Fock matrix.

Equation 5.17 (E¼ 2∑H þ ∑∑(2J� K)) gives one expression for the molecular

electronic energy E. If we wish to calculate E from the energy levels, we must note

that in the HF method E is not simply twice the sum of the energies of the n
occupied energy levels, i.e. it is not the sum of the one-electron energies (as we take

it to be in the simple and extended H€uckel methods). This is because the MO energy

level value e represents the energy of one electron subject to interaction with all the
other electrons. The energy of an electron is thus its kinetic energy plus its

electron–nuclear attractive potential energy (Hcore), plus, courtesy of the J and K
integrals (Section 5.2.3.5 and Eqs. (5.48)–(5.50 ¼ 5.83 ¼ 5.50)), the potential

energy from repulsion of all the other electrons:

ei ¼ Hcore
ii þ

Xn
j¼1

ð2Jijð1Þ � Kijð1ÞÞ ð5:83 ¼ 5:50Þ

If we add the energies of electron 1 and electron 2, say, we are adding, besides

the kinetic energies of these electrons, the repulsion energy of electron 1 on electron

2, 3, 4, . . . , and the repulsion energy of electron 2 on electron 1, 3, 4, . . . – in other
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words, we are counting each repulsion twice. The simple sum thus represents

properly the total kinetic and electron–nuclear attraction potential energy, but over-

counts the electron–electron repulsion potential energy (recall that we are working

with 2n electrons and thus n filled MOs):

EðoverestimatedÞ ¼ 2
Xn
i¼1

ei ð5:84Þ

Note that we cannot just take half of this simple sum, because only the electron–

electron energy terms, not all the terms, have been doubly-counted. The solution is

to subtract from 2∑e the superfluous repulsion energy; from our discussion

of Eq. 5.50 in Section 5.2.3.5 we saw that the sum ∑(2J � K) over n represents

the repulsion energy of one electron interacting with all the other electrons, so to

remove the superfluous interactions we subtract ∑∑(2J � K), the sum over n of the
repulsion energy sum, to get [15]

EHF ¼ 2
Xn
i¼1

ej �
Xn
i¼1

Xn
j¼1

ð2Jijð1Þ � Kijð1ÞÞ ð5:85Þ

EHF is the Hartree–Fock electronic energy: the sum of one-electron energies

corrected (within the average-field HF approximation) for electron–electron repul-

sion. We can get rid of the integrals J and K over MO’s c and obtain an equation for

EHF in terms of c’s and f’s. From (5.83),

Xn
i¼1

Xn
j¼1

ð2Jijð1Þ � Kijð1ÞÞ ¼
Xn
i¼1

ei þ
Xn
i¼1

Hcore
ii

and from this and (5.85) we get

EHF ¼
Xn
i¼1

ei þ
Xn
i¼1

Hcore
ii ð5:86Þ

From the definition of Hcore
ii in Eqs. 5.49 and 5.50, i.e. from

Hcore
ii ¼ cið1ÞjĤ

corejci

D E
ð5:87Þ

and the LCAO expansion (5.52)

ci ¼
Xm
s¼1

csifs ð5:88 ¼ 5:52Þ
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we get from Eq. 5.86

EHF ¼
Xn
i¼1

ei þ
Xm
r¼1

Xm
s¼1

Xn
i¼1

c�ricsiH
core
rs ð5:89Þ

Using Eq. 5.81, Eq. 5.89 can be written in terms of the density matrix ele-

ments P:

EHF ¼
Xn
i¼1

ei þ 1

2

Xm
r¼1

Xm
s¼1

PrsH
core
rs ð5:90Þ

This is the key equation for calculating the HF electronic energy of a molecule. It

can be used when self-consistency has been reached, or after each SCF cycle

employing the e’s and c’s yielded by that particular iteration, and Hcore
rs , which

latter does not change from iteration to iteration, since it is composed only of the

fixed basis functions and an operator which does not contain e’s or c’s: from
Eqs. 5.64 ¼ 5.19 and 5.79

Hcore
rs ¼ frj �

1

2
r2

i �
X
all m

Zm
rmi

jfs

* +
ð5:91Þ

Hcore
rs does not change because the SCF procedure refines the electron-electron

repulsion (till the field each electron feels is “consistent” with the previous one),

but Hcore
rs in contrast represents only the contribution to the kinetic energy plus

electron– nucleus attraction of the electron density associated with each pair of

basis functions fr and fs.

Equation 5.90 gives the HF electronic energy of the molecule or atom – the

energy of the electrons due to their motion (their kinetic energy) plus their energy

due to electron–nucleus attraction and (within the HF approximation) to electron–

electron repulsion (their potential energy). The total energy of the molecule,

however, involves not just the electrons but also the nuclei, which contribute

potential energy due to internuclear repulsion and kinetic energy due to nuclear

motion. This motion persists even at 0 K, because the molecule vibrates even at this

temperature; this unavoidable vibrational energy is called the zero point vibrational
energy or zero point energy (ZPVE or ZPE; Section 2.5, Fig. 2.20 and associated

discussion). Calculation of the internuclear repulsion energy is trivial, as this is just

the sum of all coulombic repulsions between the nuclei:

VNN ¼
X
all m;v

ZmZv
rmv

ð5:92 ¼ 5:16Þ

Calculation of the ZPE is more involved; it requires calculating the frequencies

(i.e. the normal-mode vibrations – Section 2.5) and summing the energies of each
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mode [28] (all this is done by standard programs, which print out the ZPE after the

frequencies). Adding the HF electronic energy and the internuclear repulsion gives

what we might Etotal
HF , the total “frozen-nuclei” (no ZPE) energy:

Etotal
HF ¼ EHF þ VNN ¼

Xn
i¼1

ei þ 1

2

Xm
r¼1

Xm
s¼1

PrsH
core
rs þ VNN ð5:93Þ

from Eqs. 5.90 and (5.92¼ 5.16). Etotal
HF , the energy usually displayed at the end of a

Hartree–Fock calculation is, in ordinary parlance, “the Hartree–Fock energy”.

An aggregate of such energies, plotted against various geometries, represents

an HF Born–Oppenheimer PES (Section 2.3). The zero of energy for the

Schr€odinger equation for an atom or molecule is normally taken as the energy

of the electrons and nuclei at rest at infinite separation. The Hartree–Fock energy

(any ab initio energy, in fact) of a species in thus relative to the energy of

the electrons and nuclei at rest at infinite separation, i.e. it is the negative of the

minimum energy required to break up the molecule or atom and separate the

electrons and nuclei to infinity. We are normally interested in relative energies,

differences in absolute ab initio energies. Ab initio energies are discussed in

Section 5.5.2.

In a geometry optimization (Section 2.4) a series of single-point calculations

(calculations at a single point on the potential energy surface, i.e. at a single

geometry) is done, each of which requires the calculation of Etotal
HF , and the geometry

is changed systematically until a stationary point is reached (one where the poten-

tial energy surface is flat; ideally Etotal
HF should fall monotonically in the case of

optimization to a minimum). The ZPE calculation, which is valid only for a

stationary point on the potential energy surface (Section 2.5; discussion in connec-

tion with Fig. 2.19), can be used to correct Etotal
HF of the optimized structure for

vibrational energy; adding the ZPE gives the total internal energy of the molecule at

0 K, which we could call Etotal
0K :

Etotal
0K ¼ Etotal

HF þ ZPE �ð5:94Þ

The relative energies of isomers may be calculated by comparing Etotal
HF , but for

accurate work the ZPE should be taken into account, even though the required

frequency calculations usually take significantly longer than the geometry optimi-

zation – see Section 5.3.3, Table 5.3). Fortunately, it is valid to correct Etotal
HF with a

ZPE from a lower-level optimization-plus-frequency job (not a lower-level fre-

quency job on the higher-level geometry). Figure 2.19, Section 2.5 compares

energies for the species in the isomerization of HNC to HCN. The relative energies

with/without the ZPE correction for HCN, transition state, and HNC are 0/0, 202/

219, and 49.7/52.2 kJ mol�1. The ZPEs of isomers tend to be roughly equal and

so to cancel when relative energies are calculated (less so where transition states

are involved), but, as implied above, in accurate work it is usual to compare the

ZPE-corrected energies Etotal
0K .
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5.2.3.6.5 Using the Roothaan–Hall Equations to do ab initio Calculations – an

Example

The application of the Hartree–Fock method to an actual calculation will now be

illustrated in detail with protonated helium, H–He+, the simplest closed-shell

heteronuclear molecule. This species was also used to illustrate the details of the

extended H€uckel method (EHM) in Section 4.4.2. In this simple example all the

steps were done with a pocket calculator, except for the evaluation of the integrals

(this was done with the ab initio program Gaussian 92 [29]) and the matrix

multiplication and diagonalization steps (done with the program Mathcad [30]).

Step 1 – Specifying the geometry, basis set and MO occupancy

We start by specifying a geometry and a basis set. We will use the same

geometry as with the EHM, 0.800 Å, i.e. 1.5117 a.u. (bohr). In ab initio calculations

on molecules, the basis functions are almost always Gaussian functions (basis

functions are discussed in Section 5.3). Gaussian functions differ from the Slater

functions we used in the EHM in Chapter 4 in that the exponent involves the square
of the distance of the electron from the point (usually an atomic nucleus) on which

the function is centered:

An s-type Slater function

f ¼ a expð�brÞ ð5:95Þ

An s-type Gaussian function

f ¼ a expð�br2Þ ð5:96Þ

In ab initio calculations the mathematically more tractable Gaussians are used to

approximate the physically more realistic Slater functions (see Section 5.3). We use

here the simplest possible Gaussian basis set: a 1s atomic orbital on each of the two

atoms, each 1s orbital being approximated by one Gaussian function. This is called

an STO-1G basis set, meaning Slater-type orbitals-one Gaussian, because we are

approximating a Slater-type 1s orbital with a Gaussian function. The best STO-1G

approximations to the hydrogen and helium 1s orbitals in a molecular environment
[31] are

fðHÞ ¼ f1 ¼ 0:3696 expð�0:4166jr� R1j2Þ ð5:97Þ

fðHeÞ ¼ f2 ¼ 0:5881 expð�0:7739jr� R2j2Þ ð5:98Þ

where |r � Ri| is the distance of the electron in fi (f is a one-electron function)

from nucleus i on which fi is centered (Fig. 5.7). The larger constant in the helium

exponent as compared to that of hydrogen (0.7739 vs 0.4166) reflects the intuitively

reasonable fact that since an electron in f2 is bound more tightly to its doubly-

charged nucleus than is an electron in f1 is to its singly-charged nucleus, electron
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density around the helium nucleus falls off more quickly with distance than does

that around the hydrogen nucleus (Fig. 5.8).

We have a geometry and a basis set, and wish to do an SCF calculation on HHeþ

with both electrons in the lowest MO, c1, i.e. on the singlet ground state. In general,
SCF calculations proceed from specification of geometry, basis set, charge and

multiplicity. The multiplicity is a way of specifying the number of unpaired

electrons:

Multiplicity ¼ S ¼ 2sþ 1 ð5:99Þ

where s¼ total number of unpaired electron spins (each electron has a spin of�½),

taking each unpaired spin as +½. Figure 5.9 shows some examples of the specifica-

tion of charge and multiplicity. By default an SCF calculation is performed on the

ground state of specified multiplicity, i.e. the MO’s are filled from c1 up to give the

lowest-energy state of that multiplicity.

Step 2 – Calculating the integrals

Having specified a Hartree–Fock calculation on singlet HHe+, with H�He ¼
0.800 Å (1.5117 bohr), using an STO-1G basis set, the most straightforward way

to proceed is to now calculate all the integrals, and the orthogonalizing matrix S�1/2

x

y

z

electron

r

basis function f1 centered on atomic nucleus 1

basis function f2 centered on atomic nucleus 2

r – R1

r – R2

R1

R2

f3

f4

Fig. 5.7 A four-atom molecule in a coordinate system. Only one of possibly many electrons is

shown. The basis functions f are one-electron functions, usually centered on atomic nuclei. R1,

R2, etc., are vectors representing the x, y, z coordinates (conveniently as 3 � 1 column matrices;

Section 4.3.3) of the nuclei (“of the atoms”), and r is a vector representing the x, y, z coordinates of
an electron. The distances of the electron from the centers of the various basis functions are the

absolute values of the various vector differences: |r� R1|, |r� R2|, etc. For a particular molecular

geometry, R1, R2, etc. are fixed and enter the functions f1, f2, etc., only parametrically, i.e. to

denote where the f’s are centered; r is the variable in these functions, which are thus f(x, y, z).
Several basis functions may be centered on each nucleus
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that will be used to transform the Fock matrix F to F0 and to convert the transformed

coefficient matrix C0 to C (Eqs. 5.67–5.70). The integrals are those required for

Hcore, the one-electron part of the elements Frs of F, and the two-electron repulsion

integrals (rs|tu), (ru|ts) (Eq. 5.82), as well as the overlap integrals, which are needed
to calculate the overlap matrix S and thus the orthogonalizing matrix S�1/2

(Eq. 5.67).

Efficient methods have been developed for calculating these integrals [32] and

their values will simply be given later. For our calculation the elements Frs of the

Fock matrix (Eq. 5.82) are conveniently written

Frs ¼ Hcore
rs ð1Þ þ

Xm
t¼1

Xm
u¼1

Ptu ðrsjtuÞ � 1

2
ðrujtsÞ

� �

¼ Trs þ VrsðHÞ þ VrsðHeÞ þ Grs

ð5:100Þ

Here Hcore(1) has been dissected into a kinetic energy integral T and two

potential energy integrals, V(H) and V(He). From the definition of the operator

Ĥcore (Eq. 5.64 ¼ 5.19) and the Roothaan–Hall expression for the integral Hcore

(Eq. 5.79) we see that (the (1) emphasizes that these integrals involve the coordi-

nates of only one electron):

Trsð1Þ ¼
Z

fr � 1

2
r2

1

� �
fsdv

¼
Z

fr � 1

2

@2

@x2
þ @2

@y2
þ @2

@z2

� �� �
fsdv

ð5:101Þ

0

0.5

1.0

2.0

3.0

0.370

0.333

0.244

0.070

0.009

0.588

0.485

0.271

0.027

0.0006

0

0.2

0.4

0.6

1 2 3

f(x, y, z) = f(|r – R|)

f(He)

f(H)

|r – R| Å

|r – R| f(H) = 0.3696exp(-0.4166|r – R1|) f(He) = 0.5881exp(–0.7739|r – R2|)

Fig. 5.8 Electron density around the helium nucleus falls off more quickly than electron density

around the lower-charge hydrogen nucleus
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VrsðH; 1Þ ¼
Z

fr

ZH
rH1

� �
fsdv ð5:102Þ

and

VrsðHe; 1Þ ¼
Z

fr

ZHe

rHe1

� �
fsdv ð5:103Þ

In Eq. 5.102 the variable is the distance of the electron (“electron 1” – see the

discussion in connection with Eqs. 5.18 and 5.19) from the hydrogen nucleus, and

eV (1 eV particle–1 = 96.5 kJ mol–1)

20

10

0

–10

–20

–30

–500

–40

–50

H2O
neutral, singlet

H2O
neutral, triplet

H2O
radical cation, doublet

0 unpaired electrons,
S = 0
multiplicity = 2S + 1 = 1

2 unpaired electrons,
S = 1 / 2 + 1 / 2 = 1
multiplicity = 2S + 1 = 3

i.e. H2O .+

1 unpaired electron,
S = 1 / 2
multiplicity = 2S + 1 = 2

Fig. 5.9 Some examples of the results of specification of charge and multiplicity. The calculations

used the STO-3G basis set (Section 5.3) which has seven basis functions, and so creates seven

MOs. All calculations were at the HF/STO-3G geometry of the neutral singlet
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in Eq. 5.103 the variable is the distance of the electron from the helium nucleus; ZH
and ZHe are 1 and 2, respectively.

From Eq. 5.100 the two-electron contribution to each Fock matrix element is

Grs ¼
Xm
t¼1

Xm
u¼1

Ptu ðrsjtsÞ � 1

2
ðrujtsÞ

� �
ð5:104Þ

Each element Grs is calculated from a density matrix element Ptu (Eqs. 5.80

and 5.81) and two two-electron integrals (rs|tu) and (ru|ts) (Eqs. 5.73 and 5.77).

The required one-electron integrals for calculating the Fock matrix F are

T11 ¼ 0:6249 T12 ¼ T21 ¼ 0:2395 T22 ¼ 1:1609

V11ðHÞ ¼ �1:0300 V12ðHÞ ¼ V21ðHÞ ¼ �0:4445 V22ðHÞ ¼ �0:6563

V11ðHeÞ ¼ �1:2555 V12ðHeÞ ¼ V21ðHeÞ ¼ �1:1110 V22ðHeÞ ¼ �2:8076

ð5:105Þ

To see which two-electron integrals are needed we evaluate the summation in

Eq. 5.104 for each of the matrix elements (G11, G12, G21, G22):

G11 ¼
X2
t¼1

X2
u¼1

Ptu ð11jtuÞ � 1

2
ð1ujt1Þ

� �

i.e: G11 ¼
X2
t¼1

Pt1 ð11jt1Þ � 1

2
ð11jt1Þ

� �
þ Pt2 ð11jt2Þ � 1

2
ð12jt1Þ

� �� �

¼ P11 ð11j11Þ � 1

2
ð11j11Þ

� �
þ P12 ð11j12Þ � 1

2
ð12j11Þ

� �

þ P21 ð11j21Þ � 1

2
ð11j21Þ

� �
þ P22 ð11j22Þ � 1

2
ð12j21Þ

� �
ð5:106Þ

G12 ¼ G21 ¼
X2
t¼1

X2
u¼1

Ptu ð12jtuÞ � 1

2
ð1ujt2Þ

� �

i:e: G12 ¼ G21 ¼
X2
t¼1

Pt1 ð12jt1Þ � 1

2
ð11jt2Þ

� �
þ Pt2 ð12jt2Þ � 1

2
ð12jt2Þ

� �� �

¼ P11 ð12j11Þ � 1

2
ð11j12Þ

� �
þ P12 ð12j12Þ � 1

2
ð12j12Þ

� �

þ P21 ð12j21Þ � 1

2
ð11j22Þ

� �
þ P22 ð12j22Þ � 1

2
ð12j22Þ

� �
ð5:107Þ
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G22 ¼
X2
t¼1

X2
u¼1

Ptu ð22jtuÞ � 1

2
ð2ujt2Þ

� �

i.e: G22 ¼
X2
t¼1

Pt1 ð22jt1Þ � 1

2
ð21jt2Þ

� �
þ Pt2 ð22jt2Þ � 1

2
ð22jt2Þ

� �� �

¼ P11 ð22j11Þ � 1

2
ð21j12Þ

� �
þ P12 ð22j12Þ � 1

2
ð22j12Þ

� �

þ P21 ð22j21Þ � 1

2
ð21j22Þ

� �
þ P22 ð22j22Þ � 1

2
ð22j22Þ

� �
ð5:108Þ

Each element of the electron repulsion matrix G has eight 2-electron repulsion

integrals, and of these 32 there appear to be 14 different ones:

from G11: (11|11), (11|12), 12|11), (11|21), (11|22), (12|21)

new with G12 ¼ G21: (12|12), (12|22)

new with G22: (22|11), (21|12), (22|12), (22|21), (21|22), (22|22)

However, examination of Eq. 5.73 shows that many of these are the same. It is

easy to see that if the basis functions are real (as is almost always the case) then

ðrsjtuÞ ¼ ðrsjutÞ ¼ ðsrjtuÞ ¼ ðsrjutÞ ¼ ðtujrsÞ ¼ ðtujsrÞ ¼ ðutjrsÞ
¼ ðutjsrÞ ð5:109Þ

Taking this into account, there are only six unique two-electron repulsion inte-

grals, whose values are:

ð11j11Þ ¼ 0:7283 ð21j21Þ ¼ 0:2192
ð21j11Þ ¼ 0:3418 ð22j21Þ ¼ 0:4368
ð22j11Þ ¼ 0:5850 ð22j22Þ ¼ 0:9927

ð5:110Þ

The integrals (11|11) and (22|22) represent repulsion between two electrons

both in the same orbital (f1 or f2, respectively), while (22|11) represents repulsion

between an electron in f2 and one in f1; (21|11) could be regarded as representing

the repulsion between an electron associated with f2 and f1 and one confined to f1,

and analogously for (22|21), while (21|21) can be thought of as the repulsion

between two electrons both of which are associated with f2 and f1 (Fig. 5.10).

Note that in the T and V terms of the Fock matrix elements, the operator in the

integrals is – ð1=2Þr2 and ZH=rH1 or ZHe=rHe1, while in the G terms it is 1/r12
(Eqs. 5.101–5.103 and 5.73).

The overlap integrals are

S11 ¼ 1:0000 S12 ¼ S21 ¼ 0:5017 S22 ¼ 1:0000 ð5:111Þ
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and the overlap matrix is

S ¼ 1:0000 0:5017
0:5017 1:0000

� �
ð5:112Þ

Step 3 – Calculating the orthogonalizing matrix

Calculating the orthogonalizing matrix S�1/2 (see Eqs. 5.67–5.69 and the dis-

cussion referred to in Chapter 4):

Diagonalizing S

S¼
0:7071 0:7071
0:7071 �0:7071

� �
1:5017 0:0000
0:0000 0:4983

� �
0:7071 0:7071
0:7071 �0:7071

� �
P D P�1

ð5:113Þ

Calculating D�1/2

D�1=2 ¼ 1:5017�1=2 0:0000
0:0000 0:4983�1=2

� �
¼ 0:8160 0:000

0:0000 1:4166

� �
ð5:114Þ

Calculating S�1/2

S�1=2 ¼ PD�1=2P�1 ¼ 1:1163 �0:3003
�0:3003 1:1163

� �
ð5:115Þ

–

–

– –

–

–
– –

(22|11)
f1 superposed right on f1

(11|11)

f2 f1

(21|11)

f2 f1

(21|21)

f2 f1

Fig. 5.10 Schematic depictions of the physical meaning of some two-electron repulsion integrals

(Section 5.2.3.6.5). Each basis function f is normally centered on an atomic nucleus. The integrals

shown here are one-center and two-center two-electron repulsion integrals – they are centered on

one and on two atomic nuclei, respectively. For molecules with three nuclei three-center integrals

arise, and for molecules with four or more nuclei, four-center integrals arise
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Step 4 – Calculating the Fock matrix

(a) The one-electron matrices

From Eq. 5.100

F ¼ Tþ VðHÞ þ VðHeÞ þG ¼ Hcore þG ð5:116Þ

The one-electron matrices T, V(H) and V(He) (i.e. Hcore ) follow immediately

from the one-electron integrals. The kinetic energy matrix is

T ¼ T11 T12
T21 T22

� �
¼ 0:6249 0:2395

0:2395 1:1609

� �
ð5:117Þ

T11 is smaller than T22, as the kinetic energy of an electron in f1 (f(H)) is
smaller than that of an electron in f2 (f(He)); this is expected since the larger

charge on the helium nucleus results in a larger kinetic energy for an electron in its

1s orbital than for an electron in the hydrogen 1s orbital – classically speaking, the

electron must move faster to stay in orbit around the stronger-pulling He nucleus.

T12 can be regarded as the kinetic energy of an electron in the H(1s)�He(1s)
overlap region.

The hydrogen potential energy matrix is

VðHÞ ¼ V11ðHÞ V12ðHÞ
V21ðHÞ V22ðHÞ

� �
¼ �1:0300 �0:4445

�0:4445 �0:6563

� �
ð5:118Þ

All the V(H) values represent the attraction of an electron to the hydrogen

nucleus. V11(H) is the potential energy due to attraction of an electron in f1 to

the hydrogen nucleus, and V22(H) is the potential energy due to attraction of an

electron in f2 to the hydrogen nucleus. As expected, an electron in f1 (f(H)) is
attracted to the H nucleus more strongly (the potential energy is more negative) than

is an electron in f2 (f(He)). V12(H) can be regarded as the potential energy of

attraction to the hydrogen nucleus of an electron in the H(1s)�He(1s) overlap

region.

The helium potential energy matrix is

VðHeÞ ¼ V11ðHeÞ V12ðHeÞ
V21ðHeÞ V22ðHeÞ

� �
¼ �1:2555 �1:1110

�1:1110 �2:8076

� �
ð5:119Þ

All the V(He) values represent the attraction of an electron to the helium nucleus.

V11(He), the potential energy of attraction of an electron in f(H) to the helium

nucleus, is of course less negative than the potential energy of attraction of an

electron in f(He) to this same nucleus. V12(He) can be taken as the potential energy

of attraction to the helium nucleus of an electron in the H(1s)�He(1s) overlap
region. An electron in f(He) is attracted to the helium nucleus more strongly than

an electron in f(H) is attracted to the hydrogen nucleus (�2.8076 in V(He) cf.
�1.0300 in V(H)), due to the greater nuclear charge of helium.
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The total one-electron energy matrix, Hcore, is

Hcore ¼ Tþ VðHÞ þ VðHeÞ ¼ �1:6606 �1:3160
�1:3160 �2:3030

� �
ð5:120Þ

This matrix represents the one-electron energy (the energy the electron would

have if interelectronic repulsion did not exist) of an electron in H�Heþ, at the
specified geometry, for this STO-1G basis set. The (1,1), (2,2) and (1,2) terms

represent, ignoring electron–electron repulsion, the energy of an electron in f1, f2,

and the f1�f2 overlap region, respectively; the values are the net result of the

various kinetic energy and potential energy terms discussed above.

(b) The two-electron matrix

The two-electron matrix G, the electron repulsion matrix (Eq. 5.104), is

calculated from the two-electron integrals (Eqs. 5.110) and the density matrix

elements (Eq. 5.81). This is intuitively plausible since each two-electron integral

describes one interelectronic repulsion in terms of basis functions (Fig. 5.10) while

each density matrix element represents the electron density on (the diagonal

elements of P in Eq. 5.80) or between (the off-diagonal elements of P) basis

functions. To calculate the matrix elements Grs (Eqs. 5.106–5.108) we need the

appropriate integrals (Eqs. 5.110) and density matrix elements. These latter are

calculated from

Ptu ¼ 2
Xn
j¼1

c�tjcuj t ¼ 1; 2; . . . ;m and u ¼ 1; 2; . . . ;m ð5:121 ¼ 5:81Þ

Each Prs involves the sum over the occupied MO’s (j¼ 1–n; we are dealing with a
closed-shell ground-state molecule with 2n electrons) of the products of the coeffi-

cients of the basis functions fr and fs. As pointed out in Section 5.2.3.6.2 the

Hartree–Fock procedure is usually started with an “initial guess” at the coefficients.

We can use as our guess the extended H€uckel coefficients we obtained for HeH+, with

this same geometry (Section 4.4.1.2); we need the c’s only for the occupied MO’s:

c11 ¼ 0:249; c21 ¼ 0:867 ð5:122Þ

(Usually we need more c’s than the small basis set of an extended H€uckel or other
semiempirical calculation supplies; a projected semiempirical wavefunction is then

used, with the missing c’s extrapolated from the available ones). Using these c’s and
Eq. 5.121 ¼ 5.81 we calculate the initial-guess P’s for Eqs. 5.106–5.108; since there
is only one occupied MO (n ¼ 1 in Eq. 5. 121) the summation has only one term:

P11 ¼ 2c11c11 ¼ 2ð0:249Þ0:249 ¼ 0:1240

P12 ¼ 2c11c21 ¼ 2ð0:249Þ0:867 ¼ 0:4318

P22 ¼ 2c21c21 ¼ 2ð0:867Þ0:867 ¼ 1:5034

ð5:123Þ
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G may now be calculated. From Eqs. (5.106)–(5.108), using the above values of

P and the integrals of Eq. (5.110), and recalling that integrals like (11j12) and
(21j11) are equal (Eq. (5.109)) we get:

G11 ¼ P11 ð11j11Þ � 1

2
ð11j11Þ

� �
þ P12 ð11j12Þ � 1

2
ð12j11Þ

� �

þ P21 ð11j21Þ � 1

2
ð11j21Þ

� �
þ P22 ð11j22Þ � 1

2
ð12j21Þ

� �
¼ 0:1240ð0:3642Þ þ 0:4318ð0:1709Þ
þ 0:4318ð0:1709Þ þ 1:5034ð0:4754Þ ¼ 0:9075

ð5:124Þ

G12 ¼ G21 ¼ P11 ð12j11Þ � 1

2
ð11j12Þ

� �
þ P12 ð12j12Þ � 1

2
ð12j12Þ

� �

þ P21 ð12j21Þ � 1

2
ð11j22Þ

� �
þ P22 ð12j22Þ � 1

2
ð12j22Þ

� �
¼ 0:1240ð0:1709Þ þ 0:4318ð0:1096Þ
þ 0:4318ð�0:0733Þ þ 1:5034ð0:2184Þ ¼ 0:3652

ð5:125Þ

G22 ¼ P11 ð22j11Þ � 1

2
ð21j12Þ

� �
þ P12 ð22j12Þ � 1

2
ð22j12Þ

� �

þ P21 ð22j21Þ � 1

2
ð21j22Þ

� �
þ P22 ð22j22Þ � 1

2
ð22j22Þ

� �
¼ 0:1240ð0:4754Þ þ 0:4318ð0:2184Þ
þ 0:4318ð0:2184Þ þ 1:5034ð0:4964Þ ¼ 0:9938

ð5:126Þ

From the G values based on the initial guess c’s the initial-guess electron repulsion

matrix is

G0 ¼ 0:9075 0:3652
0:3652 0:9938

� �
ð5:127Þ

The initial-guess Fock matrix is (Eqs (5.116), (5.120) and (5.126))

F0 ¼ Tþ VðHÞ þ VðHeÞ þG0 ¼ Hcore þG0

¼ �1:6606 �1:3160

�1:3160 �2:3030

� �
þ 0:9095 0:3652

0:3652 0:9938

� �
¼ �0:7511 �0:9508

�0:9508 �1:3092

� �
ð5:128Þ

The zero subscripts in Eqs. (5.127) and (5.128) emphasize that the initial-guess c’s,
with no iterative refinement, were used to calculate G; in the subsequent iterations

of the SCF procedure Hcore will remain constant while G will be refined as the c’s,
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and thus the P’s, change from SCF cycle to cycle. The change in the electron

repulsion matrix G corresponds to that in the molecular wavefunction as the c’s
change (recall the LCAO expansion); it is the wavefunction (squared) which

represents the time-averaged electron distribution and thus the electron/charge

cloud repulsion (Sections 5.2.3.2, 5.2.3.5 and 5.2.3.6.2).

Step 5 – Transforming F to F0, the Fock matrix that satisfies F0 ¼ C0eC0�1

As in Section 4.4.1.2, we use the orthogonalizing matrix S�1/2 (of Step 3) to
transform F to a matrix F0 which when diagonalized gives the energy levels e and a

coefficient matrix C0 which is subsequently transformed to the matrix C of the

desired c’s (see Section 5.2.3.6.2):

F0
0 ¼

1:1163 �0:3003

�0:3003 1:1163

� � �0:7511 �0:9508

�0:9508 �1:3092

� �
1:1163 �0:3003

�0:3003 1:1163

� �
S�1=2 F0 S�1=2

¼
�0:4166 �0:5799

�0:5799 �1:0617

� �
F0
0

ð5:129Þ

Step 6 – Diagonalizing F0 to obtain the energy level matrix e and a coefficient

matrix C0

F0
0 ¼

0:5069 0:8620
0:8620 �0:5069

� � �1:4027 0:0000
�0:0000 �0:0756

� �
0:5069 0:8620
0:8620 �0:5069

� �
C0

1 e1 C0
1
�1

ð5:130Þ

The energy levels (the eigenvalues of F0
0) from this first SCF cycle are�1.4027 h

and �0.0756 h (h ¼ hartrees, the unit of energy in atomic units), corresponding to

the occupied MO c1 and the unoccupied MO c2. The MO coefficients (the

eigenvectors of F0
0) of c1 and c2, for the transformed, orthonormal basis functions,

are, from C0
1 (actually here C0

1 and its inverse, C0
1
�1 are the same):

v01 ¼
0:5069
0:8620

� �
and v02 ¼

0:8620
�0:5069

� �
ð5:131Þ

v01 is the first column of C0
1 and v 0

2 is the second column of C0
1. These coefficients

are the weighting factors that with the transformed, orthonormal basis functions

give the MO’s:

c1 ¼ 0:5069f0
1 þ 0:8620f0

2 and c2 ¼ 0:8620f0
1 � 0:5069f0

2 ð5:132Þ

where f0
1 and f

0
2 are not our original basis functions, but rather linear combinations

of our original basis functions f1 and f2. The original basis functions f were
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centered on atomic nuclei and were normalized but not orthogonal (Section 4.3.3),

while the transformed basis functions f0 are delocalized over the molecule and are

orthonormal (Section 4.4.1.1). Note that the sum of the squares of the coefficients of

f0
1 and f0

2 is unity, as must be the case if the basis functions are orthonormal

(Section 4.3.6). In the next step C0
1 is transformed to obtain the coefficients of the

original basis functions f in the MO’s. We want the MOs in terms of the original,

atom-centered basis functions (roughly, atomic orbitals – Section 5.3) because such

MOs are easier to interpret.

Step 7 – Transforming C0 to C, the coefficient matrix of the original, nonortho-

gonal basis functions

As in Section 4.4.1.2, we use the orthogonalizingmatrix S�1/2 to transformC0 toC:

C1 ¼
1:1163 �0:3003

�0:3003 1:1163

� �
0:5069 0:8620
0:8620 �0:5069

� �
¼ 0:3070 1:1145

0:8100 �0:8247

� �
S�1=2 C0

1 C1

ð5:133Þ

This completes the first SCF cycle. We now have the first set of MO energy

levels and basis function coefficients:

From Eq. 5.130

e1 ¼ �1:4027 and e2 ¼ �0:0756 ð5:134Þ

From Eq. 5.133 (cf. Eq. 5.132):

c1 ¼ 0:3070f1 þ 0:8100f2 and c2 ¼ 1:1145f1 � 0:8247f2 ð5:135Þ

Note that the sum of the squares of the coefficients of f1 and f2 is not unity,

since these atom-centered functions are not orthogonal (contrast the simple H€uckel
method, Section 4.3.4).

Step 8 – Comparing the density matrix from the latest c’s with the previous

density matrix to see if the SCF procedure has converged

The density matrix elements based on the c’s of C1 (Eq. 5.133) can be compared

with those (Eq. 5.123) based on the initial guess:

P11 ¼ 2c11c11 ¼ 2ð0:3070Þ0:3070 ¼ 0:1885

P12 ¼ 2c11c21 ¼ 2ð0:3070Þ0:8100 ¼ 0:4973

P22 ¼ 2c21c21 ¼ 2ð0:8100Þ0:8100 ¼ 1:3122

ð5:136Þ

Suppose our convergence criterion was that the elements of P must agree with

those of the previous P matrix to within one part in 1,000. Comparing Eqs. 5.136

with Eqs. 5.123 we see that this has not been achieved: even the smallest change is

|(1.312 � 1.503)/1.503| ¼ 0.127, far above the required 0.001. Therefore another

SCF cycle is needed.

5.2 The Basic Principles of the ab initio Method 225



Step 9 – Beginning the second SCF cycle: using the c’s of C1 to calculate a new

Fock matrix F1 (cf. Step 4, (b))

The first Fock matrix F0 used c’s from our initial guess (Step 4, (b)). An

improved F may now be calculated using the c’s from the first SCF cycle. Calcu-

lating G1 as we did in Step 4, (b) for G0, but using the new P’s:

G11 ¼ P11 ð11j11Þ � 1

2
ð11j11Þ

� �
þ P12 ð11j12Þ � 1

2
ð12j11Þ

� �

þ P21 ð11j21Þ � 1

2
ð11j21Þ

� �
þ P22 ð11j22Þ � 1

2
ð12j21Þ

� �

¼ 0:1885ð0:3642Þ þ 0:4973ð0:1709Þ
þ 0:4973ð0:1709Þ þ 1:3122ð0:4754Þ ¼ 0:8624

ð5:137Þ

G12 ¼ G21 ¼ P11 ð12j11Þ � 1

2
ð11j12Þ

� �
þ P12 ð12j12Þ � 1

2
ð12j12Þ

� �

þ P21 ð12j21Þ � 1

2
ð11j22Þ

� �
þ P22 ð12j22Þ � 1

2
ð12j22Þ

� �

¼ 0:1885ð0:1709Þ þ 0:4973ð0:1096Þ
þ 0:4973ð�0:0733Þ þ 1:3122ð0:2184Þ ¼ 0:3369

ð5:138Þ

G22 ¼ P11 ð22j11Þ � 1

2
ð21j12Þ

� �
þ P12 ð22j12Þ � 1

2
ð22j12Þ

� �

þ P21 ð22j21Þ � 1

2
ð21j22Þ

� �
þ P22 ð22j22Þ � 1

2
ð22j22Þ

� �

¼ 0:1885ð0:4754Þ þ 0:4973ð0:2184Þ
þ 0:4973ð0:2184Þ þ 1:3122ð0:4964Þ ¼ 0:9582

ð5:139Þ

From the G values based on the first-cycle c’s the electron repulsion matrix is

G1 ¼ 0:8624 0:3369
0:3369 0:9582

� �
ð5:140Þ

and the Fock matrix from this is

F1 ¼ Hcore þG1 ¼
�1:6606 �1:3160

�1:3160 �2:3030

� �
þ 0:8624 0:3369

0:3369 0:9582

� �

¼ �0:7982 �0:9791

�0:9791 �1:3448

� � ð5:141Þ
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Step 10 – Transforming F1 to F0
1 (cf. Step 5)

F0
1 ¼

1:1163 �0:3003

�0:3003 1:1163

� � �0:7982 �0:9791

�0:9791 �1:3448

� �
1:1163 �0:3003

�0:3003 1:1163

� �
S�1=2 F1 S�1=2

¼
�0:4595 �0:5900

�0:5900 �1:0913

� �
F0
1

ð5:142Þ

Step 11 – Diagonalizing F0
1 to obtain the energy levels e and a coefficient matrix

C0 (cf. Step 6)

F0
1 ¼

0:5138 0:8579
0:8579 �0:5138

� � �1:4447 0:0000
0:0000 �0:1062

� �
0:5138 0:8579
0:8579 �0:5138

� �
C0

2 e2 C0
2
�1

ð5:143Þ

The energy levels from this second SCF cycle are �1.4447 h and �0.1062 h. To

get the MO coefficients corresponding to these MO energy levels in terms of the

original basis functions f1 and f2 we now transform C0
2 to C2.

Step 12 – Transforming C0
2 to C2 (cf. Step 7)

C2 ¼
1:1163 �0:3003

�0:3003 1:1163

� �
0:5138 0:8579
0:8579 �0:5138

� �
¼ 0:3159 1:1120

0:8034 �0:8319

� �
S�1=2 C0

2 C2

ð5:144Þ

This completes the second SCF cycle. We now have the MO energy levels and

basis function coefficients:

From Eq. 5.143:

e1 ¼ �1:4447 and e2 ¼ �0:1062 ð5:145Þ
From Eq. 5.144:

c1 ¼ 0:3159f1 þ 0:8034f2 and c2 ¼ 1:1120f1 � 0:8319f2 ð5:146Þ

Step 13 – Comparing the density matrix from the latest c’s with the previous

density matrix to see if the SCF procedure has converged

The density matrix elements based on the c’s of C2 are

P11 ¼ 2c11c11 ¼ 2ð0:3159Þ0:3159 ¼ 0:1996

P12 ¼ 2c11c21 ¼ 2ð0:3159Þ0:8034 ¼ 0:5076

P22 ¼ 2c21c21 ¼ 2ð0:8034Þ0:8034 ¼ 1:2909
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Comparing the above P’s with Eqs. 5.136 we see that convergence to within our one

part in 1,000 criterion has not occurred: the largest change in the density matrix is |

(0.1996�0.1885)/0.1885| ¼ 0.059, which is above 0.001, so the SCF procedure is

repeated.

Three more SCF cycles were carried out; the results of the “zeroth cycle” (the

initial guess) and the five cycles are summarized in Table 5.1. Only with the fifth

cycle has convergence been achieved, i.e. have the changes in all the density

matrix elements fallen below one part in 1,000 (the largest change is in P11,

|(0.2020�0.2019)/0.2019| ¼ 0.0005 < 0.001). In actual practice, a convergence

criterion of from about one part in 104 to 1 in 108 is used, depending on the program

and the particular kind of calculation. The coefficients and the density matrix

elements change smoothly, although the energy levels and Etotal
HF show some oscil-

lation. To reduce the number of steps needed to achieve convergence, programs

sometimes extrapolate the density matrix, i.e. estimate the final P values and use

these estimates to initiate the final few SCF cycles.

Often the main result from a Hartree–Fock (i.e. an SCF) calculation is the energy

of the molecule (the calculation of energy may be subsumed into a geometry

optimization, which is really the task of finding the minimum-energy geometry).

The STO-1G energy of HHeþ with an internuclear distance of 0.800 Å may be

calculated from our results:

The electronic energy is

EHF ¼
Xn
i¼1

eiþ 1

2

Xm
r¼1

Xm
s¼1

PrsH
core
rs ð5:147 ¼ 5:90Þ

The internuclear repulsion energy is

VNN ¼
X
all m;v

ZmZv
rmv

ð5:148 ¼ 5:92Þ

and the total internal energy of the molecule at 0 K (except for zero point energy –

Section 5.2.3.6.4) is

Table 5.1 Results of initial guess and SCF cycles on HHeþ at bond length 0.800 Å using the

STO-1G basis set. Energies (e1, e2, and Etotal
HF ) are in hartrees

Initial guess

(zeroth

cycle)

First cycle Second cycle Third cycle Fourth cycle Fifth cycle

e1, e2, – �1.4027,

�0.0756

�1.4447,

�0.1062

�1.4466,

�0.1054

�1.4473,

�0.1056

�1.4470,

�0.1051

c11, c21 0.249,

0.867

0.3070,

0.8100

0.3159,

0.8034

0.3175,

0.8022

0.3177,

0.8021

0.3178,

0.8020

c12, c22 – 1.1145,

�0.8247

1.1120,

�0.8319

1.1115,

�0.8323

1.1115,

�0.8325

1.1114,

�0.8325

P11 0.1240 0.1885 0.1996 0.2010 0.2019 0.2020

P12 0.4318 0.4973 0.5076 0.5094 0.5097 0.5097

P22 1.5034 1.3122 1.2909 1.2870 1.2867 1.2864

Etotal
HF

– �2.3992 �2.4419 �2.4428 �2.4443 �2.4438
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Etotal
HF ¼ EHF þ VNN ¼

Xn
i¼1

ei þ 1

2

Xm
r¼1

Xm
s¼1

PrsH
core
rs þ VNN ð5:149 ¼ 5:93Þ

Etotal
HF , which is what is normally meant by the Hartree–Fock energy, is printed by

the program at the end of a single-point calculation or a geometry optimization, or

by some programs at the end of each step of a geometry optimization.

Using the energy levels and density matrix elements from the first cycle

(Table 5.1), with the Hcore elements from Eq. 5.120, Eq. 5.147 gives for the

electronic energy

EHF ¼ e1 þ 1

2

X2
r¼1

X2
s¼1

PrsH
core
rs

¼ e1 þ 1

2

X2
r¼1

Pr1H
core
r1 þ Pr2H

core
r2

� 

¼ e1 þ 1

2
P11H

core
11 þ P12H

core
12 þ P21H

core
21 þ P22H

core
22

� 

¼ �1:4027 hþ 1

2
½0:1885ð�1:6606Þ þ 0:4973ð�1:3160Þ

þ 0:4973ð�1:3160Þ þ 1:3122ð�2:3030Þ� h
¼ �3:7222 h ð5:150Þ

From Eq. 5.148 ¼ 5.92 the internuclear repulsion energy is

VNN ¼ ZHZHe
rHHe

¼ 1ð2Þ
1:5117

h ¼ 1:3230 h

ð5:151Þ

and from Eq. 5.149 ¼ 5.93 the total Hartree–Fock energy is

Etotal
HF ¼ EHF þ VNN ¼ �3:7222 hþ 1:3230 h ¼ �2:3992 h ð5:152Þ

The Hartree–Fock energies for the five SCF cycles are given in Table 5.1.

Instead of starting with eigenvectors from a non-SCF method like the extended

H€uckel method, as was done in this illustrative procedure, an SCF calculation is

occasionally initiated by taking Hcore as the Fock matrix, that is, by initially

ignoring electron–electron repulsion, setting equal to zero the second term in

Eq. 5.82, or G in Eq. 5.100, whereupon Frs becomes Hcore
rs . This is usually a poor

initial guess, but is occasionally useful. You are urged to work your way through

several SCF cycles starting with this Fock matrix; this tedious calculation will help

you to appreciate the power and utility of modern electronic computers and may

enhance your respect for those who pioneered complex numerical calculations

when the only arithmetical aids were mathematical tables and mechanical calcula-

tors (mechanical calculators were machines with rotating wheels, operated by
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hand-power or electricity. There were also, in astronomy at least, armies of women

arithmeticians called computers – the original meaning of the word).

If we calculate the electronic energy simply as twice the sum of the energies of

the occupied MO orbitals, as with the simple and extended H€uckel methods, we get

a much higher value than from the correct procedure (Eq. 5.147); with a 0.800 Å

bond length and the converged results this naive electronic energy is

2(�1.4470) h ¼ �2.8940 h, while the correct electronic energy (not given in

Table 5.1 – the HF energies there are electronic plus internuclear repulsion) is

�3.7668 h, i.e. 30% lower when we correct for the fact that simply double-summing

the MO energies counts electron repulsion terms twice (Section 5.2.3.6.4).

A geometry optimization for HHe+ can be done by calculating the Hartree–Fock

energy (electronic plus internuclear) at different bond lengths to get the minimum-

energy geometry. The results are shown in Fig. 5.11; the optimized bond length for the

STO-1G basis set is ca. 0.86 Å. Note that it is customary to report ab initio energies in

hartrees to five or six decimal places (and bond lengths in Å to three decimals); the

truncated values used here are appropriate for these illustrative calculations.

Summary of the steps in a single-point Hartree–Fock (SCF) calculation using the

Roothaan–Hall LCAO expansion of the MO’s

1. Specify a geometry, basis set, and orbital occupancy (this latter is done by

specifying the charge and multiplicity, with an electronic ground state being

the default).

–2.4300

–2.4350

–2.4400

–2.4450

–2.4500

0.700 0.800 0.900

.

.

.

.

.

E,
hartrees r, A

Fig. 5.11 STO-1G energy versus bond length r for H–He+. The calculation for r ¼ 0.800 Å was

done largely “by hand” (see Section “Using the Roothaan–Hall Equations to do Ab initio

Calculations – an Example”); the others were done with the program Gaussian 92 [29]
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2. Calculate the integrals: Trs, Vrs for each nucleus, and the two-electron integrals (ru|
ts) etc. needed for Grs, as well as the overlap integrals Srs for the orthogonalizing
matrix derived from S (see step 3). Note: in the direct SCF method (Section 5.3)

the two-electron integrals are calculated as needed, rather than all at once.

3. Calculate the orthogonalizing matrix S�1/2

(a) Diagonalize S : S ¼ PDP�1

(b) Calculate D�1/2 (take the �1/2 power of the elements of D)

(c) Calculate S�1/2 ¼ PD�1/2P�1

4. Calculate the Fock matrix F

(a) Calculate the one-electron matrix Hcore ¼ T þ V1 þ V2 þ � � � using the

T and V integrals from step 2

(b) The two-electron matrix (the electron repulsion matrix) G:

Use an initial guess of the coefficients of the occupied MO’s to calculate initial-

guess density matrix elements:

Ptu ¼ 2
Xn
j¼1

c�tjcuj t ¼ 1; 2; . . . ;m and u ¼ 1; 2; . . . ;m

Use the density matrix elements and the two-electron integrals to calculate G:

Grs ¼
Xm
t¼1

Xm
u¼1

Ptu ðrsjtuÞ � 1

2
ðrujtsÞ

� �

The Fock matrix is F ¼ Hcore þ G

5. Transform F to F0, the Fock matrix that satisfies F0 ¼ C0 eC0�1

F0 ¼ S�1=2FS�1=2

6. Diagonalize F0 to get energy levels and a C0 matrix

F0 ¼ C0eC0�1

7. Transform C0 to C, the coefficient matrix of the original basis functions

C ¼ S�1=2C0

8. Compare the density matrix elements calculated from the C of the previous step

with those of the step before that one (and/or use other criteria, e.g. the molecu-

lar energy); if convergence has not been achieved go back to step 4 and calculate

a new Fock matrix using the P’s from the latest c’s. If convergence has been

achieved, stop

It should be realized modern ab initio programs do not rigidly follow the basic

SCF procedure described in this section. To speed up calculation they employ a
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variety of mathematical tricks. Among these are: the use of symmetry to avoid

duplicate calculation of identical integrals; testing two-electron integrals quickly to

see if they are small enough to be neglected (as is the case for functions on distant

nuclei; this decreases the time of a calculation from an n4 dependence on the number

of basis function to about an n2.3 dependence); recalculating integrals to avoid the

bottleneck of hard-drive access (direct SCF, Section 5.3.2); representing the MOs as a

set of gridpoints in space (in addition to a basis set expansion), which eliminates the

need to explicitly calculate two-electron integrals. This pseudospectral method

speeds up ab initio calculations by a factor of perhaps 3 or 4. Methods of speeding

up calculations are explained, with references to the literature, by Levine [33].

The method of calculating wavefunctions and energies that has been described in

this chapter applies to closed-shell, ground-statemolecules. The Slater determinant

we started with (Eq. 5.12) applies to molecules in which the electrons are fed

pairwise into the MO’s, starting with the lowest-energy MO; this is in contrast to

free radicals, which have one or more unpaired electrons, or to electronically

excited molecules, in which an electron has been promoted to a higher-level MO

(e.g. Fig. 5.9, neutral triplet). The Hartree–Fock method outlined here is based on

closed-shell Slater determinants and is called the restricted Hartree–Fock method

or RHF method; “restricted” means that the electrons of a spin are forced to occupy
(restricted to) the same spatial orbitals as those of b spin: inspection of Eq. 5.12

shows that we do not have a set of a spatial orbitals and a set of b spatial orbitals. If
unqualified, a Hartree–Fock (i.e. an SCF) calculation means an RHF calculation.

The common way to treat free radicals is with the unrestricted Hartree–Fock
method or UHF method. In this method, we employ separate spatial orbitals for the

a and the b electrons, giving two sets of MO’s, one for a and one for b electrons.

Less commonly, free radicals are treated by the restricted open-shell Hartree–Fock
or ROHF method, in which electrons occupy MO’s in pairs as in the RHF method,

except for the unpaired electron(s). The theoretical treatment of open-shell species

is discussed in various places in references [1] and in [12].

Excited states, and those unusual molecules with electrons of opposite spin singly

occupying different spatial MO’s (open-shell singlets) cannot be properly treated

with a single-determinant wavefunction. They must be handled with approaches

beyond the Hartree–Fock level, such as configuration interaction (Section 5.4).

5.3 Basis Sets

5.3.1 Introduction

We encountered basis sets in Sections 4.3.4, 4.4.1.2, and 5.2.3.6.1. A basis set is a

set of mathematical functions (basis functions), linear combinations of which yield

molecular orbitals, as shown in Eqs. 5.51 and 5.52. The functions are usually, but

not invariably, centered on atomic nuclei (Fig. 5.7). Approximating molecular

orbitals as linear combinations of basis functions is usually called the LCAO or

linear combination of atomic orbitals approach, although the functions are not
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necessarily conventional atomic orbitals: they can be any set of mathematical

functions that are convenient to manipulate and which in linear combination give

useful representations of MO’s. With this reservation, LCAO is a useful acronym.

Physically, several (usually) basis functions describe the electron distribution

around an atom and combining atomic basis functions yields the electron distribu-

tion in the molecule as a whole. Basis functions not centered on atoms (occasionally

used) can be considered to lie on “ghost atoms”; see basis set superposition error,

Section 5.4.3.3.

The simplest basis sets are those used in the simple H€uckel and the extended

H€uckel methods (SHM and EHM, Chapter 4). As applied to conjugated organic

compounds (its usual domain), the simple H€uckel basis set consists of just p atomic

orbitals (or “geometrically p-type” atomic orbitals, like a lone-pair orbital which

can be considered not to interact with the s framework). The extended H€uckel basis
set consists of only the atomic valence orbitals. In the SHM we don’t worry about

the mathematical form of the basis functions, reducing the interactions between

them to 0 or �1 in the SHM Fock matrix (e.g. Eqs. 4.64 and 4.65). In the EHM

the valence atomic orbitals are represented as Slater functions (Sections 4.4.1.2

and 4.4.2).

5.3.2 Gaussian Functions; Basis Set Preliminaries; Direct SCF

The electron distribution around an atom can be represented in several ways.

Hydrogenlike functions based on solutions of the Schr€odinger equation for the

hydrogen atom, polynomial functions with adjustable parameters, Slater functions

(Eq. 5.95), and Gaussian functions (Eq. 5.96) have all been used [34]. Of these,

Slater and Gaussian functions are mathematically the simplest, and it is these that

are currently used as the basis functions in molecular calculations. Slater functions

are used in semiempirical calculations, like the extended H€uckel method (Sec-

tion 4.4) and other semiempirical methods (Chapter 6). Modern molecular ab initio

programs employ Gaussian functions.

Slater functions are good approximations to atomic wavefunctions and would be

the natural choice for ab initio basis functions, were it not for the fact that the

evaluation of certain two-electron integrals requires excessive computer time if

Slater functions are used. The two-electron integrals (Sections 5.2.3.6.3, 5.2.3.6.5

of the G matrix (Eq. 5.104) involve four functions, which may be on from one to

four centers (normally atomic nuclei). Those two-electron integrals with three or

four different functions ((rs|tt), (rs|rt) and (rs|tu)) and three or four nuclei (three-

center or four-center integrals) are extremely difficult to calculate with Slater

functions, but are readily evaluated with Gaussian basis functions. The reason is

that the product of two Gaussians on two centers is a Gaussian on a third center.

Consider an s-type Gaussian centered on nucleus A and one on nucleus B; we are

considering real functions, which is what basis functions normally are:

gA ¼ aAe
�aAjr�rAj2 ; gB ¼ aBe

�aBjr�rBj2 ð5:153Þ

5.3 Basis Sets 233



where

jr� rAj2 ¼ ðx� xAÞ2 þ ðy� yAÞ2 þ ðz� zAÞ2

and jr� rBj2 ¼ ðx� xBÞ2 þ ðy� yBÞ2 þ ðz� zBÞ2
ð5:154Þ

with the nuclear and electron positions in Cartesian coordinates (if these were not s-
type functions, the preexponential factor would contain one or more cartesian

variables to give the function – the “orbital” – nonspherical shape). It is not hard

to show that

gAgB ¼ aCe
�aCjr�rCj2 ¼ gC ð5:155Þ

The product of gA and gB is the Gaussian gC, centered at rC. Now consider the

general electron-repulsion integral

ðrsjtuÞ ¼
Z Z

f�
r ð1Þfsð1Þf�

t ð2Þfuð2Þ
r12

dv1dv2 ð5:156 ¼ 5:73Þ

If each basis function f were a single, real Gaussian, then from Eq. 5.155 this

would reduce to

ðv=wÞ ¼
Z Z

fvð1Þfwð2Þ
r12

dv1dv2 ð5:157Þ

i.e. three- and four-center two-electron integrals with four basis functions would

immediately simplify to tractable two-center integrals with two functions.

Actually, things are a little more complicated. A single Gaussian is a poor

approximation to the nearly ideal description of an atomic wavefunction that a Slater

function provides. Figure 5.12 shows that a Gaussian (designated STO-1G) is

rounded near r ¼ 0 while a Slater function has a cusp there (zero slope vs a finite

slope at r¼ 0); the Gaussian also decays somewhat faster than the Slater function at

large r. The solution to the problem of this poor functional behaviour is to use several

Gaussians to approximate a Slater function. In Fig. 5.12 a single Gaussian and a linear

combination of three Gaussians have been used to approximate the Slater function

shown; the nomenclature STO-1G and STO-3G mean “Slater-type orbital (approxi-

mated by) one Gaussian” and “Slater-type orbital (approximated by) three Gaus-

sians”, respectively. The Slater function shown is one suitable for a hydrogen atom in

a molecule (z ¼ 1.24 [31]) and the Gaussians are the best fit to this Slater function.

STO-1G functions were used in our illustrative Hartree–Fock calculation on HHe+

(Section 5.2.3.6.5), and the STO-3G function is the smallest basis function used in

standard ab initio calculations by commercial programs. Three Gaussians are a good

speed versus accuracy compromise between two and four or more [31].

The STO-3G basis function in Fig. 5.12 is a contracted Gaussian consisting of

three primitive Gaussians each of which has a contraction coefficient (0.4446,
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0.5353 and 0.1543). Typically, an ab initio basis function consists of a set of

primitive Gaussians bundled together with a set of contraction coefficients. Now

consider the two-electron integral (rs|tu) (Eq. 5.156 ¼ 5.73). Suppose each basis

function is an STO-3G contracted Gaussian, i.e.

fr ¼ d1rg1r þ d2rg2r þ d3rg3r ð5:158Þ

and analogously for fs, ft, and fu. Then it is easy to see that

ðrsjtuÞ ¼
Z Z

d1rd1sg1r1s
1

r12
d1td1ug1t1udv1dv2

þ
Z Z

d1rd1sg1r1s
1

r12
d1td2ug1t2udv1dv2 þ � � �

þ
Z Z

d3rd3sg3r3s
1

r12
d3td3ug3t3udv1dv2

ð5:159Þ

1 2 3
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f (STO–3G) = 0.4446            e –ar 2
 + 0.5353            e –ar 2 

+ 0.1543            e –ar 2 
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Fig. 5.12 Comparison of Slater, STO-1G and STO-3G functions for hydrogen. The Slater

function shown is the most appropriate one for hydrogen in a molecular environment, and the

Gaussians are the best 1-G and 3-G fits to this Slater function. Slater and Gaussian functions are

usually characterized by parameters designated z (zeta) and a, respectively, as shown [31]
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where g1r1s ¼ g1r � g1s and so on. Thus with contracted Gaussians as basis functions,
each two-electron integral becomes a sum of easily calculated two-center two-

electron integrals. Gaussian integrals can be evaluated so much faster than Slater

integrals that the use of contracted Gaussians instead of Slater functions speeds up the

calculation of the integrals enormously, despite the larger number of integrals.

Discussions of the number of integrals in an ab initio calculation usually refer to

those at the contracted Gaussian level, rather than the greater number engendered by

the use of primitive Gaussians; thus the program Gaussian 92 [29] says that both an

STO-1G and an STO-3G calculation on water use the same number (144) of two-

electron integrals, although the latter clearly involves more “primitive integrals.” The

fruitful suggestion to use Gaussians in molecular calculations came from Boys (1950

[35]); it played a major role in making ab initio calculations practical, and this is

epitomized in the names of the Gaussian series of programs, which are primarily

devoted to ab initio and DFT (Chapter 7) and are among the most widely-used

quantum mechanics-oriented computational chemistry programs [36].

Fast calculation of integrals is particularly important for the two-electron inte-

grals, as their number increases rapidly with the size of the molecule and the basis

set (basis sets are discussed in Section 5.3.3). Consider a calculation on water with

an STO-1G basis set (and bear in mind that the smallest basis set normally used in

ab initio calculations is the STO-3G set). In a standard ab initio calculation we use

at least one basis function for each core orbital and each valence-shell orbital. Thus

the oxygen requires five basis functions, for the 1s, 2s, 2px, 2py and 2pz orbitals; we
can designate these functions f1, f2, . . . f5, and denote the 1s hydrogen functions,

one for each H, f6 and f7. In computational chemistry atoms beyond hydrogen and

helium in the periodic table are called “heavy atoms”, and the computational “first

row” is lithium–neon. With experience, the number of heavy atoms in a molecule

gives a quick indication of about how many basis functions will be invoked by a

specified basis set. Following the procedure for HHe+ in Eq. 5.106:

G11 ¼
X7
t¼1

X7
u¼1

Ptu ð11jtuÞ � 1

2
ð1ujt1Þ

� �

Now u runs from 1 to 7 and t from 1 to 7, so G11 will consist of 49 terms, each

containing two two-electron integrals for a G11 total of 98 integrals. The Fock

matrix for seven basis functions is a 7 � 7 matrix with 49 elements, G11, G12, . . . ,
G17, . . . G77, so apparently there are 49 � 98 ¼ 4,802 two-electron integrals.

Actually, many of these are duplicates (Gij ¼ Gji, so an n � n Fock matrix has

only about n2/2 different elements), differ from other integrals only in sign, or are

very small, and the number of unique nonvanishing two-electron integrals is 119

(calculated with Gaussian 92 [29]). For an STO-1G calculation on hydrogen

peroxide (12 basis functions), there are ca. 700 unique nonvanishing two-electron

integrals (cf. a naive theoretical maximum of 41,472). The usual formula for

estimating the maximum number of unique two-electron integrals for a set of m
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real basis functions derives from the fact that there are four basis functions in each

integral and (rs|tu) is eightfold degenerate (Eq. 5.109); this approximates the

maximum number of these integrals as

Nmax ¼ m4=8 ð5:160Þ
In the above calculations the symmetry of water (C2v) and hydrogen peroxide

(C2h) plays an important role in reducing the number of integrals which must actually

be calculated, and modern ab initio programs recognize and utilize symmetry where

it can be used (most molecules lack symmetry, but the small molecules of particular

theoretical interest usually possess it), and are also able to recognize and avoid

calculating integrals below a threshold size. Nevertheless the rapid rise in the number

of two-electron integrals with molecular and basis set size portends problems for ab

initio calculations. An ab initio calculation on aspirin, a fairly small (C9H8O4, 13

heavy atoms) molecule of practical interest, using the 3–21G basis set (Section 5.3.3),

which is the smallest that is usually used, requires 133 basis functions, which from

Eq. 5.160 could invoke up to 39 million (1334/8) two-electron integrals. Clearly, a

modest ab initio calculation could require tens of millions of integrals. Information on

molecular size, symmetry, basis sets and number of integrals is summarized in

Table 5.2 (the 3–21G basis set is explained in Section 5.3.3). Note that for those

molecules with no symmetry (C1), the number of two-electron integrals calculated

from Eq. 5.160 is about the same as that actually calculated by Gaussian 92.

There are two problems with so many two-electron integrals: the time needed to

calculate them, and where to store them. Solutions to the first problem are, as

explained, to use Gaussian functions, to utilize symmetry where possible, and to

ignore those integrals that a preliminary check reveals are “vanishing”. The other

problem can be dealt with by storing the integrals in the RAM (the random access

memory, i.e. the electronic memory), storing the integrals on the hard drive, or not

storing them at all, but rather calculating them as they are required. Calculating all

the integrals at the outset and storing them somewhere is called conventional scf,
being the earlier-used procedure. The latter procedure of calculating only those

two-electron integrals needed at the moment, and recalculating them again when

necessary, is called direct scf (presumably using “direct” in the sense of “just now”

or “at the moment”). Calculating all the two-electron the integrals and storing them

in the RAM is the fastest approach, since it requires them to be calculated only

Table 5.2 Molecular size, number of basis functions, and number of two-electron integrals

Basis functions Two-electron integrals

STO-3G 3–21G(*) From m4/8 From G92a From m4/8 From G92

HHe+ C1v 2 4 2 6 32 55

H2O C2v 7 13 300 144 3,570 1,314

H2O2 C2h 12 22 2,592 738 29,282 7,713

H2O2 C�
1 12 22 2,592 2,774 29,282 28,791

H2O3 C2v 17 31 10,440 3,421 115,440 31475

H2O3 C1 17 31 10,440 11,046 115,440 107,869
aThe coordinates of one of the atoms was altered slightly to get this unnatural symmetry
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once, and accessing information from the electronic memory is fast. However,

RAM cannot yet store as many integrals as the hard drive. A (currently) respectable

memory of 4 GB can store all the integrals generated by perhaps about 2,000 basis

functions (up to about 100 million); beyond this the computer essentially grinds to a

halt. The capacity of the hard drive is typically considerably greater than that of the

RAM (say, 1,000 GB for a respectable hard drive), and storing all the two-electron

integrals on the hard drive is often a viable option, but suffers from the disadvantage

that the time taken to read data from a mechanical device into the RAM, where it

can be used by the CPU, is much greater (perhaps a millisecond compared to a

nanosecond) than the time needed to access the information were it stored in a

purely electronic device like the RAM (which is the only alternative to direct scf in,

for example, Spartan [37]). For these reasons, ab initio calculations with many basis

functions (beyond some hundreds, depending on the size of the RAM) nowadays

use direct scf, despite the need to recalculate integrals [38]. These considerations

will change with improvements in hardware, and the availability of very large

electronic memories may make storage of all the two-electron integrals in RAM the

only choice for ab initio calculations.

5.3.3 Types of Basis Sets and Their Uses

We have met the STO-1G (Sections 5.2.3.6.5 and 5.3.2) and STO-3G (Section 5.3.2)

basis sets. We saw that a single Gaussian gives a poor representation of a Slater

function, but that this approximation can be improved by using a linear combination

of Gaussians (Fig. 5.12). In this section the basis sets commonly used in ab initio

calculations are described and their domains of utility are outlined. Note that the

STO-1G basis, although it was useful for our illustrative purposes, is not used in

research calculations (Fig. 5.12 shows how poorly it approximates a Slater func-

tion). We will consider the STO-3G, 3–21G, 6–31G*, and 6–311G* basis sets,

which, with variations obtained by adding polarization (*) and diffuse (+) func-

tions, are the most widely-used; other sets will be briefly mentioned. Information on

basis sets is summarized in Fig. 5.13. Good discussions of currently popular basis

sets are given in, e.g., references [1a, e, i]; the compilations by Hehre et al. [39, 40]

are extensive and critically evaluated.

The basis sets described here in most detail are those developed by Pople3

and coworkers [40], which are probably the most popular now, but most general-

purpose (those not used just on small molecules or on atoms) basis sets utilize some

sort of contracted Gaussian functions to simulate Slater orbitals. A brief discus-

sion of basis sets and references to many, including the widely-used Dunning

3John Pople, born in Burnham-on-Sea, Somerset, England, 1925. Ph.D. (Mathematics) Cambridge,

1951. Professor, Carnegie-Mellon University, 1960–1986, Northwestern University (Evanston,

Illinois) 1986–present. Nobel Prize in chemistry 1998 (with Walter Kohn, Chapter 5, Section 7.1).

Died Chicago, 2004.
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correlation-consistent (below) and Huzinaga sets, is given by Simons and Nichols

[41]. There is no one procedure for developing a basis set. One method is to

optimize Slater functions for atoms or small molecules, i.e. to find the values of z
that give the lowest energy for these, and then to use a least-squares procedure to fit

contracted Gaussians to the optimized Slater functions [42]. Whatever the details of

their genesis, ab initio basis sets are constructed by some kind of mathematical

minimization procedure, and not by fitting them to reproduce experimental atomic

or molecular properties: they are not semiempirical.

5.3.3.1 STO-3G

This is called a minimal basis set, although some atoms actually have more basis

functions (which for this basis can be equated with atomic orbitals) than are needed

1H
1s
1 function

19K–20Ca
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
13 functions

37Rb–38Sr
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
5s 5p 5p 5p
3d 3d 3d 3d 3d
22 functions

3Li–10Ne
1s
2s 2p 2p 2p
5 functions

11Na–18Ar
1s
2s 2p 2p 2p
3s 3p 3p 3p
9 functions

21Sc–30Zn
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
3d 3d 3d 3d 3d
18 functions

39Y–48Cd
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
5s 5p 5p 5p
3d 3d 3d 3d 3d
4d 4d 4d 4d 4d
27 functions

2He
1s
1 function

31Ga–36Kr
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
3d 3d 3d 3d 3d
18 functions

49In–54Xe
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
5s 5p 5p 5p
3d 3d 3d 3d 3d
4d 4d 4d 4d 4d
27 functions

a, STO-3G

Fig. 5.13 (continued)
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to accommodate all their electrons. For the earlier part of the periodic table

(hydrogen to argon) each atom has one basis function corresponding to its usual

atomic orbital description, with the proviso that the orbitals used by the later atoms

of a row are available to all those of the row. A hydrogen or helium atom has a 1s
basis function. Each “first-row” atom (lithium to neon) has a 1s, a 2s, and a 2px, 2py
and 2pz function, giving five basis functions for each of these atoms: although

lithium and beryllium are often not thought of as using p orbitals, all the atoms of

this row are given the same basis, because this has been found to work better than a

literally minimum basis set. Second-row atoms (sodium to argon) have a 1s and a

2s, as well as three 2p functions, plus a 3s and three 3p functions, giving nine basis

functions. In the third row, potassium and calcium, as expected, have the nine

functions of the previous row, plus a 4s and three 4p functions, for a total of 13 basis

b, 3-21G

Fig. 5.13 (continued)
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1H
1s
1s
2 functions

2He
1s
1s
2 functions

3 10Li– Ne
1s
2s  2p  2p  2p
2s  2p  2p  2p
9 functions

11 18Na– Ar
1s
2s 2p 2p 2p
3s  3p  3p  3p
3s  3p  3p  3p
3d 3d 3d 3d 3d 3d
19 functions

19 20K– Ca
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s  4p  4p  4p
4s  4p  4p  4p
3d 3d 3d 3d 3d 3d
23 functions

21 30Sc– Zn
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s  4p  4p  4p
4s  4p  4p  4p
3d  3d  3d  3d  3d  3d
3d  3d  3d  3d  3d  3d  
29 functions

31 36Ga– Kr
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s  4p  4p  4p
4s  4p  4p  4p
3d  3d  3d  3d  3d  3d
3d  3d  3d  3d  3d  3d
29 functions

37 38Rb– Sr
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
5s  5p  5p  5p
5s  5p  5p  5p
3d 3d 3d 3d 3d 3d
4d 4d 4d 4d 4d 4d
33 functions

39 48Y– Cd
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
5s  5p  5p  5p
5s  5p  5p  5p
3d 3d 3d 3d 3d 3d
4d  4d  4d  4d  4d  4d
4d  4d  4d  4d  4d  4d
39 functions

49 54In– Xe
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
5s  5p  5p  5p
5s  5p  5p  5p
3d 3d 3d 3d 3d
4d  4d  4d  4d  4d  4d
4d  4d  4d  4d  4d
4d
39 functions

c, 3-21G(*)

d, 6-31G*

Fig. 5.13 (a) The STO-3G basis set. (b) The 3–21G basis set. (c) The 3–21G(*) basis set. (d). The

6–31G* basis set
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functions. Starting with the next element, scandium, five 3d orbitals are added,

so that scandium to krypton have 13þ 5¼ 18 basis functions. The STO-3G basis is

summarized in Fig. 5.13a.

The STO-3G basis introduces us to the concept of contraction shells in con-

structing contracted Gaussians from primitive Gaussians (Section 5.3.2). The

Gaussians of a contraction shell share common exponents. Carbon, for example,

has one s shell and one sp shell. This means that the 2s and 2p Gaussians (belonging
to the 2sp shell) share common a exponents (which differ from those of the 1s
function). Consider the contracted Gaussians

fð2sÞ ¼ d1se
�a1sr þ d2se

�a2sr þ d3se
�a3sr

fð2pxÞ ¼ d1pxe
�a1pr þ d2pxe

�a2pr þ d3pxe
�a3pr

fð2pyÞ ¼ d1pye
�a1pr þ d2pye

�a2pr þ d3pye
�a3pr

fð2pzÞ ¼ d1pze
�a1pr þ d2pze

�a2pr þ d3pze
�a3pr

The usual practice is to set a1s¼ a1p, a2s¼ a2p, and a3s¼ a3p. Using common a’s
for the s and p primitives reduces the number of distinct integrals that must be

calculated. An STO-3G calculation on CH4, for example, involves nine basis

functions (five for C and one for each H) in six shells: for C one s (i.e. a 1s) shell,
and one sp (i.e. a 2s plus 2p) shell, and for each H one s (i.e. a 1s) shell. The current
view is that the STO-3G basis is not very good, and it would normally be considered

unacceptable for research. Nevertheless, one hesitates to endorse Dewar and

Storch’s assertion that “it must be considered obsolete” [43]. We do not know

how many publications report work which began with a preliminary and unreported

but valuable investigation using this basis. Its advantages are speed (it is probably

the smallest basis set that would even be considered for an ab initio calculation)

and the ease with which the molecular orbitals can be dissected into atomic orbital

contributions. The STO-3G basis is roughly twice as fast (Table 5.3) as the next

larger commonly used one, the 3–21G. Sophisticated semiempirical methods

Table 5.3 Effect of basis set and symmetry on times for single-point, geometry optimization and

geometry optimization + frequencies calculations on acetone, (CH3)2CO

Basis set Single point Geometry optimization Geometry optimization þ frequencies

Time (s) Time (s) Time (s)

C2v C1 C2v C1 C2v C1

STO-3G 0.2 (0.2) 0.3 (0.2) 1 (2) 2 (7) 2 (13) 3 (59)

3–21G(*) 0.5 (0.3) 0.6 (0.5) 2 (2) 3 (5) 3 (20) 8 (75)

6–31G* 1.4 (2) 2 (3) 9 (15) 22 (54) 15 (172) 30 (586)

The starting geometry for the ab initio jobs was a molecular mechanics (MMFF) one. The C2v

geometry is that with two C–H/C¼O eclipsed arrangements (the global minimum). The C1

symmetry starting geometry was obtained by rotating one C–C bond very slightly (by 1�) in the

C2v precursor molecular mechanics structure (after MM optimization). These calculations were

done with a fairly recent (2006) version of Spartan [37] on a quadcore 2.66 GHz personal computer

with 4.0 GB of RAM, vintage 2007. For times of ca. 1 s, time differences are scarcely meaningful.

Numbers in parentheses were for calculations done in ca. 2001
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(Chapter 6) are perhaps more likely to be used nowadays in preliminary investiga-

tions, and to obtain reasonable starting structures for ab initio optimizations, but for

systems significantly different from those for which the semiempirical methods

were parameterized one might prefer to use the STO-3G basis. As for examining

atomic contributions to bonding, interpreting bonding in terms of hybrid orbitals

and the contribution of particular atoms to MO’s is simpler when each atom has

just one conventional orbital, rather than split orbitals (as in the basis sets to be

discussed). Thus an analysis of the electronic structure of three- and four-membered

rings used the STO-3G basis explicitly for this reason [44], as did an interpretation

of the bonding in the unusual molecule pyramidane [45].

The shortcomings (and virtues) of the STO-3G basis are extensively documented

throughout ref. [1g]. Basically, the drawbacks are that by comparison with the

3–21G basis, which is not excessively more demanding of time, it gives signifi-

cantly less accurate geometries and energies (this was the reason for the call to

abandon this basis [43]). Actually, even for second-row atoms (Na–Ar), where the

defects of such a small basis set should be, and are, quite apparent, the STO-3G

basis supplemented with five d or polarization functions (the STO-3G* basis;

polarization functions are discussed below) can give results comparable to those

of the 3–21G basis set. Thus for the S–O bond length of Me2SO we get (Å):

STO-3G, 1.820; STO-3G*, 1.480; 3–21G, 1.678; 3–21G(*), 1.490; exp., 1.485,

and for NSF [46] the geometries shown in Fig. 5.14. Nevertheless, the STO-3G*

basis is not in the normally-used repertoire.

5.3.3.2 3–21G and 3–21G* Split Valence and Double-Zeta Basis Sets

First consider what we could denote as the “simple” 3–21G basis set. This splits

each valence orbital into two parts, an inner shell and an outer shell. The basis

function of the inner shell is represented by two Gaussians, and that of the outer

shell by one Gaussian (hence the “21”); the core orbitals are each represented by

one basis function, each composed of three Gaussians (hence the “3”). Thus H and

He have a 1s orbital (the only valence orbital for these atoms) split into 1s0 (1s
inner) and 1s00 (1s outer), for a total of two basis functions. Carbon has a 1s function
represented by three Gaussians, an inner 2s, 2px, 2py and 2pz (2s

0, 2px0, 2py0, 2pz0)

1.611 1.654
101.2

N

S

F
STO-3G

1.468 1.570
114.4

N

S

F
STO-3G* 1.448 1.643

116.9
N

S

F
experiment

1.567 1.672
107.8

N

S

F
3-21G

1.440 1.609
113.8

N

S

F
3-21G*

Fig. 5.14 Some STO-3G, STO-3G*, 3–21G and 3–21G* geometries

5.3 Basis Sets 243



function, each composed of two Gaussians, and an outer 2s, 2px, 2py and 2pz (2s
00,

2px
00, 2py00, 2pz00) function, each composed of one Gaussian, making nine basis

functions. The terms inner and outer derive from the fact that the Gaussian of the

outer shell has a smaller a than the Gaussians of the inner shell, and so the former

function falls off more slowly, i.e. it is more diffuse and effectively spreads out

further, into the outer regions of the molecule. The purpose of splitting the valence

shell is to give the SCF algorithm more flexibility in adjusting the contributions of

the basis functions to the molecular orbitals, thus achieving a more realistic

simulated electron distribution. Consider carbene, CH2 (Fig. 5.15). We can denote

the basis functions f1�f13:

C1s: f1

C2s0, 2px0, 2py0, 2pz0: f2, f3, f4, f5 (inner valence shell)

C2s00, 2px00, 2py00, 2pz00: f6, f7, f8, f9 (outer valence shell)

H11s
0: f10 (inner shell)

H11s
00: f11 (outer shell)

H21s
0: f12 (inner shell)

H21s
00: f13 (outer shell)

Thirteen basis functions (“atomic orbitals”) give thirteen LCAO MO’s:

c1 ¼ c11f1 þ c21f2 þ � � � þ c13;1f13

c2 ¼ c12f1 þ c22f2 þ � � � þ c13;2f13

..

.

c13 ¼ c1;13f1 þ c2;13f2 þ � � � þ c13;13f13

Note that since there are 13 MO’s but only eight electrons to be accommodated,

only the first four MO’s (c1–c4) are occupied (recall that we are talking about

closed-shell molecules in the ground electronic state). The nine empty MO’s are

called unoccupied or virtual molecular orbitals. We shall see that virtual MO’s are

important in certain kinds of calculations. Now, in the course of the SCF process the

coefficients of the various inner-shell and outer-shell basis functions can be varied

independently to find the best wavefunctions c (those corresponding to the lowest

energy). As the iterations proceed some outer-shell functions, say, could be given

greater (or lesser) emphasis, independently of any inner-shell functions, allowing a

H H

13 basis functions
8 electrons

C, 9 basis functions

H, 2 basis functions H, 2 basis functions

C

Fig. 5.15 Carbene, with

3–21G basis functions
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finer-tuning of the electron distribution and a lower energy, than would be possible

with unsplit basis functions.

A still more malleable basis set would be one with all the basis functions, not just
those of the valence AO’s but the core ones too, split; this is called a double zeta
(double z) basis set (perhaps from the days before Gaussians, with exp(�ar2), had
almost completely displaced Slater functions with exp(�zr) for molecular calcula-

tions). Double zeta basis sets are much less widely used than split valence sets,

since the former are computationally more demanding and for many purposes only

the contributions of the “chemically active” valence functions to the MO’s need to

be fine-tuned, and in fact “double zeta” is sometimes used to refer to split valence

basis sets.

Returning to the 3–21G basis: here lithium to neon have a 1s function and inner

and outer 2s, 2px, 2py and 2pz (2s
0, 2s00, . . . , 2pz00) functions, for a total of 9 basis

functions. These inhabit three contraction shells (see the STO-3G discussion): a 1s,
an sp inner and an sp outer contraction shell. Sodium to argon have a 1s, a 2s and
three 2p functions, and an inner and outer shell of 3s and 3p functions, for a total of
1 þ 4 þ 8 ¼ 13 basis functions. These are in four shells: a 1s, an sp (2s, 2p), an sp
inner and an sp outer (3s and 3p inner, 3s and 3p outer). Potassium and calcium have

a 1s, a 2s and three 2p, and a 3s and three 3p functions, plus inner and outer 4s and
4p functions, for a total of 1þ 4þ 4þ 8¼ 17 basis functions. The 3–21G basis set

is summarized in Fig. 5.13b.

Formolecules with atoms beyond the first row (beyond neon), this “simple” 3–21G

basis set tends to give poor geometries. This problem is largely overcome for second-

row elements (sodium to argon) by supplementing this basis with d functions, called

polarization functions. The term arises from the fact that d functions permit the

electron distribution to be polarized (displaced along a particular direction), as

shown in Fig. 5.16. Polarization functions enable the SCF process to establish a

more anisotropic electron distribution (where this is appropriate) than would other-

wise be possible (cf. the use of split valence basis sets to permit more flexibility in

adjusting the inner and outer regions of electron density). The 3–21G basis set

augmented where appropriate (beyond neon) with six d functions is in some compu-

tational programs designated 3–21G(*), where the asterisk indicates polarization

functions (d in this case) and the parentheses emphasize that these extra (compared

to the “simple” 3–21G basis) functions are present only beyond the first row. For H to

Ne, the 3–21G and the 3–21G* basis sets are identical. The simple 3–21G basis,

without the possibility of invoking polarization functions, is probably obsolete, and

when we see “3–21G” we can usually take it to mean, really, the 3–21G(*) basis

summarized in Fig. 5.13c; for precision, the 3–21G(*) designation will be preferred

here from now on. p-Polarization functions can also be added not only to heavy atoms

(recall that in computational chemistry atoms beyond hydrogen and helium in the

periodic table are called heavy atoms), but to hydrogen and helium also (below).

Examples of geometries calculated with the simple and augmented 3–21G basis

sets are shown in Fig. 5.14. The 3–21G(*) gives remarkably good geometries for

such a small set, and in fact it is used for the geometry optimization step of some

high-accuracy energy methods (Section 5.5.2). Since it is roughly five times as fast
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(Table 5.3) as the next bigger widely-used basis, the 6–31G* (below) and is much

less demanding of computer power, the 3–21G(*) basis set has been used as a

kind of workhorse for relatively big molecules; see for example a study using it

for geometry optimization investigations of pericyclic reactions [47]. As long ago

as 1988 the somewhat similar but now obsolete 4–21G basis was used, with the

3–21G(*) basis specifically on sulfur, for geometry optimization of a protein

(crambin) with 46 amino acid residues and 642 atoms. This represented 3,597

basis functions, and the job took 260 days [48]. It seems likely that now it would

be shorter by a factor of 10–20, on an inexpensive desktop machine. More recently

novel approaches, such as dividing a large molecule into fragments, have been

explored [49]. The general problem of optimizing large molecules has been

reviewed [50]. Even where geometry optimizations with larger bases are practical,

a survey of the problem with the 3–21G(*) basis is sometimes useful (it is HF/

3–21G(*) geometries rather than relative energies which are good; consistently

getting good relative energies is a more challenging problem – see Section 5.5.2).

5.3.3.3 6–31G*

This is a split valence basis set with polarization functions (these terms were

explained in connection with the 3–21G(*) basis set, above). The valence shell of

each atom is split into an inner part composed of three Gaussians and an outer part

composed of one Gaussian (hence “31”), while the core orbitals are each represented

by one basis function, each composed of six Gaussians (“6”). The polarization

functions (*) are present on “heavy atoms” – those beyond helium. Thus H and He

.

+

–

.

+

–

–

+

.

+

–

atomic
nucleus

p function d function

C1 f1 C2 f2 C1 f1 + C2 f2

Weighted sum of
p function and d function.

The p function has been
shifted (polarized) toward
the right by the d function.

Fig. 5.16 One basis function can be used to shift another in a given direction (to polarize it). In

minimizing the energy, the program adjusts the relative contributions of the two functions to shift

the electron density where it is needed to get the minimum energy. p Functions are also commonly

used to polarize the s functions on hydrogen atoms, but the main use of polarization functions is the

utilization of d functions on “heavy” atoms (atoms other than H and He)
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have a 1s orbital represented by an inner 1s0 and an outer 1s00 basis function, making

two basis functions. Carbon has a 1s function represented by six Gaussians, an inner

2s, 2px, 2py and 2pz (2s
0, 2px0, 2py0, 2pz0) function, each composed of three Gaussians,

and an outer 2s, 2px, 2py and 2pz (2s
00, 2px00, 2py00, 2pz00) function, each composed of

one Gaussian, and six (not five) 3d functions, making a total of 15 basis functions.

A 6–31G* calculation on CH2 uses 15þ 2þ 2¼ 19 basis functions, and generates 19

MO’s. In the closed-shell species the eight electrons occupy four of these MO’s, so

there are 15 unoccupied or virtual MO’s; compare this with a 3–21G(*) calculation on

CH2 (above) where there are a total of 13 MO’s with nine of them virtual. The

6–31G* basis, also often called 6–31G(d), is summarized in Fig. 5.13d.

The 6–31G* is probably the most popular basis at present. It gives good

geometries and, often, reasonable relative energies (Section 5.5.2); however,

there seems to be little evidence that it is, in general, much better than the

3–21G(*) basis for geometry optimizations. Since it is about five times as slow

(Table 5.3) as the 3–21G(*) basis, the general preference for the 6–31G* for

geometry optimizations may be due to its better relative energies (Section 5.5.2).

The 3–21G(*) basis does have certain geometry deficiencies compared to the

6–31G*, particularly its tendency to overzealously flatten nitrogen atoms (the N

of aniline is wrongly predicted to be planar), and this, along with inferior relative

energies and less consistency, may be responsible for its being neglected in favor of

the 6–31G* basis set [51]. The virtues of the 3–21G(*) and 6–31G* basis sets for

geometry optimizations are discussed further in Section 5.5.1. Note that the geo-

metries and energies referred to here are those from Hartree–Fock-level calcula-

tions. Post-Hartree–Fock (Section 5.4) calculations, which can give significantly

better geometries and much better relative energies (Sections 5.5.1 and 5.5.2), are

considered to require a basis set of at least the 6–31G* size for meaningful results.

The 6–31G* basis adds polarization functions only to so-called heavy atoms

(those beyond helium). Sometimes it is helpful to have polarization functions on the

hydrogens as well; a 6–31G* basis with three 2p functions on each H and He atom

(in addition to their 1s0 and 1s00 functions) is called the 6–31G** (or 6–31(d,p))

basis. The 6–31G* and 6–31G** bases are the same except that in the 6–31G**

each H and He has five, rather than two, functions. The 6–31G** basis probably

offers little advantage over the 6–31G* unless the hydrogens are engaged in some

special activity like hydrogen bonding or bridging [52]. In high-level calculations

on hydrogen bonding or on boron hydrides, for example, polarization functions are

placed on hydrogen. For calculations on and references to the hydrogen bonded

water dimer, see Sections 5.4.3.1 and 5.4.3.3.

5.3.3.4 Diffuse Functions

Core electrons and electrons engaged in bonding are relatively tightly bound to the

molecular nuclear framework. Lone-pair electrons or electrons in a (previously)

virtual orbital, are relatively loosely held, and are on the average at a larger distance

from the nuclei than core or bonding electrons. These “expanded” electron clouds
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are found in molecules with heteroatoms, in anions, and in electronically excited

molecules. To simulate well the behaviour of such species diffuse functions are

used. These are Gaussian functions with small values of a; this causes exp(�ar2) to
fall off very slowly with the distance r from the nucleus, so that by giving enough

weight to the coefficients of diffuse functions the SCF process can generate

significant electron density at relatively large distances from the nucleus. Typically

a basis set with diffuse functions has one such function, composed of a single

Gaussian, for each valence atomic orbital of the “heavy atoms”. The 3�21þG basis

set for carbon (¼ 3�21þG(*) for this element) is

1s
2s0 2p0 2p0 2p0

2s00 2p00 2p00 2p00

2sþ, 2pþ, 2pþ, 2pþ
13 Basis functions

and the 6–31þG* basis for carbon is

1s
2s0 2p0 2p0 2p0

2s00 2p00 2p00 2p00

3d 3d 3d 3d 3d 3d
2sþ, 2pþ, 2pþ, 2pþ
19 Basis functions

Sometimes diffuse functions are added to hydrogen and helium as well as to the

heavy atoms; such a basis set is indicated by þþ. The 3–21þþG and 6–31þþG

basis for hydrogen and helium is

1s
1s0

1sþ
Three basis functions

A 3–21þþG calculation on CH2 would use 13 þ 3 þ 3 ¼ 19 basis functions, a

6–31þþG* calculation 19 þ 3 þ 3 ¼ 25 basis functions, and a 6–31þþG**

calculation 19 þ 6 þ 6 ¼ 31 basis functions.

There is some disagreement over when diffuse functions should be used. Cer-

tainly most workers employ them routinely in studying anions and excited states,

but not ordinary lone pair molecules (molecules with heteroatoms, like ethers and

amines). A reasonable recommendation is to study with and without diffuse func-

tions species representative of the problem at hand, for which experimental results

are known, and see if these functions help. A paper by Warner [52] gives useful

references and a good account of the efficacy of diffuse functions in treating certain

molecules with heteroatoms. He settles on the 6–31þG*, i.e. 6–31þG(d), basis.

5.3.3.5 Large Basis Sets

The 3–21G(*) is a small basis set and the 6–31G* and 6–31G** are moderate-size

basis sets. Of those we have discussed, only the 6–31G* and 6–31G** with diffuse
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functions (6–31þG*, 6–31þþG*, 6–31þG** and 6–31þþG**) might be consid-

ered fairly large. A large basis set might have a doubly-split or even triply-split

valence shell with d, p and f, and maybe even g, functions on at least the heavy

atoms. An example of a large (but not very large) basis set is the 6–311G** (i.e.

6–311(d,p)) set. This is a split valence set with each valence orbital split into three

shells, composed of three, one and one Gaussian, while the core orbitals are

represented by one basis function composed of six Gaussians; each heavy atom

also has five (not six in this case) 3d functions and each hydrogen and helium has

three 2p functions. The 6–311G** basis for carbon is then

1s
2s0 2p0 2p0 2p0

2s00 2p00 2p00 2p00

2s000 2p000 2p000 2p000

3d 3d 3d 3d 3d
18 Basis functions

and for hydrogen

1s0

1s00

1s000

2p 2p 2p
Six basis functions

Unequivocally large basis sets would be triply-split valence shell sets with d and
f functions on heavy atoms and p functions on hydrogen. At the smaller end of such

sets is the 6–311G(df,p) basis, with five 3d’s and seven 4f’s on each heavy atom and

three 2p’s on each hydrogen and helium. For carbon this is

1s
2s0 2p0 2p0 2p0

2s00 2p00 2p00 2p00

2s000 2p000 2p000 2p000

3d 3d 3d 3d 3d
4f 4f 4f 4f 4f 4f 4f
25 Basis functions

and for hydrogen

1s0

1s00

1s000

2p 2p 2p
Six basis functions

A more impressive example of a large basis set would be 6–311G(3df,3pd). This

has for each heavy atom three sets of five d functions and one set of seven f
functions, and for each hydrogen and helium three sets of three p functions and

one set of five d functions, i.e.

For carbon

1s
2s0 2p0 2p0 2p0
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2s00 2p00 2p00 2p00

2s000 2p000 2p000 2p000

3d 3d 3d 3d 3d
3d 3d 3d 3d 3d
3d 3d 3d 3d 3d
4f 4f 4f 4f 4f 4f 4f
35 Basis functions

and for hydrogen

1s0

1s00

1s000

2p 2p 2p
2p 2p 2p
2p 2p 2p
3d 3d 3d 3d 3d
17 Basis functions

Note that all these large basis sets can be made still bigger by adding diffuse

functions to heavy atoms (þ) or to heavy atoms and hydrogen/helium (þþ). The

number of basis functions on CH2 using some small, medium and large bases is

summarized C þ H þ H):

STO� 3G 5þ 1þ 1 ¼ 7 functions

3� 21G ¼ 3� 21G �ð Þhere

 �

9þ 2þ 2 ¼ 13 functions

6� 31G � 6� 31G dð Þð Þ 15þ 2þ 2 ¼ 19 functions

6� 31G** 6� 31G d; pð Þð Þ 15þ 5þ 5 ¼ 25 functions

6� 311G � � 6� 311G d; pð Þð Þ 18þ 6þ 6 ¼ 30 functions

6� 311G df; pð Þ 25þ 6þ 6 ¼ 37 functions

6� 311G 3df; 3pdð Þ 35þ 17þ 17 ¼ 69 functions

6� 311þþG 3df; 3pdð Þ 39þ 18þ 18 ¼ 75 functions

Large basis sets are used mainly for post-Hartree–Fock level (Section 5.4)

calculations, where the use of a basis smaller than the 6–31G* seems to be

essentially pointless. At the Hartree–Fock level the largest basis routinely used is

the 6–31G* or 6–31G** (augmented if appropriate by diffuse functions), and post-

HF geometry optimizations are frequently done using the 6–31G* or 6–31G**

basis too. Use of the larger bases (6–311G** and up) tends to be confined to single-
point calculations on structures optimized with a smaller basis set (Section 5.5.2).

These are not firm rules: the high-accuracy CBS (complete basis set) methods
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(Section 5.5.2.2b) use as part of their procedure single-point HF (rather than post-

HF) level calculations with very large basis sets, and geometry optimizations with

large basis sets were performed at both HF and post-HF levels in studies of the

theoretically and experimentally challenging oxirene system [53].

5.3.3.6 Correlation-Consistent Basis Sets

All the previously explicitly designated basis sets, from STO-3G through

6–311þþG(3df,3pd) (in large basis sets), are Pople (from the group of John

Pople; see above) basis sets. Another class of popular basis sets was developed

by the research group of Dunning [54]. These are specially designed for post-

Hartree–Fock calculations (Section 5.4), in which electron correlation is better

taken into account than at the Hartree–Fock level. Because they are intended,

ideally, to give with such calculations improved results in step with (correlated

with) their increasing size, they are called correlation-consistent (cc) basis sets.

Ideally, they systematically improve results with increasing basis set size, and

permit extrapolation to the infinite basis set limit. The cc-sets are designated cc-

pVXZ, where p stands for polarization functions, V for valence, X for the number of

shells the valence functions are split into, and Z for zeta (cf. split valence and
double-zeta basis sets, above). Thus we have cc-pVDZ (cc polarized valence

doubly-split zeta), cc-pVTZ (cc polarized valence triply-split zeta), cc-pVQZ (cc

polarized valence quadruply-split zeta), and cc-pV5Z (cc polarized valence five-

fold-split zeta). These basis sets can be augmented with diffuse and extra polariza-

tion functions, giving aug-cc-pVXZ sets. The number of basis functions on CH2

using some Dunning sets (cf. the data on Pople sets, above) is C þ H þ H):

cc-pVDZ 14 þ 5 þ 5 ¼ 24 functions

cc-pVTZ 30 þ 14 þ 14 ¼ 58 functions

cc-pVQZ 55 þ 30 þ 30 ¼ 115 functions

cc-pV5Z 91 þ 55 þ 55 ¼ 201 functions

We see that only the cc-pVDZ is (roughly) comparable in size to the 6–31G*

(15 þ 2 þ 2 ¼ 19 functions); the other cc sets are much bigger. Correlation-

consistent basis sets sometimes [55] but do not necessarily [56] give results superior

to those with Pople sets that require about the same computational time.

5.3.3.7 Effective Core Potentials (Pseudopotentials)

At about the third row (potassium to krypton) of the periodic table, the large number

(19 or more) of electrons in each atom begins to have a significant slowing effect on

conventional ab initio calculations, because of the many two-electron repulsion

integrals they engender. The usual way of avoiding this problem is to add to the

Fock operator a one-electron operator that takes into account in a collective way the

effect of the core electrons on the valence electrons, which latter are still considered

explicitly. This “average core effect” operator is called an effective core potential
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(ECP) or a pseudopotential. With a set of valence orbital basis functions optimized

for use with it, it simulates the effect on the valence electrons of the atomic nuclei

plus the core electrons. A distinction is sometimes made between an ECP and a

pseudopotential, the latter term being used to mean any approach limited to the

valence electrons, while ECP is sometimes used to designate a simplified pseudo-

potential corresponding to a function with fewer orbital nodes than the “correct”

functions. However, the terms are usually used interchangeably to designate a

nuclei-plus-core electrons potential used with a set of valence functions, and that

is what is meant here. The use of an ECP stands in contrast to using all-electron
basis sets like the Pople or Dunning sets discussed above.

So far we have discussed nonrelativistic ab initio methods: they ignore those

consequences of Einstein’s special theory of relativity that are relevant to chemistry

(Section 4.2.3; [57]). These consequences arise from the dependence of mass on

velocity [58]. This dependence causes the masses of the inner electrons of heavy

atoms to be significantly greater than the electron rest mass; since the Hamiltonian

operator in the Schr€odinger equation contains the electron mass (e.g. Eq. 5.4), this

change of mass should be taken into account. Relativistic effects in heavy-atom

molecules affect geometries, energies, and other properties [59]. Relativity is

accounted for in the relativistic form of the Schr€odinger equation, the Dirac

equation (interestingly, Dirac thought his equation would not be relevant to chem-

istry [60]). This equation is not commonly used explicitly in molecular calculations,

but is instead used to develop [61] relativistic effective core potentials (relativistic
pseudopotentials). Relativistic effects can begin to become significant for about

third-row elements, i.e. the first transition metals. For molecules with these atoms

ECPs begin to be useful for speeding up calculations, so it makes sense to take these

effects into account in developing these potential operators and their basis func-

tions, and indeed ECPs are generally relativistic. Such ECPs can give accurate

results for molecules with third-row and beyond atoms by simulating the electronic

relativistic mass increase. Comparing such a calculation on silver fluoride using the

popular LANL2DZ basis set (a split valence basis) with a 3–21G(*) calculation,

using Gaussian 03 for Windows [62] (on a older machine running under XP):

LANL2DZ basis, 31 basis functions, 2.0 min; Ag–F ¼ 2.064 Å.

3–21G(*) basis, 48 basis functions, 2.0 min; Ag-F ¼ 2.019 Å.

The experimental bond length is 1.983 Å [63].

In this simple case there is no advantage to the pseudopotential calculation (the

3–21G(*) geometry is actually better!), but more challenging calculations on “very-

heavy-atom” molecules, particularly transition metal molecules, rely heavily on

ab initio or DFT (Chapter 7) calculations with pseudopotentials. Nevertheless,

ordinary nonrelativistic all-electron basis sets sometimes give good results with

quite heavy atoms [64]. A concise description of pseudopotential theory and

specific relativistic effects on molecules, with several references, is given by Levine

[65]. Reviews oriented toward transition metal molecules [66a,b,c] and the lantha-

nides [66d] have appeared, as well as detailed reviews of the more “technical”

aspects of the theory [67]. See too Section 8.3.
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5.3.3.8 Which Basis Set Should I Use?

Scores, perhaps hundreds of basis sets have been developed, and new ones appear

yearly, if not monthly. There is something to be said for having a variety of tools in

our armamentarium, but one tends to be not entirely unsympathetic to the descrip-

tion, almost 2 decades ago, of this situation as a “chaotic proliferation” [68]. There

are books of practical advice [1, 69] which help to provide a feel for the appropri-

ateness of various basis sets. By reading the research literature one learns what

approaches, including which basis sets, are being applied to a various problems,

especially those related to the one’s research. This said, one should avoid simply

assuming that the basis used in published work was the most appropriate one: it is

possible that it was either too small or unnecessarily big. Hehre has shown [39] that

in many cases the use of very large bases is pointless; on the other hand some

problems yield, if at all, only to very large basis sets (see below). A Goldilocks-like

basis can rarely (except for calculations of a cursory or routine nature) be correctly

simply picked; rather, one homes in on it, by experimenting and comparing results

with experimental facts as far as possible. Where egregious deviations from experi-

ment are found at levels that experience suggests should be reliable, one may be

justified in questioning the “facts”. Bachrach places “the first chink in the armor of

the inherent superiority of experiment over computation” in 1970 [70].

A rational approach in many cases might be to survey the territory first with a

semiempirical method (Chapter 6) or with the STO-3G basis and to use one of these

to create input structures and input Hessians (Section 2.4) for higher-level calcula-

tions) then to move on to the 3–21G(*) basis or possibly the 6–31G* for a reasonable

exploration of the problem. For a novel system for which there is no previous work to

serve as a guide one should move up to larger basis sets and to post-Hartree–Fock

methods (Section 5.4), climbing the latter of sophistication until reasonable conver-

gence of at least qualitative results has been obtained. It is possible for results to

become worse with increasing basis set size [71, 72], because of fortuitous cancella-
tion of errors at a lower level. This kind of thing is discussed, albeit with the focus not

directly on basis functions, in several papers with the very apposite words “. . . the
right answer for the right reason” [73]. To achieve this happy coincidence of experi-

ment and reality, quite high theoretical levels may be necessary. A somewhat bizarre

phenomenon is that at post Hartree–Fock levels, at least, some fairly large basis sets

predict nonplanar geometries for benzene and similar aromatic hydrocarbons! [74].

Janoschek has given an excellent survey indicating the reliability of ab initio calcula-

tions and the level at which one might need to work to obtain trustworthy results by

[75]. After this short litany of warnings, let the reader be reassured that good

geometries, reasonably reliable relative energies, and useful reactivity parameters,

based e.g. on orbital shapes and energies, can often be obtained routinely by standard

methods chosen by comparing their predictions with the experimental facts for a set

of related compounds. Examples of such results are given later in this chapter.

Oxirene (oxacyclopropene) provides a canonical example of a molecule which

even at the highest current levels of theory has declined to reveal its basic secret:

can it exist (“Oxirene: to Be or Not to Be?” [53b])?. Very large basis sets and
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advanced post-Hartree–Fock methods suggest it is a true minimum on the potential

energy surface, but its disconcerting tendency to display an imaginary (Section 2.5)

calculated ring-opening vibrational mode at some of the highest levels used leaves

the judicious chemist with no choice but to reserve judgement on its being. The

nature of a series of substituted oxirenes, studied likewise at high levels, appears to
be clearer [53a].

Another system that has yielded results which are dependent on the level of

theory used, but which unlike the oxirene problem provides a textbook example of a

smooth gradation in the nature of the answers obtained, is the ethyl cation

(Fig. 5.17). At the Hartree–Fock STO-3G and 3–21G(*) levels the classical
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bridged

6-31G*

MP2 / 6-31G*

STO-3G  47 kJ mol–1

3-21G  32 kJ mol–1

classical
0 kJ mol–1

classical
0 kJ mol–1

classical
0 kJ mol–1

5.0 kJ mol–1

bridged
3.4 kJ mol–1

bridged; the classical ion is not
a stationary point at this level

Fig. 5.17 The ethyl cation problem at various levels. At the three Hartree–Fock levels the

classical cation is a minimum, but at the post-Hartree–Fock (MP2/6–31G*) level only the

symmetrical bridged ion is a minimum. The HF/6–31G* results are calculations by the author

(ZPE ignored), the other three levels are taken from ref. [75]
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structure is a minimum and the bridged nonclassical structure is a transition state,

but with the 6–31G* basis the bridged ion has become a minimum and the classical

one, although the global minimum, is not securely ensconced as such, being only

3.4 kJ mol�1 lower than the bridged ion. At the post-Hartree–Fock (Section 5.4)

MP2 level with the 6–31G* basis the bridged ion is a minimum and the classical

one has lost the dignity of being even a stationary point. The ethyl cation and

several other systems have been reviewed [75].

In summary, in many cases [39] the 3–21G (i.e. 3–21G(*)) or 6–31G* basis sets,

or for that matter even the much faster molecular mechanics (Chapter 3) or

semiempirical (Chapter 6) methods, are entirely satisfactory, but there are problems

that require quite high levels of attack.

5.4 Post-Hartree–Fock Calculations: Electron Correlation

5.4.1 Electron Correlation

Electron correlation is the phenomenon of the motion of pairs of electrons in atoms

or molecules being connected (“correlated”) [76]. The purpose of post-Hartree–
Fock calculations (correlated calculations) is to treat such correlated motion

better than does the Hartree–Fock method. In the Hartree–Fock treatment, electro-

n–electron repulsion is handled by having each electron move in a smeared-out,

average electrostatic field due to all the other electrons (Sections 5.2.3.2 and “Using

the Roothaan–Hall Equations to do Ab initio Calculations – the SCF Procedure”),

and the probability that an electron will have a particular set of spatial coordinates

at some moment is independent of the coordinates of the other electrons at that

moment. In reality, however, each electron at any moment moves under the

influence of the repulsion, not of an average electron cloud, but rather of individual
electrons (in fact current physics regards electrons as point particles – with wave

properties of course). The consequence of this is that the motion of an electron in a

real atom or molecule is more complicated than that for an electron moving in a

smeared-out field [77] and the electrons are thus better able to avoid one another.

Because of this enhanced (compared to the Hartree–Fock treatment) standoffish-

ness, electron–electron repulsion is really smaller than predicted by a Hartree–Fock

calculation, i.e. the electronic energy is in reality lower (more negative). If you walk

through a crowd, regarding it as a smeared-out collection of people, you will

experience collisions that could be avoided by looking at individual motions and

correlating yours accordingly. The Hartree–Fock method overestimates electron–

electron repulsion and so gives higher electronic energies than the correct ones, even

with the biggest basis sets, because it does not treat electron correlation properly.

Hartree–Fock calculations are sometimes said to ignore, or at least to neglect,

electron correlation. Actually, the Hartree–Fock method allows for some electron

correlation: according to our current understanding, two electrons of the same spin
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can’t be in the same place at the same time. This is reflected in the Hartree–Fock

formulation of the wavefunction as a determinant (Section 5.2.3.1). Because the

spatial and spin coordinates of two such electrons would then be the same, the

Slater determinant representing the total molecular wavefunction would vanish,

since a determinant is zero if two rows or columns are the same (Section 4.3.3). This

is just a consequence of the antisymmetry of the wavefunction: switching rows or

columns of a determinant changes its sign; if two rows/columns are the same

then D1 ¼ D2 (the determinant before and the determinant after switching) and

D1 ¼ �D2, so D1 ¼ D2 ¼ 0. If the wavefunction were to vanish so would the

electron density, which can be calculated from the wavefunction; this seems

physically unreasonable. This is one way of looking at the Pauli exclusion principle.

The probability of finding an electron in a small region centered on a point defined

by a triplet of spatial coordinates can in principle be calculated from the wavefunc-

tion. Now, since the probability is zero that at any moment two electrons of like spin

are at the same point in space, and since the wavefunction is continuous, the

probability of finding them at a given separation should decrease smoothly with

that separation. This means that even if electrons were uncharged, with no electro-

static repulsion between them, around each electron there would still be a region

increasingly (the closer we approach the electron) unfriendly to other electrons of

the same spin. This quantum mechanically engendered “Pauli exclusion zone”

around an electron is called a Fermi hole, after Enrico Fermi; it applies to fermions

(Section 5.2.2) in general. Besides the quantum mechanical Fermi hole, each

electron is surrounded by a region unfriendly to all other electrons, regardless of

spin, because of the classical electrostatic (Coulomb) repulsion between point
particles (¼ electrons). For electrons of opposite spin, to which the Fermi hole

effect does not apply, this electrostatic exclusion zone is called a Coulomb hole (of

course, electrons of the same spin also repel one another electrostatically). Since the

HF method does not treat the electrons as discrete point particles it largely ignores

the existence of the Coulomb hole, allowing electrons to get too close on the

average. This is the main source of the overestimation of electron–electron repul-

sion in the HF method. Post-HF calculations attempt to allow electrons, even of

different spin, to avoid one another better than in the HF approximation.

Hartree–Fock calculations give an electronic energy (and thus a total internal

energy, Section 5.5.2.1a) that is too high (the variation theorem, Section 5.2.3.3,

assures us that the Hartree–Fock energy will never be too low). This is partly

because of the overestimation of electronic repulsion and partly because of the

fact that in any real calculation the basis set is not perfect. For sensibly-developed

basis sets, as the basis set size increases the Hartree–Fock energy gets smaller, i.e.

more negative. The limiting energy that would be given by an infinitely large basis

set is called the Hartree–Fock limit (i.e. the energy in the Hartree–Fock limit).
Table 5.4 and Fig. 5.18 show the results of some Hartree–Fock and post-Hartree–

Fock calculations on the hydrogen molecule; the limiting energies are close to the

accepted ones [78]. Errors in energy, or in any other molecular feature, that can

be ascribed to using a finite basis set are said to be caused by basis set truncation.

Basis set truncation does not always cause serious errors; for example, the small

256 5 Ab initio Calculations



HF/3–21G(*) basis often gives good geometries (Section 5.3.3). Where necessary,

the truncation problem can be minimized by using a large (provided the size of the

molecule makes this practical), appropriate basis set.

Table 5.4 (cf. Fig. 5.18). Dependence of the calculated energy of H2 on basis set and on corre-

lation level

Correlated energy

Basis No. basis

functions

HF energy Method Energy

3-21G(*) 4 �1.12292 – –

6-31G* 10 �1.13127 MP2 �1.15761

6-311þþG** 14 �1.13248 MP2 �1.16029

6-311þþG(3df,3pd) 36 �1.13303 MP2 �1.16493

6-311þþG(3df,3p2d) 46 �1.13307 MP2 �1.16543

6-311þþG(3df,3p2d) 46 �1.13307 MP4 �1.17226

6-311þþG(3df,3p2d) 46 �1.13307 full CI �1.17288

All calculations are single-point, without ZPE correction, on H2 at the experimental bond length of

0.742 Å, using G94W [198]; energies are in hartrees. The accepted Hartree–Fock (Etotal
HF ;

Eq. (5.149 ¼ 5.93)) and correlated limiting energies are about �1.1336 and �1.1744 h, respec-

tively [78], cf. �1.13307 and �1.17288 h here)

–1.13

–1.18

energy (hartrees)
0

10 20 30 40 50
number of basis functions

–1.122

–1.124

–1.126

–1.128

–1.130

–1.132

–1.134

–1.13307 h, Hartree-Fock limit
according to these calculations

–1.17288 h,  "exact" energy (full CI
with the 6-311++G(3df, 3p2d) basis set

correlation energy = –1.17288 – (–1.13307) h
= –0.03981 h

–1.13307 h, Hartree-Fock limit

Fig. 5.18 (Based on Table 5.4). The Hartree–Fock limit and correlation energy for H2. From the

values calculated here, the HF limit, the exact energy (see text) and the correlation energy are

�1.13307, �1.17288 and �0.03981 h (see inset); the accepted values [78] are about �1.1336,

�1.17439 and �0.04079
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A measure of the extent to which any particular ab initio calculation does not

deal perfectly with electron correlation is the correlation energy. In a canonical

exposition [79] L€owdin defined correlation energy thus: “The correlation energy for
a certain state with respect to a specified Hamiltonian is the difference between the

exact eigenvalue of the Hamiltonian and its expectation value in the Hartree–Fock

approximation for the state under consideration.” This is usually taken to be the

energy from a nonrelativistic but otherwise perfect quantum mechanical procedure,

minus the energy calculated by the Hartree–Fock method with the same nonrelativ-

istic Hamiltonian and a huge (“infinite”) basis set:

Ecorrel ¼ EðexactÞ � EðHF limitÞ
using the sameHamiltonian for both terms

From this definition the correlation energy is negative, since E(exact) (actually a
nonrelativistic energy here) is more negative than E(HF limit). The Hamiltonians of

Section 5.2.2, Eqs. 5.4–5.6 and associated discussion exclude relativistic effects,

which are significant only for heavy atoms. Unless qualified the term correlation

energy means nonrelativistic correlation energy. The correlation energy is essen-

tially the energy that the Hartree–Fock procedure fails to account for. If relativistic
effects (and other, usually small, effects like spin-orbit coupling) are negligible then

Ecorrel is the difference between the experimental value (of the energy required to

dissociate the molecule or atom into infinitely separated nuclei and electrons) and

the limiting Hartree–Fock energy.

A distinction is sometimes made between dynamic (or dynamical), and non-

dynamic or static correlation energy. Dynamic correlation energy is the energy a

Hartree–Fock calculation does not account for because it fails to keep the electrons

sufficiently far apart; this is the usual meaning of “correlation energy”. Static

correlation energy is the energy a calculation (Hartree–Fock or otherwise) may

not account for because it uses a single determinant, or starts from a single

determinant (is based on a single-determinant reference – Section 5.4.3); this

problem arises with singlet diradicals, for example, where a closed-shell description

of the electronic structure is qualitatively wrong. This is because there are (two,

usually) highest-energy orbitals (frontier orbitals) of equal or nearly equal energy

and the Hartree–Fock method cannot unambiguously decide which of these should

receive an electron pair and which should be empty – which should be the HOMO

and which the LUMO. A singlet diradical actually has two essentially half-filled

orbitals. The term correlation energy is applied to the unaccounted-for energy in

such cases perhaps because as with dynamic correlation energy the problem can be

at least partly overcome by expressing the wavefunction with more than one

determinant. Dynamic correlation energy can be calculated (“recovered”) by the

Møller–Plesset method or by multiditerminant configuration interaction methods

(Sections 5.4.2 and 5.4.3) and static correlation energy can likewise be recovered by

basing the wavefunction on more than one determinant, as in a multireference
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configuration interaction method like a complete active space SCF (CASSCF)

calculation (Section 5.4.3). See too Section 8.2.

Although Hartree–Fock calculations are satisfactory for many purposes

(Section 5.5) there are cases where a better treatment of electron correlation

is needed. This is particularly true for the calculation of relative energies

(Section 5.5.2), although geometries (5.5.1) and some other properties can benefit

from post-Hartree-Fock calculations (Section 5.4). As an illustration of a shortcom-

ing of Hartree–Fock calculations consider an attempt to find the C/C single bond

dissociation energy of ethane by comparing the energy of ethane with that of two

methyl radicals:

H3C� CH3 þ Ediss ! H3C � CH3

Let us simply subtract the energy of two methyl radicals from that of an ethane

molecule, and compare with experiment the results of Hartree–Fock calculations

and (anticipating Section 5.4.2) the post-Hartree–Fock (i.e. correlated) MP2

method. In Table 5.5 the energies shown for CH3� and CH3CH3 are successively

the “uncorrected” ab initio energies (the energy displayed at the end of any

calculation; this is the electronic energy þ the internuclear repulsion), the ZPE,

and the “corrected” energy (uncorrected energy + ZPE); see Section 5.2.3.6.4. The

ZPEs used here are from HF/6–31G* optimization/frequency jobs; these are fairly

fast and give reasonable ZPEs. The ZPEs were all calculated by multiplying by an

empirical correction factor of 0.9135 (this brings them into better agreement with

Table 5.5 The C–C bond energy of ethane calculated by the Hartree–Fock and MP2 methods

Energy

Method/basis CH3� CH3CH3 E(2CH3��CH3CH3)

HF/6–31G* �39.55899 �79.22876 0.09451

0.02829 0.07285 248

�39.53070 �79.15591

HF/6–311þþG(3df,3p2d) �39.57712 �79.25882 0.08831

0.02829 0.07285 232

�39.54883 �79.18597

MP2/6–31G* �39.66875 �79.49474 0.14097

0.02829 0.07285 370

�39.64046 �79.42189

MP2/6–311þþG** �39.70866 �79.57167 0.13808

0.02829 0.07285 363

�39.68037 �79.49882

The radical CH3� and the closed-shell CH3CH3 were calculated by unrestricted and restricted

methods, respectively: UHF and UMP2, versus RHF and RMP2 – see concluding part of

Section 5.2.3.6.2); the HF method largely ignores electron correlation, while MP2 recovers

about 85% of the electron correlation. The set of three numbers for each species are respectively,

in hartrees, the uncorrected ab initio energy, the corrected (0.9135 factor, see text) HF/6–31G*

ZPE, and the corrected ab initio energy (uncorrected energy þ ZPE). Calculated (by subtraction)

bond energies are in hartrees and kJ mol�1 (2,626 � hartrees). The experimental C–C energy of

ethane has been reported at 377 kJ mol�1 [81]. Each species was optimized at the level shown (i.e.

none of these are single-point calculations).
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experiment [80]). Although frequencies must be calculated with the same method

(HF, MP2, etc.) and basis set as were used for the geometry optimization, ZPEs
from a particular method/basis may legitimately be used to correct energies

obtained with another method/basis. The only calculations that give reasonable

agreement with the experimental ethane C–C dissociation energy (reported at

377 kJ mol�1 [81]) are the correlated (MP2) ones, 370 and 363 kJ mol�1 with

different basis sets; because of error in the experimental value the two MP2 results

may be equally good. The Hartree–Fock values (248 and 232 kJ mol�1) are very

poor, even (especially!) when the very large 6–311þþG(3df,3p2d) basis is used.

Accurate calculation of reaction energies is now usually done with one of the

multistep methods like G3 or a CBS method (Section 5.5.2.2b).

This inability of Hartree–Fock calculations to model correctly homolytic bond

dissociation is commonly illustrated by curves of the change in energy as a bond is

stretched, e.g. Fig. 5.19. The phenomenon is discussed in detail in numerous

expositions of electron correlation [82]. Suffice it to say here that representing the

wavefunction as one determinant (or a few), as is done in Hartree–Fock theory, does

not permit correct homolytic dissociation to two radicals because while the reactant

(e.g. H2) is a closed-shell species that can (usually) be represented well by one

determinant made up of paired electrons in the occupied MOs, the products are two

radicals, each with an unpaired electron. Ways of obtaining satisfactory energies,

0
41 2 3
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400

600

800

1000

HF / 6-31G*

MP2/6-31G*

H     H distance, Å

energy (relative
to equilibrium bond
length energy)

kJ mol–1

Fig. 5.19 Dissociation curves (change in energy as the bond is stretched) for H2, from HF/6–31G*

and MP2/6–31G* calculations. The equilibrium bond lengths are reasonable (HF/6–31G*, 0.730;

MP2/6–31G*, 0.737 (cf. experimental, 0.742), but only the MP2 curve approximates the actual

dissociation behavior of the molecule
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with and without the use of electron correlation methods, for processes involving

homolytic cleavage, are discussed further in Section 5.5.2.

There are basically three approaches to dealing with electron correlation:

explicit use of the interelectronic distances as variables in the Schr€odinger equation,
treatment of the real molecule as a perturbed Hartree–Fock system, and explicit

inclusion in the wavefunction of electronic configurations other than the ground-

state one. Using interelectronic distances explicitly quickly seems to become

mathematically intractable and is currently limited to atoms and molecules that

are very small [83]. The other two methods are general and very important: the

perturbation approach is used in the very popular Møller–Plesset4 methods, and the

use of higher electronic configurations in the wavefunction forms the basis of

configuration interaction, which in various forms is employed in some of the

most advanced ab initio methods currently used for dealing with electron correla-

tion. A powerful method that is becoming increasingly popular and incorporates

mathematical features of the perturbation and higher-electronic-state methods, the

coupled-cluster approach, is also described.

5.4.2 The Møller–Plesset Approach to Electron Correlation

The Møller–Plesset (MP) treatment of electron correlation [84] is based on pertur-

bation theory, a very general approach used in physics to treat complex systems

[85]; this particular approach was described by Møller and Plesset in 1934 [86] and

developed into a practical molecular computational method by Binkley and Pople

[87] in 1975. The basic idea behind perturbation theory is that if we know how to

treat a simple (often idealized) system then a more complex (and often more

realistic) version of this system, if it is not too different, can be treated mathemati-

cally as an altered (perturbed) version of the simple one. Møller–Plesset calcula-

tions are denoted as MP, MPPT (Møller–Plesset perturbation theory) or MBPT

(many-body perturbation theory) calculations. The derivation of the Møller–Plesset

method [88] is somewhat involved, and only the flavor of the approach will be

given here. There is a hierarchy of MP energy levels: MP0, MP1 (these first two

designations are not actually used), MP2, etc. . . . , which successively account more

thoroughly for interelectronic repulsion.

“MP0” would use the electronic energy obtained by simply summing the

Hartree–Fock one-electron energies (Section 5.2.3.6.4, Eq. 5.84). This ignores

interelectronic repulsion except for refusing to allow more than two electrons in

the same spatial MO. “MP1” corresponds to MP0 corrected with the Coulomb and

exchange integrals J and K (Eqs. 5.85 and 5.90), i.e. MP1 is just the Hartree–Fock

energy. As we have seen, this handles interelectronic repulsion in an average way.

4Møller–Plesset: the Norwegian letter ø is pronounced like French eu or German €o.
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We could write EMP1 ¼ Etotal
HF ¼ EMP0 þ Eð1Þ, where EMP0 is the sum of one-elec-

tron energies and internuclear repulsions and E(1) is the J, K correction

(corresponding respectively to the two terms in Eqs. 5.85 and 5.90), regarding the

second term as a kind of perturbational correction to the sum of one-electron

energies.

MP2 is the first MP level to go beyond the HF treatment: it is the first “real”

Møller–Plesset level. The MP2 energy is the HF energy plus a correction term (a

perturbational adjustment) that represents a lowering of energy brought about by

allowing the electrons to avoid one another better than in the HF treatment:

EMP2 ¼ Etotal
HF þ Eð2Þ ð5:161Þ

The HF term includes internuclear repulsions, and the perturbation correction

E(2) is a purely electronic term. E(2) is a sum of terms each of which models the

promotion of pairs of electrons. So-called double excitations from occupied to

formally unoccupied MOs (virtual MOs) are required by Brillouin’s theorem

[89], which says, essentially, that a wavefunction based on the HF determinant

D1 plus a determinant corresponding to exciting just one electron from D1 cannot

improve the energy.

Let’s do an MP2 energy calculation on HHe+, the molecule for which a

Hartree–Fock (i.e. an SCF) calculation was shown in detail in Section 5.2.3.6.5.

As we did for the HF calculation, we will take the internuclear distance as 0.800 Å

and use the STO-1G basis set; we can then use for our MP2 calculation these HF

results that we obtained in Section 5.2.3.6.5:

The MO coefficients

For the occupied MO c1, c11 ¼ 0.3178, c21 ¼ 0.8020

Recall that these are respectively the coefficient of basis function 1, f1, in MO1

and the coefficient of basis function 2, f2, in MO1. In this simple case there is one

function on each atom: f1 and f2 on atoms 1 and 2 (H and He).

For the unoccupied (virtual) MO c2, c12 ¼ 1.1114, c22 ¼ �0.8325

The two-electron repulsion integrals:

11j11ð Þ ¼ 0:7283 21j21ð Þ ¼ 0:2192

21j11ð Þ ¼ 0:3418 22j21ð Þ ¼ 0:4368

22j11ð Þ ¼ 0:5850 22j22ð Þ ¼ 0:9927

The energy levels

Occupied MO, e1 ¼ �1.4470, virtual MO, e2 ¼ �0.1051

The HF energy: Etotal
HF ¼ �2.4438

The MP2 energy correction for a closed-shell two-electron/two-MO system

is [90]
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Eð2Þ ¼
R R

c1ð1Þc1ð2Þ 1
r12

� �
c2ð1Þc2ð2Þdv1dv2

h i2
2ðe1 � e2Þ ð5:162Þ

Applying this formula “by hand” is straightforward, although the arithmetic is

tedious. Nevertheless it is worth doing (as was true for the Hartree–Fock calcula-
tion in Section 5.2.3.6.5) in order to appreciate how much arithmetical work is

involved in even this simplest molecular MP2 job. Consider the integral in the

numerator of Eq. 5.162; substituting for c1 and c2:

Z Z
c1ð1Þc1ð2Þ

1

r12

� �
c2ð1Þc2ð2Þdv1dv2

¼
Z Z �

ðc11f1ð1Þ þ c21f2ð1ÞÞðc11f1ð2Þ þ c21f2ð2ÞÞ
1

r12

� �

� ðc12f1ð1Þ þ c22f2ð1ÞÞðc12f1ð2ÞÞ
�

Multiplying out the integrand gives a total of 16 terms (from four terms to the

left of 1/r12 and four terms to the right), and leads to a sum of 16 integrals:

Z Z
c1ð1Þc1ð2Þ

1

r12

� �
c2ð1Þc2ð2Þdv1dv2

¼ c211c
2
12

Z
f1ð1Þf1ð2Þ

1

r12

� �
f1ð1Þf1ð2Þdv1dv2þ�� �þ c221c

2
22

Z
f2ð1Þf2ð2Þ

1

r12

� �
¼ c211c

2
12ð11j11Þþ � � �þ c221c

2
22ð22j22Þ;

recalling the notational degeneracy in the two-electron integrals (Section 5.2.3.6.5

“Step 2 – Calculating the integrals”). Substituting the values of the coefficients and
the two-electron integrals:Z Z

c1ð1Þc1ð2Þ
1

r12

� �
c2ð1Þc2ð2Þdv1dv2

¼ 0:12475ð0:7283Þ þ � � � þ 0:44577ð0:9927Þ h ¼ 0:12932 h

So from Eq. 5.162

Eð2Þ ¼ 0:129322

2ðe1 � e2Þ h ¼ 0:129322

2ð�1:4470þ 0:1051Þ h ¼ �0:00623 h

The MP2 energy is the Hartree–Fock energy plus the MP2 correction

(Eq. 5.162):

EMP2 ¼ Etotal
HF þ Eð2Þ ¼ �2:4438 h� 0:00623 h ¼ �2:4500 h
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This energy, which includes internuclear repulsion, since Etotal
HF includes this

(Eq. 5.93), is the MP2 energy normally printed out at the end of the calculation.

To get an intuitive feel for the physical significance of the calculation just per-

formed look again at Eq. 5.162, which applies to any two-electron/two-basis

function species. The equation shows that the absolute value (the correction is

negative since e1 is smaller than e2 – the occupied MO has a lower energy than the

virtual one) of the correlation correction increases, i.e. the energy decreases, with

the magnitude of the integral (which is positive). This integral represents the

decrease in energy arising from allowing an electron pair in the occupied MO

(c1) to spill over into the virtual MO (c2):

c1(1) represents electron 1 in c1 and c1(2) represents electron 2 in c1.

c2(1) represents electron 1 in c2 and c2(2) represents electron 2 in c2.

The operator 1/r12 brings in coulombic interaction: the coulombic repulsion

energy between infinitesimal volume elements c1(1)c1(2)dv1 and c2(1)c2(2)dv2
separated by a distance r12 is (c1(1)c1(2)dv1)(c2(1)c2(2)dv2)/r12, and the integral is
simply the sum over all such volume elements (cf. the discussion in connection with

Fig. 5.3 and the average-field integrals J and K in Section 5.2.3.2). Physically, the

decrease in energy makes sense: allowing the electrons to be partly in the formally

unoccupied virtual MO rather than confining them strictly to the formally occupied

MO enables them to avoid one another better than in the HF treatment, which is

based on a Slater determinant consisting only of occupied MOs (Section 5.2.3.1).

The essence of the Møller–Plesset method (MP2, MP3, etc.) is that the correction

term handles electron correlation by promoting electrons from occupied to unoccu-

pied (virtual) MOs, giving electrons, in some sense, more room to move and thus

making it easier for them to avoid one another; the decreased interelectronic

repulsion results in a lower electronic energy. The contribution of the “c1/c2 inter-

action” to E(2) decreases as the occupied/virtual MO gap e1�e2, increases, since this
is in the denominator . Physically, this makes sense: the bigger the gap between the

occupied and higher-energy virtual MO, the harder it is to promote electrons from

the one into the other, so the less can such promotion contribute to electronic

stabilization. So in the expression for E(2) (Eq. 5.162), the numerator represents

the promotion of electrons from the occupied to the virtual orbital, and the denomi-

nator represents a check on how hard it is to do this.

As we just saw, MP2 calculations utilize the Hartree–Fock MOs (their coeffi-

cients c and energies e). The HF method gives the best occupied MOs obtainable

from a given basis set and a one-determinant total wavefunction c, but it does not
optimize the virtual orbitals (after all, in the HF procedure we start with a determi-

nant consisting of only the occupied MOs – Sections 5.2.3.1–5.2.3.4). To get a

reasonable description of the virtual orbitals and to obtain a reasonable number of

them into which to promote electrons, we need a basis set that is not too small. The

use of the STO-1G basis in the above example was purely illustrative; the smallest

basis set generally considered acceptable for correlated calculations is the 6–31G*,

and in fact this is perhaps the one most frequently used for MP2 calculations. The

6–311G** basis set is also widely used for MP2 and MP4 calculations. Both bases
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can of course be augmented (Section 5.3.3) with diffuse functions, and the 6–31G*

with H polarization functions (6–31G**). MP2 calculations increase rapidly in

complexity with the number of electrons and orbitals, involving as they do a sum
of terms (rather than just one term as in HHe+), each representing the promotion of

an electron pair from an occupied to a virtual orbital; thus an MP2 calculation on

CH2 with the 6–31G* basis involves eight electrons and 19 MOs (four occupied and

15 virtual MOs).

In MP2 calculations doubly excited states (doubly excited configurations) inter-

act with the ground state (the integral in Eq. 5.162 involves c1 with electrons 1 and

2, and c2 with electrons 1 and 2). In MP3 calculations doubly excited states interact

with one another (there are integrals involving two virtual orbitals). In MP4

calculations singly, doubly, triply and quadruply excited states are involved. MP5

and higher expressions have been developed, but MP2 and MP4 are by far the most

popular Møller–Plesset levels (also called MBPT(2) and MBPT(4) – many-body

perturbation theory). MP2 calculations, which are much slower than Hartree–Fock,

can be speeded up somewhat by specifying MP2(fc), MP2 frozen-core, in contrast

to MP2(full); frozen-core means that the core (non-valence electrons) are “frozen”,

i.e. not promoted into virtual orbitals, in contrast to full MP2 which takes all the

electrons into account in summing the contributions of excited states to the lower-

ing of energy. Most programs, e.g. Gaussian, Spartan) perform MP2(fc) by default

when MP2 is specified, and “MP2” usually means frozen-core. When seen in this

book referring to a specific calculation rather than a general method, it may be taken

as shorthand for MP2(fc). MP4 calculations are sometimes done omitting the triply

excited terms (MP4SDQ) but the most accurate (and slowest) implementation is

MP4SDTQ (singles, doubles, triples, quadruples).

Calculated properties like geometries and relative energies tend to be better (to be

closer to the true ones) when done with correlated methods (Sections 5.5.1–5.5.4).

To save time, energies are often calculated with a correlated method on a Hartree–

Fock geometry, rather than carrying out the geometry optimization at the correlated

level. This is called a single-point calculation (it is performed at a single point on the

HF potential energy surface, without changing the geometry). A single-point MP2

(fc) calculation using the 6–311G** basis, on a structure that was optimized with the

Hartree–Fock method and the 6–31G* basis, is designated as MP2(fc)/6–311G**//

HF/6–31G*. A HF/6–31G* (say) geometry optimization, without a subsequent

single-point calculation, is sometimes designated HF/6–31G*//HF/6–31G*, and

an MP2 optimization MP2/6–31G*//MP2/6–31G*. The correlation treatment (HF,

MP2, MP4, . . .) is often called the method, and the basis set (STO-3G, 3–21G(*),

6–31G*, . . .) the level, but we will often find it convenient to let level denote the

combined procedure of method and basis set, referring, say, to an MP2/6–31G*

calculation as being at a higher level than an HF/6–31G* one.

Figure 5.20 shows the rationale behind the use of single-point calculations for

obtaining relative energies. In the diagram a single-point MP2 calculation on a

stationary point at the HF geometry gives the same energy as would be obtained by

optimizing the species at the MP2 level, which is often approximately true (it would

be exactly true if the MP2 and HF geometries were identical). For example, the
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single-point and optimized energies of butanone are�231.68593 and�231.68818 h,

a difference of 0.00225 h (2.3 mh) or 6 kJ mol�1, not large bearing in mind that

special high-accuracy calculations (Section 5.5.2.2) are needed to reliably get

relative energies to within, say, 10 kJ mol�1. Single-point calculations would also

give relative energies similar to those from the use of optimized correlated geome-

tries if the incremental deviations from the optimized-geometry energies were

about the same for the two species being compared (e.g. reactant and TS for an

activation energy, reactant and product for a reaction energy).

The method can occasionally give not just quantitatively, but qualitatively

wrong results. The HF and correlated surfaces may have different curvatures: for

example a minimum on one surface may be a transition state or may not exist (may

E ‡
MP2

geometry0

MP2

HF

GTS, MP2

GTS, HF

single-point
calculation

single-point
calculation

absolute ab
initio energy
(negative)

Gmin, MP

Gmin, HF

E ‡
HF

Fig. 5.20 Hartree–Fock and MP2 (or other correlated) potential energy surfaces. “Absolute” (as

distinct from relative) ab initio energies are negative, and correlated energies are lower (more

negative) than Hartree–Fock energies. The geometries of the minima and the transition states are

designated Gmin and GTS. Activation energies are denoted by E{. HF activation energies are, as

shown, usually bigger than MP2. In this diagram a single-point MP2 calculation on a stationary

point at the HF geometry gives the same energy as would be obtained by optimizing the species at

the MP2 level; this is often true, but single-point MP2 relative energies would be similar to

optimized-MP2 relative energies even if it were not so, provided the incremental energy change

were about the same for the two species being compared (e.g. reactant and TS for an activation

energy, reactant and product for a reaction energy)
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not be a stationary point) on another. Thus fluoro- and difluorodiazomethane are HF

minima but are MP2/6–31G* transition states [91]; an attempt to approximate

the MP2/6–31G* reaction energy for, say, CHFN2 ! CHF + N2, using single-

point MP2/6–31G* energies on HF geometries, is misguided if CHFN2 is a transi-

tion state on the MP2 PES. Nevertheless, because HF optimizations followed by

single-point correlated (MP2 or higher-level) energy calculations are much faster

(“cheaper”) than correlated optimizations, and do usually give improved relative

energies, the method is widely used for large molecules. Figure 5.21 compares

some MP2 single-point, MP2-optimized, and HF energies; the biggest MP2 single-

point/MP2 optimized difference is 6.9 kJ mol�1 (HCN reaction energy). The

limited salient experimental information on these reactions, and reaction energies

at 298 K calculated by the accurate G3(MP2) method, is also given [92]. The

relative energies in Fig. 5.21 are 0 K enthalpy differences (with raw energy

corrected for ZPE), for uniformity and simplicity, but usually experimental barriers

are given as Arrhenius activation energies Ea, which are simply related to enthalpies

of activation DH{ (Eq. 5.175), and the extent of a reaction is quantified as an

equilibrium constant which is related (Eq. 5.183) to a Gibbs free energy difference

DGreact (Section 5.5.2.1). Free energies of activation DG{ can be used to calculate

rate constants (Section 5.5.2.2d) and enthalpies of reaction DHreact are often used

(not theoretically rigorously) as an indication of the extent and even the ease of a

reaction. To give a feel for the quantitative difference in the values of the relative

0 K energies and these five other energy quantities, the calculated values are given

below for the four reactions of Fig. 5.21. The 0 K energies are ZPE-corrected MP2/

6–31G* energies relative to that of the reactant, and the other energies are at 298 K

(standard room temperature) and are also from MP2/6–31G* calculations and

employ standard ideal-gas statistical thermodynamics algorithms; energy units

are kJ mol�1.

Ethenol to ethanal

Transition state 0 K relative E ¼ 233 Product 0 K relative E ¼ �71.7

Ea ¼ DH{ þ RT ¼ DH{ þ 2.48 ¼ 234.3

DH{ ¼ 231.8

DGreact ¼ �73.1

DG{ ¼ 233.1

DHreact ¼ �70.9

HNC to HCN

Transition state 0 K relative E ¼ 140 Product 0 K relative E ¼ �87.2

Ea ¼ DH{ þ RT ¼ DH{ þ 2.48 ¼ 142.7

DH{ ¼ 140.2

DGreact ¼ �86.9

DG{ ¼ 136.1

DHreact ¼ �87.8

5.4 Post-Hartree–Fock Calculations: Electron Correlation 267



CH3NC to CH3CN

Transition state 0 K relative E ¼ 173 Product 0 K relative E ¼ �120

Ea ¼ DH{ þ RT ¼ DH{ þ 2.48 ¼ 174.0

O

107.2
107.2, sic

120.3
120.3, sic

1.082
1.090

1.504
1.503

1.188
1.223

Cs

  –153.22222 + 0.04951
= –153.17271, rel. E = 236 kJ

   –153.22564 + 0.04983
= –153.17581, rel. E = 233 kJ mol

–1

   –153.34454 + 0.05474
= –153.28980, rel. E = –71.6 kJ

   –153.34692 + 0.05507
= –153.29185, rel. E = –71.7, sic kJ mol

–1

   –93.12310 + 0.01557

   –93.12554 + 0.01520
= –93.11034, rel. E = 0 kJ mol

–1

   –93.06713 + 0.01061
= –93.05652, rel. E = 134 kJ

   –93.06747 + 0.01063
= –93.05684, rel. E = 140 kJ mol

–1

   –93.15452 + 0.01643
= –93.13809, rel. E = -80.3 kJ

   –93.15894 + 0.01540
= –93.14354, rel. E = –87.2 kJ mol

–1

   –132.22339 + 0.04191
= –132.18148, rel. E = 168 kJ

  –132.22493 + 0.04236

   –132.29008 + 0.04450

  –132.29289 + 0.04463

  –132.33371 + 0.04466
= –132.28905, rel. E = –114 kJ

  –132.33825 + 0.04445

579i

C

CC

1.386
1.406

96.1
92.2

41.8
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1.389
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2.014
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44.2

C

CC
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1.482

1.496
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59.2
59.1

60.4
60.4 C C C

D2d

1.296
1.313

   –116.12337 + 0.05303
= –116.07034, rel. E = 0 kJ mol

–1

   –116.12370 + 0.05321
= –116.07049, rel. E = 0 kJ mol

–1

   –116.11229 + 0.05246
= –116.05983, rel. E = 27.6 kJ

   –116.11330 + 0.05260
= –116.06070, rel. E = 25.7 kJ mol

–1

                       (rel. E = 70.3 kJ mol
–1

)

O
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117.7
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1.318
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1.521

2574i HF freq
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1227i
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N CH
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1.002

1.154
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CivCs
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H

N
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1.155
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N C

C
64.2
65.9 75.8

75.3

1.174
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1.896
1.858

1.742
1.753

468i
444i

   –116.23306 + 0.05430
= –116.17876, rel. E = –285 kJ

   –116.23413 + 0.05393
= –116.18020, rel. E = –288 kJ mol

–1

HF optimization

–153.31831 + 0.05578
= –153.26253, rel. E = 0 kJ mol

–1

–153.32005 + 0.05546
= –153.26459, rel. E = 0 kJ mol

–1

MP2 single point on HF geom

MP2 optimization

C

548i

(rel. E = 0 kJ mol
–1

) (rel. E = 294 kJ mol
–1

) (rel. E = –73.8 kJ mol
–1

)

(rel. E = 0 kJ mol
–1

) (rel. E = 153 kJ mol
–1

) (rel. E = –50.4 kJ mol
–1

)

(rel. E = 0 kJ mol
–1

) (rel. E = 184 kJ mol
–1

) (rel. E = –86.7 kJ mol
–1

)
= –132.29380, rel. E = –120 kJ mol

–1
= –132.18257, rel. E = 173 kJ mol

–1

= –132.24558, rel. E = 0 kJ mol
–1

= –132.24826, rel. E = 0 kJ mol
–1

= –93.10753, rel. E = 0 kJ mol
–1

(rel. E = 0 kJ mol
–1

) (rel. E = –243 kJ mol
–1

)

Fig. 5.21 Calculated geometries and energies for four reactions (most H’s are omitted, for

clarity). The purpose of the figure is the compare the single-point energies with energies from

optimization at a higher level. Geometries are HF/6–31G* and MP2/6–31G*. Energies are MP2/

6–31G*//HF/6–31G* (i.e. single-point) with HF ZPE, MP2/6–31G*//MP2//6–31G* with MP2/

6–31G* ZPE, and (only relative energies shown, in parentheses) HF/6–31G*//HF/6–31G* with

HF ZPE. Ab initio E (hartrees) þ ZPE (hartrees) ¼ corrected ab initio E; relative E (strictly

speaking, 0 K enthalpy differences): E difference in hartrees � 2626 ¼ kJ mol�1). The ZPEs

shown are the ab initio ZPEs multiplied by 0.9135 (HF) or 0.967 (MP2) [80]. For a discussion of

experimental measurements on these reactions, see [92]; available experimental activation and

reaction energies (kJ mol�1) are shown here. Calculations here are by the author
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DH{ ¼ 171.5

DGreact ¼ �119.3

DG{ ¼ 169.2

DHreact ¼ �120.0

Cyclopropylidene to allene

Transition state 0 K relative E ¼ 25.7 Product 0 K relative E ¼ �288

Ea ¼ DH{ þ RT ¼ DH{ þ 2.48 ¼ 27.8

DH{ ¼ 25.3

DGreact ¼ �285.1

DG{ ¼ 23.9

DHreact ¼ �285.9

For these reactions the 0 K activation enthalpy and the room temperature

activation enthalpies and free energies are almost the same, and so are the 0 K

reaction enthalpy and the room temperature reaction enthalpies and free energies.

This is presumably so because these are unimolecular reactions, in which the

relative translational velocities of reacting molecules are not a factor.

The HF method tends to overestimate the barriers, making unstable molecules

seem stabler than they really are. Geometries are discussed further in Section 5.5.1.
Approximate versions of the MP2 method that speed up the process with little loss

of accuracy are available in some program suites: LMP2, localized MP2, and RI-

MP2, resolution of identity MP2. LMP2 starts with a Slater determinant which has

been altered so that its MOs are localized, corresponding to our ideas of bonds and

lone pairs (Section 5.2.3.1), and permits only excitations into spatially nearby

virtual orbitals [93]. RI-MP2 approximates four-center integrals (Section 5.3.2)

by three-center ones [94].

5.4.3 The Configuration Interaction Approach to Electron
Correlation – The Coupled Cluster Method

The configuration interaction (CI) treatment of electron correlation [83, 95] is based

on the simple idea that one can improve on the HF wavefunction, and hence energy,

by adding on to the HF wavefunction terms that represent promotion of electrons

from occupied to virtual MOs. The HF term and the additional terms each represent

a particular electronic configuration, and the actual wavefunction and electronic

structure of the system can be conceptualized as the result of the interaction of these

configurations. This electron promotion, which makes it easier for electrons to

avoid one another, is as we saw (Section 5.4.2) also the physical idea behind the

Møller–Plesset method; the MP and CI methods differ in their mathematical

approaches.
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HF theory (Sections 5.2.3.1–5.2.3.6) starts with a total wavefunction or molecu-

lar wavefunction c which is a Slater determinant made of “component” wavefunc-

tions or MOs c. In Section 5.2.3.1 we approached HF theory by considering the

Slater determinant for a four-electron system:

C ¼ 1ffiffiffiffi
4!

p
c1ð1Það1Þ c1ð1Þbð1Þ c2ð1Það1Þ c2ð1Þbð1Þ
c1ð2Það2Þ c1ð2Þbð2Þ c2ð2Það2Þ c2ð2Þbð2Þ
c1ð3Það3Þ c1ð3Þbð3Þ c2ð3Það3Þ c2ð3Þbð3Þ
c1ð4Það4Þ c1ð4Þbð4Þ c2ð4Það4Þ c2ð4Þbð4Þ

��������

�������� ð5:163 ¼ 5:10Þ

To construct the HF determinant we used only occupied MOs: four electrons

require only two spatial “component” MOs, c1 and c2, and for each of these there

are two spin orbitals, created by multiplying c by one of the spin functions a or b;
the resulting four spin orbitals (c1a, c1b c2a, c2b) are used four times, once with

each electron. The determinant C, the HF wavefunction, thus consists of the four

lowest-energy spin orbitals; it is the simplest representation of the total wavefunc-

tion that is antisymmetric and satisfies the Pauli exclusion principle (Section 5.2.2),

but as we shall see it is not a complete representation of the total wavefunction.

In the Roothaan–Hall implementation of ab initio theory each “component” c is

composed of a set of basis functions (Sections 5.2.3.6 and 5.3):

ci ¼
Xm
s¼1

csifs i ¼ 1; 2; 3; . . . ;m ðcomponentMOsÞ ð5:164 ¼ 5:52Þ

Now note that there is no definite limit to how many basis functions f1, f2, . . .
can be used for our four-electron calculation; although only two spatial c’s, c1 and

c2, (i.e. four spin orbitals) are required to accommodate the four electrons of this c,
the total number of c’s can be greater. Thus for the hypothetical H–H–H–H an

STO-3G basis gives four c’s, a 3–21G basis gives eight, and a 6–31G** basis gives

20 (Section 5.3.3). The idea behind CI is that a better total wavefunction, and from

this a better energy, results if the electrons are confined not just to the four spin

orbitals c1a, c1b c2a, c2b, but are allowed to roam over all, or at least some, of the

virtual spin orbitals c3a, c3b, c4a, . . . , cmb. To permit this we could write C as a

linear combination of determinants

c ¼ c1D1 þ c2D2 þ c3D3 þ � � � þ ciDi ð5:165Þ

whereD1 is the HF determinant of Eq. (5.163¼ 5.10) andD2,D3, etc. correspond to

the promotion of electrons into virtual orbitals, e.g. we might have

Di ¼ 1ffiffiffiffi
4!

p
c1ð1Það1Þ c1ð1Þbð1Þ c3ð1Það1Þ c2ð1Þbð1Þ
c1ð2Það2Þ c1ð2Þbð2Þ c3ð2Það2Þ c2ð2Þbð2Þ
c1ð3Það3Þ c1ð3Þbð3Þ c3ð3Það3Þ c2ð3Þbð3Þ
c1ð4Það4Þ c1ð4Þbð4Þ c3ð4Það4Þ c2ð4Þbð4Þ

��������

�������� ð5:166Þ

270 5 Ab initio Calculations



Di was obtained from D1 by promoting an electron from spin orbital c2a to the

spin orbital c3a. Another possibility is

Dj ¼ 1ffiffiffiffi
4!

p
c1ð1Það1Þ c1ð1Þbð1Þ c3ð1Það1Þ c3ð1Þbð1Þ
c1ð2Það2Þ c1ð2Þbð2Þ c3ð2Það2Þ c3ð2Þbð2Þ
c1ð3Það3Þ c1ð3Þbð3Þ c3ð3Það3Þ c3ð3Þbð3Þ
c1ð4Það4Þ c1ð4Þbð4Þ c3ð4Það4Þ c3ð4Þbð4Þ

��������

�������� ð5:167Þ

Here two electrons have been promoted, from the spin orbitals c2a and c2b to

c3a and c3b. Di and Dj represent promotion into virtual orbitals of one and two

electrons, respectively, starting with the HF electronic configuration (Fig. 5.22).

Equation 5.165 is analogous to Eq. 5.164 ¼ 5.52: in Eq. 5.164 ¼ 5.52 “compo-

nent” MOs c are expanded in terms of basis functions f, and in Eq. 5.165 a total

MO C is expanded in terms of determinants, each of which represents a particular

electronic configuration. We know that the m basis functions of Eq. 5.164 ¼ 5.52

generate m component MOs c (Section 5.2.3.6.1), so the i determinants of Eq. 5.165

must generate i total wavefunctions C, and Eq. 5.165 should really be written

D1 Di Dj

The HF determinant A single-excited determinant A doubly-excited determinant

b spin MOsa spin MOs

y4

y3

y2

y1

y4

y3

y2

y1

y4

y3

y2

y1

Fig. 5.22 Configuration interaction (CI): promotion of electrons from the occupied MOs

(corresponding to the Hartree–Fock determinant) gives determinants corresponding to excited

states. A weighted sum of determinants D1, D2, . . ., Di, . . ., corresponds to a molecule in which the

electrons partly populate virtual MOs and are not strictly confined to the lowest-energy MOs, thus

giving them a better chance to avoid one another and decreasing electron–electron repulsion. The

method generates a series of wavefunctions and energies; the lowest-energy wavefunction and

energy corresponds to the ground electronic state, the others to excited states
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C1 ¼ c11D1 þ c21D2 þ c31D3 þ � � � þ ci1Di

C2 ¼ c12D1 þ c22D2 þ c32D3 þ � � � þ ci2Di

..

.

Ci ¼ c1iD1 þ c2iD2 þ c3iD3 þ � � � þ ciiDi

ð5:168Þ

i.e. (cf. Eq. 5.164 ¼ 5.52)

Ci ¼
Xi
s¼1

csiDs s ¼ 1; 2; 3; � � � ; i ðtotalMOsÞ ð5:169Þ

What is the physical meaning of all these total wavefunctions C? In order of

correspondence to increasing energy (the expectation value of the integral of a

wavefunction over a Hamiltonian operator) C1 is the wavefunction for the ground

electronic state and C2, C3 etc. represent the wavefunctions of excited electronic

states. The single-determinant HF wavefunction of Eq. 5.163¼ 5.10 (or the general

single-determinant wavefunction of Eq. 5.12) is merely an approximation to theC1

of Eqs. 5.168. Each determinant D (or possibly a linear combination of a few

determinants for an open-shell species [96]), represents an idealized (in the sense of

contributing to the real electron distribution) configuration, called a configuration
state function or configuration function, CSF. A CSF is a linear combination of

determinants for equivalent states, states which differ only by whether an a or a b
electron was promoted. In many cases one determinant suffices for the Hartree–

Fock wavefunction, and then this determinant is the CSF. The CI wavefunctions of

Eqs. 5.168 or 5.169, then, are linear combinations of CSFs. No single CSF fully
represents any particular electronic state. Each wavefunction Ci is the total wave-

function of one of the possible electronic states of the molecule, and the weighting

factors c in its expansion determine to what extent particular CSF’s (idealized

electronic states) contribute to any Ci. For C1, representing the ground electronic

state, we expect the HF determinant D1 to make the largest contribution to the

wavefunction.

If every possible idealized electronic state of the system, i.e. every possible

determinant D, were included in the expansions of Eqs. 5.168, then the wavefunc-

tions C would be full CI wavefunctions. Full CI calculations are possible only for

very small molecules, because the promotion of electrons into virtual orbitals can

generate a huge number of states unless we have only a few electrons and orbitals.

Consider for example a full CI calculation on a very small system, H–H–H–H with

the 6–31G* basis set. We have eight basis functions and four electrons, giving eight

spatial MOs and 16 spin MOs, of which the lowest four are occupied. There are two

a electrons to be promoted into six virtual a spin MOs, i.e. to be distributed among

eight a spin MOs, and likewise for the b electrons and b spin orbitals. This can

be done in [8!/(8� 2)!2!]2¼ 784 ways. The number of configuration state functions

is about half this number of determinants (since some CSFs are composed of a

few determinants). CI calculations with more than five billion (sic) CSFs have been

performed on ethyne, C2H2 [97]; rightly called benchmark calculations, such
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computational tours de force are, although of limited direct application, important

for evaluating the efficacy, by comparison, of other methods.

The simplest implementation of CI is analogous to the Roothaan–Hall imple-

mentation of the HF method: Eqs. 5.168 lead to a CI matrix, as the HF equations

(Eqs. 5.164 ¼ 5.52) lead to an HF matrix (Fock matrix; Section 5.2.3.6). Do not

confuse a matrix with a determinant (Section 4.3.3)! We saw that the Fock matrix F

can be calculated from the c’s and f’s of Eq. 5.164 ¼ 5.52 (starting with a “guess”

of the c’s), and that F (after transformation to an orthogonalized matrix F0 and
diagonalization) gives eigenvalues e and eigenvectors c, i.e. F leads to the energy

levels and the wavefunctions (cf) of the component MOs c; all this was shown in

detail in Section 5.2.3.6.5. Similarly, a CI matrix can be calculated in which the

determinants D play the role that the basis functions f play in the Fock matrix,

since theD’s in Eqs. 5.168 are analogous to the f’s in Eq. 5.164¼ 5.52. TheD’s are
composed of spin orbitals ca and cb, and the spin factors can be integrated out,

reducing the elements of the CI matrix to expressions involving the basis functions

and the coefficients of the spatial component MOs c. The CI matrix can thus be

calculated from the MOs resulting from an HF calculation. Orthogonalization and

diagonalization of the CI matrix gives the energies and the wavefunctions of the

ground state C1 and, from i determinants, i � 1 excited states. A full CI matrix

would give the energies and wavefunctions of the ground state and all the excited

states obtainable from the basis set being used. Full CI with an infinitely large basis

set would give the exact energies of all the electronic states; more realistically, full

CI with a large basis set gives good energies for the ground and many excited states.

Full CI is out of the question for any but small molecules, and the expansion of

Eq. 5.169 must usually be limited by including only the most important terms.

Which terms can be neglected depends partly on the purpose of the calculation.

For example, in calculating the ground state energy quadruply excited states are,

unexpectedly, much more important than triply and singly excited ones, but the

latter are usually included too because they affect the electron distribution of the

ground state, and in calculating excited state energies single excitations are

important. A CI calculation in which all the D’s involve only single excitations

is called CIS (CI singles); such a calculation yields the energies and wavefunc-

tions of excited states and often gives a reasonable account of electronic spectra.

Another common kind of CI calculation is CI singles and doubles (CISD, which

actually indirectly includes triply and quadruply excited states). Various mathe-

matical devices have been developed to make CI calculations recover a good

deal of the correlation energy despite the necessity of (judicious) truncation of the

CI expansion. Perhaps the currently most widely-used implementations of CI

are multiconfigurational SCF (MCSCF) and its variant complete active space
SCF (CASSCF), and the coupled-cluster (CC) and related quadratic CI (QCI)
methods.

The CI strict analogue of the iterative refinement of the coefficients that we saw

in HF calculations (Section 5.2.3.6.5) would refine just the weighting factors of the

determinants (the c’s of Eqs. (5.168), but in the MCSCF version of CI the spatial

MOs within the determinants are also optimized (by optimizing the c’s of the
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LCAO expansion, Eq. 5.164 ¼ 5.52. A widely-used version of the MCSCF method

is the CASSCF method, in which one carefully chooses the orbitals to be used in

forming the various CI determinants. These active orbitals, which constitute the

active space, are the MOs that one considers to be most important for the process

under study. Thus for a Diels–Alder reaction, the two p and two p* MOs of the

diene and the p and p* MO of the alkene (the dienophile) would be a reasonable

minimum [98] as candidates for the active space of the reactants; the six electrons in

these MOs would be the active electrons, and with the 6–31G* basis this would be a
(specifying electrons, MOs) CASSCF (6,6)/6–31G* calculation. CASSCF calcula-

tions are used to study chemical reactions and to calculate electronic spectra. They

require judgement in the proper choice of the active space and are not essentially

algorithmic like other methods [99]. An extension of the MCSCF method is multi-

reference CI (MRCI), in which the determinants (the CSFs) from an MCSCF

calculation are used to generate more determinants, by promoting electrons in

them into virtual orbitals (multireference, since the final wavefunction “refers

back” to several, not just one, determinant). Just as HF geometries can be subjected

to MPn (commonly MP2) single-point calculations to account for dynamic correla-

tion and obtain better relative energies, geometries from CASSCF calculations,

which are commonly used to take static correlation into account, can be subjected to

(usually single-point) perturbational calculations to account for dynamic correla-

tion. The most reliable and widely-used of these “post-CAS” methods is the

CASPT2N (complete active space perturbational theory second order, nondiagonal

one-particle operator, a kind of analogue of MP2) [100]. CASSCF calculations are

illustrated in some detail in Section 8.2.

The coupled cluster (CC) method is actually related to both the perturbation

(Section 5.4.2) and the CI approaches (Section 5.4.3). Like perturbation theory,

CC theory is connected to the linked cluster theorem (linked diagram theorem)

[101], which proves that MP calculations are size-consistent (see below). Like

standard CI it expresses the correlated wavefunction as a sum of the HF ground

state determinant and determinants representing the promotion of electrons from

this into virtual MOs. As with the Møller–Plesset equations, the derivation of the

CC equations is complicated. The basic idea is to express the correlated wave-

functionC as a sum of determinants by allowing a series of operators T̂1, T̂2, . . . to
act on the HF wavefunction:

C ¼ 1þ T̂ þ T̂
2

2!
þ T̂

3

3!
þ � � �

 !
CHF ¼ eT̂ CHF ð5:170Þ

where T̂ ¼ T̂1 þ T̂2 þ � � � . The operators T̂1, T̂2, . . . are excitation operators and
have the effect of promoting 1, 2, etc., respectively, electrons into virtual spin

orbitals. Depending on how many terms are actually included in the summation

for T̂, one obtains the coupled cluster doubles (CCD), coupled cluster singles and
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doubles (CCSD) or coupled cluster singles, doubles and triples (CCSDT)

method:

T̂CCD ¼ eT̂2 CHF

T̂CCSD ¼ eðT̂1þT̂2Þ CHF

T̂CCSDT ¼ eðT̂1þT̂2þT̂3Þ CHF

Instead of the very demanding CCSDT calculations one often performs CCSD

(T) (note the parentheses), in which the contribution of triple excitations is repre-

sented in an approximate way (not refined iteratively); this could be called coupled

cluster approximate (or perturbative) triples. The quadratic configuration method

(QCI) is very similar to the CC method. The most accurate implementation of this

in common use is QCISD(T) (quadratic CI singles, doubles, triples, with triple

excitations treated in an approximate, non-iterative way). The CC method, which is

usually only moderately slower than QCI (Table 5.6), is apparently better [102].

CCSD(T) calculations are, generally speaking, the current benchmark for practical

molecular calculations on molecules of up to moderate size.

Like MP methods, CI methods require reasonably large basis sets for good

results. The smallest (and perhaps most popular) basis used with these methods

is the 6–31G* basis, but where practical the 6–311G** basis, developed especially

for post-HF calculations, might be preferable (see Table 5.6). Higher-correlated

single-point calculations on MP2 geometries tend to give more reliable relative

energies than do single-point MP2 calculations on HF geometries (Section 5.4.2, in

Table 5.6 Energies and times for some calculations involving electron correlation; HF jobs are

shown for comparison

Method/basis Input Energy Time (min)

HF/6–31G* opt AM1 geom, Hessian �191.96224 7

HF/6–31G* opt + freq AM1 geom, Hessian �191.96224 14

MP2/6–31G* sp HF/6–31G* geom �192.5216 1

MP2/6–311G** sp HF/6–31G* geom �192.64662 7

MP2/6–31G* opt AM1 geom, Hessian �192.5239 11

MP2/6–31G* opt + freq AM1 geom, Hessian �192.5239 91

MP4SDTQ/6–31G* sp MP2/6–31G* geom �192.57982 33

MP4SDTQ/6–311G** sp MP2/6–31G* geom �192.71075 245

QCISD(T)/6–31G* sp MP2/6–31G* geom �192.57883 93

QCISD(T)/6–311G** sp MP2/6–31G* geom �192.70884 490

CCSD(T)/6–31G* sp MP2/6–31G* geom �192.57808 132

CCSD(T)/6–311G** sp MP2/6–31G* geom �192.70798 725

The calculations were done with Gaussian 94W [198] on C2v acetone, on a 200 MHZ PentiumPro

(a relatively slow machine). A lower absolute energy does not guarantee that a method/basis will

give a more accurate activation or reaction energy, as these latter two are energy differences, not
absolute energies. MP2¼MP2(fc), sp¼ single point. Methods are given in order of the increasing

thoroughness with which they usually treat electron correlation; CC is generally superior to QCI

[102]. Note that none of the correlation methods is variational: they can give an energy lower than

the true energy
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connection with Figs. 5.20 and 5.21). There is some limited evidence that when a
correlation method is already being used, one tends to get improved geometries by

using a bigger basis set rather than by going to a yet higher correlation level [103].

Figure 5.21 shows the results of HF and MP2 methods applied to chemical reac-

tions. The limitations and advantages of numerous such methods are shown in a

practical way in the Gaussian 94 workbook by Foresman and Frisch [1e]. Energies

and times for some correlated calculations are given in Table 5.6.

5.4.3.1 Size-Consistency

Two factors that should be mentioned in connection with post-HF calculations are

the questions of whether a method is size-consistent and whether it is variational. A
method is size-consistent if it gives the energy of a collection of n widely-separated
atoms or molecules as being n times the energy of one of them. For example, the HF

method gives the energy of two water molecules 20 Å apart (considered as a single

system or “supermolecule”) as being twice the energy of one water molecule. The

example below gives the result of HF/3–21G(*) geometry optimizations on a water

molecule, and on two water molecules at increasing distances (with the two-H2O

supermolecule the O/H internuclear distance r was held constant at 10, 15. ... Å

while all the other geometric parameters were optimized):

H
O

H

r

H
H

O

Energy of H2O ¼ �75.58596

2 � Energy or H2O ¼ �151.17192

Energy of (H2O)2 ¼ �151.17206, at r ¼ 10 Å

Energy of (H2O)2 ¼ �151.17196, at r ¼ 15 Å

Energy of (H2O)2 ¼ �151.17194, at r ¼ 20 Å

Energy of (H2O)2 ¼ �151.17193, at r ¼ 25 Å

Energy of (H2O)2 ¼ �151.17193, at r ¼ 30 Å

As the two water molecules are separated a hydrogen bond (equilibrium bond

length r ¼ ca. 2.0 Å) is broken and the energy rises, levelling off at 20–25 Å to

twice the energy of one water molecule. With the HF method we find that for any

number n of molecules M, at large separation the energy of a supermolecule (M)n
equals n times the energy of one M. The HF method is thus size-consistent. We

might say that a size-consistent method is one that scales in a way that makes sense.

Now, it is hard to see why, physically, the energy of n identical molecules so

widely-separated that they cannot affect one another should not be n times the

energy of one molecule. Any mathematical method that does not mimic this
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physical behaviour would seem to have a conceptual flaw, and in fact lack of size-

consistency also places limits on the utility of the method. For instance, in trying to

study the hydrogen-bonded water dimer we would not be able to equate the

decrease in energy (compared to twice the energy of one molecule) with stabiliza-

tion due to hydrogen bonding, and it is unclear how we could computationally turn

off hydrogen bonding and evaluate the size-consistency error separately (actually,

there is a separate problem, basis set superposition error – see below – with species

like the water dimer, but this source of error can be dealt with). It might seem that

any computational method must be size-consistent (why shouldn’t the energy of a

large-separation (M)n come out at n times that of M?). However, it is not hard to

show that CI is not size-consistent unless Eqs. 5.168 include all possible determi-

nants, i.e. unless it is full CI. Consider a CISD calculation with a very large

(“infinite”) basis set on two helium atoms which are separated by a large (“infinite”;

say ca. 20 Å) distance, and are therefore non-interacting. Note that although helium

atoms do not form covalent He2 molecules, at short distances they do interact to

form van der Waals molecules. The wavefunction for this four-electron system will

contain, besides the HF determinant, only determinants with single and double

excitations (because we are using CI SD). Lacking the triple and quadruple excita-

tions which are possible in principle for a four-electron system, it is not a full CI

calculation, and so it will not yield the exact energy of our noninteracting He–He

system, which logically must be twice that of one helium atom; instead it will yield

a higher energy. Now, a CISD calculation with an infinite basis set on a single He
atom will give the exact wavefunction, and thus the exact energy of the atom

(because only single and double promotions are possible for a two-electron system,

this is a full CI calculation). Thus in this CISD calculation, the energy of the

infinitely-separated He–He system is not, as it “should” be, twice the energy of a

single He atom. This conclusion holds for any CI calculation which does not confer

full “mobility” on all the electrons.

5.4.3.2 Variational Behavior

The other factor to be discussed in connection with post-HF calculations is whether

a particular method is variational. A method is variational (see the variation

theorem, Section 5.2.3.3) if any energy calculated from it is not less than the true

energy of the electronic state and system in question, i.e. if the calculated energy is

an upper bound to the true energy. Using a variational method, as the basis set size

is increased we get lower and lower energies, levelling off above the true energy (or

at the true energy in the unlikely case that our method treats perfectly electron

correlation, relativistic effects, and any other minor effects). Figure 5.18 shows that

the calculated energy of H2 using the HF method approaches a limit (�1.133 h)

with increasingly large basis sets. The calculated energy can be lowered by using a

correlated method and an adequate basis: full CI with the very big 6–311 þþG

(3df,3p2d) basis gives �1.17288 h, only 4.0 kJ mol�1 (small compared with the
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H–H bond energy of 435 kJ mol�1) above the accepted exact energy of �1.17439 h

(Fig. 5.18). Variational behavior is helpful because it serves as a guide to the quality

of our wavefunction – the lower the energy the better the function.

If we can’t have both, it is more important for a method to be size-consistent than

variational. Of the methods we have seen in this book:

Hartree–Fock is size-consistent and variational.

MP (MP2, MP3, MP4, etc.) is size-consistent but not variational.

Full CI, including its full MCSCF and MRCI variants, are size-consistent and

variational.

Straightforward truncated CI (CIS, CISD, etc.) is not size-consistent but is

variational.

CASSCF, a kind of truncated CI, can be size-consistent: if the active space is

chosen properly so that the MOs correspond throughout the process being exam-

ined. CASSCF is not variational.

CC and its QCI variants (QCISD, QCISD(T), QCISDT, etc.) are size-consistent

but not variational.

We could use one of the size-consistent methods to compare the energies of, say,

water and the water dimer, but only with HF or some version of CI can we be sure
that the calculated energy is an upper bound to the exact energy, i.e. that the exact

energy is really lower than the calculated (only a very high correlation level and

basis set are likely to give essentially the exact energy; see Section 5.5.2). There is

however another thing to consider in connection with the energy of water compared

to its dimer, and similar problems: basis set superposition error, below.

5.4.3.3 Basis Set Superposition Error

This is not associated with a particular method, like HF or CI, but rather is a basis

set problem. Consider what happens when we compare the energy of the hydrogen-

bonded water dimer with that of two noninteracting water molecules. Here is the

result of an MP2(fc)/6–31G* calculation; both structures were geometry-optimized,

and the energies are corrected for ZPE:

Energy of H2O ¼ �76.27547 h

2 � Energy of H2O ¼ �152.55094 h

Energy of H2O dimer ¼ �152.55658 h

(2 � Energy of H2O) � (Energy of H2O dimer)

¼ �152.55094 � (�152.55658) h ¼ 0.00564 h ¼ 14.8 kJ mol�1

The straightforward conclusion is that at the MP2(fc)6–31G* level the dimer is

stabler than two noninteracting water molecules by 14.8 kJ mol�1. If there are no

other significant intermolecular forces, then we might say the H-bond energy in the

water dimer [104] is 14.8 kJ mol�1 (that it takes this energy to break the bond – to

separate the dimer into noninteracting water molecules). Unfortunately there is a

problem with using this simple subtraction approach to compare the energy of a

weak molecular association AB with the energy of A plus the energy of B. If we do
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this we are assuming that if there were no interactions at all between A and B at the

geometry of the AB species, then the AB energy would be that of isolated A plus

that of isolated B. The problem is that when we do a calculation on the AB species

(say the dimer HOH...OH2), in this “supermolecule” the basis functions (“atomic

orbitals”) of B are available to A so A in AB has a bigger basis set than does isolated

A; likewise B has a bigger basis than isolated B. When in AB each of the two

components can borrow basis functions from the other. The error arises from

“imposing” B’s basis set upon A and vice versa, hence the name basis set superpo-

sition error. Because of BSSE the separated species A and B are not being fairly

compared with AB, and we should use for the energies of separated A and of B

lower values than we get in the absence of the borrowed functions available in the

weak complex. Accounting for BSSE will thus give a smaller energy drop on AB

formation. The value for the hydrogen bond energy (or van der Waals’ energy, or

dipole–dipole attraction energy, or whatever weak interaction is being studied) will

be less than if BSSE were ignored.

There are two ways to deal with BSSE. One is to say, as we implied above, that

we should really compare the energy of AB with that of A with the extra basis

functions provided by B, plus the energy of B with the extra basis functions

provided by A. This method of correcting the energies of A and B with extra

functions is called the counterpoise method [105], presumably because it balances

(counterpoises) functions in A and B against functions in AB. In the counterpoise

method the calculations on the components A and B of AB are done with ghost
orbitals, which are basis functions (“atomic orbitals”) not accompanied by atoms

(spirits without bodies, one might say): one specifies for A, at the positions that

would be occupied by the various atoms of B in AB, atoms of zero atomic number

bearing the same basis functions as the real atoms of B. This way there is no effect

of atomic nuclei or extra electrons on A, just the availability of B’s basis functions.

Likewise one uses ghost orbitals of A on B. A detailed description of the use of

ghost orbitals (in Gaussian 82, but still instructive) has been given by Clark [105a].

The counterpoise correction is rarely applied to anything other than weakly-bound
dimers, like hydrogen-bonded and van der Waals species: strangely, the correction

worsens calculated atomization energies (e.g. covalent AB! A þ B). and it is has

been said to be not uniquely defined for species of more than two components

[105b]; however, see calculations on a ternary complex, ethene–water–ethene

[106]. A review of criticisms and a defence of the counterpoise method is given

in [105e].

The second way to handle BSSE is to swamp it with basis functions. If each

fragment A and B is endowed with a really big basis set, then extra functions from

the other fragment won’t alter the energy much – the energy will already be near the

asymptotic limit. So if one simply carries out a calculation on A, B and AB with a

sufficiently big basis, the straightforward procedure of subtracting the energy of AB

from that of A þ B should give a stabilization energy essentially free of BSSE.

Nevertheless, the counterpoise method is the standard way of overcoming BSSE.

The best experimental estimate of the binding enthalpy of the water dimer was

said to be �13.4 kJ mol�1 (�3.2 � 0.5 kcal mol�1) [104c]; this is the enthalpy, at

5.4 Post-Hartree–Fock Calculations: Electron Correlation 279



room-temperature, 298 K, of the dimer minus twice the enthalpy of the monomer.

Here are some calculated values of this binding enthalpy, without the BSSE

correction; hartrees are converted to kJ mol�1 by multiplying by 2,626:

CBS-Q, a high-accuracy multistep method with correlation energy correction

and large basis sets (Section 5.5.2.2b)

�152:67093� �152:66546ð Þ ¼ �0:00547 ¼ �14:4 kJ;

MP2=6� 311þþG 3df; 3pdð Þ

�152:60355� �152:59780ð Þ ¼ �0:00575 ¼ �15:1 kJ;

MP2=6� 31G�

�152:35198� �152:34318ð Þ ¼ �0:00880 ¼ �23:1 kJ;

HF=6� 311þþG 3df; 3pdð Þ

�152:06881� �152:06510ð Þ ¼ �0:00371 ¼ �9:74 kJ;

HF=6� 31G�

�151:97417� �151:96798ð Þ ¼ �0:00619 ¼ �16:3 kJ

The correlation-correction/large basis CBS-Q calculation gives a binding

enthalpy (�14.4 kJ mol�1) not too far from the experimental (�13.4 kJ mol�1)

and the MP2 method with the very big MP2/6–311þþG(3df,3pd) basis gives a

somewhat worse deviation, while with MP2 and a smaller basis the binding value is

still worse. This is in accord with the above assertion that accounting for BSSE will

give a smaller energy drop than without it, i.e. that non-counterpoise calculations

give the bigger energy drop. However one should add “other things being equal”:

with the Hartree–Fock method, the smaller basis (6–31G*) actually gives a

smaller enthalpy drop (9.74 kJ mol�1) than the ca. 13 kJ mol�1 decrease expected

from a good counterpoise calculation (and the binding enthalpy is, coincidentally,

slightly better estimated than with HF/6–311þþG(3df,3pd)). Presumably the

somewhat erratic results at the HF level are due to neglect of dynamic correlation

(Section 5.4.1).

The water dimer has been examined in detail with the accent on density

functional (Chapter 7) methods [107], and the use of ab initio as well as DFT in

counterpoise calculations on it [108]. Using large basis sets and high correlation

levels to get high-quality atomization energies (which are of course not of the weak
interaction type, and which the counterpoise correction is said to worsen [105b]) is

explained in the book by Foresman and Frisch [1e]. Energy calculations are

discussed further in Section 5.5.2.
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5.5 Applications of the Ab initio Method

An extremely useful book by Hehre [39] discusses critically the merits of

various computational levels (ab initio and others) for calculating molecular prop-

erties, and contains a wealth of information, admonitory and tabular, on this general

subject.

5.5.1 Geometries

It is probably the case that the two parameters most frequently sought from ab initio

calculations (and most semiempirical and DFT calculations too) are geometries

and (Section 5.5.2) energies, although this is not to say that other quantities, like

vibrational frequencies (Section 5.5.3) and parameters arising from electron distri-

bution (Section 5.5.4) are unimportant. Molecular geometries are important: they

can reveal subtle effects of theoretical importance, and in designing new materials

and, particularly, new drugs [109] the shapes of the candidates for particular roles

should be known with reasonable accuracy – for example, docking a putative drug

into the active site of an enzyme requires that we know the shape of the drug and

the active site. While the creation of new pharmaceuticals or materials can be

realized with the aid of molecular mechanics (Chapter 3) or semiempirical methods

(Chapter 6), the increasingly facile application of ab initio techniques to large

molecules makes it likely that this method will play a more important role in

such utilitarian pursuits. Novel molecules of theoretical interest can be studied

reliably only by ab initiomethods, or possibly by density functional theory (Chapter 7),

which is closer in theoretical tenor to the ab initio, rather than semiempirical,

approach. The theory behind geometry optimizations was outlined in Section 2.4,

and some results of optimizations with different basis sets and electron correlation

methods have been given (Sections 5.3.3 and 5.4). Extensive discussions of the

virtues and shortcomings of various ab initio levels for calculating geometries can

be found in references [1e, g, 39].

Molecular geometries or structures refer to the bond lengths, bond angles, and

dihedral angles that are defined by two, three and four, respectively, atomic nuclei.
In speaking of the distance, say, between two “atoms” we really mean the internu-
clear distance, unless we are considering nonbonded interactions, when we might

also wish to examine the separation of the van der Waals surfaces. In comparing

calculated and experimental structures we must remember that calculated geome-

tries correspond to a fictional frozen-nuclei molecule, one with no zero-point

energy, while experimental geometries are averaged over the amplitudes of the

various vibrations [110]. Furthermore, different methods measure somewhat dif-

ferent things. The most widely-used experimental methods for finding geometric

parameters are X-ray diffraction, electron diffraction and microwave spectroscopy.

X-ray diffraction determines geometries in a crystal lattice, where they may be

5.5 Applications of the Ab initio Method 281



somewhat different than in the gas phase to which ab initio reactions usually apply

(although structures and energies can be calculated taking solvent effects into

account; see refs. [1a, e, f, i, k, l]) and Section 8.1. X-ray diffraction depends on

the scattering of photons by the electrons around nuclei, while electron diffraction

depends on the scattering of electrons by the nuclei, and microwave spectroscopy

measures rotational energy levels, which depend on nuclear positions. Neutron

diffraction, which is less used than these three methods, depends on scattering by

atomic nuclei.

The main differences are between X-ray diffraction (which probes nuclear

positions via electron location) on the one hand and electron diffraction, microwave

spectroscopy and neutron diffraction (which probe nuclear positions more directly),

on the other hand. The differences result from (1) the fact that X-ray diffraction

measures distances between mean nuclear positions, while the other methods

measure essentially average distances, and (2) from errors in internuclear distances

caused by the nonisotropic (uneven) electron distribution around atoms. The mean

versus average distinction is illustrated here:

Aetc. B etc.r

Suppose that nucleus A is fixed and nucleus B is vibrating in an arc as indicated.

The distance between the mean positions is r (shown), but on the average B is

further away than r.
Differences resulting from nonisotropic electron distribution are significant only

for H–X bond lengths: X-rays see electrons rather than nuclei, and the simplest

inference of a nuclear position is to place it at the center of a sphere whose surface is

defined by the electron density around it. However, since a hydrogen atom has only

one electron, for a bonded hydrogen there is relatively little electron density left

over from covalent sharing to blanket the nucleus, and so the proton, unlike other

nuclei, is not essentially at the center of an approximate sphere defined by its

surrounding electron density:

XH

actual position of 
proton

position inferred from
supposing it to be at
center of sphere defined by
electron density around proton
i.e. X-ray-inferred position

X nucleus
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Clearly, the X-ray-inferred H–X distance will be less than the actual internuclear

distance measured by electron diffraction, neutron diffraction, or microwave spec-

troscopy, methods which see nuclei rather than electrons. These and other sources

of error that can arise in experimental bond length measurements (like bond length,

bond angles and dihedral angles will obviously also depend on nuclear positions)

are detailed by Burkert and Allinger [111], who mention nine (!) kinds of internu-

clear distance r, and a comprehensive reference to the techniques of structure

determination may be found in the book edited by Domenicano and Hargittai

[112]. Despite all these problems with defining and measuring molecular geometry

(see e.g. [112b], we will adopt the position that it is meaningful to speak of

experimental geometries to within 0.01 Å or better for bond lengths, and to within

0.5� for bond angles and dihedrals [113].

Let’s briefly compare HF/3–21G(*), HF/6–31G* and MP2/6–31G* geometries.

Figure 5.23 gives bond lengths and angles calculated at these three levels and

experimental bond lengths and angles, for 20 molecules. The geometries shown

in Fig. 5.23 are analyzed in Table 5.7, and Table 5.8 provides information on

dihedral angles in eight molecules. There should be little difference between MP2

(full) geometries and the MP2(fc) geometries used here. This (admittedly limited)

survey suggests that:

HF/3–21G(*) geometries are almost as good as HF/6–31G* geometries.

MP2/6–31G* geometries are on the whole slightly but significantly better than

HF/6–31G* geometries, although individual MP2 parameters are sometimes a
bit worse.

HF/3–21G(*) and HF/6–31G* C–H bond lengths are consistently slightly (ca.

0.01–0.03 and ca. 0.01 Å, respectively) shorter than experimental, while

MP2/6–31G* C–H bond lengths are not systematically over- or underestimated.

HF/6–31G* O–H bonds are consistently slightly (ca. 0.01 Å) shorter than

experimental, while MP2/6–31G* O–H bond lengths are consistently slightly

(ca. 0.01 Å) longer. HF/3–21G(*) O–H bond lengths are not consistently over- or

underestimated.

None of the three levels consistently over- or underestimates C–C bond lengths.

HF/6–31G* C–X (X ¼ O, N, Cl, S) bond lengths tend to be underestimated slightly

(ca. 0.015 Å) while MP2/6–31G* C–X bond lengths may tend to be slightly

(ca. 0.01 Å) overestimated. HF/3–21G(*) C–X bond lengths are not consistently

over- or underestimated.

HF/6–31G* bond angles may tend to be slightly larger (ca. 1�) than experimental,

while MP2/6–31G* angles may tend to be slightly (0.7�) smaller.

HF/3–21G(*) bond angles are not consistently over- or underestimated. Dihe-

drals do not seem to be consistently over-or underestimated by any of the three

levels. The HF/3–21G(*) level breaks down completely for HOOH, where a dihe-

dral angle of 180�, far from the experimental 119.1�, is calculated; omitting

this error of 61� and the ClCH2CH2OH HOCC dihedral error of 7.6� lowers

the HF/3–21G(*) error from 8.8 to 2.5�. The experimental value of 58.4� for

the ClCH2CH2OH HOCC dihedral is suspect because of its anomalously large
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deviation from all three calculated results, and because it is among those dihedrals

which are said to be suspect or having a large or unknown error (designated X in

Harmony et al. – see reference in Table 5.8). The error for the HOOH dihedral is

represents a clear failure of the HF/3–21G(*) level and is an example of a case

which provides an argument for using the 6–31G* rather than the 3–21G(*) basis,
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Fig. 5.23 A comparison of some HF/3–21G(*), HF/6–31G* and MP2(fc)/6–31G* geometries.

Calculations are by the author and experimental geometries are from ref. [1g], Section 6.2. Note

that all CH bonds are ca. 1 Å, all other bonds range from ca. 1.2–1.8 Å, and all bond angles (except

for linear molecules) are ca. 90–120�
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although the latter is much faster and often of comparable accuracy (of course with

correlated methods like MP2 a smaller basis than 6–31G* should not be used, as

pointed out in Section 5.4). The errors in calculated dihedral angles are ca. 2–3� for
HF/6–31G*, and ca. 2� for MP2/6–31G*: omitting the ClCH2CH2OH HOCC

dihedral errors of 8.6� and 5.9� from the sample lowers the HF error from 2.9� to
2.3� and the MP2 error from 2.3 to 1.9.

The accuracy of ab initio geometries is astonishing, in view of the approxima-

tions present: the 3–21G(*) basis set is small and the 6–31G* is only moderately

large, and so these probably cannot approximate closely the true wavefunction; the

HF method does not account properly for electron correlation, and the MP2 method

is only the simplest approach to handling electron correlation; the Hamiltonian in

both the HF and the MP2 methods used here neglects relativity and spin-orbit

coupling. Yet with all these approximations the largest error (Table 5.7) in bond

Table 5.8 HF/3–21G(*), HF/6–31G* and MP2(fc)/6–31G* dihedral angles (degrees)

Molecule Dihedral angles

HF/3–21G(*) HF/6–31G* MP2/6–31G* Experiment Errors

HOOH 180.0 116.0 121.3 119.1a 61(sic)/�3.1/2.2

FOOF 84.1 84.1 85.8 87.5b �3.4/�3.4/�1.7

FCH2CH2F(FCCF) 74.9 69.4 69.0 73b 1.9/�4/�4

FCH2CH2OH

(FCCO) 58.4 61.3 60.1 64.0c �5.6/�2.7/�3.9

(HOCC) 52.7 57.8 54.1 54.6c �1.9/2.5/�0.5

ClCH2CH2OH

(ClCCO) 65.8 65.7 65.0 63.2b 2.6/2.5/1.8

(HOCC) 66.0 67.0 64.3 58.4b 7.6/8.6/5.9

ClCH2CH2F 65.9 67.0 65.9 68b �2.1/�1/�2.1

(ClCCF)

HSSH 89.8 89.8 90.4 90.6a �0.8/�0.8/�0.2

FSSF 89.4 88.7 88.9 87.9b 1.5/0.8/1.0

Deviations:

5þ, 5�/4þ,

6�/4þ, 6�
mean of 10:

8.8/2.9/ 2.3.*

*Omitting the largest error for each of the three methods (61/8.6/8.9/ for HF/3–21G(*)/

HF/6–31G*/MP2(fc)/6–31G*, respectively, the mean of nine errors for each method is 3.0/2.3/1.9.

Errors are given in the Errors column as HF/3–21G(*)/HF/6–31G*/MP2/6–31G* A minus sign

means that the calculated value is less than the experimental. The numbers of positive and negative

deviations from experiment and the average errors (arithmetic means of the absolute values of the

errors) are summarized at the bottom of the Errors column. Calculations are by the author;

references to experimental measurements are given for each measurement. Some molecules

have calculated minima at other dihedrals in addition to those given here, e.g. FCH2CH2F at

180�. Errors are presented: HF/3–21G(*)/HF/6–31G*/MP2/6–31G*.
a[1g], pp.151, 152
bM.D. Harmony, V.W. Laurie, R.L. Kuczkowski, R.H. Schwenderman, D.A. Ramsay, F.J. Lovas,

W.H. Lafferty, A.G. Makai (1979) Molecular Structures of Gas-Phase Polyatomic Molecules

Determined by Spectroscopic Methods. J. Phys. Chem. Ref. Data, 8, 619–721.
cJ. Huang and K. Hedberg (1989) J. Am. Chem. Soc., 111, 6909.
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lengths is only 0.033 Å (HF/3–21(*) level for HCHO) and the largest error in bond

angles is only 3.2� (HF/3–21(*) level for H2O). The largest error in dihedral angles

(Table 5.8), omitting the 3–21G(*) result for H2O2, is 8.6� (HF/6–31G* for

ClCH2CH2OH HOCC), but as stated above the reported experimental dihedral of

58.4� is suspect.
From Fig. 5.23 and Table 5.7, the mean error in 39 (13 þ 8 þ 9 þ 9) bond

lengths is 0.01–0.015 Å at the HF/3–21(*) and HF/6–31G* levels, and ca.

0.005–0.008 Å at the MP2/6–31G* level. The mean error in 18 bond angles is

only 1.3� and 1.0� at the HF/3–21(*) and HF/6–31G* levels, respectively, and 0.7�

at the MP2(fc)/6–31G* level. From Table 5.8 the mean dihedral angle error at the

HF/3–21(*) level for nine dihedrals (omitting the questionable ClCH2CH2OH

dihedral) is 3.0�; the mean of eight dihedral errors (omitting the ClCH2CH2OH

and the HOOH errors) is 2.5�. For the other two levels the mean of ten dihedral

angles (including the questionable ClCH2CH2OH dihedral) is 2.9� (HF/6–31G*)

and 2.3� (MP2/6–31G*). If we agree that errors in calculated bond lengths, angles

and dihedrals of up to 0.02 Å, 3� and 4� respectively correspond to fairly good

structures, then all the HF/3–21(*), HF/6–31G* and MP2/6–31G* geometries, with

the exception of the HF/3–21(*) HOOH dihedral, which is simply wrong, and the

possible exception of the HOCC dihedral of ClCH2CH2OH, are fairly good. We

should, however, bear in mind that, as with the HF/3–21(*) HOOH dihedral, there is

the possibility of an occasional nasty surprise. Interestingly, HF/3–21(*) geometries

are, for some series of compounds, somewhat better than MP2/6–31G* ones. For

example, the RMS errors in geometry for the series H2, CH, NH, OH, HF, CN, N2,

H2O, HCN, CH3, and CH4 using UHF/3–21G(*), MP2/6–31G*, and MP2/6–31G{

(a modified basis used in CBS calculations – Section 5.5.2.2b) are 0.012 Å, 0.016 Å

and 0.015 Å, respectively [113].

The calculations summarized in Tables 5.7 and 5.8 are in reasonable accord

with conclusions based on information available ca. 1985 and given by Hehre et al.

[114]: HF/6–31G* parameters for A–H, A/B single and A/B multiple bonds are

usually accurate to 0.01, 0.03 and 0.02 Å, respectively, bond angles to ca. 2� and
dihedral angles to ca. 3�, with HF/3–21G(*) values being not quite as good. MP2

bond lengths appear to be somewhat better, and bond angles are usually accurate

to ca. 1�, and dihedral angles to ca. 2�. These conclusions from Hehre et al. hold for

molecules composed of first-row elements (Li to F) and hydrogen; for elements

beyond the first row larger errors are not uncommon.

The main advantage of MP2/6–31G* optimizations over HF/3–21(*) or HF/

6–31G* ones is not that the geometries are much better, but rather that for a

stationary point, MP2 optimizations followed by frequency calculations are more

likely to give the correct curvature of the potential energy surface (Chapter 2) for

the species than are HF optimizations/frequencies. In other words, the correlated

calculation tells us more reliably whether the species is a relative minimum or

merely a transition state (or even a higher-order saddle point; see Chapter 2). Thus

fluorodiazomethane [91] and several oxirenes [53] are (apparently correctly) pre-

dicted by MP2 optimizations to be merely transition states, while HF optimizations
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indicate them to be minima. The interesting hexaazabenzene (“benzene-N6”) is

predicted to be a minimum at the HF/6–31G* level, but a hilltop with two

imaginary frequencies at the MP2/6–31G* level [115]. For transition states, in

contrast to ground states, we don’t have experimental geometries, but correlation

effects can certainly be important for their energies (Section 5.5.2.2b), which can be
experimentally probed by kinetics, and MP2/6–31G* geometries for transition

states are probably significantly better in general than HF/6–31G* ones.

Suppose we want something better than “fairly good” structures? Experienced

workers in computational chemistry have said [116]

When we speak of “accurate” geometries, we generally refer to bond lengths that are within

about 0.01–0.02 Å of experiment and bond and dihedral angles that are within about 1–2�

of the experimentally-measured value (with the lower end of both ranges being more

desirable).

Even by these somewhat exacting criteria, MP2/6–31G* and even HF/6–31G*

calculations are not, in the cases studied here, far wanting; the worst deviations

from experimental values seem to be for dihedral angles, and these may be the least

reliable experimentally. However, since some larger deviations from experiment

are seen in our sample, it must be conceded that HF/6–31G* and even MP2/6–31G*

calculations cannot be relied on to provide “accurate” (sometimes called high-

quality) geometries. Furthermore, there are some molecules that are particularly

recalcitrant to accurate calculation of geometry (and sometimes other characteris-

tics); two notorious examples are FOOF (dioxygen difluoride) and ozone (these

have been described as “pathological” [117]). Here are the HF/6–31G*, MP2

(fc)/6–31G* and experimental [118] geometries:

O O

F F

1.367
1.495

(1.575)
105.8
106.9

(109.5)

1.311
1.293

(1.217)

HF/6-31G*

MP2 /6-31G*
Experiment

O

O

O

1.204
1.300

(1.272)119.0
116.3

(116.8)
F-O-O-F dihedral

84.1
85.8

(87.5)

The errors (calculated – experimental) in the calculated geometries are

(HF/6–31G*/MP2/6–31G*):

FOOF FO length �0.208/�0.080 Å

OO length 0.094/0.076 Å

FOO angle �3.7�/�2.6�

FOOF dihedral �3.4�/�1.7�

O3 OO length �0.068/0.028 Å

OOO angle 2.2/�0.5
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These calculated geometries do not satisfy even our “fairly good” criterion

(errors in calculated bond lengths, angles and dihedrals of up to 0.02 Å, 3� and

4� respectively) and are well short of being “accurate” (bond lengths about

0.01–0.02 Å, bond and dihedral angles about 1–2�); the bond lengths are particu-

larly bad. Using the HF method and the 6–311 þ þG** basis (for FOOF, 88 vs 60

basis functions; for O3, 66 vs 45 basis functions) we get for calculated geometries

(errors) using (HF/6–311 þ þG**):

FOOF FO length 1.353 Å (�0.222)

OO length 1.300 (0.083) Å

FOO angle 106.5� (�3.0)

FOOF dihedral 85.3� (�2.2)

O3 OO length 1.194� Å (�0.078)

OOO angle 119.4� (2.6)

Thus with a much larger basis, but still using the Hartree–Fock method, the

FOOF geometry is about the same and the O3 geometry has become even worse

than at the HF/6–31G* level!

In a 2001 paper FOOF was called “the unsolved problem” of structure predic-

tion, and a really good structure was obtained only by DFT with the aid of a

somewhat contrived procedure [119]. How has the situation changed since then?

Here are the best results for FOOF from two 2007 studies [120, 121] of that and

other small O/F molecules:

O O

F F

1.209
1.211

(1.217) 1.628
1.579

(1.575)109.2
111.0

(109.5)

OOOF dihedral:
88.7
88.8

(87.5)

CCSD(T)/aug-cc-pVDZ [118]
G96PW91/D95(3df) [119]
Experiment

The errors in the CCSD(T) (their DFT results were quite similar) [120] and the

G96PW91 (a DFT method) [121] calculations are:

FO length 0.053 [120]/0.004 Å [121]

OO length �0.008 [120]/�0.006 Å [121]

FOO angle �0.3� [120]/1.5� [121]
FOOF dihedral 0.2� [120]/1.3� [121]

Here the only problematic parameter is the CCSD(T) FO bond length: the DFT

error was �0.051 Å, still a bit outside our imposed 0.01–0.02 Å error limits. The

DFT geometry is fully high-quality.
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Ozone is an easier target than FOOF for a high-quality geometry. Some results

for this molecule are [122]:

O

O

O

1.276
1.277

(1.272)

117.1
118.2

(116.8)

CCSD(T)/aug-cc-pVTZ

BPW91)/aug-cc-pVTZ

Experiment

The errors in the CCSD(T) and BPW91 (a DFT method) calculations easily fall

within our limits:

OO length 0.004 (CCSD(T)/0.005 Å (BPW91)

OOO angle 0.3� (CCSD(T))/1.4� (BPW91)

Other coupled-cluster calculations [123] and CASPT2 [124] gave similar results.

The problem with ozone probably arises at least partly from the fact that this

molecule has singlet diradical character (Section 8.2): it is approximately a species

in which two electrons, although having opposite spin, are not paired in the same

orbital [125]:

O

OO

The Hartree–Fock method works best with normal closed-shell molecules,

because it uses a single Slater determinant, but ozone has open-shell diradical

character: it is, or at least resembles, a species with two half-filled orbitals, one

with a single a electron and the other with a single b electron. Correlated methods,

which go beyond the HF method by including in the wavefunction determinants

corresponding to states in which electrons have been promoted (“excited”) into

virtual orbitals, handle molecules like ozone better, but can still give problems if we

demand highly accurate geometries (or energies). For some techniques for handling

molecules like this see Foresman and Frisch [118].

The cause of the problems with FOOF are harder to explain, but fluorine is

known to be a somewhat troublesome element [126], although some fluoro organics

apparently give good geometries at moderate computational levels [127].

5.5.2 Energies

5.5.2.1a Energies: Preamble

We used the concept of energy in Chapters 2 (potential energy surfaces), 3

(molecular mechanics energies), and 4 (molecular orbital energy levels from simple
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and extended H€uckel calculations). We saw that all these energies were relative to
something: that of a species on a potential energy surface (PES) can be taken as

being relative to the energy of the global minimum, the MM energy is relative to

that of some hypothetical unstrained isomer, and the energy of a molecular orbital

is, with qualifications, the energy of an electron in it compared to the energy of the

electron infinitely distant from the orbital, at rest. Before considering the ab initio

calculation of energy, it is worthwhile to look briefly further into the meaning of

“energy”, because this entity manifests itself in several ways and in favorable cases

all of them can be calculated by ab initio methods. We will take cognisance of seven

kinds of energy: potential, kinetic, internal, “heat energy” or enthalpy, Gibbs free

energy, Helmholtz free energy, and Arrhenius activation energy. The reader may

wonder why we need so many kinds of energy (we could add even more, like

electrical energy and nuclear energy). The answer is, partly because in different

situations energy appears in different guises, and partly because although some

kinds are really composites of others with thermodynamic concepts like tempera-

ture and entropy (thus the Gibbs free energy is enthalpy minus the product of

temperature and entropy), it is neater to have one word and symbol for the

composite. I present the seven kinds of energy in the approximate order in which

some build conceptually on others. Five are of considerable importance in chemis-

try: potential energy, internal energy, enthalpy, Gibbs free energy, and, in experi-

mental studies of reaction rates, Arrhenius activation energy. In this short

preliminary to the calculation of energies, we consider the subject from the view-

point of molecular chemistry, rather than that of classical thermodynamics, which,

albeit elegant, knows nothing of atoms and molecules. The connection between

the two stances is made in the subject of statistical mechanics. Besides the many

standard texts on these subjects, one may recommend Atkin’s graceful, compact,

and masterful book on the four laws of thermodynamics [128]. We can safely

ignore here relativity theory, which requires conservation of “mass–energy”.

1. Potential energy is the work obtainable from a body that “temporarily” resists a

restoring force, so that if the body is allowed to submit to the force it will do

work. We use here Newton’s concept of a force: something that acting on a body

produces an acceleration. An example is a stone at the edge of a cliff, temporar-

ily resisting the gravitational force; a kick submits it to gravity and it will gain

kinetic energy, which could be converted into useful work by a machine. In

chemistry the relevant potential energy is the energy of a molecule on a

Born–Oppenheimer surface (a potential energy surface, Chapter 2). In this,

granted, more abstract, situation, a molecule not at the global minimum resists

the electromagnetic force – chemistry’s only force – that will eventually

(delayed by kinetic barriers) pull it downhill to that minimum. In this process

energy is released as heat or light. On the usual Born–Oppenheimer surface,

which includes simple two-dimensional potential energy curves such as plots of

energy against torsional (dihedral) angle, as well as hypersurfaces, the energy at

various points can be taken as being relative to the global minimum. The units

of this energy could be from molecular mechanics or some kind of quantum
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mechanical (ab initio, semiempirical, density functional) calculation. In any

case, since vibrational calculations are meaningful only at stationary points,

the surface usually excludes ZPE and thermal contributions to energy, and is a

hypothetical 0 K energy surface, corresponding at least roughly to the electronic

energy plus internuclear repulsion, cf. Eq. 5.94, but with the ZPE term excluded

and the E term obtained from any quantum mechanical method or from a

molecular mechanics surrogate of one by virtue of parameterization. Although

we may not explicitly consider potential energy here, electronic energy is partly,

and internuclear repulsion wholly, this kind of energy.

Symbol: potential energy on a Born–Oppenheimer surface (i.e. in a PES dia-

gram) is denoted in Chapter 2 by E. Other common designations are V (origin

obscure) and PE, and sometimes U, but this latter is best reserved for internal

energy. Equation: potential energy is the integral over the relevant distance of

the force, itself usually a function of distance.

2. Kinetic energy (translational energy) is the energy of motion, and is taken into

account for the motion of a molecule as a whole by a term (3/2)RT, (1/2)RT for

each degree of freedom of motion; R is the ideal gas constant and T the tempera-

ture. Part of the electronic energy of a molecule is its electronic kinetic energy.

Symbol: kinetic energy is denoted by KE or T (origin obscure), although this

could occasionally be confused with temperature. Equation: in classical physics

kinetic energy is (1/2)mv2. The electronic kinetic energy of a molecule can be

calculated from the Schr€odinger equation as explained in Section 5.2.

3. The internal energy of a molecule is the energy due to its electronic kinetic and

potential energy, its internuclear potential energy and nuclear ZPE, its rotational

energy, and its translational motion. Changes in internal energy are usually

largely changes in bond energies, arising from changes in electronic kinetic

and potential energies.

Symbol: internal energy is denoted by U (occasionally E), because in the

alphabet U lies close to other thermodynamic quantities: Q (heat), R (the gas

constant), S (entropy), T (temperature), V (volume) andW (work), andUwas not

yet taken (ca. 1860). Clausius introduces the symbol by simply saying “... U

denotes an arbitrary function of v and t” [129]. Equation: for a molecule we can

write for the internal energy at T K (cf. Eq. 5.94):

UT ¼ Etotal
0K ¼ Etotal þ Evr þ 3

2
RT �ð5:171Þ

where Etotal is the electronic energy þ internuclear repulsion, not necessarily at

the Hartree–Fock level, Evr is the total vibrational and rotational energy, and

(3/2)RT is the translational energy, (1/2)RT for each translational degree of

freedom. Internal rotations tend to be regarded as low-energy vibrations,

although more realistic treatments are possible [130]. Rotation of the molecule

as a whole, and population of upper vibrational levels, is taken into account in

calculating by statistical mechanics the thermal contribution to the energy at

temperatures above 0 K [130]. Upper electronic levels are usually scarcely

significantly populated at “chemically accessible” temperatures. R, the gas
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constant, is 8.314 � 10�3 kJ K�1 mol�1 and at 298 K, RT ¼ 2.478 kJ mol�1 and

(3/2)RT is 3.717 kJ mol�1. Thus the internal energy of the proton at 298 K, with

no electronic, vibrational or rotational energy, is (3/2)RT [131]. Both Etotal and

ZPE are often readily calculated quantum mechanically. Differences in U at 0 K

(where there is no translational term) take into account the electronic energy and

the ZPE and are the simplest realistic measure of molecular energy differences

like reaction energies and activation energies, although differences of just Etotal

(no ZPE) provide a rough measure of these quantities (Section 2.5).

4. Enthalpy is the “heat content” of a system. This term is not very accurate, for as

Atkins points out [128] heat is not a thing, but rather a process, the transfer of

energy because of a difference of temperature (or accompanied by a difference

of temperature in the case of phase transition enthalpies). Nevertheless “amount

of heat” is a useful shorthand for amount of energy transferred because of a

temperature difference. The enthalpy change is the amount of heat released or

absorbed when a reaction occurs at constant pressure. The standard conditions

are 298 K and 101.3 kPa (1 atmosphere). The enthalpy of formation, or heat of

formation, of a substance is a useful quantity (Section 5.5.2.2c). Like Gibbs free

energies of formation, these have been widely tabulated. These enable the heat

evolved or absorbed in reactions (reaction enthalpies) to be calculated by simply

taking the enthalpy difference of the products and reactants. These energy

quantities refer, strictly, to changes at constant volume, although the difference

compared to constant volume is usually less than 1% [128]. Reaction enthalpies

can also be calculated from the change in bond energies in a reaction, but this is

quite approximate since bond energies are not fully transferable, but vary some-

what from molecule to molecule and can even differ from one, say C–H, bond to

another in the same molecule. Enthalpies of formation can be accurately calcu-

lated with the aid of quantum mechanical methods if the molecule is not too big

(Section 5.5.2.2c). The enthalpy change of a reaction is often taken as measure of

its thermodynamic feasibility, and often, tacitly, as an indication of its kinetic

ease, but the rigorous criteria for these are really the Gibbs free energies (below)

of reaction and activation.

Symbol: enthalpy is denoted by H: the word comes (H. Kammerlingh-Onnes

1909) from the Greek thalpos, heat, or enthalpos, internal heat. Denoting it by H
was suggested by H. W. Porter in 1922, because the symbol H is a letter in the

Roman alphabet and also the capital Greek initial letter eta (H or Z) of enthalpos
(�nyalpoz) [132]. Equation: the “energy” (internal energy) of an atom or mole-

cule at a temperature T can be converted to its enthalpy by adding RT, since H ¼
U þ PV and PV ¼ RT, on a molar basis, assuming ideal gas behavior. Thus

H ¼ internal energyþ RT �ð5:172Þ

¼ internal energy þ 2.478 kJ mol�1 at 298 K. The enthalpy of the proton at

298 K (cf. its internal energy, above) is (3/2)RT þ RT ¼ (5/2)RT ¼ 6.195 kJ

mol�1 [131].

5. Gibbs free energy is the work obtainable from a system at a constant tempera-

ture and pressure. Unlike specified otherwise, in chemistry we may take “free
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energy” to mean Gibbs free energy. A free energy change can be thought of as

an enthalpy change adjusted by a temperature-weighted entropy change:

DG ¼ DH � TDS �ð5:173Þ

The TDS term is often a minor contributor to DG at room temperature or

below, but will dominate at sufficiently high temperatures. If the entropy change

is positive (increased freedom of motion), this tends to make the free energy

change favorable (negative). Entropy can also be viewed in terms of dispersal of

energy. A change in free energy is the best indicator of the ease, as measured by

rate, or the extent, as measured by completeness, of a chemical reaction. Rate

and completeness are quantitated by the rate constant, and the equilibrium

constant, which can be calculated, respectively, from the free energy of activa-

tion and the free energy of reaction. These two energy differences (transition

state energy minus reactants energy, and products energy minus reactants

energy) can often be calculated quantum-mechanically fairly readily for mole-

cules, and the results can be used to calculate activation and reaction energy,

respectively. Free energies of formation have been tabulated and the values can

be used to calculate free energies of reaction and thus equilibrium constants.

Such tables should be better for such purposes than enthalpy tables, but in fact

are less widely used. This is probably because free energy tends to be harder to

measure than enthalpy, and could not be calculated accurately until fairly

recently, largely because of the problem of calculating accurate vibrational

frequencies. Free energies are readily obtained from experiment when equilib-

rium constants (Eq. 5.183) can be accurately measured, and enthalpies can

usually be obtained from combustion measurements.

Symbol: Gibbs free energy is denoted eponymously by G, after Josiah Willard

Gibbs, ca. 1873, who single-handedly created much of chemical thermodynam-

ics. In the older literature F was sometimes used. Equation: since G ¼ H � TS,
the free energy of a molecule can be calculated from its enthalpy (above) and

entropy at temperature T; the entropy is calculated by standard statistical

mechanics methods [130].

6. Helmholtz free energy (or Helmholtz energy) is the work obtainable from a

system at a constant temperature and volume. It is much less used in chemistry

than Gibbs free energy, because most chemical reactions occur at constant

pressure, not constant volume. However, Helmholtz free energy is relevant to

reactions with rapid pressure changes (explosions).

Symbol: Helmholtz free energy is denoted in chemistry by A (German Arbeit,
work), in physics by F, free energy. Equation: A ¼ U � TS, where U ¼ internal

energy, T ¼ Temperature, S ¼ entropy.

7. Arrhenius activation energy is the energy term in an empirical equation that

shows the dependence of the rate constant on temperature (J. H. van’t Hoff,

1884, interpreted by S. Arrhenius, 1889):

k ¼ Ae�Ea=RT �ð5:174Þ
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The preexponential factor is tied to the probability of some favorable situation

like a propitious collision and involves entropy, while the exponential term

reflects the energy barrier for the reaction. A and Ea are usually approximately

constant over the limited range of laboratory interest. The modified version of

Eyring, Polanyi and Evans (the “Eyring equation”) lends itself directly to the

theoretical calculation of rate constants: k ¼ kBT/h exp(�DG{/RT), where kB is

Boltzmann’s constant, h is Planck’s constant, and DG{ is the free energy of

activation. High-level calculation of rate constants is best done with a

specialized program like, e.g., Polyrate [133] for unimolecular reactions, using

RRKM (Rice–Ramsperger–Kassel–Marcus) theory [134].

Symbol: Ea. Equation: the activation energy calculated as the transition state

enthalpy minus the reactant enthalpy, DH{ or E{, is related to the Arrhenius

activation energy for a gas-phase unimolecular reaction by [135]

Ea ¼ DHz þ RT ¼ DHz þ 2:48 kJmol�1 �ð5:175Þ

at room temperature (298.15 K).

A nice mnemonic for the relationships among various forms of energy is [136]:

U A

H G

–TS

+ PV
U – TS = A

U + PV = H

H – TS = G
A + PV = G

ie.

5.5.2.1b Energies: Preliminaries

Along with geometries (Section 5.5.1), the molecular features most frequently

sought from ab initio calculations are probably energies. An ab initio calculation

gives an energy quantity that represents the energy of the molecule (or atom)

relative to its constituent electrons and nuclei at rest at infinite separation; this

separated state is taken as the zero of energy. The ab initio energy of a species is

thus the negative of the energy needed to dissociate it completely, to infinite

separation, into the electrons and nuclei, with no kinetic energy left over, or the

negative of the energy given out when the electrons and nuclei “fall together” from

rest at infinite separation to form the species. This was pointed out for Hartree–Fock

energies (Section 5.2.3.6.4, in connection with Eq. 5.93), and the infinite-separation

reference point also holds for correlated ab initio energies. By ab initio energy,

then, we normally mean the purely electronic energy (the kinetic and potential

296 5 Ab initio Calculations



energy of the electrons, whether calculated by the Hartree–Fock or by a correlation

method) plus the internuclear repulsion (cf. Eq. 5.93):

Ab initio energy (Hartree–Fock)

Etotal
HF ¼ EHF þ VNN �ð5:176Þ

Ab initio energy (correlated method)

Etotal
correl ¼ Ecorrel þ VNN �ð5:177Þ

If the ab initio energy has been corrected by adding the zero-point energy (cf.

Eq. 5.94), giving the total internal energy at 0 K, this should be pointed out: ab initio

energy, corrected for ZPE:

Etotal
0K ¼ Etotal þ ZPE �ð5:178Þ

As has been pointed out, the ZPE-corrected ab initio energy is preferred over the

uncorrected for calculating relative energies. At the end of a calculation Etotal (HF

or correlated) is given; if we wish to include ZPE and get Etotal
0K a frequency

calculation is necessary. The format in which these quantities appear at the end of

a calculation depends on the program.

What we actually want is rarely these “absolute” ab initio energies, because

chemistry really deals with relative energies; all energies are relative to something

of course, but in this context it is useful to restrict the term to the energy difference

between reactants and products or between reactants and transition states (the

energy difference between isomers is a special case reactants/products). We are

thus interested in the reaction energy (product energy minus reactant energy) and

what we might call the activation energy (transition state energy minus reactant

energy; note however – see below and Eq. 5.175–that above 0 K the well-known

Arrhenius activation energy is not exactly simply the difference in calculated

energies of transition state and reactants).

Figure 5.24 shows what Coulson meant when he said that calculating the relative

stabilities of isomers by subtracting absolute energies is like finding the weight of the

captain by weighing the ship with and without him [137]. The absolute ab initio

energies of the two isomers shown are each about 407,000 kJmol�1, and the difference

in their energies is only about 9 kJmol�1, which is one part in 45,000, and these figures

are quite typical. If we conservatively assign a captain a weight of 100 kg, the analogy

corresponds to a small shipweighing 4,500,000 kg or about 5,000 t.Yet the astonishing

thing is that modern ab initio calculations can, as we shall see, accurately and reliably

predict relative energies. Comprehensive accounts of energy calculations by ab initio

and other methods are given by Irikura and Frurip [138] and by Cramer [139].

Reaction energies belong to the realm of thermodynamics, and activation ener-

gies to that of kinetics: the energy difference between the products and the reactants
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(“difference” is defined here as product energy minus reactant energy) governs

the extent to which a reaction has progressed at equilibrium, i.e. the equili-

brium constant, and the energy difference between the transition state and the

reactants (transition state energy minus reactant energy) governs (partially; see

Section 5.5.2.2d) the rate of the reaction, i.e. the rate constant (Fig. 5.25). The term

“energy” in chemistry usually means potential energy (often denoted by E),
enthalpy H, or Gibbs free energy, G. The potential energy on a computed

Born–Oppenheimer surface (the usual “potential energy surface”; Section 2.3)

represents 0 K enthalpy differences without ZPE. Enthalpy differences, DH, and
free energy differences, DG, are related through the temperature-weighted

entropy difference:

DG ¼ DH � TDS �ð5:179 ¼ 5:173Þ

More detailed discussion of enthalpy, free energy, and entropy are given in

books on thermodynamics, and the relationships between these quantities and

processes at the molecular level are explained in books on statistical mechanics

[140]; general discussions of these topics are given in physical chemistry texts.

To get an intuitive feel for DH we can regard it as essentially a measure of the

strengths of the bonds in the products or the transition state, compared to the

strengths of the bonds in the reactants [141]:

0

4C6+, 8 H+, and (4 × 6) + (8 × 1) = 32 electrons, 
infinitely separated and at rest

H H

Me Me
ZPE =
304.1 kJ mol–1

0.11582 h

ZPE =
304.7 kJ mol–1

0.11604 h

 –155.24291 h –155.24637 h

–155.12709 h –155.13033 h

MeH

HMe

uncorrected ab initio E

ZPE-corrected ab initio E ΔE0K
total = –155.12709 – (–155.13033) h

= 0.00324 h = 8.51 kJ mol–1

~ ~
407363.74 kJ mol–1 407372.25 kJ mol–1

Fig. 5.24 Absolute and relative ab initio energies, with and without ZPE correction. These are

from HF/3–21G(*) calculations. The calculated reaction energy for the (E) to (Z) (cis to trans)
isomerization is �8.51 kJ mol�1
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DH ¼ Hðpdts=TSÞ � Hðreactants)
’ S bond energies(reactants)� S bond energiesðpdts=TSÞ �ð5:180Þ

(pdt or TS depending on whether we are considering reaction enthalpy or activation

enthalpy; we can ignore bonds that are neither broken nor made). Thus an exother-

mic process, which from the definition has DH < 0, has stronger bonds in the

products than in the reactants; in some sense the bonds lose heat energy, becoming

tighter and stabler. The bond energy tables given in most organic chemistry text-

books can be used to calculate rough values of DH(reaction), and accurate reaction
enthalpies can sometimes be obtained from the more sophisticated use of bond

energies and similar quantities [142]. To see an application of simple bond energy

tables [143], consider the keto/enol reaction:

Using Eq. 5.180:

CH3 C

O

H

H2C C

O

H

H

reactants

products

transition state

activation energy (> 0) ===> krate

reaction energy 
(< 0 in his case) ===> Keq 

energy

geometry

Fig. 5.25 The reaction energy, the energy difference of products and reactants, determines the

extent of a reaction, i.e. its equilibrium constant. The activation energy (the simple ab initio energy

difference shown here is not exactly the conventional Arrhenius activation energy), the energy

difference of transition state and reactants, partially determines the rate constant. Unfortunately,

“energy” is ambiguous, since chemists use the terms potential energy, enthalpy (heat energy), and

free energy: see Section 5.5.2.1
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DH ¼ ’ S bond energiesðreactantsÞ � S bond energies ðpdts=TSÞ
¼ ð4C� Hþ C� Cþ C ¼ OÞ � ð3C� Hþ C ¼ Cþ C� Oþ O� HÞ
¼ ð4� 414þ 347þ 749Þ � ð3� 414þ 611þ 360þ 464Þ kJmol�1

¼ 2752� 2677 kJmol�1 ¼ 75 kJmol�1

The ethanal to ethenol (acetaldehyde to vinyl alcohol) reaction is predicted

to be endothermic by 75 kJ mol�1, i.e. neglecting entropy the enol is predicted to

lie 75 kJ mol�1 above the aldehyde. Because these are only average bond energies,

the apparently remarkable agreement with the ab initio calculations in Fig. 5.21

(71.6 kJ mol�1; the connection between DH from calculations like this and DE from

ab initio calculations is discussed below) must be regarded as a coincidence. In any

case, the correct value is about 40 kJ mol�1 [92]. Crude bond energy calculations

like this can be expected to be in error by 50 or more kJ mol�1. More accurate bond

energy calculations can be done [142] using bond energies that refer to very specific

structural environments; for example, a C–H bond on a primary sp3 carbon that is in

turn attached to another sp3 carbon.

For a reaction taking place at 0 K the enthalpy change is simply the internal

energy change at 0 K:

DHð0KÞ ¼ DEtotal
0K ð5:181Þ

Note that although the calculation of Etotal
0K values to get DEtotal

0K demands fre-

quency jobs, which are relatively time-consuming (“expensive”), accurate relative

energy differences do require this, and we will regard the ZPE-uncorrected ab initio

energy difference DEtotal, the difference in electronic energy þ internuclear repul-

sion, as only an approximation to DEtotal
0K (see Section 5.2.3.6.4 and Chapter 2,

Fig. 2.20). At temperatures other than 0 K, DH is DEtotal
0K plus changes in the

increases in translational, rotational, vibrational and electronic energies on going

from 0 K to the higher temperature T, plus the work done by the system in effecting

a pressure or volume change:

DHðTÞ ¼ DEtotal
0K þ DEtrans þ DErot þ DEvib þ DEel þ DðPVÞ ð5:182Þ

One frequently chooses the standard temperature of 298.15 K, about room

temperature. From 0 K to room temperature the increase in electronic energy is

negligible and the increase in vibrational energy is small.

The entropy difference DS for a process is a measure of the disorder of the

products or the transition state, compared to the disorder of the reactants:

DS ¼ Sðpdts=TSÞ � SðreactantsÞ
¼ disorder ðpdts=TSÞ � disorder ðreactantsÞ

(pdt or TS depending on whether we are considering reaction entropy or activation

entropy). Entropy is a sophisticated concept, and explaining it in terms of disorder
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has been strongly criticized [144], but in the author’s opinion this viewpoint works

quite well used pictorially at the molecular level and is more useful in interpreting

reactions than is the counterview of dispersal of energy. Suffice it to say that a

spontaneously disordered system is more probable than an ordered one, and the

entropy of a system is proportional to the logarithm of its probability [145].

Intuitively, we see that DS > 0 for a process in which the product or the transition

state is less symmetrical or has more freedom of motion than the reactants is less

ordered. For example, ring-opening reactions, since they relieve constraints on

intramolecular motion, should be accompanied by an increase in entropy. Note

that an increase in entropy favors a process: it increases a rate constant (affects

activation entropy) or an equilibrium constant (affects reaction entropy), while an

increase in enthalpy disfavors a process.
Details on the calculation of entropies is given in [130] and the book by Hehre,

Radom, Schleyer and Pople, who also tabulate the errors in calculated entropy for

small molecules composed of elements from H to F [146]. Errors in calculated

entropies at 300 K are 1.7, 1.3 and 0.8 J mol�1 K�1 (0.4, 0.3 and 0.2 cal mol�1 K�1)

at 300 K, for frequency calculations at the HF/3–21G(*), 6–31G* and MP2/6–31G*

levels, respectively. From Eq. 5.175 this corresponds to an error in free energy at

300 K of 300 � (0.8 þ 0.8) J mol�1 ¼ 480 J mol�1 or 0.5 kJ mol�1, for the MP2/

6–31G* calculations. This is much smaller than the enthalpy error of ca. 10 kJ

mol�1 which can be reliably obtained with practical high-accuracy methods (see

below) and shows that in current ab initio work errors in free energies can be

expected to come mainly from the enthalpy. Many programs, e.g. Gaussian and

Spartan, automatically calculate the correction terms to be added to DEtotal
0K in

Eq. 5.182 at the end of a frequency calculation, and print out the 298.15 K enthalpy

or the correction to the 0 K enthalpy. Reaction entropies are needed to calculate free

energies of reaction (from Eq. 5.179 ¼ 5.173), from which equilibrium constants

[147] can be calculated:

DGreact ¼ �RT lnKeq �ð5:183Þ

Where several species are in equilibrium, the ratios are proportional to their

Boltzmann exponential factors. For example, if the relative free energies G of A,

B and C are 0, 5.0 and 20.0 kJ mol�1 (here G for species A has been set to zero

and B and C lie 5.0 and 20.0 kJ mol�1 higher) then

[A] : [B] : [C] ¼ exp(�0/RT) : exp(�5.0/RT) : exp(�20.0/RT);

At room temperature RT ¼ 2.48 kJ mol�1 and so at this temperature

[A] : [B] : [C] ¼ 1 : 0.133 : 0.000315 ¼ 3175 : 422 : 1

Activation entropies are useful because they can give information on the struc-

ture of a transition state (as stated above, a more confined transition state is

signalled by a negative, unfavorable, activation entropy), but the ab initio calcula-

tion of rate constants [148] from activation free energies is not as straightforward as
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is the calculation of equilibrium constants from reaction free energies. The crudest

way to calculate a rate constant is to use the Arrhenius equation [140, 149]

k ¼ Ae�Ea=RT �ð5:184 ¼ 5:174Þ

and to simply approximate the preexponential factor A by that known for a similar

reaction (a typical value for unimolecular reactions is 1012 –1015 [150])and to

approximate Ea by DEtotal
0K (Eq. 5.181 and discussion). Theoretically more satisfying

is to represent Ea by DH{ þ RT, using the temperature in question, in accordance

with

Ea ¼ DHz þ RT �ð5:185 ¼ 5:175Þ

for a gas-phase unimolecular reaction, and by

Ea ¼ DHz þ 2RT ð5:186Þ

for a gas phase bimolecular reaction [151]. The main problem with this is that the

preexponential A varies by a large factor even for, say, reactions which are formally

unimolecular [150]:

CH3NC ! CH3CN 3.98 � 1013

Cyclopropane ! propene 1.58 � 1015

C2H6 ! 2 CH3 2.51 � 1017

so that this method of guessing A by analogy could give a value that was out by a

factor of 104 unless one was judicious (or lucky) enough to choose a good model

reaction. The exponential factor is prone to smaller errors, since calculating DH{ to

within 10 kJ mol�1 is now feasible, and an error of this size corresponds to an error

factor in exp(�DEa) of exp(�10/2.48) ¼ 57 (at T ¼ 298 K). This may seem to be

itself very big, but an easy method of reliably calculating rate constants to within a

factor of 100 might be useful for estimating the stability of unknown substances. In

fact, a very useful and simple rule is that the threshold barrier for the stability of a

substance at room temperature is about 100 kJ mol�1; allow a latitude of about

20 kJ mol�1 [152]. This rule has been used frequently in the computational search

for stable nitrogen allotropes [153].

Note that for unimolecular processes the halflife, an intuitively more meaningful

quantity than the rate constant, is simply

t1=2 ¼ ln 2

kr
¼ 0:693

kr

i.e. the halflife of a unimolecular reaction is approximately the reciprocal of its rate

constant.
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5.5.2.2 Energies: Calculating Quantities Relevant to Thermodynamics

and to Kinetics

5.5.2.2a Thermodynamics; “Direct” Methods; Isodesmic Reactions

Herewe are concernedwith the relative energies of species other than transition states.

Suchmolecules are sometimes called “stable species”, even if they are not at all stable

in the usual sense, to distinguish them from transition states, which exist only for an

instant on the way from reactants to products. A “stable species”, in contrast, sits in a

potential energy well and survives at least a few molecular vibrations (> ca. 10�13 s).

The very useful book byHehre [39] contains awealth of information on computational

and experimental results concerning thermodynamic quantities.

The ab initio reaction energy that is most commonly calculated is simply the

difference in ZPE-corrected energies, DEtotal
0K , which is the reaction enthalpy change

at 0 K (Eq. 5.181). This provides an easily-obtained indication of whether a reaction

is likely to be exothermic or endothermic, or of the relative stabilities of isomers.

Table 5.9 illustrates this procedure. The results are only semiquantitatively correct,

and the HF/6–31G* method is not necessarily better here than the HF/3–21G for

such “direct” (simple subtraction) energies. In fact, it has been documented by

Table 5.9 Reaction energies and relative energies of isomers (HF/3–21G(*) and HF/6–31G*)

Reactants, E, h Products, E, h Reaction energy, or relative energy of

isomers

Calculated, h/ kJ mol�1 Exp, kJ

mol�1

H2 + Cl2 2HCl �915.94846 � (�915.86949) �192

�1.11234 + (�914.75715)

¼ �915.86949

2(�457.97423)

¼ � 915.94846

¼ �0.07897/�207

�1.11625 + (�918.91145)
¼ �920.02770

2(�460.05272)
¼ � 920.10544

�920.10544 – (�920.02770)
¼�0.07774/�204

2H2 + O2 2H2O �151.12838 – (�150.99008) �523

2(�1.11234) + (�148.76540)

¼ � 150.99008

2(�75.56419) ¼
�151.12838

¼ �0.13830/�363

2(�1.11625) + (�149.61336)
¼ � 151.84586

2(�75.98778) ¼
�151.97556

�151.97556 – (�151.84586)
¼ �0.12970/�341

Trans-2-butene Cis-2-butene �155.12768 – (�155.13032) 4.6

�155.13032 �155.12768 ¼ 0.00264/6.93

�155.99472 �155.99196 �155.99196 – (�155.99472)
¼ 0.00276/7.2

HCN HNC �92.32215 – (�92.33570) 60.7

�92.33570 �92.32215 ¼ 0.01355/35.6

�92.85721 �92.83828 �92.83828 – (�92.85721)
¼ 0.01893/49.7

The energies in hartrees are ab initio energies including ZPE. The calculations on O2 are UHF, on

triplet O2. Calculations are by the author, experimental energies are from reference [39],

Tables 2–13 and 2–14.
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extensive calculations that such HF/3–21G and HF/6–31G* energy differences

generally give only a rough indication of energy changes. Much better results are

obtained from MP2/6–31G* calculations on MP2/6–31G*, HF/3–21G or even

semiempirical AM1 geometries, and it is well worth consulting the book by

Hehre for details [154]. We shall see in Section 5.5.2.2b that it is possible to obtain
good relative energies “directly”.

To get from relatively low-level calculations the best energy changes, one can

utilize isodesmic reactions (Greek: “same bond”, i.e. similar bonding on both sides

of the equation). These are reactions in which the number of each kind of bond and

lone pair is conserved. For example

NH3 þ CH3NH
þ
3 ! NHþ

4 þ CH3NH2 ð5:187Þ

and

CH2F2 þ CH4 ! CH3Fþ CH3F ð5:188Þ

are isodesmic reactions; the first one has on each side six N–H bonds, three C–H

bonds, one C–N bond and one nitrogen lone pair, and the second has on each side

six C–H and two C–F bonds. The reaction

H3C� CH3 þ H2 ! 2CH4 ð5:189Þ

is, strictly speaking, not isodesmic, since although it has the same number of bonds,

even the same number of single bonds, on both sides: there are six C–H, one C–C,

and two H–H bonds on one side and eight C–H bonds on the other. Note that an

isodesmic reaction does not have to be experimentally realizable: it is an artifice to

obtain a reasonably accurate energy difference by ensuring that as far as possible

errors due to limitations of basis sets and treatment of electron correlation cancel.

This will happen to the extent that particular errors are associated with particular

structural features; electron correlation effects are thought to be especially impor-

tant in calculating energy differences, and such effects tend to cancel when the

number of electron pairs of each kind is conserved. The concept and the name

appear first in a 1970 paper by Hehre et al., where the method was introduced to

calculate enthalpy changes for complete hydrogenation of molecules using the

small basis sets then available [155], and the approach was applied to many kinds

of reaction in the classic book by Hehre, Pople, Radom and Schleyer [1g]. The

purpose of such reactions is to calculate stabilization or destabilization energies

that can be ascribed to factors like aromaticity [156], strain [157], or replacement

of one group by another, say H by F [158]. In attempts to focus on these factors

and exclude the beside-the-point effect of different bond strengths, a hierarchy of

increasingly finicky reactions grew up, and the nomenclature for isodesmic-type
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reactions spun out of control. One encounters the terms homodesmotic, hyperhomo-

desmotic, semihomodesmotic, quasihomodesmotic, homomolecular homodesmotic,

isogeitonic, and isoplesiotic, to cite some. To “expose the widespread confusion

over such classes of equations” and bring order and rigor to what might well be

called a chaotic proliferation (to borrow a term [68]), Wheeler, Houk, Schleyer and

Allen extensively reviewed the subject and made recommendations [159]. Here we

can sidestep technicalities and the menagerie of terms and simply call this general

class of reactions isodesmic. We shall look at examples of two applications of

isodesmic reactions, namely, calculation of: strain energy, and of aromatic stabili-
zation energy (ASA), which measures stabilization by aromaticity or destabiliza-

tion by its opposite, antiaromaticity. We can take the ASA as being the time-

honored resonance energy, RE.

Strain energy. Molecular strain is a concept nicely grasped by trying to build

with rigid plastic components a model of a molecule with small angles, like

cyclopropane, and noting that the bonds break. This old concept of angle strain

[160] has been expanded to encompass torsional and steric strain [161]. We’ll

consider two examples of angle strain, that in cyclopropane and that in norbornane.

We (conceptually) open cyclopropane to propane by using two Hs from two ethanes

and join the resulting ethyl groups to make butane; we use ethane rather than

methane to effect cleavage because with ethane the bond we make, in butane, and

the bond we break, in cyclopropane, are formally quite similar, in contrast to ethane

cf. cyclopropane. Following Khoury et al. [157] we use B3LYP/6–31G* (a DFT

method, Chapter 7) energies/geometries without ZPE; this energy is shown under

each species:

H3C H3C

–117.89525

–79.83002

–119.14423

–158.45804

CH3 CH3

Release of strain must correspond to an exothermic process and we take strain

energy as being positive, so the strain energy is the energy of the reactants minus

that of the products:

SE(cyclopropane)¼ [�117.89525þ 2(�79.83002)]� [�119.14423� 158.45804]

¼ �277.55529 þ 277.60227 ¼ 0.04698 ¼ 123 kJ mol�1

We’ve converted atomic units (hartrees) to kJ mol�1 by multiplying by 2,626.

Khoury et al. report a value of 121 kJ mol�1 (29.0 kcal mol�1), similar to the

experimental (115 kJ mol�1) and to other calculated values, which they cite.
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A slightly more involved example is the strain of norbornane, bicyclo[2.2.1]heptane.

We can open this to heptane (two steps are hinted at here for clarity); molecules like

butane and heptane are used in the all-transoid, lowest-energy conformations:

H3C

H3C

H3C

H3C

–273.96832

CH3

–79.83002

–158.45804

2

–276.39909

CH3

CH3

CH3

SE norbornaneð Þ ¼ �273:96832þ 4 �79:83002ð Þ½ �
� �276:39909þ 2 �158:45804ð Þ½ �

¼ � 593:28840þ 593:31517 ¼ 0:02677 ¼ 70:3 kJ mol�1

Khoury et al. report a value of 69.5 kJ mol�1 (16.6 kcal mol�1), fairly close to

the experimental value (60.2 kJ mol�1), which they cite.

The two calculations shown here are simplified versions of the slightly more

involved methods of Khoury et al. [157], which attempt to make the bonds in the

reactants and the products more alike than in the very straightforward manner used

here; for example, the two C–C bonds in norbornane that we break are between a

secondary and a tertiary carbon, but the two C–C bonds we make to form two

butanes are between a secondary and a secondary carbon. Instead of using ethane

and ethane and making butane, we might have used ethane and propane and made a

bond between a secondary and a tertiary carbon in 2-methylbutane. This gives a

strain energy of 64.7 kJ mol�1, closer to the experimental one. In comparing the

strain in two hydrocarbon molecules, it is probably fairer to compare the strain per

C–C bond, because other things being equal, in a bigger molecule the strain is

more dispersed. Thus cubane, with six cyclobutane rings, has a strain energy of

622 kJ mol�1 [162], while cyclobutane, with only one ring, has a strain energy of

110.0 kJ mol�1 [157]. With these numbers, cubane is 5.7 times as strained as

cyclobutane. On a per-C–C-bond basis however, the strain energy of cubane and

cyclobutane are 622/12 ¼ 52 kJ mol�1 and 110.0/4 ¼ 27.5 kJ mol�1; using these

numbers, cubane is effectively only about twice as strained as cyclobutane. The role

of strain in connection with kinetic and thermodynamic stability has been discussed

for polyprismanes and superstrained C5 molecules [163]. Calculations of the kind

we have done here are approximations to 0 K enthalpy changes (because ZPE and

thermal energy increases on going above 0 K are ignored).

Aromatic stabilization energy, ASE. We skirt the enormous literature on the

meaning and detection of aromaticity [164] and assert that a good measure of the

phenomenon is the aromatic stabilization energy, the energy change when an
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aromatic ring is opened isodesmically [165]. This gives consistent results in an

incrementally varying series of compounds [166]. Let’s apply this approach to

benzene using the same kind of equation as we did for cyclopropane and for

norbornane, above, continuing with B3LYP/6–31G* energies/geometries. We

should think in terms of the numbers of sp2–sp2 C–C bonds and sp2 C–H bonds,

rather than view benzene as having three double and three single C–C bonds,

although we will use the useful Kekulé structure:

CH2H2C

–232.24958

+  2 

–78.58745 –233.39857

+

–155.99213

Loss of aromaticity must correspond to an endothermic process and we take the

ASE as being positive for an aromatic compound, so this quantity is the energy of

the products minus that of the reactants. If the molecule being opened were strained,

that would have to be taken into account, for example by an extrapolation method

[167] or by balancing the strain on both sides of the equation, as in the oxirene

calculation below. The ASE is calculated here thus:

ASE ¼ �233:39857� 155:99213½ � � �232:24958� 78:58745½ �
¼ � 398:39070þ 389:42448 ¼ 0:03378 ¼ 89 kJ mol�1

There is no single correct isodesmic reaction for studying a phenomenon;

another reasonable, although conceptually less straightforward, reaction for obtain-

ing an ASE for benzene is:

CH2

–78.58745 –155.99213
H2C+

–232.24958

33

This too satisfies our isodesmic criterion, because on both sides of the equation

we have nine sp2–sp2 C–C bonds and 18 sp2 C–H bonds. This equation gives:

ASE ¼ 3 �155:99213ð Þ½ � � �232:24958þ 3 �78:58745ð Þ½ �
¼ �467:97639þ 468:01193 ¼ 0:03554 ¼ 93 kJ mol�1

Reactions of this kind have been applied to heteroatom analogues of benzene

[166, 168]. Like our strain energy calculations, these energy changes are approx-

imations to 0 K enthalpy changes (we ignored ZPE and thermal energy increases on

going above 0 K). Isodesmic reactions and other aspects of the energetics of

benzene, cyclobutadiene and related compounds have been reviewed by Slayden
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and Liebman [169]. Schleyer and Puhlhofer discuss various isodesmic schemes and

recommend for calculating resonance energies (which we take here as being

aromatic stabilization energies) isomerization methyl/methylene reactions like

[170]:

CH3 CH2

They consider the resonance energy of benzene from reasonable isodesmic reac-

tions to be ca. 125 kJ mol�1. Mo has reviewed the various ways of assigning resonance

energy to benzene and studied the problem with the valence bond method [171].

Now we turn from benzene to another cyclically delocalized molecule, oxirene

or oxacyclopropene [172]. Is oxirene stabilized or destabilized by its p-electron
system? We can answer this question using an isodesmic equation, with B3LYP/

6–31G* energies/geometries as usual. Here we try to cancel out the strain in oxirene

by having on each side of the equation about the same amount of ring strain (on

each side two sp2C–O bonds, etc):

.. O.O
+ +

–152.46609 –194.03545 –116.61905 –229.93969

ASE ¼ �116:61905� 229:93969½ � � 152:46609 � 194:03545½ �
¼ � 346:55874þ 346:50154 ¼ � 0:05720 ¼ � 150 kJ mol�1

We calculated the ASE as product energies minus reactant energies, as we did

for benzene, and it came out negative, which means that the aromatic “stabiliza-

tion” energy here is really destabilizing: oxirene is antiaromatic [173].

One has to be careful with balancing bonds in isodesmic reactions. Consider this

equation:

+ 32

–232.24958 –235.87949 –234.64832

Here ASE ¼ 3 �234:64832ð � �½ ½ �232:24958þ 2 �235:87949ð Þ�

¼ �703:94496 þ 704:00856 ¼ 0:06360 ¼ 167 kJ mol�1
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This seems unreasonably big: above, we got 89 and 93 kJ mol�1 for the benzene

ASA. Yet the equation seems at first sight reasonable: on each side three C¼C, 15

C–C, and 30 C–H bonds. But in fact the numbers of each kind of bond differ at the

hybridization level; for example, the reactants have six sp2–sp2 C–C bonds but the

products have only three of these. Overall, we are converting stronger bonds into

weaker ones, and part of the rise in energy is due to this, rather than to loss of

aromatic stabilization, inflating the supposed ASE. Another example of an ill-

chosen isodesmic-type reaction is given by Slayden and Liebman, where benzene

seems to have an ASE of 269.9 kJ mol�1 (!) [169]:

C6H6 þ 6CH4 ! 3H2C ¼ CH2 þ 3H3C� CH3

(Our B3LYP/6–31G* energy/geometry method gives 286 kJ mol�1). This shows

the need to choose isodesmic-type reactions judiciously, and helps to explain the

profusion of methods and terms [159].

5.5.2.2b Thermodynamics; High-Accuracy Calculations

As the previous discussion suggests (Section 5.5.2.2a), the calculation of good

relative energies is much more challenging than the calculation of good geometries.

Nevertheless, it is now possible to reliably calculate energy differences to within

about �10 kJ mol�1. An energy difference with an error of �10 kJ mol�1 is said to

be within chemical accuracy, although in recent years there has been some ten-

dency to raise the bar to about half this value. The term seems to have been first

used in connection with computational chemistry in 1984 by Moskowitz and

Schmidt (“Can Monte Carlo Methods Achieve Chemical Accuracy?”) [174] and

was popularized by Pople (biographical footnote Section 5.3.3) in connection with

the G1 and G2 (see below) methods. Around the time these pioneering high-

accuracy methods were being developed, the term appeared in the title of a review

by Bauschlicher and Langhoff [175]. An accuracy of about 2 kcal mol�1 (8.4 kJ

mol�1, rounded here to 10 kJ mol�1) was set by Pople and coworkers in 1989 for the

G1 method [176] as a realistic and chemically useful goal, perhaps because this is

small compared to typical bond energies (roughly 400 kJ mol�1), and comparable

or superior to typical experimental errors. The ab initio energies and methods

needed for results of chemical accuracy are called high-accuracy (or multistep, or

multilevel, or high-accuracy multistep) energies and methods.

As one might expect, high-accuracy energy methods are based on high-level

correlational methods and big basis sets. However, because the straightforward

application of such computational levels would require unreasonable times (be very

“expensive”), the calculations are broken up into several steps, each of which

provides an energy value; summing these gives a final energy close to that which

would be obtained from the more unwieldy one-step calculation. There are two

classes of widely-used high-accuracy energy methods: the Gaussian methods,
which originated in the Pople group and derive their names from being first
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available as keywords in the Gaussian series of computational chemistry suites

[177], and the complete basis set methods, which come from Petersson’s group.

The Gaussian Methods

The key to these methods is the use of high correlation levels and big basis sets.

This series began in 1989 with Gaussian 1, G1 [176], continued with G2 (1991)

[178] and G3 (1998) [179], and has seen the publication (2007) of G4 [180]. G1 and

G2 are obsolete. The most popular Gaussian high-accuracy methods at present are

G3 and the variation G3(MP2) [181], designed to shorten computational times with

little loss of accuracy. For G3 the average absolute deviation from experiment is

1.13 kcal mol�1 (4.7 kJ mol�1) and for G3(MP2) 1.2–1.3 kcal mol�1 (5.0–5.4 kJ

mol�1), and G3(MP2) seems to be seven to eight times as fast as G3 [181]. Some

other G3-type methods are G3(B3) and G3(MP2B3) [182]. Curtiss et al. give the

details of the G4 [180] method and compare it with G3 and to some extent G1 and

G2. They report that “...the average absolute deviation from experiment shows

significant improvement from 1.13 kcal/mol [4.7 kJ mol�1] (G3 theory) to 0.83

kcal/mol [3.5 kJ mol�1] (G4 theory)”. Comparatively little has yet (June 2009) been

published on G4, and it is unclear if its improved accuracy will outweigh its being

two to three times as slow as G3 and lead to its replacing G3, as this latter method

replaced G2. To speed up the G4 method, its MP4 steps were replaced with MP2

and MP3 (Section 5.4.2) giving G4(MP2) and G4(MP3) [183]. These have respec-

tively average absolute deviations from experiment of 1.04 kcal/mol [4.35 kJ

mol�1] and 1.03 kcal/mol [4.3 kJ mol�1). The G4(MP2) method appears overall

to be the better of the two; it is two to three times as fast as G3 and although about

twice as slow as G3(MP2), Curtiss et al. say [183] “Overall, the G4(MP2) method

provides an accurate and economical method for thermodynamic predictions”. It

has an overall accuracy for the G3/05 test set of molecules that is significantly better

than G3(MP2) theory (1.04 vs 1.39 kcal/mol) [4.35 vs 5.8 kJ mol�1] and even better

than G3 theory (1.04 vs 1.13 kcal/mol) [4.35 vs 4.7 kJ mol�1]. G4(MP2) was

said to perform “reasonably well” for the thermochemistry of transition metals,

species that present special problems for computational chemistry [184] (see too

Section 8.3.4). It seems likely that G4(MP2) will replace G3 and replace or be

competitive with G3(MP2). G4 and its modifications build on G3, and the G3

methods are at present (June 2009) more available and represent a much larger user

pool of experience than the G4 methods; for this reason G3 and its popular variant

G3(MP2) will be discussed below, with some examples. G3(MP2) will handle

molecules with up to about 13 heavy atoms. The results from G4(MP2) should be

modestly more accurate than those from G3(MP2), but the calculation times are

likely to be about twice as long.

A G3 calculation [179] as implemented in the Gaussian programs uses eight steps:

1. An HF/6–31G* geometry optimization, to get a structure for a frequency

calculation

2. An HF/6–31G* frequency calculation, wanted for the ZPE
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3. An MP2(full)/6–31G* geometry optimization, wanted to get a high-quality

geometry for all the subsequent calculations (which are thus single-point jobs)

4. QCISD(T,E4T)/6–31G(d), single-point energy

5. MP4/6–31þG(d), single-point energy

6. MP4/6–31G(2df,p), single-point energy

7. MP2 ¼ Full/GTLarge, single-point energy

8. Atomic spin-orbital corrections, sometimes empirical, and a “higher-level cor-

rection”, HLC, to (hopefully) take any remaining inadequacies into account

These eight basic steps are used to assemble a molecular energy as the sum of

various energy differences and a spin–orbit correction and a final empirical energy

increment (the “higher level correction”) based on the number of paired and

unpaired electrons. The G3 energy is essentially a kind of QCISD(T)/big basis

energy performed on an MP2(full)/6–31G* geometry, with a HF/6–31G* ZPE and

a spin–orbit and an empirical energy correction, but such a direct calculation would

be slower than breaking it into the steps used here. For the details see Curtiss et al.

[179]. A key improvement in G4 over G3 is the replacement of the quadratic CI

correlation method by the coupled cluster method (Section 5.4.3); this particular

change did not alter the accuracy for the test set of molecules, but it presumably

improves the reliability, as “...the QCISD(T) method has rather dramatic failures,

which does not occur with the CCSD(T) method” [180]. See too Hrusak et al. for a

comparison of quadratic CI and coupled-cluster [102]. In the G3(MP2) method, the

main change is that MP2 calculations replace MP4 ones [181]. Because of the

empirical energy corrections in the Gaussian multistep methods, they are not fully

ab initio, but rather somewhat semiempirical, except when these corrections cancel

out. This happens, for example, in calculating proton affinities as the energy

difference of the protonated and unprotonated species, where the spin–orbit correc-

tions and the number of a- and b-spin electrons are the same on both sides of the

equation. Until the promising G4(MP2) method becomes readily available we shall

take G3(MP2) as being the choice Gaussian multistep method, a good compromise

between accuracy and speed. Gaussian methods are compared with CBS methods

below.

CBS Methods

The key to these methods is the extrapolation of the basis set to an infinite limit (to

completion). There are three basic CBS methods: CBS-4 (for fourth-order extrapo-

lation), CBS-Q (for quadratic CI) and CBS-APNO (for asymptotic pair natural

orbitals), in order of increasing accuracy (and increasing computer time) [113].

These methods are available with keywords in the Gaussian 94 and later Gaussian

programs, where the preferred versions of CBS-4 and CBS-Q are specified by the

keywords CBS-4M [185] and CBS-QB3 [186] (M for minimum population locali-

zation, B3 for use of the B3LYP density functional). CBS-4M can handle molecules

with up to about 20 heavy atoms and its has its “largest errors in the neutral

heats of formation ... for ClF3 (13.6 kcal/mol), O3 (12.6 kcal/mol), and C2Cl4
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(11.0 kcal/mol)” but “these errors are systematic and their effect may be greatly

reduced by the use of isodesmic bond additivity corrections.” [185]. More typical

CBS-4M errors are (mean absolute deviation from experiment) 3.26 kcal mol�1

(13.6 kJ mol�1) [185]. There is a modification of CBS-4M designed to decrease the

accumulation of errors with increasing molecular size [187]. CBS-QB3 can handle

molecules with up to about ten heavy atoms and has a mean absolute deviation from

experiment of 1.10 kcal mol�1 (4.6 kJ mol�1) [185]. CBS-APNO can handle

molecules with up to about five heavy atoms and has a mean absolute deviation

from experiment of 0.53 kcal mol�1 (2.2 kJ mol�1) [113].

Complete basis set methods [113] involve essentially seven or eight steps:

1. A geometry optimization (at the HF/3–21G(*) or MP2/6–31G* level, depending

on the particular CBS method)

2. A ZPE calculation at the optimization level

3. An HF single-point calculation with a very big basis set (6–311þG(3d2f,2df,p)

or 6–311þG(3d2f,2df,2p), depending on the particular CBS method)

4. An MP2 single-point calculation (basis depending on the particular CBS

method)

5. Something called a pair natural orbital extrapolation to estimate the error due to

using a finite basis set

6. An MP4 single-point calculation

7. For some CBS methods, a QCISD(T) single-point calculation

8. One or more empirical corrections

Note, as with Gaussian methods, the semiempirical aspect of CBS methods.

Comparison of High-Accuracy Multistep Methods

We will concentrate on Gaussian-type and CBS methods, because these have been

the most widely-used and have thus accumulated an archive of results, are the most

accessible, and because several versions of them are available. However, there are

other high-accuracy multistep methods, such as the Weizmann procedures of

Martin and de Oliveira, W1 and W2 [188], and of Boese et al., W3 and W4

[189], which like the CBS methods are based on basis set extrapolation. W1 and

W2 have a mean absolute deviation of about 1 kJ mol�1 (not 1 kcal mol�1), and

incorporate relativistic effects, and W2 has no empirical parameters, unlike the

Gaussian and CBS methods. W3 and W4 methods have similar errors to W1 and

W2, and the authors speculate on the reasons for the obstinate “0.1 kcal/mol

barrier”. These very accurate methods are still limited molecules of about or less

than the reach of CBS-APNO.

Of the Gaussian-type and CBS methods, for high accuracy on very small

molecules CBS-APNO is the appropriate choice, and for “large” molecules the

choice falls on CBS-4M with the acceptance of the possibility of moderately large

errors. For intermediate size molecules the best choice is probably between G3

(MP2) and CBS-QB3. Recall that G3(MP2) is much faster than G3, with little loss of

accuracy in most cases; note too that G4(MP2) will compete with and when widely
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available may replace G3(MP2). Within these confines, the question will then be

whether to use G3(MP2) or CBS-QB3. Which one, if either, has the edge can be

found only by comparing calculations with experiment for the property or reaction

of interest. Here are a few examples of studies using these methods. Pokon et al.

compared CBS-QB3, CBS-APNO, and G3 (this latter being presumably similar to

G3(MP2) for such calculations) for the enthalpies and free energies of gas-phase

deprotonation reactions and found that “The combination of high accuracy and

relatively low computational cost makes the CBS-QB3 method the best choice of

the three” (all three gave a mean absolute deviation from experiment of about 1 kcal

mol�1, i.e. about 4 kJ mol�1) [190]. Bond compared G2, G2(MP2), G3, G3(MP2),

G3(B3), G3(MP2B3), CBS-QB3, and DFT for the calculation of enthalpies and free

energies of formation of nearly 300 organic compounds and found G3 to be best with

G3(MP2) somewhat worse; CBS-QB3 was also accurate but more limited in the size

of molecules it could handle [191]. The mean absolute deviations for those three

methods using an isodesmic reaction (see Section 5.5.2.2c) were (kJ mol�1):

Enthalpy Free energy

G3 3.1 3.7

G3(MP2) 3.2 4.1

CBS-QB3 4.5 5.6

Other work by Bond also showed little difference between enthalpies of forma-

tion by isodesmic-type reactions from the G3 and the G3(MP2) methods [192].

Ess and Houk found CBS-QB3 to be satisfactory for the activation enthalpies of

pericyclic reactions [193], which is noteworthy because the high-accuracy methods

we are discussing were designed to give good results for thermodynamics, not

kinetics; the problem here lies in the parameterization, particularly for paired and

unpaired spins, the number of which might alter along a reaction coordinate [194].

In fact, CBS-QB3 has been explicitly stated to be suitable for activation energies

[186]. An indication of the speed and size capacities of G3(MP2) and CBS-4M,

CBS-QB3, and CBS-APNO is given by Table 5.10.

5.5.2.2c Thermodynamics; Calculating Heats of Formation

The heat of formation (enthalpy of formation) of a compound is an important

thermodynamic quantity, because a table of heats of formation of a limited number

of compounds enables one to calculate the heats of reaction (reaction enthalpies) of

a great many processes, that is, how exothermic or endothermic these reactions are.

The heat of formation (enthalpy of formation) of a compound at a specified

temperature T is defined [195] as the standard heat of reaction (standard reaction

enthalpy) for formation of the compound at T from its elements in their standard

states (their reference states). By the standard state of an element we mean the

thermodynamically stablest state at 105 Pa (standard pressure, about normal atmo-

spheric pressure), at the specified temperature (the exception is phosphorus, for
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which the standard state is white phosphorus; although red phosphorus is stabler

under normal conditions, these allotropes are apparently somewhat ill-defined). The

specified temperature is usually 298.15 K (about room temperature). The heat of

formation of a compound at room temperature is thus the amount of heat energy

(enthalpy) that must be put into the reaction to make the compound from its

elements in their normal (room temperature and atmospheric pressure) states; it is

the “heat content” or enthalpy of the compound compared to that of the elements.

For example, at 298 K the heat of formation of CH4 is �74.87 kJ mol�1, and the

heat of formation of CF4 is �933.20 kJ mol�1 [196]. To make a mole of CH4 from

solid graphite (carbon in its standard state at 298 K) and hydrogen gas requires

�74.87 kJ, i.e. 74.87 kJ are given out – the reaction is mildly exothermic. To make a

mole of CF4 from solid graphite and fluorine gas requires�933.20 kJ, i.e. 933.20 kJ

are given out – the reaction is strongly exothermic. In some sense CF4 is thermody-

namically much stabler with respect to its elements than is CH4 with respect to its

elements. Note that the standard heat of formation of an element is zero, since the
reaction in question is the formation of the element from the element, in the same

state (no reaction). Heat of formation is denoted DH	
f or DfH

	 and heat of

formation at, say, 298 K by DH	
f298, “delta H sub f standard at 298 K”. The delta

indicates that this is a difference (enthalpy of the compound minus enthalpy of the

elements) and the superscript denotes “standard”.

There are extensive tabulations of experimentally-determined heats of forma-

tion, mostly at 298 K. One way to determine DH	
f298 is from heats of combustion:

burning the compound and the elements and measuring calorimetrically the heat

evolved enables one to calculate the heat of formation by subtraction. DH	
f298 can

also be obtained by ab initio calculations. This is valuable because (1) it is far easier

Table 5.10 Comparison of speed and ability to handle molecular size for four popular high-

accuracy multistep methods: G3(MP2), CBS-4M, CBS-QB3, and CBS-APNO

Time (h); for less than 1 h: h (min)

Molecule N(heavy)a G3(MP2) CBS-4M CBS-QB3 CBS-APNO

CH3COO� 4 0.05 (3) 0.03 (2) 0.08 (5) 0.5 (30)

CH2FCOO� 5 0.11 (7) 0.05 (3) 0.23 (14) 2.4

CHF2COO� 6 0.22 (13) 0.07 (4) 0.50 (30) Failed

CF3COO� 7 0.17 (10) 0.05 (3) 0.38 (23) Failed

C2F5COO� 10 3.1 0.20 (12) 9 Failed

C3F7COO� 13 12 0.47 (28) Failed?b Failed

C4F9COO� 16 Failed 1 Failed Failed

C5F11COO� 19 Failed 3 Failed Failed

C6F13COO� 22 Failed Failed Failed Failed

The jobs that failed did so because of insufficient diskspace, and this occurred at the first high-level

correlation step. The calculations were done with the G03 program on a computer with the 64-bit

2.66 GHz Intel Core 2 Duo Quad CPU, 4.00 GB RAM, and 900 GB diskspace, running under

Windows VISTA. They reflect the times and size limitations of these methods on a well-equipped

personal computer as of ca. 2009 January. The use of anions here is adventitious, stemming from

another project.
aN(heavy) is the number of heavy (non-hydrogen) atoms.
bThe CCSD(T) energy step was stuck without change for 24 h.
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and cheaper than doing a thermochemical experiment, (2) many compounds have

not been subjected to experimental determination of their heats of formation, and

(3) highly reactive compounds, or valuable compounds available only in very small

quantity cannot be subjected to the required experimental protocol, e.g. combus-

tion. Let’s see how DH	
f298 can be calculated.

Atomization Method

Suppose we want to calculate DH	
f298 for methanol. We will calculate the heat of

formation at 0 K (DH	
f0) and then correct this to 298 K. Figure 5.26 shows the

principle behind what has been called the “atomization” method [197]. Methanol is

(conceptually) atomized at 0 K into carbon, hydrogen and oxygen atoms, in their

ground electronic states. The elements in their normal, unatomized states are also

used to make these atoms, and to make methanol. The heat of formation of

methanol at 0 K follows from equating the energy needed to generate the atoms

from the elements via methanol DH	
f0 CH3OHð Þ þ DH	

a0 CH3OHð Þ
 �
to that needed

to make them directly from the elements in their normal states:

DH	
f0ðCH3OHÞ þ DH	

a0ðCH3OHÞ ¼ DH	
f0ðCð3PÞ þ 4Hð2SÞ þ Oð3SÞÞ

i.e.

DH	
f0ðCH3OHÞ ¼ DH	

f0ðCð3PÞ þ 4Hð2SÞ þ Oð3SÞÞ � DH	
a0ðCH3OHÞ ð5:190Þ

DH	
a0ðCH3OHÞ is the ab initio atomization energy of methanol, the energy

difference between the atoms and methanol. There are a couple points to note

about this conceptual scheme.We are converting into carbon atoms graphite, a poly-

meric material, so strictly speaking Fig. 5.26 should show n C(graphite)! n C(3P),

ab initio energy differenceH

ΔHf0 (C(3P) + 4H(2S) + O(3P))

ΔHf0 (CH3OH)

ΔHa0 (CH3OH)

CH3OH

1
2C(graphite) + 2H2 + O2

(C(3P) + 4H(2S) + O(3P)

–

–

Fig. 5.26 The principle behind the ab initio calculation of heat of formation (enthalpy of

formation) by the atomization method. Methanol is (conceptually) atomized at 0 K into carbon,

hydrogen and oxygen atoms; the elements in their standard states are also used to make these

atoms, and to make methanol. The heat of formation of methanol at 0 K, DH	
f0(CH3OH),

follows from equating the energy needed to generate the atoms via methanol (DH	
f0(CH3OH) þ

DH	
a0(CH3OH)) to that needed to make them directly from the elements in their standard states.

The diagram is not meant to imply that methanol necessarily lies above its elements in enthalpy
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where n is a number large enough to represent the substance graphite rather than

just some carbon oligomer. All the species in the figure will then be increased in

number by a factor of n, but division by this common factor will still give us

Eq. 5.190. Another point is that although hydrogen and oxygen are solids at 0 K, we

are considering isolated molecules being atomized.

To calculate DH	
f0ðCH3OHÞ we need the 0 K heat of formation of C, H and O

atoms, i.e. the atomization energies of graphite, molecular hydrogen, and molecular

oxygen, and the 0 K atomization energy of methanol. The atomization energies of

hydrogen and oxygen can be calculated ab initio, but not that of graphite, which is a

very big “molecule”. For consistency we will use experimental values of all three

elemental atomization energies, as recommended [197]. From Eq. 5.181, the 0 K

atomization energy of methanol is simply the ab initio energies of its constituent

atoms minus the ZPE-corrected ab initio of methanol:

DH	
a0ðCH3OHÞ ¼ DEtotal

0K ðCð3PÞ þ 4Hð2SÞ þ Oð3SÞÞ � DEtotal
0K ðCH3OHÞ ð5:191Þ

Experimental values of DH	
f0Cð3PÞ, DH	

f0Hð2SÞ, and DH	
f0Oð3SÞ (as well as DH	

f0

for other atoms, and references to more extensive tabulations) are given in [197]; in

kJ mol�1:

C 711.2

H 216.035

O 246.8

To calculate DH	
a0ðCH3OHÞ we need (Eq. 5.191) DEtotal

0K for C, H and O atoms in

the states shown and for methanol. First we use the old G2 method, just for

comparison with the value in [197]. As for [197], we’ll use Gaussian 94 [198].

We get these values (hartrees):

C �37.78430

H �0.50000

O �74.98203

CH3OH �115.53490

From Eq. (5.191)

DH	
a0ðCH3OHÞ ¼ �37:78430þ 4ð�0:50000Þ � 74:98203� ð�115:53490Þ h

¼�114:76633þ 115:53490 h ¼ 0:76857 � 2625:5 kJmol�1

¼ 2017:88 kJmol�1

From Eq. (5.190)

DH	
f0ðCH3OHÞ ¼ 711:2þ 4ð216:035Þ þ 246:8� 2017:88 kJmol�1

¼ 1822:1� 2017:88 kJmol�1 ¼ �195:7 kJmol�1
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Reference [197] gives the 0 K G2 value by the atomization method as �195.7 kJ

mol�1 and the experimental value as (from two sources)�190.7 or�189.8 kJ mol�1.

To correct the 0 K heat of formation to that at 298.15 K we add the increase in

enthalpy of methanol on going from 0 to 298 K and subtract the corresponding

increases for the elements in their standard states. The value for methanol is the

difference of two quantities provided in the thermochemical summary at the end of

the G2 calculation as implemented in Gaussian 94 and subsequent versions:

DDH	ðCH3OHÞ ¼ G2Enthalpy� G2ð0KÞ
¼ �115:53061� ð�115:53490Þ h
¼ 0:00429� 2625:5 kJmol�1

¼ 11:26 kJmol�1

(G2(0 K) is the G2 value for what we have called DEtotal
0K )

The experimental enthalpy increases for the elements are given in [197]; in

kJ mol�1:

DDH	(element)

C(graphite) 1.050

H2 8.468

O2 8.680

From these and DDH	
f ðCH3OHÞ:

DH	
f298ðCH3OHÞ ¼ DH	

f0ðCH3OHÞ þ DDH	ðCH3OHÞ � ðDDH	ðCÞ

þ 2DDH	ðH2Þ þ 1

2
DDH	ðO2ÞÞ ð5:192Þ

¼ �195:7þ 11:26� 1:050þ 2 8:468ð Þ þ 1

2
8:680ð ÞkJ mol�1

� �
¼ �195:7� 11:07 kJ mol�1 ¼ � 206:8 kJ mol�1

The accepted 298 K experimental value [199] is �205 � 10 kJ mol�1.

Note that if DH	
f0 is not wanted, DH	

f298 can be calculated directly, since from

Eqs. (5.190) and (5.192) the 0 K ab initio energy of the compound is subtracted out

and it follows that

DH	
f298ðCH3OHÞ ¼ DH	

f0ðCÞ þ 4DH	
f0ðHÞ þ DH	

f0ðOÞ
� DEtotal

0K ðCÞ þ 4DEtotal
0K ðHÞ þ DEtotal

0K ðOÞ
 �þ G2Enthalpy

� ðDDH	ðCÞ þ 2DDH	ðH2Þþ 1

2
DDH	ðO2ÞÞ ð5:193Þ
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¼ 711:2þ 4 216:035ð Þ þ 246:8ð Þ½ �kJ mol�1

� �37:78430þ 4 �0:50000ð Þ � 74:98203ð Þ

þ �115:53061ð Þ�h� 1:050þ 2 8:468ð Þ þ 1

2
8:680ð Þ

� �
kJ mol�1

¼ 1822:1 kJ mol�1 � �114:76633ð Þ h � 115:53061 h � 22:33 kJ mol�1

¼ 1822:1 kJ mol�1 � 0:76428� 2625:5 kJ mol�1 � 22:33 kJ mol�1

¼ 1822:1� 2006:62� 22:33 kJ mol�1 ¼ �206:8 kJ mol�1;

as obtained above from Eq. (5.192).

Formation Method

An alternative to the atomization method is what has been called the “formation”

method, which is illustrated for methanol in Fig. 5.27. This method utilizes a kind of

“pseudo heat of formation”, DH0
f0, of the compound from atomic carbon and

molecular hydrogen and oxygen (the conventional heat of formation is relative to

graphite and molecular hydrogen and oxygen).

From Fig. 5.27

DH	
f0ðCH3OHÞ ¼ DH	

f0ðCð3PÞÞ þ DH	
f0 ð5:194Þ

where the experimental value of DH	
f0ð3CÞ is used, and

DH	
f0 ¼ DEtotal

0K ðCH3OHÞ � DEtotal
0K Cð3PÞ þ 2H2 þ 1

2
O2

� �
ð5:195Þ

H

ΔHf0 (CH3OH)

ΔH ′f0 (CH3OH)

ΔHf0(C(3P)) CH3OH

1
2C(graphite) + 2H2 + O2

1
2C(3P) + 2H2  + O2

–

–

Fig. 5.27 The principle behind the ab initio calculation of heat of formation (enthalpy of

formation) by the formation method. Methanol is (conceptually) formed from atomic carbon

and molecular hydrogen and oxygen; the enthalpy input for this resembles that for the heat of

formation of methanol (hence the name) except that atomic carbon rather than graphite is used.

Graphite is converted to atomic carbon, and the elements in their normal states are also used to

make methanol. The heat of formation of methanol at 0 K follows from equating this quantity to

the heat of atomization of graphite plus the energy needed to make methanol from atomic carbon

and molecular hydrogen and oxygen. The diagram is not meant to imply that methanol necessarily
lies above its elements in enthalpy
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A calculation using G2 (for comparison with the atomization method, above)

gives

DH	
f0ðCH3OHÞ¼711:2kJmol�1þDH0

f0

¼711:2kJmol�1þ
�
�115:53490�ð�37:78430þ2ð�1:16636Þ

þ1

2
ð�150:14821Þ

�
h

¼711:2 kJmol�1þ �115:53490þ115:19113½ � h
¼711:2 kJmol�1�0:34378 h ¼711:2�0:34378�2625:5 kJmol�1

¼711:1�902:59 kJmol�1¼ �191:4 kJmol�1

The value calculated in [197] by this procedure is �191.3 kJ mol�1. The

atomization method usually gives somewhat more accurate heats of formation, at

least with the G2-type methods (although for the particular case of methanol with

G2 this is not so), perhaps because these methods were optimized, via the semiem-

pirical terms (Section 5.5.2.2b) to give accurate atomization energies.

Isodesmic Reaction Method

Finally, heats of reaction can be calculated by ab initio methods with the aid of

isodesmic reactions (Section 5.5.2.2a), as indicated in Fig. 5.28 (actually, the

scheme in Fig. 5.28 is not strictly isodesmic – for example, only on one side of

the “isodesmic” equation is there an H–H bond). From this scheme

H

1
2C(graphite) + 3H2 + O2

CH4 + H2O

CH3OH + H2

ΔEisodesmic

ΔHf0 (CH3OH)

ΔHf0 (CH4) + ΔHf0 (H2O)
– –

–

Fig. 5.28 The principle behind the ab initio calculation of heat of formation (enthalpy of

formation) using an isodesmic reaction. Methanol and hydrogen are (conceptually) made from

methane and water (other isodesmic reactions could be used); the 0 K enthalpy input for this is the

ab initio energy difference between the products and reactants. Graphite, hydrogen and oxygen are

converted into methane and water and into methanol and hydrogen, with input of the appropriate

heats of formation. The heat of formation of methanol at 0 K follows from equating the heat of

formation of methanol with the sum of the energy inputs for the other two processes. The diagram

is not meant to imply that methanol necessarily lies above its elements in enthalpy
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DH	
f0ðCH3OHÞ ¼ DH	

f0ðCH4Þ þ DH	
f0ðH2OÞ þ DEisodesmic ð5:196Þ

where DEisodesmic ¼ DEtotal
0K ðCH3OHþ H2Þ � DEtotal

0K ðCH4 þ H2OÞ
Using G2 values (for comparison with the atomization and the formation

methods):

DEisodesmic ¼ ð�115:53490� 1:16636Þ � ð�40:41090� 76:33205Þ h
¼�116:70126þ 116:74295 h ¼ 0:04169 h

With this and the experimental 0 K heats of formation of CH4 and H2O [197]:

DH	
f0ðCH3OHÞ ¼ � 66:8� 238:92þ 0:04169� 2625:5 kJmol�1

¼�196:3 kJmol�1:

This is very close to our atomization heat of formation value above (�195.7 kJ

mol�1).

Of the three approaches to calculating heats of formation (atomization, forma-

tion and isodesmic), the atomization has been recommended over the formation

[197]. However, the isodesmic method with carefully-chosen reactions should be at

least as accurate because of the ability of isodesmic processes to compensate for

basis set and correlation deficiencies (Section 5.5.2.2a). For the calculation of free

energies of formation, which is methodically related to enthalpies of formation but

includes entropies, Bond found in his study of nearly 300 organic compounds that

a kind of isodesmic reaction method gave considerably smaller errors than did

the atomization method: for G3(MP2), 4.1 versus 17.3 kJ mol�1, for CBS-QB3,

5.6 versus 13.1 kJ mol�1 [191]. In a related paper, these studies were said to be

the “first comprehensive review of computational methodologies used to compute

free energies” [192]. The atomization approach to enthalpies and free energies

of formation is conceptually the most straightforward, but requires a good high-

accuracy method (CBS-APNO would be very suitable were it not for its size

limitations) because dissociating a molecule into its atoms makes drastic demands

on the accurate treatment of correlation energy. A nice feature of the atomization

method is that, unlike the use of isodesmic reactions, it is a model chemistry; a term
apparently first used by Pople to denote a sharply-defined procedure that does not

require choosing among various possibilities (like different isodesmic schemes) and

which will thus not vary from one worker to another [200]. For a collection of

various approaches to calculating heats of formation see [201].

Note that these calculations of the heat of formation of methanol are not purely
ab initio (quite apart from the empirical correction terms in the multistep high-

accuracy methods), since they required experimental values of either the heat of

atomization of graphite (atomization and formation methods) or the heat of forma-

tion of methane (formation method). The inclusion of experimental values makes

the calculation of heat of formation with the aid of ab initio methods a semiempiri-
cal procedure (do not confuse the term as used here with semiempirical programs
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like AM1, discussed in Chapter 6). Augmentation with experimental data is still

needed for accurate calculations when an ab initio calculation would involve an

extended, solid substance like graphite (see the discussion in connection with the

atomization method); other examples are phosphorus and sulfur. For estimation of

solid-state enthalpies see [202]; there has been work on the ab initio calculation of

enthalpies of sublimation [203].

Let us briefly compare the atomization calculation of the 298 K heats of for-

mation of 1,4- and 1,2-benzoquinone by the G3(MP2) and the CBS-QB3 methods.

1,4-Benzoquinone, using G3(MP2)

DH	
f0(C,

3P) 711.2 kJ mol�1 experimental atomization E

DH	
f0(H,

2S) 216.035 kJ mol�1 experimental atomization E

DH	
f0(O,

3P) 246.8 kJ mol�1 experimental atomization E

DEtotal
0K (C,3P) �37.789338 h G3(MP2) enthalpy at 0 K

DEtotal
0K (H,2S) �0.501839 h G3(MP2) enthalpy at 0 K

DEtotal
0K (O,3P) �74.989774 h G3(MP2) enthalpy at 0 K

H298K(1,4-BQ, G3(MP2)) �380.898776 h G3(MP2) enthalpy at 298.15 K

DDH	(C, graphite) 1.050 kJ mol�1 experimental enthalpy increase, 0 K to 298 K

DDH	(H2) 8.468 kJ mol�1 experimental enthalpy increase, 0 K to 298 K

DDH	(O2) 8.680 kJ mol�1 experimental enthalpy increase, 0 K to 298 K

DH	
f298 1; 4� BQ; G3 MP2ð Þð Þ

¼ 6 711:2ð Þ þ 4 216:035ð Þ þ 2 246:8ð Þ½ � kJ mol�1

� 6 �37:78934ð Þ þ 4 �0:50184ð Þ þ 2 �74:98977ð Þ½ � þ �380:89878ð Þ h
� ð6 1:050ð Þ þ 2 8:468ð Þ þ 8:680ð Þ kJ mol�1

¼ 5624:9 kJ mol�1 � �378:72294 h½ � � 380:89878 h � 31:92 kJ mol�1

¼ 5624:9 kJ mol�1 � 2:17584� 2625:5 kJ mol�1 � 31:92 kJ mol�1

¼ 5624:9� 5712:67� 31:92 kJ mol�1 ¼ �119:7 kJ mol�1 1; 4� BQ;G3 MP2ð Þ

1,4-Benzoquinone, using CBS-QB3

DH	
f0(C,

3P) 711.2 kJ mol�1 experimental atomization E

DH	
f0(H,

2S) 216.035 kJ mol�1 experimental atomization E

DH	
f0(O,

3P) 246.8 kJ mol�1 experimental atomization E

DEtotal
0K (C,3P) �37.785377 h CBS-QB3 enthalpy at 0 K

DEtotal
0K (H,2S) �0.499818 h CBS-QB3 enthalpy at 0 K

DEtotal
0K (O,3P) �74.987629 h CBS-QB3 enthalpy at 0 K

H298K(1,4-BQ, CBS-QB3) �380.861093 h CBS-QB3 enthalpy at 298.15 K

DDH	(C, graphite) 1.050 kJ mol�1 experimental enthalpy increase, 0 K to 298 K

DDH	(H2) 8.468 kJ mol�1 experimental enthalpy increase, 0 K to 298 K

DDH	(O2) 8.680 kJ mol�1 experimental enthalpy increase, 0 K to 298 K
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DH	
f298ð1;4�BQ; CBS�QB3Þ

¼ 6 711:2ð Þ þ 4 216:035ð Þ þ 2 246:8ð Þ½ � kJ mol�1

� 6 �37:785377ð Þ þ 4 �0:499818ð Þ þ 2 �74:987629ð Þ½ � þ �380:861093ð Þ h
� ð6 1:050ð Þ þ 2 8:468ð Þ þ 8:680ð Þ kJ mol�1

¼ 5624:9 kJ mol�1 � �378:68679 h½ � � 380:861093 h� 31:92 kJ mol�1

¼ 5624:9 kJ mol�1 � 2:17430� 2625:5 kJ mol�1 � 31:92 kJ mol�1

¼ 5624:9� 5708:62� 31:92 kJ mol�1 ¼�115:6 kJ mol�1 1;4�BQ,CBS-QB3

The best experimental value for the heat of formation of 1,4-benzoquinone

appears to be �122.6 � 3.8 kJ mol�1 (�29.3 � 0.9 kcal mol�1), although an

overlapping value of �115.9 � 12.6 kJ mol�1 has been reported [204].

It follows from this method that to calculate the heat of formation of 1,2-

benzoquinone we now need only the value for 1,4-benzoquinone and the 298 K

enthalpies of the two quinones, since they are isomers:

For the G3(MP2) value, DH	
f298(1,2-BQ, G3(MP2)) ¼ DH	

f298(heat of formation

1,4-BQ) þ [enthalpy 1,2-BQ – enthalpy 1,4-BQ]

¼ �119:7þ �380:886048� �380:898776ð Þ½ � � 2625:5 kJ mol�1

¼ �119:7þ 33:42 kJ mol�1 ¼ �86:3kJ mol�1 1; 2� BQ;G3 MP2ð Þ

For the CBS-QB3 value, DH	
f298(1,2-BQ, CBS-QB3)¼ DH	

f298(heat of formation

1,4-BQ) þ [enthalpy 1,2-BQ – enthalpy 1,4-BQ]

¼ �115:6þ �380:848379 � �380:861093ð Þ½ � � 2625:5 kJ mol�1

¼ �115:6þ 33:38 kJ mol�1 ¼ �81:9 kJ mol�1 1; 2� BQ;CBS-QB3

The best experimental value for the heat of formation of 1,2-benzoquinone

appears to be �87.9 � 13.0 kJ mol�1 [204].

Both G3(MP2) and CBS-4M give reasonably satisfactory heats of formation for

these quinones by the atomization method, but it must be conceded that, in general,

an isodesmic approach with currently practical high-accuracy methods at least,

gives more accurate heats, and especially free energies, of formation; CBS-QB3

was somewhat limited in the size of molecule it could handle [191]:

Enthalpies, errors in kJ mol�1

Atomization, G3(MP2)/CBS-QB3 9.0/8.1

Isodesmic, G3(MP2)/CBS-QB3 3.7/4.5

Free energies, errors in kJ mol�1

Atomization, G3(MP2)/CBS-QB3 12.1/13.1

Isodesmic, G3(MP2)/CBS-QB3 4.2/5.6
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Considerable attention has been given here to heats (enthalpies) of formation,

because there are extensive tabulations of these, e.g. [205] and papers on their

calculation appear often in the literature, e.g. [201]. However, we should remember

that equilibria [147] are dependent not just on enthalpy differences, but also on the

often-ignored entropy changes, as reflected in free energy differences, and so the

calculation of entropies is also important [206].

5.5.2.2d Kinetics; Calculating Reaction Rates

Ab initio kinetics calculations are far more challenging than thermodynamics

calculations; in other words, the calculation of rate constants is much more involved

than that of equilibrium constants or quantities like reaction enthalpy, reaction free

energy, and heat of formation, which are related to equilibrium constants. Why is

this so? After all, both rates and equilibria are related to the energy difference

between two species: the rate constant to that between the reactant and transition

state (TS), and the equilibrium constant to that between the reactant and product

(Fig. 5.25). Furthermore, the energies of transition states, like those of reactants and

products, can be calculated. The reason for the difference is partly because the

energies of transition states are harder to calculate to high accuracy than are those of

relative minima (“stable species”). Another problem is that the rate does not depend

strictly on the TS/reactant free energy difference (which can often, at sufficiently

high levels, be accurately calculated).

To understand the problem consider a unimolecular reaction

A ! B

Figure. 5.29 shows the potential energy surface for two reactions of this type,

A1 ! B1 and A2 ! B2. The reactions have identical calculated free energies of

activation. By calculated, we mean here using some computational chemistry

method (e.g. ab initio) and locating a stationary point with no imaginary frequen-

cies, corresponding to A, and an appropriate stationary point with one imaginary

frequency, etc. (Section 2.5), corresponding to B. The “traditional” calculated rate

constant then follows from a standard expression involving from the energy differ-

ence between the TS and reactant (our calculated free energy of activation) and

the partition functions of the two species. However, in the TS region the PES for the

first process is flatter than for the second process – the saddle-shaped portion of the

surface is less steeply-curved for reaction 1 than for reaction 2. If all reacting A

molecules followed exactly the intrinsic reaction coordinate (IRC; Section 2.2; the

minimum-energy path, MEP) and passed through the calculated TS species, then

we might expect the two reactions to proceed at exactly the same rate, since all A1

and A2 molecules would have to surmount identical barriers. However, the IRC is

only an idealization [207], and molecules passing through the TS region toward

the product frequently stray from this path (dashed lines). Clearly for the reaction

A1 ! B1 at any finite temperature more molecules (reflected in a Boltzmann
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distribution) will have the extra energy needed to traverse the higher-energy regions

of this flatter saddle, away from the exact TS point, than in the case of A2 ! B2; if

the saddle were curved infinitely steeply, no molecules could stray outside the

reaction path. Thus reaction 1 must be faster than reaction 2, although they have

identical computed free energies of activation; the rate constant for reaction 1 must be

bigger than that for reaction 2. The difficulty of obtaining good rate constants from

accurate calculations on just two PES points, the reactant and the TS, is mitigated by

the fact that the vibrational frequencies of the TS sample the curvature of the saddle

region both along the reaction path (this curvature is represented by the imaginary

frequency) and at “right angles” to the reaction path (represented by the other

frequencies). High frequencies correspond to steep curvature. So when we use the

TS frequencies in the partition function equation for the rate constant we are, in a

sense, exploring regions of the PES saddle other than just the stationary point. The

role of the curvature of the PES in affecting reaction rates is nicely alluded to by

Cramer, who also shows the place of partition functions in rate equations [208].

Another way to calculate rates is by molecular dynamics [209]. Molecular

dynamics calculations use the equations of classical physics to simulate the motion

of a molecule under the influence of forces; the required force fields can be

computed by ab initio methods or, for large systems, semiempirical methods

(Chapter 6). In a molecular dynamics simulation of the reaction A ! B, molecules

of A are “shaken” out of their potential well, and some pass through the saddle

region. A shaken mechanical model with a molded surface and ball-bearing mole-

cules would represent a good analogue of the computer simulation. At a given

“temperature” (corresponding to the vigor of shaking), the rate of passage of

molecules (or ball bearings) through the saddle region will depend on the height

PE surface curved gently upward
in the transition state region

Many molecules pass
per second through the 
TS region Only relatively few molecules pass

per second through the
TS region

PE surface curved steeply upward
in the transition state region

1 2

intrinsic reaction coordinate

TS
TS

Free energy

reactant reactant

Fig. 5.29 Possible potential energy surfaces for two reactions with the same calculated free

energy of activation. Reaction 1 is nevertheless faster than reaction 2 because its transition state

region is flatter. As a result, in a given time more molecules can stray from the intrinsic reaction

coordinate and pass through the transition state region to the product
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of this region and its curvature. The shape of the hypersurface can be handled as an

analytic function of atomic coordinates

E ¼ f ðq1; q2; . . .Þ
which has been fitted to a finite number of calculated (e.g. by ab initio methods)

points. The function E can in favorable cases be used to calculate reliable rate

constants (this kind of molecular dynamics calculation requires the ability to break

and make bonds using a quantum mechanical method, in contrast to the common

MD calculations which use only molecular mechanics).The situation can be com-

plicated by quantum mechanical tunnelling [210], which, particularly where light

atoms like hydrogen move, can speed up a reaction by orders of magnitude

compared to classical predictions. Furthermore, since 1992 [211] it has been

shown by molecular dynamics that the traditional concept of a potential energy

surface with a straightforward intrinsic reaction coordinate (minimum energy path)

may in some cases be inadequate and even incorrect. Briefly, reacting molecules

sometimes move on to a plateau region or a “bifurcated” region of the surface and

then head toward products in directions determined by their internal motions; the

details can be “quite complex” [212]. Such surfaces are probably exceptional and

the traditional picture of Chapter 2 seems likely to be applicable in most cases. Here

we will merely attempt to apply some fundamentals of rate theory to unimolecular

reactions to illustrate how straightforward calculations can provide useful informa-

tion about the stability of molecules. For rigorous calculations of rate constants one

best utilizes a specialized program, for example Polyrate ([133], based on RRKM

theory [134]). There are many discussions of the theory of reaction rates, in various

degrees of detail [148, 213]. In this section we will limit ourselves to gas-phase

unimolecular reactions [214] and examine the results of some calculations. We will

use the simplified Eyring (Section 2.2) equation

kr ¼ kBT

h
e�DGz=RT �ð5:197Þ

where kr ¼ unimolecular rate constant (units ¼ s�1)

kB ¼ Boltzmann constant, 1.381 � 10�23 J K�1

T ¼ temperature, K

h ¼ Planck’s constant, 6.626 � 10�34 J s

DG{ ¼ the transition-state-reactant free energy difference, kJ mol�1 (similar

results are obtained from the ZPE-corrected 0 K energy difference, DEtotal
0K , which is

the 0 K enthalpy difference)

R ¼ gas constant, 8.314 J K�1 mol�1

For T ¼ 298 K (“room temperature”), (kBT)/h ¼ 6.22�1012 s�1 and RT ¼ 2.478

kJ mol�1

With these values Eq. (5.197) becomes

kr ¼ 6:22� 1012e�DGz=2:478 ð5:198Þ
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Equation (5.198) was used to calculate rate constants for the three unimolecular

reactions in Fig. 5.30 (cf. Fig. 5.21). Reactants, products and transition state

structures were created with Spartan [37, 215] at the AM1 (a kind of semiempirical

method; Chapter 6) level. Transition states were calculated with Spartan’s transition

state routine starting from a guess based on the reactant and product structures and

the experience that bonds being broken or made in a transition state tend to be

roughly 50% longer than in a reactant or product. The AM1 structures were used as

inputs for MP2/6–31G* (Section 5.4.2), B3LYP/6–31G* (a kind of DFT calcula-

tion; Chapter 7), and G3(MP2) and CBS-QB3 calculations (Section 5.5.2.2b) with

Gaussian 03 [62]. A few remarks are appropriate on why I chose these particular

four computational levels, and on possible pitfalls associated with them. The first

two methods/basis are the most popular for routine calculations at correlated levels,

while G3(MP2) and CBS-QB3 are, where applicable (see above), reasonable

choices for high-accuracy multistep calculations. The Hartree–Fock level does

not, as a rule, give reasonably accurate reaction barriers [216], although the rule is

not unbreakable; for example, simple HF/6–31G* calculations give fairly good

torsional barriers for hinderedmethylbenzenes [217]. Hartree–Fock relative barriers
in a series of related reactions can be useful [218]. Note that the high-accuracy

Gaussian and CBS methods were developed for thermodynamics, not kinetics.

Nevertheless, they have been applied to the calculation of reaction barriers, and

CBS-QB3 in particular has been implied to be suitable for this purpose [186].

However, this and other standard Gaussian and CBS high-accuracy methods were

H2C
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H

CH3 C
H

O

C

O
H

H

C

H

H

ethenol
(vinyl alcohol)

ethanal
(acetaldehyde)

C
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C
H

H H

H
..

cyclopropylidene allene

..
H

H
CCC

H

H

H

isocyanomethane
(methyl isocyanide)

propanenitrile
(acetonitrile)

CH3 CN CN

C
H H

CN CH3

C

Fig. 5.30 Reactions used to illustrate the calculation of rate constants and halflives with

Eq. (5.198). Cf. Fig. 5.21
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unsatisfactory for the reaction of ozone with ethyne and ethene, and CBS-QB3 was

singled out for special cautioning; the reaction did yield to a kind of extrapolation

method, the “reference focal point approach” [219]. Ozone is, of course, a problem

molecule (Section 5.5.1), and CBS-QB3worked well for other cycloadditions [193].

The results of the calculations are summarized in Table 5.11 (calculated from the

data in Table 5.12). For each of the four computational levels, the free energy of

activation was used to calculate the rate constant and halflife using Eq. (5.197/

5.198). Table 5.11 reveals the usefulness of this simple way of calculating unim-

olecular reaction rates. All four methods yield for each reaction approximately

the same activation free energy: for CH3NC ! CH3CN, ca. 160 kJ mol�1, for

CH2¼CHOH ! CH3CHO, ca. 235 kJ mol�1, and for cyclopropylidene ! allene,

ca. 20 kJ mol�1. The qualitative, and even semiquantitative, predictions for the

stability of each compound are the same for all four methods: for CH3NC, a halflife

of ca. 1015–1016 s, for CH2¼CHOH a halflife of ca. 1026–1029 s, and for cyclopro-

pylidene, a halflife of ca. 10�10�10�9 s. Note however, that using Eq. (5.197), a

Table 5.12 Free energies of reactant and transition state (hartrees) and free energy of activation

DG{ (hartrees/kJ mol�1) by four methods; hartrees were converted to kJ mol�1 by multiplying by

2,626. The rate constants and halflives calculated from these values are given in Table 5.11

Reaction MP2/6–31G* B3LYP/6–31G* G3(MP2) CBS-QB3

CH3NC! CH3CN �132.26990 �132.69425 �132.53125 �132.51216

�132.20547 �132.63289 �132.47102 �132.45098

DG{ 0.06443/ DG{ 0.06136/ DG{ 0.06023/ DG{ 0.06118/

169.2 161.1 158.2 160.7

CH2¼CHOH !
CH3CHO

�153.28714 �153.77339 �153.60839 �153.59006

�153.19837 �153.68802 �153.51725 �153.49883

DG{ 0.08877/ DG{ 0.08537/ DG{ 0.09114/ DG{ 0.09123/

233.1 224.2 239.3 239.6

Cyclopropylidene

! allene

�116.09212 �116.51746 �116.35895 �116.33697

�116.08301 �116.50839 �116.35211 �116.32789

DG{ 0.00911/ DG{ 0.00907/ DG{ 0.00684/ DG{ 0.00908/

23.9 23.8 18.0 23.8

Table 5.11 Calculated (298 K) rate constants kr (s
�1) and halflives t1/2 (s) from kr ¼ (kBT/h)e

DG/RT/

kr ¼ (6.22 � 1012)e�DG{/2.478 (Eqs. (*5.197/5.198)) and t1/2 ¼ ln2/kr ¼ 0.693/kr, using free energies
of activation DG{ (kJ mol�1) from four methods. The free energies of reactants and transition states

that were used to calculate the free energies of activation are given in Table 5.12

Reaction MP2/6–31G* B3LYP/6–31G* G3(MP2) CBS-QB3

CH3NC! CH3CN kr 1.50 � 10�17 kr 3.63 � 10�16 kr 1.17 � 10�15 kr 4.26 � 10�16

t1/2 4.6 � 1016 t1/2 1.9 � 1015 t1/2 5.9 � 1014 t1/2 1.6 � 1015

DG{ 169.2 DG{ 161.1 DG{ 158.2 DG{ 160.7

CH2¼CHOH !
CH3CHO

kr 8.72 � 10�29 kr 3.17 � 10�27 kr 7.15 � 10�30 kr 6.33 � 10�30

t1/2 7.95 � 1027 t1/2 2.2 � 1026 t1/2 9.7 � 1028 t1/2 1.1 � 1029

DG{ 233.1 DG{ 224.2 DG{ 239.3 DG{ 239.6

Cyclopropylidene

! allene

kr 4.03 � 108 kr 4.19 � 108 kr 4.36 � 109 kr 4.19 � 108

t1/2 2.5 � 10�9 t1/2 2.4 � 10�9 t1/2 1.6 � 10�10 t1/2 2.4 � 10�9

DG{ 23.9 DG{ 23.8 DG{ 18.0 DG{ 23.8
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change in activation free energy of 5 kJ mol�1 can alter the rate constant or halflife

by a factor of about 10:

DGz ¼ 100 kJmol�1; kr ¼ 1:9� 10�5s�1; t1=2 ¼ 4� 104s

DGz ¼ 105 kJmol�1; kr ¼ 2:5� 10�6s�1; t1=2 ¼ 3� 105s

DGz ¼ 110 kJmol�1; kr ¼ 3:3� 10�7s�1; t1=2 ¼ 3� 106s

Comparing our calculations with the experimental facts:

CH3NC ! CH3CN reaction

The experimental Arrhenius activation energy and rate constant for the gas

phase isomerization of methyl isocyanide have been reported (at the lowest pressure

used) thus: Ea ¼ 36.27 kcal mol�1, i.e. 151.8 kJ mol�1, and log A ¼ 10.46, i.e. A ¼
2.88�1010 s�1 [220]. We want to compare our calculated activation free energy with

an experimental value, let us calculate DG{ from Ea and A. From the Arrhenius

equation Eq. (5.174) and the Eyring equation Eq. (5.197) it follows that

DGz ¼ �RT lnðA=ðkBT=hÞÞ þ Ea ð5:199Þ

Using the values of the constants given above for Eq. (5.197), we find

DGz ¼ �2:478 lnðA=ð6:22� 1012ÞÞ þ Ea ð5:200Þ

with energies in kJ mol�1 as usual. Using this equation and Ea and A from [220], the

experimentally-derived DG{ is 165.1 kJ mol�1. This is in good agreement with the

calculated values of 158–169 kJ mol�1 in Table 5.11.

CH2¼CHOH ! CH3CHO Reaction

The reported halflife of ethenol (vinyl alcohol) in the gas phase at room temper-

ature is ca. 30 min [221], far shorter than our calculated 1028–1029 s. However, the

30 min halflife is very likely that for a protonation/deprotonation isomerization

catalyzed by the walls of the vessel, rather than for the concerted hydrogen

migration (Fig. 5.30) considered here. Indeed, the related ethynol has been detected
in planetary atmospheres and interstellar space [222], showing that that molecule,

in isolation, is long-lived. Even under the more confined conditions of the lab,

ethenol can be studied in the gas phase [221, 223] and in solution [224]. All three

methods predict very long halflives for the uncatalyzed reaction.

Cyclopropylidene ! allene reaction

Cyclopropylidene has apparently never been isolated [225], so its halflife

is likely to be short even well below room temperature. Employing a variety of

methods, Bettinger et al. obtained a barrier for its rearrangement to allene of about

4 kcal mol�1, i. e ca. 17 kJ mol�1 [226], not far from our values of 18–24 kJ mol�1.

328 5 Ab initio Calculations



Our calculations predict room temperature halflives for cyclopropylidene of about

10�9–10�10 s. Attempts to generate cyclopropylidene at 77 K gave allene [225]. We

can calculate the halflife at 77 K, instructing Gaussian 03 to use this temperature for

thermochemistry. Using CBS-QB3, the resulting DG{ is 25.1 kJ mol�1 (very little

change from the 298 K value of 23.8 kJ mol�1), and with this and T ¼ 77 K,

Eq. (5.197) gives kr ¼ 1.49 � 10�5 and a halflife of 4.7 � 104 s, ca. 13 h.

Cyclopropylidene ought to be observable at 77 K.

From Eq. (5.197) and the fact that for a unimolecular reaction t1=2 ¼ ln 2=kr it
follows that

log t1=2 ¼ log ðln 2Þ h

kBT

� �
þ DGz

RT
� log e ð5:201Þ

At 298 K (about room temperature) this becomes

log t1=2 ¼ 0:175DGz � 13:0 ð5:202Þ

where DG{ is in kJ mol�1. Eq (5.202) shows that for DG{ ¼ 0 kJ mol�1, t1=2 is

about �10�13 s; this is as expected, since the period of a molecular vibration

is about 10�13�10�14 s and with no barrier a species should survive for only

about one vibrational motion (that along the reaction coordinate, corresponding to

the imaginary frequency) as it passes through the saddle region (e.g. Fig. 5.29).

Figure 5.31, a graph of Eq. (5.202), can be used to estimate halflives at room

log t1 / 2 (t in s)

50 100 1500

10

20

30

40

50

–10

–20

ΔG , kJ mol–1

Fig. 5.31 Graph of log t1/2 ¼ 0.175DG{ � 13.0. If this equation for the halflife of a unimolecular

reaction were strictly true, then the threshold value of DG{ for ready observability at room

temperature would be about 85 kJ mol�1, corresponding to t1/2 ¼ 75 s. Actually, a rough rule of

thumb is that the threshold barrier for observability at room temperature is about 100 kJ mol�1

5.5 Applications of the Ab initio Method 329



temperature from the free energy of activation, for unimolecular isomerizations.

This regards DG{ as only a weak function of T, as seems to be the case – see the

above calculation for cyclopropylidene at 77 K. We see that the threshold value of

DG{ for observability at room temperature for a species that decays by a unim-

olecular process is predicted to be about 80–90 kJ mol�1 (t1=2 ¼ 10 s–9 min),

with a strong dependence on DG{. Experience gives a similar result: in fact the

threshold barrier for observing or isolating a compound at room temperature is

about 100 kJ mol�1 [152, 153].

So far as Eq. (5.197) can deliver them, “quantitatively accurate” reaction rates,

say to within a factor of 2, require activation energies accurate to within about 2 kJ

mol�1. Nevertheless, the equation does provide a simple way of obtaining service-

ably good rate constants. The (admittedly small) selection of reactions here shows

no bias toward low or high calculated barriers for any of the four methods, and for a

particular kind of reaction it is advisable to choose a method based on a comparison

of methods with experiment results where this information is available.

5.5.2.2e Energies: Concluding Remarks

Foresman and Frisch [227], in a chapter with very useful data and recommendations

regarding accuracy, show large mean absolute deviations (MAD) and unreservedly

enormous maximum errors for Hartree–Fock calculations and even for MP2 calcu-

lations with reasonably big basis sets; for example:

HF/6–31þG** MAD, 195 kJ mol�1 (46.7 kcal mol�1)

Max. Error, 753 kJ mol�1 (179.9 kcal mol�1)

MP2/6–311þG(2d,p) MAD, 37 kJ mol�1 (8.9 kcal mol�1)

Max. Error, 164 kJ mol�1 (39.2 kcal mol�1)

How can this be reconciled with the results shown in this chapter and the modest

levels endorsed by Hehre [39]? As hinted in reference [227] (“Don’t Panic!” p. 146,

and “Don’t be overly alarmed, p. 149), the large errors reported are a composite

including some “tough cases” [228] like atomization energies (e.g. Section 5.4.3.3).

A good feel for the accuracy of various levels of calculation will emerge from

examining the extensive data in Hehre’s book [39], not losing sight of the fact that

there are cases that yield only to high-accuracy methods (not necessarily multistep

methods like those of Section 5.5.2.2b).

For relief and reassurance, Table 5.13 shows the relative energies of some

isomers calculated at modest levels, namely HF/3–21G(*), HF/6–31G*, and

MP2/6–31G*. For a reality check, we also see values from G3(MP2) and experi-

ment (experiment: fulvene/benzene, [229/230]; cyclopropane/propene, [231/231];

dimethyl ether/ethanol, [232/233]; methylcyclopentane/cyclohexane, [230/234]).

The energy differences chosen for this illustration are enthalpy differences, because

differences in heats of formation yield these, and heats of formation represent the

most extensive compilations of experimental energy quantities relevant to our
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purpose. All the levels predict the correct stability order in these four cases, but are

vulnerable to varying extents to a narrowing of energy differences, as indicated in

the following brief analysis. The HF/3–21G(*) level can overestimate (cyclopro-

pane/propene) or underestimate (dimethyl ether/ethanol) the enthalpy difference

very considerably. The HF/6–31G* level does better, but considerably underesti-

mates the difference for dimethyl ether/ethanol. The MP2 level does fairly

well semiquantitatively, its energy difference being within experimental by about

10–15 kJ mol�1, except possibly for fulvene/benzene, where the difference could

be ca. 20 kJ mol�1 if the reported experimental heat of formation of fulvene is in

error ([229] and the note on Table 5.13). The G3(MP2) method does well; even the

apparent 10 kJ mol�1 discrepancy for fulvene/benzene could be due to possible

experimental error for fulvene [229]. Of course the G3(MP2) values shown here are

differences in heats of formation, and may benefit from cancellation of errors in

calculated 298 K enthalpies. We saw in Section 5.5.2.2c the calculation of “abso-

lute” heats of formation.

5.5.3 Frequencies and Vibrational Spectra

The calculation of normal-mode frequencies (Section 2.5) is important because:

1. The number of imaginary frequencies of a molecular species tells us the quali-

tative nature of the curvature of the potential energy surface at that particular

stationary point: whether an optimized structure (i.e. a stationary point-species)

is a minimum, a transition state (a first-order saddle point), or a higher-order

saddle point. Note that frequency calculations are normally valid only for

stationary points; this rule is knowingly violated occasionally, e.g. when techni-

cally invalid but useful force constants or frequencies are calculated as aids to an

algorithmic process like geometry optimization (Section 2.4)or following an

IRC (Sections 2.2, 2.5 and 2.6). Routinely checking optimized structures with a

frequency calculation is a good idea, if the size of the job does not make this

impractical (frequencies take longer than optimizations).

2. The frequencies must be calculated to get the zero point energy of the molecule.

This is needed for accurate energy comparisons (Section 2.5).

3. The normal-mode vibrational frequencies of a molecule correspond, with qua-

lifications, to the bands seen in the infrared (IR) spectrum of the substance.

Discrepancies may arise from overtone and combination bands in the experi-

mental IR, and from problems in accurate calculation of relative intensities (less

so, probably, from problems in calculation of frequency positions). Thus the IR

spectrum of a substance that has never been made can be calculated to serve as a

guide for the experimentalist. Unidentified IR bands observed in an experiment

can sometimes be assigned to a particular substance on the basis of the calcu-

lated spectrum of a suspect; if the spectra of the usual suspects are not available

from experiment (they might be extremely reactive, transient species), we can

calculate them.
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The characterization of stationary points by the number of imaginary frequen-

cies was discussed in Chapter 2, and zero-point energies in Chapter 2 and earlier

sections of this chapter. Here we will examine the utility of ab initio calculations for

the prediction of IR spectra [235]. It is important to remember that frequencies

should be calculated at the same level (e.g. HF/3–21G(*), MP2/6–31G*, ...) as was

used for the geometry optimization (Section 2.4). This is because accurate calcula-

tion of the curvature of the PES at a stationary point requires that the second

derivatives ∂2E/∂qi∂qj be found at the same level as was used to create the surface

on which the point sits.

5.5.3.1 Positions (Frequencies) of IR Bands

In Section 2.5, we saw that diagonalization of the force constant matrix gives an

eigenvector matrix whose elements are the “direction vectors” of the normal-mode

vibrations, and an eigenvalue matrix whose elements are the force constants of

these vibrations. “Mass-weighting” the force constants gives the wavenumbers

(“frequencies”) of the normal-mode vibrations, and their motions can be identified

by using the direction vectors to animate the vibrations. So we can calculate the

wavenumbers of IR bands and associate each band with some particular vibrational

mode. The wavenumbers (“frequencies”) from ab initio calculations are larger than

the experimental ones, i.e. the frequencies are too high. There are two reasons why

this might be so: the principle of equating second derivatives of energy (with

respect to geometry changes) with force constants might be at fault, or the basis

set and/or correlation level might be deficient.

The principle of equating a second derivative with a stretching or bending force

constant is not exactly correct. A second derivative @2E=@q2 would be strictly equal
to a force constant only if the energy were a quadratic function of the geometry, i.e.

if a graph of E versus q were a parabola. However vibrational curves are not exactly
parabolas (Fig. 5.32). For a parabolic E/q relationship, and considering a diatomic

molecule for simplicity, we would have:

E ¼ k

2
ðq� qeqÞ2 ð5:203Þ

where qeq is the equilibrium geometry. Here k is by definition the force constant, the
second derivative of E, and @2E=@q2 ¼ k. For a real molecule, however, the E/q
relationship is more complicated, being a power series in q2, q3, etc., terms, and

there is not just one constant. Equation (5.203) holds for what is called simple
harmonic motion, and the coefficients of the higher-power terms in the more

accurate equation are called anharmonicity corrections. Assuming that bond vibra-

tions are simple harmonic is the harmonic approximation.
For small molecules it is possible to calculate from the experimental IR spectrum

the simple harmonic force constant k and the anharmonicity corrections. Using k,
theoretical harmonic frequencies can be calculated [236]. These correspond to a
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parabolic E/q relationship (Fig 5.32), i.e. to a steeper curve than the real one, and

thus to stiffer bonds. Stiffer bonds need more energy to stretch them (or bend them,

for bending force constants), and thus absorb higher-frequency infrared light.

Harmonic frequencies thus derived from experimental IR spectra are higher than

the observed (the “raw”) experimental frequencies, and are closer to ab initio

frequencies than are the observed frequencies [237]. Since both theoretically

calculated (e.g. by ab initio methods) frequencies and experimentally-derived

harmonic frequencies are based on a parabolic E/q relationship, it is sometimes

considered better to compare calculated frequencies with harmonic frequencies

rather than observed experimental frequencies [238]. Because both ab initio- and

experimentally-derived harmonic frequencies rest on second derivatives, we might

expect ab initio frequencies to converge not toward the observed experimental, but

rather toward the experiment-derived harmonic frequencies, as correlation level/

basis set are increased. This is indeed the case, as has been shown by calculations on

water with high correlation levels (CCSD(T); Section 5.4.3) and large basis sets

(polarization functions and triply- or quadruply- split valence shells (Section 5.3.3).

The observed water frequencies are 3,756, 3,657, and 1,595 cm�1. For these three

fundamental frequencies, the deviations fell from 269, 282, and 127 cm�1 at the

Hartree–Fock level to only 9, 13 and 10 cm�1 higher than the experiment-derived

harmonic values of 3,943, 3,832 and 1,649 cm�1 [239]. Such harmonic frequencies

are typically about 5% higher, and ab initio calculated frequencies about 5–10%

Δ r

E
energy idealized 

actual 
curve

E vs. Δ r 

0 extension of bond
(amount of stretching)

E vs.  Δ r curve (a parabola)

Fig. 5.32 The actual curve for potential energy vs. stretch for a bond is not really a parabola, i.e.

not really E ¼ (Dr)2, but near the equilibrium bond length (Dr ¼ 0) the parabola fits the actual

curve fairly well
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higher, than observed frequencies. From the foregoing discussion it appears that the

fundamental reason ab initio frequencies are too high is because of the harmonic

approximation: equating of @2E=@q2 with a force constant. There is no theoretical

reason why high-level calculations should converge toward the observed frequen-

cies; this statement applies to frequencies calculated, as is almost always the case,

by the harmonic approximation (above). Frequencies accurate to within about 1%

were obtained for a set of small molecules using high correlation levels and

medium-size basis sets [240].

Fortunately for us, we wish only to calculate IR spectra that resemble, or would

resemble, experimental ones, and for this there is a simple expedient. Calculated

and observed frequencies differ by a fairly constant factor, and ab initio (and other

theoretically-calculated) frequencies can be brought into reasonable agreement

with experiment by multiplying them by a correction factor. An extensive compari-

son by Scott and Radom of calculated and experimental frequencies [80] has

provided empirical correction factors for frequencies calculated by a variety of

methods. A few of the correction factors from this compilation are:

HF/3–21G(*) 0.9085

HF/6–31G* 0.8953

HF/6–311G(df,p) 0.9054

MP2(fc)/6–31G* 0.9434

MP2(fc)/6–311G** 0.9496

The correction factors at the HF level with the three basis sets are similar,

0.90–0.91; the factors at the MP2 level are significantly closer to 1, but Scott and

Radom say that “MP2/6–31(d) does not appear to offer a significant improvement

in performance over HF/6–31G(d) and occasionally shows large errors”, and “The

most cost-effective procedures found in this study for predicting vibrational fre-

quencies are HF/6–31(d) and [certain density functional methods]”. Separate cor-

rection factors for zero-point vibrational energies were also given, and although it

was hitherto common practice to use the same correction factor for frequencies and

for ZPEs, the use of separate factors is now standard. Better agreement with

experiment can be obtained by using empirical correction factors for specific

kinds of vibrations (Scott and Radom give separate factors for low-frequency

vibrations, as opposed to the relatively high-frequency ones to which the factors

listed above refer), but this is rarely done.

5.5.3.2 Intensities of IR Bands

The bands in an IR spectrum have not just positions (“frequencies”, denoted by

various wavenumbers), but also intensities. IR intensities present considerably

more difficulties in their measurement and theoretical calculation than do frequen-

cies, and in fact experimental intensities are not routinely quantified, but are

commonly merely described as weak, medium, or strong. To calculate an IR

spectrum for visual comparison with experiment it is desirable to compute both
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wavenumbers and intensities. The intensity of a vibration is determined by the

change in dipole moment accompanying the vibration. If a vibrational mode leads

to no change in dipole moment, the mode will, theoretically, not result in absorption

of an IR photon, because the oscillating electric fields of the radiation and the

vibrational mode will be unable to couple. Such a vibrational mode is said to be IR-
inactive, i.e. it should cause no observable band in the IR spectrum. Stretching

vibrations that, because of symmetry, are not accompanied by a change in dipole

moment, are expected to be IR-inactive. These occur mainly in homonuclear

molecules like O2 and N2, and in linear molecules; thus the C/C triple bond stretch

in symmetrical akynes, and the symmetric OCO stretch in carbon dioxide, do not

engender bands in the IR spectrum. For Raman spectroscopy, in which one mea-

sures the scattered rather than the transmitted IR light, the requirement for observ-

ing a vibrational mode is that the vibration occur with a change in polarizability.

Raman spectra are routinely calculable (e.g. by the Gaussian programs [36]; the IR

and Raman frequencies, but not intensities, are the same) along with IR spectra. The

complementarity of IR and Raman spectra can be useful in studying the symmetry

of molecules. A band which should be IR-inactive or at least very weak can in fact

sometimes be seen because of coupling with other vibrational modes; thus the

triple-bond stretch of 1,2-benzyne (o-benzyne, dehydrobenzene, C6H4) has been

observed [241], although it apparently should be accompanied by only a very small

change in dipole moment. Bands like this are expected to be, at best, weak.

As might be expected from the foregoing discussion, the intensity of an IR

normal mode can be calculated from the change in the dipole moment with the

change in geometry accompanying the vibration. The intensity is proportional to

the square of the change in dipole moment with respect to geometry:

I ¼ constant� dm
dq

� �2

ð5:204Þ

This can be used to calculate the relative intensities of IR bands (the calculation of

dipole moments is discussed in the next section). One way to calculate the derivative

is to approximate it as a ratio of finite increments (d becomes D) and calculate the

change in dipole moment with a small change in geometry; there are also analytical

methods for calculating the derivative [242]. A book has been written on the subject

of vibrational intensities [243]. It has been reported that at the HF-level calculated IR-

band intensities often differ from experiment by a factor of over 100% but at theMP2

level are typically within 30% of experiment [244]. Schaefer and coworkers achieved

“Quantitative accord” between theory and experiment for six small molecules

using QCISD, CCSD, and CCSD(T) (Section 5.4.3) with Dunning’s aug-cc-pVTZ

(Section 5.3.1) basis sets [245], but these levels are currently too high for routine

optimization and frequencies on even medium-size (say about 10–20 heavy atoms)

molecules. With continued growth in computer power this situation will change. It

should be possible to increase the accuracy of predicted spectra empirically by per-

forming calculations on a series of known compounds and fitting the experimental to

the calculated wavenumbers, and perhaps intensities, to obtain empirical corrections

tailored specifically to the functional group of interest. Such painstaking work would
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be unusual. A few IR spectra calculated at routinely practical levels are shown in

Figs. 5.33–5.36 and compared with gas-phase spectra taken by the author. This

sample, although very limited, gives one an idea of the kind of similarity one can

expect between experimental and ab initio IR spectra. A detailed resemblance cannot

be expected, but the general features of a spectrum are reproduced. Probably the main

utility of calculated ab initio IR spectra is in predicting the IR spectra of unknown

molecules, as an aid to their synthesis, and the levels shown here are evidently

adequate for this.

5.5.4 Properties Arising from Electron Distribution: Dipole
Moments, Charges, Bond Orders, Electrostatic Potentials,
Atoms-in-Molecules (AIM)

We have seen three applications of ab initio calculations: finding the shapes

(geometries), the relative energies, and the frequencies of stationary points (usually

minima and transition states) on a potential energy surface:
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1. The shape of a molecular species can provide clues to the existence of theoreti-

cal principles (why is it that benzene has six equal-length CC bonds, but

cyclobutadiene has two “short” and two “long” bonds [246]?), or act as a

guide to designing useful molecules (docking a candidate drug snugly into the

active site of an enzyme requires a knowledge of the shapes of the drug and of

the active site [109]). Although shape is one of the fundamental characteristics

of a molecule, it is amusing and yet thought-provoking that the question has

been asked whether this is really a necessary property [247]! The basic problem

here seems to be that according to quantum mechanics, for any observable

property of a system there is a corresponding operator, which in principle allows

the property (its expectation value, actually) to be calculated using the wave-

function (Section 5.2.3.3); however, there is no shape operator. Trindle has

worked on reconciling this quantum mechanical conundrum with reality [248].

Molecular shape has been treated at book length by Mezey [249].
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2. The energy of a molecular species relative to the energies of other species

on a potential energy surface is fundamental to a knowledge of its kinetic

and thermodynamic behaviour, and this can be important in attempts to

synthesize it.

3. The vibrational frequencies of a molecule provide information about the elec-

tronic nature of its bonds, and prediction of the spectra represented by these

frequencies may be useful to experimentalists.

A fourth important characteristic of a molecule is the distribution of electron
density in it. Calculation of the electron density distribution enables one to predict

the dipole moment, the charge distribution, the bond orders, and the shapes of

various molecular orbitals.
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5.5.4.1 Dipole Moments

The dipole moment [250] of a system of two charges Q and �Q separated by a

distance r is, by definition, the vector Qr; the direction of the vector is officially

from �Q toward þQ, but chemists usually assign a molecular or bond dipole (see

below) the direction from the positive end of the bond or molecule to the negative

(Fig. 5.37a). The dipole moment of a collection of charges Q1, Q2, ..., Qn, with

corresponding position vectors r1, r2, ..., rn (Fig. 5.37b) is

m ¼
Xn
1

Qiri ð5:205Þ

and the so the dipole moment of a molecule is seen to arise from the charges and

positions of its component electrons and nuclei. For a neutral molecule the dipole

moment is an unambiguous experimental observable [251] (unlike some other

quantities based on electron distribution), with which we can compare calculated
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moments. It is often convenient to think of the molecular dipole moment in a more

pictorial form than that presented by Eq. (5.205), namely as the vector sum of bond

moments (Fig. 5.37c). Two points should be noted: we are discussing an average
dipole moment, because electron and nuclear motions will cause the dipole moment

m1 m2
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H H

a
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x

y

Q1

Q2

Q3

.

.

.

b

+Q –Q

r

r1

r2

r3

(vector sum of products of charges and distance vectors)

c

m = vector sum of m1 and m2

m = ∑ Q ir i

m = Qr

Fig. 5.37 (a) Chemists usually consider the dipole moment of a diatomic molecule, the vectorQr,
to be directed from the positive to the negative atom. (b) The dipole moment of a collection of

charges, such as a molecule, arises from the magnitudes of the charges, and their locations (i.e.

distances and directions from the origin. (c) The dipole moment of a molecule can be thought of as

the vector sum of bond moments
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to fluctuate, so that even a spherical atom can have temporary nonzero dipole

moments. Another point is that we usually consider the dipole moments of neutral
molecules only, not of ions, because the dipole moment of a charged species is not

unique, but depends on the choice of the point in the coordinate system from which

the position vectors are measured.

Let us look at the calculation of the dipole moment within the Hartree–Fock

approximation. The quantum mechanical analogue of Eq. (5.205) for the electrons

in a molecule is

m ¼ Cj
X2n
j¼1

erjjC
* +

ð5:206Þ

Here the summation of charges times position vectors is replaced by the integral

over the total wavefunction C (the square of the wavefunction is a measure of

charge) of the dipole moment operator (the summation over all electrons of the

product of an electronic charge and the position vectors of the electrons). To

perform an ab initio calculation of the dipole moment of a molecule we want an

expression for the moment in terms of the basis functions f, their coefficients c, and
the geometry (for a molecule of specified charge and multiplicity these are the only

“variables” in an ab initio calculation). The Hartree–Fock total wavefunction C is

composed of those component orbitals c which are occupied, assembled into a

Slater determinant (Section 5.2.3.1), and the c’s are composed of basis functions

and their coefficients (Sections 5.3). Equation (5.206), with the inclusion of the

contribution of the nuclei to the dipole moment, leads to the dipole moment in

Debyes as (ref. [1g], p. 41)

m ¼ �2:5416
XN
A

ZARA �
Xm
r

Xm
s

Prs frjrjfsh i
" #

ð5:207Þ

Here the first term refers to the nuclei charges and position vectors and the

second term (the double summation) refers to the electrons. Prs¼ the density matrix

elements (Sections 5.2.3.6.4 and 5.2.3.6.5), cf.:

Ptu ¼ 2
Xn
j¼1

c�tjcuj ð5:208 ¼ 5:81Þ

The P summation is over the occupied orbitals (j ¼ 1, 2, . . . , n; we are

considering closed-shell systems, so there are 2n electrons) and the double summa-

tion in Eq. (5.207) is over the m basis functions. The operator r is the electronic

position vector.

How good are ab initio dipole moments? Hehre’s extensive survey of practical

ab initio methods [39] indicates that fairly good results are given by HF/6–31G*//

HF/6–31G* (dipole moment from a HF/6–31G* calculation on a HF/6–31G*

geometry) calculations, and that MP2/6–31G*//MP2/6–31G* calculations are

342 5 Ab initio Calculations



usually not much better. Some calculated and experimental dipole moments are

compared in Table 5.14. These results, which are quite typical, indicate that

calculated values tend to be about 0.0–0.5 D higher than experimental, with a

mean deviation of about 0.3 D; negative deviations are rare. HF/3–21G(*)//HF/

3–21G(*) (the lowest ab initio level likely to be used) calculations may show the

largest deviations. Single-point HF/3–21G(*) calculations on HF/6–31G* geome-

tries appear to give results about as good as (or better than? Note CH3NH2, and

ref. [39], pp. 76, 77) those from MP2(fc)/6–31G*//MP2(fc)/6–31G* calculations.

As is the case for other properties, 3–21G(*) calculations of dipole moments on

molecules with atoms beyond neon require polarization functions for reasonable

results (the 3–21G(*) basis; ref. [39], pp. 23–30). The 3–21G(*) calculations in

Table 5.14 show a mean deviation 0.33; the HF/6–31G* calculations are only

slightly better (mean deviation 0.26) and the MP2/6–31G* calculations appear to

be, if anything, slightly worse (mean error 0.34). If high-accuracy calculated dipole

moments (0.1 D or better) are needed, high-level correlation and large basis sets

must be used; such calculations may be needed to reproduce the magnitude and

even the direction of small dipole moments [252], such as in carbon monoxide, a

notorious case [253].

5.5.4.2 Charges and Bond Orders

Chemists make extensive use of the idea that the atoms in a molecule can be

assigned electrical charges. Thus in a water molecule each hydrogen atom is

considered to have an equal, positive, charge, and the oxygen atom to have a

negative charge (equal in magnitude to the sum of the hydrogen charges). This

Table 5.14 Some calculated dipole moments compared to experimental ones

Computational level

HF/3–21G(*)// HF/6–31G*// HF/6–31G*// MP2(fc)/6–31G*// Exp.

HF/3–21G(*) HF/3–21G(*) HF/6–31G* MP2(fc)/6–31G*

CH3NH2 1.44 1.3 1.53 1.6 1.3

H2O 2.39 2.18 2.2 2.24 1.9

HCN 3.04 3.2 3.21 3.26 3

CH3OH 2.12 1.95 1.87 1.95 1.7

Me2O 1.85 1.64 1.48 1.6 1.3

H2CO 2.66 2.79 2.67 2.84 2.3

CH3F 2.34 2.18 1.99 2.11 1.9

CH3Cl 2.31 2.32 2.25 2.21 1.9

Me2SO 4.27 4.55 4.5 4.63 4

CH3CCH 0.71 0.64 0.64 0.66 0.8

Deviations 9þ, 1� 8þ, 2� 9þ, 1� 9þ, 1�
Mean 0.33 0.31 0.26 0.34

Dipole moments are in Debyes; the computational levels are arranged, from left to right, in what is

conventionally considered lowest to highest. Calculations are by the author; experimental values

are taken from reference [1g], pp 326, 329, 332, 335. For each level is given the number of positive

and negative deviations and the arithmetic mean of the absolute values of the deviations.
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concept is clearly related to the dipole moment: in a diatomic (for simplicity)

molecule one expects the negative end of the dipole vector to point toward the

atom assigned the negative charge. However, there are two problems with the

concept: first, the charge on an atom in a molecule, unlike the dipole moment of

a molecule, cannot be (readily [254]) measured. Second, there is no unique, correct

theoretical method for calculating the charge on an atom in a molecule (devotees of

atoms-in-molecules (AIM) theory, to be discussed, may dispute this).

Both the measurement and calculational problems arise from the difficulty of

defining what we mean by “an atom in a molecule”. Consider the hydrogen chloride

molecule. As we move from the hydrogen nucleus to the chlorine nucleus, where
does the hydrogen atom end and the chlorine atom begin? If we had a scheme for

partitioning the molecule into atoms (Fig. 5.38a), the charge on each atom could be

defined as the net electric charge within the space of the atom, i.e. the algebraic sum

of the electronic and the nuclear charges. The electronic charge in the defined space

could be found by integrating the electron density (which can be calculated from the

wavefunction – see Section 5.5.4.5) over that region of space.

Bond order is a term with conceptual difficulties related to those associated with

atom charges. The simplest electronic interpretation of a bond is that it is a pair of

electrons shared between two nuclei, somehow [255] holding them together. From

A
B

C

A
B

C

a

b

A

B C

A

B C

A-B bonding
region ?

 Where does atom A end and B begin?

? ?

Fig. 5.38 (a) In a molecule where does one atom end and another begin? How is the dividing

surface to be drawn? (b) How is the bonding region between two nuclei to be defined?

344 5 Ab initio Calculations



this criterion and Lewis structures the C/C bond order in ethane is 1, in ethene 2, and

in ethyne 3, in accordance with the classical assignment of a single, a double, and a

triple bond, respectively. However, if a bond is a manifestation of the electron

density between two nuclei, then the bond order need not be an integer; thus the

C¼C bond in H2C¼CH–CHO might be expected to have a lower bond order than

the C¼C in H2C¼CH–CH3, because the C¼O group might drain electron density

away toward the electronegative oxygen. However, an attempt to calculate bond

order from electron density runs into the problem that in a polyatomic molecule, at

any rate, it is not clear how to define precisely the region “between” two atomic

nuclei (Fig. 5.38b).

Assigning atom charges and bond orders involves calculating the number of

electrons “belonging to” an atom or shared “between” two atoms, i.e. the “popula-

tion” of electrons on or between atoms; hence such calculations are said to involve

population analysis. Earlier schemes for population analysis bypassed the problem

of defining the space occupied by atoms in molecules, and the space occupied by

bonding electrons, by partitioning electron density in a somewhat arbitrary way.

The earliest such schemes were utilized in the simple H€uckel or similar methods

[256], and related these quantities to the basis functions (which in these methods are

essentially valence, or even just p, atomic orbitals; see Section 4.3.4). The simplest

scheme used in ab initio calculations is Mulliken population analysis [257].
Mulliken population analysis is in the general spirit of the scheme used in the

simple H€uckel method, but allows for several basis functions on an atom and does

not require the overlap matrix to be a unit matrix. In ab initio theory each molecular

orbital has a wavefunction c (Section 5.2.3.6.1):

c1 ¼ c11f1 þ c21f2 þ c31f3 þ � � � cm1fm

c2 ¼ c12f1 þ c22f2 þ c32f3 þ � � � cm2fm

c3 ¼ c13f1 þ c23f2 þ c33f3 þ � � � cm3fm

..

.

cm ¼ c1mf1 þ c2mf2 þ c3mf3 þ � � � cmmfm

ð5:209 ¼ 5:51Þ

Here the chosen basis set {f1, f2, ..., fm } engenders MOs c1, c2, ..., cm.

Several basis functions can reside on each atom, so csi is the coefficient of basis

function s in MO i (not, as in simple H€uckel theory, the sole coefficient of atom s in
MO i). For any MO ci, squaring and integrating over all space gives

Z
jcij2dv ¼ 1 ¼ c1ic1iS11 þ c2ic2iS22 þ � � �
þ 2c1ic2iS12 þ 2c1ic3iS13 þ 2c2ic3iS23 þ � � �

ð5:210Þ

The integral equals 1 because the probability that the electron is somewhere in

the MO (which, strictly, extends over all space) is 1; the Sii (both f’s the same)
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overlap integrals are also unity, since the basis functions are normalized (cf.

Section 4.4.1.2).

In the Mulliken scheme each electron in ci is taken to contribute a “fraction of an

electron” c1i c1iS11¼ c21i to basis function f1, and a fraction of an electron 2c1ic2iS12
(see Eq. (5.210)) to the f1/f2 overlap region, and in general to contribute a fraction

of an electron c2ri to the basis function (loosely, the atomic orbital) fr on an atom,

and a fraction of an electron 2cricsiSrs to the fr/fs interatomic overlap space; see

Fig. 5.39a. This seems reasonable since (1), the terms sum to one (the “fractions” of

the electron must add to one), and (2) it seems reasonable to partition out the

contribution of electrons to basis functions and to overlap regions from the

fs1 fs2

b

nr / s2
nr / s1nr

(population due solely to fr) 

MO yi, formed from basis functions f1 and f2

a

– – –

–

–
–

–

–– –
–

–

fr fr

fr
fr fs

Fig. 5.39 The Mulliken scheme for partitioning electron density
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“electron density sum” in Eq. (5.210). Now if there are ni electrons in MO ci, then

the contributions of ci to the electron population of basis function fr and of the

overlap region between fr and fs are

nr;i ¼ nic
2
ri ð5:211Þ

and

nr=s;i ¼ nið2cricsiSrsÞ ð5:212Þ

The total contributions from all the MOs to the electron population in fr and in

the overlap region between fr and fs are

nr ¼
X
i

nr;i ¼
X
i

nic
2
ri ð5:213Þ

and

nr=s ¼
X
i

nr=s;i ¼
X
i

nið2cricsiSrsÞ ð5:214Þ

The sums are over the occupied MOs, since ni ¼ 0 for the virtual MOs. The

number nr is the Mulliken net population in the basis function fr, and the number

nr/s is theMulliken overlap population for the pair of basis functions fr and fs. The

net population summed over all r plus the overlap population summed over all r/s
pairs equals the total number of electrons in the molecule.

The quantities nr and nr/s are used to calculate atom charges and bond orders.

The Mulliken gross population in the basis function fr is defined as the Mulliken

net population nr (Eq. (5.211)) plus one half of all those Mulliken overlap popula-

tions nr/s (Eq. (5.212)) which involve fr (of course for some fs, nr/s may be

negligible; e.g. for well-separated atoms Srs is very small):

Nr ¼ nr þ 1

2

X
s6¼r

nr=s ð5:215Þ

The gross population Nr is an attempt to represent the total electron population in

the basis function fr; this is considered here to be the net population nr, the
population that all the occupied MOs contribute to fr through the representation

of fr in each ci by its coefficient cri (Eq. (5.213), plus one-half of the all the

populations in the overlap regions involving fr (Fig. 5.39b). Assigning to fr one-

half, rather than some other fraction, of the electron population in an overlap region

with fs is said to be arbitrary. Of course it is not arbitrary, in the sense that Mulliken

thought about it carefully and decided that one-half was at least as good as any other

fraction. One might imagine a more elaborate partitioning in which the fraction
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depends on the electronegativity difference between the atoms on which fr and

fs reside, with the more electronegative atom getting the larger share of the electron

population. To get the charge on an atom A we calculate the gross atomic popula-
tion for A:

NA ¼
X
r2A

Nr ð5:216Þ

This is the sum over all the basis functions fr on atom A (r ∈ A qualifying

the summation means “r belonging to A”) of the gross populations in each fr

(Eq. (5.215); it involves all the basis functions on A and all the overlap regions

these functions have with other basis functions fs. We can regard NA as the total

electron population on atom A (within the limits of the Mulliken treatment). The

Mulliken charge on atom A, the net charge on A, is then simply the algebraic sum

of the charges due to the electrons and the nucleus:

qA ¼ ZA � NA ð5:217Þ

The Mulliken bond order for the bond between atoms A and B is the total

population for the A/B overlap region:

bAB ¼
X

r;s2A;B
nr=s ð5:218Þ

The overlap population for basis functions fr and fs (Eq. (5.214)) is summed

over all the overlaps between basis functions on atoms A and B.

Since the formulas for calculating Mulliken charges and bond orders

(Eqs. (5.211)–(5.218)) involve summing basis function coefficients and overlap

integrals, it is not too surprising that they can be expressed neatly in terms of the

density matrix (Section 5.2.3.6.4) P and the overlap matrix S (Section 4.3.3). The

elements of the density matrix P are (cf. Eqs. 5.208 ¼ 5.81)

Prs ¼ 2
Xn
i¼1

cricsi ð5:219Þ

The matrix element Prs is summed over all filled MOs (from c1 to cn for the

ground electronic state of a 2n-electron closed-shell molecule); an example of the

calculation of P was given in Section 5.2.3.6.5. The elements of the overlap matrix

S are simply the overlap integrals:

Srs ¼
Z

frfsdv ð5:220Þ

From Eq. (5.219) it follows that the matrix (PS) obtained by multiplying

corresponding elements of P and S,
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ðPSÞ ¼

ðPSÞ11 ðPSÞ12 ðPSÞ13 � � � ðPSÞ1m
ðPSÞ21 ðPSÞ22 ðPSÞ23 � � � ðPSÞ2m

..

. ..
. � � � ..

.

ðPSÞm1 ðPSÞm2 ðPSÞm3 � � � ðPSÞmm

0
BBB@

1
CCCA ð5:221Þ

has elements

ðPSÞrs ¼ PrsSrs ¼ 2
Xn
i¼1

cricsiSrs ð5:222Þ

Note that (PS) is not the matrix PS obtained by matrix multiplication of P and S;

each element of that matrix would result from series multiplication: a row of P

times a column of S (Section 4.3.3).

The diagonal elements of (PS) are

ðPSÞrr ¼ PrrSrr ¼ 2
Xn
i¼1

c2ri ð5:223Þ

Compare this with Eq. (5.213): for a ground-state closed-shell molecule there are

two electrons in each occupied MO and Eq. (5.213) can be written

nr ¼ 2
Xn
i¼1

c2ri ð5:224Þ

i.e.

nr ¼ ðPSÞrr ð5:225Þ
The off-diagonal elements of (PS) are given by Eq. (5.222), r 6¼ s. Compare this

with Eq. (5.214): for a ground-state closed-shell molecule there are two electrons in

each occupied MO and Eq. (5.214) can be written

nr=s ¼ 2
Xn
i¼1

ð2cricsiSrsÞ ð5:226Þ

i.e.

nr=s ¼ 2ðPSÞrs ð5:227Þ
Thus the matrix (PS) can be written

ðPSÞ ¼

n1 1=2n1=2 1=2n1=3 � � � 1=2n1=m
1=2n2=1 n2 1=2n2=3 � � � 1=2n2=m

..

. ..
. � � � ..

.

1=2nm=1 1=2nm=2 1=2nm=3 � � � nm

0
BBB@

1
CCCA ð5:228Þ

The matrix (PS) (or sometimes 2(PS)) is called a population matrix.
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5.5.4.3 An Example of Population Analysis: H–Heþ

As a simple illustration of the calculation of atom charges and bond orders, consider

H–Heþ. From our Hartree–Fock calculations on this molecule (Section 5.2.3.6.5)

we have

P ¼ 0:2020 0:5097
0:5097 1:2864

� �
and S ¼ 1:0000 0:5017

0:5017 1:0000

� �
ð5:229Þ

Therefore ðPSÞ ¼ 0:2020 0:2557
0:2557 1:2864

� �
ð5:230Þ

From Eq. (5.228), (PS) gives us

n1 ¼ 0:2020

n2 ¼ 1:2864

n1=2 ¼ n2=1 ¼ 2 0:2557ð Þ ¼ 0:5114

Charge on H, qH For this we need NH, the sum of all the Nr on H (Eqs. (5.216)

and (5.215)). There is only one basis function on H, f1, so there is only one relevant

Nr for H, and for f1 there is only one overlap, with f2, so the summation involves

only one term, n1/2. Using Eq. (5.215):

Nr ¼ N1 ¼ nr þ 1

2

X
s 6¼r

nr=s ¼ n1 þ 1

2
ðn1=2Þ ¼ 0:2020þ 1

2
ð0:5114Þ ¼ 0:4577

The sum of all the Nr on H has only one term, N1, since there is only one basis

function on H. Using Eq. (5.216):

NA ¼ NH ¼
X
r2H

Nr ¼ N1 ¼ 0:4577

The charge on H, qH, is the algebraic sum of the gross electronic population and

the nuclear charge: (Eq. (5.217)):

qA ¼ qH ¼ ZH � NH ¼ 1� 0:4577 ¼ 0:5423

Charge on He, qHe For this we need NHe, the sum of all the Nr on He (Eq. (5.216).

There is only one basis function on He, f2, so there is only one relevant Nr for He,

and for f2 there is only one overlap, with f1, so the summation involves only one

term, n2/1 (¼ n2/1):
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Nr ¼ N2 ¼ nr þ 1

2

X
s 6¼r

nr=s ¼ n2 þ 1

2
ðn2=1Þ ¼ 1:2864þ 1

2
ð0:5114Þ ¼ 1:5421

The sum of all the Nr on He has only one term, N2, since there is only one basis

function on He:

NA ¼ NHe ¼
X
r2He

Nr ¼ N2 ¼ 1:5421

The charge on He, qHe, is the algebraic sum of the gross electronic population

and the nuclear charge:

qA ¼ qHe ¼ ZHe � NHe ¼ 2� 1:5421 ¼ 0:4579

The charges sum to 0.5423 þ 0.4579 ¼ 1.000, the total charge on the molecule.

The less positive charge on helium is in accord with the fact that electronegativity

increases from left to right along a row of the periodic table.

H–He bond order – For this we use Eq. (5.218); nr/s is summed for all overlaps

between basis functions on atoms A and B. There is only one such overlap, that

between f1 and f2, so

bAB ¼ bHHe ¼
X

r;s2A;B
nr=s ¼ n1=2 ¼ 2ð0:2557Þ ¼ 0:5114

Note that the elements of the population matrix (PS) sum to the number of

electrons in the molecule: 0.2020 þ 1.2864 þ 0.2557 þ 0.2557 ¼ 2.000. This is

expected, since the diagonal elements are the number of electrons in the “atomic

space” of the basis functions, and the off-diagonal elements are the number of

electrons in the overlap space of the basis functions.

The Mulliken approach to population analysis has problems; for example, it

sometimes assigns more than two electrons, and sometimes a negative number of

electrons, to an orbital. It is also fairly basis-set dependent (Hehre, Radom, Schleyer

and Pople compare Mulliken charges for a variety of molecules using the STO-3G,

3–21G(*) and 6–31G* basis sets: ref. [1g], pp. 337–339). Partitioning half of the

electrons “arbitrarily” into the overlap region is not as serious as one might have

thought, because in a series of calculations a meaningful trend can emerge, even if a

charge or bond order taken in isolation is of dubious quantitative significance. Other

approaches to manipulating basis function coefficients for partitioning electrons

among orbitals and thus calculating charges and bond orders are those of Mayer

[258] and L€owdin [259] and the natural population analysis (NPA) of Weinhold

[260]. One point of interest in the Mayer method is that it seems to be the only one

that assigns the hydrogen molecule ion, H
þ
2 , with one electron, the intuitively

sensible bond order of 0.5, rather than 0.25 [261]. Mayer bond orders appear to have

5.5 Applications of the Ab initio Method 351



been used particularly in inorganic chemistry [262]. The most popular method of

population analysis now is probably Weinhold’s NPA, and the favored atom

charges are evidently those from NPA, and electrostatic potential charges (next

section). The methods of Mulliken, L€owdin and Weinhold are explained and

compared in more detail by Cramer [263], and those of Mulliken, L€owdin and

Mayer by Leach [264].

5.5.4.4 Electrostatic Potential

The electrostatic potential (ESP) is a measure of charge distribution that also

provides other useful information [265]. The electrostatic potential at a point P in

a molecule is defined as the amount of energy (work) needed to bring a unit point

positive “probe charge” (e.g. a proton) from infinity to P. The electrostatic potential

can be thought of as a measure of how positive or negative the molecule is at P: a

positive value at the point means that the net effect experienced by the probe charge

as it was brought from infinity was repulsion, while a negative value means that the

probe charge was attracted to P, i.e. energy was released as it fell from infinity to P.

The ESP at a point is the net result of the effect of the positive nuclei and the

negative electrons. The calculation of the effect of the nuclei is trivial, following

directly from the fact that the potential due to a point charge Z at a distance r away

from the unit charge is, at point P:

VðPÞ ¼
Z1
r

Z � 1

r2
dr ¼ Z

r
ð5:231Þ

Thus the ESP created by the nuclei is

VðPÞnuc ¼
X
A

ZA

jrP � rAj ð5:232Þ

where |rp � rA| is the distance from nucleus A to the point P, i.e. the absolute value

of the difference of two vectors. To obtain the expression for the ESP due to the

electrons, we can modify Eq. .(5.232) by replacing the summation over the nuclei

by an integral over infinitesimal volume elements of the electron density or charge

density r(r) (see Section 5.5.4.5). We get for the total ESP at P

VðPÞtot ¼ VðPÞnuc þ VðPÞel þ
X
A

ZA

jrP � rAj �
Z

rðrÞ
jrP � rj dr ð5:233Þ

The ESP at many points on the surface of the molecule can be calculated

(Section 5.5.6) and a set of atom charges then calculated to fit (by a least-squares

procedure) the ESP values, and also to sum to the net charge on the molecule (the
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use of visualization of the ESP is discussed in Section 5.5.6). Values of Mulliken

and L€owdin bond orders, and Mulliken, natural and ESP atom charges, are com-

pared in Table 5.15, for hydrogen fluoride. We see that the Mulliken charges vary

considerably, but apart from the STO-3G values, the electrostatic charges vary very

little, and the natural charges little, with the level of calculation. Bond orders,

however, are quite sensitive to the level of calculation. The utility of charges and

bond orders lies not in their absolute values, but rather in the fact that a comparison

of, say, L€owdin charges or bond orders, calculated at the same level for a series of
molecules, can provide insights into a trend. For example, one might argue that the

electron-withdrawing power of a series of groups A, B, etc. could be compared by

comparing the C/C bond orders in A–CH¼CH2, B–CH¼CH2, etc. Bond orders

have been used to judge whether a species is free or really covalently bonded, and

have been proposed as an index of progress along a reaction coordinate [266].

5.5.4.5 Atoms-in-Molecules

A method of population analysis that may be less arbitrary than any of those

mentioned so far is based on the theory of atoms in molecules, designated AIM,

or the quantum theory of atoms in molecules, QTAIM. This was developed by

Bader and coworkers, and is based on the mathematical partitioning of molecules

into regions which correspond to atoms. The concept may have developed from

Berlin’s ca. 1950 work on partitioning molecules into “binding” and “antibinding”

regions [267], cited by Bader in a 1964 paper on electron distribution [268]. The

first specific assertion that atoms in molecules in a sense retain their identities rather

than dissolving into a molecular pool of nuclei and electrons seems to have been

made even before the use of the terms encapsulated in the AIM or QTAIM

acronyms: in a 1973 paper by Bader and Beddall the question “are there atoms in

molecules?” was posed and answered in the affirmative [269]. An early review

(1975) proposed “a return to....’the atoms in molecules’ approach to chemistry”

(“return” in the sense of focussing on atoms rather than on bonds, which latter had

Table 5.15 Comparing Mulliken, electrostatic potential and natural charges, and Mulliken and

L€owdin bond orders, at various levels, for hydrogen fluoride. The geometry used in each case

corresponds to the method/basis set for that charge or bond order, but any reasonable geometry

should give essentially the same results. There are no experimental data

Charge on H (¼ �charge on F) Bond order

Level Mulliken Electrostatic Natural Mulliken L€owdin

HF/STO-3G 0.19 0.28 0.23 0.96 0.98

HF/3–21G(*) 0.45 0.49 0.5 0.78 0.93

HF/6–31G* 0.52 0.45 0.56 0.72 0.82

HF/6–31G** 0.39 0.45 0.56 0.86 1.07

HF/6–311G** 0.32 0.46 0.54 0.95 1.32

6–31+G* 0.57 0.48 0.58 0.64 0.75

6–311++G** 0.3 0.47 0.55 0.98 1.27

MP2/6–31G* 0.52 0.45 0.56 0.72 0.81
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risen to supremacy with MO theory) and summarized the essential concepts of AIM

theory [270]. Bader reviewed the subject a decade later [271], and summarized it a

few years after that in his comprehensive 1990 book [272] and in a review [273].

Popelier updated the subject in his 1999 book [274] and in the 2007 book edited by

Matta and Boyd, Bader’s “classic 1990 treatise” is again updated [275]. Bader has

condensed the theory into an optimistically titled “Everyman’s Derivation of the

Theory of Atoms in Molecules” of seven pages [276]. We now examine the theory

and some applications.

The AIM approach rests on analyzing the variation from place to place in a

molecule of the electron density function (electron probability function, charge

density function, charge density), r. This is a function r(x, y, z) which gives

the variation of the total electron density from point to point in the molecule:

r(x, y, z)dxdydz ¼ r(x, y, z)dv is the probability of finding an electron in the

infinitesimal volume dv centered on the point (x, y, z) (the probability of finding

more than one electron in dv is insignificant). This probability is the same as the

charge in dv if we take the charge on an electron as our unit of charge, hence the

name charge density for the electron density function r. Since rdv has the “units” of
probability, a pure number, the function r logically has the units volume�1.

However, the probability we deal with here is the same as the number (or fraction)

of electrons in dv, which is the charge in dv in electronic units, so the units of r can

be taken more physically concretely as electrons volume�1 or charge volume�1. In

atomic units this is electrons bohr�3. The electron density function can be calcu-

lated from the wavefunction. It is not, as one might have thought, simply |C|2,

where C is the multielectron wavefunction of space and spin coordinates (Sec-

tion 5.2.3.1). This latter is the probability function for finding in the region of (x, y,
z) electron 1 with a specified spin, electron 2 with a specified spin, etc. The function
r is the number of electrons in the molecule times the sum over all their spins of the

integral of the square of the molecular wavefunction integrated over the coordinates

of all but one of the electrons [277]. We can write it in the condensed notation

rðx; y; zÞ ¼ n
X

all spins

Zn
2

C2dr2 . . . drn ð5:234Þ

where r is vector notation for the coordinates of electrons. If we think of the

electrons as being smeared out in a fog around the molecule, then the variation of

r from point to point corresponds to the varying density of the fog, and r(x, y, z)
centered on a point P(x, y, z) corresponds to the amount of fog in the volume

element dxdydz ¼ dv. Alternatively, in a scatterplot of electron density (charge

density) in a molecule, the variation of r with position can be indicated by varying

the volume density of the points. The electron density function r is the “density” in

density functional theory, DFT (Chapter 7). Let us look at some properties of r that

are relevant to AIM, the theory of atoms in molecules.

Consider first the electron density function r around an atom. As we approach the

nucleus this rises toward a maximum, or the negative of the electron density, �r,
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falls toward a minimum (Fig. 5.40). Viewing the electron distribution in terms of�r
rather than r is useful because it more easily enables us to discern analogies

between the variation of r in a molecule (a r vs location-in-molecule graph), and

a potential energy surface (PES, an energy vs geometry graph), with which we are

familiar from Chapter 2. Examine the distribution of�r in a homonuclear diatomic

molecule X2 (Fig. 5.41). This shows a plot of �r versus two of the three Cartesian

coordinates needed to assign positions to all the points in the molecule. The graph

retains the internuclear axis (by convention the z-axis) and one other axis, say y; the
molecule is symmetrical with respect to reflection in the yz plane. The negative of
the electron density, �r, dips toward a minimum at the atomic nuclei (r goes

toward a maximum), analogously to the occurrence of a minimum on a PES. The

analogy is not perfect, because the nuclei do not correspond to true stationary

points: the point is a cusp, where ∂r/∂q is discontinuous rather than zero (unlike

∂E/∂q for a stationary point on a PES; q is a geometric parameter) [278]. This is not

the death knell for our analogy, because there is always a function “similar” –

technically, homeomorphic – to r(x, y, z) for which the nuclear positions

are stationary points [278]. With the caveat that strictly speaking the derivatives

apply to the homeomorphic function, we can write for points at the nuclei:

@ð�rÞ
@z

¼ 0;
@ð�rÞ
@y

¼ 0;
@ð�rÞ
@x

¼ 0 ð5:235Þ

and

@2ð�rÞ
@z2

> 0;
@2ð�rÞ
@y2

> 0;
@2ð�rÞ
@x2

> 0 ð5:236Þ

x

y

z
cba

.

nucleus

x

y

. x

y

r r

Fig. 5.40 The distribution of electron density (charge density) r for an atom; the nucleus is at the

origin of the coordinate system. (a) Variation of r with distance from the nucleus. Moving away

from the nucleus r decreases from its maximum value and fades asymptotically toward zero. (b)

Variation of�r with distance from the nucleus;�r becomes less negative and approaches zero as

we move away from the nucleus. The �r picture is useful for molecules (Fig. 5.41) because it

makes clearer analogies with a potential energy surface. (c) A “4-D” picture (r vs x, y, z) of the
variation of r in an atom: the density of the dots (number of dots per unit volume) indicates

qualitatively electron density r in various regions
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Moving along the internuclear line we find a point in a saddle-shaped region,

analogous to a transition state, where the surface again (caveat) has zero slope (all

first derivatives zero), and is negatively curved along the z-axis but positively

curved in all other directions (Fig. 5.41), i.e.

@2ð�rÞ
@z2

< 0;
@2ð�rÞ
@y2

> 0;
@2ð�rÞ
@x2

> 0 ð5:237Þ

This transition-state-like point is called a bond critical point. All points at which
the first derivatives are zero (caveat above) are critical points, so the nuclei are also

critical points. Analogously to the energy/geometry Hessian of a potential energy

surface, an electron density function critical point (a relative maximum or mini-

mum or saddle point) can be characterized in terms of its second derivatives by

diagonalizing the r/q Hessian(q ¼ x, y, or z) to get the number of positive and

negative eigenvalues:

r=q Hessian ¼
@2r=@x2 @2r=@xy @2r=@xz
@2r=@yx @2r=@y2 @2r=@yz
@2r=@zx @2r=@zy @2r=@z2

0
@

1
A ð5:238Þ

–r

–r

y

z..

nucleus

.

saddle point

.

nucleusbond critical point

surface

Fig. 5.41 The distribution of the electron density (charge density) r for a homonuclear diatomic

molecule X2. One nucleus lies at the origin, the other along the positive z-axis (the z-axis is

commonly used as the molecular axis). The xz plane represents a slice through the molecule along

the z-axis. The �r ¼ f(x, z) surface is analogous to a potential energy surface E ¼ f(nuclear
coordinates), and has minima at the nuclei (maximum value of r) and a saddle point,

corresponding to a bond critical point, along the z axis (midway between the two nuclei since

the molecule is homonuclear)
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For the �r/q surface of Fig. 5.41 the number of positive and negative eigenva-

lues for a nuclear critical point are 3 and 0, and for a bond critical point, 2 and 1.

Thus for the r/q surface to which the Hessian of Eq. (5.238) refers (the mirror

image of the �r/q surface), the number of positive and negative eigenvalues is,

respectively, 0 and 3 (for a nucleus), and 1 and 2 (for a bond critical point).

The behavior of the second derivative of r, the Laplacian of r, (∂2/∂x2 þ ∂2/∂y2 þ
∂2/∂z2)r ¼ r2r, is a key concept in AIM theory.

The minimum (�r) path (maximum r path) from one X nucleus to the other is

the bond path; with certain qualifications this can be regarded as a bond. It is

analogous to the minimum-energy path connecting a reactant and its products, i.e.

to the intrinsic reaction coordinate. Such a bond is not necessarily a straight line: in

strained molecules it may be curved (bent bonds). The bond passes through the

bond critical point, which for a homonuclear diatomic molecule X2 is the midpoint

of the internuclear line. Now consider Fig. 5.42, which shows in the X2 molecule

another characteristic of the electron density function. The contour lines represent

electron density, which rises as we approach a nucleus and falls off as we go to and

beyond the van der Waals surface. If it is true that the molecule can be divided into

atoms, then for X2 the dividing surface S (represented as a vertical line in Fig. 5.42)

must lie midway between the nuclei, with the internuclear line being normal to S

C
X X

S

Fig. 5.42 Contour lines for r, the electron density distribution, in a homonuclear diatomic

molecule X2. The lines originating at infinity and terminating at the nuclei and at the bond critical

point C are trajectories of the gradient vector field (the lines of steepest increase in r; two
trajectories also originate at C). The line S represents the dividing surface between the two

atoms (the line is where the plane of the paper cuts this surface). S passes through the bond critical

point and is not crossed by any trajectories
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and meeting S at the bond critical point. The electron density defines a gradient
vector field, the totality of the trajectories each of which results from starting at

infinity and moving along the path of steepest increase in r. Figure 5.42 shows that
only two of the trajectories (of those in the plane of the paper) that originate at

infinity do not end at the nuclei; these end at the bond critical point. These two

trajectories define the intersection of S with the plane of the paper. None of the

trajectories cross S, which is thus called a zero-flux surface (the gradient vector field
is analogous to an electric field whose “flux lines” point along the direction of

attraction of a positive charge toward a central negative charge). Because X2 is

homonuclear, the zero-flux surface is a plane. For a molecule with different nuclei,

the zero-flux surfaces are curved, convex in one direction, concave in the other. The

space within a molecule bounded by one (for a diatomic molecule) or more zero-

flux surfaces is an atomic basin. Away from the nuclei toward the outside of the

molecule the basin extends outward to infinity, becoming shallower as the electron

density fades toward zero. The nucleus and the electron density in an atomic basin

constitute an atom in a molecule. Even for molecules other than homonuclear

diatomics, atoms are still defined by atomic basins partitioned off by unique zero-

flux surfaces, as illustrated in Fig. 5.43.

In the AIM method, the charge on an atom is calculated by integrating the

electron density function r(x,y,z) over the volume of its atomic basin. The charge is

the algebraic sum of the electronic charge and the nuclear charge (the atomic

number of the nucleus minus the number of electrons in the basin). An AIM bond

S

C

A B

Fig. 5.43 Heteronuclear (as well as homonuclear; cf. Fig. 5.42) molecules can be partitioned into

atoms. S represents a slice through the zero-flux surface that defines the atoms A and B in a

molecule AB. The lines with arrows are the trajectories of the gradient vector field. S passes

through the bond critical point C and is not crossed by any trajectory lines
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order rb can be defined in terms of the electron density, and the bond order bAB for

two particular atoms A and B is then defined by an empirical equation obtained by

fitting rb to a few accepted A–B bond orders [279]. For example, for nitrogen/

nitrogen bonds a linear equation bAB ¼ aNNrb þ bNN correlates bAB and rb for, say,
H2N–NH2, HN¼NH and N�N; from this equation bond orders can be assigned to

other nitrogen/nitrogen bonds from their rb values. The main application of AIM

has been to investigate whether, in questionable cases, there really is a bond

between certain atoms. Recent (2006–2009) examples of this are studies of: the

differences between results from AIM and from other methods of population

analysis [280], hydrogen bonding to p-donors [281], hydrogen bonding to s-donors
[282], and secondary interactions (i.e. weak bonding) in Diels–Alder reactions

[283]. Other recent applications are studies of strain energies in small rings [284]

and of electron distribution in protonated nitriles [285].

AIM theory and applications, and the inextricable question of the virtues and

defects of the wavefunction versus the electron density, have engendered an

entertaining series of polemics. Frenking censured Gillespie and Popelier for

being enamored with electron density and slighting wavefunctions [286], eliciting

a spirited reply from those authors [287] and then a defence of his review by

Frenking [288]. Bader jumped into the fray with a rather spirited appeal to

fundamental physics, defending what he took to be Schr€odinger’s prescient

view that the wavefunction should be regarded as a mathematical abstraction en

route to the electron density [289] (a more sedate defence of AIM calculation of

atom charges rebutted criticisms of charges as being not observable or not unique

[290]). A return to polemics was seen when Kovacs et al. [291] allegedly [292]

used “wrong physics” in interpreting the Laplacian of the electron density. This

educed a rebuke of (in a certain context at least) “orthodox understanding of

physics” and an assertion that “Chemical research begins where the physics of
Richard Bader ends.” [293]. Another, almost anticlimactic, thread sprung from an

AIM analysis by Bader and coworkers that inferred bonding between ortho-
hydrogens in planar biphenyl [294]. This was criticised by Poater et al. [295],

defended by Bader [296], and again criticised by Poater et al. with an interesting

reference to the apparent (according to AIM) bonding of helium trapped in an

adamantane cage [297].

There are many technical terms, qualifications, and fine points which could not

be gone into here. The reader will gather that the correct use of the AIMmethod can

be tricky, and one is urged to consult review papers and books for more details, and

to proceed with caution, especially if one is sensitive to criticism.

5.5.5 Miscellaneous Properties – UV and NMR Spectra,
Ionization Energies, and Electron Affinities

A few other properties that can be calculated by ab initio methods are briefly treated

here.
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5.5.5.1 UV Spectra

Ultraviolet spectra result from the promotion of an electron in an occupied MO of a

ground electronic state molecule into a virtual MO, thus forming an electronically

excited state [298] (excited state-to-excited state spectra are not usually studied

by experimentalists). Calculation of UV spectra with reasonable accuracy requires

some method of dealing with excited states. Simply equating energy differences

between ground and excited states with hn does not give satisfactory results for the

absorption frequency/wavelength, because the energy of a virtual orbital, unlike

that of an occupied one, is not a good measure of its energy (of the energy needed to

remove an electron from it; this is dealt with in connection with ionization energies

and electron affinities).

Electronic spectra of modest accuracy can be calculated by the configuration

interaction CIS method (Section 5.4.3) [299]. Compare, for example, the UV

spectra of methylenecyclopropene calculated by the CIS/6–31þG* method (diffuse

functions appear to be desirable in treating excited states, as the electron cloud is

relatively extended) with the experimental spectrum, in Table 5.16. The geometry

used is not critical; here HF/6–31G* was employed, but the AM1 geometry (a

semiempirical method, Chapter 6, far faster than ab initio) gave essentially the same

UV. The agreement in wavelength is not particularly good for the longest-wave-

length band, although this result can be made more palatable by noting that both

calculation and experiment agree reasonably well on relative intensities (the two

bands that were not observed are calculated to be relatively weak and to lie very

near the strongest band). The CIS approach to excited states has been said [300] to

be analogous to the Hartree–Fock approach to ground states in that both give at least

qualitatively useful results. Better results are sometimes obtained by semiempirical

(Chapter 6) or density functional (Chapter 7) methods.

5.5.5.2 NMR Spectra

NMR spectra result from the transition of an atomic nucleus in a magnetic field

from a low-energy to a high-energy state [235]. There are two aspects to the

quantum-mechanical calculation of NMR spectra [301]: calculation of shielding

(chemical shifts) and calculation of splitting (coupling constants). Most of the

Table 5.16 Calculated and experimental UV spectra of methylenecyclopropene, using the RCIS/

6–3+G* method on the HF/6–31G* geometry. The procedure and the experimental values are

given in reference [1e], Chapter 9

Calculated Experimental

Wavelength (nm) Relative intensity Wavelength (nm) Relative intensity

222 15 309 13

209 7 242 0.6

196 0 206 100

193 9

193 100
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computational work on NMR spectra has focussed on calculating the shielding

(magnetic field strength needed for the transition relative to that needed for some

reference) of a nucleus. This requires calculation of the magnetic shielding of the

nuclei of the molecule of interest, and of the reference nuclei, usually those of

tetramethylsilane, TMS. The chemical shift of (e.g.) the 13C or 1H nucleus is then its

(absolute) shielding value minus that of the TMS 13C or 1H nucleus. The theory

behind the calculation of shielding and splitting has been reviewed [301]. NMR

chemical shifts can be calculated with remarkable accuracy even at the Hartree–

Fock level [302], and good results were obtained for 13C, 15N, and 17O nuclei even

using HF/ 6–31G*, although density functional calculations gave smaller errors

[303]. More advanced calculations, considering electron correlation and even

relativity, and biochemical applications (the binding of 129Xe to proteins), have

been reviewed [304]. Highly accurate “near quantitative agreement with experi-

mental gas-phase values...” were achieved by highly correlated (CCSD and CCSD

(T)) methods with big basis sets on methanol [305]. Such elaborate calculations on

a very small molecule are valuable as theoretical benchmarks rather than practical

methods, and near the other extreme, a study of (possibly pharmacologically

relevant?) chloropyrimidines in solution tackled the “accuracy versus time

dilemma” and compared ab initio and density functional 13C and 1H chemical shifts

with results from database programs [306]. The latter method of obtaining shift

values relies on comparing the locations of the various nuclei in one’s molecule

with the locations and experimental shifts of nuclei in a large library of molecules.

With a judicious comparison algorithm, good results can be obtained (references in

[306]). One conclusion of this study was that “Unlike 13C chemical shifts, high

correlated levels of theory and large basis sets are equally very important for the

accurate prediction of proton chemical shieldings.” Nevertheless, if high accuracy

is not demanded, then as stated above [302, 303] useful results can be obtained at

modest levels. This is clearly shown in Fig. 5.44; particularly interesting is the nice

replication of the remarkable shielding effect of the benzene ring in [7]paracyclo-

phane [307]. In this connection, the calculation of NMR spectra has become an

important tool in probing aromaticity [156] and antiaromaticity [173], using the

NICS (nucleus-independent chemical shift) test [308].

NMR splitting (obtaining coupling constants) is harder to calculate than shield-

ing (chemical shifts), because it requires “calculation of the response of the wave

function with respect to the full set of nuclear magnetic moments” and “is a much

more expensive undertaking than the evaluation of all the shielding constants.”

[301]. The subject has been treated in a review which concurs that “Accurate

calculation of spin–spin coupling constants is a difficult task” [309].

5.5.5.3 Ionization Energies and Electron Affinities

Ionization energies (the term is preferred to the older one, ionization potentials) and

electron affinities are related in that both involve transfer of an electron between a

molecular orbital and infinity: in one case (IE) we have removal of an electron from
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an occupied orbital and in the other (EA) addition of an electron to a virtual (or a

half-occupied) orbital. The IE for an orbital is defined as the energy needed to

remove an electron from the orbital to infinite separation, while the EA of an orbital

is the energy released when the orbital accepts an electron from infinity [310].

These quantifies are commonly given in electron volts; 1 eV ¼ 96.485 kJ mol–1 ¼
0.03675 hartrees, 1 h ¼ 27.212 eV. A typical IE for an organic molecule is 8–9 eV

(e.g. benzene 9.24 eV), which is ca. 800 kJ mol�1 or about twice the energy of a

C
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H H
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(206.0)
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C HH

H

H
–1.65
0.92

(–2.3)
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0.55 6-31G*
(ca. 0.9 experimental)

HH

Fig. 5.44 Calculated and experimental 1H and 13C NMR spectra: chemical shifts relative to TMS

H and C, respectively. The calculations were done on the B3LYP/6–31G* geometry (B3LYP is a

density functional method; Chapter 7) at the HF/6–311+G(2d,p) and HF/6–31G* levels using the

default NMR method (GIAO) implemented in Gaussian 94W [198]. The experimental values are

from ref. [235], except for the values for [7]paracyclophane [307]. The larger basis set may be

somewhat more accurate but takes longer. Compare with Chapter 7, Fig. 7.9
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typical covalent bond. Molecules often don’t have a “real” electron affinity, fre-

quently ejecting an added electron spontaneously (the EA is negative), but for those

with a positive EA a reasonable value might be ca. 2 eV (1,4-benzoquinone,

1.9 eV). The term IE when applied to a molecule normally means the minimum
energy needed to remove an electron to infinity, i.e. to form the radical (for an

originally closed-shell molecule) cation, and the term electron affinity normally

means the maximum energy released when the molecule accepts an electron to form

the radical anion (for an originally closed-shell molecule). The IE of a “stable”

species, i.e. any molecule or atom that can exist (a relative minimum on the

potential energy surface), is always positive. The EA of a molecule is positive if

the accepted electron is bound, i.e. if it is not spontaneously ejected; if the new

electron is ejected in microseconds or less (is unbound), the molecule has a negative

EA (is a “resonance state” – this has nothing to do with the term resonance as in a

resonance hybrid).

IEs and EAs may be vertical or adiabatic: the energy difference between the

precursor molecule M1 and the species M2 formed by removing or adding an

electron gives the vertical value if M2 is at the same geometry as M1, while the

adiabatic value is obtained if M2 has its own actual, equilibrium geometry. Since

the equilibrium geometry of M2 is clearly of lower energy than the unrelaxed

geometry corresponding to M1, vertical IEs are larger than adiabatic IEs, and

vertical EAs are smaller than adiabatic EAs. Experimental IEs and EAs may be

vertical or adiabatic, depending on how fast the ionization process is; see the

discussion by Gross [311]. Compilations of IEs and EAs sometimes do not state

explicitly whether their listed values are adiabatic or vertical; a welcome exception

is the book by Levin and Lias [312]. Many IEs and EAs are available on the

worldwide web, e.g. [205a], and a good brief discussion of these, including various

measurement techniques, is to be found in the compilation by Lias et al. [205b]. The

vertical values of IE ought to be of more interest to chemists, since these represent a

more inherent property of the molecule (see Koopmans’ theorem below) than the

adiabatic, the latter being the energy difference between a neutral and a cation after
its geometric reorganization. In fact, the initial cation may even rearrange to a

species with quite a different structure.

Ionization energies and electron affinities can be calculated simply as the energy

difference between the neutral and the ion. Approximate IEs can be obtained by

applying Koopmans’ (not Koopman’s) theorem [313], which says that the energy

required to remove an electron from an orbital is the negative of the orbital energy.

Thus the IE of a molecule is approximately the negative of the energy of its HOMO

(the principle does not work as well for ionization of electrons more tightly bound

than those in the HOMO). This makes it simple to obtain approximate IEs for

comparison with photoelectron spectroscopy [314] results. Unfortunately, the prin-

ciple does not work well for EAs: the EA of a molecule is not reasonably well

approximated as the negative of the LUMO energy. In fact, ab initio calculations

normally give virtual MOs (vacant MOs) positive energies, implying that molecules

will not accept electrons to form anions (i.e. that they have negative EAs), which is

often false. Koopmans’ theorem works because of a cancellation of errors in the IE
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case (which actually leads to modest overestimation of the IE) but not for EAs.

Errors arise from approximate treatment of electron correlation, and from the fact

that when an electron is removed from or added to a molecule electronic relaxation

(not to be confused with geometry relaxation) occurs. A further problem for EAs is

that the procedure for minimizing the energies of MOs (Section 5.2.3.4) gives,

within the limits of the HF procedure, the best occupied, but not virtual, MOs.

Some calculated and experimental [312, 315] IEs are given in Table 5.17, based

on the raw data in Table 5.18. Because of the problem of assigning a meaningful

ZPE to a non-stationary state structure like the cation at the neutral geometry

(Section 2.5), the cation and neutral energies used for the vertical IEs do not include

ZPE. The calculations (experimental data are sparse) indicate vertical IEs to be

indeed slightly (about 0.2 eV) higher than adiabatic. The HF/6–31G* DE values

underestimate the IE by about 1–1.5 eV while MP2(fc)/6–31G* DE values under-

estimate it by only about 0.1–0.4 eV (others have reported them to be generally too

low by 0.3–0.7 eV [316]). The Koopmans’ theorem (�HOMO) energies for both

the HF and MP2 level calculations are about 1–1.5 eV too high. Electron affinities

(which seem to be of less interest than ionization energies) can be calculated as the

energy difference between the neutral molecule and its anion. High-accuracy

adiabatic IEs and EAs can be calculated by multistep high-accuracy methods

(Section 5.5.2.2b); the convenient procedures implemented for these methods in

the Gaussian programs do not allow calculation of vertical IEs since the geometry

of the ion will be automatically optimized. Better calculated IEs than those from the

ab initio methods in Tables 5.17 and 5.18, and good EAs, can be obtained with

density functional methods (Chapter 7).

5.5.6 Visualization

Modern computer graphics have given visualization, the pictorial presentation of

the results of calculations, a very important place in science. Not only in chemistry,

but in physics, aerodynamics, meteorology, and even mathematics, the remarkable

ability of the human mind to process visual information is being utilized [317].

Gone are the days when it was de rigeur to pore over tables of numbers to

Table 5.17 Some ionization energies (eV). The basis set is 6–31G*; the calculations are based on

the data in Table 5.18. The experimental values are from ref. [312], except for CH3SH [315]

IE from DE IE from Koopmans’ theorem Exp

HF MP2(fc) HF MP2(fc)

CH3OH adiabatic 9.38 10.57 – – 10.9

CH3OH vertical 9.66 10.79 12.06 12.12 10.95

CH3SH adiabatic 8.34 8.97 – – 9.44

CH3SH vertical 8.38 9.03 9.69 9.69 (sic) –

CH3COCH3 adiabatic 8.19 9.63 – – 9.71, 9.74

CH3COCH3 vertical 8.37 9.78 11.07 11.19 9.5, 9.72
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comprehend the factors at work in a system, whether it be a galaxy, a supersonic

airliner, a thunderstorm, or a novel mathematical entity. We will briefly examine

below the role of computer graphics in computational chemistry, limiting ourselves

to molecular vibrations, van der Waals surfaces, charge distribution, and molecular

orbitals.

With due respect to the tremendous power of virtual models on a computer

screen or within virtual reality glasses [318], I feel it worthwhile to add, with a

small apology (for this is a book on computational chemistry) that real molecular

models which you can hold and examine still have a place in chemistry. Professor

Roald Hoffmann has cautioned against slavish adherence to computer graphics and

commended traditional molecular models, saying there is no substitute to “running

one’s hands” over a molecular model and experiencing “the visual-tactile link [that

is] so important for establishing three-dimensionality in our minds....What I believe

is that the two generations of chemists who have seen molecules only on a screen

Table 5.18 The raw data for Table 5.17: energies, ZPEs and HOMO values, for

calculating ionization energies

HF/6–31G* MP2(fc)/6–31G*

CH3OH �115.03542 �115.34514

0.05055 0.05086

�114.98487 �115.29528

CH3OH
+ cation geom. �114.68722 �114.95358

0.04723 0.04665

�114.63999 �114.90693

CH3OH
+ neutral geom. �114.6804 �114.94849

CH3OH, HOMO �0.44328 �0.44526

CH3SH �437.70032 �437.95267

0.04534 0.04621

�437.65498 �437.90646

CH3SH
+ cation geom. �437.39316 �437.62211

0.04468 0.04526

�437.34848 �437.57685

CH3SH
+ neutral geom. �437.39227 �437.62089

CH3SH, HOMO �0.35596 �0.35627

CH3COCH3 �191.96224 �192.52391

0.08214 0.08309

�191.88010 �192.44082

CH3COCH
:þ
3 cation geom. �191.65994 �192.16837

0.08071 0.08128

�191.57923 �192.08709

CH3COCH
:þ
3 neutral geom. �191.65451 �192.16448

CH3COCH3, HOMO �0.40692 �0.41119

The numbers are hartrees, and represent (other than the HOMO energies): for the

neutrals and the cations at the cation geometry, uncorrected ab initio energy, ZPE,

and corrected ab initio energy. The ZPEs shown have been multiplied [80] by

0.9135 (HF) or 0.9670 (MP2(fc)). For the cations at the neutral geometry, ZPE

was not used and is not shown. Adiabatic IE ¼ E(cation) � E(neutral), both
corrected for ZPE. Vertical IE¼ E(cation)� E(neutral), both without ZPE. Hartrees
were converted to eV in Table 5.17 by multiplying by 27.2116.
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are missing something in their three-dimensional perception. The visual-tactile link

is so strong, and so direct – when we handle a model of a molecule in our hands as

we struggle to draw down on paper, in some primitive visual code its structure, the

molecule’s three-dimensionality forever enters our mind. As long as we are alive

we will see it and feel it”.5 Hoffmann and Laszlo point out that for most chemists

“the real, physical handling of models” imprints better the “full glory” of a three-

dimensional structure than do the (somewhat problematically) direct results of, say,

X-ray crystallography [319].

5.5.6.1 Molecular Vibrations

Animation of normal-mode frequencies usually readily enables one to ascribe a

band in the calculated vibrational (i.e. IR) spectrum to a particular molecular

motion (a stretching, bending, or torsional mode, involving particular atoms). It

sometimes requires a little ingenuity to describe clearly the motion involved, but

animation is far superior to trying to discern the motion by the presumably now

obsolete method of examining printed direction vectors (Section 2.5; these show the

extent of motion in the x, y, and z directions). Useful, however, are the visualized

direction vectors that some programs, e. g. GaussView [320], can attach to a picture

of the molecule, catching the vibration in the act so to speak.

Animating vibrations is useful not only for predicting or interpreting an IR

spectrum; it can be extremely valuable in probing a potential energy surface.

Suppose we wish to locate computationally the intermediate through which the

chair conformers of cyclohexane interconvert 1 ⇆ 10, Fig. 5.45). This reaction,

although degenerate, can be studied by NMR spectroscopy [321]. One might

surmise that the intermediate is the boat conformation 2, but a geometry optimiza-

tion and frequencies calculation on this C2v structure (note that in a quantum

mechanical calculation, whether ab initio or otherwise, the input symmetry is

normally preserved) followed by animation of the vibrations, shows otherwise.

There is one imaginary vibration (Section 2.5), and the transition state wants to

escape from its saddle point by twisting to a D2 structure 3, called the twist or twist-

boat, which latter is the true intermediate. The enantiomeric twist structures 3 and 30

go to 1 and 10, respectively, over a high-energy form 4 (or 40) called the half-chair.

A geometry optimization starting with a D2 structure leads to the desired relative

minimum. Similarly, if one obtains a second-order saddle point (one kind of

hilltop), animation of the two imaginary frequencies often indicates what the

species seeks to do to escape from the hilltop to a become a first-order saddle

point (a transition state) or a minimum, and it often possible to obtain the desired

transition state or minimum by altering the shape of the input structure so that it has

the symmetry and approximates the shape of the desired structure.

5R. Hoffmann, personal communication, 2009 August 12.
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In this connection another nice example (E. Lewars, unpublished) is provided by

cyclopropylamine (Fig. 5.46). At the B3LYP/6–31G* level (a density functional

method, Chapter 7), apart from enantiomers five stationary points were found: two

minima, two transition states, and one hilltop. The structure 3 is a hilltop whose two

imaginary frequencies indicate that it wants to undergo nitrogen pyramidalization and

rotation about the C–N bond to form other conformations. Removing the stricture of a

planar nitrogen without further disturbing the structure, and optimizing, yields the

relative minimum 2. Rotating the planar N around the C–N bond to the alternative Cs

structure and optimizing gives the global minimum 1. The transition states were

found by allowing the transition state algorithm to operate on input structures lying

between the two relevant minima. The experimental gas-phase structure of cyclo-

propylamine, from electron diffraction, corresponds to 1 [322].

5.5.6.2 Electrostatic Potential

Electrostatic potential (ESP), the net electrostatic potential energy (roughly, the

charge) due to nuclei and electrons was mentioned in Section 5.5.4 in connection

with calculation of atom charges. The ESP can be displayed (visualized) (a) with

contour lines as a slice through the molecule, by (b) as a surface itself, or by (c)

1

2

3 3¢

4 4¢

1'

energy

C2v

Cs Cs

D2 D2

D3d D3d

Fig. 5.45 One might have guessed that the chair cyclohexane conformations 1 and 10 are

connected by a boat-shaped intermediate 2. However, this C2v structure shows an imaginary

frequency: it is a transition state which wants to twist toward 3 (arrows) or 30 (arrows in opposite
directions, not shown), which are the actual intermediates (no imaginary frequencies) between

1 and 10. The chair conformation reaches the twist via a half-chair 4
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color-coding it onto the van der Waals surface; the three possibilities are shown for

the water molecule in Fig. 5.47. Color-coding (mapping) the ESP onto the surface

of the molecule enables one to see how an approaching reagent would perceive the

charge distribution. Showing the ESP as a surface residing in the region of space

where the net charge is negative gives a very useful picture of those parts of a

molecule where the electrostatic effect of the electrons wins out over that of the

nuclei; this is a particularly good way of seeing the presence of lone pairs, as

Fig. 5.48, also, makes clear. Note that in Fig. 5.47a and b (slice and depicting the

ESP itself as a surface) the lone pairs do not stick out like rabbit ears [323]. This is

because as electron density which can be ascribed to one orbital falls off, that due to

another increases: there is no “electron hole” between the two lone pairs (for the

same reason the electron density cross section through a s–p double bond is

elliptical and through a s–p–p triple bond circular; see Section 4.3.2). Showing

the ESP as a surface made clear that the remarkable cycloalkane pyramidane [45]

has a lone pair, like the carbene CH2 (Fig. 5.48). Depicting the ESP by contour lines
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Fig. 5.46 Cyclopropylamine conformations at the B3LYP/6–31G* level. Structure 1 is a hilltop

whose two imaginary frequencies indicate that it wants to undergo nitrogen pyramidalization and

rotation about the C–N bond to form the transition states (nomenclature: ts 1/2 connects 1 and 2,

etc.) and, eventually, the minima. Each C1 species has an enantiomer of the same energy
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on a slice through the molecule reveals its internal structure, but sometimes more

relevant to reactivity is the picture seen by mapping it onto the van der Waals

surface, because this is the picture presented to the outside molecular world.

Examining the ESP interactions between a molecule and the active site of an

enzyme can be important in drug design [109]. Various applications of the ESP

are discussed by Politzer andMurray [324] and Brinck [265a]. The ESP at any point

on the van der Waals surface can be assigned a quantitative value, namely the

energy needed to move a charge (say, a proton) from infinity to that point, and some

programs will calculate the ESP at any point on the surface on which one clicks

with the mouse.

Fig. 5.47 Distribution of net charge in the water molecule (electrostatic charge, calculated with

AM1 – Chapter 6). Negative to positive: red to blue R O Y G B). (a) Slice through the plane of the

molecule; the contour lines show the decrease in net negative charge. (b) Charge in space; this

corresponds essentially to the lone pairs. (c) Charge mapped on the van der Waals surface

Fig. 5.48 The hydrocarbon pyramidane, C5H4, evidently (pyramidane has not been synthesized)

has a lone pair of electrons on its pyramidal carbon atom, like carbene (methylene), CH2. While

the lone pair on CH2 is no surprise (draw the Lewis structure for the singlet), a cycloalkane with an

unshared electron pair is remarkable
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5.5.6.3 Molecular Orbitals

Visualization of molecular orbitals shows the location of those regions where the

highest-energy electrons are concentrated (the highest occupied MO, the HOMO),

and those regions which offer the lowest-energy accommodation to any donated

electrons (the lowest unoccupied MO, the LUMO). Electrophiles should bond to

the atom where the HOMO is “strongest” (where the electron density due to the

highest-energy electron pair is greatest) and nucleophiles to the atom where the

LUMO is strongest, at least as seen on the van der Waals surface by an approaching

reagent. The information provided by inspection of the HOMO and LUMO (the

frontier orbitals) is thus somewhat akin to that given by visualizing the ESP

(electrophiles should tend to go to regions of negative ESP, nucleophiles to regions

of positive ESP). Figure 5.49 shows the LUMOs of the ketones norcamphor and

camphor, mapped onto their van der Waals surfaces. For norcamphor (Fig. 5.49a),

the prominence of its LUMO at the carbonyl carbon as seen from the “top” or exo
face (the face with the CH2 bridge) rather than the bottom (endo) face, suggests that
nucleophiles should attack from the exo direction. In accord with this, hydride

donors, for example, approach from the exo face to give mainly the endo alcohol.

For camphor, where the bridge is C(CH3)2 instead of CH2, the exo face is shielded

by a CH3 group which sterically thwarts the electronically preferred attack from this

direction, and so nucleophiles tend to approach rather the endo face, a fact nicely

rationalized by visualizing simultaneously the LUMO and the van der Waals

surface (Fig. 5.49b) [325].

Fig. 5.49 (a) Norcamphor, with the LUMO mapped onto the van der Waals surface. The LUMO

as seen on the surface is most prominent at the carbonyl carbon, on the "top" of the molecule (the

exo face), as shown by the blue area. Viewed from the bottom of the molecule (not shown here),

the LUMO still lies at the C¼O carbon, but is less prominent (the blue is less intense). We can thus

predict that nucleophiles will attack the C¼O carbon, from the exo direction. (b) Camphor

(norcamphor with three methyl groups): the carbonyl carbon is shielded from exo attack by a

methyl group, so for steric reasons nucleophiles tend to attack this carbon from the endo direction,
despite exo attack being electronically favored
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Figure 5.50 shows three related molecules, the 7-methyl substituted (the visual

orbital progression explained here is not quite as smooth for the unsubstituted

molecules) derivatives of the 7-norbornyl cation (a), the neutral alkene norbornene

(b), and the 7-norbornenyl cation (c). For each species an orbital is shown as a 3D

region of space, rather than mapping it onto a surface as was done in Fig. 5.49. In (a)

we see the LUMO, which is as expected essentially an empty p atomic orbital on C7,

and in (b) the HOMO, which is, as expected, largely the p molecular orbital of the

double bond. The interesting conclusion from (c) is that in this ion the HOMO of the

double bond has donated electron density into the vacant orbital on C7 forming a

three-center, two-electron bond. Two p electrons may be cyclically delocalized,

making the cation a bishomo (meaning expansion by two carbons) analogue of the

aromatic cyclopropenyl cation [326]. This delocalized bishomocyclopropenyl struc-

ture for 7-norbornenyl cations has been controversial, but is supported by NMR

studies [327].

5.5.6.4 Visualization – Closing Remarks

Other molecular properties and phenomena that can benefit from the aid of visuali-

zation are the distribution of unpaired electron spin in radicals and the changes in

orbitals and charge distribution as a reaction progresses. These and many other

Fig. 5.50 Visualization supports the view that the 7-methyl-7-norbornenyl cation is delocalized:

(a) In the 7-methyl-7-norbornyl cation (no double bond) the LUMO is largely an empty p atomic

orbital on C7; (b) In the neutral alkene norbornene the HOMO is largely the filled CC pmolecular

orbital; (c) In the 7-methyl-7-norbornenyl cation the HOMO is essentially the merged HOMO of

(b) and LUMO of (a), indicating donation of electron density from the CC double bond into the

“previously” empty orbital on C7
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visualization exercises are described in publications by Wavefunction, Inc.,

e.g. [328].

5.6 Strengths and Weaknesses of Ab initio Calculations

5.6.1 Strengths

Ab initio calculations are based on a fundamental physical equation, the Schr€odinger
equation, without empirical adjustments. This makes them esthetically satisfying,

and ensures (if the Schr€odinger equation is true) that they will give correct answers
provided the approximations needed to obtain numerical results (to solve the
Schr€odinger equation) are not too severe for the problem at hand. The level of

theory needed for a reliable answer to a particular problem must be found by

experience – comparison with experiment for related cases – so in this sense current

ab initio calculations are not fully a priori [2, 43]. A few “ab initio methods” do not

even fully eschew empirical parameters: the Gaussian and the CBS series of

methods have empirical factors which, unless they cancel (as in proton affinity

calculations, Section 5.2.2.2b) make these methods, strictly speaking, semiempiri-

cal. A consequence of the (usual) absence of empirical parameters is that ab initio

calculations can be performed for any kind of molecular species, including transi-

tion states and even non-stationary points, rather than only species for which

empirical parameters are available (see Chapter 6). These characteristics of reli-

ability (with the caveats alluded to) and generality are the strengths of ab initio

calculations.

5.6.2 Weaknesses

Compared to other methods (molecular mechanics, semiempirical calculations,

density functional calculations – Chapters 3, 6 and 7, respectively) ab initio

calculations are slow, and they are relatively demanding of computer resources

(memory and disk space, depending on the program and the particular calculation).

These disadvantages, which increase with the level of the calculation, have been to

a very large extent overcome by the tremendous increase in computer power,

accompanied by decreases in price, that have taken place since the invention of

electronic computers. In 1959 Coulson doubted the possibility (he also questioned

the desirability, but in this regard visualization has been of enormous help) of

calculations on molecules with more than 20 electrons, but 30 years later computer

speed had increased by a factor of 100,000 [329], and ab initio calculations on

molecules with 100 electrons (about 15 heavy atoms) are common.
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5.7 Summary

Ab initio calculations rest on solving the Schr€odinger equation; the nature of the

necessary approximations determine the level of the calculation. In the simplest

approach, the Hartree–Fock method, the total molecular wavefunction C is

approximated as a Slater determinant composed of occupied spin orbitals (each

spin orbital is a product of a conventional spatial orbital c and a spin function).

Writing the molecular energy as the expectation value of the wavefunction

(E ¼ hC|Ĥ|Ci), i.e. invoking the Schr€odinger equation, then differentiating

E with respect to the spin orbitals that compose the wavefunction (¼ the Slater

determinant), we get the HF equations. To use these in practical calculations the

spatial orbitals are approximated as a linear combination (a weighted sum) of basis

functions. These are usually identified with atomic orbitals, but can really be any

mathematical functions that give a reasonable wavefunction, i.e. a wavefunction

which gives reasonable answers when we do the calculations. The main defect of

the HF method is that it does not treat electron correlation properly: each electron is

considered to move in an electrostatic field represented by the average positions of

the other electrons, whereas in fact electrons avoid each other better than this model

predicts, since any electron A really sees any other electron B as a moving particle

and the two mutually adjust (correlate) their motions to minimize their interaction

energy. Electron correlation is treated better in post-HF methods, such as the

Møller–Plesset (MP), configuration interaction (CI), and coupled cluster (CC)

methods. These methods lower electron–electron interaction energy by allowing

the electrons to reside not just in conventionally occupied MOs (the n lowest MOs

for a 2n-electron species), but also in formally unoccupied MOs (virtual MOs).

The main uses of the ab initio method are calculating molecular geometries,

energies, vibrational frequencies, spectra (IR, UV, NMR), ionization energies and

electron affinities, and properties like dipole moments which are directly connected

with electron distribution. These calculations find theoretical and practical applica-

tions, since, for example, enzyme–substrate interactions depend on shapes and

charge distributions, reaction equilibria and rates depend on energy differences,

and spectroscopy plays an important role in identifying and understanding novel

molecules. The visualization of calculated phenomena, such as molecular vibra-

tions, charge distributions, and molecular orbitals, can be very important in inter-

preting the results of calculations.
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Easier Questions

1. In the term Hartree–Fock, what, essentially, were the contributions of each of

these two people?

2. What is a spin orbital? A spatial orbital?

3. At which step in the derivation of the Hartree–Fock energy does the assumption

that each electron sees an “average electron cloud” appear?

4. For a closed-shell molecule the number of occupied molecular orbitals is half

the number of electrons, but there is no limit to the number of virtual orbitals.

Explain.

5. In the simple H€uckel method, csi denotes the basis function coefficient for the

contribution of atom number s (in whatever numbering scheme we choose) to

MO number i. In the ab initio method, csi still refers to MO number i, but the
s does not necessarily denote atom number s. Explain.

6. The derivation of the Roothaan–Hall equations involves some key concepts:

Slater determinant, Schr€odinger equation, explicit Hamiltonian operator,
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energy minimization, and LCAO. Using these, summarize the steps leading to

the Roothaan–Hall equations FC ¼ SC«.
7. What are the similarities and the differences between the basis set of the

extended H€uckel method and the ab initio STO-3G basis set?

8. In the simple and extended H€uckel methods, the molecular orbitals are calcu-

lated and then filled from the bottom up with the available electrons. However,

in ab initio calculations the occupancy of the orbitals is taken into account as

they are being calculated. Explain.

Hint: look at the expression for the Fock matrix elements in terms of the density

matrix.

9. Isodesmic reactions have been used to investigate aromatic stabilization, but

there is not a unique isodesmic reaction for each problem. Write two isodesmic

reactions for the ring-opening of benzene, both of which have on each side of

the equation the same number of each kind of bond. Have you any reason to

prefer one of the equations to the other?

10. List the strengths and weaknesses of ab initio calculations compared to molec-

ular mechanics and extended H€uckel calculations. State the molecular features

that can be calculated by each method.

Harder Questions

1. Does the term ab initio imply that such calculations are “exact”? In what sense

might ab initio calculations be said to be semiempirical – or at least not a

priori?

2. Can the Schr€odinger equation be solved exactly for a species with two protons

and one electron? Why or why not?

3. The input for an ab initio calculation (or a semiempirical calculation of the type

discussed in Chapter 6, or a DFT calculation – Chapter 7) on a molecule is

usually just the cartesian coordinates of the atoms (plus the charge and multi-

plicity). So how does the program know where the bonds are, i.e. what the

structural formula of the molecule is?

4. Why is it that (in the usual treatment) the calculation of the internuclear

repulsion energy term is easy, in contrast to the electronic energy term?

5. In an ab initio calculation on H2 or HHe
þ, one kind of interelectronic interac-

tion does not arise; what is it, and why?

6. Why are basis functions not necessarily the same as atomic orbitals?

7. One desirable feature of a basis set is that it should be “balanced.” How might a

basis set be unbalanced?

8. In a Hartree–Fock calculation, you can always get a lower energy (a “better”

energy, in the sense that it is closer to the true energy) for a molecule by using a

bigger basis set, as long as the HF limit has not been reached. Yet a bigger basis

set does not necessarily give better geometries and better relative (i.e. activa-

tion and reaction) energies. Why is this so?
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9. Why is size-consistency in an ab initio method considered more important than

variational behavior (MP2 is size-consistent but not variational)?

10. A common alternative to writing a Hartree–Fock wavefunction as an explicit

Slater determinant is to express it using a permutation operator P̂ which

permutes (switches) electrons around in MOs. Examine the Slater determinant

for a two-electron closed-shell molecule, then try to rewrite the wavefunction

using P̂.
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Chapter 6

Semiempirical Calculations

Current “ab initio” methods were limited to very inaccurate calculations

for very small molecules.

M.J.S. Dewar, A Semiempirical Life, 1992

Abstract Semiempirical quantum mechanical calculations are based on the

Schr€odinger equation. This chapter deals with SCF semiempirical methods, in

which repeated diagonalization of the Fock matrix refines the wavefunction and

molecular energy. These calculations are much faster than ab initio ones, mainly

because the number of integrals to be dealt with is greatly reduced by ignoring some

and approximating others with the help of experimental quantities, or values from

high-level ab initio or DFT calculations. In order of increasing sophistication, these

SCF semiempirical procedures have been developed: PPP (Pariser-Parr-Pople),

CNDO (complete neglect of differential overlap), INDO (intermediate neglect of

differential overlap), and NDDO (neglect of diatomic differential overlap). Today

the most popular SCF semiempirical methods are AM1 and PM3, which are

carefully parameterized to reproduce experimental quantities (primarily heats of

formation). Recent extensions of AM1 (RM1) and PM3 (PM6) seem to represent

substantial improvements and are likely to soon become the standard semiempirical

methods.

6.1 Perspective

We have already seen examples of semiempirical methods, in Chapter 4: the simple

H€uckel method (SHM, Erich H€uckel, ca. 1931) and the extended H€uckel method

(EHM, Roald Hoffmann, 1963). These are semiempirical (“semi-experimental”)

because they combine physical theory with experiment. Both methods start with the

Schr€odinger equation (theory) and derive from this a set of secular equations which

may be solved for energy levels and molecular orbital coefficients (most efficiently
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by diagonalizing a Fock matrix; see Chapter 4). However, the SHM gives energy

levels in units of a parameter (b) that can be translated into actual quantities only by
comparing SHM results with experiment, and the EHM uses experimental ioniza-

tion energies to translate the Fock matrix elements into actual energy quantities.

Semiempirical calculations stand in contrast to empirical methods, like molecular

mechanics (Chapter 3), and theoretical methods, like ab initio calculations (Chapter

5). Molecular mechanics starts with a model of a molecule as balls and springs, a

model that works but whose theoretical justification lies outside molecular mechan-

ics. The ab initio method, like the H€uckel methods, starts with the Schr€odinger
equation but strictly ab initio calculations do not appeal to experiment, beyond

invoking, when actual quantities are needed, experimental values for Planck’s

constant, the charge on the electron and proton, and the masses of the electron

and atomic nuclei. These fundamental physical constants could be calculated only

by some deep theory of the origin and nature of our universe [1].

The H€uckel methods were discussed in Chapter 4 rather than here because

extensive application of these methods came before widespread use of ab initio

methods, and because the simple H€uckel, extended H€uckel and ab initio methods

form a conceptual progression in which the first two methods aid understanding of

the third in this hierarchy of complexity. The semiempirical methods treated in this

chapter are logically regarded as simplifications of the ab initio method, since they

use the SCF procedure (Chapter 5) to refine the Fock matrix, but do not evaluate

these matrix elements ab initio. The SHM was developed (1931) outside the realm

of SCF theory (which was invented for atoms: Hartree, 1928 [2]), as the first appli-

cation of the Schr€odinger equation to molecules of reasonable size, and the EHM is

a straightforward extension of this. In contrast, the methods of this chapter began as

a conscious attempt to provide practical alternatives to the ab initio approach, the
application of which to molecules of reasonable size understandably seemed

hopeless in the infancy of electronic computers. The PPP method, one of the first

SCF semiempirical methods, was published in 1953, just when the first electronic

computers began to be available to chemists [3]. Semiempirical calculations are

much less demanding of computer power than ab initio ones, because parameteri-

zation and approximations drastically reduce the number of integrals which must be

calculated. The pessimism with which the ab initio approach was viewed is clear in

the words of several pioneers of quantum chemistry:

C. A. Coulson, 1959: “I see little chance – and even less desirability – of dealing in this

accurate manner with systems containing more than 20 electrons. . .” [4]
M. J. S. Dewar1, 1969: “How then shall we proceed? The answer lies in abandoning

attempts to carry out rigorous a priori calculations.” [5].

Neither Coulson nor Dewar could have foreseen the enormous increase in com-

puter power that was to come over the next few decades. What Coulson meant by

1Michael J. S. Dewar, born Ahmednagar, India, 1918. Ph.D. Oxford, 1942. Professor of chemistry

at Universities of London, Chicago, Texas at Austin, and University of Florida. Died Florida,

1997.
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“even less desirability” was perhaps that the computed results would be too com-

plex to interpret; one factor which has obviated this problem is the visual display of

information (Sections 5.5.6 and 6.3.6). The development of improved algorithms

and far faster computers has altered the situation almost out of recognition; for

example, an energy calculation on a moderate-size molecule (1,3,5-triamino-2,4,6-

trinitrobenzene) is faster now (mid-2009) by these factors: compared to 17 years

ago, 1,700; compared to 25 years ago, 90,000, compared to 42 years ago, 108 [6].

Why, then, are semiempirical calculations still used? Because they are still about

100–1,000 times faster than ab initio (Chapter 5) or density functional (Chapter 7)

methods. The increase in computer speed means that we can now routinely examine

by ab initio methods moderately large molecules – up to, say, steroids, with about

30 heavy atoms (non-hydrogen atoms), and by semiempirical methods huge mole-

cules, even proteins and nucleic acids.

In the following presentation of semiempirical methods, the general approach

and the distinction between the various methods is best appreciated by under-

standing the concepts in words, rather than attempting to memorize admittedly

somewhat formidable-looking equations (unless you plan to develop a new

semiempirical method).

6.2 The Basic Principles of SCF Semiempirical Methods

6.2.1 Preliminaries

The semiempirical methods we saw in Chapter 4 simply construct a Fock matrix

and diagonalize it once to get MO energy levels and MOs (i.e. the coefficients of the

basis functions that make up the MOs). The simple H€uckel method Fock matrix

elements were simply relative energies 0 and �1 (0 and �1 |b| units, relative to the
nonbonding level a), and the extended H€uckel method Fock matrix elements were

calculated from ionization energies. In both the simple and extended H€uckel
methods a single matrix diagonalization gave the energy levels and MO coeffi-

cients. This chapter is concerned with semiempirical methods that are closer to the

ab initio method in that the SCF procedure (Section 5.2.3.6, particularly Sections

5.2.3.6.4 and 5.2.3.6.5) is used to refine the energy levels and MO coefficients: basis

set coefficients from a “guess” are improved by repeated matrix diagonalization. As

in ab initio calculations each Fock matrix element is calculated from a core integral

Hcore
rs , density matrix elements Ptu, and electron repulsion integrals (rs|tu), (ru|ts):

Frs ¼ Hcore
rs ð1Þ þ

Xm
t¼1

Xm
u¼1

Ptu½ðrsjtuÞ� 1

2
ðrujtsÞ� (6.1 = 5.82)

As stated above, the following discussion applies to semiempirical methods that,

Iike ab initio, use the SCF procedure and so pay some service to Eq. 6.1¼5.82.
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To initiate the process we need an initial guess of the coefficients, to calculate the

density matrix values Ptu. The guess can come from a simple H€uckel calculation (for
a p electron theory like the PPP method) or from an extended H€uckel calculation (for
an all-valence-electron theory, like CNDO and its descendants). The Fock matrix of

Frs elements is diagonalized repeatedly to refine energy levels and coefficients.

The semiempirical methods we consider here diverge from ab initio calculations

through the use of several approximations. These are discussed in detail by Dewar

[7]. An excellent yet compact survey of the principles behind all the major

semiempirical methods is given by Levine [8], and semiempirical methods have

also been reviewed by Thiel [9]; a detailed exposition of the basic (pre-1970) theory

behind these methods can be found in the book by Pople and Beveridge [10]. Clark

has written a very thoughtful review of the “philosophy” of the semiempirical

approach, its strengths and weaknesses, its past and future [11]. The divergence

from the ab initio method lies in (1) treating only valence or p electrons, i.e. in the

meaning of the “core”, (2) the mathematical functions used to expand the MOs (the

nature of the basis set functions), (3) how the core and two-electron repulsion

integrals are evaluated, and (4) the treatment of the overlap matrix.

Expanding on points (1)–(4):

1. Treating only valence or p electrons, i.e. the meaning of the “core”. In an ab

initio calculation Hcore
rs is the kinetic energy of an electron moving in the force-

field of the atomic nuclei, plus the potential energy of attraction of the electron to

these atomic nuclei: the electron is moving under the influence of a positive core

composed of atomic nuclei. Semiempirical calculations handle at most valence

electrons (the PPP method handles only p electrons), so each element of the core

becomes an atomic nucleus plus its core electrons (for the PPP method, a

nucleus with the core electrons plus all s valence electrons). Instead of a

cloud of all the electrons moving in a framework of nuclei, we have a cloud of

valence electrons (for the PPP method, p electrons) moving in a framework of

atomic cores (atomic core ¼ nucleus þ non-valence electrons, or for PPP,

nucleus þ all electrons that don’t contribute to the p system). The SCF semiem-

pirical energy is calculated in a manner analogous to that of an ab initio

calculation of the Hartree-Fock energy (cf. Eq. 5.149), but n in Eq. 6.2 is not

half the total number of electrons, but rather half the number of valence electrons

(half the number of p electrons for a PPP calculation), i.e. n is the number of

MOs formed from the those electrons being included in the basis set. ESE is the

valence electronic (p electronic for the PPP method) energy, rather than

the total electronic energy, and VCC is the core–core repulsion, rather than the

nucleus–nucleus repulsion:

Etotal
SE ¼ ESE þ VCC ¼

Xn
i¼1

ei þ 1

2

Xm
r¼1

Xm
s¼1

PrsH
core
rs þ VCC (6.2)

Treating the core electrons in effect as part of the atomic nuclei means that we

need basis functions only for the valence electrons. With a minimal basis set
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(Section 5.3.3) an ab initio calculation on ethene, C2H4, needs five basis

functions (1s, 2s, 2px, 2py, 2pz) for each carbon and one basis function (1s)
for each hydrogen, a total of 14 basis functions, while a semiempirical cal-

culation needs four functions for each carbon and one for each hydrogen, for

a total of 12; for cholesterol, C27H46O, the numbers of basis functions are

186 and 158 for ab initio and semiempirical, respectively. For both molecules

the semiempirical calculation needs about 85% as many basis functions as the

ab initio calculation. The semiempirical basis set advantage is small compared

to a minimal basis set ab initio calculation, a kind not much used nowadays,

but it is large compared to ab initio calculations with split valence and split

valence plus polarization (Section 5.3.3) basis sets. For ethene, comparing a

6-31G* ab initio calculation with a minimal basis semiempirical calculation,

the numbers of basis functions are 38 and 12, for cholesterol, 522 and 158;

the semiempirical calculation needs only about 30% as many basis functions

for both molecules. Semiempirical calculations use only a minimal basis set

and hope to compensate for this by parameterization of the two-electron

integrals (below).

2. The basis set functions. In semiempirical methods the basis functions correspond

to atomic orbitals (valence AOs or p-p AOs), while in ab initio calculations this

is strictly true only for a minimal basis set, since an ab initio calculation can use

many more basis functions than there are conventional AOs. The SCF-type

semiempirical methods we are considering in this chapter use Slater functions,

rather than approximating Slater functions as sums of Gaussian functions

(Section 5.3.2). Recall that the only reason ab initio calculations use Gaussian,

rather than the more accurate Slater, functions, is because calculation of the

electron–electron repulsion two-electron integrals is far faster with Gaussian

functions (Section 5.3.2). In semiempirical calculations these integrals have

been parameterized into the calculation (see below). Mathematical forms of

the basis functions f are still needed, to calculate overlap integrals hfr|fsi,
for although these methods treat the overlap matrix as a unit matrix, some

overlap integrals are evaluated rather than simply being taken as zero or one.

Approximate MO theory has some apparent logical contradictions [7]. The

calculated overlap integrals are used to help calculate core integrals and

electron-repulsion integrals. As in ab initio calculations linear combinations of

the basis functions are used to construct MOs, which in turn are multiplied by

spin functions and used to represent the total molecular wavefunction as a Slater

determinant as in ab initio theory (Section 5.2.3.1).

3. The integrals. The core integrals and the two-electron repulsion integrals

(electron-repulsion integrals), Eq. 6.1¼5.82, are not calculated from first prin-

ciples (i.e. not from an explicit Hamiltonian and basis functions, as illustrated in

Section 5.2.3.6.5), but rather many integrals are taken as zero, and those that are
used are evaluated in an empirical way from the kinds of atoms involved and

their distances apart. Recall that calculation of the two-electron integrals, par-

ticularly the three- and four-center ones (those involving three or four different

atoms) takes up most of the time in an ab initio calculation. The integrals to be
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ignored (set equal to zero) are determined from the extent to which differential
overlap is neglected. Differential overlap dS is the differential of the overlap

integral (e.g. Section 4.3.3) S:

S ¼
Z

frð1Þfsð1Þdv1 (*6.3)

dS ¼ frð1Þfsð1Þdv1 (*6.4)

Semiempirical methods differ amongst themselves in, amongst other ways, the

criteria for setting dS ¼ 0, i.e. for applying zero differential overlap, ZDO.
4. The overlap matrix. SCF-type semiempirical methods take the overlap matrix as

a unit matrix, S¼ 1, so S vanishes from the Roothaan-Hall equations FC¼ SCe
without the necessity of using an orthogonalizing matrix to transform these

equations into standard eigenvalue form FC ¼ Ce so that the Fock matrix can

be diagonalized to give the MO coefficients and energy levels (Sections 4.4.3

and 4.4.1; Section 5.2.3.6.2).

We begin our examination of specific SCF-type semiempirical methods with the

simplest, the Pariser-Parr-Pople method.

6.2.2 The Pariser-Parr-Pople (PPP) Method

The first semiempirical SCF-type method to gain widespread use was the Pariser-

Parr-Pople method (1953) [12, 13]. Like the simple H€uckel method, PPP calcula-

tions are limited to p electrons, with the other electrons forming a s framework to

hold the atomic p orbitals in place. The Fock matrix elements are calculated from

Eq. 6.1¼5.82; for a PPP calculation Hcore
rs represents the nuclei plus all non-p-

system electrons, Ptu is calculated from the coefficients of those p AOs contributing
to the p system, and the two-electron repulsion integrals refer to electrons in the p
system. The one-center core integrals Hcore

rr are estimated empirically from the

ionization energy of a 2p AO and (see below) the two-electron integral (rr|ss).
The two-center core integrals Hcore

rs are calculated from

Hcore
rs ¼ k frð1Þjfsð1Þh i r 6¼ s ð6:5 ¼ 5:82Þ

where k is an empirical parameter chosen to give the best agreement with experi-

ment of the wavelength of UV absorption bands, and the overlap integral hfr|fsi is
calculated from the basis functions, with the proviso that if fr and fs are on atoms

that are not connected then the integral is taken as zero.

The two-electron integrals are evaluated by applying the ZDO approximation

(above) to all different orbitals r and s:

dS ¼ frð1Þfsð1Þdv1 ¼ 0 for r 6¼ s (6.6)
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From Eq. 6.6 and the definition of the two-electron integral

ðrsjtuÞ ¼
Z Z

f�
rð1Þfsð1Þf�

tð2Þfuð2Þ
r12

dv1dv2 (6.7 = 5.73)

it follows that (1) for r 6¼ s, (rs|tu) ¼ 0, and (2) for r ¼ s and t ¼ u, (rs|tu) ¼ (rr|tt).
Both cases are taken into account by writing

ðrsjtuÞ ¼ drsdtuðrrjttÞ (6.8)

where the d’s are Kronecker deltas (¼ 1 if the subscripts are the same, zero

otherwise). Thus the four-center (i.e. (rs|tu)) and three-center (i.e. (rr|tu)) two-

electron integrals are ignored, but not the two-center (i.e. (rr|tt)) and one-center

(i.e. (rr|rr)) two-electron integrals. The one-center integrals (rr|rr) are taken as the

difference between the valence-state ionization energy and the electron affinity of

the atom bearing fr (these valence-state parameters refer to a hypothetical isolated

atom in the same hybridization state as in the molecule, and can be found spectro-

scopically).The two-center integrals (rr|tt) are estimated from (rr|rr) and (tt|tt) and
the distance between the fr and ft atoms.

Although the overlap integrals hfr|fsi are actually calculated for the evaluation of
Hcore

rs (Eq. 6.5¼5.82), the overlap matrix is taken as a unit matrix as far as the matrix

Roothaan-Hall equations FC¼ SCe go; thus FC¼ Ce or F¼ CeC�1 and the Fock

matrix is diagonalized, without transforming it with an orthogonalizing matrix, to

give the MO coefficients and energy levels. That the overlap matrix is a unit matrix

is a corollary of the ZDO approximation of Eq. 6.6, from which it follows that the

off-diagonal matrix elements are zero; the diagonal elements are of course unity if

normalized AO basis functions are used. PPP energies are p electron electronic

energies ESE, or electronic energies plus core–core repulsions, E
total
SE , if VCC is added

(Eq. 6.2).

The PPP method has been used to calculate the UV spectra of conjugated

compounds, especially dyes [14], a task it performs fairly well. The accuracy

of these calculations can be improved by incorporating electron correlation

(Section 5.4), using the configuration interaction (CI) method. The calculations

were usually done at a fixed geometry, although an empirical bond length-bond

order relation permits optimization of bond length. The classical PPP method is

not much used now, having evolved into other neglect of differential overlap

(NDO) methods, especially those parameterized for spectra, like INDO/S and the

very successful ZINDO/S (below). We now look at a hierarchy NDO methods

that, unlike the PPP approach, are not limited to planar arrays of p-orbitals, but

instead permit calculations on molecules of general geometry. In order of increas-

ing sophistication these are complete neglect of differential overlap CNDO),

intermediate neglect of differential overlap (INDO), and neglect of diatomic

differential overlap (NDDO).
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6.2.3 The Complete Neglect of Differential Overlap (CNDO)
Method

The first semiempirical SCF-type method to go beyond just p electrons was the

complete neglect of differential overlap method (ca. 1966) [15]. This was a general-

geometry method, since it is not limited to planar p systems (molecules with con-

jugated p electron systems, like benzene, are usually planar). Like the other early

general-geometry method, the extended H€uckel method, which appeared in 1963

(Section 4.4), CNDO calculations use a minimal valence basis set of Slater-type

orbitals, using just the valence electrons and the conventional atomic orbitals

of each atom. The Fock matrix elements are calculated from Eq. 6.1¼5.82; for a

CNDO calculation Hcore
rs represents the nuclei plus all core electrons, Ptu is calcu-

lated from the coefficients of the valence AOs, and the two-electron repulsion

integrals refer to valence electrons.

There are two versions of CNDO, CNDO/1 and an improved version, CNDO/2.

First look at CNDO/1. Consider the core integrals Hcore
rArA, where both orbitals are

the same (i.e. the same orbital occurs twice in the integral frð1ÞjĤcore
rr jfrð1Þ

� �
)

and are on the same atom A. Recall the example of an ab initio calculation on

HHe+ (Section 5.2.36e). Consider, say, element (1,1) of that Hcore matrix. From

Eq. 5.116:

Hcore
11 ¼ f1ð1ÞjT̂jf1ð1Þ

� �þ f1ð1ÞjV̂Hjf1ð1Þ
� �þ f1ð1ÞjV̂Hejf1ð1Þ

� �
¼ f1ð1ÞjT̂ þ V̂Hjf1ð1Þ

� �þ f1ð1ÞjV̂Hejf1ð1Þ
� � (6.9)

Equation 6.9 can be generalized to a matrix element (r,r) and a molecule with

Hcore
rArA ¼ frAð1ÞjT̂ þ V̂AjfrAð1Þ

� �þ frAð1ÞjV̂BjfrAð1Þ
� �

þ frAð1ÞjV̂CjfrAð1Þ
� �þ � � �

¼ Urr þ
X
B 6¼A

frAð1ÞjV̂BjfrAð1Þ
� � ¼ Urr þ VAB ð6:10Þ

where frA is a basis function on atom A. The Urr term in Eq. 7.0 is regarded as the

energy of an electron in the AO on A corresponding to the function frA, and is

taken as the negative of the valence-state ionization energy of such an electron. The

integrals in the VAB term are simply calculated as the potential energy of a valence

s orbital in the electrostatic field of the core of atom A, B, etc., e.g.

frAð1ÞjV̂BjfrAð1Þ
� � ¼ SAð1Þ CB

r1B

����
����SAð1Þ

� �
(6.11)

where CB is the charge on the core of atom B, i.e. the atomic number minus the

number of core (non-valence) electrons, and the variable r1B is the distance of the 2s
electron from the center of the core (from the atomic nucleus). The core integrals

with different orbitals fr and fs, on the same atom (A ¼ B; one-center integrals) or
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on different atoms are taken as being proportional to the overlap integral of the

relevant orbitals:

Hcore
rAsB ¼ bAB frð1Þjfsð1Þh i r 6¼ s (6.12)

The overlap integral here is calculated from the basis functions, although (as for

the PPPmethod, above) the overlap matrix is simply taken as a unit matrix as far as

the matrix Roothaan-Hall equations are concerned. The proportionality constant

bAB is taken as the arithmetic mean of parameters for atoms A and B, these

parameters being those that give the best fit of CNDO MO coefficients to those

of minimal-basis-set ab initio calculations. Since different AOs on the same atom

are orthogonal, when A ¼ B these integrals are zero. Note that calculating bAB
from a best-fit to minimal-basis-set ab initio calculations means that CNDO

parameterization is not purely empirical, but rather, to some extent attempts to

match (low-level) ab initio results. This is a weakness of CNDO and a potential

weakness of its successors INDO and NDDO (below). As repeatedly emphasized

by Dewar, this deficiency was avoided in his methods (Section 6.2.5.1) by consis-

tently parameterizing to match experiment.
As with the PPP method, the two-electron repulsion integrals are evaluated by

applying the ZDO approximation to all different orbitals r and s (Eq. 6.6). Thus the
two-electron integrals reduce to (rs|tu) ¼ drsdtu(rr|tt) (Eq. 6.8), i.e. only one- and

two-center two-electron integrals are considered. All one-center integrals on the

same atom A are given the same value, gAA, and all two-center integrals between

atoms A and B are given the same value, gAB. These integrals are calculated from

valence s Slater functions on A and B.

CNDO/2 differs from CNDO/1 in two modifications to the Hcore
rArA matrix ele-

ments (Eq. 6.1): (1) to account better for both ionization energy and electron affinity,

Urr is evaluated not just from ionization energy but as a kind of average of ionization

energy and electron affinity, and (2) the integrals in the VAB term are calculated from

the two-electron integrals gAB, as VAB ¼�CBgAB. This latter evaluation amounts to

neglecting so-called penetration integrals; these integrals make nonbonded atoms

attract one another, and cause bond lengths to be too short and bond energies to be

too large [15–18]. CNDO energies are valence electron electronic energies ESE, or

electronic energies plus core–core repulsions, Etotal
SE , if VCC is added (Eq. 6.2).

CNDO is now obsolete, having served its purpose as a precursor to the more

effective general-geometry methods INDO and NDDO (below).

6.2.4 The Intermediate Neglect of Differential Overlap (INDO)
Method

INDO [19] goes beyond CNDO by curtailing the application of the ZDO approxi-

mation. Instead of applying it to all different (r 6¼ s) atomic orbitals in the two-

electron integrals (Eq. 6.6), as in the PPP and CNDO methods, in INDO ZDO is not
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applied to those one-center two-electron integrals, (rs|tu), with fr, fs, ft, and fu all

on the same atom; obviously, these repulsion integrals should be the most impor-

tant. Although more accurate than CNDO, INDO is nowadays used mostly only for

calculating UV spectra, in specially parameterized versions called INDO/S and

ZINDO/S [20].

6.2.5 The Neglect of Diatomic Differential Overlap (NDDO)
Methods

NDDO [21] goes beyond INDO in that the ZDO approximation (Section 6.2.1,

point (3)) is not applied to orbitals on the same atom, i.e. ZDO is used only for

atomic orbitals on different atoms. NDDO is the basis of the currently popular

semiempirical methods developed byM. J. S. Dewar and by coworkers who took up

the torch: MNDO, AM1 and PM3 (as well as SAM1, PM5, and PM6). NDDO

methods are the gold standard in general-purpose semiempirical methods, and the

rest of this chapter concentrates on them.

6.2.5.1 NDDO-Based Methods from the Dewar Group: MNDO, AM1, PM3

and SAM1, and Related Methods – Preliminaries

SCF-type (see Section 6.1) semiempirical theories are based to a large extent on the

approximate molecular orbital theory (see the book of this title [10]) developed by

Pople and coworkers. The Pople school, however, went on to concentrate on the

development of ab initio methods, and indeed it is for his contributions to these,

which are largely encapsulated in the Gaussian series of programs [22], that Pople

was awarded the 1998 Nobel Prize in chemistry [23] (shared with Walter Kohn, a

pioneer in density functional theory; see Chapter 7). In contrast, Dewar pursued the

semiempirical approach almost exclusively [24], and continued till the end of his

career to stoutly maintain that at least as far as molecules of real chemical interest

go his semiempirical methods were superior to ab initio ones (“There is clearly little

point in using a procedure that requires thousands of times more computing time

than ours do if it is no better than ours, let alone one that is inferior.”) [25]. The

rivalry between the Dewar school and the adherents of the ab initio approach began

relatively early in the development of Dewar methods (see e.g. [26–28]), intensified

to actual polemic [29], and is passionately described from an unabashedly partisan

viewpoint in Dewar’s autobiography [24]. The ab initio versus Dewar semiem-

pirical controversy was largely rooted in a difference of viewpoints and in a focus

by Dewar on the inability of ab initio calculations to give reasonably accurate

absolute molecular energies (here we can take this to mean the atomization energy).

In the absence of error cancellation, errors in absolute energies lead to errors in
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activation and reaction energies, and the errors in absolute energies were, ca. 1970,

commonly in the region of a 1,000 kJ mol�1. Cancellation (actually not as untrust-

worthy as Dewar thought – Section 5.5.2) could not, he held, be relied on to provide

chemically useful relative energies (reaction and activation energies), say with

errors of no more than some tens of kilojoules per mole. The exchange with

Halgren, Kleir and Lipscomb nicely illustrates the viewpoint difference [28]: one

side held that even when inaccurate, ab initio calculations can teach us something

fundamental, while semiempirical calculations, no matter how good, do not con-

tribute to fundamental theory. Dewar focussed on the study of reactions of “real”

chemical interest. Toward the end of his career as an active chemist, he coauthored

a review of pericyclic reactions such as the Cope and Diels-Alder processes,

defending the results of AM1 (below) studies [30]. The divergence of these con-

clusions from those of other workers engendered a rebuke from Houk and

Li [31]. Interestingly, the high-accuracy “ab initio” methods that in recent years

have achieved chemical accuracy (Section 5.5.2.2b), considered to be about

10 kJ mol�1, employ some empirical parameters, a fact that would have amused

Dewar (Section 6.1, footnote).

In contrast to the viewpoint of the ab initio school, Dewar regarded the semiem-

pirical method not merely as an approximation to ab initio calculations, but rather

as an approach that, carefully parameterized, could give results far superior to those

from ab initio calculations, at least for the foreseeable future: “The situation [ca.

1992] could be changed only by a huge increase in the speed of computers, larger

than anything likely to be attained before the end of the century, or by the

development of some fundamentally better ab initio approach” [32]. The conscious

decision to strive for experimental accuracy rather than merely to reproduce low-

level ab initio results (note the remarks in connection with Eq. 6.12) was clearly

stated several times [27, 29, 33] in the course of the development of these semiem-

pirical methods: “We set out to parametrize [semiempirical methods] in an entirely

different manner, to reproduce the results of experiment rather than those of

dubious ab initio calculations” [33]. Of the several experimental parameters that

the Dewar methods are designed to reproduce, probably the two most important are

geometry and heat of formation. As with ab initio calculations, optimized geome-

tries are found by an algorithm which uses first and second derivatives of energy

with respect to geometric parameters to locate stationary points (Section 2.4). The

method of finding heats of formation is described below.

6.2.5.2 Heats of Formation (Enthalpies of Formation) from Semiempirical

Electronic Energies

For heat of formation the procedure encoded in the methods is the following [34]. As

with ab initio calculations, SCF-type semiempirical calculations initially give elec-

tronic energies ESE; these are calculated using Eq. 6.2. Inclusion of the core–core

repulsion VCC, which is necessary for geometry optimization, gives the total semi-

empirical energy Etotal
SE , normally expressed in atomic units (hartrees), as in an ab
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initio calculation (e.g. Section 5.2.3.6.5). This energy Etotal
SE , the total internal energy

of the molecule except for zero point vibrational energy, is used to calculate the heat

of formation (enthalpy of formation) of the molecule. Figure 6.1 will help to make it

clear how this is done. The quantities in Fig. 6.1 are

1. DH�
f298(M), the 298 K heat of formation of the molecule M, i.e. the heat energy

needed to make M from its elements. This is the quantity we want.

2. The atomization energy of M, which is the energy of the atoms minus the energy

of M. The energy of the atoms is F∑ESE(Ai); the conversion factor F converts

ESEðAiÞ, the energy per atom in hartrees, into the same units, kJ mol�1 or kcal

mol�1, as is used for the experimental heats of formation of the atoms; F is

2,625.5 kJ mol�1 per hartree atom�1 (or molecule�1). The energy of the mole-

cule M is F Etotal
SE (M), the optimized geometry being used. The same semiempir-

ical method is used to calculate atomic and molecular energies, both of which

are negative quantities, the energy of the species relative to electrons and one or

more atomic cores infinitely separated. ESE(Ai) is purely electronic, since an

atom has no core–core repulsion (i.e. it has no atoms to separate), while the

molecular energy Etotal
SE (M) includes core–core repulsion.

3.
P

DH�
f298(Ai), the sum, over all the atoms A of M, of the experimental 298 K

heats of formation of these atoms.

Equating the two paths from the elements in their standard states at 298 K to

atoms we get

DH�
f298ðMÞ ¼

X
DH�

f298 Aið Þ � F
X

ESE Aið Þ þ FEtotal
SE ðMÞ (6.13)

elements in their
standard states

ΣΔHf298(Ai)

ΔHf298(M)

molecule M

atoms in their
standard states

atomization energy of M =

F ΣESE(Ai) – FE SE (M)

–

–

total

Fig. 6.1 The principle behind the semiempirical calculation of heat of formation (enthalpy of

formation). The molecule is (conceptually) atomized at 298 K; the elements in their standard states

are also used to make these atoms, and to make the molecule M. The heat of formation of M at

298 K follows (with some approximations) from equating the energy needed to generate the atoms

via M to that needed to make them directly from the elements
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Thus the desired quantity, the heat of formation of the molecule, can be cal-

culated from the experimental heats of formation of the atoms and the semiempiri-

cal energies of the atoms and the molecule. The calculation using Eq. 6.13 is

automatically done by the program using stored values for atomic heats of forma-

tion and semiempirical atomic energies, and the “freshly calculated” calculated

molecular energy, and one normally never sees Etotal
SE ðMÞ. These calculations are for

the gas phase, and if one wants the heat of formation of a liquid or a solid, then the

experimental heat of vaporization or sublimation must be taken into account. Note

that this procedure is conceptually almost the same as the atomization method for

ab initio calculation of heats of formation (Section 5.5.2.2c). However, the purpose

here is to obtain the heat of formation at room temperature (298 K) from the

molecular “total semiempirical energy”, the electronic energy plus core–core

repulsion; in the ab initio atomization method the 0 K heat of formation is

calculated with the aid of the molecular energy including ZPE (the 0 K heat of

formation can be corrected to 298 K – see Section 5.5.2.2c). The semiempirical

procedure involves some approximations. The ZPE of the molecule is not used (so a

frequency calculation is not needed for this), and the increase in thermal energy

from 0 to 298 K is not calculated. Thus if Etotal
SE ðMÞ were fully analogous to the ab

initio 0 K electronic energy plus internuclear repulsion then the calculated atomi-

zation energy would be at 0 K, not 298 K, and furthermore would employ a frozen-

nucleus approximation to the true 0 K energy. The good news is that Etotal
SE ðMÞ is

parameterized (below) to reproduce DH�
f298ðMÞ; to the extent that this parameteri-

zation succeeds the neglect of ZPE and of the 0–298 K increase in thermal energy

are overcome, and electron correlation is also implicitly taken into account. The key

to obtaining reasonably accurate heats of formation from these methods is thus their

parameterization to give the values of ESEðAiÞ and Etotal
SE ðMÞ used in Eq. 6.13. This

parameterization, which is designed to also give reasonable geometries and dipole

moments, is discussed below.

6.2.5.3 MINDO

The first (1967) of the Dewar-type methods was PNDDO [35], partial NDDO),

but because further development of the NDDO approach turned out to be

“unexpectedly formidable” [33], Dewar’s group temporarily turned to INDO,

creating MINDO/1 [36] (modified INDO, version 1). The third version of this

method, MINDO/3, was said [33] “[to have] so far survived every test without

serious failure”, and it became the first widely-used Dewar-type method. Keeping

their promise to return to NDDO the group soon came up with MNDO (modified

NDDO). MINDO/3 was made essentially obsolete by MNDO, except perhaps for

the study of carbocations (Clark has summarized the strengths and weaknesses

of MINDO/3, and the early work on MNDO [37]). MNDO (and MNDOC and

MNDO/d) and its descendants, the very popular AM1 and PM3, are discussed

below. Briefly mentioned are a modification of AM1 called SAM1 and an
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attempted transition metal parameterization of PM3, PM3(tm), and the successors

to PM3, namely PM5 and PM6.

6.2.5.4 MNDO

MNDO [37], a modified NDDO (Section 6.2.5) method, was reported in 1977 [38].

MNDO is conveniently explained by reference to CNDO (Section 6.2.3). MNDO is

a general geometry method with a minimal valence basis set of Slater-type orbitals.

The Fock matrix elements are calculated using Eq. 6.1¼5.82. We discuss the core

and two-electron integrals in the same order as for CNDO.

The core integrals Hcore
rArA, with the same orbital fr twice on the same atom A are

calculated using Eq. 6.10. Unlike the case in CNDO, where Urr is found from ioni-

zation energies (CNDO/1) or ionization energies and electron affinities (CNDO/2),

in MNDO Urr is one of the parameters to be adjusted. The integrals in the

summation term VAB are evaluated similarly to the CNDO/2 method from a two-

electron integral (see below) involving frA and the valence s orbital on atom B:

frAð1ÞjV̂BjfrAð1Þ
� � ¼ �CBðfrfrjsBsBÞ (6.14)

The core integrals Hcore
rAsA with different orbitals fr and fs, on the same atom A

are not simply taken as being proportional to the overlap integral, as in CNDO

(Eq. 6.12), but rather are also (like the case of both orbitals on the same atom)

evaluated from Eq. 6.10, which in this case becomes

Hcore
rAsA ¼ frAð1ÞjT̂ þ V̂AjfsAð1Þ

� �þ frAð1ÞjV̂BjfsAð1Þ
� �

þ frAð1ÞjV̂CjfsAð1Þ
� �þ � � �

¼ Urs þ
X
B 6¼A

frAð1ÞjV̂BjfsAð1Þ
� � ð6:15Þ

The first term is zero from symmetry [39]. Each integral of the summation term

is again evaluated, as in CNDO/2, from a two-electron integral:

frAð1ÞjV̂BjfsAð1Þ
� � ¼ �CBðfrAfsAjsBsBÞ (6.16)

The core integrals Hcore
rAsB with different orbitals fr and fs, on different atoms A

and B are taken, as in CNDO (cf. Eq. 6.12), to be proportional to the overlap

integral between fr and fs, where again the proportionality constant is the arith-

metic mean of parameters for atoms A and B:

Hcore
rAsB ¼ 1

2
ðbrA þ bsBÞ frð1Þjfsð1Þh i r 6¼ s (6.17)

The overlap integral is calculated from the basis functions although the over-

lap matrix is taken as a unit matrix as far as the Roothaan-Hall equations go

(Section 6.2.2). These core integrals are sometimes called core resonance integrals.
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The two-electron integrals are evaluated applying ZDO (Section 6.2.1) within

the framework of the NDDO approximation (Section 6.2.5). As with the PPP

(Section 6.2.2) and CNDO (Section 6.2.3) methods, this makes all two-electron

integrals become (rs|tu) ¼ drsdtu(rr|tt), i.e. only one- and two-center two-electron

integrals are nonzero. The one-center integrals are evaluated from valence-

state ionization energies. The two-center integrals are evaluated from the one-center

integrals and the separation of the nuclei by an involved procedure in which

the integrals are expanded as sums of multipole-multipole interactions [38a, 40]

that make the two-center integrals show correct limiting behavior at zero and

infinite separation.

As in CNDO, in MNDO the penetration integrals are neglected (Section 6.2.3,

CNDO/2). A consequence of this is that the core–core repulsions (VCC in Eq. 6.2)

cannot be realistically calculated simply as the sum of pairs of classical electrostatic

interactions between point charges centered on the nuclei. Instead, Dewar and

coworkers chose [38] the expression

VCC ¼
X
B>A

X
A

½CACBðsAsBjsBsBÞ þ f ðRABÞ� (6.18)

where CA and CB are the core charges of atoms A and B and sA and sB are the

valence s orbitals on A and B (the two-electron integral in Eq. 6.18 is actually

approximately proportional to 1/RAB, so there is some connection with the simple

electrostatic model). The f(RAB) term is a correction increment to make the result

come out better; it depends on the core charges and the valence s functions on A and

B, their separation R, and empirical parameters aA and aB:

f ðRABÞ ¼ CACBðsAsAjsBsBÞðe�aARAB þ e�aBRABÞ (6.19)

The above mathematical treatment constitutes the creation of the form of the

semiempirical equations. To actually use these equations, they must be parameter-

ized somehow (as stressed above, Dewar used experimental data). This is analogous

to the situation in molecular mechanics (Chapter 3), where a force field, defined by

the form of the functions used (e.g. a quadratic function of the amount by which a

bond is stretched, for the bond-stretch energy term) is constructed, and must then be

parameterized by inserting specific quantities for the parameters (e.g. values for the

stretching force constants of various bonds). For each kind of atom A (a maximum

of) six parameters is needed:

1. The kinetic-energy-containing term Urr of Eq. 6.10 (as explained above,

this CNDO equation is also used in MNDO to evaluate Hcore
rArA) where frA is a

valence s AO.
2. The term Urr of Eq. 6.10 where frA is a valence p AO.

3. The parameter z in the exponent of the Slater function (e.g. Section 5.3.2,

Fig. 5.12) for the various valence AOs (MNDO uses the same z for the s and
p AOs).
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4. The parameter b (Eq. 6.17) for a valence s AO.
5. The parameter b for a valence p AO.

6. The parameter a in the correction increment (f(RAB), (Eq. 6.19) to the core–core

repulsion (Eq. 6.18).

Some atoms have five parameters because for them MNDO takes b to be the

same for s and p orbitals, and hydrogen has four parameters because MNDO does

not assign it p orbitals.

We want the parameters that will give the best results, for a wide range of

molecules. What we mean by “results” depends on the molecular characteristics of

most interest to us.MNDO (and its siblingsAM1 and PM3, below)was parameterized

[38] to reproduce heat of formation, geometry, dipole moment, and the first vertical

ionization energy (fromKoopmans’ theorem; Section 5.5.5). To parameterizeMNDO

a training set of molecules (a “molecular basis set” is Dewar’s term – no connection

with a basis set of functions used to construct molecular orbitals) composed of small,

common molecules (e.g. methane, benzene, dinitrogen, water, methanol; 34 mole-

cules were used for the C, H, O, N set) was chosen and the six parameters above (Urr

etc.) were adjusted in an attempt to give the best values of the four molecular

characteristics (heat of formation, geometry, dipole moment, ionization energy).

Specifically, the objective was to minimize Y, the sum of the weighted squares of

the deviations from experiment of each of the four molecular characteristics:

Y ¼
XN
i¼1

Wi½YiðcalcÞ � YiðexpÞ�2 (6.20)

N is the number of molecules in the training set, and Wi is a weighting factor

chosen to determine the relative importance of each characteristic Yi. The actual

process of assigning values to the parameters is formally analogous to the problem of

geometry optimization (Section 2.4). In geometry optimization we want the set of

atomic coordinates that correspond to a minimum (sometimes to a transition state)

on a potential energy hypersurface. In parameterizing a semiempirical method we

want the set of parameters that correspond to the minimum overall calculated

deviation of the chosen characteristics from their experimental values – the para-

meters that give the minimum Y, above. Details of the parameterization process for

MNDO have been given by Dewar and coworkers [38] and by Stewart [41].

The results of MNDO calculations on 138 compounds limited to the elements C,

H, O, N were reported by Dewar and Thiel [38]. The absolute mean errors were: in

heat of formation, 26 kJ mol�1 for all 138 compounds; in geometry, 0.014 Å for

bond lengths for 228 bonds, 2� for angles at C for acyclics (less for cyclic mole-

cules); in dipole moment, 0.30 D for 57 compounds; in ionization energy, 0.48 eV

for 51 compounds. To put the errors in perspective, typical values of these quan-

tities are, respectively, roughly �600 to 600 kJ mol�1, 1.0 to 1.5 Å, 0 to 3 D, and

10–15 eV. Although MNDO can reproduce these and other properties of a wide

variety of molecules [37, 42], it is little-used nowadays, having been largely

superseded by AM1 and, perhaps to a somewhat lesser extent, PM3 (below).
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Variations on the basic MNDO are MNDO/d and MNDOC, both developed by

the research group of Thiel. MNDO/d has d functions added to the minimal-basis

valence s and p functions, in an attempt to solve one of the most persistent problems

of semiempirical methods, that of obtaining good results for compounds tradition-

ally believed to utilized orbitals, including “hypervalent” compounds [43].

Although the term hypervalent is not unambiguous, hypercoordinate being perhaps
preferable, and the role of d orbitals here is controversial [44], parameterization

with d functions is a pragmatic approach to finding a semiempirical method that

works. MNDO/d was applied to “normal” molecules and, more to the point,

compounds of metals like magnesium, zinc, cadmium and mercury, and some

hypercoordinate molecules. MNDO/d was said to give “significant improvements”

over established semiempirical methods, especially for hypervalent compounds

[43]. The particularly difficult task of parameterizing MNDO for transition metal

compounds does not appear to have been satisfactorily solved. The application of

MNDO and related methods to such compounds has been reviewed [45]. See too

Chapter 8, Section 8.3.4.

MNDOC denotes MNDO with configuration interaction (CI; Section 5.4.3) [46].

This may seem odd, since MNDO (and the related AM1 and PM3, . . ., PM6) are

parameterized to match experiment, and should therefore “automatically” include

electron correlation (Section 5.4.1), which CI is designed to handle. However, the

parameterization uses compounds (ground-electronic state species), not transition

states and excited states, and electron correlation changes on going from a ground

state to a transition or excited state. In a transition state this is because of a

loosening of bonds, akin to the effect discussed in connection with homolytic

bond cleavage (Section 5.4.1), and in an excited state there is of course a dramatic

altering of the electron arrangement. A perfect parameterization would therefore

give perfect properties, such as heats of formation and geometries, for ground-state

molecules only. Specific inclusion of CI in MNDO is designed to improve the

modeling of transition states and excited states, andMNDOCwas said, compared to

MNDO, to be “superior for [transition states]” [46(b)] and to warrant “cautious

applications. . .to photochemical problems” [46(c)]. In other studies involving

transition states, MNDOC was said to outperform MNDO and compare reasonably

well with ab initio calculations [47]. Augmenting an experimental study in which

matrix-isolated dimethyloxirene was said to be have been observed, Bachmann

et al. performed MNDOC calculations to estimate the barriers for the ring-opening

of some oxirenes to the oxo carbenes (“ketocarbenes”) [48]:

O

RR

..
O

RR

They obtained these barriers (kJ mol�1/ kcal mol�1): oxirene (R¼H, 24/5.8);

dimethyloxirene (R¼CH3, 31/7.3); di-t-butyloxirene (R¼t-C4H9, 56/13.5); cyclo-

hexyne oxide (R, R¼CH2CH2CH2CH2, 0/0); benzyne oxide (R, R¼CHCHCHCH,

67/16). The ordering of energies may well be correct, but MNDOC seems to
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considerably exaggerate the barriers (assuming high-level ab initio calculations are

correct here!). High-level calculations are available for oxirene and dimethyloxir-

ene. For oxirene, these gave a barrier of merely 1–4 kJ mol�1 [49] and 3 kJ mol�1

[50]; in this later case the carbene is not a stationary point and the barrier is for

direct rearrangement of oxirene to ketene (H2C¼C¼O) with hydrogen migration.

For dimethyloxirene there do not appear to be high-level results for the actual

barrier, but based on a not-fully-optimized transition state a barrier of about 11 kJ

mol�1 was estimated [50], and a “periodic scan” (R¼H, BH2, CH3, NH2, OH, F) by

Fowler et al. showed only dimethyloxirene to be clearly stabilized by the substi-

tuents [51]. The oxirene problem has been reviewed [52]; it is one that does not

yield readily to even high-level probing (see particularly [53]), and thus constitutes

a quite rigorous test for a semiempirical method. Curiously, more than 2 decades

after its development, it could be said that MNDOC “has not yet been compared to

other NDDO methods to the degree necessary to evaluate whether the formalism

lives up to [its] potential” [54]. This may be because MNDOC (and MNDO/d) are

not widely available, unlike MNDO, AM1 and PM3, which have been included in

popular “multimethod” (molecular mechanics, semiempirical, ab initio and DFT)

program suites like Gaussian [55] and Spartan [56]. MNDOC and MNDO/d are

included in the AMPAC [57], but apparently not in the MOPAC [58] suites, which

are specifically semiempirical.

6.2.5.5 AM1

AM1 (Austin method 1, developed at the University of Texas at Austin [59]) was

introduced by Dewar, Zoebisch, Healy and Stewart in 1985 [60]. AM1 is an

improved version of MNDO in which the main change is that the core–core repul-

sions (Eq. 6.18) were modified to overcome the tendency of MNDO to overestimate

repulsions between atoms separated by about their van der Waals distances (the

other change is that the parameter z in the exponent of the Slater function – see

parameter three in the listing of the six parameters above – need not be the same for

s and p AOs on the same atom). The core–core repulsions were modified by

introducing attractive and repulsive Gaussian functions centered at internuclear

points [61], and the method was then re-parameterized. The great difficulties

experienced in the parameterization of AM1 and its predecessors are emphasized

by Dewar and coworkers in many places, e.g.: “All our work has therefore been

based on a very laborious purely empirical technique. . .” for the MINDO methods

[33]; parameterization is a “purely empirical affair” and “needs infinite patience

and enormous amounts of computer time” for AM1 [60]. In his autobiography

Dewar says [62] “This success [of these methods] is no accident and it has not been

obtained easily” and summarizes the problems with parameterizing these methods:

(1) the parametric functions are of unknown form, (2) the choice of molecules for

the training set affects the parameters to some extent, (3) the parameters are not

unique, there is no way to tell if the set of values found is the best one, and there is

no systematic way to find alternative sets, (4) deciding if a set of parameters is
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acceptable is a matter of judgment. Dewar et al. chose to call their modified MNDO

method AM1, rather than MNDO/2, because they felt that their methods were being

confused (presumably because of the “INDO” and “NDO” components of the

appellations) with “grossly inaccurate” [60] ZDO SCF semiempirical methods

like CNDO and INDO.

Dewar et al. reported [60] that AM1 calculations on compounds containing

nitrogen and/or oxygen gave an absolute mean error in heats of formation of

25 kJ mol�1 for 80 compounds, “generally satisfactory” agreement with experiment

for the geometries of 138 molecules, absolute mean error in dipole moment of

0.26 D for 46 compounds, and absolute mean error in ionization energy of 0.40 eV

for 29 compounds. These results are slightly better than those for MNDO, but the

real advantages of AM1 over MNDO were said [60] to lie in its better treatment of

crowded molecules, four-membered rings, activation energies, and hydrogen bond-

ing. Nevertheless, misrepresentations of hydrogen bonding remain a problem with

AM1 [63]. AM1 and PM3 (below) are the most widely-used semiempirical methods

nowadays, and are available in practically all commercial program suites which

have not made a point of being strictly devoted to some other method(s) than

semiempirical ones.

A fairly recent reparameterization of AM1, called RM1 (for Recife, a city in

Brazil where three of the four authors work; by analogy with Austin method 1) is

said to be better than AM1 and PM3 and to be “at least very competitive” with PM5

(PM3, PM5 and PM6: see below) [64]. RM1 keeps “the mathematical structure and

qualities of AM1, while significantly improving its quantitative accuracy with the

help of today’s computers and also of the more advanced techniques available for

nonlinear optimization.” RM1 can be implemented in the AM1 software without

changing the code, other than altering the parameters. For 1,736 species considered

in the parameterization some average errors were:

Heat of formation (kJ mol�1/kcal mol�1):

AM1 47/11.15, PM3 33/7.98, PM5 25/6.03, RM1 24/5.77

Bond length (Å):

AM1 0.036, PM3 0.029, PM5 0.037, RM1 0.027

Bond angle (degrees):

AM1 5.88, PM3 6.98, PM5 9.83, RM1 6.82

The impetus behind RM1 was to make calculations on big biomolecules more

accurate. RM1 is available in Spartan ‘06 [56] and later versions and in AMPAC 9.0

[57] and MOPAC2009 [58].

Another variation of AM1 is AM1/d. This is similar in structure to MNDO/d; d

functions appear to have been first introduced into AM1 to parameterize it for

molybdenum [65], and other parameterizations seem to have been done on an as-

needed basis, e.g. for magnesium [66] and for phosphoryl transfer reactions [67].

AM1/d was available in an early version of MOPAC [58], WinMOPAC v.2.0

(reported in a study of the reaction of ethene with oxygen atoms on a silver surface)

[68], and in MOPAC2000 [58] but it is unclear if any current commercial program
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suite carries it. AM1/d was modified and parameterized for P, S and Cl to give a

variant called AM1* [69].

6.2.5.6 PM3 and Extensions (PM3(tm), PM5, and PM6)

PM3, parametric method 3, is a variation of AM1 differing mainly in how the para-

meterization is done. There were no explicit PM1 and PM2 because the developer

(below) considered the first two viable parameterized methods of this type to be

MNDOandAM1.When PM3was first published [41], those two parameterizations of

MNDO-type methods had been carried out, and PM3 was at first calledMNDO-PM3,

meaning MNDO parametric method 3. Three papers [41, 70, 71] define the PM3

method. The Dewar school’s approach to parameterization was a painstaking one

(Section 6.2.5.4), making liberal use of chemical intuition. The developer of PM3,

J. J. P. Stewart, employed a faster, more algorithmic approach, “several orders of

magnitude faster than those previously employed.” [41]. Although it is based onAM1,

PM3 did not enjoyDewar’s blessing. The reasons for this appear to be at least twofold:

(1) Dewar felt (on the basis of very early results [72]) that PM3 represented at best an

only marginal improvement over AM1, and that a new semiempirical method should

make previous ones essentially obsolete, as MNDO made MINDO/3 obsolete, and

AM1 largely replacedMNDO. Stewart defended his approach [73] with the rejoinder,

inter alia, that if PM3 was only a marginal improvement over AM1, then AM1 was

only a marginal improvement over MNDO. (2) Dewar objected strongly to any

proliferation of computational chemistry methods, whether it be in the realm of

ab initio basis sets [74] or of semiempirical methods [72, 74].

For compounds containing H, C, N, O, F, Cl, Br, and I, Holder et al. reported [75]

that PM3 calculations gave an absolutemean error in heat of formation of 22 kJmol�1

for 408 compounds (cf. 27 kJ mol�1 for AM1), and Dewar et al. reported an absolute

mean error in bond lengths of 0.022 Å for 344 bonds (cf. 0.027 for AM1), 2.8� for 146
angles (cf. 2.3� for AM1) [76], and 0.40 D for 196 compounds (cf. 0.35 D for AM1)

[76]. PM3 and AM1 are the most widely-used semiempirical method nowadays.

PM3(tm) is a version (1996, 1997) parameterized with d orbitals for geome-

tries, but not for heats of formation, dipole moments, or ionization energies, for

transition metals [77]. It was evaluated ca. 2000 by Bosque and Maseras [78], who

also briefly mentioned 11 earlier (1996–1999) publications testing this method.

The consensus seems to be that the method tends to be good for geometries but not

for energies, and that “its reliability has to be proved on a case by case basis” [78].

There have since been many published tests of PM3(tm), a few of which are given

in reference [79].

The designation PM4 is said to have been reserved for “a separate, collaborative

parameterization effort” [80], and the results of this do not appear to have been

published. PM5 was an improvement of PM3 that appeared in MOPAC2002 [58].

An idea of the accuracy of PM5 compared to MNDO, AM1, and PM3 is given by

this information on errors in the MOPAC2002 manual [81] (I converted kcal mol�1

to kJ mol�1):
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MNDO AM1 PM3 PM5

Heat of formation 77 50 42 25 kJ mol�1

Bond length 0.066 0.053 0.065 0.051 Å

Bond angle 6.298 5.467 5.708 5.413�

As of mid-2009 the latest version of the PMx series was PM6, which Stewart has

described in detail in a long paper [82]; in this paper, which also gives a brief

history of NDDO methods, it was explicitly said that PM4 and PM5 were “unpub-

lished”, presumably meaning that the details of their parameterization had not been

revealed. PM6 is available in Gaussian 09 [55], AMPAC 9 [57], and MOPAC2009

[58]. It appears to be a major improvement over PM3 and AM1 and will likely be

the standard general-purpose semiempirical method for some years, except in those

program suites which retain PM3 and AM1 without introducing PM6. A brief

summary of the performance of PM6, from the MOPAC2009 brochure [83]

(much more detail is given in [82], mainly for the parameterization for heats of

formation) indicates that this method:

1. Was parameterized with data from over 9,000 compounds; experimental and

ab initio data were used, so unlike earlier NDDO methods (MNDO, AM1,

PM3; ca. 1975–1990) the parameterization is not purely empirical. Only about

500 compounds were used for PM3.

2. Gives better heats of formation (from tests on 1,373 compounds) than those from

B3LYP/6-31G* (a DFT method), PM3, HF/6-31G*, and AM1: the average

unsigned errors for PM6 and those four methods were 20.0 (PM6), 21.7, 26.2,

30.8, and 41.9 kJ mol�1. Using a version of NDDO specially parameterized just

for heats of formation and somewhat more accurate for this purpose than PM6

(average unsigned errors 16.1 versus 20.0 kJ mol�1), several errors were identi-

fied in a survey of ca. 1,300 compounds in the NIST Chemistry WebBook

database [84].

3. Treats hydrogen bonds better than PM3 and AM1.

4. Is parameterized for all main group and transition elements.

Some other information on the accuracy of PM6 is available from the

MOPAC2009 manual [85]:

PM6 PM3 AM1

Bond length 0.091 0.104 0.130 Å

Bond angle 7.86 8.50 8.77�

Dipole moment 0.85 0.72 0.67 D

Ionization energy 0.50 0.68 0.63 eV

6.2.5.7 SAM1

SAM1 (semi ab initio method number 1) was the last semiempirical method to be

reported (1993, [76]) by Dewar’s group. SAM1 is essentially a modification of

AM1 in which the two-electron integrals are calculated ab initio using contracted
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Gaussians (an STO-3G basis set) as in standard ab initio calculations (Section 5.3.2).

This is in contrast to AM1, where the two-center two-electron integrals are calcu-

lated from the one-center two-electron integrals, which are estimated spectroscopi-

cally. As Holder and Evleth point out in a brief but lucid outline of the basis of AM1

and SAM1 [86], a key distinguishing feature of each semiempirical method is how it

calculates the two-electron repulsion integrals. Since the NDDO approximation

discards all the three- and four-center two-electron integrals, the number of two-

electron integrals to be calculated is greatly reduced. This, and the limitation to

valence electrons, makes SAM1 only about twice as slow as AM1 [86].

One of the main reasons for developing SAM1 was to improve the treatment of

hydrogen bonding (this was also a primary reason for developing AM1 from

MNDO; evidently success there was only limited [63]). SAM1 is indeed an

improvement over AM1 in this respect, and “appears to be the first semiempirical

parameterization to handle a wide variety of [hydrogen bonded] systems correctly”;

in fact, it was said that “The results from SAM1 for virtually every system has

improved over AM1 and PM3, fulfilling the criteria for SAM1 to be a reasonable

successor to AM1 and PM3 for general purpose semiempirical calculations” [86].

An extensive list of experimental heats of formation compared with those calcu-

lated by SAM1, AM1 and PM3 has been published [75]. Actually, despite its

apparent generally significant superiority over AM1, there have been relatively

few publications using SAM1. This is probably because the program is at present

available only in the commercial semiempirical package AMPAC [57], and

because the latest “PMX”, the fully semiempirical PM6, appears to be so powerful.

That the parameterization of SAM1 has not been fully disclosed in the open

literature may also play a role – researchers are perhaps uncomfortable about

using a black box.

6.3 Applications of Semiempirical Methods

A good, brief overview of the performance of MNDO, AM1 and PM3 as of ca. 1999

is given by Levine [87]. Hehre has compiled a very useful book comparing AM1

with molecular mechanics (Chapter 3), ab initio (Chapter 5) and DFT (Chapter 7)

methods for calculating geometries and other properties [88], and an extensive

collection of AM1 and PM3 geometries is to be found in Stewart’s second PM3

paper [70].

6.3.1 Geometries

Many of the general remarks on molecular geometries in Section 5.5.1, preceding

the discussion of results of specifically ab initio calculations, apply also to semi-

empirical calculations. Geometry optimizations of large biomolecules like proteins
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and nucleic acids, which a few years ago were limited to molecular mechanics, can

now be done routinely [89] with semiempirical methods on inexpensive personal

computers with the program MOZYME [90], which uses localized orbitals to solve

the SCF equations [91]. Localized orbitals speed up the Roothaan-Hall SCF process

(Section 5.2.3.6.2) because with these more compact orbitals (compared to the

dispersed canonical orbitals; Section 5.2.3.1) fewer long-range basis function

interactions need be considered. Clearly, this saving in “outreach” is especially

important in a very big molecule.

Let’s compare AM1, PM3, and MP2(fc)/6-31G* (Section 5.4.2) and experimen-

tal geometries; the MP2(fc)/6-31G* method is a reasonably high-level ab initio

method that is routinely used. Figure 6.2 gives bond lengths and angles calculated

by these three methods and experimental bond lengths and angles, for the same 20

molecules as in Fig. 5.23. The geometries shown in Fig. 6.2 are analyzed in

Table 6.1, and Table 6.2 provides information on dihedral angles for the same

eight molecules as in Table 5.8. Figure 6.2 corresponds exactly to Fig. 5.23,

Table 6.1 to Table 5.7, and Table 6.2 to Table 5.8.

This survey suggests that: AM1 and PM3 give quite good geometries (although

dihedral angles, below, show quite significant errors): bond lengths are mostly

within 0.02 Å of experimental (although the AM1 C–S bonds are about 0.06 Å

too short), and angles are usually within 3� of experimental (the worst case is the

AM1 HOF angle, which is 7.1� too big).

Of AM1 and PM3, neither has a clear advantage over the other in predicting

geometry, although PM3 C–H and C–X (X¼O, N, F, Cl, S) bond lengths appear to

be more accurate than AM1. MP2 geometries are considerably better than AM1

and PM3, but HF/3-21G(*) and HF/6-31G* (basis sets: Section 5.3.3) geometries

(Fig. 5.23 and Table 5.7) are only moderately better.

AM1 and PM3 C–H bond lengths are almost always (AM1) or tend to be (PM3)

longer than experimental, by ca. 0.004–0.025 (AM1) or ca. 0.002 Å (PM3). AM1

O–H bonds tend to be slightly longer (up to 0.016 Å) and PM3 O–H bonds to be

somewhat shorter (up to 0.028 Å) than experimental.

Both AM1 and PM3 consistently underestimate C–C bond lengths (by about

0.02 Å).

C–X (X¼O, N, F, Cl, S) bond lengths appear to be consistently neither over- nor

underestimated by AM1, while PM3 tends to underestimate them; as stated above,

the PM3 lengths seem to be the more accurate (mean errors 0.013 versus 0.028 Å

for AM1). Both AM1 and PM3 give quite good bond angles (largest error ca. 4�,
except for HOF for which the AM1 error is 7.1�).

AM1 tends to overestimate dihedrals (10þ, 0�), while PM3 may do so to a

lesser extent (7þ, 3�). PM3 breaks down for HOOH (calculated 180�, experimen-

tal 119.1�, and does poorly for FCH2CH2F (calculated 57�, experimental 73�).
Omitting the case of HOOH, the mean dihedral angle errors for AM1 and PM3

are 5� and 4.5�; however, the variation here is from 1� to 11� for AM1 and from�1�

to �16� for PM3 (although not wildly out of line with the AM1, PM3 or MP2

calculations, the reported experimental ClCH2CH2OH HOCC dihedral of 58.4� is
suspect; see Section 5.5.1).
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The accuracy of AM1 and PM3 then, is quite good for bond lengths and angles,

but fairly approximate for dihedrals. The largest error (Table 6.1) in bond lengths is

0.065 Å (AM1 for MeSH) and in bond angles 7.1� (AM1 for HOF). The largest
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Fig. 6.2 A comparison of some AM1, PM3, MP2(fc)/6–31G* and experimental geometries.

Calculations are by the author and experimental geometries are from reference [107]. Note that

all CH bonds are ca. 1 Å, all other bonds range from ca. 1.2 to 1.8 Å, and all bond angles (except

for linear molecules) are ca. 90 to 120�
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error in dihedrals (Table 6.2), omitting the PM3 result for HOOH, is 16� (PM3 for

FCH2CH2F).

From Fig. 6.2 and Table 6.1, the mean error in 39 (13 þ 8þ 9þ 9) bond lengths

is ca. 0.01–0.03 Å for the AM1 and PM3 methods, with PM3 being somewhat better

except for O–H and O–S. The mean error in 18 bond angles is ca. 2� for both AM1

and PM3. From Table 6.2, the mean dihedral angle error for nine dihedrals for AM1

and PM3 (omitting the case of HOOH, where PM3 simply fails) is ca. 5�; if we
include HOOH, the mean errors for AM1 and PM3 are 6� and 10�, respectively.

Schr€oder and Thiel have compared MNDO (Section 6.2.5.3) and MNDOC

(Section 6.2.5.7) with ab initio calculations for the study of the geometries and

energies of 47 transition states [47]. AM1 and PM3 calculations should give

somewhat better results than MNDO for these systems, since these two methods

Table 6.2 AM1, PM3, MP2(fc)/6–31G* and experimental dihedral angles (degrees). Errors are

given in the Errors column as AM1/PM3/MP2/6–31G*. A minus sign means that the calculated

value is less than the experimental. The numbers of positive and negative deviations from

experiment and the average errors (arithmetic means of the absolute values of the errors) are

summarized at the bottom of the Errors column. Calculations are by the author; references to

experimental measurements are given for each measurement. The AM1 and PM3 dihedrals vary

by a fraction of a degree depending on the input dihedral. Some molecules have calculated minima

at other dihedrals in addition to those given here, e.g. FCH2CH2F at FCCF 180�

Errors Dihedral angles

Molecule AM1 PM3 MP2/6–31G* Exp.

HOOH 128 180 121.3 119.1a 9/61(sic)/2.2
FOOF 89 90 85.8 87.5b 1.5/2.5/�1.7

FCH2CH2F 81 57 69 73b 8/�16/�4

(FCCF)

FCH2CH2OH 65

(FCCO) 58 66 60.1 64.0c 1/2/�3.9

(HOCC) 62 54.1 54.6c 3/7/�0.5

ClCH2CH2OH

(ClCCO) 74 65 65.0 63.2b 11/2/1.8

(HOCC) 62 59 64.3 58.4b 4/1/5.9

ClCH2CH2F

(ClCCF) 79 61 65.9 68b 11/�7/�2.1

HSSH 99 93 90.4 90.6a 8/2/�0.2

FSSF 89 87 88.9 87.9b 1/�1/1.0

Deviations:

10þ, 0�/7þ, 3�/4þ, 6�
mean of 10:

6/10/2.3;

mean of 9,

omitting 9/61/2.2

errors: 5/4.5/1.9
aHehre et al. [107], pp.151, 152.
bM. D. Harmony, V.W. Laurie, R. L. Kuczkowski, R. H. Schwenderman, D. A. Ramsay, F. J. Lovas,

W. H. Lafferty, A. G. Makai, “Molecular Structures of Gas-Phase Polyatomic Molecules Deter-

mined by Spectroscopic Methods”, J. Physical and Chemical Reference Data, 1979, 8, 619–721.
cJ. Huang and K. Hedberg, J. Am. Chem. Soc., 1989, 111, 6909.
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are essentially improved versions of MNDO. The general impression is that the

semiempirical and ab initio transition states are qualitatively similar in most cases,

with MNDOC geometries being sometimes a bit better. The semiempirical and ab

initio geometries were in most cases fairly similar, so that as far as geometry goes

one would draw the same qualitative conclusions.

Semiempirical and ab initio geometries are compared further in Fig. 6.3, which

presents results for four reactions, the same as for the ab initio calculations sum-

marized in Fig. 5.21. As expected from the results of Fig. 6.2, the semiempirical
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Fig. 6.3 Geometries (Å, degrees) and relative energies (kJ mol�1) for four reactions, the same as

for the ab initio calculations of Fig. 5.21; most Hs are omitted, for clarity. In Fig. 5.21, raw

energies in hartrees and ZPEs were given. The experimental relative energies [96] are somewhat

approximate for the ethenol (vinyl alcohol) and cyclopropylidene reactions
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geometries of the reactants and products (energy minima) are quite good, taking the

MP2/6-31G* results as our standard. The semiempirical transition state geometries,

however, are also surprisingly good: with only small differences between the AM1

and PM3 results, in all four cases the semiempirical transition states resemble the ab

initio ones so closely that qualitative conclusions based on geometry would be the

same whether drawn from the AM1 or PM3, or from the MP2/6-31G* calculations.

The largest bond length error (if we accept the MP2 geometries as accurate) is

about 0.09 Å (for the CH3NC transition state, 1.897–1.803), and the largest angle

error is 9� (for the HNC transition state, 72.8–63.9�; most of the angle errors are

less than 3�).
These results, together with those of Schr€oder and Thiel [47], indicate that semi-

empirical geometries are usually quite good, even for transition states. Exceptions

might be expected for hypervalent compounds, and for unusual structures like the

C2H5 cation; for the latter AM1 and PM3 predict the classical CH3CH2 structure, but

MP2/6-31G* calculations predict this species to have a hydrogen-bridged structure

(Fig. 5.17). Semiempirical energies are considered in Section 6.3.2.

6.3.2 Energies

6.3.2.1 Energies: Preliminaries

As with ab initio (Chapter 5) and molecular mechanics (Chapter 4) calculations, the

molecular parameters usually sought from semiempirical calculations are geome-

tries (preceding section) and energies. As explained (Section 6.2.5.2), the most

widely-used semiempirical methods, AM1 and PM3, give standard (room tempera-

ture, 298 K) heats of formation. This is in distinct contrast to ab initio calculations,

which give (the negative of) the energy for total dissociation of the molecule

into nuclei and electrons, starting from a hypothetical zero-vibrational energy

state or from the 0 K state with ZPE included (Section 5.5.2.1). Ab initio methods

can be made to provide heats of formation, by slightly roundabout methods

(Section 5.5.2.2c). The errors in semiempirical heats of formation might at first

strike one as being very large; thus for the common diatomic molecules, which by

definition have standard heats of formation of zero, AM1/PM3 give these heats

of formation (kJ mol�1): H2,�21.7/�56.0; N2,þ46.7/þ73.5; O2 (triplet),�116/�17.5;

F2, �94.0/�90.8/ Cl2, �59.2/�48.5; Br2, �22.0/þ20.6. An extensive compilation

of AM1 and PM3 heats of formation (which corrects errors in earlier values) [70]

gave for 657 normal-valent compounds these average errors for the absolute

deviations (AM1/PM3, kJ mol�1): 53/33; for 106 hypervalent compounds 348

(sic)/57. These results are not as bad as they may at first seem if we note that (1)

the heats of formation of organic compounds are commonly in the region of

�400–800 kJ mol�1, (2) often we are interested in trends, which are more likely

to be qualitatively right than actual numbers are to be quantitatively accurate, and

(3) usually chemists are concerned with energy differences, i.e. relative energies
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(below). AM1 heats of formation for hypervalent compounds (above and reference

[47]) appear to be distinctly inferior to those from PM3. Thiel has compared

MNDO, AM1, PM3, and MNDO/d heats of formation with those from some ab

initio and DFT methods [92]. The results (ca. 1998) are somewhat dated, as more

accurate ab initio (e.g. G3- and G4-type; Section 5.5.2.2b) and semiempirical

(RM1, PM6) methods (above) are now available. However, it remains true that

multistep high-accuracy ab initio methods are the most accurate ways to calculate

heats of formation (Section 5.5.2.2c). These give an error of about 3–5 kJ mol�1

([93] and Section 5.5.2.2c), compared with about 20 kJ mol�1 for RM1 and PM6.

Nevertheless, the fact that semiempirical calculations are faster than ab initio by

factor of the order of about 1,000 can be decisive when dealing with big molecules

or with a large collection of molecules. As mentioned, such a survey uncovered

several errors in reported experimental heats of formation [84].

The discussion of enthalpy, free energy, and reaction and activation energies

in Section 5.5.2.1 applies to semiempirical calculations too. Now let’s retrace

some of the calculations of Chapter 5, using AM1 and PM3 rather than ab initio

methods.

6.3.2.2 Energies: Calculating Quantities Relevant to Thermodynamics

and Kinetics

We are usually interested in relative energies. An ab initio energy difference (for

isomers, or isomeric systems like reactants cf. products), corrected only with ZPE,

represents a 0 K energy difference, i.e. a 0 K enthalpy difference, whereas a

semiempirical (e.g. AM1 or PMx) energy difference represents a room temperature

enthalpy difference; thus even if the ab initio and semiempirical calculations both

had negligible errors, they would not be expected to give exactly the same relative

energy, unless the 0–298 K enthalpy change on both sides of the equation cancelled.

A typical change in heat of formation is shown by methanol; the (ab initio

calculated) heats of formation of methanol at 0 and 298 K are �195.9 and

�207.0 kJ mol�1, respectively (Section 5.5.2.2c). This change of 11 kJ mol�1 is

fairly small compared to the errors in semiempirical and many ab initio calcula-

tions, so discrepancies between energy changes calculated by the two approaches

must be due to factors other than the 0–298 K enthalpy change. The errors in heats

of formation cannot be counted on to consistently cancel when we subtract to obtain

relative energies, and because of average errors in individual heats of formation of

ca. 20 kJ mol�1 (above) for the best current methods, RM1 and PM6, errors of about

40 kJ mol�1 should not be surprising, although much smaller errors are often

obtained. Consider the relative energies of (Z)- and (E)-2-butene (Fig. 5.24). The

HF/3-21G(*) energy difference, corrected for ZPE (although in this case the ZPE is

practically the same for both isomers) is (Z) � (E) ¼ �155.12709 � (�155.13033)

h¼ 0.00324 h¼ 8.5 kJ mol�1. AM1 calculations (ZPE is not considered here, since

as explained in Section 6.2.5.2, this is taken into account in the parameterization)

give (Z) � (E) ¼ �9.24 � (�14.01) kJ mol�1 ¼ 4.8 kJ mol�1. The experimental
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heats of formation (298 K, gas phase) are (Z) ¼ �29.7 kJ mol�1, (E) ¼ �47.7 kJ

mol�1, i.e. (Z) � (E) ¼ 18.0 kJ mol�1 [94].

The comparison by Schr€oder and Thiel [47] (Sections 6.3.1 and 6.3.2) of semi-

empirical (MNDO and MNDOC) and ab initio geometries and energies concluded

that the semiempirical methods usually overestimate activation energies. Of 21

activation energies (Table IV in ref. [47], entries I, K, W omitted), MNDO over-

estimated (compared with “best” correlated ab initio calculations) 19 and under-

estimated two; the overestimates ranged from 8 to 201 kJ mol�1 and the

underestimates were 46 and 13 kJ mol�1. MNDOC overestimated 16 and under-

estimated five; the overestimates ranged from 2 to 109 kJ mol�1 and the under-

estimates from 4 to 63 kJ mol�1. Thus for calculating activation energies MNDOC

is significantly better than MNDO, and it is probably better than AM1 for this

purpose, since, like MNDO but unlike MNDOC, AM1 does not explicitly take into

account electron correlation, which can be important for activation energies. For

these 21 reactions, restricted Hartree-Fock calculations overestimated 18 activation

energies and underestimated three; the overestimates of energies ranged from 3 to

105 kJ mol�1 and the underestimates from 13 to 28 kJ mol�1. The mean absolute

deviations from the “best” correlated ab initio calculations for the 21 reactions

were: MNDO, 92 kJ mol�1; MNDOC, 38 kJ mol�1; RHF, 50 kJ mol�1. Evidently

MNDOC is somewhat better than RHF (uncorrelated) calculations for activation

energies. Correlated-level ab initio calculations, however, appear to be superior

to MNDOC; in particular, MNDOC predicts substantial barriers for isomerization

of carbenes by hydrogen migration. Other work showed that AM1 greatly over-

estimates the barrier for decomposition or rearrangement of some highly reactive

species [95].

Some semiempirical reaction energies and relative energies of isomers are given

in Table 6.3; these are analogous to the ab initio results in Table 5.9. These

calculations suggest that, like the Hartree-Fock-level calculations of Table 5.9,

AM1 and PM3 can give useful, although sometimes only rough, indications of the

Table 6.3 Reaction energies (kJ mol�1) of isomers (AM1 and PM3). The calculations on O2 are

UHF, on triplet O2. Calculations are by the author, experimental energies are from [88]

Reactants Products Reaction energy, or relative

energy of isomers, calculated

Exp kJ

mol�1

H2 þ Cl2 2HCl �206.0 � (�81.0) ¼ �125 �192

�21.7 þ (�59.3) ¼ �81.0 2(�103.0) ¼ �206.0 �171.2 � (�104.4) ¼ �67

�56.0 þ (�48.4) ¼ �104.4 2(�85.6) ¼ �171.2

2H2 þ O2 2H2O �523

2(�21.7) þ (�116.0) ¼ �159.4 2(�247.9) ¼ �495.8 �495.8 � (�159.4) ¼ �336

2(�56.0) þ (�17.5) ¼ �129.5 2(�223.5) ¼ �447.0 �447.0 � (�129.5) ¼ �318

(E)-2-butene (Z)-2-butene 4.6

�14.0 �9.2 �9.2 � (�14.9) ¼ 5.7

�15.8 �14.9 �14.9 � (�15.8) ¼ 0.9

HCN HNC 204.3 � 129.7 ¼ 74.6 60.7

129.7 204.3 236.8 � 137.9 ¼ 98.9

137.9 236.8
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magnitude of energy differences. Further information on the reliability of these

methods is provided by the calculations for the four reactions summarized in

Fig. 6.3, which were discussed in Section 6.3.1 in connection with geometries.

Figure 6.4, based on the energies in Fig. 6.3, makes these results clear. In all four

cases the semiempirical methods give the relative energies of the products semi-

quantitatively; the worst deviation from experiment [96] is for the PM3 relative

energy of HCN, which is 40 kJ mol�1 (�99 cf. �59 kJ mol�1) too low. In fact, in

two of the four cases (H2C¼CHOH and HNC reactions) the AM1 product relative

energies are the best (and in the other two cases, the MP2 energies are the best);
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Fig. 6.4 Relative energies (kJ mol�1) for the four reactions of Fig. 6.3. Compared to the reactants

(the four species shown), the transition state energies are all positive and the product energies all

negative
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however, this is likely to be due to an atypical cancellation of errors. The transition

state relative energies are best-approximated in one case (H2C¼CHOH reaction) by

AM1 and PM3, and in the other three cases by MP2; for these three latter reactions

the semiempirical relative energies are considerably higher than the experimental

and MP2 values, which accords with other work mentioned above [47, 95]. The

newer semiempirical methods, RM1 and PM6, have evidently not been systemati-

cally tested for their accuracy in calculating transition state energies. Since they were

parameterized with ground state molecules, it is unlikely that they represent much

improvement over AM1 and PM3 in this regard. A check of RM1 on the reactions of

Fig. 6.3 suggests this is the case: comparing the barriers and reaction energies for the

four reactions we find (experiment or MP2/6-31G*/RM1, kJ mol�1):

H2C¼CHOH barrier 282/243 reaction energy �42/�35

HNC barrier 129/337 reaction energy �59/�50

CH3NC barrier 161/320 reaction energy �98/�101

Cyclopropylidene barrier 13–20/97 reaction energy �293/�284

These RM1 barriers do not represent any improvement over those from AM1

and PM3, but the reaction energies are all within 10 kJ mol�1 of the experimental,

while some of the AM1/PM3 errors are as much as �41 (HNC, PM3). Despite the

lack of quantitative accuracy, semiempirical methods have been used fairly fre-

quently in recent years to study transition states in biochemical reactions, because

of the large molecules involved [97].

From this information then, we can conclude that semiempirical heats of formation

and reaction energies (reactant cf. product) are semiquantitatively reliable for AM1 and

PM3, and tend to approach modest quantitative accuracy for RM1 and PM6. Activa-

tion energies (reactant cf. transition state) are usually considerably overestimated by

AM1 and PM3, but are handled better by MNDOC, which actually gives results

somewhat better than those from RHF calculations, at least in many cases. It remains

to be seen what improvement, if any, RM1 and PM6 offer over for activation energies.

An extensive comparison of AM1 with ab initio and density functional methods for

calculating geometries and relative energies is given in Hehre’s book [88]. Consis-

tently good calculated reaction energies and especially activation energies require

correlated ab initio methods (Section 5.4) or DFT methods (Chapter 7). However,

semiempirical methods are well suited for a preliminary exploration of a potential

energy surface, and are usually good for creating input structures for refinement by

ab initio or DFT. It is interesting thatAM1 and PM3,whichwere parameterizedmainly

to give good energies (heats of formation) actually provide quite good geometries but

on the whole energies of no more than modest quality.

6.3.3 Frequencies and Vibrational Spectra

The general remarks and the theory concerning frequencies in Section 5.5.3, apply

to semiempirical frequencies too, but the zero-point energies associated with
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a frequency calculation are usually not needed, since the semiempirical energy is

normally not adjusted by adding the ZPE (Section 6.2.5.2). As with ab initio cal-

culations, semiempirical frequencies are used to characterize a species as a mini-

mum or a transition state (or a higher-order saddle point), and to get an idea of what

the IR spectrum looks like. As with ab initio frequencies too, in semiempirical

methods the wavenumbers (“frequencies”) of vibrations are calculated from a

mass-weighted second-derivative matrix (a Hessian) and intensities are calculated

from the changes in dipole moment accompanying the vibrations. Like their ab

initio counterparts, semiempirical frequencies are higher than the experimental

ones; presumably this is at least partly due to the harmonic approximation, as was

discussed in Section 5.5.3.

Correction factors improve the fit between semiempirically calculated and

experimentally measured spectra, but the agreement does not become as good as

does the fit of corrected ab initio to experimental spectra. This is because deviations

from experiment are less systematic for semiempirical than for ab initio methods (a

characteristic that has been noted for errors in semiempirical energies [98]). For

AM1 calculations, correction factors of 0.9235 [99] and 0.9532 [100], and for PM3,

factors of 0.9451 [99] and 0.9761 [100], have been recommended. A factor of 0.86

has been recommended for SAM1 for non-H stretches [101]. However, the varia-

tion of the correction factor with the kind of frequency is bigger for semiempirical

than for ab initio calculations; for example, for correcting carbonyl stretching

frequencies, examination of a few molecules indicated (author’s work) that (at

least for C, H, O compounds) correction factors of 0.83 (AM1) and 0.86 (PM3) give

a much better fit to experiment.

The calculated intensities of semiempirical vibrations seem likely to be in

general more approximate than those for ab initio vibrations [102], which latter

are typically within 30% of the experimental intensity at the MP2 level [103]. This

is somewhat surprising, since semiempirical (AM1 and PM3 and later derivatives)

dipole moments, from the vibrational changes of which intensities are calculated,

are fairly accurate (Section 6.3.4). Note however that unlike the case with UV

spectra, IR intensities are rarely actually measured; rather, one usually simply

visually classifies a band as strong, medium, etc., by visual comparison with the

strongest band in the spectrum. There do not seem to have been any published

surveys comparing, for a variety of compounds, the intensities of IR bands calcu-

lated by modern NDDO methods with those from experiment, but an idea of the

reliability of semiempirical frequencies and intensities is given by the IR spectra in

Figs. 6.5–6.8, which compare experimental spectra with AM1 and ab initio (MP2/6-

31G*) spectra, for the same four compounds (acetone, benzene, dichloromethane,

methanol) shown in Figs. 5.33–5.36. The experimental and MP2 spectra are the

ones used in Figs. 5.33–5.36. For acetone and methanol (Figs. 6.5 and 6.8) the MP2

spectra match the experimental distinctly better than do the AM1; and other work

[102] indicates that MP2 IR spectra resemble the experimental spectra more closely

than do AM1 spectra.
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All the normal modes are present in the results of a semiempirical frequency

calculation, as is the case for an ab initio or DFT calculation, and animation of these

will usually give, approximately, the frequencies of these modes. A very extensive

compilation of experimental, MNDO and AM1 frequencies has been given by

Healy and Holder, who conclude that the AM1 error of 10% can be reduced to

6% by an empirical correction, and that entropies and heat capacities are accurately

calculated from the frequencies [104]. In this regard, Coolidge et al. conclude –

surprisingly, in view of our results for the four molecules in Figs. 6.5–6.8 – from a

study of 61 molecules that (apart from problems with ring- and heavy atom-stretch

for AM1 and S–H, P–H and O–H stretch for PM3) “both AM1 and PM3 should

provide results that are close to experimental gas phase spectra” [105].
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6.3.4 Properties Arising from Electron Distribution: Dipole
Moments, Charges, Bond Orders

The discussion in Section 5.5.4 on dipole moments, charges and bond orders applies

in a general way to the calculation of these quantities by semiempirical methods

too. Electrostatic potentials, whether visualized as regions of space or mapped onto

van der Waals surfaces, are usually qualitatively the same for AM1 and PM3 as for

ab initio methods. Atoms-in-molecules calculations are not viable for semiempiri-

cal methods, because the core orbitals, lacking in these methods, are important for

AIM calculations.
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6.3.4.1 Dipole Moments

Hehre’s extensive survey of practical computational methods reports the results of

ab initio and DFT single point dipole moment (m) calculations on AM1 geometries

[106]. There does not appear to be much advantage to calculating HF/6-31G*

dipole moments on HF/6-31G* geometries (HF/6-31G*//HF/6-31G* calculations)

rather than on the much more quickly- obtained AM1 geometries (HF/6-31G*//

AM1 calculations). Indeed, even the relatively time-consuming MP2/6-31G*//

MP2/6-31G* calculations seem to offer little advantage over fast HF/6-31G*//AM1

calculations as far as dipole moments are concerned (Tables 2.19 and 2.21 in

ref. [106]). This is consistent with our finding that AM1 geometries are usually

quite good (Section 6.3.1). Table 6.4 compares calculated and experimental
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[88, 107] dipole moments for ten molecules, using these methods: AM1 (using the

AM1 method to calculate m for the AM1 geometry, AM1//AM1), HF/6-31*//AM1,

PM3 (PM3//PM3), HF/6-31G*//PM3, and MP2/6-31G* (MP2/6-31G*//MP2/6-

31G*). For this set of molecules, the smallest deviation from experiment, as judged

by the arithmetic mean of the absolute deviations from the experimental values, is

shown by the AM1 calculation (0.21 D), and the largest deviation is shown by the

“highest” method, MP2/6-31G* (0.34 D). The other three methods give essentially

the same errors (0.27–0.29 D). It is of course possible that AM1 gives the best

results (for this set on molecules, at least) because errors in geometry and errors in

the calculation of the electron distribution cancel. A study of 196 C, H, N, O, F, Cl,

Br, I molecules gave these mean absolute errors: AM1, 0.35 D; PM3, 0.40 D;

SAM1, 0.32 D [76]. Another study with 125 H, C, N, O, F, Al, Si, P, S, Cl, Br, I
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molecules gave mean absolute errors of: AM1, 0.35 D and PM3, 0.38 D [70]. So

with these larger samples the AM1 errors were somewhat bigger. Nevertheless, all

these results taken together do indicate that unless one is prepared to use a slower

approach, e.g. large basis sets with density functional (Chapter 7) methods (errors

of ca. 0.1 D [108]; this paper also gives some results for ab initio calculations),

AM1 dipole moments using AM1 geometries may be as good a way as any to

calculate this quantity. This applies, of course, only to conventional molecules;

molecules of exotic structure and “hypervalent” molecules (Sections 6.3.1 and

6.3.2.1) often defy accurate semiempirical predictions.

6.3.4.2 Charges and Bond Orders

The conceptual and mathematical bases of these concepts were outlined in

Section 5.5.4. We saw that unlike, say, frequencies and dipole moments, there

are problems with regarding charges and bond orders as experimental observables

(carefully defined atom charges can, it is said be measured 109), and with settling

on a single, right way to calculate them. Some would argue that the atoms-in-

molecules theory does provide such a unique ansatz. Nevertheless, we saw that

there are several prescriptions for calculating charges and bond orders, and

as with ab initio calculations, semiempirical charges and bond orders can be

defined in various ways. The concepts are nevertheless useful, and electrostatic

potential charges and L€owdin bond orders are preferred nowadays to the Mulliken

parameters.

Figure 6.9 shows charges and bond orders calculated for an enolate (the conju-

gate base of ethenol or vinyl alcohol) and for a protonated enone system (protonated

Table 6.4 Some calculated dipole moments compared to experimental ones. Dipole moments are

in Debyes. Calculations are by the author; experimental values are taken from [88] and [107]. For

each method is given the number of positive and negative deviations from experiment and the

arithmetic mean of the absolute values of the deviations

Computational method

AM1 HF/6–31G* //

AM1

PM3 HF/6–31G* //

PM3

MP2/6–31G* Exp

CH3NH2 1.5 1.42 1.4 1.54 1.6 1.3

H2O 1.86 2.25 1.74 2.16 2.24 1.9

HCN 2.36 3.24 2.7 3.24 3.26 3

CH3OH 1.62 1.9 1.49 1.88 1.95 1.7

Me2O 1.43 1.54 1.25 1.51 1.6 1.3

H2CO 2.32 2.87 2.16 2.76 2.84 2.3

CH3F 1.62 2 1.44 1.91 2.11 1.9

CH3Cl 1.51 2.07 1.38 2.14 2.21 1.9

Me2SO 3.95 4.56 4.49 4.83 4.63 4

CH3CCH 0.4 0.58 0.36 0.6 0.66 0.8

Deviations 4 +, 6� 9+, 1� 2+, 8� 9+, 1� 9+, 1�
mean 0.21 mean 0.29 mean 0.27 mean 0.29 mean 0.34
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propenal). Consider first Mulliken charges and bond orders of the enolate

(Fig. 6.9a). The AM1 and PM3 charges, which are essentially the same, are a bit

surprising in that the carbon which shares charge with the oxygen in the alternative

resonance structure is given a bigger charge than the oxygen; intuitively, one

expects most of the negative charge to be on the more electronegative atom,

oxygen; this “defect” of AM1 and PM3 has been noted by Anh et al. [110]. The

HF/3-21G(*) method gives the oxygen the bigger charge (�0.80 versus�0.67). The

two semiempirical and the HF methods all give C/C and C/O bond orders of about

1.5; this, and the rough equality of O and C charges, suggests approximately equal

contributions from the O-anion and C-anion resonance structures.
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Fig. 6.9 Atom charges and bond orders calculated using the AM1, PM3 and HF/3–21G(*)

methods. In a and b the charges and bond orders are all from the Mulliken approach. In c and d

the charges are all electrostatic potential charges, and the bond orders are Mulliken for AM1 and

PM3, and L€owdin for HF/3–21G(*) (L€owdin bond orders were not available for AM1 and PM3

from the Spartan program used). Note that charges and bond orders involving hydrogens have been

omitted
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The Mulliken charges of the protonated enone system (Fig. 6.9b) make the oxy-

gen negative, which may seem surprising. However, this is normal for protonated

oxygen and nitrogen (though not protonated sulfur and phosphorus): the hetero

atom in H3O
þ and in NH4

þ is calculated to be negative (i.e. the positive charge is

on the hydrogens) and the hetero atom is also negative in H2C¼OHþ and

H2C¼NH2
þ. On the oxygen and the carbon furthest from the oxygen (C3) the

HF/3-21G(*) charges differ considerably from the semiempirical ones: the HF

calculations make the O much more negative, and make C3 negative, suggesting

that they place more positive charge on the hydrogens than do the semiempirical

calculations. The three methods do not differ as greatly in their bond orders

(that bond orders are less fickle than charges has been noticed before [111]),

although the HF method makes the formal C/O double bond essentially a single

bond (bond order 1.18).

Finally, electrostatic potential (ESP) charges and, for the HF/3-21G(*) calcula-

tions, L€owdin bond orders, are shown (Fig. 6.9c and d). For the enolate, all three

methods make the ESP charge on carbon more negative than that on oxygen, but the

bond orders are not greatly altered. For the protonated enone system, AM1 and PM3

suggest more polarization of electrons toward the O in the C/O bond than is shown

by the Mulliken charges, but while the HF ESP charge on this carbon is greater than

the Mulliken (0.76 versus 0.45), the charge on oxygen is unchanged. The Hartree-

Fock L€owdin bond orders for all three bonds of the CCO framework (1.55, 1.29,

1.76) are all somewhat bigger than the Mulliken bond orders (1.18, 1.15, 1.59).

These results indicate that charges are more dependent than are bond orders on

the method used to calculate them, and that charges are also harder to interpret than

are bond orders. As with ab initio charges and bond orders, the semiempirically

calculated parameters may be useful in revealing trends in a series of compounds or

changes as a reaction proceeds. For example, ab initio bond order changes along a

reaction coordinate have been shown to be useful [112], but presumably semiem-

pirically calculated bond orders would also yield similar information, at least if the

species being studied were not too exotic. Clearly, one must use the same semiem-

pirical method (e.g. AM1) and the same procedure (e.g. the Mulliken procedure) in

studying a series.

6.3.5 Miscellaneous Properties – UV Spectra, Ionization
Energies, and Electron Affinities

All the properties that can be calculated by ab initio methods can in principle also

be calculated semiempirically, bearing in mind that the more the molecule of

interest differs from the training set used to parameterize the semiempirical pro-

gram, the less reliable the results will be. For example, a program parameterized

to predict the UV spectra of aromatic hydrocarbons may not give good predictions

for the UV spectra of heterocyclic compounds. NMR spectra are usually calculated

with ab initio (Section 5.5.5) or density functional (Chapter 7) methods. UV
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spectra, and ionization energies (ionization potentials) and electron affinities will be

discussed here.

6.3.5.1 UV Spectra

As pointed out in Section 5.5.5, although ultraviolet spectra result from the promotion

of electrons from occupied to unoccupied orbitals, UV spectra cannot be calculated

with reasonable accuracy simply from the HOMO/LUMO gap of the ground elec-

tronic state, since the UV bands represent energy differences between the ground

and excited states. Furthermore the HOMO/LUMO gap does not account for the

presence of the several bands often found in UV spectra, and gives no indication of

the intensity of a band. In wavefunction theory, accurate prediction of UV spectra

requires calculation of the energies of excited states. Semiempirical UV spectra are

usually calculated with programs specifically parameterized for this purpose, such as

INDO and ZINDO (intermediate neglect of differential overlap and Zerner’s INDO),

sometimes denoted INDO/S and ZINDO/S, S ¼ spectra (Section 6.2.4) [20]. These

are in, e.g., HyperChem [113]; INDO and ZINDO, which appears to have largely

superseded INDO, are included in the primarily ab initio and DFT package Gaussian

[55]; keyword simply ZINDO, note the use of þ functions for the RCIS calculation,

see Section 5.3.3.4). Table 6.5 compares the UV spectrum of methylenecyclopropene

calculated by ZINDO/S on the AM1 geometry with the ab initio-calculated RCIS

(Table 5.16) and the experimental spectra [114] (calculations with Gaussian 03 [55];

keyword simply ZINDO, note the use of þ functions for the RCIS calculation, see

Section 5.3.3.4). The ZINDO/S spectrum resembles the experimental spectrum

considerably better than does the ab initio one (the experimental 242 nm, and

particularly the 309 nm band, are matched better than by the ab initio calculation).

The times for the calculations on a vintage ca. 2002 computer were 0.5 and 1 min

(ZINDO/S and RCIS). Parameterized methods like ZINDO/S are probably the only

way to calculate reasonably accurate UV spectra for large molecules.

6.3.5.2 Ionization Energies and Electron Affinities

The concepts of IE and EA were discussed in Section 5.5.5. In Table 6.6 the results

of some semiempirical calculations are compared with ab initio and experimental

Table 6.5 Calculated and experimental [114] UV spectra of methylenecyclopropene. The semi-

empirical calculations were done with ZINDO/S in G94W; the ab initio results are from Table 5.16

Calculated Experimental

ZINDO/S//AM1 RCIS/6–31+G*//HF/6–31G*

Wavelength Relative

intensity

Wavelength Relative

intensity

Wavelength Relative

intensity(nm) (nm) (nm)

288 12 222 15 309 13

224 0.2 209 7 242 0.6

213 100 196 0 206 100

204 1 193 9

193 100
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values [115, 116], for the molecules of Table 5.17. This admittedly very small

sample suggests that semiempirical IEs calculated as energy differences might be

comparable to ab initio values. Koopmans’ theorem (the IE for an electron is

approximately the negative of the energy of its molecular orbital; applying this to

the HOMO gives the IE of the molecule) values are consistently bigger than those

from energy differences using the same method (by 0.1–0.8 eV). No consistent

advantage for any of the six methods is evident here, but a large sample would

likely show the most accurate of these methods to be the energy difference using

MP2(fc)/6-31G* (see Table 5.17 and accompanying discussion).

Calculations by Stewart on 256 molecules (of which 201 were organic), using

Koopmans’ theorem, gave mean absolute IE errors of 0.61 eV for AM1 and 0.57 eV

for PM3; 60 of the AM1 errors (23%) and 88 of the PM3 (34%) were negative

(smaller than the experimental values) [70]. Particularly large errors (2.0–2.9 eV)

were reported for nine molecules: 1-pentene, 2-methyl-1-butene, acetylacetone,

alanine (AM1), SO3 (AM1), CF3Cl (AM1), 1,2-dibromotetrafluoroethane, H2SiF2
(PM3), and PF3 (AM1). For some of these it may be the experimental results that
are at fault; for example, there seems to be no reason why 2-methyl-1-butene and

2-methyl-2-butene should have such different IEs, and in the opposite order to those

calculated: experimental, 7.4 and 8.7 eV; calculated, 9.7 and 9.3 (AM1), 9.85 and

9.4 (PM3) eV, respectively. Ab initio HF/3-21G(*) energy-difference calculations

by the author give IEs in line with the AM1, rather than the claimed experimental,

results: 2-methyl-1-butene, 9.4 eV; 2-methyl-2-butene, 9.1 eV. Calculations by the

author on the first 50 of these 256 molecules (of these 50 all but H2 and H2O are

organic) gave these mean absolute IE errors: AM1, 0.46 (12 negative); PM3, 0.58

(five negative); ab initio HF/3-21G(*), 0.71 (11 negative). So for the set of 256

mostly organic molecules AM1 and PM3 gave essentially the same accuracy, and

for the set of 50 molecules AM1 was slightly better than PM3 and the ab initio

method was slightly worse than the semiempirical ones. The HF/3-21G(*) level is

the lowest ab initio one routinely used (or at least reported) nowadays, and is less

popular now than HF/6-31G*. Ionization energies and electron affinities compara-

ble in accuracy to those from experiment can be obtained by high-accuracy ab initio

calculations (Sections 5.5.2.2b and 5.5.5) and by DFT (Chapter 7), using the energy

difference of the two species involved.

Dewar and Rzepa found that the MNDO (Section 6.2.5.3) electron affinities of

26 molecules with delocalized HOMOs (mostly radicals and conjugated organic

molecules) had an absolute mean error of 0.43 eV; for ten molecules with the

Table 6.6 Some ionization energies (eV). The DE values (cation energy minus neutral energy)

correspond to adiabatic, and the Koopmans’ theorem values to vertical IEs. The ab initio energies

are MP2(fc)/6–31G* (Table 5.17). Experimental values are adiabatic, from [115] (CH3OH and

CH3COCH3) and [116] (CH3SH)

DE Koopmans’

AM1 PM3 ab in. AM1 PM3 ab in. Exp

CH3OH 10.5 10.7 10.6 11.1 11.1 12.1 10.9

CH3SH 8.7 9 9 8.9 9.2 9.7 9.4

CH3COCH3 9.9 10.1 9.6 10.7 10.8 11.2 9.7
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HOMO localized on one atom, the error was 1.40 eV [117]. The errors from AM1 or

PM3 should be less than for these MNDO calculations.

6.3.6 Visualization

Many molecular features that have been calculated semiempirically can be visua-

lized, in a manner analogous to the case of ab initio calculations (Chapter 5,

Section 5.5.6). Semiempirically calculated vibrations, electrostatic potentials, and

molecular orbitals also provide useful information when visualized, and little need

be added beyond that already discussed for the visualization of ab initio results.

AM1 and PM3 surfaces (van der Waals surfaces, electrostatic potentials, orbitals)

are usually very similar in appearance to those calculated by ab initio methods, but

exceptions occasionally occur. An example is the case of HCC�, the conjugate base
of ethyne (acetylene), Fig. 6.10. AM1 predicts that there is one HOMO and that it is

of s symmetry (symmetric about the molecular axis), but an HF/3-21G(*) calcu-

lation predicts that there are two HOMOs of equal energy at right angles, each of

p symmetry (having a nodal plane containing the molecular axis; one of these

p-HOMOs is shown in Fig. 6.10). The HF/3-21G orbital pattern persists at the

HF/6-31G* and MP2/6-31G* levels. Different orbital patterns at different calcula-

tional levels is not the rule, but is understandable since near-lying MOs may have

their energetic priorities reversed on going to a different level.

eV

9.9 eV

HOMO –3.1 eV

H CC

H C C

HF / 3-21G

LUMO
14.5 eV

HOMO

–2.3 eV

LUMO

AM1

Fig. 6.10 The HOMO of the ethyne conjugate base, calculated by AM1 and by HF/3–21G(*).

AM1 predicts the HOMO to be unique and of s symmetry (symmetrical about the molecular axis),

but HF/3–21G(*) predicts degenerate HOMO levels (the other is rotated 90� about the molecular

axis) of p symmetry (with nodal planes containing the molecular axis) Only one of the degenerate

3–21G HOMOs is shown here. The orbitals were calculated and visualized with Spartan [56].

From your knowledge of the anion as a reagent in synthesis, which result do you think is more

likely to be the correct one?

434 6 Semiempirical Calculations

http://Section&nbsp;5.5.6


6.3.7 Some General Remarks

AM1 and PM3 have become extremely useful not only because they allow quantum

mechanical calculations to be done on molecules which are still too big for ab initio

or DFT (Chapter 7) methods, but also as adjuncts to these latter methods, since they

often allow a relatively rapid survey of a problem, such as an exploration of

a potential energy surface: one can locate minima and transition states, then use

the semiempirical structures as inputs for initial geometries, wavefunctions and

Hessians (Sections 2.4 and 5.2.3.6.5) in a higher-level geometry optimization, size

permitting. If geometry optimizations are not feasible, single-point calculations on

AM1 or PM3 geometries, which are usually reasonably good, will likely give

improved relative energies. The time is well past when semiempirical calculations

were regarded by many as “worthless” [118], or, at best, a poor substitute for ab

initio calculations. In fact, in his thoughtful review Tim Clark, a major worker in the

field of developing semiempirical methods, has described “The NDDO-approxima-

tion [as] one of the most successful and least appreciated in modern theoretical

chemistry” [11]. Recall that modern general-purpose semiempirical methods are

based on NDDO (Section 6.2.5). In his book which focusses on ab initio and density

functional methods, Bachrach says that faster computers and more efficient algo-

rithms will make semiempirical methods less important [119]; a more extreme view

was recently expressed by the president of a major computational chemistry

software company, who told this author that he thought semiempirical methods

would soon be replaced by DFT; and a rather dismissive rejection of the general

enterprise of employing the semiempirical approach in science came from the

mathematician John von Neumann [120]: “With four parameters I can cover an

elephant, and with five I can make him wiggle his trunk.” Elephants aside, Clark

rejects the opinion of “pundits [who] predict the demise” of modern semiempirical

methods. He makes the interesting point that Dewar (Section 6.2.5.1 and [24]) may

have made a mistake in “trying to match” the ab initio methods of the time “on its

own ground”, namely achieving good geometries and energies for small molecules,

instead of concentrating on the forte of semiempirical methods, large molecules.

This review [11] is commended to the reader. A caveat is in order regarding the

application of semiempirical methods to large biomolecules: the most popular

program suites for studying proteins and nucleic acids, AMBER [121] and

CHARMM/CHARMm [121], use molecular mechanics (MM, Chapter 3). One

seems justified in being sceptical [e.g. [122]) of the appropriateness of semiempiri-

cal methods for geometry optimization of such biomolecules, since the relevant

MM forcefields have been very carefully parameterized for them and are much

faster. A useful procedure would be to optimize the molecule withMM, then perform

a single-point (unchanged geometry) semiempirical calculation to obtain a wavefunc-

tion, from which electronic properties like charges can be calculated.

The philosophical divide we saw in, for example, the exchange between Dewar

and Halgren, Kleir and Lipscomb (6.2.5.1), persists. One gets the impression that

certain journals are reluctant to publish purely theoretical semiempirical papers;
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ironically, these journals have no such reservations against density functional

theory (Chapter 7), despite its significant semiempirical characteristics [11].

Where the emphasis is on getting practical results, rather than on esthetic purity,

semiempirical and molecular mechanics methods rule. In the fields of cheminfor-

matics (chemoinformatics, chemical informatics) [123], and quantitative structure-

activity relationships, QSAR [124], thousands of drug candidates (usually “small”

molecules) can be geometry-optimized and screened for potential pharmacological

activity in one day [11].

6.4 Strengths and Weaknesses of Semiempirical Methods

These remarks refer to NDDO methods like AM1 and PM3.

6.4.1 Strengths

Semiempirical calculations are very fast compared to ab initio and even to DFT

(Chapter 7), and this speed is often obtained with at most a tolerable loss of

accuracy. Semiempirical geometries of normal molecules are entirely adequate

for many purposes, and even transition state geometries are often adequate. Reac-

tion and activation energies, although not accurate (except by chance cancellation

of heat of formation errors), will probably expose any marked trends in a series.

Surprisingly, although they were parameterized using normal, stable molecules,

AM1 and PM3 usually give fairly realistic geometries and useful relative energies

for cations, radicals, anions, strained molecules, and even transition states.

6.4.2 Weaknesses

A major weakness of semiempirical methods is that they must be assumed to be

unreliable outside molecules of the kind used for their training set (the set of

molecules used to parameterize them), until shown otherwise by comparison of

their predictions with experiment or with high-level ab initio (or probably DFT)

calculations. Although, as Dewar and Storch pointed out [125], the reliability of ab

initio calculations, too, should be checked against experiment, the situation is

somewhat different for these latter, at least at the higher levels; studies of exotic

species, in particular, are certainly more trustworthy when done ab initio than

semiempirically. Semiempirical heats of formation are subject to errors of tens of

kJ mol�1, and thus heats (enthalpies) of reaction and activation could be in error by

scores of kJ mol�1. AM1 and PM3 underestimate steric repulsions, overestimate

basicity and underestimate nucleophilicity, and can give unreasonable charges and
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structures; PM3 has been reported to tend to give more reliable structures, and AM1

better energies [110]. Neither AM1 nor PM3 are generally reliable in modelling

hydrogen bonds [126, 127], and the reclusive SAM1 appears to be the semiempiri-

cal method of choice here [86]. Recently, PM6 (Section 6.2.5.6) has been said to

represent an improvement in the treatment of hydrogen bonds.

In general, the accuracy of semiempirical methods, particularly in energetics,

falls short of that of current routine ab initio methods (this may not have been the

case when AM1 was developed, in 1985 [125]). Parameters may not be available

for the elements in the molecules one is interested in, and obtaining new parame-

ters is something rarely done by people not actively engaged in developing new

methods. Semiempirical errors are less systematic than ab initio, and thus harder to

correct for. Clark has soberly warned that “All parameterized techniques can

interpolate and none can extrapolate consistently and well”, thus we can expect

on occasion “a catastrophic failure”; but semiempirical methods “will do what they

are designed to do” [11].

6.5 Summary

Semiempirical quantum mechanical calculations are based on the Schr€odinger
equation. This chapter deals with SCF semiempirical methods, in which repeated

diagonalization of the Fock matrix refines the wavefunction and the molecular

energy. The simple and extended H€uckel methods, in contrast, need only one matrix

diagonalization because their Fock matrix elements are not calculated using a

wavefunction guess (Chapter 4). These calculations are much faster than ab initio

ones, mainly because the number of integrals to be dealt with is greatly reduced by

ignoring some and approximating others with the help of experimental (“empiri-

cal”) quantities, and, nowadays, results from high-level ab initio or DFT calcula-

tions. In order of increasing sophistication, these SCF semiempirical procedures

have been developed: PPP (Pariser-Parr-Pople), CNDO (complete neglect of dif-

ferential overlap), INDO (intermediate neglect of differential overlap), and NDDO

(neglect of diatomic differential overlap). The PPP method is limited to p electrons,

while CNDO, INDO and NDDO use all the valence electrons. All four use the ZDO

(zero differential overlap) approximation, which sets the differential of the overlap

integral equal to zero; this greatly reduces the number of integrals to be calculated.

Traditionally, these methods were parameterized mostly using experimental quan-

tities (usually ionization energies and electron affinities), but also (PPP and CNDO)

making some use of results of minimal-basis-set (i.e. low-level) ab initio calcula-

tions. Of these original methods, only versions of INDO parameterized to reproduce

experimental UV spectra (INDO/S and its variant ZINDO/S) are much used

nowadays. Today the most popular SCF semiempirical methods are AM1 (Austin

method 1) and PM3 (parametric method 3), which are NDDO-based, carefully

parameterized to reproduce experimental quantities (primarily heats of formation).
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AM1 and PM3 perform similarly and usually give quite good geometries, but less

satisfactory heats of formation and relative energies. A modification of AM1 called

SAM1 (semi-ab initio method 1), relatively little-used, is said to be an improvement

over AM1. AM1 and SAM1 represent work by the group of M. J. S. Dewar. PM3 is

a version of AM1, by J. J. P. Stewart, differing mainly in a more automatic approach

to parameterization. Recent extensions of AM1 (RM1) and PM3 (PM6) seem to

represent substantial improvements and are likely to be the standard general-

purpose semiempirical methods in the near future.
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125. Dewar MJS, Storch DM (1985) J Am Chem Soc 107:3898

126. For a series of small, mostly nonbiological molecules AM1 seemed better than PM3, except

for O-H/O hydrogen bonds: Dannenberg JJ (1997) J Mol Struct (Theochem) 410:279

127. In model systems of biological relevance, mostly involving water, PM3 was superior to

AM1: Zheng Y-J, Merz KM (1992) J Comp Chem 13:1151

Easier Questions

1. Outline the similarities and differences between the extended H€uckel method

on the one hand and methods like AM1 and PM3 on the other. What advantages

does the EHM have over more accurate semiempirical methods?

2. Outline the similarities and differences between molecular mechanics, ab

initio, and semiempirical methods.

3. Both the simple H€uckel and the PPP methods are p electron methods, but PPP

is more complex. Itemize the added features of PPP.

4. What is the main advantage of an all-valence-electron method like, say, CNDO

over a purely p electron method like PPP?

5. Explain the terms ZDO, CNDO, INDO, and NDDO, showing why the latter

three represent a progressive conceptual improvement.

6. How does an AM1 or PM3 “total electron wavefunction” C differ from the C
of an ab initio calculation?

7. Ab initio energies are “total dissociation” energies (dissociation to electrons

and atomic nuclei) and AM1 and PM3 energies are standard heats of formation.

Is one of these kinds of energy more useful? Why or why not?

8. For certain kinds of molecules molecular mechanics can give better geometries

and relative energies than can even sophisticated semiempirical methods. What

kinds of properties can the latter calculate that MM cannot?

9. Why do transition metal compounds present special difficulties for AM1 and

PM3?

10. Although both AM1 and PM3 normally give good molecular geometries, they

are not too successful in dealing with geometries involving hydrogen bonds

(PM3 seems to be the better one here). Suggest reasons for this deficiency.

Harder Questions

1. Why are even very carefully-parameterized semiempirical methods like AM1

and PM3 not as accurate and reliable as high-level (e.g. MP2, CI, coupled-

cluster) ab initio calculations?
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2. Molecular mechanics is essentially empirical, while methods like PPP, CNDO,

and AM1/PM3 are semiempirical. What are the analogies in PPP etc. to MM

procedures of developing and parameterizing a forcefield? Why are PPP etc.

only semiempirical?

3. What do you think are the advantages and disadvantages of parameterizing

semiempirical methods with data from ab initio calculations rather than from

experiment? Could a SE method parameterized using ab initio calculations

logically be called semiempirical?
4. There is a kind of contradiction in the Dewar-type methods (AM1, etc.) in that

overlap integrals are calculated and used to help evaluate the Fock matrix

elements, yet the overlap matrix is taken as a unit matrix as far as diagonaliza-

tion of the Fock matrix goes. Discuss.

5. What would be the advantages and disadvantages of using the general MNDO/

AM1 parameterization procedure, but employing a minimal basis set instead of

a minimal valence basis set?

6. In SCF semiempirical methods major approximations lie in the calculation of

the Hcore
rs , (rs|tu), and (ru|ts) integrals of the Fock matrix elements Frs

(Eq. 6.1¼5.82). Suggest an alternative approach to approximating one of

these integrals.

7. Read the exchange between Dewar on the one hand and Halgren, Kleir and

Lipscomb on the other [28]. Do you agree that semiempirical methods, even

when they give good results “inevitably obscure the physical bases for success

(however striking) and failure alike, thereby limiting the prospects for learning

why the results are as they are.”? Explain your answer.

8. It has been said of semiempirical methods: “They will never outlive their

usefulness for correlating properties across a series of molecules. . . I really
doubt their predictive value for a one-off calculation on a small molecule on the

grounds that whatever one is seeking to predict has probably already been

included in with the parameters.” (A. Hinchliffe, “Ab Initio Determination

of Molecular Properties”, Adam Hilger, Bristol, 1987, p. x). Do you agree

with this? Why or why not? Compare the above quotation with ref. [24],

pp. 133–136.

9. For common organic molecules Merck Molecular Force field geometries are

nearly as good as MP(fc)/6-31G* geometries (Section 3.4). For such molecules

single-point MP(fc)/6-31G* calculations (Section 5.4.2), which are quite fast,

on the MMFF geometries, should give energy differences comparable to those

from MP(fc)/6-31G*//MP(fc)/6-31G* calculations. Example: CH2¼CHOH/

CH3CHO, DE(MP2 opt, including ZPE) ¼ 71.6 kJ mol�1, total time 1,064 s;

DE(MP2 single point on MMFF geometries) ¼ 70.7 kJ mol�1, total time ¼ 48 s

(G98 on a Pentium 3). What role does this leave for semiempirical calculations?

10. Semiempirical methods are untrustworthy for “exotic” molecules of theoretical

interest. Give an example of such a molecule and explain why it can be

considered exotic. Why can’t semiempirical methods be trusted for molecules

like yours? For what other kinds of molecules might these methods fail to give

good results?
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Chapter 7

Density Functional Calculations

My other hope is that. . .a basically new ab initio treatment capable of giving

chemically accurate results a priori, is achieved soon.

M.J.S. Dewar, A Semiempirical Life, 1992.

Abstract Density functional theory is based on the two Hohenberg–Kohn theo-

rems, which state that the ground-state properties of an atom or molecule are

determined by its electron density function, and that a trial electron density must

give an energy greater than or equal to the true energy (the latter theorem is true

only if the exact functional could be used). In the Kohn–Sham approach the energy

of a system is formulated as a deviation from the energy of an idealized system with

noninteracting electrons. From the energy equation, by minimizing the energy with

respect to the Kohn–Sham orbitals the Kohn–Sham equations can be derived,

analogously to the Hartree–Fock equations. Finding good functionals is the main

problem in DFT. Various levels of DFT and new functionals are discussed. The

mutually related concepts of electronic chemical potential, electronegativity, hard-

ness, softness, and the Fukui function are exemplified.

7.1 Perspective

We have seen three broad techniques for calculating the geometries and energies

of molecules: molecular mechanics (Chapter 3), ab initio methods (Chapter 5), and

semiempirical methods (Chapters 4 and 6). Molecular mechanics is based on a

balls-and-springs model of molecules. Ab initio methods are based on the subtler

model of the quantummechanical molecule, which we treat mathematically starting

with the Schr€odinger equation. Semiempirical methods, from simpler ones like the

H€uckel and extended H€uckel theories (Chapter 4) to the more complex SCF

semiempirical theories (Chapter 6), are also based on the Schr€odinger equation,
and in fact their “empirical” aspect comes from the desire to avoid the mathematical

E.G. Lewars, Computational Chemistry,
DOI 10.1007/978-90-481-3862-3_7, # Springer ScienceþBusiness Media B.V. 2011
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problems that this equation imposes on ab initio methods. Both the ab initio and the

semiempirical approaches calculate a molecular wavefunction (and molecular

orbital energies), and thus represent wavefunction methods. However, a wavefunc-
tion is not a measurable feature of a molecule or atom – it is not what physicists call

an “observable”. In fact there is no general agreement among physicists just what a

wavefunction is – is it “only” a mathematical convenience for calculating observ-

able properties, or is it a real physical entity? [1].

Density functional theory, DFT, is based not on the wavefunction, but rather on

the electron probability density function or electron density function, commonly

called simply the electron density or the charge density, and designated by r(x, y, z).
This was discussed in Section 5.5.4.5, in connection with atoms-in-molecules

(AIM). This electron density r is the “density” in density functional theory, and

is the basis not only of DFT, but of a whole suite of methods of regarding and

studying atoms and molecules [2]; unlike the wavefunction, it is measurable, e.g. by

X-ray diffraction or electron diffraction [3]. Apart from being an experimental

observable and being readily grasped intuitively [4], the electron density has a

mathematical property particularly suitable for any method with claims to being an

improvement on, or at least a valuable alternative to, wavefunction methods: it is a

function of position only, that is, of just three variables (x, y, z), while the

wavefunction of an n-electron molecule is a function of 4n variables, three spatial

coordinates and one spin coordinate, for each electron. A wavefunction for a ten-

electron molecule will have 40 variables. In contrast, no matter how big the

molecule may be, the electron density remains a function of three variables. The

electron density function, then, trumps the wavefunction in three ways: it is

measurable, it is intuitively comprehensible, and it is mathematically more tractable.

The mathematical term functional, which is akin to function, is explained in

Section 7.2.3.1. To the chemist, the main advantage of DFT is that in about the

same time needed for an HF calculation one can often obtain results of about the

same quality as from MP2 calculations (cf. e.g. Sections 5.5.1 and 5.5.2). Chemical

applications of DFT are but one aspect of an ambitious project to recast conven-

tional quantum mechanics, i.e. wave mechanics, in a form in which “the electron

density, and only the electron density, plays the key role” [5]. It is noteworthy that

the 1998 Nobel Prize in chemistry was awarded to John Pople (Section 5.3.3),

largely for his role in developing practical wavefunction-based methods, and

Walter Kohn,1 for the development of density functional methods [6]. The wave-

function is the quantum mechanical analogue of the analytically intractable multi-

body problem (n-body problem) in astronomy [7], and indeed electron–electron

interaction, electron correlation, is at the heart of the major problems encountered in

1Walter Kohn, born in Vienna 1923. B.A., B.Sc., University of Toronto, 1945, 1946. Ph.D.

Harvard, 1948. Instructor in physics, Harvard, 1948–1950. Assistant, Associate, full Professor,

Carnegie Mellon University, 1950–1960. Professor of physics, University of California at San

Diego, 1960–1979; University of California at Santa Barbara 1979-present. Nobel Prize in

chemistry 1998.
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wavefunction calculations (Section 5.4). It may be significant that early in his career

Kohn worked on a many-body problem in atomic physics [8].

A question sometimes asked is whether DFT should be regarded as a special kind

of ab initio method. The case against this view is that the correct mathematical form

of the DFT functional is not known, in contrast to conventional ab initio theory where

the correct mathematical form of the fundamental equation, the Schr€odinger equa-
tion, is (we think), known. In conventional ab initio theory, the wavefunction can be

improved in a conceptually straightforward way by going to bigger basis sets and

higher correlation levels, which takes us closer and closer to an exact solution of

the Schr€odinger equation, but in DFT there is so far no such straightforward way to

systematically improve the functional (Sections 7.2.3.1 and 7.2.3.2); one must feel

one’s way forward with help from intuition and comparison of the results with

experiment and with high-level conventional ab initio calculations. One might

argue that in this sense current DFT is semiempirical, but the limited use of empirical

parameters (typically from zero to about ten), and the possibility of one day finding

the exact functional, makes it ab initio in spirit. Indeed, DFT using functionals with

no empirical parameters (below) is mathematically as ab initio as wavefunction

methods. Were the exact functional known, DFT might indeed give “chemically

accurate results a priori” (the Dewar quotation at the start of this chapter). The

question of the semiempirical nature of DFT is briefly taken up again after we have

examined the various levels of the method, at the end of Section 7.2.3.4g.

7.2 The Basic Principles of Density Functional Theory

7.2.1 Preliminaries

In the Born interpretation (Section 4.2.6) the square of a one-electron wavefunction

c at any point X is the probability density (with units of volume�1) for the wavefunc-

tion at that point, and |c|2dxdydz is the probability (a pure number) at any moment of

finding the electron in an infinitesimal volume dxdydz around the point (the probabil-
ity of finding the electron at a mathematical point is zero). For a multielectron
wavefunction C the relationship between the wavefunction C and the electron

density r is more complicated, being the number of electrons in the molecule times

the sum over all their spins of the integral of the square of the molecular wavefunction

integrated over the coordinates of all but one of the electrons (Section 5.5.4.5, AIM

discussion). It can be shown [9] that r(x, y, z) is related to the “component” one-

electron spatial wavefunctions ci (the molecular orbitals) of a single-determinant

wavefunction C (recall from Section 5.2.3.1 that the Hartree–Fock C can be

approximated as a Slater determinant of spin orbitals cia and cib) by

r ¼
Xn
i¼1

nijcij2 �(7:1)
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This sum is over the n occupied MOs ci for a closed-shell molecule, for a total of

2n electrons. Equation 7.1 applies strictly only to a single-determinant wave-

function C, but for multideterminant wavefunctions arising from configuration

interaction treatments (Section 5.4) there are similar equations [10]. A shorthand

for r(x, y, z) dxdydz is r(r)dr, where r is the position vector of the point with

coordinates (x, y, z).
If the electron density r rather than the wavefunction could be used to calculate

molecular geometries, energies, etc., this might be an improvement over the

wavefunction approach because, as mentioned above, the electron density in an

n-electron molecule is a function of only the three spatial coordinates x, y, z, but the
wavefunction is a function of 4n coordinates. Density functional theory seeks to

calculate all the properties of atoms and molecules from the electron density. A

good (and rather “technical”) work on DFT is the magisterial book by Parr and

Yang (1989) [11]. More recent developments are included in the book by Koch and

Holthausen [12]. Levine gives a very good yet compact introduction to DFT [13],

and among the many reviews are those by Friesner et al. [14], Kohn et al. [15], and

Parr and Yang [16]. Quite thorough reviews of DFT are given by Cramer [17] and

by Jensen [18].

References oriented toward the development and performance of functionals are

given in Section 7.2.3.4.

7.2.2 Forerunners to Current DFT Methods

The idea of calculating atomic and molecular properties from electron density

appears to have arisen from calculations made independently by Enrico Fermi

and P.A.M. Dirac in the 1920s on an ideal electron gas, work now well-known

as the Fermi-Dirac statistics [19]. In independent work by Fermi [20] and Thomas

[21], atoms were modelled as systems with a positive potential (the nucleus)

located in a uniform (homogeneous) electron gas. This obviously unrealistic

idealization, the Thomas-Fermi model [22], or with embellishments by Dirac

the Thomas-Fermi-Dirac model [22], gave surprisingly good results for atoms,

but failed completely for molecules: it predicted all molecules to be unstable

toward dissociation into their atoms (indeed, this is a theorem in Thomas-Fermi

theory).

The Xa (X¼ exchange, a is a parameter in the Xa equation) method gives much

better results [23, 24]. It can be regarded as a more accurate version of the Thomas-

Fermi model, and is probably the first chemically useful DFT method. It was

introduced in 1951 [25] by Slater, who regarded it [26] as a simplification of the

Hartree–Fock (Section 5.2.3) approach. The Xa method, which was developed

mainly for atoms and solids, has also been used for molecules, but has been

replaced by the more accurate Kohn–Sham type (Section 7.2.3) DFT methods.
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7.2.3 Current DFT Methods: The Kohn–Sham Approach

7.2.3.1 Functionals. The Hohenberg–Kohn Theorems

Nowadays DFT calculations on molecules are based on the Kohn–Sham approach,

the stage for which was set by two theorems published by Hohenberg and Kohn in

1964 (proved in Levine [27]). The first Hohenberg-Kohn theorem [28] says that all

the properties of a molecule in a ground electronic state are determined by the

ground state electron density function r0(x, y, z). In other words, given r0(x, y, z) we
can in principle calculate any ground state property, e.g. the energy, E0; we could

represent this as

r0ðx; y; zÞ ! E0 (7.2)

The relationship (7.2) means that E0 is a functional of r0(x, y, z). A function is

a rule that transforms a number into another (or the same) number:

2!x
3

8

1!x
3

1

A functional is a rule that transforms a function into a number:

f ðxÞ ¼ x3 �����!
R 2

0
f ðxÞdx x4

4

����
2

0

¼ 4 (7.3)

The functional
R 2

0
f ðxÞdx transforms the function x3 into the number four. We

designate the fact that the integral is a functional of f(x) by writing

Z 2

0

f ðxÞdx ¼ F½ f ðxÞ� (7.4)

A functional is a function of a “definite” (cf. the definite integral above)

function.

The first Hohenberg–Kohn theorem, then, says that any ground state property of

a molecule is a functional of the ground state electron density function, e.g. for the

energy

E0 ¼ F½r0� ¼ E½r0� (7.5)

The theorem is “merely” an existence theorem: it says that a functional F exists,

but does not tell us how to find it; this omission is the main problem with DFT. The

significance of this theorem is that it assures us that there is in principle a way to

calculate molecular properties from the electron density. Thus we can infer that

approximate functionals will give at least approximate answers. The theorem is
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sometimes expressed in a way that may at first sight seem less relevant to calculat-

ing energies, namely that the nuclear potential (below) determines the ground-state

electron density, or that there is a one-to-one correspondence between the energy

and the electron density.

The second Hohenberg–Kohn theorem [28] is the DFT analogue of the wave-

function variation theorem that we saw in connection with the ab initio method

(Section 5.2.3.3): it says that any trial electron density function will give an energy

higher than (or equal to, if it were exactly the true electron density function) the true

ground state energy. In DFT molecular calculations the electronic energy from a

trial electron density is the energy of the electrons moving the under the potential of

the atomic nuclei. This nuclear potential is called the “external potential”, presum-

ably because the nuclei are “external” if we concentrate on the electrons. This

nuclear potential is designated v(r), and the electronic energy is denoted by Ev ¼
Ev[r0] (meaning “the Ev functional of the ground state electron density”). The

second theorem can thus be stated

Ev½rt� � E0½r0� (7.6)

where rt is a trial electronic density and E0[r0] is the true ground state energy,

corresponding to the true electronic density r0. The trial density must satisfy the

conditions
R
rt(r)dr ¼ n, where n is the number of electrons in the molecule (this is

analogous to the wavefunction normalization condition; here the number of electrons

in all the infinitesimal volumes must sum to the total number in the molecule) and

rt(r) � 0 for all r (the number of electrons per unit volume can’t be negative). This

theorem tells us that any value of the molecular energy we calculate from the

Kohn–Sham equations (below, a set of equations analogous to the Hartree–Fock

equations, obtained by minimizing energy with respect to electron density) will be

greater than or equal to the true energy. This is actually true only if the functional

used were exact; see below. The Hohenberg–Kohn theorems were originally proved

only for nondegenerate ground states, but have been shown to be valid for degenerate

ground states too [29]. The functional of the inequality (7.6) is the correct, exact

energy functional (the prescription for transforming the ground state electron density

function into the ground state energy). The exact functional is unknown, so actual
DFT calculations use approximate functionals, and are thus not variational: they can

give an energy below the true energy. Being variational is a nice characteristic of a

method, because it assures us that any energy we calculate is an upper bound to the

true energy. However, this is not an essential feature of a method: Møller-Plesset and

practical configuration interaction calculations (Sections 5.4.2 and 5.4.3) are not

variational, but this is not regarded as a serious problem.

7.2.3.2 The Kohn–Sham Energy and the KS Equations

The first Kohn–Sham theorem tells us that it is worth looking for a way to calculate

molecular properties from the electron density. The second theorem suggests that a

450 7 Density Functional Calculations



variational approach might yield a way to calculate the energy and electron density

(the electron density, in turn, could be used to calculate other properties). Recall

that in wavefunction theory, the Hartree–Fock variational approach (Sec-

tion 5.2.3.4) led to the HF equations, which are used to calculate the energy and

the wavefunction. An analogous variational approach led (1965) to the Kohn–Sham

equations [30], the basis of current molecular DFT calculations. If we had an

accurate molecular electron density function r and if we knew the correct energy

functional, we could (assuming the functional were not impossibly complicated) go

straight from the electron density function to the molecular energy, courtesy of the

functional. Unfortunately we do not a priori have an accurate r, and we certainly do
not have the correct energy functional, this latter fact being the key problem in

density functional theory. The Kohn–Sham approach to DFT mitigates these two

problems.

The two basic ideas behind the KS approach are: (1) To express the molecular

energy as a sum of terms, only one of which, a relatively small term, involves the

“unknown” functional. Thus one hopes that even moderately large errors in this

term will not introduce large errors into the total energy. (2) To use an initial guess

of the electron density r in the KS equations (analogous to the HF equations) to

calculate an initial guess of the KS orbitals and energy levels (below); this initial

guess is then used to iteratively refine these orbitals and energy levels, in a manner

similar to that used in the HF SCF method. The final KS orbitals are used to

calculate an electron density that in turn is used to calculate the energy.

The Kohn–Sham Energy

The strategy here is to separate the electronic energy of our molecule into a portion

which can be calculated accurately without using DFT, and a relatively small term

which requires the elusive functional. A key idea in this approach is the concept of a

fictitious noninteracting reference system, defined as one in which the electrons do

not interact and in which (this is very important) the ground state electron density

distribution given by rr is exactly the same as that in our real ground state system:

rr ¼ r0. Noninteracting electrons are readily treated exactly, and the deviations

from the behavior of real electrons are swept into a small term involving a

functional with which we have to grapple. We are talking here about the electronic
energy of the molecule; the total internal “frozen-nuclei” energy can be found later

by adding in the trivial-to-calculate internuclear repulsions, and the 0 K total

internal energy by further adding the zero-point energy from the normal-mode

vibrations, as explained in Section 2.2.

The ground state electronic energy of the real molecule is the sum of the electron

kinetic energies, the nucleus-electron attraction potential energies, and the

electron–electron repulsion potential energies:

E0 ¼ T½r0�h i þ VNe½r0�h i þ Vee½r0�h i *(7.7)
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The angle brackets remind us that these energy terms are quantum-mechanical

average values or “expectation values”; each is a functional of the ground-state

electron density. Focussing first on the middle term, the one most easily dealt with:

the nucleus-electron potential energy is the sum over all 2n electrons (as with our

treatment of ab initio theory, we will work with a closed-shell molecule which

perforce has an even number of electrons) of the potential corresponding to

attraction of an electron for all the nuclei A:

VNeh i ¼
X2n
i¼1

X
nuclei A

� ZA
riA

¼
X2n
i¼1

vðriÞ (7.8)

ZA/riA is the potential energy due to interaction of electron i with nucleus A at

the varying distance r; v(ri) is the external potential for the attraction of electron i to
all the nuclei, and with it we can write the double summation more compactly. The

density function r can be introduced into <VNe> by using the fact [31] that

Z
c
X2n
i¼1

f ðriÞcdt ¼
Z

rðrÞf ðrÞdr (7.9)

where f(ri) is a function of the spatial coordinates of electron i of the system and C
is the total wavefunction (the integrations are over spatial and spin coordinates tau
on the left and spatial coordinates on the right). From Eqs. 7.8 and 7.9, invoking the

concept of expectation value (Section 5.2.3.3) VNeh i ¼ cjV̂Nejc
� �

we get

VNeh i ¼
Z

r0ðrÞvðrÞdr (7.10)

So Eq. *7.7 can be written

E0 ¼ T½r0�h i þ
Z

r0ðrÞvðrÞdrþ Vee½r0�h i (7.11)

The middle term is now a classical electrostatic attraction potential energy

expression. Unfortunately this equation for the energy cannot be used as it stands,

since we don’t know the kinetic and potential energy functionals in the energy

terms hT[r0]i and hVee[r0]i.
To utilize Eq. 7.11, Kohn and Sham introduced the idea of a fictitious reference

system of noninteracting electrons which give exactly the same electron density

distribution as the real system has. Addressing electronic kinetic energy, let us

define the quantity DhT[r0]i (don’t confuse Greek delta D, an increment, with the

differential operator del r) as the deviation of the real electronic kinetic energy

from that of the reference system:

D T½r0�h i � T½r0�h irea � T½r0�h iref
i:e: T½r0�h i � T½r0�h iref

(7.12)
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Addressing next electronic potential energy, let us define a term DhVeei as the
deviation of the real electron–electron repulsion energy from a classical charge-

cloud coulomb repulsion energy. The classical electrostatic repulsion energy is the

summation of the repulsion energies for pairs of infinitesimal volume elements

r(r1)dr1 and r(r2)dr2 (in a classical, nonquantum cloud of negative charge) sepa-

rated by a distance r12, multiplied by one-half (so that we do not count the r1/r2
repulsion energy and again the r2/r1 energy). The sum of infinitesimals is an

integral and so

D Vee½r0�h i ¼ Vee½r0�h irea �
1

2

ZZ
r0ðr1Þr0ðr2Þ

r12
dr1dr2 (7.13)

Actually, the classical charge-cloud repulsion is somewhat inappropriate for

electrons in that smearing an electron (a particle) out into a cloud forces it to

repel itself, as any two regions of the cloud interact repulsively. One way to

compensate for this physically incorrect electron self-interaction is with a good

exchange-correlation functional (below).

Using (7.12) and (7.13), Eq. 7.11 can be written

E0 ¼
Z

r0ðrÞvðrÞdrþ T½r0�h iref þ
1

2

ZZ
r0ðr1Þr0ðr2Þ

r12
dr1dr2

þ D T½r0�h i þ D Vee½r0�h i
(7.14)

The two “delta terms” which have been placed side by side encapsulate the

main problem with DFT: the sum of the kinetic energy deviation from the reference

system and the electron–electron repulsion energy deviation from the classi-

cal system, called the exchange-correlation energy. In each term an unknown

functional transforms electron density into an energy, kinetic and potential respec-

tively. This exchange-correlation energy is a functional of the electron density

function:

EXC½r0� � D T½r0�h i þ D Vee½r0�h i (7.15)

The DhTi term represents the kinetic correlation energy of the electrons and the

hDVeei term the potential correlation and exchange energy (although exchange and

correlation energy in DFT do not have exactly the same significance as in HF theory

[32]). Using Eq. 7.15, Eq. 7.14 becomes

E0 ¼
Z

r0ðrÞvðrÞdrþ T½r0�h iref þ
1

2

ZZ
r0ðr1Þr0ðr2Þ

r12
dr1dr2 þ EXC½r0� (7.16)

Let’s look at the four terms in the expression for the molecular electronic energy

E0 of Eq. 7.16.
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1. The first term (the integral of the density times the external potential) is

Z
r0ðrÞvðrÞdr ¼

Z
r0ðr1Þ

X
nuclei A

� ZA
r1A

" #
dr1 ¼ �

X
nuclei A

ZA

Z
r0ðr1Þ
r1A

dr1 (7.17)

We integrate the potential energy of attraction of each nucleus for an infinitesi-

mal portion of the charge cloud and sum for all the nuclei. If we know r0 the
integrals to be summed are readily calculated.

2. The second term (the electronic kinetic energy of the noninteracting-electrons

reference system) is the expectation value of the sum of the one-electron kinetic

energy operators over the ground state multielectron wavefunction of the refer-

ence system (Parr and Yang explain this in detail [33]). Using the compact Dirac

notation for integrals:

T½r0�h iref ¼ crj
X2n
i¼1

� 1

2
r2

i jcr

* +
(7.18)

Since these hypothetical electrons are noninteracting cr can be written exactly
(for a closed-shell system) as a single Slater determinant of occupied spin molecular

orbitals (Section 5.2.3.1). For a real system, the electrons interact and using a single

determinant causes errors due to neglect of electron correlation (Section 5.4), the

root of most of our troubles in wavefunction methods. Thus for a four-electron

system

cr ¼
1ffiffiffiffi
4!

p

cKS
1 ð1Það1Þ cKS

1 ð1Þbð1Þ cKS
2 ð1Það1Þ cKS

2 ð1Þbð1Þ
cKS
1 ð2Það2Þ cKS

1 ð2Þbð2Þ cKS
2 ð2Það2Þ cKS

2 ð2Þbð2Þ
cKS
1 ð3Það3Þ cKS

1 ð3Þbð3Þ cKS
2 ð3Það3Þ cKS

2 ð3Þbð3Þ
cKS
1 ð4Það4Þ cKS

1 ð4Þbð4Þ cKS
2 ð4Það4Þ cKS

2 ð4Þbð4Þ

����������

����������
(7.19)

The 16 spin orbitals in this determinant are the Kohn–Sham spin orbitals of the
reference system; each is the product of a Kohn–Sham spatial orbital cKS

i and a spin

function a or b. Equation 7.18 can be written in terms of the spatial KS orbitals by

invoking a set of rules (the Slater–Condon rules [34]) for simplifying integrals

involving Slater determinants:

T½r0�h iref ¼ � 1

2

X2n
i¼1

cKS
1 ð1Þjr2

1jcKS
1 ð1Þ� �

(7.20)

The integrals to be summed are readily calculated. Note that DFT per se does not
involve wavefunctions, and the Kohn–Sham approach to DFT uses orbitals only as

a kind of subterfuge to calculate the noninteracting-system kinetic energy and the

electron density function; see below.
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3. The third term in Eq. 7.16, the classical electrostatic repulsion energy term, is

readily calculated if r0 is known.
4. This leaves us with the exchange-correlation energy EXC[r0] (Eq. 7.15) as the

only term for which some new method of calculation must be devised. Devising

good exchange-correlation functionals for calculating this energy term from the

electron density function is the main problem in DFT research. This is discussed

in Section 7.2.3.4.

Written out more fully, then, Eq. 7.16 is

E0 ¼ �
X

nuclei A

ZA

Z
r0ðr1Þ
r1A

dr1 � 1

2

X2n
i¼1

cKS
1 ð1Þjr2

1jcKS
1 ð1Þ� �

þ 1

2

ZZ
r0ðr1Þr0ðr2Þ

r12
dr1dr2 þ EXC½r0�

(7.21)

The term most subject to error is the relatively small Exc[r0] term, which

contains the “unknown” (not precisely known) functional. Into this term the exact

electron correlation and exchange energies have been swept, and for it we must find

at least an approximate functional.

The Kohn–Sham Equations

The KS equations are obtained by differentiating the energy with respect to the

KS molecular orbitals, analogously to the derivation of the Hartree–Fock equa-

tions, where differentiation is with respect to wavefunction molecular orbitals

(Section 5.2.3.4). We use the fact that the electron density distribution of the

reference system, which is by decree exactly the same as that of the ground state

of our real system (see the definition at the beginning of the discussion of the

Kohn–Sham energy), is given by (reference [9])

r0 ¼ rr ¼
X2n
i¼1

jcKS
i ð1Þj2 *(7.22)

where the cKS
i are the Kohn–Sham spatial orbitals. Substituting the above expres-

sion for the electron density in terms of orbitals into the energy expression of

Eq. 7.21 and differentiating to vary E0 with respect to the cKS
i subject to the

constraint that these remain orthonormal (the spin orbitals of a Slater determinant

are orthonormal) leads to the Kohn–Sham equations (the derivation is discussed in

considerable detail by Parr and Yang [35]):

� 1

2
r2

i �
X

nuclei A

ZA
r1A

þ
Z

rðr2Þ
r12

dr2 þ vXCð1Þ
" #

cKS
i ð1Þ ¼ eKSi cKS

i ð1Þ (7.23)
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where eKSi are the Kohn–Sham energy levels (the KS orbitals and energy levels are

discussed later) and vXC(1) is the exchange correlation potential. For this closed-
shell system with n occupied MOs, there are n equations, half the number of

electrons, as for the Hartree-Fock equations (Section 5.2.3.4, Eq. 5.47). The

expression in brackets is the Kohn–Sham operator, ĥKS. In the KS orbitals and

the exchange correlation potential we arbitrarily installed here electron number

one, since the KS equations are a set of one-electron equations (cf. the Hartree–

Fock equations) with the subscript i running from 1 to 2n, over all the electrons in
the system. The exchange correlation potential vXC is a functional derivative
(recall that in deriving Eq. (7.23) we differentiated) of the exchange-correlation

energy EXC[r(r)]. The energy EXC[r(r)] is a functional of r(r) and the process of

obtaining vXC is functional differentiation; vXC is defined as

vXCðrÞ ¼ dEXC½rðrÞ�
drðrÞ (7.24)

Here the differentiation is shown as being with respect to r(r), but note that in

Kohn–Sham theory r(r) is expressed in terms of Kohn–Sham orbitals (Eq. 7.22).

Functional derivatives, which are akin to ordinary derivatives, are discussed by Parr

and Yang [36] and outlined by Levine [37].

The KS Equations 7.23 can be written as

ĥKSð1ÞcKS
i ð1Þ ¼ eKSi cKS

i ð1Þ *(7.25)

The Kohn–Sham operator ĥKS is defined by Eq. 7.23; the significance of these

orbitals and energy levels is considered later, but we note here that in practice they

can be interpreted in a similar way to the corresponding wavefunction entities. Pure

DFT theory has no orbitals or wavefunctions; these were introduced by Kohn and

Sham only as a way to turn Eq. 7.11 into a useful computational tool, via the artifice

of noninteracting electrons, but if we can interpret the KS orbitals and energies in

some physically useful way, so much the better.

The Kohn–Sham energy Equation 7.21 is exact, but there is a catch: only if we

knew the density function r0(r) and the functional for the exchange-correlation

energy EXC[r0], would it give the exact energy. The Hartree–Fock energy equation
(Eq. 5.17), on the other hand, is an approximation that does not treat electron

correlation properly. Even in the basis set limit, the HF equations would not give

the correct energy, but the KS equations would, if we knew the exact exchange-
correlation energy functional. In wavefunction theory we know how to improve on

HF-level results: by using perturbational or configuration interaction treatments of

electron correlation (Section 5.4), but in DFT theory there is as yet no systematic

way of improving the exchange-correlation energy functional. It has been said [38]

that “while solutions to the [HF equations] may be viewed as exact solutions

to an approximate description, the [KS equations] are approximations to an

exact description!”; Parr and Yang give a somewhat similar but more recondite
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assertion: “The conventional Hartree–Fock approximation can be regarded as a

density-functional approach in the HFKS scheme with correlation completely

neglected, but not in the KS scheme. Instead of the exact nonlocal exchange

potential in the HFKS equations, the KS equations use an effective nonlocal
potential that is not known and has to be approximated. Another trade of accuracy

for simplicity!” [39].

7.2.3.3 Solving the KS Equations

First let’s review the steps in carrying out a HF calculation (shown in detail in

Section 5.2.3.6.5). We start with a guess of the basis function coefficients c, because
the HF operator F̂ (the Fock operator) itself contains the wavefunction, which is

composed of the basis functions and their coefficients. The operator is used with the

basis functions to calculate the HF Fock matrix elements Frs ¼ frjF̂jfs

� �
which

constitute the Fock matrix F. An orthogonalizing matrix calculated from the

overlap matrix S puts F into a form F0 that satisfies F0 ¼C0eC0�1 (Section 5.2.3.6.2).

Diagonalization of F0 gives a coefficients matrix C0 and an energy levels matrix e;
transforming C0 to C gives the matrix with the coefficients corresponding to the

original basis set expansion, and these are then used as a new guess to calculate a

new F; the process continues till it converges satisfactorily on the c’s, i.e. on the

wavefunction, and the energy levels (which can be used to calculate the electronic

energy); the procedure was shown in detail in Section 5.2.3.6.5.

The standard strategy for solving the KS eigenvalue equations, like that for

solving the HF equations, which they resemble, is to expand the KS orbitals in

terms of basis functions f (with m functions in the set):

cKS
i ¼

Xm
s¼1

csifs i ¼ 1; 2; 3; . . . ;m (7.26)

This is exactly the same as was done with the Hartree–Fock orbitals in

Section 5.2.3.6.1, and in fact the same basis functions are often used as in

wavefunction theory, although as in all calculations designed to capture electron

correlation, sets smaller than split-valence (Section 5.3.3) should not be used. A

popular basis in DFT calculations is the 6-31G*. Substituting the basis set

expansion into the KS Eqs. 7.23, 7.25 and multiplying by f1, f2, . . ., fm leads,

as in Section 5.2.3.6.1, to m sets of equations, each set with m equations, which

can all be subsumed into a single matrix equation analogous to the HF equation

FC ¼ SCe. The key to solving the KS equations then becomes, as in the standard

HF method, the calculation of Fock matrix elements and diagonalization of the

matrix (Section 5.2.3.6.2). In a DFT calculation we start with a guess of the

density function r(r), because this is what we need to obtain an explicit

expression for the KS Fock operator ĥKS (Eqs. 7.23, 7.24, 7.25). This guess is

usually a noninteracting atoms guess, obtained by summing mathematically the
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electron densities of the individual atoms of the molecule, at the molecular

geometry. The KS Fock matrix elements hrs ¼ frjĥ
KSjfs

D E
are calculated and

the KS Fock matrix is orthogonalized and diagonalized, etc., to give initial

guesses of the c’s in the basis set expansion of Eq. 7.26 (and also initial values

of the e’s). These c’s are used in Eq. 7.26 to calculate a set of KS MOs which

with Eq. 7.22 are used to calculate a better r. This new density function is used

to calculate improved matrix elements hrs which in turn give improved c’s and
then an improved density function, the iterative process being continued until

the electron density etc. converge. The final density and KS orbitals are used to

calculate the energy from Eq. 7.21.

The KS Fock matrix elements are integrals of the Fock operator over the basis

functions. Because useful functionals are so complicated, these integrals, specifi-

cally the frjvXCjfsh i integrals, unlike the corresponding ones in Hartree–Fock

theory, cannot be solved analytically. The usual procedure is to approximate the

integral by summing the integrand in steps determined by a grid. For example,

suppose we want to integrate e�x2 from �1 to 1. This could be done approxi-

mately, using a grid of width Dx ¼ 0.2 and summing from �2 to 2 (limits at which

the function is small):

Z 1

�1
e�x2dx ¼

Z 1

�1
f ðxÞdx ’ 0:2f ð�2þ 0:2Þ þ 0:2f ð�2þ 0:4Þ

þ � � � þ 0:2f ð2Þ ¼ 0:2ð9:80Þ ¼ 1:96

The integral is actually p1/2 ¼ 1.77. For a function f(x, y) the grid would define

the steps in x and y and actually look like a grid or net, approximating the integral as

a sum of the volumes of parallelepipeds, and for the DFT function f(x, y, z) the grid
specifies the steps of x, y and z. Clearly the finer the grid the more accurately the

integrals are approximated, and reasonable accuracy in DFT calculations requires

(but is not guaranteed by) a sufficiently fine grid.

Here is a summary of the steps in obtaining the Kohn–Sham orbitals and energy

levels:

1. Specify a geometry (and charge and multiplicity; electron spin can be handled

in DFT by using separate a- and b-spin density functions).

2. Specify a basis set {f}.
3. Make an initial guess of r (e.g. by superposing atomic rs).
4. Use the guess of r to calculate an initial guess vxc(r) from vxc(r) ¼ functional

derivative dExc/d r (Eq. 7.24). This uses the approximate functional Exc we have

chosen for the calculation.

5. Use the initial guesses of r and vxc(r) to calculate the K-S operator ĥKS

� 1

2
r2

i �
X

nuclei A

ZA
r1A

þ
Z

rðr2Þ
r12

dr2 þ vXCð1Þ

(see Eq. 7.23).
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6. Use the K-S operator ĥKS and the basis functions {f} to calculate Kohn–Sham

matrix elements hrs (cf. Fock matrix elements Frs (Section 5.2.3.6),

hrs ¼ frjĥ
KSjfs

D E
(7.27)

and assemble a Kohn–Sham matrix, the square matrix of hrs elements.

7. Orthogonalize the KS matrix, diagonalize it to get a coefficients matrixC0 and an
energy levels matrix e, and transform C0 to C, the matrix of the coefficients that

give the KS orbitals as a weighted sum of the original non-orthogonal basis

functions (cf. Section 5.2.3.6.2). We now have the first-iteration values of the

energy levels ei and the KS molecular orbitals ci (getting the coefficients is

equivalent to getting theMOs, once a basis set is in hand, sincecKS
i ¼ P

cfbasis).

8. Use the first-iteration values of the KS MOs to calculate an improved r:

r0 ¼ rr ¼
X2n
i¼1

jcKS
i ð1Þj2

(see Eq. *7.22)

9. Go back to step 4, but with the improved, first-iteration r instead of the guess. At

the new step 7 we will have the second-iteration values of the energy levels ei
and the KS molecular orbitals ci (and the first-iteration r, from the first applica-

tion of step 8). Check them for significant change. If these do not differ (within

specified limits) from the first-iteration values, and the first-iteration r is

unchanged from the guess we started with, stop. If they differ, go through the

process again, to get the third-iteration values of the energy levels ei and the

KS molecular orbitals, and the second-iteration r. Check for significant change;

and so on.

10. When the iterations have satisfactorily converged, calculate the energy using

Eq. 7.21.

11. The geometry can be optimized with the aid of derivatives of the energy with

respect to geometry, as outlined in Section 2.4. Any method in which the

calculated energy varies with the geometry can in principle optimize geometry.

7.2.3.4 The Exchange-Correlation Energy Functional: Various Levels

of Kohn–Sham DFT

We have to consider the calculation of the fourth term, the problem term, in the

KS operator of Eq. 7.23, the exchange-correlation potential vXC(r). This is defined as
the functional derivative [36, 37] of the exchange-correlation energy functional,

EXC[r(r)], with respect to the electron density functional (Eq. 7.23). The exchange-

correlation energy EXC[r(r)], a functional of the electron density function r(r), is a
quantity which depends on the function r(r) and on just what mathematical form the
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functional has, while the exchange-correlation potential vXC(r), the functional deriva-
tive of EXC[r(r)], is a function of the variable r, i.e. of x, y, z. Clearly, vXC(r) depends
on r(r) and, like r(r), varies from point to point in the molecule. The functional is a

recipe for transforming r into the exchange-correlation energy EXC. Actually, as

hinted in connection with Eq. 7.13, this energy ideally also compensates for the

classical self-repulsion in the charge cloud of r, and for the deviation of the kinetic

energy of the noninteracting KS electrons from that of real electrons. Thus a good

functional handles not only exchange and correlation errors, but also self-repulsion

and kinetic energy errors. The functional is normally tackled as an exchange term and

a correlation term; for example in the B3LYP functional (below) B3 denotes the

Becke 88 3-parameter exchange functional and LYP the Lee, Yang, Parr correlation

functional, and in the TPSS functional (below), both functionals enshrine the names

Tao, Perdew, Staroverov, Scuseria, and some programs require TPSS be denoted

TPSSTPSS. Devising good functionals EXC[r(r)] is the main problem in density

functional theory, for all the theoretical difficulties of Kohn–Sham DFT have been

swept into the functional.

Below we look briefly at functionals based, in order of increasing sophistication

(although not quite invariably smoothly increasing excellence), on these methods:

(a) the local density approximation (LDA), (b) the local spin density approximation

(LSDA), (c) the generalized gradient approximation (GGA), (d) meta-GGA

(MGGA), (e) hybrid GGA or adiabatic connection methods (ACM methods), (f)

hybrid meta-GGA (hybrid MGGA) methods, and (g) “fully nonlocal” theory. This

hierarchy of theory has been likened to the biblical ladder reaching up to heaven

[40], and this DFT Jacob’s ladder [41] will, one hopes, culminate in what has been

appropriately called the divine functional [42]. Jensen has listed some of the proper-

ties that the divine functional must on theoretical grounds possess [43]. Some

valuable reviews of DFT are summarized here:

1. Sousa et al. 2007 [44]; 14 pp. A concise historical introduction to the various

methods and extensive comparisons of many functionals for various purposes;

see especially Table 3; highlights the predominance of B3LYP.

2. Zhao and Truhlar 2007 [45]; 11 pp. An extensive comparison of the very popular

B3LYP functional with some new functionals; focuses on overcoming problems

of transition metals, barrier heights, and weak interactions. A class of func-

tionals, M06, “with better across-the-board average performance than B3LYP”

is presented.2 A restrained choice of data is clearly presented. Clear recommen-

dations for various kinds of calculations.

3. Riley et al. 2007 [46]; 27 pp. The efficacy of DFT is examined “for small

molecules containing elements commonly found in proteins, DNA, and RNA.”

The results are very clearly presented with figures. Very extensive comparison:

37 DFT methods (functional/basis set pairs) are compared with ab initio HF

and MP2. The Pople 6-31G* basis (sometimes used with one or two sets

2M06:“M zero six”, or colloquially “M oh six”. A descendant of M05, Minnesota ‘05 (2005):

Y. Zhao, N.E. Schultz, D.E. Truhlar, J. Chem. Phys., 2005, 123, 161103.
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of þ functions) is competitive with or better than the much bigger Dunning aug-

cc-pVDZ and cc-pVTZ sets. An all-round best functional was not found but

B1B95 and B98 were among the best.

4. Perdew et al. 2005 [47]; 9 pp. Nicely prescriptive exposition of “personal

preferences and metaphysical principles” for designing and choosing func-

tionals. Exhorts developers to adopt a nonempirical methodology of climbing

the DFT Jacob’s ladder by proceeding to the next higher rung by building on

what works at each tested level, and striving to obey the known theoretical

constraints. Holds that with these provisos DFT is not semiempirical, but rather

a “middle way” between semiempirical and ab initio. Favors functionals without

empirical parameters. Defends the LSDA as a still useful method and as a

limiting case to which more sophisticated functionals should devolve in the

uniform electron gas limit. Summarizes some known exact constraints on the

ideal functional. They recommend functionals with “few fitted parameters” like

PBE or TPSS.

5. Mattsson 2002 [42]; a very brief (two pages) sketch of the development of DFT.

6. Kurth et al. 1999 [48]; 21 pp. Delves well into the mathematical background

behind functionals and discusses solids and metal surfaces in addition to atoms

and molecules. Examines functionals constructed semiempirically as well as

purely by considering known theoretical constraints.

We now consider the rungs of this Jacob’s ladder.

7.2.3.4a The Local Density Approximation (LDA)

The simplest approximation to EXC[r(r)], the bottom rung of the DFT Jacob’s

ladder, results from the local density approximation, LDA. In mathematics a

local property of a function at a point on the surface (line, or two-dimensional

surface, or hypersurface) that is defined by the function is a property that depends

on the behavior of the function only in the immediate vicinity of the point [49].

“Immediate vicinity” can be taken to mean the region within an infinitesimal

distance beyond the point. Consider the derivative at some point Pi on the line

defined by plotting y ¼ f(x) against x. This property, the derivative or gradient, is

the limit

lim
Dx!0

Dy
Dx

¼ dy

dx

and depends on the behavior of the curve at just an infinitesimal distance away from

Pi, i.e. in the immediate vicinity of Pi. The derivative is a local property and may

exist at Pi but not at some other point, where the curve may have, say, a cusp. The

opposite of a local property is a property in the large [49]. Kurth et al. [48] define

“locality” somewhat differently: they take a local functional to be one for which the

energy density (below) at a point is determined by r at the point, designate by
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“semilocal” a functional for which the energy density depends on r in the infinites-

imal neighborhood of the point, and use nonlocal to describe a functional for which

the energy density at the point is determined by r at finite distances from the point.

It is more important to know how the functionals behave than to worry about their

strict adherence to mathematical definitions.

The local density approximation is based on the assumption that at every point

in the molecule the energy density has the value that would be given by a

homogeneous electron gas which had the same electron density r at that point.
The energy density is the energy (exchange plus correlation) per electron. Note

that the LDA does not assume that the electron density in a molecule is homoge-

neous (uniform); that drastic situation would be true of a “Thomas-Fermi mole-

cule”, which, as we said above, cannot exist [22] (Section 7.2.2). The term local
was used to contrast the method with ones in which the functional depends not

just on r but also on the gradient (first derivative) of r, the contrast apparently

arising from the assumption that a derivative is a nonlocal property. However,

under the mathematical definition above a gradient is local, and in fact DFT

methods formerly called “nonlocal” are now commonly designated as gradient-
corrected (Section 7.2.3.4c). LDA functionals have been largely replaced by a

family representing an extension of the method, local spin density approximation

(LSDA; below) functionals. In fact, in extolling the virtues of a systematic

nonempirical ascent of the DFT Jacob’s ladder, Perdew et al. [47] slight LDA

and assign to the lowest rung LSDA functionals.

7.2.3.4b The Local Spin Density Approximation (LSDA)

The “spin” here means that electrons of opposite spin are placed in different

Kohn–Sham orbitals, analogously to the Hartree–Fock UHF method (end of

Section 5.2.3.6.5). LSDA functionals are occasionally called LSD functionals.

The elaboration of the LDA method to the LSDA assigns electrons of a and b
spin to different spatial KS orbitals cKS

a and cKS
b , from which different electron

density functions ra and rb follow. LSDA has the advantage that it can handle

systems with one or more unpaired electrons, like radicals, and systems in which

electrons are becoming unpaired, such as molecules far from their equilibrium

geometries; even for ordinary molecules it appears to be more forgiving toward the

use of (necessarily) inexact EXC functionals [50]. For species in which all the

electrons are securely paired, the LSDA is equivalent to the LDA. LSDA geome-

tries, frequencies and electron-distribution properties tend to be reasonably good,

but (as with HF calculations) the dissociation energies, including atomization

energies, are very poor. A popular LSDA functional was the SVWN (Slater

exchange plus Vosko, Wilk, Nusair) [51]. Atomization energies are often used as

a kind of touchstone for the goodness of a method: for example, they are one of the

criteria for parameterizing and evaluating the high-accuracy energy multistep “ab
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initio” methods of Chapter 5 (Section 5.5.2.2b). LSDA functionals are useful in

solid-state physics, but for molecular calculations have been largely replaced by

higher rungs of the ladder. The local spin density method has however been stoutly

defended by knowledgeable practitioners [47], who point out that it gives “remark-

ably accurate bond lengths”, that its atomization energy errors “can be dramatically

reduced” with one empirical parameter, and that “For chemistry without free atoms,

LSD is not such a bad starting point”. A recently developed, potentially very useful

local function is M06-L (below) [45]. Nevertheless, LSDA calculations have been

largely replaced by an approach that uses not just the electron density, but also its

gradient.

7.2.3.4c Gradient-Corrected Functionals: The Generalized Gradient

Approximation (GGA)

Most DFT calculations nowadays use exchange-correlation energy functionals

EXC that utilize both the electron density and its gradient, the first derivative of r
with respect to position, (∂/∂x þ ∂/∂y þ ∂/∂z)r ¼ rr. These functionals are

called gradient-corrected, or said to use the generalized-gradient approximation
(GGA). They have also been called nonlocal functionals, in contrast to LDA and

LSDA functionals, but it has been suggested [52] that the term nonlocal be

avoided in referring to gradient-corrected functionals; recall the discussion of

“local” in Section 7.2.3.4a. The exchange-correlation energy functional can be

written as the sum of an exchange-energy functional and a correlation-energy

functional, both negative, i.e. EXC¼ Exþ Ec; |Ex | is much bigger than |Ec|. For the

argon atom Ex is �30.19 hartrees, while Ec is only �0.72 hartrees, calculated by

the HF method [53]. Thus it is not surprising that gradient corrections have proved

more effective when applied to the exchange-energy functional, and a major

advance in practical DFT calculations was the introduction of the B88 (Becke

1988) functional [54], a “new and greatly improved functional for the exchange

energy” [55]. Examples of gradient-corrected correlation-energy functionals are

the LYP (Lee-Yang-Parr) and the P86 (Perdew 1986) functionals. All these

functionals are commonly used with Gaussian-type (i.e. functions with exp

(�r2)) basis functions for representing the KS orbitals (Eq. 7.26). A calculation

with B88 for the exchange functional Ex, and LYP for the correlation functional

Ec, and the 6-31G* basis set (Section 5.3.3) would be designated as a B88-LYP/6-

31G* or B88LYP/6-31G* calculation. Sometimes rather than the analytical func-

tions that constitute the standard Gaussian basis sets, numerical basis sets are

used. A numerical basis function is essentially a table of the values that an atomic

orbital wavefunction has at many points around the nucleus, derived from best-fit

functions devised to pass through these points. These numerical functions can be

used instead of the analytical Gaussian-type functions ubiquitous in ab initio

calculations.
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7.2.3.4d Meta-Generalized Gradient Approximation Functionals

(meta-GGA, MGGA)

We saw that functionals which use the first derivative of the electron density function,

GGA functionals (Section 7.2.3.4c), are usually an improvement over ones relying

only on r itself. One might therefore suspect that further improvement could be

obtained by invoking the second derivative of r (∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2)r ¼
r2r. This is the Laplacian of the electron density function (so important in AIM

theory, Section 5.5.4). Functionals which use the second derivative of r are called

meta-gradient corrected (meta-GGA, MGGA); meta¼ beyond. This approach seems

to offer some improvement, but functionals that depend on the Laplacian of r present

computational problems. One way to sidestep this is to make the MGGA functional

dependent not on r itself but on the kinetic energy density t, obtained by summing the

squares of the gradients of the Kohn–Sham MOs:

tðrÞ ¼ 1

2

Xoccupied
i¼1

jrcKS
i ðrÞj2 (7.28)

This varies with r essentially the same as does the Laplacian of r [56]. Examples

of MGGA functionals are the tHCTH (Hamprecht, Cohen, Tozer, Handy) and

the B98 (Becke1998). MGGA functionals are, in the sense of GGA ones, local.

A detailed discussion of the theory and mathematics behind MGGA functionals is

given in reference [48], where they are said to “in general perform well for atomiza-

tion energies”, and PKZP and KCIS are designated the best MGGA performers.

7.2.3.4e Hybrid GGA (HGGA) Functionals: The Adiabatic Correction

Method (ACM)

These are functionals to which Hartree–Fock exchange has been added. The

justification for this lies in the adiabatic connection method (ACM) [17]. In

wavefunction theory, an adiabatic process is one in which the wavefunction

remains on the same PES, i.e. the variables that define it change smoothly as the

process evolves. The process seamlessly connects two states without crossing into

another electronic state. The ACM shows that the exchange-correlation energy

EXC(r) can be taken as a weighted sum of the DFT exchange-correlation energy

and HF exchange energy. This is the justification of hybrid DFT functionals (hybrid

DFT methods have been called ACM methods), which include an energy contribu-

tion from HF-type electron exchange, calculated from the KS wavefunction of the

noninteracting electrons. Those electrons have no coulomb interaction, but being,

after all, still electrons with a spin of one-half, like all good fermions they show

“Pauli repulsion” (Section 5.2.3.5), represented by the exchange K integral

(Eq. 5.22). Hybrid functionals are functionals (of the GGA level or higher) that

contain HF exchange, the correction energy to the classical coulomb repulsion.
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The percentage of HF exchange energy to use is a main distinguishing characteristic

of the various hybrid functionals. The first popular, successful hybrid method was

B3LYP. This is the B3PW91 functional first proposed by Becke [57], modified by

Stephens et al. [58]. The B3LYP functional has a total of eight purely empirical

parameters. B3LYP has been wildly popular: Sousa et al. [44] show in their 2007

paper that from 2002 to 2006 in each year it has accounted for ca. 80% of the names

of the functionals in journal articles and abstracts, and Zhao and Truhlar single it

out for special comparison with their new functionals [45]. This popularity is

despite the fact that evidently, for almost any particular application, one can find

a better functional. The durability of B3LYP and the advisability of its continued

use are discussed later; for now we note that near the end of their extensive

comparison, Sousa et al. [44] say that “B3LYP still remains a valid and particularly

efficient alternative for the ‘average’ quantum chemistry problem”.

Some hybrid methods base the HF percentage not on experimental parameteri-

zation (“parameter-free” hybrid methods), but on theoretical arguments; this does

not automatically give them superior performance. GGA functionals tend to under-

estimate barriers and HF methods tend to overestimate them, but a happy adjust-

ment of HF exchange for barriers tends to reduce the accuracy for other properties.

7.2.3.4f Hybrid Meta-GGA (HMGGA) Functionals

These are analogous to the hybrid GGA functionals of Section 7.2.3.4e above, but

with Hartree–Fock exchange added on to meta-GGA (Section 7.2.3.4d), rather than

GGA, functionals (Section 7.2.3.4c). Hybrid MGGA (HMGGA) uses the first

derivative of r and its second derivative, or the kinetic energy density (Sec-

tion 7.2.3.4d), and Hartree–Fock exchange. They are the highest-level functionals

in routine use. Most are, as of mid-2009, fairly recent: in Table 2 of ref. [44] (2007),

of the 52 “most common” functionals listed and referenced, 14 are HMGGA and of

these one is vintage 1996 and the others 2003–2005; this paper depicts HMGGA on

the fourth rung of the ladder, rather than the sixth implied here, because it effec-

tively collapses on to rung one LDA and LSDA, and places on rung four both

HGGA and HMGGA. The strongpoint of HMGGA seems to be “an improvement

over the previous formalisms in . . .barrier heights and atomization energies” [44].

7.2.3.4g Fully Nonlocal Theory

This is the seventh and highest rung in our ordering, the fifth on the “collapsed”

ladder of Sousa et al. [44], a step above HMGGA functionals. Perdew et al. say [47]

that “a fully nonlocal functional of the density. . .can be satisfied on the fourth rung

by hyper-GGAs that use full exact exchange” that “Exact exchange can only be

combined with a fully nonlocal correlation, constructed on the fourth or fifth rungs

of the ladder” and that “there is also continuing interest . . . in the weighted density

approximation, a nonempirical and fully nonlocal functional that does not fit on
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Jacob’s ladder.” From this it is evident that “fully nonlocal” DFT theory does not

promise a single, sharply defined functional, although the divine functional [42]

must be fully nonlocal. What does fully nonlocal mean? Kurth et al. use local,
semilocal, and nonlocal to refer to properties that are determined at a point, at an

infinitesimal distance beyond the point, and at a finite distance beyond the point,

respectively [48]. These are not the strict mathematical definitions of the terms [49],

but they are working intuitive concepts: to determine the gradient at a point one must

move an infinitesimal distance beyond. Exact electron exchange energy is an example

of a nonlocal property of r, because it arises from “Pauli repulsion” between electrons

a finite distance apart; a fully nonlocal functional would presumably take into account

all such nonlocal phenomena. Attention is paid to the local nature or otherwise of

various functionals in the review by Zhao and Truhlar [45]. Nonlocal functionals have

been under development for some years [59], but fully nonlocal ones, with all relevant

properties treated nonlocally, are apparently not yet available for practical molecular

calculations. However, some recent (2006 and later) functionals, for example

B2PLYP [60], which uses hybrid-GGA with MP2-like (Section 5.4.2) promotion of

electrons into virtual orbitals for treating electron correlation, rival coupled-cluster ab

initio calculations (Section 5.4.3) for certain purposes [61].

Having just examined the various DFT levels, we can return to the question

posed at the end of Section 7.1: is DFT semiempirical, or is it a kind of ab initio

method? We can also ask: does it matter? Addressing the first question: a semiem-

pirical method is one that is parameterized against experiment (but in chemistry we

wisely do not demand that fundamental constants like the velocity of light and

Planck’s constant be calculated from first principles!). It is possible to develop

functionals that have not been parameterized against experiment, and the review

[47] in which Perdew et al. “present the case for the nonempirical construction” of

such functionals argues convincingly for the classification of DFT as an ab initio

technique when it follows these strictures. The adjectives “ab initio” and “wave-

function” need not be synonymous: the wavefunction and the operators which act

on it are central concepts in traditional ab initio theory, while in density functional

theory the corresponding central concepts are the electron density function and the

functionals which act on that. The wavefunction is not in principle indispensable in

DFT. Rather, the Kohn–Sham wavefunction (Eq. 7.19) is a clever subterfuge for

coming to grips with the functional problem by reducing to a small fraction of the

total energy the energy (Eq. 7.21) that an imperfect functional generates, and for

permitting the electron density function to be iteratively refined (Eq. 7.22). Regarding

the second question: quite apart from the esthetic value that some see in a purely

nonempirical calculation (recall von Neumann’s jaundiced view of empirical equa-

tions: Section 6.3.7), it may well be true that empirical approaches can reliably

interpolate, but not extrapolate, and that they are, outside their parameterized

domains, susceptible to “catastrophic failure” [62]. We close this discussion of the

“philosophy” of DFT with a look at a provocative stance by Nooijen, namely that

DFT resembles molecular mechanics in that there “exists an exact force field for each
electronic state with a given number of electrons” and that “the existence of many

different exact functionals. . .also suggests that the physical content of DFT is easily
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overrated” (relevant to the latter statement he points out that “there are many, many,

different ways to tackle the electronic structure problem from a density functional

point of view. . .”) [63]. The likening of DFT to molecular mechanics might appear

mischievous: certainlyMMdoes not recognize electronic charge, an objective feature

of chemical reality with measurable consequences like dipole moments and optical

activity. Nevertheless, this paper raises points which seem to be generally unappreci-

ated, particularly with regard to “the enormous flexibility of in principle exact

formulations” of DFT. Readers may wish to console themselves with the possibility

implied by Perdew et al. [47] that an exact (if not unique?) nonparameterized

functional can be gradually approached. We now consider applications of DFT.

7.3 Applications of Density Functional Theory

In examining the literature for applications of DFT one is (or ought to be) struck by

the fact that there is no method (functional/basis set combination) that is generally
best. For every property there seems to be one or two functionals that are superior to

the others, but only for that property. This profusion is more exuberant than for

methods and basis sets in the wavefunction realm (Sousa et al. list 52 functionals in

their Table 2 [44]). One might conclude that the situation almost borders on the

chaotic, to borrow the term used by Dewar to criticise what he saw as the profusion

of basis sets [64] (Section 5.3.3.8). However, this judgement would be unfair, if

only because the relative infancy of DFT as a general, practical tool for molecular

calculations requires the exploration of “functional space” for good methods.

Furthermore, in the absence of a perfect solution one should be thankful for the

availability of one that is acceptable for the task at hand. Zhao and Truhlar grant

that those concerned about the profusion of functionals have a case, but make

the point that really satisfactory all-purpose functionals are “unlikely to be discov-

ered in the foreseeable future” and that therefore for now we need specialized

functionals [65]. Apparent exceptions to the claim that a universally applicable

functional is wanting are presented by B3LYP and the recent M06-type, a family of

four functionals, M06, M06-2X, M06-L, and M06-HF [45]. However, none of these

excels for all tasks, although M06 in particular is said to be [45] “for general-

purpose applications” and the M06-family member “with broadest applicability”.

As briefly mentioned in Section 7.2.3.4e, B3LYP [57, 58] is so popular that it has

been singled out for special attention by Sousa et al. [44] (where striking pie charts

show B3LYP like Pac-Man devouring other functionals) and Zhao and Truhlar

[45]. The M06-type functionals have been said to provide “better across-the-board

average performance than B3LYP.” [45]. Although for most specific tasks a better

functional than B3LYP, or even perhaps than one of the M06 family, can probably

be found, a case can be made for still using B3LYP, for the sake of “backwards

compatibility”, where the results are not simply unreasonably inaccurate. However

it seems likely that an M06 or some even newer functional will in the next few years

overcome inertia and largely replace B3LYP.

7.3 Applications of Density Functional Theory 467



Levine has compared various properties from DFT with those from molecular

mechanics, ab initio, and semiempirical methods [66]. Hehre [67] and Hehre and

Lou [68] have provided extensive, very useful compilations of ab initio, semiem-

pirical, DFT, and some molecular mechanics results. More recent surveys (2007),

oriented toward the quality of molecular properties from DFT, are those by Sousa

et al. (geometries, barrier heights, atomization energies, ionization energies, elec-

tron affinities, heats of formation, isomerization energies, weak interactions) [44],

Zhao and Truhlar (geometries, barrier heights, frequencies, various thermochemi-

cal parameters – atomization energy etc., ionization energies, electron affinities,

UV, transition metal reactions, weak interactions) [45], and Riley et al. (geometries,

barrier heights frequencies, ionization energies, electron affinities, heats of forma-

tion, conformational energies, hydrogen bonds; great emphasis on comparing Pople

versus Dunning basis sets) [46].

7.3.1 Geometries

The Figures and Tables in this section for geometries and reactions by DFT are

analogous to those that were shown for ab initio and semiempirical methods in

chapters 5 and 6, thus:

Geometries of 20 molecules, Figs. 5.23, 6.2, 7.1

Analysis of errors for 20 molecules, Tables 5.7, 6.1, 7.1

Dihedrals of 8 molecules, and errors, Tables 5.8, 6.2, 7.2

Geometries and errors for 4 reactions: Figures 5.21, 6.3, 7.2 and 7.3

For Fig. 7.1 and Tables 7.1 and 7.2, for comparison with the presentations in

Chapters 5 and 6, values from MP2/6-31G* calculations (the standard post-Hartree

Fock ab initio method; Section 5.4.2) and from experiment (Fig. 7.1 [69], Fig. 7.2

[70]) were clearly necessary. This choice of the relatively small 6-31G* basis is

discussed below. The choice of DFT functionals required some consideration.

B3LYP is retained from the first edition of this book because it continues to be

very widely used. The pBP/DN* functional/basis set (described in [68]) that was a

feature of Spartan [71] and was used in the first edition of this book showed certain

problems and is no longer available, and its replacement required some delibera-

tion. The remaining choice was now narrowed to three functionals:

1. The general-purpose M06 functional. This is a hybrid meta-GGA functional

(Section 7.2.3.4f) parameterized with nonmetals and metals (for a review and for

details see respectively [45] and [65]). It lies on rung six of our ladder (rung five

if LDA and LSDA are collapsed into rung one as indicated in Table 2 of [44] and

as implied in [65]). As stated in Section 7.3, this belongs to a recently developed,

very promising class and M06 may eventually replace B3LYP. Persuaded by the

case made by Perdew et al. for nonempirical functionals, these two recom-

mended [47] ones were also considered:
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Fig. 7.1 A comparison of some B3LYP, M06, TPSS, MP2(fc), and experimental geometries. The

basis set is 6-31G*. Calculations are by the author and experimental geometries are from [69].

Note that all CH bonds are ca. 1 Å, and all other bonds range from ca. 1.2 to 1.8 Å, and all bond

angles (except for linear molecules) are ca. 90� to 120�
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Table 7.1 Errors in calculated bond lengths (Å) and angles (degrees) for the 20 molecules of

Fig. 7.1. The errors are calculated value � experimental value. The basis set is 6-31G*. L is bond

length and A bond angle. For example, for propane one bond length and one angle were examined,

and for B3LYP L was 0.007 Å longer than the experimental 1.526 Å. The errors are evaluated in

the text

Molecule B3LYP M06 TPSS MP2 Exp

H2O 0.011 0.006 0.018 0.011 L 0.958

1 L, 1 A �0.8 �0.4 �1.5 �0.6 A 104.5

HCN 0.006 0.007 0.008 0.004 L 1.065

2 L, 0 A 0.004 0.004 0.013 0.024 L 1.153

Propane 0.007 �0.006 0.011 0.000 L 1.526

1 L, 1 A 0.4 �0.4 0.3 �0.1 A 112.4

HOOH 0.008 0.006 0.017 0.011 L 0.965

2 L, 1 A 0.004 –0.024 0.027 0.017 L 1.452

�0.4 0.5 �1.3 �1.4 A 100.0

CH3NH2 0.005 0.007 0.009 0.001 L 1.099

4 L, 1 A �0.003 �0.002 �0.001 �0.007 L 1.099

0.009 0.007 0.015 0.008 L 1.010

�0.006 �0.017 0.002 �0.006 L 1.471

1.8 2.0 2.0 1.5 A 113.9

Propene 0.015 0.012 0.022 0.020 L 1.318

2 L, 1 A 0.002 �0.009 0.005 �0.002 L 1.501

0.8 0.5 0.8 0.2 A 124.3

CH3OH �0.001 0.001 0.011 �0.004 L 1.094

4 L, 2 A 0.007 0.009 0.010 0.003 L 1.094

0.006 0.002 0.013 0.007 L 0.963

�0.002 �0.017 0.008 0.004 L 1.421

�0.5 �0.2 �1.1 �0.9 A 107.2

�0.3 0.0 �1.1 �0.6 A 108.0

Propanone �0.006 �0.011 0.003 0.006 L 1.222

2 L, 1 A 0.013 0.002 0.019 0.006 L 1.507

�0.5 �1.5 �0.6 �0.8 A 117.2

Propyne 0.001 0.000 0.008 0.014 L 1.206

2 L, 0 A 0.001 �0.006 0.005 0.004 L 1.459

HCHO �0.006 �0.002 �0.003 �0.012 L 1.116

2 L, 1 A �0.001 �0.008 0.008 0.013 L 1.208

�1.2 �1.8 �1.1 �0.9 A 116.5

Ethane 0.000 0.001 0.003 �0.003 L 1.096

2 L, 1 A 0.000 �0.012 0.004 �0.005 L 1.531

�0.3 �0.4 �0.1 �0.1 A 107.5

CH3Cl �0.006 �0.004 �0.003 �0.007 L 1.096

2 L, 1 A 0.022 0.009 0.027 �0.002 L 1.781

0.4 0.2 0.7 0.0 A 110.0

HOCl 0.001 �0.003 0.009 0.004 L 0.975

2 L, 1 A 0.038 0.010 0.053 0.027 L 1.690

�0.1 0.7 �1.0 0.1 A 102.5

H2S 0.013 0.012 0.014 0.004 L 1.336

1 L, 1 A 0.8 0.5 0.5 1.2 A 92.1

CH3F �0.004 �0.002 �0.001 �0.008 L 1.100

2 L, 1 A 0.001 �0.017 0.010 0.009 L 1.383

(continued)
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Table 7.1 (continued)

Molecule B3LYP M06 TPSS MP2 Exp

�1.2 �1.6 �1.1 �0.8 A 110.6

Ethene 0.003 0.004 0.005 0.000 L 1.085

2 L, 1 A �0.008 �0.012 �0.002 �0.002 L 1.339

�1.5 �1.7 �1.5 �1.2 A 117.8

CH3SH 0.002 0.003 0.004 0.000 L 1.091

4 L, 1 A 0.001 0.003 0.004 �0.001 L 1.091

0.014 0.012 0.015 0.005 L 1.336

0.017 0.004 0.020 �0.003 L 1.819

0.5 �0.1 0.2 0.3 A 96.5

HOF 0.011 0.009 0.019 0.013 L 0.966

2 L, 1 A �0.008 �0.032 0.011 0.003 L 1.442

1.0 1.6 0.3 0.4 A 96.8

Ethyne 0.006 0.008 0.008 0.005 L 1.061

2 L, 0 A 0.002 0.001 0.008 0.015 L 1.203

Me2SO 0.038 0.024 0.053 0.010 L 1.799

2 L, 2 A 0.026 0.013 0.036 0.027 L 1.485

�0.8 �1.8 �1.7 �0.8 A 96.6

0.9 0.1 1.2 0.7 A 106.7

Table 7.2 Calculated dihedral angles and errors (degrees)/errors) and experimental dihedral

angles, for eight molecules. The errors are calculated value � experimental value. The basis set

is 6-31G*. Calculations are by the author

Molecule B3LYP M06 TPSS MP2 Exp

HOOH 119.3/0.2 116.1/�3.0 119.6/0.5 121.2/2.1 119.1a

FOOF 87.2/�0.3 86.0/�1.5 87.8/0.3 85.8/�1.7 87.5b

FCH2CH2F 68.3/�4.7

(FCCF) 69.8/�3.2 69.6/�3.4 69.0/�4.0 73b

FCH2CH2OH

(FCCO) 63.3/�0.7 61.7/�2.3 62.4/�1.6 60.1/�3.9 64.0c

(HOCC) 62.7/8.1 60.5/5.9 63.0/8.4 54.1/�0.5 54.6c

ClCH2CH2OH

(ClCCO) 61.2/�2.0 60.2/�3.0 60.2/�3.0 65.0/1.8 63.2b

(HOCC) 60.0/1.6 57.4/�1.0 60.5/2.1 64.3/5.9 58.4b

ClCH2CH2F

(ClCCF) 66.7/�1.3 65.7/�2.3 66.2/�1.8 65.9/�2.1 68b

HSSH 90.7/0.1 90.7/0.1 90.8/0.2 90.4/�0.2 90.6a

FSSF 89.1/1.2 89.7/1.8 89.3/1.4 88.9/1.0 87.9b

a[69], pp. 151, 152.
bM. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwenderman, A. Ramsay, F. J. Lovas,

W. H. Lafferty, A. G. Makai (1979) Molecular Structures of Gas-Phase Polyatomic Molecules

determined by Spectroscopic Methods. J. Phys. Chem. Ref. Data, 8, 619–721.
cJ. Huang and K. Hedberg (1989) J. Am. Chem. Soc., 111, 6909.
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2. PBE [72] (a nonempirical GGA functional; Section 7.2.3.4c).

3. TPSS [73] ( a nonempirical meta-GGA functional; Section 7.2.3.4d).

In our classification (7.2.3.4a–g) PBE is on rung three and TPSS is on rung four

(these are rungs two and three if LDA and LSDA are collapsed into rung one).
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Fig. 7.2 Calculated geometries (Å and degrees) and energies (kJ mol�1) for four reactions (most

H’s are omitted, for clarity). The purpose of the Figure is to compare among themselves DFT

(B3LYP, M06, TPSS) and MP2 geometries and relative energies; the basis set is 6-31G*. Energies

are 0 K energy (i.e. 0 K enthalpy) differences) with ZPE correction; only for MP2 was the ZPE

itself corrected (multiplied by 0.9670 [77]), because for DFT methods the corrections appear to lie

between 0.96 and unity [77]. Where possible calculated barriers and reaction energies are

compared with experiment [70]. Calculations are by the author
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TPSS was given precedence over PBE because it lies on a higher rung, which does

not mean that for every task it will be more accurate; however “TPSS usually

provides better accuracy than PBE for a very modest increase of computational

cost. . ..TPSS is close to being the best nonempirical functional so far. . .”.3 A choice

could not be made between M06 and TPSS and for geometries (and energies)

calculated here both were used, because M06, as suggested above, may become

the general purpose functional of choice, while TPSS is nonempirical, giving it an

esthetic virtue as well as (one hopes) shielding it against “catastrophic failure” (see

the end of Section 7.2.3.4g). Thus in Fig. 7.1 and Table 7.1 we compare geometries

from B3LYP, M06, TPSS, and MP2(fc)/6-31G* (the highest-level ab initio method

in routine use) with experiment.

Table 7.1 presents for examination 43 bond lengths and 19 bond angles, taken

from 20 molecules. For each of these parameters the deviation from experiment

(calculated – experimental value) is shown for B3LYP, M06, TPSS, and MP2 (with

the 6-31G* basis in each case). The mean absolute deviations from experiment

(arithmetic mean of the unsigned errors), MAD, are:

B3LYP M06 TPSS MP2

Bond lengths 0.008 0.008 0.013 0.008

Bond angles 0.75 0.8 0.95 0.7

For bond lengths the biggest error was 0.053 Å (TPSS, for the C–S bond of

Me2SO). For bond angles, the biggest error was 2� (M06, for an HCN angle

of CH3NH2). For the bonds, the number of parameters for which the direction of

deviation was zero (bond or angle the same as experiment), positive (bond bigger

than experiment), and negative are:

B3LYP M06 TPSS MP2

Zero deviation 2 1 0 3

Positive 30 25 38 27

Negative 11 17 5 13

For bond angles the corresponding deviations are:

B3LYP M06 TPSS MP2

Zero deviation 0 1 0 1

Positive 11 10 11 11

Negative 8 8 8 7

Qualitative conclusions from all this are: reasonably good bond lengths (to

within ca. 0.01 Å) are given with the 6-31G* basis by B3LYP, M06, and MP2;

TPSS values (0.013 MAD error) are satisfactory for most purposes. All four

3Personal communication from Professor J.P. Perdew, 2009 November 7.
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methods give good bond angles (to within ca. 1�; ca. 2� for some CH3NH2 angles).

For bond lengths positive deviations are very roughly twice as numerous as

negative, except for TPSS where they are about eight times as frequent, and for

bond angles (where errors are usually trivial) there are slightly more positive than

negative deviations.

Table 7.2 presents for examination ten dihedral angles from eight molecules. For

each of these the dihedral was calculated by B3LYP, M06, TPSS, and MP2 (with

the 6-31G* basis in each case). The mean absolute deviations (arithmetic mean of

the unsigned errors), MAD, are:

B3LYP M06 TPSS MP2

1.9 2.0 2.3 2.3

Because of the periodic (sinusoidal) nature of the energy-dihedral angle func-

tion, the direction of deviation from experiment, the number of positive versus

negative deviations, is not meaningful, provided these are small (under 10�), as they
are here. The calculated dihedral angles are all within ca. 3�, except FCH2CH2OH

(HOCC by B3LYP. M06, TPSS) and ClCH2CH2OH (HOCC by MP2), where they

are ca. 8–6�. In view of the soft nature of the energy-dihedral function (energies do

not rise or fall steeply with small changes in dihedrals, unlike changes in bond

lengths or angles), and of possible errors in the experimental values, this is not

serious. All four methods seem to be satisfactory for dihedrals.

B3LYP, M06, TPSS and MP2(fc) geometries (and relative energies) are com-

pared, using the 6-31G* basis, for the species shown in four reaction profiles in

Fig. 7.2. These correspond to the ab initio comparisons of Fig. 5.21 and the

semiempirical comparisons of Fig. 6.3. Since experimental geometries are not

available for any of the transition states and also not for cyclopropylidene, we

content ourselves with some simple comparisons among the calculated geometries.

For the reactants and products the DFT bond length deviations from the MP2

geometries, which latter we tacitly take to be reasonably good (Section 5.51), are

not more than 0.016 Å (for the CO bond of ethenol), and for the transition states not

more than 0.073 (for the partial NC bond of the CH3NC transition state). The DFT

angles do not deviate by more than 3.5� (for the CH3NC transition state) from the

MP2 values. The consistency of the three DFT methods and their good agreement

with MP2 suggest that these DFT methods are quite comparable to MP2/6-31G* in

calculating transition state geometries.

Geometry errors for 108 molecules were reported by Scheiner et al. [74], compar-

ing several ab initio and DFT methods. They found that Becke’s original three-

parameter function (which they denote ACM, for adiabatic connection method ;

B3LYP was developed as a modification of this [58]), with a 6-31G*-type and with

the 6-31G** basis sets, gave average bond length errors of about 0.01 Å and bond

angle errors of about 1.0�. They concluded that of themethods they examined ACM is

the best choice for both geometries and reaction energies. St-Amant et al. [52] also

compared ab initio andDFTmethods and found average dihedral angle errors of ca. 3�

for 11 molecules using a perturbative gradient-corrected DFT method with an
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approximately 6-311G**-type basis set. These workers found average bond length

errors of, e.g., 0.01 Å for C–H and 0.009 Å for C–C single bonds, and average bond

angle errors of 0.5�. El-Azhary reported B3LYPwith the 6-31G** and cc-pVDZ basis

sets to give slightly better geometries thanMP2, butMP2 avoided the occasional large

errors given by B3LYP [75]. The effect of using different basis sets was minor. In a

comparison of Hartree–Fock, MP2 and DFT (five functionals), Bauschlicher found

B3LYP to be the best method overall [76]. Hehre has compared bond lengths

calculated by the DFT non-gradient-corrected SVWN method, B3LYP, and MP2,

using the 6-31G (no polarization functions) and 6-31G* basis sets [67]. His work

confirms the necessity of using polarization functions with the correlated (DFT and

MP2) methods to obtain reasonable results, and also shows that for equilibrium

structures (i.e. structures that are not transition states) there is little advantage to

correlated over Hartree–Fock methods as far as geometry is concerned, a conclusion

presented in Section 5.5.1 with regard to correlated ab initio methods. Hehre and Lou

[68] carried out extensive comparisons of HF, MP2 and DFT (SVWN, pBP, B3LYP)

methods with 6-31G* and larger basis sets, and the numerical DN* and DN** bases.

For a set of 16 hydrocarbons, MP2/6-311+G(2d,p), B3LYP/6-311+G(2d,p), pBP/

DN** and pBP/DN* calculations gave errors of 0.005, 0.006, 0.010 and 0.010 Å,

respectively. HF/6-311+G(2d,p) and SVWN calculations also gave errors of 0.010 Å.

For 14 C–N, C–O and C¼O bond lengths B3LYP and pBP (errors of 0.007 and

0.008 Å) were distinctly better than HF and SVWN (errors of 0.022 and 0.014 Å,

respectively).

The overall indication from the literature and the results in Fig. 7.1 and Table 7.1

(errors are evaluated above) is that the somewhat old (1994 [58]) B3LYP functional

gives good geometries. Of the newer functionals tested here, M06 (2007, 2008 [45,

65]) and TPSS (2003 [73]), the indication from our (admittedly limited) results is

that M06 is about as good as B3LYP and that TPSS is somewhat inferior (but note

that lacking empirical parameters TPSS may be less prone to unexpected (or

catastrophic [62]; Section 7.2.3.4g) failure. Recently published (2007) extensive

general (not just for geometry as the title of this section implies) evaluations of

functionals are those by Sousa et al. [44], Zhao and Truhlar [45], and Riley et al.

[46]. Synopses of these papers are given in Section 7.2.3.4.

Besides the functional, the choice of basis set needs to be addressed. Larger basis

sets may tend to increase accuracy, but the increase in time may not make this

worthwhile. DFT calculations have been said to become “saturated” more quickly

by using bigger basis sets than are ab initio calculations: Merrill et al. noted that

“Once the double split-valence level is reached, further improvement in basis set

quality offers little in the way of structural or energetic improvement” [38].

Stephens et al. report that “Our results also show that B3LYP calculations converge

rapidly with increasing basis set size and that the cost-to-benefit ratio is optimal at

the 6-31G* basis set level. 6-31G* will be the basis set of choice in B3LYP

calculations on much larger molecules [than C4H6O2]” [58]. Figure 7.3 shows the

effect on geometry and relative energies of B3LYP with the modest 6-31G*, the

fairly big 6-311+G**, and the big 6-311++G(2df, 2p) bases. Results given here

support the basis set saturation assertion for geometries, but cast doubt on the ease
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of saturation where relative energies are concerned; energies are discussed in the

next section. The insensitivity of geometries to basis sets beyond 6-31G* is also

shown in Figs. 1 and 3 in reference [46], where with a wide selection of functionals

very similar errors resulted with the 6-31G*, 6-31+G*, and 6-31++G* basis sets.
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Fig. 7.3 Comparison of geometries (Å and degrees) and relative energies (kJ mol�1) from the

B3LYP functional using three basis sets (energies are also compared with those from MP2(fc)/6-

31G*): 6-31G* (53 basis functions for C2H4O, 32 for HCN, 51 for C2H3N, 53 for C3H4). 6-311

+G** (90 basis functions for C2H4O, 50 for HCN, 84 for C2H3N, 90 for C3H4). 6-311++G(2df, 2p)

(142 basis functions for C2H4O, 78 for HCN, 132 for C2H3N, 142 for C3H4). Energies are 0 K

energy (i.e. 0 K enthalpy differences) with ZPE correction; only for MP2 was the ZPE itself

corrected (multiplied by 0.9670 [77]), because for DFT methods the corrections appear to lie

between 0.96 and unity [77]. Where possible calculated barriers and reaction energies are

compared with experiment [70]. Calculations are by the author
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7.3.2 Energies

7.3.2.1 Energies: Preliminaries

Usually, we seek from a DFT calculation, as from an ab initio or semiempirical one,

geometries (preceding section) and energies. Like an ab initio energy, a DFT energy

is relative to the energy of the nuclei and electrons infinitely separated and at rest,

i.e. it is the negative of the energy needed to dissociate the molecule into its nuclei

and electrons. AM1 and PM3 semiempirical energies (Section 6.3.2) are heats of

formation, and by parameterization zero-point energies are included. In contrast, an

ab initio or DFT molecular energy, the energy printed out at the end of any

calculation, is the energy of the molecule sitting motionless at a stationary point

(Section 2.2) on the potential energy surface; it is the purely electronic energy plus

the internuclear repulsion. In accurate work on a reaction profile (reactant, transi-

tion state, product) this “raw” energy should be corrected by adding the zero-point

vibrational energy, to obtain the total internal energy at 0 K. Analogously to the HF

equation in Section 5.2.3.6.4, Eq. (5.94) we have

Etotal
0K ¼ Etotal

DFT þ ZPE *(7.29)

(The Gaussian programs actually denote the DFT energy called here Etotal
DFT total

as HF, e.g. (in hartrees or atomic units) “HF ¼ �308.86101”). The main advantage

of DFT over Hartree–Fock calculations is in being able to provide, in a comparable

time, superior energy-difference results: reaction energies and activation energies.

7.3.2.2 Energies: Calculating Quantities Relevant to Thermodynamics

and Kinetics

7.3.2.2a Thermodynamics

Let’s first see how DFT handles a case where Hartree–Fock with its cavalier

treatment of electron correlation fails badly: homolytic breaking of a covalent

bond (Section 5.4.1). Consider the reaction

H3C� CH3 þ Ediss ! H3C � � CH3

In principle the dissociation energy can be found simply as the energy of

two methyl radicals minus the energy of ethane. Table 7.3 (cf. Table 5.5) shows

the results of HF, MP2, and DFT (B3LYP, M06, and TPSS) calculations, with

the 6-31G* basis. The energies shown for each species are 0 K energies

(enthalpies) and 298 K enthalpies. The HF and MP2 0 K values are corrected

for ZPE with the ZPE itself corrected, by 0.9135(HF) and 0.9670 (MP2(fc)), as

prescribed by Scott and Radom [77]. For the DFT, 0 K energies the ZPEs were

not corrected, as the factor appears to lie between 0.96 and unity [77]. The 298
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K enthalpies were calculated by Gaussian 03 [78] (except for M06, by Spartan

‘08 [71]) using a statistical mechanics algorithm and are “appropriate for

calculating enthalpies of reaction” [79]. Product enthalpies minus reactant

enthalpies give the calculated bond enthalpy; standard, tabulated bond enthalpies

are for 298 K. The experimental bond energy has been reported to be 90.1	 0.1 kcal

mol�1, i.e. 377 	 0.4 kJ mol�1 [80], and the CBS-APNO value (Section 5.5.2.2b),

with a mean absolute deviation of 2.2 kJ mol�1, is 379.3 kJ mol�1. In Table 7.3

we see that the Hartree–Fock bond energy is about 122 kJ mol�1 too low, the M06

and TPSS values are not bad (8 and 11 kJ mol�1 too low), and the MP2 and B3LYP

enthalpies are good, within 4 and 2 kJ mol�1 of what we hold to be the correct bond

energy. Thus all of these electron correlation methods handle homolytic bond

breaking at least tolerably well.

The reaction profiles in Fig. 7.3, mentioned above in connection with geometry,

also explore the effect of basis set size on relative energies (barriers and reaction

energies) for the B3LYP functional. As stated in Section 7.3.1, these geometries

seem to be reasonably insensitive to basis set, but there are some significant changes

in energies on going from the 6-31G* to the 6-311+G* or the 6-311++G(2df, 2p)

basis: the reaction energy for the ethenol isomerization rises from ca. �67 to ca.

�45 kJ mol�1 and for the HNC isomerization from ca. �69 to ca. �57 kJ mol�1.

The insensitivity of the activation energies can be rationalized with the Hammond

postulate [81], which implies that for an exothermic reaction the reactant resembles

its subsequent transition state; thus the effect of changing the basis set might be

much the same for both reactant and transition state. Why the CH3NC and cyclo-

propylidene reaction energies are unperturbed is unclear. The effect of basis set on

the energies of these reactions is discussed further in Section 7.3.2.2b, under

kinetics (where some reference is also made to reaction energies).

Table 7.4 compares with experiment [82] the effect of functionals and of basis

set size on the reaction enthalpies of the important H2/Cl2 and H2/O2 reactions.

Table 7.3 The C–C bond energy of ethane by HF, MP2(fc), and DFT (B3LYP, M06, and TPSS)

calculations, at 0 and 298 K. The basis set is 6-31G*. Standard, tabulated bond energies are for

dissociation at 298 K. Bond energy ¼ 2(CH3 radical enthalpy) – (CH3CH3 enthalpy). For the

radical the unrestricted method (UHF etc.) was used. For the 0 K dissociation enthalpy, the HF and

MP2 calculations use energies corrected for ZPE, with the ZPE itself corrected by a factor of

0.9135 (HF) or 0.9670 (MP2) [77]. The 0 K dissociation enthalpy for the DFT calculations is

uncorrected for ZPE, and the 298 K dissociation enthalpy is from standard statistical thermody-

namics methods [79]. The experimental C–C energy of ethane has been reported as 90.1	 0.1 kcal

mol�1, i.e. 377 	 0.4 kJ mol�1 [80]. Calculations are by the author

Method 0 K 298 K

HF 248 255

MP2(fc) 372 381

B3LYP 363 375

M06 380 369

TPSS 357 366

References to the methods: HF, Section 5.2.2; MP2, Section 5.4.2; B3LYP [57, 58]; M06 [45, 65];

TPSS [73].
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First we note that the high-accuracy (G3(MP2), CBS-QB3, and CBS-APNO;

Section 5.5.2.2b) values are close to the reported measured reaction enthalpies,

with two qualifications: the highly accurate CBS-APNO method (mean absolute

deviation from experiment, 2.2 kJ mol�1) [83] was not applicable to the H2 þ Cl2
reaction because of its inability to treat Cl, and this method indicates that the

reaction enthalpy of the 2H2 þ O2 reaction is closer to �477 kJ than to the

reported �484 kJ mol�1. We will judge the functional/basis set combinations by

comparison with values of �184 (H2 þ Cl2) and ca. �480 kJ mol�1 (2H2 þ O2).

In all cases the 6-311þþG(2df,2p) basis performs better, usually dramatically

so, than the 6-31G* Only M06 gives reasonably good results for both reactions

(�180 cf.�184 and�490 cf. ca.�480 kJmol�1), with the 6-311þþG(2df,2p) basis

set. Even with the bigger basis, TPSS performs poorly. These calculations show that

contrary to what might be inferred from [38, 58], the 6-31G* basis cannot be used for

general thermochemistry with any of these functionals. For certain classes of

reactions, however, 6-31G* may be acceptable, e.g. the Diels-Alder reaction [84],

and bond dissociation (Table 7.3). Only tests with model systems can show if a

particular basis can be expected to be satisfactory for the desired purpose.

There are many studies in the literature of the ability of DFT to handle molecular

thermodynamics (thermochemistry). Martell et al. tested six functionals on 44

atomization energies and six reactions and concluded that the best atomization

energies were obtained with hybrid functionals, but slightly better reaction enthal-

pies were obtained with non-hybrid ones [85]. St-Amant et al. found that gradient-

corrected functionals gave good geometries and energies for conformers; the

dihedrals were on average within 4� of experiment and the relative energies were

nearly as accurate as those from MP2 [52]. Scheiner et al. found that, as for

geometries, Becke’s original three-parameter function (also called ACM, adiabatic

Table 7.4 Reaction enthalpies (kJ mol�1), calculated with three functionals and two basis sets,

6-31G* and 6-311++G(2df, 2p), and with three high-accuracy methods (but CBS-APNO is unable

to handle Cl species). The calculated reaction enthalpies follow from the calculated 298 K product

enthalpies minus the reactant enthalpies

Method Reaction

H2 þ Cl2 ! 2 HCl H2 þ O2 ! 2 H2O

B3LYP

6-31G* �169 �344

6-311++G(2df, 2p) �182 �447

M06

6-31G* �171 �401

6-311++G(2df, 2p) �180 �490

TPSS

6-31G* �152.5 �295

6-311++G(2df, 2p) �162 �393

G3(MP2) �184 �479

CBS-QB3 �182 �474

CBS-APNO Unavailable �477

Experimenta �184 �484
aExperimental heats of formation of HCl and H2O: [82].
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connection method [57]) gave the best reaction energies [74]. Many energy differ-

ence comparisons have been published comparing B3LYP/6-31G* with HF, MP2

and experiment [67]. These comparisons involve homolytic dissociation, various

reactions, particularly hydrogenations, acid-base reactions, isomerizations, isodes-

mic reactions, and conformational energy differences. This wealth of data shows

that while gradient-corrected DFT and MP2 calculations are vastly superior for

homolytic dissociations, for “ordinary” reactions (involving only closed-shell spe-

cies), their advantage is much less marked; for example, HF/3-21G, HF/6-31G*,

SVWN/6-31G* (non-gradient-corrected DFT), all usually give energy differences

similar to those from B3LYP/6-31G* and in fair agreement with experiment.

Table 7.5 compares with experiment [86] errors for hydrogenations, isomerizations,

bond separation reactions (a kind of isodesmic reaction), and proton affinities; the

methods are HF, SVWN, MP2, and B3LYP, all using the 6-31G* basis. In two of

the four cases (hydrogenation and isomerization) the HF/6-31G* method gave the

best results; in one case MP2 was best and in one case B3LYP.

For the energy comparison of normal (not involving transition states) closed-

shell organic species correlated methods like MP2 and DFT seem to offer little or

no advantage, unless one needs accuracy within ca. 10–20 kJ mol�1 of experiment,

in which case high-accuracy methods should be used. The strength of gradient-

corrected DFT methods appears to lie largely in their ability to give homolytic

dissociation energies and activation energies with an accuracy comparable to that

fromMP2, but at a time cost comparable to that from HF calculations. Bauschlicher

et al. compared various methods and recommended B3LYP over HF and MP2, to a

large extent on the basis of the performance of B3LYP with regard to atomization

energies and transition metal compounds [76]. Wiberg and Ochterski compared HF,

MP2, MP3, MP4, B3LYP, CBS-4 and CBS-Q with experiment in calculating

energies of isodesmic reactions (hydrogenation and hydrogenolysis, hydrogen

transfer, isomerization, and carbocation reactions) and found that while MP4/6-

31G* and CBS-Q were the best, B3LYP/6-31G* was also generally satisfactory

[87]. Rousseau and Mathieu developed an economical way of calculating heats of

formation by performing pBP/DN* calculations on molecular mechanics geome-

tries; rms deviations from experiment were about 16 kJ mol�1 for a variety of

compounds [88]. The pBP/DN* method was removed from Spartan (Section 7.3.1);

it is said [68] to give results similar to those from BP86/6-311G*, which is available

Table 7.5 Energy errors for hydrogenation reactions, isomerizations, bond separation reactions,

and proton affinities, using four different methods; the basis set is 6-31G*. The errors, in kJ mol�1,

in each case the arithmetic mean of the absolute deviations from experiment of ten reactions, were

calculated from the data in Hehre [86]

Reaction Method

HF SVWN MP2 B3LYP

Hydrogenation 15 20 17 23

Isomerization 15 19 16 17

Bond separation 11 5 4 10

Proton affinity 14 18 11 7
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in several program suites. Ventura et al. found DFT to be better than CCSD(T)

(a high-level ab initio method, Section 5.4.3) for studying the thermochemistry of

compounds with the O–F bond [89].

Regarding the application of functionals to thermochemistry, more recent refer-

ences than those in the preceding paragraph (which run from 1993 to 2000) are

three thorough compilations [44–46] (all 2007). References [44, 45] give the

impression that for best results one should select a functional based on quite specific

requirements. Reference [46] indicates that of the functionals we have considered

(M06 and the related M05 were not examined there), with Pople basis sets TPSS

with 6-31G*, 6-31+G* or 6-31++G* gives among the smallest average heat of

formation (Figs. 10 and 11) errors: ca. 5 kcal mol�1, ca. 20 kJ mol�1, and these

values were similar with Dunning basis sets. This is surprising in view of the poor

performance of TPSS with the H2/Cl2 and H2/O2 reactions (Table 7.4). B3LYP

gave similar heat of formation errors (ca. 20 kJ mol�1) with 6-31G* but capri-

ciously ca. 60 kJ mol�1 with 6-31+G* or 6-31++G*, and with the biggest Dunning

basis its error was ca. 20 kJ mol�1. There is a lack of regularity in the thermochem-

ical results from DFT calculations, and a user would do well to first explore

results from model systems related to the particular project at hand. Reliably

accurate thermochemistry still requires some largely (these incorporate empirical

corrections and sometimes DFT optimizations) ab initio high-accuracy method

(Section 5.5.2.2b).

7.3.2.2b Kinetics

Consider the reaction profiles in Fig. 7.2. Analogously for geometries in Sec-

tion 7.3.1, for energies we first content ourselves with some simple comparisons,

because a reliable experimental barrier is available only for the CH3NC reaction

(the measured activation energy for HNC ! HCN may represent a wall-catalyzed

process), and experimental reaction free energies are available only for the

H2C¼CHOH and HNC reactions (but the HNC value of �42 kJ mol�1 versus

the value of�59 kJ mol�1 by the normally reliable G3(MP2) method casts doubt on

the accuracy of the former enthalpy); see [70]. However, for all these reactions the

qualitative situation is known: ethenol, HNC and CH3NC are much less stable than

their isomers CH3CHO, HCN, and CH3CN and the barriers inhibit the uncatalyzed

isomerization at room temperature (the threshold barrier for room temperature

stability is ca. 100 kJ mol�1); cyclopropylidene has never been observed and a

reasonable inference is that it isomerizes rapidly (perhaps even at 77 K) and

essentially completely to allene. The energies in Fig. 7.2 are simply 0 K energy

differences with ZPE correction – in Chapter 5, in connection with Fig. 5.21, we

saw that for these reactions the 0 and 298 K energies (activation energies, enthal-

pies, free energies) are very similar. Even with this modest (6-31G*; compare the

discussion in Section 7.3.1 for Fig. 7.3 and the effect of bigger basis sets on

geometry) basis set all the results are in qualitative agreement with experiment.
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In lieu in a full repertoire of experimental results, for a quantitative comparison of

the effect on these four reactions of varying basis set size with the B3LYP, M06 and

TPSS functionals, the CBS-QB3 barriers and reaction energies were calculated

(Table 7.6). Reservations have been expressed about the reliability of such methods

for barriers, because they are parameterized for thermodynamics, and specifically

onemight wonder about the effect of changes of the number of paired spins along the

reaction coordinate [90]. Nevertheless, despite a caveat [91] the CBS-QB3 method

has been explicitly recommended for barriers [92, 93]. We shall assume that as well

as the reaction energies, the CBS-QB3 barriers also are reliable for these four

reactions. Comparison of the values in Table 7.6 (CBS-QB3) and those in Table 7.7

(B3LYP, M06 and TPSS functionals and 6-31G*, 6-311þG** and 6-311þþG

(2df,2p) basis sets) reveals the effect on barriers and reaction energies of increasing

basis set size with the three functionals. Table 7.7 also extends the information in

Fig. 7.3 for relative energies, shown in the Figure only for B3LYP, to M06 and

TPSS, and may be also be compared with Table 5.11, which shows free energies of

activation for the H2C¼CHOH, CH3NC and cyclopropylidene reactions, using

MP2/6-31G*, B3LYP/6-31G*, G3(MP2), and CBS-QB3. The values in Tables 7.6

and 7.7 are 298 K relative free energies, while as discussed above those in Figs. 7.2

and 7.3 are the very similar (for these reactions) relative ZPE-corrected 0K energies.

Table 7.7 Barriers and reaction energies (relative energies for reactant, transition state, product)

calculated for the B3LYP, M06, and TPSS functionals using the 6-31G*, 6-311þG**, and

6-311þþG(2df,2p) basis sets (shown respectively from top to bottom line). The barrier is the

free energy of activation at 298 K and the reaction energy is the free energy of reaction at 298 K, in

kJ mol�1. Cf. Table 7.6 and Table 5.11

Functional Reaction (cf. Table 7.6)

H2C¼CHOH HNC CH3NC Cyclopropylidene

B3LYP 0, 224, �67.9 0, 123, �67.0 0, 161, �99.9 0, 23.6, �282

0, 231, �47.8 0, 123, �58.2 0, 158, �99.7 0, 17.8, �286

0, 232, �45.0 0, 124, �56.2 0, 160, �97.5 0, 16.4, �289

M06 0, 218, �69.5 0, 125, �58.5 0, 160, �97.1 0, 45.2, �246

0, 223, �52.5 0, 125, �53.8 0, 160, �97.7 0, 40.1, �251

0, 224, �50.0 0, 127, �50.7 0, 163, �93.3 0, 40.3, �253

TPSS 0, 205, �70.5 0, 119, �70.5 0, 151, �97.9 0, 19.7, �274

0, 211, �52.5 0, 118, �63.7 0, 147, �98.9 0, 15.5, �276

0, 212, �50.2 0, 118, �62.0 0, 149, �96.8 0, 13.7, �280

Table 7.6 Barriers and reaction energies calculated by CBS-QB3, for comparison with the DFT

and MP2 results in Figs. 7.2 and 7.3 and Table 7.7. The barrier is the free energy of activation at

298 K and the reaction energy is the free energy of reaction at 298 K, in kJ mol�1. Cf. Table 5.11

Reaction Barrier Reaction energy

CH2¼CHOH ! CH3CHO 240 �45.6

HNC ! HCN 125 �58.5

CH3NC ! CH3CN 161 �98.6

Cyclopropylidene ! allene 23.8 �279
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Table 7.7 suggests that for these calculations the 6-311+G** basis leads to essential

saturation, with reaction energies becoming almost constant. By comparison with

Table 7.6, TPSS seems to be inferior to B3LYP and M06 for barriers but about as

good for reaction energies; using the (recommended) bigger basis sets, M06 seems

to underestimate the H2C¼CHOH barrier and to overestimate the cyclopropylidene

barrier by about 20 kJ mol�1. All things considered for these reactions, B3LYP with

the 6-311þG** or (very similar results) 6-311þþG(2df,2p) basis set was best in

comparison with CBS-QB3. This shows that with the 6-311þG** basis these func-

tionals are saturated and give, at least for these simple isomerizations, barriers and

reaction energies comparable to those from the high-accuracy CBS-QB3method, and

probably in good agreement with experiment. Here are the times required for some

DFT and CBS-QB3 calculations (optimization þ frequencies), in each case starting

from an AM1 geometry; the jobs were run with Gaussian 03 [78] on a 2.66 GHZ

personal computer with 4 GB of RAM and the Vista operating system:

Ethenol (vinyl alcohol, H2C¼CHOH)

B3LYP/6-31G* 1.2 min, relative time 1

B3LYP/6-311+G** 1.7 min, relative time 1.4

B3LYP/6-311++G(2df, 2p) 3.9 min, relative time 3.3

CBS-QB3 3.0 min, relative time 2.5

For these small molecules CBS-QB3 is not disadvantaged with respect to time,

but for larger systems B3LYP with, say, 6-311þG**, could be the more practical

choice.

Another demonstration that the assertion [38, 58] that the 6-31G* basis is

generally adequate in DFT should be viewed with some skepticism was provided

by del Rio et al., who found for methyl rotation barriers, in several cases DFT

needed much bigger bases than MP2 or MP4 [94]. This emphasizes the importance

of reality checks: testing the kind of calculation at hand against model systems for

which experimental data are available.

Some references to the calculation of barriers with DFT are:

In a study of alkene epoxidation with peroxy acids, B3LYP/6-31G* gave an

activation energy similar to that calculated with MP4/6-31G*//MP2/6-31G* but

yielded kinetic isotope effects in much better agreement with experiment than did

the ab initio calculation [95]. Even better activation energies than from B3LYP

(which it is said tends to underestimate barriers [96, 97]) have been reported for the

BH&H-LYP functional [97–100]. In a study by Baker et al. [101] of 12 organic

reactions using seven methods (semiempirical, ab initio and DFT), B3PW91/6-

31G* was best (average and maximum errors 15.5 and 54 kJ mol�1) and B3LYP/6-

31G* second best (average and maximum errors 25 and 92 kJ mol�1). Jursic studied

28 reactions and recommended “B3LYP or B3PW91 with an appropriate basis set”,

but warned that highly exothermic reactions with a small barrier (ca. 10–20 kJ

mol�1) involving hydrogen radicals “are particularly difficult to reproduce” [102].

Barriers “above 10 kcal mol�1 (ca. 40 kJ mol�1) should be reliable. Lower activa-

tion energies should be underestimated by 3–4 kcal mol�1 (ca. 13–17 kJ mol�1)”
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[102]. As with thermodynamic energy differences, i.e. energy differences not involv-
ing a transition state, consistently obtaining with some confidence activation energies

accurate to 10–20 kJ mol�1 may require a high-accuracy multistep method like CBS-

QB3. For some barriers the problem seems to be with the functionals: Merrill et al.

found that for the fluoride ion-induced elimination of HF from CH3CH2F none of the

11 functionals tested (including B3LYP) was satisfactory, by comparison with high-

level ab initio calculations. Transition states were often looser and stabler than

predicted by ab initio, and in several cases a transition state could not even be

found. They concluded that hybrid functionals offer the most promise, and that

“the ability of density functional methods to predict the nature of TS’s demands a

great deal more attention than it has received to date” [38].

More recent references to the accuracy of DFT in calculating barriers are the

extensive 2007 compilations noted above for thermochemistry, namely [44–46]. Of

the functionals considered in reference [44] only B3LYP is among the few on which

we have focussed (B3LYP, M06, and TPSS), and it, scrutinized throughout the

review because of its popularity, was well down on the barrier accuracy list, with

typical errors of ca. 16 kJ mol�1; the star functionals in this regard were MPW1K

and BB1K with errors typically of ca. 5 kJ mol�1. Reference [45] documents a

litany of shortcomings of B3LYP and extols the virtues of the M06-class of

functionals. For barriers (kinetics) it recommends “M06-2X, BMK, and M05-2X

for main-group thermochemistry and kinetics”, and “M06-2X, M05-2X, and M06

for systems where main-group thermochemistry, kinetics, and noncovalent inter-

actions are all important”. M06, the general-purpose M06-class functional, appar-

ently has an error of about 0.63–2.2 kcal mol�1(2.6–9.2 kJ mol�1, depending on the

database used to test it. The rather extensive tests by Riley et al. ([46], summarized

in their Figs. 16–19) of functionals and their partner basis sets indicated, as far as

this wealth of data can be encapsulated into a few words, that the best functionals

for barriers were BBB1K, B1B95, and B1LYP (with B3LYP being only very

slightly less accurate than this latter), and with no clear advantage to either the

Pople or the Dunning basis sets. Typical barrier errors for these functionals were ca.

3–5 kcal mol�1 (13–21 kJ mol�1).

7.3.3 Frequencies and Vibrational Spectra

The general remarks and theory about frequencies that were given in Section 5.5.3

apply to DFT frequencies also. As with ab initio frequency calculations, but unlike

semiempirical, one reason for calculating DFT frequencies is to get zero-point

energies to correct the frozen-nuclei energies. The frequencies are also used to

characterize the stationary point as a minimum, transition state, etc., and to predict

the IR spectrum. As usual the wavenumbers (“frequencies”) are the mass-weighted

eigenvalues of the Hessian, and the intensities are calculated from changes in dipole

moment incurred by the vibrations.
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Here are some correction factors that have been calculated for various func-

tionals, as well as for some ab initio and semiempirical methods (slightly different

correction factors were recommended for the ZPE) [77]; except for HF/3-21G the

basis set for the ab initio and DFT methods is 6-31G*:

HF/3-21G HF/6-31G* MP2(FC) AM1 BLYP BP86 B3LYP B3PW91

0.909 0.895 0.943 0.953 0.995 0.991 0.961 0.957

The BLYP/6-31G* and BP/86 correction factors are very close to unity. For the

frequencies of polycyclic aromatic hydrocarbons calculated by the B3LYP/6-

31G* method, Bauschlicher multiplied frequencies below 1,300 cm�1 by 0.980

and frequencies above this by 0.967 [76]. In their paper introducing the modifica-

tion of Becke’s hybrid functional to give the B3LYP functional, Stephens et al.

studied the IR and CD spectra of 4-methyl-2-oxetanone and recommended the

B3LYP/6-31G* as an excellent and cost-effective way to calculate these spectra

[58]. With six different functionals, Brown et al. obtained an agreement with

experimental fundamentals of ca. 4–6%, except for BHLYP [103]. The 2007

review by Riley et al. [46] shows that a wide assortment of functionals/basis

sets gives errors of ca. 50–120 cm�1. For characterizing new molecules such

errors are probably not important, because each functional/basis (indeed, each

method) has a fairly constant multiplicative correction factor [77] which brings its

IR spectrum into reasonable positional agreement with experiment. More impor-

tant than accurate wavenumber matching is reasonable agreement of relative

intensities with reality. Intensities are calculated from the variation of dipole

moments with vibrational distortions (Chapter 5, discussion in connection with

Eq 5.204). If calculated dipole moments do not vary much from one method to

another and are similar to experimental values, as is suggested by Table 7.8,

Table 7.8 Some calculated dipole moments (Debyes) compared to experiment. For each method

is given the number of positive, negative, and formal (to one decimal place) zero deviations from

experiment, and the unsigned arithmetic mean of the absolute values of the deviations. The basis

set for the B3LYP, M06 and MP2 calculations is 6-31G*. Experimental values are taken from

[67, 69]; calculations are by the author

Computational method

B3LYP M06 AM1 MP2(fc) Exp

CH3NH2 1.47 1.47 1.31 1.57 1.3

H2O 2.1 2.15 2.1 2.24 1.9

HCN 2.91 2.98 2.9 3.26 3

CH3OH 1.69 1.72 1.68 1.95 1.7

Me2O 1.28 1.27 1.25 1.44 1.3

H2CO 2.19 2.25 2.23 2.84 2.3

CH3F 1.72 1.72 1.65 2.11 1.9

CH3Cl 2.09 2.05 1.91 2.21 1.9

Me2SO 3.93 3.89 3.98 4.63 4

CH3CCH 0.69 0.69 0.66 0.66 0.8

Deviation 3þ, 5–, two 0 3þ, 4–, three 0 2þ, 4–, four 0 9þ, 1–, none 0

mean 0.11 mean 0.11 mean 0.22 mean 0.31
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calculated relative intensities may be expected to be similar too. This is

supported by Figs. 7.4 through 7.7. Let’s examine the IR spectra of acetone,

benzene, dichloromethane, and methanol, the same four compounds used in

Chapters 3, 5 and 6 (Figs. 3.14–3.17, 5.33–5.36 and 6.5–6.8) to illustrate spectra

calculated by molecular mechanics, ab initio, and semiempirical methods. The

DFT spectra in Figs. 7.4 through 7.7 are compared with experiment (gas-phase

spectra taken by the author) and, for commonality with Chapters 3, 5 and 6, MP2

(fc)/6-31G*. B3LYP/6-31G* was chosen because, as was justified in retaining it

for geometries (Section 7.3.1), it is still the most popular functional. We see that

here B3LYP/6-31G* simulates the experimental IRs reasonably well, and is in

this regard very similar to MP2(fc)/6-31G*.
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7.3.4 Properties Arising from Electron Distribution – Dipole
Moments, Charges, Bond Orders, Atoms-in-Molecules

The theory behind calculating dipole moments, charges, and bond orders, and using

atoms-in-molecules analyses, was outlined in Section 5.5.4; here the results of

applying DFT calculations to these will be presented.

7.3.4.1 Dipole Moments

Hehre [67] and Hehre and Lou [68] have provided quite extensive compilations of

calculated dipole moments. These confirm that Hartree–Fock dipole moments tend
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to be bigger than experimental, and electron correlation, through DFT or MP2,

tends to lower the dipole moment, bringing it closer to the experimental value (e.g.

for thiophene, from 0.80 to 0.51 D for B3LYP; the MP2 value is 0.37 D and the

experimental dipole moment is 0.55 D [68]).

Table 7.8 compares with experiment dipole moments calculated by B3LYP/6-

31G*, M06/6-31G*, AM1 (as a check on this fast method), and MP2(fc)/6-31G*,

for ten molecules. The two DFT methods give the same mean unsigned error, 0.11

D, three times smaller than the error of 0.31 D from the slowest method, MP2 (at

least for this small selection of molecules), and the very fast AM1 moments lie in-

between, 0.22 D. None of these methods consistently gives values accurate to

within 0.1 D. Very accurate dipole moments (mean absolute deviation 0.06–0.07

D) can be obtained with gradient-corrected DFT and very large basis sets [74].
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Fig. 7.6 Experimental (gas phase), DFT (B3LYP/6-31G*) and ab initio (MP2(fc)/6-31G*)

calculated IR spectra of dichloromethane
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7.3.4.2 Charges and Bond Orders

The theory behind these was given in Section 5.5.4. Although it is sometimes

said that charges on atoms cannot be measured, i.e. are not observables, carefully

defined atom charges can apparently be measured [104]. However, such experi-

mental charges are not readily available, and there is no agreed-on standard for

judging the “correctness” of calculated charges (and bond orders). In practice,

electrostatic potential charges and L€owdin bond orders are often preferred to

Mulliken charges and bond orders. The effect of various computational levels on

atom charges has been examined [105].

Figure 7.8 shows charges and bond orders calculated for an enolate and a

protonated enone system (the same as in Fig. 6.9), using B3LYP/6-31G* and HF/

3-21G. The results are qualitatively similar regardless of whether one uses B3LYP

or HF, or Mulliken versus electrostatic potential/L€owdin. This is in contrast to the
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results in Fig. 6.9, where there were some large differences between the semiem-

pirical and HF/3-21G values, and even between AM1 and PM3. For example, for

the protonated species using the Mulliken method, AM1 and PM3 gave the oxygen

a small negative charge, ca.�0.1, but the HF/3-21G method gave it a large negative

charge, �0.63; even stranger, the terminal carbon had charges of 0.09, 0.23, and

�0.25 by the AM1, PM3, and HF methods. In Fig. 7.8 the biggest differences

among corresponding parameters is for the electrostatic potential charges in the

protonated species, where the charges on the oxygen (�0.35 and �0.63) and on the

carbonyl carbon (0.41 and 0.76) differ by a factor of about two. With both B3LYP

and HF the terminal carbon of the enolate is counterintuitively assigned a bigger

negative electrostatic potential charge than the oxygen, as was the case for AM1

and DFT. The calculated negative charge on the formally positive oxygen of the

protonated molecule was commented on in Section 6.3.4. As with the semiempiri-

cal values, bond orders are less variable here than are the charges, but even for this

..
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Fig. 7.8 Atom charges and bond orders calculated using B3LYP/6-31G* and HF/3-21G methods.

Note that charges and bond orders involving hydrogens have been omitted
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parameter there is one qualitative discrepancy: for the cation C/OH bond the

Mulliken HF bond order is essentially single (1.18), while for the L€owdin B3LYP

calculation the bond is essentially double (bond order 1.70). These results remind us

that charges and bond orders are useful mainly for revealing trends, when a series of
molecules, or stages along a reaction coordinate [106] are studied, all with the same

methods (e.g. B3LYP/6-31G* and L€owdin bond orders).

7.3.4.3 Atoms-in-Molecules

The atoms-in-molecules (AIM) analysis of electron density, using ab initio calcula-

tions, was considered in Section 5.5.4. A comparison of AIM analysis by DFT with

that by ab initio calculations by Boyd et al. showed that results from DFT and ab

initio methods were similar, but gradient-corrected methods were somewhat better

than the SVWN method, using QCISD ab initio calculations as a standard. DFT

shifts the CN, CO, and CF bond critical points of HCN, CO, and CH3F toward the

carbon and increases the electron density in the bonding regions, compared to

QCISD calculations [107].

7.3.5 Miscellaneous Properties – UV and NMR Spectra,
Ionization Energies and Electron Affinities,
Electronegativity, Hardness, Softness and the Fukui
Function

7.3.5.1 UV Spectra

In wavefunction theory, i.e. conventional quantum mechanics, UV spectra (elec-

tronic spectra) result from promotion of an electron from a molecular orbital to a

higher-energy molecular orbital by absorption of energy from a photon: the mole-

cule goes from the electronic ground state to an excited state. Since current DFT

is said to be essentially a ground-state theory (e.g. [13–16]), one might suppose

that it could not be used to calculate UV spectra. However, there is an alternative

approach to calculating the absorption of energy from light. One can use the time-

dependent Schr€odinger equation to calculate the effect on a molecule of a time-

dependent electric field, i.e. the electric component of a light wave, which is an

oscillating electromagnetic field, and can set the electron cloud of a molecule

oscillating in synch [108]. This is a semiclassical treatment in that it uses the

Schr€odinger equation but avoids equating the absorbed energy to hn, the energy

of a photon. The calculation of UV spectra by DFT is based on the time-dependent

Kohn–Sham equations, derived from the time-dependent Schr€odinger equation.

The implementation of time-dependent DFT (TDDFT, occasionally called time-

dependent density functional response theory, TD-DFRT) in Gaussian [78] has
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been described by Stratman et al. [109]. Wiberg et al. used this implementation to

study the effect of five functionals and five basis sets on the transition energies (the

UV absorption wavelengths) of formaldehyde, acetaldehyde, and acetone [110].

Satisfactory results were obtained, and the energies were not strongly dependent on

the functional, but B3P86 seemed to be the best and B3LYP the worst. The 6-311+

+G** basis was recommended. Although these workers used MP2/6-311+G**

geometries, the results in Table 7.9 indicate that AM1 geometries, which can be

calculated perhaps a thousand times faster, give transition energies that are nearly

as accurate (mean absolute errors of 0.12 and 0.18 eV, respectively). Table 7.10

compares with experiment [111] the UV spectrum of methylenecyclopropene,

calculated by ab initio, semiempirical, and DFT methods. The best of the three is

the TDDFT calculation, which is the only one that reproduces the 308 nm band.

Jacquemin et al. obtained very accurate UV spectra of indigo dyes by taking solvent

into account with a polarizable continuum (in contrast to explicit solvent mole-

cules) model and employing TDDFT at the PBE0/6-311þG(2d,p) level [112]. Zhao

and Truhlar have presented their M06-HF functional as being particularly good for

electronic transitions of the Rydberg and charge-transfer type [113].

The HOMO-LUMO gap calculated with hybrid gradient-corrected functionals is

approximately equal to the p!p* UV transition of unsaturated molecules, and this

Table 7.9 UV spectra (as transition energies in eV) of acetone, acetaldehyde, and

formaldehyde, calculated by time-dependent DFT, using Gaussian 98 [78]. The results

of using MP2/6-311þG** [110] and (calculations by the author) AM1 geometries are

compared; both sets of calculations are single-point B3P86/6-311þþG**. For each

molecule only 6 transitions, all singlets, are shown. The number of positive and negative

deviations from experiment and the mean absolute errors are given

MP2 geometry AM1 geometry Experiment

Acetone 4.41 4.26 4.43

6.28 6.19 6.36

7.26 7.17 7.41

7.43 7.4 7.36

7.67 7.59 7.49

7.89 7.82 8.09

Acetaldehyde 4.29 4.14 4.28

6.76 6.69 6.82

7.29 7.26 7.46

7.7 7.68

7.89 7.98 7.75

8.35 8.16 8.43

Formaldehyde 3.95 3.83 4.1

6.98 6.97 7.13

7.93 7.95 8.14

8.09 8.07 7.98

8.81 8.84

9.23 8.87

5þ, 10-mean of 15: 0.12 4þ, 11-mean of 15: 0.18
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could be of some use in predicting UV spectra (see ionization energies and electron
affinities, below).

7.3.5.2 NMR Spectra

As with ab initio methods (Section 5.5.5), NMR shielding constants can be cal-

culated from the variation of the energy with a magnetic field and the nuclear

magnetic moment. For the commonest NMR spectra, those of 1H and 13C, the

chemical shift of a nucleus is its shielding value relative to the shielding of the TMS

(tetramethylsilane) carbon or hydrogen nucleus; other magnetic nuclei have various

reference molecules. The main general methodology of NMR calculations is GIAO

(gauge-independent atomic orbitals); a much less widely-used alternative is CSGT

(continuous-set gauge transformations); both can give good results [114].

The most accurate results have been said to be obtained with MP2 calculations

[115], but empirical corrections improved the accuracy of DFT [116]. More recent

studies are those by Sefzik et al. [117], Wu et al. [118], Zhao and Truhlar [119], and

Perez et al. [120]; in these four studies only GIAO was used, except for [119],

which used both GIAO and CSGT. For 13C chemical shifts DFT was found to often,

but not always, beat ab initio Hartree–Fock, and the B3LYP and mpw1pw91

functionals tended to do well [117]. A survey of the nuclei 13C, 15N, 17O, and 19F

in 23 molecules using 21 functionals showed OPBE and OPW91 to be significantly

better than B3LYP and PBE1PBE and in many cases better than wavefunction

calculations; OPTX was said to perform “remarkably well” [118]. Surprisingly,

B3LYP has been reported to be less accurate than GGA or even local (LSDA)

functionals (see Sections 7.2.3.4a–g), and the newer M06-L, itself a local functional

(Section 7.3), was said to be the best for NMR chemical shifts [119]. A detailed

study of the effect of solvent also compared DFT calculations with database

programs for calculating NMR spectra, keeping an eye on balancing time versus

accuracy [120]. In a detailed study of the role of calculated geometries and 1H NMR

spectra in the elucidation of the structure of [12]annulene, Castro et al. reported

Table 7.10 Calculated (ab initio, semiempirical, DFT) and experimental [111] UV

spectra of methylenecyclopropene, wavelength, nm (relative intensity). The recom-

mended ab initio basis set [111] and DFT functional and basis set [110] are used. The

ab initio results are from Table 5.16, and the semiempirical results are from Table 6.5

Calculated Experimental

RCIS/6-31þG*//

B3LYP/6-31G*

ZINDO/S//AM1 TDDFT: B3P86/

6-311þþG**//

AM1

224 (15) 228 (12) 309 (26) 308 (13)

209 (6) 224 (0.2) 226 (3) 242 (0.6)

196 (0) 213 (100) 210 (0) 206 (100)

194 (8) 204 (1) 208 (100)

193 (100) 190 (0)
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GIAO B3LYP/6-311þG(d,p) shifts to be in good agreement with experiment when

appropriate calculated geometries were used [121].

Figure 7.9 compares with experiment [122, 123] 13C and 1H NMR spectra

calculated at these levels:

1. B3LYP/6-311þþG** for the NMR calculations, using B3LYP/6-311þþG

(2df,2p), and HF/3-21G(*) for the geometries and

2. B3LYP/6-31G* for the geometries, using B3LYP/6-31G*, B3LYP/6-311þG*,

and B3LYP/6-311þþG** for the NMR calculations

Thus the figure shows for each of these molecules: (1) a fairly high-level NMR

calculation on a high-level and a low-level geometry, and (2) a medium-level

geometry probed with a medium-, a fairly high-, and a still higher-level calculation.

For such a very small sample the results cannot reasonably be expected to do more

than show up gross differences in accuracy, but they do suggest that for DFT NMR

chemical shifts, if high accuracy is not needed B3LYP/6-311+G* on B3LYP/6-

31G* geometries may be adequate.

C

(2.17, experimental room 
temperature average)

–3.26
–6.33
–6.38
 (–8.7)

CH H

H

H

0.29  B3LYP / 6-31G* NMR
0.27  B3LYP / 6-311+G* NMR
0.25  B3LYP / 6-311++G** NMR
(0.23  experimental)

H2C CH2

H H

0.32
0.32
0.22

 (0.22)

0.48
–1.42 
–0.95
 (1.4)

H

7.21
7.42
7.56

(7.27)

121.1
133.4
134.3

 (128.5)

O

C

C C

H

H
H

H

H
H

1.66
1.88
1.87

2.06
2.15
2.20

192.7
212.7
212.1

 (206.7)

28.3
31.1
31.6

 (30.6)

0.25 B3LYP / 6-311++G(2df, 2p) geom
0.17 HF / 3-21G(*) geom

–6.31
–6.94

B3LYP / 6-31G* geomB3LYP / 6-311++G** NMR

0.19
0.01

–0.93
–1.23

B3LYP / 6-311++G** NMR

B3LYP / 6-31G* geom

7.63
7.54

134.2
133.0

B3LYP / 6-311++G** NMR
B3LYP / 6-31G* geom

31.6
31.7

1.86
1.75

2.21
2.14

211.3
212.8

B3LYP / 6-311++G** NMR
B3LYP / 6-31G* geom

Fig. 7.9 Calculated and experimental 1H and 13C NMR spectra. Chemical shifts (d values) are

relative to the H and C of TMS. The calculations were done with the default NMR method (GIAO)

implemented in Gaussian 03 [78]. The experimental values (in parentheses) are from [122], except

for the 13C values for methane and cyclopropane [123] (for these [122] gave�2.3 and�2.9, which

seem suspect). The calculated values are in vacuo and the experimental are in CDCl3, except

for methane and cyclopropane, which are gas-phase measurements which were given relative to

benzene and have been adjusted here to be relative to TMS. The changes in going from vacuum to

CDCl3 are likely to be fairly small (within ca. d 1) for these molecules. Values to the left of the

structures are all for B3LYP/6-311þþG** NMR calculations on B3LYP/6-311þþG(2df,2p)

(first line) or HF/3-21G(*) (second line) geometries. Values to the right of the structures are all

for B3LYP/6-31G* geometries with NMR calculations at the B3LYP/6-31G*, B3LYP/6-311þG*,

and B3LYP/6-311þþG** levels (upper, middle and lowest lines, respectively)
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7.3.5.3 Ionization Energies and Electron Affinities: The Kohn–Sham

Orbitals

Ionization energies (ionization potentials) and electron affinities were discussed in

Section 5.5.5. We saw that IEs and EAs can be calculated in a straightforward way

as the energy difference between a molecule and the species derived from it by loss

or gain, respectively, of an electron. Using the energy of the optimized geometry of

the radical cation or radical anion (in the case where the species whose IE or EA we

seek is a neutral closed-shell molecule) gives the adiabatic IE or EA, while using

the energy of the ionized species at the geometry of the neutral gives the vertical IE

or EA. Muchall et al. have reported adiabatic and vertical ionization energies and

electron affinities of eight carbenes, calculated in this way by semiempirical,

ab initio, and DFT methods [124]. They recommend B3LYP/6-31þG*//B3LYP/

3-21G(*) as the method of choice for predicting first ionization energies; the use of

the small 3-21G(*) basis with B3LYP for the geometry optimization is unusual – see

Section 5.4.2 – usually the smallest basis used with a correlated method is 6-31G*.

This combination is relatively undemanding and gave accurate (largest absolute

error 0.14 eV) adiabatic and vertical ionization energies for the carbenes studied.

Table 7.11 shows the results of applying this method to some other (non-carbene)

molecules. The B3LYP/6-31+G* ionization energies are essentially the same with

B3LYP/3-21G(*) geometries and AM1 geometries; they are good estimates of the

experimental IE [125, 126], are somewhat better than the ab initio MP2 ionization

energies, and are considerably better than the MP2 Koopmans’ theorem (below)

IEs. Of course, for unusual molecules (like the carbenes studied by Muchall et al.

[124]) AM1may not give good geometries, and for such species it would be safer to

use B3LYP/3-21G(*) or B3LYP/6-31G* geometries for the single-point B3LYP/6-

31+G* calculations. Golas et al. obtained fairly good IEs (	 0.2 eV for IEs of ca.

8–9 eV) and useful EAs (	 0.4 eV for EAs of ca. 1–2 eV) with B3LYP/6-311+G**

energies on B3LYP/6-31G* geometries [127].

In wavefunction theory an alternative way to find IEs for removal of an electron

from a molecular orbital (usually the highest), is to invoke Koopmans’ theorem:

Table 7.11 Some ionization energies (eV). The DE ionization energy values (cation energy minus

neutral energy) correspond to adiabatic and (in parentheses) vertical IEs; the Koopmans theorem

values are vertical IEs. Experimental IEs are adiabatic (CH3OH and CH3COCH3 [125], CH3SH

[126]). The use of B3LYP/3-21G(*) geometries is based on [124]. That the vertical IE is smaller

than the adiabatic for the B3LYP/6-31þG*//AM1 calculation on CH3SH is presumably due to a

somewhat inaccurate geometry, probably for the cation (experimental vertical IEs are always

bigger than adiabatic since it takes energy to distort the relaxed-geometry cation to the geometry of

the neutral)

DE ¼ IE Koopmans’

(MP2(fc)/6-31G*)

Exp

B3LYP/6-31þG*//

B3LYP/3-21G(*)
B3LYP/6-

31þG*//AM1

MP2(fc)/

6-31G*

CH3OH 10.77 (10.92) 10.76 (10.85) 10.6 12.1 10.9

CH3SH 9.40 (9.43) 9.53 (9.36) 9 9.2 9.4

CH3COCH3 9.60 (9.70) 9.67 (9.68) 9.6 11.2 9.7
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the IE for an orbital is the negative of the orbital energy; Section 5.5.5. By the

“ionization energy” we usually mean the lowest one, corresponding to removing an

electron from the HOMO. In Chapters 5 and 6 both the energy difference and the

Koopmans’ theorem methods were used to calculate some IEs (Tables 5.17 and 6.6).

The problem with applying Koopmans’ theorem to DFT is that in “strict” DFT there

are no molecular orbitals, only electron density, while in Kohn–Sham DFT (practical

DFT) the MOs, the orbitals cKS that make up the Slater determinant of Eq. 7.19,

were, as explained in Section 7.2.3.2, introduced only to provide a way to calculate

the energy (note Eqs. 7.21, 7.22, and 7.26). The problem is to see if these Kohn–

ShamMOs are, as there was a tendency to view them, mere mathematical artifices or

if they are in themselves useful. There was at one time a fair amount of argument over

the physical meaning, if any, of the Kohn–Sham orbitals. Baerends and coworkers

compared DFT with Hartree–Fock theory and concluded that “The Kohn–Sham

orbitals are physically sound and may be expected to be more suitable for use

in qualitative molecular orbital theory than either Hartree–Fock or semiempirical

orbitals” [128]. Cramer echoes this in pointing out that there are reasons to even

prefer the Kohn–ShamMOs: they all feel the same external potential, while HF MOs

feel varying potentials, the virtual MOs carrying this to an extreme [129]. Stowasser

and Hoffmann showed that the KS orbitals resemble those of conventional wavefunc-

tion theory (extended H€uckel and Hartree–Fock ab initio, Chapters 4 and 5) in shape,
symmetry, and, usually, energy ordering [130]. They conclude that these orbitals can

indeed be treated much like the more familiar orbitals of wavefunction theory.

Furthermore, they showed that although the KS orbital energy values (the eigenva-

lues e from diagonalization of the DFT Fock matrix – Section 7.2.3.3) are not good

approximations to the ionization energies of molecular orbitals (as revealed by

photoelectron spectroscopy), there is a linear relation between |ei(KS) � ei(HF)| and
ei(HF). Salzner et al., too, showed that in DFT, unlike ab initio theory calculations,

negative HOMO energies are not good approximations to the IE (with an exact
functional Koopmans’ theorem would be exact), but, surprisingly, HOMO-LUMO

gaps from hybrid functionals agreed well with the p!p* UV transitions of unsatu-

rated molecules [131]. Vargas et al. introduced a “Koopmans-like approximation” to

obtain a relation between the Kohn–Sham orbital energies and vertical IEs and EAs,

and assert that their method improves the calculation of electron density indexes

(below) of hardness, electronegativity and electrophilicity [132]. The utility of the

Kohn–Sham orbital energies to predict IE, EA and the hardness index was studied by

Zhan et al. [133], and Zhang et al. explored the ability of various functionals to use

these orbitals to predict IE, EA and the lowest-energy UV transition [134].

Concerning electron affinities, in Hartree–Fock calculations the negative LUMO

energy of a species M corresponds to the electron affinity not of M but rather of the

anion M� [135]. However, Salzner et al. reported that the negative LUMOs from

LSDA functionals gave rough estimates of EA (ca. 0.3–1.4 eV too low; gradient-

corrected functionals were much worse, ca. 6 eV too low) [131]. Brown et al. found

that for eight medium-sized organic molecules the energy difference method using

gradient-corrected functionals predicted electron affinities fairly well (average

mean error less than 0.2 eV) [103].
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7.3.5.4 Electronegativity, Hardness, Softness and the Fukui Function:

Electron Density Reactivity Indexes

The idea of electronegativity was born as soon as chemists suspected that the

formation of chemical compounds involved electrical forces (before the discovery

of the electron): metals and nonmetals were seen to possess opposite appetites for

the “electrical fluid(s)” of eighteenth century physics. This “electrochemical dual-

ism” is most strongly associated with Berzelius [136], and is clearly related to

our qualitative notion of electronegativity as the tendency of a species to attract

electrons. Parr and Yang have given a sketch of attempts to quantify the idea [137].

Electronegativity is a central notion in chemistry.

Hardness and softness as chemical concepts were presaged in the literature as

early as 1952, in a paper byMulliken [138], but did not become widely used till they

were popularized by Pearson in 1963 [139]. In the simplest terms, the hardness of a

species, atom, ion or molecule, is a qualitative indication of how polarizable it is,

i.e. how much its electron cloud is distorted in an electric field. The adjectives hard

and soft were said to have been suggested by D.H. Busch [140], but they appear in

Mulliken’s paper [138], p. 819, where they characterize the response to spatial

separation of the energy of acid-base complexes. The analogy with the conventional

use of these words to denote resistance to deformation by mechanical force is clear,

and independent extension, by more than one chemist, to the concept of electronic

resistance, is no surprise. The hard/soft concept proved useful, particularly in

rationalizing acid-base chemistry [141]. Thus a proton, which cannot be distorted

in an electric field since it has no electron cloud (we ignore the possibility of nuclear

distortion) is a very hard acid, and tends to react with hard bases. Examples of soft

bases are those in which sulfur electron pairs provide the basicity, since sulfur is a

big fluffy atom, and such bases tend to react with soft acids. Perhaps because it was

originally qualitative, the hard-soft acid-base (HSAB) idea met with skepticism

from at least one quarter: Dewar (of semiempirical fame) dismissed it as a “mystical

distinction between different kinds of acids and bases” [142]. For a brief review of

Pearson’s contributions to the concept, which has been extended beyond strict

conventional acid-base reactions, see [143].

The Fukui function or frontier function was introduced by Parr and Yang in 1984

[144]. They generously gave it a name associated with the pioneer of frontier

molecular orbital theory, who emphasized the roles of the HOMO and LUMO in

chemical reactions. In a reaction a change in electron number clearly involves

removing electrons from or adding electrons to the HOMO or LUMO, respectively,

i.e. the frontier orbitals whose importance was emphasized by Fukui.4 The mathe-

matical expression (below) of the function defines it as the sensitivity of the

electron density at various points in a species to a change in the number of electrons

in the species. If electrons are added or removed, how much is the electron density

4Kenichi Fukui, born Nara, Japan, 1918. Ph.D. Kyoto Imperial University 1948, Professor Kyoto

Imperial University 1951. Nobel Prize 1981. Died 1998.
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at various places altered? This function measures changes in electron density that

accompany chemical reactions, and has been used to try to rationalize and predict

the variation of reactivity from site to site in a molecule.

Electronegativity, hardness and softness, and the Fukui function will now be

explained quantitatively. These concepts can be analyzed using wavefunction

theory, but are often treated in connection with DFT, perhaps because much of

the underlying theory was formulated in this context [145]. Consider the effect

on the energy of a molecule, atom or ion, of adding electrons. Figure 7.10 shows

how the energy of a fluorine cation F+ changes as one and then another electron

is added, giving a radical F. and then an anion F�. The number of electrons N we

can add to F+ is integral, 1, 2, . . . (N is taken here as 0 for F+, and is thus 1 for the

radical and 2 for the anion), but mathematically we can consider adding continuous

electronic charge N; the line through the three points is then a continuous curve and
we can examine (∂E/∂N)Z, the derivative of E with respect to N at constant nuclear

charge. In 1876 Josiah Willard Gibbs published his theoretical studies of the effect

on the energy of a system of a change in its composition. The derivative m ¼ (∂E/
∂n)T,p, is the change in energy caused by an infinitesimal change in the number of

moles n. This derivative is called the chemical potential. Here E is Gibbs free

energy G and temperature and pressure are constant; the chemical potential can

N = number of electrons added

E = energy
(hartrees)

–98.00000

–100.00000

–99.00000

0

F.  –99.57169

F– –99.68061

F+   –98.84358

21

Fig. 7.10 Change of energy (for Fþ, Fl

and F�) as electrons are added to a species. The energies

were calculated at the QCISD(T)/6-311þG* level. The slope of the curve at any point (first

derivative) is the electronic chemical potential, and the negative of the slope the electronegativity,

of the species at that point. The curvature at any point (second derivative) is the hardness of the

species). See too Table 7.12
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also be defined with respect to internal energy U or Helmholtz free energy A
(Section 5.5.2.1a) [146]. By analogy, (∂E/∂N)Z, the change in energy with respect

to number of added electrons at constant nuclear charge, is the electronic chemical

potential (or in an understood context just the chemical potential) of an atom. For a

molecule the differentiation is at constant nuclear framework, the charges and their

positions being constant, i.e. constant external potential, v (Section 7.2.3.1). So for

an atom, ion or molecule

m ¼ @E

@N

� �
v

(7.30)

The electronic chemical potential of a molecular (including atomic or ionic)

species, according to Eq. 7.30, is the infinitesimal change in energy when electronic

charge is added to it. Figure 7.10 suggests that the energy will drop when charge

is added to a species, at least as far as common charges (from about þ3 to �1)

go, and indeed, even for fluorine’s electronegative antithesis, lithium, the energy

drops along the sequence Liþ, Li., Li� (QCISD(T)/6-311þG* gives energies of

�7.23584, �7.43203, �7.45448 h, respectively). Now, since one feels intuitively

that the more electronegative a species, the more its energy should drop when it

acquires electrons, we suspect that there should be a link between the chemical

potential and electronegativity. If we choose for convenience to tag most electro-

negativities with positive values, then since (∂E/∂N)v is negative we might define

the electronegativity w as the negative of the electronic chemical potential:

w ¼ �m ¼ � @E

@N

� �
v

(7.31)

From this viewpoint the electronegativity of a species is the drop in energy when

an infinitesimal amount (infinitesimal so that it remains the same species) of

electronic charge enters it. It is a measure of how hospitable an atom or ion, or a

group or an atom in a molecule (Section 5.5.4), is to the ingress of electronic charge,

which fits in with our intuitive concept of electronegativity.

This definition of electronegativity was given in 1961 [147] and later (1978)

discussed in the context of DFT [148]. Equation 7.31 could be used to calculate

electronegativity by fitting an empirical curve to calculated energies for, e.g. Mþ, M
and M�, and calculating the slope (gradient, first derivative) at the point of interest;
however, the equation can be used to derive a simple approximate formula for

electronegativity using a three-point approximation. For consecutive species M+, M

and M� (constant nuclear framework), let the energies be E(Mþ), E(M), and E
(M�). Then by definition

E(Mþ) � E(M) ¼ I, the ionization energy of M

and E(M) � E(M�) ¼ A, the electron affinity of M

Adding: E(M+) � E(M�) ¼ I þ A
So approximating the derivative at the point corresponding to M as the change in

E when N goes from 0 to 2, divided by this change in electron number, we get
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@E

@N

� �
v

¼ EðM�Þ � EðMþÞ
2� 0

¼ �ðI þ AÞ
2

i.e., using Eq. 7.31

w ¼ I þ A

2
(7.32)

To use this formula one can employ experimental or calculated adiabatic (or

vertical, if the species from removal or addition of an electron are not stationary

points) values of I and A. This same formula (Eq. 7.32) for w was elegantly derived

by Mulliken (1934) [149] using only the definitions of I and A. Consider the

reactions

Xþ Y ! Xþ þ Y�

and

Xþ Y ! X� þ Yþ

If X and Y have the same electronegativity then the energy changes of the two

reactions are equal, since X and Y have the same proclivities for gaining and for

losing electrons, i.e.

IðXÞ � AðYÞ ¼ IðYÞ � AðXÞ
i:e: ðI þ AÞ for X ¼ ðI þ AÞ for Y

So it makes sense to define electronegativity as I þ A; the factor of ½ (Eq. 7.32)

was said by Mulliken to be “probably better for some purposes” (perhaps he meant

to make w the arithmetic mean of I and A, an easily-grasped concept).

Electronegativity has also been expressed in terms of orbital energies, by taking I
as the negative of the HOMO energy and A as the negative of the LUMO energy

[150]. This gives

w ¼ �ðEHOMO þ ELUMOÞ
2

(7.33)

This expression has the advantage over Eq. 7.32 that one needs only the HOMO

and LUMO energies of the species, which are provided by a one-pot calculation

(i.e. by what is operationally a single calculation), but to use Eq. 7.32 one needs the

ionization energy and electron affinity, the rigorous calculation of which demands

the energies of M, Mþ, and M�; cf. the Fukui functions for SCN� later in this

section. How good is Eq. 7.33? I ¼ �EHOMO is a fairly good approximation for the

orbitals of wavefunction theory, but not for the Kohn–Sham orbitals of current

DFT, and A ¼ �ELUMO is only a very rough approximation for the Kohn–Sham
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orbitals, and for wavefunction orbitals �ELUMO of M is said to correspond to the

electron affinity of M�, not of M (see the ionization energy and electron affinity
subsection above). So how do the results of calculations using the formula of Eq. 7.33

compare with those using Eq. 7.32? Table 7.12 gives values of w calculated using

QCISD(T)/6-311þG* (Section 5.4.3) values of I and A, which should give good

values of these latter two quantities, and compares these w values with those from

HOMO/LUMO energies calculated by ab initio (MP2(FC)/6-31G*) and by DFT

(B3LYP/6-31G*). For the two cations the agreement between the three ways of

calculating w is good; for the other species it is erratic or bad, although the trends are

the same for the three methods within a given family (electronegativity increases from

anion to radical to cation). It seems likely that Eq. 7.32 is the sounder way to calculate

electronegativity. An exposition of the concept of electronegativity as the (negative)

average of the HOMO and LUMO energies, and the chemical potential (�w) as
lying at the midpoint of the HOMO/LUMO gap, has been given by Pearson [150].

Chemical hardness and softness are much newer ideas than electronegativity,

and they were quantified only fairly recently. Parr and Pearson (1983) proposed

to identify the curvature (i.e. the second derivative) of the E versus N graph (e.g.

Fig. 7.10) with hardness, � [151]. This accords with the qualitative idea of hardness
as resistance to deformation, which itself accommodates the concept of a hard

molecule as resisting polarization – not being readily deformed in an electric field:

if we choose to define hardness as the curvature of the E versus N graph, then

� ¼ @2E

@N2

� �
v

¼ @m
@N

� �
v

¼ � @w
@N

� �
v

(7.34)

where m and w are introduced from Eqs. 7.30 and 7.31. The hardness of a

species is then the amount by which its electronegativity – its ability to accept

Table 7.12 Electronegativity, w, and hardness, � (cf. Fig. 7.10). For each species w and � have

been calculated in three ways: (1)From ionization energy (I) and electron affinity (A), using w ¼
½(I + A) and � ¼1/2(I - A). I and A were calculated (QCISD(T)/6-311+G*) as the energy

differences of the optimized-geometry species, i.e. adiabatic values. (2) From the MP2(FC)/6-

31G* HOMO and LUMO, using w ¼ �1/2(EHOMO þ ELUMO) and � ¼ ½(ELUMO � EHOMO). (3)

From the B3LYP/6-31G* Kohn–Sham HOMO and LUMO, as for (2). All the numbers refer to

units of eV

I A HOMO, MP2 LUMO, MP2 w: �:
(HOMO, DFT) (LUMO, DFT) (I+A)/2, (I-A)/2,

HOMO/LUMO HOMO/LUMO

MP2, HOMO/

LUMO DFT

MP2, HOMO/

LUMO DFT

F+ 36 19.8 �37.6 (�30.0) �17.7 (�27.3) 27.9, 27.7, 28.7 8.1, 10.0, 1.4

F. 19.8 3 �19.5 (�14.5) �19.5 (�14.5) 11.4, 19.5, 14.5 8.4, 0, 0

F- 3 �14 �2.1 (4.6) 42.1 (36.4) �5.5, �20.0, �20.5 8.4, 22.1, 15.9

HS+ 20.2 11.3 �20.3 (�16.8) �10.7 (�15.7) 15.8, 15.5, 16.3 4.5, 4.8, 0.6

HS. 11.3 1.7 �12.5 (�8.7) �12.5 (�8.7) 6.5, 12.5, 8.7 4.8, 0, 0

HS� 1.7 �6.4 �1.9 (1.3) 12.3 (8.4) �2.4, �5.2, �4.9 4.1, 7.1, 3.6
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electrons – decreases when an infinitesimal amount of electronic charge is added to

it. Intuitively, a hard molecule is like a rigid container that does not yield as

electrons are forced in, so the pressure, analogous to the electron density, inside

builds up, resisting the ingress of more electrons. A soft molecule may be likened to

a balloon that can expand as it acquires electrons, so that the ability to accept still

more electrons is not so seriously compromised. Softness is logically the reciprocal

of hardness:

s ¼ 1

�
(7.35)

and qualitatively, of course, it is the opposite in all ways.

To approximate hardness by I and A (cf. the approximation of electronegativity

by Eq. 7.32), we approximate the E ¼ f(N) curve (cf. Fig. 7.10) by a general

quadratic (since it looks like a quadratic):

E ¼ aN2 þ bN þ c

@2E

@N2
¼ 2a

We will now let M denote any atom or molecule, and M+ and M� the species

formed by removal or addition of an electron from M.

E(M) corresponds to N¼ 1 and E(M�) corresponds to N¼ 2, so substituting into

our quadratic equation

E Mð Þ ¼ a 12
� 	þ b 1ð Þ þ c ¼ aþ bþ c

and

E M�ð Þ ¼ a 22
� 	þ b 2ð Þ þ c ¼ 4aþ 2bþ c

and so

2a ¼ c + E(M�) � 2E(M)

Since E(0) ¼ E(M+) ¼ a(02) + b(0) + c ¼ c,

2a ¼ E Mþð Þ þ E M�ð Þ � 2E Mð Þ ¼ E Mþð Þ � E Mð Þ½ � � E Mð Þ � E M�ð Þ½ � ¼ I � A

i:e: � ¼ @2E

@N2

� �
v

¼ I � A (7.36)

Actually, the hardness is commonly defined as half the curvature of the E versus

N graph, giving

� ¼ 1

2

@2E

@N2

� �
v

¼ I � A

2
(7.37)
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and from Eq. 7.34

� ¼ 1

2

@2E

@N2

� �
v

¼ 1

2

@m
@N

� �
v

¼ � 1

2

@w
@N

� �
v

(7.38)

The one-half factor is [150] to bring � into line with Eq. 7.32, where this factor

arises naturally in applying the three-point approximation and the definitions of I
and A to the rigorous Gibbs equation (Eq. 7.30) for electronic chemical potential.

Electronegativity has also been expressed in terms of orbital energies, by taking I
as the negative of the HOMO energy and A as the negative of the LUMO energy

[150]. This gives

� ¼ ðELUMO � EHOMOÞ
2

(7.39)

Like the analogous expression for electronegativity (Eq. 7.33), this requires only

a “one-pot” calculation, of the HOMO and LUMO. Much of what was said about

Eq. 7.33 applies to Eq. 7.39. Table 7.12 gives values of � calculated analogously to
the w values discussed above. The HOMO/LUMO hardness values are in even

worse agreement with the I/A ones than are the HOMO/LUMO electronegativity

values with the I/A values (the zero values for the HOMO/LUMO-calculated � of

the radicals values arise from taking the half-occupied orbital [semioccupied MO,

SOMO] as both HOMO and LUMO). The orbital view of hardness as the HOMO/

LUMO gap is discussed by Pearson, who also reviews the principle of maximum

hardness, according to which in a chemical reaction hardness and the HOMO/

LUMO gap tend to increase, potential energy surface relative minima represent

species of relative maximum hardness, and transition states are species of relative

minimum hardness [150]. In papers by Tore-Labbé and Nguyen these general ideas

about hardness are expounded [152] and the reciprocal concept of softness is used

(with the Fukui function) to rationalize some cycloaddition reactions [153].

The Fukui function (the frontier function) was defined by Parr and Yang [144] as

f ðrÞ ¼ dm
dvðrÞ


 �
N

¼ @rðrÞ
@N


 �
v

(7.40)

This says that f(r) is the functional derivative (Section 7.2.3.2, The Kohn–Sham
equations) of the chemical potential with respect to the external potential (i.e. the

potential caused by the nuclear framework), at constant electron number; and that it

is also the derivative of the electron density with respect to electron number at

constant external potential. The second equality shows f(r) to be the sensitivity of

r(r) to a change in N, at constant geometry. A change in electron density should be

primarily electron withdrawal from or addition to the HOMO or LUMO, the

frontier orbitals of Fukui [154] (hence the name bestowed on the function by Parr

and Yang). Since r(r) varies from point to point in a molecule, so does the Fukui
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function. Parr and Yang argue that a large value of f(r) at a site favors reactivity at

that site, but to apply the concept to specific reactions they define three Fukui

functions (“condensed Fukui functions” [105]):

f �ðrÞ ¼ @rðrÞ
@N


 ��
v

� ¼ þ;�; 0 (7.41)

The three functions f+, f�k , and f 0k refer to an electrophile, a nucleophile, and a

radical. They are the sensitivity, to a small change in the number of electrons, of the

electron density in the LUMO, in the HOMO, and in a kind of average HOMO/

LUMO half-occupied orbital. Practical implementations of these condensed Fukui

functions are the “condensed-to-atom” forms of Yang and Mortier [155]:

fþk ¼ qkðN þ 1Þ � qkðNÞ for atom k as an electrophile

f�k ¼ qkðNÞ � qkðN � 1Þ for atom k as a nucleophile

f 0k ¼ 1

2
½qkðN þ 1Þ � qkðN � 1Þ for atom k as a radical

(7.42)

Here qk(N) is the electron population (not the charge) on atom k, etc. (see

below). Note that f 0k is just the average of fþk and f�k . The condensed Fukui functions

measure the sensitivity to a small change in the number of electrons of the electron

density at atom k in the LUMO (fþk ), in the HOMO (f�k ), and in a kind of

intermediate orbital (f 0k ); they provide an indication of the reactivity of atom k as

an electrophile (reactivity toward nucleophiles), as a nucleophile (reactivity toward

electrophiles), and as a free radical (reactivity toward radicals).

The easiest way to see how these formulas can be used is to give an example. Let’s

calculate f�k for the anion SCN�. We’ll calculate f�S , f�C , and f�N , to get an idea of the

nucleophilic power of the S, C and N atoms in this molecule. We need the electron

population q on each atom or, what gives us the same information, the charge on each

atom: for an atom in a molecule, electron population ¼ atomic number� charge. To

see this, note that if an atom had no electron population, its charge would equal its

atomic number. For each electron added to the atom, the charge decreases by one. So

charge ¼ atomic number � electron population. We perform the calculations for the

N-electron species (SCN�) and the (N � 1)-electron species (SCN.). If we were

interested in the nucleophilic power of the atoms in a neutral molecule M, then to get

f�k we would calculate the electron populations or charges on the atoms in M and in

M+, and for the electrophilic power of the atoms in neutral M, to get fþk we calculate

the electron populations or charges on the atoms in M and M�. The calculations are
performed for the two species at the same geometry. In introducing the condensed

Fukui function Yang and Mortier [155] used for each pair of species a single

“standard” (presumably essentially average) geometry, with accepted, reasonable

bond lengths and angles, and other workers do not specify whether they use for,

say, M and M+, the neutral or the cation geometry. We will adopt the convention that

for a calculation on M* (* ¼ þ, � or .), both geometries will be those of M*, the
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species of interest to us; this avoids the problem of trying to do a geometry optimiza-

tion on a species that may not be a stationary point on the potential energy surface

(assuming that M* is itself a stationary point – one will rarely be interested in

something that is not), a situation that arises particularly for some anions.

Charges and electron populations from calculations on SCN� and SCN. (and on

CH3CCH and CH3CCH
.þ) are shown in Fig. 7.11. The anion SCN� was optimized

and then the AIM (Section 5.5.4) electron population/charges were calculated (the

AIM calculations were done with G98 using the keywords AIM¼Charge). An AIM

calculation was then done on the radical at the anion geometry. The optimization

and both AIM calculations used the B3LYP/6-31þG* method/basis; results for

other charges than AIM and other methods/basis sets are shown shortly.

The condensed Fukui functions may now be calculated (see Fig. 7.11):

f� Sð Þ ¼ q S; anionð Þ � q S; neutralð Þ ¼ 16:142� 15:488 ¼ 0:654

f� Cð Þ ¼ q C; anionð Þ � q C; neutralð Þ ¼ 5:430� 5:428 ¼ 0:002

f� Nð Þ ¼ q N; anionð Þ � q N; neutralð Þ ¼ 8:431� 8:087 ¼ 0:344

This indicates that in SCN� the order of nucleophilicity is S > N >> C (which

is what any chemist should expect). Sulfur is the softest atom here, and carbon

the hardest. The results of such a calculation vary somewhat with the method/basis

(e.g. HF/6-31G*, MP2/6-31G*, etc.), and especially with the way the charges/

electron populations are calculated. Here are the f�k functions from the use of

.

S C NS C N

.+

C1C1 CH3CH3
HC2C2

–0.0310.413

6.0315.587

–0.569

H

0.192

5.808 6.569

0.570–0.142 –1.431

5.43016.142 8.431

0.5720.512 –1.087

5.42815.488 8.087

AIM
charges

AIM
electron
populations

AIM
charges

AIM
electron
populations

ESP
charges

ESP
electron
populations

ESP
charges

ESP
electron
populations

–

Fig. 7.11 Charges on atoms and corresponding electron populations. For SCN� and SCN. AIM

(Section 5.5.4) charges were used, and both species are at the optimized SCN� geometry. For

CH3CCH and CH3CCH
.þ electrostatic potential charges (from Gaussian 98, keyword Pop¼MK)

were used, and both species are at the optimized CH3CCH geometry. The method/basis for optimi-

zation and charge calculation is B3LYP/6-31þG* for SCN� and SCN., and B3LYP/6-311G** for

CH3CCH and CH3CCH
.þ
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electrostatic potential charges (the G98 keyword Pop¼MK was used) again using

B3LYP/6-31+G*:

f�k ðSÞ ¼ qðS; anionÞ � qðS; neutralÞ ¼ 16:720� 15:955 ¼ 0:765

f�k ðCÞ ¼ qðC; anionÞ � qðC; neutralÞ ¼ 5:542� 5:707 ¼ 0:165

f�k ðNÞ ¼ qðN; anionÞ � qðN; neutralÞ ¼ 7:738� 7:338 ¼ 0:400

In this case the conclusions, compared to using AIM charges, are unaffected.

In an extensive study, Geerlings et al. [105] showed that with AIM charges

semiquantitatively similar results are obtained with a variety of correlation methods

(HF, MP2, QCISD, and five DFT functionals), using bases similar to 6-31G*. The

biggest deviation from QCISD (Section 5.4.3; QCISD was taken as the most reliable

of the methods used) was shown byMP2. For example, for CH2CHO
� all correlation

methods except MP2 gave O a bigger f� than C. If we disregarded the MP2 result as

anomalous, this could be interpreted as indicating that the O is more nucleophilic than

the C. Actually, in standard organic syntheses enolates usually react preferentially at

the carbon, but the ratio of C:O nucleophilic attack can vary considerably with the

particular enolate, the electrophile, and the solvent. To complicate things even more,

the nucleophile is not always just the simple enolate: an ion pair or even aggregates of

ion pairs may be involved [156]. Even for the case of an unencumbered enolate, the

atom with the biggest f� (the softest atom) cannot be assumed to be the strongest

nucleophilic center, because, as Méndez and Gázquez point out in their study [157] of

enolates using the Fukui function, one consequence of the hard-soft-acid-base prin-

ciple is that an electrophile tends to react with a nucleophilic center of similar
softness (soft acids prefer soft bases, etc.), not necessarily with the softest nucleo-

philic center. Thus for the reaction of CH2CHO
� with the electrophile CH3X, one

might calculate, for CH2CHO
�, f�(C) and f�(O), and for CH3X, f

þ(C). The CH3X C

would be expected (in the absence of complications!) to bond to the atom, C or O,

whose f � value was closest to its f þ(C) value. A study of the ethyl acetoacetate

enolate using these and other concepts has been reported by Geerlings and coworkers

[158]. This approach, which is applicable to any ambident species, is further illu-

strated below by the reaction of HNC with alkynes.

In a study of the reaction of alkynes with hydrogen isocyanide the condensed

Fukui function was combined with the overall or global softness to try to rationalize

the regioselectivity of attack on the triple bond [153]:

a?b?

C

N

H

C

N

H

ab

C2 C1 HCH3

H

+C C

CH3

C–

N

H

B

CH3

C C+

H

C–

N

H

A
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This reaction involves electrophilic attack by HNC on the alkyne, to give a

zwitterion which reacts further. Can our concepts be used to predict which alkyne

atom, C1 or C2 (using the designations of [153]) will be attacked – will the products

be formed primarily through A or through B? Nguyen et al. approached this problem

by first showing that the reaction is indeed electrophilic attack of HNC (acting as an

electrophile) on the alkyne (acting as a nucleophile): the HOMO(alkyne)/LUMO

(HNC) interaction has a smaller energy gap than the HOMO(HNC)/LUMO(alkyne)

interaction. They then calculated the local softness or condensed softness parameters
(not quite the same as the condensed-to-atoms parameters of Eqs. 7.42 that we saw

above; see below) of C1 and C2 of the alkyne and the C of HNC. For C1 and C2 of the

alkyne the softness as a nucleophile, i.e. softness toward electrophiles, was calcu-

lated, with the aid of f�k , and for the HNC C softness as an electrophile, i.e. softness

toward nucleophiles, was calculated, with the aid of fþk .

Illustrating how the calculations for CH3CCH may be done:

1. Optimize the structure of CH3CCH and calculate its atom charges (and energy).

2. Use the optimized geometry of CH3CCH for a single-point (same geometry)

calculation of the charges (and energy) for CH3CCH
.+.

Steps (1) and (2) enable calculation of f�k .

3. Use the optimized geometry of CH3CCH for a single-point calculation of the

energy of the anion CH3CCH
.� (This is a radical anion).

Steps (1), (2) and (3) enable us to calculate the global softness (the softness of

the molecule as a whole) of CH3CCH. This is done by calculating the vertical

ionization energy and electron affinity as energy differences, then calculating the

global softness as the reciprocal of global hardness. From Eq. 7.35 this is s¼ 1/(I�
E) or s¼ 2/(I� E), depending on whether we define hardness according to Eq. 7.36
or 7.37. Nguyen et al. use s¼ 1/(I� E), i.e. they take hardness as � ¼ (I� E) rather
than ½ (I� E). The local softness of any atom of interest may now be calculated by

multiplying f�k for that atom by s. Let’s look at actual numbers. The CH3CCH

B3LYP/6-311G** basis set and electrostatic potential charges (with the Gaussian

keyword Pop¼MK) were used. These gave the charges (and thus electron popula-

tions) shown in Fig. 7.11. From these populations,

f� C1
� 	 ¼ q C1; neutral

� 	� q C1; cation
� 	 ¼ 6:569� 6:031 ¼ 0:538

f� C2
� 	 ¼ q C2; neutral

� 	� q C2; cation
� 	 ¼ 5:808� 5:587 ¼ 0:221

The vertical ionization energy and vertical electron affinity are (here ZPEs have

not been taken into account, as they should nearly cancel; in any case the signifi-

cance of a calculated ZPE for the cation or anion at the geometry of the neutral is

questionable, since the two vertical species are not stationary points):

I ¼ E cationð Þ � E neutralð Þ ¼ �116:31237 � �116:69077ð Þ ¼ 0:37840 h

A ¼ E neutralð Þ � E anionð Þ ¼ �116:69077� �116:58078ð Þ ¼ �0:10999 h
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The softness is then s ¼ 1/(I � A) ¼ 1/[(0.37840 � (�0.10999] ¼ 2.048 h�1

So the local softness of the two carbons as nucleophiles (softness toward electro-

philes) is

s�ðC1Þ ¼ 0:538ð2:048Þ ¼ 1:102

and

s�ðC2Þ ¼ 0:221ð2:048Þ ¼ 0:453

(Nguyen et al. report 1.096 and 0.460).

Since electron population is a pure number and global softness has the units of

reciprocal energy, local softness logically has these units too, but the practice is to

simply state that all these terms are in “atomic units”.

Now consider analogous calculations on the HNC C, but for local softness as an

electrophile (softness toward nucleophiles), using fþk . These calculations gave:

sþðHNCCÞ ¼ 1:215

To predict which of the two alkyne carbons, C1 or C2, HNC will preferentially

attack, one now invokes the “local hard-soft acid-base (HSAB) principle” (cf.

[157]), which says that interaction is favored between electrophile/nucleophile (or

radical/radical) of most nearly equal softness. The HNC carbon softness of 1.215 is

closer to the softness of C1 (1.102) than that of C2 (0.453) of the alkyne, so this

method predicts that in the reaction scheme above the HNC attacks C1 in preference

to C2, i.e. that reaction should occur mainly by the zwitterion A. This kind of

analysis worked for –CH3 and –NH2 substituents on the alkyne, but not for –F.

The concepts of hardness, softness, and of frontier orbitals, with which latter the

Fukui function is closely connected, have been severely criticized [142], and cases

where frontier MO theory fails have been examined [159]. It is also true that in

some cases the results predicted using these methods can also be understood in

terms of more traditional chemical concepts. Thus in the alkyne-HNC reaction,

resonance theory leads one to suspect that the zwitterion A, with the positive charge

formally on the more substituted carbon, will be favored over B. Nevertheless, the

large amount of work which has been done using these ideas suggests that they offer

a useful approach to interpreting and predicting chemical reactivity. Even an

apparently unrelated property, or rather a set of properties, namely aromaticity,

has been subjected to analysis in terms of hardness [160]. As Parr and Yang

say, “This is perhaps an oversimplified view of chemical reactivity, but it is

useful” [161].

To cite some newer work on Fukui functions: it was claimed that if one accepts

negative values of the function (apparently previously shunned), one can under-

stand reactions in which oxidation of an entire molecule leads to reduction of a part

of it (removing electrons from alkynes can increase the electron density in the CC

bond) [162]; the Fukui functions concept has been extended beyond the “local
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philicity” shown above and dual philicity to give a “multiphilic descriptor” which

reflects simultaneously the nucleophilicity and the electrophilicity of a given site in

a molecule [163]; AIM calculations (in Section 5.54) were said to give the best

results with condensed Fukui functions (Eqs. 7.41 and 7.42) [164]; and the appro-

priateness of the Fukui function for describing hard-hard, as distinct from soft-soft,

interactions has been questioned [165].

7.3.6 Visualization

The only cases for which one might anticipate differences between DFT and

wavefunction theory as regards visualization (Sections 5.5.6 and 6.3.6) are those

involving orbitals: as explained in Section 7.2.3.2, The Kohn–Sham equations, the
orbitals of currently popular DFT methods were introduced to make the calculation

of the electron density tractable, but in “pure” DFT theory orbitals would not exist.

Thus electron density, spin density, and electrostatic potential can be visualized in

Kohn–Sham DFT calculations just as in ab initio or semiempirical work. However,

visualization of orbitals, so important in wavefunction work (especially the HOMO

and LUMO, which in frontier orbital theory [154] strongly influence reactivity)

does not seem possible in a pureDFT approach, one in which wavefunctions are not

invoked. In currently popular DFT calculations one can visualize the Kohn–Sham

orbitals, which are qualitatively much like wavefunction orbitals [130] (Section 7.3.5,

Ionization energies and electron affinities).

7.4 Strengths and Weaknesses of DFT

7.4.1 Strengths

DFT includes electron correlation in its theoretical basis, in contrast to wavefunc-

tion methods, which must take correlation into account by add-ons (Møller-Plesset

perturbation, configuration interaction, coupled-cluster) to ab initio Hartree–Fock

theory, or by parameterization in semiempirical methods. Because it has correlation

fundamentally built in, DFT can calculate geometries and relative energies with

an accuracy comparable to MP2 calculations, in roughly the same time as needed

for Hartree–Fock calculations. Aiding this, DFT calculations tend to be basis-set-

saturated more easily than are ab initio: limiting results are (sometimes) approached

with smaller basis sets than for ab initio calculations. Calculations of post-Hartree–

Fock accuracy can thus be done on bigger molecules than ab initio methods

make possible. DFT appears to be the method of choice for geometry and energy

calculations on transition metal compounds, for which conventional ab initio

calculations often give poor results [76, 166] (see too chapter 8, Section 8.3).
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DFT works with electron density, which can be measured and is easily intui-

tively grasped [4], rather than a wavefunction, a mathematical entity whose physi-

cal meaning is still controversial.

7.4.2 Weaknesses

The exact exchange-correlation functional EXC[r0], one of the terms in the DFT

expression for the energy, is unknown, and no one knows how to fully systemati-

cally improve our approximations to it. In contrast, ab initio energies can be

systematically lowered by using bigger basis sets and by expanding the correlation

method: MP2, MP3, . . ., or more determinants in the CI approach. It is true that for

a particular purpose 6-311G* may not be better than 6-31G*, and MP3 is certainly

not necessarily better than MP2, but bigger basis sets and higher correlation levels

will eventually approach an exact solution of the Schr€odinger equation. The accu-
racy of DFT is being gradually improved by modifying functionals, not according

to some grand theoretical prescription, but rather with the aid of experience and

intuition, and checking the calculations against experiment. This makes DFT

philosophically somewhat semiempirical. Some functionals contain parameters

which must be fitted to experiment; these methods are even more distinctly empiri-

cal. Since the functionals are not based purely on fundamental theory, one should be

cautious about applying DFT to very novel molecules. Of course the semiempirical

character of current DFT is not a fundamental feature of the basic method, but arises

only from our ignorance of the exact exchange-correlation functional. Because our

functionals are only approximate, DFT as used today is not variational (the calcu-

lated energy could be lower than the actual energy).

DFT is not as accurate as the highest-level ab initio methods, like QCISD(T) and

CCSD(T) (but it can handle much bigger molecules than can these methods). Even

gradient-corrected functionals apparently were unable to handle van der Waals

interactions [167], although they did give good energies and structures for hydro-

gen-bonded species [168], but recent progress in treating van der Waals and other

weak interactions is encouraging [44, 45].

DFT today is mainly a ground-state theory, although ways of applying it to

excited states are being developed.

7.5 Summary

Density functional theory is based on the two Hohenberg–Kohn theorems, which

state that the ground-state properties of an atom or molecule are determined by its

electron density function, and that a trial electron density must give an energy

greater than or equal to the true energy. Actually, the latter theorem is true only if

the exact functional (see below) is used; with the approximate functionals in use
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today, DFT is not variational – it can give an energy below the true energy. In the

Kohn–Sham approach the energy of a system is formulated as a deviation from

the energy of an idealized system with noninteracting electrons. The energy of the

idealized system can be calculated exactly since its wavefunction (in the Kohn–

Sham approach wavefunctions and orbitals were introduced as a mathematical

convenience to get at the electron density) can be represented exactly by a Slater

determinant. The relatively small difference between the real energy and the energy

of the idealized system contains the exchange-correlation functional, the only

unknown term in the expression for the DFT energy; the approximation of this

functional is the main problem in DFT. From the energy equation, by minimizing

the energy with respect to the Kohn–Sham orbitals the Kohn–Sham equations can

be derived, analogously to the Hartree–Fock equations. The molecular orbitals of

the KS equations are expanded with basis functions and matrix methods are used to

iteratively refine the energy, and to get a set of molecular orbitals, the KS orbitals,

which are qualitatively similar to the orbitals of wavefunction theory.

The simplest version of DFT, the local density approximation (LDA), which treats

the electron density as corresponding in a restricted way (Section 7.2.3.4a) to that of a

uniform electron gas, and also pairs two electrons of opposite spin in each KS orbital,

is little used nowadays. It has been largely replaced by methods which use gradient-

corrected (“nonlocal”) functionals and which assign one set of spatial orbitals to

a-spin electrons, and another set of orbitals to b-electrons; this latter “unrestricted”
assignment of electrons constitutes the local-spin-density approximation (LSDA).

The best results appear to come from so-called hybrid functionals, which include

some contribution from Hartree–Fock type exchange. The most popular current DFT

method is the LSDA gradient-corrected hybrid method which uses the B3LYP

(Becke three-parameter Lee-Yang-Parr) functional. However, this may soon be

largely replaced by new functionals, like those of the M06 family.

Gradient-corrected and, especially, hybrid functionals, give good to excellent

geometries. Gradient-corrected and hybrid functionals usually give fairly good

reaction energies, but, especially for isodesmic-type reactions, the improvement

over HF/3-21G or HF/6-31G* calculations does not seem to be dramatic (as far as

the relative energies of normal, ground-state organic molecules goes; for energies

and geometries of transition metal compounds, DFT is the method of choice). For

homolytic dissociation, correlated methods (e.g. B3LYP and MP2) are vastly better

than Hartree–Fock-level calculations; these methods also give tend to give fairly

good activation barriers.

DFT gives reasonable IR frequencies and intensities, comparable to those from

MP2 calculations. Dipole moments from DFT appear to be more accurate than

those from MP2, and B3LYP/6-31G* moments on AM1 geometries are good.

Time-dependent DFT (TDDFT) is the best method (with the possible exception

of semiempirical methods parameterized for the type of molecule of interest) for

calculating UV spectra reasonably quickly. DFT is said to be better than Hartree–

Fock (but not as good as MP2) for calculating NMR spectra. Good first ionization

energies are obtained from B3LYP/6-31+G*//B3LYP/3-21G(*) energy differences

(using AM1 geometries makes little difference, at least with normal molecules).
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These values are somewhat better than the ab initio MP2 energy difference values,

and are considerably better than MP2 Koopmans’ theorem IEs. Rough estimates of

electron affinities can be obtained from the negative LUMOs from LSDA func-

tionals (gradient-corrected functionals give much worse estimates). For conjugated

molecules, HOMO-LUMO gaps from hybrid functionals agreed well with the

p!p* UV transitions. The mutually related concepts of electronic chemical poten-

tial, electronegativity, hardness, softness, and the Fukui function are usually dis-

cussed within the context of DFT. They are readily calculated from ionization

energy, electron affinity, and atom charges.
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Easier Questions

1. State the arguments for and against regarding DFT as being more a semiem-

pirical than an ab initio-like theory.

2. What is the essential difference between wavefunction theory and DFT?What

is it that, in principle anyway, makes DFT simpler than wavefunction theory?

3. Why can’t current DFT calculations be improved in a stepwise, systematic

way, as can ab initio calculations?

4. Which of these prescriptions for dealing with a function are functionals: (1)

square root of f(x). (2) sinf(x). (3)
P3
x¼1

f ðxÞ. (4) Ð
f ðxÞdx. (5) exp(f(x)).

5. For which class(es) of functions is the nth derivative of f(x) a functional?
6. Explain why a kind of molecular orbital is found in current DFT, although

DFT is touted as an alternative to wavefunction theory.

7. What is fundamentally wrong with functionals that are not gradient-cor-

rected?

8. The ionization energy of a molecule can be regarded as the energy required to

remove an electron from its HOMO. How then would a pure density func-

tional theory, with no orbitals, be able to calculate ionization energy?

9. Label these statements true or false: (1) For each molecular wavefunction there

is an electron density function. (2) Since the electron density function has only

x, y, z as its variables, DFT necessarily ignores spin. (3) DFT is good for

transition metal compounds because it has been specifically parameterized to

handle them. (4) In the limit of a sufficiently big basis set, a DFT calculation

represents an exact solution of the Schr€odinger equation. (5) The use of very big
basis sets is essential with DFT. (6) A major problem in density functional

theory is the prescription for going from the molecular electron density function

to the energy.

10. Explain in words the meaning of the terms electronegativity, hardness, and the

Fukui function.

Harder Questions

1. It is sometimes said that electron density is physically more real than a

wavefunction. Do you agree? Is something that is more easily grasped intui-

tively necessarily more real?

2. A functional is a function of a function. Explore the concept of a function of a

functional.

3. Why is it that the Hartree–Fock Slater determinant is an inexact representation

of the wavefunction, but the DFT determinant for a system of noninteracting

electrons is exact for this particular wavefunction?

4. Why do we expect the “unknown” term in the energy equation (EXC[r0], in
Eq. 7.21) to be small?
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5. Merrill et al. have said that “while solutions to the [HF equations] may be

viewed as exact solutions to an approximate description, the [KS equations] are

approximations to an exact description!” Explain.

6. Electronegativity is the ability of an atom or molecule to attract electrons. Why

then is it (from one definition) the average of the ionization energy and the

electron affinity (Eq. 7.32), rather than simply the electron affinity?

7. Given the wavefunction of a molecule, it is possible to calculate the electron

density function. Is it possible in principle to go in the other direction? Why or

why not?

8. The multielectron wavefunction C is a function of the spatial and spin coordi-

nates of all the electrons. Physicists say that C for any system tells us all that

can be known about the system. Do you think the electron density function r
tells us everything that can be known about a system? Why or why not?

9. If the electron density function concept is mathematically and conceptually

simpler than the wavefunction concept, why did DFT come later than wave-

function theory?

10. Is a metal, with its common pool of electrons, a good approximation of the

homogeneous electron gas of early DFT theory? Why or why not?
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Chapter 8

Some “Special” Topics: Solvation, Singlet

Diradicals, A Note on Heavy Atoms and

Transition Metals

Chapters 1 to 7: (a) addressed molecules as isolated entities, without reference to their

surroundings (except for the water dimer); (b) concentrated on calculations by relatively

“automatic” model chemistries; and (c) used mainly organic molecules as illustrations.

This chapter to some extent redresses these constraints.

Abstract For some purposes solution-phase computations are necessary, e.g. for

understanding certain reactions, and for the prediction of pKa in solution. For

introducing the effects of solvation there are two methodologies (and a hybrid of

these two): explicit solvation and continuum solvation.

Some molecular species are not calculated properly by straightforward model

chemistries; these include singlet diradicals and some excited state species. For

these the standard method is the complete active space approach, CAS (CASSCF,

complete active space SCF). This is a limited version of configuration interaction,

in which electrons are promoted from and to a carefully chosen set of molecular

orbitals.

For systems with heavy atoms we often employ pseudopotential basis sets

(frequently relativistic), which reduce the computational burden of large numbers

of electrons. Transition metals present problems beyond those of main-group heavy

atoms: not only can relativistic effects be significant, but electron d- or f-levels,

variably perturbed by ligands, make possible several electronic states. DFT calcu-

lations, with pseudopotentials, are the standard approach for computations on such

compounds.

8.1 Solvation

Nature abhors a vacuum
–A dictum of Aristotelian physics

E.G. Lewars, Computational Chemistry,
DOI 10.1007/978-90-481-3862-3_8, # Springer ScienceþBusiness Media B.V. 2011

521



8.1.1 Perspective

Calculations on isolated molecules, unencumbered by solvent, are undoubtedly

simpler conceptually, theoretically, and algorithmically, than in vacuo computa-

tions (although the vacuum is not what it used to be [1]). So we ask: how realistic

are vacuum (gas phase) calculations, and how important is it to take into account the

embrace of solvent molecules? Serious questions about the value of calculations

which ignore solvent are clearly justified in the case of biological molecules and

reactions, since these entities are immersed in water. A relatively early article on

molecular modelling and computer-aided drug design [2] elicited incisive critical

comments: “When a process as fundamental as the absorption of one dioxygen

molecule by hemoglobin involves 80 water molecules. . .what can we learn about

docking a drug in vacuo?” gives the flavor of the critique [3]; a response to this

conceded that neglecting solvation is an “apparent oversimplification”, but con-

tended that “gas-phase structures correlate surprisingly well with a number of

known physiological facts” [4]. Nearly 2 decades later a study of the 20 natural

amino acids examined in detail their calculated geometries in the gas phase and in

solution (using various continuum models – see below) and concluded that “the use

of gas-phase-optimized geometries can in fact be quite a reasonable alternative to

the use of the more computationally intensive continuum optimizations” [5].

Examination of the literature and judicious reflection lead to the conclusion that

for some purposes in vacuo (gas phase) computations are not only adequate but are

the appropriate ones, while for other purposes considering solvation is essential.

If the purpose of a calculation is to probe the inherent properties of a molecule as
a thing in itself, or of a phenomenon centered on isolated molecules, then we do not

want the complication of solvent. For example, a theoretically oriented study of the

geometry and electronic structure of a novel hydrocarbon, e.g. pyramidane [6], or of

the relative importance of diatropic and paratropic ring currents [7], properly

examines unencumbered molecules. On the other hand, if we wish, say, to calculate

from first principles the pKa of acids in water, we must calculate the relevant free

energies in water [8]. Noteworthy too is the fact that solvation, in contrast to gas

phase treatments, is somewhat akin to molecules in bulk, in crystals [9]. Here a

molecule is “solvated” by its neighbors in a lattice, although the participants have

a much more limited range of motion than in solution. Rates, equilibria, and

molecular conformations are all affected by solvation. Bachrach has written a

concise review of the computation of solvent effects with numerous apposite

references [10].

8.1.2 Ways of Treating Solvation

There are two basic ways to treat solvation computationally: explicit and implicit.

Microsolvation, explicit solvation, places solvent molecules around the solute
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molecule. Continuum solvation, implicit solvation, places the solute molecule in a

cavity in a continuous medium which simulates the sea of solvent molecules. There

is also a hybrid method, microsolvation with continuum solvation.

Microsolvation, explicit solvation. This is called explicit because computation-

ally, individual solvent molecules are placed around the solute molecule. “Sur-

rounding” the solute with solvent molecules might be putting it too strongly,

because, at least with routine quantum-mechanical calculations, few molecules of

solvent are used, typically about one to ten. In experimental reality, a solvent

molecule is surrounded, depending on its size, by a first solvation shell of about

six (for a monatomic ion) to probably hundreds or thousands of water molecules for

a protein or nucleic acid molecule. The first solvation shell is in turn solvated by

what we could call a second shell, and so on; when to cease considering the solvent

molecules can be problematic [11]. Actually, solvation calculations on large bio-

molecules in a bath of a large number of explicit water molecules have been

reported. These are typically done with molecular dynamics, which is outside the

scope of this book [12], using molecular mechanics force fields; such calculations

have been reviewed [13]. In our presentation of explicit solvation we will concen-

trate on quantum mechanical calculations in which a few solvent molecules are

used – literally microsolvation. Two examples of this technique are discussed:

1. The effect of microsolvation on the E2 and SN2 reaction F� þ C2H5F þ nHF.
Bickelhaupt et al. used DFT to study the reaction of fluoroethane with fluoride

ion, solvating the reactants with from zero (gas phase) to four hydrogen fluoride

solvent molecules [14]. HF is an unusual solvent, and presumably was chosen

rather than water because of its geometric simplicity and because it is, like

water, protic, although an HF molecule can hydrogen bond to only one acceptor

at a time. A virtue was made of the “artificiality” of the HF/F� acid/base system:

that HF is much more acidic than water and that fluoride with their basis set is

“artificially strong” was said to “lead to pronounced effects of solvation, facil-

itating interpretation.” These authors clearly recognized that a microsolvated

system of their type is not really a well-simulated condensed-phase system:

solvent molecules are rationed in the former. The purpose of the computations

was to obtain a qualitative understanding of the effect of solvent on these

synthetically useful reactions. One deficiency of microsolvation here was that

an unsolvated fluoride ion tended to be ejected, since with a limited number of

solvent molecules transfer of HF molecules from the attacking F� to the forming

F� was not favored, and this raises the activation energy. In “real solvation”,

which might be called macrosolvation, there is an abundance of solvent mole-

cules and all species can be adequately solvated.

Nevertheless, important features of real solvent reactions were reproduced by

microsolvation. The role of ion-molecule complexes, important in the gas phase,

decreased rapidly with introduction of solvent molecules, the reaction profile

becoming nearly unimodal (see Continuum solvation, below). Activation energies

for both E2 and SN2 processes increased due to stronger solvation of reactants

than of transition states (although in this work, because of imposed geometric
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constraints, true transition states were not obtained); solution reactions of these

kinds are known to be up to 1020 times slower than in the gas phase. Also, in con-

trast to gas-phase conditions, substitution was favored over elimination. The con-

clusion was that “the inclusion of a few solvent molecules in the quantum

mechanical treatment can significantly improve the theoretical description of

some condensed-phase characteristics.”

2. Hydrolysis of CH3Cl with 13 explicit water molecules. Yamataka and Aida used

ab initio calculations to study the reaction of chloromethane (methyl chloride)

with water, solvating the reactants with up to 13 water molecules [15]. With

three or with 13 solvent molecules “three important stationary points” were

located: two “complexes” and a transition state. These were a solvated CH3Cl

molecule (complex 1), the transition state, and solvated products (complex 2),

the latter being methanol and HCl (when 3 H2O were used) or methanol,

chloride ion and H3O
+ (when 13 H2O were used). Note that these so-called

complexes are not the same kind of species called complexes in the gas-phase

reaction (see Continuum solvation, below). With 13 water molecules the

transition state was surrounded by all the solvent molecules with, apparently,

no vacant spaces, and the reaction energetics and secondary deuterium effects

were reproduced well. Compared to the two “complexes”, the transition state

was strongly stabilized by solvation: with 13 H2O the relative energies were

complex 1, transition state, complex 2 ¼ 0, 24.04, �1.59 kcal mol�1, i.e. 0, 101

kJ, �6.7 kJ mol�1. The authors point out that the stationary points they found

are probably not unique: various configurations of reacting species, starting

with CH3Cl and water and ending with CH3OH, Cl
� and H3O

+, may lie along

the reaction pathway.

An important feature of this reaction is that a bond to the solvent is made: in

forming CH3OH a proton is transferred from the oxygen that bonds to carbon, onto

a water molecule, giving H3O
+. This is nicely reproduced with 13 H2O, but cannot

be modelled with continuum methods since these essentially adjust the electron

distribution in a cavity-ensconced molecule without breaking or making bonds. The

authors concluded that “apparently the 13 water system produced a reasonable

picture of the hydrolysis.”

Continuum solvation, implicit solvation. This is called implicit because a con-

tinuous medium, a continuum, is used to “imply” the presence of individual solvent

molecules. The algorithm places the solute in a cavity in a solvent medium, and

the interaction between the solute and the cavity is calculated. Using a continuum

instead of individual solvent molecules is, at its best, a way of averaging out the

effect of a large number of solvent molecules; indeed, if microsolvation (above) is

used to calculate thermodynamic properties, then several calculations, best done

with molecular dynamics, would be needed, followed by the calculation of a

Boltzmann average. This is because there are several minimum-energy arrange-

ments of molecules around a solute (as hinted at in [15]). Although microsolvation

studies are needed if one wishes to computationally pinpoint the effect of molecules

of solvent on specific processes, as in the E2/SN2 studies above [14], continuum
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calculations are, by and large, the easiest and most popular way of treating solvent

effects.

The key steps in current continuum solvation models are the calculation of the

size and shape of the solvent cavity and of the interaction energy of the solute with

the solvent. Details of these calculations have been presented in, for example,

the books by Cramer [16] and Jensen [17], and in very detailed journal reviews

[18, 19]. Here I will only outline the basic features and illustrate some applications

of continuum solvation calculations. The simplest cavity for a solute molecule is a

spherical one, the next most complex ellipsoidal. For the great majority of mole-

cules, which are not spherical or ellipsoidal, models based on these are quite

unrealistic, and for quantitative or even much semiquantitative work such models

are obsolete. Realistic continuum models place the solute molecule in a cavity

designed to match its shape, although there are degrees of accuracy for defining this

shape, as well as the size of the cavity. The shape and size of the cavity define the

solvent-accessible surface area (SASA), a quantity needed by the method. The

simplest tailored shape would be that resulting from the exposed surfaces of an

overlapping spheres molecular model (Fig. 8.1); the spheres have scaled van der

Waals atomic radii. However, the V-shaped crannies between some nearby over-

lapping spheres are inaccessible to solvent, and a more realistic measure of SASA is

the surface defined by a sphere (of empirical radius for various solvents) rolling

over the molecular surface. A still more sophisticated way of smoothing the over-

lapping-spheres surface is to project onto it a large number of small polygons or

tessellations (to tessellate¼ to tile), called tesserae (tessera¼ a small fragment used in

making a mosaic), as in one implementation of the conductor-like screening solvation

model of Klamt and coworkers (COSMO; see below) by Barone and Cossi [20].

Having obtained a cavity corresponding to a realistic SASA, the energy of

interaction of the solute molecule with the solvent it “sees” is calculated. This

interaction energy can be conceptually divided into terms: (1) the energy needed

to make the cavity in the first place; although one might say that the solute was

formally absent when the cavity was being “prepared”, this cavitation energy

. ..

..

.

.

.

rolling
sphere

rolling
sphere

Fig. 8.1 The surface area of a molecule from overlapping spheres and from the surface generated

by a sphere rolling over the molecular surface. Like the solvent, the rolling sphere cannot reach

into V-shaped cavities, so the area of the surface it defines is a more realistic measure of the

solvent-accessible surface than is the overlapping-spheres surface
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clearly depends on the solute size; (2) the energy of weak solute-solvent “disper-

sion” forces; (3) solvent “reorganization energy” caused by disturbing solvent–

solvent dispersion forces, and (4) the electrostatic interaction energy between

charges on the solute and charges on solvent molecules (in a continuum context

the solute polarizes even a nonpolar medium like pentane, engendering electrostatic

interactions). These divisions are somewhat arbitrary; thus reorganization energy

does not have to be defined to exclude electrostatic interactions [19, 21]. Terms

(1)–(3) can be subsumed into GCDS, a cavitation-dispersion-solvent-reorganization

free energy term that is a sum of contributions from the atoms of groups in the

molecule, each contribution being the product of an effective exposed surface area

A and a so-called surface tension s (which has no particular connection with

conventional surface tension [16, 18]):

GCDS ¼
X

i

Aisi (8.1)

This very empirically parameterized equation for nonelectrostatic terms is a

characteristic of the SMx series (solvent model 1, 2, . . ., now up to SM8) of Cramer

and Truhlar [22].

The calculation of the electrostatic part of the interaction energy, the fourth term,

uses as the starting point the Poisson equation, which relates electrostatic potential

f to charge distribution r and dielectric constant e; f and r (and possibly e), vary
from place to place, hence the position vector r:

r2fðrÞ ¼ 4prðrÞ
e

(8.2)

The equation applies to a dielectric medium which responds linearly to (under-

goes polarization linearly with) the charge distribution r. A dielectric medium is a

nonconducting, that is, insulating, medium that when subjected to the field of an

electric charge shifts its charge distribution slightly along the direction of the field,

i.e. becomes polarized; e is the ratio of the electrical conductivity of the medium to

the conductivity of the vacuum. For a solvent it is an approximate measure of

polarity (an index of which is dipole moment m), if we constrain our domain to

certain classes. For 24 solvents encompassing nonpolar (e.g. pentane, m 0.00, e 1.8),
polar aprotic (e.g. dimethyl sulfoxide, m 3.96, e 46.7), and polar protic (e.g. water,

m 1.85 e 80) dispositions, the correlation coefficient r2 of e with m was only 0.36

(removing formic acid and water raised it to 0.75). For nine nonpolar, seven polar

aprotic, and 8 polar protic solvents, considered as separate classes, r2 was 0.90,

0.87, and 0.0009 (sic), respectively [23]. Note that because of parameterization for

other factors e.g. Eq. 8.1, modern continuum methods do not depend only (if at all –

see COSMO and COSMO-RS, below) on dielectric constant.

The key to current continuum algorithms for calculating the properties of

a molecule in solution is to formulate a solution Hamiltonian operator Ĥ
(Section 4.3.4) in which these energy terms appear in addition to the in vacuo
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terms of electron kinetic energy, electron-nucleus attraction, and electron-electron

repulsion. With a basis set {f1, f2, . . .} (e.g. Section 5.2.3.6), a Fock matrix is

constructed with elements hfi|Ĥ|fji (Dirac notation, Section 4.4.1.2). The usual

SCF procedure (Section 5.2.3.6.5) gives a wavefunction and energy for the solvated

molecule. The wavefunction can be used to calculate the usual properties, like

dipole moment and spectra [24]. Particularly relevant to solute–solvent interactions

is the fact that the charge distribution r(r) of the solute molecule (Eq. 8.2) polarizes

the solvent continuum of the cavity wall, which in turn alters r(r), and so on.

Because of the polarization of the cavity wall these methods are called polarized
continuum methods, PCM, and since the final interaction energy must be calculated

iteratively, in this context the SCF procedure is called a self-consistent reaction
field, SCRF, calculation. SCRF calculations have been implemented in ab initio,

semiempirical and DFT calculations. Variations on the PCM method are IPCM,

isodensity PCM, which simplifies the calculation by using a vacuum isodensity

charge surface [25], and CPCM, a PCM implementation of the conductor-like

screening model [20, 26]. The conductor-like screening model, COSMO, simplified

the calculation by using a conducting medium (e infinite) and introducing the

solvent dielectric constant as a correction factor [27]. COSMO-RS (real solvents),

an improved version, dispensed with the dielectric constant, which Klamt and

coworkers distrust in the microscopic context, by eschewing solvent-specific para-

meters and a continuous solvent medium (although it still seems to be regarded as

being in the spirit of continuum methods) and applying statistical thermodynamics

to solute–solvent fragment surface interactions. COSMO-RS uses surface charges

for both solute and solvent and empirical parameters, eight general ones and two for

each atom, rather than for each solvent [28, 29]. COSMO-RS calculations are

effective at reproducing thermodynamic and other properties of solutions, as may

be seen by examining the numerous papers since 1993 by A. Klamt or Klamt and

coworkers; further information is available from the company COSMOlogic and

Klamt’s book [30]. All these continuum methods are very fast when used, as is

usually the case, with gas phase geometries followed by single-point calculations in

solvent. The free energy of solvation is usually the most relevant energy quantity

sought; the keywords for obtaining this depend on the program.

We will look at two important processes which have been studied by implicit

solvation techniques:

1. The SN2 reaction in solution. We saw above the application of microsolvation

to SN2 reactions ([14, 15]). Let us now look at the chloride ion-chloromethane

SN2 reaction in water, as studied by a continuum method. Figure 8.2 shows a

calculated reaction profile (potential energy surface) from a continuum solvent

study of the SN2 attack of chloride ion on chloromethane (methyl chloride) in

water. Calculations were by the author using B3LYP/6-31+G* (plus or diffuse

functions in the basis set are considered to be very important where anions are

involved: Section 5.3.3) with the continuum solvent method SM8 [22] as

implemented in Spartan [31]; some of the data for Fig. 8.2 are given in Table 8.1.

Using as the reaction coordinate r the “deviation” from the transition state C–Cl
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r  = rC – Cl – rT > 0r  = rC – Cl – rT < 0

Fig. 8.2 Profile for the SN2 reaction Cl� þ CH3Cl in water. Calculations by the author using

B3LYP/6-31þG* with the continuum solvent method SM8 [22] as implemented in Spartan [31].

Note that r is the distance of the Cl� from the transition state bond length (2.426 Å), not the Cl�/C
distance; thus r measures the “deviation” from the transition state and becomes zero at the

transition state. This makes the graph symmetrical about the energy axis, as it should be presented

for this identity reaction. The zero of energy is taken as rC–Cl ¼ 25 Å, r ¼ 22.574 Å

Table 8.1 Some of the data used to construct Fig. 8.2. Variation of energy with Cl-/C

distance for the SN2 reaction Cl� + CH3Cl in water. Calculations by the author using

B3LYP/6-31+G* with the continuum solvent method SM8 [22] as implemented in

Spartan [31]. The r of the x-axis in Fig. 8.2 is rC–Cl � r(transition state) ¼ rC–Cl �
2.426. Hartrees were converted to kJ mol�1 by multiplying by 2,626

rC–Cl Å r Å SM8 E Relative E

Hartrees kJ mol�1

25 22.574 �960.51789 0

5 2.574 �960.51663 3.3

4 1.574 �960.51495 7.7

3 0.574 �960.50604 31.1

2.5 0.074 �960.48412 88.6

2.426, transition state 0 �960.47955 101
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bond length r ¼ rC–Cl � 2.426) makes the graph symmetrical about the energy

axis, as it should be presented for this identity reaction. The energies are room

temperature enthalpies relative to a state of little Cl�/CH3Cl interaction (rC–Cl ¼
25 Å, r ¼ 22.574 Å). The calculations were done as a series of constrained

geometry optimizations with fixed Cl�/C distance; the transition state (imagi-

nary frequency 470i cm�1; C–Cl 2.426 Å) was calculated without constraints.

These results are in accord with the accepted mechanism for the SN2 reaction in

water: a smooth, one-step process with no intermediates [32]. This calculation

agrees with a valence bond-calculated profile and activation energy (109 kJ mol�1

[33]), and with molecular dynamics activation energies (113 kJ mol�1[34, 35]; those

are free energies and the 101 kJ mol�1 of Fig. 1 is an enthalpy, but the difference

is not expected to be large here (Section 5.5.2.1a). The experimental free energy

of activation is 111 kJ mol�1 [36]. The respectable quantitative agreement with

experiment for our modest computational level is gratifying, but for us the salient

point is the smooth one-step profile: we now contrast this with the gas phase

reaction.

Compare Fig. 8.2 with Fig. 8.3, this latter being the calculated reaction profile for

the SN2 attack of chloride ion on chloromethane in the gas phase; otherwise, the
calculation was implemented as for the water continuum calculation of Fig. 8.2.

Some of the data for Fig. 8.3 are given in Table 8.2. In the gas phase calculation,

as Cl� approaches CH3Cl the energy falls, rather than rises, until a “complex”, a

somewhat vague word in chemistry, sometimes indicating a weakly bound mole-

cule, is formed, then the energy rises toward the transition state. The complex is

indeed weakly bound: its energy of �39 kJ mol�1 compared to separated Cl� þ
CH3Cl is only that of a moderately strong hydrogen bond [37], while a typical

covalent bond has an energy of about 400 kJ mol�1. The simplest, albeit perhaps

incomplete, picture of the complex is that the chloride ion is electrostatically

attracted to the partial positive charge on the carbon of chloromethane, and nicely

consonant with this, in an electron density slice the contour lines show a sharp

contrast between the short covalent C–Cl bond (1.856, cf. 1.803 Å in CH3Cl) and the

long (3.200 Å) “complex” bond (this author’s observations). It thus seems to be an

ion-dipole complex. The transition state and the complex were calculated without

constraints. The negative activation energy is not paradoxical, as the proximate

reactant for its formation is the complex, making the barrier from this �2.1 �
(�39.0) kJ mol�1 ¼ 36.9 kJ mol�1.

These results are in accord with the long-accepted mechanism for the SN2

reaction in the gas phase: experiments using ion cyclotron resonance were inter-

preted in the way shown for the calculations of Fig. 2: “It is not possible to explain

the observed rates on the basis of a single-well potential” [38]; the profile in Fig. 2 is

called a double-well potential. Quantitative information comes from benchmark

calculations by Bento et al., who even checked for relativistic effects, which were

found to be negligible [39]. CCSD(T)/aug-cc-PVQZ (Sections 5.4.3 and 5.3.3 )

gave relative energies of �44 and þ10.5 kJ mol�1, compared to �39 and �2.1 kJ

mol�1 at out modest computational level. That the transition state lies slightly
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below zero in one case and a little above in the other is of no particular significance;

see Bachrach’s discussion of the gas and solution phase SN2 reaction and in

particular his Tables 5.1 and 5.2 [40]. The formation of the ion-dipole complex in

CCl
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HH

1.856
Cl

r = 0.827

3.200
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Fig. 8.3 Profile for the SN2 reaction Cl� + CH3Cl in the gas phase. Calculations by the author

using B3LYP/6-31+G* in the gas phase, with Spartan [31]. Note that r is the distance of the Cl�

from the transition state bond length (2.373 Å), not the Cl�/C distance; thus r measures the

“deviation” from the transition state and becomes zero at the transition state. This makes the graph

symmetrical about the energy axis, as it should be presented for this identity reaction. The zero of

energy is taken as rC–Cl ¼ 25 Å, r¼ 22.627 Å. Note the two complexes, which are absent from the

water phase calculation of Fig. 8.2

Table 8.2 Some of the data used to construct Fig. 8.3. Variation of energy with Cl-/C distance for

the SN2 reaction Cl� + CH3Cl in the gas phase. Calculations by the author using B3LYP/6-31+G*

in the gas phase, and Spartan [31]. The r of the x-axis in Fig. 8.2 is rC–Cl � r(transition state) ¼
rC–Cl � 2.373. Hartrees were converted to kJ mol�1 by multiplying by 2,626

rC–Cl Å r Å Gas phase E Relative E

kJ mol�1Hartrees

25 22.627 �960.38646 0

5 2.627 �960.394 �19.8

4 1.627 �960.39801 �30.3

3 0.627 �960.40063 �37.2

2.5 0.127 �960.38983 �8.85

2.373 transition state 0 �960.38726 �2.1
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the gas phase but not in solution reflects the fact that in the absence of solvent the

attacking anion solvates the carbon of its victim prior to covalent bonding.

2. First principles calculation of pKa. Thermodynamics seems to assure us that

the pKa of an acid is simply related to the Gibbs free energies of the hydrated

(we will limit ourselves to water here) acid, conjugate base and proton. Surpris-

ingly, in a study of 64 organic and inorganic acids (accompanied by a brief review

of theoretical methods of calculating pKa), Klamt et al. concluded that “the

experimental pKa scale depends differently on the free energy of dissociation

than generally assumed” and “[passed] the problem forward to the scientific

community” [41]. Kelly et al. responded to this challenge, showing that adding

one water molecule to some anions and also using the SM6 model “significantly

improves the agreement between the calculated pKa value and experiment” [42].

However, the mixed microsolvation/continuum approach used there may not be

uniform enough to provide a satisfying ansatz for the general theoretical calculation

of pKa.

COSMO models [27–30] were compared with the SM approach [22] by Klamt

[43] and by Cramer and Truhlar [44]. A very recent paper by Klamt and coworkers

[45] shows that improved calculated pKa values are obtained for the limited domain

of strong to moderately weak acids by a “cluster-continuum” method in which the

acid and conjugate base are each associated with one or a few solvent molecules

and this “cluster” is then continuum-calculated with COSMO-RS. The authors

point out, however, that for the calculation of pKa “a consistent and generally

applicable method is still lacking”. This paper clarifies the problem raised in [41].

The matter is under study.1

I cite three papers to show that standard continuum calculations can give

satisfactory first-principles pKa values: Shields and coworkers used a thermody-

namic cycle with gas phase and continuum calculations to obtain satisfactory

results for six simple carboxylic acids [46]. These were “absolute” calculations in

the sense that no acid was used as a reference point, although the experimental gas

phase free energy and aqueous solvation energy of the proton were resorted to. Not

quite as esthetically satisfying perhaps, were “relative” calculations in which acetic

acid was used as a reference compound [47]. Similar to the absolute acid calcula-

tions was work with phenols that was said to be “among the most accurate of any

such calculations for any group of compounds” [48].

The principles behind the absolute pKa calculations in [46] are illustrated with

the aid of Fig. 8.4. The program was Gaussian 98 [49], and several ab initio levels

and solvation methods were explored; the favored ones are given here, with values

for acetic acid, CH3COOH:

Term (1) calculated at the HF/6-31+G* level with the CPCM continuous solva-

tion method was 32.3 kJ mol�1, i.e. the solvation free energy of CH3COOH

1A. Klamt, personal communication, 2010 March 13.
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was �7.72 kcal mol�1 or �32.3 kJ mol�1. Note that the calculated solvation free

energies, terms (1) and (3), are free energy differences, gas to solvent, estimated by

the program, and do not require time-consuming frequency calculations as is the

case for statistical mechanical calculation of free energies.

Term (2) calculated by the high-accuracy multistep CBS-APNO method

(Section 5.5.2.2b) was 341.2 kcal mol�1 or 1426 kJ mol�1. The Sackur-Tetrode

equation for the gas-phase entropy of the proton was mentioned in this regard, but

in fact the algorithm automatically handles this.

Term (3), calculated as for term (1) was�77.58 kcal mol�1 or�324.6 kJ mol�1.

Term (4), the solvation free energy of the proton was taken from experiment

as �264.61 kcal mol�1 or �1,107 kJ mol�1.

The free energy of dissociation in water follows (Fig. 8.4):

DGdiss;s ¼ �DGs RCOOHð Þ þ DGhigh þ DGs RCOO
�ð Þ þ DGs H

þð Þ
¼ �ð�32:3Þ þ 1426� 324:6� 1107 kJ mol�1 ¼ 26:70 kJ mol�1:

From the usual relation of free energy to pKa (e.g. [46]), with RT at 298 K ¼
2.478 kJ mol�1 we get pKa ¼ 26.70/2.303RT ¼ 4.68. The experimental value for

acetic acid was reported [46] to be 4.75, for an error of only �0.07 pKa unit.

As Liptak and Shields point out, accurate values of gas phase deprotonation and

solvation energies are needed for reasonably accurate pKa values. An error of 1 pKa

unit results from an error in DG of 1.36 kcal mol�1 or 5.7 kJ mol�1, and an error of

0.5 pKa unit corresponds to an error in DG of only 2.9 kJ mol�1. For some purposes

such an energy-difference error would be considered small, 1 kcal mol�1 or 4 kJ

ΔGs(RCOO–) + ΔGs(H
+)

RCOOHg

from gas phase
calcs

RCOOHs

wanted

RCOO–
s +  H+

sRCOO– g + H+ g

ΔGdiss, s

−ΔGs(RCOOH)
free E of solvation of RFCOOH

ΔGhigh

Fig. 8.4 The principle behind the absolute method of calculating pKa. In this thermodynamic cycle

we want DG for dissociation of RCOOH in water (g denotes gas phase and s solvent phase, water;
we refer to standard temperature and pressure free energy differences). The other terms are: (1)

�DGs(RCOOH), the negative of the solvation free energy of RCOOH (the solvation free energy

itself is negative); we take DG of solvation as the free energy that one must put in (a negative

quantity) to solvate a species, so going from solution to gas requires input of �DG (a positive

quantity). This quantity is calculated by a continuum method. (2) DGhigh, the gas-phase ionization

free energy of RCOOH, calculated by a high-level multistep method. (3 þ 4) DGs(RCOO
�) +

DGs(H
+), the free energy of solvation of the anion plus the free energy of solvation of the proton.

The first term is calculated by a continuummethod method and the second is an experimental value.

For conservation of energy: DGdiss,s ¼ �DGs(RCOOH) + DGhigh + DGs(RCOO
�) + DGs(H

+)

532 8 Some “Special” Topics



mol�1 being a current standard of “chemical accuracy” [50]. High-accuracy multi-

step methods (Section 5.5.2.2b) other than the computationally very demanding

CBS-APNO gave reasonable pKa values; when more than one conformation (albeit

in the gas phase) was significant, conformationally averaged energies were used. The

choice of solvation method, and even the version of a particular method, is important.

Using HF/6-31+G* and another version of the CPCMmethod, we obtained solvation

free energies for CH3COOH and CH3COO– of �32.9 and �316.1 kJ mol�1 respec-

tively (cf. �32.3 and �324.6 kJ mol�1 in [46]). These values yield DGdiss,s ¼
35.8 kJ mol�1 and pKa ¼ 6.3. With SM8 we got �21.16 and �325.5 kJ mol�1,

giving DGdiss,s ¼ 14.7 kJ mol�1 and pKa ¼ 2.6. This shows that even with the choice

of a generally good solvation method, one should check out the procedure with some

compounds of known pKa.

An accurate gas-phase dissociation energy is important too. The very accurate

CBS-APNO method can seldom be used, being limited to about five heavy atoms

(atoms other than H or He; Table 5.10 ) and being unable to handle other than C,

H, N, O, F. The much less size-challenged CBS-4M is insufficiently accurate for

meaningful pKa calculations, but CBS-QB3 and G3(MP2)are useful for up to about

9–13 heavy atoms (Table 5.10 and [46]). For large molecules isodesmic-type

reactions (Section 5.5.2.2) may be useful. Consider Fig. 8.5; here is an example,

where RCOOH is CFH2COOH. Since this has only five heavy atoms we can use a

direct calculation of DGhigh,1 with CBS-APNO as a check on the accuracy of the

roundabout isodesmic method. CH2FCOOH has two conformations of very similar

(gas-phase) energy. The “low-level” method chosen for the isodesmic reaction was

the DFT (Chapter 7) B3PW91/6-31G(d,f), because in related work a number of

perflurorinated acids, with up to 31 heavy atoms, had been studied at this level. The

relevant quantities (cf. Fig. 8.5) are:

Term (1) is the gas-phase isodesmically calculated deprotonation free energy of

the “big” acid CH2FCOOH; it is to be calculated from terms (2) and (3).

ΔGhigh, 2
reaction 3

RCOOH + CH3COO–

RCOO–    +    H+    +  CH3COO–

RCOO–  +  CH3COOH

Wanted
ΔGhigh, 1

reaction 1
reaction 2

ΔGiso

Fig. 8.5 The principle behind using isodesmic reactions for calculating an accurate deprotonation

free energy for an acid too big to yield directly to a high-accuracy calculation. Note that reaction 1

is really only for deprotonation of RCOOH and reaction 3 is only for deprotonation of CH3COOH;

the anion on the starting side of those reactions was added only for logical consistency, and

cancels. (1) DGhigh,1 is the wanted quantity, the free energy of deprotonation of the large acid

RCOOH, but cannot be calculated directly. (2) DGiso is the free energy of the isodesmic reaction

and can be calculated fairly accurately. (3) DGhigh,2 is the free energy of deprotonation of

CH3COOH and can be calculated accurately directly (any appropriate reference acid could be

used here, and an experimental free energy could be used if available). For conservation of energy:

DGhigh,1 ¼ DGiso þ DGhigh,2
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Term (2) is the gas-phase isodesmic free energy for proton transfer from

RCOOH to the conjugate base CH3COO
� of our reference acid. At the B3PW91/

6-31G(d,f) level this is [�327.598929 � 228.969707] � [�328.158016 �
228.394842] ¼ �0.015778 hartrees ¼ �41.43 kJ mol�1

Term (3) is the gas-phase free energy of deprotonation of the reference acid

CH3COOH; this can be calculated accurately with the high-level CBS-APNO,

giving ¼ [�228.500394 � 0.010000] � [�229.053416] ¼ 0.543022 hartees ¼
1425.7 kJ mol�1.

The gas-phase isodesmically calculated deprotonation free energy of

CH2FCOOH follows (Fig. 8.4):

DGhigh;1 ¼ DGiso þ DGhigh;2

¼ �41:4þ 1425:7 kJ mol�1 ¼ 1384:3 kJ mol�1:

Compare this with a direct CBS-APNO calculation on CH2FCOOH:

DGhigh,1(APNO) ¼ [�327.754836 � 0.010000] � [�328.290375] ¼ 0.525539

hartrees ¼ 1379.8 kJ mol�1. The isodesmically secured energy is 4.5 kJ mol�1

higher than the direct APNO value. The NIST website gives 1,385–1,387 kJ mol�1

for the free energy of deprotonation, with an estimated error of 8.4 kJ mol�1 [51].

If we take the deprotonation energy of CH2FCOOH to be actually in the range

1,380–1,387, the isodesmic calculation works well. But note that an error of 1 pKa

unit results from a free energy error of only 5.7 kJ mol�1, and an error of 0.5 pKa

units from an error of only 2.9 kJ mol�1. We are working at the edge of fairly

accurate pKa values.

Hybrid solvation: Implicit solvation plus Explicit solvation; microsolvation
subjected to the continuum method. Here the solute molecule is associated with

explicit solvent molecules, usually no more than a few and sometimes as few as

one, and with its bound (usually hydrogen-bonded) solvent molecule(s) is subjected

to a continuum calculation. Such hybrid calculations have been used in attempts to

improve values of solvation free energies in connection with pKa: [42], and also

[45] and references therein. Other examples of the use of hybrid solvation are the

hydration of the environmentally important hydroxyl radical [52] and of the

ubiquitous alkali metal and halide ions [53]. Hybrid solvation has been surveyed

in a review oriented toward biomolecular applications [54].

If one is investigating a reaction with the intimate participation of solvent

molecules, then in principle they should be explicitly considered, as in the study

of the hydrolysis of CH3Cl with explicit water molecules (Hydrolysis of CH3Cl
with 13 explicit water molecules, above), for here at least one water molecule is a

reactant, not a mere enfolding medium. The implicitþ continuum approach may be

useful if one seeks not only insight into a mechanism, as in The effect of micro-
solvation on the E2 and SN2 reaction F� þ C2H5F þ nHF, above, but also wants

relative energies in solution of various species involved. An attempt to do this

would place the reactants (probably representing a stationary point), e.g. [F�/
C2H5F/explicit solvent] in a continuum cavity to obtain a free energy of solvation.
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8.2 Singlet Diradicals

For “Is” and “Is-not” though with Rule and Line,
And “Up-and-down” by Logic, I define,. . .
Ah, but my Computations, People say, . . .
– The Rubaiyat of Omar Khayyam, ca. 1100; translated by Edward Fitzgerald, 1859;

Stanzas 56 and 57.

8.2.1 Perspective

The electrons in molecules, usually designated alpha and beta, but drawn as up

and down arrows in energy level diagrams and occasionally verbally bestowed

with those directional terms, are commonly neatly paired in orbitals and subject to

tolerably good computations by what Pople called a model chemistry [55]. This is a

sharply-defined procedure that, once settled upon, does not require judgement to

execute and will not vary from one worker to another. Examples are a HF/6-31G*

geometry optimization or a B3LYP/6-31þG** single-point calculation on a speci-

fied molecule. Almost all the molecular mechanics, ab initio, semiempirical and

DFT calculations discussed in this book have used model chemistries. In contrast

to these, some calculations demand judgement regarding the choice of which set of

orbitals and electrons is or is not to be considered. The most important class of such

calculations is on singlet diradicals (other open shell species, like radicals and

excited states, can present related problems).

A singlet diradical is a molecule with an even number of electrons in which

all but two are paired in orbitals in the familiar manner; each of the “last” two

electrons has one orbital to itself, and their spins are opposite, giving the spectro-

scopic state of a singlet (Fig. 8.6). Simple examples of singlet diradicals are singlet
.CH2–CH2–CH2

. (1,3-propanediyl, the trimethylene diradical) and the transition

state for rotation around the CC double bond of ethene, in which the p-bond has

been broken by twisting through 90�. The reason for focussing on the singlet
diradical will emerge from the examples below. Routine quantum calculations –

model chemistries – do not as a rule work with such species. The reasons for this,

and the techniques that are used on such molecules, are discussed below.

8.2.2 Problems with Singlet Diradicals and Model Chemistries

Let us first do a reality check: we’ll test the ability of some model chemistry

methods to perform geometry optimizations on singlet 1,3-propanediyl or tri-

methylene (CH2–CH2–CH2
.) and on singlet 1,4-butanediyl or tetramethylene

(.CH2CH2CH2CH2
.), simple singlet diradicals.
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1,3-Propanediyl, trimethylene. Four different starting geometries were used

(Fig. 8.7), with symmetry C1, C2, Cs, and C2v, and each of them was submitted to

a geometry optimization/frequency calculation by the HF, the MP2, and the B3LYP

method (see Chapters 5 and 7 for these ab initio methods and this DFT method), for

12 calculations in all. The results are summarized in Table 8.3: all but one optimi-

zation, that starting with the C2v structure, led to closing of the diradical to give

cyclopropane. The C2v starting structure gave a stationary point resembling the

starting structure, an open-chain species. At the HF/6-31G* level this was a hilltop

with a principal imaginary frequency of 668i and a secondary one of 74i cm�1,

while at the MP2/6-31G* and the B3LYP/6-31G* levels it was a transition state

(imaginary frequencies 191i and 453i, respectively). When the MP2 transition state

was slightly distorted along the imaginary mode (the reaction mode; by visualizing

the vibration, replacing a central CH2 H by F and subjecting this now-Cs structure to

just two optimization steps, then restoring the hydrogen and optimizing fully) a Cs

potential energy relative minimum (no imaginary frequencies) was obtained, i.e. a

real molecule (caveat: at this level). At the HF and B3LYP levels the C2v structure,

altered to Cs and optimized, each gave a transition state with a central hydrogen

.

.

.

.

.

.

Energy

Two orbitals of the same or
slightly different energy  

Fig. 8.6 A singlet diradical.

Two electrons (usually the

highest-energy ones) are

unpaired but of opposite spin

Cs C2v

C1 C2

Fig. 8.7 The input structures

for attempted model

chemistry optimizations on

1,3-propanediyl

(.CH2CH2CH2
.). All bond

lengths and angles in these

structures were standard, e.g.

C–C ca. 1.5 Å, C–H ca. 1.1 Å,

bond angles ca. 110�
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seeking to migrate to an end carbon. To summarize: the HF calculations led to a

hilltop and a transition state, the MP2 calculations to a transition state and a relative

minimum, and the B3LYP calculations to two transition states. We see below that

many more stationary points resembling 1,3-propanediyl can be found by appropri-

ate methods.

1,4-Butanediyl, tetramethylene. Three different starting geometries were used

(Fig. 8.8), with symmetry C2, C2h, and C1, and each was submitted to a geometry

optimization/frequency calculation by the HF, the MP2, and the B3LYP method. In

all cases the U-shaped C2 input geometry closed to a cyclobutane molecule and the

zigzag C2h and C1 geometries dissociated to two ethene molecules. We see below

that many stationary points resembling 1,4-butanediyl can be found by appropriate

methods.

8.2.3 (1) Singlet Diradicals: Beyond Model Chemistries.
(2) Complete Active Space Calculations (CAS)

8.2.3.1 (1) Singlet diradicals: Beyond model chemistries

We now look at results of calculations on the 1,3- and 1,4-diradicals by methods

more appropriate than the model chemistries just employed.

Table 8.3 Results of attempted geometry optimization of the .CH2CH2CH2
.

singlet diradical by different model chemistries; the 6-31G* basis was used in all

cases. See Fig. 8.7 for the input structures and text for clarification

Symmetry of

input structure

HF MP2 B3LYP

C1 Cyclopropane Cyclopropane Cyclopropane

C2 Cyclopropane Cyclopropane Cyclopropane

Cs Cyclopropane Cyclopropane Cyclopropane

C2v p-cyclopropane? p-cyclopropane? p-cyclopropane?

Fig. 8.8 The input structures for attempted model chemistry optimizations on 1,4-butanediyl

(.CH2CH2CH2CH2
.). All bond lengths and angles in these structures were standard, e.g. C–C ca.

1.5 Å, C–H ca. 1.1 Å, bond angles ca. 110–120�
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1,3-Propanediyl, trimethylene. Using general valence bond (GVB) calculations,

Getty and coworkers found eight stationary points with trimethylene-like structures

[56]. The GVB method is somewhat related to the complete active space method,

discussed below, in that as in a CAS calculation electrons are promoted from

occupied to virtual orbitals in a limited form of configuration interaction. The

emphasis on the promotion of electrons from orbitals that can be identified with

bonds into their antibonding counterparts makes this a valence bond method

(Section 4.3.1). Looking back at our model chemistry calculations on trimethylene,

above, let’s focus on the MP2 calculations as the most reliable: in a general sense

correlated ab initio calculations are more reliable than those at the HF level and

arguably more reliable than DFT – granting that MP2 is not really a very high-level
method [57]. The MP2 calculations could be construed as giving a C2v 1,3-diradical

transition state and a Cs 1,3-diradical relative minimum, but the proximity of the

end carbons in these species, 2.663 and 2.654 Å, does not quite dispel the possibility

that we are dealing with an unusual closed-shell molecule, a kind of cyclopropane

with a very long CC bond. Indeed, a reaction of cyclopropane, stereomutation, has

been the main impetus for the study of singlet 1,3-propanediyl [58]. Stereomutation

is the interconversion of cis and trans 1,2-substituted cyclopropanes (for the parent
compound deuterium is used as a stereochemical marker), and in principle can

occur by ring opening to a diradical and rotation about a C–C bond. For a detailed

experimental investigation, see Berson et al. [59]. Among the eight species revealed

by the exhaustive GVB search of the 1,3-propanediyl potential energy surface by

Getty et al. were a C2v hilltop (two imaginary frequencies) and two Cs species, one a

relative minimum and one a transition state [56]. These three are p-cyclopropane
structures and resemble our MP2 species. The term p-cyclopropane appears to have
been coined by Crawford and Mishra [60] to denote a trimethylene in which the

atomic p orbitals can, hypothetically at least, form a pure p-type CC single bond:

H

H

H

HH

H

A p-cyclopropane with the end methylene groups coplanar, as shown here, is

(0,0)-trimethylene; specifying the twist dihedral allows designation of the other

conformers, e.g. (0,90)-trimethylene in which the putative p bond is completely

broken [56]. The model chemistries, then, each led to two trimethylene stationary

points: HF to a hilltop and a transition state, MP2 to a transition state and a relative

minimum, and B3LYP to two transition states.

1,4-Butanediyl, tetramethylene. Using complete active space (CAS) calculations

(below), Doubleday found ten stationary points with tetramethylene-like structures, in

work connected with ring-opening of cyclobutane [61]. We saw that model chemis-

tries simply lead to closure or dissociation of input tetramethylene-type structures.
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8.2.3.2 (2) Complete Active Space Calculations (CAS)

The plethora of stationary points found by the GVB (for 1,3-propanediyl) and CAS

(for 1,4-butanediyl) methods cannot be rivalled by ordinary model chemistry

methods. We now look at complete active space (CAS) methods, which are the

standard techniques for treating singlet diradicals; CAS was briefly mentioned in

Section 5.4.3, as a type of multiconfiguration CI (MCSCF) calculation. In CASSCF,

the coefficients of the determinants in the (limited) CI expansion of the molecular

wavefunction, and the coefficients of the basis functions in the expansion of each

molecular orbital within the determinants of the expansion, are optimized. The

model chemistries are unable to reliably handle singlet diradicals because they

formulate the wavefunction as a single determinant which places the electrons of an

even-electron molecule pairwise in orbitals (Section 5.2.3.1). This is the Hartree–

Fock wavefunction, written as a Slater determinant. More than one determinant

is really needed because a single-determinant wavefunction presupposes the

absence of degenerate (or nearly degenerate) orbitals: if such orbitals are present,

the algorithm will simply fill one of them with a pair of electrons. Treating these

diradicals within the ab initio framework requires configuration interaction (CI,

Section 5.4.3). Here the molecular wavefunction is represented as a weighted sum

of determinants, rather than simply as one determinant. A full CI calculation would

include all the determinants derived from the Hartree–Fock one, including a

determinant in which one of the degenerate orbitals is doubly occupied, and one

in which the other is doubly occupied, as well as determinants corresponding to all

other possible excitations of electrons from occupied into formally empty (virtual)

orbitals (the number of virtual orbitals depending on the number of electrons and

the number of basis functions (Fig. 5.5). Such a full CI calculation, if done with an

infinitely big basis set, would exactly solve the Schr€odinger equation. This is out
of the question, and even with a large finite basis set full CI is applicable only

to very small molecules. The standard method for computations on singlet diradi-

cals is a limited form of CI, in which the molecular wavefunction is represented

by a weighted sum of the Hartree–Fock determinant and a set of determinants

corresponding to shuffling electrons among a carefully chosen set of molecular

orbitals. The chosen set of MOs is the active space, and method is the complete
active space method (CAS). To refine the coefficients that, with the basis functions

comprise the MOs, we use the iterative SCF method (Sections 5.2.2 and 5.2.3.6.2),

so the full appellation of the technique is complete active space SCF or CASSCF.
This gives a limited-CI wavefunction with corresponding geometry and energy, and

if needed the other usual properties that can be obtained from a wavefunction.

To do a CASSCF calculation, one must first choose the active space, that is, the

relevant MOs. Which MOs are relevant depends on the purpose of the calculation,

and on how “complete” one wants the active space to be. The unattainable limit of

course would be full CI. This will be illustrated with a few examples. Consider the

diradicals 1,3-propanediyl and 1,4-butanediyl. Intuitively, it seems that we should

consider at least these two MOs: the MO that resembles a bonding linear combina-

tion (Section 5.2.3.6) of the two p-type atomic orbitals on the end carbons and the
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MO that resembles an antibonding linear combination of these atomic orbitals. We

want these to be our HOMO and LUMO. The CAS wavefunction would then be

composed of the HF determinant plus all determinants in which the two formally

unpaired electrons are distributed (cf. Fig. 5.2.2) among the HOMO and LUMO.

This is the minimum active space for a CAS calculation on these species, and is

called a CASSCF(2,2) calculation (2 electrons, 2 MOs). This means that two

electrons are being distributed in all possible ways among two MOs.

A CASSCF Calculation on 1,4-Butanediyl

The procedure will be described first for 1,4-butanediyl, which failed all our simple

model chemistries tests. We first choose a starting geometry. This will depend

somewhat on the purpose of our study. If we wish to compute the reaction profile

for ring opening of cyclobutane to the proximate diradical, i.e. to the immediate

relative minimum following ring opening (the concept of a well-defined transition

state stationary point seems inapplicable here [62]), we might select a starting

geometry that resembles cyclobutane with a stretched C–C bond. If we wish to

explore the whole 1,4-butanediyl potential energy surface, we would perform

geometry optimizations starting with all reasonably distinct conformations, created

randomly or by systematically altering the torsion angles of a beginning structure.

Here we consider a CASSCF calculation starting with the C2h conformation of

1,4-butanediyl (Fig. 8.8). The exact keywords for each step depend on the program,

and are not given specifically here.

Step 1 obtains a wavefunction for our starting “guess” geometry. For speed

and to limit the number of MOs (which appear in step 2), an STO-3G basis set

(Sections 5.3.2 and 5.3.3) is usually used. A single point calculation with the

specified basis is requested and the wavefunction is stored in a file (Gaussian [49]

calls this a checkpoint file) to be recalled in subsequent steps.

Step 2 uses the wavefunction from step 1 to localize the MOs. To recapitulate

(Section 5.2.3.1 ): normally the Hartree–Fock wavefunction is represented straight-

forwardly as a Slater determinant in which the chosen basis set {f} is used to

expand the occupied MOs c as linear combinations of the f functions. The Fock

matrix derived from this determinant is called the canonical Fock matrix, and when
repeatedly diagonalized and refined in the SCF process it yields a set of MOs, the

canonical MOs. These MOs commonly do not resemble the bonding (or inferred

antibonding) orbitals of Lewis structures: for example, visualizing the canonical

MOs of H2O, one does not see one MO corresponding to one of the O–H bonds, and

one corresponding to the other O–H bond. Canonical MOs tend to be delocalized

over the whole molecule, eluding correspondence with conventional Lewis bonds.

However, it is possible to combine the canonical MOs so as to get localized orbitals

corresponding to bonds and lone pairs. This is done (in outline) by manipulating the

canonical Hartree–Fock wavefunction determinant by adding multiples of rows or

columns to other rows or columns. The wavefunction is unaltered mathematically

(Section 4.3.3.7, Determinants, property number 6): it will give the same observable
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properties, like geometry, spectra, and dipole moment. There are various require-

ments that can be enforced to produce different kinds of localized orbitals [63]; the

most widely used MO localization schemes in CAS calculations are probably NBO

(natural bond orbitals) and Boys localization. Boys localization [64] generates MOs

that are as compact as possible, and NBO localization [65] creates MOs each of

which is essentially composed of basis functions on just two atoms; both might thus

be expected to resemble Lewis structures. We visualize the localized orbitals and

inspect them, in search of which ones to assign to the active space.
The active space is the set of MOs among which the electrons will be distributed:

electrons will be promoted from the formally occupied orbitals into the formally

unoccupied ones in a CI calculation limited to the chosen orbitals. The orbitals

are chosen according to the purpose of the calculation. If we simply wish to obtain

the geometry of a diradical like 1,4-butanediyl, then we look for the troublesome

orbitals, the ones now (we hope) localized on the end carbons. An orbital corres-

ponding to this occupied and one corresponding to this vacant orbital constitute the

minimum active space for our calculation. Since two electrons and two orbitals are

involved, this is called a CASSCF(2,2) calculation; with a electrons and b orbitals

we have a CASSCF(a,b) calculation. Figure 8.9 clarifies this: the algorithm will

recognize this active space as consisting of the two frontier orbitals (HOMO and

LUMO); we want these to be the two MOs that are localized on the end carbons.

If we had decided to use a (6,6) active space, by including in addition the two

proximate C–C s bonds and their antibonding counterparts, the active space would

be recognized as the HOMO, HOMO-1, HOMO-2, and LUMO, LUMOþ1, and

LUMOþ2. If an orbital that should be in the active space (as shown by its

.

.

.

.

.

.

active space for a CAS(2, 2)
calculation on .CH2CH2CH2CH2

.

Energy

MO 16

MO 17

Fig. 8.9 The active space for a CASSCF(2,2) calculation on 1,4-butanediyl. There are two

relevant MOs: the highest occupied and lowest unoccupied MO, and two electrons to be

distributed among these. The relevant MOs must be determined by inspection (preferably visual)

to be the right ones for the purpose of the calculation: see Fig. 8.10
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appearance on visualization) is not, it can be switched by an appropriate command

with one initially in the active space but irrelevant to the calculation. Figure 8.10

shows the two MOs in the active space of our CASSCF(2,2) calculation, localized

by the NBO method (in this case, with the Boys method the ordinal numbers of

the relevant orbitals was unclear, due to the their not being nicely localized). The

occupancy is revealed by visualization with an appropriate program or, less conve-

niently, inspection of printed output, which shows that the bonding-type C1/C4 MO

number 16 is formally occupied by two electrons and the antibonding-type MO

number 17 is formally vacant. Note that this species has 32 electrons. If, say, the

MO resembling MO 16 here had been MO 10 and MO 16 had been a C–H bonding

orbital, ten and 16 could be switched – see below for cyclopentane. The point is that

we want to perform a CI calculation using the relevant orbitals.

Step 3 is a geometry optimization. Appropriate keywords might be CASSCF

(2,2)/6-31G*, specifying a CASSCF(2,2) procedure (a limited CI optimization)

using the 6-31G* basis, which will normally be the smallest chosen. Other key-

words might dictate the information to be taken from step 2 and how to calculate

the initial Hessian (e.g., use a semiempirical calculation) for the optimization.

Figure 8.11 compares our CASSCF(2,2)/6-31G* C2h relative minimum (no imagi-

nary frequencies – see below) with the C2h CASSCF(4,4)/6-31G* minimum of

Doubleday [61].

Step 4 is a frequency calculation on the geometry from step 3, again using the

CASSCF(2,2)/6-31G* method. The program might allow this step to automatically

follow the optimization. In most cases the frequency calculation is desirable, to

characterize the nature of the optimized structure as a minimum or some kind of

saddle point, and to obtain thermodynamic data like zero point energy and enthalpy

and free energy (Sections 2.5 and 5.5.2.1b).

One further step is desirable for obtaining relative energies, namely performing

on the CASSCF(2,2)/6-31G* geometry a calculation designed to treat electron

correlation better than was done by the CASSCF calculation. Recall that Hartree–

Fock (also called SCF) calculations treat electron correlation only very approximately

(Section 5.4.1). In a typical CASSCF calculation most of the electrons, i.e. those

MO 16, formally doubly occupied MO 17, formally unoccupied

Fig. 8.10 Visualization of the relevant MOs, 16 and 17, for the active space of a CASSCF(2,2)

calculation on 1,4-butanediyl: the algorithm will recognize the active space as consisting of the

two frontier orbitals (HOMO and LUMO; the molecule has 32 electrons); we ensure by visual

inspection that these are the two MOs that are localized on the end carbons. If a desired orbital is

not a frontier orbital to start with, it can be switched with one (see text). NBO localization was used

here. Calculated with the HF/STO-3G basis and localized by the NBO method
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outside the active space, are not subjected to the CI calculation, but instead are

treated at the Hartree–Fock level. The CASSCF calculation is said to treat properly

static correlation, but not dynamic correlation (Section 5.4.1). To account more

completely for dynamic correlation, a single-point perturbational calculation based

on the CASSCF wavefunction is frequently done. This is a CAS perturbational

theory, second order, or CASPT2, calculation. The most popular implementation of

this is CASPT2N (N ¼ nondiagonal one-particle operator) [66]. For programs that

will do CASPT2-type calculations, see Section 9.3. Improving a CASSCF energy

with a CASPT2 calculation is analogous to improving a Hartree–Fock- (i.e. SCF-)

level calculation with a single-point MP2 calculation (Section 5.4.2).

CASSCF Calculations on 1,5-Pentanediyl and Cyclopentane

I outline another example of CASSCF calculations: a comparison of the energy of

1,5-pentanediyl and cyclopentane:

. .

E(C – C)

(1.483)
(1.619)

1.492

.

1.568

1

2

2
3

4

1

7

8C1C2C3C4 = 180 (180)
H1C1C2C3 = 75.7 (76.0)
H2C1C2H1 = 151.4 (208.0)
H7C4C3C2 = 75.6 (76.0)
H8C4C3H7 = 151.3 (208.0)

This work

Doubleday

Fig. 8.11 The C2h 1,4-butanediyl diradical relative minimum (no imaginary frequencies), as

calculated by CASSCF(2,2)/6-31G* (this work) and CASSCF(4,4)/6-31G* (Doubleday [61],

Fig. 1 and Table III)
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This energy difference should be a measure of the C–C bond energy in cyclo-

pentane. These calculations used NBO localization (the result of Boys localization

was messy when visualized) and CASSCF(2,2)/6-31G*.

Several starting geometries were explored to obtain a C5 diradical that was a

relative minimum, but a thorough exploration of the potential energy surface was

not attempted. Starting from a roughly bow-shaped C1 structure created by con-

straining the end carbons with molecular mechanics to a separation of 4.5 Å yielded

a C1 relative minimum. The visualization step showed that for the input structure

the default active space MOs, MO 20 and 21, the HOMO and LUMO, were the

desired orbitals, localized at the end carbons. However, for cyclopentane the

occupied C–C bonding MO, representing the bond to be broken, was number 10,

while MO 20 was a pure C–H bonding orbital, an unwanted intruder in the active

space; a command to switch orbitals 10 and 20 was therefore given as part of the

optimization input. See Fig. 8.12. The diradical and cyclopentane, optimized at

the CASSCF(2,2)/6-31G* level, were checked by frequency calculations to ensure

that the structures were relative minima on the potential energy surface and to

obtain the energy parameters below (Gaussian 03 output).

cyclopentane MO 20

1, 5-pentanediyl MO 20 1, 5-pentanediyl MO 21

cyclopentane MO 10 cyclopentane MO 21

Fig. 8.12 The molecular orbitals of 1,5-pentanediyl and cyclopentane, relevant to the C–C

cleavage of the cycloalkane that leads to the acyclic diradical. Calculated with the HF/STO-3G

wavefunction and localized by the NBO method. The cyclopentane C–C bonding orbital, MO 10,

relevant to this reaction, must be switched with MO 20, a pure C–H bonding MOwith no relevance

here, to move the C–C MO into the active space. Note that these molecules have 40 electrons
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The energies of the diradical and cyclopentane can be compared:

1,5-Pentanediyl

(Energy before frequency calculation (i.e. without ZPE) �195.0603078)

Zero-point correction 0.140164

Thermal correction to energy 0.147459

Thermal correction to enthalpy 0.148403

Thermal correction to Gibbs free energy 0.109777

Sum of electronic and zero-point energies �194.920144

Sum of electronic and thermal energies �194.912849

Sum of electronic and thermal enthalpies �194.911905

Sum of electronic and thermal free energies �194.950531

Cyclopentane

(Energy before frequency calculation (i.e. without ZPE) �195.1797025)

Zero-point correction 0.150327

Thermal correction to energy 0.155259

Thermal correction to enthalpy 0.156203

Thermal correction to Gibbs free energy 0.121800

Sum of electronic and zero-point energies �195.029375

Sum of electronic and thermal energies �195.024444

Sum of electronic and thermal enthalpies �195.023500

Sum of electronic and thermal free energies �195.057902

Cyclopentane Bond Energy

1. The crudest value for this is based on the energies from the optimization step, i.e.

without ZPE

� 195:0603078� ð�195:1797025Þ ¼ 0:119395 ¼ 313:5 kJ mol�1

2. Using ZPE-corrected energies, i.e. 0 K enthalpies

� 194:920144� ð�195:029375Þ ¼ 0:109231 ¼ 286:8 kJ mol�1

3. Using sum of electronic and thermal enthalpies, i.e. room-temperature (298 K)

enthalpies

� 194:911905� ð�195:023500Þ ¼ 0:111595 ¼ 293:0 kJ mol�1

To improve the relative energies, a single-point perturbational calculation was

done on both species to correct for dynamical electron correlation. CASPT2N was

not available, and the CAS-MP2 method used here, with the 6-31G* basis, can lead

to suspect results [67]. Nevertheless, the values obtained for these two species seem

reasonable:
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Diradical, MP2 ¼ �195.6895856

Cyclopentane, MP2 ¼ �195.8242116

We can use these energies, with the thermal corrections to the enthalpy (above)

to calculate the sum of electronic and thermal enthalpies starting with the CAS-

MP2 electronic energies:

Diradical, �195.6895856 þ 0.148403 ¼ �195.54118

Cyclopentane, �195.8242116 þ 0.156203 ¼ �195.66801

The difference of these represents the room temperature enthalpy of dissociation

of the C–C bond in cyclopentane, i.e. the standard bond energy [68]: [�195.54118]�
[�195.66801] ¼ 0.12683 ¼ 333.1 kJ mol�1. Of the energy-difference values calcu-

lated here, this is the closest to the likely C–C bond energy [69] of cyclopentane,

which should be about the same as that of butane, for which an experimental value of

363.2 � 2.5 kJ mol�1 and calculated values of ca. 367, 378 and 379 kJ mol�1 have

been reported [70].

One more example of the CASSCF procedure will be outlined: calculating the

barrier to rotation around the CC double bond in ethene. Step 2, orbital localization,

showed nicely localized orbitals when NBO localization was used, but the orbitals

were harder to identify with Boys localization. For a CAS(2,2)/6-31G* optimiza-

tion the active orbitals chosen were the p and p* MOs, and for a CAS(4,4)/6-31G*

optimization the p , p*, s and s* MOs. The input structures were the normal planar

ethene and perpendicular (90� twisted) ethene. Optimization and frequency calcu-

lations gave a minimum for the planar and a transition state for the perpendicular

structures. The energies (without ZPE, for comparison with those calculated with

the GVB method by Wang and Poirier [71]) were:

CASSCF(2,2):

perpendicular ethene, �77.9630054, planar ethene, �78.0673444;

barrier ¼ 0.10434 ¼ 274.0 kJ mol�1.

CASSCF(4,4):

perpendicular ethene, �77.982972, planar ethene, �78.0852825;

barrier ¼ 0.10231 ¼ 268.7 kJ mol�1.

Wang and Poirier obtained from GVB calculations [71] a barrier of 263.6 kJ

mol�1 (65.4 kcal mol�1). The reported experimental value for the barrier of cis-
ethene-d2 is 272 kJ mol�1 [72]. Hartree–Fock, MP2 and DFT (B3LYP) optimiza-

tions on the perpendicular ethene transition state did give an optimized structure

with one imaginary frequency, but the barriers (6-31G*) basis were respectively

540, 572, and 399 kJ mol�1 (without ZPE, which was only ca. 10–20 kJ mol�1).

More complex than ethene but amenable to a similar attack is the fascinating

molecule orthogonene. This is so named because in this C14 molecule four C2

clamps hold the C6 tetrasubstituted double bond moiety twisted through ca. 90�:
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CASSCF(4,4)/6-31G* calculations using the C¼C p and s bonding and anti-

bonding orbitals led to the conclusion that the molecule can rearrange to a carbene

with a barrier of about 200 kJ mol�1 [73].

Procedures for more involved CASSCF calculations, including calculations on

exited states, are given by Foresman and Frisch, with caveats for assessing the

reliability of the results, and they reassure the reader “not [to be] discouraged by

difficulties that you may encounter” [74]. Although CAS and GVB calculations are

the standard ways of handling singlet diradicals, attempts have been and are being

made to extend the reach of DFT here, perhaps bringing these species one day into

the compass of model chemistry methods. Examples are the work of Kazaryan and

Filatov [75], and Cremer and coworkers [76]. Open shell molecules in general can

present problems for model chemistries; these, and ways of dealing with them, have

been reviewed by Bally and Borden [77].

8.3 A Note on Heavy Atoms and Transition Metals

All things are Atoms: Earth and Water, Air
And Fire, all, Democritus foretold.
Saw Sulphur, Salt, and Mercury unfold
Amid Millenial hopes of faking Gold.
. . .
The Metals, lustrous Monarchs of the Cave,
Are ductile and conductive and opaque
Because each Atom generously gave
Its own Electrons to a mutual Stake,
. . ..
–John Updike, Midpoint, III. The dance of the solids. Composed ca. 1967.

8.3.1 Perspective

All chemical things are composed of atoms, so one might wonder why heavy atoms

and transition metals should be singled out for special treatment. Part of the justi-

fication is that most of the elements are metals, and most of these are transition-type

metals; I include in this class the lanthanides and actinides (IUPAC recommends

the terms lanthanoids and actinoids, as -ide implies an anion). The high atomic

numbers of most elements, compared to carbon and its neighbors, and the quirky

electronic structures of transition metals, pose problems not encountered routinely

in computations on organic compounds. Beyond about the second (beyond Ar,

Z ¼ 18), certainly beyond the third (beyond Kr, Z ¼ 36), full row of the periodic

table, the pull of the nuclear protons forces the inner electrons to move at a

significant fraction of the speed of light. This makes relativistic corrections often
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necessary for accurate work. Further, transition metals (TMs) tend to fill their outer

shells in a manner less than straightforward, and to exhibit a more baroque style of

bonding than seen in typical organic compounds. The purpose of this short section

is merely to make readers aware of these problems so that should they seek to carry

out computations on inorganic species they will know that further delving into the

relevant literature may be advisable.

8.3.2 Heavy Atoms and Relativistic Corrections

The gain in mass [78] of the inner electrons in heavier atoms causes their orbitals to

contract and screen the outer electrons better than they otherwise would, causing

outer, valence d and f orbitals to expand, becoming of higher energy and more

reactive (a semipopular account of relativistic effects and computations is given by

Jacoby [79]). This has striking physical consequences, like the color of gold and the

fact that mercury is liquid, and significantly affects spectra by altering spin-orbit

coupling, while the chemical effects permeate structures and energetics; this is

discussed in Pyykk€o’s comprehensive review of the effects of and computations

dealing with relativity in chemistry [80]. Other reviews relevant to relativistic

computations discuss pseudopotentials and TM compounds [81, 82], transactinide

elements [83] and the theory of relativistic quantum chemistry [84]. A thorough

account of relativistic effects in chemistry, a very technical subject, is given in the

two-volume work by Balasubramanian [85], and the review of Volume B byWilson

is itself worth reading for a perspective on the subject [86]. Relativistic effects in

molecules are computed by the Dirac–Fock equation or, more frequently, pseudo-

potential or effective core potential methods. Perturbation methods have also been

applied to atomic and molecular relativistic effects [80]. The term pseudopotential
is favored by physicists, while effective core potential or ECP tends to be used often

by chemists. The Dirac–Fock method ([80, 87] and references therein) is based on

the extension to multielectron systems of the famous one-electron relativistic Dirac

version of the Schr€odinger equation [88]. It is “The most satisfying way to carry out

relativistic molecular calculations” [80], but is apparently not very practical for

many-electron molecules (but see a recent calculation on PbH4 [89]). Less demand-

ing and much more popular are computations using relativistic pseudopotentials

(relativistic ECPs). A relativistic pseudopotential is a one-electron operator, some-

what analogous to the Ĵ and K̂ operators in standard Hartree-Fock theory (Eqs. 5.29

and 5.30), which is incorporated into the Fock operator (Eq. 5.36, and equations

(20)–(21) in [80]) and modifies it by treating the inner, non-valence electrons in an

average way, and taking relativity into account; the valence electrons are treated

conventionally. This average treatment greatly reduces the number of electrons that

must be directly addressed and the number of basis functions needed. Nonrelativis-

tic or relativistic pseudopotentials can be used even when relativity is not a

problem, to reduce the computational effort arising from many inner-shell elec-

trons. We encountered the concept in a very crude form in Chapter 6, where we saw
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that semiempirical methods like AM1 and PM3 treat only the valence electrons

explicitly and in effect collapse the inner electrons into the nuclei. The valence

electrons then move in the electrostatic potential field of a set of “pseudonuclei”,

each with a charge equal to the algebraic sum of an atomic number and the charge

of the inner electrons.

Pseudopotentials for molecules come from parameterization for atoms using

Dirac–Fock calculations. Since the pseudopotentials are parameterized for atoms,

we are assuming that the inner electrons are little affected on going from atoms to

molecules. The results justify this assumption. Actually, some pseudopotentials

handle all but the outermost electron shell (all but, say, n ¼ 5), and some all but the

two outermost (all but, say, n ¼ 5 and 4); these are called, respectively, larger-core

or full core, and small core pseudopotentials. Since these calculations do not

directly use the Dirac–Fock equation, they are sometimes called quasirelativistic
calculations. Pseudopotentials are invoked by specifying a basis set that has been

specially designed for them, and a pseudopotential basis set (ECP basis set) is often

simply called a pseudopotential or ECP. They can be used in Hartree–Fock, MP2,

CI, and DFT calculations, and are the standard method of treating molecular

relativistic effects, and of reducing the computational strain incurred by the pres-

ence of large numbers of electrons even when relativity is not significant. Another

problem sometimes met with in heavy atoms is caused by spin-orbit coupling. This

and electron correlation effects are addressed with pseudopotentials in a recent

paper [90].

8.3.3 Some Heavy Atom Calculations

The efficacy of a technique is sometimes best highlighted by studying trends. A

comprehensive review of compounds of the carbon homologue series Si, Ge, Sn

and Pb has been published by Karni et al. [91]. The rotational barriers in ethane and

its various Si, Ge, Sn and Pb homologs were computed by Schleyer et al. [92], using

pseudopotentials; relativistic effects were important only for Pb (Z ¼ 82). Pseudo-

potential calculations have been extended to the sixth element in this series, with

studies of (114)X2 and (114)X4, X ¼ H, F, Cl [93]. Relativity can be neglected for

certain properties for iodine (Z ¼ 53), krypton (Z ¼ 36) and even Xenon (Z ¼ 54):

MP2 studies on the geometry and thermochemistry of iodine oxides with extended

Pople-type basis sets and comparison with earlier work showed that “relativistic

effects are either small or cancel” [94], and DFT calculations on fluorides of

krypton and xenon (and some work on radon) with and without relativistic effects

showed that for bond lengths, dissociation energies, force constants, and charges

“relativistic effects. . .are negligible” [95]. An extensive list of basis functions,

which enables those available for a desired atom to be identified and downloaded

for computation, is available online [96]. A brief presentation of popular pseudo-

potentials is given by Cramer [97]. The literature and some experimentation
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suggests that one popular basis, the LANL2DZ (Los Alamos National Laboratory),

parameterized for H to Pu, may be particularly useful.

8.3.4 Transition Metals

The bonding in and structures of transition metal compounds constitute a subject

with rules somewhat sui generis to one primarily versed in organic and main group

chemistry. The relative complexity of bonding in these compounds arises from the

presence in their compounds of partially filled d- or (for the lanthanides and

actinides) f-level atomic orbitals, when the compound is viewed as consisting of

ions surrounded by ligands. This viewpoint is possible not only for simple ionic

compounds Mn+Xn�, but also for covalent compounds and “complexes”, since the

metal can be assigned an at least formal oxidation state. The classification of a

particular element as a transition metal, a lanthanide or an actinide is not always

unambiguous and universally adhered to. For example, the scandium atom has one

d electron, but in any compound in which it has an oxidation number above two, it

will have no d electrons. Zinc has ten d electrons, but its compounds, formed by loss

of two s electrons, also have this fully filled d shell. Were compounds of scandium

(I) or (II) and Zn(III) recognized, with one and nine d electrons, respectively, these

elements would be classified as transition metals. Below are generally accepted

classifications for TM-type elements, with the hedge that the electronic structures

are idealized in that subtle shifts in occupancy are possible. For example, a Cu(I)

compound may not have the expected 3d94s1, but rather the 3d104s0 arrangement.

Transition metals, first row, Ti (Z ¼ 22, 3d24s2) – Cu (Z ¼ 29, 3d94s2)

Transition metals, second row, Zr(Z ¼ 40, 4d2 5s2) – Ag (Z ¼ 47, 4d95s2)

Transition metals, third row, Hf (Z ¼ 72, 5d26s2) – Au (Z ¼ 70, 5d96s2)

Lanthanides, Ce (Z ¼ 58, 4f15d16s2) – Yb (Z ¼ 70, 4f146s2)

Actinides, Th (Z ¼ 90, 6d27s2) – Es (Z ¼ 99, 5f117s2) (stopping at what appears

to be the last element available in at least milligram amounts [98]).

The electronic structures of compounds of these elements is complicated by

ambiguities in filling the d or f shells, which can give rise to low-spin and high-spin

compounds with the same number of formal metal electrons (i.e. with the metal in

the same oxidation state) but with different ligands, depending on the gap between

the so-called (for d-shell atoms) t2g and eg sets of orbitals. An accessible and

reasonably compact introduction to the structure of TM compounds and the role

therein of d orbitals is given by Cotton et al. [99]. Hoffmann, in his Nobel Lecture,

presents an interesting and original set of rules, the isolobal analogy, for interpret-

ing the structures of such species and drawing analogies, which “[allows] us to see

the simple essence of seemingly complex structures” [100]. The detailed properties

of individual elements are discussed in standard textbooks, e.g. [101, 102].

I outline the main salient points relevant to computations on TM compounds.

First, as indicated above, one needs an understanding of the rules behind the
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peculiarities of d orbital electronic arrangements, in order to formulate and interpret

rational structures; when a structure is not “rational”, because it is particularly

novel, background theoretical knowledge is even more valuable. Prosaic factual

knowledge of chemical properties does not hurt either. The elucidation of the

structure of ferrocene, (C5H5)2Fe, provides a nice example of the role of factual

and theoretical knowledge in discovery. Ferrocene was initially assigned a conven-

tional C–Fe–C structure, but unlike known compounds with a metal-carbon sigma

bond it was very stable, and like benzene reacted by electrophilic substitution.

Theory led to the formulation of the correct and then-unprecedented sandwich

structure. The ferrocene saga, which initiated a revolution in transition metal

chemistry, has been summarized by Dagani [103] and Laszlo and Hoffmann [104].

In our short survey of the computational techniques available for investigating

TM compounds we first mention molecular mechanics (Chapter 3). It may seem

humble by the standards of the quantum mechanical ab initio, semiempirical and

DFT methods (Chapters 5, 6 and 8, respectively) but MM is useful for obtaining

input structures for submission to one of those calculations, may even provide in

itself useful information, and it is, of course, extremely fast. Indeed, a recent book

on the modelling of inorganic compounds, mainly TM species, is devoted very

largely to molecular mechanics and a program specially parameterized for TM

compounds, Momec3 [105].

Ab initio methods (unparameterized, or almost unparameterized, wavefunction

calculations) were at one time, in contrast to DFT, deprecated for the study of TM

compounds, but it now appears that this inferiority of ab initio is largely confined to

the first-row metals, titanium to copper [81, 106]. DFT can sometimes be quite

inaccurate, and advanced correlated ab initio methods like CCSD(T) and even

CCSDTQ (Section 5.4.3), may be useful, although these are currently limited to

small systems [107]. Nevertheless, DFT calculations with pseudopotentials, com-

monly relativistic, are now the standard methods for performing calculations on TM

compounds [81, 106, 108]; for example Frenking, in a paper analyzing bonding in

such species, extols the virtues of DFT used with pseudopotentials [108]. The

suitability of various functionals for TM chemistry is commented on by Zhao and

Truhlar in a review which presents their newM0-class functionals (Sections 7.2.3.4.

and 7.3), and the most appropriate for this purpose are said to be M06 and,

especially, M06-L [109], but Tekarli et al. found that with the correlation-consistent

cc-p-VQZ basis the B97-1 functional can give formation enthalpies of first-row

transition metals within 4 kJ mol�1 (1 kcal mol�1) of high-level multistep ab initio

methods (cf. Section 5.5.2.2b) , G4(MP2) and ccCA-tm [110]. A DFT method

called SIESTA (Spanish Initiative for Electronic Simulation with Thousands of

Atoms), designed for big, extended systems like large metal clusters, has found use

in recent years [111].

Finally, TM compounds have been studied by semiempirical methods. One

thinks first of faux-ab initio-type methods like AM1 and PM3 (Chapter 6), since

these are surrogates for “full” quantum mechanical ab initio techniques. However,

the deepest insights into the nature of these compounds that have been afforded by a

semiempirical method have come from the uncomplicated and venerable extended
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H€uckel method ( Section 4.4). In the hands of Hoffmann, to whom we owe the

EHM in its current form [112], extended H€uckel calculations have given powerful

insight into the structures of these compounds. Wide-ranging corroboration of this

assertion is seen in Hoffmann’s Nobel lecture [100]. Some other examples are a

polymeric rhenium compound [113], manganese clusters [114], and iridium [115]

and nickel [116] coordination compounds.

Unlike the extended H€uckel method, AM1 and PM3 are useful for optimizing

geometries and (less reliably) calculating relative energies of organic compounds,

a purpose for which they were primarily designed. For TM compounds, a version

of PM3, PM3(tm), available in Spartan [31] (in later versions of the program,

not explicitly called PM3(tm) but parameterized for several transition metals)

was developed. This is very fast and has been quite extensively used, with mixed

results. Buda et al. compared PM3(tm) with ab initio (MP2 on HF geometries) and

DFT for 30 complexes and found that PM3(tm) reproduced the crystallographic

data in 80% of the cases, compared to 87% for MP2//HF and hybrid DFT, and 90%

for pure DFT [117]. Cooney et al. found it accurate enough as far as steric factors

go, for predicting novel properties of rhodium phosphines [118], and Zakharian and

Coon reported that “In general, the PM3(tm) method in Spartan shows promise for

predicting adsorption sites and vibrational frequencies of molecules on metal [i.e.

nickel] surfaces” [119], while Goh and Marynick found it to be inadequate for

energies, although its geometries were accurate enough for “energetics at a higher

level” (they refer to isodesmic reaction energies) with compounds of Cr, Mo, W and

Co [120], and Bosque and Maseras obtained geometries ranging from excellent to

very poor by comparison with literature X-ray and neutron diffraction and with

ab initio and DFT calculations, with compounds of Pd, W and Ti [121]. The TM

parameterization of PM3 is discussed by McNamara et al. [122]. With this varia-

bility in performance great care is clearly needed in judging the appropriateness and

reliability of PM3(tm) calculations: results for model systems might be compared

with experiment, or, because of its speed, the method could be used in a large,

suggestive survey. Semiempirical approaches to the computation of geometries and

energies (e.g. bond energies, heats of formation) of transition metal compounds

have not reached the same level of reliability that has been attained for organic

compounds with the normal (full) first-row (C, H, N, O, F) elements (Chapter 6).

Some may not regard this as a serious problem in view of the speed of DFT over

high-level ab initio methods like CCSDT, the availability of improved functionals,

and the reliability of pseudopotentials.

8.4 Summary

For some purposes gas-phase calculations are unrealistic, e.g. for understanding

some solution-phase reactions, or even almost useless, e.g. for the prediction of pKa

in solution. For introducing the effects of solvation, there are two methodologies
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(and a hybrid of these two): explicit solvation, that is, putting individual solvent

molecules into the system, and continuum solvation, representing the solvent as an

appropriately parameterized continuous medium. Although for some purposes

explicit solvation is needed, particularly where solvent molecules participate in a

reaction, continuum methods are more widely used.

Some molecular species are not calculated properly by straightforward model

chemistries; these include singlet diradicals and some excited state species. For

these the standard method is the complete active space approach, CAS (CASSCF,

complete active space SCF). This is a limited version of configuration interaction,

in which electrons are promoted from and to a limited, carefully chosen set of

molecular orbitals. CASSCF calculations require care in choosing these orbitals

and in judging the reliability of the results (see e.g. Singlet Diradicals, Harder
Questions, Questions 3 and 4).

Calculations on systems with heavy atoms often employ pseudopotential basis

sets, which reduce the computational burden that large numbers of electrons would

present, by avoiding explicit treatment of inner electrons. These basis sets are

frequently relativistic, taking into account the effect on chemical properties of

electrons moving at a significant fraction of the speed of light. Transition metals

present problems beyond those of main-group heavy atoms: not only can relativistic

effects be significant (in the heavier elements), but near-lying electron d- or

f-levels, variably perturbed by various ligands, make possible a variety of electronic

states. Although beyond the first transition metal row ab initio (i.e. wavefunction)

methods have been used, less demanding DFT calculations, with pseudopotentials,

are the standard approach for computations on such compounds.
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Solvation

Easier Questions

1. Using microsolvation, roughly how many water molecules might be needed to

provide one layer around CH3F (suggestion: examine space-filling hand-held or

computer-generated models)?

2. What physical properties of solvents have been used to parameterize them for

continuum calculations?

3. Give an example of a reaction for which just one explicit solvent molecule might

be adequate in simulating a reaction mechanism.

4. For continuum solvation, give an example of a molecule for which a good

approximation might be (a) a spherical cavity, (b) an ellipsoidal cavity.

5. Why are continuum solvation methods more widely used than microsolvation

methods?

Harder Questions

1. In microsolvation, should the solvent molecules be subjected to geometry

optimization?

2. Consider the possibility of microsolvation computations with spherical, polar-

izable “pseudomolecules”. What might be the advantages and disadvantages of

this simplified geometry?

3. In microsolvation, why might just one solvent layer be inadequate?

4. Why is parameterizing a continuum solvent model with the conventional dielec-

tric constant possibly physically unrealistic?

5. Consider the possibility of parameterizing a continuum solvent model with

dipole moment.

Singlet Diradicals

Easier Questions

1. A monoradical is a doublet and a diradical can be a singlet or a triplet. How

many spin states are possible for a triradical?

2. What does the Pauli exclusion principle suggest about the relative energies of

singlet and triplet diradicals?
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3. What is the simplest singlet diradical hydrocarbon species?

4. Which MOs would be appropriate for CASSCF calculations on

(1) the ring-opening of cyclobutene to 1,3-butadiene?

(2) the Diels-Alder reaction?

5. How many CI configurations are used in

(1) a CASSCF(2,2) calculation?

(2) a CASSCF(2,3) calculation?

Harder Questions

1. Is CASSCF size-consistent?

2. In one-determinant HF (i.e. SCF) theory, each MO has a unique energy (eigen-

value), but this is not so for the active MOs of a CASSCF calculation. Why?

3. In doubtful cases, the orbitals really needed for a CASSCF calculation can

sometimes be ascertained by examining the occupation numbers of the active

MOs. Look up this term for a CASSCF orbital.

4. Why does an occupation number (see question 3 above) close to 2 or 0 (more

than ca. 1.98 and less than ca. 0.02) indicate that an orbital does not belong in the

active space?

5. It has been said that there is no rigorous way to separate static and dynamic

electron correlation. Discuss.

Heavy Atoms and Transition Metals

Easier Questions

1. Suggest a simple physical property of an atom for which a comparison of

experiment with a calculated value might be used a test of whether the atom

should be regarded as being “heavy” (hint: consider the energy of the valence

electrons).

2. Suggest a simple property of a compound of element X for which a comparison

of experiment with a calculated value might be used a test of whether element X
should be regarded as being “heavy”.

3. Dirac, the discoverer of the relativistic one-electron equation, thought that

relativity would be unimportant in chemistry (P. A. M. Dirac, “Quantum

Mechanics of Many-Electron Systems”, Proceedings of the Royal Society of

London. Series A, Mathematical and Physical Sciences, 1929, 123(792), 714).
Why was he mistaken?

4. Of the first 100 elements, how many are transition metals?

5. Use the simple semiclassical Bohr equation for the velocity v of an electron in an
atom (Eq. 4.12, to calculate a value of v for Z ¼ 100 and energy level n ¼ 1:
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v ¼ Ze2

2e0nh
(4.12)

e ¼ 1.602 � 10�19 C, e0 ¼ 8.854 � 10�12 C2N�1m�2, h ¼ 6.626 � 10�34 J.s

What fraction of the speed of light c ¼ 3.0 � 108 ms�1) is this value of v?
Using the “Einstein factor” √(1�v2/c2), calculate the mass increase factor that

this corresponds to.

Harder Questions

1. Is the result of the calculation in question 5 above trustworthy? Why or why not?

2. Should relativistic effects be stronger for d or for f electrons?

3. Why are the transition elements all metals?

4. The simple crystal field analysis of the effect of ligands on transition metal

d-electron energies accords well with the “deeper” molecular orbital analysis

(see e.g. [99]). In what way(s), however, is the crystal field method unrealistic?

5. Suggest reasons why parameterizing molecular mechanics and PM3-type pro-

grams for transition metals presents special problems compared with parameter-

izing for standard organic compounds.
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Chapter 9

Selected Literature Highlights, Books,

Websites, Software and Hardware

The yeoman work in any science. . .is done by the experimentalist, who must keep the

theoretician honest.

Michio Kaku, Professor of theoretical physics, City University of New York

Abstract Specific applications of some concepts and methods are discussed.

Useful information on the literature is provided, and the merits and capabilities of

various software packages are presented. The chapter concludes with a note on

hardware developments.

9.1 From the Literature

A small smorgasbord of published papers will be discussed here, to show how some

of the things that we have seen in previous chapters have appeared in the literature.

The four topics of this section (oxirene, nitrogen pentafluoride, pyramidane

and nitrogen polymers), and several others, are addressed in more detail in another

book [1].

9.1.1 Molecules

9.1.1.1 Oxirene. To Be or Not to Be

Let’s start with what looks like a simple problem: what can computational

chemistry tell us about oxirene (oxacyclopropene, Fig. 9.1; the oxirene literature

till 1983 has been reviewed [2]). Labelling one of the carbons of a diazo ketone

(R–C(N2)–CO–R) can lead to a ketene with scrambled labelling. After excluding

the possibility of scrambling in the diazo compound, this indicates that an oxirene

E.G. Lewars, Computational Chemistry,
DOI 10.1007/978-90-481-3862-3_9, # Springer ScienceþBusiness Media B.V. 2011
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species is formed. However, this does not tell us whether this species is an

intermediate or merely a transition state (Fig. 9.2). A straightforward way to try

to answer this question would seem to be to calculate the frequencies, at the level

used to optimize the structure, and see if there are any imaginary frequencies – a

relative minimum has none, while a transition state has one (Section 2.5). In a

preliminary investigation [3] Schaefer and coworkers found that oxirene was

a minimum with the Hartree–Fock (SCF) method, and also when electron correla-

tion was taken into account (Section 5.4) with the CISD and CCSD methods, using

double-zeta basis sets (Section 5.3). However, in going from HF to CISD to CCSD,

the ring-opening frequency fell from 445 to 338 to 262 cm�1, which was said to be a

much steeper drop than would be expected. A very comprehensive investigation

with the above (“To be or not to be”) title [4], in which the frequencies of oxirene

were examined at 46 (!) different levels failed to definitively settle the matter: even

using CCSD(T) calculations with large basis sets the results were somewhat quirky,

and in fact of the six highest levels used, three gave an imaginary frequency and

three all real frequencies. At the two highest levels the ring-opening frequency was

real, but uncomfortably low (139 and 163 cm�1). Although at all of the five DFT

a diazo ketone

R R

ON2

oxo carbene a

R R

O

oxirene

a b
O

RR
.

oxo carbene b

R
R

O

ketene labelled at the other C

O

R

R

a b

R

R
O

ketene labelled at CO C

Fig. 9.1 Generating an oxo carbene (a “ketocarbene”) from a labelled diazo ketone sometimes

leads to a ketene in which the label is scrambled. This indicates that a species with the symmetry of

oxirene is formed
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levels explored in [4] oxirene was a transition state with an imaginary ring-opening

vibrational mode, functionals have been found which declare it a minimum with

some basis sets: Mawhinney and Goddard found that although very many of their

tested functional/basis combinations gave an imaginary frequency, a few found

oxirene to be a minimum [5]. In fact, the PBE0 functional found it to be a minimum

with 11 of the 12 bases tried, and with big bases predicted a C2H2O potential energy

surface similar to that from high-level (CCSD(T)) ab initio calculations. The

speed advantage over CCSD(T) tends to make this DFT method attractive for

such studies, but although the PBE0 functional is not parameterized ([5], p. 269)

experienced workers might still tend to confer more trust on high-level ab initio

calculations (“. . . we try to validate the results by comparison with those from ab

initio calculations” [6]).

A detailed computational study of the ozonolysis of ethyne skirted the question

of the involvement of oxirene by saying that it “will easily revert to [the carbene];

therefore, the oxirene route was not further investigated in this work” [7].

In recent work (2008) ultrafast photolysis of a potential diazo ketone precursor

of p-biphenylmethyloxirene failed to detect the oxirene, the UV absorption of

which could, however, have been hidden by another band [8], and in a combined

experimental/computational (ab initio and molecular dynamics with DFT) study,

flash thermolysis of a formal Diels-Alder adduct was interpreted as affording

acetylmethyloxirene and benzene [9].

oxirene intermediate

carbene carbene

?

carbene carbene

oxirene transition state

?

a b

oxo carbene a oxirene oxo carbene b

a b

R RR R RR

O O
O

Fig. 9.2 A species with the symmetry of an oxirene scrambles the label in an oxo carbene. But this

does not tell us whether the oxirene is an intermediate or merely a transition state
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Oxirene, the most notorious case of an unsolved computational “existence

theorem”, has been reviewed (references to 2003) [10].

9.1.1.2 Nitrogen Pentafluoride. Unwarranted Optimism?

Nitrogen pentafluoride represents an interesting contrast to oxirene. Oxirene is, on

paper, a reasonable molecule; there is no obvious reason why, however unstable

it might be because of antiaromaticity [11] or strain [12], it should not be able to

exist. On the other hand, NF5 defies the hallowed octet rule; why should it be more

reasonable than, say, CH6? Yet a comprehensive computational study of this

molecule by Bettinger et al. left “little doubt” that it is a (relative) minimum

on its potential energy surface [13]. The full armamentarium of post-HF ab initio

methods, CASSCF, MRCI, CCSDT, CCSD(T), MP2 (Section 5.4) and DFT

(Chapter 7) was employed here, and all agreed that D3h (Section 2.6) NF5 is a

minimum. Nevertheless, it was unclear that this paper (1998) fully disposed of

earlier (1989–1992) reservations about the ability of nitrogen to bear five fluorines:

Christe and coworkers concluded that “the lack of pentacoordinated nitrogen species

is due mainly to steric reasons”, from their finding that attack of HF2
� (evidently a

surrogate for F�) on NF4
+ occurs, within experimental error, only on F and not on

N [14]. This experiment dampened, but did not negate, hope arising from ab initio

computations by Ewig and Van Wazer indicating that NF5 [15] and even NF6
� [16]

may be able to exist. Comments by Christe and by Van Wazer and Ewig in letters to

C&EN [17] showed that each was at the time unpersuaded by the position of the

other. Reinforcing their studies in connection with NF4F [14], Christe and Wilson

were led by experiment and theoretical arguments to conclude that “covalent NF5
should suffer from severe ligand-crowding effects that would make its synthesis

very difficult” [18]. The difficulty of accurately accounting computationally for

crowding around a central atom [19] was evidently the reason for doubts1 about

the possibility of making nitrogen pentafluoride, but these reservations have been

overcome, evidently by reconsideration of the work of Bettinger et al.2

9.1.1.3 Pyramidane. A Realistic Goal

If oxirene “should” exist and NF5 “should” not, what are we to make of pyramidane

(Fig. 9.3)? This molecule contradicts the traditional paradigm [20] of tetracoordi-

nate carbon having its bonds tetrahedrally directed: the four bonds of the apical

carbon point toward the base of a pyramid. Part of the calculated [21] potential

energy surface of pyramidane is shown in Fig. 9.3. To improve the accuracy of the

1Personal communication from Professor Christe, 2007 April 24.
2Personal communication from Professor Christe, 2010 April 16; he concludes that NF5 can exist,

although “the synthesis would be difficult”.
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relative energies, the MP2 geometries were subjected to single-point calculations

(Section 5.5.2) using the QCI method (Section 5.4.3), with the results shown

(Fig. 9.3). At the QCI/6-31G*//MP(fc)/6-31G* level pyramidane is predicted to

be a relative minimum with a barrier of 96 kJ mol�1 for its lowest-energy isomeri-

zation path, to the tricyclic carbene, which lies 87 kJ mol�1 above it. This presents

us with the astonishing possibility that the exotic hydrocarbon may be isolable at

room temperature, the threshold barrier for being isolable at room temperature

being about 100 kJ mol�1 [22]. Other properties of pyramidane, including ionization

energy and electron affinity (Section 5.5.5), heat of formation (Section 5.5.2.2c), and

NMR spectra (Section 5.5.5) were calculated [21b].

9.1.1.4 Polynitrogens. More Than a Computational Playground?

There has in recent years been considerable interest in the possibility of making

allotropes of nitrogen with more than two atoms per molecule. Nitrogen polymers

are interesting because to any chemist with imagination the idea of a form of pure

nitrogen that is not a gas at room temperature is fascinating, and because any such

compound would be thermodynamically very unstable with respect to decomposi-

tion to dinitrogen. The challenge is to identify computationally a realistic candidate

for synthesis and to make it. A faint hope is that a compound (an allotrope) may be

found with enough kinetic stability to be handled at room temperature. Such a

substance is potentially a useful high-energy-density material.

pyramidane

C4v
0

C2v
148

Cs
87.1

Cs
87.1

Cs
118

Cs
55.3

28.5
D2d

kJ mol–1

Cs
96.1

Fig. 9.3 (Part of) the pyramidane potential energy surface. QCICD(T)/6-31G*//MP2(fc)/6-31G*

calculations
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Interestingly, almost all the work reported has been computational rather than

experimental. In experimental work, the acyclic N5 cation has been made fairly

recently [23–26]), and the pentaaza analogue of the cyclopentadienyl anion has

been detected by mass spectrometry [27, 28]; its generation in solution was claimed

[29], challenged [30], and eventually “proved unequivocally” by examination of its

labelled decomposition products (dinitrogen and azide ion) in redesigned experi-

ments [31]. The N5 cation is stable in the sense that salts of it can be isolated at room

temperature, but it explodes capriciously. The N5 anion was unstable at�40�C [31]

and was not isolated or even seen spectroscopically by 15N NMR. These two

species, and azide ion, known since 1890 [32], are the only polynitrogens to have

been prepared. We use “prepared” advisedly for N5
�, and pass over Nx cations that

have been observed only in mass spectra [33].

Perhaps the first serious computational study of nitrogen oligomers was by

Engelke, who studied the N6 analogues of the benzene isomers in Fig. 9.4, first at

the uncorrelated [34] then at the MP2 [35] level. The uncorrelated calculations

suggested that 1–5 were “stable”, i.e. kinetically stable, although thermodynami-

cally much higher in energy than dinitrogen. However, on the MP2/6-31G* poten-

tial energy surface 1 is a hilltop (Section 2.2) and 5 is a transition state (Section 2.2).

This illustrates the not-so-rare fact that optimistic predictions at low levels of theory

may not be sustained at higher levels. Noncorrelated ab initio, and in particular,

semiempirical (Chapter 6) calculations, tend to be too permissive in granting reality

to exotic molecules. Hundreds of calculations on polynitrogens have been pub-

lished; a representative survey of these can be found in [33].

9.1.2 Mechanisms

We have seen, above, that computational chemistry can sometimes tell us with

good reliability whether a molecule can exist. Another important application is to

indicate how one molecule gets to be another: how chemical reactions occur.

Indeed, the prime architect of one of the most useful computational tools, the

AM1 method (Chapter 6), questioned “whether the mechanism of any organic

reaction was really known.” [36] before the advent of computational chemistry!

1 2 3 4 5

benzene Dewar benzene benzvalene prismane bicyclopropenyl

Fig. 9.4 Nitrogen analogs (CH!N) of these molecules have been investigated computationally
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This skepticism was engendered by the difficulties and ambiguities in studying very

transient intermediates, and the impossibility (at the time at least) of observing

transition states.

9.1.2.1 The Diels–Alder Reaction. A One- or Two-Step Dance?

This is one of the most important reactions in all of organic synthesis, as it unites

two moieties in a predictable stereochemical relationship, with the concomitant

formation of two carbon–carbon bonds (Fig. 9.5) [37]. The reaction has been used

in the synthesis of complex natural products, for example in an efficient synthesis of

the antihypertensive drug reserpine [38]. Such a reaction seems to be well worth

studying.

The Diels–Alder reaction and related pericyclic reactions, which can be treated

qualitatively by the Woodward–Hoffmann rules (Section 4.3.5), have been

reviewed in the context of computational chemistry [39]. The reaction is clearly

nonionic, and the main controversy was whether it proceeds in a concerted fashion

as indicated in Fig. 9.5 or through a diradical, in which one bond has formed and

two unpaired electrons have yet to form the other bond. A subtler question was

whether the reaction, if concerted, was synchronous or asynchronous: whether both

new bonds were formed to the same extent as reaction proceeded, or whether the

formation of one ran ahead of the formation of the other. Using the CASSCF

method (Section 5.4.3), Li and Houk [40] concluded that the butadiene–ethene

reaction is concerted and synchronous, and chided Dewar and Jie [41] for stub-

bornly adhering to the diradical (biradical) mechanism.

MeO2C

H O

O

H

O

O
H

H
* *

*
MeO2C

Fig. 9.5 The prototypical Diels–Alder reaction is that between 1,3-butadiene and ethene, to form

cyclohexene. The Diels–Alder reaction has been used in the synthesis of complex natural products;

above, methyl 2,4-pentadienoate reacts with 1,4-benzoquinone to form an intermediate in the

synthesis of the drug reserpine. In a one-pot reaction two carbon–carbon bonds are made and three

chiral centers (*) are created with the correct relative orientations (i.e. essentially one diastereomer

is formed)
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The favoring of a diradical mechanism here seems to be an artifact of semiem-

pirical methods (Chapter 6) and unrestricted HF methods (Sections 5.2.3.5 and

5.2.3.6.5); see reference 11 in [41]. A DFT (Chapter 7) study also strongly sup-

ported the concerted mechanism [42].

9.1.2.2 Abstraction of H from Amino Acids by the OH· Radical.

Unavoidable Complexity?

This reaction seems more esoteric than the Diels–Alder, and although not “used”,

may be very important. Proteins are linked amino acid residues, and oxidation of

proteins by hydroxyl radicals may initiate Alzheimer’s disease, cancer, and heart

disease. The initial step in the destruction or modification of proteins by hydroxyl

radical is likely to be abstraction of a hydrogen atom from the a–C (Fig. 9.6). In a

very thorough study using MP2 (Section 5.4) and DFT (Chapter 7), Galano et al.

calculated the geometries of the species (amino acid–OH complexes, transition

states, and amino acid radicals) involved in the reactions of glycine and alanine

(Fig. 9.6, R¼H and CH3, respectively) [43]. The rate constants were also calcu-

lated, using partition functions to calculate the preexponential factor (cf. Sec-

tion 5.5.2.2d). This paper provides a good account of how computational

chemistry can be used to calculate absolute rate constants for reactions of molecules

of moderate size.

9.1.3 Concepts

There are some very basic concepts in chemistry that have proved to be helpful in

rationalizing experimental facts, and which have been taught for perhaps the last

50 years, but which have nevertheless been questioned in the last couple decades or

so; an example is the role of resonance in stabilizing species like carboxylate ions.

Some newer concepts, intriguing but not as traditional, have also been scrutinized

and questioned; an example is homoaromaticity.

9.1.3.1 Resonance Versus Inductive Effects

The traditional explanation of the fact that carboxylic acids are much stronger acids

than alcohols is that resonance stabilization of the conjugate base, which is more

important than the charge-separation resonance in the acid, stabilizes RCOO�

HO

C CO2H

H

H2N

R

C CO2H

H2N

RHOH

Fig. 9.6 Abstraction of a hydrogen atom from the a–C of an amino acid by hydroxyl radical has

been investigated computationally

568 9 Selected Literature Highlights, Books, Websites, Software and Hardware

http://Chapter 6
http://Sections&nbsp;5.2.3.5 and 5.2.3.6.5
http://Sections&nbsp;5.2.3.5 and 5.2.3.6.5
http://Chapter 7
http://Section&nbsp;5.4
http://Chapter 7
http://Section&nbsp;5.5.2.2
http://Section&nbsp;5.5.2.2


relative to RCOOH, while resonance does not figure in either an alcohol or its

conjugate base. This traditional wisdom was apparently first questioned by Thomas

and Siggel, on the basis of ab initio calculations and photoelectron spectroscopy

[44]. They concluded that the relatively high acidity of carboxylic acids is largely

inherent in the acid itself, as a consequence of the polarization of the COOH group

caused by the electronegative carbonyl group pulling electrons from the hydrogen

atom, an electrostatic phenomenon. This idea was taken up by Streitwieser and

applied to other acids, e.g. nitric and nitrous acids, dimethyl sulfoxide and dimethyl

sulfone [45]. The results for carbonyl compounds were interpreted in accord with

another iconoclastic idea, namely that the carbonyl group is better regarded as

>C+–O� than as>C¼O [46]. This polarization interpretation was arrived at largely

with the aid of atoms-in-molecules (AIM) analysis of the electron populations on

the atoms involved (Section 5.5.4), and a simpler variation of AIM (the projection

function difference plot) developed by Streitwieser and coworkers [47]. Work by

others also supports the view that it is “initial-state electrostatic polarization”

that is largely responsible for the acidity of several kinds of compounds, including

carboxylic acids [48]. However, Burk and Schleyer asserted that the Thomas–Siggel

method at least [44], which initiated giving credit to electrostatic destabilization of

the acid, was not valid because their “relaxation energy” term, which supposedly

measured electron delocalization or resonance, does not correspond to what

chemists normally mean by those terms [49]. Other studies, albeit with different

methodologies, nevertheless assigned major importance to electrostatic factors:

75% for CH3COOH, using isodesmic reactions with ab initio energies [50], and

roughly 62–65% for HCOOH, using the effect of separating the CO and OH by

–CH¼CH– groups and of rotating the CO relative to the rest of the conjugated

system, with DFT energies [51]. Around the same time as [50, 51] lent support to

the importance of electrostatic destabilization of the acid, Exner and Čársky [52],

using ab initio calculations and isodesmic reactions, published a “rebuttal”, con-

tending that “In our opinion, there are no doubts that the acidity of carboxylic acids

is related to the low energy of the anion, not to a high energy of the acid molecule”,

although “the importance of resonance [in the anion] can only be estimated”, not

quantified; they conclude it is a minor factor. They also conclude, however, that “in

water” (all these publications focus on the gas phase, to pinpoint effects inherent to

the unencumbered acid) “resonance is the deciding factor.” They go on to say that

“The whole concept of resonance seems at present somewhat obsolete. . .”. It is
relevant to note that resonance/delocalization does not always stabilize a species

[53]. The resonance concept has been “philosophically” examined by Shaik [54].

From all this it appears that consensus has not been reached on the cause of the

enhanced acidity of carboxylic acids compared to alcohols, and one might almost

wonder if to some extent the role of electrostatics versus resonance is a metaphysi-

cal question.

9.1.3.2 Homoaromaticity

Aromaticity [55] is associated with the delocalization of (in the simplest version) p
electrons (the role of these p electrons in imposing symmetry on the prototypical
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aromatic species, benzene, is being questioned, but that is another story [56]). A

H€uckel number of cyclically delocalized electrons confers aromaticity on a mole-

cule (Section 4.3.5). The idea behind homoaromaticity (homologous aromaticity) is

that if a system is aromatic, then if we interpose one or more atoms between

adjacent p orbitals of the p system, provided overlap is not lost the aromaticity

may persist (Fig. 9.7). While there is little doubt about the reality of homoaroma-

ticity in ions, neutral homoaromaticity has been elusive [57].

One molecule that might be expected to be homoaromatic, if the phenomenon

can exist in neutral species, is triquinacene (Fig. 9.7): the three double bonds are

held rigidly in an orientation which appears favorable for continuous overlap

with concomitant cyclic delocalization of six p electrons. Indeed, its potential

aromaticity was one of the reasons cited for the synthesis of this compound [58].

A measurement of the heat of hydrogenation of triquinacene found a value 18.8 kJ

mol�1 lower than that for each of the next two steps (leading to hexahydrotriqui-

nacene) [59]. This was taken as proof of homoaromaticity in the triene, i.e. that the

compound was 18.8 kJ mol�1 (4.5 kcal mol�1) stabler than expected for an

interposed CH2 group
benzene homobenzene

i.e. i.e. ?

triquinacene

Fig. 9.7 Homoaromaticity. Interposing a CH2 group between one pair of formal double bonds of

benzene gives monohomobenzene. Is this delocalized like benzene, or is it just cycloheptatriene?

Is triquinacene, with a CH group interposed between each pair of formal double bonds, a

trishomobenzene?
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unstabilized species; note that this is a small stabilization energy compared to the

resonance energy of benzene, most computational estimates of which are roughly

100 kJ mol�1 (Section 5.5.2.2a). However, another experimental and computational

study of this question [60] led to the conclusion that triquinacene is not homoaro-

matic: combustion of the compound gave an enthalpy of formation ca. 17 kJ mol�1

(4 kcal mol�1) higher than that obtained from hydrogenation in [59] (241 vs 224 kJ

mol�1, 57.5 vs 53.6 kcal mol�1). This negative conclusion was supported by

calculation of the heat of hydrogenation of a double bond in triquinacene and in

its di- and tetrahydro derivatives (1, 2, 3, Fig. 9.8), and by calculation of magnetic

properties of the triene and related molecules [60]. The heats of hydrogenation of

the double bonds were calculated with the aid of homodesmotic reactions, a kind

of isodesmic reaction (Section 5.5.2.2a) which preserves the number of each kind of

bond, and so in which correlation errors should cancel well; for 1, 2, and 3 the

calculated hydrogenation energy of a double bond are all essentially the same,

showing that a double bond of 1 is an ordinary cyclopentene double bond. Note that

using cyclopentane (Fig. 9.8) rather than, say, ethane – which would also preserve

bond types – to (conceptually) hydrogenate 1, 2, and 3 should largely cancel out

energy differences due to ring strain. Interestingly, [59] concludes that “triquina-

cene is unequivocally stabilized” relative to reference species, but [60] asserts that,

from the thermochemical measurements, “The only logical conclusion is that

[triquinacene] is not homoaromatic.”

The magnetic properties used to probe aromaticity arise from the presence

of a diatropic ring current which tends to push an aromatic molecule out of a

magnetic field (calculated property: magnetic susceptibility, w), and which exerts

NMR shielding on a proton at or above the ring center (calculated property:

nucleus-independent chemical shift, NICS). NICS values are obtained from the

H (reaction) = –2.5 kJ mol–1

+

3

+

+

1 2

+

2

H (reaction) = –1.7 kJ mol–1

H (reaction) = +0.8 kJ mol+ +

3

Fig. 9.8 The heat of hydrogenation of a double bond in triquinacene is essentially the same as that

of a double bond in dihdrotriquinacene and in tetrahydrotriquinacene, and is about the same as in

cyclopentene, indicating that triquinacene is not homoaromatic
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calculated NMR shielding (Section 5.5.5) of a “ghost nucleus” with no charge

or electrons placed at or above the ring center. A very comprehensive review of the

NICS test [61a] has been published, and an updated, superior variant [61b] has

been presented. Calculation of the changes in w and in NICS along the reaction

coordinate for the known reaction, the isomerization of diademane to triquinacene

(Fig. 9.9), showed that the transition state, but neither the reactant nor the product,

was aromatic [60]. Homoaromaticity in transition states and in a few neutral,

ground-state molecules has been claimed [62].

The absence of homoaromaticity in triquinacene is presumably due to the three

pairs of nonbonded carbons being too far apart, 2.533 Å, from X-ray diffraction;

in the transition state (Fig. 9.9), in contrast, the nonbonded CC distance has

been reduced to 1.867 Å according to a B3LYP/6–311+G** (Section 7.2.3.4c)

calculation. Significantly, the measured C¼C length, 1.319 Å, is close to the normal

C¼C length (calculated and measured parameters of triquinacene are cited in [60]).

9.2 To the Literature

A feast of information on computational chemistry is available, a small selection of

which is given below.

9.2.1 Books

Books on computational chemistry and some related topics, in alphabetical order of

the author’s (or first-listed author’s) name. The terse characterization of a particular

book is a personal impression, and does not necessarily imply that it does not share

the virtues ascribed to some other book. The list does not claim to by any means

include all the good books on computational chemistry.

9.2.1.1 B

Computational Organic Chemistry, S. M. Bachrach, Wiley-Interscience, Hoboken,

NJ, 2007.

triquinacenetransition statediademane

Fig. 9.9 The isomerization of diademane to triquinacene proceeds through an aromatic transition

state, as shown by the magnetic susceptibility and NICS values for the three species
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Good source of examples from the literature with critical evaluation of methods

and useful caveats. The first chapter is a very brief introduction to ab initio and DFT

theory.

9.2.1.2 C

Handbook of Computational Quantum Chemistry, D. B. Cook, Dover Reprint,

Dover Publications, Mineola, New York, 2005 (original 1998).

Concentrates on the math behind quantum chemistry theory and algorithms, yet

not dryly written. Best read after acquiring the basics from a more general,

introductory book.

Essentials of Computational Chemistry. Theories and Models, Second Edition,

C. J. Cramer, Wiley, New York, 2004.

Covers a wide range of topics. The level is sometimes quite advanced. Critical

discussions of the literature. Of similar ilk to Jensen, below.

9.2.1.3 D

The Molecular Orbital Theory of Organic Chemistry, M. J. S. Dewar, McGraw-Hill,

New York, 1969.

Nice introduction to the basics of quantum chemistry, then a focus on semiem-

pirical calculations and perturbation methods. Although published more than

40 years ago, the fundamentals, like the Schr€odinger equation and wavefunctions,

remain true, and the engagingly assertive style of the doyen of modern semiempiri-

cal methods makes this book worth reading.

9.2.1.4 F

Exploring Chemistry with Electronic StructureMethods, Second Edition, J. Foresman

and Æ. Frisch, Gaussian, Inc., Pittsburgh, PA, 1996.

Very useful hands-on guide; oriented toward Gaussian 94, but very useful for

Gaussian 03 and presumably even 09. A revised edition will be welcome.

9.2.1.5 H

Ab Initio Molecular Orbital Theory, W. J. Hehre, L. Radom, P. von R. Schleyer,

and J. A. Pople, Wiley, New York, 1986.

Still a good introduction to ab initio calculations, although one should realize

that there have been considerable advances since 1986. Particularly useful are

the extensive tables of calculated and experimental geometries, energies, and

frequencies.
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9.2.1.6 I

Computational Thermochemistry, K. K. Irikura and D. J. Frurip, Eds., American

Chemical Society, Washington, DC, 1998.

Useful source of information on the calculation of energy quantities: heats of

formation, reaction energies, bond energies, activation energies, etc. Methods:

group additivity, molecular mechanics, semiempirical, DFT, and high-accuracy

ab initio (G2, CBS, etc.); energies of solvation.

9.2.1.7 J

Introduction to Computational Chemistry, F. Jensen, Wiley, New York, 2007.

Good general introduction. Goes fairly deeply into theory. Of similar ilk to

Cramer, above.

9.2.1.8 K

A Chemist’s Guide to Density Functional Theory, Second Edition, W. Koch and

M. C. Holthausen, Wiley-VCH, New York, 2002.

Detailed introduction to the theory and applications of DFT. Perhaps best read

after acquiring a basic knowledge of DFT.

9.2.1.9 L

Molecular Modelling. Principles and Applications, Second Edition, A. R. Leach,

Longman, Essex, England 2001.

Good general introduction. Comprehensive and goes deeply into the topics.

Somewhat like Cramer, Jensen, above.

Quantum Chemistry, Fifth Edition, I. N. Levine, Prentice Hall, Upper Saddle

River, NJ, 2000.

Enormously useful book on quantum chemistry in general. Chapters 15–17 give

many references to the original literature, to books, to programs, and to websites.

A sixth edition has recently appeared.

Modeling Marvels. Computational Anticipation of Novel Molecules, E. Lewars,
Springer, Amsterdam, 2008.

Thirteen kinds of very novel molecules which are unknown as of the end of

2009, but have been investigated computationally.

9.2.1.10 P

Approximate Molecular Orbital Theory, J. A. Pople, D. A. Beveridge, McGraw-Hill,

New York, 1970.
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Although published 40 years ago, this book is worth perusing because it provides

an indication of the situation at the dawn of ab initio calculations, when quite

approximate semiempirical methods (CNDO and INDO) were important, and it is

one legacy of John Pople, who went on to help make ab initio calculations practical

for much of the chemical community.

9.2.1.11 R

Molecular Mechanics Across Chemistry, A. K. Rappé and C. J. Casewit, University
Science Books, Sausalito, CA, 1997.

Detailed presentation of the applications of MM, particularly in biochemistry

and drug design.

9.2.1.12 S

The Encyclopedia of Computational Chemistry, 5 volumes, P. von R. Schleyer,

Editor in chief, Wiley, New York, 1998.

No doubt authoritative, but pricey (ca. $6000), and large paper-based encyclo-

pedias have limited useful lifetimes.

Modern Quantum Chemistry. Introduction to Advanced Electronic Structure
Theory, A. Szabo and N. S. Ostlund, Macmillan Publishing, New York, 1982.

Revised edition McGraw-Hill, 1989, Dover paperback 1996.

A detailed, very advanced introduction to basic Hartree–Fock, CI and MP

theory. Well-known as a rigorous introduction to the mathematical fundamentals.

9.2.1.13 W

Series of Books from Wavefunction, Inc, makers of the Spartan computational

chemistry program. For available books contact Wavefunction, http://www.

wavefun.com/

These books, oriented toward Wavefunction’s Spartan program, are very useful

introductions to the practice of computational chemistry, particularly to practical

methods of getting useful results.

9.2.1.14 Y

Computational Chemistry: A Practical Guide for Applying Techniques to Real
World Problems, D. Young, Wiley, New York, 2001.

A “meta-book” in that it lists several books on computational chemistry; it

also lists many websites concerned with computational chemistry, and many

computational chemistry programs.
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Online to Wiley subscribers or by payment:

http://www3.wileyinterscience.com/cgi-bin/bookhome/93517240

Topics by Dave Young:

http://server.ccl.net/cca/documents/dyoung/

9.2.1.15 Book Series

Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds.,

Wiley-VCH, New York.

Useful reviews focused on various topics, by workers in that particular field.

A volume in this series typically has from 4 to 11 chapters, each a kind of tutorial

on the theory and application of some computational method. Volumes 1–18 were

edited by K. B. Lipkowitz and D. B. Boyd; the series continues with Lipkowitz and

others, editors. Volume 27 is to appear in June 2010.

For tables of contents and other information see http://www.chem.iupui.edu/rcc/

rcc.html, or

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470587148.html

9.2.2 Websites for Computational Chemistry in General

Information on even specialized scientific topics can often be obtained from

ordinary search engines. For example, a popular search engine gave information

(ten hits for each) on these five topics, using the keywords shown: Hartree–Fock,

potential energy surface, molecular mechanics, Huckel, Extended Huckel. In several

cases the hypertext leads one to tutorials, and to free programs. Nevertheless, a list

of specific websites can still be helpful. Many websites are given in the books by

Young and by Levine, above; some other useful ones are (should some of these

invoke “Address Not Found”, try a search engine) these:

1. The computational chemistry list, CCL

http://www.ccl.net/chemistry/

A truly extraordinarily helpful forum for exchanging ideas, asking questions and

getting help. If you join the network you can expect typically five to ten

messages a day. It often serves as a forum for stimulating discussions. Currently

the best way to locate specific information in CCL may be to go, once in CCL, to

CCL Search and follow the instructions to using Google for a CCL search.

2. National Institute of Standards and Technology, NIST (USA)

(a) General information

http://www.nist.gov/index.html

(b) Chemistry databases

http://www.nist.gov/srd/chemistry.htm

(c) Computational chemistry comparison and benchmark database

http://cccbdb.nist.gov/
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(d) Perhaps the quickest way to get information on a specific molecule is from

this specific site:

NIST chemistry webbook. Options for specifying molecule include formula,

name, reaction, structure, energetics property (e.g. ionization energy, acidity).

http://webbook.nist.gov/chemistry/

(e) Density functionals from the Truhlar group

This may help one to cope with the plethora of acronyms of DFT functionals.

http://comp.chem.umn.edu/info/dft.htm

3. From the Chemistry Biology Pharmacy Information Center, ETH, Zurich

A long list of information and websites connected with computational chemistry.

Leads to information on methods and software.

http://www.infochembio.ethz.ch/links/en/theochem_computer.html

4. The Cambridge Crystallographic data Centre; contains the Cambridge Structural

Database, which has X-ray or neutron diffraction structures of more than

500,000 compounds. Useful for comparing experimental and calculated struc-

ture, and obtaining “guess” structures to initiate an optimization.

www.ccdc.cam.ac.uk/

5. This site allows one to select a basis set for a molecule (“391 published basis

sets”), or for particular atoms in a molecule, and provides options of the format

for various programs. Useful when the program being used lacks that particular

basis set. A minor problem is that Gaussian requires its “outsider” basis sets to

start with the element symbol, not the string of asterisks given here.

http://bse.pnl.gov/bse

6. Another basis set site (cf. 5 above): Pacific Northwest National Lab

http://www.emsl.pnl.gov/forms/basisform.html

9.3 Software and Hardware

9.3.1 Software

These programs (“software suites”) and others are described in more detail in

the book by Young, above (albeit as of ca. 2001), and in a comprehensive list

on Wikipedia (below). These sources should be consulted for more information.

I mention here some that are particularly useful in a general-purpose sense, and

some more specialized programs that handle advanced methods which cannot

be implemented, or well-implemented, in more “general” programs. Some of the

programs do not have their own input/output GUI (graphical user interface). Many

of these can be found conveniently from a rather extensive list on Wikipedia, which

describes the program and gives quick access to its website by http etc.

http://en.wikipedia.org/wiki/Category:Computational_chemistry_software

The list here is alphabetical.
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9.3.1.1 A

ACES III (Advanced Concepts in Electronic Structure)

www.qtp.ufl.edu/Aces2/

An ab initio program for high-level jobs. Particularly recommended for

CCSD(T) optimizations þ frequencies, which latter are perhaps the most reliable

calculations that can currently be done routinely on molecules of up to moderate

size (up to about ten heavy atoms). CCSD(T) optimizations and frequencies tend to

be considerably slower with some other programs, if available at all. Available for

UNIX workstations and supercomputers. Evidently lacks its own GUI.

AMPAC Austin method package; cf. AM1. Marketed by Semichem Inc.

http://www.semichem.com/default.php

A semiempirical suite of programs. See Chapter 6.

9.3.1.2 G

GAMESS (General Atomic and Molecular Electronic Structure System)

http://www.msg.ameslab.gov/GAMESS/

A fairly general-purpose computational chemistry suite: semiempirical and ab

initio. Not as many options as GAUSSIAN (below) but free. Versions are available

for PCs, Macs, UNIX workstations and supercomputers. Lacks its own GUI.

GAUSSIAN (After the Gaussian functions of ab initio computations)

http://www.gaussian.com/

A general-purpose computational chemistry suite. Possibly the most widely used

computational chemistry program. Actually a suite of programs with MM

(AMBER, DREIDING, UFF), ab initio, semiempirical (CNDO, INDO, MINDO/3,

MNDO, AM1, PM3) and DFT, and most of the usual high-level corelated ab initio

methods. Some molecular dynamics is available. Most methods are available

simply by keywords. There is a large number of basis sets and functionals. Elec-

tronically excited states can be calculated. GAUSSIAN has appeared in improved

versions every few years from 1970 (. . .G92, G94, G98. . .). The latest version

(January 2010) is G 09; somewhat minor revisions appear frequently. GAUSSIAN

is available in versions for PCs running under Windows and LINUX, and for UNIX

workstations and supercomputers. The program itself does not have an integrated

GUI (one bundled with the actual computing module), but there are several

graphics programs for creating input files and for viewing the results of calcula-

tions. GaussView (latest version GaussView 5), expressly designed for GAUSS-

IAN, is highly recommended as the solution to all GAUSSIAN graphics problems.

9.3.1.3 H

HyperChem
http://www.hyper.com/
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More specific information on the latest version:

http://www.hyper.com/Products/HyperChemProfessional/tabid/360/Default.aspx

Has MM, semiempirical (including extended H€uckel, CNDO, INDO, MINDO/3,

MNDO, ZINDO/1, ZINDO/S, AM1, PM3), ab initio, molecular dynamics. Avail-

able for PCs with Windows and LINUX. It has its own GUI. An option that

Hyperchem seems to be directed toward is drug discovery.

9.3.1.4 J

JAGUAR (Jaguar ¼ speed) Marketed by Schr€odinger Inc.
http://www.schrodinger.com/products/14/7/

Made by Schr€odinger, Inc., JAGUAR is an ab initio and DFT package that uses

sophisticated algorithms to speed up ab initio calculations. It is said to be particu-

larly good at handling large molecules, transition metals, solvation, and conforma-

tional searching. It is described (above, http: etc.) as having “particular strength in

treating metal containing systems” and is said to be “much faster than conventional

ab initio programs.” Available for LINUX and Windows.

9.3.1.5 M

MOLCAS Molecular Complete Active Space

Available only for LINUX.

http://www.teokem.lu.se/molcas/

Ab initio and some DFT. Its main strength appears to be its ability to bring

advanced correlation methods to bear on excited states and degenerate states. In this

regard it is evidently the only program suite with CASPT2N (complete active space

perturbation theory second order with nondiagonal one-particle operator [63]). A

survey of the literature shows that this is the most widely-used version of the

CASPT2 method, and is the most widely-accepted technique for treating static

correlation (Section 5.4.1) in singlet diradicals (Section 8.2). A CAS geometry

optimization followed by a single-point CASPT2N energy calculation is analogous

(not identical) to a Hartree–Fock optimization followed by an MP2 single point

calculation to obtain a better energy (but MP2 calculations are now commonly

geometry optimizations). The method is sometimes called just CASPT2, but there

are other second order perturbational CAS methods implemented in other pro-

grams. The most recent version of MOLCAS (2009) has been reviewed [64].

MOLPRO Molecular Professional

Available only for LINUX.

http://www.molpro.net/

Mainly high-level correlated ab initio calculations (multiconfiguration SCF,

multireference CI, and CC); and DFT. “The emphasis is on highly accurate

computations . . . accurate ab initio calculations can be performed for much larger

molecules than with most other programs.” An unusual feature is the inclusion of
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explicitly correlated calculations (dependence on 1/r; Section 5.4.1). MOLPRO

does not implement the CASPT2N code as in MOLCAS, but “the multi-reference

perturbation theories in MOLPRO and MOLCAS are quite similar, and the

CASPT2N Hamiltonian can be reproduced in MOLPRO”.3 Other programs that

implement methods designed to accomplish “post-CAS” energy calculations are

GAUSSIAN and GAMESS.

MOPAC The name means Molecular Orbital Package, but is said to have been

inspired by this geographical oddity: “The original program was written in Austin,

Texas. One of the roads in Austin is unusual in that the Missouri–Pacific railway

runs down the middle of the road. Since this railway was called the MO-PAC, when

names for the program were being considered, MOPAC was an obvious contender”

(see website).

http://openmopac.net/manual/index_troubleshooting.html

A semiempirical suite of programs. See Chapter 6.

9.3.1.6 P

PCModel Marketed by Serena Software

http://www.serenasoft.com/

Primarily molecular mechanics, but now includes semiempirical. Can serve as

a GUI for ab initio and DFT program suites.

9.3.1.7 Q

Q-Chem Quick chemistry

www.q-chem.com/

“The first commercially available quantum chemistry program capable of

analyzing large structures in practical amounts of time.” For ab initio (including

high-level correlated methods) and DFT. Q-Chem is available for PCs running

under LINUX or Windows, for UNIX workstations, and for supercomputers.

9.3.1.8 S

Simple H€uckel Method programs
The simple H€uckel method, SHM (Sections 4.3.4–4.3.7):

This remains important for heuristic and pedagogic reasons, and even researchers

can find it useful. Despite what some think, it “is immensely useful as a model,

today . . . Because it is the model which preserves the ultimate physics, that of nodes

3Personal communication, Professor E. V. Patterson, Division of Science, Truman State University,

Kirksville, MO, 2005 March 7.
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in wave functions. It is the model which throws away absolutely everything

except the last bit, the only thing that if thrown away would leave nothing. So it

provides fundamental understanding” (R. Hoffmann, personal communication,

2002 February 13). SHM programs may be located by googling “simple huckel

method programs”. The program from the University of Calgary is recommended:

http://www.chem.ucalgary.ca/SHMO/ This can be downloaded or used online.

SPARTAN Spartan ¼ spare, uncomplicated. Marketed by Wavefunction

http://www.wavefun.com/

This is a suite of programs with MM (SYBYL and MMFF), ab initio, semiem-

pirical (MNDO, AM1, PM3) and DFT, with its own superb graphical user interface

(GUI) for building molecules, for calculations, and for viewing the resulting

geometries, vibrational frequencies, orbitals, electrostatic potential distributions,

etc. SPARTAN is a complete package in the sense that one does not need to buy

add-on programs like, say, a GUI. The programs is very easy to use and its algo-

rithms are robust – they usually accomplish their task, e.g. the sometimes tricky job

of finding a transition state usually works with SPARTAN. Versions of the program

are available for PCs running under Windows and LINUX, for Macs, and for UNIX

workstations. It lacks some high-level correlated ab initio methods, like CI, CC,

CASSCF, and its store of basis sets and DFT functionals is limited to the most

commonly used ones (the exact selection varies somewhat from version to version),

but it is nevertheless extremely useful for research, not to mention teaching.

9.3.2 Hardware

Someone beginning computational chemistry might wish to get a high-end PC running

under Windows or LINUX: such a machine is fairly cheap and it will do even

sophisticated electron-correlation ab initio calculations. There is some prejudice in

the field against Windows, in favor of LINUX, but except for the highest-level

correlated calculations, it probably does not matter much which operating system

you use (some specialized programs are available only for LINUX). A ca. 3 GHz

quadcore machine with 4–8 GB of memory and a 1,000 GB hard drive is now (2010)

not unusual (soon it may be substandard). While this is a reasonable choice for

general computational chemistry, certain jobs may run faster on other configura-

tions of machine and operating system. Using standard Gaussian 94 test jobs

and various operating systems, and varying software and hardware parameters,

Nicklaus et al. comprehensively compared a wide range of “commodity computers”

[65]. These were ordinary personal computers of the time (ca. 1998); the costliest

was about US$5,000 and most were less than $3,000. A computer of this price

would now be roughly ten times as fast as in 1998. They concluded that “commod-

ity-type computers have . . . surpassed in power the more powerful workstations and

even supercomputers . . .. Their price/performance ratios will make them extremely

attractive for many chemists who do not have an unlimited budget . . .” Chemists

without unlimited budgets will be reassured to read a slightly more recent study, by
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an eminent pioneer in computational chemistry, which begins in 1965 with a

personal hardware odyssey and concludes, ca. 2001, with an endorsement of the

view that PCs have largely usurped the role of workstations [66]. A workstation was

a UNIX-based desktop computer, commonly about three to ten times as expensive

as a PC ca. 2001; the term may not be obsolete, but now has a vaguely archaic ring.

9.3.3 Postscript

Some years ago the president of a leading computational chemistry software firm

told the author that “In a few years you will be able to have a Cray [a leading

supercomputer brand] on your desk for $5000”. Supercomputer performance is a

moving target, but the day has indeed come when one can have on one’s desk for a

few thousand dollars computational power that was not long ago available only

to an institution, and for a good deal more than $5,000. A corollary of this is that

computational chemistry has become an important, indeed sometimes essential,

auxiliary to experimental work. More than that, calculations have become so

reliable that not only can parameters like geometries and heats of formation often

be calculated with an accuracy rivalling or exceeding that of experiment, but

where high-level calculations contradict experiment, the experimentalists might

be well advised to repeat their measurements. The implications for the future of

chemistry of the happy conjunction of affordable supercomputer power and highly

sophisticated software need hardly be stressed.
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104:10873. (d) Mulder JJ (1998) J Chem Ed 75:594. (e) Shurki A, Shaik S (1997) Ang Chem

Int Ed Engl 36:2205. (f) Hiberty PC, Danovich D, Shurki A, Shaik S (1995) J Am Chem Soc

117:7760. (g) For skepticism about this demotion of the role of the p electrons in imposingD6h

symmetry on benzene: Ichikawa H, Kagawa H (1995) J Phys Chem 99:2307; Glendening ED,

Faust R, Streitwieser A, Vollhardt KPC, Weinhold F (1993) J Am Chem Soc 115:10952

57. (a) Review: Williams RV (2001) Chem Rev 101:1185. (b) Minkin VI, Glukhovtsev MN,

Simkin B Ya (1994) Aromaticity and antiaromaticity, Wiley, New York. (c) Glukhovtsev M

(1997) Chem Educ 74:132. (d) Schleyer PvR, Jiao H (1996) Pure Appl Chem 68:209. (e)

Lloyd D (1996) J Chem Inf Comput Sci 36:442

58. Woodward RB, Fukunaga T, Kelly RC (1964) J Am Chem Soc 86:3162

59. Liebman JF, Paquette LA, Peterson JR, Rogers DW (1986) J Am Chem Soc 108:8267

60. Verevkin SP, Beckhaus H-D, R€uchardt C, Haag R, Kozhushkov SI, Zywietz T, De Meijere A,

Jiao H, Schleyer PVR (1998) J Am Chem Soc 120:11130

61. (a) Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR (2005) Chem Rev

105:3842. (b) Hossein F-B-S, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR

(2006) Org Lett 8:863

62. (a) Jiao H, Nagelkerke R, Kurtz HA, Williams RV, Borden WT, Schleyer PvR (1997) J Am

Chem Soc 119:5921. (b) Cycloheptatriene is said to be “firmly established” to be a neutral

homoaromatic molecule: Chen Z, Jiao H, Wu JI, Herges R, Zhang SB, Schleyer PVR (2008)

J Phys Chem A 112:10586

63. (a) Karlstrom G, Lindh R, Malmqvist P-Å, Roos BO, Ryde U, Veryazov V, Widmark P-O,
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Answers

Chapter 1, Harder Questions, Answers

Q1

Was there computational chemistry before electronic computers were available?

Computational chemistry as the term is now understood arose at about the same

time as electronic computers became available to chemists:

In 1951 an international conference was held at Shelter Island near Long Island in New

York, N.Y. Most of the leading figures in quantum chemistry were present. Two persons

there symbolized the phasing out of desktop mechanical calculators (Prof. Kotani from

Japan) and the phasing in of electronic digital computers (Prof. Roothaan of the United

Sates). That was the first major conference with a focus on the emerging computer in

theoretical chemistry [1].

With heroic effort, one of the very first molecular mechanics calculations, on a

reasonably big molecule (a dibromodicarboxybiphenyl), was done by the Westhei-

mer group, ca. 1946, presumably with at most a mechanical calculator [2]. Molec-

ular mechanics is genuine computational chemistry, but is far less numerically

intensive than quantum mechanical calculations. Nothing remotely like the quantity

and level of complexity of the calculations we see today would be possible without

electronic computers. One can make a case that computational chemistry without
the electronic computer was essentially stillborn, ca. 1950.

To be fair, H€uckel molecular orbital calculations, which can be executed with

pencil and paper, might legitimately be held to fall within the purview of computa-

tional chemistry, and these were first done in the 1930s [3] (attaining great popu-

larity in the 1950s and 1960s [4]). Computational chemistry thus blends into

traditional theoretical chemistry, a good part of which – much of chemical thermo-

dynamics – was almost singlehandedly created in the late 1800s, by Josiah Willard

Gibbs [5].

Histories of the development of computational chemistry in various countries

can be found in the continuing series Reviews in Computational Chemistry [6].

E.G. Lewars, Computational Chemistry,
DOI 10.1007/978-90-481-3862-3, # Springer ScienceþBusiness Media B.V. 2011

585



References

1. Lykos P (1997) Chapter 2 “The evolution of computers in chemistry. In: Zielinski TJ, Swift ML

(eds) Using computers in chemistry and chemical education. American Chemical Society,

Washington DC

2. (a) Westheimer FH, Mayer JE (1946) J Chem Phys 14:733. (b) Hill TL (1946) J Chem Phys

14:465. (c) Westheimer FH (1947) J Chem Phys 15:252. (d) Dostrovsky I, Hughes ED, Ingold

CK (1946) J Chem Soc 173

3. H€uckel E (1931) Z Physik 70:204, and subsequent papers (see H€uckel E (1975) Ein Gelehr-

tenleben. Ernst und Satire. Verlag Chemie, Weinheim, pp 178–179)

4. E.g. (a) The pioneering popularization: Roberts JD (1962) Notes on molecular orbital

calculations. Benjamin, New York. (b) A detailed treatment: Streitweiser A (1961) Molecu-

lar orbital theory for organic chemists. Wiley, New York. (c) Perhaps the definitive presen-

tation of the simple H€uckel method is Heilbronner E, Bock H (1968) Das HMO Modell und

seine Anwendung. Verlag Chemie, Weinheim, Germany, vol. 1 (basics and implemen-

tation); (1970) vol. 2, (examples and solutions); (1970) vol. 3 (tables of experimental

and calculated quantities). An English translation of vol. 1 is available: English edition:

Heilbronner E, Bock H (1976) The HMO model and its application. Basics and manipula-

tion. Verlag Chemie

5. Wheeler LP (1951) Josiah Willard Gibbs. The history of a great mind. Yale University Press,

New Haven, Ct

6. Reviews in Computational Chemistry, Lipkowitz KB, Boyd DB (eds) vols 1–18; Lipkowitz

KB, Larter R, Cundari TR (eds) vols 19–21; Lipkowitz, KB, Cundari TR, Gillet VJ (eds)

vol 22; Lipkowitz KB, Cundari TR (eds) vols 23–26. VCH, New York. http://chem.iupui.edu/

rcc/rcc.html.

Chapter 1, Harder Questions, Answers

Q2

Can “conventional” physical chemistry, such as the study of kinetics, thermody-

namics, spectroscopy and electrochemistry, be regarded as a kind of computational

chemistry?

First, let’s realize that the boundaries between the old divisions of chemistry –

organic, inorganic, physical, theoretical – are no longer sharp: all chemists should

have a fair amount of theory, and with the help of this a chemist from one of the four

divisions (one hesitates to stress the term division) should not be a complete

outsider in any of the other three. That said, whether someone working in one of

the “conventional” fields is doing computational chemistry depends: the term could

be taken to mean calculation used to anticipate or rationalize experimental results,

to predict unrealized chemistry, or to explain (usually puzzling) experimental

results. So a kineticist might use computations to predict or explain rate constants,

or an organic chemist might use computations to predict or explain the properties of

novel organic compounds.
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Work in one of the conventional fields is not, by tradition, regarded as com-

putational chemistry, but it can become such if the principles of computational

chemistry (such as computational characterization of putative intermediates and

transition states) are applied to a problem in the field.

Theoretical chemistry rates some special mention in this context. Nowadays this

activity tends to be quite mathematical [1], but history shows us that theoretical

chemistry need not be mathematical at all. From the first years of the crystallization

of chemistry as a subject distinct from alchemy, chemists have utilized theory, in

the sense of disciplined speculation. Nonmathematical examples are found in the

structural theory of organic chemistry [2] and in most applications of the powerful

Woodward–Hoffman orbital symmetry rules [3].
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Chapter 1, Harder Questions, Answers

Q3

The properties of a molecule that are most frequently calculated are geometry,

energy (compared to that of other isomers), and spectra. Why is it more of a

challenge to calculate “simple” properties like melting point and density?

Hint: Is there a difference between a molecule X and the substance X?

Properties like geometry, energy, and spectra are characteristics of single mole-

cules (with the reservation that close contact with other molecules, especially

solvation or crystal packing, can affect things), while melting point and density

are bulk properties, arising from an ensemble of molecules. Clearly it should be

easier to deal with a single molecule than with the hundreds or thousands (at least)

that make up even a tiny piece of bulk matter.

Melting points have been calculated [1] extracting thermodynamic information

about the solid and liquid phases by molecular dynamics simulations [2].

1. E.g. (a) Melting point of NaCl: Anwar J, Frenkel D, Noro MN (2003) J Chem Phys 118:728;

(b) Melting point of a GaN crystal: Harafuji K, Tsuchiya T, Kawamura K (2003) Phys Status

Solidi 0(7):2420
2. Haile JM (1992) Molecular dynamics simulation. Wiley, New York
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Chapter 1, Harder Questions, Answers

Q4

Is it surprising that the geometry and energy (compared to that of other isomers) of a

molecule can often be accurately calculated by a ball-and springs model (MM)?

Since in some ways molecules really do behave like ball-and-springs toys, it is

not surprising that such a model enables one to calculate geometries and energies,

but what is surprising is the accuracy possible with such calculations. Let’s explore

these two assertions.

In some ways molecules really do behave like ball-and-springs toys.
There are two assumptions here: that molecules have definite bonds, and that

these bonds behave like springs.

1. Do molecules have definite bonds? A molecule is a collection of relatively

immobile atomic nuclei and rapidly moving electrons, with the “relatively

immobile” nuclei vibrating about equilibrium positions. At first sight this

picture offers no hint of the existence of bonds. It might seem that IR spectra

show that molecules have definite bonds, since these spectra are interpreted in

terms of bond vibrations (stretching, bending, and torsional motions). Do the

fundamental vibrations, the normal-mode vibrations (which in principle can be

calculated by any of the standard computational chemistry methods used to

optimize molecular geometry, and from which the experimentally observed

vibrations can be “synthesized”) really show the presence of the conventional,

standard bonds of simple valence theory? Actually, the vibrational spectra

show only that nuclei are vibrating along certain directions, relative to the axes

of a coordinate system in which the molecule is placed. An IR spectrum

computed by assigning to the conventional bonds stretching and bending

force constants is said to correspond to a valence forcefield. Such a forcefield

often serves to create a good Hessian (Chapter 2) to initiate optimization of an

input structure to a minimum (but not a transition state), but does not always

account for the observed IR bands, due to coupling of normal-mode vibra-

tions [1].

That molecules do have definite bonds, and that these tend to correspond in

direction and number to the conventional bonds of simple valence theory, is

indicated by the quantum theory of atoms-in-molecules (AIM, or QTAIM) [2].

This is based on an analysis of the variation of electron density in molecules.

2. Do bonds behave like springs? It is well-established that for the small vibrational

amplitudes of the bonds of most molecules at or below room temperature, the

spring approximation, i.e. the simple harmonic vibration approximation, is fairly

good, although for high accuracy one must recognize that molecules are actually

anharmonic oscillators [3].

Is the accuracy of geometries and relative energies obtainable from MM
surprising?
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Bearing in mind that MM algorithms are heavily parameterized, this does not

seem so surprising: the mathematician John von Neumann said “With four para-

meters I can cover an elephant, and with five I can make him wiggle his trunk.” [4].

MM uses more than four parameters. The accuracy is perhaps not surprising, but it

is nevertheless impressive.
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Chapter 1, Harder Questions, Answers

Q5

What kinds of properties might you expect MM to be unable to calculate?

Unassisted MM can’t calculate electronic properties, since MM knows nothing

about electrons. It is possible to use empirical parameters to elicit from a structure,

calculated by MM, electronic properties such as atomic charges: atoms in “standard

molecules” can be assigned charges based on electronic calculations like ab initio

or DFT, and these could be incorporated into a database. An MM program could

draw on these data to obtain a kind of educated guess of the atomic charges (which

might then be used to calculate dipole moments and indicate likely sites of nucleo-

philic and electrophilic attack).

Thus pure MM (MM by itself) can’t calculate UV spectra, the shapes and

energies of molecular orbitals, and electron distribution and derivative properties

of this, like atomic charges, dipole moments, and more arcane molecular features

like bond paths (associated with atoms-in-molecules theory, AIM [1]).
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Chapter 1, Harder Questions, Answers

Q6

Should calculations from first principles (ab initio) necessarily be preferred to those

which make some use of experimental data (semiempirical)?

There are two aspects to confronting this question: a practical and what might be

called a philosophical. On the practical aspect impinge questions of time, reliabil-

ity, and accuracy. The philosophical issue is subtler.

If planned ab initio calculations would take an unacceptably long time with the

software and hardware available, then one must simply either abandon the project or

resort to a semiempirical method; these are typically hundreds to many thousands of

times faster. Reliability and accuracy are not sharply distinct: one might not be able to

rely on a calculation if it is not sufficiently accurate. Reliability could, alternatively,

be equated with consistency (one usual meaning of the term): a method might be

sometimes very accurate, but might erratically lapse in this regard. Only comparison

with experiment for a carefully selected set of relevant cases can show how accurate

and reliable a method is. For some problems the extremely fast molecular mechanics

method is the most accurate and reliable: for reasonably normal monofunctional

compounds, and particularly hydrocarbons, geometries are commonly accurate to

within 0.01 Å for bond lengths and to within 2� for bond angles, and to within

ca. 1 kJ mol�1 for heats of formation [1].

An amusing polemical debate on the virtues of semiempirical versus ab initio

methods took place between Dewar, on the one hand, and Halgren, Kleier, and

Lipscomb, on the other [2]. The Dewar group pioneered the semiempirical AM1

method, which spawned the PM3 method, these two being the most popular

semiempirical quantum-mechanical methods today, and Lipscomb and coworkers

were early advocates of ab initio methods. Dewar argued that ab initio methods

were hopelessly inaccurate and expensive. Those were the days (1975) when own-

ing your own computer was a dream and one paid perhaps $500 an hour to use one;

it suffices to note that $500 was worth far more then and the fastest computer was

far slower than a cheap personal computer is today. Dewar concluded that a study of

the interconversion of benzene valence isomers by semiempirical versus ab initio

methods would cost $5,000 versus $1 billion! Lipscomb and coworkers argued that

whatever their practical virtues, semiempirical methods “obscure the physical bases

for success...and failure alike”. This controversy is dated by the enormous increase

in computer speed and the sophistication attained by ab initio methods since then,

but it captures the flavor of part of the philosophical divide between the two

approaches: the desire to get answers that might in principle, but less expediently,

have been obtained in the lab, versus the desire to understand the underlying

reasons for the phenomena being studied.

Nowadays chemists do not worry much about the virtues of semiempirical

versus ab initio methods. Ab initio methods, it must be conceded, dominate

computational chemistry studies in the leading journals, and indeed the study of
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exotic molecules or reactions by semiempirical calculations would be expected to

be unreliable for lack of appropriate parameterization. Semiempirical methods are

widely used in industry as an aid to the design of drugs and materials, and are very

likely employed in preliminary exploration of projects for which only the later, ab

initio results, ever see the light of publication.

To conclude: calculations from first principles are not necessarily to be preferred
to semiempirical ones, although for novel molecules and reactions ab initio-type

methods are more to be trusted.
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Chapter 1, Harder Questions, Answers

Q7

Both experiments and calculations can give wrong answers. Why then should

experiment have the last word?

This is a highly “philosophical” question, but we will try to answer it in a

practical way, relevant to our work as scientists.

First, we should note that in practice experiment does not automatically trump

calculations: calculations which are considered to be reliable have been used to

correct experimental results – or rather experimental claims, in contrast to “con-

firmed” experiments. Examples of this are the (likely) correction of dubious bond

energies [1] and heats of formation [2]. So the interesting question is, why should

“confirmed” experiments take precedence in credibility to calculations? Remove

the quotation marks and the question almost answers itself: as scientific realists

[3] we believe that a good experiment reflects a reality of nature; a calculation, on

the other hand, is a kind of model of nature, possibly subject to revision.

References

1. Fattahi A, Lis L, Tian Z, Kass SR (2006) Angew Chem Int Ed Engl 45:4984

2. Ventura ON, Segovia M (2005) Chem Phys Lett 403:378

3. Leplin J (1997) A novel defence of scientific realism. Oxford University Press, Oxford

Answers 591



Chapter 1, Harder Questions, Answers

Q8

Consider the docking of a potential drug molecule X into the active site of an

enzyme: a factor influencing how well X will “hold” is clearly the shape of X; can

you think of another factor?

Hint: molecules consist of nuclei and electrons.

Another factor which comes to mind is charge. The shape factor arises from

what could be called steric complementarity: ideally, for each bulge on X there is a

corresponding depression on the active site, and vice versa. Another kind of

complementarity arises from electrical charge: for each positive/negative region

on X there is negative/positive region (ideally of complementary shape). So for

strong binding we would like each positively charged bulge on X to fit into a

negatively charged depression, ideally of he same shape and size, in the active site,

and analogously for positively charged depressions and negatively charged bulges.

Of course this situation is unlikely to be always exactly realized.

The hint was to remind us that in most molecules there is a substantial imbalance

between positive and negative charge from place to place in the molecule.

Chapter 1, Harder Questions, Answers

Q9

In recent years the technique of combinatorial chemistry has been used to quickly

synthesize a variety of related compounds which are then tested for pharmacologi-

cal activity (Borman S (2001) Chemical and Engineering News, 27 August, p 49;

2000, 15 May, p 53; 1999, 8 March, p 33). What are the advantages and disadvan-

tages of this method of finding drug candidates, compared with the “rational

design” method of studying, with the aid of computational chemistry, how a

molecule interacts with an enzyme?
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First let’s refresh our memories as to the basic technique behind synthesis by

combinatorial chemistry: this is outlined here using, for purely illustrative purposes,

a 3 x 3 array of reaction cells, i.e. nine cells:

3-Iodopropanoic acid is converted to the methyl, ethyl, and propyl esters, by

effecting across row 1 methylation, across row 2 ethylation, and across row 3

propylation. Then the esters are converted to fluoro-, chloro, and bromo-compounds

by appropriate substitution reactions down columns 1, 2, and 3. In practice a 10 x 10 or

bigger array might be used, creating 100 or more different compounds. The procedure

can be automated and carried out on a small “microchip” (“lab on a chip”). One would

likely begin with a compound that showed to some extent the desired activity, and

make a host of variants. This relatively quick synthesis of many drug candidates,

followed by mass testing, is called high-throughput screening (HTS).

There has been some disappointment with combinatorial chemistry. This is

discussed in a nicely balanced article with the engaging cover title “I, chemist.

Researchers trump robots in drug discovery” (shades of Isaac Asimov!) [1]. It

appears that the method may have been oversold; indeed, a cynic might say that

with millions of compounds generated by combinatorial chemistry, we should now

have effective drugs for all diseases. HTS does continue to be useful: “Most sources

agree that combinatorial chemistry is an important part of building a library of

compounds from which to work and that HTS is needed at some point in the process

of drug discovery.” [1]. Nevertheless, if we realize that all diseases are molecular,

we are led to conclude that if our understanding of the mechanisms by which

chemical processes cause disease is sufficiently sophisticated, then rational mole-

cular intervention should be the most effective approach to drug therapy. As Dror

Ofer of Keddem Bioscience was quoted as saying [1]: “The real issue in drug

discovery is that we don’t understand the key steps in developing a drug. We must

say this openly and clearly. To understand, in science, means only one thing: the

ability to predict results. Medicinal chemists must study physical chemistry – how

atoms really react to one another. You have to go back to the science when

something doesn’t work, rather than applying more brute force.”
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Chapter 1, Harder Questions, Answers

Q10

Think up some unusual molecule which might be investigated computationally.

What is it that makes your molecule unusual?
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The choice and justification thereof is very much an individual matter: what kind

of chemistry fascinates you? You can read about some of the molecules that

fascinate other chemists in the books by Hopf [1] and by me [2].
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Chapter 2, Harder Questions, Answers

Q1

The Born–Oppenheimer principle [1] is often said to be a prerequisite for the

concept of a PES. Yet the idea of a PES [2] predates the Born–Oppenheimer

principle (1927). Discuss.

The Born–Oppenheimer principle (Born–Oppenheimer approximation) [1] says

that the electrons in a molecule move so much faster than the nuclei that the two

kinds of motion are independent: the electrons see the nuclei as being stationary,

and so each electron doesn’t have to adjust its motion to maintain a minimized

electron–nucleus interaction energy. Thus we can calculate the purely electronic

energy of a molecule, then the internuclear repulsion energy, and add the separate

energies to get the total molecular energy.

The concept of a PES can be based simply on the concept of molecular struc-

ture, without specific reference to nuclei and electrons: if one thinks of a molecule as

being defined by the relative positions (in a coordinate system) of its atoms (no

reference to nuclei and electrons), then it is intuitively apparent that as these positions

are altered the energy of the collection of atoms will change. This is probably how

Marcelin thought of molecules [2]. On the mathematical surface defined by Energy¼
f(atomic coordinates), minima, transition states etc., defined by first and second

derivatives, emerge naturally. On the other hand, if one insists on going beyond

mere atoms, and thinks of a molecule as a collection of nuclei and electrons, then

molecular shape (geometry) has meaning only if the nuclei (the hallmark of “atoms”)

are more or less fixed. This stricture is violated in CH5
+, which has no clear shape [3].
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Chapter 2, Harder Questions, Answers

Q2

How high would you have to lift a mole of water for its gravitational potential

energy to be equivalent to the energy needed to dissociate it completely into

hydroxyl radical and hydrogen atoms? The strength of the O–H bond is about

400 kJ mol�1; the gravitational acceleration g at the Earth’s surface (and out to

hundreds of kilometres) is about 10 m s�2. What does this indicate about the role of

gravity in chemistry?

This was put in the “Harder Questions” category because the answer can’t be

found just be reading the chapter, but actually the solution comes from a straight-

forward application of simple physics.

The energy needed to homolytically dissociate a mole of water into HO. And H.

is ca. 400 kJ. We want to calculate how high 18 g of water must be lifted for its

gravitational potential energy to be 400 kJ. Working in SI units:

Pot E ¼ force� distance ¼ mgh,

energy in J, mass in kg, g in m s�2, h in m

h ¼ Pot E=mg ¼ 400; 000=0:018 � 10 m ¼ 2 � 106m or 2,000 km

Actually the height is the same regardless of the mass of water, since, e.g.

doubling the mass doubles both the energy needed for dissociation, and m in the

denominator. The calculation is flawed somewhat by the fact that the force of

gravity is considerably smaller 2,000 km above the surface of the Earth (radius ¼
6,000 km) (by a factor of (8,000)2/(6,000)2 ¼ 1.8). A more realistic calculation

would express the force as a function of h and integrate with respect to h. This

calculation does however show that if all the potential energy were somehow

directed into dissociating the H–O bond, a fall from a great height would be needed!

Chapter 2, Harder Questions, Answers

Q3

If gravity plays no role in chemistry, why are vibrational frequencies different for,

say, C–H and C–D bonds?
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A deuterium atom is heavier than a hydrogen atom, but the real point is not its

weight, which involves gravity, but its mass, which does not. The vibrational

frequency of a bond depends on its stiffness (the force constant) and on the masses

of the atoms involved. For a diatomic molecule A–B the vibrational frequency (in

wavenumbers) is governed by the simple formula

~v ¼ 1

2pc
k

m

� �1=2

where c is the velocity of light, k is the force constant, and m (mu) is the reduced

mass of the two atoms,M1m2/(M1 þ m2). IfM1 is big compared to m2, this equation

devolves to

~n ¼ constant
k

m2

� �1=2

as expected, since essentially the big mass does not move. Thus substituting D for

H in a sizable molecule reduces the C-Hydrogen stretch wavenumber by a factor

of 21/2 = 1.4. With polyatomic molecules, accounting for mass is a bit more

complicated. The force constant matrix must be “mass weighted” and diagonalized

to give a matrix with the displacement vectors of the vibrations, and a matrix with

the frequencies [1].
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Chapter 2, Harder Questions, Answers

Q4

We assumed that the two bond lengths of water are equal.Must an acyclic molecule

AB2 have equal A–B bond lengths? What about a cyclic molecule AB2?

Intuitively, there is no reason why acyclic or cyclic AB2 should have unequal

A–B bond lengths: one A–B bond seems just as good as the other. But proving this

is another matter.

Consider a molecule AB2, linear, bent, or cyclic. Each of the two A–B bonds has

the same force constant – we can’t have one, say, single and one double, because

this on-paper arrangement would correspond to a resonance hybrid with each bond

the same ca. 1.5 in bond order:
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and (1)
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two different molecules if
we distinguish (somehow label)
the Bs

a resonance hybrid

Since A–B1 and A–B2 have the same force constant, a structure with unequal

bond lengths represents only vibrational extremes arising from a symmetric A–B

stretch: the molecule must vibrate around an equilibrium structure with equal A–B

lengths. If you doubt this, imagine constructing a ball and springs model of AB2

with identical A–B springs but different equilibrium A–B lengths; this is clearly

impossible.

The case of cyclobutadiene may at first seem to contradict the above assertion

that if a “central” atom A is connected to two atoms B the force constants must be

the same, giving rise to equal bond lengths. Cyclobutadiene is rectangular rather

than square and so one bond from a carbon is single, and one is double, say the

bonds designated here C1–C2 and C1–C3; 1 and 2 are distinct molecules separated

by a barrier [1]:
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1 and 2 are not canonical forms of a resonance hybrid, but rather
distinct molecules:

chemical reaction

NOT resonance

Here we can call C1 our central atom, and it seems to be connected to B/C2 by a

single bond and to B/C3 by a double bond. However, C2 and C3 are not equivalent

for our analysis: moving away from C1, C2 is followed by a double bond, and C3 is

followed by a single bond. Whether a molecule will exhibit valence isomerism, as

shown by cyclobutadiene, or resonance, as shown by benzene, is not always easy

to predict.
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Chapter 2, Harder Questions, Answers

Q5

Why are chemists but rarely interested in finding and characterizing second-order

and higher saddle points (hilltops)?

The short answer is, because they (the hilltops, not the chemists) don’t do

anything chemically. In a chemical reaction, we have (at least two) minima, and

molecules move between them, passing through transition states, which are first

order saddle points. Although in passing from one minimum to another all mole-

cules do not strictly follow the intrinsic reaction coordinate (IRC) the lowest energy

pathway on a PES that connects the minima, very few molecules are likely to stray

so far outside the IRC that they pass through a hilltop [1].

Although hilltops are rarely deliberately sought, one sometimes obtains them in

an attempt to find a minimum or a transition state. By a little fiddling with a hilltop

one can often convert it to the desired minimum or transition state. For example,

when the geometry of doubly eclipsed (C2v) propane is optimized, one obtains a

hilltop whose two imaginary frequencies, when animated, show that this geometry

wants to relieve both eclipsing interactions. Altering the hilltop structure to a

doubly staggered (ideally also C2v) geometry and optimizing this yields a mini-

mum. Altering the hilltop to a singly eclipsed structure gives a transition state

interconverting minima.
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Chapter 2, Harder Questions, Answers

Q6

What kind(s) of stationary points do you think a second-order saddle point

connects?

A second-order saddle point has two of its normal-mode vibrations

corresponding to imaginary frequencies, that is, two modes “vibrate” without a

restoring force, and each mode takes the structure on a one-way trip downhill on the

potential energy surface. Now compare this with a first-order saddle point (a

transition state); this has one imaginary normal-mode vibration: as we slide down-

hill along the direction corresponding to this vibration, the imaginary mode dis-

appears and the structure is transformed into a relative minimum, with no imaginary

vibrations. Correspondingly, as a second-order saddle structure moves downhill

along the path indicated by one of the imaginary vibrations, this vibration vanishes

and the structure is transformed into a first-order saddle point. Illustrations of this

are seen in Figs. 2.9 and 2.14 where the hilltops lead to saddle point by conforma-

tional changes.

Chapter 2, Harder Questions, Answers

Q7

If a species has one calculated frequency very close to 0 cm�1 what does that tell

you about the (calculated) PES in that region?

First let us acknowledge a little inaccuracy here: frequencies are either positive,

imaginary (not negative), or, occasionally, essentially zero. Some programs desig-

nate an imaginary frequency by a minus sign, some by i (the symbol for
ffip�1).

Frequencies are calculated from the force constants of the normal vibrational

modes, and the force constant of a vibrational mode is equal to the curvature of

the PES along the direction of the mode (¼ the second derivative of the energy with

respect to the geometric change involved). Whether a frequency is positive or

imaginary depends qualitatively on the curvature. A minimum has positive curva-

ture along the direction of all normal-mode vibrations, a first-order saddle point has

negative curvature along the direction of one normal-mode vibration and positive

curvature along all other normal-mode directions, and analogously for a second-,

third-order etc. saddle point. Positive curvature corresponds to positive force con-

stants and positive frequencies, and negative curvature to negative force constants

and, taking square roots, imaginary frequencies. A zero frequency, then, corre-

sponds to a zero force constant (
ffip
0 ¼ 0) and zero curvature of the potential energy

surface along that direction. Moving the atoms of the structure slightly along that

direction leads to essentially no change in the energy, since the curvature of the
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energy–distance graph for that motion is the force constant for the vibration (i.e. the

second derivative of the energy with respect to the motion; the first derivative of

energy with respect to motion is the force). Along that direction the PES is a

plateau. There are thus three ways in which a structure can be a stationary point,

i.e. rest on a flat spot on the PES: it can reside at a relative minimum, where the

surface curves up in all directions, at a saddle point, where the surface curves

downward in one or more directions, or at a point where along one direction the

surface does not curve at all (is a plateau).

The third situation could correspond to a “structure” in which an optimization

algorithm, in its zeal to find a stationary point (where all first derivatives are zero)

moves two molecules significantly beyond their van der Waals separation:

geometry

energy

van der Waals
separation

PES essentially flat along
direction of this geometry change

The vibrational mode corresponding to altering the separation of the molecules

is ca. 0 cm�1; the internal modes of each molecule, bond stretch, bend, and torsional

modes, are of course nonzero.

Chapter 2, Harder Questions, Answers

Q8

The ZPE of many molecules is greater than the energy needed to break a bond; e.g.

the ZPE of hexane is about 530 kJ mol�1, while the strength of a C–C or a C–H

bond is only about 400–530 kJ mol�1. Why then do such molecules not spontane-

ously decompose?

They do not spontaneously decompose because the ZPE is not concentrated in

just one or a few bonds. An exotic structure could indeed run the risk of decom-

posing by such concentration of its vibrational energies. A candidate for this is the

transition state (which is calculated to be nonplanar) for inversion of methane.

Incidentally, this would correspond to racemization if four different hydrogens

could be attached to a carbon; unfortunately 4H has a halflife of only 10�22 s [1].
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The question of the possible breaking of a C–H bond here in preference to inversion

has been considered [2].

References

1. Ter-Akopian GM et al (2002) American Institute of Physics Conference Proceedings, April 22,

vol 610, p 920. Nuclear physics in the 21st century: International nuclear physics conference

INPC 2001; DOI:10.1063/1.1470062

2. Lewars E (2008) Modeling marvels. Computational anticipation of novel molecules. Springer,

New York, chapter 1, Planar Carbon, Introduction

Chapter 2, Harder Questions, Answers

Q9

Only certain parts of a PES are chemically interesting: some regions are flat and

featureless, while yet other parts rise steeply and are thus energetically inaccessible.

Explain.

Chemically interesting regions of a PES are areas where relative minima and the

transition states connecting them reside, that is, where chemistry takes place.

Rarely-explored are parts where nothing happens or too much happens.

Nothing happens where a molecule has been broken into its component

atoms and these atoms are widely separated and thus noninteracting – these are

plateau regions (compare question 7). Here the reaction coordinate is simply a

composite of the interatomic separations and altering these has no effect on the

energy.

Too much happens in regions where molecules or parts of molecules are

squeezed strongly together: here the energy changes very steeply with changes in

the reaction coordinate, rising sharply as intermolecular or nonbonded atomic

distances decrease. Actually, these regions might be of interest in molecular

dynamics studies of reactions under very high pressures [1–3].
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Chapter 2, Harder Questions, Answers

Q10

Consider two PESs for the HCNÆHNC reaction: (a), a plot of energy versus the H–C

bond length, and (b), a plot of energy versus the HCN angle. Recalling that HNC is

the higher-energy species (Fig. 2.19), sketch qualitatively the diagrams a and b.
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Chapter 3, Harder Questions, Answers

Q1

One big advantage of MM over other methods of calculating geometries and

relative energies is speed. Does it seem likely that continued increases in computer

speed could make MM obsolete?

Could increases in computer speed could make MM obsolete? The answer

would seem to be yes, eventually. If computer speed increases indefinitely, the

essentially complete solution of the Schr€odinger equation will become possible for

bigger and bigger molecules. This solution is the holy grail of computational

chemistry, as such a solution should accurately predict the properties of the

molecule. All computations might be perfectly accurate if computers were infinitely

fast, a probably unattainable goal, but one that might be effectively approximated

should practical quantum computers ever become available [1, 2].
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Chapter 3, Harder Questions, Answers

Q2

Do you think it is possible (in practical terms? In principle?) to develop a forcefield

that would accurately calculate the geometry of any kind of molecule?

It is intuitively apparent that with sufficient parameters a physical system, and

even a set of systems, can be simulated to any desired accuracy (although there does

not seem to a formal theorem in physics or mathematics to this effect). In this vein,

the mathematician John von Neumann said “With four parameters I can cover an

elephant, and with five I can make him wiggle his trunk” [1]. The logistics of

putting together such an enormous suite of algorithms apart, whether such a

forcefield would be practical is another matter.
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Chapter 3, Harder Questions, Answers

Q3

What advantages or disadvantages are there to parameterizing a forcefield with the

results of “high-level” calculations rather than the results of experiments?

If you are a purist and regard molecular mechanics as a semiempirical method

(the theoretical part coming from the physics of springs and the theory of van der

Waals and electrostatic and nonbonded interactions) then you will be uncomfort-

able with any nonexperimental (nonempirical) parameterization. As a practical

matter, however, we simply want a method that works, and we can compare the

two approaches to parameterizing in this context.

Accurate force constants etc. can be obtained from high-level ab initio (Chapter

5) or DFT (Chapter 7) calculations. If we use these for a forcefield, then we are

parameterizing to match reality only to the extent that the high-level calculations

match experiment. Apart from a possible philosophical objection, which we essen-

tially dismissed, there is the question of the trustworthiness of the ab initio or DFT

results. For “normal” molecules, that is, species which are not in some way exotic

[1], these calculations do indeed deliver quite reliable results. The advantages they

offer over experimental acquisition of the required parameters is that these quan-

tities (1) can be obtained for a wide variety of compounds without regard to

synthetic difficulties or commercial availability, (2) are offered up transparently
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by the output of the calculation, rather than being required to be extracted, perhaps

somewhat tortuously, from experiments, (3) are usually more quickly calculated

than determined in the lab, and (4) can be uniformly secured, that is, all parameters

can be obtained from calculations at the same level, say MP2/6-311G(df,p), in

contrast to experiment, where different methods must be used to obtain different

parameters. This last point may be more of an esthetic than a utilitarian advantage.

The advantage of parameterizing with experimental quantities is that, if the

experiment is reliable, then we know that the values of the parameters; we need

not reflect on the reliability of the calculation. Of course, we might wish to ponder

the accuracy of the experiment.
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Chapter 3, Harder Questions, Answers

Q4

Would you dispute the suggestion that no matter how accurate a set of MM results

might be, they cannot provide insight into the factors affecting a chemical problem,

because the “ball and springs” model is unphysical?

First, the ball and springs model used in molecular mechanics is not completely

nonphysical: to a fair approximation, molecules really do vibrate and bonds do

stretch and bend, as expected from a macroscopic ball and springs model. It is when

we want to examine inescapably electronic properties, like, say, UV spectra or the

donation of electrons from one species to another to make a bond, that the MM

model is completely inadequate.

Since MM gives geometries that vary from fairly to highly accurate for molecules

that are not too outré, where steric factors are relevant it can provide chemical insight.

Chapter 3, Harder Questions, Answers

Q5

Would you agree that hydrogen bonds (e.g. the attraction between two water

molecules) might be modelled in MM as weak covalent bonds, as strong van der
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Waals or dispersion forces, or as electrostatic attractions? Is any one of these

approaches to be preferred in principle?

No, none is to be preferred “in principle”, meaning on grounds of theoretical

appropriateness. This is because MM is severely practical, in the sense that the

forcefield need only satisfactorily and swiftly reproduce molecular properties,

mainly geometries. The method makes no apologies for ad hoc additions which

improve results. An example of this is seen in the inclusion of a special term to force

the oxygen of cyclobutanone to lie in the ring plane [1]. Identifying the terms in a

forcefield with distinct theoretical concepts like force constants and van der Waals

forces is at best an approximation.

Hydrogen bonding can be dealt with in principle in any way that works. A

weak covalent bond would be simulated by a small bond stretch constant

(roughly, a force constant), a strong van der Waals force could be modelled by

adjusting the two constants in the Lennard-Jones expression, and electrostatic

attraction by a Coulomb’s law inverse distance expression. These are only sim-

ple examples of how these methods might be implemented; a brief discussion is

given by Leach [2]. The choice of method to be implemented is determined

by speed and accuracy. Treating strong hydrogen bonds by MM has been dis-

cussed [3].
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1. Leach AR (2001) Molecular modelling, 2nd edn. Prentice Hall, New York; section 4.6
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Chapter 3, Harder Questions, Answers

Q6

Replacing small groups by “pseudoatoms” in a forcefield (e.g. CH3 by an “atom”

about as big) obviously speeds up calculations. What disadvantages might accom-

pany this simplification?

The obvious disadvantage is that one loses the directional nature of the group

and thus loses any possibility of simulating conformational effects, as far as that

group is concerned. Rotation around a C–CH3 bond alters bond lengths and

energies, albeit relatively slightly, but if we pretend that the CH3 group is spherical

or ellipsoidal, then clearly it cannot engender a torsional energy/dihedral angle

curve.

The loss of the conformational dimension could be a significant defect for a polar

group like OH, where rotation about a (say) C–OH bond could in reality lead to
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formation or breaking of a hydrogen bond to some lone pair atom, with changes in

the relative energies of different conformations.

Chapter 3, Harder Questions, Answers

Q7

Why might the development of an accurate and versatile forcefield for inorganic

molecules be more of a challenge than for organic molecules?

For the purposes of this question we can consider “unproblematic organics” to

exclude molecules containing elements beyond calcium, element 20: our unevent-

ful organics can thus contain H, Li–F, Na–Cl, K and Ca. We’ll also give a pass to Br

and I. Problem elements are Sc, Ti, ..., As, Se, Rb, Sr ..., Sb, Te, Cs, Ba, ..., Bi, Po,

At, and the subsequent radioactive elements.

The problematic atoms are thus the heavier nonmetals, and the metals scan-

dium and beyond, most of which are transition metals (or the related lanthanides):

p block, d block and f block elements. In the context of electronic theories these

are, traditionally at least, considered to employ d orbitals in their hypervalent

bonding [1]. Now, in molecular mechanics orbitals simply do not exist so the

difficulties must be for formulated without reference to them (parameterizing a

quantum mechanical semiempirical method like AM1 or PM3 to account for

d orbital effects also presents special problems [2]). In simplest terms, the

problems with these atoms lies in the unconventional (compared to the usual

organics) geometries encountered. Normal organics have a tetrahedral or simpler

disposition of bonds around each atom, but problem elements (first paragraph

above) can have pentagonal bipyramidal, octahedral, and other geometries. There

are more bonds and more interbond angles to address; some organometallic

bonding is not even usually depicted in terms of bonds between individual

atoms, e.g. bonding to cyclopentadienyl, p-allyl and alkene ligands. A brief

discussion of MM applied to organometallic and inorganic compounds is given

by Rappé and Casewit [3].

References
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Chapter 3, Harder Questions, Answers

Q8

What factor(s) might cause an electronic structure calculation (e.g. ab initio or

DFT) to give geometries or relative energies very different from those obtained

from MM?

The most likely factor is electronic: since MMmakes no reference to electrons, it

should not be expected to reflect structural and energetic effects arising from, say,

aromaticity and antiaromaticity, encapsulated in the 4n þ 2 and the corollary 4n

rules [1–3].
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1. Minkin V, Glukhovtsev MN, Simkin B. Ya (1994) Aromaticity and antiaromaticity: electronic
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Chapter 3, Harder Questions, Answers

Q9

Compile a list of molecular characteristics/properties that cannot be calculated

purely by MM.

Among these properties are:

UV spectra

Dipole moment (by pure MM)

Delocalization energy (this is related to aromaticity and antiaromaticity)

Transition state structures and energies (see the hedge below)

The properties are listed in approximate order of simplicity of connection with

electronic behavior:

UV spectra arise from electronic transitions, automatically placing them outside the

accessible to MM.

Dipole moments arise from uneven distribution of electric charge in a molecule,

which in turn is due to nuclear charges not being “matched” spatially by electron

distribution. This would seem to automatically rule out probing by MM.
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However, a subterfuge enables MM molecular geometries to yield dipole

moments: the dipole moment of a molecule can be considered to be the vector

sum of bond moments, and like bond energies these are with a fair degree of

accuracy transferable between molecules. So from the geometry, which gives

the relative positions of the vectors in space, a dipole moment can be calculated,

purely empirically.

Delocalization energy denotes the energy by which a molecule is stabilized or

destabilized compared to a hypothetical reference compound in which electrons

(usually p electrons) are not as mobile. The canonical example is the energy of

benzene compared to the hypothetical 1,3,5-cyclohexatriene in which there are

three distinct double and three distinct triple bonds. With caveats, one measure

of this energy is the heat of hydrogenation of benzene compared to three times

the heat of hydrogenation of cyclohexene. As an electronic phenomenon, this

lies outside the purview of MM.

Transition state structures and energies differ from those of molecules (i.e. from

those of relative minima on a potential energy surface) in that transition states

are not relative minima but rather are saddle points, and that they are not readily

observed experimentally (with molecular beam and laser technology simple

transition states can be, in effect, observed [1]). These differences should not,

in principle, make MM inapplicable to calculating geometries and energies of

transition states: an assembly of atoms connected by bonds (some of these would

be partial bonds for a transition state) of known force constants should permit its

geometry to be adjusted so that one of its normal-mode vibrations has a negative

force constant (the critical feature of a transition state), and for parameterization

force constants of transition states could be calculated by quantum mechanical

methods.1 Indeed, MM has been used to calculate geometries and energies of

transition states, but these studies have used force fields developed for very

specific reactions, perhaps the best example being the dihdroxylation of alkenes

with osmium tetroxide under the influence of a chiral catalyst [2]. However, MM

is not at present a generally applicable tool for studying transition states. This is

probably because force constants are not as transferable between transition states

(are more variable from one transition state to another) as they are between

ordinary molecules, making a forcefield that works for one kind of reaction

inapplicable to another.
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and energies of calculated transition states can be gauged by comparing activation energies
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Chapter 3, Harder Questions, Answers

Q10

Howmany parameters do you think a reasonable forcefield would need to minimize

the geometry of 1,2-dichloroethane?

C C

H
H

H

H

Cl

Cl

Look at the structure of the molecule:

At a bare minimum, we would need parameters for these seven contributors to

the energy (here C is the atom type sp3 C):

(1) Estretch(C–C)

(2) Estretch(C–H)

(3) Estretch(C–Cl)

(4) Ebend(HCC)

(5) Ebend(ClCC)

(6) Ebend(HCCl)

(7) Etorsion(ClCH2–CH2Cl)

For each of the three Estretch(X–Y) terms, kstretch(X–Y) and leq(X–Y) are needed,

for a total of 6 parameters. For each of the three Ebend(XYZ) terms, kbend(XYZ) and

aeq(XYZ) are needed, for a total of 6 parameters. The torsional curve likely requires

at least 5 parameters (see chapter 3, section 3.2.2) for reasonable accuracy. This

makes a total of 6 þ 6 þ 5 ¼ 17 parameters. But this would be a very stunted

forcefield; it has no parameters for nonbonded interactions and so is not suitable for

molecules with bulky groups, and it is parameterized only for the atom types sp3 C,

H, and Cl. It cannot handle other kinds of carbon and other elements, and it has no

special parameters for electrostatic interactions.

A reasonable forcefield would be of more general applicability: it should be able

to handle the eight common elements C(sp3, sp2, sp), H, O(sp3, sp2), N(sp3, sp2, sp),

F, Cl, Br, I; we are focussing for convenience on an organic chemistry forcefield.

Yet this would have only 13 atom types, compared to the typical organic forcefield

with 50–75 [1]. Similar considerations applied to the stretching of C–H, C–O, C–N,

C–F, ..., H–O, H–N, etc. bonds, to the bending of various C–C–C, CO–C, etc.

angles, to rotation about single bonds, and to nonbonded interactions, reveals that

we need hundreds of parameters. The popular Merck Molecular Force Field

MMFF94 is said to have about 9,000 parameters [2].
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Chapter 4, Harder Questions, Answers

Q1

Do you think it is reasonable to describe the Schr€odinger equation as a postulate of
quantum mechanics? What is a postulate?

The consensus is that the Schr€odinger equation cannot be derived, but rather it

must be (and in fact it was) arrived at by more or less plausible arguments, then

tested against experiment. Thus it can be regarded as having originated as a

postulate, but as having survived testing so thoroughly that it may now be taken

as, to all intents and purposes, correct. Detailed presentations of the historical facts

connected with the genesis of the equation are given by Moore [1] and Jammer [2].

For a perceptive exegesis of the equation see Whitaker [3].

The simplest “derivation”, given in many books, e.g. in chapter 4, was in fact

similar to that used by Schr€odinger to obtain an equation which falls short of the

relativistic Schr€odinger equation only by the absence of spin, a concept which

had not yet arisen [1]. This first quantum-mechanical wave equation is now

known as the Klein-Gordon equation, and applies to particles without spin.
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Chapter 4, Harder Questions, Answers

Q2

What is the probability of finding a particle at a point?

The probability of finding a particle in a small region of space within a system

(say, a molecule) is proportional to the size of the region (assume the region is so

small that within it the probability per unit volume does not vary from one

infinitesimal volume to another). Then as the size of the region considered

approaches zero, the probability of finding a particle in it must approach zero.

The probability of finding a particle at a point is zero.
More quantitatively: the probability of finding a particle in an infinitesimal

volume of space dv in some system (e.g. a molecule) is given by

PðdvÞ ¼ rðx; y; zÞdv ¼ rðx; y; zÞdxdydz

in Cartesian coordinates, where r (rho) is the probability distribution function

characteristic of that particle in that system. The probability is a pure number, so

r has the units of reciprocal volume, volume�1, e.g. (m3)�1 or in atomic units

(bohr3)�1. P(dv) generally varies from place to place in the system, as the coordi-

nates x, y, z are varied; referring to an “infinitesimal” volume is a shorthand way of

saying that

lim
Dv!0

Pðx; y; zÞDv ¼ Pðx; y; zÞdv

The probability of finding the particle in a volume V is

PðVÞ ¼
ð
V

rðx; y; zÞdv

where the integration is carried out over the coordinates of the volume (in Cartesian

coordinates, over the values of x, y, z which define the volume). For a point, the

volume is zero and the coordinates will vary from 0 to 0:

PðVÞ ¼
ð0
0

rðx; y; zÞdv ¼ ½Fðx; y; zÞ�00 ¼ 0

Note: this discussion applies to a point particle, such as an electron – unlike a

nucleus – is thought to be. For a particle of nonzero size we would have to define

what we mean by “at a point”; for example, we could say that a spherical particle is

at a point if its center is at the point.
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Chapter 4, Harder Questions, Answers

Q3

Suppose we tried to simplify the SHM even further, by ignoring all interactions i, j;
i 6¼ j (ignoring adjacent interactions instead of setting them¼ b). What effect would

this have on energy levels? Can you see the answer without looking at a matrix or

determinant?

Setting all adjacent orbital interactions equal to zero removes all connectivity

information. It dissociates the molecule into isolated atoms! This follows because in

the SHM the sole structural information about a molecule is provided by which i, j
pairs are b and which are zero: two atoms are connected if and only their interaction

is represented by b; they are not connected if and only their interaction is repre-

sented by 0.

A look at Fock matrices may make this more concrete. Diagonalization of the

standard SHM matrix for the propenyl system gives

0 �1 0

�1 0 �1

0 �1 0

0
B@

1
CA¼

0:500 0:707 0:500

0:707 0 �0:707

0:500 �0:707 0:500

0
B@

1
CA

�1:414 0 0

0 0 0

0 0 1:414

0
B@

1
CA

0:500 0:707 0:500

0:707 0 �0:707

0:500 �0:707 0:500

0
B@

1
CA

(1)

+
-

+-

+

-

+

+

-

-

+
-

+ +
-

-

0

-1

1

-2

2

-1.414

1.414

0

Threemolecular orbitals with different energies and p-atomic-orbital contributions.

Diagonalization of the no-adjacent-interaction matrix gives
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0 0 0

0 0 0

0 0 0

0
B@

1
CA ¼

1 0 0

0 1 0

0 0 1

0
B@

1
CA

0 0 0

0 0 0

0 0 0

0
B@

1
CA

1 0 0

0 1 0

0 0 1

0
B@

1
CA

(1)

-

+

-

+0
-

+00

–1

1

–2

2

0

Three p atomic orbitals.

Chapter 4, Harder Questions, Answers

Q4

How might the i, j -type interactions in the simple H€uckel–Fock matrix be made to

assume values other than just �1 and 0?

Such changes in the Fock matrix have been made in an attempt to handle systems

with orbital contributions from atoms other than carbon. Consider the two species

and

BA

C
C

C
..-

H

H

HH
C

C ..

H

H

HH

H

N1

2

3 1

2

3

H

The matrix for the all-carbon p system A is that shown in the answer to

question 3. The matrix for the hetero (nitrogen) system B is qualitatively similar,

but its 2,3 and 3,3 interactions should be different from those of A:
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0 �1 0

�1 0 �1

0 �1 0

0
@

1
A 0 �1 0

�1 0 CN
0 CN NN

0
@

1
A (1)

Various modifications of the carbon values have been proposed for heteroatoms

[1]. If we use the suggested values CN ¼ �1 and NN ¼ �1.5 we have

0 �1 0

�1 0 �1

0 �1 �1:5

0
@

1
A

which on diagonalization gives the energy levels �2.111, 0.591, 1.202(cf. for the

carbon system A, �1.414, 0, 1.414). Intuitively, we expect the matrix element NN
to be more negative than CC (�1.5 cf. 0) because N is more electronegative than C;

here CN is the same as CC (�1), but CX values have usually been taken as being

less negative than �1, reflecting the probably less complete energy-lowering

delocalization of an electron in a CX-type bond compared to a CC-type bond.2

The hetero atom parameters have been obtained in various ways, for example by

striving for a best correlation of HOMO values with ionization energies, or of

polarographic reduction potentials with LUMO values. The whole subject of SHM

parameters and best heteroatom parameters is now of little practical importance,

since much better quantitative molecular orbital methods are now readily available.

Reference

1. (a) A thorough discussion: Streitwieser A Jr (1961) Molecular orbital theory for organic

chemists. Wiley, chapter 5. (b) A short hands-on presentation: Roberts JD (1962) Notes on

molecular orbital calculations. Benjamin, New York, chapter 6

Chapter 4, Harder Questions, Answers

Q5

What is the result of using as a reference system for calculating the resonance

energy of cyclobutadiene, not two ethene molecules, but 1,3-butadiene? What does

this have to do with antiaromaticity? Is there any way to decide if one reference

system is better than another?

2Discussions of heteroatoms in the SHM written in the heyday of that method present the

heteroatom parameters in a slightly more complicated way, in terms of the coulomb and resonance

integrals a and b, rather than as simple numbers.
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1. Compare the use as a reference of two ethene molecules and of butadiene:

a b

a

a

a

ap p p p

b

b a a a

aa

b b b

bbb

a

a

b

a b

Comparing cyclobutadiene with two ethene molecules:

Stabilization energy ¼ E CBDð Þ � E 2 ethenesð Þ ¼ 4aþ 4bð Þ � 2 2aþ 2bð Þ ¼ 0

Comparing cyclobutadiene with butadiene:

Stabilization energy ¼ E CBDð Þ � E butadieneð Þ ¼ 4aþ 4bð Þ � 4aþ 4:472bð Þ
¼ �0:472b

The energy of the CBD p-system is higher than that of the butadiene p-system);

recall that b is a negative energy quantity, so �0.472b is a positive quantity.

Thus the SHM says that a cyclic array of p atomic orbitals is destabilized by the

interactions of four electrons, compared to an acyclic unbranched array.

2. Antiaromaticity [1] is the phenomenon of destabilization of certain molecules by

interelectronic interactions, that is, it is the opposite of aromaticity [2]. The

SHM indicates that when the p-system of butadiene is closed the energy rises,

i.e. that cyclobutadiene is antiaromatic with reference to butadiene. In a related

approach, the perturbation molecular orbital (PMO) method of Dewar predicts

that union of a C3 and a C1 unit to form cyclobutadiene is less favorable than

union to form butadiene [3].

3. Is one reference system better than another? Cyclobutadiene is destabilized

relative to a butadiene reference, but has the same energy as a reference system

of two separated ethenes. Simply closing or opening one system to transform

it into another (e.g. butadiene � cyclobutadiene) is a less disruptive
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transformation than uniting two systems or dissociating one (e.g. 2 ethene �
cyclobutadiene); thus one could argue that the systems represented by closing/

opening are the better mutual references. Certainly, cyclobutadiene is regarded

from empirical evidence and more advanced theoretical studies as an electroni-

cally destabilized molecule [1], so the butadiene reference, which predicts a

destabilizing effect for four cyclic p electrons, is in much better accord with the

general collection of experimental and computational work.

Note that in fact cyclobutadiene does not have degenerate, singly-occupied

molecular orbitals, as a Jahn–Teller type (actually a pseudo-Jahn–Teller) distortion

lowers its symmetry from square to rectangular and leads to a closed-shell paired-

electron molecule [4].
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Chapter 4, Harder Questions, Answers

Q6

What is the problem with unambiguously defining the charge on an atom in a

molecule?

Let us be ambitious and replace “unambiguously” by “uniquely”. The problem is

to define where an atom in a molecule begins and ends. If we can mathematically

specify the region of space over which the electronic charge distribution is to be

integrated, we can calculate the number of electrons which should be assigned to

each atom in the molecule. The algebraic sum of this electronic charge and the

nuclear charge would then give the net charge on the atom. This is the principle

behind the (quantum theory of) atoms in molecules (QTAIM, AIM) method of

Bader [1]. In the AIM method, an atom in a molecule is demarcated from the rest of

the molecule by a “zero-flux surface” defined in terms of the gradient of the electron

density. Bader and coworkers essentially regard their definition as unique, from

which it would seem to follow that in some sense it yields “the correct” definition of

atomic charges. Criticisms of the approach have engendered delightful polemics by

Bader and Matta [2].
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Outside the QTAIM realm, the main definitions of atomic charges are Mulliken

charge, electrostatic charge, and natural charge [3]. Values can differ considerably

from one method to another, but the trend with a particular method can provide

useful information. None of these three methods of assigning charge claims to be

unique.
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Chapter 4, Harder Questions, Answers

Q7

It has been reported that the extended H€uckel method can be parameterized to give

good geometries. Do you think this might be possible for the simple H€uckel
method? Why or why not?

A report of a promising method of inducing the extended H€uckel method EHM)

to yield good geometries appeared in 1994 [1]. The method was said to give

geometries as good as or better than the popular AM1 method, and to be two to

four times as fast. Unfortunately, further results, and the wide application of this

approach, do not seem to have followed (a possibly related approach [2] and

another fast semiempirical method [3] have been reported). Such a method would

be very useful, because the EHM is very fast, due to its very simple way of

calculating energies and molecular orbitals, and the fact that it is not iterative – a

single matrix diagonalization gives the results.

Recall that in the EHM geometric information is present in the Fock matrix by

virtue of the overlap integrals in the off-diagonal elements. For the simple H€uckel
method (SHM) the situation is completely different. The SHM does not take any

account of molecular geometry, as distinct from mere connectivity, with one

hedge: one can vary the adjacent i, j interaction terms in an attempt to reflect

changes in overlap integrals. This can be done by allowing the terms to move from

�1 toward 0 as a bond is lengthened, and by making terms proportional to the

cosine of the angle of deviation from perfect p–p parallel alignment to account for

nonplanarity [4]. Bond lengths and angles of p systems could be varied to give the

lowest p energy. But the SHM method is tied to p systems, severely limiting the
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applicability of such refinements, and it is so approximate, that the effort hardly

seems worthwhile.
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Chapter 4, Harder Questions, Answers

Q8

Give the references to a journal paper that used the SHM, and one that used the

EHM, within the last decade. Give an abstract if each paper.

I have taken the liberty of giving the abstracts supplied by the author(s).

The SHM:

Kutzelnigg W (2007) J Comput Chem 28:25

What I like about Huckel theory.

Abstract

We start with some biographical notes on Erich Huckel, in the context of which

we also mention the merits of Otto Schmidt, the inventor of the free-electron model.

The basic assumptions behind the HMO (Huckel Molecular Orbital) model are

discussed, and those aspects of this model are reviewed that make it still a powerful

tool in Theoretical Chemistry. We ask whether HMO should be regarded as

semiempirical or parameter-free. We present closed solutions for special classes

of molecules, review the important concept of alternant hydrocarbons and point out

how useful perturbation theory within the HMO model is. We then come to bond

alternation and the question whether the pi or the sigma bonds are responsible for

bond delocalization in benzene and related molecules. Mobius hydrocarbons and

diamagnetic ring currents are other topics. We come to optimistic conclusions as to

the further role of the HMO model, not as an approximation for the solution of the

Schrodinger equation, but as a way towards the understanding of some aspects of

the Chemical Bond.

The EHM:

Raza H, Kan EC (2008) Los Alamos National Laboratory, Preprint Archive,

Condensed Matter, 1–5, arXiv:0801

Abstract
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An atomistic model based on the spin-restricted extended Huckel theory (EHT)

is presented for simulating electronic structure and I–V characteristics of graphene

devices. The model is applied to zigzag and armchair graphene nano-ribbons

(GNR) with and without hydrogen passivation, as well as for bilayer graphene.

Further calcns. are presented for elec. fields in the nano-ribbon width direction and

in the bilayer direction to show electronic structure modification. Finally, the EHT

Hamiltonian and NEGF (Nonequil. Green’s function) formalism are used for a

paramagnetic zigzag GNR to show 2e2/h quantum conductance.

Chapter 4, Harder Questions, Answers

Q9

The ionization energies usually used to parameterize the EHM are not ordinary

atomic ionization energies, but rather valence-state AO ionization energies, VSAO
[atomic orbital] ionization energies. What does the term “valence state” mean here?

Should the VSAO ionization energies of the orbitals of an atom depend somewhat

on the hybridization of the atom? In what way?

The term was first used by Van Vleck who explained it thus, referring to carbon

in CH4: “...the spins of the four electrons belonging to sp
3 were assumed paired with

those of the four atoms attached by the carbon. Such a condition of the carbon atom

we may conveniently call its valence state.” He then showed a calculation which

led to the conclusion that “The ‘valence’ state of C has about 7 or 8 more volts of

intra-atomic energy than the normal state. This is the energy required to make the C

atom acquire a chemically active condition...” [1]. Mulliken defines it saying “[it is]

a certain hypothetical state of interaction of the electrons of an atomic electron

configuration” and “A ‘valence state’ is an atom state chosen so as to have as nearly

as possible the same condition of interaction of the atom’s electrons with one
another as when the atom is part of a molecule.” [2].

An atom, then, is in a valence state when its electrons occupy orbitals of energies

and shapes that they would occupy if they were subject to the interactions that they

would experience in some molecule; thus one could speak of the valence state of

carbon in CH4 (above). Clearly a valence state is an abstract concept.

The VSAO ionization energies (the terms VSIP and VSIE, valence state ioni-

zation potential or energy, can also be used) of the orbitals of an atom should

depend on the hybridization of the atom, because a carbon (say) atom, in different

hybridization states is in different structural (and thus different electronic) environ-

ments: in carbon in CH4 (sp
3), H2C¼CH2 (sp

2), and HCCH (sp), the electrons are

subject to different neighbors (four hydrogens, etc.). From CH4 to H2C¼CH2 to

HCCH, carbon is increasingly electronegative [3]. So the VSAO ionization energy

might be expected to become monotonically bigger. However Hoffmann, who

pioneered the popularization of the EHM and demonstrated its wide utility, used

the same parameters for the s and p orbitals of carbon in alkanes (sp3 C) as in
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alkenes and aromatics (sp2 C) [4]. In fact ”...the difference is often ignored and an

average set of VSIPs is used for all carbons.” [5].
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Chapter 4, Harder Questions, Answers

Q10

Which should require more empirical parameters: a molecular mechanics force

field (Chapter 3) or an EHM program? Explain.

The EHM will require far fewer parameters. This is easy to see, because each

atom requires just one parameter for each valence atomic orbital. For C, for

example, we need an ionization energy for the 2s, and one for the 2p orbitals, just

two parameters (strictly, valence state ionization energies, VSIEs – see Harder

Question 9).3 Each H needs only one parameter, for its 1s orbital. So for an EHM

program that will handle hydrocarbons in general we need only three parameters

(as in Hoffmann’s pioneering paper on hydrocarbons [1]). In contrast, an early

but viable molecular mechanics forcefield limited to alkanes had 26 parameters

[2]. The Universal Force Field, which sacrifices accuracy for wide applicability, has

about 800 parameters, and the accurate and quite broadly applicable Merck Molec-

ular Force Field 1994 (MMFF94) has about 9,000 parameters [3].
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Chapter 5, Harder Questions, Answers

Q1

Does the term ab initio imply that such calculations are “exact”? In what sense

might ab initio calculations be said to be semiempirical – or at least not a priori?

The term does not imply that such calculations are exact. This is clear from the

fact that most ab initio calculations use an approximate Hamiltonian, and all use a

finite basis set.

The Hamiltonian: In noncorrelated calculations the main error in the Hamilto-

nian is that it does not take electron correlation into account properly, treating it in

an average charge-cloud way. But even in correlated calculations the Hamiltonian

can contain approximations: it is usually nonrelativistic, which introduces signifi-

cant errors for heavy atoms, and it routinely ignores spin-orbit coupling (spin-

orbit interaction), which can be important [1a]. There are still other effects,

usually small and rarely taken into account: spin–spin interaction between elec-

trons [1b], neglect of the finite size of the nuclei [1c], and the use of the

Born–Oppenheimer approximation [2]. The point is not that these effects are

necessarily important, but that their neglect renders the calculation, strictly

speaking, inexact.

The basis set: using a finite basis set necessarily leads to an inexact wavefunc-

tion, in much the same way that representing a function by a finite Fourier series of

sine and cosine functions necessarily gives an approximation (albeit perhaps an

excellent one) to the function.

Dewar, the pioneer of the semiempirical approach and a longtime critic of

shortcomings (sometimes perhaps viewed with too jaundiced an eye) of ab initio

calculations, gives an account of the origin of the term [3]. Although I cannot vouch

for the definitive accuracy of this anecdote, it is amusing:

The term “ab initio” was originally applied to the Roothaan–Hall (RH) approach though an

amusing accident. Parr was collaborating in some work of this kind with a group in

England. In reporting one of his calculations he described it as “ab initio”, implying that

the whole of that particular project had been carried out from the beginning in his

laboratory. The term, unfortunately, became generally adopted for all calculations of this

kind...

None of the above caveats should be taken to imply that excellent results cannot

be obtained from ab initio calculations. However, except perhaps for calculations at

so high a level that they are essentially exact solutions of the Schr€odinger equation,
one must use experiments on related systems as a reality check, as was emphasized

by Dewar [3]. It is in this sense that ab initio calculations are semiempirical (in fact,

in the literature they are never really described as such): not at all in the sense that

they are parameterized against experiment, but in the sense that for justified

confidence in their results one should (almost always) check representative calcula-

tions against reality.
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Chapter 5, Harder Questions, Answers

Q2

Can the Schr€odinger equation be solved exactly for a species with two protons and

one electron? Why or why not?

This is the the simplest possible molecule, the hydrogen molecule ion, H2
+, a

known entity [1]. Strictly speaking, this presents a three-body problem – two

protons and an electron – which cannot be solved exactly [2]. To a good approxi-

mation, however, the protons can be taken as stationary compared to the electron

(the Born–Oppenheimer principle) and this system can be solved exactly [3].
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Chapter 5, Harder Questions, Answers

Q3

The input for an ab initio calculation (or a semiempirical calculation of the type

discussed in Chapter 6, or a DFT calculation – Chapter 7) on a molecule is usually

just the Cartesian coordinates of the atoms (plus the charge and multiplicity). So

how does the program know where the bonds are, i.e. what the structural formula of

the molecule is?

What is a bond? At one level, the answer is simple: it is a connector between two

atoms (we are talking about covalent bonds, not ionic “bonds”, which are a mere
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omnidirectional electrostatic attraction). Some atoms have one connector, some

two, etc. With this simple idea chemists devised what has been said [1] to be

“perhaps the most powerful theory in the whole of science”, the structural theory of

organic chemistry. This simple theory enabled chemists to rationalize the structures

of and, even more impressively, to synthesize many thousands of chemical com-

pounds. At a “higher” (if not more utilitarian!) level a bond can be defined

mathematically in terms of the bond order between two atoms, which in molecular

orbital theory can be calculated from the basis functions on the atoms; in detail

there are several ways to do this. The theory of atoms in molecules (quantum theory

of atoms in molecules, AIM, QTAIM) offers possibly the most sophisticated

definition of a bond, in terms of the variation of electron density in a molecule

[2]. AIM theory has been often used to answer (?) the question whether there is a

bond between two atoms [3].

So how does the program know where the bonds are? There are (at least) three

ways to answer this:

1. At the simplest level, a program may draw on the graphical user interface

(GUI) a bond between atoms that are within a certain distance, the cutoff

distance being determined by stored data of standard bond lengths. For exam-

ple, with one popular program Cartesians for the water molecule with an O/H

internuclear distance of 1.0 Å or less will result in a depiction with a bond

between the O and each H, but with an internuclear distance of more than 1.0 Å

the GUI will show an oxygen atom and two separate hydrogens. It should be

clear that this is only a formality, arising somewhat arbitrarily from strict

adherence to standard bond lengths. Another popular program uses a different

convention to display bond lengths. Accepting as input for a calculation a

structure assembled with a GUI by clicking together atoms with attached

bonds, the program will display all these original bonds even if after a

geometry optimization some of the atoms have moved so far apart that they

are by no sensible criterion still bonded (the result can be confusing to look at,

but may make sense if viewed as a space-filling model, or if absurdly long

bonds are deleted using the GUI). Again, this result is only a formality,

resulting from maintenance of the bonds (really just formal connectors) that

were shown before the geometry optimization.

2. If one wants information on bonding that is based on more than the proximity of

nuclei, this can be extracted from the wavefunction by requesting that after a

calculation of, say, energy or optimized geometry , a bond order calculation be

performed, or the wavefunction can be used for an AIM calculation (possibly by

a specialized program).

3. A few hardy souls may say it doesn’t matter. A molecule is a collection of nuclei

and electrons, with a certain charge and spin multiplicity. One might stop there

and say that this defines the molecule. This austere view was expressed by

Charles Coulson, a pioneer of, of all things, valence: “...a bond does not really

exist at all: it is a most convenient fiction...” [4]. However, the bond concept
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pervades chemistry so thoroughly, and is so useful, that this stark view of a

molecule is unlikely to find many adherents.

References

1. Orville Chapman (1932–2004; professor Iowa State University, UCLA; pioneer in organic

photochemistry and matrix isolation studies). Remark in a lecture at the University of Toronto,

ca. 1967

2. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon Press, Oxford

3. E.g.: (a) Dobado JA, Martı́nez-Garcı́a H, Molina JM, Sundberg MR (1999) J Am Chem Soc

121:3156. (b) Rozas I, Alkorta I, Elguero J (1977) J Phys Chem A 101:9457

4. Coulson C (1963) “What is a Chemical Bond?” Lecture at Basler Chemische Gesellschaft,

April 26, 25-page typescript, 3–6, Coulson Papers, Bod. Oxford

Chapter 5, Harder Questions, Answers

Q4

Why is it that (in the usual treatment) the calculation of the internuclear repulsion

energy term is easy, in contrast to the electronic energy term?

It is easy because we know where the nuclei are. In the usual treatment the

nuclei are fixed and the electrons move in their field of attraction; this is the Born–

Oppenheimer approximation. Given the coordinates of the nuclei (which along

with charge and multiplicity define the molecule) the internuclear repulsion

energy is simply obtained as the sum of all pairwise repulsion energies. Of course

the nuclei are actually vibrating around average positions, even at 0 K. The zero

point energy (zero point vibrational energy, ZPE or ZPVE) is calculated from the

energies of the normal modes, these energies being obtained from the normal

mode frequencies, which are calculated with the aid of the matrix of second

derivatives of energy with respect to position, the Hessian matrix. The vibra-

tional energy at higher temperatures can be obtained by the usual thermodynamic

device of calculating the vibrational partition function from the normal mode

frequencies [1].
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Chapter 5, Harder Questions, Answers

Q5

In an ab initio calculation on H2 or HHe
þ, one kind of interelectronic interaction

does not arise; what is it, and why?

“Pauli repulsion” does not arise, because there are no electrons of the same spin

present. Of course, this is not a repulsion like that between particles of the same

charge, but just a convenient term for the fact that electrons of the same spin tend to

avoid one another (more so than do electrons of opposite spin). Thus the calculation

of the energy of these molecules does not involve the K integrals.

Chapter 5, Harder Questions, Answers

Q6

Why are basis functions not necessarily the same as atomic orbitals?

Strictly speaking, atomic orbitals are solutions of the Schr€odinger equation for a

one-electron atom (hydrogen, the helium monocation, etc.). They are mathematical

functions,c, of the coordinates of an electron, and for one electron the square of c is

an electron probability density function. Solving the nonrelativistic Schr€odinger
gives a series of orbitals differing by the values of the parameters (quantum numbers)

n, l, and m (s orbitals, p orbitals, etc.) [1]. These are spatial orbitals; the relativistic
Schr€odinger equation (the Dirac equation) gives rise to the spin quantum number

s¼½ (in units of h/2p) and to spin functions a and b, which, multiplied by the spatial

orbitals, give spin orbitals [2]. All this applies rigorously only to one-electron atoms

but has been transferred approximately, by analogy, to all other atoms.

For the integrations in ab initio calculations we need the actual mathematical

form of the spatial functions, and the hydrogenlike expressions are Slater functions

[1]. For atomic and some molecular calculations Slater functions have been used

[3]. These vary with distance from where they are centered as exp(-constant.r),

where r is the radius vector of the location of the electron, but for molecular

calculations certain integrals with Slater functions are very time-consuming to

evaluate, and so Gaussian functions, which vary as exp(-constant.r2) are almost

always used; a basis set is almost always a set of (usually linear combinations of)

Gaussian functions [4]. Very importantly, we are under no theoretical restraints

about their precise form (other than that in the exponent the electron coordinate

occurs as exp(-constant.r2)). Neither are we limited to how many basis functions we

can place on an atom: for example, conventionally carbon has one 1s atomic orbital,

one 2s, and three 2p. But we can place on a carbon atom an inner and outer 1s basis

function, an inner and outer 2s etc., and we can also add d functions, and even f (and g!)

functions. This freedom allows us to devise basis sets solely with a view to getting
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from our computations, by “experiment” (checking calculations against reality),

good results. Basis functions are mathematical functions (usually Gaussian) that

work; atomic orbitals are functions, circumscribed by theory, that arise from

solution of the Schr€odinger equation.
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Chapter 5, Harder Questions, Answers

Q7

One desirable feature of a basis set is that it should be “balanced”. How might a

basis set be unbalanced?

Recall from the answer to Q6 that a basis set is a collection of mathematical

functions that “work”. By an unbalanced basis set [1] one usuallymeans amixed set in

which a big basis has been placed on some atoms and a small basis on others. The

atom with a small basis steals basis functions from the other atoms, leading to

exaggerated basis set superposition error (BSSE) (Section 5.4.3) and a corresponding

error in energy. This pilfering of basis functions is aided by moving the function-

deficient atom closer to the function-rich one during geometry optimization, leading

to an error in geometry.
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Chapter 5, Harder Questions, Answers

Q8

In a HF [Hartree–Fock] calculation, you can always get a lower energy (a “better”

energy, in the sense that it is closer to the true energy) for a molecule by using a

bigger basis set, as long as the HF limit has not been reached. Yet a bigger basis set
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does not necessarily give better geometries and better relative (i.e. activation and

reaction) energies. Why is this so?

The calculated geometry is a local (sometimes the global) minimum on a

Born–Oppenheimer surface. At that point altering the geometry by a small amount

leads to an increase in energy (the situation is more complicated if the point is a

transition structure). There is no necessary requirement that the energy of the

minimum be in any sense “good”, although in practice, methods that give good

geometries do tend to give reasonably good relative energies (reaction energies, less

reliably, activation energies).

Chapter 5, Harder Questions, Answers

Q9

Why is size-consistency in an ab initio calculation considered more important than

variational behavior (MP2 is size-consistent but not variational)?

Size-consistency in a method enables one to use that method to compare the

energy of a species (a molecule or a complex like the water dimer or a van der

Waals cluster) with its components; for example, one can compute the stability of

the water dimer by comparing its energy with that of two separate water molecules,

allowing for basis set superposition error. Lack of size consistency means we

cannot use the method to compare the energy of a system with that of its compo-

nents, and so limits the versatility of the method. Variational behavior is desirable,

because it assures us that the true energy of a system is less than (in theory the same,

but this is unlikely) our calculated energy, giving a kind of reference point to

aim for in a series of calculations, for example with increasingly bigger basis

sets. However, in practice the lack of variational behavior does not limit much

the usefullness of a method: all the correlated methods including current DFT,

except full CI (and with certain reservations CASSCF, a partial CI method) are not

variational.

Chapter 5, Harder Questions, Answers

Q10

A common alternative to writing a HF wavefunction as an explicit Slater determi-

nant is to express it using a permutation operator P̂ which permutes (switches)

electrons around in MOs. Examine the Slater determinant for a two-electron closed-

shell molecule, then try to rewrite the wavefunction using P̂.
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The Slater determinant for a two-electron closed-shell molecule is

C ¼ 1ffiffiffiffi
2!

p c1ð1Það1Þ c1ð1Þbð1Þ
c1ð2Það2Þ c1ð2Þbð2Þ
����

���� (1)

consisting of one spatial MO (c1), or two spin MOs (c1a and c1b), each of which is
populated alternately with electron 1 and with electron 2. When expanded accord-

ing to the usual rule this gives

1=
p
2!½c1ð1Það1Þ:c1ð2Þbð2Þ � c1ð1Þbð1Þ:c1ð2Það2Þ� (2)

The expansion presentsC as a sum of products. Realizing that the second term in

(2) can be derived from the first by switching the coordinates of electrons 1 and

2 and replacing þ by � leads to the idea of writing C as a sum of “switched” or

permuted terms:

C ¼ 1=
p
2!
X

ð�1ÞPP̂ ½c1ð1Það1Þ:c1ð2Þbð2Þ� (3)

where the sum is over all possible permutations (two) of the two spin orbitals which

can be obtained by switching the electron coordinates. The permutation operator P̂
has the effect of switching electron coordinates. As a check on this (ignoring the

1/
ffip
2! normalization factor):

Permutation 1 leads to (�1)1 ½c1ð2Það2Þ:c1ð1Þbð1Þ� ¼ c1ð1Þbð1Þ:c1ð2Það2Þ�,
the second term in (2).

Permutation 2 (acting on the result of permutation 1) leads to

ð�1Þ�2½c1ð1Það1Þ:c1ð2Þbð2Þ� ¼ c1ð1Það1Þ:c1ð2Þbð2Þ;

the first term in (2).

Particularly for C with more than two spin orbitals the permutation operator

formulation [1] is less transparent than the determinant one.
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Chapter 6, Harder Questions, Answers

Q1

Why are even very carefully-parameterized SE methods like AM1 and PM3 not

as accurate and reliable as high-level (e.g. MP2, CI, coupled-cluster) ab initio

calculations?

One reason is that an attempt to get the best fit of program parameters to a number

(say, a training set of 50 molecules) of a variety (like heat of formation, geometric

parameters, dipole moments) of parameters results in a significant unavoidable error

in the accuracy of the fit. Imagine fitting a least-squares line to a collection of data

points (x, y); unless the underlying relationship is genuinely linear, the fit will be

imperfect and predictions of y from xwill be subject to error. Nevertheless, geometries

of “normal’ molecules from AM1 and PM3 are generally quite good, although heats

of formation and relative energies are less accurate.

A more fundamental reason is that predictions for molecules very different from

those outside the training set should be less reliable than those for molecules similar

to the ones used for parameterization. Therefore for investigating exotic species

like, say, planar carbon or nitrogen pentafluoride AM1 and PM3 are considered

unreliable, and even noncorrelated ab initio calculations would be considered well

short of definitive nowadays [1].
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Chapter 6, Harder Questions, Answers

Q2

Molecular mechanics is essentially empirical, while methods like PPP, CNDO, and

AM1 are semiempirical. What are the analogies in PPP etc. to MM procedures of

developing and parameterizing a forcefield? Why are PPP etc. only semiempirical?

The analogies in semiempirical (SE) methods to MM procedures for developing

a forcefield arise from the need to fit experimental values to parameters in equa-

tions. In SE parameterization heats of formation, geometric parameters, etc. are

used to adjust the values of integrals in the Hamiltonian of quantum-mechanical

equations. In MM vibrational frequencies, geometric parameters, etc. are used to
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adjust the values of force constants, reference bond lengths, etc. in simple non-

quantum-mechanical equations.

SE methods like PPP, CNDO, and AM1 are partly empirical and partly quantum-

mechanical: experimental (or nowadays, often high-level ab initio or DFT) para-

meters are used to simplify the evaluation of the integrals in the Fock matrix. In

contrast, there is no quantum-mechanical component to MM; it is not quite true,

however, that MM has no theoretical component, because the force constants and

reference geometric parameters are inserted into an ((albeit simple) classical-

physics ball-and-springs-model of a molecule (this model is augmented with energy

terms arising from dihedral angles, nonbonded interactions, and possibly other

factors).

Chapter 6, Harder Questions, Answers

Q3

What do you think are the advantages and disadvantages of parameterizing SE

methods with data from ab initio calculations rather than from experiment?

Could a SE method parameterized using ab initio calculations logically be called

semiempirical?
This question is similar to Chapter 3, Harder Question 3, for MM. For the first part

of the question I’ll just repeat the response to that question, tailored to be appropriate

to SEmethods. Apart from a possible philosophical objection, which from a utilitarian

viewpoint can be dismissed, there is the question of the trustworthiness of the ab initio

or DFT results. For “normal” molecules, that is, species which are not in some way

exotic [1], these calculations deliver quite reliable results. The advantages they offer

over experimental acquisition of the required parameters is that these quantities

(1) can be obtained for a wide variety of compounds without regard to synthetic

difficulties or commercial availability, (2) are offered up transparently by the output of

the calculation, rather than being required to be extracted, perhaps somewhat tortu-

ously, from experiments, (3) are usually more quickly calculated than determined in

the lab, and (4) can be uniformly secured, that is, all parameters can be obtained from

calculations at the same level, say MP2/6-311G(df,p), in contrast to experiment,

where different methods must be used to obtain different parameters. This last point

may be more of an esthetic than a utilitarian advantage.

The advantage of parameterizing with experimental quantities is that, if the

experiment is reliable, then we know the values of the parameters; we need not

reflect on the reliability of the calculation. Of course, we might wish to ponder the

accuracy of the experiment.

Could a SE method parameterized using ab initio calculations logically be

called semiempirical? Literally, semiempirical means semiexperimental. If we

parameterize with calculations we have not resorted to experiment (of course,
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afterwards we will likely check the method against some experimental facts). So it

would appear that literally the SE method, parameterized by ab initio or DFT, is not

really semiempirical; however, it is still in the spirit of SE methods, circumventing

detailed calculation of the Fock matrix elements (using pre-calculated values!).
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Chapter 6, Harder Questions, Answers

Q4

There is a kind of contradiction in the Dewar-type methods (AM1, etc.) in that

overlap integrals are calculated and used to help evaluate the Fock matrix elements,

yet the overlap matrix is taken as a unit matrix as far as diagonalization of the Fock

matrix goes. Discuss.

In the simple H€uckel method, which is not a Dewar-type method, the use of

overlap integrals as the sole source of geometric (connectivity) information is

transparent. In AM1 and its relative PM3, which are modified versions of MNDO,

overlap integrals are also calculated, and used in a somewhat more involved way to

evaluate some of the core integrals. Yet after assembling the Fock matrix this is

simply diagonalized to give coefficients and energies (repeatedly, in the SCF proce-

dure) without using orthogonalization to alter the original Fock matrix or to “reset”

the coefficients. The sidestepping of orthogonalization in the SHM is achieved by

setting the overlap matrix equal to a unit matrix, i.e. by simply setting all Sii ¼ 1 and

all Sij (i 6¼ j) ¼ 0. This is a logical inconsistency, but it works quite well!

Chapter 6, Harder Questions, Answers

Q5

What would be the advantages and disadvantages of using the general MNDO/AM1

parameterization procedure, but employing a minimal basis set instead of a minimal

valence basis set?

A minimal basis set is bigger than a minimal valence basis set by the inclusion of
core atomic orbitals, e.g. a 1s AO for carbon, and 1s, 2s, and three 2p AOs for

silicon. Including these in the electronic calculation probably should not lead to
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much if any improvement over the results now being obtained with a minimal

valence basis, since once the basic MNDO-type method has been chosen, the key to

good results is careful parameterization. There might be some improvement in

properties which depend on a good description of the electron density near the

nucleus, but there are few such of general interest to chemists – even NMR

chemical shifts are affected mainly by (the tails of) valence orbitals [1].

The disadvantage is that the time of calculations would be increased, particularly

for elements beyond the first full row (Na and beyond).
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Chapter 6, Harder Questions, Answers

Q6

In SCF SE methods major approximations lie in the calculation of the Hrs
core, (rs|

tu), and (ru|ts) integrals of the Fock matrix elements Frs (Eq. 6.1). Suggest an

alternative approach to approximating one of these integrals.

So much thought and experimentation (checking calculated results against

experimental ones) have gone into devising semiempirical parameters that a sug-

gestion here is unlikely to be much of an improvement. The easiest integral to

modify is probably the core one, because it does not involve electron-electron

repulsion. Hrs
core in the Frs Fock matrix element is:

Hcore
rs ð1Þ ¼ frð1Þ Ĥ

coreð1Þ
��� ���fsð1Þ

D E

where Ĥ
core ð1Þ ¼ � 1

2
r2

1 �
X
all m

Zm
rm1

So the integral Hrs
core can be taken as the energy (kinetic plus potential) of

an electron moving in the fr, fs overlap region under the attraction of all the

charges Zm. In ab initio calculations these charges are nuclear, in SE calculations

they are the net charges of nuclei plus non-valence electrons. A crude attempt to

capture the physical meaning of this might be to take Hrs
core as the average of

the valence-state ionization energies of an electron in fr and fs plus the energy

needed to remove the electron to infinity against the attraction of the other (non-r
and non-s) cores.
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Chapter 6, Harder Questions, Answers

Q7

Read the exchange between Dewar on the one hand and Halgren, Kleier and

Lipscomb on the other [1, 2]. Do you agree that SE methods, even when they

give good results “inevitably obscure the physical bases for success (however

striking) and failure alike, thereby limiting the prospects for learning why the

results are as they are?” Explain your answer.

HKL [1] make the point that calculations are not just alternatives to experiment,

as Dewar thinks, but can also illuminate experiment. In effect, they say that

calculations are not only another way to get numbers, but can provide insight into
physical processes. Their contention that such insight comes from ab initio, not

from semiempirical, methods (which “obscure the physical bases” of their success

and failure) seems to be justified, because in SE methods the fundamental physical

entities have been deliberately subsumed into parameters designed to give the right,

or rather the best, answers.

HKL make the interesting point that the purpose of ab initio calculations is (this

may have been so in 1975, but is not true today for most ab initio studies) “not so

much to predict a given experimental result as to examine what that result can tell

us.” This is the core of the difference between the way HKL on the one hand and

Dewar on the other viewed the ab initio-semiempirical divide.

Dewar [2] in his retort appeared to miss the above core point. He averred that he

was “all in favor of rigorous quantum mechanical calculations – that is, ones that

are accurate in an absolute sense...” , and closed his letter with an attack on “vast

and very expensive calculations”, which did not address the contention of HKL that

ab initio calculations (at the time) were done not to get right answers but rather to

probe the physical reasons behind getting right and wrong answers.

Ancillary to this conceptual divide was an argument over the relative cost of

Hartree–Fock 4-31G and MINDO/3 calculations for the study of the barriers to

interconversion of benzene valence isomers. In those days computer use was indeed

expensive: a computer was an institutional machine, personal ownership of such a

device being inconceivable, and the privilege of using one cost [1, 2] ca. $500/h.

Geometry optimization of benzene (by the low-level HF/4-31G method) took 4 h,

consuming $2,000 [1]. I just repeated this calculation on my now largely merely

clerical personal computer, bought years ago for ca. $4,000; it took 22 s, a time ratio

of 655.
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Chapter 6, Harder Questions, Answers

Q8

It has been said of SE methods: “They will never outlive their usefulness for

correlating properties across a series of molecules...I really doubt their predictive

value for a one-off calculation on a small molecule on the grounds that whatever

one is seeking to predict has probably already been included in with the para-

meters.” (Hinchcliffe A (1987) Ab initio determination of molecular properties.

Adam Hilger, Bristol, p. x). Do you agree with this? Why or why not? Compare the

above quotation with Dewar MJS (1992) A semiempirical life. American Chemical

Society, Washington, DC, pp 133–136.

First, a synopsis of Dewar pp. 133–136. Here are representative excerpts:

One of the criticisms commonly levelled at semiempirical methods is that they represent no

more than methods of interpolation and are useful only in areas and for compounds for

which they have been parameterized....The striking thing about ours is that they do not
merely reproduce the properties for which they were parameterized, nor are they confined

to molecules of the kind used in the parameterization. They reproduce all ground-state
properties of molecules of all kinds...Thus our procedures provide a very good representa-

tion of the way molecules behave...”

“...our work has led to a number of predictions that have been subsequently confirmed

by experiment.”

“Every procedure performs less well in some cases than in others. How serious each

error is depends on the chemical importance of the molecule in question.”

The statements above directly contradict the assertion that “...whatever one is

seeking to predict has probably already been included in with the parameters.”, with

the reservation that Hinchcliffe was presumably writing about 5 years before

Dewar. The references given by Dewar, and the experience of the many chemists

who use semiempirical methods (not only the Dewar-type ones) show that these are

not merely “methods of interpolation”. It is however true that for accurate, reliable

information on the properties of a small molecule one would very likely resort to a

high-level ab initio or DFT calculation.

Chapter 6, Harder Questions, Answers

Q9

For common organic molecules Merck Molecular Force Field geometries are

nearly as good as MP2(fc)/6-31G* geometries. For such molecules single point

MP2(fc)/6-31G* calculations, which are quite fast, on the MMFF geometries,

should give energy differences comparable to those from MP2(fc)/6-31G*//MP2

(fc)/6-31G* calculations [geometry optimizations at the MP2(fc)/6-31G* level].
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Example: CH2¼CHOH/CH3CHO, DE(MP2 opt, including ZPE) ¼ 71.6 kJ mol�1,

total time 1,064 s; DE(MP2 single point on MMFF geometries) ¼ 70.7 kJ mol�1,

total time ¼ 48 s (G98 on a now-obsolescent Pentium 3). What role does this leave

for semiempirical calculations?

If the above approach really has wide applicability then it could be a very useful

way to get relative energies at only modest cost in time. However, it could be used

only for species for which the MMFF gives reliable geometries. This excludes

exotic molecules and transition states. Whatever the deficiencies of SE methods in

these two categories, at least they do permit such calculations.

Chapter 6, Harder Questions, Answers

Q10

Semiempirical methods are untrustworthy for “exotic” molecules of theoretical

interest. Give an example of such a molecule and explain why it can be considered

exotic. Why cannot SE methods be trusted for molecules like yours? For what other

kinds of molecules might these methods fail to give good results?

A simple exotic molecule is pyramidane:

C

CC

CC

HH

HH

1

This is exotic because one of the carbon atoms is forced to have very unusual

pyramidal bonding: tetracoordinate carbon normally has its four bonds directed

toward the corners of a tetrahedron, but the apical carbon of 1 has all four bonds

pointing forward. Without any further investigation of 1 we can thus characterize it

as exotic. Of course without further investigation we cannot assert with confidence

if it can exist, much less what its properties might be. Semiempirical and low-level

ab initio [1, 2] and higher-level ab initio [3] studies on pyramidane have been

published, and work on this and related molecules is reviewed [4]. SE methods

cannot be trusted for molecules like pyramidane because they are parameterized

using information, whether experimental or calculated, for normal molecules.

Other kinds of molecules besides 1 (which has unusual bond stereochemistry)

for which these methods might fail to give good results are hypercoordinate

molecules like NF5, molecules with noble gas atoms, particularly those of helium

and neon, molecules with highly twisted C¼C bonds, extraordinarily crowded

molecules like hexaphenylethane, unknown dimers, trimers etc. of small familiar

molecules, like C2O2 and N6, and very highly strained molecules. All these cases

are discussed in a book on exotic molecules [4].
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Chapter 7, Harder Questions, Answers

Q1

It is sometimes said that electron density is physically more real than a wavefunc-

tion. Do you agree? Is something that is more easily grasped intuitively necessarily

more real?

First I will summarize a debate, at the level of polemic in some cases, about the

relative merits of the wavefunction and the electron density function, then close

with a few personal observations. The principal participants in the argument were,

on the wavefunction side, Gernot Frenking, and on the electron density side,

Richard Bader, and Ronald Gillespie and Paul Popelier. The recent history of the

controversy starts in 2003 with a review by Frenking [1] of a book on chemical

bonding by Gillespie and Popelier [2]. In his long review, Frenking commended the

book to readers, but criticized its emphasis on electron density and its virtual

ignoring of the wavefunction: “Like Bader, the authors reject the wavefunction as

a basis for the explanation of molecular geometries because it is not a physical

observable...It is hard for human beings to accept that the fundamental principles of

elementary quantities of science are not accessible to their sensory perception.”

Gillespie and Popelier responded to these criticisms, but conceded that “The

question of whether the wave function or the electron density is the more funda-

mental is perhaps open to dispute” but defended electron density as “much more

useful for understanding chemical bonding and molecular geometry” [3]. Frenking

defended his criticisms and reiterated that “The wavefunction C, which is funda-

mental to our science, is a mathematical object which is not accessible to human

senses.” He made the important point that “the important class of pericyclic

reactions could only be explained with MO theoretical arguments using the sym-

metry of C.”, a symmetry not present in the electron density. He chides the two

authors for using ease of understanding as the reason for choosing electron density

over C, and closes by “encouraging interested readers” to study the book and his

review and make up their own minds [4].
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Bader leapt into the fray with a polemic against Frenking’s review that even

aficionados of the wavefunction must concede is amusing and erudite. He defended

earlier work by Schr€odinger and by Slater which argued in effect that the sole use of
the wavefunction is as a mathematical device to determine the electron density

distribution [5]. He countenanced the much-criticised conclusion of the Feynman

force theorem and the virial theorem that the chemical bond is in fact simply the

result of overlap charge density, and bolstered his argument by invoking (to many

chemists no doubt recondite) work by Schwinger and Dirac, and stated clearly that

“chemistry is the interaction of the density with the nuclei; there is nothing else, at

least not in real observable space...” The statement “To ascribe an existence to a

wavefunction that controls rather than predicts the evolution of a physical system

introduces an unnecessary and unwelcome element of metaphysics.” is very reveal-

ing, emphasizing Bader’s conviction that the wavefunction is not “real”; indeed,

two sentences earlier reference is made to the abstract Hilbert space, where the

wavefunction frolics.

A long paper by Frenking et al. [6] elicited another polemic from Bader [7].

Frenking et al. presented an energy partitioning analysis of bonds in nonpolar

molecules, dividing bonding into terms represented by Pauli repulsion, electrostatic

interactions, and orbital interactions. Bader dismissed the concept of energy parti-

tioning as lying “beyond the boundaries of physics” then turned his fire on what he

considered to be errors within physics engendered by that concept. He criticised a

perceived misunderstanding of the difference between electron density and the

Laplacian ( r2) of electron density (a Bader hallmark) which led to the assertion

by Frenking et al. that covalent bonds do not necessarily exhibit an accumulation of

electronic charge between the nuclei; Bader countered that bonded atoms experi-

ence “no Feynman force, neither attractive nor repulsive, [acting] on the nuclei

because of the balancing of the repulsive and attractive forces by the accumulation
[emphasis in the original] of electron density in the binding region...” In a short final

(?) repartee, Frenking et al. [8] rebuke Bader for his derisive tone and defend their

understanding of electron density and its Laplacian. They argue that acknowledging

different types of bonding is fundamentally important to chemists, implying that a

rejection of the concept of energy partitioning would obviate such differentiation.

In support of this they cite Bader’s assertion that there is no difference between the

bonding in H2 and that between the ortho-hydrogens in the transition state for

biphenyl rotation, and the finding that Bader’s atoms-in-molecules (AIM) theory

gives similar bonding for He2 and H2. Since chemists regard bonding in H2 as being

qualitatively different from that in the other two species, “Bader’s orthodox under-

standing of physics is unable to address fundamental questions of chemistry!” It is

contended that Bader’s reductionism does not recognize that chemistry needs its

own models, and that “Chemical research begins where the physics of Richard
Bader ends.” [emphasis in the original]. (For polemics concerned with AIM and

H–H bonding in biphenyl and related systems see [9–11]).

So where does all this leave us in trying to respond to “It is sometimes said that

electron density is physically more real than a wavefunction. Do you agree? Is

something that is more easily grasped intuitively necessarily more real?” To argue
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in detail the relative merits of a wavefunction and an electron density approach to

chemical structure and bonding requires a pretty deep knowledge of quantum

chemistry. There is no question that electron density is a valid and useful concept

in chemistry, and that it is more easily grasped intuitively than the wavefunction.

But logically, there is no basis for thinking that ease of understanding is correlated

positively with the likelihood of physical reality. Is electron density physically

more real than a wavefunction? Electron density in molecules is certainly physi-

cally real: it can be measured by X-ray crystallography [12] or electron scattering

[13]. Is the wavefunction real or is it a mathematical abstraction? This is controver-

sial, and pursuing it would take us well into physics and even perhaps philosophy.

In the orthodox interpretation of quantum mechanics (QM), from the Copenhagen

school of Bohr and Heisenberg, observation of a system causes “collapse of the

wavefunction” [14], implying that it is real. This school was practically unchal-

lenged for decades, but alternative interpretations of QM are now being given a

hearing [14], and in some there is no wavefunction collapse, such as with quantum

decoherence [15] and (de Broglie and more recently Bohm) the pilot wave concept

[16]. A reaction to all interpretations of QM is an article entitled “Quantum theory

needs no ‘interpretation’” [17].

As chemists we can pose a simple, focussed question: how do the Woodward–

Hoffmann rules (WHR) [18] arise from a purely electron density formulation of

chemistry? The WHR for pericyclic reactions were expressed in terms of orbital

symmetries; particularly transparent is their expression in terms of the symmetries

of frontier orbitals. Since the electron density function lacks the symmetry proper-

ties arising from nodes (it lacks phases), it appears at first sight to be incapable of

accounting for the stereochemistry and allowedness of pericyclic reactions. In

fact, however, Ayers et al. [19] have outlined how the WHR can be reformulated

in terms of a mathematical function they call the “dual descriptor”, which encapsu-

lates the fact that nucleophilic and electrophilc regions of molecules are mutually

friendly. They do concede that with DFT “some processes are harder to describe than

others” and reassure us that “Orbitals certainly have a role to play in the conceptual

analysis of molecules”. The wavefunction formulation of the WHR can be pictorial

and simple, while DFT requires the definition of and calculations with some

nonintuitive (!) density function concepts. But we are still left uncertain whether

the successes of wavefunctions arises from their physical reality (do they exist “out

there”?) or whether this successes is “merely” because their mathematical form

reflects an underlying reality – are they merely the shadows in Plato’s cave? [20].
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Chapter 7, Harder Questions, Answers

Q2

A functional is a function of a function. Explore the concept of a function of a

functional.

If a function is a rule that converts a number into a number, and a functional is a

rule that converts a function into a number [1], then a function of a functional (call it

a 2-functional) should be a rule that converts a functional into a number:

function f ðxÞ ¼ x3

rule: cube the number x

number ¼ 2�!X
3

8

functional F½ðxÞ� ¼ Ð 2
0
f ðxÞdx

rule: integrate the function f(x) between zero and 2

function ¼ x3 ����!

Ð2
0

f ðxÞdx
x4

4

����
2

0

¼ 4
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From the above we see that we supply a number to a function to get a number,

and we supply a function to a functional to get a number. By analogy, we supply a

functional to a “2-functional” to get a number. I leave a specific example as an

exercise for the reader.

Chapter 7, Harder Questions, Answers

Q3

Why is it that the HF Slater determinant is an inexact representation of the

wavefunction, but the DFT determinant for a system of noninteracting electrons

is exact for this particular wavefunction?

The HF (Hartree–Fock) Slater determinant is an inexact representation of the

wavefunction because even with an infinitely big basis set it would not account

fully for electron correlation (it does account exactly for “Pauli repulsion” since if

two electrons had the same spatial and spin coordinates the determinant would

vanish). This is shown by the fact that electron correlation can in principle be

handled fully by expressing the wavefunction as a linear combination of the HF

determinant plus determinants representing all possible promotions of electrons

into virtual orbitals: full configuration interaction. Physically, this mathematical

construction permits the electrons maximum freedom in avoiding one another.

The DFT determinant for a system of noninteracting electrons is exact for this

particular wavefunction (i.e. for the wavefunction of the hypothetical noninteract-

ing electrons) because since the electrons are noninteracting there is no need to

allow them to avoid one another by promotion into virtual orbitals.

For an account of DFT that is at once reasonably detailed, clear and concise see

Cramer [1].
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Chapter 7, Harder Questions, Answers

Q4

Why do we expect the “unknown” term in the energy equation (Exc[r0], in
Eq. 7.21) to be small?
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Eq. 7.21 is

E0 ¼ �
X

nuclei A

ZA

ð
r0ðr1Þ
r1A

dr1 � 1

2

X2n
i¼1

cKS
1 ð1Þjr2

1jcKS
1 ð1Þ� �

þ 1

2

ð ð
r0ðr1Þr0ðr2Þ

r12
dr1dr2 þ EXC½r0�

Exc[r0] is a correction term to the electronic kinetic and potential energy; most

of this energy is (we hope!) treated classically by the other terms [1].
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Chapter 7, Harder Questions, Answers

Q5

Merrill et al. have said the “while solutions to the [HF equations] may be viewed as

exact solutions to an approximate description, the [KS equations] are approxima-

tions to an exact description!” Explain.

Solutions to the Hartree–Fock equations are exact solutions to an approximate

description because:

The HF equations are approximate mainly because they treat electron–electron

repulsion approximately (other approximations are mentioned in the answer sug-

gested for Chapter 5, Harder Question 1). This repulsion is approximated as

resulting from interaction between two charge clouds rather than correctly, as the

force between each pair of point-charge electrons. The equations become more

exact as one increases the number of determinants representing the wavefunctions

(as well as the size of the basis set), but this takes us into post-Hartree–Fock

equations. Solutions to the HF equations are exact because the mathematics of

the solution method is rigorous: successive iterations (the SCF method) approach an

exact solution (within the limits of the finite basis set) to the equations, i.e. an exact

value of the (approximate!) wavefunction CHF.

The Kohn–Sham equations are approximations because the exact functional

needed to transform the electron density function r into the energy is unknown.

They are approximations to an exact description because the equations (as distinct

from methods of solving them) involve no approximations, with the ominous caveat

that the form of the r-to-E functional Exc is left unspecified.
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Chapter 7, Harder Questions, Answers

Q6

Electronegativity is the ability of an atom or molecule to attract electrons. Why is it

then (from one definition) the average of the ionization energy and the electron

affinity (Eq. 7.32), rather than simply the electron affinity?

Equation 7.32 is

w ¼ I þ A

2

We can call this the Mulliken electronegativity. Why is electronegativity not

defined simply as the electron affinity (A)? First, we saw two derivations of

Eq. 7.32. In the first, electronegativity(w) was intuitively taken as the negative of

electronic chemical potential (the more electronegative a species, the more its

energy should drop when it acquires electrons). This led to approximating the

derivative of energy with respect to number of electrons at a point corresponding

to a species M as the energy difference of M+ and M� divided by 2. In the second,

Mulliken, derivation, a simple argument equated electron transfer from X to Y to

transfer from Y to X. Both derivations clearly invoke ionization energy (I). It is no
surprise that w should be connected with A, but the intrusion of I may be puzzling;

however, our surprise diminishes if we note that the more electronegative a species,

the more readily it should gain an electron and the less readily it should part

with one.

But could we alternatively reasonably define electronegativity quantitatively just

as electron affinity? Let’s compare with the popular Pauling electronegativity scale

[1] electronegativities calculated from Eq. 7.32 and calculated simply as A. (The
Pauling scale has been criticised by Murphy et al. [2] and their criticisms were

acknowledged and improvements to the scale suggested, by Smith [3]; Matsunaga

et al., provided a long defence of Pauling’s scale [4]). Below are some electro-

negativities (preceded by a table of the calculated needed energies, at the MP2/6-

311þG* level) by these three methods.

Energies in hartrees

Li Ca Cb F

Neutral �7.43202 �37.61744 �37.74587 �99.55959

Cation �7.23584 �37.16839 �37.33742 �98.79398

Anion �7.44251 �37.78458 �37.78458 �99.67869

aStarting from a neutral quintet 1s2, 2s1, 2px1, 2py1, 2pz1

bStarting from a neutral triplet 1s2, 2s2, 2px1, 2py1, 2pz0

I, A, and Mullikenw, in eV, Pauling w in kJ mol�1. Hartrees were converted to eV

by multiplying by 27.212.
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I and A were calculated as the energy difference between the neutral and the

cation and anion, respectively.

Li Ca Cb F

I 5.33 12.3 11.1 21.4

A 0.272 4.55 1.05 3.24

Mulliken
w

2.80 8.38 6.08 12.0

Pauling w 0.98 2.55c 2.55c 3.98
aStarting from a neutral quintet 1s2, 2s1, 2px1, 2py1, 2pz1

bStarting from a neutral triplet 1s2, 2s2, 2px1, 2py1, 2pz0

cBased on experimental bond energies in C–X molecules

We see that the Mulliken and Pauling electronegativities seem to be reasonably

in step, with electronegativity increasing from Li to C to F, in accord with experi-

ence, but with A making quintet C more electronegative than F. Evidently I and A
act together to determine atomic avidity for electrons.

Electronegativity and other properties from DFT calculations have been dis-

cussed by Zhan et al. [5], and an electronegativity scale based on the energies of

neutrals and cations which correlates well with the Pauling scale has been proposed

by Noorizadeh and Shakerzadeh [6].
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Chapter 7, Harder Questions, Answers

Q7

Given the wavefunction of a molecule, it is possible to calculate the electron density

function. Is it possible in principle to go in the other direction? Why or why not?

From density functional theory, given the electron density function of a mole-

cule (and its charge and multiplicity), and a perfect functional (let’s idealize the

problem; the question does specify “in principle”) we can home in on a unique

molecule. Then we could use ab initio theory to find the wavefunction.
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Chapter 7, Harder Questions, Answers

Q8

The multielectron wavefunction C is a function of the spatial and spin coordinates

of all the electrons. Physicists say that C for any system tells us all that can be

known about the system. Do you think the electron density function r tells us

everything that can be known about a system? Why or why not?

Although the wavefunction C seems to contain more information than the

electron density function r (question 1), it ought to be possible in principle to

calculate any property of a system from r, because different states – different

geometries, different electronic states, etc. – must have different electron distribu-

tions (or they would not be different). The problem is to transform the calculated

r to an energy (question 5).

Extraction of information from rmay not be as elegant as fromC. For example,

the Woodward–Hoffmann rules follow fairly transparently from the symmetries of

molecular orbitals (wavefunctions), but deriving them from r requires using a “dual

descriptor” function [1].

Reference

1. Ayers PW, Morell C, De Proft F, Geerlings P (2007) Chem Eur J 13:8240

Chapter 7, Harder Questions, Answers

Q9

If the electron density function is mathematically and conceptually simpler than the

wavefunction concept, why did DFT come later than wavefunction theory?

The wavefunction [1] and electron density [2] concepts came at about the same

time, 1926, but the application of wavefunction theory to chemistry began in the

1920s [3], while DFT was not widely used in chemistry until the 1980s (see below).

Why?

The DFT concept of calculating the energy of a system from its electron density

seems to have arisen in the 1920s with work by Fermi, Dirac, and Thomas.

However, this early work was useless for molecular studies, because it predicted

molecules to be unstable toward dissociation. Much better for chemical work, but

still used mainly for atoms and in solid-state physics, was the Xa method, intro-

duced by Slater in 1951. Nowadays the standard DFT methodology used by

chemists is based on the Hohenberg–Kohn theorems and the Kohn–Sham approach
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for implementing them (1964, 1965). It is not far from the truth to say that the use of

DFT in chemistry began, with this method, in the 1960s. The first such calculation

was on atoms (1966) [4], with molecular DFT calculations picking up steam in the

1970s [5], and starting to become routine ca. 1990 [6].

The reason for the delay is that it took the Kohn–Sham approach to initiate

practical DFT calculations on molecules, and time was needed to “experiment”

with techniques for improving the accuracy of calculations [7]. As for why the

Hohenberg–Kohn theorems and the Kohn–Sham insight came not until 40 years

after the wavefunction and electron density concepts, one can only speculate;

perhaps scientists were mesmerized by the peculiarities of the wavefunction [8],

or perhaps it simply took the creativity of specific individuals to usher in the era of

widespread density functional calculations.
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Cambridge, UK, pp 219–220, 225–226, 240, 436–436
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8. E.g. (a) Baggott J (1992) The meaning of quantum theory. Oxford Science Publications,

Oxford. (b) Whitaker A (1996) Einstein, Bohr and the quantum dilemma. Cambridge Univer-

sity Press, Cambridge, UK

Chapter 7, Harder Questions, Answers

Q10

For a spring or a covalent bond, the concepts of force and force constant can be

expressed in terms of first and second derivatives of energy with respect to

extension. If we let a “charge space” N represent the real space of extension of

the spring or bond, what are the analogous concepts to force and force constant?

Using the SI, derive the units of electronegativity and of hardness.
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Force and force constant, for a spring or bond, reflect the dependence of energy

on extension:

Force ¼ F ¼ �dE=dx (1)

Force constant ¼ k ¼ �dF=dx ¼ d2E=dx2 (2)

(Force is a vector, acting in the opposite direction to the that along which the

spring or bond is extended, hence the minus sign; the force constant is positive).

Energy and charge density are closely connected, E being a functional of r for the

ground state:

E0 ¼ F½r0� (3)

We want equations analogous to Eqs. 1 and 2 with r instead of E. Equation 3

leads us to

Force ¼ F ¼ �dF½r�=dx (4)

and

Force constant ¼ k ¼ �dF=dx ¼ d2F½r0�=dx2 (5)

both for the ground electronic state.

Units of electronegativity and hardness in the international system
Electronegativity can be defined as

w ¼ �m ¼ � @E

@N

� �
V

(6)

and hardness can be defined as

� ¼ @2E

@N2

� �
V

¼ @m
@N

� �
V

¼ � @w
@N

� �
V

(7)

Within these definitions, the units of electronegativity must then be

Change in energy/change in pure number ¼ J (joules)

and the units of hardness must be

Change in electronegativity/change in pure number

¼ change in J/change in pure number ¼ J

Electronegativity is a measure of how fast energy changes as electrons are

added, and hardness is a measure of how fast electronegativity changes as electrons

are added. In the “classical” Pauling definition, electronegativity is commonly said

to be dimensionless, but should really have the units of square root of energy

(arising from bond energy difference to the power of 1/2), and in the Mulliken

definition the units are those of energy (see Chapter 7, Harder Question 6).
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Chapter 8, Harder Questions, Answers

Solvation

1. In microsolvation, should the solvent molecules be subjected to geometry

optimization?

Ideally, the solvent molecules, as well as the solute molecules, should be

subjected to geometry optimization in microsolvation (implicit solvation): in a

perfect calculation all components of the system, in this case the solution, would

be handled exactly. This is feasible for most quantum mechanical (AM1 or PM3,

ab initio, DFT) microsolvation calculations, since these usually use only a few

solvent molecules (see e.g. Chapter 8, [14]). Forcefield (molecular mechanics)

calculations on biopolymers surround the solute with a large number of mole-

cules when implicit solvation is used, and it may not be practical to optimize

these.

2. Consider the possibility of microsolvation computations with spherical, polar-

izable “pseudomolecules”. What might be the advantages and disadvantages of

this simplified geometry?

The advantages come from geometric simplicity: the orientation of the mole-

cules with respect to the solute does not have to be optimized, nor does the more

ambitious task of solute molecule geometry optimization arise.

The disadvantages stem from the fact that the only solvents that really consist of

spherical molecules are the noble gases. These are used as solvents only in quite

specialized experiments, for example:

(a) Solvent effect on the blue shifted weakly H-bound F3CH���FCD3 complex:

Rutkowski KS, Melikova SM, Rodziewicz P, Herrebout WA, van der Veken

BJ, Koll A (2008) J Mol Struct 880:64

(b) Liquid noble gases as ideal transparent solvents: Andrea RR, Luyten H,

Stufkens DJ, Oskam A (1986) Chemisch Magazine (Den Haag), (January)

23, 25. (In Dutch)

(c) Depolarization of fluorescence of polyatomic molecules in noble gas sol-

vents: Blokhin AP, Gelin MF, Kalosha I, Matylitsky VV, Erohin NP,

Barashkov MV, Tolkachev VA (2001) Chem Phys 272:69

3. In microsolvation, why might just one solvent layer be inadequate?

The essential reason why one (or probably two or three) solvent layers is

not enough is that with, say, one layer the solvent molecules in contact with a

solute molecule are not “distracted’ by an outer layer and so turn their solvating

power on the solute more strongly than if they also had to interact with an outer

solvent layer (see Bachrach SM (2007) Computational organic chemistry.

Wiley-Interscience, Hoboken, NJ, chapter 6). The solute is evidently oversol-

vated. Formally, we can say that n layers is sufficient if going to nþ 1 layers has

no significant effect on the phenomenon we are studying. Unfortunately, it is not

yet possible to computationally find this limiting value of n for higher-level

quantum mechanical calculations.
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4. Why is parameterizing a continuum solvent model with the conventional dielec-

tric constant possibly physically unrealistic?

The conventional dielectric constant is an experimental quantify that refers to

the solvent as a continuous insulating medium. On the molecular scale solute

and solvent are not separated by a smooth medium, but rather by discrete

particles (molecules) with empty interstices.

5. Consider the possibility of parameterizing a continuum solvent model with

dipole moment.

Continuum solvent models are normally parameterized with the solvent dielectric

constant (but see the COSMO models, Chapter 8). First we note that dielectric

constant and dipole moment are not in general well correlated; from Chapter 8:

For 24 solvents encompassing nonpolar (e.g. pentane, m 0.00, e 1.8), polar aprotic (e.g.

dimethyl sulfoxide, m 3.96, e 46.7), and polar protic (e.g. water, m 1.85 e 80) dispositions,
the correlation coefficient r2 of e with m was only 0.36 (removing formic acid and water

raised it to 0.75). For nine nonpolar, seven polar aprotic, and 8 polar protic solvents,

considered as separate classes, r2 was 0.90, 0.87, and 0.0009 (sic), respectively .....

If we consider just essentially using dipole moment as a surrogate for dielectric

constant, with minor conceptual adjustments like some changes in the parameteri-

zation constants, then from the above, for nonpolar and polar aprotic solvents the

correlation is good enough that it may be possible to parameterize with dipole

moment, but there is no clear indication that this would have any advantage.

Furthermore, water, the most important solvent, belongs to the polar protic class,

for which there is no correlation.

Less clear is whether a different approach than that used with dielectric constant

might be fruitful with dipole moment. A useful solvation algorithm does not seem to

have emerged from studies of the effect of dipole moment on solvation energies, e.g.

(a) Effect of bond and group dipole moments on the enthalpy of solvation of

organic nonelectrolytes: Antipin IS, Karimova LKh, Konovalov AI (1990) Z

Obshch Khim 60:2437–2440. (In Russian)

(b) Free energy of solvation of aromatic compounds and their polarizability:

Gorbachuk VV, Smirnov SA, Solomonov BN, Konovalov AI (1988) Dokl

Akad Nauk SSSR 300:1167. This paper studied dipole moment as well as

polarizability. (In Russian)

Chapter 8, Harder Questions, Answers

Singlet Diradicals

1. Is CASSCF size-consistent?

We saw that full CI is size-consistent (Section 5.4.3). Now, CASSCF is complete
CI, within a specified set of molecular orbitals. If done right it is size-consistent.
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Done right means that in comparing the energy of two systems one must utilize

corresponding electron promotions (“excitations”). I’ll illustrate this by compar-

ing the energy of two well-separated beryllium atoms with the twice the energy

of one beryllium atom. I choose the beryllium atom because this 4-electron atom

is the simplest closed-shell species which gives some choice (among 2s and 2p

set) of occupied orbitals, lending a little resemblance in this respect to the

molecular case.

A CASSCF(2,2)/6-31G* calculation was done on one beryllium atom, using a

simplified version of the procedure in Chapter 8 for molecules: an orbital

localization step is pointless for an atom, and in the energy calculation optimi-

zation is meaningless. First an STO-3G wavefunction was obtained and the

atomic orbitals (AOs) were visualized; this showed MO1, 2, 3, 4, and 5 to be,

respectively, 1s, 2s (both occupied), and three energetically degenerate unoccu-

pied 2p orbitals. The active space was chosen to consist of the 2s and a 2p

orbital, and a single-point (no optimization requested) CASSCF(2,2)/6-31G*

calculation was done. The energy was �14.5854725 hartree.

A CASSCF(2,2)/6-31G* calculation was now done on two beryllium atoms

separated by 20 Å, where they should be essentially noninteracting; the coordi-

nates of these two atoms were input treating them as one unit, an 8-electron

supermolecule. An STO-3G wavefunction was obtained and visualized. This

showed as expected a set of molecular orbitals (MOs), since this species is

formally a molecule. With five AOs from each atom, we have ten AOs resulting

from plus and minus combinations (bonding and antibonding only in a formal

sense, because of the separation). These were:

MO1, 1s þ 1s; MO2, 1s-1s; same energy. These two account for two pairs of

electrons.

MO3, 2s þ 2s; MO4, 2s-2s; same energy. These two account for two pairs of

electrons.

MO5, 2px þ 2px; MO6, 2px � 2px; ...., MO10, 2pz � 2pz, All six of these, 5–10,

same energy, unoccupied.

The critical choice was made of a CASSCF(4,4)/6-31G* calculation; the active

space is thus the degenerate filled 2s þ 2s and 2s � 2s pair of MOs, and the

degenerate empty 2px þ 2px and 2px � 2px pair of MOs. CASSCF(4,4) was

chosen because it corresponds to the CASSCF(2,2) calculation on one beryllium

atom in the sense that we are doubling up the number of electrons and orbitals in

our noninteracting system. This calculation gave an energy of �29.1709451

hartree. We can compare this with twice the energy of one beryllium atom, 2 �
�14.5854725 hartree ¼ �29.1709450 hartree.

Let’s compare these CASSCF results with those for a method that is not size-

consistent, CI with no “complete” aspect. We’ll use CISD (configuration inter-

action singles and doubles; Section 5.4.3). Here are the results for CISD/6-31G*:

One beryllium atom, �14.6134355

Two beryllium atoms separated by 20 Å, �29.2192481.
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This is significantly higher than with twice the energy of one beryllium atom:

2 � �14.6134355 ¼ �29.226871; �29.2192481 � (�29.226871) ¼ 0.00762

hartree or 20.0 kJ mol�1. If unaware that CISD is not size-consistent, one might

have thought that these widely-separated atoms are destabilized by 20 kJ mol�1.

By comparison, the hydrogen-bonded (stabilizing) enthalpy of the water dimer

lies in the range 13–21 kJ mol�1 (Chapter 5, reference [104]).

2. In one-determinant HF (i.e. SCF) theory, each MO has a unique energy

(eigenvalue), but this is not so for the active MOs of a CASSCF calculation.

Why?

The MOs used for the active space are normally localized MOs, derived from the

canonical MOs (Section 5.2.3.1) by taking linear combinations of the original

MOs of the Slater determinant. Localization has no physical consequences: C
expressed as the “localized determinant” is in effect the same as C expressed as

the canonical determinant, and properties calculated from the two are identical.

However, the canonical MOs and the localized MOs are not the same: in the two

sets of MOs the coefficients of the basis functions are different, which is why

canonical and localized MOs look different. Each canonical MO has an eigen-

value which is approximately the negative of its ionization energy (Koopmans’

theorem); MO coefficients and eigenvalues are corresponding columns and

diagonal elements of the C and « matrices in Eqs. 4.60 and 5.1. Since the

localized MOs differ mathematically from the canonical, there is no reason

why they should have physically meaningful eigenvalues.

3. In doubtful cases, the orbitals really needed for a CASSCF calculation can

sometimes be ascertained by examining the occupation numbers of the active

MOs. Look up this term for a CASSCF orbital.

In its most general physical use, occupation number is an integer denoting the

number of particles that can occupy a well-defined physical state. For fermions it

is 0 or 1, and for bosons it is any integer. This is because only zero or one

fermion(s), such as an electron, can be in the state defined by a specified set of

quantum numbers, while a boson, such as a photon, is not so constrained (the

Pauli exclusion principle applies to fermions, but not to bosons). In chemistry

the occupation number of an orbital is, in general, the number of electrons in it.

In MO theory this can be fractional.

In CASSCF the occupation number of the active space MO number i (ci) is

defined as (e.g. Cramer CJ (2004) Essentials of computational chemistry, 2nd

edn. Wiley, Chichester, UK, p 206):

occ numb of MOi ¼
XCSF
n

ðocc numb Þi;n a2n

i.e. it is the sum, over all n configuration state functions (CSFs) containing MOi, of
the product of the occupation number of a CSF and the fractional contribution (a2)
of the CSF to the total wavefunction C. A CSF is the same as a determinant for
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straightforward closed-shell species, and is a linear combination of a few determi-

nants for open-shell species.

If you don’t understand the above equation and its exegesis, recall Eq. 5.169

(there c was used for a, the weighting, when squared, of the CSF/determinant in

the total wavefunction). That equation shows how in configuration interaction

theory (CASSCF is a version of CI) each electronic state, ground, first excited,

etc., has a total wavefunction C which is a linear combination of determinants

(or CSFs, for open-shell species). Within each D, for example the determinant of

Eq. 5.167, we have a number of MOs c.
4. Why does an occupation number (see question 3) close to 0 or 2 (less than ca.

0.02 and more than ca. 1.98) indicate that an orbital does not belong in the active

space?

We want to shuffle electrons around in the active space, i.e. promote (“excite”)

them from formally occupied to formally unoccupied MOs. An MO that is

essentially full or empty has not participated in this shuffling, an incomplete

transfer process.

5. It has been said that there is no rigorous way to separate static and dynamic

electron correlation. Discuss.

First let us review static and dynamic electron correlation. Dynamic (dynamical)

electron correlation is easy to grasp, if not so easy to treat exhaustively. It is simply

the adjustment by each electron, at each moment, of its motion in accordance with

its interaction with each other electron in the system. Dynamic correlation and its

treatment with perturbation (Møller–Plesset), configuration interaction, and cou-

pled cluster methods was covered in Section 5.4.

Static (nondynamical) electron correlation refers to phenomena arising from the

presence in a molecule of two (or more) orbitals of the same or similar energy, each

formally half-filled. Section 5.4: “Static correlation energy is the energy a calcula-

tion (Hartree–Fock or otherwise) may not account for because it uses a single

determinant, or starts from a single determinant (is based on a single-determinant

reference – Section 5.4.3); this problem arises with singlet diradicals, for example,

where a closed-shell description of the electronic structure is qualitatively wrong”.

This phenomenon is “static” because it has no clear connection with motion, but it

is not clear why it should be regarded as a correlation effect; possibly just because

like dynamic correlation it is not properly handled by the Hartree–Fock method.

The treatment of static correlation by complete active space SCF is shown in some

detail in Section 8.2.

Is there no rigorous way to separate static and dynamic electron correlation?

Dynamic correlation is present in any system with two or more electrons, but static

correlation requires degenerate or near-degenerate partially-filled orbitals, a feature

absent in normal closed-shell molecules. So in this sense they are separate phenom-

ena. In another sense they are intertwined: methods that go beyond the Hartree–

Fock in invoking more than one determinant, namely CI and its coupled cluster

variant, improve the handling of both phenomena.
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Chapter 8, Harder Questions, Answers

Heavy Atoms and Transition Metals

1. Is the result of the calculation in question 5 above trustworthy? Why or why not?

The calculation referred to in question 5 is:

Use the simple semiclassical Bohr equation for the velocity v of an electron in an
atom (Eq. 4.12 to calculate a value of v for Z ¼ 100 and energy level n ¼ 1:

v ¼ Ze2

2 e0 nh
(4.12)

e ¼ 1.602 � 10�19 C, e0 ¼ 8.854 � 10�12 C2N�1m�2, h ¼ 6.626 � 10�34 J s

What fraction of the speed of light c ¼ 3.0 � 108 ms�1) is this value of v?
Using the “Einstein factor”

ffip
(1 � v2/c2), calculate the mass increase factor that

this corresponds to.

The calculation yields v ¼ 2.19 � 108 ms�1. The value of v is correct for

hydrogenlike atoms (one electron), because for these the Bohr atom is a correct

model, at least mathematically if not conceptually. It should be approximately

right for atoms with more than one electron, because we are considering n ¼ 1,

an s electron, and the effect of outer-shell electrons on the first shell is not large.

This velocity is 2.19 � 108/3.00 � 108 ¼ 0.73 of the speed of light.

As v approaches c, the mass increase factor approaches infinity. Thus the factor

we seek is 1/
ffip
(1� v2/c2)¼ 1/

ffip
(1� 0.732)¼ 1.47. The mass increases by 47%.

2. Should relativistic effects be stronger for d or for f electrons?

For d electrons. This may seem like a trick question because of the quirky filling

of d and f shells, but there is no reason to doubt that the effect of the nuclear

potential on electron shells increases in the order f, d, p, s. Thus the speed at

which the “orbiting” electrons move increases in that order.

3. Why are the transition elements all metals?

First, note that by the point in the periodic table where the transition elements are

reached (i.e. by Z ¼ 22, titanium), there still lie several nonmetals beyond:

germanium–krypton (Z ¼ 32–36), tellurium-xenon (Z ¼ 52–54), and astatine

and radon (Z ¼ 85 and 86), thus ten at least (there are a few elements of

ambiguous metallicity which could be included here or omitted; this has no

effect on the argument). So it is not simply that with the first transition element

we have reached the end of the nonmetals, noting that beyond radon all the

elements are essentially metallic. The reasons for this lie more in the realm of

solid-state physics than in conventional “single-atom/single/molecule” chemis-

try, for metallicity is a bulk property: characteristics like electrical conductivity,

lustrousness and malleability are not properties of single atoms or molecules.

Without going into solid-state physics, we content ourselves with the suggestion

that beyond about Z ¼ 86, the outer electrons of the atoms in the bulk solid

are not held strongly enough to abstain from merging into a common pool.
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The “free-electron” sea confers on the substance typical metallic properties

(Cotton FA, Wilkinson G, Gaus PL (1995) Basic inorganic chemistry, 3rd edn.

Wiley, New York, pp 249–251 and chapter 32).

So why are the transition elements all metals? A detailed answer would require a

discussion of concepts like band gaps and Fermi levels (Cotton FA,

Wilkinson G, Gaus PL (1995) Basic inorganic chemistry, 3rd edn. Wiley, New

York, chapter 32), but the beginning of an explanation emerges from consider-

ing, say, calcium, scandium and titanium (Z ¼ 20, 21, 22). Calcium is a metal

because its nuclear charge is not high enough to prevent the two outer, 4s

electrons from merging into a common pool. The electrons that take us to

scandium and titanium get tucked into the 3d shell, still leaving, in the isolated

atom, the outermost 4s pair which in the bulk metal are pooled. Slight splitting of

the d levels by ligands confers typical transition metal properties, as touched on

in Section 8.3.4.

4. The simple crystal field analysis of the effect of ligands on transition metal

d-electron energies accords well with the “deeper” molecular orbital analysis (see

e.g. chapter 8, [99]). Inwhat way(s), however, is the crystal fieldmethod unrealistic?

The crystal field method is a formalism. It perturbs the metal d orbitals with

point charges (Cotton FA, Wilkinson G, Gaus PL (1995) Basic inorganic

chemistry, 3rd edn. Wiley, New York, pp 503–509). It does not allow for the

role of other orbitals on the metal, nor does it invoke orbitals on the perturbing

charges. Thus it does not permit ligand electron donation to and electron

acceptance from the metal (Lewis basicity and Lewis acidity by the ligand;

the former is said to be essential, the latter desirable (chapter 8, [100])).

5. Suggest reasons why parameterizing molecular mechanics and PM3-type pro-

grams for transition metals presents special problems compared with parameter-

izing for standard organic compounds.

There are many more geometric structural possibilities with transition metal com-

pounds than with standard organic compounds. Carbon is normally tetrahedral and

tetracoordinate, trigonal and tricoordinate, or digonal and dicoordinate. This holds

for nitrogen too and the normal possibilities are even more restricted for other

common organic-compound atoms like hydrogen, oxygen and halogens. In con-

trast, a transition metal atom may have more stereochemical possibilities: square

planar, square pyramidal, tetrahedral, trigonal bipyramidal, and octahedral are the

common ones. The geometry of many transition metal molecules also poses a

problem for parameterization: consider ferrocene, for example, where iron(II) is

coordinated to two cyclopentadienyl anions. Should iron be parameterized to allow

for ten C–C bonds, or for two Fe-ring center bonds? This kind of conundrum arises

more for molecular mechanics parameterization, where bonds are taken literally,

than for PM3- or AM1-type parameterization, where the objective is to simplify the

ab initio molecular orbital method, which does not explicitly use bonds (although

the concept can be recovered from the wavefunction after a calculation). The

parameterization of molecular mechanics for transition metals is discussed in

[105] in connection with the Momec3 program (chapter 8, [105]).
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