=

Computatlonal -
Chemistry *

Introduction to the Theory and Applications
of Molecular and Quantum Mechanics~

Errol G. Lewars

2nd Edition

HW=Eyw




Computational Chemistry






Errol G. Lewars

Computational Chemistry

Introduction to the Theory and Applications
of Molecular and Quantum Mechanics

Second Edition

@ Springer



Prof. Errol G. Lewars

Trent University

Dept. Chemistry

West Bank Drive 1600

K9J 7B8 Peterborough Ontario
Canada

elewars@trentu.ca

ISBN 978-90-481-3860-9 e-ISBN 978-90-481-3862-3
DOI 10.1007/978-90-481-3862-3
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2010938715

© Springer Science+Business Media B.V. 2011

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Cover design: KuenkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To Anne and John,
who know what their contributions were






Preface

Every attempt to employ mathematical methods in the study of chemical questions
must be considered profoundly irrational and contrary to the spirit of chemistry. If
mathematical analysis should ever hold a prominent place in chemistry — an
aberration which is happily almost impossible — it would occasion a rapid and
widespread degeneration of that science.

Augustus Compte, French philosopher, 1798-1857; in Philosophie Positive,
1830.

A dissenting view:

The more progress the physical sciences make, the more they tend to enter the
domain of mathematics, which is a kind of center to which they all converge. We
may even judge the degree of perfection to which a science has arrived by the
facility to which it may be submitted to calculation.

Adolphe Quetelet, French astronomer, mathematician, statistician, and sociolo-
gist, 17961874, writing in 1828.

This second edition differs from the first in these ways:

1. The typographical errors that were found in the first edition have been (I hope)
corrected.

2. Those equations that should be memorized are marked by an asterisk, for

example *(2.1).

. Sentences and paragraphs have frequently been altered to clarify an explanation.

. The biographical footnotes have been updated as necessary.

5. Significant developments since 2003, up to near mid-2010, have been added and
referenced in the relevant places.

6. Some topics not in first edition, solvation effects, how to do CASSCF calcula-
tions, and transition elements, have been added.

W

As might be inferred from the word Introduction, the purpose of this book is to
teach the basics of the core concepts and methods of computational chemistry. This
is a textbook, and no attempt has been made to please every reviewer by dealing
with esoteric “advanced” topics. Some fundamental concepts are the idea of a

vii



viii Preface

potential energy surface, the mechanical picture of a molecule as used in molecular
mechanics, and the Schrodinger equation and its elegant taming with matrix
methods to give energy levels and molecular orbitals. All the needed matrix algebra
is explained before it is used. The fundamental methods of computational chemistry
are molecular mechanics, ab initio, semiempirical, and density functional methods.
Molecular dynamics and Monte Carlo methods are only mentioned; while these are
important, they utilize fundamental concepts and methods treated here. I wrote the
book because there seemed to be no text quite right for an introductory course in
computational chemistry suitable for a fairly general chemical audience; I hope it
will be useful to anyone who wants to learn enough about the subject to start
reading the literature and to start doing computational chemistry. There are excel-
lent books on the field, but evidently none that seeks to familiarize the general
student of chemistry with computational chemistry in the same sense that standard
textbooks of those subjects make organic or physical chemistry accessible. To that
end the mathematics has been held on a leash; no attempt is made to prove that
molecular orbitals are vectors in Hilbert space, or that a finite-dimensional inner-
product space must have an orthonormal basis, and the only sections that the
nonspecialist may justifiably view with some trepidation are the (outlined) deriva-
tion of the Hartree—Fock and Kohn—Sham equations. These sections should be read,
if only to get the flavor of the procedures, but should not stop anyone from getting
on with the rest of the book.

Computational chemistry has become a tool used in much the same spirit as
infrared or NMR spectroscopy, and to use it sensibly it is no more necessary to be
able to write your own programs than the fruitful use of infrared or NMR spectros-
copy requires you to be able to able to build your own spectrometer. I have tried to
give enough theory to provide a reasonably good idea of how the programs work. In
this regard, the concept of constructing and diagonalizing a Fock matrix is intro-
duced early, and there is little talk of secular determinants (except for historical
reasons in connection with the simple Hiickel method). Many results of actual
computations, most of them specifically for this book, are given. Almost all the
assertions in these pages are accompanied by literature references, which should
make the text useful to researchers who need to track down methods or results, and
students (i.e. anyone who is still learning anything) who wish to delve deeper. The
material should be suitable for senior undergraduates, graduate students, and novice
researchers in computational chemistry. A knowledge of the shapes of molecules,
covalent and ionic bonds, spectroscopy, and some familiarity with thermodynamics
at about the level provided by second- or third-year undergraduate courses is
assumed. Some readers may wish to review basic concepts from physical and
organic chemistry.

The reader, then, should be able to acquire the basic theory and a fair idea of the
kinds of results to be obtained from the common computational chemistry techni-
ques. You will learn how one can calculate the geometry of a molecule, its IR and
UV spectra and its thermodynamic and kinetic stability, and other information
needed to make a plausible guess at its chemistry.
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Computational chemistry is accessible. Hardware has become far cheaper than it
was even a few years ago, and powerful programs previously available only for
expensive workstations have been adapted to run on relatively inexpensive personal
computers. The actual use of a program is best explained by its manuals and by
books written for a specific program, and the actual directions for setting up the
various computations are not given here. Information on various programs is
provided in Chapter 9. Read the book, get some programs and go out and do
computational chemistry.

You may make mistakes, but they are unlikely to put you in the same kind of
danger that a mistake in a wet lab might.

It is a pleasure acknowledge the help of:

Professor Imre Csizmadia of the University of Toronto, who gave unstintingly of
his time and experience,

The students in my computational and other courses,

The generous and knowledgeable people who subscribe to CCL, the computational
chemistry list, an exceedingly helpful forum anyone seriously interested in the
subject,

My editor for the first edition at Kluwer, Dr Emma Roberts, who was always most
helpful and encouraging,

Professor Roald Hoffmann of Cornell University, for his insight and knowledge on
sometimes arcane matters,

Professor Joel Liebman of the University of Maryland, Baltimore County for
stimulating discussions,

Professor Matthew Thompson of Trent University, for stimulating discussions
The staff at Springer for the second edition: Dr Sonia Ojo who helped me to initiate
the project, and Mrs Claudia Culierat who assumed the task of continuing to assist
me in this venture and was always extremely helpful.

No doubt some names have been, unjustly, inadvertently omitted, for which I
tender my apologies.

Ontario, Canada E. Lewars
April 2010






Contents

1 An Outline of What Computational Chemistry Is All About ............. 1
1.1 What You Can Do with Computational Chemistry........................ 1

1.2 The Tools of Computational Chemistry .............coooiiiiiiiiinn.. 2

1.3 Putting It All Together ........ooviiiiiiii i 3

1.4 The Philosophy of Computational Chemistry ...........ccccoviiiiiiiei.. 4

L5 SUMMATY ..ottt e 5
References. ......oooiiiii 5
Easier QUESHIONS .. ...ttt ettt et e et 6
Harder QUEeSHIONS. .. ....tit ettt et 7

2 The Concept of the Potential Energy Surface .............................. 9
2.1 PerSPECLIVE ...ttt ittt et 9
2.2 Stationary POINtS .......oouuiiiiii 13
2.3 The Born—Oppenheimer ApproXimation...............uueeeeeeeeeeennn.. 21
2.4 Geometry OptimiZation ..........ceeeeuuuuniineeeeeeuuiiianeeeeeeennnnn. 23
2.5 Stationary Points and Normal-Mode Vibrations — Zero Point Energy .... 30
NI 1071111 1 36
2.7 SUMMATY . oeteeeeeeeeeeeee 39
ReferenCes. .. ...t 40
Easier QUESHONS .. .....iitit ettt it ittt e e 42
Harder QUeSHIONS. .. ...ttt e et iie s 42

3 Molecular Mechanics .....................o 45
T8 B (53 1] 01T 5 45
3.2 The Basic Principles of Molecular Mechanics .................cccoeeeee. 48
3.2.1 Developing a Forcefield............ccoooviiiiiiiiiiiniiiiniiin. 48

3.2.2 Parameterizing a Forcefield ................ooooiiiiiiiii i, 53

3.2.3 A Calculation Using Our Forcefield ............................... 57

xi



Xii Contents

3.3 Examples of the Use of Molecular Mechanics .......................... 60
3.3.1 To Obtain Reasonable Input Geometries for Lengthier
(AD Initio, Semiempirical or Density Functional) Kinds

of Calculations ........ooeuuuuniiii it 61
3.3.2 To Obtain Good Geometries (and Perhaps Energies)
for Small- to Medium-Sized Molecules ........................... 64

3.3.3 To Calculate the Geometries and Energies of Very Large
Molecules, Usually Polymeric Biomolecules (Proteins and
Nucleic ACIAS) . ... 65
3.3.4 To Generate the Potential Energy Function Under Which
Molecules Move, for Molecular Dynamics or Monte Carlo

Calculations ......oveieiiiiii e 65

3.3.5 As a (Usually Quick) Guide to the Feasibility of, or Likely
Outcome of, Reactions in Organic SynthesiS...................... 66
3.4 Geometries Calculated by MM ...ttt 67
3.5 Frequencies and Vibrational Spectra Calculated by MM ............... 72
3.6 Strengths and Weaknesses of Molecular Mechanics .................... 73
3.6.1 Strengths. ..o 73
3.0.2 WEAKNESSES . .. ettt e ettt ettt ettt et 74
3.7 SUMIMATY .ottt ettt e ettt eeans 78
References. .. .oooiiiii 79
Easier QUESHIONS .. ...u.iititii ettt e i ettt iie e ee s 82
Harder QUeSHIONS. ...ttt et e et ie i e e e ea s 82

4 Introduction to Quantum Mechanics in Computational Chemistry .... 85

4.1 PeISPECLIVE . ..utt ettt et ettt e e e 85
4.2 The Development of Quantum Mechanics. The Schrodinger
BEqQUation .....oouuii i e 87
4.2.1 The Origins of Quantum Theory: Blackbody Radiation
and the Photoelectric Effect..................co i 87
4.2.2 RadiOaCHIVILY .. .uue e 91
4.2.3 RelatiVity ..o 91
4.2.4 The Nuclear AtOM.........coouuuiiiiiiiiiiiiiiiiiiieaaa, 92
4.2.5 The Bohr Atom.........cooiiiiiiiiiiiii i 94
4.2.6 The Wave Mechanical Atom and the Schrodinger Equation...... 96
4.3 The Application of the Schrodinger Equation to Chemistry
by HUckel. .....oooi 102
4.3.1 INtroduction. ...... ..o 102
4.3.2 Hybridization ........oouunieiiini i 103
4.3.3 Matrices and Determinants.............ccoooviiiiiiiiiiiiii... 108
4.3.4 The Simple Hiickel Method — Theory ..................oeit 118
4.3.5 The Simple Hiickel Method — Applications ..................... 133

4.3.6 Strengths and Weaknesses of the Simple Hiickel Method....... 144



Contents

4.3.7 The Determinant Method of Calculating the Hiickel c’s
and Energy Levels............oooiiiiiiiiiii
4.4 The Extended Hiickel Method .............cooiiiiiiiiiiiiiii it
L R U110
4.4.2 An Illustration of the EHM: the Protonated Helium Molecule. .
4.4.3 The Extended Hiickel Method — Applications...................
4.4.4 Strengths and Weaknesses of the Extended Hiickel Method.....
T TN 1 10100 - o
LSS (5] () 0 1
Easier QUESHONS .. .....iietiie ettt et
Harder QUeStIONS. .. .....iii ittt ittt e e et

5 Abinitio Calculations ..................coooiiiiiii
5.1 PErSPECLIVE ...ttt
5.2 The Basic Principles of the Ab initio Method ..........................

5.2.1 Preliminaries. . .....oooeeeuunniiii et
5.2.2 The Hartree SCF Method ............ccooiiiiiiiiiiiiiiiiinn ..
5.2.3 The Hartree—Fock Equations....................coooiiiiiii .o,
5.3 BaSIS St .ttt s
5.3.1 Introduction. ... ...uueeiiiie ettt i
5.3.2 Gaussian Functions; Basis Set Preliminaries; Direct SCF.......
5.3.3 Types of Basis Sets and Their Uses.............ccoovvviiinnnenn.
5.4 Post-Hartree—Fock Calculations: Electron Correlation .................
5.4.1 Electron Correlation..........c.uuveeiiineeiiineeiiiineeninneeenn.
5.4.2 The Mgller—Plesset Approach to Electron Correlation..........
5.4.3 The Configuration Interaction Approach To Electron
Correlation — The Coupled Cluster Method .....................
5.5 Applications of the Ab initio Method.................ccoovviiiiiiiin,
5.5.1 GEOMEIIICS .. .uuneetttttttiee et ettt e e eeieaaeeees
5.5.2 BNEIZIES ..ottt ettt e et e
5.5.3 Frequencies and Vibrational Spectra...............cccoooiin....
5.5.4 Properties Arising from Electron Distribution: Dipole
Moments, Charges, Bond Orders, Electrostatic Potentials,
Atoms-in-Molecules (AIM) ........coviiiiiiiiiii i
5.5.5 Miscellaneous Properties — UV and NMR Spectra, Ionization
Energies, and Electron Affinities..................ccoooiiiii....
5.5.6 Visualization. . .......ooouuuuuiiiiit it
5.6 Strengths and Weaknesses of Ab initio Calculations...................
5.6.1 Strengths......viiiniii i e
5.6.2 WeEaKNESSS. .. .uue ettt ettt
5.7 SUMMATY ..ottt
RefeIeNCeS. . ..ttt
Easier QUESHIONS .. ...u.iietie et e ittt ie i
Harder QUESHIONS . .. ..ottt ettt ettt et ettt et

Xiii



Xiv Contents

6 Semiempirical Calculations ............................ii 391
6.1 PersSpectiVe ... ....oveiiiiiiiiiit et 391
6.2 The Basic Principles of SCF Semiempirical Methods.................. 393

6.2.1 Preliminaries. . .......ooouuuuuiiie i 393
6.2.2 The Pariser-Parr-Pople (PPP) Method ........................... 396
6.2.3 The Complete Neglect of Differential Overlap (CNDO)
Method. ... 398
6.2.4 The Intermediate Neglect of Differential Overlap (INDO)
Method. . ... 399
6.2.5 The Neglect of Diatomic Differential Overlap (NDDO)
Methods ..o 400
6.3 Applications of Semiempirical Methods....................ooiiiiienn. 412
6.3.1 GEOMEIIICS ...ttt ettt ettt eeeaaeeees 412
6.3.2 ENCIZIES ..ottt 419
6.3.3 Frequencies and Vibrational Spectra................ccooooiie.... 423
6.3.4 Properties Arising from Electron Distribution: Dipole
Moments, Charges, Bond Orders ................cooviviiinn... 426
6.3.5 Miscellaneous Properties — UV Spectra, Ionization Energies,
and Electron Affinities ...............ccoiiiiiiiii i, 431
6.3.6 Visualization. . ........coouuuuiiiii it 434
6.3.7 Some General Remarks ... 435
6.4 Strengths and Weaknesses of Semiempirical Methods................. 436
6.4.1 Strengths.......oviiiiii i e 436
6.4.2 WeaKNeSSeS. .. uu ettt ettt 436
6.5 SUMMATY ..ottt 437
REEIONCES. ...ttt 438
Easier QUESHIONS .. ...u.iietie et et it e et ie e 443
Harder QUESHIONS . . ... .itttt ittt ettt ettt e 443

7 Density Functional Calculations .......................................... 445
7 B & 5 o o1 6 445
7.2 The Basic Principles of Density Functional Theory.................... 447

7.2.1 Preliminaries. ......oouuuuiieeeittiiiiiin i 447

7.2.2 Forerunners to Current DFT Methods ........................... 448

7.2.3 Current DFT Methods: The Kohn—Sham Approach............. 449

7.3 Applications of Density Functional Theory ............................ 467

7.3.1 GEOMEIIICS ...ttt ettt e et e e et e e e 468

G TN 2 1<) 1< 4717

7.3.3 Frequencies and Vibrational Spectra................ccoovvvennn.. 484
7.3.4 Properties Arising from Electron Distribution — Dipole

Moments, Charges, Bond Orders, Atoms-in-Molecules......... 487

7.3.5 Miscellaneous Properties — UV and NMR Spectra,

Tonization Energies and Electron Affinities,

Electronegativity, Hardness, Softness and the Fukui Function.. 491
7.3.6 ViSualization. ..........couuuuiiiiiiiiiiiiiie e iiaaeeee 509



Contents XV

7.4 Strengths and Weaknesses of DFT ..., 509
TA L Strengths. ..o e 509
N T 8 TS 510

7.5 SUMMATY ettt ettt 510

LSS () (2 0 1 512

Easier QUESHIONS .. ...unite ittt e e e e ie ety 518

Harder QUeStIONS. .. ...u.iit ettt e it et e e e e e ee e aaaans 518

8 Some ““Special’” Topics: Solvation, Singlet Diradicals,

A Note on Heavy Atoms and Transition Metals ......................... 521
8.1 SOIVALION. .. eettt et 521
8 1.1 PerspectiVe .....iiiiei ettt i 522
8.1.2 Ways of Treating Solvation.............ccoooviiiiiiiiiinnnnn.. 522
8.2 Singlet Diradicals. .......coouuiiiiiiii i e 535
8.2.1 PerSPeCtiVE ...ttt ettt e e 535
8.2.2 Problems with Singlet Diradicals and Model Chemistries ...... 535
8.2.3 (1) Singlet Diradicals: Beyond Model Chemistries.
(2) Complete Active Space Calculations (CAS)................. 537
8.3 A Note on Heavy Atoms and Transition Metals........................ 547
8.3.1 PerSPeCiVE ..ttt ettt et 547
8.3.2 Heavy Atoms and Relativistic Corrections ...................... 548
8.3.3 Some Heavy Atom Calculations ............covvvvuinviinnnnann.. 549
8.3.4 Transition Metals.........coiiiiiiiiiiiiiiiiii i, 550
8.4 SUMMATY ...\ttt i 552
LSS (5] () 0 1 553
SOIVALION ...ttt e 558
Easier QUESHONS ......oittt et ie i iia e 558
Harder QUESHIONS ... oiuiitit et ie i 558
Singlet Diradicals .......oouiiiiniii e 558
Easier QUeStiONS .......oiuiitiiiii e 558
Harder QUESHIONS ......uuetitie ettt iii et iie e iie e iie s 559
Heavy Atoms and Transition Metals ............oooiiiiiiiiiiiiii .. 559
Easier QUESHIONS . ....ovittiei ettt ettt 559
Harder QUESHIONS .........coiuiiie i e it i iie e iea e 560

9 Selected Literature Highlights, Books, Websites, Software

and Hardware ..... ... ... i 561
9.1 From the Literature............ovuuiiiiiiiniiie i iieiieiiaaaaannns 561
9.1.1 MOIECUIES. ..\ttt e 561
9.1.2 MeChaniSms ........uueineeiieetie et ee e ie e ieeiaeeaeenns 566
9.1.3 CONCEPLS ..ottt 568
9.2 Tothe Literature. .. .....oouiiiiiie ettt i e et ie e iee et 572
0.2.1 BoOOKS ..ttt e 572

9.2.2 Websites for Computational Chemistry in General.............. 576



XVi Contents

9.3 Software and Hardware ..............c.oiiiiiiiiiiiii i 577
0.3.1 SOftWare ...ttt e e 577

032 Hardware .......oooiiiiiiiiii ittt 581

0.3.3 POSESCTIPE -t 582

R erenCes. . o 582

N 1T o 585



Chapter 1
An Outline of What Computational
Chemistry Is All About

Knowledge is experiment’s daughter
Leonardo da Vinci, in Pensieri, ca. 1492
Nevertheless:

Abstract You can calculate molecular geometries, rates and equilibria, spectra,
and other physical properties. The tools of computational chemistry are molecular
mechanics, ab initio, semiempirical and density functional methods, and molecular
dynamics. Computational chemistry is widely used in the pharmaceutical industry
to explore the interactions of potential drugs with biomolecules, for example by
docking a candidate drug into the active site of an enzyme. It is also used to
investigate the properties of solids (e.g. plastics) in materials science. It does not
replace experiment, which remains the final arbiter of truth about Nature.

1.1 What You Can Do with Computational Chemistry

Computational chemistry (also called molecular modelling; the two terms mean
about the same thing) is a set of techniques for investigating chemical problems on
a computer. Questions commonly investigated computationally are:

Molecular geometry: the shapes of molecules — bond lengths, angles and
dihedrals.

Energies of molecules and transition states: this tells us which isomer is favored
at equilibrium, and (from transition state and reactant energies) how fast a reaction
should go.

Chemical reactivity: for example, knowing where the electrons are concentrated
(nucleophilic sites) and where they want to go (electrophilic sites) enables us to
predict where various kinds of reagents will attack a molecule.

IR, UV and NMR spectra: these can be calculated, and if the molecule is
unknown, someone trying to make it knows what to look for.

E.G. Lewars, Computational Chemistry, 1
DOI 10.1007/978-90-481-3862-3_1, © Springer Science+Business Media B.V. 2011
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The interaction of a substrate with an enzyme: seeing how a molecule fits into
the active site of an enzyme is one approach to designing better drugs.

The physical properties of substances: these depend on the properties of indivi-
dual molecules and on how the molecules interact in the bulk material. For
example, the strength and melting point of a polymer (e.g. a plastic) depend on
how well the molecules fit together and on how strong the forces between them are.
People who investigate things like this work in the field of materials science.

1.2 The Tools of Computational Chemistry

In studying these questions computational chemists have a selection of methods at
their disposal. The main tools available belong to five broad classes:

Molecular mechanics is based on a model of a molecule as a collection of balls
(atoms) held together by springs (bonds). If we know the normal spring lengths
and the angles between them, and how much energy it takes to stretch and bend
the springs, we can calculate the energy of a given collection of balls and springs,
i.e. of a given molecule; changing the geometry until the lowest energy is found
enables us to do a geometry optimization, i.e. to calculate a geometry for the
molecule. Molecular mechanics is fast: a fairly large molecule like a steroid (e.g.
cholesterol, C,7H460) can be optimized in seconds on a good personal computer.

Ab Initio calculations (ab initio, Latin: “from the start”, i.e. from first princi-
ples”) are based on the Schrodinger equation. This is one of the fundamental
equations of modern physics and describes, among other things, how the electrons
in a molecule behave. The ab initio method solves the Schrodinger equation for a
molecule and gives us an energy and wavefunction. The wavefunction is a mathe-
matical function that can be used to calculate the electron distribution (and, in
theory at least, anything else about the molecule). From the electron distribution we
can tell things like how polar the molecule is, and which parts of it are likely to be
attacked by nucleophiles or by electrophiles.

The Schrodinger equation cannot be solved exactly for any molecule with more
than one (!) electron. Thus approximations are used; the less serious these are, the
“higher” the level of the ab initio calculation is said to be. Regardless of its level, an
ab initio calculation is based only on basic physical theory (quantum mechanics)
and is in this sense “from first principles”.

Ab initio calculations are relatively slow: the geometry and IR spectra (= the
vibrational frequencies) of propane can be calculated at a reasonably high level in
minutes on a personal computer, but a fairly large molecule, like a steroid, could
take perhaps days. The latest personal computers, with 2 or more GB of RAM and a
thousand or more gigabytes of disk space, are serious computational tools and now
compete with UNIX workstations even for the demanding tasks associated with
high-level ab initio calculations. Indeed, one now hears little talk of “workstations”,
machines costing ca. $15,000 or more [1].
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Semiempirical calculations are, like ab initio, based on the Schrodinger equation.
However, more approximations are made in solving it, and the very complicated
integrals that must be calculated in the ab initio method are not actually evaluated
in semiempirical calculations: instead, the program draws on a kind of library of
integrals that was compiled by finding the best fit of some calculated entity like
geometry or energy (heat of formation) to the experimental values. This plugging of
experimental values into a mathematical procedure to get the best calculated values is
called parameterization (or parametrization). It is the mixing of theory and experi-
ment that makes the method “semiempirical”: it is based on the Schrodinger equa-
tion, but parameterized with experimental values (empirical means experimental). Of
course one hopes that semiempirical calculations will give good answers for mole-
cules for which the program has not been parameterized.

Semiempirical calculations are slower than molecular mechanics but much
faster than ab initio calculations. Semiempirical calculations take roughly 100
times as long as molecular mechanics calculations, and ab initio calculations take
roughly 100-1,000 times as long as semiempirical. A semiempirical geometry
optimization on a steroid might take seconds on a PC.

Density functional calculations (DFT calculations, density functional theory)
are, like ab initio and semiempirical calculations, based on the Schrodinger equa-
tion However, unlike the other two methods, DFT does not calculate a conventional
wavefunction, but rather derives the electron distribution (electron density function)
directly. A functional is a mathematical entity related to a function.

Density functional calculations are usually faster than ab initio, but slower than
semiempirical. DFT is relatively new (serious DFT computational chemistry goes
back to the 1980s, while computational chemistry with the ab initio and semiem-
pirical approaches was being done in the 1960s).

Molecular dynamics calculations apply the laws of motion to molecules. Thus
one can simulate the motion of an enzyme as it changes shape on binding to a
substrate, or the motion of a swarm of water molecules around a molecule of solute;
quantum mechanical molecular dynamics also allows actual chemical reactions to
be simulated.

1.3 Putting It All Together

Very large biological molecules are studied mainly with molecular mechanics,
because other methods (quantum mechanical methods, based on the Schrodinger
equation: semiempirical, ab initio and DFT) would take too long. Novel molecules,
with unusual structures, are best investigated with ab initio or possibly DFT
calculations, since the parameterization inherent in MM or semiempirical methods
makes them unreliable for molecules that are very different from those used in the
parameterization. DFT is relatively new and its limitations are still unclear.
Calculations on the structure of large molecules like proteins or DNA are done with
molecular mechanics. The motions of these large biomolecules can be studied with
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molecular dynamics. Key portions of a large molecule, like the active site of an
enzyme, can be studied with semiempirical or even ab initio methods. Moderately
large molecules like steroids can be studied with semiempirical calculations, or if one
is willing to invest the time, with ab initio calculations. Of course molecular mech-
anics can be used with these too, but note that this technique does not give informa-
tion on electron distribution, so chemical questions connected with nucleophilic or
electrophilic behaviour, say, cannot be addressed by molecular mechanics alone.

The energies of molecules can be calculated by MM, SE, ab initio or DFT. The
method chosen depends very much on the particular problem. Reactivity, which
depends largely on electron distribution, must usually be studied with a quantum-
mechanical method (SE, ab initio or DFT). Spectra are most reliably calculated by ab
initio or DFT methods, but useful results can be obtained with SE methods, and some
MM programs will calculate fairly good IR spectra (balls attached to springs vibrate!).

Docking a molecule into the active site of an enzyme to see how it fits is an
extremely important application of computational chemistry. One could manipulate
the substrate with a mouse or a kind of joystick and try to fit it (dock it) into the
active site, with a feedback device enabling you to feel the forces acting on the
molecule being docked, but automated docking is now standard. This work is
usually done with MM, because of the large molecules involved, although selected
portions of the biomolecules can be studied by one of the quantum mechanical
methods. The results of such docking experiments serve as a guide to designing
better drugs, molecules that will interact better with the desired enzymes but be
ignored by other enzymes.

Computational chemistry is valuable in studying the properties of materials, i.e.
in materials science. Semiconductors, superconductors, plastics, ceramics — all
these have been investigated with the aid of computational chemistry. Such studies
tend to involve a knowledge of solid-state physics and to be somewhat specialized.

Computational chemistry is fairly cheap, it is fast compared to experiment, and it
is environmentally safe (although the profusion of computers in the last decade has
raised concern about the consumption of energy [2] and the disposal of obsolescent
machines [3]). It does not replace experiment, which remains the final arbiter of
truth about Nature. Furthermore, to make something — new drugs, new materials —
one has to go into the lab. However, computation has become so reliable in some
respects that, more and more, scientists in general are employing it before embar-
king on an experimental project, and the day may come when to obtain a grant for
some kinds of experimental work you will have to show to what extent you have
computationally explored the feasibility of the proposal.

1.4 The Philosophy of Computational Chemistry

Computational chemistry is the culmination (to date) of the view that chemistry is
best understood as the manifestation of the behavior of atoms and molecules, and
that these are real entities rather than merely convenient intellectual models [4]. It is
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a detailed physical and mathematical affirmation of a trend that hitherto found its
boldest expression in the structural formulas of organic chemistry [5], and it is the
unequivocal negation of the till recently trendy assertion [6] that science is a kind of
game played with “paradigms” [7].

In computational chemistry we take the view that we are simulating the beha-
viour of real physical entities, albeit with the aid of intellectual models; and that as
our models improve they reflect more accurately the behavior of atoms and
molecules in the real world.

1.5 Summary

Computational chemistry allows one to calculate molecular geometries, reactiv-
ities, spectra, and other properties. It employs:

Molecular mechanics — based on a ball-and-springs model of molecules

Ab initio methods — based on approximate solutions of the Schrodinger equation
without appeal to fitting to experiment

Semiempirical methods — based on approximate solutions of the Schrodinger
equation with appeal to fitting to experiment (i.e. using parameterization)

Density functional theory (DFT) methods — based on approximate solutions of the
Schrodinger equation, bypassing the wavefunction that is a central feature of ab
initio and semiempirical methods

Molecular dynamics methods study molecules in motion.

Ab initio and the faster DFT enable novel molecules of theoretical interest to be
studied, provided they are not too big. Semiempirical methods, which are much
faster than ab initio or even DFT, can be applied to fairly large molecules (e.g.
cholesterol, C,7H460), while molecular mechanics will calculate geometries and
energies of very large molecules such as proteins and nucleic acids; however,
molecular mechanics does not give information on electronic properties. Computa-
tional chemistry is widely used in the pharmaceutical industry to explore the inter-
actions of potential drugs with biomolecules, for example by docking a candidate
drug into the active site of an enzyme. It is also used to investigate the properties of
solids (e.g. plastics) in materials science.
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. The physical chemist Wilhelm Ostwald (Nobel Prize 1909) was a disciple of the philosopher

Ernst Mach. Like Mach, Ostwald attacked the notion of the reality of atoms and molecules
(“Nobel Laureates in Chemistry, 1901-1992”, James LK (ed) American Chemical Society and
the Chemical Heritage Foundation, Washington, DC, 1993) and it was only the work of Jean
Perrin, published in 1913, that finally convinced him, perhaps the last eminent holdout against
the atomic theory, that these entities really existed (Perrin showed that the number of tiny
particles suspended in water dropped off with height exactly as predicted in 1905 by Einstein,
who had derived an equation assuming the existence of atoms). Ostwald’s philosophical
outlook stands in contrast to that of another outstanding physical chemist, Johannes van der
Waals, who staunchly defended the atomic/molecular theory and was outraged by the Machian
positivism of people like Ostwald. See Ya Kipnis A, Yavelov BF, Powlinson JS (1996) Van der
Waals and molecular science. Oxford University Press, New York. For the opposition to and
acceptance of atoms in physics see: Lindley D (2001) Boltzmann’s atom. the great debate that
launched a revolution in physics. Free Press, New York; and Cercignani C (1998) Ludwig
Boltzmann: the man who trusted atoms. Oxford University Press, New York. Of course, to
anyone who knew anything about organic chemistry, the existence of atoms was in little doubt
by 1910, since that science had by that time achieved significant success in the field of
synthesis, and a rational synthesis is predicated on assembling atoms in a definite way

. For accounts of the history of the development of structural formulas see Nye MJ (1993) From

chemical philosophy to theoretical chemistry. University of California Press, Berkeley, CA;
Russell CA (1996) Edward Frankland: chemistry, controversy and conspiracy in Victorian
England. Cambridge University Press, Cambridge

. (a) An assertion of the some adherents of the “postmodernist” school of social studies; see

Gross P, Levitt N (1994) The academic left and its quarrels with science. John Hopkins
University Press, Baltimore, MD; (b) For an account of the exposure of the intellectual vacuity
of some members of this school by physicist Alan Sokal’s hoax see Gardner M (1996) Skeptical
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. (a) A trendy word popularized by the late Thomas Kuhn in his book — Kuhn TS (1970) The

structure of scientific revolutions. University of Chicago Press, Chicago, IL. For a trenchant
comment on Kuhn, see ref. [6b]. (b) For a kinder perspective on Kuhn, see Weinberg S (2001)
Facing up. Harvard University Press, Cambridge, MA, chapter 17
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Easier Questions

—

. What does the term computational chemistry mean?

What kinds of questions can computational chemistry answer?

Name the main tools available to the computational chemist. Outline (a few
sentences for each) the characteristics of each.

Generally speaking, which is the fastest computational chemistry method
(tool), and which is the slowest?

Why is computational chemistry useful in industry?

Basically, what does the Schrodinger equation describe, from the chemist’s
viewpoint?

What is the limit to the kind of molecule for which we can get an exact solution
to the Schrodinger equation?
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8.
9.
10.

What is parameterization?
What advantages does computational chemistry have over “wet chemistry”?
Why can’t computational chemistry replace “wet chemistry”?

Harder Questions

Discuss the following, and justify your conclusions.

1.

2.

10.

Was there computational chemistry before electronic computers were
available?

Can “conventional” physical chemistry, such as the study of kinetics, thermo-
dynamics, spectroscopy and electrochemistry, be regarded as a kind of compu-
tational chemistry?

The properties of a molecule that are most frequently calculated are geometry,
energy (compared to that of other isomers), and spectra. Why is it more of a
challenge to calculate “simple” properties like melting point and density?
Hint: is there a difference between a molecule X and the substance X?

Is it surprising that the geometry and energy (compared to that of other
isomers) of a molecule can often be accurately calculated by a ball-and-springs
model (molecular mechanics)?

. What kinds of properties might you expect molecular mechanics to be unable

to calculate?

Should calculations from first principles (ab initio) necessarily be preferred to
those which make some use of experimental data (semiempirical)?

Both experiments and calculations can give wrong answers. Why then should
experiment have the last word?

. Consider the docking of a potential drug molecule X into the active site of an

enzyme: a factor influencing how well X will “hold” is clearly the shape of X;
can you think of another factor?

Hint: molecules consist of nuclei and electrons.

In recent years the technique of combinatorial chemistry has been used to
quickly synthesize a variety of related compounds, which are then tested for
pharmacological activity (S. Borman, Chemical and Engineering News: 2001,
27 August, p. 49; 2000, 15 May, p. 53; 1999, 8 March, p. 33). What are the
advantages and disadvantages of this method of finding drug candidates,
compared with the “rational design” method of studying, with the aid of
computational chemistry, how a molecule interacts with an enzyme?

Think up some unusual molecule which might be investigated computation-
ally. What is it that makes your molecule unusual?






Chapter 2
The Concept of the Potential Energy Surface

Everything should be made as simple as possible, but not simpler.
Albert Einstein

Abstract The potential energy surface (PES) is a central concept in computational
chemistry. A PES is the relationship — mathematical or graphical — between
the energy of a molecule (or a collection of molecules) and its geometry. The
Born—Oppenheimer approximation says that in a molecule the nuclei are essentially
stationary compared to the electrons. This is one of the cornerstones of computa-
tional chemistry because it makes the concept of molecular shape (geometry)
meaningful, makes possible the concept of a PES, and simplifies the application
of the Schrodinger equation to molecules by allowing us to focus on the electronic
energy and add in the nuclear repulsion energy later; this third point, very important
in practical molecular computations, is elaborated on in Chapter 5. Geometry
optimization and transition state optimization are explained.

2.1 Perspective

We begin a more detailed look at computational chemistry with the potential energy
surface (PES) because this is central to the subject. Many important concepts that
might appear to be mathematically challenging can be grasped intuitively with the
insight provided by the idea of the PES [1].

Consider a diatomic molecule AB. In some ways a molecule behaves like balls
(atoms) held together by springs (chemical bonds); in fact, this simple picture is the
basis of the important method molecular mechanics, discussed in Chapter 3. If we
take a macroscopic balls-and-spring model of our diatomic molecule in its normal
geometry (the equilibrium geometry), grasp the “atoms” and distort the model by
stretching or compressing the “bonds”, we increase the potential energy of the
molecular model (Fig. 2.1). The stretched or compressed spring possesses energy,
by definition, since we moved a force through a distance to distort it. Since the

E.G. Lewars, Computational Chemistry, 9
DOI 10.1007/978-90-481-3862-3_2, © Springer Science+Business Media B.V. 2011
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model is motionless while we hold it at the new geometry, this energy is not kinetic
and so is by default potential (“depending on position”). The graph of potential
energy against bond length is an example of a potential energy surface. A line
is a one-dimensional “surface”; we will soon see an example of a more familiar

two-dimensional surface rather than the line of Fig. 2.1.

Real molecules behave similarly to, but differ from our macroscopic model in

two relevant ways:

1. They vibrate incessantly (as we would expect from Heisenberg’s uncertainty

principle: a stationary molecule would have an exactly defined momentum and
position) about the equilibrium bond length, so that they always possess kinetic
energy (7T) and/or potential energy (V): as the bond length passes through the
equilibrium length, V = 0, while at the limit of the vibrational amplitude, T = 0;
at all other positions both 7" and V are nonzero. The fact that a molecule is never
actually stationary with zero kinetic energy (it always has zero point energy;
Section 2.5) is usually shown on potential energy/bond length diagrams by draw-
ing a series of lines above the bottom of the curve (Fig. 2.2) to indicate the
possible amounts of vibrational energy the molecule can have (the vibrational
levels it can occupy). A molecule never sits at the bottom of the curve, but rather
occupies one of the vibrational levels, and in a collection of molecules the levels
are populated according to their spacing and the temperature [2]. We will
usually ignore the vibrational levels and consider molecules to rest on the actual
potential energy curves or (see below) surfaces.

. Near the equilibrium bond length ¢g. the potential energy/bond length curve
for a macroscopic balls-and-spring model or a real molecule is described
fairly well by a quadratic equation, that of the simple harmonic oscillator
(E= (1/2) K (q — g.)*, where k is the force constant of the spring). However,
the potential energy deviates from the quadratic (¢%) curve as we move away
from ¢q. (Fig. 2.2). The deviations from molecular reality represented by this
anharmonicity are not important to our discussion.

energy

Fig. 2.1 The potential
energy surface for a diatomic
molecule. The potential
energy increases if the bond
length g is stretched or
compressed away from its
equilibrium value ¢g.. The
potential energy at g, (zero
distortion of the bond length)
has been chosen here as the
zero of energy

%

bond length, g
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Fig. 2.2 Actual molecules do not sit still at the bottom of the potential energy curve, but instead
occupy vibrational levels. Also, only near ¢., the equilibrium bond length, does the quadratic curve
approximate the true potential energy curve

Figure 2.1 represents a one-dimensional PES in the two-dimensional graph of
E vs. g. A diatomic molecule AB has only one geometric parameter for us to vary,
the bond length gag. Suppose we have a molecule with more than one geometric
parameter, for example water: the geometry is defined by two bond lengths and a
bond angle. If we reasonably content ourselves with allowing the two bond lengths
to be the same, i.e. if we limit ourselves to C,, symmetry (two planes of symmetry
and a two-fold symmetry axis; see Section 2.6) then the PES for this triatomic
molecule is a graph of E versus two geometric parameters, ¢; = the O—H bond
length, and g, = the H-O-H bond angle (Fig. 2.3). Figure 2.3 represents a two-
dimensional PES (a normal surface is a 2-D object) in the three-dimensional graph;
we could make an actual 3-D model of this drawing of a 3-D graph of E versus
¢y and ¢,

We can go beyond water and consider a triatomic molecule of lower symmetry,
such as HOF, hypofluorous acid. This has three geometric parameters, the H-O and
O-F lengths and the H-O-F angle. To construct a Cartesian PES graph for HOF
analogous to that for H,O would require us to plot E vs. ¢; = H-0, g, = O-F, and
g3 = angle H-O-F. We would need four mutually perpendicular axes (for E, ¢4, ¢,
¢3, Fig. 2.4), and since such a four-dimensional graph cannot be constructed in our
three-dimensional space we cannot accurately draw it. The HOF PES is a 3-D
“surface” of more than two dimensions in 4-D space: it is a hypersurface, and
potential energy surfaces are sometimes called potential energy hypersurfaces.
Despite the problem of drawing a hypersurface, we can define the equation E = f
(g1, 92, q3) as the potential energy surface for HOF, where f is the function that
describes how E varies with the ¢’s, and treat the hypersurface mathematically. For
example, in the AB diatomic molecule PES (a line) of Fig. 2.1 the minimum
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Fig. 2.3 The H,O potential energy surface. The point P,,;, corresponds to the minimum-energy
geometry for the three atoms, i.e. to the equilibrium geometry of the water molecule

Fig. 2.4 To plot energy
against three geometric
parameters in a Cartesian
coordinate system we would
need four mutually
perpendicular axes. Such a
coordinate system cannot be
actually constructed in our
three-dimensional space.
However, we can work with
such coordinate systems, and
the potential energy surfaces
in them, mathematically

energy

a1

g3

92

potential energy geometry is the point at which dE/dg = 0. On the H,O PES
(Fig. 2.3) the minimum energy geometry is defined by the point P,,,, corresponding
to the equilibrium values of ¢; and g,; at this point dE/dq, = dE/dg, = 0. Although
hypersurfaces cannot be faithfully rendered pictorially, it is very useful to a
computational chemist to develop an intuitive understanding of them. This can be
gained with the aid of diagrams like Figs. 2.1 and 2.3, where we content ourselves
with a line or a two-dimensional surface, in effect using a slice of a multidimen-
sional diagram. This can be understood by analogy: Fig. 2.5 shows how 2-D slices
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O\
energy A H- H

slice parallel to bond length axis

slice parallel to

angle axis
> 7%
> = 2D surface

g = O—H bond length

energy
energy ¥/
1D "surface’ 1D "surface"
bond angle bond length

Fig. 2.5 Slices through a 2D potential energy surface give 1D surfaces. A slice that is parallel to
neither axis would give a plot of geometry versus a composite of bond angle and bond length, a
kind of average geometry

can be made of the 3-D diagram for water. The slice could be made holding one or
the other of the two geometric parameters constant, or it could involve both of them,
giving a diagram in which the geometry axis is a composite of more than one
geometric parameter. Analogously, we can take a 3-D slice of the hypersurface for
HOF (Fig. 2.6) or even a more complex molecule and use an E versus ¢, ¢»
diagram to represent the PES; we could even use a simple 2D diagram, with ¢
representing one, two or all of the geometric parameters. We shall see that these 2D
and particularly 3D graphs preserve qualitative and even quantitative features of the
mathematically rigorous but unvisualizable £ = f(q1, ¢, ... ¢,) n-dimensional
hypersurface.

2.2 Stationary Points

Potential energy surfaces are important because they aid us in visualizing and under-
standing the relationship between potential energy and molecular geometry, and in
understanding how computational chemistry programs locate and characterize structures
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energy A

g, = O—F bond length

g1 = O—H bond length

Fig. 2.6 A potential energy surface (PES) for HOF. Here the HOF angle is not shown. This
picture could represent one of two possibilities: the angle might be the same (some constant,
reasonable value) for every calculated point on the surface; this would be an unrelaxed or rigid
PES. Alternatively, for each calculated point the geometry might be that for the best angle
corresponding to the other two parameters, i.e. the geometry for each calculated point might be
fully optimized (Section 2.4); this would be a relaxed PES

of interest. Among the main tasks of computational chemistry are to determine the
structure and energy of molecules and of the transition states involved in chemical
reactions: our “structures of interest” are molecules and the transition states linking
them. Consider the reaction

o 6\0 AN /N
R o — ¥ d—o
ozone transition state isoozone

reaction (2.1)

A priori, it seems reasonable that ozone might have an isomer (call it isoozone)
and that the two could interconvert by a transition state as shown in Reaction (2.1).
We can depict this process on a PES. The potential energy F must be plotted against
only two geometric parameters, the bond length (we may reasonably assume that
the two O—O bonds of ozone are equivalent, and that these bond lengths remain
equal throughout the reaction) and the O—O-O bond angle. Figure 2.7 shows the
PES for Reaction (2.1), as calculated by the AM1 semiempirical method (Chapter
6; the AM1 method is unsuitable for quantitative treatment of this problem, but the
potential energy surface shown makes the point), and shows how a 2D slice from
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intrinsic reaction coordinate (IRC)

Fig. 2.7 The ozone/isoozone potential energy surface (calculated by the AM1 method; Chapter
6), a 2D surface in a 3D diagram. The dashed line on the surface is the reaction coordinate
(intrinsic reaction coordinate, IRC). A slice through the reaction coordinate gives a 1D “surface” in
a 2D diagram. The diagram is not meant to be quantitatively accurate

this 3D diagram gives the energy/reaction coordinate type of diagram commonly
used by chemists. The slice goes along the lowest-energy path connecting ozone,
isoozone and the transition state, that is, along the reaction coordinate, and the
horizontal axis (the reaction coordinate) of the 2D diagram is a composite of O—O
bond length and O-O-O angle. In most discussions this horizontal axis is left
quantitatively undefined; qualitatively, the reaction coordinate represents the
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progress of the reaction. The three species of interest, ozone, isoozone, and the
transition state linking these two, are called stationary points. A stationary point on
a PES is a point at which the surface is flat, i.e. parallel to the horizontal line
corresponding to the one geometric parameter (or to the plane corresponding to two
geometric parameters, or to the hyperplane corresponding to more than two geo-
metric parameters). A marble placed on a stationary point will remain balanced, i.e.
stationary (in principle; for a transition state the balancing would have to be
exquisite indeed). At any other point on a potential surface the marble will roll
toward a region of lower potential energy.

Mathematically, a stationary point is one at which the first derivative of the
potential energy with respect to each geometric parameter is zero':

9E _9E _  _, (2.1)
9q: Oq,

Partial derivatives, OE/0Oq, are written here rather than dE/dg, to emphasize that
each derivative is with respect to just one of the variables ¢ of which E is a function.
Stationary points that correspond to actual molecules with a finite lifetime (in
contrast to transition states, which exist only for an instant), like ozone or isoozone,
are minima, or energy minima: each occupies the lowest-energy point in its region
of the PES, and any small change in the geometry increases the energy, as indicated
in Fig. 2.7. Ozone is a global minimum, since it is the lowest-energy minimum on
the whole PES, while isoozone is a relative minimum, a minimum compared only to
nearby points on the surface. The lowest-energy pathway linking the two minima,
the reaction coordinate or intrinsic reaction coordinate (IRC; dashed line in
Fig. 2.7) is the path that would be followed by a molecule in going from one
minimum to another should it acquire just enough energy to overcome the activa-
tion barrier, pass through the transition state, and reach the other minimum. Not all
reacting molecules follow the IRC exactly: a molecule with sufficient energy can
stray outside the IRC to some extent [3].

Inspection of Fig. 2.7 shows that the transition state linking the two minima
represents a maximum along the direction of the IRC, but along all other directions
it is a minimum. This is a characteristic of a saddle-shaped surface, and the
transition state is called a saddle point (Fig. 2.8). The saddle point lies at the
“center” of the saddle-shaped region and is, like a minimum, a stationary point,
since the PES at that point is parallel to the plane defined by the geometry parameter
axes: we can see that a marble placed (precisely) there will balance. Mathemati-
cally, minima and saddle points differ in that although both are stationary points
(they have zero first derivatives; Eq. 2.1), a minimum is a minimum in all direc-
tions, but a saddle point is a maximum along the reaction coordinate and a
minimum in all other directions (examine Fig. 2.8). Recalling that minima and
maxima can be distinguished by their second derivatives, we can write:

"Equations marked with an asterisk are those which should be memorized.
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energy

transition state

transition state
region

reaction coordinate

minimum

Fig. 2.8 A transition state or saddle point and a minimum. At both the transition state and the
minimum 0E/0g = 0 for all geometric coordinates ¢ (along all directions). At the transition state
OE?/ 5q2 < 0 for g = the reaction coordinate and > O for all other ¢ (along all other directions). Ata
minimum 0E?*/dq” > 0 for all ¢ (along all directions)

For a minimum

O’E
8_112 >0 (*2.2)
for all g.
For a transition state
O’E
8_qz >0 (*¥2.3)

for all ¢, except along the reaction coordinate, and

O’E «
9 <0 (*2.4)
along the reaction coordinate.

The distinction is sometimes made between a transition state and a transition
structure [4]. Strictly speaking, a transition state is a thermodynamic concept, the
species an ensemble of which are in a kind of equilibrium with the reactants in
Eyring’s” transition-state theory [5]. Since equilibrium constants are determined by
free energy differences, the transition structure, within the strict use of the term, is a
free energy maximum along the reaction coordinate (in so far as a single species can

*Henry Eyring, American chemist. Born Colonia Juarirez, Mexico, 1901. Ph.D. University of
California, Berkeley, 1927. Professor Princeton, University of Utah. Known for his work on the
theory of reaction rates and on potential energy surfaces. Died Salt Lake City, Utah, 1981.
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be considered representative of the ensemble). This species is also often (but not
always [5]) also called an activated complex. A transition structure, in strict usage,
is the saddle point (Fig. 2.8) on a theoretically calculated (e.g. Fig. 2.7) PES.
Normally such a surface is drawn through a set of points each of which represents
the enthalpy of a molecular species at a certain geometry; recall that free energy
differs from enthalpy by temperature times entropy. The transition structure is thus
a saddle point on an enthalpy surface. However, the energy of each of the calculated
points does not normally include the vibrational energy, and even at 0 K a molecule
has such energy (zero point energy: Fig. 2.2, and Section 2.5). The usual calculated
PES is thus a hypothetical, physically unrealistic surface in that it neglects vibra-
tional energy, but it should qualitatively, and even semiquantitatively, resemble the
vibrationally-corrected one since in considering relative enthalpies ZPEs at least
roughly cancel. In accurate work ZPEs are calculated for stationary points and
added to the “frozen-nuclei” energy of the species at the bottom of the reaction
coordinate curve in an attempt to give improved relative energies which represent
enthalpy differences at 0 K (and thus, at this temperature where entropy is zero, free
energy differences also; Fig. 2.19). It is also possible to calculate enthalpy and
entropy differences, and thus free energy differences, at, say, room temperature
(Section 5.5.2). Many chemists do not routinely distinguish between the two terms,
and in this book the commoner term, transition state, is used. Unless indicated
otherwise, it will mean a calculated geometry, the saddle point on a hypothetical
vibrational-energy-free PES.

The geometric parameter corresponding to the reaction coordinate is usually a
composite of several parameters (bond lengths, angles and dihedrals), although for
some reactions one two may predominate. In Fig. 2.7, the reaction coordinate is a
composite of the O—O bond length and the O—O-O bond angle.

A saddle point, the point on a PES where the second derivative of energy with
respect to one and only geometric coordinate (possibly a composite coordinate) is
negative, corresponds to a transition state. Some PES’s have points where the
second derivative of energy with respect to more than one coordinate is negative;
these are higher-order saddle points or hilltops: for example, a second-order saddle
point is a point on the PES which is a maximum along rwo paths connecting
stationary points. The propane PES, Fig. 2.9, provides examples of a minimum, a
transition state and a hilltop — a second-order saddle point in this case. Figure 2.10
shows the three stationary points in more detail. The “doubly-eclipsed”” conforma-
tion (Fig. 2.10a) in which there is eclipsing as viewed along the C1-C2 and the
C3—-C2 bonds (the dihedral angles are 0° viewed along these bonds) is a second-
order saddle point because single bonds do not like to eclipse single bonds and
rotation about the C1-C2 and the C3—C2 bonds will remove this eclipsing: there are
two possible directions along the PES which lead, without a barrier, to lower-energy
regions, i.e. changing the H-C1/C2—C3 dihedral and changing the H-C3/C2-C1
dihedral. Changing one of these leads to a “singly-eclipsed” conformation
(Fig. 2.10b) with only one offending eclipsing CH;—CH, arrangement, and this is
a first-order saddle point, since there is now only one direction along the PES which
leads to relief of the eclipsing interactions (rotation around C3—C2). This route
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C, minimum

Fig.2.9 The propane potential energy surface as the two HCCC dihedrals are varied (calculated
by the AM1 method, Chapter 6). Bond lengths and angles were not optimized as the dihedrals
were varied, so this is not a relaxed PES; however, changes in bond lengths and angles from
one propane conformation to another are small, and the relaxed PES should be very similar to
this one

gives a conformation C which has no eclipsing interactions and is therefore a
minimum. There are no lower-energy structures on the C3Hg PES and so C is the
global minimum.

The geometry of propane depends on more than just two dihedral angles, of
course; there are several bond lengths and bond angles and the potential energy will
vary with changes in all of them. Figure 2.9 was calculated by varying only the
dihedral angles associated with the C1-C2-C3-C4 bonds, keeping the other
geometrical parameters the same as they are in the all-staggered conformation. If
at every point on the dihedral/dihedral grid all the other parameters (bond lengths
and angles) had been optimized (adjusted to give the lowest possible energy, for
that particular calculational method; Section 2.4), the result would have been a
relaxed PES. In Fig. 2.9 this was not done, but because bond lengths and angles
change only slightly with changes in dihedral angles the PES would not be altered
much, while the time required for the calculation (for the potential energy surface
scan) would have been greater. Figure 2.9 is a nonrelaxed or rigid PES, albeit not
very different, in this case, from a relaxed one.

Chemistry is essentially the study of the stationary points on potential energy
surfaces: in studying more or less stable molecules we focus on minima, and
in investigating chemical reactions we study the passage of a molecule from a



20

sawhorse drawings

hiltop

/

% ’(:2 s
TN
C1 C3

\ /

total of 6 eclipsing interactions

b

transition state

.y

AN /02\ i,

C1 c3

/v /

total of 3 eclipsing interactions

minimum

/

2
\c__1/ . 3/

no eclipsing interactions

2 The Concept of the Potential Energy Surface

Newman projections

C1

c2
CHjy

C3

3 eclipsing interactions
(CH/CC, CH/CH, CH/CH)

C1

c2
CHj3

\

C3

no eclipsing interactions

C1

c2
CHs3

\

C3
no eclipsing interactions

C3

CHy

\

C1

3 eclipsing interactions
(CH/CC, CH/CH, CH/CH)

C3

CHj

\

C1

3 eclipsing interactions
(CH/CC, CH/CH, CH/CH)

C3

CHjs

C1

no eclipsing interactions

Fig. 2.10 The stationary points on the propane potential energy surface. Hydrogens at the end of

CH bonds are omitted for clarity

minimum through a transition state to another minimum. There are four known
forces in nature: the gravitational force, the strong and the weak nuclear forces, and
the electromagnetic force. Celestial mechanics studies the motion of stars and
planets under the influence of the gravitational force and nuclear physics studies
the behaviour of subatomic particles subject to the nuclear forces. Chemistry is
concerned with aggregates of nuclei and electrons (with molecules) held together
by the electromagnetic force, and with the shuffling of nuclei, followed by their



2.3 The Born—Oppenheimer Approximation 21

obedient retinue of electrons, around a potential energy surface under the influence
of this force (with chemical reactions).

The concept of the chemical potential energy surface apparently originated with
R. Marcelin [6]: in a dissertation-long paper (111 pages) he laid the groundwork for
transition-state theory 20 years before the much better-known work of Eyring [5,7].
The importance of Marcelin’s work is acknowledged by Rudolph Marcus in his
Nobel Prize (1992) speech, where he refers to .. .Marcelin’s classic 1915 theory
which came within one small step of the transition state theory of 1935.” The paper
was published the year after the death of the author, who seems to have died in
World War I, as indicated by the footnote “Tué a I’ennemi en sept 1914”. The first
potential energy surface was calculated in 1931 by Eyring and Polanyi,” using a
mixture of experiment and theory [8].

The potential energy surface for a chemical reaction has just been presented as a
saddle-shaped region holding a transition state which connects wells containing
reactant(s) and products(s) (which species we call the reactant and which the
product is inconsequential here). This picture is immensely useful, and may well
apply to the great majority of reactions. However, for some reactions it is deficient.
Carpenter has shown that in some cases a reactive intermediate does not tarry in a
PES well and then proceed to react. Rather it appears to scoot over a plateau-shaped
region of the PES, retaining a memory (“dynamical information”) of the atomic
motions it acquired when it was formed. When this happens there are two (say)
intermediates with the same crass geometry, but different atomic motions, leading
to different products. The details are subtle, and the interested reader is commended
to the relevant literature [9].

2.3 The Born—Oppenheimer Approximation

A potential energy surface is a plot of the energy of a collection of nuclei and
electrons against the geometric coordinates of the nuclei — essentially a plot of
molecular energy versus molecular geometry (or it may be regarded as the mathe-
matical equation that gives the energy as a function of the nuclear coordinates). The
nature (minimum, saddle point or neither) of each point was discussed in terms of
the response of the energy (first and second derivatives) to changes in nuclear
coordinates. But if a molecule is a collection of nuclei and electrons why plot
energy versus nuclear coordinates — why not against electron coordinates? In other
words, why are nuclear coordinates the parameters that define molecular geometry?
The answer to this question lies in the Born—-Oppenheimer approximation.

3Michael Polanyi, Hungarian-British chemist, economist, and philosopher. Born Budapest 1891.
Doctor of medicine 1913, Ph.D. University of Budapest, 1917. Researcher Kaiser-Wilhelm
Institute, Berlin, 1920-1933. Professor of chemistry, Manchester, 1933—1948; of social studies,
Manchester, 1948-1958. Professor Oxford, 1958-1976. Best known for book ‘Personal
Knowledge”, 1958. Died Northampton, England, 1976.
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Born* and Oppenheimer” showed in 1927 [10] that to a very good approximation
the nuclei in a molecule are stationary with respect to the electrons. This is a
qualitative expression of the principle; mathematically, the approximation states
that the Schrodinger equation (Chapter 4) for a molecule may be separated into an
electronic and a nuclear equation. One consequence of this is that all (!) we have to
do to calculate the energy of a molecule is to solve the electronic Schrodinger
equation and then add the electronic energy to the internuclear repulsion (this latter
quantity is trivial to calculate) to get the total internal energy (see Section 4.4.1). A
deeper consequence of the Born—Oppenheimer approximation is that a molecule
has a shape.

The nuclei see the electrons as a smeared-out cloud of negative charge which
binds them in fixed relative positions (because of the mutual attraction between
electrons and nuclei in the internuclear region) and which defines the (somewhat
fuzzy) surface [11] of the molecule (see Fig. 2.11). Because of the rapid motion of
the electrons compared to the nuclei the “permanent” geometric parameters of the
molecule are the nuclear coordinates. The energy (and the other properties) of a
molecule is a function of the electron coordinates (E = Y¥(x, y, z of each electron);
Section 5.2), but depends only parametrically on the nuclear coordinates, i.e. for
each geometry 1, 2, ... there is a particular energy: E; = V¥ (x, y,z...), E, = ¥5 (x,
v, z...); cf. X", which is a function of x but depends only parametrically on the
particular n.

/ o a, .

Fig. 2.11 The nuclei in a molecule see a time-averaged electron cloud. The nuclei vibrate about
equilibrium points which define the molecular geometry; this geometry can be expressed simply as
the nuclear Cartesian coordinates, or alternatively as bond lengths and angles r and a here) and
dihedrals, i.e. as internal coordinates. As far as size goes, the experimentally determined van der
Waals surface encloses about 98% of the electron density of a molecule

“Max Born, German-British physicist. Born in Breslau (now Wroclaw, Poland), 1882, died in
Gottingen, 1970. Professor Berlin, Cambridge, Edinburgh. Nobel Prize, 1954. One of the founders
of quantum mechanics, originator of the probability interpretation of the (square of the) wave-
function (Chapter 4).

5. Robert Oppenheimer, American physicist. Born in New York, 1904, died in Princeton 1967.
Professor California Institute of Technology. Fermi award for nuclear research, 1963. Important
contributions to nuclear physics. Director of the Manhattan Project 1943—-1945. Victimized as a
security risk by senator Joseph McCarthy’s Un-American Activities Committee in 1954. Central
figure of the eponymous PBS TV series (Oppenheimer: Sam Waterston).
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Fig. 2.12 A molecule has a definite shape because unlike the electrons, the nuclei are (relatively)
stationary (since they are much more massive). If the masses of the nuclei and the electrons could
be made equal, the distinction in lethargy would be lost, and the molecular geometry would
dissolve

Actually, the nuclei are not stationary, but execute vibrations of small amplitude
about equilibrium positions; it is these equilibrium positions that we mean by the
“fixed” nuclear positions. It is only because it is meaningful to speak of (almost)
fixed nuclear coordinates that the concepts of molecular geometry or shape and of
the PES are valid [12]. The nuclei are much more sluggish than the electrons
because they are much more massive (a hydrogen nucleus is about 2,000 more
massive than an electron).

Consider the molecule H3", made up of three protons and two electrons. Ab
initio calculations assign it the geometry shown in Fig. 2.12. The equilibrium
positions of the nuclei (the protons) lie at the corners of an equilateral triangle
and H3 ™" has a definite shape. But suppose the protons were replaced by positrons,
which have the same mass as electrons. The distinction between nuclei and elec-
trons, which in molecules rests on mass and not on some kind of charge chauvinism,
would vanish. We would have a quivering cloud of flitting particles to which a
shape could not be assigned on a macroscopic time scale.

A calculated PES, which we might call a Born—-Oppenheimer surface, is nor-
mally the set of points representing the geometries, and the corresponding energies,
of a collection of atomic nuclei; the electrons are taken into account in the calcula-
tions as needed to assign charge and multiplicity (multiplicity is connected with the
number of unpaired electrons). Each point corresponds to a set of stationary nuclei,
and in this sense the surface is somewhat unrealistic (see Section 2.5).

2.4 Geometry Optimization

The characterization (the “location” or “locating”) of a stationary point on a PES,
that is, demonstrating that the point in question exists and calculating its geometry
and energy, is a geometry optimization. The stationary point of interest might be a
minimum, a transition state, or, occasionally, a higher-order saddle point. Locating
a minimum is often called an energy minimization or simply a minimization, and
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locating a transition state is often referred to specifically as a transition state
optimization. Geometry optimizations are done by starting with an input structure
that is believed to resemble (the closer the better) the desired stationary point and
submitting this plausible structure to a computer algorithm that systematically
changes the geometry until it has found a stationary point. The curvature of the
PES at the stationary point, i.e. the second derivatives of energy with respect to the
geometric parameters (Section 2.2) may then be determined (Section 2.5) to
characterize the structure as a minimum or as some kind of saddle point.

Let us consider a problem that arose in connection with an experimental study.
Propanone (acetone) was subjected to ionization followed by neutralization of the
radical cation, and the products were frozen in an inert matrix and studied by IR
spectroscopy [13]. The spectrum of the mixture suggested the presence of the enol
isomer of propanone, 1-propen-2-ol (Reaction 2.2):

(@]

|
/ \

|

=
HaC CH, H,CZ  CH

Reaction 2

To confirm (or refute) this the IR spectrum of the enol might be calculated (see
Section 2.5 and the discussions of the calculation of IR spectra in subsequent
chapters). But which conformer should one choose for the calculation? Rotation
about the C—O and C—C bonds creates six plausible stationary points (Fig. 2.13),

Fig. 2.13 The plausible
stationary points on the
propenol potential energy
surface. A PES scan

(Fig. 2.14) indicated that 1 is
the global minimum and 4 is a
relative minimum, while

2 and 3 are transition states
and 5 and 6 are hilltops. AM1
calculations gave relative
energies for 1,2, 3 and 4 of 0,
0.6, 14 and 6.5 kJ mol ',
respectively (5 and 6 were not
optimized). The arrows
represent one-step (rotation
about one bond) conversion
of one species into another
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Fig. 2.14 The 1-propen-2-ol potential energy surface (calculated by the AMI1 method) (see
Fig. 2.13)

and a PES scan (Fig. 2.14) indicated that there are indeed six such species.
Examination of this PES shows that the global minimum is structure 1 and that
there is a relative minimum corresponding to structure 4. Geometry optimization
starting from an input structure resembling 1 gave a minimum corresponding to 1,
while optimization starting from a structure resembling 4 gave another, higher-
energy minimum, resembling 4. Transition-state optimizations starting from appro-
priate structures yielded the transition states 2 and 3. These stationary points were
all characterized as minima or transition states by second-derivative calculations
(Section 2.5) (the species 5 and 6 were not located). The calculated IR spectrum of 1
(using the ab initio HF/6-31G* method — Chapter 5) was in excellent agreement
with the observed spectrum of the putative propenol.

This illustrates a general principle: the optimized structure one obtains is that
closest in geometry on the PES to the input structure (Fig. 2.15). To be sure we have
found a global minimum we must (except for very simple or very rigid molecules)
search a potential energy surface (there are algorithms that will do this and locate
the various minima). Of course we may not be interested in the global minimum; for
example, if we wish to study the cyclic isomer of ozone (Section 2.2) we will use as
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energy

several steps

geometry

Fig. 2.15 Geometry optimization to a minimum gives the minimum closest to the input structure.
The input structure A’ is moved toward the minimum A, and B’ toward B. To locate a transition
state a special algorithm is usually used: this moves the initial structure A’ toward the transition
state TS. Optimization to each of the stationary points would probably actually require several
steps (see Fig. 2.16)

input an equilateral triangle structure, probably with bond lengths about those of an
0-0 single bond.

In the propenol example, the PES scan suggested that to obtain the global
minimum we should start with an input structure resembling 1, but the exact values
of the various bond lengths and angles were unknown (the exact values of even the
dihedrals was not known with certainty, although general chemical knowledge
made H-O-C-C = H-C-C=C = 0° seem plausible). The actual creation of input
structures is usually done nowadays with an interactive mouse-driven program,
in much the same spirit that one constructs plastic models or draws structures
on paper. An older alternative is to specify the geometry by defining the various
bond lengths, angles and dihedrals, i.e. by using a so-called Z-matrix (internal
coordinates).

To move along the PES from the input structure to the nearest minimum is
obviously trivial on the one-dimensional PES of a diatomic molecule: one simply
changes the bond length till that corresponding to the lowest energy is found.
On any other surface, efficient geometry optimization requires a sophisticated
algorithm. One would like to know in which direction to move, and how far in
that direction (Fig. 2.16). It is not possible, in general, to go from the input structure
to the proximate minimum in just one step, but modern geometry optimization
algorithms commonly reach the minimum within about ten steps, given a reason-
able input geometry. The most widely-used algorithms for geometry optimization
[14] use the first and second derivatives of the energy with respect to the geometric
parameters. To get a feel for how this works, consider the simple case of a
one-dimensional PES, as for a diatomic molecule (Fig. 2.17). The input structure
is at the point P;(E;, ¢;) and the proximate minimum, corresponding to the
optimized structure being sought, is at the point P,(E,, ¢,). Before the optimization
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energy A

input structure

optimized structure

geometry

geometry

Fig. 2.16 An efficient optimization algorithm knows approximately in which direction to move
and how far to step, in an attempt to reach the optimized structure in relatively few (commonly

about five to ten) steps

E {

E-Ey= k(q-q0)°

- Input structure
Pi(Es, q)

Equilibrium (optimized) structure
Po(Eo, Qo)

bond length, g

e

Fig. 2.17 The potential energy of a diatomic molecule near the equilibrium geometry is approxi-
mately a quadratic function of the bond length. Given an input structure (i.e. given the bond length
qi), a simple algorithm would enable the bond length of the optimized structure to be found in one

step, if the function were strictly quadratic
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has been carried out the values of E, and ¢, are of course unknown. If we assume
that near a minimum the potential energy is a quadratic function of ¢, which is a
fairly good approximation, then

E—E;=k(qg—q) 2.5)

Attheinputpoint (dE/dq); = 2k(q; — qo) (2.6)

Atallpoints  d’E/dq* = 2k (= force constant) 2.7)

From Eqs. (2.6) and (2.7), (dE/dq); = (d®E/dq”) (g — qo) (2.8)
and g, = g — (dE/dq);/(d’E/dq?) (2.9)

Equation 2.9 shows that if we know (dE/dgq);, the slope or gradient of the PES
at the point of the initial structure, (dzE/dqz), the curvature of the PES (which for
a quadratic curve E(q) is independent of ¢) and ¢;, the initial geometry, we
can calculate ¢, the optimized geometry. The second derivative of potential energy
with respect to geometric displacement is the force constant for motion along
that geometric coordinate; as we will see later, this is an important concept in
connection with calculating vibrational spectra.

For multidimensional PES’s, i.e. for almost all real cases, far more sophisticated
algorithms are used, and several steps are needed since the curvature is not exactly
quadratic. The first step results in a new point on the PES that is (probably) closer to
the minimum than was the initial structure. This new point then serves as the initial
point for a second step toward the minimum, etc. Nevertheless, most modern
geometry optimization methods do depend on calculating the first and second
derivatives of the energy at the point on the PES corresponding to the input
structure. Since the PES is not strictly quadratic, the second derivatives vary from
point to point and are updated as the optimization proceeds.

In the illustration of an optimization algorithm using a diatomic molecule,
Eq. 2.9 referred to the calculation of first and second derivatives with respect to
bond length, which latter is an internal coordinate (inside the molecule). Optimi-
zations are actually commonly done using Cartesian coordinates x, y, z. Consider
the optimization of a triatomic molecule like HOF in a Cartesian coordinate
system. Each of the three atoms has an x, y and z coordinate, giving nine geometric
parameters, ¢1, g2, - - - , qo; the PES would be a nine-dimensional hypersurface on
a 10D graph. We need the first and second derivatives of E with respect to each of
the nine ¢’s, and these derivatives are manipulated as matrices. Matrices are
discussed in Section 4.3.3; here we need only know that a matrix is a rectangular
array of numbers that can be manipulated mathematically, and that they provide a
convenient way of handling sets of linear equations. The first-derivative matrix,
the gradient matrix, for the input structure can be written as a column matrix
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(OE/0q 1)1
(OE/0q,),
g = . (2.10)
(OE/0qy);
and the second-derivative matrix, the force constant matrix, is
OPE/0qiq1  O°E/0qiq;--- O°E/0q1q9
32E/3¢12111 82E/8q2q2 s 82E/8q2q9
H= ) . ) (2.11)
OE/0qoq; O’E[0qeqy --- O°E/Oqoqe

The force constant matrix is called the Hessian.® The Hessian is particularly
important, not only for geometry optimization, but also for the characterization of
stationary points as minima, transition states or hilltops, and for the calculation of
IR spectra (Section 2.5). In the Hessian 0°E/0q1q>» = 0*E/0qxqn, as is true for all
well-behaved functions, but this systematic notation is preferable: the first subscript
refers to the row and the second to the column. The geometry coordinate matrices
for the initial and optimized structures are

qi1
qdi2

q =1 . (2.12)
qi9

and

q = . (2.13)
409
The matrix equation for the general case can be shown to be:
q,=¢q—-H'g (2.14)

which is analogous to Eq. 2.9 for the optimization of a diatomic molecule, which
could be written

G0 = ¢i — (°E/dq*)”" (dE/dq);

6Ludwig Otto Hesse, 1811-1874, German mathematician.
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For n atoms we have 3n Cartesians; q,, (; and g; are 3n x 1 column matrices and
H is a 3n x 3n square matrix; multiplication by the inverse of H rather than division
by H is used because matrix division is not defined. Equation 2.14 shows that for an
efficient geometry optimization we need an initial structure (for q;), initial gradients
(for g;) and second derivatives (for H). With an initial “guess” for the geometry (for
example from a model-building program followed by molecular mechanics) as
input, gradients can be readily calculated analytically (from the derivatives of the
molecular orbitals and the derivatives of certain integrals). An approximate initial
Hessian is often calculated from molecular mechanics (Chapter 3). Since the PES is
not really exactly quadratic, the first step does not take us all the way to the
optimized geometry, corresponding to the matrix q,. Rather, we arrive at q, the
first calculated geometry; using this geometry a new gradient matrix and a new
Hessian are calculated (the gradients are calculated analytically and the second
derivatives are updated using the changes in the gradients — see below). Using q;
and the new gradient and Hessian matrices a new approximate geometry matrix q,
is calculated. The process is continued until the geometry and/or the gradients (or
with some programs possibly the energy) have ceased to change appreciably.

As the optimization proceeds the Hessian is updated by approximating each
second derivative as a ratio of finite increments:

OE _ A(OE/dq;)
0q:0q; Ag;

2.15)

i.e. as the change in the gradient divided by the change in geometry, on going from the
previous structure to the latest one. Analytic calculation of second derivatives is
relatively time-consuming and is not routinely done for each point along the optimi-
zation sequence, in contrast to analytic calculation of gradients. A fast lower-level
optimization, for a minimum or a transition state, usually provides a good Hessian and
geometry for input to a higher-level optimization [15]. Finding a transition state (i.e.
optimizing an input structure to a transition state structure) is a more challenging
computational problem than finding a minimum, as the characteristics of the PES at
the former are more complicated than at a minimum: at the transition state the surface
is a maximum in one direction and a minimum in all others, rather than simply a
minimum in all directions. Nevertheless, modifications of the minimum-search algo-
rithm enable transitions states to be located, albeit often with less ease than minima.

2.5 Stationary Points and Normal-Mode Vibrations — Zero
Point Energy

Once a stationary point has been found by geometry optimization, it is usually
desirable to check whether it is a minimum, a transition state, or a hilltop. This is
done by calculating the vibrational frequencies. Such a calculation involves finding
the normal-mode frequencies; these are the simplest vibrations of the molecule,
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which, in combination, can be considered to result in the actual, complex vibrations
that a real molecule undergoes. In a normal-mode vibration all the atoms move in
phase with the same frequency: they all reach their maximum and minimum
displacements and their equilibrium positions at the same moment. The other
vibrations of the molecule are combinations of these simple vibrations. Essentially,
a normal-modes calculation is a calculation of the infrared spectrum, although the
experimental spectrum is likely to contain extra bands resulting from interactions
among normal-mode vibrations.

A nonlinear molecule with n atoms has 3n — 6 normal modes: the motion of each
atom can be described by three vectors, along the x, y, and z axes of a Cartesian
coordinate system; after removing the three vectors describing the translational
motion of the molecule as a whole (the translation of its center of mass) and the
three vectors describing the rotation of the molecule (around the three principal
axes needed to describe rotation for a three-dimensional object of general geome-
try), we are left with 3n — 6 independent vibrational motions. Arranging these in
appropriate combinations gives 3n — 6 normal modes. A linear molecule has 3n — 5
normal modes, since we need subtract only three translational and two rotational
vectors, as rotation about the molecular axis does not produce a recognizable
change in the nuclear array. So water has 3n — 6 = 3(3) — 6 = 3 normal modes,
and HCN has 3n — 5 = 3(3) — 5 = 4 normal modes. For water (Fig. 2.18) mode 1 is
a bending mode (the H-O-H angle decreases and increases), mode 2 is a symmetric
stretching mode (both O—H bonds stretch and contract simultaneously) and mode 3
is an asymmetric stretching mode (as the O—H; bond stretches the O—H, bond
contracts, and vice versa). At any moment an actual molecule of water will be
undergoing a complicated stretching/bending motion, but this motion can be con-
sidered to be a combination of the three simple normal-mode motions.

Consider a diatomic molecule A—B; the normal-mode frequency (there is only
one for a diatomic, of course) is given by [16]:

~ 1 (k\'"?

where # = vibrational “frequency”, actually wavenumber, in cm™'; from deference
to convention we use cm~ ' although the cm is not an SI unit, and so the other units
will also be non-SI; » signifies the number of wavelengths that will fit into one cm.
The symbol » is the Greek letter nu, which resembles an angular vee; ¥ could be

o) o 0
N TR N
H H H H H H
1595cm™" 3652cm™ 3756cm™
bend symmetric stretch asymmetric stretch

Fig. 2.18 The normal-mode vibrations of water. The arrows indicate the directions in which the
atoms move; on reaching the maximum amplitude these directions are reversed
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read “nu tilde”; ¥, “nu bar”, has been used less frequently. ¢ = velocity of light, k =
force constant for the vibration, 4 = reduced mass of the molecule = (mamg)/(ma +
mg); ma and mg are the masses of A and B.

The force constant k of a vibrational mode is a measure of the “stiffness” of the
molecule toward that vibrational mode — the harder it is to stretch or bend the
molecule in the manner of that mode, the bigger is that force constant (for a
diatomic molecule k£ simply corresponds to the stiffness of the one bond). The
fact that the frequency of a vibrational mode is related to the force constant for the
mode suggests that it might be possible to calculate the normal-mode frequencies of
a molecule, that is, the directions and frequencies of the atomic motions, from its
force constant matrix (its Hessian). This is indeed possible: matrix diagonalization
of the Hessian gives the directional characteristics (which way the atoms are
moving), and the force constants themselves, for the vibrations. Matrix diagonali-
zation (Section 4.3.3) is a process in which a square matrix A is decomposed into
three square matrices, P, D, and P L A=PDP '.Disa diagonal matrix: as with k
in Eq. 2.17 all its off-diagonal elements are zero. P is a premultiplying matrix and
P! is the inverse of P. When matrix algebra is applied to physical problems, the
diagonal row elements of D are the magnitudes of some physical quantity, and each
column of P is a set of coordinates which give a direction associated with that
physical quantity. These ideas are made more concrete in the discussion accom-
panying Eq. 2.17, which shows the diagonalization of the Hessian matrix for a
triatomic molecule, e.g. H,O.

OPE[0qiq1 O°E/0q1q> -+ O*E[dq1qo

q_ | PEOwn FE[0qq: - PE[0qqs
OE[0qeq1  O*E/Dqoqr -+ O*E/dqoqo
qu g2 - qi9 kk 0 -~ O
Q1 g2 g 0 k --- 0 .

B (2.17)
gor g2 - G99 0 0 - ko
P k

Equation 2.17 is of the form A = PDP~'. The 9 x 9 Hessian for a triatomic
molecule (three Cartesian coordinates for each atom) is decomposed by diagona-
lization into a P matrix whose columns are “direction vectors” for the vibrations
whose force constants are given by the k matrix. Actually, columns 1, 2 and 3 of P
and the corresponding ky, k, and k3 of k refer to translational motion of the
molecule (motion of the whole molecule from one place to another in space);
these three “force constants” are nearly zero. Columns 4, 5 and 6 of P and the
corresponding k4, k5 and k¢ of k refer to rotational motion about the three principal
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axes of rotation, and are also nearly zero. Columns 7, 8 and 9 of P and the
corresponding k7, kg and ko of k are the direction vectors and force constants,
respectively, for the normal-mode vibrations: k;, kg and ko refer to vibrational
modes 1, 2 and 3, while the seventh, eighth, and nineth columns of P are composed
of the x, y and z components of vectors for motion of the three atoms in mode 1
(column 7), mode 2 (column 8), and mode 3 (column 9). “Mass-weighting” the
force constants, i.e. taking into account the effect of the masses of the atoms (cf.
Eq. 2.16 for the simple case of a diatomic molecule), gives the vibrational frequen-
cies. The P matrix is the eigenvector matrix and the k matrix is the eigenvalue
matrix from diagonalization of the Hessian H. “Eigen” is a German prefix meaning
“appropriate, suitable, actual” and is used in this context to denote mathematically
appropriate entities for the solution of a matrix equation. Thus the directions of the
normal-mode frequencies are the eigenvectors, and their magnitudes are the mass-
weighted eigenvalues, of the Hessian.

Vibrational frequencies are calculated to obtain IR spectra, to characterize
stationary points, and to obtain zero point energies (below). The calculation of
meaningful frequencies is valid only at a stationary point and only using the same
method that was used to optimize to that stationary point (for example an ab initio
method with a particular correlation level and basis set — see Chapter 5). This is
because (1) the use of second derivatives as force constants presupposes that the
PES is quadratically curved along each geometric coordinate ¢ (Fig. 2.2) but it is
only near a stationary point that this is true, and (2) use of a method other than that
used to obtain the stationary point presupposes that the PES’s of the two methods
are parallel (that they have the same curvature) at the stationary point. Of course,
“provisional” force constants at nonstationary points are used in the optimization
process, as the Hessian is updated from step to step. Calculated IR frequencies are
usually somewhat too high, but (at least for ab initio and density functional
calculations) can be brought into reasonable agreement with experiment by multi-
plying them by an empirically determined factor, commonly about 0.9 [17] (see the
discussion of frequencies in Chapters 5-7).

A minimum on the PES has all the normal-mode force constants (all the
eigenvalues of the Hessian) positive: for each vibrational mode there is a restoring
force, like that of a spring. As the atoms execute the motion, the force pulls and
slows them till they move in the opposite direction; each vibration is periodic, over
and over. The species corresponding to the minimum sits in a well and vibrates
forever (or until it acquires enough energy to react). For a transition state, however,
one of the vibrations, that along the reaction coordinate, is different: motion of the
atoms corresponding to this mode takes the transition state toward the product or
toward the reactant, without a restoring force. This one “vibration” is not a periodic
motion but rather takes the species through the transition state geometry on a one-
way journey. Now, the force constant is the first derivative of the gradient or slope
(the derivative of the first derivative); examination of Fig. 2.8 shows that along the
reaction coordinate the surface slopes downward, so the force constant for this
mode is negative. A transition state (a first-order saddle point) has one and only one
negative normal-mode force constant (one negative eigenvalue of the Hessian).



34 2 The Concept of the Potential Energy Surface

Since a frequency calculation involves taking the square root of a force constant
(Eq. 2.16), and the square root of a negative number is an imaginary number, a
transition state has one imaginary frequency, corresponding to the reaction coordi-
nate. In general an nth-order saddle point (an nth-order hilltop) has n negative
normal-mode force constants and so n imaginary frequencies, corresponding to
motion from one stationary point of some kind to another.

A stationary point could of course be characterized just from the number of
negative force constants, but the mass-weighting requires much less time than
calculating the force constants, and the frequencies themselves are often wanted
anyway, for example for comparison with experiment. In practice one usually
checks the nature of a stationary point by calculating the frequencies and seeing
how many imaginary frequencies are present; a minimum has none, a transition
state one, and a hilltop more than one. If one is seeking a particular transition state
the criteria to be satisfied are:

1. It should look right. The structure of a transition state should lie somewhere
between that of the reactants and the products; for example, the transition state
for the unimolecular isomerization of HCN to HNC shows an H bonded to both
C and N by an unusually long bond, and the CN bond length is in-between that of
HCN and HNC.

2. It must have one and only one imaginary frequency (some programs indicate
this as a negative frequency, e.g. —1,900 cm ™" instead of the correct 1,900i
(i =V (=1).

3. The imaginary frequency must correspond to the reaction coordinate. This is
usually clear from animation of the frequency (the motion, stretching, bending,
twisting, corresponding to a frequency may be visualized with a variety of
programs). For example, the transition state for the unimolecular isomerization
of HCN to HNC shows an imaginary frequency which when animated clearly
shows the H migrating between the C and the N. Should it not be clear from
animation which two species the transition state connects, one may resort to an
intrinsic reaction coordinate (IRC) calculation [18]. This procedure follows the
transition state downhill along the IRC (Section 2.2), generating a series of
structures along the path to the reactant or product. Usually it is clear where the
transition state is going without following it all the way to a stationary point.

4. The energy of the transition state must be higher than that of the two species it
connects.

Besides indicating the IR spectrum and providing a check on the nature of
stationary points, the calculation of vibrational frequencies also provides the
zero-point energy (ZPE; most programs will calculate this automatically as part
of a frequency job). The ZPE is the energy a molecule has even at absolute zero
(Fig. 2.2), as a consequence of the fact that even at this temperature it still vibrates
[2]. The ZPE of a species is usually not small compared to activation energies or
reaction energies, but ZPEs tend to cancel out when these energies are calculated
(by subtraction), since for a given reaction the ZPE of the reactant, transition state
and product tend to be roughly the same. However, for accurate work the ZPE
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Fig. 2.19 Correcting relative energies for zero-point energy (ZPE). These are ab initio HF/6-
31G* (Chapter 5) results for the HCN — HNC reaction. The corrections are most simply made by
adding the ZPE to the raw energy (in energy units called Hartrees or atomic units), to get the
corrected energies. Using corrected or uncorrected energies, relative energies are obtained by
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differences in Hartrees were multiplied by 2,626 to get kJ mol~". The ZPEs are also shown here in
kJ mol ™', just to emphasize that they are not small compared to reaction energies or activation
energies, but tend to cancel; for accurate work ZPE-corrected energies should be used

should be added to the “total” (electronic + nuclear repulsion) energies of species
and the ZPE-corrected energies should then be compared (Fig. 2.19). Like the
frequencies, the ZPE is usually corrected by multiplying it by an empirical factor;
this is sometimes the same as the frequency correction factor, but slightly different
factors have been recommended [17].

The Hessian that results from a geometry optimization was built up in steps from
one geometry to the next, approximating second derivatives from the changes in
gradients (Eq. 2.15). This Hessian is not accurate enough for the calculation of
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frequencies and ZPE’s. The calculation of an accurate Hessian for a stationary point
can be done analytically or numerically. Accurate numerical evaluation approx-
imates the second derivative as in Eq. 2.15, but instead of A(0V/0q) and Ag being
taken from optimization iteration steps, they are obtained by changing the position
of each atom of the optimized structure slightly (Ag = about 0.01 A) and calculat-
ing analytically the change in the gradient at each geometry; subtraction gives
A(0V/0q). This can be done for a change in one direction only for each atom
(method of forward differences) or more accurately by going in two directions
around the equilibrium position and averaging the gradient change (method of
central differences). Analytical calculation of ab initio frequencies is much faster
than numerical evaluation, but demands on computer hard drive space may make
numerical calculation the only recourse at high ab initio levels (Chapter 5).

2.6 Symmetry

Symmetry is important in theoretical chemistry (and even more so in theoretical
physics), but our interest in it here is bounded by modest considerations: we want to
see why symmetry is relevant to setting up a calculation and interpreting the results,
and to make sense of terms like C,,, Cq, etc., which are used in various places in this
book. Excellent expositions of symmetry are given by, for example, Atkins [19] and
Levine [20].

The symmetry of a molecule is most easily described by using one of the
standard designations like C,,, C,. These are called point groups (Schoenflies
point groups) because when symmetry operations (below) are carried out on a
molecule (on any object) with symmetry, at least one point is left unchanged. The
classification is according to the presence of symmetry elements and corresponding
symmetry operations. The main symmetry elements are mirror planes (symmetry
planes), symmetry axes, and an inversion center; other symmetry elements are the
entire object, and an improper rotation axis. The operation corresponding to a
mirror plane is reflection in that plane, the operation corresponding to a symmetry
axis is rotation about that axis, and the operation corresponding to an inversion
center is moving each point in the molecule along a straight line to that center then
moving it further, along the line, an equal distance beyond the center. The “entire
object” element corresponds to doing nothing (a null operation); in common
parlance an object with only this symmetry element would be said to have no
symmetry. The improper rotation axis corresponds to rotation followed by a
reflection through a plane perpendicular to that rotation axis. We are concerned
mainly with the first three symmetry elements. The examples below are shown in
Fig. 2.20.

C; A molecule with no symmetry elements at all is said to belong to the group C,
(to have “C; symmetry”). The only symmetry operation such a molecule permits is
the null operation — this is the only operation that leaves it unmoved. An example is
CHBIrCIF, with a so-called asymmetric atom; in fact, most molecules have no
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symmetry — just think of steroids, alkaloids, proteins, most drugs. Note that a
molecule does not need an “asymmetric atom” to have C; symmetry: HOOF in
the conformation shown is C; (has no symmetry).

C; A molecule with only a mirror plane belongs to the group C,. Example: HOF.
Reflection in this plane leaves the molecule apparently unmoved.

C, A molecule with only a C, axis belongs to the group C,. Example: H,O, in
the conformation shown. Rotation about this axis through 360° gives the same
orientation twice. Similarly Cs5, C4, etc. are possible.

C,y A molecule with two mirror planes whose intersection forms a C, axis
belongs to the C,, group. Example: H,O. Similarly NHj is Cs,, pyramidane is Cyy,
and HCN is C,.

C; A molecule with only an inversion center (center of symmetry) belongs to the
group C;. Example: meso-tartaric acid in the conformation shown. Moving any
point in the molecule along a straight line to this center, then continuing on an equal
distance leaves the molecule apparently unchanged.

C,n A molecule with a C, axis and a mirror plane horizontal to this axis is Cy}, (a
Co;, object will also perforce have an inversion center). Example: (E)-1,2-difluor-
oethene. Similarly B(OH)3 is Cs;,.

D, A molecule with a C, axis and two more C, axes, perpendicular to that axis,
has D, symmetry. Example: the tetrahydroxycyclobutadiene shown. Similarly, a
molecule with a C; axis (the principal axis) and three other perpendicular C, axes is
D3.

D,;, A molecule with a C, axis and two perpendicular C, axes (as for D, above),
plus a mirror plane is Dy;,. Examples: ethene, cyclobutadiene. Similarly, a C; axis
(the principal axis), three perpendicular C, axes and a mirror plane horizontal to the
principal axis confer D3, symmetry, as in the cyclopropenyl cation. Similarly,
benzene is Dgy,, and F, is Dp,.

D,4 A molecule is D,y if it has a C, axis and two perpendicular C, axes (as for D,
above), plus two “dihedral” mirror planes; these are mirror planes that bisect two C,
axes (in general, that bisect the C, axes perpendicular to the principal axis).
Example: allene (propadiene). Staggered ethane is D34 (it has D; symmetry ele-
ments plus three dihedral mirror planes. D,y symmetry can be hard to spot.

Molecules belonging to the cubic point groups can, in some sense, be fitted
symmetrically inside a cube. The commonest of these are Ty, Oy, and I; they will be
simply exemplified:

Tq This is tetrahedral symmetry. Example: CHy,

O,, This might be considered “cubic symmetry”. Example: cubane, SFg.

I Also called icosahedral symmetry. Example: buckminsterfullerene.

Less-common groups are Sy, and the cubic groups T, Ty, (dodecahedrane is Ty,)
and O (see [19,20]). Atkins [19] and Levine [20] give flow charts which
make it relatively simple to assign a molecule to its point group, and Atkins
provides pictures of objects of various symmetries which often make it possible
to assign a point group without having to examine the molecule for its symmetry
elements.
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We saw above that most molecules have no symmetry. So why is a knowledge of
symmetry important in chemistry? Symmetry considerations are essential in the
theory of molecular electronic (UV) spectroscopy and sometimes in analyzing in
detail molecular wavefunctions (Chapter 4), but for us the reasons are more
pragmatic. A calculation run on a molecule whose input structure has the exact
symmetry that the molecule should have will tend to be faster and will yield a
“better” (see below) geometry than one run on an approximate structure, however
close this may be to the exact one. Input molecular structures for a calculation are
usually created with an interactive graphical program and a computer mouse: atoms
are assembled into molecules much as with a model kit, or the molecule might be
drawn on the computer screen. If the molecule has symmetry (if it is not is not C;)
this can be imposed by optimizing the geometry with molecular mechanics
(Chapter 3). Now consider water: we would of course normally input the H,O
molecule with its exact equilibrium C,, symmetry, but we could also alter the input
structure slightly making the symmetry C, (three atoms must lie in a plane). The C,,
structure has two degrees of freedom: a bond length (the two bonds are the same
length) and a bond angle. The C; structure has three degrees of freedom: two bond
lengths and a bond angle. The optimization algorithm has more variables to cope
with in the case of the lower-symmetry structure.

What do we mean by a better geometry? Although a successful geometry
optimization will give essentially the same geometry from a slightly distorted
input structure as from one with the perfect symmetry of the molecule in question,
corresponding bond lengths and angles (e.g. the four C—H bonds and the two HCH
angles of ethene) will not be exactly the same. This can confuse an analysis of the
geometry, and carries over into the calculation of other properties like, say, charges
on atoms — corresponding atoms should have exactly the same charges. Thus both
esthetic and practical considerations encourage us to aim for the exact symmetry
that the molecule should possess.

2.7 Summary

The potential energy surface (PES) is a central concept in computational chemistry.
A PES is the relationship — mathematical or graphical — between the energy of a
molecule (or a collection of molecules) and its geometry.

Stationary points on a PES are points where 0E/0q = 0 for all g, where
q is a geometric parameter. The stationary points of chemical interest are
minima (0°E/ 0giq; > 0 for all ¢) and transition states or first-order saddle points;
azE/aqiqj < 0 for one ¢, along the reaction coordinate (intrinsic reaction coordi-
nate, IRC), and > O for all other ¢g. Chemistry is the study of PES stationary points
and the pathways connecting them.

The Born—Oppenheimer approximation says that in a molecule the nuclei are
essentially stationary compared to the electrons. This is one of the cornerstones
of computational chemistry because it makes the concept of molecular shape



40 2 The Concept of the Potential Energy Surface

(geometry) meaningful, makes possible the concept of a PES, and simplifies the
application of the Schrodinger equation to molecules by allowing us to focus on the
electronic energy and add in the nuclear repulsion energy later; this third point, very
important in practical molecular computations, is elaborated on in Chapter 5.

Geometry optimization is the process of starting with an input structure “guess”
and finding a stationary point on the PES. The stationary point found will normally
be the one closest to the input structure, not necessarily the global minimum. A
transition state optimization usually requires a special algorithm, since it is more
demanding than that required to find a minimum. Modern optimization algorithms
use analytic first derivatives and (usually numerical) second derivatives.

It is usually wise to check that a stationary point is the desired species
(a minimum or a transition state) by calculating its vibrational spectrum (its
normal-mode vibrations). The algorithm for this works by calculating an accurate
Hessian (force constant matrix) and diagonalizing it to give a matrix with the
“direction vectors” of the normal modes, and a diagonal matrix with the force
constants of these modes. A procedure of “mass-weighting” the force constants
gives the normal-mode vibrational frequencies. For a minimum all the vibrations
are real, while a transition state has one imaginary vibration, corresponding to
motion along the reaction coordinate. The criteria for a transition state are appear-
ance, the presence of one imaginary frequency corresponding to the reaction
coordinate, and an energy above that of the reactant and the product. Besides
serving to characterize the stationary point, calculation of the vibrational frequen-
cies enables one to predict an IR spectrum and provides the zero-point energy
(ZPE). The ZPE is needed for accurate comparisons of the energies of isomeric
species. The accurate Hessian required for calculation of frequencies and ZPE’s can
be obtained either numerically or analytically (faster, but much more demanding of
hard drive space).
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2 The Concept of the Potential Energy Surface

Easier Questions

—_

What is a potential energy surface (give the two viewpoints)?

. Explain the difference between a relaxed PES and a rigid PES.
. What is a stationary point? What kinds of stationary points are of interest to

chemists, and how do they differ?

What is a reaction coordinate?

Show with a sketch why it is not correct to say that a transition state is a
maximum on a PES.

What is the Born—Oppenheimer approximation, and why is it important?
Explain, for a reaction A — B, how the potential energy change on a PES is
related to the enthalpy change of the reaction. What would be the problem with
calculating a free energy/geometry surface?

Hint: Vibrational frequencies are normally calculated only for stationary
points.

. What is geometry optimization? Why is this process for transition states (often

called transition state optimization) more challenging than for minima?
What is a Hessian? What uses does it have in computational chemistry?

. Why is it usually good practice to calculate vibrational frequencies where practi-

cal, although this often takes considerably longer than geometry optimization?

Harder Questions

. The Born—Oppenheimer principle is often said to be a prerequisite for the

concept of a potential energy surface. Yet the idea of a potential energy surface
(Marcelin 1915) predates the Born—Oppenheimer principle (1927). Discuss.
How high would you have to lift a mole of water for its gravitational potential
energy to be equivalent to the energy needed to dissociate it completely into
hydroxyl radicals and hydrogen atoms? The strength of the O—H bond is about
400 kJ mol~'; the gravitational acceleration g at the Earth’s surface (and out to
hundreds of kilometres) is about 10 m s~ 2. What does this indicate about the
role of gravity in chemistry?

. If gravity plays no role in chemistry, why are vibrational frequencies different

for, say, C—H and C-D bonds?

. We assumed that the two bond lengths of water are equal. Must an acyclic

molecule AB, have equal A—B bond lengths? What about a cyclic molecule
AB,?

. Why are chemists but rarely interested in finding and characterizing second-

order and higher saddle points (hilltops)?

. What kind(s) of stationary points do you think a second-order saddle point

connects?
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7.

8.

10.

If a species has one calculated frequency very close to 0 cm™' what does that
tell you about the (calculated) potential energy surface in that region?

The ZPE of many molecules is greater than the energy needed to break a bond;
for example, the ZPE of hexane is about 530 kJ mol ™', while the strength of a
C—C or a C—H bond is only about 400 kJ mol~'. Why then do such molecules
not spontaneously decompose?

. Only certain parts of a potential energy surface are chemically interesting:

some regions are flat and featureless, while yet other parts rise steeply and are
thus energetically inaccessible. Explain.

Consider two potential energy surfaces for the HCN = HNC reaction: A, a
plot of energy versus the H-C bond length, and B, a plot of energy versus the
HNC angle. Recalling that HNC is the higher-energy species, sketch qualita-
tively the diagrams for A and B.






Chapter 3
Molecular Mechanics

We don’t give a damn where the electrons are.
Words to the author, from the president of a well-known chemical company, emphasizing
his firm’s position on basic research

Abstract Molecular mechanics (MM) rests on a view of molecules as balls held
together by springs. The potential energy of a molecule can be written as the sum of
terms involving bond stretching, angle bending, dihedral angles and nonbonded
interactions. Giving these terms explicit mathematical forms constitutes devising a
forcefield, and giving actual numbers to the constants in the forcefield constitutes
parameterizing the field. An example is given of the devising and parameterization
of an MM forcefield. Calculations on biomolecules is a very important application
of MM, and the pharmaceutical industry designs new drugs with the aid of MM.
Organic synthesis now makes considerable use of MM, which enables chemists to
estimate which products are likely to be favored and to devise more realistic routes
to a target molecule. In molecular dynamics MM 1is used to generate the forces
acting on molecules and hence to calculate their motions.

3.1 Perspective

Molecular mechanics (MM) [1] is based on a mathematical model of a molecule as
a collection of balls (corresponding to the atoms) held together by springs
(corresponding to the bonds) (Fig. 3.1). Within the framework of this model, the
energy of the molecule changes with geometry because the springs resist being
stretched or bent away from some “natural” length or angle, and the balls resist
being pushed too closely together. The mathematical model is thus conceptually
very close to the intuitive feel for molecular energetics that one obtains when
manipulating molecular models of plastic or metal: the model resists distortions
(it may break!) from the “natural” geometry that corresponds to the bond lengths

E.G. Lewars, Computational Chemistry, 45
DOI 10.1007/978-90-481-3862-3_3, © Springer Science+Business Media B.V. 2011
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Fig. 3.1 Molecular mechanics (the forcefield method) considers a molecule to be a collection of
balls (the atoms) held together by springs (the bonds)

and angles imposed by the manufacturer, and in the case of space-filling models
atoms cannot be forced too closely together. The MM model clearly ignores
electrons.

The principle behind MM is to express the energy of a molecule as a function of
its resistance toward bond stretching, bond bending, and atom crowding, and to use
this energy equation to find the bond lengths, angles, and dihedrals corresponding to
the minimum-energy geometry — or more precisely, to the various possible potential
energy surface minima (Chapter 2). In other words, MM uses a conceptually
mechanical model of a molecule to find its minimum-energy geometry (for flexible
molecules, the geometries of the various conformers). The form of the mathemati-
cal expression for the energy, and the parameters in it, constitute a forcefield, and
molecular mechanics methods are sometimes called forcefield methods. The term
arises because the negative of the first derivative of the potential energy of a particle
with respect to displacement along some direction is the force on the particle; a
“forcefield” E(x, y, z coordinates of atoms) can be differentiated to give the force on
each atom.

The method makes no reference to electrons, and so cannot (except by some kind
of empirical algorithm) throw light on electronic properties like charge distribu-
tions or nucleophilic and electrophilic behaviour. Note that MM implicitly uses the
Born—Oppenheimer approximation, for only if the nuclei experience what amounts
to a static attractive force, whether from electrons or springs, does a molecule have
a distinct geometry (Section 2.3).

An important point, which students sometimes have a problem with, is that the
concept of a bond is central to MM, but not essential — although often useful — in
electronic structure calculations. In MM a molecule is defined by the atoms and the
bonds, which latter are regarded almost literally as springs holding the atoms
together. Usually, bonds are placed where the rules for drawing structural formulas
require them, and to do a MM calculation you must specify each bond as single,
double, etc., since this tells the program how strong a bond to use (Sections 3.2.1
and 3.2.2). In an electronic structure calculation—ab initio (Chapter 5), semiempiri-
cal (Chapter 6), and density functional theory (Chapter 7) —a molecule is defined by
the relative positions of its atomic nuclei, the charge, and the “multiplicity” (which
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follows easily from the number of unpaired electrons). An oxygen nucleus and two
protons with the right x, y, z coordinates, enough electrons for no charge, and
multiplicity one (no unpaired electrons) is a water molecule. There is no need to
mention bonds here, although the chemist might wish to somehow extract this
useful concept from this picture of nuclei and electrons. This can be done by
calculating the electron density and associating a bond with, for example, a path
along which electron density is concentrated, but there is no unique definition of a
bond in electronic structure theory. It is worth noting, too, that in some graphical
interfaces used in computational chemistry bonds are specified by the user, while in
others they are shown by the program depending on the separation of pairs of atoms.
The novice may find it disconcerting to see a specified bond still displayed even
when a change in geometry has moved a pair of atoms far apart, or to see a bond
vanish when a pair has moved beyond the distance recognized by some fudge factor.

Historically [2], molecular mechanics seems to have begun as an attempt to
obtain quantitative information about chemical reactions at a time when the possi-
bility of doing quantitative quantum mechanical (Chapter 4) calculations on any-
thing much bigger than the hydrogen molecule seemed remote. Specifically, the
principles of MM, as a potentially general method for studying the variation of the
energy of molecular systems with their geometry, were formulated in 1946 by
Westheimer! and Meyer [3a], and by Hill [3b]. In this same year Dostrovsky,
Hughes” and Ingold® independently applied molecular mechanics concepts to the
quantitative analysis of the Sy2 reaction, but they do not seem to have recognized
the potentially wide applicability of this approach [3c]. In 1947 Westheimer [3d]
published detailed calculations in which MM was used to estimate the activation
energy for the racemization of biphenyls.

Major contributors to the development of MM have been Schleyer® [2b, c] and
Allinger5 [1c, d]; one of Allinger’s publications on MM [1d] is, according to the
Citation Index, one of the most frequently cited chemistry papers. The Allinger
group has, since the 1960s, been responsible for the development of the
“MM-series” of programs, commencing with MM1 and continuing with the cur-
rently widely-used MM2 and MM3, and MM4 [4]. MM programs [5] like Sybyl and
UFF will handle molecules involving much of the periodic table, albeit with some
loss of accuracy that one might expect for trading breadth for depth, and MM is

"Frank H. Westheimer, born Baltimore, Maryland, 1912. Ph.D. Harvard 1935. Professor University
of Chicago, Harvard. Died 2007.

*Edward D. Hughes, born Wales, 1906. Ph.D. University of Wales, D.Sc. University of London.
Professor, London. Died 1963.

3Christopher K. Ingold, born London 1893. D.Sc. London 1921. Professor Leeds, London.
Knighted 1958. Died London 1970.

“Paul von R. Schleyer, born Cleveland, Ohio, 1930. Ph.D. Harvard 1957. Professor Princeton;
institute codirector and professor University of Erlangen-Niirnberg, 1976—-1998. Professor University
of Georgia.

*Norman L. Allinger, born Rochester New York, 1930. Ph.D. University of California at Los
Angeles, 1954. Professor Wayne State University, University of Georgia.
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the most widely-used method for computing the geometries and energies of
large biological molecules like proteins and nucleic acids (although recently semi-
empirical (Chapter 6) and even ab initio (Chapter 5) methods have begun to be
applied to these large molecules.

3.2 The Basic Principles of Molecular Mechanics

3.2.1 Developing a Forcefield

The potential energy of a molecule can be written

E = Z Estretch + Z Ehend + Z Etor‘sion + Z Enunbond (*31)

bonds angles dihedrals pairs

where E,,..., etc. are energy contributions from bond stretching, angle bending,
torsional motion (rotation) around single bonds, and interactions between atoms or
groups which are nonbonded (not directly bonded together). The sums are over all
the bonds, all the angles defined by three atoms A-B-C, all the dihedral angles
defined by four atoms A-B—C-D, and all pairs of significant nonbonded interac-
tions. The mathematical form of these terms and the parameters in them constitute a
particular forcefield. We can make this clear by being more specific; let us consider
each of these four terms.

leq

a
-
Al=1=lgq +
Aa=a-—ag
energy
0 Aloraa

Fig. 3.2 Changes in bond lengths or in bond angles result in changes in the energy of a molecule.
Such changes are handled by the E,.,, and Ej.,, terms in the molecular mechanics forcefield.
The energy is approximately a quadratic function of the change in bond length or angle
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The Bond Stretching Term The increase in the energy of a spring (remember
that we are modelling the molecule as a collection of balls held together by springs)
when it is stretched (Fig. 3.2) is approximately proportional to the square of the
extension:

AEsfretch - kstretch([ - leq)z

ksireten = the proportionality constant (actually one-half the force constant of the
spring or bond [6]; but note the warning about identifying MM force constants with
the traditional force constant from, say, spectroscopy — see Section 3.3); the bigger
ksiretch, the stiffer the bond/spring — the more it resists being stretched.

| = length of the bond when stretched.

leq = equilibrium length of the bond, its “natural” length.

If we take the energy corresponding to the equilibrium length /. as the zero of
energy, we can replace AE cicn bY Egiretch:

Estretch = strerc'h(l - leq)z (*32)

The Angle Bending Term The increase in energy of system ball-spring-ball-
spring-ball, corresponding to the triatomic unit A—-B—C (the increase in “angle
energy”) is approximately proportional to the square of the increase in the angle
(Fig. 3.2); analogously to Eq. 3.2:

Epena = kbend(a - aeq)z (*33)

kvena = a proportionality constant (one-half the angle bending force constant [6];
note the warning about identifying MM force constants with the traditional force
constant from, say, spectroscopy — see Section 3.3)) a = size of the angle when
distorted a.q = equilibrium size of the angle, its “natural” value.

The Torsional Term Consider four atoms sequentially bonded: A-B-C-D
(Fig. 3.3). The dihedral angle or torsional angle of the system is the angle between
the A-B bond and the C-D bond as viewed along the B—C bond. Conventionally
this angle is considered positive if regarded as arising from clockwise rotation
(starting with A—B covering or eclipsing C—D) of the back bond (C-D) with respect
to the front bond (A-B). Thus in Fig. 3.3 the dihedral angle A-B—C-D is 60°
(it could also be considered as being —300°). Since the geometry repeats itself
every 360°, the energy varies with the dihedral angle in a sine or cosine pattern, as
shown in Fig. 3.4 for the simple case of ethane. For systems A—B—C-D of lower
symmetry, like butane (Fig. 3.5), the torsional potential energy curve is more
complicated, but a combination of sine or cosine functions will reproduce the curve:

Erorsion = ko + Z k;[l + COS(F@)] (*34)
r=1
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rotate C-D bond

A about the B-C bond A
D \ /D
N T e
D
A A 60°
d)xl/ D
B C B/’ \C
dihedral angle = 0° dihedral angle = 60°

Fig. 3.3 Dihedral angles (torsional angles) affect molecular geometries and energies. The energy
is a periodic (cosine or combination of cosine functions) function of the dihedral angle; see e.g.
Figs. 3.4 and 3.5

H H
energy 12 kJ mol™! \ /
kJ mol™! R
\ H:/ \ H
H H

10

120 180 HCCH dihedral, degrees

0 60
”
Dy, Dgy Dy, Dgy

Fig. 3.4 Variation of the energy of ethane with dihedral angle. The curve can be represented as a
cosine function

The Nonbonded Interactions Term This represents the change in potential
energy with distance apart of atoms A and B that are not directly bonded (as in
A-B) and are not bonded to a common atom (as in A—X—B); these atoms, separated
by at least two atoms (A—X-Y-B) or even in different molecules, are said to be
nonbonded (with respect to each other). Note that the A-B case is accounted for by
the bond stretching term Eg e, and the A—X-B term by the angle bending term
Epena, but the nonbonded term E,,,,;0nq 1S, for the A—X—Y—B case, superimposed
upon the torsional term E,,,;,,: We can think of E,,,;,, as representing some factor
inherent to resistance to rotation about a (usually single) bond X-Y (MM does not
attempt to explain the theoretical, electronic basis of this or any other effect), while
for certain atoms attached to X and Y there may also be nonbonded interactions.
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energy
kdJ I~
MO 25 kJ mol
20
14 kJ mol™!
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CCCC dihedral, degrees
0 60 120 180
M
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t Me ﬁ;{

-

Me Me

CHg

Fig. 3.5 Variation of the energy of butane with dihedral angle. The curve can be represented by a
sum of cosine functions

The potential energy curve for two nonpolar nonbonded atoms has the general
form shown in Fig. 3.6. A simple way to approximate this is by the so-called
Lennard-Jones 12—6 potential [7]:

Eponbona = knp [(g)lz - (%ﬂ (*¥3.5)

r = the distance between the centers of the nonbonded atoms or groups.

The function reproduces the small attractive dip in the curve (represented by the
negative term) as the atoms or groups approach one another, then the very steep rise
in potential energy (represented by the positive, repulsive term raised to a large
power) as they are pushed together closer than their van der Waals radii. Setting dE/
dr = 0, we find that for the energy minimum in the curve the corresponding value of
1S rmin = 2'/°c

ie. =20y, (3.6)
If we assume that this minimum corresponds to van der Waals contact of the

nonbonded groups, then r,;, = (R + Rp), the sum of the van der Waals radii of the
groups A and B. So

26 = (Rs + Rg)
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Fig. 3.6 Variation of the energy
energy of a molecule with

separation of nonbonded

atoms or groups. Atoms/

groups A and B may be in the

same molecule (as indicated

here) or the interaction may

be intermolecular. The

minimum energy occurs at

van der Waals contact. For

small nonpolar atoms or 0

groups the minimum energy \//_’ r
point represents a drop of a E. . ceoeeeeooST -

few kI mol ™! (Eppin = —1.2kJ
mol ™! for CH,/CH,), but Lo
short distances can make fmin = (Ra + Rg)
nonbonded interactions
destabilize a molecule by
many kJ mol ™"

\

and so
6 =2""Y%(RA +Rg) =0.89 (Rs + Rg) (3.7)

Thus o can be calculated from r,;, or estimated from the van der Waals radii.
Setting £ = 0, we find that for this point on the curve r = G,

ie. o=r(E=0) (3.8)
If we set 7 = rpin = 2'/°c (from Eq. 3.6) in Eq. 3.5, we find
E(r = rmin) = (—1/4)knp
ie.
koo = —4E(r = ruin) (3.9
So kyp, can be calculated from the depth of the energy minimum.

In deciding to use equations of the form (3.2), (3.3), (3.4) (3.5) we have decided
on a particular MM forcefield. There are many alternative forcefields. For example,
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we might have chosen to approximate E .., by the sum of a quadratic and a cubic
term:

Eslrelch = kslretch (l - Zeq)z + k(l - leq)3

This gives a somewhat more accurate representation of the variation of energy
with length. Again, we might have represented the nonbonded interaction energy by
a more complicated expression than the simple 12—6 potential of Eq. 3.5 (which is
by no means the best form for nonbonded repulsions). Such changes would repre-
sent changes in the forcefield.

3.2.2 Parameterizing a Forcefield

We can now consider putting actual numbers, Kyerchs Legs Kpena» €1C., into Egs. 3.2,
3.3, 3.4 and 3.5, to give expressions that we can actually use. The process of
finding these numbers is called parameterizing (or parametrizing) the forcefield.
The set of molecules used for parameterization, perhaps 100 for a good forcefield, is
called the training set. In the purely illustrative example below we use just ethane,
methane and butane.

Parameterizing the Bond Stretching Term A forcefield can be parameterized
by reference to experiment (empirical parameterization) or by getting the numbers
from high-level ab initio or density functional calculations, or by a combination of
both approaches. For the bond stretching term of Eq. 3.2 we need Kkgeich and o
Experimentally, kgecn could be obtained from IR spectra, as the stretching fre-
quency of a bond depends on the force constant (and the masses of the atoms
involved) [8], and /., could be derived from X-ray diffraction, electron diffraction,
or microwave spectroscopy [9].

Let us find kg, for the C/C bond of ethane by ab initio (Chapter 5) calcula-
tions. Normally high-level ab initio calculations would be used to parameterize a
forcefield, but for illustrative purposes we can use the low-level but fast STO-3G
method [10]. Equation 3.2 shows that a plot of E,.,., against (l—leq)2 should be
linear with a slope of k., Table 3.1 and Fig. 3.7 show the variation of the energy

Table 3.1 Change in energy as the C—C bond in CH;—CHj is stretched away fron} its equilibrium
length. The calculations are ab initio (STO-3G; Chapter 5). Bond lengths are in A

C—C length, / [ =g (I = I’ Egrerchs kJ mol ™!
1.538 0 0 0

1.550 0.012 0.00014 0.29

1.560 0.022 0.00048 0.89

1.570 0.032 0.00102 1.86

1.580 0.042 0.00176 3.15

1.590 0.052 0.00270 475

1.600 0.062 0.00384 6.67
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Estretchv kJ m°|_1

0 [ [ [ [
0.001 0.002 0.003 0004 (/—/e)? A2

Fig. 3.7 Energy vs. the square of the extension of the C—C bond in CH3—CHj. The data in
Table 3.1 were used

of ethane with stretching of the C/C bond, as calculated by the ab initio STO-3G
method. The equilibrium bond length has been taken as the STO-3G length:
l;(C—C)=1538A (3.10)
The slope of the graph is
kstrercn(C — C) = 1,735 kJ mol 'A~? (3.1D)

Similarly, the CH bond of methane was stretched using ab initio STO-3G
calculations; the results are

lg(C—H) = 1.083A (3.12)

Kereren(C — H)1.934 kJ mol ! A2 (3.13)

Parameterizing the Angle Bending Term From Eq. 3.3, a plot of E,,,,; against

(a—agq)2 should be linear with a slope of kp.,s. From STO-3G calculations on
bending the H-C-C angle in ethane we get (cf. Table 3.1 and Fig. 3.7)

aey(HCC) = 110.7° (3.14)

kpena(HCC) = 0.093kJ mol 'deg > (3.15)
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Table 3.2 The experimental potential energy values for rotation about the central C-C
bond of CH;CH,-CH,CHj; can be approximated by Ejsion(CH3CH, — CHoCH3) = ko+
4
>~ ke[l + cos(r0)] with kg = 20.1, ky = —4.7, ky = 191, ks = —7.75, k4 = 0.58. Experimental
r=1

energy values at 30°, 90°, and 150° were interpolated from those at 0°, 60°, 120°, and 180°;
energies are in kJ mol ™'

0 (deg) E (calculated) E (experimental)
0 0.15 0

30 6.7 7.0

60 14 14

90 8.8 9.0

120 35 33

150 15 15

180 25 25

Calculations on staggered butane gave for the C—C—C angle
a.,q(CCC) = 112.5° (3.16)
Kpena(CCC) = 0.110 KI mol ~'deg (3.17)

Parameterizing the Torsional Term For the ethane case (Fig. 3.4), the equation
for energy as a function of dihedral angle can be deduced fairly simply by adjusting
the basic equation E = cos 6 to give E = 1/2E,.x[1 + cos3(0 + 60)].

For butane (Fig. 3.5), using Eq. 3.4 and experimenting with a curve-fitting
program shows that a reasonably accurate torsional potential energy function can
be created with five parameters, ko and k;—ky4:

4
Evorsion(CH3CHy — CH,CH3) = ko + » _ k,[1 4 cos(r0))] (3.18)

r=1

The values of the parameters kp—k5 are given in Table 3.2. The calculated curve
can be made to match the experimental one as closely as desired by using more
terms (Fourier analysis).

Parameterizing the Nonbonded Interactions Term To parameterize Eq. 3.5 we
might perform ab initio calculations in which the separation of two atoms or groups
in different molecules (to avoid the complication of concomitant changes in bond
lengths and angles) is varied, and fit Eq. 3.5 to the energy vs. distance results. For
nonpolar groups this would require quite high-level calculations (Chapter 5), as van
der Waals or dispersion forces are involved. We shall approximate the nonbonded
interactions of methyl groups by the interactions of methane molecules, using
experimental values of k., and o, derived from studies of the viscosity or the
compressibility of methane. The two methods give slightly different values [7b],
but we can use the values

ku = 4.7kJ mol ™! (3.19)
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and
c=3.85A (3.20)

Summary of the Parameterization of the Forcefield Terms The four terms of
Eq. 3.1 were parameterized to give:

Eggreren(C — C) = 1735(1 — 1.538)? (3.21)
Eggreren(C — H) = 1934(1 — 1.083)* (3.22)
Epena(HCH) = 0.093(a — 110.7)* (3.23)
Epena(CCC) = 0.110(a — 112.5)? (3.24)

4
Eiorsion(CHSCCCH3) = ko + > _ k:[1 + cos(r0)] (3.25)

r=1

The parameters k of Eq. 3.25 are given in Table 3.2.

12 6
Enonbona(CH3 /CH3) = 4.7 [(g) - (&> 1 (3.26)

r

Note that this parameterization is only illustrative of the principles involved;
any really viable forcefield would actually be much more sophisticated. The kind
we have developed here might at the very best give crude estimates of the energies
of alkanes. An accurate, practical forcefield would be parameterized as a best fit
to many experimental and/or calculational results, and would have different para-
meters for different kinds of bonds, e.g. C—C for acyclic alkanes, for cyclobutane
and for cyclopropane. A forcefield able to handle not only hydrocarbons would
obviously need parameters involving elements other than hydrogen and carbon.
Practical forcefields also have different parameters for various atom types, like sp’
carbon vs. sp” carbon, or amine nitrogen vs. amide nitrogen. In other words, a
different value would be used for, say, stretching involving an sp>/sp® C—C bond
than for an sp?/sp> C—C bond. This is clearly necessary since the force constant of a
bond depends on the hybridization of the atoms involved; the IR stretch frequency
for the sp”C/sp®C bond comes at roughly 1,200 cm ™", while that for the sp>C/sp*C
bond is about 1,650 cm™' [8]. Since the vibrational frequency of a bond is
proportional to the square root of the force constant, the force constants are in the
ratio of about (1,650/ 1,200)2 = 1.9; for corresponding atoms, force constants are in
fact generally roughly proportional to bond order (double bonds and triple bonds
are about two and three times as stiff, respectively, as the corresponding single
bonds). Some forcefields account for the variation of bond order with conformation
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(twisting p orbitals out of alignment reduces their overlap) by performing a simple
PPP molecular orbital calculation (Chapter 6) to obtain the bond order.

A sophisticated forcefield might also consider H/H nonbonded interactions
explicitly, rather than simply subsuming them into methyl/methyl interactions
(combining atoms into groups is the feature of a united atom forcefield). Further-
more, nonbonding interactions between polar groups need to be accounted for in a
field not limited to hydrocarbons. These are usually handled by the well-known
potential energy/electrostatic charge relationship

E = k(q192/7)

which has also been used to model hydrogen bonding [11].

A subtler problem with the naive forcefield developed here is that stretching,
bending, torsional and nonbonded terms are not completely independent. For
example, the butane torsional potential energy curve (Fig. 3.5) does not apply
precisely to all CH3;—C—C-CHj; systems, because the barrier heights will vary
with the length of the central C—C bond, obviously decreasing (other things being
equal) as the bond is lengthened, since there will be a decrease in the interactions
(whatever causes them) between the CH3’s and H’s on one of the carbons of the
central C—C and those on the other carbon. This could be accounted for by making
the k’s of Eq. 3.25 a function of the X-Y length. Actually, partitioning the energy of
amolecule into stretching, bending, etc. terms is somewhat formal; for example, the
torsional barrier in butane can be considered to be partly due to nonbonded
interactions between the methyl groups. It should be realized that there is no one,
right functional form for an MM forcefield (see, e.g., [ 1b]); accuracy, versatility and
speed of computation are the deciding factors in devising a forcefield.

3.2.3 A Calculation Using Our Forcefield

Let us apply the naive forcefield developed here to comparing the energies of two
2,2,3,3-tetramethylbutane ((CH3);CC(CHs)s, i.e. r-Bu-Bu-f) geometries. We com-
pare the energy of structure 1 (Fig. 3.8) with all the bond lengths and angles at our
“natural” or standard values (i.e. at the STO-3G values we took as the equilibrium
bond lengths and angles in Section 3.2.2) with that of structure 2, where the central
C-C bond has been stretched from 1.538 A to 1.600 10\, but all other bond lengths, as
well as the bond angles and dihedral angles, are unchanged. Figure 3.8 shows the
nonbonded distances we need, which would be calculated by the program from
bond lengths, angles and dihedrals. Using Eq. 3.1:

<E = Z Estrel(?h + Z Ehend + Z Eiarsion + ZEnonbond>

bonds angles dihedrals pairs
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/ 3.120
H5C
N CHg
stretch central C-C bond 3.974 / CH,4
. w C— C
keeping bond angles and H,C™ :
other bond lengths constant \
H3C /-' CH3
1.600 A
1 2

Fig. 3.8 Structures for a simple MM “by hand” calculation on the effect of changing the central
C—C length of (CH3)3;C—C(CH3); from 1.538 A to 1.600 A

For structure 1

> Egreren(C—C) =7 x 1,735 (1.538 — 1.538)> = 0
bonds

Bond stretch contribution cf. structure with /,, = 1.538

> Egreren(C — H) = 18 x 1934 (1.083 — 1.083)* = 0
bonds

Bond stretch contribution cf. structure with /g = 1.083

> Epena(HCH) = 18 x 0.093(110.7 — 110.7)* = 0

angles

Bond bend contribution cf. structure with a,, = 110.7°

> Epena(CCC) = 12 x 0.110 (112.5 — 112.5)* = 0

angles

Bond bend contribution cf. structure with a,, = 112.5°

Z Etorsion (CH3CCCH3) =6x35=21.0
dihedrals

Torsional contribution cf. structure with no gauche — butane interactions

Actually, nonbonding interactions are already included in the torsional term
(as gauche-butane interactions); we might have used an ethane-type torsional
function and accounted for CHiz/CHj; interactions entirely with nonbonded
terms. However, in comparing calculated relative energies the torsional term will
cancel out.
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Z Enonhond(anti - CHS/CHS) + Z Eonbona (gal/whe — CH3 /CHS)

nonbond nonbond

385\ /3.85)\° 385\ [/3.85)\°
—3x47|(22) - (22 6x47|(22) - (222
X [(3.931) (3.931) Tox [(3.065) (3.065)

=3 x (—0.487) + 6 x (54.05) = —1.463 + 324.3 = 323kJ mol !

nonbonding contribution cf. structure with noninteracting CHg S

Eoral = Esretch + Ebend + Erorsion = 0 + 0 + 21.0 4+ 323 kJ mol ™' = 344 kJ mol ™!
For structure 2

> Egreren(C — C) = 6 x 1735(1.538 — 1.538)> + 1 x 1,735(1.600 — 1.538)?

bonds

=0+6.67 =6.67 kI mol !

Bond stretch contribution cf. structure with /,, = 1.538
> Ereren(C — H) = 18 x 1,934(1.083 — 1.083)* = 0
bonds
Bond stretch contribution cf. structure with /,, = 1.083

> Epena(HCH) = 18 x 0.093(110.7 — 110.7)* = 0

angles

Bond bend contribution cf. structure with a,, = 110.7°

> Epena(CCC) = 12 x 0.110(112.5 — 112.5)> = 0

angles

Bond bend contribution cf. structure with a,, = 112.5°

> Eiorion(CH;CCCH;) = 6 x 3.5 = 21.0
dihedrals
Torsional contribution cf. structure with no gauche — butane interactions

The stretching and bending terms for structure 2 are the same as for structure 1,
except for the contribution of the central C-C bond; strictly speaking, the torsional
term should be smaller, since the opposing C(CH3) groups have been moved apart.

Z Enonhand(anti - CH%/CH3) + Z Enonbond(gauChe - CH3/CH3)

nonbond nonbond
3.85\ 12 3.85\° 3.85\ 12 3.85\°
=3x47| (=) - (222 6x47| (=) — (2=
X [<3.974> <3.974> 1 O [(3.120) <3.1zo)
=3 x (—0.673) + 6 x (41.97) = —2.019 +251.8

= 250kJ mol ™!

nonbonding contribution cf. structure with noninteracting CHé S
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Eiotal = Estretch + Evend + Etorsion = 6.67+0+21.04+250kJ m0171
=277kJmol ™"

So the relative energies are calculated to be
E(structure 2) — E(structure 1) = 277 — 344 kJ mol ™' = —67 kJ mol !

This crude method predicts that stretching the central C/C bond of
2,2,3,3-tetramethylbutane from the approximately normal sp°~C—sp°~C length of
1.583 A (structure 1) to the quite “unnatural” length of 1.600 A (structure 2) will
lower the potential energy by 67 kJ mol ', and indicates that the drop in energy is
due very largely to the relief of nonbonded interactions. A calculation using
the accurate forcefield MM3 [12] gave an energy difference of 54 kJ mol ' between
a “standard” geometry approximately like structure 1, and a fully optimized
geometry, which had a central C/C bond length of 1.576 A. The surprisingly
good agreement is largely the result of a fortuitous cancellation of errors, but this
does not gainsay the fact that we have used our forcefield to calculate something
of chemical interest, namely the relative energy of two molecular geometries.
In principle, we could have found the minimum-energy geometry according
to this forcefield, i.e. we could have optimized the geometry (Chapter 2). Geometry
optimization is in fact the main use of MM, and modern programs employ analy-
tical first and second derivatives of the energy with respect to the geometric
coordinates for this (Chapter 2).

3.3 Examples of the Use of Molecular Mechanics

If we consider the applications of MM from the viewpoint of the goals of those who
use it, then the main applications have been:

1. To obtain reasonable input geometries for lengthier (ab initio, semiempirical or
density functional) kinds of calculations.

2. To obtain good geometries (and perhaps energies) for small- to medium-sized
molecules.

3. To calculate the geometries and energies of very large molecules, usually
polymeric biomolecules (proteins and nucleic acids).

4. To generate the potential energy function under which molecules move, for
molecular dynamics or Monte Carlo calculations.

5. As a (usually quick) guide to the feasibility of, or likely outcome of, reactions in
organic synthesis.

Examples of these five facets of the use of MM will be given.
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3.3.1 To Obtain Reasonable Input Geometries for Lengthier
(Ab Initio, Semiempirical or Density Functional)
Kinds of Calculations

The most frequent use of MM is probably to obtain reasonable starting structures
for ab initio, semiempirical, or DFT (Chapters 5, 6 and 7) calculations. Nowadays
this is usually done by building the molecule with an interactive builder in a
graphical user interface, with which the molecule is assembled by clicking atoms
or groups together, much as one does with a “real” model kit. A click of the mouse
then invokes MM and provides, in most cases, a reasonable geometry. The resulting
MM-optimized structure is then subjected to an ab initio, etc. calculation.

By far the main use of MM is to find reasonable geometries for “normal”
molecules, but it has also been used to investigate transition states. The calculation
of transition states involved in conformational changes is a fairly straightforward
application of MM, since “reactions” like the interconversion of butane or cyclo-
hexane conformers do not involve the deep electronic reorganization that we call
bond-making or bond-breaking. The changes in torsional and nonbonded interac-
tions that accompany them are the kinds of processes that MM was designed to
model, and so good transition state geometries and energies can be expected for
this particular kind of process; transition state geometries cannot be (readily)
measured, but the MM energies for conformational changes agree well with
experiment: indeed, one of the two very first applications of MM [3a, d] was
to the rotational barrier in biphenyls (the other was to the SN2 reaction [3c]).
Since MM programs are usually not able to optimize an input geometry toward a
saddle point (see below), one normally optimizes to a minimum subject to the
symmetry constraint expected for the transition state. Thus for ethane, optimization
to a minimum within D3}, symmetry (i.e. by constraining the HCCH dihedral to be
0°, or by starting with a structure of exactly D3}, symmetry) will give the transition
state, while optimization with D34 symmetry gives the ground-state conformer
(Fig. 3.9). Optimizing an input C,, cyclohexane structure (Fig. 3.10) gives the
stationary point nearest this input structure, which is the transition state for inter-
conversion of enantiomeric twist cyclohexane conformers.

There are several examples of the application of MM to actual chemical reac-
tions, as distinct from conformational changes; the ones mentioned here are taken
from the review by Eksterowicz and Houk [13]. The simplest way to apply MM to
transition states is to approximate the transition state by a ground-state molecule.
This can sometimes give surprisingly good results. The rates of solvolysis of
compounds RX to the cation correlated well with the energy difference between
the hydrocarbon RH, which approximates RX, and the cation R*, which approx-
imates the transition state leading to this cation. This is not entirely unexpected, as
the Hammond postulate [14] suggests that the transition state should resemble the
cation. In a similar vein, the activation energy for solvolysis has been approximated
as the energy difference between a “methylalkane”, with CH; corresponding to X in
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ener Input structure with this symmetry will be
9y optimized to the transition state

T Input structures not of Dgy, symmetry will
be optimized to the minimum-energy
conformation

dihedral angle

Fig. 3.9 Optimizing ethane within D3}, symmetry (i.e. by constraining the HCCH dihedral to
be 0°, or by inputting a structure with exact D, symmetry) will give the transition state, while
optimization without requiring D34 symmetry gives the ground-state conformer

energy

CS
d halfchair -~ A C,, input structure will be optimized to
the transition state linking the C, conformers

C2v

Mboatw
CO OO e
@

2
twist, or twist-boat

D3d

\ /7 chair

reaction coordinate

Fig. 3.10 Optimizing cyclohexane within C,, symmetry gives a transition state, not one of the
minima

RX, and a ketone, the sp* carbon of which corresponds to the incipient cationic
carbon of the transition state.

One may wish a more precise approximation to the transition state geometry
than is represented by an intermediate or a compound somewhat resembling the
transition state. This can sometimes be achieved by optimizing to a minimum,
subject to the constraint that the bonds being made and broken have lengths
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Cs Cf. the transition state " from

= H%
H
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H

Fig. 3.11 Using molecular mechanics to get the (approximate) transition state for the Diels—Alder
reaction of butadiene with ethene. This procedure gives a structure with the desirable Cg, rather
than a lower, symmetry

believed (e.g. from quantum mechanical calculations on simple systems, or from
chemical intuition) to approximate those in the transition state, and with appropriate
angles and dihedrals also constrained. With luck this will take the input structure to
a point on the potential energy surface near the saddle point. For example, an
approximation to the geometry of the transition state for formation of cyclohexene
in the Diels—Alder reaction of butadiene with ethene can be achieved (Fig. 3.11) by
essentially building a boat conformation of cyclohexene, constraining the two
forming C/C bonds to about 2.1 A, and optimizing, using the CH, bridge (later
removed) to avoid twisting and to maintain Cy symmetry; optimization with a
dihedral constraint removes steric conflict between two hydrogens and gives a
reasonable starting structure for, say, an ab initio optimization.

The most sophisticated approach to locating a transition state with MM would be
to use an algorithm that optimizes the input structure to a true saddle point, that is to
a geometry characterized by a Hessian with one and only one negative eigenvalue
(Chapter 2). To do this the MM program would have to be able not only to calculate
second derivatives, but should also be parameterized for the partial bonds in
transition states. This is a feature lacking in standard MM forcefields, which are
not, in general, used to calculate transition states.

MM has been used to study the transition states involved in Sn2 reactions,
hydroborations, cycloadditions (mainly the Diels—Alder reaction), the Cope and
Claisen rearrangements, hydrogen transfer, esterification, nucleophilic addition to
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carbonyl groups and electrophilic C/C bonds, radical addition to alkenes, aldol
condensations, and various intramolecular reactions [13].

3.3.2 To Obtain Good Geometries (and Perhaps Energies)
for Small- to Medium-Sized Molecules

Molecular mechanics can provide excellent geometries for small (roughly C; to
about C() and medium-sized (roughly C;; to C;qg) organic molecules. It is by no
means limited to organic molecules, as forcefields like SYBYL and UFF [5] have
been parameterized for most of the periodic table, but the great majority of MM
calculations have been done on organics, probably largely because MM was the
creation of organic chemists (this is probably because the concept of geometric
structure has long been central in organic chemistry). The two salient features of
MM calculations on small to medium-sized molecules is that they are fast and they
can be very accurate. Times required for a geometry optimization of unbranched
CyoHyy, of Co, symmetry, with the Merck Molecular Force Field (MMFF), the
semiempirical AM1 (Chapter 6) and the ab initio HF/3-21G (Chapter 5) methods,
as implemented with the program SPARTAN [15], were 1.2 s, 16 s, and 57 min,
respectively (on an obsolescent machine a few years ago; these times would now
by shorter by a factor of at least 2). Clearly as far as speed goes there is no contest
between the methods, and the edge in favor of MM increases with the size of the
molecule. In fact, MM was till recently the only practical method for calculations
on molecules with more than about 100 heavy atoms (in computational chemistry
a heavy atom is any atom heavier than helium). Even programs not designed
specifically for macromolecules will handle molecules with thousands of atoms
on a good PC.

MM energies can be very accurate for families of compounds for which the
forcefield has been parameterized. Appropriate parameterization permits calcula-
tion of AH{ (heat of formation, enthalpy of formation) in addition to strain energy
[1f]. For the MM2 program (see below), for standard hydrocarbons AHfO errors are
usually only 0—4 kJ mol ™', which is comparable to experimental error, and for
oxygen containing organics the errors are only 0—8 kJ mol ' [16]; the errors in MM
conformational energies are often only about 2 kJ mol ™' [17]. MM geometries are
usually reasonably good for small to medium-sized molecules [4, 9a, 18]; for the
MM3 program (see below) the RMS error in bond lengths for cholesteryl acetate
was only about 0.007 A [4a]. “Bond length” is, if unqualified, somewhat imprecise,
since different methods of measurement give somewhat different values [4a, 9]
(Section 5.5.1). MM geometries are routinely used as input structures for quantum-
mechanical calculations, but in fact the MM geometry and energy are in some cases
as good as or better than those from a “higher-level” calculation [19]. The bench-
mark MM programs for small to medium-sized molecules are probably MM3 and
MM4 [4, 5]; the Merck Molecular Force Field (MMFF) [20] is likely to become
very popular too, not least because of its implementation in SPARTAN [15].
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3.3.3 To Calculate the Geometries and Energies of Very
Large Molecules, Usually Polymeric Biomolecules
(Proteins and Nucleic Acids)

Next to generating geometries and energies of small to medium-sized molecules,
the main use of MM is to model polymers, mainly biopolymers (proteins, nucleic
acids, polysaccharides). Forcefields have been developed specifically for this; two
of the most widely-used of these are CHARMM (Chemistry at HARvard using
Molecular Mechanics) [21] (the academic version; the commercial version is
CHARMmMm) and the forcefields in the computational package AMBER (Assisted
Model Building with Energy Refinement) [22]. CHARMM was designed to deal
with biopolymers, mainly proteins, but has been extended to handle a range of small
molecules. AMBER is perhaps the most widely used set of programs for biological
polymers, being able to model proteins, nucleic acids, and carbohydrates. Programs
like AMBER and CHARMM that model large molecules have been augmented
with quantum mechanical methods (semiempirical [23] and even ab initio [24]) to
investigate small regions where treatment of electronic processes like transition
state formation may be critical.

An extremely important aspect of the modelling (which is done largely with
MM) of biopolymers is designing pharmacologically active molecules that can fit
into active sites (the pharmacophores) of biomolecules and serve as useful drugs.
For example, a molecule might be designed to bind to the active site of an enzyme
and block the undesired reaction of the enzyme with some other molecule. Pharma-
ceutical chemists computationally craft a molecule that is sterically and electrostat-
ically complementary to the active site, and try to dock the potential drug into the
active site. The binding energy of various candidates can be compared and the most
promising ones can then be synthesized, as the second step on the long road to a
possible new drug. The computationally assisted design of new drugs and the study
of the relationship of structure to activity (quantitative structure-activity relation-
ships, QSAR) is one of the most active areas of computational chemistry [25].

3.3.4 To Generate the Potential Energy Function Under
Which Molecules Move, for Molecular Dynamics
or Monte Carlo Calculations

Programs like those in AMBER are used not only for calculating geometries and
energies, but also for simulating molecular motion, i.e. for molecular dynamics
[26], and for calculating the relative populations of various conformations or other
geometric arrangements (e.g. solvent molecule distribution around a macromole-
cule) in Monte Carlo simulations [27]. In molecular dynamics Newton’s laws of
motion are applied to molecules moving in a molecular mechanics forcefield,
although relatively small parts of the system (system: with biological molecules
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in particular modelling is often done not on an isolated molecule but on a molecule
and its environment of solvent and ions) may be simulated with quantum mechanical
methods [23, 24]. In Monte Carlo methods random numbers decide how atoms or
molecules are moved to generate new conformations or geometric arrangements
(“states”) which are then accepted or rejected according to some filter. Tens of
thousands (or more) of states are generated, and the energy of each is calculated by
MM, generating a Boltzmann distribution.

3.3.5 As a (Usually Quick) Guide to the Feasibility of, or Likely
Outcome of, Reactions in Organic Synthesis

In the past 15 years or so MM has become widely used by synthetic chemists,
thanks to the availability of inexpensive computers (even very modest personal
computers will easily run MM programs) and user-friendly and relatively inexpen-
sive programs [5]. Since MM can calculate the energies and geometries of ground
state molecules and (within the limitations alluded to above) transition states, it
can clearly be of great help in planning syntheses. To see which of two or more
putative reaction paths should be favored, one might (1) use MM like a hand-held
model: examine the molecule for factors like steric hindrance or proximity of
reacting groups, or (2) approximate the transition states for alternative reactions
using an intermediate or some other plausible proxy (cf. the treatment of solvolysis
in the discussion of transition states above), or (3) attempt to calculate the
energies of competing transition states (cf. the above discussion of transition state
calculations).

The examples given here of the use of MM in synthesis are taken from the
review by Lipkowitz and Peterson [28]. In attempts to simulate the metal-binding
ability of biological acyclic polyethers, the tricyclic 1 (Fig. 3.12) and a tetracyclic
analogue were synthesized, using as a guide the indication from MM that these
molecules resemble the cyclic polyether 18-crown-6, which binds the potassium
ion; the acyclic compounds were found to be indeed comparable to the crown ether
in metal-binding ability.

Enediynes like 2 (Fig. 3.12) are able to undergo cyclization to a phenyl-type
diradical 3, which in vivo can attack DNA; in molecules with an appropriate
triggering mechanism this forms the basis of promising anticancer activity. The
effect of the length of the constraining chain (i.e. of » in 2) on the activation energy
was studied by MM, aiding the design of compounds (potential drugs) that were
found to be more active against tumors than are naturally-occurring enediyne
antibiotics.

To synthesize the very strained tricyclic system of 4 (Fig. 3.12), a photochemical
Wolff rearrangement was chosen when MM predicted that the skeleton of 4 should
be about 109 kJ mol " less stable than that of the available 5. Photolysis of the
diazoketone 6 gave a high-energy carbene which lay above the carbon skeleton of
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Fig. 3.12 Some molecules (1, 2, 4) which have been synthesized with the aid of molecular
mechanics

4 and so was able to undergo Wolff rearrangement ring contraction to the ketene
precursor of 4.

A remarkable (and apparently still unconfirmed) prediction of MM is the claim
that the perhydrofullerene CgoHgg should be stabler with some hydrogens inside the
cage [29].

3.4 Geometries Calculated by MM

Figure 3.13 compares geometries calculated with the Merck Molecular Force Field
(MMFF) with those from a reasonably high-level ab initio calculation (MP2(fc)/
6-31G*; Chapter 5) and from experiment. The MMFF is a popular forcefield,
applicable to a wide variety of molecules. Popular prejudice holds that the ab initio
method is “higher” than molecular mechanics and so should give superior geome-
tries. The set of 20 molecules in Fig. 3.13 is also used in Chapters 5, 6, and 7,
to illustrate the accuracy of ab initio, semiempirical, and density functional calcula-
tions in obtaining molecular geometries. The data in Fig. 3.13 are analyzed in
Table 3.3. Table 3.4 compares dihedral angles for eight molecules, which are also
used in Chapters 5, 6, and 7.
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Fig. 3.13 A comparison of some MMFF, MP2(fc)/6-31G* and experimental geometries.
Calculations are by the author and experimental geometries are from ref. [30a]. Note that all CH
bonds are ca. 1 A, all other bonds range from ca. 1.2-1.8 A, and all bond angles (except for linear

molecules) are ca. 90°—120°

This survey suggests that:
For common organic molecules the Merck Molecular Force Field is nearly as
good as the ab initio MP2(fc)/6—31G* method for calculating geometries. Both
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Table 3.4 MMFF, MP2(fc)/6-31G* and experimental dihedral angles (deg)

Dihedral angles Errors

Molecule MMEFF MP2/6-31G* Exp.

HOOH 129.4 121.3 119.1 [30a] 10/2.2

FOOF 90.7 85.8 87.5 [30b] 3.2/—-1.7

FCH,CH,F 72.1 69.0 73 [30b] —1.0/—4

(FCCF)

FCH,CH,OH 65.9

(FCCO) 53.5 60.1 64.0 [30c] 1.9/-3.9

(HOCC) 54.1 54.6 [30c] —1.1/-0.5

CICH,CH,OH

(CICCO) 65.7 65.0 63.2 [30b] 2.5/1.8

(HOCC) 56.8 64.3 58.4 [30b] —1.6/5.9

CICH,CH,F

(CICCF) 69.8 65.9 68 [30b] 1.8/-2.1

HSSH 84.2 90.4 90.6 [30a] —6.4/—-0.2

FSSF 82.9 88.9 87.9 [30b] -5.0/1.0
Deviations:
5+, 5—/4+, 6—
mean of 10:
3.5/2.3;

Errors are given in the Errors column as MMFF/MP2/6-31G*. A minus sign means that the
calculated value is less than the experimental. The numbers of positive and negative deviations
from experiment and the average errors (arithmetic means of the absolute values of the errors) are
summarized at the bottom of the Errors column. Calculations are by the author; references to
experimental measurements are given for each measurement. The AM1 and PM3 dihedrals vary by
a fraction of a degree depending on the input dihedral. Some molecules have calculated minima at
other dihedrals in addition to those given here, e.g. FCH,CH,F at FCCF 180°.

methods give good geometries, but while these molecular mechanics calculations
all take effectively about one second, MP2 geometry optimizations on these
molecules require typically a minute or so. For larger molecules where MP2
would need hours, MM calculations might still take only seconds. Note, however,
that ab initio methods provide information that molecular mechanics cannot, and
are far more reliable for molecules outside those of the kind used in the MM
training set (Section 3.2.2). The worst MMFF bond length deviation from experiment
among the 20 molecules is 0.021 A (the C=C bond of propene; the MP2 deviation is
0.020 A); most of the other errors are ca. 0.01 A or less. The worst bond angle error
is 13.6°, for HOF, and for HOCI the deviation is 7.9°, the second worst angle error
in the set. This suggests a problem for the MMFF with X—O-Halogen angles, but
while for CH3OF deviation from the MP2 angle (which is likely to be close to
experiment) is MMFF-MP2 = 110.7° — 102.8° = 7.9°, for CH;0Cl the deviation is
only 112.0° — 109.0° = 3.0°.

MMFF dihedral angles are remarkably good, considering that torsional barriers
are believed to arise from subtle quantum mechanical effects. The worst dihedral
angle error is 10°, for HOOH, and the second worst, —5.0°, is for the analogous
HSSH. The (granted, low-level) ab initio HF/3-21G (Chapter 5) and semiempirical
PM3 (Chapter 6) methods also have trouble with HOOH, predicting a dihedral
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angle of 180°. For those dihedrals not involving OO or SS bonds, (an admittedly
small selection), the MMFF errors are only ca. 1°-2°, cf. ca. 2°—6° for MP2.

3.5 Frequencies and Vibrational Spectra Calculated by MM

Any method that can calculate the energy of a molecular geometry can in principle
calculate vibrational frequencies, since these can be obtained from the second
derivatives of energy with respect to molecular geometry (Section 2.5), and the
masses of the vibrating atoms. Some commercially available molecular mechanics
programs, for example the Merck Molecular Force Field as implemented in
SPARTAN [15], can calculate frequencies. Frequencies are useful (Section 2.5)
(1) for characterizing a species as a minimum (no imaginary frequencies) or a
transition state or higher-order saddle point (one or more imaginary frequencies),
(2) for obtaining zero-point energies to correct frozen-nuclei energies (Section 2.2),
and (3) for interpreting or predicting infrared spectra.

1. Characterizing a species. This is not often done with MM, because MM is used
mostly to create input structures for other kinds of calculations, and to study
known (often biological) molecules. Nevertheless MM can yield information
on the curvature of the potential energy surface (see Chapter 2), as calculated
by that particular forcefield, anyway, at the point in question. For example, the
MMFF-optimized geometries of D34 (staggered) and Ds,, (eclipsed) ethane
(Figs. 3.3, 3.4) show, respectively, no imaginary frequencies and one imaginary
frequency, the latter corresponding to rotation about the C/C bond. Thus the
MMFF (correctly) predicts the staggered conformation to be a minimum, and
the eclipsed to be a transition state connecting successive minima along the
torsional reaction coordinate. Again, calculations on cyclohexane conforma-
tions with the MMFF correctly give the boat an imaginary frequency
corresponding to a twisting motion leading to the twist conformation, which
latter has no imaginary frequencies (Fig. 3.10). Although helpful for character-
izing conformations, particularly hydrocarbon conformations, MM is less
appropriate for species in which bonds are being formed and broken. For
example, the symmetrical (D3;,) species in the F~ 4+ CH3;—F Sy2 reaction,
with equivalent C/F partial bonds, is incorrectly characterized by the MMFF
as a minimum rather than a transition state, and the C/C bonds are calculated to
be 1.289 A long, cf. the value of ca. 1.8 A from methods known to be
trustworthy for transition states.

2. Obtaining zero-point energies (ZPEs). ZPEs are essentially the sum of the
energies of each normal-mode vibration. They are added to the raw energies
(the frozen-nuclei energies, corresponding to the stationary points on a
Born—Oppenheimer surface; Section 2.3) in accurate calculations of relative
energies using ab initio (Chapter 5) or DFT (Chapter 7) methods. However,
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the ZPEs used for such corrections are usually obtained from an ab initio or
DFT calculation.

3. Infrared spectra. The ability to calculate the energies (cm™') and relative
intensities of molecular vibrations amounts to being able to calculate infrared
spectra. MM as such cannot calculate the intensities of vibrational modes, since
these involve changes in dipole moments (Section 5.5.3), and dipole moment is
related to electron distribution, a concept that lies outside MM. However,
approximate intensities can be calculated by assigning dipole moments to
bonds or charges to atoms, and such methods have been implemented in MM
programs [31]. Figures 3.14, 3.15, 3.16, and 3.17 compare the experimental IR
spectra (taken in the gas phase by the author) of acetone, benzene, dichloro-
methane and methanol with those calculated with the MMFF program and by the
“higher”, computationally much more demanding, ab initio MP2(fc)/6-31G*
method (Chapter 5). In Chapters 5, 6, and 7, spectra for these four molecules,
calculated by ab initio, semiempirical, and density functional methods, respec-
tively, are given. MP2 spectra seem to generally match experiment better than
those from MM, but the latter method furnishes a rapid way of obtaining
approximate IR spectra. For a series of related compounds, MM might be a
reasonable way to quickly investigate trends in frequencies and intensities.
Extensive surveys of MMFF and MM4 frequencies showed that MMFF root-
mean-square errors are ca. 60 cm ™!, and MM4 errors 25 — 52 cm ™! [5b].

3.6 Strengths and Weaknesses of Molecular Mechanics

3.6.1 Strengths

MM is fast, as shown by the times for optimization of CygHy, in Section 3.3. The
speed of MM is not always at the expense of accuracy: for the kinds of molecules
for which it has been parameterized, it can rival or surpass experiment in the
reliability of its results (Sections 3.3 and 3.4). MM is undemanding in its hardware
requirements: MM calculations on standard personal computers are quite practical.
The characteristics of speed, (frequent) accuracy and modest computer require-
ments have given MM a place in many modelling programs.

Because of its speed and the availability of parameters for almost all the
elements (Section 3.3), MM — even when it does not provide very accurate
geometries — can supply reasonably good input geometries for semiempirical, ab
initio or density functional calculations, and this is one of its main applications. The
fairly recent ability of MM programs to calculate IR spectra with some accuracy
[16, 32] may presage an important application, since frequency calculation by
quantum mechanical methods usually requires considerably more time than geom-
etry optimization). Note that MM frequencies should be calculated using the MM
geometry — unfortunately, MM can’t be used as a shortcut to obtaining frequencies
for a species optimized by a quantum mechanical calculation (ab initio, density
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Fig. 3.14 Experimental (gas phase), and MM (MMFF) and ab initio (MP2(fc)/6-31G*) calcu-
lated IR spectra of acetone

functional or semiempirical), since frequencies must be calculated using the same
method used for the geometry optimization (Section 2.5).

3.6.2 Weaknesses

The possible pitfalls in using MM are discussed by Lipkowitz [33]. The weaknesses
stem from the fact that it ignores electrons. The philosophy behind MM is to think
of a molecule as a collection of atoms subject to forces and to use any practical
mathematical treatment of these forces to express the energy in terms of the
geometric parameters. By parameterization MM can “calculate” electronic proper-
ties; for example, using bond dipoles it can find a dipole moment for a molecule,
and using values that have been calculated for various atom types by quantum
mechanics it can assign charges to atoms. However, such results are obtained purely
by analogy, and their reliability can be negated by unexpected electronic factors to
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Fig. 3.15 Experimental (gas phase), and MM (MMFF) and ab initio (MP2(fc)/6-31G*) calcu-
lated IR spectra of benzene

which MM is oblivious. MM cannot provide information about the shapes and
energies of molecular orbitals nor about related phenomena such as electronic
spectra.

Because of the severely empirical nature of MM, interpreting MM parameters in
terms of traditional physical concepts is dangerous; for example, the bond-stretching
and angle-bending parameters cannot rigorously be identified with spectroscopic
force constants [33]; Lipkowitz suggests that the MM proportionality constants
(Section 3.2.1) be called potential constants. Other dangers in using MM are:

1. Using an inappropriate forcefield: a field parameterized for one class of com-
pounds is not likely to perform well for other classes.

2. Transferring parameters from one forcefield to another. This is usually not
valid.

3. Optimizing to a stationary point that may not really be a minimum (it could be a
“maximum”, a transition state), and certainly may not be a global minimum
(Chapter 2). If there is reason to be concerned that a structure is not a minimum,
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Fig. 3.16 Experimental (gas phase), and MM (MMFF) and ab initio (MP2(fc)/6-31G*) calcu-
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alter it slightly by bond rotation and reoptimize; a transition state should slide
down toward a nearby minimum (e.g. eclipsed ethane altered slightly from the
D3}, geometry and optimized goes to the staggered conformer (g. 3.9).

. Being taken in by vendor hype: MM programs, more so than semiempirical ones

and unlike ab initio or DFT programs, are ruled by empirical factors (the form of
the forcefield and the parameters used in it), and vendors do not usually caution
buyers about potential deficiencies.

. Ignoring solvent and nearby ions: for polar molecules using the in vacuo

structure can lead to quite wrong geometries and energies. This is particularly
important for biomolecules. One way to mitigate this problem is to explicitly
add solvent molecules or ions to the system, which can considerably increase
the time for a calculation. Another might be to subject various plausible in
vacuo-optimized conformations to single-point (no geometry optimization)
calculations that simulate the effect of solvent and take the resulting energies
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lated IR spectra of methanol

as being more reliable than the in vacuo ones. Solvent effects are discussed in

Chapter 8 Section 8.1.

6. Lack of caution about comparing energies calculated with MM. The method
calculates the energy of a molecule relative to a hypothetical strainless idealiza-
tion of the molecule. Using MM to calculate the relative energy of two isomers
by comparing their strain energies (the normal MM energies) is dangerous
because the two strain energies are not necessarily relative to the same hypo-
thetical unstrained species (strain energies are not an unambiguous observable
[34]). This is particularly true for functional group isomers, like (CH3),0O/
CH;CH,0OH and CH;COCH;/H,C=C(OH)CH3, which have quite different
atom types. For isomers consisting of the same kinds of atoms (alkanes cf.
alkanes, say), and especially for conformational isomers and E/Z isomers
(geometric isomers), a good MM forcefield should give strain energies which
reasonably represent relative enthalpies. For example, the MMFF gives for
CH;COCH;/H,C=C(OH)CHj strain energies of 6.9/-6.6 kJ mol ™!, i.e. relative
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energies of 0/—13 kJ mol ™, but the experimental value is ca. 0/44 kJ mol ™!, i.e.
H,C=C(OH)CHj3; is much the higher-energy molecule. On the other hand, the
MMFF yields for gauche-butane/anti-butane strain energies of —21.3/~18.0 kJ
mol ™', i.e. relative energies of 0/3.3 kJ mol™', reasonably close to the experi-
mental value of 0/2.8 kJ mol™'. For chair (D,q), twist (D,), and boat (C,y)
cyclohexane, the MMFF strain energies are —14.9, 9.9 and 13.0 kJ mol™, i.e.
relative energies of 0, 24.8 and 27.9 kJ mol~!, cf. the experimental the estimates
of 0, 24 and 29 kJ mol~'. MM programs can be parameterized to give, not just
strain energy, but enthalpies of formation [1f], and the use of these enthalpies
should make possible energy comparisons between isomers of disparate
structural kinds.

Although chemists often compare stabilities of isomers using enthalpies, we
should remember that equilibria are actually determined by free energies. The
lowest-enthalpy isomer is not necessarily the one of lowest free energy: a
higher-enthalpy molecule may have more vibrational and torsional motion
(it may be springier and floppier) and thus possess more entropy and hence
have a lower free energy. Free energy has an enthalpy and an entropy compo-
nent, and to calculate the latter, one needs the vibrational frequencies. Programs
that calculate frequencies will usually also provide entropies, and with
parameterization for enthalpy this can permit the calculation of free energies.
Note that the species of lowest free energy is not always the major one present:
one low-energy conformation could be outnumbered by one hundred of higher
energy, each demanding its share of the Boltzmann pie.

7. Assuming that the major conformation determines the product. In fact, in a
mobile equilibrium the product ratio depends on the relative reactivities, not
relative amounts, of the conformers (the Curtin-Hammett principle [35]).

8. Failure to exercise judgement: small energy differences (say up to 10-20 kJ
mol ') mean nothing in many cases. The excellent energy results referred to in
Section 3.3 can be expected only for families of molecules (usually small to
medium-sized) for which the forcefield has been parameterized.

Many of the above dangers can be avoided simply by performing test calcula-
tions on systems for which the results are known (experimentally, or “known”
from high-level quantum mechanical calculations). Such a reality check can have
salutary effects on the reliability of one’s results, and not only with reference to
molecular mechanics.

3.7 Summary

This chapter explains the basic principles of molecular mechanics (MM), which rests
on a view of molecules as balls held together by springs. MM began in the 1940s
with attempts to analyze the rates of racemization of biphenyls and of S\?2 reactions.

The potential energy of a molecule can be written as the sum of terms involving
bond stretching, angle bending, dihedral angles and nonbonded interactions. Giving
these terms explicit mathematical forms constitutes devising a forcefield, and
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giving actual numbers to the constants in the forcefield constitutes parameterizing
the field. An example is given of the devising and parameterization of an MM
forcefield.

MM is widely used to create reasonable geometries for input to other calculations.
Such calculations are fast and can be very accurate, provided that the forcefield has
been carefully parameterized for the types of molecules under study. Calculations on
biomolecules is a very important application of MM; the pharmaceutical industry
designs new drugs with the aid of MM: for example, examining how various
candidate drugs fit into the active sites of biomolecules (docking) and the related
aspect of QSAR are of major importance. MM is of some limited use in calculating
the geometries and energies of transition states. Organic synthesis now makes
considerable use of MM, which enables chemists to estimate which products are
likely to be favored and to devise more realistic routes to a target molecule than was
hitherto possible. In molecular dynamics MM is used to generate the forces acting on
molecules and hence to calculate their motions, and in Monte Carlo simulations MM
is used to calculate the energies of the many randomly generated states.

MM is fast, it can be accurate, it is undemanding of computer power, and it
provides reasonable starting geometries for quantum mechanical calculations. It
ignores electrons, and so can provide parameters like dipole moment only by
analogy. One must be cautious about the applicability of MM parameters to the
problem at hand. Stationary points from MM, even when they are relative minima,
may not be global minima. Ignoring solvent effects can give erroneous results for
polar molecules. MM gives strain energies, the difference of which for structurally
similar isomers represent enthalpy differences; parameterization to give enthalpies
of formation is possible. Strictly speaking, relative amounts of isomers depend on
free energy differences. The major conformation (even when correctly identified) is
not necessarily the reactive one.
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3 Molecular Mechanics

Easier Questions

b S

*®

10.

What is the basic idea behind molecular mechanics?

What is a forcefield?

What are the two basic approaches to parameterizing a forcefield?

Why does parameterizing a forcefield for transition states present special
problems?

What is the main advantage of MM, generally speaking, over the other methods
of calculating molecular geometries and relative energies?

Why is it not valid in all cases to obtain the relative energies of isomers by
comparing their MM strain energies?

What class of problems cannot be dealt with by MM?

Give four applications for MM. Which is the most widely used?

MM can calculate the values (cmfl) of vibrational frequencies, but without
“outside assistance” it can’t calculate their intensities. Explain.

Why is it not valid to calculate a geometry by some slower (e.g. ab initio)
method, then use that geometry for a fast MM frequency calculation?

Harder Questions

. One big advantage of molecular mechanics over other methods of calculating

geometries and relative energies is speed. Does it seem likely that continued
increases in computer speed could make MM obsolete?

Do you think it is possible (in practical terms? In principle?) to develop a
forcefield that would accurately calculate the geometry of any kind of mole-
cule?

. What advantages or disadvantages are there to parameterizing a forcefield with

the results of “high-level” calculations rather than the results of experiments?
Would you dispute the suggestion that no matter how accurate a set of MM
results might be, they cannot provide insight into the factors affecting a
chemical problem, because the “ball and springs” model is unphysical?

. Would you agree that hydrogen bonds (e.g. the attraction between two water

molecules) might be modelled in MM as weak covalent bonds, as strong van
der Waals or dispersion forces, or as electrostatic attractions? Is any one of
these three approaches to be preferred in principle?

Replacing small groups by “pseudoatoms” in a forcefield (e.g. CHz by an
“atom” about as big) obviously speeds up calculations. What disadvantages
might accompany this simplification?

Why might the development of an accurate and versatile forcefield for inor-
ganic molecules be more of a challenge than for organic molecules?
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8. What factor(s) might cause an electronic structure calculation (e.g. ab initio or
DFT) to give geometries or relative energies very different from those obtained
from MM?

9. Compile a list of molecular characteristics/properties that cannot be calculated
purely by MM.

10. How many parameters do you think a reasonable forcefield would need to
minimize the geometry of 1,2-dichloroethane?






Chapter 4
Introduction to Quantum Mechanics
in Computational Chemistry

It is by logic that we prove, but by intuition that we discover.
J.H. Poincaré, ca. 1900

Abstract A historical view demystifies the subject. The focus is strongly on
chemistry. The application of quantum mechanics (QM) to computational chemis-
try is shown by explaining the Schrodinger equation and showing how this equation
led to the simple Hiickel method, from which the extended Hiickel method
followed. This sets the stage well for ab initio theory, in Chapter 5.

QM grew out of studies of blackbody radiation and of the photoelectric effect.
Besides QM, radioactivity and relativity contributed to the transition from classical
to modern physics. The classical Rutherford nuclear atom, the Bohr atom, and the
Schrodinger wave-mechanical atom are discussed. Hybridization, wavefunctions,
Slater determinants and other basic concepts are explained. For obtaining eigen-
vectors and eigenvalues from the secular equations the elegant and simple matrix
diagonalization method is explained and used. All the necessary mathematics is
explained.

4.1 Perspective

Chapter 1 outlined the tools that computational chemists have at their disposal,
Chapter 2 set the stage for the application of these tools to the exploration of
potential energy surfaces, and Chapter 3 introduced one of these tools, molecular
mechanics. In this chapter you will be introduced to quantum mechanics, and to
quantum chemistry, the application of quantum mechanics to chemistry. Molecular
mechanics is based on classical physics, physics before modern physics; one of the
cornerstones of modern physics is quantum mechanics, and ab initio (Chapter 5),
semiempirical (Chapter 6), and density functional (Chapter 7) methods belong to
quantum chemistry. This chapter is designed to ease the way to an understanding of

E.G. Lewars, Computational Chemistry, 85
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the role of quantum mechanics in computational chemistry. The word quantum
comes from Latin (quantus, “how much?”, plural quanta) and was first used in our
sense by Max Planck in 1900, as an adjective and noun, to denote the constrained
quantities or amounts in which in which energy can be emitted or absorbed.
Although the term quantum mechanics was apparently first used by Born (of the
Born—Oppenheimer approximation, Section 2.3) in 1924, in contrast to classical
mechanics, the matrix algebra and differential equation techniques that we now
associate with the term were presented in 1925 and 1926 (Section 4.2.6).

“Mechanics” as used in physics is traditionally the study of the behavior of
bodies under the action of forces like, e.g., gravity (celestial mechanics). Molecules
are made of nuclei and electrons, and quantum chemistry deals, fundamentally,
with the motion of electrons under the influence of the electromagnetic force
exerted by nuclear charges. An understanding of the behavior of electrons in
molecules, and thus of the structures and reactions of molecules, rests on quantum
mechanics and in particular on that adornment of quantum chemistry, the Schrodinger
equation. For that reason we will consider in outline the development of quantum
mechanics leading up to the Schrodinger equation, and then the birth of quantum
chemistry with (at least as far as molecules of reasonable size goes) the application
of the Schrodinger equation to chemistry by Hiickel. This simple Hiickel method is
currently disdained by some theoreticians, but its discussion here is justified by the
fact that (1) it continues to be useful in research and (2) it “is immensely useful as a
model, today . .. Because it is the model which preserves the ultimate physics, that
of nodes in wave functions. It is the model which throws away absolutely every-
thing except the last bit, the only thing that if thrown away would leave nothing. So
it provides fundamental understanding.”’ A discussion of a generalization of the
simple Hiickel method, the extended Hiickel method, sets the stage for Chapter 5.
The historical approach used here, although perforce somewhat superficial, may
help to ameliorate the apparent arbitrariness of certain features of quantum chemis-
try [1, 2]. An excellent introduction to quantum chemistry is the text by Levine [3].

Our survey of the factors that led to modern physics and quantum chemistry will
follow the sequence:

The origins of quantum theory: blackbody radiation and the photoelectric effect
Radioactivity (brief)

Relativity (very brief)

The nuclear atom

The Bohr atom

The wave mechanical atom and the Schrodinger equation

SRR

"Personal communication from Professor Roald Hoffmann, 2002 February 13. See too
Section 4.4.1, footnote.
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4.2 The Development of Quantum Mechanics.
The Schrodinger Equation

4.2.1 The Origins of Quantum Theory: Blackbody Radiation
and the Photoelectric Effect

Three discoveries mark the transition from classical to modern physics: quantum
theory, radioactivity, and relativity (Fig. 4.1). Quantum theory had its origin in the
study of blackbody radiation and the photoelectric effect.

4.2.1.1 Blackbody Radiation

A blackbody is one that is a perfect absorber of radiation: it absorbs all the radiation
falling on it, without reflecting any. More relevant for us, the radiation emitted by a
hot blackbody depends (as far as the distribution of energy with wavelength goes)
only on the temperature, not on the material the body is made of, and is thus
amenable to relatively simple analysis. The sun is approximately a blackbody; in
the lab a good source of blackbody radiation is a furnace with blackened insides and
a small aperture for the radiation to escape. In the second half of the nineteenth
century the distribution of energy with respect to wavelength that characterizes
blackbody radiation was studied, in research that is associated mainly with Lummer
and Pringsheim [1]. They plotted the flux AF (in modern SI units, J s~ m™2) per
wavelength emitted by a blackbody over a wavelength range AL versus the wave-
length, for various temperatures (Fig. 4.2): AF/AA versus L. The result is a histo-
gram or bar graph in which the area of each rectangle is (AF/AL)AL = AF and
represents the flux (energy per second per unit area) emitted in the wavelength
range covered by that AL; AF/AM can be called the flux density for that particular

blackbody
radiation photoelectric
i effect
mechanics optics
: P quantum theory radioactivity

Galileo, Newton, etc. Newton, Huygens, Young

\ / Planck, Einstein, etc. =~ Becquerel

classical physics (physics before 1900) modern physics (after 1900)

electromagnetism re.lativi.ty
Faraday, Maxwell Einstein

Fig. 4.1 The discoveries marking the transition from classical to modern to physics. Although
radioactivity was discovered in 1896, its understanding had to wait for relativity and quantum
theory
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Fig. 4.2 In the limit the bar graph becomes a curve, the graph of f{(/) versus A, where

f(A) = Alim &L = 9 | essentially intensity of radiation versus wavelength. Planck’s efforts to find
i A

the function f(1) led to the quantum theory

wavelength range AL. The total area of all the rectangles is the total flux emitted
over its whole wavelength range by the blackbody. As A\ approaches zero (note
that for the nonmonochromatic radiation from a blackbody the flux at a particular
wavelength is essentially zero) the histogram approaches being a smooth curve, the
ratio of finite increments approximates a derivative, and we can ask: what is the
function (Fig. 4.2) dF/d/ = f(4)? In the answer to this question lay the beginnings of
quantum theory.

Late nineteenth century physics, classical physics at its zenith, predicted that the
flux density emitted by a blackbody should rise without limit as the wavelength
decreases. This is because classical physics held that radiation of a particular fre-
quency was emitted by oscillators (atoms or whatever) vibrating with that frequency,
and that the average energy of an oscillator was independent of its frequency; since the
number of possible frequencies increases without limit, the flux density (energy per
second per unit area per wavelength interval) from the blackbody should rise without
limit toward higher frequencies or shorter wavelengths, into the ultraviolet, and so the
total flux (energy per second per unit area) should be infinite. This is clearly absurd and
was recognized as being absurd; in fact, it was called “the ultraviolet catastrophe” [1].
To understand the nature of blackbody radiation and to escape the ultraviolet catas-
trophe, physicists in the 1890s tried to find the function (Fig. 4.2) f(1).

Without breaking with classical physics, Wien had found a theoretical equation
that fit the Lummer—Pringsheim curve at relatively short wavelengths, and Rayleigh
and Jeans one that fit at relatively long wavelengths. Max Planck® adopted a
different approach: he found, in 1900, a purely empirical equation dF/d. = f(4)

>Max Planck, born Kiel, Germany, 1858. Ph.D. Berlin 1879. Professor, Kiel, Berlin. Nobel Prize in
physics for quantum theory of blackbody radiation 1918. Died Gottingen, 1947.
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that fit the facts, and then tried to interpret the equation theoretically. To do this he
had to make two assumptions:

1. The total energy possessed by the oscillators in the frequency range v + dv (v is
the Greek letter nu, commonly used for frequency, not to be confused with v,
vee, commonly used for velocity) is proportional to the frequency:

Eot (v+dv) oc v 4.1

2. The emission or absorption of radiation of frequency v by the collection of
oscillators is caused by jumps between energy levels, with loss or gain of a
quantity of energy kv:

AE = kv (4.2)

The constant k, now recognized as a fundamental constant of nature, 6.626 X
1077 s particlefl, is called Planck’s constant, and is denoted by #, so Eq. 4.2
becomes

AE = hy #(4.3)

Why the letter 4? Evidently because / is sometimes used in mathematics to
denote infinitesimals and Planck intended to let this quantity go to zero (this was
suggested to me by the late Professor Philip Morrison of MIT). In the event, it
turned out to be small but finite. Apparently the letter was first used to denote the
new constant in a talk given by Planck at a meeting (Sitzung) of the German
Physical Society in Berlin, on 14 December 1900 [4]. The interpretation of
Eq. 4.3, a fundamental equation of quantum theory, as meaning that the energy
represented by radiation of frequency v is absorbed and emitted in quantized
amounts /v (definite, constrained amounts; jerkily rather than continuously) was,
ironically, apparently never fully accepted by Planck [5]. Planck’s constant is a
measure of the graininess of our universe: because it is so small processes
involving energy changes often seem to take place smoothly, but on an ultrami-
croscopic scale the graininess is there [6]. The constant 4 is the hallmark of
quantum expressions, and its finite value distinguishes our universe from a
nonquantum one.

4.2.1.2 The Photoelectric Effect

An apparently quite separate (but in science no two phenomena are really ever
unrelated) phenomenon that led to Eq. 4.3, which is to say to quantum theory, is the
photoelectric effect: the ejection of electrons from a metal surface exposed to light.
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kinetic energy
of the emitted electrons,

2 _ _
1/2 mv2 1/2 mve = hp -W

2 frequency, 7>, of the light

Fig. 4.3 The photoelectric effect. Einstein explained the effect by extending to light Planck’s idea
of the absorption and emission of energy in discrete amounts: he postulated that light itself
consisted of discrete particles

The first inkling of this phenomenon was due to Hertz,® who in 1888 noticed that
the potential needed to elicit a spark across two electrodes decreased when ultravi-
olet light shone on the negative electrode. Beginning in 1902, the photoelectric
effect was first studied systematically by Lenard,” who showed that the phenome-
non observed by Hertz was due to electron emission.

Facts (Fig. 4.3) that classical physics could not explain were the existence of a
threshold frequency for electron ejection, that the kinetic energy of the electrons is
linearly related to the frequency of the light, and the fact that the electron flux
(electrons per unit area per second) is proportional to the intensity of the light.
Classical physics predicted that the electron flux should be proportional to the light
frequency, decreasing with a decrease in frequency, but without sharply falling to
zero below a certain frequency, and that the kinetic energy of the electrons should
be proportional to the intensity of the light, not the frequency.

These facts were explained by Einstein’ in 1905 in a way that now appears very
simple, but in fact relies on concepts that were at the time revolutionary. Einstein
went beyond Planck and postulated that not only was the process of absorption and
emission of light quantized, but that light itself was quantized, consisting in effect
of particles of energy

*Heinrich Hertz, born Hamburg, Germany, 1857. Ph.D. Berlin, 1880. Professor, Karlsruhe, Bonn.
Discoverer of radio waves. Died Bonn, 1894.

“Philipp Lenard, German physicist, born Pozsony, Austria-Hungary (now Bratislava, Slovakia),
1862. Ph.D. Heidelberg 1886. Professor, Heidelberg. Nobel Prize in physics 1905, for work on
cathode rays. Lenard supported the Nazis and rejected Einstein’s theory of relativity. Died
Messelhausen, Germany, 1947.

SAlbert Einstein, German—Swiss—American physicist. Born Ulm, Germany, 1879. Ph.D. Ziirich
1905. Professor Ziirich, Prague, Berlin; Institute for Advanced Studies, Princeton, New Jersey.
Nobel Prize in physics 1921 for theory of the photoelectric effect. Best known for the special
(1905) and general (1915) theories of relativity. Died Princeton, 1955.
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Eparticle =hv . (4.4)
v = frequency of the light

These particles became known as photons (the word was coined by Gilbert Lewis,
ca. 1923, but his photon was not the particle of modern physics). If the energy of the
photon before it removes an electron from the metal is equal to the energy required to
tear the electron free of the metal, plus the kinetic energy of the free electron, then

hv =W 4 1pme? 4.5)

W = work function of the metal, energy needed to remove an electron (with no
energy left over), m. = mass of an electron, v = velocity of electron ejected by the
photon, 1/, m. v* = Kinetic energy of the free electron

Rearranging Eq. 4.5:

Vome? = hv — W (4.6)

Thus a plot of the kinetic energies of the electrons (1/am.v*) versus the frequency
v of the light should be a straight line of positive slope (#; this is one way to
find Planck’s constant) intersecting the v axis at a positive value (v = W/h), as
experiment indeed showed (Fig. 4.3).

Planck’s explanation of the blackbody radiation curves (1900 [4]) and Einstein’s
explanation of the facts of the photoelectric effect (1905 [7]) indicated that the
flow of energy in physical processes did not take place continuously, as had
been believed, but rather jerkily, in discrete jumps, quantum by quantum. The
contributions of Planck and Einstein were the signal developments marking the
birth of quantum theory and the transition from classical to modern physics.

4.2.2 Radioactivity

Brief mention of radioactivity is in order because it, along with quantum mechanics
and relativity, transformed classical into modern physics. Radioactivity was
discovered by Becquerel in 1896. However, an understanding of how materials
like uranium and radium could emit, over the years, a million times more energy
than would be permitted by chemical reactions, had to await Einstein’s special
theory of relativity (Section 4.2.3), which showed that a tiny, unnoticeable decrease
in mass represented the release of a large amount of energy.

4.2.3 Relativity

Relativity is relevant to computational chemistry because it must often be explicitly
taken into account in accurate calculations involving atoms heavier than about
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chlorine or bromine (see below) and because, strictly speaking, the Schrodinger
equation, the fundamental equation of quantum chemistry, is an approximation to a
relativistic equation, the Dirac® equation.

Relativity was discovered in by Einstein in 1905, when he formulated the special
theory of relativity, which deals with nonaccelerated motion in the absence of
significant gravitational fields (general relativity, published by Einstein in 1915,
is concerned with accelerated motion and gravitation). Special relativity predicted a
relationship between mass and energy, the famous E = mc? equation and, of more
direct relevance to computational chemistry, showed that the mass of a particle
increases with its velocity, dramatically so near the velocity of light. In heavier
elements the inner electrons are moving at a significant fraction of the speed of
light, and the relativistic increase in their masses affects the chemistry of these
elements (actually, some physicists do not like to think in terms of rest mass
and relativistic mass, but that is a controversy that need not concern us here).
In computational chemistry relativistic effects on electrons are usually accounted
for by what are called effective core potentials or pseudopotentials (Chapter 5,
Section 5.3.3.7, and Chapter 8, Section 8.3).

4.2.4 The Nuclear Atom

The “nuclear atom” is the picture of the atom as a positive nucleus surrounded by
negative electrons. Although the idea of atoms in speculative philosophy goes back
to at least the time of Democritus,7 the atom as the basis of a scientifically credible
theory emerges only in nineteenth century, with the rationalization by Dalton® in
1808 of the law of definite proportions. Nevertheless, atoms were regarded by many
scientists of the positivist school of Ernst Mach as being at best a convenient
hypothesis, despite the success of the atomistic Maxwell-Boltzmann® kinetic

%Paul Adrien Maurice Dirac, born Bristol, England, 1902. Ph.D. Cambridge, 1926. Professor,
Cambridge, Dublin Institute for Advanced Studies, University of Miami, Florida State University.
Nobel prize in physics 1933 (shared with Schrodinger). Known for his mathematical elegance, for
connecting relativity with quantum theory, and for predicting the existence of the positron. Died
Tallahassee, Florida, 1984.

"Democritus, Greek philosopher, born Abdera, Thrace (the eastern Balkans) ca. 470 Bc. Died ca.
370 BcC.

8John Dalton, born Eaglesfield, England, 1766. Considered the founder of quantitative chemical
atomic theory: law of definite proportions, pioneered determination of atomic weights. Cofounder
of British Association for the Advancement of Science. Died Manchester, England, 1844.
9Ludwig Boltzmann, born Vienna 1844. Ph.D. Vienna. Professor Graz, Vienna. Developed the
kinetic theory of gases independently of Maxwell (viz., Boltzmann constant’s, k). Firm supporter
of the atomic theory in opposition to Mach and Ostwald, helped develop concept of entropy (S).
Died Duino, Austria (now in Italy), 1906 (suicide incurred by depression). Inscribed on
gravestone: S = k log W.
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theory of gases and it was not until 1908, when Perrin’s'® experiments confirmed
Einstein’s atomistic analysis of Brownian motion that the reality of atoms was at
last accepted by such eminent holdouts as Boltzmann’s opponent Ostwald.''

The atom has an internal structure; it is thus not “atomic” in the Greek sense and
is more than the mere restless particle of kinetic theories of gases or of Brownian
motion. This was shown by two lines of work: the study of the passage of electricity
through gases and the behavior of certain solutions. The study of the passage of
electricity through gases at low pressure was a very active field of research in the
nineteenth century and only a few of the pioneers in what we can now see as the
incipient field of subatomic physics will be mentioned here. The observation by
Pliicker in 1858 of a fluorescent glow near the cathode on the glass walls of a
current-carrying evacuated tube was one of the first inklings that particles might be
elicited from atoms. That these were indeed particles rather than electromagnetic
rays was indicated by Crookes in the 1870s, by showing that they could be deflected
by a magnet. Goldstein showed in 1886 the presence of particles of opposite charge
to those emitted from the cathode, and christened the latter “cathode rays”. That the
cathode rays were negative particles was proved by Perrin in 1895, when he showed
that they imparted a charge to an object on which they fell. Further evidence of the
particle nature of cathode rays came at around the same time from Thomson,'> who
showed (1897) that they are deflected in the expected direction by an electric field.
Thomson also measured their mass-to-charge ratio and from the smallest possible
value of charge in electrochemistry calculated the mass of these particles to be
about 1/1,837 of the mass of a hydrogen atom. Lorentz later applied the name
“electron” to the particle, adopting a term that had been appropriated from the
Greek by Stoney for a unit of electric current (eAektpov: amber, which acquires a
charge when rubbed). Thomson has been called the discoverer of the electron.

It was perhaps Thomson who first suggested a specific structure for the atom in
terms of subatomic particles. His “plum pudding” model (ca. 1900), which placed
electrons in a sea of positive charge, like raisins in a pudding., accorded with the
then-known facts in evidently permitting electrons to be removed under the influ-
ence of an electric potential. The modern picture of the atom as a positive nucleus
with extranuclear electrons was proposed by Rutherford'? in 1911. It arose from

OJean Perrin, born Lille, France, 1870. Ph.D. Ecole Normal Supérieure, Paris. Professor Univer-
sity of Paris. Nobel Prize in physics 1923. Died New York, 1942.

"'Wilhelm Friedrich Ostwald, German chemist, born Riga, Latvia, 1853. Ph.D. Dorpat, Estonia.
Professor Riga, Leipzig. A founder of physical chemistry, opponent of the atomic theory till
convinced by the work of Einstein and Perrin. Nobel Prize in chemistry 1909. Died near Leipzig,
1932.

128y Joseph John Thomson, born near Manchester, 1856. Professor, Cambridge. Nobel Prize in
physics 1906. Knighted 1908. Died Cambridge, 1940.

Ernest Rutherford (Baron Rutherford), born near Nelson New Zealand, 1871. Studied at Cam-
bridge under J. J. Thomson. Professor McGill University (Montreal), Manchester, and Cambridge.
Nobel prize in chemistry 1908 for work on radioactivity, alpha particles, and atomic structure.
Knighted 1914. Died London, 1937.
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experiments in which alpha particles from a radioactive sample were shot through
very thin gold foil. Most of the time the particles passed through, but occasionally
one bounced back, indicating that the foil was mostly empty space, but that present
were particles which were small and, compared to the mass of the electron (which
was much too light to stop an alpha particle), massive. From these experiments
emerged our picture of the atom as consisting of a small, relatively massive positive
nucleus surrounded by electrons: the nuclear atom. Rutherford gave the name
proton (from Greek npwtol, primary or first) to the least massive of these nuclei
(the hydrogen nucleus).

There is another thread to the development of the concept of the atom as a
composite of subatomic particles. The enhanced effect of electrolytes (solutes that
provide electrically conducting solutions) on boiling and freezing points and on the
osmotic pressure of solutions led Arrhenius'* in 1884 to propose that these sub-
stances exist in water as atoms or groups of atoms with an electric charge. Thus
sodium chloride in solution would not, as was generally held, exist as NaCl
molecules but rather as a positive sodium “atom” and a negative chlorine “atom”;
the presence of two particles instead of the expected one accounted for the
enhanced effects. The ability of atoms to lose or gain charge hinted at the existence
of some kind of subatomic structure, and although the theory was not warmly
received (Arrhenius was almost failed on his Ph.D. exam), the confirmation by
Thomson (ca. 1900) that the atom contains electrons made acceptable the concept
of charged atoms with chemical properties quite different from those of the neutral
ones. Arrhenius was awarded the Nobel Prize for his (albeit significantly modified)
Ph.D. work.

4.2.5 The Bohr Atom

The nuclear atom as formulated by Rutherford faced a serious problem: the
electrons orbit the nucleus like planets orbiting the Sun. An object engaged in
circular (or elliptical) motion experiences an acceleration because its direction is
changing and thus its velocity, which unlike speed is a vector, is also changing. An
electron in circular motion about a nucleus would experience an acceleration
toward the nucleus, and since from Maxwell’s equations of electromagnetism an
accelerated electric charge radiates away energy, the electron should lose energy by
spiralling in toward the nucleus, ending up there, with no kinetic and potential
energy; calculations show this should happen in a fraction of a second [8].

!“Svante Arrhenius, born near Uppsala, Sweden, 1859. Ph.D. University of Stockholm. Nobel
Prize in chemistry 1903. Professor Stockholm. Died Stockholm 1927.
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A way out of this dilemma was suggested by Bohr'” in 1913 [9, 10]. He retained
the classical picture of electrons orbiting the nucleus in accord with Newton’s laws,
but subject to the constraint that the angular momentum of an electron must be an
integral multiple of A/2m:

muvr =n(h/2n), n=1,2,3, 4.7

m= electron mass

v = electron velocity

r = radius of electron orbit

h = Planck’s constant

Equation 4.7 is the Bohr postulate, that electrons can defy Maxwell’s laws
provided they occupy an orbit whose angular momentum (corresponding to an
orbit of appropriate radius) satisfies Eq. 4.7. The Bohr postulate is not based on a
whim, as most textbooks imply, but rather follows from: (1) the Plank equation
Eq. 4.3, AE = hv and (2) starting with an orbit of large radius such that the motion
is essentially linear and classical physics applies, as no acceleration is involved,
then extrapolating to small-radius orbits. The fading of quantum-mechanical
equations into their classical analogues as macroscopic conditions are approached
is called the correspondence principle [11].

Using the postulate of Eq. 4.7 and classical physics, Bohr derived an equation
for the energy of an orbiting electron in a one-electron atom (a hydrogenlike atom,
Hor He™, etc.) in terms of the charge on the nucleus and some constants of nature.
Starting with the total energy of the electron as the sum of its kinetic and potential
energies:

£ I, Ze?
=-mv —
T2 dme, r

(4.8)

Z = nuclear charge (1 for H, 2 for He, etc.), e = electron charge, ¢, = permitivity of
the vacuum.
Using force = mass x acceleration:

Ze? mv?
7 4.9
4reyr? r 4.9)
i.e.
7 2
¢ (4.10)
dmegr

Niels Bohr, born Copenhagen, 1885. Ph.D. University of Copenhagen. Professor, University of
Copenhagen. Nobel Prize in physics 1922. Founder of the “Copenhagen school” interpretation of
quantum theory. Died Copenhagen, 1962.
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So from Eq. 4.8

1
E,:Emvzfmvzzfimvz 4.11)

From Egs. 4.7 and 4.10:

Ze?
= 4.12
Y 2¢enh ( )
So from Eqgs. 4.11 and 4.12:
Z%e*m
Ei=——>—— 4.13
! 8 92n2h? “.13)

Equation 4.13 expresses the total (kinetic plus potential) energy of the electron
of a hydrogenlike atom in terms of four fundamental quantities of our universe:
electron charge, electron mass, the permittivity of empty space, and Planck’s
constant. From Eq. 4.13 the energy change involved in emission or absorption of
light by a hydrogenlike atom is simply

mZ2e* (1 1
AE=Ep—Ej=-—"(——— 4.14
2 tl 8802h2 <n12 I’l22> ( )

where AE is the energy of a state characterized by quantum number 7,, minus the
energy of a state characterized by quantum number 7;. Note that from Eq. 4.13 the
total energy increases (becomes less negative) as n increases (= 1, 2, 3, ...), so
higher-energy states are associated with higher quantum numbers n and AE > 0
corresponds to absorption of energy and AE < 0 to emission of energy. The Planck
relation between the amount of radiant energy absorbed or emitted and its
frequency (AE = hv, Eq. 4.3), Eq. 4.14 enables one to calculate the frequencies
of spectroscopic absorption and emission lines for hydrogenlike atoms. The agree-
ment with experiment is excellent, and the same is true too for the calculated
ionization energies of hydrogenlike atoms (AE for n, = oo in Eq. 4.14).

4.2.6 The Wave Mechanical Atom and the Schrodinger Equation

The Bohr approach works well for hydrogenlike atoms, atoms with one electron:
hydrogen, singly-ionized helium, doubly-ionized lithium, etc. However, it showed
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many deficiencies for other atoms, which is to say, almost all atoms of interest other
than hydrogen. The problems with the Bohr atom for these cases were:

1. There were lines in the spectra corresponding to transitions other than simply
between two n values (cf. Eq. 4.14). This was rationalized by Sommerfeld in
1915, by the hypothesis of elliptical rather than circular orbits, which essentially
introduced a new quantum number k, a measure of the eccentricity of the
elliptical orbit. Electrons could have the same n but different k’s, increasing
the variety of possible electronic transitions; £ is related to what we now call the
azimuthal quantum number, /; [ = k — 1).

2. There were lines in the spectra of the alkali metals that were not accounted for by
the quantum numbers » and k. In 1925 Goudsmit and Uhlenbeck showed that
these could be explained by assuming that the electron spins on an axis; the
magnetic field generated by this spin around an axis could reinforce or oppose
the field generated by the orbital motion of the electron around the nucleus. Thus
for each n and £ there are two closely-spaced “magnetic levels”, making possible
new, closely-spaced spectral lines. The spin quantum number, my = +1/2 or —1/2,
was introduced to account for spin.

3. There were new lines in atomic spectra in the presence of an external magnetic
field (not to be confused with the fields generated by the electron itself). This
Zeeman effect (1896) was accounted for by the hypothesis that the electron
orbital plane can take up only a limited number of orientations, each with a
different energy, with respect to the external field. Each orientation was asso-
ciated with a magnetic quantum number m,, (often designated m) = —/, —( — 1),...,
(I — 1), 1). Thus in an external magnetic field the numbers #, k (later /) and m are
insufficient to describe the energy of an electron and new transitions, invoking
My, are possible.

The only quantum number that flows naturally from the Bohr approach is the
principal quantum number, #; the azimuthal quantum number / (a modified k), the
spin quantum number mg and the magnetic quantum number m,, are all ad hoc,
improvised to meet an experimental reality. Why should electrons move in ellipti-
cal orbits that depend on the principal quantum number n? Why should electrons
spin, with only two values for this spin? Why should the orbital plane of the electron
take up with respect to an external magnetic field only certain orientations, which
depend on the azimuthal quantum number? All four quantum numbers should
follow naturally from a satisfying theory of the behaviour of electrons in atoms.

The limitations of the Bohr theory arise because it does not reflect a fundamental
facet of nature, namely the fact that particles possess wave properties. These limi-
tations were transcended by the wave mechanics of Schrédinger,“’ when he devised
his famous equation in 1926 [12, 13]. Actually, the year before the Schrodinger

1%Erwin Schrodinger, born Vienna, 1887. Ph.D. University of Vienna. Professor Stuttgart, Berlin,
Graz (Austria), School for Advanced Studies Dublin, Vienna. Nobel Prize in physics 1933 (shared
with Dirac). Died Vienna, 1961.
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equation was published, Heisenberg'’ published his matrix mechanics approach to
calculating atomic (and in principle molecular) properties. The matrix approach is
at bottom equivalent to Schrodinger’s use of differential equations, but the latter has
appealed to chemists more because, like physicists of the time, they were unfamiliar
with matrices (Section 4.3.3), and because the wave approach lends itself to a
physical picture of atoms and molecules while manipulating matrices perhaps tends
to resemble numerology. Matrix mechanics and wave mechanics are usually said to
mark the birth of quantum mechanics (1925, 1926), as distinct from quantum theory
(1900). We can think of quantum mechanics as the rules and equations used to
calculate the properties of molecules, atoms, and subatomic particles.

Wave mechanics grew from the work of de Broglie,'® who in 1923 was led to
this “wave-particle duality” by his ability to deduce the Wien blackbody equation
(Section 4.2.1) by treating light as a collection of particles (“light quanta”) analo-
gous to an ideal gas [14]. This suggested to de Broglie that light (traditionally
considered a wave motion) and the atoms of an ideal gas were actually not
fundamentally different. He derived a relationship between the wavelength of
a particle and its momentum, by using the time-dilation principle of special
relativity, and also from an analogy between optics and mechanics. The reasoning
below, while perhaps less profound than de Broglie’s, may be more accessible.
From the special theory of relativity, the relation between the energy of a photon
and its mass is

E, = mc? x(4.15)

where c is the velocity of light. From the Planck equation 4.3 for the emission and
absorption of radiation, the energy E, of a photon may be equated with the energy
change AF of an oscillator, and we may write

E, = hv x(4.16)
From Egs. 4.15 and 4.16

me* = hy 4.17)
Since v = ¢/4, Eq. 4.17 can be written

me = h/2 (4.18)

17 Werner Heisenberg, born Wiirzburg, Germany, 1901. Ph.D. Munich, 1923. Professor, Leipzig
University, Max Planck Institute. Nobel Prize 1932 for his famous uncertainty principle of 1927.
Director of the German atomic bomb/reactor project 1939-1945. Held various scientific adminis-
trative positions in postwar (Western) Germany 1945-1970. Died Munich 1976.

"8Louis de Broglie, born Dieppe, 1892. Ph.D. University of Paris. Professor Sorbonne, Institut
Henri Poincaré (Paris). Nobel Prize in physics 1929. Died Paris, 1987.
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and because the product of mass and velocity is momentum, Eq. 4.18 can be written
pp=h/A (4.19)

relating the momentum of a photon (in its particle aspect) to its wavelength (in its
wave aspect). If Eq. 4.19 can be generalized to any particle, then we have

p=h/i *(4.20)

relating the momentum of a particle to its wavelength; this is the de Broglie
equation.

If a particle has wave properties it should be describable by somehow combining
the de Broglie equation and a classical wave equation. A highly developed nine-
teenth century mathematical theory of waves was at Schrodinger’s disposal, and the
union of a classical wave equation with Eq. 4.20 was one of the ways that he derived
his wave equation. Actually, it is said that the Schrodinger equation cannot actually
be derived, but is rather a postulate of quantum mechanics that can only be justified
by the fact that it works [15]; this fine philosophical point will not be pursued here.
Of his three approaches [15], Schrodinger’s simplest is outlined here. A standing
wave (one with fixed ends like a vibrating string or a sound wave in a flute) whose
amplitude varies with time and with the distance from the ends is described by

a*f(x An?
dx(z ) _ - W 4.21)

f(x) = amplitude of the wave, x = distance from some chosen origin, 1 = wave-
length
From Eq. 4.20:

= h/mv 4.22)

/A = wavelength of particle of mass m and velocity v
Identifying the wave with a particle and substituting for / from Eq. 4.22 into
Eq. 4.21:

de() 42 22.
s

(4.23)

Since the total energy of the particle is the sum of its kinetic and potential
energies:

Fxin=E —Epy =E—V (4.24)
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E = total energy of the particle and V = potential energy (the usual symbol), i.e.

1
EmﬁzE—v (4.25)

Substituting Eq. 4.25 for mv? into Eq. 4.23:

d*f (x) _ 8n’m
dx? h?

(E-V)() (4.26)

f(x) = amplitude of the particle/wave at a distance x from some chosen origin,
m = mass of the particle, E = total energy (kinetic + potential) of the particle,
V = potential energy of the particle (possibly a function of x).

This is the Schrodinger equation for one-dimensional motion along the spatial
coordinate x. It is usually written

d*y n 8n’m
dx? h?

(E-V)y=0 4.27)

yy = amplitude of the particle/wave at a distance x from some chosen origin

The one-dimensional Schrodinger equation is easily elevated to three-dimen-
sional status by replacing the one-dimensional operator d*/dx* by its three-dimen-
sional analogue

® P,

@“ra—yz—F@: (4.28)

V? is the Laplacian operator “del squared.” Replacing d*/dx* by V?, Eq. 4.27
becomes

8m2m

Vi) + E

(E-V)y=0 «(4.29)

This is a common way of writing the Schrodinger equation. It relates the
amplitude  of the particle/wave to the mass m of the particle, its total energy E
and its potential energy V. The meaning of  itself is, arguably, unknown [2] but the
currently popular interpretation of 1%, due to Born (Section 2.3) and Pauli'? is that it
is proportional to the probability of finding the particle near a point P(x, y, z) (recall
that  is a function of x, y, z):

Prob (dx, dy, dz) = * dx dy dz %(4.30)

MMW:/Ww@ﬁ (4.31)
Vv

19Wolfgang Pauli, born Vienna, 1900. Ph.D. Munich 1921. Professor Hamburg, Zurich, Princeton,
Zurich, . Best known for the Pauli exclusion principle. Nobel Prize 1945.Died Zurich 1958.
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The probability of finding the particle in an infinitesimal cube of sides dx, dy, dz
is ’dxdydz, and the probability of finding the particle somewhere in a volume V
is the integral over that volume of 1* with respect to dx, dy, dz (a triple integral);
W? is thus a probability density function, with units of probability per unit volume.
Born’s interpretation was in terms of the probability of a particular state, Pauli’s the
chemist’s usual view, that of a particular location.

The Schrodinger equation overcame the limitations of the Bohr approach (see
the beginning of Section 4.2.6): the quantum numbers follow naturally from it
(actually the spin quantum number m requires a relativistic form of the Schrodinger
equation, the Dirac equation, and electron “spin” is apparently not really due to the
particle spinning like a top). The Schrodinger equation can be solved in an exact
analytical way only for one-electron systems like the hydrogen atom, the helium
monocation and the hydrogen molecule ion, but the mathematical approach is
complicated and of no great relevance to the application of this equation to the
study of serious molecules. However a brief account of the results for hydrogenlike
atoms is in order.

The standard approach to solving the Schrodinger equation for hydrogenlike
atoms involves transforming it from Cartesian (x, y, z) to polar coordinates (r, 8, ©),
since these accord more naturally with the spherical symmetry of the system. This
makes it possible to separate the equation into three simpler equations, f(r) = 0,
f(0) = 0, and f(p) = 0. Solution of the f(r) equation gives rise to the n quantum
number, solution of the f(#) equation to the / quantum number, and solution of the
f(p) equation to the m,, (often simply called m) quantum number. For each specific
n=n',1=1 and m, = m,, there is a mathematical function obtained by combining
the appropriate f(r), f(0) and f(p):

U(r, 0,0, 0, 1', m,) =f(r)f (0)f () (4.32)

The function Y(r, 0, o) (clearly s could also be expressed in Cartesians),
depends functionally on r, 0, ¢ and parametrically on n, | and my: for each
particular set (n', I', my,’) of these numbers there is a particular function with the
spatial coordinates variables r, 0, ¢ (or x, y, z). A function like ksinx is a function of
x and depends only parametrically on k. This ¥ function is an orbital (“quasi-orbit™;
the term was invented by Mulliken, Section 4.3.4), and you are doubtless familiar
with plots of its variation with the spatial coordinates. Plots of the variation of
Y? with spatial coordinates indicate variation of the electron density (recall the
Born interpretation of the wavefunction) in space due to an electron with quantum
numbers #’, I' and m,,,’. We can think of an orbital as a region of space occupied by
an electron with a particular set of quantum numbers, or as a mathematical function
 describing the energy and the shape of the spatial domain of an electron. For an
atom or molecule with more than one electron, the assignment of electrons to
orbitals is an (albeit very useful) approximation, since orbitals follow from solution
of the Schrodinger equation for a hydrogen atom.

The Schrodinger equation that we have been talking about is actually the time-
independent (and nonrelativistic) Schrodinger equation: the variables in the equa-
tion are spatial coordinates, or spatial and spin coordinates (Section 5.2.3.1) when
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electron spin is taken into account. The time-independent equation is the one most
widely-used in computational chemistry, but the more general time-dependent
Schrodinger equation, which we shall not examine, is important in certain applica-
tions, like some treatments of the interaction of a molecule with light, since light
(radiation) is composed of time-varying electric and magnetic fields. The time-
dependent density functional theory method of calculating UV spectra (Chapter 7)
is based on the time-dependent Schrodinger equation.

4.3 The Application of the Schrodinger Equation
to Chemistry by Hiickel

4.3.1 Introduction

The quantum mechanical methods described in this book are all molecular orbital
(MO) methods, or oriented toward the molecular orbital approach: ab initio and
semiempirical methods use the MO method, and density functional methods are
oriented toward the MO approach. There is another approach to applying the
Schrodinger equation to chemistry, namely the valence bond method. Basically
the MO method allows atomic orbitals to interact to create the molecular orbitals of
a molecule, and does not focus on individual bonds as shown in conventional
structural formulas. The VB method, on the other hand, takes the molecule,
mathematically, as a sum (linear combination) of structures each of which corre-
sponds to a structural formula with a certain pairing of electrons [16]. The MO
method explains in a relatively simple way phenomena that can be understood only
with difficulty using the VB method, like the triplet nature of dioxygen or the fact
that benzene is aromatic but cyclobutadiene is not [17]. With the application of
computers to quantum chemistry the MO method almost eclipsed the VB approach,
but the latter has in recent years made a limited comeback [18].

The first application of quantitative quantum theory to chemical species signifi-
cantly more complex than the hydrogen atom was the work of Hiickel*” on unsatu-
rated organic compounds, in 1930-1937 [19]. This approach, in its simplest form,
focuses on the p electrons of double bonds, aromatic rings and heteroatoms.
Although Hiickel did not initially explicitly consider orbital hybridization (the
concept is usually credited to Pauling,?' 1931 [20]), the method as it became widely
applied [21] confines itself to planar arrays of sp*-hybridized atoms, usually carbon
atoms, and evaluates the consequences of the interactions among the p electrons
(Fig. 4.4). Actually, the simple Hiickel method has been occasionally applied to

20Erich Hiickel, born Berlin, 1896. Ph.D. Géttingen. Professor, Marburg. Died Marburg, 1980.
2Linus Pauling, born Portland, Oregon, 1901. Ph.D. Caltech. Professor, Caltech. Known for work
in quantum chemistry and biochemistry, campaign for nuclear disarmament, and controversial

views on vitamin C. Nobel Prize for chemistry 1954, for peace 1963. Died near Big Sur,
California, 1994.
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Fig. 4.4 The simple Hiickel
method is used mainly for
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Fig. 4.5 Hybridization is forming new atomic orbitals, on an atom, by mathematically mixing
(combining) “original” atomic orbitals on that atom. Mixing two orbitals gives two hybrid orbitals,
and in general n AOs give n hybrid AOs. Orbitals are mathematical functions and so can be added
and subtracted as shown in the figure

nonplanar systems [22]. Because of the importance of the concept of hybridization
in the simple Hiickel method a brief discussion of this concept is warranted.

4.3.2 Hybridization

Hybridization is the mixing of orbitals on an atom to produce new, “hybridized” (in
the spirit of the biological use of the term), atomic orbitals. This is done mathemat-
ically but can be appreciated pictorially (Fig. 4.5). One way to justify the procedure
theoretically is to recognize that atomic orbitals are vectors in the generalized
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mathematical sense of being elements of a vector space [23] (if not in the restricted
sense of the physicist as physical entities with magnitude and direction); it is
therefore permissible to take linear combinations of these vectors to produce new
members of the vector space. A good, brief introduction to hybridization is given by
Streitwieser [24].

In a familiar example, a 2s orbital can be mixed with three 2p orbitals to give
four hybrid orbitals; this can be done in an infinite number of ways, such as (from
now on ¢ will be used for atomic orbitals and i for molecular orbitals):

=1 (s+pc+py+p:)
_1
%(S + Py +py z) (4.33)
=3 (s+px _pz)

¢4=%(S+px p>+p)

or
b %(s—i—p +21/2 :)
(b(:%(S—p +21/2 y) .
:% (S_px _21/2 )

Both the set (4.33) and the set (4.34) consist of four sp3 orbitals, since the
electron density contributions from the component s and p orbitals to the hybrid
is, in each case (considering the squares of the coefficients; recall the Born
interpretation of the square of a wavefunction, Section 4.2.6) in the ratio 1:3,
i.e. 1/4 : 3(1/4) and 1/4 : (1/4 + 2/4), and in each set we have used a total of one
s orbital, and one each of the py, p, and p, orbitals. The total electron density from
each component orbital is unity, e.g. for s, 4(1/4).

Hybridization is purely a mathematical procedure, originally invented to
reconcile the quantum mechanical picture of electron density in s, p, etc. orbitals
with traditional views of directed valence. For example, it is sometimes said that
in the absence of hybridization combining a carbon atom with four unpaired
electrons with four hydrogen atoms would give a methane molecule with three
equivalent, mutually perpendicular bonds and a fourth, different, bond (Fig. 4.6).
Actually, this is incorrect: the 2s and three 2p orbitals of an unhybridized carbon
along with the four 1s orbitals of four hydrogen atoms provide, without invoking
hybridization, a tetrahedrally symmetrical valence electron distribution that leads
to tetrahedral methane with four equivalent bonds (Fig. 4.6). In fact, it has been
said “It is sometimes convenient to combine aos [atomic orbitals] to form hybrid
orbitals that have well defined directional character and then to form mos
[molecular orbitals] by combining these hybrid orbitals. This recombination of
aos to form hybrids is never necessary ...” [25]. Interestingly, the MOs accom-
modating the four highest-energy electron pairs of methane (the eight valence
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Fig. 4.6 Hybridization is not needed to explain bonding, e.g. the tetrahedral geometry of methane

electrons) are not equivalent in energy (not degenerate). This is an experimental
fact that can be shown by photoelectron spectroscopy [26]. Instead of four orbitals of
the same energy we have three degenerate orbitals and one lower in energy (and of
course the almost undisturbed 1s core orbital of carbon). This surprising arrange-
ment is a consequence of the fact that symmetry requires one combination (i.e. one
MO) of carbon and hydrogen orbitals (essentially a weighted sum of the C2s and the
four H1s orbitals) to be unique and the other three AO combinations (the other three
MOs) to be degenerate (they involve the C2p and the Hl1s orbitals) [26, 27]. It must
be emphasized that although the methane valence orbitals are energetically differ-
ent, the electron and nuclear distribution is tetrahedrally symmetrical — the molecule
indeed has T4 (Section 2.6) symmetry. The four MOs formed directly from AOs
are the canonical MOs. They are delocalized (spread out over the molecule), and do
not correspond to the familiar four bonding Csp’/Hls MOs, each of which is
localized between the carbon nucleus and a hydrogen nucleus. However, the
canonical MOs can be mathematically manipulated to give the familiar localized
MOs (Section 5.2.3.1).
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Another example illustrates a situation somewhat similar to that we saw with
methane, and what was until some years ago a serious controversy: the best way to
represent the carbon/carbon double bond [28]. The currently popular way to
conceptualize the C=C bond has it resulting from the union of two sp>-hybridized
carbon atoms (Fig. 4.7); the sp” orbitals on each carbon overlap end-on forming a ¢
bond and the p orbitals on each carbon overlap sideways forming a 7= bond. Note
that the usual depiction of a carbon p orbital is unrealistically spindle-shaped,
necessitating depicting overlap with connecting lines as in Fig. 4.7. Figure 4.8
shows a picture in better accord with the calculated electron density in the p orbital,
i.e. corresponding to the square of the wavefunction. The two leftover sp® orbitals
can be used to bond to, say, hydrogen atoms, as shown. From this viewpoint the
double bond is thus composed of a ¢ bond and a © bond. However, this is not the
only way to represent the C=C bond. One can, for example, mathematically
construct a carbon atom with two sp” orbitals and two sp orbitals; the union of
two such carbons gives a double bond formed from two sp’/sp’ bonds (Fig. 4.9),
rather than from a ¢ bond and a 7 bond. Which is right? They are only different
ways of viewing the same thing: the electron density in the C=C bond decreases
smoothly from the central C/C axis in both models (Fig. 4.10), and the experimental
BC/H NMR coupling constant for the C-H bond would, in both models, be
predicted to correspond to about 33% s character in the orbital used by carbon to
bond to hydrogen [29]. The ability of the hybridization concept to correlate and

Cp/Cp overlap, equal above
and below the C,H, plane
(the pi bond)

Csp,/H1s overlap

(o, ()
//GQ o O@\H —

Csp,/H1s overlap

H
H

Csp?/Csp? overlap
(the sigma bond)

c—<

Fig. 4.7 The currently popular view of the C/C double bond: an xpz/spz ¢ bond and a p/p © bond.
Compare this with Figs. 4.8 and 4.9
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Fig. 4.8 The electron density is represented by the square of the mathematical function we call

the orbital. A carbon 2p orbital is actually more buxom than its conventional representation, and
two 2p orbitals overlap better than the usual picture, e.g. Fig. 4.7, suggests
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Fig. 4.9 The C/C double bond can be built from two sp5 orbitals. The result is the same as using
a ¢ bond and a  bond (Fig. 4.7): see Fig. 4.10

another sp5/sp5 bond
two banana bonds

rationalize acidities of hydrocarbons in terms of the s character of the carbon orbital
in a C—H bond [29] is an example of the usefulness of this idea. Most of the systems
studied by the simple Hiickel method are essentially flat, as expected for sp? arrays,
and many properties of these molecules can be at least qualitatively understood by
considering the in-plane ¢ electrons of the overlapping sp” orbitals to simply
represent a framework that holds the perpendicular p orbitals, in which we are
interested, in an orientation allowing neighboring p orbitals to overlap.
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pi bond

sp®/sp® bond

sigma bond

sp®/sp® bond

Approximately

But more like C C

Fig. 4.10 The model of a C/C double bond as a ¢/m bond is at bottom really equivalent to the
sp°lsp> + sp°/sp®> model: both result in the same electron distribution, which is the physically
significant thing. There are no gaps in electron density between the carbons: as the contribution to
density from the o bond (or one of the sp>/sp” bonds) falls off, the contribution from the 7 bond (or
the other sp*/sp® bond) increases. The electron density falls off smoothly with distance from the
C/C axis. For some purposes one of the models, o/x or bent (banana) bonds, may be more useful

Before moving on to Hiuckel theory we take a look at matrices, since matrix
algebra is the simplest and most elegant way to handle the linear equations that arise
when MO theory is applied to chemistry.

4.3.3 Matrices and Determinants

Matrix algebra was invented by Cayley®” as a systematic way of dealing with
systems of linear equations. The single equation in one unknown

ax=>b

has the solution x=a"'b

22 Arthur Cayley, lawyer and mathematician, born Richmond, England, 1821. Graduated Cam-
bridge. Professor, Cambridge. After Euler and Gauss, history’s most prolific author of mathemati-
cal papers. Died Cambridge, 1895.
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Consider next the system of two equations in two unknowns

apx+apy=c

arx +any =

The subscripts of the unknowns coefficients a indicate row 1, column 1, row 1,
column 2, etc. We’ll see that using matrices the solutions (the values of x and y) can
be expressed in a way analogous to that for the equation ax = b.

A matrix is a rectangular array of “elements” (numbers, derivatives, etc.) that
obeys certain rules of addition, subtraction, and multiplication. Curved or angular
brackets are used to denote a matrix:

(1 2) Z
(0 0 7 4)
0

7 2
2 X 2matrix 3 x 1 matrix 1 X 4 matrix
or:
5
[1 2} 2 0 0 7 4]
7 2 0

Do not confuse matrices with determinants (below), which are written with
straight lines, e.g.
1 2
7 3
is a determinant, not a matrix. This determinant represents the number 1 x 3 — 2 X
7 =3 — 14 = —11. In contrast to a determinant, a matrix is not a number, but rather
an operator (although some would consider matrices to be generalizations of

numbers, with e.g. the 1 x 1 matrix (3) = 3). An operator acts on a function (or a
vector) to give a new function, e.g. d/dx acts on (differentiates) f{x) to give f'(x):

d . _dfx)
) =T = p

and the square root operator acts on y* to give y. When we have done matrix
multiplication you will see that a matrix can act on a vector and rotate it through an
angle to give a new vector.

Let’s look at matrix addition, subtraction, multiplication by scalars, and matrix
multiplication (multiplication of a matrix by a matrix).
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4.3.3.1 Addition and Subtraction

Matrices of the same size (2 x 2and 2 x 2,3 x 1 and 3 x 1, etc.) can be added just

by adding corresponding elements:
+1 143 3 4
+5 4+6> - (12 10)
4
4
1

(DG -G

2
7
7
0]+ =10+4 ]| =] 4
3 3+1 4
Subtraction is similar:
2 1y (1 3y _[(2-1 1-3\_ (1 =2
7 4 56/ \7-5 4—6) \2 =2

4.3.3.2 Multiplication by a Scalar

A scalar is an ordinary number (in contrast to a vector or an operator), e.g. 1,2, /2,
1.714, &, etc. To multiply a matrix by a scalar we just multiply every element by the

number:
) 2 1\ [(2x2 2x1\ (4 2
7 4] \2x7 2x4) \14 8

4.3.3.3 Matrix Multiplication

We could define matrix multiplication to be analogous to addition: simply
multiplying corresponding elements. After all, in mathematics any rules are
permitted, as long as they do not lead to contradictions. However, as we shall
see in a moment, for matrices to be useful in dealing with simultaneous equations
we must adopt a slightly more complex multiplication rule. The easiest way to
understand matrix multiplication is to first define series multiplication. If series
a=S8,=ajaas...,andseries b =S, = by b, b5 ... then we define the series
product as

S.Sp, = a1by + axby + azbs + ...
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So for example, if S, =52 1and S, =362
then SaS,=5B)+206)+12)=15+12+2=29

Now it’s easy to understand matrix multiplication: if AB = C, where A, B, and C
are matrices, then element 7, j of the product matrix C is the series product of row i
of A and column j of B. For example

-3 2)(5 8- (B0 058 8)

(With practice, you can multiply simple matrices in your head.) Note that matrix
multiplication is not commutative: AB is not necessarily BA, e.g.

BA — (2 4) (1 3) _ (2(1)+4(7) 2(3)+4(2)> _ (30 14)
5 6)\7 2 5(1)+6(7) 5(3)+6(2) 47 27
(two matrices are identical if and only if their corresponding elements are the
same). Note that two matrices may be multiplied together only if the number of
columns of the first equals the number of rows of the second. Thus we can multiply
A2 x 2)B(2 x 2), A2 x 2)B(2 x 3), A3 x 1)B(1 x 3), and so on. A useful

mnemonic is (a X b)(b X ¢) = (a X c), meaning, for example that A(2 x 1) times
B(1 x 2) gives C(2 x 2):

5 ~(5(0) 53)\ (0 15
<2>(0 3)= (2(0) 23)) o s
It is helpful to know beforehand the size i.e. (2 x 2), (3 x 3), whatever, of the
matrix you will get on multiplication.

To get an idea of why matrices are useful in dealing with systems of linear
equations, let’s go back to our system of equations

1.
apx+apy =c

X+ any =

Provided certain conditions are met this can be solved for x and y, e.g. by solving (1)
for x in terms of y then substituting for x in (2) etc. Now consider the equations from
the matrix viewpoint. Since

AB = (all 6112) (X> _ <011X dm)’)
a1 dx y azx any
clearly AB corresponds to the left hand side of the system, and the system can be
written



112 4 Introduction to Quantum Mechanics in Computational Chemistry

c
AB =C where C—<l)
(%)
A is the coefficients matrix, B is the unknowns matrix, and C is the constants
matrix. Now, if we can find a matrix A 'suchthat A"' AB =B (analogous to the
numbers a 'ab = b) then

A'AB =A"'C ie. B=A"'C

Thus the unknowns matrix is simply the inverse of the coefficients matrix times
the constants matrix. Note that we multiplied by A~' on the left (A"'AB = A~'C),
which is not the same as multiplying on the right, which would give ABA™' =
CA™ ! this is not necessarily the same as B.

To see that a matrix can act as an operator consider the vector from the origin to
the point P(3,4). This can be written as a column matrix, and multiplying it by the
rotation matrix shown transforms it (rotates it) into another matrix:

y 3 new, rotated y
vector ( 4) vector 4
N multiply on the left 3
y rotation matrix
N b ) :
N ( 0 -1 ) \
X 10 X

4.3.3.4 Some Important Kinds of Matrices

These matrices are particularly important in computational chemistry:

The zero matrix (the null matrix)
Diagonal matrices

The unit matrix (the identity matrix)
The inverse of another matrix
Symmetric matrices

The transpose of another matrix
Orthogonal matrices

NoUns B =

1. The zero matrix or null matrix, 0, is any matrix with all its elements zero.

Examples:
0 0 0 00
(0 0) (0 0 O) (00 00)

Clearly, multiplication by the zero matrix (when the (a x b)(b X ¢) mnemonic
permits multiplication) gives a zero matrix.
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2.

A diagonal matrix is a square matrix that has all its off-diagonal elements zero;
the (principal) diagonal runs from the upper left to the lower right.
Examples:

300 0 0 0
<(2) 2) 0 6 0 0 0 0
0 0 1 0 0 0

. The unit matrix or identity matrix 1 or I is a diagonal matrix whose diagonal

elements are all unity. Examples:
1 00
(1) ((1) ‘f) 01 0
0 0 1

Since diagonal matrices are square, unit matrices must be square (but zero
matrices can be any size). Clearly, multiplication (when permitted) by the unit
matrix leaves the other matrix unchanged: 1A = A1 = A.

. The inverse A~! of another matrix A is the matrix that, multiplied A, on the

left or right, gives the unit matrix: A~'A = AA~" = 1. Examples:

(1 2 o (-2 1
IfA—<3 4> then A —(3/2 _1/2>

Check it out.

. A symmetric matrix is a square matrix for which a; = a;; for each element.

Examples:
1 4 2 7 1
(4 3> ap =ay =4 7 3 5 app =ap =1, etc.
1 5 4

Note that a symmetric matrix is unchanged by rotation about its principal
diagonal. The complex-number analogue of a symmetric matrix is a Hermitian
matrix (after the mathematician Charles Hermite); this has a;; = a;*, e.g. if
element (2,3) = a + bi, then element (3,2) = a — bi, the complex conjugate of
element (2,3); i = v/ —1. Since all the matrices we will use are real rather than
complex, attention has been focussed on real matrices here.

. The transpose (A" or A) of a matrix A is made by exchanging rows and columns.

Examples:

(23 T_ (2 4
IfA—(4 7) then A —<3 7)

2
IfA = 2 16 then AT = |1
1 7 2 6

N =
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Note that the transpose arises from twisting the matrix around to interchange
rows and columns. Clearly the transpose of a symmetric matrix A is the same
matrix A. For complex-number matrices, the analogue of the transpose is the
conjugate transpose A’ to get this form A*, the complex conjugate of A, by
converting each complex number element a + bi in A to its complex conjugate
a — bi, then switch the rows and columns of A* to get (A*)T = A, Physicists call
A the adjoint of A, but mathematicians use adjoint to mean something else.

7. An orthogonal matrix is a square matrix whose inverse is its transpose: if A~ = AT
then A is orthogonal. Examples:

1/v6 —1/y2 —1/y/3
1/v2 —1/y2

A = Ay=1|2/y/6 0 1/y/3
<1N2 1/\/2> 1/&6 1/y/2 —1/\/3

We saw that for the inverse of a matrix, A~ TA=AA" = 1, so for an orthogonal
matrix ATA = AAT = 1, since here the transpose is the inverse. Check this out for
the matrices shown. The complex analogue of an orthogonal matrix is a unitary
matrix; its inverse is its conjugate transpose.

The columns of an orthogonal matrix are orthonormal vectors. This means that if
we let each column represent a vector, then these vectors are mutually orthogonal
and each one is normalized. Two or more vectors are orthogonal if they are
mutually perpendicular (i.e. at right angles), and a vector is normalized if it is of
unit length. Consider the matrix A; above. If column 1 represents the vector v; and
column 2 the vector v,, then we can picture these vectors like this (the long side of a
right triangle is of unit length if the squares of the other sides sum to 1):

Y1
1 1
B | N 2
Vo V4 Vy= 1
J2
> 1

x
<
nN
1
~
<<l
N[=N
N

The two vectors are orthogonal: from the diagram the angle between them
is clearly 90° since the angle each makes with, say, the x-axis is 45°. Alternatively,
the angle can be calculated from vector algebra: the dot product (scalar product) is

vi V2 = [vi|[v2cos O

where Ivl (“mod v”) is the absolute value of the vector, i.e. its length:
V| = (o2 + vi)l/z (or (v + 1)5 + %)% for a 3D vector).

Each vector is normalized, i.e. |v{| = |v,| = (%4—%)1/2 =1.
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The dot product is also
V1 V2 = U102 + Uiy (with an obvious extension to 3D space)
ie.

cos 0 = (Vo + viyv2y)/|V1][V2]
() () - () () =«

0 =90°

and so

Likewise, the three columns of the matrix A, above represent three mutually
perpendicular, normalized vectors in 3D space. A better name for an orthogonal
matrix would be an orthonormal matrix. Orthogonal matrices are important in
computational chemistry because molecular orbitals can be regarded as orthonor-
mal vectors in a generalized n-dimensional space (Hilbert space, after the mathe-
matician David Hilbert). We extract information about molecular orbitals from
matrices with the aid of matrix diagonalization.

4.3.3.5 Matrix Diagonalization

Modern computer programs use matrix diagonalization to calculate the energies
(eigenvalues) of molecular orbitals and the sets of coefficients (eigenvectors) that
help define their size and shape. We met these terms, and matrix diagonalization,
briefly in Section 2.5; “eigen” means suitable or appropriate, and we want solutions
of the Schrodinger equation that are appropriate to our particular problem. If a
matrix A can be written A = PDP ™', where D is a diagonal matrix (you could call P
and P~! pre- and postmultiplying matrices), then we say that A is diagonalizable
(can be diagonalized). The process of finding P and D (getting P~' from P is simple
for the matrices of computational chemistry — see below) is matrix diagonalization.
For example

. (4 =2 (12 (20 4 (-12
if A_<1 1> thenP-(l 1)’D_(O 3),smd P —(1 _2>

Check it out. Linear algebra texts describe an analytical procedure using deter-
minants, but computational chemistry employs a numerical iterative procedure
called Jacobi matrix diagonalization, or some related method, in which the
off-diagonal elements are made to approach zero.

Now, it can be proved that if and only if A is a symmetric matrix (or more
generally, if we are using complex numbers, a Hermitian matrix — see symmetric
matrices, above), then P is orthogonal (or more generally, unitary — see orthogonal
matrices, above) and so the inverse P~ of the premultiplying matrix P is simply the
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transpose of P, PT (or more generally, what computational chemists call the
conjugate transpose AT — see transpose, above). Thus

. 0 1
if A= then
1 0
0.707  0.707 1 0 . 0.707  0.707
P= , D= P =
0.707 —-0.707 0 -1 0.707 —-0.707
(In this simple example the transpose of P happens to be identical with P). In the
spirit of numerical methods 0.707 is used instead of 1/,/2. A matrix like A above,
for which the premultiplying matrix P is orthogonal (and so for which P~' = PT) is
said to be orthogonally diagonalizable. The matrices we will use to get molecular
orbital eigenvalues and eigenvectors are orthogonally diagonalizable. A matrix is
orthogonally diagonalizable if and only if it is symmetric; this has been described as
“one of the most amazing theorems in linear algebra” (see Roman S (1988) An
introduction to linear algebra with applications. Harcourt Brace, Orlando, p 408)

because the concept of orthogonal diagonalizability is not simple, but that of a
symmetric matrix is very simple.

4.3.3.6 Determinants

A determinant is a square array of elements that is a shorthand way of writing a sum
of products; if the elements are numbers, then the determinant is a number. Examples:

a  ap
= djidy; — apdsi, = 5(3) - 2(4) =7

dazr dx 4 3

As shown here, a 2 x 2 determinant can be expanded to show the sum it
represents by “cross multiplication”. A higher-order determinant can be expanded
by reducing it to smaller determinants until we reach 2 x 2 determinants; this is
done like this:

213 0
7 3 5 I 3 5 1 7 5
1 7 3 5
=24 6 1|-1/3 6 1 |+3/3 4 1
34 6 1
8§ 2 -2 1 2 =2 1 8 -2
1 8 2 =2
1 7 3
-0|3 4 6
1 8 2

Here we started with element (1,1) and moved across the first row. The first of
the above four terms is 2 times the determinant formed by striking out the row and
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column in which 2 lies, the second term is minus one times the determinant formed
by striking out the row and column in which 1 lies, the third term is plus 3 times the
determinant formed by striking out the row and column in which 3 lies, and the
fourth term is minus O times the determinant formed by striking out the row and
column in which 0 lies; thus starting with the element of row 1, column 1, we move
along the row and multiply by +1, —1, +1, —1. It is also possible to start at, say
element (2,1), the number 1, and move across the second row (—, +, —, +), or to
start at element (1,2) and go down the column (—, +, —, +), etc. One would likely
choose to work along a row or column with the most zeroes. The (n — 1) x (n — 1)
determinants formed in expanding an n X n determinant are called minors, and a
minor with its appropriate + or — sign is a cofactor. Expansion of determinants
using minors/cofactors is called Lagrange expansion (Joseph Louis Lagrange
1773). There are also other approaches to expanding determinants, such as manip-
ulating them to make all the elements but one of a row or column zero; see any text
on matrices and determinants. The third-order determinants in the example above
can be reduced to second-order ones and so the fourth-order determinant can be
evaluated as a single number. Obviously every determinant has a corresponding
square matrix and every square matrix has a corresponding determinant, but a
determinant is not a matrix; it is a function of a matrix, a rule that tells us how to
take the set of numbers in a matrix and get a new number. Approaches to the study
of determinants were made by Seki in Japan and Leibnitz in Europe, both in 1683.
The word “determinant” was first used in our sense by Cauchy (1812), who also
wrote the first definitive treatment of the topic.

4.3.3.7 Some Properties of Determinants

These are stated in terms of rows, but also hold for columns; D is “the determinant”.

1. If each element of a row is zero, D is zero (obvious from Lagrange expansion).

2. Multiplying each element of a row by k multiplies D by k (obvious from
Lagrange expansion).

3. Switching two rows changes the sign of D (since this changes the sign of each
term in the expansion).

4. If two rows are the same D is zero. (follows from 3, since if n = —n, n must be
Zero.

5. If the elements of one row are a multiple of those of another, D is zero (follows
from 2 and 4).

6. Multiplying a row by k and adding it (adding corresponding elements) to another
row causes no further change in D (in the Laplace expansion the terms without &
cancel).

7. A determinant A can be written as the sum of two determinants B and C which
differ only in row i in accordance with this rule: if row i of A is b;; + ¢;1 bip + cin
...thenrow i of Bis b;; bj, ... and row i of C is ¢;; ¢j5 . . . An example makes this
clear; with row i = row 3:
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1 3 6 1 3 6 1 3 6/ |1 36
5 4 2|=|5 4 2 |=1[5 4 2|+|5 4 2
8 11 9| [543 744 4+5 57 4] |3 45

4.3.4 The Simple Hiickel Method — Theory

The derivation of the Hiickel method (SHM, or simple Hiickel theory, SHT; also
called Hiickel molecular orbital method, HMO method) given here is not rigorous
and has been strongly criticized [30a]; nevertheless it has the advantage of showing
how with simple arguments one can use the Schrodinger equation to develop, more
by a plausibility argument than a proof, a method that gives useful results and which
can be extended to more powerful methods with the retention of many useful
concepts from the simple approach.
The Schrodinger equation (Section 4.2.6, Eq. 4.29)

8mn2m

2
VY + n

(E-V)y=0

can after very simple algebraic manipulation be rewritten

2
<— o :sz v+ V) Y = Ey (4.35)

This can be abbreviated to the seductively simple-looking form
Hy = Ey #(4.36)

where

2
H= h V24V *(4.37)
8m2m

The symbol H (“H hat” or “H peak”) is an operator (Section 4.3.3): it specifies that
an operation is to be performed on /, and Eq. 4.36 says that the result of the
operation will be E multiplied by /. The operation to be performed on i (i.e. ¥/(x,y,
z)) is “differentiate it twice with respect to x, to y and to z, add the partial
derivatives, and multiply the sum by —/%/87%m; then add this result to V times "
(now you can see why symbols replaced words in mathematical discourse). The
notation Hy means H of /, not H times 1.

Equation 4.36 says that an operator (H) acting on a function (i) equals a constant
(E) times the function (“H hat of psi equals E psi”). Such an equation
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éf = kf, O = operator (4.38)

is called an eigenvalue equation. The functions f and constants k that satisfy
Eq. (4.38) are eigenfunctions and eigenvalues, respectively, of the operator 0.
The operator H is called the Hamiltonian operator, or simply the Hamiltonian.
The term is named after the mathematician Sir William Rowan Hamilton, who
formulated Newton’s equations of motion in a manner analogous to the quantum
mechanical equation 4.36. Eigenvalue equations are very important in quantum
mechanics, and we shall again meet eigenfunctions and eigenvalues.

The eigenvalue formulation of the Schrodinger equation is the starting point
for our derivation of the Hiickel method. We will apply Eq. 4.36 to molecules,
so in this context H and Y are the molecular Hamiltonian and wavefunction,

respectively.
From
Hy = Ey
we get
yHY = By’ (4.39)

Note that this is not the same as Hy> = Ey/?, just as x df(x)/dx, say, is not the
same as dxf(x)/dx. Integrating and rearranging we get

E = fodv (4.40)
[dv

The integration variable dv indicates integration with respect to spatial coordi-
nates (x, y, z in a Cartesian coordinate system), and integration over all of space is
implied, since that is the domain of an electron in a molecule, and thus the
domain of the variables of the function y». One might wonder why not simply
use E = Hy/\y; the problems with this function are that it goes to infinity as ¥
approaches zero, and it is not well-behaved with regard to finding a minimum by
differentiation.

Next we approximate the molecular wavefunction i as a linear combination of
atomic orbitals (LCAO). The molecular orbital (MO) concept as a tool in interpret-
ing electronic spectra was formalized by Mulliken® starting in 1932 and building
on earlier (1926) work by Hund** [31] (recall that Mulliken coined the word

ZRobert Mulliken, born Newburyport, Massachusetts, 1896. Ph.D. University of Chicago. Pro-
fessor New York University, University of Chicago, Florida State University. Nobel Prize in
chemistry 1966, for the MO method. Died Arlington, Virginia, 1986.

**Friedrich Hund, born Karlsruhe, Germany, 1896. Ph.D. Marburg, 1925, Professor Rostock,
Leipzig, Jena, Frankfurt, Gottingen. Died Gottingen, 1997.
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orbital). The postulate behind the LCAO approach is that an MO can be “synthe-
sized” by combining simpler functions, now called basis functions; these functions
comprise a basis set. This way of calculating MOs is based on suggestions of
Pauling (1928) [32] and Lennard—Jones? (1929) [33]. Perhaps the most important
early applications of the LCAO method were the simple Hiickel method (1931)
[19], in which p AOs orbitals are combined to give m AOs (probably the first time
that the MOs of relatively big molecules were represented as a weighted sum of
AOs with optimized coefficients), and the treatment of all the lower electronic
states of the hydrogen molecule by Coulson”® and Fischer (1949) [34]. The basis
functions are usually located on the atoms of the molecule, and may or may not (see
the discussion of basis functions in Section 5.3) be conventional atomic orbitals.
The wavefunction can in principle be approximated as accurately as desired by
using enough suitable basis functions. In this simplified derivation of the Hiickel
method we at first consider a molecule with just two atoms, with each atom
contributing one basis function to the MO. Combining basis functions on different
atoms to give MOs spread over the molecule is somewhat analogous to combining
atomic orbitals on the same atom to give hybrid atomic orbitals (Section 4.3.2) [27].
The combination of n basis functions always gives n MOs, as indicated in Fig. 4.11,
and we expect two MOs for the two-atomic-orbital diatomic molecule we are
using here.
Using the LCAO approximation

Y =ci1¢, +c20, (4.41)

where ¢; and ¢, are basis functions on atoms 1 and 2, and ¢; and ¢, are weight-
ing coefficients to be adjusted to get the best i/, and substituting into Eq. 4.40
we get

o J (191 + ca¢y)H(c1¢1 + c2¢)dv (4.42)

[ (c1dy + cahy)’dv

If we multiply out the terms in Eq. 4.42 we get

_ cH11 + 2c102H1n + 3Hp
C%Sll + 2c162812 + C%Szz

(4.43)

25John Edward Lennard-Jones, born Leigh, Lancaster, England, 1894. Ph.D. Cambridge, 1924.
Professor Bristol. Best known for the Lennard—Jones potential function for nonbonded atoms.
Died Stoke-on-Trent, England, 1954.

2%Charles A. Coulson, born Worcestershire, England, 1910. Ph.D. Cambridge, 1935. Professor of
theoretical physics, King’s College, London; professor of mathematics, Oxford; professor of
theoretical chemistry, Oxford. Died Oxford, 1974. Best known for his book "Valence" (the 1st
Ed., 1952).
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where

/¢1ﬁ¢1dU=H11
/ ¢ Hpydv=Hyy = / $,H$ dv = Ha
/¢2ﬁ¢2dv:H22

/(/)lzdil = Sll

/¢1¢2dv:512:/¢2¢1dvzs21

/ (f)%d V= Szz

Note that in Egs. 4.43 and 4}.44 the H;; are not operators hence are not given hats;
they are integrals involving H and basis functions ¢.

For any particular molecular geometry (i.e. nuclear configuration: Section 2.3,
the Born—Oppenheimer approximation) the energy of the ground electronic
state is the minimum energy possible for that particular nuclear arrangement
and the collection of electrons that goes with it. Our objective now is to minimize
the energy with respect to the basis set coefficients. We want to find the ¢’s
corresponding to the minimum on an energy versus c¢’s potential energy surface.
To do this we follow a standard calculus procedure: set 0E/Oc; equal to zero,
explore the consequences, then repeat for 0E/Oc,. In theory, setting the first
derivatives equal to zero guarantees only that we will find in “MO space”
(an abstract space defined by an energy axis and two or more coefficient axes)
a stationary point (cf. Section 2.2), but examining the second derivatives shows
that the procedure gives an energy minimum if all or most of the electrons are
in bonding MOs, which is the case for most real molecules [35]. Write Eq. 4.43 as

(4.44)

E(C%Sll +2c1c2812 + C%Szz) = C%Hll +2ci1c0H12 + C%sz (4.45)

and differentiate with respect to c;:

OE
<8_cl) (C%Sn +2c1¢2812 + 65522) + E(2¢1811 + 2¢282) = 2¢1Hiy + 2¢2Hqn

Set OE/0cy = 0:
E(ZCISH + 2C2S22) = 2c1Hy1 + 2¢0H
This can be written

(H]] —ESH)Cl + (H12 —ESlz)Cz =0 (4.46)
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Fig. 4.11 Linear combination of » atomic orbitals (or, more generally, basis functions) gives n
MOs. The coefficients ¢ are weighting factors that determine the magnitude and the sign of the
contribution from each basis function. The functions contributing to the MO change sign at a node
(actually a nodal plane) and the energy of the MOs increases with the number of nodes

The analogous procedure, beginning with Eq. 4.45 and differentiating with
respect to ¢, leads to

(H12 — ESlz)Cl + (H22 — ES22)6‘2 =0 4.47)
Equation 4.47 can be written as Eq. 4.48
(Ha1 — ESai)er + (Han — ESn)cy = 0 (4.48)

since as shown in Eqs. 4.44 H,, = H,; and S;; = S5, and the form used in Eq. 4.48
is preferable because it makes it easy to remember the pattern for the two-basis
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function system examined here and for the generalization (see below) to n basis
functions. Equations 4.46 and 4.48 form a system of simultaneous linear equations:

(Hin — ES1)e1 + (Hiz — ES12)c2 =0
(4.49)
(Hy1 — ESy1)c1 + (Hxn —ESn)c, =0

The pattern is that the subscripts correspond to the row and column in which they
lie; this is literally true for the matrices and determinants we will consider later, but
even for the system of equations 4.49 we note that in the first equation (“row 17), the
coefficient of ¢, has the subscripts 11 (row 1, column 1) and the coefficient of ¢, has
the subscripts 12 (row 1, column 2), while in the second equation (“row 2”) the
coefficient of ¢, has the subscripts 21 (row 2, column 1) and the coefficient of ¢, has
the subscripts 22 (row 2, column 2).

The system of equations 4.49 are called secular equations, because of a supposed
resemblance to certain equations in astronomy that treat the long-term motion of the
planets; from the Latin saeculum, a long period of time (not to be confused with
secular meaning worldly as opposed to religious, which is from the Latin secularis,
worldly, temporal). From the secular equations we can find the basis function
coefficients ¢; and ¢,, and thus the MOs /, since the ¢’s and the basis functions ¢
make up the MOs (Eq. 4.41). The simplest, most elegant and most powerful way to
get the coefficients and energies of the MOs from the secular equations is to use
matrix algebra (Section 4.3.3). The following exposition may seem a little involved,
but it must be emphasized that in practice the matrix method is implemented
automatically on a computer, to which it is highly suited.

The secular equations 4.49 are equivalent to the single matrix equation

Hy —ES1 Hip—ESp )\ [ a 0
= 4.50
(HZI —ES» Hxp —E522> (Q) <0> (4.50)

Since the H — ES matrix is an H matrix minus an £S matrix, and since the ES
matrix is the product of an S matrix and the scalar E, Eq. 4.50 can be written:

Hyy Hip S Sz C 0
_ E = 4.51
|:<H2] sz)} (SZI SZZ) (c2> (O> @30
which can be more concisely rendered as
[H—SEjc=0 (4.52)

and Eq. 4.52 can be written

Hc = SEc (4.53)
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H and S are square matrices and ¢ and 0 are column matrices (Eq. 4.51), and E is
a scalar (an ordinary number). We have been developing these equations for a
system of two basis functions, so there should be two MOs, each with its own
energy and its own pair of ¢’s (Fig. 4.11). We need two energy values and four ¢’s:
we want to be able to calculate ¢1; and ¢, of iy; (MO, energy level 1) and ¢, and
¢y of Y5 (MO,, 0 energy level; in keeping with common practice the energies of the
MOs are designated ¢; and &,. Equation 4.53 can be extended (our simple derivation
shortchanges us here) [36] to encompass the four ¢’s and two €’s; the result is

HC = SCe x(4.54)
We now have only square matrices; in Eq. 4.53 ¢ was a column matrix and £ was

not a matrix, but rather a scalar — an ordinary number. The matrices are (four
equations Eqgs (4.55)):

H H
H— ( 1 12)
Hy Hy
Co ( Cu)
(%))

St 512)
Sat S»
0
= 4.55
( 0 82) HE39)

The H matrix is an energy-elements matrix, the Fock?’ matrix, whose elements
are integrals H;; (Eqs. 4.44). Fock actually pointed out the need to take electron spin
into account in more elaborate calculations than the simple Hiickel method; we will
meet “real” Fock matrices in Chapter 5. For now, we just note that in the simple
(and extended) Hiickel methods as an ad hoc prescription at most two electrons,
paired, are allowed in each MO. Each H; represents some kind of energy term,
since H is an energy operator (Section 4.3.3). The meaning of the H;;’s is discussed
later in this section.

The C matrix is the coefficient matrix, whose elements are the weighting factors
c;j that determine to what extent each basis function ¢ (roughly, each atomic orbital
on an atom) contributes to each MO . Thus ¢ is the coefficient of ¢; in /1, ¢,; the
coefficient of ¢, in y, etc., with the first subscript indicating the basis function and
the second subscript the MO (Fig. 4.11). In each column of C the ¢’s belong to the
same MO.

?"Vladimer Fock, born St. Petersburg, 1898. Ph.D. Petrograd University, 1934. Professor Lenin-
grad University, also worked at various institutes in Moscow. Worked on quantum mechanics and
relativity, e.g. the Klein—Fock equation for particles with spin in an electromagnetic field. Died
Leningrad, 1974.
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The S matrix is the overlap matrix, whose elements are overlap integrals S;;
which are a measure of how well pairs of basis functions (roughly, atomic orbitals)
overlap. Perfect overlap, between identical functions on the same atom, corre-
sponds to S; = 1, while zero overlap, between different functions on the same
atom or well-separated functions on different atoms, corresponds to S; = 0.

The diagonal & matrix is an energy-levels matrix, whose diagonal elements are
MO energy levels ¢;, corresponding to the MOs ;. Each ¢; is ideally the negative of
the energy needed to remove an electron from that orbital, i.e. the negative of the
ionization energy for that orbital. Thus it is ideally the energy of an electron
attracted to the nuclei and repelled by the other electrons, relative to the energy
of that electron and the corresponding ionized molecule, infinitely separated from
one another. This is seen by the fact that photoelectron spectra correlate well with
the energies of the occupied orbitals, in more elaborate (ab initio) calculations [26].
In simple Hiickel calculations, however, the quantitative correlation is largely lost.

Now suppose that the basis functions ¢ had these properties (the H and S
integrals, involving ¢, are defined in Eqgs. 4.44):

Snu=1
S2=S81=0 (4.56)
S» =1

More succinctly, suppose that
Sij = 0 (4.57)
where J; is the Kronecker delta (Leopold Kronecker, German mathematician, ca.

1860) which has the property of being 1 or O depending on whether i and j are the
same or different. Then the S matrix (Egs. 4.55) would be

1 0
S:(O 1) (4.58)

Since this is a unit matrix Eq. 4.54 would become
HC =Ce¢ (4.59)
and by multiplying on the right by the inverse of C we get
H = CeC! (4.60)

So from the definition of matrix diagonalization, diagonalization of the H matrix
will give the C and the € matrices, i.e. will give the coefficients ¢ and the MO
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a twisted allyl species \/*

* =+, .Of—

Fig. 4.12 We cannot simply choose a set of orthonormal basis functions, because in a typical
molecule many pairs of basis functions will not be orthogonal, i.e. will not have zero overlap. In
the allyl species shown, the 2s and the 2p functions (i.e. AOs) on C, are orthogonal (the + part of
the p orbital cancels the — part in overlap with the s orbital; in general AOs on the same atom are
orthogonal), and the 2p functions on C, and C; are also orthogonal, if their axes are at right angles.
However, the C;(25)/C»(2p) and the C;(2p)/C»(2p) pairs are not orthogonal

energies ¢ (Egs. 4.55), if S;; = d,; (Eq. 4.57). This is a big if, and in fact it is not true.
S;; = 0;; would mean that the basis functions are both orthogonal and normalized,
i.e. orthonormal. Orthogonal atomic (or molecular) orbitals or functions ¢ have
zero net overlap (Fig. 4.12), corresponding to [¢;p;dv = 0. A normalized orbital
or function ¢ has the property [¢¢dv = 1. We can indeed use a set of normalized
basis functions: a suitable normalization constant £ applied to an unnormalized
basis function ¢’ will ensure normalization (¢ = k¢'). However, we cannot
choose a set of orthogonal atom-centered basis functions, because orthogonality
implies zero overlap between the two functions in question, and in a molecule
the overlap between pairs of basis functions will depend on the geometry of
the molecule (Fig. 4.12). (However, as we will see later, the basis functions can
be manipulated mathematically to give combinations of the original functions
which are orthonormal).

The assumption of basis function orthonormality is a drastic approximation, but
it greatly simplifies the Hiickel method, and in the present context it enables us to
reduce Eq. 4.54 to Eq. 4.59, and thus to obtain the coefficients and energy levels by
diagonalizing the Fock matrix. Later we will see that in the absence of the
orthogonality assumption the set of basis functions can be mathematically trans-
formed so that a modified Fock matrix can be diagonalized; in the simple Hiickel
method we are spared this transformation. In the matrix approach to the Hiickel
method, then, we must diagonalize the Fock matrix H; to do this we have to assign
numbers to the matrix elements H;;, and this brings us to other simplifying assump-
tions of the SHM, concerning the H;.

In the SHM the energy integrals H; are approximated as just three quantities (the
units are, e.g., kJ mol_l):
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o, the coulomb integral
/c],’),-l-?d)l-dv =Hj;=ua i.e. basis functions on the same atom, *(4.61a)
B, the bond integral or resonance integral

/ ¢;Hp,dv=Hy = / ¢Hpdv=H; = (4.61b)

for basis functions on adjacent atoms,
/qu(f) dv=H /(f)H(l) dv=H; =0 x(4.61¢)

for basis functions neither on the same or on adjacent atoms.

To give these approximations some physical significance, we must realize that in
quantum mechanical calculations the zero of energy is normally taken as
corresponding to infinite separation of the particles of a system. In the simplest
view, o, the coulomb integral, is the energy of the molecule relative to a zero of
energy taken as the electron and basis function (i.e. AO; in the simple Hiickel
method, ¢ is usually a carbon p AO) at infinite separation. Since the energy of the
system actually decreases as the electron falls from infinity into the orbital, o is
negative (Fig. 4.13). The negative of «, in this view, is the ionization energy (a
positive quantity) of the orbital (the ionization energy of the orbital is defined as the
energy needed to remove an electron from the orbital to an infinite distance away).

electron falls from infinite

distance into.a p AO on G electron falls from infinite
distance into a MO formed
by overlap of two p AOs on
adjacent carbons

B = Hj< 0 kJ mol™*

Energy

0_

o= H,-,-< 0 kJ mol™!

Fig. 4.13 The coulomb integral o is most simply (but not too accurately) viewed as the energy of
an electron in a carbon 2p orbital, relative to its energy an infinite distance away. The bond integral
(resonance integral) f§ is most simply (but not too accurately) viewed as the energy of an electron
in an MO formed by adjacent 2p orbitals, relative to its energy an infinite distance away
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The quantity f, the bond integral or resonance integral, is, in the simplest view,
the energy of an electron in the overlap region (roughly, a two-center MO) of
adjacent p orbitals relative to a zero of energy taken as the electron and two-center
MO at infinite separation. Like o, f§ is a negative energy quantity. A rough, naive
estimate of the value of § would be the average of the ionization energies (a positive
quantity) of the two adjacent AOs, multiplied by some fraction to allow for the fact
that the two orbitals do not coincide but are actually separated. These views of o and
f are oversimplifications [30].

We derived the 2 x 2 matrices of Eqs. 4.55 starting with a two-orbital system.
These results can be generalized to n orbitals:

Hyy Hp ... Hy,
Hy Hy ... Hyy

H= (4.62)
Hnl Hn2 Hnn

The H elements of Eq. 4.62 become ¢, f3, or 0 according to the rules of Egs. 4.61.
This will be clear from the examples in Fig. 4.14.

HC:CH Q Q 1 2 [a p]
H/ \H G 0 B

™ Q
R ™
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B
/\* /\3 0 B o
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% 1

‘ ‘ 4
3

Fig. 4.14 Some conjugated molecules, their p orbital arrays, simplified representations of the
molecules, and their simple Hiickel Fock matrices. Same-atom interactions are «, adjacent-atom

interactions are f3, and all other interactions are 0. To diagonalize the matrices, we use o = 0 and
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The computer algorithms for matrix diagonalization use some version of the
Jacobi rotation method [37], which proceeds by successive numerical approxima-
tions (textbooks describe a diagonalization method based on expanding the deter-
minant corresponding to the matrix; this is not used in computational chemistry).
Therefore in order to diagonalize our Fock matrices we need numbers in place of «
and f. In methods more advanced than the SHM, like the extended Hiickel method
(EHM), other semiempirical methods, and ab initio methods, the H; integrals are
calculated to give numerical (in energy units) values. In the SHM we simply use
energy values in |l units relative to a (recall that f is a negative quantity: Fig. 4.13).
The matrix of Fig. 4.14a then becomes

G- e

An electron in an MO represented by a 1,2-type interaction is lower in energy
than one in a p orbital (1,1-type interaction) by one ISl energy unit. Similarly, the H
matrix of Fig. 4.14b becomes

0 -1 0
H=| -1 0 -1 (4.64)
0 -1 0

and the H matrix of Fig. 4.14c becomes

0 -1 0 -1
-1 0 -1 0
e (4.65)

-1 0 -1 O

The H matrices can be written down simply by setting all i, i-type interactions
equal to 0, and all 7, j-type interactions equal to —1 where i and j refer to atoms that
are bonded together, and equal to O when i and j refer to atoms that are not bonded
together.

Diagonalization of the two-basis-function matrix of Eq. 4.63 gives

Ho < 0 —1) B (0.707 0.707 )(—1 o> <0.707 0.707 )
~\-1 0/ \0707 -0.707 o 1/\0707 -0.707
C € c!

(4.66)

Comparing Eq. 4.66 with Eq. 4.60, we see that we have obtained the matrices we
want: the coefficients matrix C and the MO energy levels matrix €. The columns of
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C are eigenvectors, and the diagonal elements of € are eigenvalues; cf. Eq. 4.38 and
the associated discussion of eigenfunctions and eigenvalues. The result of
Eq. (4.66) is readily checked by actually multiplying the matrices (multiplication
here is aided by knowing that an analytical rather than numerical diagonalization
shows that +0.707 are approximations to 1/y/2). Note that CC'=1,and that C""
is the transpose of C. The first eigenvector of C, the left-hand column, corresponds
to the first eigenvalue of €, the top left element; the second eigenvector corresponds
to the second eigenvalue. The individual eigenvectors, v, and v,, are column

matrices:
0.707 0.707
= -1 and =1
0.707 —0.707 4.67)

Vi1 \p)

Figure 4.15 shows a common way of depicting the results for this two-orbital
calculation. Since the coefficients are weighting factors for the contributions of the
basis functions to the MOs (Fig. 4.11 and associated discussion), the ¢’s of
eigenvector v, combine with the basis functions to give MO; (/) and the ¢’s of
eigenvector v, combine with these same basis functions to give MO, (i,). MOs
below « are bonding and MOs above o are antibonding. The € matrix translates into
an energy level diagram with | of energy o + f§ and s, of energy oo — f3, i.e. the
MOs lie one Ifl unit below and one |5l above the nonbonding o level. Since f3, like o,
is negative, the o + § and oo — f3 levels are of lower and higher energy, respectively,
than the nonbonding « level.

energy
v, =0.707 ¢; — 0.707 ¢, @ Q
——CC
ap o =t ¢
antibonding MO @ @

e nonbonding level

wp=0.707 ¢; + 0.707 9, @ @
I R c—C
p bonding MO Q O

Fig. 4.15 The n molecular orbitals and 7 energy levels for a two-p-orbital system in the simple
Hiickel method. The MOs are composed of the basis functions (two p AOs) and the eigenvectors,
while the energies of the MOs follow from the eigenvalues (Eq. 4.66). The paired arrows represent
a pair of electrons of opposite spin (in the electronic ground state of the neutral ethene molecule ¥/,
is occupied and v, is empty)
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Diagonalization of the three-basis function matrix of Eq. 4.64 gives

0 -1 0
-1 0 —-11]=
0 -1 0
0.500 0.707 0.500 —1414 0 O 0.500 0.707 0.500
0.707 0 —0.707 0 0 O 0.707 0 —0.707
0.500 —0.707 0.500 0 0 1414 0.500 —0.707 0.500
Vi A2 V3 e, 0, O
0, &, O
0, 07 &3
C € c!

(4.68)

The energy levels and MOs corresponding to these results are shown in
Fig. 4.16.
Diagonalization of the four-basis-function matrix of Eq. 4.65 gives

energy w3=0.500 @1 —0.707 ¢, + 500 @5 O O
_ + +
£=1.414 antibonding MO C \Q/C
o-B— @ @ _
w5 =0.700 ¢, +0.000 9,—0.700 P5 @ @
* £=0 nonbonding MO c \ T c /<§:>

o+B @ O @

‘ W3=0.500 9, +0.707 9, + 0.500 ¢, é\ g/é

£=-1.414 bonding MO @

Fig.4.16 The m molecular orbitals and © energy levels for an acyclic three-p-orbital system in the
simple Hiickel method. The MOs are composed of the basis functions (three p AQOs) and
the eigenvectors (the c¢’s), while the energies of the MOs follow from the eigenvalues
(Eq. 4.68). In the drawings of the MOs, the relative sizes of the AOs in each MO suggest the
relative contribution of each AO to that MO. This diagram is for the propenyl radical. The paired
arrows represent a pair of electrons of opposite spin, in the fully-occupied lowest MO, /1, and the
single arrow represents an unpaired electron in the nonbonding MO, y/,; the highest # MO, 3, is
empty in the radical
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0 10 —1
10 -1 0
0 -10 —1|
10 -1 0
0.500 0.500 0.500 0.500\ /-2000\ /0500 0.500 0.500 0.500
0.500 —0.500 0.500 —0.500 | | 0 000 || 0.500 —0.500 —0.500 0.500
0.500 —0.500 —0.500 0.500 || 0 000 || 0500 0.500 —0.500 —0.500

0.500 0.500 —0.500 —0.500 0002 0.500 —0.500 0.500 —0.500

6000
0 00
0 0ée 0
0 00 &

C € c! (4.69)

Vi Vo V3 Va

The energy levels and MOs from these results are shown in Fig. 4.17. Note that all
these matrix diagonalizations yield orthonormal eigenvectors: v;-v; = 1 and v;-v; = 0,
as required the fact that the Fock matrices are symmetric (see the discussion of matrix
diagonalization in Section 4.3.3).

energy — +
Yy = 0.500 (P1 —0.500 (pg + 0.500 ‘ps— 0.500 (P4 Q_Q
+
a-28— €=2  antibonding MO (ggx) @:)

©
a-B - W = 0.500 @, +0.500 ¢, - 0.500 93~ 0500 ¢, (x) () 5 @
cC—=_C —
o — _1_ + nonbonding MOs G.\g:) @:)

=0 e=0 C
Ws = 0.500 @; — 0.500 @, — 0.500 P5 + 0.500 ¢,

o+ f—

w4 =0.500 @; + 0.500 @, + 0.500 @5 + 0.500 ¢,

+
C_
o+28 —H- e-2 bondingMo av)

Fig. 4.17 The © molecular orbitals and 7 energy levels for a cyclic four-p-orbital system in the
simple Hiickel method. The MOs are composed of the basis functions (four p AOs) and the
eigenvectors, while the energies of the MOs follow from the eigenvalues (Eq. 4.69). This particular
diagram is for the square cyclobutadiene molecule. The paired arrows represent a pair of electrons
of opposite spin, in the fully-occupied lowest MO, v/, and the single arrows represents unpaired
electrons of the same spin, one in each of the two nonbonding MOs, ¥/, and /3; the highest 7 MO,
V4, is empty in the neutral molecule
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4.3.5 The Simple Huckel Method — Applications

Applications of the SHM are discussed in great detail in several books [21]; here we
will deal only with those applications which are needed to appreciate the utility of
the method and to smooth the way for the discussion of certain topics (like bond
orders and atomic charges) in later chapters. We will discuss: the nodal properties
of the MOs; stability as indicated by energy levels and aromaticity (the 4n + 2 rule);
resonance energies; and bond orders and atomic charges.

4.3.5.1 The Nodal Properties of the MOs

A node of an MO is a plane at which, as we proceed along the sequence of basis
functions, the sign of the wavefunction changes (Figs. 4.15—4.17). For a given
molecule, the number of nodes in the n orbitals increases with the energy. In the
two-orbital system (Fig. 4.15), i/, has zero nodes and 1/, has one node. In the three-
orbital system (Fig. 4.16), 1, Y, and {3 have zero, one and two nodes, respec-
tively. In the cyclic four-orbital system (Fig. 4.17), Y/, has zero nodes, ¥/, and 3,
which are degenerate (of the same energy) each have one node (one nodal plane),
and 4 has two nodes. In a given molecule, the energy of the MOs increases with
the number of nodes. The nodal properties of the SHM 7 orbitals form the basis of
one of the simplest ways of understanding the predictions of the Woodward—-Hoff-
mann orbital symmetry rules [38]. For example, the thermal conrotatary and
disrotatary ring closure/opening of polyenes can be rationalized very simply in
terms of the symmetry of the highest occupied © MO of the open-chain species.
That the highest 7 MO should dominate the course of this kind of reaction is
indicated by more detailed considerations (including extended Hiickel calculations)
[38]. Figure 4.18 shows the situation for the ring closure of a 1,3-butadiene to a
cyclobutene. The phase (+ or —) of the 1 HOMO (i/,) at the end carbons (the atoms
that bond) is opposite on each face, because this orbital has one node in the middle
of the C4 chain. You can see this by sketching the MO as the four AOs contributing
to it, or even — remembering the node — drawing just the end AOs. For the electrons
in Y/, to bond, the end groups must rotate in the same sense (conrotation) to bring
orbital lobes of the same phase together. Remember that plus and minus phase has
nothing to do with electric charge, but is a consequence of the wave nature of
electrons (Section 4.2.6): two electron waves can reinforce one another and form a
bonding pair if they are “vibrating in phase”; an out-of-phase interaction represents
an antibonding situation. Rotation in opposite senses (disrotation) would bring
opposite-phase lobes together, an antibonding situation. The mechanism of the
reverse reaction is simply the forward mechanism in reverse, so the fact that the
thermodynamically favored process is the ring-opening of a cyclobutene simply
means that the cyclobutene shown would open to the butadiene shown on heating.
Photochemical processes can also be accommodated by the Woodward—Hoffmann
orbital symmetry rules if we realize that absorption of a photon creates an electron-
ically excited molecule in which the previous lowest unoccupied MO (LUMO) is
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Fig. 4.18 The stereochemistry of many reactions is easily predicted from the symmetry of
molecular orbitals, usually the highest occupied 7 MO (x HOMO). In the ring closure of 1,3-
butadiene to cyclobutene the phase (+ or —) of the HOMO (1,) at the end carbons (the atoms that
bond) is such that closure must occur in a conrotatory sense, giving a definite stereochemical
outcome. In the example above there is only one product. The reverse process is actually
thermodynamically favored, and the cis dimethyl cyclobutene opens to the cis, trans diene. No
attempt is made here to show quantitatively the positions of the energy levels or to size the AOs
according to their contributions to the MOs

now the HOMO. For more about orbital symmetry and chemical reactions see e.g.
the book by Woodward and Hoffmann [38].

4.3.5.2 Stability as Indicated by Energy Levels, and Aromaticity

The MO energy levels obtained from an SHM calculation must be filled with
electrons according to the species under consideration. For example, the neutral
ethene molecule has two 7 electrons, so the diagrams of Fig. 4.19a (cf. Fig. 4.15)
with one, two and three 7 electrons, would refer to the cation, the neutral and the
anion. We might expect the neutral, with its bonding 7 orbital ¥, full and its
antibonding 7 orbital s, empty, to be resistant to oxidation (which would require
removing electronic charge from the low-energy ) and to reduction (which would
require adding electronic charge to the high-energy /,).
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Fig. 4.19 Filling = MOs with electrons



136 4 Introduction to Quantum Mechanics in Computational Chemistry

The propenyl (allyl) system has two, three or four 7 electrons, depending on
whether we are considering the cation, radical or anion (Fig. 4.19b; cf. Fig. 4.16).
The cation might be expected to be resistant to oxidation, which requires removing
an electron from a low-lying 7 orbital (/) and to be moderately readily reduced, as
this involves adding an electron to the nonbonding 7 orbital /,, a process that
should not be strongly favorable or unfavorable. The radical should be easier to
oxidize than the cation, for this requires removing an electron from a nonbonding,
rather than a lower-lying bonding, orbital, and the ease of reduction of the radical
should be roughly comparable to that of the cation, as both can accommodate an
electron in a nonbonding orbital. The anion should be oxidized with an ease
comparable to that of the radical (removal of an electron from the nonbonding
/»), but be harder to reduce (addition of an electron to the antibonding v3).

The cyclobutadiene system (Fig. 4.19c; cf. Fig. 4.17) can be envisaged with,
amongst others, two (the dication), four (the neutral molecule) and six n (the
dianion) electrons. The predictions one might make for these the behavior of
these three species toward redox reactions are comparable to those just outlined
for the propenyl cation, radical and anion, respectively (note the analogous occu-
pancy of bonding, nonbonding and antibonding orbitals). The neutral cyclobuta-
diene molecule is, however, predicted by the SHM to have an unusual electronic
arrangement for a diene: in filling the & orbitals, from the lowest-energy one up, one
puts electrons of the same spin into the degenerate 1/, and /3 in accordance with
Hund’s rule of maximum multiplicity. Thus the SHM predicts that cyclobutadiene
will be a diradical, with two unpaired electrons of like spin. Actually, more
advanced calculations [39] indicate, and experiment confirms, that cyclobutadiene
is a singlet molecule with two single and two double C/C bonds. A square
cyclobutadiene diradical with four bond order 1.5 C/C bonds would distort to a
rectangular, closed-shell (i.e. no unpaired electrons) molecule with two single and
two double bonds (Fig. 4.20). This could have been predicted by augmenting the
SHM result with a knowledge of the phenomenon known as the Jahn—Teller effect
[40]: cyclic systems (and certain others) with an odd number of electrons in
degenerate (equal-energy) MOs will distort to remove the degeneracy.

What general pattern of molecular orbitals emerges from the SHM? Acyclic ©
systems (ethene, the propenyl system, 1,3-butadiene, etc.), have MOs distributed
singly and evenly on each side of the nonbonding level; the odd-AO systems also
have one nonbonding MO (Fig. 4.21). Cyclic = systems (the cyclopropenyl system,
cyclobutadiene, the cyclopentadienyl system, benzene, etc.) have a lowest MO and
pairs of degenerate MOs, ending with one highest or a pair of highest MOs,
depending on whether the number of MOs is even or odd. The total number of
MOs is always equal to the number of basis functions, which in the SHM is, for
organic polyenes, the number of p orbitals (Fig. 4.21). The pattern for cyclic
systems can be predicted qualitatively simply by sketching the polygon, with one
vertex down, inside a circle (Fig. 4.22). If the circle is of radius 21 the energies can
even be calculated by trigonometry [41]. It follows from this pattern that cyclic
species (not necessarily neutral) with 2, 6, 10, ... 7 electrons have filled # MOs and
might be expected to show particular stability, analogously to the filled AOs of the
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Fig. 4.20 Cyclic systems with degenerate energy levels tend to undergo a geometric distortion
to remove the degeneracy, a consequence of the Jahn—Teller theorem

unreactive noble gases (Fig. 4.23). The archetype of such molecules is, of course,
benzene, and the stability is associated with the general collection of properties
called aromaticity [17]. These results, which were first perceived by Hiickel [19]
(1931-1937), are summarized in a rule called the 4n + 2 rule or Hiickel’s rule,
although the 4n + 2 formulation was evidently actually due to Doering and Knox
(1954) [42]. This says that cyclic arrays of sp”-hybridized atoms with 4n + 2
electrons are characteristic of aromatic molecules; the canonical aromatic molecule
benzene with six © electrons corresponds to n = 1. For neutral molecules with
formally fully conjugated perimeters this amounts to saying that those with an odd
number of C/C double bonds are aromatic and those with an even number are
antiaromatic (see Section 4.3.5.3).

Hiickel’s rule has been abundantly verified [17] notwithstanding the fact that the
SHM, when applied without regard to considerations like the Jahn—Teller effect
(see above) incorrectly predicts 4n species like cyclobutadiene to be triplet diradi-
cals. The Hiickel rule also applies to ions; for example, the cyclopropenyl system
two 7 electrons, the cyclopropenyl cation, corresponds to n = 0, and is strongly
aromatic. Other aromatic species are the cyclopentadienyl anion (six 7 electrons, n
= 1; Hiickel predicted the enhanced acidity of cyclopentadiene) and the cyclohep-
tatrienyl cation. Only reasonably planar species can be expected to provide the AO
overlap need for cyclic electron delocalization and aromaticity, and care is needed
in applying the rule. Electron delocalization and aromaticity within the SHM have
recently been revisited [43].
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Fig. 4.21 The MO pattern for acyclic and cyclic © systems, as predicted by the simple Hiickel
method

4.3.5.3 Resonance Energies

The SHM permits the calculation of a kind of stabilizing energy, or, more accu-
rately, an energy that reflects the stability of molecules. This energy is calculated by
comparing the total electronic energy of the molecule in question with that of a
reference compound, as shown below for the propenyl systems, cyclobutadiene,
and the cyclobutadiene dication.
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Fig. 4.22 A useful mnemonic for getting the simple Hiickel method pattern for cyclic @ systems.
Setting the radius of the circle at 2Ifl, the energy separations from the nonbonding level can even
be calculated by trigonometry
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Fig. 4.23 Hiickel’s rule says that cyclic w systems with 4n + 2 melectrons (n =0, 1, 2, ...; 4n +
2 =2,6, 10, ...) should be especially stable, since they have all bonding levels full and all
antibonding levels empty. The special stability is usually equated with aromaticity. Shown here are
the cyclopropenyl cation, the cyclobutadiene dication, the cyclopentadienyl anion, and benzene;
formal structures are given for these species — the actual molecules do not have single and double
bonds, but rather electron delocalization makes all C/C bonds the same

The propenyl cation, Fig. 4.19b; cf. Fig. 4.16. If we take the total n electronic
energy of a molecule to be simply the number of electrons in a 7 MO times the
energy level of the orbital, summed over occupied orbitals (a gross approximation,
as it ignores interelectronic repulsion), then for the propenyl cation

E.(prop. cation) = 2(o + 1.414f5) = 20 + 2.828

We want to compare this energy with that of two electrons in a normal molecule
with no special features (the propenyl cation has the special feature of a formally
empty p orbital adjacent to the formal C/C double bond), and we choose neutral
ethene for our reference energy (Fig. 4.15)

E(reference) = 2(a 4 f) = 200 + 2f8
The stabilization energy is then

E(stab, cation) = E,(prop. cation) — E(reference)
= (20 +2.828 ) — (20 +2) = 0.828p
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Since f is negative, the m-electronic energy of the propenyl cation is calculated
to be below that of ethene: providing an extra, formally empty p orbital for the
electron pair causes the energy to drop. Actually, resonance energy is usually
presented as a positive quantity, e.g. “100 kJ mol~'”. We can interpret this as
100 kJ mol ™' below a reference system. To avoid a negative quantity in SHM
calculations like these, we can use Ifl instead of f5.

The propenyl radical, Fig. 4.16. The total 7 electronic energy by the SHM is

E.(prop. radical) = 2(o + 1.414f) + o = 3a + 2.828

For the reference energy we use one ethene molecule and one nonbonding
p electron (like the electron in a methyl radical):

E(reference) = (20 + 2f) + o = 30 + 2
The stabilization energy is then

E(stab, radical) = E,(prop. radical) — E,(reference)
= (30 +2.828f) — (30 + 2) = 0.828

The propenyl anion. An analogous calculation (cf. Fig. 4.16, with four electrons
for the anion) gives

E(stab anion) = E,(prop. anion) — E,(reference)
= (4o 4 2.828f) — (4o + 2) = 0.828f

Thus the SHM predicts that all three propenyl species will be lower in energy
than if the 7 electrons were localized in the formal double bond and (for the radical
and anion) in one p orbital. Because this lower energy is associated with the ability
of the electrons to spread or be delocalized over the whole 7 system, what we have
called E(stab) is often denoted as the delocalization energy, and designated Ep,.
Note that E (resonance energy, or Ep, delocalization energy) is always some
multiple of f (or is zero). Since electron delocalization can be indicated by the
familiar resonance symbolism the Hiickel delocalization energy is often equated
with resonance energy, and designated Er. The accord between calculated delocal-
ization and the ability to draw resonance structures is not perfect, as indicated by the
next example.

Cyclobutadiene (Fig. 4.17). The total 7 electronic energy is

E.(cyclobutadiene) = 2(ax + 2f) + 2 o = da + 4
Using two ethene molecules as our reference system:

E.(reference) = 2a + 28
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and so for E(stab) (= Ep or Eg) we get

E(stap, cyclobutadiene) = E(cyclobutadiene) — E(reference)
= (4o +4p) — (4a+4p) =0

Cyclobutadiene is predicted by this calculation to have no resonance energy,
although we can readily draw two “resonance structures” exactly analogous to the
Kekulé structures of benzene. The SHM predicts a resonance energy of 2f for
benzene. Equating 218l with the commonly-quoted resonance energy of 150 kJ mol
(36 keal mol ") for benzene gives a value of 75 kJ mol ' for I, but this should be
taken with more than a grain of salt, for outside a closely related series of
molecules, f has little or no quantitative meaning [44]. However, in contrast to
the failure of simple resonance theory in predicting aromatic stabilization (and
other chemical phenomena) [45], the SHM is quite successful.

The cyclobutadiene dication (cf. Fig. 4.17). The total © electronic energy is

E,(dication) = 2(a 4 2f8) = 20+ 4f
Using one ethene molecule as the reference:
E,(reference) = 2a + 2

and so

E(stab, dication) = E, (dication) — E,(reference)
= (a+4p) — 20+ 2p8) =28

Thus the stabilization energy calculation agrees with the deduction from the
disposition of filled MOs (i.e. with the 4n 4 2 rule) that the cyclobutadiene dication
should be stabilized by electron delocalization, which is in some agreement with
experiment [46].

More sophisticated calculations indicate that cyclic 4n systems like cyclobuta-
diene (where planar; cyclooctatetraene, for example, is buckled by steric factors
and is simply an ordinary polyene) are actually destabilized by n electronic effects:
their resonance energy is not just zero, as predicted by the SHM, but less than zero.
Such systems are antiaromatic [17, 46].

4.3.5.4 Bond Orders

The meaning of this term is easy to grasp in a qualitative, intuitive way: an ideal
single bond has a bond order of one, and ideal double and triple bonds have bond
orders of two and three, respectively. Invoking Lewis electron-dot structures, one
might say that the order of a bond is the number of electron pairs being shared
between the two bonded atoms. Calculated quantum mechanical bond orders should
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be more widely applicable than those from the Lewis picture, because electron pairs
are not localized between atoms in a clean pairwise manner; thus a weak bond, like
a hydrogen bond or a long single bond, might be expected to have a bond order of
less than one. However, there is no unique definition of bond order in computational
chemistry, because there seems to be no single, correct method to assign electrons
to particular atoms or pairs of atoms [47]. Various quantum mechanical definitions
of bond order can be devised [48], based on basis-set coefficients. Intuitively, these
coefficients for a pair of atoms should be relevant to calculating a bond order, since
the bigger the contribution two atoms make to the wavefunction (whose square is a
measure of the electron density; Section 4.2.6), the bigger should be the electron
density between them. In the SHM the order of a bond between two atoms A; and B;
is defined as

Bij=1+ Z neic; 4.70)

all occ

Here the 1 denotes the single bond of the ubiquitous spectator ¢ bond framework,
which is taken as always contributing a ¢ bond order of unity. The other term is the
7 bond order; its value is obtained by summing over all the occupied MOs the
number of electrons #n in each of these MOs times the product of the ¢’s of the two
atoms for each MO. This is illustrated in these examples:

Ethene. The occupied orbital is 1, which has 2 electrons), and the coefficients
of ¢ and ¢, for this orbital are 0.707, 0.707 (Eq. 4.66). Thus

Bij=1+ Y ncic;=1+2(0.707)0.707 = 1 + 1.000 = 2.000

all occ

which is reasonable for a double bond. The order of the ¢ bond is 1 and that of the
7 bond is 1.

The ethene radical anion. The occupied orbitals are /;, which has 2 electrons,
and ¥/,, which has 1 electron; the coefficients of ¢, and ¢, for i, are 0.707, 0.707
and for ,, 0.707, —0.707 (Eq. 4.66). Thus

Bij=1+ Y ncicj=1+2(0.707)0.707 + 1(0.707)(—0.707)

all occ

=141-0.500 = 1.500

The 7 bond order of 0.500 (1.500 — ¢ bond order) accords with two electrons in
the bonding MO and one electron in the antibonding orbital.

4.3.5.5 Atomic Charges

In an intuitive way, the charge on an atom might be thought to be a measure of the
extent to which the atom repels or attracts a charged probe near it, and to be
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measurable from the energy it takes to bring a probe charge from infinity up to near
the atom. However, this would tell us the charge at a point outside the atom, for
example a point on the van der Waals surface of the molecule, and the repulsive or
attractive forces on the probe charge would be due to the molecule as a whole.
Although atomic charges in molecules are generally considered to be experimen-
tally unmeasurable (but see Chapter 5, section 5.5.4, Charges and bond orders),
chemists find the concept very useful (thus calculated charges are used to parame-
terize molecular mechanics force fields — Chapter 3), and much effort has gone into
designing various definitions of atomic charge [48, 49]. Intuitively, the charge on an
atom should be related to the basis set coefficients of the atom, since the more the
atom contributes to a multicenter wavefunction (one with contributions from basis
functions on several atoms), the more it might be expected to lose electronic charge
by delocalization into the rest of the molecule (cf. the discussion of bond order
above). In the SHM the charge on an atom A; is defined as (cf. Eq. 4.70)

gi=1- Z nc? 4.71)

all occ

The summation term is the charge density, and is a measure of the electronic
charge on the molecule due to the 7 electrons. For example, having no 7 electrons
(an empty p orbital, formally a cationic carbon) would mean a & electron charge
density of zero; subtracting this from unity gives a charge on the atom of +1. Again,
having two 7 electrons in a p orbital would mean a & electron charge density of 2 on
the atom; subtracting this from unity gives a charge on the atom of —1 (a filled
p orbital, formally an anionic carbon). The application of Eq. 4.71 will be illustrated
using methylenecyclopropene (Fig. 4.24).

4.3.5.6 Methylenecyclopropene

n=1-Y ni=1- [2(0.282)2 +2(0.815)2} =1 - 1.487 = —0.487

all occ

p=1-> nd=1- [2(0.612)2 + 2(0.254)2} =1-0878 =0.122

all occ

G=gp=1-> nd=1- [2(0.523)2 + 2(—0‘368)2} =1-0817 =0.182

all occ

The results of this charge calculation are summarized in Fig. 4.24; the negative
charge on the exocyclic carbon and the positive charges on the ring carbons are in
accord with the resonance picture (Fig. 4.24), which invokes a contribution from
the aromatic cyclopropenyl cation [50]. Note that the charges sum to (essentially)
zero, as they must for a neutral molecule (the hydrogens, which actually also carry
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oa-2B —
4 c=0.815in V2
— 0.2821n V4 Gy =-0487
a-pr — c=0.254in v, 0012
p—— 2= .
0.612in y;
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@+0311  ©=-0.368in v, s =0.182
ath- 0.523in y,

o+2B — _H_ "

a+2.170,

Fig. 4.24 The SHM charges on the atoms of a molecule can be calculated from the number of
electrons in each occupied MO and the coefficients of these MOs. The predicted dipolar nature of
methylenecyclopropene has been ascribed to a cyclopropenyl-cation-like resonance contributor

charges, have been excluded from consideration here). A high-level calculation
places a total charge (carbon plus hydrogen) — albeit defined in a different way — of
—0.37 on the CH, group and +0.37 on the ring (cf. —0.487 and +0.487 for the
exocyclic carbon and the ring carbons in the SHM calculation).

There are many other applications of the SHM [21c, e] including fairly recent
and perhaps unexpected ones such as correlation with UV solvent shifts [51] and
even physicochemical properties [52].

4.3.6 Strengths and Weaknesses of the Simple
Hiickel Method

4.3.6.1 Strengths

The SHM has been extensively used to correlate, rationalize, and predict many
chemical phenomena, having been applied with surprising success to dipole
moments, ESR spectra, bond lengths, redox potentials, ionization energies, UV
and IR spectra, aromaticity, acidity/basicity, and reactivity, and specialized books
on the SHM should be consulted for details [21, 22]. The method will give probably
give some insight into any phenomenon that involves predominantly the 7 electron
systems of conjugated molecules. The SHM may have been underrated [53] and
reports of its death are probably exaggerated. However, the SHM is not used
very much in research nowadays, partly because more sophisticated n electron
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approaches like the PPP method (Section 6.2.2) are available, but mainly because of
the phenomenal success of all-valence-electron semiempirical methods (Chapter 6),
which are applicable to quite large molecules, and of the increasing power of
all-electron ab initio (Chapter 5) and DFT (Chapter 7) methods.

4.3.6.2 Weaknesses

The defects of the SHM arise from the fact that it treats only 7 electrons, and these
only very approximately. The basic Hiickel method described here has been
augmented in an attempt to handle non-7 substituents, e.g. alkyl groups, halogen
groups, etc., and heteroatoms instead of carbon. This has been done by treating the
substituents as 7 centers and embodying empirically altered values of o and f3, so
that in the Fock matrix values other than —1 and 0 appear. However, the values of
these modified parameters that have been employed vary considerably [54], which
tends to diminish one’s confidence in their reliability.

The approximations in the SHM are its peremptory treatment of the overlap
integrals S (Section 4.3.4, discussion in connection with Egs. 4.55), its drastic
truncation of the possible values of the Fock matrix elements into just o, § and
0 (Section 4.3.4, discussion in connection with Egs. 4.61), its complete neglect of
electron spin, and its glossing over (although not exactly ignoring) interelectronic
repulsion by incorporating this into the o and f§ parameters.

The overlap integrals S are divided into just two classes:

/q’)id)jdv:S,-jzlorO

depending on whether the orbitals on the atoms i and j are on the same or
different atoms. This approximation, as explained earlier, reduces the matrix
form of the secular equations to standard eigenvalue form HC = Ce (Eq. 4.59),
so that the Fock matrix can (after giving its elements numerical values) be
diagonalized without further ado (the ado is explained in Section 4.4.1, in
connection with the extended Hiickel method). In the older determinant, as
opposed to matrix, treatment (Section 4.3.7), the approximation greatly simplifies
the determinants. In fact, however, the overlap integral between adjacent carbon
p orbitals is ca. 0.24 [55].
Setting the Fock matrix elements equal to just o, § and 0: Setting

/qﬁiﬁqﬁjdv =Hj=o,for0

depending on whether the orbitals on the atoms i and j are on the same, adjacent or
further-removed atoms is an approximation, because all the H;; terms are not the
same, and all the adjacent-atom H;; terms are not the same either; these energies
depend on the environment of the atom in the molecule; for example, atoms in the
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middle of a conjugated chain should have different H;; and H;; parameters than ones
at the end of the chain. Of course, this approximation simplifies the Fock matrix
(or the determinant in the old determinant method, Section 4.3.7).

The neglect of electron spin and the deficient treatment of interelectronic
repulsion is obvious. In the usual derivation (Section 4.3.4): in Eq. 4.40 the
integration is carried out with respect to only spatial coordinates (ignoring spin
coordinates; contrast ab initio theory, Section 5.2), and in calculating 7 energies
(Section 4.3.5.3) we simply took the sum of the number of electrons in each
occupied MO times the energy level of the MO. However, the energy of an MO
is the energy of an electron in the MO moving in the force field of the nuclei and
all the other electrons (as pointed out in Section 4.3.4, in explaining the matrices
of Eqgs. 4.55). If we calculate the total electronic energy by simply summing MO
energies times occupancy numbers, we are assuming, wrongly, that the electron
energies are independent of one another, i.e. that the electrons do not interact. An
energy calculated in this way is said to be a sum of one-electron energies. The
resonance energies calculated by the SHM can thus be only very rough, unless
the errors tend to cancel in the subtraction step, which in fact probably occurs to
some extent (this is presumably why the method of Hess and Schaad for
calculating resonance energies works so well [53]). The neglect of electron
repulsion and spin in the usual derivation of the SHM is discussed in reference
[30a].

4.3.7 The Determinant Method of Calculating the Hiuckel c’s
and Energy Levels

An older method of obtaining the coefficients and energy levels from the secular
equations (Egs. 4.49 for a two-basis-function system) utilizes determinants rather
than matrices. The method is much more cumbersome than the matrix diagonaliza-
tion approach of Section 4.3.4, but in the absence of cheap, readily-available
computers (matrix diagonalization is easily handled by a personal computer) its
erstwhile employment may be forgiven. It is outlined here because traditional
presentations of the SHM [21] use it.
Consider again the secular equations 4.49:

(Hyy —HS11)e1 + (Hia — ES12)c =0
(Ha1 — HSa1)c1 + (Hy — ESp)cy =0

By considering the requirements for nonzero values of ¢; and ¢, we can find
how to calculate the ¢’s and the molecular orbital energies (since the coefficients are
weighting factors that determine how much each basis function contributes to the
MO, zero ¢’s would mean no contributions from the basis functions and hence no
MOs; that would not be much of a molecule). Consider the system of linear
equations
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Ayixy +Apxy = by
Ayixy +Apxy = by

Using determinants:

by Ap
by Axn
NETp
A by
Ay by
A S
B A Ap
Ay Ap

where D is the determinant of the system.

If by = b, = 0 (the situation in the secular equations), then in the equations
for x; and x, the numerator is zero, and so x; = 0/D and x, = 0/D. The only way
that x; and x, can be nonzero in this case is that the determinant of the system be
zero, i.e.

D=0
for then x; = 0/0 and x, = 0/0, and 0/0 can have any finite value; mathematicians

call it indeterminate. This is easy to see:
Let

then

ax0=0

which is true for any finite value of a.
So for the secular equations the requirement that the ¢’s be nonzero is that the
determinant of the system be zero:

H;y — ES H, — ES
p_ | Hn 1 Hp 2| _, 472)
Hy — ESy1 Hy — ESy
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Equation 4.74 can be generalized to n basis functions (cf. the matrix of Eq. 4.62):

Hyy —ESyw Hp—ES; --- Hin—ESy,
H21 — ES21 H22 — ESzz s Hgn — ESgl’l

-0 (4.73)
Hnl - ESnl HnZ - ESnZ U Hnn - ESnn

If we invoke the SHM simplification of orthogonality of the S integrals
(pp. 37-39), then §;; = 1 and S;; = 0 and Eq. 4.73 becomes

Hy —E Hi, <o Hy,
Hy; Hy —E -+ Hy,

—0 (4.74)
Hnl Hn2 Hmz —E

Substituting o, § and O for the appropriate H’s (Egs. 4.61a, b, c) we get

ao—E P ... 0
p o—FE 0

=0 (4.75)
0 0 o—F

The diagonal terms will always be o — E, but the placement of  and 0 will
depend on which i, j terms are adjacent and which are further-removed, which
depends on the numbering system chosen (see below). Since multiplying or divid-
ing a determinant by a number is equivalent to multiplying or dividing the elements
of one row or column by that number (Section 4.3.3), multiplying both sides of
Eq. 4.75 by 1/ n times, i.e. by (1/8)" gives

(«—E)/B 1 .0
1 (x—E)/p ... O
_ . _ =0 (4.76)
0 0 ... (a—E)/p
Finally, if we define (a—E)/f = x, we get
x 1 0
1 x 0
=0 (4.77)
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The diagonal terms are always x but the off-diagonal terms, 1 for adjacent and
0 for nonadjacent orbital pairs, depend on the numbering (which does not affect the
results: Fig. 4.25). Any specific determinant of the type in Eq. 4.77 can be expanded
into a polynomial of order n (where the determinant is of order n X n), making
Eq. 4.77 yield polynomial equation:

V4axX " rax" P+ a,=0 (4.78)

The polynomial can be solved for x and then the energy levels can be found from
(x — E)/p = x, i.e. from

E=o— fpx 4.79)

The coefficients can then be calculated from the energy levels by substituting
the E’s into one of the secular equations, finding the ratio of the ¢’s, and normalizing
to get the actual ¢’s. An example will indicate how the determinant method can be
implemented.

Consider the propenyl system. In the secular determinant the i,i-type interactions
will be represented by x, adjacent i, j-type interactions by 1 and nonadjacent i, j-type
interactions by 0. For the determinantal equation we can write (Fig. 4.25)

1 x 1 1
1 X 1
1 1 X
3 2
2 X 1 0
/\ 1 % 1 = x3_-2x
1 3
0 1 X
! x 11
/\ 1 x 0 =x3-2x
2 3
1 0 X

Fig. 4.25 The determinants corresponding to different numbering patterns can seem to differ, but
on expansion they give the same polynomial



150 4 Introduction to Quantum Mechanics in Computational Chemistry

1
X (4.80)
1

S = =
= —_ O
I
S

(compare this with the Fock matrix for the propenyl system). Solving this equation
(see Section 4.3.3):

1

x
1

S = =
= = O
I
=

=x(*=1)—(x=0)+0=x—x—x=x-2x=0  (481)

This cubic can be factored (but in general polynomial equations require numeri-
cal approximation methods):

x(x*=2)=0 so x=0 and ¥*—2=0 or x= +,/2
From (¢« — E)/f =x, E = o — xf3 and

x=0Ieads to E =«
x=+y/2leads to E = o — /2f
x=—y/2leads to E = o+ /2

So we get the same energy levels as from matrix diagonalization (/2 = 1.414).

To find the coefficients we substitute the energy levels into the secular equations;
for the propenyl system these are, projecting from the secular equations for a
two-orbital system, Egs. 4.49:

(Hii —ESu)ci + (Hio —ESi2)er + (His —ESi3)c3 =0
(H21 — ES2])C] -+ (H22 — ES22)C2 -+ (H23 — E523)C3 =0 (482)
(H31 — ES31)c1 + (HS3 — ESn)ca + (Hszz — ES33)c3 =0

These can be simplified (Eqgs. 4.57, 4.61) to

(0 —E)cy + fea +0c3 =0
ﬁC] + (OC — E)Cz + ﬁC3 =0 (4.83)
Ocy + fecr + (O( —E)c; =0

For the energy level E = o+ /28 (MO level 1, y/;), substituting into the first
secular equation we get
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—\/2[1011 +ﬁ021 :07 SO C21/C11 = \/2

(Recall the c;; notation; cy; is the coefficient for atom 1 in ¥y, 5y is the
coefficient for atom 2 in i, etc.). Substituting £ = o + /2f into the second
secular equation we get

— fcii +Pezi =0, so ¢y =c3
We now have the relative values of the ¢’s:
cifenn =1, eafenn =2, ezifen =1 (4.84)

To find the actual values of the ¢’s, we utilize the fact that the MO (we are
talking about MO level 1, {y;) must be normalized:

/ Yidv =1 (4.85)
Now, from the LCAO method

Yy =cu ¢y e ¢y +c3p Py (4.86)

Therefore

Ui =ty &1 + Gy b5+ Gy B3+ 2cc ¢ s
+2c11031 ¢y 3 + 2021031 Py 3 (4.87)

So from Eq. 4.87, and recalling that in the SHM we pretend that the basis
functions ¢ are orthonormal, i.e. that S;; = J;;, we get

/ Yidv=cl + 3 + 3 =1 (4.88)

Using the ratios of the ¢’s from Eq. 4.84:

2 2 2
T .
aa e
11 11 11 11
ie.
2 1
N
and so

11 =3
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and

€1 = (ﬁ)cn :%
and

cr=cp=1

By substituting into the secular equations 4.83 the E values for i/, and 3 we
could find the ratios of the ¢’s for i, and /3 and with the aid of the orthonormaliza-
tion equation analogous to Eq. 4.88 we could get the actual values of ci,, ¢2;, C32
and cy3, 23, and c33. Although this somewhat clumsy way of finding the ¢’s from
the energy levels was streamlined (see e.g. [21d]), the determinant method has been
replaced by matrix diagonalization implemented in a computer program.

4.4 The Extended Huckel Method

4.4.1 Theory

In the simple Hiickel method, as in all modern molecular orbital methods, a Fock
matrix is diagonalized to give coefficients (which with the basis set give the wave-
functions of the molecular orbitals) and energy levels (i.e. molecular orbital energies).
The SHM and the extended Huickel method (EHM, extended Hiickel theory, EHT)
differ in how the elements of the Fock matrix are obtained and how the overlap matrix
is treated. The EHM was popularized and widely applied by Hoffmann®® [56],
although earlier work using the approach had been done by Wolfsberg and Helmholz
[57]. We now compare point by point the SHM and the EHM.

4.4.1.1 Simple Hiickel Method

1. Basis set is limited to p orbitals. Each element of the Fock matrix H is an integral
that represents an interaction between two orbitals. The orbitals are in almost all
cases a set of p orbitals (usually carbon 2p) supplied by an sp? framework, with
the p orbital axes parallel to one another and perpendicular to the plane of the
framework. In other words, the set of basis orbitals — the basis set — is limited (in

28Roald Hoffmann, born Zloczow, Poland, 1937. Ph.D. Harvard, 1962, Professor, Cornell. Nobel
Prize 1981(shared with Kenichi Fukui; Section 7.3.5) for work with organic chemist Robert B.
Woodward, showing how the symmetry of molecular orbitals influences the course of chemical
reactions (the Woodward—Hoffmann rules or the conservation of orbital symmetry). Main expo-
nent of the extended Hiickel method. He has written poetry, and several popular books on
chemistry.
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the great majority of cases) to p, orbitals (taking the framework plane, i.e. the
molecular plane, to be the xy plane).

2. Orbital interaction energies are limited to o,  and 0. The Fock matrix orbital
interactions are limited to «, ff and 0, depending on whether the /; interaction is,
respectively i,i, adjacent, or further-removed. The value of f does not vary
smoothly with the separation of the orbitals, although logically it should
decrease continuously to zero as the separation increases.

3. Fock matrix elements are not actually calculated. The Fock matrix elements are
not any definite physical quantities, but rather energy levels relative to « in units
of 1fl, making them O or —1. One can try to estimate « and f3, but the SHM does
not define them quantitatively.

4. Overlap integrals are limited to 1 or 0. We pretend that the overlap matrix S is a
unit matrix, by setting S;; = ¢,;. This enables us to simplify HC = SCe (Eq. 4.54)
to the standard eigenvalue form HC = Ce (Eq. 4.59) and so H = CeC ™', which
is the same as saying that the SHM Fock matrix is directly diagonalized to give
the ¢’s and ¢€’s.

Now compare these four points with the corresponding features of the EHM:

4.4.1.2 Extended Hiickel Method

1. All valence s and p orbitals are used in the basis set. As in the SHM each
element of the Fock matrix is an integral representing an interaction between
two orbitals; however, in the EHM the basis set is not just a set of 2p, orbitals but
rather the set of valence-shell orbitals of each atom in the molecule (the deriva-
tion of the secular equations says nothing about what kinds of orbitals we are
considering). Thus each hydrogen atom contributes a 1s orbital to the basis set
and each carbon atom a 2s and three 2p orbitals. Lithium and beryllium,
although they have no 2p electrons, are assigned a 2s and three 2p orbitals
(experience shows that this works better than omitting these basis functions) so
the atoms from lithium to fluorine each contribute a 2s and three 2p orbitals. A
basis set like this, which uses the normal valence orbitals of atoms, is called a
minimal valence basis set.

2. Orbital interaction energies are calculated and vary smoothly with geometry.
The EHM Fock matrix orbital interactions H;; are calculated in a way that
depends on the distance apart of the orbitals, so their values vary smoothly
with orbital separation.

3. Fock matrix elements are actually calculated. The EHM Fock matrix elements
are calculated from well-defined physical quantities (ionization energies) with
the aid of well-defined mathematical functions (overlap integrals), and so are
closely related to ionization energies and have definite quantitative values.

4. Overlap integrals are actually calculated. We do not in effect ignore the overlap
matrix, i.e. we do not set it equal to a unit matrix. Instead, the elements of the
overlap matrix are calculated, each §;; depending on the distance apart of the
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atoms i and j, which has the important consequence that the S values depend on
the geometry of the molecule. Since S is not taken as a unit matrix, we cannot go
directly from HC = SCe to HC = Ce and thus we cannot simply diagonalize
the EHM Fock to get the ¢’s and €’s.

These four points are elaborated on below.

1. Use of a minimal valence basis set in the EHM is more realistic than treating just
the 2p. orbitals, since all the valence electrons in a molecule are likely to be
involved in determining its properties. Further, the SHM is largely limited to =
systems, i.e. to alkenes and aromatics and derivatives of these with attached «
electron groups, but the EHM, in contrast, can in principle be applied to any
molecule. The use of a minimal valence basis set makes the Fock matrix much
larger than in the “corresponding” SHM calculation. For example in an
SHM calculation on ethene, only two orbitals are used, the 2p, on C; and the
2p, on C,, and the SHM Fock matrix is (using the compact Dirac notation

<¢,‘H|¢,> = f(biﬁ(bjdv)

H(SHM) = <<C‘(2Pz) H|Ci(2p.)) (Ci(2p2) ﬁ|C2(2pZ)>>
(Ca(2p)|H|C1 (2p-)) (Ca(2p-)|H|Ca(2p-))

( 0 —1) .
= 2 X 2 matrix
-1 0

(4.89)

To write down the EHM Fock matrix, let us label the valence orbitals like this:

Hi(1s) ¢, Ci(2s) s Ci(2p:) ¢7  Ci(2py) 9o Ci(2py) 11
Ha(1s) ¢, Ca(2s) ¢ C2(2p.) 95 Cz(Zpy) $10 Ca(2p:) ¢1o
Hs(1s) ¢;
Hy(1s) ¢4
Then
(d1|H|by) (pilH|py) ... (d|H|p)
(alH|p)  (DalHIds) .. (dalH|dy)
H(EHM) =

: : : (4.90)
<¢12|m¢1> <¢12m|¢2> <¢12|19\d>12>

12 x 12 matrix



4.4 The Extended Hiickel Method 155

: ! ® O,
38 B

The simple Huickel method basis set for ethene.  The extended Hiickel method basis set for ethene.
Each carbon has one 2p basis function. Each carbon has one 2s and three 2p basis functions.
C,H, has two basis functions Each H has one 1s basis function.

C,H,4 has 12 basis functions.

juny

Fig. 4.26 The simple Hiickel method normally uses only one basis function per “heavy atom”:
only one 2p orbital on each carbon, oxygen, nitrogen, etc., ignoring the hydrogens. The extended
Hiickel method uses for each carbon, oxygen, nitrogen, etc., a 2s and three 2p orbitals, and for each
hydrogen a 1s orbital. This is called a minimal valence basis set

The SHM and EHM basis sets are shown in Fig. 4.26.

2. The EHM Fock matrix interactions i,j do not have just two values (a or f§) as
in the SHM, but are functions of the orbitals (the basis functions) ¢; and ¢; and
of the separation of these orbitals, as explained in (3) below.

3. The EHM matrix elements <¢il:l ¢i> and qSlH d)j> are calculated (rather than set
equal to 0 or —1), although the calculation is a simple one using overlap integrals
and experimental ionization energies; in ab initio calculations (Chapter 5) and
more advanced semiempirical calculations (Chapter 6), the mathematical form
of H taken into account. The i,i-type interactions are taken as being proportional
to the negative of the ionization energy [58] of the orbital ¢, and the i,j-type
interactions as being proportional to the overlap integral between ¢; and ¢, and
the negative of the average of the ionization energies /; and /; of ¢; and ¢; (the
negative of the orbital ionization energy is the energy of an electron in the
orbital, compared to the zero of energy of the electron and the ionized species
infinitely separated and at rest):

(piHe;) = —I; 4.91)

N 1
<¢5H¢j> = *EKSU(L' +1) (4.92)

A proportionality constant K of about 2 is commonly used.
For H(1s), C(2s) and C(2p), experiment shows

I(H(1s)) = 13.6 eV, I(C(2s)) =20.8 eV, I(C(2p)) =11.3eV (4.93)

The overlap integrals are calculated using Slater-type (Section 5.3.2) functions
for the basis functions, e.g.



156 4 Introduction to Quantum Mechanics in Computational Chemistry

N
d(1s) = <%‘) exp(—C,|r — Ryg|) (4.94)
5\ 1 B B
$(2s) = (956—;) Ir — Ray| exp (M) (4.95)

where the parameters { depend on the particular atom (H, C, etc.) and orbital
(1s, 2s, etc.). The variable r — R is the distance of the electron from the atomic
nucleus on which the function is centered; r is the vector from the origin of the
Cartesian coordinate system to the electron, and R is the vector from the origin
to the nucleus on which the basis function is centered:

1

= Ral = [(x =" + 0 =30 + (= 22)°]] (4.96)

where (x4, ya, Za) are the coordinates of the nucleus bearing the Slater function.
The Slater function is thus a function of three variables x,y,z and depends
parametrically on the location (xa, ya, za) of the nucleus A on which it is
centered. The Fock matrix elements are thus calculated with the aid of overlap
integrals whose values depend the location of the basis functions; this means that
the molecular orbitals and their energies will depend on the actual geometry used
in the input, whereas in a simple Huckel calculation, the MOs and their energies
depend only on the connectivity of the molecule).

4. The overlap matrix S in the EHM is not simply treated as a unit matrix, in effect
ignoring it, for the purpose of diagonalizing the Fock matrix. Rather, the overlap
integrals are actually evaluated, not only to help calculate the Fock elements,
but also to reduce the equation HC = SCe to the standard eigenvalue form
HC = Ce. This is done in the following way. Suppose the original set of basis
functions {¢;} could be transformed by some process into an orthonormal set
{i} (since atom-centered basis functions can’t be orthogonal, as explained in
Section 4.3.4, the new set must be delocalized over several centers and is in fact
a linear combination of the atom-centered set) such that with a new set of
coefficients ¢’ we have LCAO molecular orbitals with the same energy levels
as before, i.e.

5= [ dlagn =1, @97)

where §;; is the Kronecker delta (Eq. 4.57). The result of the process referred to
above is

HC — SCe PFO%esS pr _ g/ ¢ve (4.98)
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(g, not €', as the energy will not depend on manipulation of a given set of basis
functions) where the matrices H, C, S and & were defined in Section 4.3.4
(Egs. 4.55) and H' and S’ are analogous to H and S with ¢’ in place of ¢ and C’
is the matrix of coefficients ¢’ that satisfies the equation with the energy levels ¢ (the
elements of €) being the same as in the original equation HC = SCe. Since from
Eq. 4.97 §' = 1, the unit matrix (Section 4.3.3), Eq. 4.98 simplifies to

HC — SCe FPFOeSS o — e (4.99)

The Process that effects the transformation is called orthogonalization, since the
result is to make the basis functions orthogonal. The favored orthogonalization
procedure in computational chemistry, which I will now describe, is Lowdin
orthogonalization (after the quantum chemist Per-Olov Lowdin).

Define a matrix C’ such that

C' =8'2C ie. C=8""%C (4.100)
(By multiplying on the left by $~"/% and noting that S~2§"? = §° = 1).
Substituting Eq. 4.100 into HC = SCe and multiplying on the left by S~/
we get
S12HS'2C =87 1/28S71/2C'e (4.101)
Let
SVPHS 2 =W (4.102)

and note that S~728§-2 = §¥/2§-12 =1
Then we have from Egs. 4.101 and 4.102

H'C =1C'e
ie.
HC =Ce (4.103)
Thus the orthogonalizing process of Eq. 4.99 (or rather one possible orthogonal-
ization process, Lowdin orthogonalization) is the use of an orthogonalizing matrix

S~ "2 to transform H by pre- and postmultiplication (Eq. 4.102) into H'. H' satisfies
the standard eigenvalue equation (Eq. 4.103), so
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H = CeC™! (4.104)

In other words, using S™'2 we transform the original Fock matrix H, which is
not directly diagonalizable to eigenvector and eigenvalue matrices C and €, into a
related matrix H' which is diagonalizable to eigenvector and eigenvalue matrices C’
and €. The matrix C’ is then transformed to the desired C by multiplying by S~/
(Eqg. 4.100). So without using the drastic S = 1 approximation we can use matrix
diagonalization to get the coefficients and energy levels from the Fock matrix.

The orthogonalizing matrix S™"? is calculated from S: the integrals S are
calculated and assembled into S, which is then diagonalized:

S = PDP! (4.105)

Now it can be shown that any function of a matrix A can be obtained by taking
the same function of its corresponding diagonal alter ego and pre- and postmulti-
plying by the diagonalizing matrix P and its inverse P~ '

f(A) =Pf(D)P! (4.106)

and diagonal matrices have the nice property that f{D) is the diagonal matrix whose
diagonal element i,,j = f(element i,j of D). So the inverse square root of D is the
matrix whose elements are the inverse square roots of the corresponding elements
of D. Therefore

S~'/2 = pp-1/2p~! (4.107)

and to find D~"? we (or rather the computer) simply take the inverse square root of
the diagonal (i.e. the nonzero) elements of D. To summarize: S is diagonalized to
give P, P !and D, D is used to calculate DV 2, then the orthogonalizing matrix
S~ 2 is calculated (Eq. 4.107) from P, D~"? and P~". The orthogonalizing matrix
is then used to convert H to H’' (Eq. 4.102), which can be diagonalized to give the
eigenvalues and the eigenvectors (Section 4.4.2).

4.4.1.3 Review of the EHM Procedure

The EHM procedure for calculating eigenvectors and eigenvalues, i.e. coefficients
(or in effect molecular orbitals — the ¢’s along with the basis functions comprise the
MOs) and energy levels, bears several important resemblances to that used in more
advanced methods (Chapters 5 and 6) and so is worth reviewing.

1. An input structure (a molecular geometry) must be specified and submitted to
calculation. The geometry can be specified in Cartesian coordinates (probably
the usual way nowadays) or as bond lengths, angles and dihedrals (internal
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coordinates), depending on the program. In practice a virtual molecule would
likely be created with an interactive model-building program (usually by click-
ing together groups and atoms) which would then supply the EHM program with
either Cartesian or internal coordinates.

2. The EHM program calculates the overlap integrals S and assembles the overlap
matrix S.

3. The program calculates the Fock matrix elements H;; = <<f)i|1-7 |q’>j> (Egs. 4.91
and 4.92) using stored values of ionization energies /, the overlap integrals S,
and the proportionality constant K of that particular program. The matrix ele-
ments are assembled into the Fock matrix H.

4. The overlap matrix is diagonalized to give P, D and P~' (Eq. 4.105) and D™ is
then calculated by finding the inverse square roots of the diagonal elements of D.
The orthogonalizing matrix S~ is then calculated from P, D~? and P!
(Eq. 4.107).

5. The Fock matrix H in the atom-centered nonorthogonal basis { ¢} is transformed
into the matrix H' in the delocalized, linear combination orthogonal basis {¢'}
by pre- and postmultiplying H by the orthogonalizing matrix S~"* (Eq. 4.102).

6. H' is diagonalized to give C’, € and C'~' (Eq. 4.104). We now have the energy
levels ¢ (the diagonal elements of the € matrix).

7. C' must be transformed to give the coefficients ¢ of the original, atom-centered
set of basis functions {¢} in the MOs (i.e. to convert the elements ¢’ to ¢). To get
the ¢’s in the MOs ; = c¢y;¢p; + c2jpo +- -+, we transform C’ to C by
premultiplying by S~"* (Eq. 4.100).

4.4.1.4 Molecular Energy and Geometry Optimization in the Extended
Hiickel Method

Steps 1-7 take an input geometry and calculate its energy levels (the elements of € )
and their MOs or wavefunctions (the 1/’s; from the ¢’s, the elements of C, and the
basis functions ¢). Now, clearly any method in which the energy of a molecule
depends on its geometry can in principle be used to find minima and transition states
(see Chapter 2). This brings us to the matter of how the EHM calculates the energy
of a molecule. The energy of a molecule, that is, the energy of a particular nuclear
configuration on the potential energy surface, is the sum of the electronic energies
and the internuclear repulsions (Ecjectronic + VNN)-

In comparing the energies of isomers, or of two geometries of the same mole-
cule, one should, strictly, compare Erul = Eciectronic + Van- The electronic energy
is the sum of kinetic energy and potential energy (electron—electron repulsion and
electron—nucleus attraction) terms. The internuclear repulsion, due to all pairs of
interacting nuclei and trivial to calculate, is usually represented by V, a symbol for
potential energy. The EHM ignores Vyn. Furthermore, the method calculates elec-
tronic energy simply as the sum of one-electron energies (Section 4.4.4.2, Weak-
nesses), ignoring electron—electron repulsion. Hoffmann’s tentative justification
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[56a] for ignoring internuclear repulsion and using a simple sum of one-electron
energies was that when the relative energies of isomers are calculated, by subtract-
ing two values of E', the electron repulsion and nuclear repulsion terms approxi-
mately cancel, i.e. that changes in energy that accompany changes in geometry are
due mainly to alterations of the MO energy levels. Actually, it seems that the (quite
limited) success of the EHM in predicting molecular geometry is due to the fact that
E° s approximately proportional to the sum of the occupied MO energies; thus
although the EHM energy difference is not equal to the difference in total energies,
it is (or tends to be) approximately proportional to this difference [59]. In any case,
the real strength of the EHM lies in the ability of this fast and widely applicable
method to assist chemical intuition, if provided with a reasonable molecular
geometry.

4.4.2 An Illustration of the EHM: the Protonated Helium
Molecule

Protonation of a helium atom gives He—H", the helium hydride cation, the simplest
heteronuclear molecule [60]. Conceptually, of course, this can also be formed by
the union of a helium dication and a hydride ion, or a helium cation and a hydrogen
atom:

He: + HY — He:H'
or He*™ +:H- — He:H'
or He™ +°*H — He:H"

Its lower symmetry makes this molecule better than H, for illustrating molecular
quantum mechanical calculations (most molecules have little or no symmetry).
Following the prescription in points 1-7:

1. Input structure
We choose a plausible bond length: 0.800 A (the H-H bond length is 0.742 A
and the H-X bond length is ca. 1.0 A, where X is a “first-row” element
(in quantum chemistry, first-row means Li to F, not H and He). The Cartesian
coordinates could be written H;(0,0,0), He»(0,0, 0.800).

2. Overlap integrals and overlap matrix
The minimal valence basis set here consists of the hydrogen 1s orbital (¢;) and
the helium 1s orbital (¢,). The needed integrals are S;; = S,, and S}, = S5y,
where S;; = [ ¢, ¢;dv. The Slater functions for ¢, and ¢, are [61]

T

% 1/2
¢, (Hls) = (—H) e tulrRul (4.108)
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and

% 1/2
¢, (Hels) = <?> e~ tnlr R (4.109)

Reasonable values [60] are (;; = 1.24 Bohr ' and {3 = 2.0925 Bohr ', if r is in
atomic units, a.u. (see Section 5.2.2); 1 a.u. = 0.5292 A. The overlap integrals are

Si1 = Sy = 1 (as must be the case if ¢; and ¢, are normalized)
and S;; = S,; = 0.435 (for all well-behaved functions f fif2dg = f fof1dq).

The overlap matrix is thus

| 0435
S‘(0.435 1) (4.110)

3. Fock matrix
We need the matrix elements H,; = Hy, and H{, = H,;, where the integrals

H; = <(;’>,-|ﬁ |¢p;> are not actually calculated from first principles but rather are
estimated with the aid of overlap integrals and orbital ionization energies:

<¢l|ﬁ|¢z> =—I

A 1
<¢I‘H|¢;> == EKSU(II' +1))
Using simply the ionization energies [cf. 58]:
IH)=1,=136¢V, I(He) =1, =24.6 eV

Hoffmann used in his initial calculations [56a] K = 1.75.

So
H =13.6¢eV
Hi; = Hy = —1(1.75)(0.435)(13.6 4+ 24.6) = —14.5
Hy, = —24.6

And the Fock matrix is

~13.6 —14.5
H= <—14.5 —24.6) 11D
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4. Orthogonalizing matrix
As explained above, we (a) diagonalize S, (b) calculate DY 2, then (c) calculate
the orthogonalizing matrix S~ "
(a) Diagonalize S

S < 1 0.435) B (0.707 0.707 ><1.435 0 ><0.707 0.707 )
- \0435 1 ) \0.707 —0.707 0 0.565/)\0.707 —0.707
P D P!

4.112)

(b) Calculate D2

_ip_ (1435712 0 (0835 0
° _< 0 o0ses2) =\ 0 1330 @113

(¢) Calculate the orthogonalizing matrix $~ '/

S_1/2_(0.707 0.707 )(0.835 0 )(0.707 0.707 )_( 1.083 —0.248)
-~ \0.707 —-0.707 0 1.330/\0.707 —0.707) \—0.248 1.083
P D—l/2 P—l
(4.114)

5. Transformation of the original Fock matrix H to H’
Using Eq. 4.102:

H’-( 1.083 —0.248) <—13.6 —14.5) < 1.083 —0.248) _ (—9.67 —17.65 )
-\ —0.248 1.083 —145 -24.6)\—0.248 1.083 ) \-7.68 —21.74
S—l/z H Sfl/Z
4.115)

6. Diagonalization of H’
From Eq. 4.104 (H' = C'eC’™"), diagonalization of H’ gives an eigenvector
matrix C’ and the eigenvalue matrix €; the columns of C’ are the coefficients of
the transformed, orthonormal basis functions:

- (—9.67 ~7.65 ) B (0.436 0.899 )(—25.5 0 )<0.436 0.900 )

-\ =7.68 —21.74) \0.900 —0.437 0 —5.95/\0.899 —0.437
C e c!

(4.116)
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We now have the energy levels (—25.5 and —5.95 eV), but the eigenvectors
of C’ must be transformed to give us the coefficients of the original, nonortho-
gonal basis functions.

7. Transformation of C' to C
Using Eq. 4.100, (C = S~ 2C’):

B ( 1.083 —0.248> <0.436 0.899 ) B (0.249 1.082 )
-\ —0248 1.083 /\ 0900 —0.437) \0.867 —0.696/) (4.117)
S*l/z Cl

Note that unlike the case in the SHM, the sum of the squares of the ¢’s for an MO
does not equal 1, since overlap integrals S;; for basis functions on different atoms
are not set equal to 0; in other words, the basis functions are not assumed to be
orthogonal, and the overlap matrix is not a unit matrix. Thus for :

Y =ci¢) + gy, so
/‘//%dv:/(C%¢%+26102¢1¢2+C§ $3)dv =1

since the probability of finding an electron in y; somewhere in space is 1. The basis
functions ¢ are normalized, so

c% + 2c162812 + c% =1, ie.

cf + c% =1-2c1c8512

not = 1 as on the simple Hiickel method.

4.4.3 The Extended Hiickel Method — Applications

The EHM was initially applied to the geometries (including conformations) and
relative energies of hydrocarbons [56a], but the calculation of these two basic
chemical parameters is now much better handled by semiempirical methods like
AMI1 and PM3 (Chapter 6) and by ab initio (Chapter 5) and DFT (Chapter 7)
methods. The main use of the EHM nowadays is to study large, extended systems
[62] like polymers, solids and surfaces. Indeed, of four papers by Hoffmann and
coworkers in the Journal of the American Chemical Society in 1995, using the
EHM, three applied it to such polymeric systems [63]. The ability of the method to
illuminate problems in solid-state science makes it useful to physicists. Even when
not applied to polymeric systems, the EHM is frequently used to study large,
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heavy-metal-containing molecules [64] that might not be very amenable to ab initio
or to other semiempirical approaches (see Chapter 8, Section 8.3.4).

4.4.4 Strengths and Weaknesses of the Extended Hiickel Method

4.44.1 Strengths

One big advantage of the EHM over ab initio methods (Chapter 5), more elaborate
semiempirical methods (Chapter 6), and density functional theory (DFT) methods
(Chapter 7), is that the EHM can be applied to very large systems, and can treat
almost any element since the only element-specific parameter needed is an ioniza-
tion energy, which is usually available. In contrast, more elaborate semiempirical
methods have not been parameterized for as many elements (although recent para-
meterizations of PM3 and MNDO for transition metals make these much more
generally useful than hitherto — Section 6.2.6.7). For ab initio and DFT methods,
basis sets may not be available for elements of interest, and besides, ab initio and
even DFT methods are hundreds of times slower than the EHM and thus limited to
much smaller systems. The applicability of the EHM to large systems and a wide
variety of elements is one reason why it has been extensively applied to polymeric
and solid-state structures. The EHM is faster than more elaborate semiempirical
methods because calculation of the Fock matrix elements is so simple and because
this matrix needs to be diagonalized only once to yield the eigenvalues and
eigenvectors; in contrast, semiempirical methods like AM1 and PM3 (Chapter 6),
as well as ab initio calculations, require repeated matrix diagonalization because the
Fock matrix must be iteratively refined in the SCF procedure (e.g. Section 5.2.3.6.5).

The spartan reliance of the EHM on empirical parameters helps to make it
relatively easy (in the right hands) to interpret its results, which depend, in the
last analysis, only on geometry (which affects overlap integrals) and ionization
energies. With a strong dose of chemical intuition this has enabled the method to
yield powerful insights, such as counterintuitive orbital mixing [65], and the very
powerful Woodward—Hoffmann rules [38].

The applicability to large systems, including polymers and solids, containing
almost any kind of atom, and the relative transparency of the physical basis of the
results, are the main advantages of the EHM.

Surprisingly for such a conceptually simple method, the EHM has a theoreti-
cally-based advantage over otherwise more elaborate semiempirical methods like
AMI1 and PM3, in that it treats orbital overlap properly: those other methods use the
“neglect of differential overlap” or NDO approximation (Section 6.2), meaning that
they take S;; = §;, as in the simple Hiickel method. This can lead to superior results
from the EHM [66].

The EHM is a very valuable teaching tool because it follows straightforwardly
from the simple Hiickel method yet uses overlap integrals and matrix orthogonali-
zation in the same fashion as the mathematically more elaborate ab initio method.
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Finally, the EHM, albeit more elaborately parameterized than in its original
incarnation, has been claimed to offer some promise as a serious competitor to
the very useful and popular semiempirical AM1 method (Section 6.2.5.5) for
calculating molecular geometries [67].

4.4.4.2 Weaknesses

The weaknesses of the standard EHM probably arise at least in part from the fact
that it does not (contrast the ab initio method, Chapter 5) take into account electron
spin or electron—electron repulsion, ignores the fact that molecular geometry is
partly determined by internuclear repulsion, and makes no attempt to overcome
these defects by parameterization (unlike the variation which, with the aid of
careful parameterization, has been claimed to give good geometries [67]).

The standard EHM gives, by and large, poor geometries and energies. Although
it predicts a C—H bond length of ca. 1.0 A, it yields C/C bond lengths of 1.92, 1.47
and 0.85 A for ethane, ethene and ethyne, respectively, cf. the actual values of 1.53,
1.33 and 1.21 A, and although the favored conformation of an alkane is usually
correctly identified, the energy barriers and differences are generally at best in only
modest agreement with experiment. Because of this inability to reliably calculate
geometries, EHM calculations are usually not used for geometry optimizations,
but rather utilize experimental geometries.

4.5 Summary

This chapter introduces the application of quantum mechanics (QM) to computa-
tional chemistry by outlining the development of QM up to the Schrodinger
equation and then showing how this equation led to the simple Hiickel method,
from which the extended Hiickel method followed.

QM teaches, basically, that energy is quantized: absorbed and emitted in discrete
packets (quanta) of magnitude hv, where / is Planck’s constant and v (Greek nu)
is the frequency associated with the energy. QM grew out of studies of blackbody
radiation and of the photoelectric effect. Besides QM, radioactivity and relativity
contributed to the transition from classical to modern physics. The classical
Rutherford nuclear atom suffered from the deficiency that Maxwell’s electro-
magnetic theory demanded that its orbiting electrons radiate away energy and
swiftly fall into the nucleus. This problem was countered by Bohr’s quantum
atom, in which an electron could orbit stably if its angular momentum was an
integral multiple of #/2n. However, the Bohr model contained several ad hoc fixes
and worked only for the hydrogen atom. The deficiencies of the Bohr atom were
surmounted by Schrodinger’s wave mechanical atom; this was based on a combi-
nation of classical wave theory and the de Broglie postulate that any particle is
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associated with a wavelength /4 = h/p, where p is the momentum. The four quantum
numbers follow naturally from the wave mechanical treatment and the model does
not break down for atoms beyond hydrogen.

Hiickel was the first to apply QM to species significantly more complex than the
hydrogen atom. The Hiickel approach is treated nowadays within the framework of
the concept of hybridization: the x electrons in p orbitals are taken into account and
the ¢ electrons in an sp> framework are ignored. Hybridization is a purely mathe-
matical convenience, a procedure in which atomic (or molecular) orbitals are
combined to give new orbitals; it is analogous to the combination of simple vectors
to give new vectors (an orbital is actually a kind of vector).

The simple Hiickel method (SHM, simple Hiickel theory, SHT, Hiickel molecu-
lar orbital method, HMO method) starts with the Schrodinger equation in the form
Hy = Ey where H is a Hamiltonian operator, i is a MO wavefunction and E is the
energy of the system (atom or molecule). By expressing s as a linear combination
of atomic orbitals (LCAO) and minimizing E with respect to the LCAO coefficients
one obtains a set of simultancous equations, the secular equations. These are
equivalent to a single matrix equation, HC = SCe; H is an energy matrix, the
Fock matrix, C is the matrix of the LCAO coefficients, S is the overlap matrix and
€ is a diagonal matrix whose nonzero, i.e. diagonal, elements are the MO energy
levels. The columns of C are called eigenvectors and the diagonal elements of € are
called eigenvalues. By the drastic approximation S = 1 (1 is the unit matrix), the
matrix equation becomes HC = Cg, i.e. H = Ce C ' which is the same as saying
that diagonalization of H gives C and &, i.e. gives the MO coefficients in the LCAO,
and the MO energies. To get numbers for H the SHM reduces all the Fock matrix
elements to a (the coulomb integral, for AOs on the same atom) and f (the bond
integral or resonance integral, for AOs not on the same atom; for nonadjacent atoms
f is set = 0). To get actual numbers for the Fock elements, o and f§ are defined as
energies relative to o, in units of |Sl; this makes the Fock matrix consist of just 0’s
and —1’s, where the 0’s represent same-atom interactions and nonadjacent-atom
interactions, and the —1’s represent adjacent-atom interactions. The use of just two
Fock elements is a big approximation. The SHM Fock matrix is easily written down
just by looking at the way the atoms in the molecule are connected.

Applications of the SHM include predicting:

The nodal properties of the MOs, very useful in applying the Woodward—Hoffmann
rules.

The stability of a molecule based on its filled and empty MOs, and its delocalization
energy or resonance energy, based on a comparison of its total n-energy with
that of a reference system. The pattern of filled and empty MOs led to Hiickel’s
rule (the 4n + 2 rule) which says that planar molecules with completely
conjugated p orbitals containing 4n + 2 electrons should be aromatic.

Bond orders and atom charges, which are calculated from the AO coefficients of the
occupied TMOs (in the SHM LCAO treatment, p AOs are basis functions that
make up the MOs).
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The strengths of the SHM lie in the qualitative insights it gives into the effect
of molecular structure on 7 orbitals. Its main triumph in this regard was its
spectacularly successful prediction of the requirements for aromaticity (the Hiickel
4n + 2 rule).

The weaknesses of the SHM arise from the fact that it treats only 7 electrons
(limiting its applicability largely to planar sp> arrays), its all-or-nothing treatment
of overlap integrals, the use of just two values for the Fock integrals, and its neglect
of electron spin and interelectronic repulsion. Because of these approximations it is
not used for geometry optimizations and its quantitative predictions are sometimes
viewed with suspicion. For obtaining eigenvectors and eigenvalues from the secular
equations an older and inelegant alternative to matrix diagonalization is the use of
determinants.

The extended Hiickel method (EHM, extended Hickel theory, EHT) follows
from the SHM by using a basis set that consists not just of p orbitals, but rather of all
the valence AOs (a minimal valence basis set), by calculating (albeit very empiri-
cally) the Fock matrix integrals, and by explicitly calculating the overlap matrix S
(whose elements are also used in calculating the Fock integrals). Because S is not
taken as a unit matrix, the equation HC = SCe must be transformed to one without
S before matrix diagonalization can be applied. This is done by a matrix multipli-
cation process called orthogonalization, involving $~'/2, which converts the origi-
nal Fock matrix H, based on nonorthogonal atom-centered basis functions, into a
Fock matrix H’, based on orthogonal linear combinations of the original basis
functions. With these new basis functions, H'C' = C’e, i.e H = C'e C'"}, so
that diagonalization of H' gives the eigenvectors (of the new basis functions, which
are transformed back to those corresponding to the original set: C' — C) and
eigenvalues of H.

Because the overlap integrals needed by the EHM depend on molecular geome-
try, the method can in principle be used for geometry optimization, although for the
conventional EHM the results are generally poor, so known geometries are used as
input. Applications of the EHM involve largely the study of big molecules and
polymeric systems, often containing heavy metals.

The strengths of the EHM derive from its simplicity: it is very fast and so can be
applied to large systems; the only empirical parameters needed are (valence-state)
ionization energies, which are available for a wide range of elements; the results of
calculations lend themselves to intuitive interpretation since they depend only on
geometry and ionization energies, and on occasion the proper treatment of overlap
integrals even gives better results than those from more elaborate semiempirical
methods. The fact that the EHM is conceptually simple yet incorporates several
features of more sophisticated methods enables it to serve as an excellent introduc-
tion to quantum mechanical computational methods.

The weaknesses of the EHM are due largely to its neglect of electron spin and
electron-electron repulsion and the fact that it bases the energy of a molecule simply
on the sum of the one-electron energies of the occupied orbitals, which ignores
electron—electron repulsion and internuclear repulsion; this is at least partly the
reason it usually gives poor geometries.
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Easier Questions

What do you understand by the term quantum mechanics?

Outline the experimental results that led to quantum mechanics.

What approximations are used in the simple Hiickel method?

How could the SHM Fock matrix for 1,3-butadiene be modified in an attempt to
recognize the fact that the molecule has, formally anyway, two double bonds
and one single bond?

5. What are the most important kinds of results that can be obtained from Hiickel
calculations?

6. Write down the simple Hiickel Fock matrices (in each case using o, B and O,
and 0, —1 and 0) for: (1) the pentadienyl radical (2) the cyclopentadienyl
radical (3) trimethylenemethane, C(CH2)3 (4) trimethylenecyclopropane (5)
3-methylene-1,4-pentadiene.

7. The SHM predicts the propenyl cation, radical and anion to have the same
resonance energy (stabilization energy). Actually, we expect the resonance
energy to decrease as we add w electrons; why should this be the case?

8. What molecular feature cannot be obtained at all from the simple Hiickel
method? Why?

9. List the differences between the underlying theory of the simple Hiickel
method and the extended Hiickel method.

10. A 400 x 400 matrix is easily diagonalized. How many carbons would an alkane
have for its EHM Fock matrix to be 400 x 400 (or just under this size)? How
many carbons would a (fully) conjugated polyene have if its SHM Fock matrix
were 400 x 4007

b S

Harder Questions

1. Do you think it is reasonable to describe the Schrodinger equation as a
postulate of quantum mechanics? What is a postulate?

2. What is the probability of finding a particle at a point?

3. Suppose we tried to simplify the simple Hiickel method even further, by
ignoring all interactions i, j; i # j (ignoring adjacent instead interactions of
setting them = ). What effect would this have on energy levels? Can you see
the answer without looking at a matrix or determinant?

4. How might the i,j-type interactions in the simple Hiickel Fock matrix be made
to assume values other than just —1 and 0?

5. What is the result of using as a reference system for calculating the resonance
energy of cyclobutadiene, not two ethene molecules, but 1,3-butadiene? What
does this have to do with antiaromaticity? Is there any way to decide if one
reference system is better than another?
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6.

7.

10.

What is the problem with unambiguously defining the charge on an atom in a
molecule?

It has been reported that the extended Hiickel method can be parameterized to
give good geometries. Do you think this might be possible for the simple
Hiickel method? Why or why not?

Give the references to a journal paper that used the SHM, and one that used the
EHM, within the last decade. Give an abstract of each paper.

The ionization energies usually used to parameterize the EHM are not ordinary
atomic ionization energies, but rather valence-state atomic orbital ionization
energies (VSAO ionization energies). What does the term “valence state” mean
here? Should the VSAO ionization energies of the orbitals of an atom depend
somewhat on the hybridization of the atom? In what way?

Which should require more empirical parameters: a molecular mechanics force
field (Chapter 3) or an extended Hiickel method program? Explain.






Chapter 5
Ab initio Calculations

“I could have done it in a much more complicated way”, said the Red Queen,
immensely proud.
Attributed, probably apocryphally, to Lewis Carroll

Abstract Ab initio calculations rest on solving the Schrodinger equation; the
nature of the necessary approximations determines the level of the calculation. In
the simplest approach, the Hartree—Fock method, the total molecular wavefunction
W is approximated as a Slater determinant composed of occupied spin orbitals. To
use these in practical calculations the spatial orbitals are approximated as a linear
combination (a weighted sum) of basis functions. Electron correlation methods are
also discussed. The main uses of the ab initio method are calculating molecular
geometries, energies, vibrational frequencies, spectra, ionization potentials and
electron affinities, and properties like dipole moments which are connected with
electron distribution. These calculations find theoretical and practical applications,
since, for example, enzyme—substrate interactions depend on shapes and charge
distributions, reaction equilibria and rates depend on energy differences, and
spectroscopy plays an important role in identifying and understanding novel mole-
cules. The visualization of calculated phenomena can be very important in inter-
preting results.

5.1 Perspective

Chapter 4 showed how quantum mechanics was first applied to molecules of
real chemical interest (pace chemical physics) by Erich Hiickel, and how the
extension of the simple Hiickel method by Hoffmann gave a technique of consider-
able usefulness and generality, the extended Hiickel method. The simple and the
extended Hiuckel methods (SHM and EHM) are both based on the Schrodinger
equation, and this makes them quantum mechanical methods. Both depend on

E.G. Lewars, Computational Chemistry, 175
DOI 10.1007/978-90-481-3862-3_5, © Springer Science+Business Media B.V. 2011
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reference to experimental quantities (i.e. on parameterization against experiment)
to give actual values of calculated parameters: the SHM gives energy levels in
terms of a parameter 5 which we could try to assign a value by comparison with
experiment (actually the results of SHM calculations are usually left in terms of f3),
while the EHM needs experimental ionization energies to calculate the Fock matrix
elements. The need for parameterization against experiment makes the SHM and
the EHM semiempirical (‘“semiexperimental”) theories. In this chapter we deal with
a quantum mechanical approach that does not rely on calibration against measured
chemical parameters and is therefore called ab initio [1, 2] meaning “from the first”,
from first principles. It is true that ab initio calculations give results in terms of
fundamental physical constants — Planck’s constant, the speed of light, the charge of
the electron — that must be measured to obtain their actual numerical values, but a
chemical theory could hardly be expected to calculate the fundamental physical
parameters of our universe (for that task we might be content to defer to something
like string theory).

5.2 The Basic Principles of the ab initio Method

5.2.1 Preliminaries

In Chapter 4 we saw that wavefunctions and energy levels could be obtained by
diagonalizing a Fock matrix: the equation

H=CeC! *(5.1)

is just another way of saying that diagonalization of H gives the coefficients or
eigenvectors (the columns of C that, combined with the basis functions, yield the
wavefunctions of the molecular orbitals) and the energy levels or eigenvalues (the
diagonal elements of €). Eq. 5.1 followed from

HC = SCe «(5.2)

which gives Eq. 5.1 when S is approximated as a unit matrix (simple Hiickel
method, Section 4.3.4) or when the original Fock matrix is transformed into H
(into H' in the notation of 4.4.1.2) using an orthogonalizing matrix calculated from
S (extended Hiickel method, Section 4.4.1). To do a simple or an extended Hiickel
calculation the algorithm assembles the Fock matrix H and diagonalizes it. This is
also how an ab initio calculation is done; the essential difference compared to the
Hiickel methods lies in the evaluation of the matrix elements.

In the simple Hiickel method the Fock matrix elements /;; are not calculated, but
are instead set equal to 0 or —1 according to simple rules based on atomic
connectivity (Section 4.3.4); in the extended Hiickel method the H; are calculated
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from the relative positions (through S;) of the orbitals or basis functions and
the ionization energies of these orbitals (Section 4.4.1); in neither case is H;;
calculated from first principles. Section 4.3.4, Egs. 4.44 imply that Hj; is:

H; = / &;Hedv (5.3)

In ab initio calculations H;; is calculated from Eq. 5.3 by actually performing the
integration using explicit mathematical expressions for the basis functions ¢; and ¢;
and the Hamiltonian operator H; of course the integration is done by a computer
following a detailed algorithm. How this algorithm works will now be outlined.

5.2.2 The Hartree SCF Method

The simplest kind of ab initio calculation is a Hartree—Fock (HF) calculation.
Modern molecular HF calculations grew out of calculations first performed on
atoms by Hartree' in 1928 [3]. The problem that Hartree addressed arises from
the fact that for any atom (or molecule) with more than one electron an exact
analytic solution of the Schrodinger equation (Section 4.3.2) is not possible,
because of the electron—electron repulsion term(s). Thus for the helium atom the
Schrodinger equation (cf. Section 4.3.4, Eqgs. 4.36 and 4.37) is, in SI units

h? Ze? Ze? &2
~3am (Vi+V3)

— - VY=EY 54
Aregry  4dmegrs + Amegryn (54)

Here m is the mass (kg) of the electron, e is the charge (coulombs, positive) of
the proton (= minus the charge on the electron), the variables ry, r», and r;, are the
distances (m) of electrons 1 and 2 from the nucleus, and from each other, Z = 2 is
the number of protons in the nucleus, and ¢ is something called the permitivity of
empty space; the factor 4n¢ is needed to make SI units consistent. The force (N)
between charges ¢; and ¢, separated by r is ¢;¢./47e, 1, so the potential energy (J)
of the system is qg,/4ney r (energy is force x distance).

Hamiltonians can be written much more simply by using atomic units. Let’s take
Planck’s constant, the electron mass, the proton charge, and the permitivity of space
as the building blocks of a system of units in which A/2n, m, e, and 4ngy are
numerically equal to 1 (i.e. h = 2n, m = 1, e = 1, and ¢y = 1/47; the numerical
values of physical constants are always dependent on our system of units). These

"Douglas Hartree, born Cambridge, England, 1897. Ph.D. Cambridge, 1926. Professor applied
mathematics, theoretical physics, Manchester, Cambridge. Died Cambridge, 1958.
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(h/2n, m, e, and 4mey) are the units of angular momentum, mass, charge, and
permitivity in the system of atomic units. In this system Eq. 5.4 becomes

(—lv%—lvg—g—eri)‘{':Ew (5.5)
2 2 't 1% ri2

Using atomic units simplifies writing quantum-mechanical expressions, and also
means that the numerical (in these units) results of calculations are independent of
the currently accepted values of physical constants in terms of kilograms, cou-
lombs, meters, and seconds (of course, when we convert from atomic to SI units we
must use accepted SI values of m, e, etc). The atomic units of energy and length are
particularly important to us. We can get the atomic unit of a quantity by combining
h/2w, m, e, and 4mey to give the expression with the required dimensions. The
atomic units of length and energy, the bohr and the hartree, turn out to be:

Length: 1 bohr = aq = 4meg(h/2m)*/me” = eoh®/mme® = 0.05292 nm = 0.5292 A
Energy: 1 hartree = E;, (or h) = ¢*/4neoaq; 1 h/particle = 2625.5 kJ mol '

The bohr is the radius of a hydrogen atom in the Bohr model (Section 4.2.5), or the
most probable distance of the electron from the nucleus in the fuzzier Schrodinger
picture (Section 4.2.6). The hartree is the energy needed to move a stationary electron
1 bohr distant from a proton away to infinity. The energy of a hydrogen atom, relative
to infinite proton/electron separation as zero, is —% hartree: the potential energy is
—1 h and the kinetic energy (always positive) is 0.5 h. Note that atomic units derived
by starting with the old Gaussian system (cm, grams, statC) differ by a 4, factor
from the SI-derived ones.

The Hamiltonian

. 1
H:—Evf——v2 +— *(5.6)

consists of five terms, signifying (Fig. 5.1) from left to right: the kinetic energy of
electron 1, the kinetic energy of electron 2, the potential energy of the attraction
of the nucleus (charge Z = 2) for electron 1, the potential energy of the attraction of
the nucleus for electron 2, and the potential energy of the repulsion between
electron 1 and electron 2. Actually this is not the exact Hamiltonian, for it neglects
effects due to relativity and to magnetic interactions such as spin—orbit coupling
[4]; these effects are rarely important in calculations involving lighter atoms,
say those in the first two or three full rows of the periodic table (up to about
chlorine or bromine). Relativistic quantum chemical calculations will be briefly
discussed later. The wavefunction Vs is the “total”, overall wavefunction of the atom
and can be approximated, as we will see later for molecular HF calculations, as a
combination of wavefunctions for various energy levels. The problem with solving
Eq. 5.5 exactly arises from the 1/r, term. This makes it impossible to separate the
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Fig. 5.1 The terms in the helium atom Hamiltonian, A = — IV —1vi— % - % + %

Schrodinger equation for helium into two l-electron equations which, like the
hydrogen atom equation, could be solved exactly (for treatments of the hydrogen
and helium atoms see the appropriate sections of references 1). This problem arises
in any system with three or more interacting moving objects, whether subatomic
particles or planets. In fact the many-body problem is an old one even in classical
mechanics, going back to eighteenth century studies in celestial mechanics [5]. The
three-particle hydrogen molecule ion, HH™, with two heavy particles and one light
one, can be solved “exactly” — but only within the Born—-Oppenheimer approxima-
tion [6]. The impossibility of an analytic solution to polyelectronic systems
prompted Hartree’s approach to calculating wavefunctions and energy levels for
atoms.

Hartree’s method was to write a plausible approximate polyelectronic wavefunc-
tion (a “guess”) for an atom as the product of one-electron wavefunctions:

Yo = o()¥o(2)¥o(3) - - - tho(n) (5.7)

This function is called a Hartree product. Here ¥, is a function of the coordi-
nates of all the electrons in the atom, y/o(1) is a function of the coordinates of
electron 1, y/((2) is a function of the coordinates of electron 2, etc.; the one-electron
functions (1), Yo(2), etc. are called atomic orbitals (molecular orbitals if we were
dealing with a molecule). The initial guess, s, is our zeroth approximation to the
true total wavefunction s, zeroth because we have not yet started to refine it with
the Hartree process; it is based on the zeroth approximations y/o(1), Yo(2), etc. To
apply the Hartree process we first solve for electron 1 a one-electron Schrodinger
equation in which the electron—electron repulsion comes from electron 1 and an
average, smeared-out electrostatic field calculated from (2), Yo(3), ... , Yo(n),
due to all the other electrons. The only moving particle in this equation is electron 1.
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Solving this equation gives (1), an improved version of {/o(1). We next solve for
electron 2 a one-electron Schrodinger equation with electron 2 moving in an
average field due to the electrons of Y/{(1), Yo(3), . .. , Yo(n), continuing to electron
nmoving in a field due to (1), 1(2), . . . , 1 (n — 1). This completes the first cycle
of calculations and gives

W=y (WY (2 (3) .. (n) (5.8)

Repetition of the cycle gives

Yo =y (Y (2)Y,(3) - - - Yo (n) (5.9)

The process is continued for k cycles till we have a wavefunction s, and/or
an energy calculated from s, that are essentially the same (according to some
reasonable criterion) as the wavefunction and/or energy from the previous cycle.
This happens when the functions (1), ¥/(2), ... , Y/(n) are changing so little from
one cycle to the next that the smeared-out electrostatic field used for the electron—
electron potential has (essentially) ceased to change. At this stage the field of cycle
k is essentially the same as that of cycle k — 1, i.e. it is “consistent with” this
previous field, and so the Hartree procedure is called the self-consistent-field-
procedure, which is usually abbreviated as the SCF procedure.

There are two problems with the Hartree product of Eq. 5.7. Electrons have a
property called spin, among the consequences of which is that not more than two
electrons can occupy one atomic or molecular orbital (this is one statement of the
Pauli exclusion principle (Section 4.2.6). In the Hartree approach we acknowledge
this only in an ad hoc way, simply by not placing more than two electrons in any of
the component orbitals y that make up our (approximate) total wavefunction .
Another problem comes from the fact that electrons are indistinguishable. If we
have a wavefunction of the coordinates of two or more indistinguishable particles,
then switching the positions of two of the particles, i.e. exchanging their coordi-
nates, must either leave the function unchanged or change its sign. This is because
all physical manifestations of the wavefunction must be unchanged on switching
indistinguishable particles, and these manifestations depend only on its square
(more strictly on the square of its absolute value, i.e. on |l11|2, to allow for the fact
that s may be a complex, as distinct from a real, function). This should be clear
from the equations below for a two-particle function:

If Vo =f(x1,1,215%2, 32, 22)
and Wy = f(x2,¥2,22; X1, 31, 21)
then |¥,|> = |W,|* if and only if ¥, = ¥, or ¥, = —¥,
If switching the coordinates of two of the particles leaves the function

unchanged, it is said to be symmetric with respect to particle exchange, while if
the function changes sign it is said to be antisymmetric with respect to particle



5.2 The Basic Principles of the ab initio Method 181

exchange. Comparing the predictions of theory with the results of experiment
shows [7] that electronic wavefunctions are actually antisymmetric with respect
to exchange (such particles are called fermions, after the physicist Enrico Fermi;
particles like photons whose wavefunctions are exchange-symmetric are called
bosons, after the physicist S. Bose). Any rigorous attempt to approximate the wave-
function ¥s should use an antisymmetric function of the coordinates of the electrons
1, 2, ... n, but the Hartree product is symmetric rather than antisymmetric; for
example, if we approximate a helium atom wavefunction as the product of two
hydrogen atom 1s orbitals, then if , = 1s(xq, y1, 21)18(x2, Y5, 22) and Y, = 1s(x2, 5, 25)
Is( x1, y1, 21), then ¥, = Yy,

These defects of the Hartree SCF method were corrected by Fock (Section 4.3.4)
and by Slater” in 1930 [8], and Slater devised a simple way to construct a total
wavefunction Y from one-electron functions (i.e. orbitals) such that ds will be
antisymmetric to electron switching. Hartree’s iterative, average-field approach
supplemented with electron spin and antisymmetry leads to the Hartree—Fock
equations.

5.2.3 The Hartree-Fock Equations

5.2.3.1 Slater Determinants

The Hartree wavefunction (above) is a product of one-electron functions called
orbitals, or, more precisely, spatial orbitals: these are functions of the usual space
coordinates x, y, z. The Slater wavefunction is composed, not just of spatial orbitals,
but of spin orbitals. A spin orbital  (spin) is the product of a spatial orbital and a
spin function, o or f3: The spin orbitals corresponding to a given spatial orbital are

W (spin o) = W (spatial)o = W (x, y, z)a
and (spin B) = Y (spatial) f = v (x,y, )

As the function y/(spatial) has as its variables the coordinates x, y, z, so the spin
functions o and f§ have as their variables a spin coordinate, sometimes denoted &
(Greek letter kzi or zi) or w (Greek omega). We know that a wavefunction y fits in
with an operator and eigenvalues, say the energy operator and energy eigenvalues,
according to the equation Hy = Es. Analogously, the spin functions ¢ and f are

2John Slater, born Oak Park, Illinois, 1900. Ph.D. Harvard, 1923. Professor of physics, Harvard,
1924-1930; MIT 1930-1966; University of Florida at Gainesville, 1966-1976. Author of 14
textbooks, contributed to solid-state physics and quantum chemistry, developed X-alpha method
(early density functional theory method). Died Sanibel Island, Florida, 1976.
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associated with the spin operator S; according to S;a = Y5(h/27)o. and S;ﬁ =
—Y%(h/27)p. Unlike most other functions, then, o and f each have only one
eigenvalue, Y5(h/2n) and —'4(h/2m), respectively. A spin function has the peculiar
property that it is zero unless & = %2 (a spin function) or ¢ = —'4(f spin function).
A function that is zero everywhere except at one value of its variable, where it
spikes sharply, is a delta function (usually ascribed to Dirac — Section 4.2.3). Since
the spin function (spin o or §) describing an electron exists only when the spin
variable ¢ = £, these two values can be considered the allowed values of the spin
quantum number m, mentioned in Section 4.2.6. Sometimes an electron with spin
quantum number %2 (“an electron with spin /2”) is called an o electron, and said to
have up spin, and an electron with spin —% is called a f§ electron, and said to have
down spin. Up and down electrons are often denoted by arrows | and |, respec-
tively. A nice, brief treatment of the delta function and of the mathematical
treatment of the spin functions is given by Levine [9].

The Slater wavefunction differs from the Hartree function not only in being
composed of spin orbitals rather than just spatial orbitals, but also in the fact that it
is not a simple product of one-electron functions, but rather a determinant (Sec-
tion 4.3.3) whose elements are these functions. To construct a Slater wavefunction
(Slater determinant) for a closed-shell species (the only kind we consider in any
detail here), we use each of the occupied spatial orbitals to make two spin orbitals,
by multiplying the spatial orbital by « and, separately, by f. The spin orbitals are
then filled with the available electrons. An example should make the procedure
clear (Fig. 5.2). Suppose we wish to write a Slater determinant for a four-electron

energy

— Y
—_ W4

used with "electron 1" to make row 1
— v yi(Na(1) w (1B w(Ned1) wy(1)B(1)

/ used with "electron 2" to make row 2
—H— V2

_1_1//204 + wB | —" v@a2) v(2BR) wa2) w,)2)
4w

—1—‘//10‘ —t— viB

T used with "electron 3" to make row 3
v, (3)o(3) w,(3)B(3) w,(3)a(3) w,(3)B(3)

used with "electron 4" to make row 4
v, (4)o(4) y,(4)B(4) w,y(4)a(4) y,(4)B(4)

Fig. 5.2 A Slater determinant is made from spin orbitals derived from the occupied spatial
molecular orbitals and two spin functions, o and 8
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closed-shell system. We need two spatial molecular orbitals, since each can hold a
maximum of two electrons; each spatial orbital y/(spatial) is used to make two spin
orbitals, (spatial)o. and (spatial)f (alternatively, each spatial orbital could be
thought of as a composite of two spin orbitals, which we are separating and using to
build the determinant). Along the first (top) row of a determinant we write succes-
sively the first o spin orbital, the first § spin orbital, the second & spin orbital, and
the second f spin orbital, using up our occupied spatial (and thus spin) orbitals.
Electron 1 is then assigned to all four spin orbitals of the first row — in a sense it is
allowed to roam among these four spin orbitals [10]. The second row of the
determinant is the same as the first, except that it refers to electron 2 rather than
electron 1; likewise the third and fourth rows refer to electrons three and four,
respectively. The result is the determinant of Eq. 5.10.

(A1) P (B (Da(1) YD)

g L) @) @) )|
W 3)0) BIFG) 132(3) VaIBO)
H@a) @B @) @)

(The 1/N4! factor ensures that the wavefunction is normalized, i.e. that |¥|? inte-
grated over all space = 1 [11]). This Slater determinant ensures that there are no more
than two electrons in each spatial orbital, since for each spatial orbital there are only
two 1-electron spin functions, and it ensures that ¥ is antisymmetric since switching
two electrons amounts to exchanging two rows of the determinant, and this changes
its sign (Section 4.3.3). Note that instead of assigning the electrons successively to
row 1, row 2, etc., we could have placed them in column 1, column 2, etc.: ¥’ of
Eq. 5.11 = ¥ of Eq. 5.10. Some authors use the row format for the electrons, others
the column format.

B K@) N GH3) @)

g L[ WBD) @) RO n@B|
A a(Da1) 1,2)2) 1)) b@)a(d)
DB :2BQ) 1(3BB) PaBE)

Slater determinants enforce the Pauli exclusion principle, which forbids any two
electrons in a system to have all quantum numbers the same. This is readily seen for
an atom: if the three quantum numbers n, [ and my, of Y(x, y, z) (Section 4.2.6) and
the spin quantum number m; of o or f§ were all the same for any electron, two rows
(or columns, in the alternative formulation) would be identical and the determinant,
hence the wavefunction, would vanish (Section 4.3.3).

For 2n electrons (we are limiting ourselves for now to even-electron species, as
the theory for these is simpler) the general form of a Slater determinant is clearly the
2n X 2n determinant
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Y1 (2n)a(2n) ¥y (20)B(2n) Yy (2n)a(2n) Y3 (2n)B(2n) -+ ¥, (2n)B(2n)
(5.12)

The Slater determinant for the total wavefunction ¥ of a 2n-electron atom or
molecule is a 2n X 2n determinant with 2n rows due to the 2n electrons and 2n
columns due to the 2z spin orbitals (you can interchange the row/column format);
since these are closed-shell species, the number of spatial orbitals  is half the
number of electrons. We use the lowest n occupied spatial orbitals (the lowest 2n
spin orbitals) to make the determinant.

The determinant (= total molecular wavefunction W) just described will lead to
(remainder of Section 5.2) n occupied, and a number of unoccupied, component
spatial molecular orbitals 1. These orbitals {y from the straightforward Slater
determinant are called canonical (in mathematics the word means “in simplest or
standard form”) molecular orbitals. Since each occupied spatial ¥ can be thought of
as a region of space which accommodates a pair of electrons, we might expect that
when the shapes of these orbitals are displayed (“visualized”; Section 5.5.6) each
one would look like a bond or a lone pair. However, this is often not the case; for
example, we do not find that one of the canonical MOs of water connects the O with
one H, and another canonical MO connects the O with another H. Instead most of
these MOs are spread over much of a molecule, i.e. delocalized (lone pairs, unlike
conventional bonds, do tend to stand out). However, it is possible to combine the
canonical MOs to get localized MOs which look like our conventional bonds and
lone pairs. This is done by using the columns (or rows) of the Slater ¥ to create a ‘¥
with modified columns (or rows): if a column/row of a determinant is multiplied by
k and added to another column/row, the determinant remains kD (Section 4.3.3).
We see that if this is applied to the Slater determinant with k = 1, we will get a
“new” determinant corresponding to exactly the same total wavefunction, i.e. to the
same molecule, but built up from different component occupied MOs . The new ¥
and the new /’s are no less or more correct than the previous ones, but by
appropriate manipulation of the columns/rows the ¥/’s can be made to correspond
to our ideas of bonds and lone pairs. These localized MOs are sometimes useful.

5.2.3.2 Calculating the Atomic or Molecular Energy

The next step in deriving the Hartree—Fock equations is to express the energy of the
molecule or atom in terms of the total wavefunction W¥; the energy will then be
minimized with respect to each of the component molecular (or atomic; an atom is a
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special case of a molecule) spin orbitals Yo and i/ (cf. the minimization of energy
with respect to basis function coefficients in Section 4.3.4). The derivation of these
equations involves considerable algebraic manipulation, which is at times hard to
follow without actually writing out the intermediate expressions. The procedure has
been summarized by Pople and Beveridge [12], and a less condensed account is
given by Lowe [13].

It follows from the Schrodinger equation that the energy of a system is given by

_ [Y*HYdr

E= IR TE

(5.13)

This is similar to Eq. 4.40 in Chapter 4, but here the total wavefunction ¥ has
been specified, and allowance has been made for the possibility of ¥ being a
complex function by utilizing its complex conjugate W*; this ensures that E, the
energy of the atom or molecule, will be real. If ¥ is complex then ¥ %dt will not be
a real number, while ¥*Wdr = [¥I*dr will, as must be the case for a probability.
Integration is with respect to three spatial coordinates and one spin coordinate, for
each electron. This is symbolized by dt (t = Greek tau), which means dxdydzd¢, so
for a 2n-electron system these integrals are actually 4 x 2n-fold, each electron
having its set of four coordinates. We assume the use of orthonormal functions
(Section 4.3.4), since this makes several integrals disappear in the derivation of the
energy. Working with the usual normalized wavefunctions makes the denominator
unity, and Eq. 5.13 can then be written

E= / W HWdr
or using the more compact Dirac notation for integrals (Section 4.4.1)
E = (Y|H|¥) (5.14)

In Eq. 5.14 it is understood that the first ¥ is actually W*, and that the integration
variables are the space and spin coordinates. The vertical bars are only to visually
separate the operator from the two functions, supposedly for clarity.

We next substitute into Eq. 5.14 the Slater determinant for ¥ (and W*) and the
explicit expression for the Hamiltonian. A simple extension of the helium Hamil-
tonian of Eq. 5.5 to a molecule with 2n electrons and u atomic nuclei (the uth
nucleus has charge Z,) gives

L 1, Z, 1
H=Y —-Vi-Y "4y — (5.15)
= 2 allpi i iyl

Just like the helium Hamiltonian, the molecular Hamiltonian H in Eq. 5.15 is
composed (from left to right) of electron kinetic energy terms, nucleus—electron
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attraction potential energy terms, and electron—electron repulsion potential energy
terms (cf. Fig. 5.1). This is actually the electronic Hamiltonian, since nucleus-nucleus
repulsion potential energy terms have been omitted; from the Born—Oppenheimer
approximation (Section 2.3) these can simply be added to the electronic energy after
this has been calculated, giving the total molecular energy for a molecule with
“frozen nuclei” (calculation of the vibrational energy, the zero-point energy, is
discussed later). Calculation of the internuclear potential energy is trivial:

z,2,

Viy = (5.16)

all p,v Ty

Substituting into Eq. 5.14 the Slater determinant and the molecular Hamiltonian
gives, after much algebraic manipulation

n n

E:2§n:H,-,-+ZZ(2JU—K,-j) (517)
i=1

i=1 j=1

for the electronic energy of a 2n-electron molecule (the sums are over the n
occupied spatial orbitals r). The terms in Eq. 5.17 have these meanings:

zm:/vﬂmfﬂnmmm (5.18)
where
gcore(l):_lw_ Zu (5.19)
2 m rul
all i

The operator H™ is so called because it leads to Hj;, the electronic energy of a
single electron moving simply under the attraction of a nuclear “core”, with all the
other electrons stripped away; H;; is the electronic energy of, for example, H, He™,
H;, or CH; " (of course, it is different for these various species). Note that HE(1)
represents the kinetic energy of electron 1 plus the potential energy of attraction of
that electron to each of the nuclei u; the 1 in parentheses in these equations is just
a label showing that the same electron is being considered in V;, ; and H*"™
(we could have used, say, 2 instead). The integration in Eq. 5.18 is respect to spatial
coordinates only, (dv = dxdydz, not dt) because spin coordinates have been “inte-
grated out”: on integration, i.e. on summation over the discrete spin variable, these
give 0 or 1 [12, 14]. We are left with the three spatial coordinates as integration
variables (x, y, z) for the electron and so the integral (5.18) is threefold.

2

= [urawn (L) @ma: (520)
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volume dv; contains volume dv, contains
charge y;(1) y; (1) dv, charge wj(2) 7 (2) dv,

dv; [

@ dvz

Vi

Yj

contains electron 1 contains electron 2

1

Potential energy between dv, and dv, is y;(1) y; (1) dv, P v;(2) y;(2) dv,
12

(product of the charges divided by their distance apart)

Fig. 5.3 The coulomb integral (J integral) represents the electrostatic repulsion between two
charge clouds, due to electron 1 in orbital ; and electron 2 in orbital y,.J; = [y (1), (1) (L)

l///* (2)!//_,-(2)dv1dv2 ra

J is called a coulomb integral; it represents the electrostatic (i.e. coulombic)
repulsion between an electron in ; and one in i, i.e. between the charge clouds of
orbitals 1/; and ;. This may be clearer if one considers the integral as a sum of
potential energy terms involving repulsion between infinitesimal volume elements
dv (Fig. 5.3). The 1 and 2 are just labels showing we are considering two electrons.
The integrals J and K allow each electron to experience the average electrostatic
repulsion of a charge cloud due to all the other electrons. This pretence that
electron—electron repulsion occurs between an electron and a charge cloud rather
than between all possible pairs of electrons as point particles is the major deficiency
of the Hartree—Fock method and transcending this approximation is the reason for
the development of the post-Hartree—Fock methods discussed later. Since J repre-
sents potential energy corresponding to a destabilizing electrostatic repulsion, it is
positive. As for H;; in Eq. 5.18, the integration is with respect to spatial coordinates
because the spin coordinates have been integrated out. There are six integration
variables, x, y, z for electron 1 (dv,) and x, y, z for electron 2 (dv,), and so the integral
(5.20) is sixfold. Note that the ab initio coulomb integral J is not the same as what we
called a coulomb integral in simple Hiickel theory; that was o = [ (;’),-1-7 ¢;dv
(Eq. 4.61a) and represents at least very crudely the energy of an electron in the
p orbital ¢; (Section 4.3.4). The ab initio coulomb integral can also be written

Jzy=/w,’~‘(1)w}‘(2) (i>wi(1)¢,(2)dvldV2 (5.21)

12

but unlike Eq. 5.20 this does not notationally emphasize the repulsion (invoked
by the 1/ri, operator) between electron 1 and electron 2, on the left and right,
respectively, of 1/ry, in Eq. 5.20.
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K= [0 (S Y (5.22)

2

K is called an exchange integral; mathematically, it arises from Slater determinant
expansion terms that differ only in exchange of electrons. Note that the terms on
either side of 1/ry, differ by exchange of electrons. It is often said to have no simple
physical interpretation, and even to represent an “exchange force”, but looking at
Eq. 5.17, we see we can regard K as a kind of correction to J, reducing the effect of J
(both J and K are positive, with K smaller), i.e. reducing the electrostatic potential
energy due to the mutual ¥;, Y; charge cloud repulsion referred to above in connec-
tion with J and K. This reduction in repulsion arises because as particles with an
antisymmetric wavefunction, two electrons can’t occupy the same spin orbital
(roughly, can’t be at the same point in space), and can occupy the same spatial
orbital only if they have opposite spins. Thus two electrons of the same spin avoid
each other more assiduously than expected only from the coulombic repulsion that is
taken into account by J. We could consider the summed 2/ — K terms of Eq. 5.17 to
be the true coulombic repulsion (within the charge cloud model), corrected for
electron spin, i.e. corrected for the Pauli exclusion principle effect. The J and K
interactions are shown in Fig. 5.4 for a four-electron molecule, the smallest closed-
shell system in which K integrals arise. A detailed exposition of the significance of
the Hartree— Fock integrals is given by Dewar [15]. Note that outside the nucleus the
only significant forces in atoms and molecules are electrostatic; there are no vague
“quantum-mechanical forces” in chemistry [16]. Chemical reactions involve the
shuffling of atomic nuclei under the influence of the electromagnetic force.

S

ﬂA—‘

4 Jintegrals 2 Kintegrals
(between electrons in different (between electrons of the same spin)
spatial MOs)

Fig. 5.4 The J integrals represent interactions between electrons in different spatial orbitals; the
K integrals represent interactions between electrons of the same spin
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5.2.3.3 The Variation Theorem (Variation Principle)

The energy calculated from Eq. 5.14 is the expectation value of the energy operator
H,ie.the expectation value of the Hamiltonian operator. In quantum mechanics an
integral of a wavefunction “over” an operator, like <‘I’|H \‘I’> in Eq. 5.14, is the
expectation value of that operator. The expectation value is the value (strictly,
the quantum-mechanical average value) of the physical quantity represented by the
operator. Every “observable”, i.e. every measurable property of a system, is thought
to have a quantum mechanical operator from which the property could be calcu-
lated, at least in principle, by integrating the wavefunction over the operator. The
expectation value of the energy operator H (for which a better symbol might have
been E) is the energy E of the molecule or atom. Of course this energy will be the
exact, true energy of the molecule only if the wavefunction ¥ and the Hamiltonian
H are exact. The variation theorem states that the energy calculated from Eq. 5.14
must be greater than or equal to the true ground-state energy of the molecule. The
theorem [17] (it can be stated more rigorously, specifying that H must be time-
independent and W must be normalized and well-behaved) assures us that any
ground state (we examine electronic ground states much more frequently than we
do excited states) energy we calculate “variationally”, i.e. using Eq. 5.14, must be
greater than or equal to the true energy of the molecule. This is useful because it
tells us that a test for the quality of a wavefunction is the value of the energy
calculated from it variationally: the lower the better. We can try to improve our
wavefunction, checking the variational energy against that from previous functions.
In practice, any molecular wavefunction we insert into Eq. 5.14 is always only an
approximation to the true wavefunction and so the variationally calculated molecu-
lar energy will always be greater than the true energy. The Hartree—Fock energy
is variational, but as we will see, not all quantum chemical energies are. The
Hartree—Fock energy levels off at a value above the true energy as the Hartree—Fock
wavefunction, based on a Slater determinant, is improved; this is discussed in
Section 5.5, in connection with post-Hartree—Fock methods.

5.2.3.4 Minimizing the Energy; the Hartree-Fock Equations

The Hartree—Fock equations are obtained from Eq. 5.17 by minimizing the energy
with respect to the atomic or molecular orbitals yy. The minimization is carried out
with the constraint that the orbitals remain orthonormal, for orthonormality was
imposed in deriving Eq. 5.17. Minimizing a function subject to a constraint can be
done using the method of undetermined Lagrangian multipliers [18]. For ortho-
normality the overlap integrals S must be constants (= d;;, i.e. 0 or 1) and at the
minimum the energy is constant (= E,,;,). Thus at E,;, any linear combination of £
and §;; is constant:

E+ Z Z 1;iSij = constant (5.23)

i=1 j=1
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where [;; are the Lagrangian multipliers; we don’t know what they are, physically,
yet (after all, they are “undetermined”). Differentiating with respect to the ’s (each
Y is a function of x, y, z) of the S’s:

dEerZZZUSU =0 (5.24)
=1 j=

Substituting the expression for E from Eq. 5.17 into Eq. 5.24 we get

2 En:dH,-,- + zn: 2": (2d7; — dK;) + En: zn:l,-de,-j =0 (5.25)
i=1 i=1 j=1 i=1 j=1

Note that this procedure of minimizing the energy with respect to the molecular
orbitals  is somewhat analogous to the minimization of energy with respect to the
atomic orbital coefficients c in the less rigorous procedure which gave the Hiickel
secular equations in Section 4.3.4. It is also somewhat similar to finding a relative
minimum on a PES (Section 2.4), but with energy in that case being varied with
respect to geometry rather than parameters of MOs. Since the procedure starts with
Eq. 5.14 and varies the MO’s to find the minimum value of E, it is called the
variation method, the variation theorem/principle (Section 5.2.3.3) assures us that
the energy we calculate from the results will be greater than or equal to the true
energy.

From the definitions of H;;, J;;, K;; and §S;; we get

dH; = / dy (HH™™ ( vy + / Y (H™ (D dy,(1)dvy (5.26)

dly = [ dy; ()T, (1)dvy + /dlp;(l)fi(l)lﬁj(l)dvl + complex conjugate
(5.27)

dK;; = /d‘ﬁ (1 )k( Wi(1)dvy +/dlﬁ (1)Ki(1 WW;(1)dvi + complex conjugate
(5.28)

where
50 = [wi (o i@ (5.29)

and

&) =) [0 () (5:30)
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and similarly for JAj and K i3

ds; = / iz (O, (1)dvy -+ 92 (Vg (1 (5.31)

Using for dH, dJ, dK and dS the expressions in Egs. 5.26-5.28 and 5.31, Eq. 5.25
becomes

zi/dlﬁ(l)mcore(l)lﬁi(l)+i(2~l}(l) _[ej(l))%(l)+%i:lglﬁj(l)]dv

+ complex conjugate = 0
(5.32)

Since the MOs can be varied independently, and the expression on the left side is
zero, both parts of Eq. 5.32 (the part shown and the complex conjugate) equal zero.
It can be shown that a consequence of

zg/d(pl*(l)[[jlcore(l)lpl(l) + i] (zjj(l) _K](l))wl(l) +% izlllljlﬁ](l)]dv =0

(5.33)
is that
1)+ 32 270 KW +5 D 1) =0
ie.
)+ 3 KO = =3 D) (53
Eq. 5.34 can be written
A1) = =3 D) (539
where F is the Fock operator:
ﬁ:HCOfe(1)+i(ﬂj(1) —K;(1)) (5.36)
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We want an eigenvalue equation because (cf. Section 4.3.4) we hope to be able
to use the matrix form of a series of such equations to invoke matrix diagonalization
to get eigenvalues and eigenvectors. Equation (5.35) is not quite an eigenvalue
equation, because it is not of the form operation on function = k x function, but
rather operation on function = sum of (k x functions). However, by transforming
the molecular orbitals y/ to a new set the equation can be put in eigenvalue form
(with a caveat, as we shall see). Equation 5.35 represents a system of equations

By (1) = =3 09y (1) hara () + Bt (1) + -+ Dy, (0] i =1

Fi,(1) = —%[121%(1) + oy (1) + baps (1) + -+ by, (1)] i=2 537

B (1) = = 3 Iy (1) + Lo (1) - ystra(1) 4+ (D] i =

There are n spatial orbitals i since we are considering a system of 2z electrons and
each orbital holds two electrons. The 1 in parentheses on each orbital emphasizes that
each of these n equations is a one-electron equation, dealing with the same electron
(we could have used a 2 or a 3, etc.), i.e. the Fock operator (Eq. 5.36) is a one-electron
operator, unlike the general electronic Hamiltonian operator of Eq. 5.15, which is a
multi-electron operator (a 2n electron operator for our specific case). The Fock
operator acts on a total of n spatial orbitals, the Y, >, ... , ¥, in Eq. 5.35.

The series of equations Eqgs. 5.37 can be written as the single matrix equation (cf.
Chapter 4, Eq. 4.50)

318; I he iz ... Iy 518;
. wz(l) 1| b1 o by ... by x//2(1)
F 3 :_E : : : 3 (538)
1) AN
ie.
Fip = —%Lq; (5.39)

In Egs. 5.37, each equation will be of the form F W; = ky;, which is what we want, if
all the [; = 0 except for i = j (for example, in the first equation
Fy(1) = —(1/2)l114,(1) if the only nonzero [ is /;;). This will be the case if
in Eq. 5.39 L is a diagonal matrix. It can be shown that L is diagonalizable
(Section 4.3.3), i.e. there exist matrices P, P 'anda diagonal matrix L’ such that

L =PLP! (5.40)
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Substituting L. from Eq. 5.40 into Eq. 5.39:
o 1 p—1
Ftb:—EPLP ] (5.41)
Multiplying on the left by P~ and on the right by P we get

FP'yP = —%(P*IP)L’(P*H;;P)

which, since P~ 'P = 1 can be written

Ry = — %L/qﬂ (5.42)
where
W =P P (5.43)

We may as well remove the —1/2 factor by incorporating it into L/, and we can
omit the prime from W (had we been prescient we could have started the derivation
using primes then written ¥ = P~ "W'P for Eq. 5.43). Equation 5.42 then becomes
(notationally anticipating the soon-to-be-apparent fact that the diagonal matrix is an
energy-level matrix)

Fs = &l (5.44)
where
(/2 0 0 0
. 0 12 0 0 5.45)
0 o o .. (=1/2)lm

Equation 5.44 is the compact form of Eq. 5.38. Thus

() ()

0] (5 a0 o[ n

Fl ¥s(1) | = ¥s(1) (5.46)
v(1) 000wy

where the superfluous double subscripts on the €’s have been replaced by single
ones. Equations 5.44/5.46 are the matrix form of the system of equations
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F‘ﬁl(l) =ey,(1)
F‘ﬁz(l) = &y, (1)
Fy5(1) = e3y5(1) *(5.47)

ﬁlrbn(l) = gﬂwn(l)

These equations (5.47) are the Hartree—Fock equations; the matrix form is
Eq. 5.44 or Eq. 5.46. By analogy with the Schrodinger equation H y = E, we
see that they show that the Fock operator acting on a one-electron wavefunction (an
atomic or molecular orbital) generates an energy value times the wavefunction.
Thus the Lagrangian multipliers /; turned out to be (with the —1/2 factor) the
energy values associated with the orbitals ;. Unlike the Schrodinger equation the
Hartree—Fock equations are not quite eigenvalue equations (although they are
closer to this ideal than is Eq. 5.35), because in F W; = ky; the Fock operator Fis
itself dependent on y;; in a true eigenvalue equation the operator can be written
down without reference to the function on which it acts. The significance of the
Hartree—Fock equations is discussed in the next section.

5.2.3.5 The Meaning of the Hartree-Fock Equations

The Hartree—Fock equations (5.47) (in matrix form Eqs. 5.44 and 5.46) are pseu-
doeigenvalue equations asserting that the Fock operator F acts on a wavefunction v,
to generate an energy value ¢;, times ;. Pseudoeigenvalue because, as stated above,
in a true eigenvalue equation the operator is not dependent on the function on which
it acts; in the Hartree—Fock equations F depends on i/ because (Eq. 5.36) the
operator contains J and K, which in turn depend (Eqs. 5.29 and 5.30) on . Each
of the equations in the set (5.47) is for a single electron (“electron 1” is indicated,
but any ordinal number could be used), so the Hartree—Fock operator F is a one-
electron operator, and each spatial molecular orbital i/ is a one-electron function (of
the coordinates of the electron). Two electrons can be placed in a spatial orbital
because the full description of each of these electrons requires a spin function o or 5
(Section 5.2.3.1) and each electron “moves in” a different spin orbital. The result is
that the two electrons in the spatial orbital Y do not have all four quantum numbers
the same (for an atomic 1s orbital, for example, one electron has quantum numbers
n=1,l=0,m=0ands=1/2, while the otherhasn=1,/=0,m=0and s = —1/2),
and so the Pauli exclusion principle is not violated.

The functions \ are the spatial molecular (or atomic) orbitals or wavefunctions
that (along with the spin functions) make up the overall or total molecular (or
atomic) wavefunction ty, which can be written as a Slater determinant (Eq. 5.12).
Concerning the energies ¢;, from the fact that

= / W Fydv (5.48)
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(this follows simply from multiplying both sides of a Hartree—Fock equation by
; and integrating, noting that ; is normalized) and the definition of F (Eq. 5.36)
we get

o= (GO W0+ > @0 - K1) (549
ie.

& = H"™ +Zn:(2ﬁf(1) - Ki(1)) (5-50)

(the operators J and K in Eq. 5.36 have been transformed by integration into
the integrals J and K in Eq. 5.49). Equation 5.50 shows that ¢; is the energy of an
electron in /; subject to interaction with all the other electrons in the molecule:
H™ (p. 13) is the energy of the electron due only to its motion (kinetic energy) and
to the attraction of the nuclear core (electron—nucleus potential energy), while the
sum of 2/ — K terms represents the exchange-corrected (via K) coulombic repulsion
(through J) energy resulting from the interaction of the electron with all the other
electrons in the molecule or atom [19].

In principle the equations 5.47 allow us to calculate the molecular orbitals
(MO’s)  and the energy levels ¢. We could start with “guesses” (possibly obtained
by intuition or analogy) of the MO’s (the zeroth approximation to the MOs) and use
these to construct the operator F (Eq. 5.36), then allow F to operate on the guesses
to yield energy levels (the first approximation to the ¢;) and new, improved func-
tions (the first calculated approximations to the ;). Using the improved functions in
F and operating on these gives the second approximations to the i; and ¢, and the
process is continued until ; and ¢; no longer change (within preset limits), which
occurs when the smeared-out electrostatic field represented in Eq. 5.17 by Y (2J — K)
(cf. Fig. 5.3) ceases to change appreciably — is consistent from one iteration cycle to
the next, i.e. is self-consistent. How do we know that iterations improve psi and
epsilon? This is usually, but not invariably, the case [20]; in practice “initial guess”
solutions to the Hartree—Fock equations usually converge fairly smoothly to give
the best wavefunction and orbital energies (and thus total energy) that can be
obtained by the HF method from the particular kind of guess wavefunction (e.g.
basis set; Section 5.2.3.6.5).

To expand a bit on Dewar’s cautious endorsement of the SCF procedure [20]
(“SCEF calculations are by no means foolproof; ...Usually one finds a reasonably
rapid convergence to the required solution”): occasionally a wavefunction is
obtained that is not the best one available from the chosen basis set. This
phenomenon is called wavefunction instability. To see how this could happen
note that the SCF method is an optimization procedure somewhat analogous to
geometry optimization (Section 2.4). In geometry optimization we seek a relative
minimum or a transition state on a hypersurface in a mathematical energy versus
nuclear coordinates space defined by £ = f (nuclear coordinates); in wavefunction
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optimization we seek a global minimum on a hypersurface in an energy versus
basis function coefficients space defined by ¥ = f(basis function coefficients).
The wavefunction found may correspond to a point on the hypersurface that is not
even a minimum, but rather a saddle point. Even if it is the global minimum, if we
are using a restricted Hartree—Fock (RHF) wavefunction rather than an unre-
stricted (UHF) one (end of Section 5.2.3.6.5), there are cases in which a lower
energy will be obtained by switching to a UHF function. The RHF function is then
said to show external or triplet instability. If within the type of wavefunction we
are using (RHF or UHF) a better function can be found by moving to another point
on the hypersurface, away from a saddle point or a higher-energy minimum, the
wavefunction is said to show internal instability. There are algorithms that will
test for wavefunction instability and alter coefficients to obtain the best wave-
function from the chosen basis set. Seeger and Pople pioneered the mathematical
analysis of and some cures for wavefunction instability [21], and in more chemi-
cal language Dahareng and Dive have examined about 80 molecules for the
phenomenon and offer some generalizations [22]. Instability can occur also
with post-Hartree—Fock (correlated) (Section 5.4) wavefunctions [23]. Chemists
do not routinely test for wavefunction stability, and indeed it is rarely a problem
except for unusual molecules, e.g. p-benzyne [24]. However, when investigating
exotic (as judged by the experienced chemist) molecules, it is good practice to
carry out this check.

The Hartree—Fock SCF method is, of course, in exactly the same spirit as
the procedure described in Section 5.2.2 using the Hartree product as our total or
overall wavefunction ¥. The main difference between the two methods is that the
Hartree—Fock method represents ‘¥ as a Slater determinant of component spin MOs
rather than as a simple product of spatial MOs, and a consequence of this is that the
calculation of the average coulombic field in the Hartree method involves only the
coulomb integral J, but in the Hartree—-Fock modification we need the coulomb
integral J and the exchange integral K, which arises from Slater determinant terms
that differ in exchange of electrons. Because K acts as a kind of “Pauli correction”
to the classical electrostatic repulsion, reminding the electrons that two of them of
the same spin cannot occupy the same spatial orbital, electron—electron repulsion is
less in the Hartree—Fock method than if a simple Hartree product were used. Of
course K does not arise in calculations involving no electrons of like spin, as in H,
or (Sections 4.4.2 and 5.2.3.6.5) HHe™, which have only two, paired-spin, electrons.
At the end of the iterative procedure we have the MO’s ; and their corresponding
energy levels ¢;, and the total wavefunction W, the Slater determinant of the /;’s.
The ¢; can be used to calculate the total electronic energy of the molecule, and
the MO’s ; are useful heuristic approximations to the electron distribution, while
the total wavefunction ¥ can in principle be used to calculate anything about the
molecule, as the expectation value of some operator. Applications of the energy
levels and the MO’s are given in Section 5.4.
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5.2.3.6 Basis Functions and the Roothaan-Hall Equations
5.2.3.6.1 Deriving the Roothaan—Hall Equations

As they stand, the Hartree—Fock equations 5.44, 5.46 or 5.47 are not very useful for
molecular calculations, mainly because (1) they do not prescribe a mathematically
viable procedure getting the initial guesses for the MO wavefunctions ;, which we
need to initiate the iterative process (Section 5.2.3.5), and (2) the wavefunctions
may be so complicated that they contribute nothing to a qualitative understanding
of the electron distribution.

For calculations on atoms, which obviously have much simpler orbitals than
molecules, we could use for the y’s atomic orbital wavefunctions based on the
solution of the Schrodinger equation for the hydrogen atom (taking into account the
increase of atomic number and the screening effect of inner electrons on outer ones
[25]). This yields the atomic wavefunctions as tables of i at various distances from
the nucleus. This is not a suitable approach for molecules because among molecules
there is no prototype species occupying a place analogous to that of the hydrogen
atom in the hierarchy of atoms, and as indicated above it does not readily lend itself
to an interpretation of how molecular properties arise from the nature of the
constituent atoms.

In 1951 Roothaan and Hall independently pointed out [26] that these problems
can be solved by representing MO’s as linear combinations of basis functions (just
as in the simple Hiickel method, in Chapter 4, the © MO’s are constructed from
atomic p orbitals). Roothaan’s paper was more general and more detailed than
Hall’s, which was oriented to semiempirical calculations and alkanes, and the
method is sometimes called the Roothaan method. For a basis-function expansion
of MO’s we write

Uy =cu ey ey + -+ gy,
Yy = cadpy +cndy + 23+ -+ condy,
Y3 =ci39; + gy + 3303+ + Cmay, «(5.51)

wm = Clmd)l + C2m¢2 + C3m¢3 +---+ Cn1m¢m

In devising a more compact notation for this set of equations it is very helpful to
use different subscripts to denote the MO’s i/ and the basis functions ¢. Conven-
tionally, Roman letters have been used for the {/’s and Greek letters for the ¢’s, or
i,j,k,I,...forthe Y’sand r,s, ¢, u, ... for the ¢’s. The latter convention will be
adopted here, and we can write the equations (5.51) as
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m basis functions sth basis function

m
W= 2C ¢ i=1,2,3, .., m(mMOs) (5.52)

/TN

ith MO ¢ of the sth basis function of ith MO

We are expanding each MO ¥ in terms of m basis functions. The basis functions
are usually (but not necessarily) located on atoms, i.e. for the function ¢(x, y, z),
where x, y, z are the coordinates of the electron being treated by this one-electron
function, the distance of the electron from the nucleus is:

r=[x—x0)*+(—y) +(—2)" (5.53)

where X, Yo, Zo are the coordinates of the atomic nucleus in the coordinate system
used to define the geometry of the molecule. Because each basis function may
usually be regarded (at least vaguely) as some kind of atomic orbital, this linear
combination of basis functions approach is commonly called a linear combination
of atomic orbitals (LCAQO) representation of the MO’s, as in the simple and
extended Hiickel methods (Sections 4.3.4. and 4.4.1). The set of basis functions
used for a particular calculation is called the basis set.

We need at least enough spatial MO’s y to accommodate all the electrons in the
molecule, i.e. we need at least n {y’s for the 2n electrons (recall that we are dealing
with closed-shell molecules). This is ensured because even the smallest basis
sets used in ab initio calculations have for each atom at least one basis function
corresponding to each orbital conventionally used to describe the chemistry of the
atom, and the number of basis functions ¢ is equal to the number of (spatial) MOs
(Section 4.3.4). An example will make this clear: for an ab initio calculation on
CH,, the smallest basis set would specify for C:

¢(C, 1s), ¢(C, 25), ¢(C, 2px), ¢(C, 2py), $(C, 2p,)
and for each H:
¢(H, Ls)

These nine basis functions ¢ (5 on C and 4 x 1 = 4 on H) create nine spatial
MO’s y, which could hold 18 electrons; for the ten electrons of CH, we need only
five spatial MO’s. There is no upper limit to the size of a basis set: there are
commonly many more basis functions, and hence MO’s, than are needed to hold all
the electrons, so that there are usually many unoccupied MO’s. In other words, the
number of basis functions m in the expansions (5.52) can be much bigger than the
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number # of pairs of electrons in the molecule, although only the 7 occupied spatial
orbitals are used to construct the Slater determinant which represents the HF
wavefunction (Section 5.2.3.1). This point, and basis sets, are discussed further in
Section 5.3.

To continue with the Roothaan—Hall approach, we substitute the expansion
(5.52) for the y’s into the Hartree—Fock equations 5.47, getting (we will work
with m, not n, HF equations since there is one such equation for each MO, and our m
basis functions will generate m MQO’s):

m m
g iy = & E 5194
s=1 sj=1

m m

§ CsZF(px =& E sz(/bs
s=1 s=1

(5.54)

zm: Csmpqss =&m Em: Csmpd)s
s=1 s=1

(F operates on the functions ¢, not on the ¢’s, which have no variables x, y, z).
Multiplying each of these m equations by ¢, ¢, ..., ¢, (Or ¢* etc. if the ¢’s are
complex functions, as is occasionally the case) and integrating, we get m sets of
equations (one for each of the basis functions ¢).

Basis function ¢ gives

m m
D caFis =8 caSi
s=1 s=1
m m
Z coFiy=¢ Z CSZSIs
s=1

sj=1

(5.54-1)

m m
g ComF1s = &m g CsmS1s
s=1 s=1

where

F,, = / ¢, Fpdv and S, = / b, p.dv (5.55)
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Basis function ¢, gives

m m
E c1Fas = &1 E C5182s
s=1 s=1

Cofas = &2 Z 52525
i = (5.54-2)

NgE

&
Il

m m
g ComFos = &m g CsmS2s
s=1 s=1

Finally, basis function ¢,, gives

m m
§ Cs1F s = €1 E Cs1Sms
s=1 s=1

m

m
g CcolFps = & E C52Sms
s=1

s=1

(5.54-m)

m m
§ CsmFms = ém g CsmSms
s=1 s=1

In the m sets of equations 5.54-1-5.54-m each set itself contains m equations (the
subscript of ¢, for example, runs from 1 to m), for a total of m x m equations. These
equations are the Roothaan—Hall version of the Hartree—Fock equations; they were
obtained by substituting for the MO’s s in the HF equations a linear combination of
basis functions (¢’s weighted by ¢’s). The Roothaan—Hall equations are usually
written more compactly, as

m m
E Fr‘Scxi - E Srscsi'gi r= 1a 2a 3a R (5
s=1 s=1

(foreachi = 1,2,3,...,m)

(5.56)

We have m X m equations because each of the m spatial MO’s i/ we used (recall
that there is one HF equation for each y, Egs. 5.47) is expanded with m basis
functions. The Roothaan—Hall equations connect the basis functions ¢ (contained in
the integrals F and S, Eqgs. 5.55, above), the coefficients ¢, and the MO energy levels
¢. Given a basis set {¢,, s = 1,2, 3, ..., m} they can be used to calculate the ¢’s,
and thus the MOs i (Eq. 5.52) and the MO energy levels ¢. The overall electron
distribution in the molecule can be calculated from the total wavefunction W, which
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can be written as a Slater determinant of the “component” spatial wavefunctions
(by including spin functions), and in principle anyway, any property of a molecule
can be calculated from W. The component wavefunctions s and their energy levels
¢ are extremely useful, as chemists rely heavily on concepts like the shape and
energies of, for example, the HOMO and LUMO of a molecule (MO concepts are
reviewed in Chapter 4). The energy levels enable (with a correction term) the total
energy of a molecule to be calculated, and so the energies of molecules can be
compared and reaction energies and activation energies can be calculated. The
Roothaan—Hall equations, then, are a cornerstone of modern ab initio calculations,
and the procedure for solving them is outlined next. These ideas are summarized
pictorially in Fig. 5.5.

The fact that the Roothaan—Hall equations Egs. 5.56 are actually a total of m x m
equations suggests that they might be expressible as a single matrix equation, since
the single matrix equation AB = 0, where A and B are m x m matrices, represents
m X m “simple” equations, one for each element of the product matrix AB (work it
out for two 2 x 2 matrices). A single matrix equation would be easier to work with
than m” equations and might allow us to invoke matrix diagonalization as in
the case of the simple and extended Hiickel methods (Sections 4.3.4 and 4.4.1).
To subsume the sets of equations 5.54-1-5.54-m, i.e. Egs. 5.56, into one matrix

MO # energy
Yy &
Using, e.g., a set of 4 basis functions: weighted sum
Y3 £
{ 015 @2 05, 04} (the weighting factors are the MO coefficients c) 8
Yo £
If there are 4 electrons in the molecule, then v, and v, 2
are occupied (and yz and y, are virtual orbitals). The

occupied orbitals are used to construct the total wavefunction,
as a Slater determinant of spin orbitals. " .
1

vi(Me(t) y (B wa(De() ya(1)B(1)

V(2 a2) v1(2)B(2) w(2)ed2) y,(2)B(2)
\U:

Vi(3)U3) w1 (3)B(3) wu(3)U3) wo(3)B(3)

V(4 (4) yi(4)B(4) wa(4)o(4) yo(4)B(4)

Fig. 5.5 Pictorial representation of basis functions, MO’s, total wavefunction, and energy levels
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equation, we might (eschewing a rigorous deductive approach) suspect that the
matrix form is the fairly obvious possibility

FC = SCe #(5.57)

Here F, C and S would have to be m x m matrices, since there are m”> F’s, ¢’s and
S’s, and &€ would be an m x m diagonal matrix with the nonzero elements ¢y, &, . . .,
&, Since & must contain only m elements, but has to be m x m to make the right
hand side matrix product the same size as that on the left.

This is easily checked: the left hand side of Eq. 5.57 is

Fin Fin Fi3 - Fiy €11 €2 €13t Clm
Fyi Fyp Fyp - Fyy 1 € €3t Cop
FC =
le Fm2 Fn13 e me Cmi Cm2  Cm3 o Com
Fricir +Freo +Fizer -+ Frici +Fraen + Fizesn
— | Farcin + Foco +Foacsr - Facip + Fpcon + Fasess
(5.58)
The right hand side of Eq. 5.57 is
Siu Sz -+ Sim Cii Ci2 c Cim en 0 -~ 0
So1 S e Som €1 € ot Cop 0 &ep -+ 0
SCe =
Sml Sm2 e Smm Cml Cm2 ° Cmm 0 0 o Egm
Sticnn +Si2ca +S13¢31 -+ Sticiz +S12622 +S13¢32 -+
— | Saici1 + 820021 +8S23¢31 -+ Sa1c12 + 820020 + 82303300 -0 | g
e1(Sticn + Si2car +Si3¢31 1) e(Siiciz + Si2en + Si3¢32 - - +)
— | e1(Sa1cnn + Saac21 + Sazc3r o) ea(Saiciz + Saacan + Sazcsz )
(5.59)

Now compare FC (5.58) and SCe (5.59). Comparing element a;; of FC (multi-
plied out to give a single matrix as shown in Eq. 5.58) with element a;; of

SCe (multiplied out to give a single matrix as shown in Eq. 5.59) we see that if
FC = SCe, i.e. if Eq. 5.57 is true, then
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Fricn + Fracor + Fises + -+ = e(Snien + Siacar + Sizes + )

ie.
i cils = ¢ i CxiSrs (560)
s=1 s=1

But this is the first equation of the set (5.53-1). Continuing in this way we see
that matching each element of (the multiplied-out) matrix FC (5.58) with the
corresponding element of (the multiplied-out) matrix SCe gives one of the equa-
tions of the set 5.54-1 to (5.54-m), i.e. of the set (5.56). This can be so only if FC =
SCe, so this matrix equation is indeed equivalent to the set of equations (5.56).

Now we have FC = SCe (5.57), the matrix form of the Roothaan—-Hall equa-
tions. These equations are sometimes called the Hartree—Fock—Roothaan equations,
and, often, the Roothaan equations, as Roothaan’s exposition was the more detailed
and addresses itself more clearly to a general treatment of molecules. Before
showing how they are used to do ab initio calculations, a brief review of how we
got these equations is in order.

Summary of the derivation of the Roothaan—Hall equations.

1. The total wavefunction ¥ of an atom or molecule was expressed as a Slater
determinant of spin MO’s ys(spatial)a and (spatial)f3, Eq. 5.12.

2. From the Schrodinger equation we got an expression for the electronic energy of
the atom or molecule, E = <‘I’|ﬂ|‘l’>, Eq. 5.14.

3. Substituting the Slater determinant for the total molecular wavefunction ¥ and
inserting the explicit form of the Hamiltonian operator H into (5.14) gave the
energy in terms of the spatial MO’s s, (Eq. 5.17):

E= 22n:H,',’ + zn:i: (2.]1:1‘ — KI:/').
i=1

i=1 j=1

4. Minimizing E in Eq. 5.17 with respect to the y’s (to find the best 1/’s) gave the
Hartree—Fock equations Fif = gy (5.44).

5. Substituting into the Hartree—Fock equations F\y = & (5.44) the Roothaan—Hall
linear combination of basis functions (LCAO) expansions y; = > ¢y, (5.52)
for the MO’s y gave the Roothaan—Hall equations (Eqs. 5.56), which can be
written compactly as FC = SCe (Egs. 5.57).

5.2.3.6.2 Using the Roothaan—Hall Equations to do ab initio Calculations — the
SCF Procedure

The Roothaan—Hall equations FC = SCe (Egs. 5.57) (F, C, S and € are defined in
connection with Eqs. 5.58 and 5.59; the matrix elements F and S are defined by
Egs. 5.54 and 5.55) are of the same matrix form as Eq. 4.54, HC = SCe, in the
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simple Hiickel method (Section 4.3.3) and the extended Hiickel (Section 4.4.1)
method. Here, however, we have seen (in outline) how the equation may be

rigorously derived. Also, unlike the case in the Hiickel methods the Fock matrix
elements are rigorously defined theoretically: from Eqs. 5.55

Fy = / ¢, Fep.dv (5.61 = 4.54)

and Eq. 5.36
F=H(1)+ > (2/;(1) — K(1)) (5.62 = 5.36)

it follows that

F,v:/qﬁ, [ﬁmre(lHi(%(l) (1) | dydv (5.63)
j=1
where
H(1) = —%vﬁ —Zfi (5.64 = 5.19)
allp ' 41
Ji(1) = / ¥ (2) (i) ¥ (2)dv, (5.65 = 5.29)
and
A . 1
Ki(1);(1) =y, (1) / Wi(2) (112) V;(2)dv (5.66 = 5.30)

To use the Roothaan—Hall equations we want them in standard eigenvalue-like
form so that we can diagonalize the Fock matrix F of Eq. 5.57 to get the coefficients
¢ and the energy levels ¢, just as we did in connection with the extended Hiickel
method (Section 4.4.1). The procedure for diagonalizing F and extracting the ¢’s
and ¢’s and is exactly the same as that explained for the extended Hiickel method
(although here the cycle is iterative, i.e. repetitive, see below):

1. The overlap matrix S is calculated and used to calculate an orthogonalizing
matrix $™2, as in Eq. 4.107:

S—D—S'? (5.67)
2. S7'2is used to convert F to F’ (cf. Eq. 4.104):

F =S~ '/2F§~1/? (5.68)



5.2 The Basic Principles of the ab initio Method 205

The transformed Fock matrix F’ satisfies
F =CeC™! (5.69)

(cf. Eq. 4.104). The overlap matrix S is readily calculated, so if F can be
calculated it can be transformed to F’, which can be diagonalized to give C’
and &, which latter yields the MO energy levels ;.

3. Transformation of C’ to C (Eq. 4.100) gives the coefficients cy; in the expansion
of the MO’s  in terms of basis functions ¢:

c=s1 (5.70)

Equations 5.63—5.66 show that to calculate F, i.e. each of the matrix elements F,
we need the wavefunctions /;, because J and K , the coulomb and exchange
operators (Eq. (5.65) and Eq. (5.60)), are defined in terms of the y/’s. It looks like
we are faced with a dilemma: the point of calculating F is to get (besides the ¢’s) the
’s (the ¢’s with the chosen basis set { ¢} make up the ’s), but to get F we need the
Y’s. The way out of this is to start with a set of approximate ¢’s, e.g. from an
extended Hiickel calculation, which needs no ¢’s to begin with because the
extended Hiickel “Fock” matrix elements are calculated from experimental ioniza-
tion potentials (Section 4.4.1). These c’s, the initial guess, are used with the basis
functions ¢ to in effect (Section 5.2.3.6.3) calculate initial MO wavefunctions i,
which are used to calculate the F elements F,,. Transformation of F to F' and
diagonalization gives a “first- cycle” set of ¢’s and (after transformation of C’ to C)
a first-cycle set of ¢’s. These ¢’s are used to calculate new F g, i.e. anew F, and this
gives a second-cycle set of ¢’s and ¢’s. The process is continued until things—the ¢’s,
the ¢’s (as the density matrix — Section 5.2.3.6.3), the energy, or, more usually, some
combination of these — stop changing within certain pre-defined limits, i.e. until the
cycles have essentially converged on the limiting ¢’s and ¢’s. Typically, about ten
cycles are needed to achieve convergence. It is because the operator F depends on
the functions ¢ on which it acts, making an iterative approach necessary, that the
Roothaan—Hall equations, like the Hartree—Fock equations, are called pseudoei-
genvalue (see end of Section 5.2.3.4 and start of Section 5.2.3.5).

Now, in the Hartree—Fock method (the Roothaan—Hall equations represent one
implementation of the Hartree—Fock method) each electron moves in an average
field due to all the other electrons (see the discussion in connection with Fig. 5.3,
Section 5.2.3.2). As the ¢’s are refined the MO wavefunctions improve and so
this average field that each electron feels improves (since J and K, although not
explicitly calculated (Section 5.2.3.6.3) improve with the i/’s ). When the ¢’s no
longer change the field represented by this last set of ¢’s is (practically) the same
as that of the previous cycle, i.e. the two fields are “consistent” with one another,
i.e. “self-consistent”. This Roothaan—Hall-Hartree—Fock iterative process (initial
guess, first F, first-cycle ¢’s, second F, second-cycle ¢’s, third F, etc.) is therefore a
self-consistent-field procedure or SCF procedure, like the Hartree—Fock procedure
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of Section 5.2.2. The terms “Hartree—Fock calculations/method” and “SCF calcula-
tions/method” are in practice synonymous. The key point to the iterative nature of
the SCF procedure is that to get the ¢’s (for the MO’s /) and the MO ¢’s we
diagonalize a Fock matrix F, but to calculate F we need an initial guess for the ¢’s
and we then improve the ¢’s by repeatedly recalculating and diagonalizing F. The
procedure is summarized in Fig. 5.6. Note that in the simple and extended Hiickel
methods we do not need the ¢’s to calculate F, and there is no iterative refinement of
the ¢’s, so these are not SCF methods; other semiempirical procedures, however
(Chapter 6) do use the SCF approach. A corollary of the SCF procedure is that the
molecular orbitals i to be filled are chosen before calculation of these orbitals. This
is clear from the fact that the MO coefficients of the filled orbitals are used to
construct the elements of the density matrix (Section 5.2.3.6.4). In contrast, in the
simple and extended Hiickel methods the MOs are calculated with the aid of a
coefficients-free prescription and simply filled according to the electronic state
desired (from the bottom up for the ground state).

Step 1 1 Define molecule
Specify geometry, charge and electronic state,

e.g. CH, cartesian coordinates, charge = 0, singlet

or CH, cartesian coordinates, charge = 0, triplet, etc.

Choose a basis set.

Start the calculation.

Step 2 2 calculate integrals
Program calculates integrals: kinetic energy, potential energy, and

overlap integrals.

Step 3 3 calculate othogonalizing
Program calculates orthogonalizing matrix using overlap matrix (composed of matrix

overlap integrals).

Step 4 4 calculate initial
Program calculates initial Fock matrix using kinetic energy and potential energy integrals Fock matrix

and an initial guess of basis set coefficients (initial guess from, e.g., an extended

Hiickel calculation; the guess c’s usually have to be "projected" to the ab initio basis,

which is almost always bigger than that used for the guess calculation).

Step 5 5 transform Fock matrix
Program uses orthogonalizing matrix to transform Fock matrix to one based on an

orthonormal set of functions derived from the original atom-centered basis functions.

Step 6 6 diagonalize Fock matrix
Program diagonalizes Fock matrix to get ¢’s (based on the orthonormal, derived basis

set) and energy levels.

Step 7 7 transform c¢'s
Program transforms the c's to a set based on the original, atom-centered basis functions.

Step 8 8 compare parameters

Program compares c's (and/or energy, or other parameters) with the previous set; if the with previous ones

match is not close enough, another SCF cycle, steps 4-8, is done, using as input for
step 4 the latest c's. If the match is close enough, the iterations stop.

Fig. 5.6 Summary of the steps in the Hartree—-Fock—Roothaan—Hall SCF procedure
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5.2.3.6.3 Using the Roothaan—Hall Equations to do ab initio Calculations — the
Equations in terms of the ¢’s and ¢’s of the LCAO Expansion

The key process in the HF ab initio calculation of energies and wavefunctions is
calculation of the Fock matrix, i.e. of the matrix elements F, (Section 5.2.3.6.2).
Equation (5.63) expresses these in terms of the basis functions ¢ and the
operators H°®, J and K, but the J and K operators (Eqs. 5.28 and 5.31) are
themselves functions of the MO’s  and therefore of the ¢’s and the basis
functions ¢. Obviously the F, can be written explicitly in terms of the ¢’s and
¢’s; such a formulation enables the Fock matrix to be efficiently calculated from
the coefficients and the basis functions without explicitly evaluating the opera-
tors J and K after each iteration. This formulation of the Fock matrix will now be
explained.
To see more clearly what is required, write Eq. 5.63 as

Foo= (9. (1) >+Z (1,(1)) = (&, (DIK; (D], (1))]
(5.71)

using the compact Dirac notation. The operator F<(1) involves only the Laplacian
differentiation operator, atomic numbers and electron coordinates, so we do not have
to consider substituting the Roothaan-hall ¢’s and ¢’s into H"®. The operators J and

K invoke two integrals which we now consider. The first integral, from Eq. (5.65), is

R 20 (2
(1) = (1) / Md

Substituting for wj* (2) the basis function expansion Zc*t]-qﬁ[*@) and for 1/; (2) the
expansion Y c,;¢,(2) (cf. Eq. 5.52):

Ji(D,(1) = (1) ZZc;}cuj/‘de

t=1 u=1

where the double sum arises because we multiply the " sum by the yy sum. To get
the desired expression for (¢, (IJ(1)p4(1)) (usually written (¢, (DI (DIpy(1))) we
multiply this by ¢ (1) and integrate with respect to the coordinates of electron 1,
getting:

O0) =33 e [ [EED0E)

t=1 u=1 "2
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Note that this is really a sixfold integral, since there are three variables (x1, yy, z1)
for electron 1, and three (x,, y,, zp) for electron 2, represented by dv; and dv,
respectively. This equation can be written more compactly as

(W) =33 el (rslin) (5:72)

t=1 u=1

The notation

(rs|tu) = //d)j(l)%(]’?fﬂz)(p“(z) dvidv, (5.73)

is a common shorthand for this kind of integral, which is called a two-electron
repulsion integral (or two-electron integral, or electron repulsion integral); the phy-
sical significance of these is outlined in Section 5.2.3.6.4). This parentheses notation
should not be confused with the Dirac bra-ket notation, (| (a bra) and |) (a ket):

by definition

(flg) = / F(@)s(a)da (5.74)

SO

(rs|mu) :/(cﬁ,( )é5(1)" (1), (1) (5.75)

Actually, several notations have been used for the integrals of Eq. 5.73 and for
other integrals; make sure to ascertain which symbolism a particular author is using.
The second integral, from Eq. 5.66, is

. “(2)6.(2
K00, =1 [ ‘“)‘“)d

Substituting for (1) the basis function expansion Y c,;¢,(1) and for xp (2) the
expansion ) ¢, (2) (cf. Eq. 5.52):

K060 = 00D ey [ 220,

=1 u=1

~

To get the desired expression for <¢,.(1)I€ (1)¢(1)) we multiply this by ¢ (1)
and integrate with respect to the coordinates of electron 1:

<¢1(1)|I€j(1 m thjcuj//qb ( )(pS( )dvld\/2

t=1 u=
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which can be written more compactly as

(p,(DIK;(1 Zc;cw (rults) (5.76)

t=1 u=1

where of course (cf. (5.73))

(rults) = / / ¢:(1)¢u(1}?1f; LI (5.77)

Substituting Eqs. 5.72 and 5.76 for (¢, (1)|J(1)¢,(1)) and (¢, (1)|K(1)¢,(1))
into Eq. 5.71 for F,; we get

m m m m
*
2 E E cyicuj(rsltu) — E E cyicyj(rs|tu)

t=1 u=1 t=1 u=1

Fro= (6, (DA™ (D], (1)) + i

ie.

m n

Fs=HX*(1)+ Z Zc;;cu, (rs|tu) — (rults)) (5.78)
1 j=1

t=1 u=

where the integral of the operator H*™ over the basis functions has been written

HE (1) = (¢, (DA (D)].(1)) (5.79)
with H°°™ defined by Eq. 5.64 = 5.19.

Equation 5.78, with its ancillary definitions Eqs. 5.73, 5.77 and 5.79, is what we
wanted: the Fock matrix elements in terms of the basis functions ¢ and their weighting
coefficients c, for a closed-shell molecule; m is the number of basis functions. We can
use Eq. 5.78 to calculate MO’s and energy levels (Section 5.2.3.6.2). Given a basis set
and molecular geometry (the integrals depend on molecular geometry, as will be
illustrated) and starting with an initial guess at the ¢’s, one (or rather the computer
algorithm) calculates the matrix elements F ., assembles them into the Fock matrix F,
etc. (Section 5.2.3.6.2 and Fig. 5.6) Let us now examine certain details connected with
Eq. 5.78 and this procedure.

5.2.3.6.4 Using the Roothaan—Hall Equations to do ab initio Calculations — Some
Details

Equation 5.78 is normally modified by subsuming the ¢’s into P,,, the elements of
the density matrix P:
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Py Pn P3Py
p=| P Pn Pxn - Py (5.80)
Pml PmZ Pm3 Pmm
where the density matrix elements are
n
Pu=2Y ciey t=12,....,m and u=12,..,m #(5.81)
=1

(sometimes P is defined as Y c¢*c). From Eqgs. 5.78 and 5.81:

Fpy = HO(1) + Z ZP”‘ {(rs|tu) - % (ru|ts)] %(5.82)

t=1 u=I

Equation 5.82, a slight modification of Eq. 5.78, is the key equation in
calculating the ab initio Fock matrix (you need memorize this equation only to
the extent that the Fock matrix element consists of H°°'¢, P, and the two-electron
integrals). Each density matrix element P, represents the coefficients ¢ for a
particular pair of basis functions ¢, and ¢,, summed over all the occupied MO’s
Y, (i=1,2,...,n). We use the density matrix here just as a convenient way to
express the Fock matrix elements, and to formulate the calculation of properties
arising from electron distribution (Section 5.5.4), although there is far more to the
density matrix concept [27]. Equation 5.82 enables the MO wavefunctions
(which are linear combinations of the ¢’s and ¢’s) and their energy levels ¢ to
be calculated by iterative diagonalization of the Fock matrix.

Equation 5.17 (E = 2} H + }3(2J — K)) gives one expression for the molecular
electronic energy E. If we wish to calculate E from the energy levels, we must note
that in the HF method E is not simply twice the sum of the energies of the n
occupied energy levels, i.e. it is not the sum of the one-electron energies (as we take
it to be in the simple and extended Hiickel methods). This is because the MO energy
level value ¢ represents the energy of one electron subject to interaction with all the
other electrons. The energy of an electron is thus its kinetic energy plus its
electron—nuclear attractive potential energy (H°°"), plus, courtesy of the J and K
integrals (Section 5.2.3.5 and Eqgs. (5.48)—(5.50 = 5.83 = 5.50)), the potential
energy from repulsion of all the other electrons:

g =HP™ + Y (27;(1) — Ky(1)) (5.83 = 5.50)
j=1

If we add the energies of electron 1 and electron 2, say, we are adding, besides
the kinetic energies of these electrons, the repulsion energy of electron 1 on electron
2,3,4, ..., and the repulsion energy of electron 2 on electron 1, 3, 4, ... — in other
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words, we are counting each repulsion twice. The simple sum thus represents
properly the total kinetic and electron—nuclear attraction potential energy, but over-
counts the electron—electron repulsion potential energy (recall that we are working
with 2n electrons and thus 7 filled MOs):

E(overestimated) = 2 Z & (5.84)

i=1

Note that we cannot just take half of this simple sum, because only the electron—
electron energy terms, not all the terms, have been doubly-counted. The solution is
to subtract from 2>¢ the superfluous repulsion energy; from our discussion
of Eq. 5.50 in Section 5.2.3.5 we saw that the sum Y(2/ — K) over n represents
the repulsion energy of one electron interacting with all the other electrons, so to
remove the superfluous interactions we subtract Y'Y (2J — K), the sum over n of the
repulsion energy sum, to get [15]

n

Fur =235 - 33 @y(1) - Ky (1) (5.385)

Eyr is the Hartree—Fock electronic energy: the sum of one-electron energies
corrected (within the average-field HF approximation) for electron—electron repul-
sion. We can get rid of the integrals J and K over MO’s y and obtain an equation for
Eyr in terms of ¢’s and ¢’s. From (5.83),

n n

Z Z (2Jij<1) - K,'j(l)) = Zgi + Zngiore
i=1 i=1

i=1 j=1

and from this and (5.85) we get

Eup = &+ Y HY™ (5.86)
i=1 i=1
From the definition of H7° in Eqs. 5.49 and 5.50, i.e. from
1™ = (y (A1, ) (5.87)

and the LCAO expansion (5.52)

Y= zm: Csipy (5.88 = 5.52)
s=1
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we get from Eq. 5.86

m m n

Eyp = Z Gt > Y Y e (5.89)

r=1 s=1 i=1

Using Eq. 5.81, Eq. 5.89 can be written in terms of the density matrix ele-
ments P:

m

EHF = i &; +% Z iPmHﬁ?re (590)
i=1

r=1 s=I1

This is the key equation for calculating the HF electronic energy of a molecule. It
can be used when self-consistency has been reached, or after each SCF cycle
employing the &’s and ¢’s yielded by that particular iteration, and H ™, which
latter does not change from iteration to iteration, since it is composed only of the
fixed basis functions and an operator which does not contain ¢’s or ¢’s: from
Egs. 5.64 = 5.19 and 5.79

Hy™ = <¢r| -5V - ZZ—“_I</>s> 9D

allp T wi

H™ does not change because the SCF procedure refines the electron-electron
repulsion (till the field each electron feels is “consistent” with the previous one),
but H™ in contrast represents only the contribution to the kinetic energy plus
electron— nucleus attraction of the electron density associated with each pair of
basis functions ¢, and ¢,.

Equation 5.90 gives the HF electronic energy of the molecule or atom — the
energy of the electrons due to their motion (their kinetic energy) plus their energy
due to electron—nucleus attraction and (within the HF approximation) to electron—
electron repulsion (their potential energy). The fotal energy of the molecule,
however, involves not just the electrons but also the nuclei, which contribute
potential energy due to internuclear repulsion and kinetic energy due to nuclear
motion. This motion persists even at 0 K, because the molecule vibrates even at this
temperature; this unavoidable vibrational energy is called the zero point vibrational
energy or zero point energy (ZPVE or ZPE; Section 2.5, Fig. 2.20 and associated
discussion). Calculation of the internuclear repulsion energy is trivial, as this is just
the sum of all coulombic repulsions between the nuclei:

Z.Z,
Viw = Y == (5.92 = 5.16)

all p,v ’”V

Calculation of the ZPE is more involved; it requires calculating the frequencies
(i.e. the normal-mode vibrations — Section 2.5) and summing the energies of each
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mode [28] (all this is done by standard programs, which print out the ZPE after the
frequencies). Adding the HF electronic energy and the internuclear repulsion gives
what we might ES#!, the total “frozen-nuclei” (no ZPE) energy:

n 1
total __ _ ) - core
Egr = Eup + Vi = i:El & + > E E P H™ + Vyy (593)

r=1 s=I

from Egs. 5.90 and (5.92 = 5.16). E\9%!, the energy usually displayed at the end of a
Hartree—Fock calculation is, in ordinary parlance, “the Hartree—Fock energy”.

An aggregate of such energies, plotted against various geometries, represents
an HF Born—Oppenheimer PES (Section 2.3). The zero of energy for the
Schrodinger equation for an atom or molecule is normally taken as the energy
of the electrons and nuclei at rest at infinite separation. The Hartree—Fock energy
(any ab initio energy, in fact) of a species in thus relative to the energy of
the electrons and nuclei at rest at infinite separation, i.e. it is the negative of the
minimum energy required to break up the molecule or atom and separate the
electrons and nuclei to infinity. We are normally interested in relative energies,
differences in absolute ab initio energies. Ab initio energies are discussed in
Section 5.5.2.

In a geometry optimization (Section 2.4) a series of single-point calculations
(calculations at a single point on the potential energy surface, i.e. at a single
geometry) is done, each of which requires the calculation of X!, and the geometry
is changed systematically until a stationary point is reached (one where the poten-
tial energy surface is flat; ideally E9% should fall monotonically in the case of
optimization to a minimum). The ZPE calculation, which is valid only for a
stationary point on the potential energy surface (Section 2.5; discussion in connec-
tion with Fig. 2.19), can be used to correct E% of the optimized structure for
vibrational energy; adding the ZPE gives the total internal energy of the molecule at
0 K, which we could call Ef:

Eg = E + ZPE *(5.94)

The relative energies of isomers may be calculated by comparing E};’{:al, but for
accurate work the ZPE should be taken into account, even though the required
frequency calculations usually take significantly longer than the geometry optimi-
zation — see Section 5.3.3, Table 5.3). Fortunately, it is valid to correct E‘}‘I’{;al with a
ZPE from a lower-level optimization-plus-frequency job (not a lower-level fre-
quency job on the higher-level geometry). Figure 2.19, Section 2.5 compares
energies for the species in the isomerization of HNC to HCN. The relative energies
with/without the ZPE correction for HCN, transition state, and HNC are 0/0, 202/
219, and 49.7/52.2 kJ mol~'. The ZPEs of isomers tend to be roughly equal and
so to cancel when relative energies are calculated (less so where transition states
are involved), but, as implied above, in accurate work it is usual to compare the
ZPE-corrected energies Eig.
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5.2.3.6.5 Using the Roothaan—Hall Equations to do ab initio Calculations — an
Example

The application of the Hartree—Fock method to an actual calculation will now be
illustrated in detail with protonated helium, H-He*, the simplest closed-shell
heteronuclear molecule. This species was also used to illustrate the details of the
extended Hiickel method (EHM) in Section 4.4.2. In this simple example all the
steps were done with a pocket calculator, except for the evaluation of the integrals
(this was done with the ab initio program Gaussian 92 [29]) and the matrix
multiplication and diagonalization steps (done with the program Mathcad [30]).

Step 1 — Specifying the geometry, basis set and MO occupancy

We start by specifying a geometry and a basis set. We will use the same
geometry as with the EHM, 0.800 A, i.e. 1.5117 a.u. (bohr). In ab initio calculations
on molecules, the basis functions are almost always Gaussian functions (basis
functions are discussed in Section 5.3). Gaussian functions differ from the Slater
functions we used in the EHM in Chapter 4 in that the exponent involves the square
of the distance of the electron from the point (usually an atomic nucleus) on which
the function is centered:

An s-type Slater function

¢ = aexp(—br) (5.95)
An s-type Gaussian function
¢ = aexp(—br?) (5.96)

In ab initio calculations the mathematically more tractable Gaussians are used to
approximate the physically more realistic Slater functions (see Section 5.3). We use
here the simplest possible Gaussian basis set: a 1s atomic orbital on each of the two
atoms, each 1s orbital being approximated by one Gaussian function. This is called
an STO-1G basis set, meaning Slater-type orbitals-one Gaussian, because we are
approximating a Slater-type ls orbital with a Gaussian function. The best STO-1G
approximations to the hydrogen and helium 1s orbitals in a molecular environment
[31] are

$(H) = ¢, = 0.3696 exp(—0.4166|r — R, |*) (5.97)
$(He) = ¢, = 0.5881 exp(—0.7739|r — R, |*) (5.98)

where Ir — R/l is the distance of the electron in ¢; (¢ is a one-electron function)
from nucleus i on which ¢; is centered (Fig. 5.7). The larger constant in the helium
exponent as compared to that of hydrogen (0.7739 vs 0.4166) reflects the intuitively
reasonable fact that since an electron in ¢, is bound more tightly to its doubly-
charged nucleus than is an electron in ¢; is to its singly-charged nucleus, electron
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z basis function ¢, centered on atomic nucleus 1

R, basis function ¢, centered on atomic nucleus 2

y

Fig. 5.7 A four-atom molecule in a coordinate system. Only one of possibly many electrons is
shown. The basis functions ¢ are one-electron functions, usually centered on atomic nuclei. Ry,
R,, etc., are vectors representing the x, y, z coordinates (conveniently as 3 x 1 column matrices;
Section 4.3.3) of the nuclei (“of the atoms”), and r is a vector representing the x, y, z coordinates of
an electron. The distances of the electron from the centers of the various basis functions are the
absolute values of the various vector differences: Ir — Ryl, Ir — Ry, etc. For a particular molecular
geometry, Ry, Ry, etc. are fixed and enter the functions ¢, ¢», etc., only parametrically, i.e. to
denote where the ¢’s are centered; r is the variable in these functions, which are thus ¢(x, y, z).
Several basis functions may be centered on each nucleus

density around the helium nucleus falls off more quickly with distance than does
that around the hydrogen nucleus (Fig. 5.8).

We have a geometry and a basis set, and wish to do an SCF calculation on HHe
with both electrons in the lowest MO, /1, i.e. on the singlet ground state. In general,
SCF calculations proceed from specification of geometry, basis set, charge and
multiplicity. The multiplicity is a way of specifying the number of unpaired
electrons:

Multiplicity = § = 2s + 1 (5.99)

where s = total number of unpaired electron spins (each electron has a spin of %),
taking each unpaired spin as +%. Figure 5.9 shows some examples of the specifica-
tion of charge and multiplicity. By default an SCF calculation is performed on the
ground state of specified multiplicity, i.e. the MO’s are filled from /; up to give the
lowest-energy state of that multiplicity.

Step 2 — Calculating the integrals

Having specified a Hartree—Fock calculation on singlet HHe*, with H—He =
0.800 A (1.5117 bohr), using an STO-1G basis set, the most straightforward way
to proceed is to now calculate all the integrals, and the orthogonalizing matrix $ '/
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#(x,y,2) = ¢(Ir—Rl)

0.6
™~ ¢(He)
Ir—=RI  ¢(H) = 0.3696exp(-0.4166Ir—R,l) ¢(He) = 0.5881exp(—0.7739Ir—R,l)
\
\ 0 0.370 0.588
0.4 \ 0.5 0.333 0.485

1.0 0.244 0.271
0.070 0.027
0.2 0.009 0.0006
0 1 2 3 )
Ir=RI A

Fig. 5.8 Electron density around the helium nucleus falls off more quickly than electron density
around the lower-charge hydrogen nucleus

that will be used to transform the Fock matrix F to F’ and to convert the transformed
coefficient matrix C’ to C (Egs. 5.67-5.70). The integrals are those required for
H ™, the one-electron part of the elements F,, of F, and the two-electron repulsion
integrals (rsltu), (rults) (Eq. 5.82), as well as the overlap integrals, which are needed
to calculate the overlap matrix S and thus the orthogonalizing matrix S~
(Eq. 5.67).

Efficient methods have been developed for calculating these integrals [32] and
their values will simply be given later. For our calculation the elements F, of the
Fock matrix (Eq. 5.82) are conveniently written

(5.100)

Here H°"(1) has been dissected into a Kinetic energy integral T and two
potential energy integrals, V(H) and V(He). From the definition of the operator
H**™ (Eq. 5.64 = 5.19) and the Roothaan—Hall expression for the integral H°°™
(Eq. 5.79) we see that (the (1) emphasizes that these integrals involve the coordi-
nates of only one electron):

r.n = [ qs,.(—éw)«mdv

e o o (5.101)
= [ 0|3 (Gt o ) o
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eV (1 eV particle™ = 96.5 kJ mol™)

20

10

H,O
neutral, singlet

0 unpaired electrons,
S=0
multiplicity =2S + 1 =1

-

H,O
neutral, triplet

2 unpaired electrons,
S=1/2+1/2=1
multiplicity =2S + 1 =3

217

H,O

radical cation, doublet
i.e. H,O *

1 unpaired electron,
S=1/2

multiplicity =2S + 1 =2

Fig.5.9 Some examples of the results of specification of charge and multiplicity. The calculations
used the STO-3G basis set (Section 5.3) which has seven basis functions, and so creates seven
MOs. All calculations were at the HF/STO-3G geometry of the neutral singlet

and

ittt ) = [ (2 ) g

V.s(He, 1) = / o, (%) ¢ dv

(5.102)

(5.103)

In Eq. 5.102 the variable is the distance of the electron (“electron 1” — see the
discussion in connection with Egs. 5.18 and 5.19) from the hydrogen nucleus, and
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in Eq. 5.103 the variable is the distance of the electron from the helium nucleus; Zy
and Zy are 1 and 2, respectively.
From Eq. 5.100 the two-electron contribution to each Fock matrix element is

m m

Grs =) 1 Py, {(rs|ts) - % (ru|ts)} (5.104)

t=1 u=

Each element G, is calculated from a density matrix element P, (Egs. 5.80
and 5.81) and two two-electron integrals (rs/tu) and (ru/ts) (Eqgs. 5.73 and 5.77).
The required one-electron integrals for calculating the Fock matrix F are

Ty = 0.6249 Ty, = Ty = 0.2395 Ty, = 1.1609
Vir(H) = —1.0300  Vip(H) = Vo (H) = —0.4445  Vayp(H) = —0.6563

Vii(He) = —1.2555 Vip(He) = Vo (He) = —1.1110  Vyy(He) = —2.8076
(5.105)

To see which two-electron integrals are needed we evaluate the summation in
Eq. 5.104 for each of the matrix elements (G, G12, G21, G22):

2 2

G =33 (111~ 1)

t=1 u=1

2

ie. Gn=)» [p,l [(11|z1) _%(11|t1)} +Pp {(1112) _%(12“1)”

t=1

=Py {(11|11) %(11|11)] + Py {(11|12) %(12|11)] (5.106)
+ Py {(11|21) —%(11|21)] + Py [(11|22) —%(12|21)]

2

2
G =Gy = Zzp’” [(12|”4) —%(1’4’2)}

t=1 u=1

2

ie. Go=Gn=Y [P,l {(12“1) —%(npz)] P [(12|r2) _%(12;2)”

t=1

:p”{(12|11)— (11|12)}+P12{(12|12) 1(12|12)]

2

N =

+ Py {(1221) - % (11|22)] + Py {(12|22) - % (12|22)]

(5.107)
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G — tZ:: uz:P,u [(22|tu) _ % (2u|t2)}
ie. Gyp= 2_21: {p,l [(22It1) _%(znz)} + Py [(zzpz) —%(221‘2)”
=Py {(22|11) _%(21|12)} + P {(2z|12) _%(22“2)} (5.108)

1 1
+ Py [(22|21) —3 (2122)} + Py {(22|22) —3 (22|22)}
Each element of the electron repulsion matrix G has eight 2-electron repulsion
integrals, and of these 32 there appear to be 14 different ones:

from G,: (11111), (11112), 12111), (11121), (11122), (12121)
new with G5 = Gay: (12112), (12122)
new with Gao: (22111), (21112), (22112), (22121), (21122), (22122)

However, examination of Eq. 5.73 shows that many of these are the same. It is
easy to see that if the basis functions are real (as is almost always the case) then

(rs|tu) = (rs|lut) = (srltu) = (sr|ut) = (tulrs) = (tu|sr) = (ut|rs)
= (utlsr) (5.109)

Taking this into account, there are only six unique two-electron repulsion inte-
grals, whose values are:

(11]11) = 0.7283 (21]21) = 0.2192
(21]11) = 0.3418  (22[21) = 0.4368 (5.110)
(22]11) = 0.5850 (22[22) = 0.9927

The integrals (11111) and (22122) represent repulsion between two electrons
both in the same orbital (¢; or ¢,, respectively), while (22111) represents repulsion
between an electron in ¢, and one in ¢1; (21111) could be regarded as representing
the repulsion between an electron associated with ¢, and ¢ and one confined to ¢,
and analogously for (22I121), while (21121) can be thought of as the repulsion
between two electrons both of which are associated with ¢, and ¢, (Fig. 5.10).
Note that in the T and V terms of the Fock matrix elements, the operator in the
integrals is — (1/2)V? and Zy/ra; or Zge/rue1, while in the G terms it is 1/r»
(Egs. 5.101-5.103 and 5.73).

The overlap integrals are

S11 =1.0000 S =82 =0.5017 Sy = 1.0000 (5.111)
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/

¢ superposed right on ¢, 2 4
(1111) (2211)

(073 04 0o 04
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Fig. 5.10 Schematic depictions of the physical meaning of some two-electron repulsion integrals
(Section 5.2.3.6.5). Each basis function ¢ is normally centered on an atomic nucleus. The integrals
shown here are one-center and two-center two-electron repulsion integrals — they are centered on
one and on two atomic nuclei, respectively. For molecules with three nuclei three-center integrals
arise, and for molecules with four or more nuclei, four-center integrals arise

and the overlap matrix is

0.5017 1.0000 (5.112)

S — <1.0000 0.5017>
Step 3 — Calculating the orthogonalizing matrix
Calculating the orthogonalizing matrix S™"* (see Eqs. 5.67-5.69 and the dis-
cussion referred to in Chapter 4):
Diagonalizing S

0.7071 —0.7071 0.0000 0.4983 0.7071 —O.7071> (5.113)
P D P!

(0.7071 0.7071> (1.5017 0.0000) (0.7071 0.7071
S:

Calculating D~

p-1/2 _ ( 1.50177'20.0000 _ (08160  0.000 (5.114)
0.0000  0.49837'/ 0.0000 1.4166 '

Calculating S~

-1/2 _ —1/2p-1 _ 1.1163 —0.3003
S PDP (—0.3003 1.1163 (5.115)
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Step 4 — Calculating the Fock matrix
(a) The one-electron matrices
From Eq. 5.100

F=T+V(H)+ V(He)+G=H""+G (5.116)

The one-electron matrices T, V(H) and V(He) (i.e. H*" ) follow immediately
from the one-electron integrals. The kinetic energy matrix is

_(Tu T\ _ {06249 0.2395
T_(Tzl T22>_<0.2395 1.1609) (5.117)

Ty, is smaller than T,,, as the kinetic energy of an electron in ¢; (¢(H)) is
smaller than that of an electron in ¢, (¢(He)); this is expected since the larger
charge on the helium nucleus results in a larger kinetic energy for an electron in its
1s orbital than for an electron in the hydrogen 1s orbital — classically speaking, the
electron must move faster to stay in orbit around the stronger-pulling He nucleus.
Ty, can be regarded as the kinetic energy of an electron in the H(1s)—He(ls)
overlap region.

The hydrogen potential energy matrix is

_ (Vu(H) Vip(H)\ _ (—1.0300 —0.4445
V(H) = (VZI(H) V;(H)) B <—0.4445 —0.6563> (5.118)

All the V(H) values represent the attraction of an electron to the hydrogen
nucleus. V{;(H) is the potential energy due to attraction of an electron in ¢; to
the hydrogen nucleus, and V,,(H) is the potential energy due to attraction of an
electron in ¢, to the hydrogen nucleus. As expected, an electron in ¢; (¢p(H)) is
attracted to the H nucleus more strongly (the potential energy is more negative) than
is an electron in ¢, (¢p(He)). Vi2(H) can be regarded as the potential energy of
attraction to the hydrogen nucleus of an electron in the H(1s)—He(ls) overlap
region.

The helium potential energy matrix is

_ (Vi(He) Vip(He)\ [ —12555 —1.1110
V(He) = (VZI(HC) VZ(He)) = (—1.1110 —2.8076) (5.119)

All the V(He) values represent the attraction of an electron to the helium nucleus.
V11(He), the potential energy of attraction of an electron in ¢(H) to the helium
nucleus, is of course less negative than the potential energy of attraction of an
electron in ¢p(He) to this same nucleus. V;,(He) can be taken as the potential energy
of attraction to the helium nucleus of an electron in the H(1s)—He(ls) overlap
region. An electron in ¢p(He) is attracted to the helium nucleus more strongly than
an electron in ¢(H) is attracted to the hydrogen nucleus (—2.8076 in V(He) cf.
—1.0300 in V(H)), due to the greater nuclear charge of helium.
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The total one-electron energy matrix, H*", is

(5.120)

—1.6606 13160
P =T+ V(H) + V(He) = ( 13160 —2.3030>

This matrix represents the one-electron energy (the energy the electron would
have if interelectronic repulsion did not exist) of an electron in H—He™, at the
specified geometry, for this STO-1G basis set. The (1,1), (2,2) and (1,2) terms
represent, ignoring electron—electron repulsion, the energy of an electron in ¢4, ¢»,
and the ¢;—¢, overlap region, respectively; the values are the net result of the
various kinetic energy and potential energy terms discussed above.

(b) The two-electron matrix

The two-electron matrix G, the electron repulsion matrix (Eq. 5.104), is
calculated from the two-electron integrals (Eqs. 5.110) and the density matrix
elements (Eq. 5.81). This is intuitively plausible since each two-electron integral
describes one interelectronic repulsion in terms of basis functions (Fig. 5.10) while
each density matrix element represents the electron density on (the diagonal
elements of P in Eq. 5.80) or between (the off-diagonal elements of P) basis
functions. To calculate the matrix elements G, (Eqgs. 5.106-5.108) we need the
appropriate integrals (Egs. 5.110) and density matrix elements. These latter are
calculated from

Py =2 cieyy t=12,...m and u=12,....m (5121 =581)
J=1

Each P, involves the sum over the occupied MO’s (j = 1-n; we are dealing with a
closed-shell ground-state molecule with 2n electrons) of the products of the coeffi-
cients of the basis functions ¢, and ¢;. As pointed out in Section 5.2.3.6.2 the
Hartree—Fock procedure is usually started with an “initial guess” at the coefficients.
We can use as our guess the extended Hiickel coefficients we obtained for HeH", with
this same geometry (Section 4.4.1.2); we need the ¢’s only for the occupied MO’s:

c11 = 0249, Cr1 = 0.867 (5122)

(Usually we need more ¢’s than the small basis set of an extended Hiickel or other
semiempirical calculation supplies; a projected semiempirical wavefunction is then
used, with the missing ¢’s extrapolated from the available ones). Using these ¢’s and
Eq. 5.121 = 5.81 we calculate the initial-guess P’s for Egs. 5.106-5.108; since there
is only one occupied MO (n = 1 in Eq. 5. 121) the summation has only one term:

P11 = 2611611 = 2(0249)0249 = 0.1240
Py = 2¢11621 = 2(0.249)0.867 = 0.4318 (5.123)
P22 = 2621621 = 2(0867)0867 = 1.5034
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G may now be calculated. From Eqs. (5.106)—(5.108), using the above values of
P and the integrals of Eq. (5.110), and recalling that integrals like (11]12) and
(2111) are equal (Eq. (5.109)) we get:

Gy =Py [(11|11) —%(11|11)} + Py {(11|12) —%(12|11)}

P (121) = 311120 | 4 P (11122) - S (1220)] (5129

= 0.1240(0.3642) -+ 0.4318(0.1709)
+0.4318(0.1709) + 1.5034(0.4754) = 0.9075

G2 =Gy =Py [(12“1) —5(

: 11|12)} + P [(1z|12) _%(12“2)}

Py [(12|21> - %(11|22>} Py {(12|22> —%(1222)} (5.125)

= 0.1240(0.1709) + 0.4318(0.1096)
+0.4318(—0.0733) + 1.5034(0.2184) = 0.3652

Gy = Py, [(22|11) _%(21|12)} + P {(22|12) —%(ZZIIZ)}

+Pn|(22021) - J@1122)| + P 222) - 202 (.29

2
= 0.1240(0.4754) + 0.4318(0.2184)
+0.4318(0.2184) + 1.5034(0.4964) = 0.9938

From the G values based on the initial guess c¢’s the initial-guess electron repulsion
matrix is

0.9075 0.3652
Go = (0.3652 0.9938) (5.127)

The initial-guess Fock matrix is (Eqs (5.116), (5.120) and (5.126))

Fo =T+ V(H) + V(He) + Go = H*™ + Gy
B (1.6606 1.3160) <O.9095 0.3652> B <0.7511 0.9508)

~1.3160 —2.3030 03652 0.9938 )  \ —0.9508 —1.3092
(5.128)

The zero subscripts in Eqs. (5.127) and (5.128) emphasize that the initial-guess ¢’s,
with no iterative refinement, were used to calculate G; in the subsequent iterations
of the SCF procedure H°*" will remain constant while G will be refined as the c’s,
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and thus the P’s, change from SCF cycle to cycle. The change in the electron
repulsion matrix G corresponds to that in the molecular wavefunction as the ¢’s
change (recall the LCAO expansion); it is the wavefunction (squared) which
represents the time-averaged electron distribution and thus the electron/charge
cloud repulsion (Sections 5.2.3.2, 5.2.3.5 and 5.2.3.6.2).

Step 5 — Transforming F to F’, the Fock matrix that satisfies F' = C'eC’'™"

As in Section 4.4.1.2, we use the orthogonalizing matrix S™'? (of Step 3) to
transform F to a matrix F’ which when diagonalized gives the energy levels € and a
coefficient matrix C’ which is subsequently transformed to the matrix C of the
desired ¢’s (see Section 5.2.3.6.2):

1.1163 —0.3003 —0.7511 —0.9508 1.1163 —0.3003
F’_<—O.3003 1.1163> (—0.9508 —1.3092) <—0.3003 1.1163>
g-1/2 F, S-1/2
—0.4166 —0.5799
= (—0.5799 —1.0617)
Fy

(5.129)

Step 6 — Diagonalizing F’ to obtain the energy level matrix € and a coefficient
matrix C’/

0.5069 0.8620 —1.4027 0.0000 0.5069 0.8620
F, = (0.8620 —0.5069) ( —0.0000 —0.0756) (0.8620 —0.5069 )
Cll € C/l -1
(5.130)

The energy levels (the eigenvalues of Fy)) from this first SCF cycle are —1.4027 h
and —0.0756 h (h = hartrees, the unit of energy in atomic units), corresponding to
the occupied MO ; and the unoccupied MO ,. The MO coefficients (the
eigenvectors of Fy) of , and y», for the transformed, orthonormal basis functions,
are, from C| (actually here C} and its inverse, C| ! are the same):

, _ (0.5069 , (08620
V1= (0.8620) and v = (—0.5069) (5.131)

v is the first column of C| and v/ is the second column of C|. These coefficients
are the weighting factors that with the transformed, orthonormal basis functions
give the MO’s:

¥, = 0.5069¢ + 0.8620¢, and y, = 0.8620¢ — 0.5069¢,  (5.132)

where ¢} and ¢, are not our original basis functions, but rather linear combinations
of our original basis functions ¢; and ¢,. The original basis functions ¢ were
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centered on atomic nuclei and were normalized but not orthogonal (Section 4.3.3),
while the transformed basis functions ¢’ are delocalized over the molecule and are
orthonormal (Section 4.4.1.1). Note that the sum of the squares of the coefficients of
¢} and ¢, is unity, as must be the case if the basis functions are orthonormal
(Section 4.3.6). In the next step C’1 is transformed to obtain the coefficients of the
original basis functions ¢ in the MO’s. We want the MOs in terms of the original,
atom-centered basis functions (roughly, atomic orbitals — Section 5.3) because such
MOs are easier to interpret.

Step 7 — Transforming C’ to C, the coefficient matrix of the original, nonortho-
gonal basis functions

Asin Section 4.4.1.2, we use the orthogonalizing matrix $ /% to transform C’ to C:

1.1163 —0.3003 0.5069  0.8620 0.3070 1.1145
C, = \ —0.3003 1.1163 0.8620 —0.5069 0.8100 —0.8247

S-1/2 C (o
(5.133)

This completes the first SCF cycle. We now have the first set of MO energy
levels and basis function coefficients:
From Eq. 5.130

e = —1.4027 and & = —0.0756 (5.134)
From Eq. 5.133 (cf. Eq. 5.132):
Y, =0.3070¢, + 0.8100¢, and 1, = 1.1145¢, — 0.8247¢, (5.135)

Note that the sum of the squares of the coefficients of ¢ and ¢, is not unity,
since these atom-centered functions are not orthogonal (contrast the simple Hiickel
method, Section 4.3.4).

Step 8 — Comparing the density matrix from the latest ¢’s with the previous
density matrix to see if the SCF procedure has converged

The density matrix elements based on the ¢’s of C; (Eq. 5.133) can be compared
with those (Eq. 5.123) based on the initial guess:

P11 = 2¢11011 = 2(0.3070)0.3070 = 0.1885
P12 = 21121 = 2(0.3070)0.8100 = 0.4973 (5.136)
P2y = 2¢21021 = 2(0.8100)0.8100 = 1.3122

Suppose our convergence criterion was that the elements of P must agree with
those of the previous P matrix to within one part in 1,000. Comparing Eqs. 5.136
with Eqgs. 5.123 we see that this has not been achieved: even the smallest change is
[(1.312 — 1.503)/1.5031 = 0.127, far above the required 0.001. Therefore another
SCF cycle is needed.



226 5 Ab initio Calculations
Step 9 — Beginning the second SCF cycle: using the ¢’s of C to calculate a new
Fock matrix F, (cf. Step 4, (b))
The first Fock matrix Fy used ¢’s from our initial guess (Step 4, (b)). An

improved F may now be calculated using the ¢’s from the first SCF cycle. Calcu-
lating G as we did in Step 4, (b) for G, but using the new P’s:

G =P (111 = S (11110 + P (1112) - S 12110

1 1
+ Py [(11|21) - 5(1121)} + P {(11|22) - 5(1221)} (5.137)
= 0.1885(0.3642) + 0.4973(0.1709)
+0.4973(0.1709) + 1.3122(0.4754) = 0.8624

Gi> = Gor = P1y [(um) —%(nm)] 4P [(12|12) —%(uuz)]

1 1
+ P21 |:(12|21) — 5(11|22):| +P22 |:(1222) — 5(12|22):| (5.138)
= 0.1885(0.1709) + 0.4973(0.1096)
4 0.4973(—0.0733) + 1.3122(0.2184) = 0.3369

Gy =Py [(22|11) - %(21|1z)} +Pp [(22|12) - % (22|12)}

+ Py [(22|21) —%(2122)} + Py {(22|22) —%(2222)} (5.139)

= 0.1885(0.4754) + 0.4973(0.2184)
+0.4973(0.2184) + 1.3122(0.4964) = 0.9582

From the G values based on the first-cycle ¢’s the electron repulsion matrix is

0.8624 0.3369
Gi= <0.3369 0.9582) (5.140)
and the Fock matrix from this is
. —1.6606 —1.3160 0.8624 0.3369
F‘1 — HLO[’C +Gl —
—1.3160 —2.3030 0.3369 0.9582
(5.141)

—0.7982 —0.9791
—0.9791 —1.3448
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Step 10 — Transforming F, to F (cf. Step 5)

—0.3003  1.1163 —0.9791 —1.3448 —0.3003  1.1163
g-1/2 F, S-1/2
—0.4595 —0.5900
= (—0.5900 —1.0913)
F)

( 1.1163 0.3003) <0.7982 0.9791) ( 1.1163 0.3003)
F =

(5.142)

Step 11 — Diagonalizing F to obtain the energy levels ¢ and a coefficient matrix
C’ (cf. Step 6)

0.8579 —0.5138 0.0000 —0.1062 0.8579 —0.5138
(o4 & c,”!

(0.5138 0.8579> (—1.4447 0.0000> (0.5138 0.8579>
F -

(5.143)

The energy levels from this second SCF cycle are —1.4447 h and —0.1062 h. To
get the MO coefficients corresponding to these MO energy levels in terms of the
original basis functions ¢, and ¢, we now transform C), to C,.

Step 12 — Transforming C), to C, (cf. Step 7)

—0.3003  1.1163 0.8579 —0.5138 ) — 0.8034 —0.8319
S~1/2 C, C,

( 1.1163 —0.3003) <0.5138 0.8579>_ (0.3159 1.1120)
C, =

(5.144)

This completes the second SCF cycle. We now have the MO energy levels and
basis function coefficients:
From Eq. 5.143:

g = —1.4447 and & = —0.1062 (5.145)
From Eq. 5.144:
Y, =0.3159¢, +0.8034¢, and 1y, = 1.1120¢, — 0.8319¢, (5.146)

Step 13 — Comparing the density matrix from the latest ¢’s with the previous
density matrix to see if the SCF procedure has converged
The density matrix elements based on the ¢’s of C, are

P11 = 2C11C11 = 2(03159)03159 = 0.1996
Py = 2c11¢21 = 2(0.3159)0.8034 = 0.5076
Py = 2c21¢21 = 2(0.8034)0.8034 = 1.2909
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Comparing the above P’s with Egs. 5.136 we see that convergence to within our one
part in 1,000 criterion has not occurred: the largest change in the density matrix is |
(0.1996—0.1885)/0.1885! = 0.059, which is above 0.001, so the SCF procedure is
repeated.

Three more SCF cycles were carried out; the results of the “zeroth cycle” (the
initial guess) and the five cycles are summarized in Table 5.1. Only with the fifth
cycle has convergence been achieved, i.e. have the changes in all the density
matrix elements fallen below one part in 1,000 (the largest change is in Py,
1(0.2020—0.2019)/0.20191 = 0.0005 < 0.001). In actual practice, a convergence
criterion of from about one part in 10* to 1 in 10® is used, depending on the program
and the particular kind of calculation. The coefficients and the density matrix
elements change smoothly, although the energy levels and E% show some oscil-
lation. To reduce the number of steps needed to achieve convergence, programs
sometimes extrapolate the density matrix, i.e. estimate the final P values and use
these estimates to initiate the final few SCF cycles.

Often the main result from a Hartree—Fock (i.e. an SCF) calculation is the energy
of the molecule (the calculation of energy may be subsumed into a geometry
optimization, which is really the task of finding the minimum-energy geometry).
The STO-1G energy of HHe" with an internuclear distance of 0.800 A may be
calculated from our results:

The electronic energy is

m

Eyr = Zs 4= ZZP,JH;?;“ (5.147 = 5.90)

r=1 s=1
The internuclear repulsion energy is

2,7,

Vv = (5.148 =5.92)

all p,v Ty

and the total internal energy of the molecule at 0 K (except for zero point energy —
Section 5.2.3.6.4) is

Table 5.1 Results of initial guess and SCF cycles on HHe ™ at bond length 0.800 A using the
STO-1G basis set. Energies (), &, and EQ&) are in hartrees

Initial guess First cycle Second cycle Third cycle  Fourth cycle Fifth cycle

(zeroth
cycle)
&1, &2, - —1.4027, —1.4447, —1.4466, —1.4473, —1.4470,
—0.0756 —0.1062 —0.1054 —0.1056 —0.1051
c11, 21 0.249, 0.3070, 0.3159, 0.3175, 0.3177, 0.3178,
0.867 0.8100 0.8034 0.8022 0.8021 0.8020
Cla, Con  — 1.1145, 1.1120, 1.1115, 1.1115, 1.1114,
—0.8247 —0.8319 —0.8323 —0.8325 —0.8325
P 0.1240 0.1885 0.1996 0.2010 0.2019 0.2020
P 0.4318 0.4973 0.5076 0.5094 0.5097 0.5097
Py 1.5034 1.3122 1.2909 1.2870 1.2867 1.2864

Ega - ~2.3992 —2.4419 —2.4428 —2.4443 —2.4438
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m

n 1 m
total __ — i T =
E = Eur + Vi = ;s +3 SN PGHET + Ve (5149 =5.93)

r=1 s=I

E®! which is what is normally meant by the Hartree-Fock energy, is printed by
the program at the end of a single-point calculation or a geometry optimization, or
by some programs at the end of each step of a geometry optimization.

Using the energy levels and density matrix elements from the first cycle
(Table 5.1), with the H°™ elements from Eq. 5.120, Eq. 5.147 gives for the
electronic energy

Enr =& +

2
> o> Pttt

[PAHR + PrH S|

= —1.4027h+ = > [O 1885(—1.6606) + 0.4973(—1.3160)
+0.4973(—1.3160) + 1.3122(—2.3030)] h
= —3.7222h (5.150)
From Eq. 5.148 = 5.92 the internuclear repulsion energy is
ZnZne
"HHe (5.151)

1(2)
= h = 1.3230h
1.5117 3230

Vy =

and from Eq. 5.149 = 5.93 the total Hartree—Fock energy is

E98 = Fyr + Vigy = —3.7222h + 1.3230h = —2.3992h (5.152)

The Hartree—Fock energies for the five SCF cycles are given in Table 5.1.
Instead of starting with eigenvectors from a non-SCF method like the extended
Hiickel method, as was done in this illustrative procedure, an SCF calculation is
occasionally initiated by taking H°™ as the Fock matrix, that is, by initially
ignoring electron—electron repulsion, setting equal to zero the second term in
Eq. 5.82, or G in Eq. 5.100, whereupon F,; becomes H;.". This is usually a poor
initial guess, but is occasionally useful. You are urged to work your way through
several SCF cycles starting with this Fock matrix; this tedious calculation will help
you to appreciate the power and utility of modern electronic computers and may
enhance your respect for those who pioneered complex numerical calculations
when the only arithmetical aids were mathematical tables and mechanical calcula-
tors (mechanical calculators were machines with rotating wheels, operated by
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hand-power or electricity. There were also, in astronomy at least, armies of women
arithmeticians called computers — the original meaning of the word).

If we calculate the electronic energy simply as twice the sum of the energies of
the occupied MO orbitals, as with the simple and extended Hiickel methods, we get
a much higher value than from the correct procedure (Eq. 5.147); with a 0.800 A
bond length and the converged results this naive electronic energy is
2(—1.4470) h = —2.8940 h, while the correct electronic energy (not given in
Table 5.1 — the HF energies there are electronic plus internuclear repulsion) is
—3.7668 h, i.e. 30% lower when we correct for the fact that simply double-summing
the MO energies counts electron repulsion terms twice (Section 5.2.3.6.4).

A geometry optimization for HHe* can be done by calculating the Hartree—Fock
energy (electronic plus internuclear) at different bond lengths to get the minimum-
energy geometry. The results are shown in Fig. 5.11; the optimized bond length for the
STO-1G basis set is ca. 0.86 A. Note that it is customary to report ab initio energies in
hartrees to five or six decimal places (and bond lengths in A to three decimals); the
truncated values used here are appropriate for these illustrative calculations.

Summary of the steps in a single-point Hartree—Fock (SCF) calculation using the
Roothaan—Hall LCAO expansion of the MO’s

1. Specify a geometry, basis set, and orbital occupancy (this latter is done by
specifying the charge and multiplicity, with an electronic ground state being
the default).

E, o
hartrees 0.700 0.800 0.900 rnA

—2.4300 ' ' ' ' '

—2.4350 —

—2.4400 —

-l NS

—2.4500 —

Fig. 5.11 STO-1G energy versus bond length r for H-He". The calculation for r = 0.800 A was
done largely “by hand” (see Section “Using the Roothaan—Hall Equations to do Ab initio
Calculations — an Example”); the others were done with the program Gaussian 92 [29]
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2.

Calculate the integrals: T, V., for each nucleus, and the two-electron integrals (rul
ts) etc. needed for G,,, as well as the overlap integrals S, for the orthogonalizing
matrix derived from S (see step 3). Note: in the direct SCF method (Section 5.3)
the two-electron integrals are calculated as needed, rather than all at once.

. Calculate the orthogonalizing matrix S~/

(a) Diagonalize S: S = PDP !
(b) Calculate D~ (take the —1/2 power of the elements of D)
(¢) Calculate S~ = PD~'?P~!

. Calculate the Fock matrix F

(a) Calculate the one-electron matrix H®® = T + V; + V, + ... using the
T and V integrals from step 2

(b) The two-electron matrix (the electron repulsion matrix) G:

Use an initial guess of the coefficients of the occupied MO’s to calculate initial-

guess density matrix elements:

n
P =2 cicyy t=1,2,... mandu=12,...,m
j=1

Use the density matrix elements and the two-electron integrals to calculate G:
m

G =33 P rsl) — (o]

t=1 u=1

The Fock matrix is F = H*™ + G

. Transform F to F’, the Fock matrix that satisfies ' = C' e C'~!

F/ — S—l/ZFs—l/Z

. Diagonalize F’ to get energy levels and a C’ matrix

F = CleC'!

. Transform C’ to C, the coefficient matrix of the original basis functions

c=S"'2C

. Compare the density matrix elements calculated from the C of the previous step

with those of the step before that one (and/or use other criteria, e.g. the molecu-
lar energy); if convergence has not been achieved go back to step 4 and calculate
a new Fock matrix using the P’s from the latest ¢’s. If convergence has been
achieved, stop

It should be realized modern ab initio programs do not rigidly follow the basic

SCF procedure described in this section. To speed up calculation they employ a
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variety of mathematical tricks. Among these are: the use of symmetry to avoid
duplicate calculation of identical integrals; testing two-electron integrals quickly to
see if they are small enough to be neglected (as is the case for functions on distant
nuclei; this decreases the time of a calculation from an nt dependence on the number
of basis function to about an n** dependence); recalculating integrals to avoid the
bottleneck of hard-drive access (direct SCF, Section 5.3.2); representing the MOs as a
set of gridpoints in space (in addition to a basis set expansion), which eliminates the
need to explicitly calculate two-electron integrals. This pseudospectral method
speeds up ab initio calculations by a factor of perhaps 3 or 4. Methods of speeding
up calculations are explained, with references to the literature, by Levine [33].

The method of calculating wavefunctions and energies that has been described in
this chapter applies to closed-shell, ground-state molecules. The Slater determinant
we started with (Eq. 5.12) applies to molecules in which the electrons are fed
pairwise into the MO’s, starting with the lowest-energy MO; this is in contrast to
free radicals, which have one or more unpaired electrons, or to electronically
excited molecules, in which an electron has been promoted to a higher-level MO
(e.g. Fig. 5.9, neutral triplet). The Hartree—Fock method outlined here is based on
closed-shell Slater determinants and is called the restricted Hartree—Fock method
or RHF method; “restricted” means that the electrons of « spin are forced to occupy
(restricted to) the same spatial orbitals as those of f§ spin: inspection of Eq. 5.12
shows that we do not have a set of o spatial orbitals and a set of f§ spatial orbitals. If
unqualified, a Hartree—Fock (i.e. an SCF) calculation means an RHF calculation.

The common way to treat free radicals is with the unrestricted Hartree—Fock
method or UHF method. In this method, we employ separate spatial orbitals for the
o and the f electrons, giving two sets of MO’s, one for o and one for f§ electrons.
Less commonly, free radicals are treated by the restricted open-shell Hartree—Fock
or ROHF method, in which electrons occupy MO’s in pairs as in the RHF method,
except for the unpaired electron(s). The theoretical treatment of open-shell species
is discussed in various places in references [1] and in [12].

Excited states, and those unusual molecules with electrons of opposite spin singly
occupying different spatial MO’s (open-shell singlets) cannot be properly treated
with a single-determinant wavefunction. They must be handled with approaches
beyond the Hartree—Fock level, such as configuration interaction (Section 5.4).

5.3 Basis Sets

5.3.1 Introduction

We encountered basis sets in Sections 4.3.4, 4.4.1.2, and 5.2.3.6.1. A basis set is a
set of mathematical functions (basis functions), linear combinations of which yield
molecular orbitals, as shown in Egs. 5.51 and 5.52. The functions are usually, but
not invariably, centered on atomic nuclei (Fig. 5.7). Approximating molecular
orbitals as linear combinations of basis functions is usually called the LCAO or
linear combination of atomic orbitals approach, although the functions are not
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necessarily conventional atomic orbitals: they can be any set of mathematical
functions that are convenient to manipulate and which in linear combination give
useful representations of MO’s. With this reservation, LCAO is a useful acronym.
Physically, several (usually) basis functions describe the electron distribution
around an atom and combining atomic basis functions yields the electron distribu-
tion in the molecule as a whole. Basis functions not centered on atoms (occasionally
used) can be considered to lie on “ghost atoms™; see basis set superposition error,
Section 5.4.3.3.

The simplest basis sets are those used in the simple Hiickel and the extended
Hiickel methods (SHM and EHM, Chapter 4). As applied to conjugated organic
compounds (its usual domain), the simple Hiickel basis set consists of just p atomic
orbitals (or “geometrically p-type” atomic orbitals, like a lone-pair orbital which
can be considered not to interact with the ¢ framework). The extended Hiickel basis
set consists of only the atomic valence orbitals. In the SHM we don’t worry about
the mathematical form of the basis functions, reducing the interactions between
them to O or —1 in the SHM Fock matrix (e.g. Eqgs. 4.64 and 4.65). In the EHM
the valence atomic orbitals are represented as Slater functions (Sections 4.4.1.2
and 4.4.2).

5.3.2 Gaussian Functions; Basis Set Preliminaries; Direct SCF

The electron distribution around an atom can be represented in several ways.
Hydrogenlike functions based on solutions of the Schrodinger equation for the
hydrogen atom, polynomial functions with adjustable parameters, Slater functions
(Eq. 5.95), and Gaussian functions (Eq. 5.96) have all been used [34]. Of these,
Slater and Gaussian functions are mathematically the simplest, and it is these that
are currently used as the basis functions in molecular calculations. Slater functions
are used in semiempirical calculations, like the extended Hiickel method (Sec-
tion 4.4) and other semiempirical methods (Chapter 6). Modern molecular ab initio
programs employ Gaussian functions.

Slater functions are good approximations to atomic wavefunctions and would be
the natural choice for ab initio basis functions, were it not for the fact that the
evaluation of certain two-electron integrals requires excessive computer time if
Slater functions are used. The two-electron integrals (Sections 5.2.3.6.3, 5.2.3.6.5
of the G matrix (Eq. 5.104) involve four functions, which may be on from one to
four centers (normally atomic nuclei). Those two-electron integrals with three or
four different functions ((rsltt), (rslrt) and (rsltu)) and three or four nuclei (three-
center or four-center integrals) are extremely difficult to calculate with Slater
functions, but are readily evaluated with Gaussian basis functions. The reason is
that the product of two Gaussians on two centers is a Gaussian on a third center.
Consider an s-type Gaussian centered on nucleus A and one on nucleus B; we are
considering real functions, which is what basis functions normally are:

g = aAe_“A‘r_rA‘z, g = aBe_“B‘r_r“‘z (5.153)
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where

2+(272A)2

2

Ir—ral = (r —xa)* + (0 — )

(5.154)
and \1'—1'B|2 = (X—XB)2+(Y—)’B)2+(Z—ZB)

with the nuclear and electron positions in Cartesian coordinates (if these were not s-
type functions, the preexponential factor would contain one or more cartesian
variables to give the function — the “orbital” — nonspherical shape). It is not hard
to show that

gAgB — ace—zc‘h‘—rc‘z — gC (5155>

The product of g and gg is the Gaussian gc, centered at rc. Now consider the
general electron-repulsion integral

(rs|tu) = //qﬁf(l)qﬁv(lr)l(f,*@)gbu@) dvidv, (5.156 = 5.73)

If each basis function ¢ were a single, real Gaussian, then from Eq. 5.155 this

would reduce to
(v/w) ://deldvz (5.157)

i.e. three- and four-center two-electron integrals with four basis functions would
immediately simplify to tractable two-center integrals with two functions.

Actually, things are a little more complicated. A single Gaussian is a poor
approximation to the nearly ideal description of an atomic wavefunction that a Slater
function provides. Figure 5.12 shows that a Gaussian (designated STO-1G) is
rounded near » = 0 while a Slater function has a cusp there (zero slope vs a finite
slope at r = 0); the Gaussian also decays somewhat faster than the Slater function at
large r. The solution to the problem of this poor functional behaviour is to use several
Gaussians to approximate a Slater function. In Fig. 5.12 a single Gaussian and a linear
combination of three Gaussians have been used to approximate the Slater function
shown; the nomenclature STO-1G and STO-3G mean “Slater-type orbital (approxi-
mated by) one Gaussian” and “Slater-type orbital (approximated by) three Gaus-
sians”, respectively. The Slater function shown is one suitable for a hydrogen atom in
a molecule ({ = 1.24 [31]) and the Gaussians are the best fit to this Slater function.
STO-1G functions were used in our illustrative Hartree—Fock calculation on HHe™*
(Section 5.2.3.6.5), and the STO-3G function is the smallest basis function used in
standard ab initio calculations by commercial programs. Three Gaussians are a good
speed versus accuracy compromise between two and four or more [31].

The STO-3G basis function in Fig. 5.12 is a contracted Gaussian consisting of
three primitive Gaussians each of which has a contraction coefficient (0.4446,
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Fig. 5.12 Comparison of Slater, STO-1G and STO-3G functions for hydrogen. The Slater
function shown is the most appropriate one for hydrogen in a molecular environment, and the
Gaussians are the best 1-G and 3-G fits to this Slater function. Slater and Gaussian functions are
usually characterized by parameters designated { (zeta) and o, respectively, as shown [31]

0.5353 and 0.1543). Typically, an ab initio basis function consists of a set of
primitive Gaussians bundled together with a set of contraction coefficients. Now
consider the two-electron integral (rslfu) (Eq. 5.156 = 5.73). Suppose each basis
function is an STO-3G contracted Gaussian, i.e.

¢, = dirg1r + dorgor + d3, 83 (5.158)
and analogously for ¢y, ¢,, and ¢,. Then it is easy to see that
1
(rslru) = dlrdlsglrlsEdltdlugltludvldVZ
1
1
+ / / di,d1581r1s r_dltd2uglt2udvldv2 +-- (5.159)
12

1
+ / / d3rd3sg3r3xr_d3td3ug3t3udvldv2
2
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where g1,1; = g1 X g15 and so on. Thus with contracted Gaussians as basis functions,
each two-electron integral becomes a sum of easily calculated two-center two-
electron integrals. Gaussian integrals can be evaluated so much faster than Slater
integrals that the use of contracted Gaussians instead of Slater functions speeds up the
calculation of the integrals enormously, despite the larger number of integrals.
Discussions of the number of integrals in an ab initio calculation usually refer to
those at the contracted Gaussian level, rather than the greater number engendered by
the use of primitive Gaussians; thus the program Gaussian 92 [29] says that both an
STO-1G and an STO-3G calculation on water use the same number (144) of two-
electron integrals, although the latter clearly involves more “primitive integrals.” The
fruitful suggestion to use Gaussians in molecular calculations came from Boys (1950
[35]); it played a major role in making ab initio calculations practical, and this is
epitomized in the names of the Gaussian series of programs, which are primarily
devoted to ab initio and DFT (Chapter 7) and are among the most widely-used
quantum mechanics-oriented computational chemistry programs [36].

Fast calculation of integrals is particularly important for the two-electron inte-
grals, as their number increases rapidly with the size of the molecule and the basis
set (basis sets are discussed in Section 5.3.3). Consider a calculation on water with
an STO-1G basis set (and bear in mind that the smallest basis set normally used in
ab initio calculations is the STO-3G set). In a standard ab initio calculation we use
at least one basis function for each core orbital and each valence-shell orbital. Thus
the oxygen requires five basis functions, for the 1s, 2s, 2p,, 2p, and 2p, orbitals; we
can designate these functions ¢, ¢, . .. ¢s, and denote the 1s hydrogen functions,
one for each H, ¢ and ¢p. In computational chemistry atoms beyond hydrogen and
helium in the periodic table are called “heavy atoms”, and the computational “first
row” is lithium—neon. With experience, the number of heavy atoms in a molecule
gives a quick indication of about how many basis functions will be invoked by a
specified basis set. Following the procedure for HHe* in Eq. 5.106:

7 7

Gn=>»_ Y Pu [(11|m) _%(mm)

t=1 u=1

Now u runs from 1 to 7 and ¢ from 1 to 7, so G;; will consist of 49 terms, each
containing two two-electron integrals for a Gy, total of 98 integrals. The Fock
matrix for seven basis functions is a 7 x 7 matrix with 49 elements, G, G1», - - . ,
G117, ... Gy7, so apparently there are 49 x 98 = 4,802 two-electron integrals.
Actually, many of these are duplicates (G;; = Gj;, so an n x n Fock matrix has
only about 1n%/2 different elements), differ from other integrals only in sign, or are
very small, and the number of unique nonvanishing two-electron integrals is 119
(calculated with Gaussian 92 [29]). For an STO-1G calculation on hydrogen
peroxide (12 basis functions), there are ca. 700 unique nonvanishing two-electron
integrals (cf. a naive theoretical maximum of 41,472). The usual formula for
estimating the maximum number of unique two-electron integrals for a set of m
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real basis functions derives from the fact that there are four basis functions in each
integral and (rslfu) is eightfold degenerate (Eq. 5.109); this approximates the
maximum number of these integrals as

Npax = m*/8 (5.160)

In the above calculations the symmetry of water (C,,) and hydrogen peroxide
(C,p) plays an important role in reducing the number of integrals which must actually
be calculated, and modern ab initio programs recognize and utilize symmetry where
it can be used (most molecules lack symmetry, but the small molecules of particular
theoretical interest usually possess it), and are also able to recognize and avoid
calculating integrals below a threshold size. Nevertheless the rapid rise in the number
of two-electron integrals with molecular and basis set size portends problems for ab
initio calculations. An ab initio calculation on aspirin, a fairly small (CoHgOy,, 13
heavy atoms) molecule of practical interest, using the 3-21G basis set (Section 5.3.3),
which is the smallest that is usually used, requires 133 basis functions, which from
Eq. 5.160 could invoke up to 39 million (133/8) two-electron integrals. Clearly, a
modest ab initio calculation could require tens of millions of integrals. Information on
molecular size, symmetry, basis sets and number of integrals is summarized in
Table 5.2 (the 3-21G basis set is explained in Section 5.3.3). Note that for those
molecules with no symmetry (C;), the number of two-electron integrals calculated
from Eq. 5.160 is about the same as that actually calculated by Gaussian 92.

There are two problems with so many two-electron integrals: the time needed to
calculate them, and where to store them. Solutions to the first problem are, as
explained, to use Gaussian functions, to utilize symmetry where possible, and to
ignore those integrals that a preliminary check reveals are “vanishing”. The other
problem can be dealt with by storing the integrals in the RAM (the random access
memory, i.e. the electronic memory), storing the integrals on the hard drive, or not
storing them at all, but rather calculating them as they are required. Calculating all
the integrals at the outset and storing them somewhere is called conventional scf,
being the earlier-used procedure. The latter procedure of calculating only those
two-electron integrals needed at the moment, and recalculating them again when
necessary, is called direct scf (presumably using “direct” in the sense of “just now”
or “at the moment”). Calculating all the two-electron the integrals and storing them
in the RAM is the fastest approach, since it requires them to be calculated only

Table 5.2 Molecular size, number of basis functions, and number of two-electron integrals

Basis functions Two-electron integrals

STO-3G  3-21G*  From m*8 From G92*°  From m*/8 From G92
HHe+ C., 2 4 2 6 32 55
H,O Cyy 7 13 300 144 3,570 1,314
H,O, Gy, 12 22 2,592 738 29,282 7,713
H0, (i 12 22 2,592 2,774 29,282 28,791
H,O0; G, 17 31 10,440 3,421 115,440 31475
H,0; C; 17 31 10,440 11,046 115,440 107,869

“The coordinates of one of the atoms was altered slightly to get this unnatural symmetry
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once, and accessing information from the electronic memory is fast. However,
RAM cannot yet store as many integrals as the hard drive. A (currently) respectable
memory of 4 GB can store all the integrals generated by perhaps about 2,000 basis
functions (up to about 100 million); beyond this the computer essentially grinds to a
halt. The capacity of the hard drive is typically considerably greater than that of the
RAM (say, 1,000 GB for a respectable hard drive), and storing all the two-electron
integrals on the hard drive is often a viable option, but suffers from the disadvantage
that the time taken to read data from a mechanical device into the RAM, where it
can be used by the CPU, is much greater (perhaps a millisecond compared to a
nanosecond) than the time needed to access the information were it stored in a
purely electronic device like the RAM (which is the only alternative to direct scf in,
for example, Spartan [37]). For these reasons, ab initio calculations with many basis
functions (beyond some hundreds, depending on the size of the RAM) nowadays
use direct scf, despite the need to recalculate integrals [38]. These considerations
will change with improvements in hardware, and the availability of very large
electronic memories may make storage of all the two-electron integrals in RAM the
only choice for ab initio calculations.

5.3.3 Types of Basis Sets and Their Uses

We have met the STO-1G (Sections 5.2.3.6.5 and 5.3.2) and STO-3G (Section 5.3.2)
basis sets. We saw that a single Gaussian gives a poor representation of a Slater
function, but that this approximation can be improved by using a linear combination
of Gaussians (Fig. 5.12). In this section the basis sets commonly used in ab initio
calculations are described and their domains of utility are outlined. Note that the
STO-1G basis, although it was useful for our illustrative purposes, is not used in
research calculations (Fig. 5.12 shows how poorly it approximates a Slater func-
tion). We will consider the STO-3G, 3-21G, 6-31G*, and 6-311G* basis sets,
which, with variations obtained by adding polarization (*) and diffuse (+) func-
tions, are the most widely-used; other sets will be briefly mentioned. Information on
basis sets is summarized in Fig. 5.13. Good discussions of currently popular basis
sets are given in, e.g., references [1a, e, i]; the compilations by Hehre et al. [39, 40]
are extensive and critically evaluated.

The basis sets described here in most detail are those developed by Pople’
and coworkers [40], which are probably the most popular now, but most general-
purpose (those not used just on small molecules or on atoms) basis sets utilize some
sort of contracted Gaussian functions to simulate Slater orbitals. A brief discus-
sion of basis sets and references to many, including the widely-used Dunning

3John Pople, born in Burnham-on-Sea, Somerset, England, 1925. Ph.D. (Mathematics) Cambridge,
1951. Professor, Carnegie-Mellon University, 1960—1986, Northwestern University (Evanston,
Illinois) 1986—present. Nobel Prize in chemistry 1998 (with Walter Kohn, Chapter 5, Section 7.1).
Died Chicago, 2004.
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a, STO-3G
4H -He
1s 1s
1 function 1 function
3Li—10Ne
1s
2s2p2p2p
5 functions
11Na—1gAr
1s
2s2p2p2p
3s3p3p3p
9 functions
19K—0Ca 21S€—30Zn 31Ga—36Kr
1s 1s 1s
2s2p2p2p 2s2p2p2p 2s2p2p2p
3s3p3p3p 3s3p3p3p 3s3p3p3p
4s4p 4p 4p 4s4p4p 4p 4s4p4p 4p
13 functions 3d3d3d3d3d 3d3d3d3d3d
18 functions 18 functions
a7Rb—3gST 39Y—45Cd 49ln—54Xe
1s 1s 1s
2s2p2p2p 2s2p2p2p 2s2p2p2p
3s3p3p3p 3s3p3p3p 3s3p3p3p
4s4p 4p 4p 4s4p4p 4p 4s4p4p 4p
5s5p5p 5p 5s5p 5p 5p 5s5p 5p 5p
3d3d3d3d3d 3d3d3d3d3d 3d3d3d3d3d
22 functions 4d4d4d4d4ad 4d4d4d4d4ad
27 functions 27 functions

Fig. 5.13 (continued)

correlation-consistent (below) and Huzinaga sets, is given by Simons and Nichols
[41]. There is no one procedure for developing a basis set. One method is to
optimize Slater functions for atoms or small molecules, i.e. to find the values of {
that give the lowest energy for these, and then to use a least-squares procedure to fit
contracted Gaussians to the optimized Slater functions [42]. Whatever the details of
their genesis, ab initio basis sets are constructed by some kind of mathematical
minimization procedure, and not by fitting them to reproduce experimental atomic
or molecular properties: they are not semiempirical.

5.33.1 STO-3G

This is called a minimal basis set, although some atoms actually have more basis
functions (which for this basis can be equated with atomic orbitals) than are needed
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b, 3-21G
H He
1s’ 1s’
1s" 18"
2 functions 2 functions
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2s2p2p2p 2s2p2p2p 2s2p2p 2p
3s3p 3p3p 3s3p3p3p 3s3p3p3p
4s' 4p’ 4p’ 4p’ 4s' 4p’ 4p’ 4p’ 4s' 4p’ 4p’ 4p’
4s'" 4p'' 4p'’ 4p’’ 4s'" 4p'' 4p'’ 4p”’ 4s'" 4p'" 4p’’ 4p’’
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1s 1s 1s
2s2p2p 2p 2s2p2p2p 2s2p2p2p
3s3p3p 3p 3s3p3p3p 3s3p3p 3p
4s4p4p 4p 4s4p4p 4p 4s4p 4p 4p
5s’' 5p’' 5p’ 5p’ 5s' 5p’ 5p’ 5p’ 5s’' 5p’' 5p’ 5p’
5s’' 5p'' 5p’' 5p’’ 5s'' 5p'' 5p'’ 5p’’ 5s' 5p'' 5p’' 5p’’
3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d
27 functions 4d' 4d' 4d’ 4d’' 4d’ 4d’ 4d4d 4d 4d 4d 4d
4d"" 4d'" 4d'" 4d"" 4d'" 4d"’ 33 functions
39 functions

Fig. 5.13 (continued)

to accommodate all their electrons. For the earlier part of the periodic table
(hydrogen to argon) each atom has one basis function corresponding to its usual
atomic orbital description, with the proviso that the orbitals used by the later atoms
of a row are available to all those of the row. A hydrogen or helium atom has a 1s
basis function. Each “first-row” atom (lithium to neon) has a 1s, a 2s, and a 2p,, 2p,,
and 2p, function, giving five basis functions for each of these atoms: although
lithium and beryllium are often not thought of as using p orbitals, all the atoms of
this row are given the same basis, because this has been found to work better than a
literally minimum basis set. Second-row atoms (sodium to argon) have a 1s and a
2s, as well as three 2p functions, plus a 3s and three 3p functions, giving nine basis
functions. In the third row, potassium and calcium, as expected, have the nine
functions of the previous row, plus a 4s and three 4p functions, for a total of 13 basis
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Fig. 5.13 (a) The STO-3G basis set. (b) The 3-21G basis set. (¢) The 3-21G" basis set. (d). The

6-31G* basis set



242 5 Ab initio Calculations

functions. Starting with the next element, scandium, five 3d orbitals are added,
so that scandium to krypton have 13 + 5 = 18 basis functions. The STO-3G basis is
summarized in Fig. 5.13a.

The STO-3G basis introduces us to the concept of contraction shells in con-
structing contracted Gaussians from primitive Gaussians (Section 5.3.2). The
Gaussians of a contraction shell share common exponents. Carbon, for example,
has one s shell and one sp shell. This means that the 2s and 2p Gaussians (belonging
to the 2sp shell) share common o exponents (which differ from those of the s
function). Consider the contracted Gaussians

o(2s
¢(2ps
¢ (2p,
¢(2p:

—ysr + dzsefaz\-r + dsse*“h"
d ipXe” T 4 dhpxe %" + dypxe” "
dipye™ ™" + dp,ye " 4 dspye "

dipze™™"" + dypze” " + diypze” "

)
)=
)
)

The usual practice is to set oty = oy, 0log = o), and a3 = 3,. Using common o’s
for the s and p primitives reduces the number of distinct integrals that must be
calculated. An STO-3G calculation on CHy, for example, involves nine basis
functions (five for C and one for each H) in six shells: for C one s (i.e. a 1s) shell,
and one sp (i.e. a 2s plus 2p) shell, and for each H one s (i.e. a 1s) shell. The current
view is that the STO-3G basis is not very good, and it would normally be considered
unacceptable for research. Nevertheless, one hesitates to endorse Dewar and
Storch’s assertion that ““it must be considered obsolete” [43]. We do not know
how many publications report work which began with a preliminary and unreported
but valuable investigation using this basis. Its advantages are speed (it is probably
the smallest basis set that would even be considered for an ab initio calculation)
and the ease with which the molecular orbitals can be dissected into atomic orbital
contributions. The STO-3G basis is roughly twice as fast (Table 5.3) as the next
larger commonly used one, the 3-21G. Sophisticated semiempirical methods

Table 5.3 Effect of basis set and symmetry on times for single-point, geometry optimization and
geometry optimization + frequencies calculations on acetone, (CH3),CO

Basis set Single point Geometry optimization Geometry optimization + frequencies
Time (s) Time (s) Time (s)
Cyy C, Cyy C Cy, (o

STO-3G 0.2(0.2) 0.3(0.2) 1(2) 2 (7) 2(13) 3(59)

3-21G%  0.5(0.3) 0.6(0.5) 2(2) 3(5) 3(20) 8 (75)

6-31G* 142 23 9 (15) 22 (54) 15 (172) 30 (586)

The starting geometry for the ab initio jobs was a molecular mechanics (MMFF) one. The C,,
geometry is that with two C—H/C=O eclipsed arrangements (the global minimum). The C,
symmetry starting geometry was obtained by rotating one C—C bond very slightly (by 1°) in the
C,, precursor molecular mechanics structure (after MM optimization). These calculations were
done with a fairly recent (2006) version of Spartan [37] on a quadcore 2.66 GHz personal computer
with 4.0 GB of RAM, vintage 2007. For times of ca. 1 s, time differences are scarcely meaningful.
Numbers in parentheses were for calculations done in ca. 2001
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(Chapter 6) are perhaps more likely to be used nowadays in preliminary investiga-
tions, and to obtain reasonable starting structures for ab initio optimizations, but for
systems significantly different from those for which the semiempirical methods
were parameterized one might prefer to use the STO-3G basis. As for examining
atomic contributions to bonding, interpreting bonding in terms of hybrid orbitals
and the contribution of particular atoms to MO’s is simpler when each atom has
just one conventional orbital, rather than split orbitals (as in the basis sets to be
discussed). Thus an analysis of the electronic structure of three- and four-membered
rings used the STO-3G basis explicitly for this reason [44], as did an interpretation
of the bonding in the unusual molecule pyramidane [45].

The shortcomings (and virtues) of the STO-3G basis are extensively documented
throughout ref. [1g]. Basically, the drawbacks are that by comparison with the
3-21G basis, which is not excessively more demanding of time, it gives signifi-
cantly less accurate geometries and energies (this was the reason for the call to
abandon this basis [43]). Actually, even for second-row atoms (Na—Ar), where the
defects of such a small basis set should be, and are, quite apparent, the STO-3G
basis supplemented with five d or polarization functions (the STO-3G* basis;
polarization functions are discussed below) can give results comparable to those
of the 3-21G basis set. Thus for the S—O bond length of Me,SO we get (A):
STO-3G, 1.820; STO-3G*, 1.480; 3-21G, 1.678; 3-21G*, 1.490; exp., 1.485,
and for NSF [46] the geometries shown in Fig. 5.14. Nevertheless, the STO-3G*
basis is not in the normally-used repertoire.

5.3.3.2 3-21G and 3-21G* Split Valence and Double-Zeta Basis Sets

First consider what we could denote as the “simple” 3-21G basis set. This splits
each valence orbital into two parts, an inner shell and an outer shell. The basis
function of the inner shell is represented by two Gaussians, and that of the outer
shell by one Gaussian (hence the “21”); the core orbitals are each represented by
one basis function, each composed of three Gaussians (hence the “3”). Thus H and
He have a 1s orbital (the only valence orbital for these atoms) split into 1s’ (1s
inner) and 1s” (1s outer), for a total of two basis functions. Carbon has a 1s function
represented by three Gaussians, an inner 2s, 2py, 2p, and 2p, (25', 2p,/, 2p,/, 2p,)

S S
1.611 1.654 1.468 1.570
101 2\ /1 1 4.4\
N F N F 1.448_~S~_1.643
STO-3G STO-3G* : :
N/1 16.9\F

S S experiment
1.567 1.672 1.440 1.609
/1 07 8\ /1 13 8\
N ' F N ' F

3-21G 3-21G*

Fig. 5.14 Some STO-3G, STO-3G*, 3-21G and 3-21G* geometries
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function, each composed of two Gaussians, and an outer 2s, 2py, 2p, and 2p, 25",
2py", 2p,”, 2p,”) function, each composed of one Gaussian, making nine basis
functions. The terms inner and outer derive from the fact that the Gaussian of the
outer shell has a smaller o than the Gaussians of the inner shell, and so the former
function falls off more slowly, i.e. it is more diffuse and effectively spreads out
further, into the outer regions of the molecule. The purpose of splitting the valence
shell is to give the SCF algorithm more flexibility in adjusting the contributions of
the basis functions to the molecular orbitals, thus achieving a more realistic
simulated electron distribution. Consider carbene, CH, (Fig. 5.15). We can denote
the basis functions ¢—¢3:

Cls: ¢,

C2s', 2py/, 2p)’, 2p,': ¢, 3, P4, s (inner valence shell)
C2s", 2p,", 2p,", 2p,": (s, P7, Ps, Po (outer valence shell)
H;1s': ¢ (inner shell)

H;1s": ¢, (outer shell)

H,1s": ¢, (inner shell)

H,1s": ¢ (outer shell)

Thirteen basis functions (“atomic orbitals”) give thirteen LCAO MO’s:

Yy =cnugy+eng,++czidys
Vo =cig +cndy, + -+ 3203

%3 = Cl,13¢1 + 02,13¢2 + - C13‘13¢’13

Note that since there are 13 MO’s but only eight electrons to be accommodated,
only the first four MO’s (}/1—/4) are occupied (recall that we are talking about
closed-shell molecules in the ground electronic state). The nine empty MO’s are
called unoccupied or virtual molecular orbitals. We shall see that virtual MO’s are
important in certain kinds of calculations. Now, in the course of the SCF process the
coefficients of the various inner-shell and outer-shell basis functions can be varied
independently to find the best wavefunctions iy (those corresponding to the lowest
energy). As the iterations proceed some outer-shell functions, say, could be given
greater (or lesser) emphasis, independently of any inner-shell functions, allowing a

C, 9 basis functions

- /
c
W

/ N\

H, 2 basis functions H, 2 basis functions

Fig. 5.15 Carbene, with 13 basis functions
3-21G basis functions 8 electrons
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finer-tuning of the electron distribution and a lower energy, than would be possible
with unsplit basis functions.

A still more malleable basis set would be one with all the basis functions, not just
those of the valence AO’s but the core ones too, split; this is called a double zeta
(double {) basis set (perhaps from the days before Gaussians, with exp(—acrz), had
almost completely displaced Slater functions with exp(—{r) for molecular calcula-
tions). Double zeta basis sets are much less widely used than split valence sets,
since the former are computationally more demanding and for many purposes only
the contributions of the “chemically active” valence functions to the MO’s need to
be fine-tuned, and in fact “double zeta” is sometimes used to refer to split valence
basis sets.

Returning to the 3-21G basis: here lithium to neon have a 1s function and inner
and outer 25, 2py, 2p, and 2p, (25, 25", ..., 2p,”) functions, for a total of 9 basis
functions. These inhabit three contraction shells (see the STO-3G discussion): a 1s,
an sp inner and an sp outer contraction shell. Sodium to argon have a 1s, a 2s and
three 2p functions, and an inner and outer shell of 3s and 3p functions, for a total of
1 4+ 4 + 8 = 13 basis functions. These are in four shells: a 1s, an sp (25, 2p), an sp
inner and an sp outer (3s and 3p inner, 3s and 3p outer). Potassium and calcium have
a ls, a 2s and three 2p, and a 3s and three 3p functions, plus inner and outer 4s and
4p functions, for a total of 1 4+ 4 4 4 + 8 = 17 basis functions. The 3-21G basis set
is summarized in Fig. 5.13b.

For molecules with atoms beyond the first row (beyond neon), this “simple” 3-21G
basis set tends to give poor geometries. This problem is largely overcome for second-
row elements (sodium to argon) by supplementing this basis with d functions, called
polarization functions. The term arises from the fact that d functions permit the
electron distribution to be polarized (displaced along a particular direction), as
shown in Fig. 5.16. Polarization functions enable the SCF process to establish a
more anisotropic electron distribution (where this is appropriate) than would other-
wise be possible (cf. the use of split valence basis sets to permit more flexibility in
adjusting the inner and outer regions of electron density). The 3-21G basis set
augmented where appropriate (beyond neon) with six d functions is in some compu-
tational programs designated 3—21G"”, where the asterisk indicates polarization
functions (d in this case) and the parentheses emphasize that these extra (compared
to the “simple” 3-21G basis) functions are present only beyond the first row. For H to
Ne, the 3-21G and the 3-21G* basis sets are identical. The simple 3-21G basis,
without the possibility of invoking polarization functions, is probably obsolete, and
when we see “3-21G” we can usually take it to mean, really, the 3-21G“ basis
summarized in Fig. 5.13c; for precision, the 3-21G%* designation will be preferred
here from now on. p-Polarization functions can also be added not only to heavy atoms
(recall that in computational chemistry atoms beyond hydrogen and helium in the
periodic table are called heavy atoms), but to hydrogen and helium also (below).

Examples of geometries calculated with the simple and augmented 3-21G basis
sets are shown in Fig. 5.14. The 3—21G“ gives remarkably good geometries for
such a small set, and in fact it is used for the geometry optimization step of some
high-accuracy energy methods (Section 5.5.2). Since it is roughly five times as fast
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p function d function
atomic /
nucleus
Ci ¢4 Co 9o Ci 1+ Coop

Weighted sum of
p function and d function.

The p function has been
shifted (polarized) toward
the right by the d function.

Fig. 5.16 One basis function can be used to shift another in a given direction (to polarize it). In
minimizing the energy, the program adjusts the relative contributions of the two functions to shift
the electron density where it is needed to get the minimum energy. p Functions are also commonly
used to polarize the s functions on hydrogen atoms, but the main use of polarization functions is the
utilization of d functions on “heavy” atoms (atoms other than H and He)

(Table 5.3) as the next bigger widely-used basis, the 6-31G* (below) and is much
less demanding of computer power, the 3-21G* basis set has been used as a
kind of workhorse for relatively big molecules; see for example a study using it
for geometry optimization investigations of pericyclic reactions [47]. As long ago
as 1988 the somewhat similar but now obsolete 4-21G basis was used, with the
3-21G* basis specifically on sulfur, for geometry optimization of a protein
(crambin) with 46 amino acid residues and 642 atoms. This represented 3,597
basis functions, and the job took 260 days [48]. It seems likely that now it would
be shorter by a factor of 10-20, on an inexpensive desktop machine. More recently
novel approaches, such as dividing a large molecule into fragments, have been
explored [49]. The general problem of optimizing large molecules has been
reviewed [50]. Even where geometry optimizations with larger bases are practical,
a survey of the problem with the 3—21G“ basis is sometimes useful (it is HF/
3-21G% geometries rather than relative energies which are good; consistently
getting good relative energies is a more challenging problem — see Section 5.5.2).

5333 6-31G*

This is a split valence basis set with polarization functions (these terms were
explained in connection with the 3-21G% basis set, above). The valence shell of
each atom is split into an inner part composed of three Gaussians and an outer part
composed of one Gaussian (hence “31”), while the core orbitals are each represented
by one basis function, each composed of six Gaussians (“6”). The polarization
functions (*) are present on “heavy atoms” — those beyond helium. Thus H and He
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have a 1s orbital represented by an inner 15’ and an outer 1s” basis function, making
two basis functions. Carbon has a 1s function represented by six Gaussians, an inner
2s, 2px, 2py and 2p, (25, 2p,’, 2p,/, 2p,’) function, each composed of three Gaussians,
and an outer 2s, 2py, 2py, and 2p, (25", 2p,”, 2p,”, 2p,”) function, each composed of
one Gaussian, and six (not five) 3d functions, making a total of 15 basis functions.
A 6-31G* calculation on CH, uses 15 + 2 4 2 = 19 basis functions, and generates 19
MO'’s. In the closed-shell species the eight electrons occupy four of these MO’s, so
there are 15 unoccupied or virtual MO’s; compare this with a 3-21G%* calculation on
CH, (above) where there are a total of 13 MO’s with nine of them virtual. The
6-31G* basis, also often called 6-31G(d), is summarized in Fig. 5.13d.

The 6-31G* is probably the most popular basis at present. It gives good
geometries and, often, reasonable relative energies (Section 5.5.2); however,
there seems to be little evidence that it is, in gemeral, much better than the
3-21G™ basis for geometry optimizations. Since it is about five times as slow
(Table 5.3) as the 3-21G"* basis, the general preference for the 6-31G* for
geometry optimizations may be due to its better relative energies (Section 5.5.2).
The 3-21G% basis does have certain geometry deficiencies compared to the
6-31G*, particularly its tendency to overzealously flatten nitrogen atoms (the N
of aniline is wrongly predicted to be planar), and this, along with inferior relative
energies and less consistency, may be responsible for its being neglected in favor of
the 6-31G* basis set [51]. The virtues of the 3-21G*’ and 6-31G* basis sets for
geometry optimizations are discussed further in Section 5.5.1. Note that the geo-
metries and energies referred to here are those from Hartree—Fock-level calcula-
tions. Post-Hartree—Fock (Section 5.4) calculations, which can give significantly
better geometries and much better relative energies (Sections 5.5.1 and 5.5.2), are
considered to require a basis set of at least the 6-31G* size for meaningful results.

The 6-31G* basis adds polarization functions only to so-called heavy atoms
(those beyond helium). Sometimes it is helpful to have polarization functions on the
hydrogens as well; a 6-31G* basis with three 2p functions on each H and He atom
(in addition to their 1s’ and 1s” functions) is called the 6-31G** (or 6-31(d,p))
basis. The 6-31G* and 6-31G** bases are the same except that in the 6-31G**
each H and He has five, rather than two, functions. The 6-31G** basis probably
offers little advantage over the 6-31G* unless the hydrogens are engaged in some
special activity like hydrogen bonding or bridging [52]. In high-level calculations
on hydrogen bonding or on boron hydrides, for example, polarization functions are
placed on hydrogen. For calculations on and references to the hydrogen bonded
water dimer, see Sections 5.4.3.1 and 5.4.3.3.

5.3.3.4 Diffuse Functions

Core electrons and electrons engaged in bonding are relatively tightly bound to the
molecular nuclear framework. Lone-pair electrons or electrons in a (previously)
virtual orbital, are relatively loosely held, and are on the average at a larger distance
from the nuclei than core or bonding electrons. These “expanded” electron clouds
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are found in molecules with heteroatoms, in anions, and in electronically excited
molecules. To simulate well the behaviour of such species diffuse functions are
used. These are Gaussian functions with small values of «; this causes exp(—ocrz) to
fall off very slowly with the distance r from the nucleus, so that by giving enough
weight to the coefficients of diffuse functions the SCF process can generate
significant electron density at relatively large distances from the nucleus. Typically
a basis set with diffuse functions has one such function, composed of a single
Gaussian, for each valence atomic orbital of the “heavy atoms”. The 3—21+4G basis
set for carbon (= 3—214+G“ for this element) is

s

2s' 2p' 2p’ 2p’

24" 2p// 2p// 2p//

2s+, 2p+, 2p+, 2p+

13 Basis functions

and the 6-314-G* basis for carbon is

s

25" 2p' 2p’ 2p'

24" 2p// 2])// 2p//

3d 3d 3d 3d 3d 3d

2s+, 2p+, 2p+, 2p+

19 Basis functions

Sometimes diffuse functions are added to hydrogen and helium as well as to the
heavy atoms; such a basis set is indicated by ++. The 3-21++G and 6-314++G
basis for hydrogen and helium is

Is

Ls'

Is+

Three basis functions

A 3-21++G calculation on CH, would use 13 + 3 + 3 = 19 basis functions, a
6-31+-+G* calculation 19 + 3 + 3 = 25 basis functions, and a 6-31++G**
calculation 19 + 6 4 6 = 31 basis functions.

There is some disagreement over when diffuse functions should be used. Cer-
tainly most workers employ them routinely in studying anions and excited states,
but not ordinary lone pair molecules (molecules with heteroatoms, like ethers and
amines). A reasonable recommendation is to study with and without diffuse func-
tions species representative of the problem at hand, for which experimental results
are known, and see if these functions help. A paper by Warner [52] gives useful
references and a good account of the efficacy of diffuse functions in treating certain
molecules with heteroatoms. He settles on the 6-314+G*, i.e. 6-31+G(d), basis.

5.3.3.5 Large Basis Sets

The 3-21G*” is a small basis set and the 6-31G* and 6-31G** are moderate-size
basis sets. Of those we have discussed, only the 6-31G* and 6-31G** with diffuse
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functions (6-314+-G*, 6-314+4+G*, 6-314+G** and 6-314++G**) might be consid-
ered fairly large. A large basis set might have a doubly-split or even triply-split
valence shell with d, p and f, and maybe even g, functions on at least the heavy
atoms. An example of a large (but not very large) basis set is the 6-311G** (i.e.
6-311(d,p)) set. This is a split valence set with each valence orbital split into three
shells, composed of three, one and one Gaussian, while the core orbitals are
represented by one basis function composed of six Gaussians; each heavy atom
also has five (not six in this case) 3d functions and each hydrogen and helium has
three 2p functions. The 6-311G** basis for carbon is then

s

2s' 2p' 2p’ 2p’

7 i i i

gj/// 2é{l;)/NZZPI)///2];’17///

3d 3d 3d 3d 3d

18 Basis functions

and for hydrogen

1s'

lS”

1S///

2p 2p 2p

Six basis functions

Unequivocally large basis sets would be triply-split valence shell sets with d and
ffunctions on heavy atoms and p functions on hydrogen. At the smaller end of such
sets is the 6-311G(df,p) basis, with five 3d’s and seven 4f’s on each heavy atom and
three 2p’s on each hydrogen and helium. For carbon this is

s

2s' 2p' 2p’ 2p’

7 i i i

gj/// 2é{l;)/NZZPI)///2];17///

3d 3d 3d 3d 3d

4f 4f A 4f 4f 4f 4f

25 Basis functions

and for hydrogen

1s'

1S//

ls///

2p 2p 2p

Six basis functions

A more impressive example of a large basis set would be 6-311G(3df,3pd). This
has for each heavy atom three sets of five d functions and one set of seven f
functions, and for each hydrogen and helium three sets of three p functions and
one set of five d functions, i.e.

For carbon

s

2s' 2p" 2p' 2p'
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7 i i i

;i/// 221;)///251)///221)///

3d 3d 3d 3d 3d

3d 3d 3d 3d 3d

3d 3d 3d 3d 3d

Af Af 4f Af 4f 4f 4f

35 Basis functions

and for hydrogen

Ls'

ls//

lslN

2p 2p 2p

2p 2p 2p

2p 2p 2p

3d 3d 3d 3d 3d

17 Basis functions

Note that all these large basis sets can be made still bigger by adding diffuse
functions to heavy atoms (+) or to heavy atoms and hydrogen/helium (++). The
number of basis functions on CH, using some small, medium and large bases is
summarized C + H + H):

STO — 3G 5+ 141 =7 functions

3-21G(=3—21G"here)  9+2+2 = 13 functions
6 —31G = (6 — 31G(d)) 15 + 2 + 2 = 19 functions
6 — 31G**(6 — 31G(d,p)) 15 + 5 4 5 = 25 functions

6 — 311G * (6 — 311G(d,p)) 18 + 6 4+ 6 = 30 functions

6 — 311G(df, p) 25 + 6 4+ 6 = 37 functions
6 — 311G(3df, 3pd) 35+ 17 + 17 = 69 functions
6 — 311 4 +G(3df, 3pd) 39 + 18 + 18 = 75 functions

Large basis sets are used mainly for post-Hartree—Fock level (Section 5.4)
calculations, where the use of a basis smaller than the 6-31G* seems to be
essentially pointless. At the Hartree—Fock level the largest basis routinely used is
the 6-31G* or 6-31G** (augmented if appropriate by diffuse functions), and post-
HF geometry optimizations are frequently done using the 6-31G* or 6-31G**
basis too. Use of the larger bases (6—311G** and up) tends to be confined to single-
point calculations on structures optimized with a smaller basis set (Section 5.5.2).
These are not firm rules: the high-accuracy CBS (complete basis set) methods
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(Section 5.5.2.2b) use as part of their procedure single-point HF (rather than post-
HF) level calculations with very large basis sets, and geometry optimizations with
large basis sets were performed at both HF and post-HF levels in studies of the
theoretically and experimentally challenging oxirene system [53].

5.3.3.6 Correlation-Consistent Basis Sets

All the previously explicitly designated basis sets, from STO-3G through
6-3114++G(3df,3pd) (in large basis sets), are Pople (from the group of John
Pople; see above) basis sets. Another class of popular basis sets was developed
by the research group of Dunning [54]. These are specially designed for post-
Hartree—Fock calculations (Section 5.4), in which electron correlation is better
taken into account than at the Hartree—Fock level. Because they are intended,
ideally, to give with such calculations improved results in step with (correlated
with) their increasing size, they are called correlation-consistent (cc) basis sets.
Ideally, they systematically improve results with increasing basis set size, and
permit extrapolation to the infinite basis set limit. The cc-sets are designated cc-
pVXZ, where p stands for polarization functions, V for valence, X for the number of
shells the valence functions are split into, and Z for zeta (cf. split valence and
double-zeta basis sets, above). Thus we have cc-pVDZ (cc polarized valence
doubly-split zeta), cc-pVTZ (cc polarized valence triply-split zeta), cc-pVQZ (cc
polarized valence quadruply-split zeta), and cc-pVS5Z (cc polarized valence five-
fold-split zeta). These basis sets can be augmented with diffuse and extra polariza-
tion functions, giving aug-cc-pVXZ sets. The number of basis functions on CH,
using some Dunning sets (cf. the data on Pople sets, above) is C + H + H):

cc-pVDZ 14 + 5 4+ 5 = 24 functions

cc-pVTZ 30 + 14 + 14 = 58 functions

cc-pVQZ 55 + 30 + 30 = 115 functions

cc-pV5Z 91 + 55 4+ 55 = 201 functions

We see that only the cc-pVDZ is (roughly) comparable in size to the 6-31G*
(15 + 2 + 2 = 19 functions); the other cc sets are much bigger. Correlation-
consistent basis sets sometimes [55] but do not necessarily [56] give results superior
to those with Pople sets that require about the same computational time.

5.3.3.7 Effective Core Potentials (Pseudopotentials)

At about the third row (potassium to krypton) of the periodic table, the large number
(19 or more) of electrons in each atom begins to have a significant slowing effect on
conventional ab initio calculations, because of the many two-electron repulsion
integrals they engender. The usual way of avoiding this problem is to add to the
Fock operator a one-electron operator that takes into account in a collective way the
effect of the core electrons on the valence electrons, which latter are still considered
explicitly. This “average core effect” operator is called an effective core potential
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(ECP) or a pseudopotential. With a set of valence orbital basis functions optimized
for use with it, it simulates the effect on the valence electrons of the atomic nuclei
plus the core electrons. A distinction is sometimes made between an ECP and a
pseudopotential, the latter term being used to mean any approach limited to the
valence electrons, while ECP is sometimes used to designate a simplified pseudo-
potential corresponding to a function with fewer orbital nodes than the “correct”
functions. However, the terms are usually used interchangeably to designate a
nuclei-plus-core electrons potential used with a set of valence functions, and that
is what is meant here. The use of an ECP stands in contrast to using all-electron
basis sets like the Pople or Dunning sets discussed above.

So far we have discussed nonrelativistic ab initio methods: they ignore those
consequences of Einstein’s special theory of relativity that are relevant to chemistry
(Section 4.2.3; [57]). These consequences arise from the dependence of mass on
velocity [58]. This dependence causes the masses of the inner electrons of heavy
atoms to be significantly greater than the electron rest mass; since the Hamiltonian
operator in the Schrodinger equation contains the electron mass (e.g. Eq. 5.4), this
change of mass should be taken into account. Relativistic effects in heavy-atom
molecules affect geometries, energies, and other properties [59]. Relativity is
accounted for in the relativistic form of the Schrodinger equation, the Dirac
equation (interestingly, Dirac thought his equation would not be relevant to chem-
istry [60]). This equation is not commonly used explicitly in molecular calculations,
but is instead used to develop [61] relativistic effective core potentials (relativistic
pseudopotentials). Relativistic effects can begin to become significant for about
third-row elements, i.e. the first transition metals. For molecules with these atoms
ECPs begin to be useful for speeding up calculations, so it makes sense to take these
effects into account in developing these potential operators and their basis func-
tions, and indeed ECPs are generally relativistic. Such ECPs can give accurate
results for molecules with third-row and beyond atoms by simulating the electronic
relativistic mass increase. Comparing such a calculation on silver fluoride using the
popular LANL2DZ basis set (a split valence basis) with a 3-21G“ calculation,
using Gaussian 03 for Windows [62] (on a older machine running under XP):

LANL2DZ basis, 31 basis functions, 2.0 min; Ag—F = 2.06? A.
3-21G" basis, 48 basis functions, 2.0 min; Ag-F = 2.019 A.
The experimental bond length is 1.983 A [63].

In this simple case there is no advantage to the pseudopotential calculation (the
3-21G* geometry is actually better!), but more challenging calculations on “very-
heavy-atom” molecules, particularly transition metal molecules, rely heavily on
ab initio or DFT (Chapter 7) calculations with pseudopotentials. Nevertheless,
ordinary nonrelativistic all-electron basis sets sometimes give good results with
quite heavy atoms [64]. A concise description of pseudopotential theory and
specific relativistic effects on molecules, with several references, is given by Levine
[65]. Reviews oriented toward transition metal molecules [66a,b,c] and the lantha-
nides [66d] have appeared, as well as detailed reviews of the more “technical”
aspects of the theory [67]. See too Section 8.3.
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5.3.3.8 Which Basis Set Should I Use?

Scores, perhaps hundreds of basis sets have been developed, and new ones appear
yearly, if not monthly. There is something to be said for having a variety of tools in
our armamentarium, but one tends to be not entirely unsympathetic to the descrip-
tion, almost 2 decades ago, of this situation as a “chaotic proliferation” [68]. There
are books of practical advice [1, 69] which help to provide a feel for the appropri-
ateness of various basis sets. By reading the research literature one learns what
approaches, including which basis sets, are being applied to a various problems,
especially those related to the one’s research. This said, one should avoid simply
assuming that the basis used in published work was the most appropriate one: it is
possible that it was either too small or unnecessarily big. Hehre has shown [39] that
in many cases the use of very large bases is pointless; on the other hand some
problems yield, if at all, only to very large basis sets (see below). A Goldilocks-like
basis can rarely (except for calculations of a cursory or routine nature) be correctly
simply picked; rather, one homes in on it, by experimenting and comparing results
with experimental facts as far as possible. Where egregious deviations from experi-
ment are found at levels that experience suggests should be reliable, one may be
justified in questioning the “facts”. Bachrach places “the first chink in the armor of
the inherent superiority of experiment over computation” in 1970 [70].

A rational approach in many cases might be to survey the territory first with a
semiempirical method (Chapter 6) or with the STO-3G basis and to use one of these
to create input structures and input Hessians (Section 2.4) for higher-level calcula-
tions) then to move on to the 3-21G"* basis or possibly the 6-31G* for a reasonable
exploration of the problem. For a novel system for which there is no previous work to
serve as a guide one should move up to larger basis sets and to post-Hartree—Fock
methods (Section 5.4), climbing the latter of sophistication until reasonable conver-
gence of at least qualitative results has been obtained. It is possible for results to
become worse with increasing basis set size [71, 72], because of fortuitous cancella-
tion of errors at a lower level. This kind of thing is discussed, albeit with the focus not
directly on basis functions, in several papers with the very apposite words “. .. the
right answer for the right reason” [73]. To achieve this happy coincidence of experi-
ment and reality, quite high theoretical levels may be necessary. A somewhat bizarre
phenomenon is that at post Hartree—Fock levels, at least, some fairly large basis sets
predict nonplanar geometries for benzene and similar aromatic hydrocarbons! [74].
Janoschek has given an excellent survey indicating the reliability of ab initio calcula-
tions and the level at which one might need to work to obtain trustworthy results by
[75]. After this short litany of warnings, let the reader be reassured that good
geometries, reasonably reliable relative energies, and useful reactivity parameters,
based e.g. on orbital shapes and energies, can often be obtained routinely by standard
methods chosen by comparing their predictions with the experimental facts for a set
of related compounds. Examples of such results are given later in this chapter.

Oxirene (oxacyclopropene) provides a canonical example of a molecule which
even at the highest current levels of theory has declined to reveal its basic secret:
can it exist (“Oxirene: to Be or Not to Be?” [53b])?. Very large basis sets and
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advanced post-Hartree—Fock methods suggest it is a true minimum on the potential
energy surface, but its disconcerting tendency to display an imaginary (Section 2.5)
calculated ring-opening vibrational mode at some of the highest levels used leaves
the judicious chemist with no choice but to reserve judgement on its being. The
nature of a series of substituted oxirenes, studied likewise at high levels, appears to
be clearer [53a].

Another system that has yielded results which are dependent on the level of
theory used, but which unlike the oxirene problem provides a textbook example of a
smooth gradation in the nature of the answers obtained, is the ethyl cation
(Fig. 5.17). At the Hartree—Fock STO-3G and 3-21G"* levels the classical

H STO-3G 47 kJ mol™
bridged 3-21G 32 kJ mol™!

classical classical
0 kJ mol™! 0 kJ mol™!
H ~,

6-31G* /X 5.0k mol
H

MP2/6-31G*

bridged
3.4 kJ mol™!

classica_l1 bridged; the classical ion is not
0 kd mol a stationary point at this level

Fig. 5.17 The ethyl cation problem at various levels. At the three Hartree—Fock levels the
classical cation is a minimum, but at the post-Hartree—Fock (MP2/6-31G*) level only the
symmetrical bridged ion is a minimum. The HF/6-31G* results are calculations by the author
(ZPE ignored), the other three levels are taken from ref. [75]
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structure is a minimum and the bridged nonclassical structure is a transition state,
but with the 6-31G* basis the bridged ion has become a minimum and the classical
one, although the global minimum, is not securely ensconced as such, being only
3.4 kJ mol™' lower than the bridged ion. At the post-Hartree—Fock (Section 5.4)
MP2 level with the 6-31G* basis the bridged ion is a minimum and the classical
one has lost the dignity of being even a stationary point. The ethyl cation and
several other systems have been reviewed [75].

In summary, in many cases [39] the 3-21G (i.e. 3-21G*)) or 6-31G* basis sets,
or for that matter even the much faster molecular mechanics (Chapter 3) or
semiempirical (Chapter 6) methods, are entirely satisfactory, but there are problems
that require quite high levels of attack.

5.4 Post-Hartree—Fock Calculations: Electron Correlation

5.4.1 Electron Correlation

Electron correlation is the phenomenon of the motion of pairs of electrons in atoms
or molecules being connected (“correlated”) [76]. The purpose of post-Hartree—
Fock calculations (correlated calculations) is to treat such correlated motion
better than does the Hartree—Fock method. In the Hartree—Fock treatment, electro-
n—electron repulsion is handled by having each electron move in a smeared-out,
average electrostatic field due to all the other electrons (Sections 5.2.3.2 and “Using
the Roothaan—Hall Equations to do Ab initio Calculations — the SCF Procedure”),
and the probability that an electron will have a particular set of spatial coordinates
at some moment is independent of the coordinates of the other electrons at that
moment. In reality, however, each electron at any moment moves under the
influence of the repulsion, not of an average electron cloud, but rather of individual
electrons (in fact current physics regards electrons as point particles — with wave
properties of course). The consequence of this is that the motion of an electron in a
real atom or molecule is more complicated than that for an electron moving in a
smeared-out field [77] and the electrons are thus better able to avoid one another.
Because of this enhanced (compared to the Hartree—Fock treatment) standoffish-
ness, electron—electron repulsion is really smaller than predicted by a Hartree—Fock
calculation, i.e. the electronic energy is in reality lower (more negative). If you walk
through a crowd, regarding it as a smeared-out collection of people, you will
experience collisions that could be avoided by looking at individual motions and
correlating yours accordingly. The Hartree—-Fock method overestimates electron—
electron repulsion and so gives higher electronic energies than the correct ones, even
with the biggest basis sets, because it does not treat electron correlation properly.
Hartree—Fock calculations are sometimes said to ignore, or at least to neglect,
electron correlation. Actually, the Hartree—Fock method allows for some electron
correlation: according to our current understanding, two electrons of the same spin
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can’t be in the same place at the same time. This is reflected in the Hartree—Fock
formulation of the wavefunction as a determinant (Section 5.2.3.1). Because the
spatial and spin coordinates of two such electrons would then be the same, the
Slater determinant representing the total molecular wavefunction would vanish,
since a determinant is zero if two rows or columns are the same (Section 4.3.3). This
is just a consequence of the antisymmetry of the wavefunction: switching rows or
columns of a determinant changes its sign; if two rows/columns are the same
then D; = D, (the determinant before and the determinant after switching) and
Dy = —D,, so D; = D, = 0. If the wavefunction were to vanish so would the
electron density, which can be calculated from the wavefunction; this seems
physically unreasonable. This is one way of looking at the Pauli exclusion principle.
The probability of finding an electron in a small region centered on a point defined
by a triplet of spatial coordinates can in principle be calculated from the wavefunc-
tion. Now, since the probability is zero that at any moment two electrons of like spin
are at the same point in space, and since the wavefunction is continuous, the
probability of finding them at a given separation should decrease smoothly with
that separation. This means that even if electrons were uncharged, with no electro-
static repulsion between them, around each electron there would still be a region
increasingly (the closer we approach the electron) unfriendly to other electrons of
the same spin. This quantum mechanically engendered “Pauli exclusion zone”
around an electron is called a Fermi hole, after Enrico Fermi; it applies to fermions
(Section 5.2.2) in general. Besides the quantum mechanical Fermi hole, each
electron is surrounded by a region unfriendly to all other electrons, regardless of
spin, because of the classical electrostatic (Coulomb) repulsion between point
particles (= electrons). For electrons of opposite spin, to which the Fermi hole
effect does not apply, this electrostatic exclusion zone is called a Coulomb hole (of
course, electrons of the same spin also repel one another electrostatically). Since the
HF method does not treat the electrons as discrete point particles it largely ignores
the existence of the Coulomb hole, allowing electrons to get too close on the
average. This is the main source of the overestimation of electron—electron repul-
sion in the HF method. Post-HF calculations attempt to allow electrons, even of
different spin, to avoid one another better than in the HF approximation.
Hartree—Fock calculations give an electronic energy (and thus a total internal
energy, Section 5.5.2.1a) that is too high (the variation theorem, Section 5.2.3.3,
assures us that the Hartree—Fock energy will never be too low). This is partly
because of the overestimation of electronic repulsion and partly because of the
fact that in any real calculation the basis set is not perfect. For sensibly-developed
basis sets, as the basis set size increases the Hartree—Fock energy gets smaller, i.e.
more negative. The limiting energy that would be given by an infinitely large basis
set is called the Hartree—Fock limit (i.e. the energy in the Hartree—Fock limit).
Table 5.4 and Fig. 5.18 show the results of some Hartree—Fock and post-Hartree—
Fock calculations on the hydrogen molecule; the limiting energies are close to the
accepted ones [78]. Errors in energy, or in any other molecular feature, that can
be ascribed to using a finite basis set are said to be caused by basis set truncation.
Basis set truncation does not always cause serious errors; for example, the small
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Table 5.4 (cf. Fig. 5.18). Dependence of the calculated energy of H, on basis set and on corre-
lation level

Correlated energy

Basis No. basis HF energy Method Energy
functions

3-21G™ 4 —1.12292 - -

6-31G* 10 —1.13127 MP2 —1.15761
6-311++G** 14 —1.13248 MP2 —1.16029
6-3114++G(3df,3pd) 36 —1.13303 MP2 —1.16493
6-3114++G(3df,3p2d) 46 —1.13307 MP2 —1.16543
6-3114++4G(3df,3p2d) 46 —1.13307 MP4 —1.17226
6-3114++G(3df,3p2d) 46 —1.13307 full CI —1.17288

All calculations are single-point, without ZPE correction, on H, at the experimental bond length of
0.742 A, using G94W [198]; energies are in hartrees. The accepted Hartree—Fock (EWS;
Eq. (5.149 = 5.93)) and correlated limiting energies are about —1.1336 and —1.1744 h, respec-
tively [78], cf. —1.13307 and —1.17288 h here)

number of basis functions

10 20 30 40 50
| | | l |
0
energy (hartrees)
-
—-1.122
-1.13 - L
—— —1.13307 h, Hartree-Fock limit
—1.124 —
n correlation energy = —1.17288 — (-1.13307) h
~1.126 =-0.03981 h
—1.128 — —1.17288 h, "exact" energy (full Cl
with the 6-311++G(3df, 3p2d) basis set
-1.130—
-1.132
-1.134 \

—1.13307 h, Hartree-Fock limit
according to these calculations

Fig. 5.18 (Based on Table 5.4). The Hartree—Fock limit and correlation energy for H,. From the
values calculated here, the HF limit, the exact energy (see text) and the correlation energy are
—1.13307, —1.17288 and —0.03981 h (see inset); the accepted values [78] are about —1.1336,
—1.17439 and —0.04079

HF/3-21G“ basis often gives good geometries (Section 5.3.3). Where necessary,
the truncation problem can be minimized by using a large (provided the size of the
molecule makes this practical), appropriate basis set.
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A measure of the extent to which any particular ab initio calculation does not
deal perfectly with electron correlation is the correlation energy. In a canonical
exposition [79] Lowdin defined correlation energy thus: “The correlation energy for
a certain state with respect to a specified Hamiltonian is the difference between the
exact eigenvalue of the Hamiltonian and its expectation value in the Hartree—Fock
approximation for the state under consideration.” This is usually taken to be the
energy from a nonrelativistic but otherwise perfect quantum mechanical procedure,
minus the energy calculated by the Hartree—Fock method with the same nonrelativ-
istic Hamiltonian and a huge (“infinite””) basis set:

Ecomel = E(exact) — E(HF limit)

using the same Hamiltonian for both terms

From this definition the correlation energy is negative, since E(exact) (actually a
nonrelativistic energy here) is more negative than E(HF limit). The Hamiltonians of
Section 5.2.2, Egs. 5.4-5.6 and associated discussion exclude relativistic effects,
which are significant only for heavy atoms. Unless qualified the term correlation
energy means nonrelativistic correlation energy. The correlation energy is essen-
tially the energy that the Hartree—Fock procedure fails to account for. If relativistic
effects (and other, usually small, effects like spin-orbit coupling) are negligible then
E . omel 1s the difference between the experimental value (of the energy required to
dissociate the molecule or atom into infinitely separated nuclei and electrons) and
the limiting Hartree—Fock energy.

A distinction is sometimes made between dynamic (or dynamical), and non-
dynamic or static correlation energy. Dynamic correlation energy is the energy a
Hartree—Fock calculation does not account for because it fails to keep the electrons
sufficiently far apart; this is the usual meaning of “correlation energy”. Static
correlation energy is the energy a calculation (Hartree—Fock or otherwise) may
not account for because it uses a single determinant, or starts from a single
determinant (is based on a single-determinant reference — Section 5.4.3); this
problem arises with singlet diradicals, for example, where a closed-shell description
of the electronic structure is qualitatively wrong. This is because there are (two,
usually) highest-energy orbitals (frontier orbitals) of equal or nearly equal energy
and the Hartree—Fock method cannot unambiguously decide which of these should
receive an electron pair and which should be empty — which should be the HOMO
and which the LUMO. A singlet diradical actually has two essentially half-filled
orbitals. The term correlation energy is applied to the unaccounted-for energy in
such cases perhaps because as with dynamic correlation energy the problem can be
at least partly overcome by expressing the wavefunction with more than one
determinant. Dynamic correlation energy can be calculated (“recovered”) by the
Mgller—Plesset method or by multiditerminant configuration interaction methods
(Sections 5.4.2 and 5.4.3) and static correlation energy can likewise be recovered by
basing the wavefunction on more than one determinant, as in a multireference
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configuration interaction method like a complete active space SCF (CASSCF)
calculation (Section 5.4.3). See too Section 8.2.

Although Hartree—Fock calculations are satisfactory for many purposes
(Section 5.5) there are cases where a better treatment of electron correlation
is needed. This is particularly true for the calculation of relative energies
(Section 5.5.2), although geometries (5.5.1) and some other properties can benefit
from post-Hartree-Fock calculations (Section 5.4). As an illustration of a shortcom-
ing of Hartree—Fock calculations consider an attempt to find the C/C single bond
dissociation energy of ethane by comparing the energy of ethane with that of two
methyl radicals:

H;C — CH3 + Egs — H3C - CHj3

Let us simply subtract the energy of two methyl radicals from that of an ethane
molecule, and compare with experiment the results of Hartree—Fock calculations
and (anticipating Section 5.4.2) the post-Hartree—Fock (i.e. correlated) MP2
method. In Table 5.5 the energies shown for CH3- and CH;CH; are successively
the “uncorrected” ab initio energies (the energy displayed at the end of any
calculation; this is the electronic energy + the internuclear repulsion), the ZPE,
and the “corrected” energy (uncorrected energy + ZPE); see Section 5.2.3.6.4. The
ZPEs used here are from HF/6-31G* optimization/frequency jobs; these are fairly
fast and give reasonable ZPEs. The ZPEs were all calculated by multiplying by an
empirical correction factor of 0.9135 (this brings them into better agreement with

Table 5.5 The C—C bond energy of ethane calculated by the Hartree—Fock and MP2 methods

Energy
Method/basis CHj3- CH;CH; E(2CH;-—CH;CHs)
HF/6-31G* —39.55899 —79.22876 0.09451
0.02829 0.07285 248
—39.53070 —79.15591
HF/6-311+4+G(3df,3p2d) —39.57712 —79.25882 0.08831
0.02829 0.07285 232
—39.54883 —79.18597
MP2/6-31G* —39.66875 —79.49474 0.14097
0.02829 0.07285 370
—39.64046 —79.42189
MP2/6-31144-G** —39.70866 —79.57167 0.13808
0.02829 0.07285 363
—39.68037 —79.49882

The radical CH3- and the closed-shell CH3;CH; were calculated by unrestricted and restricted
methods, respectively: UHF and UMP2, versus RHF and RMP2 — see concluding part of
Section 5.2.3.6.2); the HF method largely ignores electron correlation, while MP2 recovers
about 85% of the electron correlation. The set of three numbers for each species are respectively,
in hartrees, the uncorrected ab initio energy, the corrected (0.9135 factor, see text) HF/6-31G*
ZPE, and the corrected ab initio energy (uncorrected energy + ZPE). Calculated (by subtraction)
bond energies are in hartrees and kJ mol ' (2,626 x hartrees). The experimental C—C energy of
ethane has been reported at 377 kJ mol ™" [81]. Each species was optimized at the level shown (i.e.
none of these are single-point calculations).
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experiment [80]). Although frequencies must be calculated with the same method
(HF, MP2, etc.) and basis set as were used for the geometry optimization, ZPEs
from a particular method/basis may legitimately be used to correct energies
obtained with another method/basis. The only calculations that give reasonable
agreement with the experimental ethane C—C dissociation energy (reported at
377 kJ mol ! [81]) are the correlated (MP2) ones, 370 and 363 kJ mol™' with
different basis sets; because of error in the experimental value the two MP2 results
may be equally good. The Hartree—Fock values (248 and 232 kJ mol ") are very
poor, even (especially!) when the very large 6-3114++G(3df,3p2d) basis is used.
Accurate calculation of reaction energies is now usually done with one of the
multistep methods like G3 or a CBS method (Section 5.5.2.2b).

This inability of Hartree—Fock calculations to model correctly homolytic bond
dissociation is commonly illustrated by curves of the change in energy as a bond is
stretched, e.g. Fig. 5.19. The phenomenon is discussed in detail in numerous
expositions of electron correlation [82]. Suffice it to say here that representing the
wavefunction as one determinant (or a few), as is done in Hartree—Fock theory, does
not permit correct homolytic dissociation to two radicals because while the reactant
(e.g. Hy) is a closed-shell species that can (usually) be represented well by one
determinant made up of paired electrons in the occupied MOs, the products are two
radicals, each with an unpaired electron. Ways of obtaining satisfactory energies,

1000 —

energy (relative
to equilibrium bond
length energy)

800 — s HF/6-31G*

kJ mol™!
600 —
MP2/6-31G*
400 —
200 —
0 [ I [ [

1 2 3 4
H—H distance, A

Fig.5.19 Dissociation curves (change in energy as the bond is stretched) for H,, from HF/6-31G*
and MP2/6-31G* calculations. The equilibrium bond lengths are reasonable (HF/6-31G*, 0.730;
MP2/6-31G*, 0.737 (cf. experimental, 0.742), but only the MP2 curve approximates the actual
dissociation behavior of the molecule



5.4 Post-Hartree—Fock Calculations: Electron Correlation 261

with and without the use of electron correlation methods, for processes involving
homolytic cleavage, are discussed further in Section 5.5.2.

There are basically three approaches to dealing with electron correlation:
explicit use of the interelectronic distances as variables in the Schrodinger equation,
treatment of the real molecule as a perturbed Hartree—Fock system, and explicit
inclusion in the wavefunction of electronic configurations other than the ground-
state one. Using interelectronic distances explicitly quickly seems to become
mathematically intractable and is currently limited to atoms and molecules that
are very small [83]. The other two methods are general and very important: the
perturbation approach is used in the very popular Mgller—Plesset* methods, and the
use of higher electronic configurations in the wavefunction forms the basis of
configuration interaction, which in various forms is employed in some of the
most advanced ab initio methods currently used for dealing with electron correla-
tion. A powerful method that is becoming increasingly popular and incorporates
mathematical features of the perturbation and higher-electronic-state methods, the
coupled-cluster approach, is also described.

5.4.2 The Moyller-Plesset Approach to Electron Correlation

The Mgller—Plesset (MP) treatment of electron correlation [84] is based on pertur-
bation theory, a very general approach used in physics to treat complex systems
[85]; this particular approach was described by Mgller and Plesset in 1934 [86] and
developed into a practical molecular computational method by Binkley and Pople
[87] in 1975. The basic idea behind perturbation theory is that if we know how to
treat a simple (often idealized) system then a more complex (and often more
realistic) version of this system, if it is not too different, can be treated mathemati-
cally as an altered (perturbed) version of the simple one. Mgller—Plesset calcula-
tions are denoted as MP, MPPT (Mgller—Plesset perturbation theory) or MBPT
(many-body perturbation theory) calculations. The derivation of the Mgller—Plesset
method [88] is somewhat involved, and only the flavor of the approach will be
given here. There is a hierarchy of MP energy levels: MP0O, MP1 (these first two
designations are not actually used), MP2, etc. . . . , which successively account more
thoroughly for interelectronic repulsion.

“MPO” would use the electronic energy obtained by simply summing the
Hartree—Fock one-electron energies (Section 5.2.3.6.4, Eq. 5.84). This ignores
interelectronic repulsion except for refusing to allow more than two electrons in
the same spatial MO. “MP1” corresponds to MPO corrected with the Coulomb and
exchange integrals J and K (Eqgs. 5.85 and 5.90), i.e. MP1 is just the Hartree—Fock
energy. As we have seen, this handles interelectronic repulsion in an average way.

“Mgller—Plesset: the Norwegian letter ¢ is pronounced like French ex or German o.



262 5 Ab initio Calculations

We could write Eypy = E% = Eypo + EW | where Eypo is the sum of one-elec-
tron energies and internuclear repulsions and E is the J, K correction
(corresponding respectively to the two terms in Egs. 5.85 and 5.90), regarding the
second term as a kind of perturbational correction to the sum of one-electron
energies.

MP2 is the first MP level to go beyond the HF treatment: it is the first “real”
Mgller—Plesset level. The MP2 energy is the HF energy plus a correction term (a
perturbational adjustment) that represents a lowering of energy brought about by
allowing the electrons to avoid one another better than in the HF treatment:

Empy = ES& + E?) (5.161)

The HF term includes internuclear repulsions, and the perturbation correction
E® is a purely electronic term. E® is a sum of terms each of which models the
promotion of pairs of electrons. So-called double excitations from occupied to
formally unoccupied MOs (virtual MOs) are required by Brillouin’s theorem
[89], which says, essentially, that a wavefunction based on the HF determinant
D, plus a determinant corresponding to exciting just one electron from D; cannot
improve the energy.

Let’s do an MP2 energy calculation on HHe", the molecule for which a
Hartree—Fock (i.e. an SCF) calculation was shown in detail in Section 5.2.3.6.5.
As we did for the HF calculation, we will take the internuclear distance as 0.800 A
and use the STO-1G basis set; we can then use for our MP2 calculation these HF
results that we obtained in Section 5.2.3.6.5:

The MO coefficients

For the occupied MO v/, ¢;; = 0.3178, ¢, = 0.8020

Recall that these are respectively the coefficient of basis function 1, ¢, in MO1
and the coefficient of basis function 2, ¢,, in MO1. In this simple case there is one
function on each atom: ¢; and ¢, on atoms 1 and 2 (H and He).

For the unoccupied (virtual) MO 5, ¢ = 1.1114, ¢, = —0.8325

The two-electron repulsion integrals:

(11]11) = 0.7283 (2121) = 0.2192
(21]11) = 0.3418 (22]21) = 0.4368
(22]11) = 0.5850 (22]22) = 0.9927

The energy levels

Occupied MO, ¢; = —1.4470, virtual MO, & = —0.1051

The HF energy: E0% = —2.4438

The MP2 energy correction for a closed-shell two-electron/two-MO system
is [90]
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(5.162)

Applying this formula “by hand” is straightforward, although the arithmetic is
tedious. Nevertheless it is worth doing (as was true for the Hartree—Fock calcula-
tion in Section 5.2.3.6.5) in order to appreciate how much arithmetical work is
involved in even this simplest molecular MP2 job. Consider the integral in the
numerator of Eq. 5.162; substituting for s, and /,:

[ [ ( )wz( W (2)dvidv,

// [ ci1@i(1) + c2195(1))(c11¢1(2) + c21,(2 ))( 1)

12

< (cray (1) + cm(l))(clzmzn]

Multiplying out the integrand gives a total of 16 terms (from four terms to the
left of 1/r;, and four terms to the right), and leads to a sum of 16 integrals:

[ [ (),
=i [ 6,000 (i )61001 @ -+ ik [0 (1)

=t e (111) 4+ 45,03, (22]22),

recalling the notational degeneracy in the two-electron integrals (Section 5.2.3.6.5
“Step 2 — Calculating the integrals”). Substituting the values of the coefficients and
the two-electron integrals:

//W ( )Wz( W (2)dvidv,

= 0.12475(0.7283) + - - - + 0.44577(0.9927) h = 0.12932h
So from Eq. 5.162

o _ 0.12932* 0.12932°

- - = —0.00623h
20e1 — &) 2(—1.4470 1 0.1051)

The MP2 energy is the Hartree—Fock energy plus the MP2 correction
(Eqg. 5.162):

Evpy, = ES& + E®) = —2.4438h — 0.00623h = —2.4500h
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This energy, which includes internuclear repulsion, since ES@! includes this
(Eq. 5.93), is the MP2 energy normally printed out at the end of the calculation.
To get an intuitive feel for the physical significance of the calculation just per-
formed look again at Eq. 5.162, which applies to any two-electron/two-basis
function species. The equation shows that the absolute value (the correction is
negative since ¢; is smaller than &, — the occupied MO has a lower energy than the
virtual one) of the correlation correction increases, i.e. the energy decreases, with
the magnitude of the integral (which is positive). This integral represents the
decrease in energy arising from allowing an electron pair in the occupied MO
() to spill over into the virtual MO (,):

1(1) represents electron 1 in y/; and {(2) represents electron 2 in ;.
(1) represents electron 1 in ¥/, and »(2) represents electron 2 in 5.

The operator 1/ry, brings in coulombic interaction: the coulombic repulsion
energy between infinitesimal volume elements v/(1){y{(2)dv; and Y>(1)>(2)dv,
separated by a distance ry5 is (1 (1) (2)dv,)(Y2(1)Yr2(2)dv,)/r 15, and the integral is
simply the sum over all such volume elements (cf. the discussion in connection with
Fig. 5.3 and the average-field integrals J and K in Section 5.2.3.2). Physically, the
decrease in energy makes sense: allowing the electrons to be partly in the formally
unoccupied virtual MO rather than confining them strictly to the formally occupied
MO enables them to avoid one another better than in the HF treatment, which is
based on a Slater determinant consisting only of occupied MOs (Section 5.2.3.1).
The essence of the Mpller—Plesset method (MP2, MP3, etc.) is that the correction
term handles electron correlation by promoting electrons from occupied to unoccu-
pied (virtual) MOs, giving electrons, in some sense, more room to move and thus
making it easier for them to avoid one another; the decreased interelectronic
repulsion results in a lower electronic energy. The contribution of the “y/,/{), inter-
action” to E® decreases as the occupied/virtual MO gap &, —é,, increases, since this
is in the denominator . Physically, this makes sense: the bigger the gap between the
occupied and higher-energy virtual MO, the harder it is to promote electrons from
the one into the other, so the less can such promotion contribute to electronic
stabilization. So in the expression for E® (Eq. 5.162), the numerator represents
the promotion of electrons from the occupied to the virtual orbital, and the denomi-
nator represents a check on how hard it is to do this.

As we just saw, MP2 calculations utilize the Hartree—Fock MOs (their coeffi-
cients ¢ and energies ¢). The HF method gives the best occupied MOs obtainable
from a given basis set and a one-determinant total wavefunction s, but it does not
optimize the virtual orbitals (after all, in the HF procedure we start with a determi-
nant consisting of only the occupied MOs — Sections 5.2.3.1-5.2.3.4). To get a
reasonable description of the virtual orbitals and to obtain a reasonable number of
them into which to promote electrons, we need a basis set that is not too small. The
use of the STO-1G basis in the above example was purely illustrative; the smallest
basis set generally considered acceptable for correlated calculations is the 6-31G*,
and in fact this is perhaps the one most frequently used for MP2 calculations. The
6-311G** basis set is also widely used for MP2 and MP4 calculations. Both bases
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can of course be augmented (Section 5.3.3) with diffuse functions, and the 6-31G*
with H polarization functions (6-31G**). MP2 calculations increase rapidly in
complexity with the number of electrons and orbitals, involving as they do a sum
of terms (rather than just one term as in HHe+), each representing the promotion of
an electron pair from an occupied to a virtual orbital; thus an MP2 calculation on
CH, with the 6-31G* basis involves eight electrons and 19 MOs (four occupied and
15 virtual MOs).

In MP2 calculations doubly excited states (doubly excited configurations) inter-
act with the ground state (the integral in Eq. 5.162 involves {/; with electrons 1 and
2, and , with electrons 1 and 2). In MP3 calculations doubly excited states interact
with one another (there are integrals involving two virtual orbitals). In MP4
calculations singly, doubly, triply and quadruply excited states are involved. MP5
and higher expressions have been developed, but MP2 and MP4 are by far the most
popular Mgller—Plesset levels (also called MBPT(2) and MBPT(4) — many-body
perturbation theory). MP2 calculations, which are much slower than Hartree—Fock,
can be speeded up somewhat by specifying MP2(fc), MP2 frozen-core, in contrast
to MP2(full); frozen-core means that the core (non-valence electrons) are “frozen”,
i.e. not promoted into virtual orbitals, in contrast to full MP2 which takes all the
electrons into account in summing the contributions of excited states to the lower-
ing of energy. Most programs, e.g. Gaussian, Spartan) perform MP2(fc) by default
when MP2 is specified, and “MP2” usually means frozen-core. When seen in this
book referring to a specific calculation rather than a general method, it may be taken
as shorthand for MP2(fc). MP4 calculations are sometimes done omitting the triply
excited terms (MP4SDQ) but the most accurate (and slowest) implementation is
MP4SDTQ (singles, doubles, triples, quadruples).

Calculated properties like geometries and relative energies tend to be better (to be
closer to the true ones) when done with correlated methods (Sections 5.5.1-5.5.4).
To save time, energies are often calculated with a correlated method on a Hartree—
Fock geometry, rather than carrying out the geometry optimization at the correlated
level. This is called a single-point calculation (it is performed at a single point on the
HF potential energy surface, without changing the geometry). A single-point MP2
(fc) calculation using the 6-311G** basis, on a structure that was optimized with the
Hartree—Fock method and the 6-31G* basis, is designated as MP2(fc)/6-311G**//
HF/6-31G*. A HF/6-31G* (say) geometry optimization, without a subsequent
single-point calculation, is sometimes designated HF/6-31G*//HF/6-31G*, and
an MP2 optimization MP2/6-31G*//MP2/6-31G*. The correlation treatment (HF,
MP2, MP4, . ..) is often called the method, and the basis set (STO-3G, 321G,
6-31G*, ...) the level, but we will often find it convenient to let /evel denote the
combined procedure of method and basis set, referring, say, to an MP2/6-31G*
calculation as being at a higher level than an HF/6-31G* one.

Figure 5.20 shows the rationale behind the use of single-point calculations for
obtaining relative energies. In the diagram a single-point MP2 calculation on a
stationary point at the HF geometry gives the same energy as would be obtained by
optimizing the species at the MP2 level, which is often approximately true (it would
be exactly true if the MP2 and HF geometries were identical). For example, the
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0 geometry
Grs,HF
absolute ab /
initio energy single-point
(negative) calculation

HF

single-point
calculation

Fig. 5.20 Hartree—Fock and MP2 (or other correlated) potential energy surfaces. “Absolute” (as
distinct from relative) ab initio energies are negative, and correlated energies are lower (more
negative) than Hartree—Fock energies. The geometries of the minima and the transition states are
designated G,;, and Gts. Activation energies are denoted by E*. HF activation energies are, as
shown, usually bigger than MP2. In this diagram a single-point MP2 calculation on a stationary
point at the HF geometry gives the same energy as would be obtained by optimizing the species at
the MP2 level; this is often true, but single-point MP2 relative energies would be similar to
optimized-MP?2 relative energies even if it were not so, provided the incremental energy change
were about the same for the two species being compared (e.g. reactant and TS for an activation
energy, reactant and product for a reaction energy)

single-point and optimized energies of butanone are —231.68593 and —231.68818 h,
a difference of 0.00225 h (2.3 mh) or 6 kJ mol ™!, not large bearing in mind that
special high-accuracy calculations (Section 5.5.2.2) are needed to reliably get
relative energies to within, say, 10 kJ mol ", Single-point calculations would also
give relative energies similar to those from the use of optimized correlated geome-
tries if the incremental deviations from the optimized-geometry energies were
about the same for the two species being compared (e.g. reactant and TS for an
activation energy, reactant and product for a reaction energy).

The method can occasionally give not just quantitatively, but qualitatively
wrong results. The HF and correlated surfaces may have different curvatures: for
example a minimum on one surface may be a transition state or may not exist (may
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not be a stationary point) on another. Thus fluoro- and difluorodiazomethane are HF
minima but are MP2/6-31G* transition states [91]; an attempt to approximate
the MP2/6-31G* reaction energy for, say, CHFN, — CHF + N,, using single-
point MP2/6-31G* energies on HF geometries, is misguided if CHFNj is a transi-
tion state on the MP2 PES. Nevertheless, because HF optimizations followed by
single-point correlated (MP2 or higher-level) energy calculations are much faster
(“cheaper”) than correlated optimizations, and do usually give improved relative
energies, the method is widely used for large molecules. Figure 5.21 compares
some MP2 single-point, MP2-optimized, and HF energies; the biggest MP2 single-
point/MP2 optimized difference is 6.9 kJ mol ' (HCN reaction energy). The
limited salient experimental information on these reactions, and reaction energies
at 298 K calculated by the accurate G3(MP2) method, is also given [92]. The
relative energies in Fig. 5.21 are 0 K enthalpy differences (with raw energy
corrected for ZPE), for uniformity and simplicity, but usually experimental barriers
are given as Arrhenius activation energies E,, which are simply related to enthalpies
of activation AH* (Eq. 5.175), and the extent of a reaction is quantified as an
equilibrium constant which is related (Eq. 5.183) to a Gibbs free energy difference
AG cae (Section 5.5.2.1). Free energies of activation AG?* can be used to calculate
rate constants (Section 5.5.2.2d) and enthalpies of reaction AH ., are often used
(not theoretically rigorously) as an indication of the extent and even the ease of a
reaction. To give a feel for the quantitative difference in the values of the relative
0 K energies and these five other energy quantities, the calculated values are given
below for the four reactions of Fig. 5.21. The 0 K energies are ZPE-corrected MP2/
6-31G* energies relative to that of the reactant, and the other energies are at 298 K
(standard room temperature) and are also from MP2/6-31G* calculations and
employ standard ideal-gas statistical thermodynamics algorithms; energy units
are kJ mol .

Ethenol to ethanal

Transition state 0 K relative E = 233 Product O K relative E = —71.7

E,= AH* + RT = AH* + 2.48 = 2343

AH* =231.8
AG e = —73.1
AG* = 233.1
AH ooy = —70.9

HNC to HCN
Transition state 0 K relative E = 140 Product O K relative E = —87.2
E,= AH* + RT = AH* + 2.48 = 142.7

AHY =140.2
AG ener = —86.9
AG* = 136.1

AH,eper = —87.8
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Fig. 5.21 Calculated geometries and energies for four reactions (most H’s are omitted, for
clarity). The purpose of the figure is the compare the single-point energies with energies from
optimization at a higher level. Geometries are HF/6-31G* and MP2/6-31G*. Energies are MP2/
6-31G*//HF/6-31G* (i.e. single-point) with HF ZPE, MP2/6-31G*//MP2//6-31G* with MP2/
6-31G* ZPE, and (only relative energies shown, in parentheses) HF/6-31G*//HF/6-31G* with
HF ZPE. Ab initio E (hartrees) + ZPE (hartrees) = corrected ab initio E; relative E (strictly
speaking, O K enthalpy differences): E difference in hartrees x 2626 = kJ mol~"). The ZPEs
shown are the ab initio ZPEs multiplied by 0.9135 (HF) or 0.967 (MP2) [80]. For a discussion of
experimental measurements on these reactions, see [92]; available experimental activation and
reaction energies (kJ mol ™) are shown here. Calculations here are by the author

CH3NC to CH3CN
Transition state 0 K relative E = 173 Product O K relative E = —120
E,= AH* + RT = AH* + 2.48 = 174.0
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AH* = 1715
AG e = —119.3
AG* =169.2

AH,or = —120.0

Cyclopropylidene to allene
Transition state 0 K relative E = 25.7 Product O K relative E = —288
E,= AH* + RT = AH* + 248 =278

AH* =253
AGeper = —285.1
AGY =239

AH oot = —285.9

For these reactions the 0 K activation enthalpy and the room temperature
activation enthalpies and free energies are almost the same, and so are the 0 K
reaction enthalpy and the room temperature reaction enthalpies and free energies.
This is presumably so because these are unimolecular reactions, in which the
relative translational velocities of reacting molecules are not a factor.

The HF method tends to overestimate the barriers, making unstable molecules
seem stabler than they really are. Geometries are discussed further in Section 5.5.1.
Approximate versions of the MP2 method that speed up the process with little loss
of accuracy are available in some program suites: LMP2, localized MP2, and RI-
MP2, resolution of identity MP2. LMP2 starts with a Slater determinant which has
been altered so that its MOs are localized, corresponding to our ideas of bonds and
lone pairs (Section 5.2.3.1), and permits only excitations into spatially nearby
virtual orbitals [93]. RI-MP2 approximates four-center integrals (Section 5.3.2)
by three-center ones [94].

5.4.3 The Configuration Interaction Approach to Electron
Correlation — The Coupled Cluster Method

The configuration interaction (CI) treatment of electron correlation [83, 95] is based
on the simple idea that one can improve on the HF wavefunction, and hence energy,
by adding on to the HF wavefunction terms that represent promotion of electrons
from occupied to virtual MOs. The HF term and the additional terms each represent
a particular electronic configuration, and the actual wavefunction and electronic
structure of the system can be conceptualized as the result of the interaction of these
configurations. This electron promotion, which makes it easier for electrons to
avoid one another, is as we saw (Section 5.4.2) also the physical idea behind the
Mogller—Plesset method; the MP and CI methods differ in their mathematical
approaches.
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HF theory (Sections 5.2.3.1-5.2.3.6) starts with a total wavefunction or molecu-
lar wavefunction \y which is a Slater determinant made of “component” wavefunc-
tions or MOs . In Section 5.2.3.1 we approached HF theory by considering the
Slater determinant for a four-electron system:

V(D) (DAL) o (De(1) iy (1)B(1)
VA [ (3)2(3) ¥ (3)BB3) ¥a(3)x(3) ¥>(3)A(3) ' '
Yi@)a(4) i (4)B4) va(4a4) Y (4)B(4)

To construct the HF determinant we used only occupied MOs: four electrons
require only two spatial “component” MOs, ¥/, and y/,, and for each of these there
are two spin orbitals, created by multiplying ¥ by one of the spin functions « or f3;
the resulting four spin orbitals (Y, Y1 Yoo, o) are used four times, once with
each electron. The determinant V¥, the HF wavefunction, thus consists of the four
lowest-energy spin orbitals; it is the simplest representation of the total wavefunc-
tion that is antisymmetric and satisfies the Pauli exclusion principle (Section 5.2.2),
but as we shall see it is not a complete representation of the total wavefunction.

In the Roothaan—Hall implementation of ab initio theory each “component” s is
composed of a set of basis functions (Sections 5.2.3.6 and 5.3):

Y, = chidn i=1,2,3,...,m(component MOs) (5.164 = 5.52)
s=1

Now note that there is no definite limit to how many basis functions ¢4, ¢», . ..
can be used for our four-electron calculation; although only two spatial y/’s, {/; and
V>, (i.e. four spin orbitals) are required to accommodate the four electrons of this ,
the total number of ¥/’s can be greater. Thus for the hypothetical H-H-H-H an
STO-3G basis gives four y/’s, a 3-21G basis gives eight, and a 6-31G** basis gives
20 (Section 5.3.3). The idea behind CI is that a better total wavefunction, and from
this a better energy, results if the electrons are confined not just to the four spin
orbitals Yo, Y1 B W0, Yo f5, but are allowed to roam over all, or at least some, of the
virtual spin orbitals Y30, Y3f, Yaa, . .., ¥,,0. To permit this we could write ¥ as a
linear combination of determinants

U =cDy+c2Dy+c3D3+ - +¢iD; (5.165)

where D is the HF determinant of Eq. (5.163 = 5.10) and D5, D3, etc. correspond to
the promotion of electrons into virtual orbitals, e.g. we might have

Yy (Da(l) gy (D) ds(Da(1) i (1)B(1)
LAY (3)a(3) W (3)B(B) Wa(3)a(3) ¥,(3)B(3) '
Yi(4)a(4) Y (H)B(4) ba(4)a(4) Y, (4)B(4)
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D, was obtained from D; by promoting an electron from spin orbital ,o to the
spin orbital y/30. Another possibility is

Y (Ma(l) Y (DAL Ya(Da(l)  ¢s(1)B(1)
p,— L[] 1@BR) @) RO
VA (3)a(3) ¥ (3)B(3) ws(3)a(3) s3(3)B(3) '
Yi(4)a(4) ¥y (4)B(4) ds3(4)a(4) Y3(4)B(4)

Here two electrons have been promoted, from the spin orbitals ,x and /,ff to
Y30 and 3. D; and D; represent promotion into virtual orbitals of one and two
electrons, respectively, starting with the HF electronic configuration (Fig. 5.22).

Equation 5.165 is analogous to Eq. 5.164 = 5.52: in Eq. 5.164 = 5.52 “compo-
nent” MOs / are expanded in terms of basis functions ¢, and in Eq. 5.165 a total
MO VY is expanded in terms of determinants, each of which represents a particular
electronic configuration. We know that the m basis functions of Eq. 5.164 = 5.52
generate m component MOs 1/ (Section 5.2.3.6.1), so the i determinants of Eq. 5.165
must generate i total wavefunctions ¥, and Eq. 5.165 should really be written

Yo| — — Vo| — — Yo | — —

| — — w4 — "”STMF

WZJH “l—+ v|— —

T
/1

o spin MOs 8 spin MOs

D, D; D,
The HF determinant A single-excited determinant A doubly-excited determinant

Fig. 5.22 Configuration interaction (CI): promotion of electrons from the occupied MOs
(corresponding to the Hartree—Fock determinant) gives determinants corresponding to excited
states. A weighted sum of determinants Dy, D, ..., D;, . . ., corresponds to a molecule in which the
electrons partly populate virtual MOs and are not strictly confined to the lowest-energy MOs, thus
giving them a better chance to avoid one another and decreasing electron—electron repulsion. The
method generates a series of wavefunctions and energies; the lowest-energy wavefunction and
energy corresponds to the ground electronic state, the others to excited states
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Y, =cuDi + 21Dy 4+ ¢31D3 + - - - + ¢ D;
Yy = cioD1 4 ¢22Da 4 ¢30D3 + -+ - 4 cppD;

(5.168)
Wi = ciD1 + oDy + c3iD3 + - + ciiD;
i.e. (cf. Eq. 5.164 = 5.52)
Wi =) cyD; s=1,2,3,-,i(total MOs) (5.169)
s=1

What is the physical meaning of all these total wavefunctions ¥'? In order of
correspondence to increasing energy (the expectation value of the integral of a
wavefunction over a Hamiltonian operator) ¥, is the wavefunction for the ground
electronic state and W,, W5 etc. represent the wavefunctions of excited electronic
states. The single-determinant HF wavefunction of Eq. 5.163 = 5.10 (or the general
single-determinant wavefunction of Eq. 5.12) is merely an approximation to the ‘¥,
of Egs. 5.168. Each determinant D (or possibly a linear combination of a few
determinants for an open-shell species [96]), represents an idealized (in the sense of
contributing to the real electron distribution) configuration, called a configuration
state function or configuration function, CSF. A CSF is a linear combination of
determinants for equivalent states, states which differ only by whether an o or a f§
electron was promoted. In many cases one determinant suffices for the Hartree—
Fock wavefunction, and then this determinant is the CSF. The CI wavefunctions of
Egs. 5.168 or 5.169, then, are linear combinations of CSFs. No single CSF fully
represents any particular electronic state. Each wavefunction ¥; is the total wave-
function of one of the possible electronic states of the molecule, and the weighting
factors c¢ in its expansion determine to what extent particular CSF’s (idealized
electronic states) contribute to any ;. For ¥, representing the ground electronic
state, we expect the HF determinant D; to make the largest contribution to the
wavefunction.

If every possible idealized electronic state of the system, i.e. every possible
determinant D, were included in the expansions of Eqgs. 5.168, then the wavefunc-
tions ¥ would be full CI wavefunctions. Full CI calculations are possible only for
very small molecules, because the promotion of electrons into virtual orbitals can
generate a huge number of states unless we have only a few electrons and orbitals.
Consider for example a full CI calculation on a very small system, H-H-H-H with
the 6-31G* basis set. We have eight basis functions and four electrons, giving eight
spatial MOs and 16 spin MOs, of which the lowest four are occupied. There are two
o electrons to be promoted into six virtual o spin MOs, i.e. to be distributed among
eight o spin MOs, and likewise for the 5 electrons and f spin orbitals. This can
be done in [8!/(8 — 2)!2!]2 = 784 ways. The number of configuration state functions
is about half this number of determinants (since some CSFs are composed of a
few determinants). CI calculations with more than five billion (sic) CSFs have been
performed on ethyne, C,H, [97]; rightly called benchmark calculations, such
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computational tours de force are, although of limited direct application, important
for evaluating the efficacy, by comparison, of other methods.

The simplest implementation of CI is analogous to the Roothaan—Hall imple-
mentation of the HF method: Eqs. 5.168 lead to a CI matrix, as the HF equations
(Egs. 5.164 = 5.52) lead to an HF matrix (Fock matrix; Section 5.2.3.6). Do not
confuse a matrix with a determinant (Section 4.3.3)! We saw that the Fock matrix F
can be calculated from the ¢’s and ¢’s of Eq. 5.164 = 5.52 (starting with a “guess”
of the ¢’s), and that F (after transformation to an orthogonalized matrix F' and
diagonalization) gives eigenvalues ¢ and eigenvectors c, i.e. F leads to the energy
levels and the wavefunctions (c¢) of the component MOs ; all this was shown in
detail in Section 5.2.3.6.5. Similarly, a CI matrix can be calculated in which the
determinants D play the role that the basis functions ¢ play in the Fock matrix,
since the D’s in Egs. 5.168 are analogous to the ¢’s in Eq. 5.164 = 5.52. The D’s are
composed of spin orbitals o and ¥/ f3, and the spin factors can be integrated out,
reducing the elements of the CI matrix to expressions involving the basis functions
and the coefficients of the spatial component MOs . The CI matrix can thus be
calculated from the MOs resulting from an HF calculation. Orthogonalization and
diagonalization of the CI matrix gives the energies and the wavefunctions of the
ground state W and, from i determinants, i — 1 excited states. A full CI matrix
would give the energies and wavefunctions of the ground state and all the excited
states obtainable from the basis set being used. Full CI with an infinitely large basis
set would give the exact energies of all the electronic states; more realistically, full
CI with a large basis set gives good energies for the ground and many excited states.

Full CI is out of the question for any but small molecules, and the expansion of
Eq. 5.169 must usually be limited by including only the most important terms.
Which terms can be neglected depends partly on the purpose of the calculation.
For example, in calculating the ground state energy quadruply excited states are,
unexpectedly, much more important than triply and singly excited ones, but the
latter are usually included too because they affect the electron distribution of the
ground state, and in calculating excited state energies single excitations are
important. A CI calculation in which all the D’s involve only single excitations
is called CIS (CI singles); such a calculation yields the energies and wavefunc-
tions of excited states and often gives a reasonable account of electronic spectra.
Another common kind of CI calculation is CI singles and doubles (CISD, which
actually indirectly includes triply and quadruply excited states). Various mathe-
matical devices have been developed to make CI calculations recover a good
deal of the correlation energy despite the necessity of (judicious) truncation of the
CI expansion. Perhaps the currently most widely-used implementations of CI
are multiconfigurational SCF (MCSCF) and its variant complete active space
SCF (CASSCF), and the coupled-cluster (CC) and related quadratic CI (QCI)
methods.

The CI strict analogue of the iterative refinement of the coefficients that we saw
in HF calculations (Section 5.2.3.6.5) would refine just the weighting factors of the
determinants (the ¢’s of Egs. (5.168), but in the MCSCF version of CI the spatial
MOs within the determinants are also optimized (by optimizing the c¢’s of the



274 5 Ab initio Calculations

LCAO expansion, Eq. 5.164 = 5.52. A widely-used version of the MCSCF method
is the CASSCF method, in which one carefully chooses the orbitals to be used in
forming the various CI determinants. These active orbitals, which constitute the
active space, are the MOs that one considers to be most important for the process
under study. Thus for a Diels—Alder reaction, the two 7 and two ©* MOs of the
diene and the m and ©* MO of the alkene (the dienophile) would be a reasonable
minimum [98] as candidates for the active space of the reactants; the six electrons in
these MOs would be the active electrons, and with the 6-31G* basis this would be a
(specifying electrons, MOs) CASSCF (6,6)/6-31G* calculation. CASSCF calcula-
tions are used to study chemical reactions and to calculate electronic spectra. They
require judgement in the proper choice of the active space and are not essentially
algorithmic like other methods [99]. An extension of the MCSCF method is multi-
reference CI (MRCI), in which the determinants (the CSFs) from an MCSCF
calculation are used to generate more determinants, by promoting electrons in
them into virtual orbitals (multireference, since the final wavefunction “refers
back” to several, not just one, determinant). Just as HF geometries can be subjected
to MPn (commonly MP2) single-point calculations to account for dynamic correla-
tion and obtain better relative energies, geometries from CASSCF calculations,
which are commonly used to take static correlation into account, can be subjected to
(usually single-point) perturbational calculations to account for dynamic correla-
tion. The most reliable and widely-used of these “post-CAS” methods is the
CASPT2N (complete active space perturbational theory second order, nondiagonal
one-particle operator, a kind of analogue of MP2) [100]. CASSCEF calculations are
illustrated in some detail in Section 8.2.

The coupled cluster (CC) method is actually related to both the perturbation
(Section 5.4.2) and the CI approaches (Section 5.4.3). Like perturbation theory,
CC theory is connected to the linked cluster theorem (linked diagram theorem)
[101], which proves that MP calculations are size-consistent (see below). Like
standard CI it expresses the correlated wavefunction as a sum of the HF ground
state determinant and determinants representing the promotion of electrons from
this into virtual MOs. As with the Mgller—Plesset equations, the derivation of the
CC equations is complicated. The basic idea is to express the correlated wave-
function W as a sum of determinants by allowing a series of operators T, T5, . . . to
act on the HF wavefunction:

23
. T T s

‘P:<1+T—&—§+?+---> Wir = e Wyr (5.170)

where T = Tl + T2 + - - -. The operators Tl, Tz, ... are excitation operators and

have the effect of promoting 1, 2, etc., respectively, electrons into virtual spin
orbitals. Depending on how many terms are actually included in the summation
for T, one obtains the coupled cluster doubles (CCD), coupled cluster singles and
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doubles (CCSD) or coupled cluster singles, doubles and triples (CCSDT)
method:

- T
Tcep = e ? War

Tcesp = e T2 Wy

Tecspr = eTHTT) Wy

Instead of the very demanding CCSDT calculations one often performs CCSD
(T) (note the parentheses), in which the contribution of triple excitations is repre-
sented in an approximate way (not refined iteratively); this could be called coupled
cluster approximate (or perturbative) triples. The quadratic configuration method
(QCI) is very similar to the CC method. The most accurate implementation of this
in common use is QCISD(T) (quadratic CI singles, doubles, triples, with triple
excitations treated in an approximate, non-iterative way). The CC method, which is
usually only moderately slower than QCI (Table 5.6), is apparently better [102].
CCSD(T) calculations are, generally speaking, the current benchmark for practical
molecular calculations on molecules of up to moderate size.

Like MP methods, CI methods require reasonably large basis sets for good
results. The smallest (and perhaps most popular) basis used with these methods
is the 6-31G* basis, but where practical the 6-311G** basis, developed especially
for post-HF calculations, might be preferable (see Table 5.6). Higher-correlated
single-point calculations on MP2 geometries tend to give more reliable relative
energies than do single-point MP2 calculations on HF geometries (Section 5.4.2, in

Table 5.6 Energies and times for some calculations involving electron correlation; HF jobs are
shown for comparison

Method/basis Input Energy Time (min)
HF/6-31G* opt AM1 geom, Hessian —191.96224 7
HF/6-31G* opt + freq AM1 geom, Hessian —191.96224 14
MP2/6-31G* sp HF/6-31G* geom —192.5216 1
MP2/6-311G** sp HF/6-31G* geom —192.64662 7
MP2/6-31G* opt AMI geom, Hessian —192.5239 11
MP2/6-31G* opt + freq AM1 geom, Hessian —192.5239 91
MP4SDTQ/6-31G* sp MP2/6-31G* geom —192.57982 33
MP4SDTQ/6-311G** sp MP2/6-31G* geom —192.71075 245
QCISD(T)/6-31G* sp MP2/6-31G* geom —192.57883 93
QCISD(T)/6-311G** sp MP2/6-31G* geom —192.70884 490
CCSD(T)/6-31G* sp MP2/6-31G* geom —192.57808 132
CCSD(T)/6-311G** sp MP2/6-31G* geom —192.70798 725

The calculations were done with Gaussian 94W [198] on C,, acetone, on a 200 MHZ PentiumPro
(a relatively slow machine). A lower absolute energy does not guarantee that a method/basis will
give a more accurate activation or reaction energy, as these latter two are energy differences, not
absolute energies. MP2 = MP2(fc), sp = single point. Methods are given in order of the increasing
thoroughness with which they usually treat electron correlation; CC is generally superior to QCI
[102]. Note that none of the correlation methods is variational: they can give an energy lower than
the true energy



276 5 Ab initio Calculations

connection with Figs. 5.20 and 5.21). There is some limited evidence that when a
correlation method is already being used, one tends to get improved geometries by
using a bigger basis set rather than by going to a yet higher correlation level [103].
Figure 5.21 shows the results of HF and MP2 methods applied to chemical reac-
tions. The limitations and advantages of numerous such methods are shown in a
practical way in the Gaussian 94 workbook by Foresman and Frisch [1e]. Energies
and times for some correlated calculations are given in Table 5.6.

5.4.3.1 Size-Consistency

Two factors that should be mentioned in connection with post-HF calculations are
the questions of whether a method is size-consistent and whether it is variational. A
method is size-consistent if it gives the energy of a collection of n widely-separated
atoms or molecules as being n times the energy of one of them. For example, the HF
method gives the energy of two water molecules 20 A apart (considered as a single
system or “supermolecule”) as being twice the energy of one water molecule. The
example below gives the result of HF/3-21G“ geometry optimizations on a water
molecule, and on two water molecules at increasing distances (with the two-H,O
supermolecule the O/H internuclear distance r was held constant at 10, 15. ... A
while all the other geometric parameters were optimized):

H
d
~
e
c‘\o\
Ho N

Energy of H,O = —75.58596

2 x Energy or H,O = —151.17192

Energy of (H,0), = —151.17206, atr = 10 A

Energy of (H,0), = —151.17196, at r = 15 A

Energy of (H,0), = —151.17194, at r = 20 A

Energy of (H,0), = —151.17193, atr = 25 A

Energy of (H,0), = —151.17193, at r = 30 A

As the two water molecules are separated a hydrogen bond (equilibrium bond
length r = ca. 2.0 10\) is broken and the energy rises, levelling off at 20-25 Ato
twice the energy of one water molecule. With the HF method we find that for any
number n of molecules M, at large separation the energy of a supermolecule (M),,
equals n times the energy of one M. The HF method is thus size-consistent. We
might say that a size-consistent method is one that scales in a way that makes sense.

Now, it is hard to see why, physically, the energy of n identical molecules so
widely-separated that they cannot affect one another should not be n times the
energy of one molecule. Any mathematical method that does not mimic this
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physical behaviour would seem to have a conceptual flaw, and in fact lack of size-
consistency also places limits on the utility of the method. For instance, in trying to
study the hydrogen-bonded water dimer we would not be able to equate the
decrease in energy (compared to twice the energy of one molecule) with stabiliza-
tion due to hydrogen bonding, and it is unclear how we could computationally turn
off hydrogen bonding and evaluate the size-consistency error separately (actually,
there is a separate problem, basis set superposition error — see below — with species
like the water dimer, but this source of error can be dealt with). It might seem that
any computational method must be size-consistent (why shouldn’t the energy of a
large-separation (M), come out at n times that of M?). However, it is not hard to
show that CI is not size-consistent unless Eqgs. 5.168 include all possible determi-
nants, i.e. unless it is full CI. Consider a CISD calculation with a very large
(“infinite”) basis set on two helium atoms which are separated by a large (“infinite”;
say ca. 20 A) distance, and are therefore non-interacting. Note that although helium
atoms do not form covalent He, molecules, at short distances they do interact to
form van der Waals molecules. The wavefunction for this four-electron system will
contain, besides the HF determinant, only determinants with single and double
excitations (because we are using CI SD). Lacking the triple and quadruple excita-
tions which are possible in principle for a four-electron system, it is not a full CI
calculation, and so it will not yield the exact energy of our noninteracting He—He
system, which logically must be twice that of one helium atom; instead it will yield
a higher energy. Now, a CISD calculation with an infinite basis set on a single He
atom will give the exact wavefunction, and thus the exact energy of the atom
(because only single and double promotions are possible for a two-electron system,
this is a full CI calculation). Thus in this CISD calculation, the energy of the
infinitely-separated He—He system is not, as it “should” be, twice the energy of a
single He atom. This conclusion holds for any CI calculation which does not confer
full “mobility” on all the electrons.

5.4.3.2 Variational Behavior

The other factor to be discussed in connection with post-HF calculations is whether
a particular method is variational. A method is variational (see the variation
theorem, Section 5.2.3.3) if any energy calculated from it is not less than the true
energy of the electronic state and system in question, i.e. if the calculated energy is
an upper bound to the true energy. Using a variational method, as the basis set size
is increased we get lower and lower energies, levelling off above the true energy (or
at the true energy in the unlikely case that our method treats perfectly electron
correlation, relativistic effects, and any other minor effects). Figure 5.18 shows that
the calculated energy of H, using the HF method approaches a limit (—1.133 h)
with increasingly large basis sets. The calculated energy can be lowered by using a
correlated method and an adequate basis: full CI with the very big 6-311 ++G
(3df,3p2d) basis gives —1.17288 h, only 4.0 kJ mol~" (small compared with the
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H-H bond energy of 435 kJ mol ') above the accepted exact energy of —1.17439 h
(Fig. 5.18). Variational behavior is helpful because it serves as a guide to the quality
of our wavefunction — the lower the energy the better the function.

If we can’t have both, it is more important for a method to be size-consistent than
variational. Of the methods we have seen in this book:

Hartree—Fock is size-consistent and variational.

MP (MP2, MP3, MP4, etc.) is size-consistent but not variational.

Full CI, including its full MCSCF and MRCI variants, are size-consistent and
variational.

Straightforward truncated CI (CIS, CISD, etc.) is not size-consistent but is
variational.

CASSCEF, a kind of truncated CI, can be size-consistent: if the active space is
chosen properly so that the MOs correspond throughout the process being exam-
ined. CASSCEF is not variational.

CC and its QCI variants (QCISD, QCISD(T), QCISDT, etc.) are size-consistent
but not variational.

We could use one of the size-consistent methods to compare the energies of, say,
water and the water dimer, but only with HF or some version of CI can we be sure
that the calculated energy is an upper bound to the exact energy, i.e. that the exact
energy is really lower than the calculated (only a very high correlation level and
basis set are likely to give essentially the exact energy; see Section 5.5.2). There is
however another thing to consider in connection with the energy of water compared
to its dimer, and similar problems: basis set superposition error, below.

5.4.3.3 Basis Set Superposition Error

This is not associated with a particular method, like HF or CI, but rather is a basis
set problem. Consider what happens when we compare the energy of the hydrogen-
bonded water dimer with that of two noninteracting water molecules. Here is the
result of an MP2(fc)/6-31G* calculation; both structures were geometry-optimized,
and the energies are corrected for ZPE:

Energy of H,O = —76.27547 h

2 x Energy of H,O = —152.55094 h

Energy of H,O dimer = —152.55658 h

(2 x Energy of H,O) — (Energy of H,O dimer)

= —152.55094 — (—152.55658) h = 0.00564 h = 14.8 kJ mol

The straightforward conclusion is that at the MP2(fc)6-31G* level the dimer is
stabler than two noninteracting water molecules by 14.8 kJ mol ™. If there are no
other significant intermolecular forces, then we might say the H-bond energy in the
water dimer [104] is 14.8 kJ mol ! (that it takes this energy to break the bond — to
separate the dimer into noninteracting water molecules). Unfortunately there is a
problem with using this simple subtraction approach to compare the energy of a
weak molecular association AB with the energy of A plus the energy of B. If we do
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this we are assuming that if there were no interactions at all between A and B at the
geometry of the AB species, then the AB energy would be that of isolated A plus
that of isolated B. The problem is that when we do a calculation on the AB species
(say the dimer HOH"OH,), in this “supermolecule” the basis functions (“atomic
orbitals”) of B are available to A so A in AB has a bigger basis set than does isolated
A; likewise B has a bigger basis than isolated B. When in AB each of the two
components can borrow basis functions from the other. The error arises from
“imposing” B’s basis set upon A and vice versa, hence the name basis set superpo-
sition error. Because of BSSE the separated species A and B are not being fairly
compared with AB, and we should use for the energies of separated A and of B
lower values than we get in the absence of the borrowed functions available in the
weak complex. Accounting for BSSE will thus give a smaller energy drop on AB
formation. The value for the hydrogen bond energy (or van der Waals’ energy, or
dipole—dipole attraction energy, or whatever weak interaction is being studied) will
be less than if BSSE were ignored.

There are two ways to deal with BSSE. One is to say, as we implied above, that
we should really compare the energy of AB with that of A with the extra basis
functions provided by B, plus the energy of B with the extra basis functions
provided by A. This method of correcting the energies of A and B with extra
functions is called the counterpoise method [105], presumably because it balances
(counterpoises) functions in A and B against functions in AB. In the counterpoise
method the calculations on the components A and B of AB are done with ghost
orbitals, which are basis functions (“atomic orbitals”) not accompanied by atoms
(spirits without bodies, one might say): one specifies for A, at the positions that
would be occupied by the various atoms of B in AB, atoms of zero atomic number
bearing the same basis functions as the real atoms of B. This way there is no effect
of atomic nuclei or extra electrons on A, just the availability of B’s basis functions.
Likewise one uses ghost orbitals of A on B. A detailed description of the use of
ghost orbitals (in Gaussian 82, but still instructive) has been given by Clark [105a].
The counterpoise correction is rarely applied to anything other than weakly-bound
dimers, like hydrogen-bonded and van der Waals species: strangely, the correction
worsens calculated atomization energies (e.g. covalent AB — A + B). and it is has
been said to be not uniquely defined for species of more than two components
[105b]; however, see calculations on a ternary complex, ethene—water—ethene
[106]. A review of criticisms and a defence of the counterpoise method is given
in [105e].

The second way to handle BSSE is to swamp it with basis functions. If each
fragment A and B is endowed with a really big basis set, then extra functions from
the other fragment won’t alter the energy much — the energy will already be near the
asymptotic limit. So if one simply carries out a calculation on A, B and AB with a
sufficiently big basis, the straightforward procedure of subtracting the energy of AB
from that of A + B should give a stabilization energy essentially free of BSSE.
Nevertheless, the counterpoise method is the standard way of overcoming BSSE.
The best experimental estimate of the binding enthalpy of the water dimer was
said to be —13.4 kJ mol ! (=3.2 & 0.5 kcal mol ') [104c]; this is the enthalpy, at
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room-temperature, 298 K, of the dimer minus twice the enthalpy of the monomer.
Here are some calculated values of this binding enthalpy, without the BSSE
correction; hartrees are converted to kJ mol ™' by multiplying by 2,626:

CBS-Q, a high-accuracy multistep method with correlation energy correction
and large basis sets (Section 5.5.2.2b)

—152.67093 — (—152.66546) = —0.00547 = —14.4 KJ,
MP2/6 — 311 + +G(3df, 3pd)
—152.60355 — (—152.59780) = —0.00575 = —15.1 kI,
MP2/6 — 31G*
—152.35198 — (—152.34318) = —0.00880 = —23.1 kI,
HF/6 — 311 + +G(3df, 3pd)
—152.06881 — (—152.06510) = —0.00371 = —9.74 KJ,
HF/6 — 31G*
—151.97417 — (—151.96798) = —0.00619 = —16.3 kJ

The correlation-correction/large basis CBS-Q calculation gives a binding
enthalpy (—14.4 kJ molfl) not too far from the experimental (—13.4 kJ molfl)
and the MP2 method with the very big MP2/6-311++G(3df,3pd) basis gives a
somewhat worse deviation, while with MP2 and a smaller basis the binding value is
still worse. This is in accord with the above assertion that accounting for BSSE will
give a smaller energy drop than without it, i.e. that non-counterpoise calculations
give the bigger energy drop. However one should add “other things being equal”:
with the Hartree-Fock method, the smaller basis (6-31G*) actually gives a
smaller enthalpy drop (9.74 kJ mol ') than the ca. 13 kJ mol ' decrease expected
from a good counterpoise calculation (and the binding enthalpy is, c