
Christian Duncan
Antonios Symvonis (Eds.)

 123

LN
CS

 8
87

1

22nd International Symposium, GD 2014
Würzburg, Germany, September 24–26, 2014
Revised Selected Papers

Graph Drawing

Lecture Notes in Computer Science 8871
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Christian Duncan Antonios Symvonis (Eds.)

Graph Drawing

22nd International Symposium, GD 2014
Würzburg, Germany, September 24-26, 2014
Revised Selected Papers

1 3

Volume Editors

Christian Duncan
Quinnipiac University
Hamden, CT, USA
E-mail: christian.duncan@quinnipiac.edu

Antonios Symvonis
National Technical University of Athens
Athens, Greece
E-mail: symvonis@math.ntua.gr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-45802-0 e-ISBN 978-3-662-45803-7
DOI 10.1007/978-3-662-45803-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014956366

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers that were presented at the 22nd International
Symposium on Graph Drawing, which was held during September 24-26, 2014, in
Würzburg, Germany. The symposium was hosted by the University of Würzburg
and was attended by 106 participants from 16 countries. Fourteen of the partic-
ipants were from industry. We thank Alexander Wolff, the local arrangements
chair, and his team (Krzysztof Fleszar, Philipp Kindermann, Joachim Spoer-
hase, Mrs. Sigrid Keller, Fabian Lipp, Ben Morgan, and Wadim Reimche) for
their warm hospitality.

Paper submissions were partitioned into two tracks with a separate poster
track. Track 1 dealt with combinatorial and algorithmic aspects; track 2 with
experimental, applied, and network visualization aspects. In total there were
84 submissions: 72 papers and 12 posters (each poster included a two-page de-
scription). Each submission was reviewed by at least three Program Committee
members. The Program Committee decided to accept 41 papers and 11 posters.
The acceptance rates were 33/52 in track 1, 8/20 in track 2, and 11/12 for
posters.

We thank the Program Committee members and the additional reviewers for
carefully reviewing the submitted papers and posters and for putting together a
strong and interesting program. We also thank all authors for their hard work
and for choosing GD 2014 as the publication venue for their research.

GD 2014 had two invited talks. Oswin Aichholzer from the University of Graz,
Austria, gave a talk entitled “Good Drawings and Rotation Systems of Complete
Graphs.” Jean-Daniel Fekete from Inria, France, introduced the audience to the
benefits of “Matrix-Based Visualization of Graphs.” We thank both speakers for
their excellent talks, which were very well received by the GD 2014 audience.

GD 2014 awarded prizes for Best Presentation and Best Poster. Most of the
conference participants stayed until the last talk and voted for the winners. The
Best Presentation award was split between two presenters: Vincent Kusters from
ETH Zürich for his talk on the paper “Column Planarity and Partial Simulta-
neous Geometric Embedding,” and Fidel Barrera-Cruz from the University of
Waterloo for his talk on the paper “Morphing Schnyder Drawings of Planar Tri-
angulations.” The Best Poster award was won by Thomas Bläsius, Fabian Klute,
Benjamin Niedermann and Martin Nöllenburg for their poster entitled “PIGRA
— A Tool for Pixelated Graph Representations.”

Following the community’s well established tradition, the 21st Annual Graph
Drawing Contest was held during the conference. It had two main categories:
an off-line contest and an on-line challenge. This year’s Contest Committee was
chaired by Carsten Gutwenger (University of Dortmund). We thank the com-
mittee for preparing challenging problems and problem instances. A report of
the contest is included in these proceedings.

VI Preface

We also wish to thank our sponsors: “diamond” sponsor German Research
Foundation (DFG), “gold” sponsor Tom Sawyer Software, “silver” sponsors Mi-
crosoft and yWorks, and “bronze” sponsor Vis4. Their gracious support helps
ensure the continued success of this conference.

In order to better reflect the diverse interests of the symposium both in
theoretical aspects and in applications and systems design, the name of GD
in 2015 will be extended to “International Symposium on Graph Drawing and
Network Visualization.” The 23rd International Symposium on Graph Drawing
and Network Visualization will be held in Los Angeles, USA, during September
23-25, 2015. Emilio Di Giacomo and Anna Lubiw will be the ProgramCommittee
chairs. Csaba Tóth will be the Organizing Committee chair.

September 2014 Christian Duncan
Antonios Symvonis

Organization

Program Committee

Patrizio Angelini Roma Tre University, Italy
Daniel Archambault Swansea University, UK
David Auber LaBRI , Université Bordeaux I, France
Michael Bekos University of Tübingen, Germany
Anastasia Bezerianos Université Paris-Sud, Inria and CNRS, France
Franz Brandenburg University of Passau, Germany
Erin Chambers St. Louis University, USA
Stephan Diehl Universität Trier, Germany
Christian Duncan (Co-chair) Quinnipiac University, USA
Tim Dwyer Monash University, Australia
David Eppstein University of California, Irvine, USA
Emden Gansner AT&T Research
Michael Kaufmann University of Tübingen, Germany
Stephen Kobourov University of Arizona, USA
Jan Kratochvil Charles University of Prague, Czech Republic
Giuseppe Liotta University of Perugia, Italy
Maarten Löffler Utrecht University, The Netherlands
Anna Lubiw University of Waterloo, Canada
Petra Mutzel TU Dortmund University, Germany
Lev Nachmanson Microsoft Research
Antonios Symvonis (Co-chair) National Technical University of Athens,

Greece
Ioannis Tollis University of Crete, Greece
Dorothea Wagner Karlsruhe Institute of Technology (KIT),

Germany
Hsu-Chun Yen National Taiwan University, Taiwan

Organizing Committee

Krzysztof Fleszar University of Würzburg, Germany
Philipp Kindermann University of Würzburg, Germany
Joachim Spoerhase University of Würzburg, Germany
Alexander Wolff (Chair) University of Würzburg, Germany

Graph Drawing Contest Committee

Carsten Gutwenger (Chair) TU Dortmund University, Germany
Maarten Löffler Utrecht University, The Netherlands

VIII Organization

Lev Nachmanson Microsoft Research
Ignaz Rutter Karlsruhe Institute of Technology (KIT),

Germany

Additional Reviewers

Aerts, Nieke Kostitsyna, Irina
Alam, Muhammad Jawaherul Krug, Robert
Alamdari, Soroush Lee, Bongshin
Argyriou, Evmorfia Lu, Hsueh-I
Barba, Luis Mchedlidze, Tamara
Bereg, Sergey Mondal, Debajyoti
Binucci, Carla Montecchiani, Fabrizio
Bläsius, Thomas Morin, Pat
Borradaile, Glencora Mumford, Elena
Bruckdorfer, Till Niedermann, Benjamin
Chen, Ho-Lin Nöllenburg, Martin
Da Lozzo, Giordano Patrignani, Maurizio
Di Bartolomeo, Marco Pedrosa, Lehilton L. C.
Di Donato, Valentino Poon, Sheung-Hung
Di Giacomo, Emilio Prutkin, Roman
Didimo, Walter Pupyrev, Sergey
Durocher, Stephane Raftopoulou, Chrysanthi
Evans, William Riche, Nathalie
Felsner, Stefan Roselli, Vincenzo
Fowler, J. Joseph Rutter, Ignaz
Fox, Kyle Schaefer, Marcus
Frati, Fabrizio Schreiber, Falk
Fuchs, Fabian Schulz, André
Fulek, Radoslav Spisla, Christiane
Gemsa, Andreas Squarcella, Claudio
Grilli, Luca Staals, Frank
Gronemann, Martin Strash, Darren
Gutwenger, Carsten Toeniskoetter, Jackson
Heinsohn, Niklas Tsiaras, Vassilis
Hlineny, Petr Ueckerdt, Torsten
Holroyd, Alexander van Goethem, Arthur
Kakoulis, Konstantinos Zielke, Christian

Organization IX

Sponsors

Diamond Sponsor

Gold Sponsor

Silver Sponsors

Bronze Sponsor

Invited Talks

Good Drawings and Rotation Systems of

Complete Graphs

Oswin Aichholzer

Institute for Software Technology,
Graz University of Technology, Austria.

oaich@ist.tugraz.at

Abstract. In a good drawing of a complete graph the vertices are drawn
as distinct points in the plane, edges are drawn as non-self-intersecting
continuous arcs connecting its two end points, but not passing through
any other point representing a vertex. Moreover, any pair of edges inter-
sects at most once, either in their interior or at a common endpoint, no
tangencies are allowed and no three edges pass through a single crossing.
These drawings are also called simple topological graphs.

A rotation system (of a good drawing of a complete graph) gives, for
each vertex v of the graph, the circular ordering around v of all edges inci-
dent to v. In combinatorial mathematics, rotation systems were first used
by Hefner in 1891 to encode embeddings of graphs onto orientable sur-
faces, determining its genus. In the plane (or equivalently on the sphere)
the rotation system of a good drawing does not fully determine the draw-
ing, but contains combinatorial information like all pairs of edges which
intersect.

We present basic properties of these two concepts, as well as recent
progress. This includes results on the number of realizable rotation sys-
tems, the crossing number of complete graphs (including the recent con-
cept of shellability of a good drawing), relations to other systems like the
order type of a point set, etc.

Matrix-Based Visualization of Graphs

Jean-Daniel Fekete

INRIA, France

Jean-Daniel.Fekete@inria.fr

Abstract. For decades, graph drawing has focused on the node-link
representation, trying to address multiple important, difficult, and inter-
esting issues related to 2D embeddings under some optimality criteria
(planar drawing, minimizing crossings, optimizations, graph decomposi-
tions, and many more). Visualizing a graph structure using its adjan-
cency matrix is much less common, although it has been shown to be
more efficient than the node-link representation when the graph becomes
dense, for important low-level tasks. The main question to address in
matrix-based visualization is the computation of the vertices order. This
problem is known with multiple names: linear ordering, seriation, re-
ordering. With a proper ordering, a visualized matrix reveals important
patterns and structures of the graph. We will briefly explain how the
problem has been formalized in the past, some visual results sometimes
revealing unexpected information. We then list some challenges to the
community that could be used to motivate the graph drawing commu-
nity to study the problem, and provide useful solutions for people who
need to make sense of complex graphs.

Table of Contents

Planar Subgraphs

Planar Induced Subgraphs of Sparse Graphs . 1
Glencora Borradaile, David Eppstein, and Pingan Zhu

Picking Planar Edges; or, Drawing a Graph with a Planar Subgraph 13
Marcus Schaefer

Drawing Partially Embedded and Simultaneously Planar Graphs 25
Timothy M. Chan, Fabrizio Frati, Carsten Gutwenger, Anna Lubiw,
Petra Mutzel, and Marcus Schaefer

Simultaneous Embeddings

Drawing Simultaneously Embedded Graphs with Few Bends 40
Luca Grilli, Seok-Hee Hong, Jan Kratochv́ıl, and Ignaz Rutter

Planar and Quasi Planar Simultaneous Geometric Embedding 52
Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta,
Henk Meijer, and Stephen Wismath

Simultaneous Embeddability of Two Partitions . 64
Jan Christoph Athenstädt, Tanja Hartmann, and Martin Nöllenburg

Applications

Luatodonotes: Boundary Labeling for Annotations in Texts 76
Philipp Kindermann, Fabian Lipp, and Alexander Wolff

A Coloring Algorithm for Disambiguating Graph and Map Drawings . . . 89
Yifan Hu and Lei Shi

Untangling Hairballs: From 3 to 14 Degrees of Separation 101
Arlind Nocaj, Mark Ortmann, and Ulrik Brandes

GION: Interactively Untangling Large Graphs on Wall-Sized
Displays . 113

Michael R. Marner, Ross T. Smith, Bruce H. Thomas,
Karsten Klein, Peter Eades, and Seok-Hee Hong

XVI Table of Contents

Contact Representations

Balanced Circle Packings for Planar Graphs . 125
Md. Jawaherul Alam, David Eppstein, Michael T. Goodrich,
Stephen G. Kobourov, and Sergey Pupyrev

Unit Contact Representations of Grid Subgraphs with Regular
Polytopes in 2D and 3D . 137

Linda Kleist and Benjamin Rahman

The Galois Complexity of Graph Drawing: Why Numerical
Solutions Are Ubiquitous for Force-Directed, Spectral,
and Circle Packing Drawings . 149

Michael J. Bannister, William E. Devanny, David Eppstein,
and Michael T. Goodrich

Bitonic st -orderings of Biconnected Planar Graphs 162
Martin Gronemann

k-Planar Graphs

Drawing Outer 1-planar Graphs with Few Slopes . 174
Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani

Fan-Planar Graphs: Combinatorial Properties and Complexity
Results . 186

Carla Binucci, Emilio Di Giacomo, Walter Didimo,
Fabrizio Montecchiani, Maurizio Patrignani,
and Ioannis G. Tollis

On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar
Graphs . 198

Michael A. Bekos, Sabine Cornelsen, Luca Grilli, Seok-Hee Hong,
and Michael Kaufmann

Crossing Minimization

Crossing Minimization for 1-page and 2-page Drawings of Graphs with
Bounded Treewidth . 210

Michael J. Bannister and David Eppstein

A Crossing Lemma for the Pair-Crossing Number . 222
Eyal Ackerman and Marcus Schaefer

Are Crossings Important for Drawing Large Graphs? 234
Stephen G. Kobourov, Sergey Pupyrev, and Bahador Saket

Table of Contents XVII

Level Drawings

The Importance of Being Proper (In Clustered-Level Planarity and
T -Level Planarity) . 246

Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista,
Fabrizio Frati, and Vincenzo Roselli

Column Planarity and Partial Simultaneous Geometric Embedding 259
William Evans, Vincent Kusters, Maria Saumell,
and Bettina Speckmann

Flat Foldings of Plane Graphs with Prescribed Angles
and Edge Lengths . 272

Zachary Abel, Erik D. Demaine, Martin L. Demaine,
David Eppstein, Anna Lubiw, and Ryuhei Uehara

Theory

Disjoint Edges in Topological Graphs and the Tangled-Thrackle
Conjecture . 284

Andres J. Ruiz-Vargas, Andrew Suk, and Csaba D. Tóth

Morphing Schnyder Drawings of Planar Triangulations 294
Fidel Barrera-Cruz, Penny Haxell, and Anna Lubiw

Trade-Offs in Planar Polyline Drawings . 306
Stephane Durocher and Debajyoti Mondal

Fixed Edge Directions

Stress-Minimizing Orthogonal Layout of Data Flow Diagrams
with Ports . 319

Ulf Rüegg, Steve Kieffer, Tim Dwyer, Kim Marriott,
and Michael Wybrow

Planar Octilinear Drawings with One Bend Per Edge 331
Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and
Robert Krug

On the Complexity of HV-rectilinear Planarity Testing 343
Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani

Embedding Four-Directional Paths on Convex Point Sets 355
Oswin Aichholzer, Thomas Hackl, Sarah Lutteropp,
Tamara Mchedlidze, and Birgit Vogtenhuber

XVIII Table of Contents

Drawing under Constraints

Drawing Graphs within Restricted Area . 367
Maximilian Aulbach, Martin Fink, Julian Schuhmann, and
Alexander Wolff

Height-Preserving Transformations of Planar Graph Drawings 380
Therese Biedl

Drawing Planar Graphs with Reduced Height . 392
Stephane Durocher and Debajyoti Mondal

Anchored Drawings of Planar Graphs . 404
Patrizio Angelini, Giordano Da Lozzo, Marco Di Bartolomeo,
Giuseppe Di Battista, Seok-Hee Hong, Maurizio Patrignani,
and Vincenzo Roselli

Clustered Planarity

Advances on Testing C-Planarity of Embedded Flat Clustered
Graphs . 416

Markus Chimani, Giuseppe Di Battista, Fabrizio Frati,
and Karsten Klein

Clustered Planarity Testing Revisited . 428
Radoslav Fulek, Jan Kynčl, Igor Malinović, and Dömötör Pálvölgyi

A New Perspective on Clustered Planarity as a Combinatorial
Embedding Problem . 440

Thomas Bläsius and Ignaz Rutter

MapSets: Visualizing Embedded and Clustered Graphs 452
Alon Efrat, Yifan Hu, Stephen G. Kobourov, and Sergey Pupyrev

Greedy Graphs

Increasing-Chord Graphs On Point Sets . 464
Hooman Reisi Dehkordi, Fabrizio Frati, and Joachim Gudmundsson

On Self-approaching and Increasing-Chord Drawings of 3-Connected
Planar Graphs . 476

Martin Nöllenburg, Roman Prutkin, and Ignaz Rutter

On Monotone Drawings of Trees . 488
Philipp Kindermann, André Schulz, Joachim Spoerhase,
and Alexander Wolff

Table of Contents XIX

Graph Drawing Contest

Graph Drawing Contest Report . 501
Carsten Gutwenger, Maarten Löffler, Lev Nachmanson,
and Ignaz Rutter

Posters

A User Study on the Visualization of Directed Graphs 507
Walter Didimo, Fabrizio Montecchiani, Evangelos Pallas,
and Ioannis G. Tollis

GraphBook: Making Graph Paging Real . 509
Alessio Arleo, Felice De Luca, Giuseppe Liotta,
Fabrizio Montecchiani, and Ioannis G. Tollis

Circular Tree Drawing by Simulating Network Synchronisation
Dynamics and Scaling . 511

Farshad Ghassemi Toosi and Nikola S. Nikolov

PiGra– A Tool for Pixelated Graph Representations 513
Thomas Bläsius, Fabian Klute, Benjamin Niedermann,
and Martin Nöllenburg

Simultaneous Drawing of Planar Graphs with Right-Angle Crossings
and Few Bends . 515

Michael A. Bekos, Thomas C. van Dijk, Philipp Kindermann,
and Alexander Wolff

Touching Triangle Represenations in a k -gon of Biconnected
Outerplanar Graphs . 517

Nieke Aerts

3D Graph Visualization with the Oculus Rift . 519
Farshad Barahimi and Stephen Wismath

Force-Directed 3D Arc Diagrams . 521
Michael J. Bannister, Michael T. Goodrich, and Peter Sampson

People Prefer Less Stress and Fewer Crossings . 523
Markus Chimani, Patrick Eades, Peter Eades, Seok-Hee Hong,
Weidong Huang, Karsten Klein, Michael R. Marner, Ross T. Smith,
and Bruce H. Thomas

A New Approach to Visualizing General Trees Using Thickness-
Adjustable Quadratic Curves . 525

M. Ali Rostami, Azin Azadi, and H. Martin Bücker

XX Table of Contents

Minimum Representations of Rectangle Visibility Graphs 527
John S. Caughman, Charles L. Dunn, Joshua D. Laison,
Nancy Ann Neudauer, and Colin L. Starr

Author Index . 529

Planar Induced Subgraphs of Sparse Graphs

Glencora Borradaile1, David Eppstein2, and Pingan Zhu1

1 Oregon State University, Corvallis OR 97330, USA
2 University of California, Irvine, Irvine CA 92697, USA

Abstract. We show that every graph has an induced pseudoforest of
at least n − m/4.5 vertices, an induced partial 2-tree of at least n −
m/5 vertices, and an induced planar subgraph of at least n−m/5.2174
vertices. These results are constructive, implying linear-time algorithms
to find the respective induced subgraphs. We also show that the size of
the largest Kh-minor-free graph in a given graph can sometimes be at
most n−m/6 + o(m).

1 Introduction

Planarization, a standard step in drawing non-planar graphs, involves replacing
edge crossings with new vertices to form a planar graph with paths that represent
the original graph’s edges. Incremental planarization, does this by finding a large
planar subgraph of the given graph, and then adding the remaining features of
the input graph one at a time [6]. Thus, it is of interest to study the algorithmic
problem of finding planar subgraphs that are as large as possible in a given
graph. Unfortunately, this problem is NP-hard and, more strongly, MAX-SNP-
hard [4]. A trivial algorithm, finding an arbitrary spanning tree, achieves an
approximation ratio of 1

3 , and by instead searching for a partial 2-tree this ratio
can be improved to 2

5 [4]. The equivalent complementary problem, deleting a
minimum number of edges to make the remaining subgraph planar, is fixed-
parameter tractable and linear time for any fixed value of the parameter [12].

In this paper we study a standard variant of this problem: finding a large
planar induced subgraph of a given graph. In the context of the planarization
problem, one possible application of finding this type of planar subgraph would
be to apply incremental planarization in a drawing style where edges are rep-
resented as straight-line segments. A planar induced subgraph can always be
drawn without crossings in this style, by Fáry’s theorem, after which the partial
drawing could be used to guide the placement of the remaining vertices. As with
the previous problem, the induced planar subgraph problem is NP-hard, but
again there is a linear-time fixed-parameter tractable algorithm for the equiv-
alent problem of finding the smallest number of vertices to delete so that the
remaining induced subgraph is planar [11].

Because of the difficulty of finding an exact solution to this problem, we
instead seek worst-case guarantees: what is the largest size of a planar induced
subgraph that we can be guaranteed to find within a graph of a given size? In
this we are inspired by a paper of Alon, Mubayi, and Thomas [1], who showed

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 1–12, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 G. Borradaile, D. Eppstein, and P. Zhu

that every triangle-free input graph with n vertices and m edges contains an
induced forest with at least n−m/4 vertices. This is tight, as shown by an input
graph in the form of n/4 disjoint copies of a 4-cycle. Induced forests are a special
case of induced planar subgraphs, and so this result guarantees the existence of
an induced planar subgraph of n − m/4 vertices. As we show, an analogous
improvement to the one in the approximation ratio for planar subgraphs can
be obtained by seeking instead an induced partial 2-tree. Rossmanith [3] has
posed the question: does every graph have an induced planar subgraph of size
n −m/6? We shrink the gap on the worst-case bounds for the size of a planar
induced subgraph by showing that every graph (not necessarily triangle-free)
has an induced planar subgraph of n −m/5.2174 vertices and that there exist
graphs for which the largest induced planar subgraph is not much larger than
n−m/6 vertices.

1.1 New Results

We prove the following results:

Theorem 1. Every graph with n vertices and m edges has an induced pseudo-
forest with at least n− 2m

9 vertices.

Theorem 2. Every graph with n vertices and m edges has an induced subgraph
with treewidth at most 2 and with at least n− m

5 vertices.

Theorem 3. Every graph with n vertices and m edges has an induced planar
subgraph with treewidth at most 3 and with at least n− 23m

120 vertices.

These three theorems can be implemented as algorithms which take linear time
to find the induced subgraphs described by the theorems.

Theorem 4. For every integer h, there is a family of graphs such that for any
graph in this family with n vertices and m edges, the largest Kh-minor-free in-
duced subgraph has at most n− m

6 +O(m
logm) vertices.

The bounds of Theorems 1 and 2 are tight, even for larger classes of induced
subgraphs. In particular, there exist graphs for which the largest induced outer-
planar subgraph has size at most n−m/4.5, so the bound of Theorem 1 is tight
for any class of graphs between the pseudoforests and the outerplanar graphs.
There also exist graphs for which the largest induced K4-free induced subgraph
has n−m/5 vertices, so Theorem 2 is tight for every family of graphs between
the treewidth 2 graphs and the graphs with no 4-clique.

1.2 Related Work

The worst-case size of the largest induced planar subgraph has been studied
previously by Edwards and Farr [7], who proved a tight bound of 3n/(d+ 1) on
its size as a function of the maximum degree d of the given graph. In contrast, by

Planar Induced Subgraphs of Sparse Graphs 3

depending on the total number of edges rather than the maximum degree, our
algorithms are sensitive to graphs with heterogeneous vertex degrees, and can
construct larger induced subgraphs when the number of high-degree vertices is
relatively small. Additionally, the algorithm given by Edwards and Farr is slower
than ours, taking O(mn) time. In a follow-up paper, Morgan and Farr [16] gave
additional bounds on induced outerplanar subgraphs, and provided experimental
results on the performance of their algorithms. A second paper by Edwards and
Farr [8], like our Theorem 2, gives bounds on the size of the largest induced
partial 2-tree in terms of n and m, which is 3n

2m/n+1 for m ≥ 2n. However,

their bounds are asymptotically worse than Theorem 2 when 2n < m < 2.5n
and require an additional assumption of connectivity for smaller values of m.
A third paper by the same authors [9] gives improved bounds that are more
difficult to state as a formula.

For some other graph classes than the ones we study, it is possible to prove
trivial bounds on the size of the largest induced subgraph in the class, of a
similar form to the bounds of Alon et al. and of our theorems. By repeatedly
finding and removing a vertex of degree ≥ 1, one can obtain an independent set
of at least n−m vertices, and the example of a perfect matching shows this to
be tight. By repeatedly finding and removing a vertex of degree ≥ 2, one can
obtain a matching of at least n−m/2 vertices, and the example of the disjoint
union of n/3 two-edge paths shows this to be tight. And by repeatedly finding
and removing either a vertex of degree ≥ 3 or a vertex that is part of a 2-regular
cycle, one can obtain a linear forest (forest with maximum degree 2) of n−m/3
vertices; the example of the disjoint union of n/3 triangles shows this to be tight
even for more general forests.

Table 1 provides a comparison of these new results with previous known results
on induced planar subgraphs of various types and with the trivial bounds for
independent sets, matchings, and linear forests.

2 Preliminaries

For a graph G, we define n(G) to be the number of vertices and m(G) to be
the number of edges in G. We drop the argument and write n and m when the
choice of G is clear from context.

A subset S of the vertices of G corresponds to an induced subgraph G[S], a
graph having S as its vertices and having as edges every edge in G that has both
endpoints in S. Equivalently, G[S] may be constructed from G by deleting every
vertex that is not in S and every edge that has at least one endpoint outside S.

A pseudoforest is an undirected graph in which every connected component
has at most one cycle. Equivalently, the pseudoforests can be formed from forests
(acyclic undirected graphs) by adding at most one edge per connected compo-
nent. A k-tree is an undirected graph that can be constructed from a Kk graph
by repeatedly picking aKk subgraph and attaching its k vertices to a new vertex.
A partial k-tree is a subgraph of a k-tree and is said to have treewidth at most
k; the treewidth of a graph G is denoted tw(G). Every pseudoforest is a partial

4 G. Borradaile, D. Eppstein, and P. Zhu

Table 1. Comparison of new and known results on induced subgraphs

Size of induced
subgraph

Additional
constraints

Type of subgraph Reference

n−m independent set trivial

n− m

2
matching trivial

n− m

3
linear forest trivial

n− m

4
G is triangle-free forest [1]

n− m+ c

4
max degree ≤ 3
c = # connected

components

forest [1]

n

�(Δ+ 1)/3� max degree Δ max degree 2 [10]

3n

Δ+ 5/3
max degree Δ outerplanar [16]

3n

Δ+ 1
max degree Δ planar [7]

3n

2m/n+ 1
m ≥ 2n or

connected and
m ≥ n

partial 2-tree [8]

5n

6
claw-free subcubic planar partial 4-tree [5]

n− m

4.5
pseudoforest Theorem 1

n− m

5
partial 2-tree Theorem 2

n− m

5.2174
planar partial 3-tree Theorem 3

≤ n− m

6
+ o(m) any minor-closed

property
Theorem 4

2-tree. A graph is a partial 2-tree if and only if every biconnected component
is a series parallel graph. The operations of adding a vertex with two adjacent
neighbors and of taking subgraphs preserve planarity, so every partial 2-tree and
every pseudoforest is a planar graph.

When constructing induced subgraphs of size n − m/k, we will make the
simplifying assumption that our graph G has maximum degree at most �k− 1�.

Planar Induced Subgraphs of Sparse Graphs 5

Observation 1. If every graph of maximum degree at most �k− 1� contains an
induced subgraph with property P and at least n −m/k vertices, then the same
is true for every graph.

Proof. We use induction on n. Let G contain a vertex v of degree ≥ k, and let
G′ be formed from G by removing v. By the induction hypothesis, G′ has an

induced subgraph H with the desired property P and at least n(G′) − m(G′)
k

vertices. Then H is an induced P-subgraph of G with size at least

n(G)− 1− m(G′)

k
≥ n(G)− 1− m(G) − k

k
= n(G)− m(G)

k
.

3 Large Induced Pseudoforests

In this section, we prove Theorem 1 by showing that we can delete at most m
4.5

vertices from a graph G with m edges to leave a pseudoforest; by Observation 1,
we assume G has degree at most 4.

We repeatedly perform the first applicable reduction in the following list of
cases, until no edges are left. As we do, we construct a set S of vertices that
will induce our desired subgraph. Initially S is empty and when no edges are
left we add all remaining vertices to S. The steps of the reduction essentially
identify “dangling trees” and contract these. After a series of vertex deletions
(which identify vertices that will not belong the final induced subgraph) and
edge contractions, if we create a component that consists of a single cycle (in
fact a triangle, case Δ-a and Vertex of degree 4 (c) (i) and (ii)), we “keep” this
component; this triangle is the minor of an induced cycle in our final induced
subgraph which will only be incident to the “dangling trees” which had been
contracted into the cycle. This guarantees that the final induced subgraph has
at most one cycle per component. To bound the size of the output S in terms of
the number of edges, we use an amortized analysis, incurring a charge of −4.5 for
every deleted vertex and a charge of +1 for every removed or contracted edge;
we show that the net charge for every processing step is non-negative. Our cases
are:

Leaf vertex. If there is a vertex a of degree 1, we add a to S and contract the
edge incident to a. This incurs a charge of +1.

Vertex of degree 2 not in a triangle. If there is a vertex a of degree 2 that
is not part of a triangle, we add a to S and contract an edge incident to a. This
incurs a charge of +1.

Vertex of degree 2 in a triangle. If there is a vertex a of degree 2 in a
triangle abc then we consider the four sub-cases illustrated below:

(Δ–a) If the triangle is isolated: add a, b and c to S, and remove
the edges of the triangle from the graph. This incurs a
charge of +3. b

a c

6 G. Borradaile, D. Eppstein, and P. Zhu

(Δ–b)

If b has degree 2 and c has degree 3, then c
is adjacent to a vertex d of degree at least 3
(otherwise d would be a degree 2 vertex not
belonging to a triangle). Delete d, isolating
triangle abc, and then apply case (Δ–a). This
incurs a total charge of at least +1.5.

a

b

c d

(Δ–c) If b has degree 3 and c has degree at least 3, then delete
c, add a and b to S and contract the edges incident to
b. This incurs a charge of at least +0.5.

a

b

c

(Δ–d) If b has degree 4, then delete b, add a to S and contract
ac. This incurs a charge of +0.5.

a

b

c

Vertex of degree 3 adjacent to a vertex of degree 4. If there is a vertex
a of degree 3 adjacent to a vertex b of degree 4, then we delete b. Deleting b
incurs a net charge of −0.5, but reduces the degree of a to 2. Handling a as
above incurs a charge of at least +0.5, for a net charge of at least 0.

Vertex of degree 3. If this is the first applicable case, then the graph must be
3-regular. Deleting any vertex a creates three vertices of degree 2 while incurring
a charge of −1.5. Processing the three resulting degree-2 vertices as above incurs
a charge of at least +0.5 per degree-2 vertex, for a net charge of at least 0.

Vertex of degree 4. If this is the first applicable case, then the graph must
be 4-regular. We consider the following cases for the subgraph Na induced by
the neighbors b, c, d, e of a vertex a.

(a) If Na has two non-adjacent pairs (b, c) and (d, e), then a, b, and c do not form
a triangle, so we can delete d and e, keep b and c, add a to S, and contract
ab. This removes nine edges from the graph and deletes two vertices, for a
total charge of 0.

(b) If Na is a star graph with center b, then consider the neighbors of c: a, b, f, g.
Neither a nor b can be adjacent to f or g, because otherwise they would have
too many neighbors. Thus we can process vertex c as in case (a) instead.

(c) If neither case (a) nor (b) applies, then Na must contain a triangle. Without
loss of generality the triangle is formed by vertices bcd, so a is a vertex of a
tetrahedron (K4) induced by vertices a, b, c, d. We may assume more strongly
that every vertex in the graph belongs to a tetrahedron, for if not we may
apply cases (a) or (b). We form four sub-subcases:
(i) If any connected component is a complete graph K5, then deleting two

vertices leaves an isolated triangle and incurs a total charge of +1.

Planar Induced Subgraphs of Sparse Graphs 7

(ii) If two tetrahedra, a, b, c, d and b, c, d, e share triangle b, c, d without
forming a K5, then a and e are non-adjacent. Deleting a and e removes
eight edges but leaves an isolated triangle (case Δ–a) for a net charge
of +2. We illustrate this case:

a ec

b

d

(iii) In the remaining cases all tetrahedra must be vertex-disjoint. If two
tetrahedra abcd and efgh are connected to each other by at least two
edges (be and dg), then we delete the two non-adjacent vertices d and
e as illustrated here:

b

d

a

c

e

g

f

h

The dashed edges are possible con-

nections from vertices a, c, f, h.

This incurs a charge of −1 but leaves two non-adjacent degree two
vertices (b and g) each of which can be processed via case (Δ–c), adding
charge +0.5 per vertex for a total charge of at least 0.

(iv) If every pair of tetrahedra are connected by at most one edge, then
contracting every tetrahedron to a vertex reduces the input graph to
a smaller 4-regular simple graph that necessarily contains a cycle of
three or more edges. In the uncontracted graph, this gives a cycle of
six or more edges that alternates between edges within tetrahedra and
edges outside the tetrahedra:

In this case, we choose one of the tetrahedra of the cycle, and delete
the two vertices of this tetrahedron that do not belong to the cycle.
This removes seven edges from the graph for a net charge of −2, but
leaves two degree-2 vertices on a cycle of length at least 6. Each of
these may be processed as a degree-2 vertex that does not belong to a
triangle, giving a charge of +1 each and making the net charge be 0.

This case analysis concludes the proof of Theorem 1. The proof also gives
the outline for an efficient algorithm for finding an induced pseudoforest of size
at least n−m/4.5: after removing any high-degree vertices, form a data struc-
ture that lists the configurations of the graph obeying each of the cases in the
analysis. Because the remaining graph has bounded degree, selecting the first
applicable case, performing the reduction steps of the case, and updating the

8 G. Borradaile, D. Eppstein, and P. Zhu

list of configurations for each case can all be done in constant time per case,
leading to a linear overall time bound.

Theorem 1 is tight: there exist arbitrarily large graphs in which the largest
induced pseudoforest has exactly n − m/4.5 vertices. In particular, let G be a
graph formed by the disjoint union of n/6 copies of the complete bipartite graph
K3,3. Then, to form a pseudoforest in G, we must delete at least two vertices
from each copy of K3,3, for deleting only one vertex leaves K2,3 which is not a
pseudoforest. Each copy has nine edges, so the number of deleted vertices must
be at leastm/4.5. The same class of examples shows that even if we are searching
for the broader class of induced outerplanar subgraphs, we may need to delete
m/4.5 vertices.

4 Large Induced Treewidth Two Graphs

In this section, we prove Theorem 2 by showing that we can delete at most
m
5 vertices from a graph G with m edges to leave a graph with treewidth at
most 2. By Observation 1, we may assume without loss of generality G has
degree at most 4. We prove the theorem algorithmically by arguing that the
following procedure builds a vertex set S of size at least n− m

5 such that G[S]
has treewidth at most 2. The procedure modifies the graph by edge contractions
but does not increase its degree over 4.

S = ∅
make G simple by removing self-loops and parallel edges
while G has more than 1 vertex:

if there is a vertex v of degree one or two:
contract an edge incident to v and add v to S:
make G simple by removing self-loops and parallel edges

else if G contains a vertex of degree three:
delete a vertex of the largest degree adjacent to a degree-three vertex

else:
delete a vertex of maximum degree

add the last remaining vertex to S

Lemma 1. The induced subgraph G[S] produced by the algorithm above has
treewidth at most 2.

Proof. We use the following facts:

Fact 1. If H is a subdivision of G then tw(G) = max{1, tw(H)}.
Fact 2. If H is a maximal simple subgraph of G then tw(G) = max{1, tw(H)}.
Fact 3. IfH is obtained fromG by deleting a leaf vertex, tw(G) = max{1, tw(H)}.

Let s1, s2, . . . , sk be the vertices of S in the reverse of the order in which they
were added to S. Let Si = {s1, s2, . . . , si}; let S0 = ∅. Let Gi be the graph at
the start of the iteration in which vertex si is added to S; let Gk+1 = G. Gi

is a minor of G, obtained by deletions of vertices and edge and contractions of

Planar Induced Subgraphs of Sparse Graphs 9

edges. Gk is a minor of G and, for i < k, Gi is a minor of a graph obtained from
Gi+1 by contracting an edge incident to si.

For i = 2, . . . , k:

– Gi[Si] is a maximal simple subgraph of Gi+1[Si]; therefore tw(Gi+1[Si]) =
max{1, tw(Gi[Si])} by Fact 2.

– Gi[Si] is obtained from Gi[Si−1] by the subdivision of an edge (by si) or the
addition of a leaf vertex (si); therefore tw(Gi[Si]) = max{1, tw(Gi[Si−1])} by
Facts 1 and 3.

By induction and the fact that a graph with a single vertex has treewidth 0, the
lemma follows. ��

Lemma 2. |S| ≥ n− m
5 .

Proof. We show, equivalently, that the procedure deletes at most m
5 vertices by

amortized analysis. For each vertex that we delete we incur a charge of −5. For
each edge that we contract (incident to a degree-1 or -2 vertex), remove (as a
self-loop or parallel edge) or delete (by way of deleting an adjacent vertex) we
incur a charge of +1. Note that we distinguish between deleting and removing
an edge for the purpose of this analysis. We will show that the net charge is
positive, thus showing that for every 5 edges of the graph, we delete at most one
vertex.

The first case of the algorithm, in which an edge is contracted, incurs only
a positive charge. There are three remaining cases in which a vertex is deleted,
according to the degree of the deleted vertex and whether it is adjacent to a
degree 3 vertex.

Deleting a degree-3 vertex from a 3-regular graph. Deleting such a vertex
incurs a charge of +3− 5 = −2 but creates three degree-2 vertices. At least one
edge incident to each of these will be contracted (or removed) for a total charge
of +3. Therefore, before another vertex is deleted, the net charge for deleting
this vertex is at least +1.

Deleting a degree-4 vertex adjacent to a degree-3 vertex. Deleting such
a vertex v incurs a charge of +4 − 5 = −1 but creates at least one vertex u
of degree 2; an edge incident to u will be contracted before another vertex is
deleted. The net charge for deleting v is at least 0.

Deleting a degree-4 vertex from a 4-regular graph. Deleting such a vertex
incurs a charge of +4−5 = −1. After this case happens, the remaining graph will
have at least four degree-3 vertices, and will continue to have a nonzero number
of both degree-3 and degree-4 vertices until either the graph becomes 4-regular
again (by reducing the degree-3 vertices to degree-2 and contracting them away)
or all degree-4 vertices have been removed. We consider the following sub-cases
for the steps of the algorithm that either return to a 4-regular state or eliminate
all degree-4 vertices:

(a) If the graph becomes 4-regular again, it can only be after removing a degree-
4 vertex adjacent to four degree-3 vertices, followed by four contractions of

10 G. Borradaile, D. Eppstein, and P. Zhu

the resulting degree-2 vertices. This deletion and contractions give a charge
of +3.

(b) If the last degree-4 vertex is removed, and has no degree-four neighbors when
it is removed, then again its removal causes its neighbors to have degree 2
and is followed by four contractions, for a charge of +3.

(c) If, in the last removal of a degree-4 vertex, the vertex has one or more degree-
4 neighbors, then after this removal (and any ensuing edge contractions) the
graph becomes 3-regular. The next deletion will incur a charge of +1.

Thus, in all cases, the negative charge for the removal of a degree-4 vertex from
a 4-regular graph is balanced by a positive charge for a subsequent step of the
algorithm. ��

The bound n − m/5 is tight, for arbitrarily large graphs. In particular, the
graphs formed from n/5 disjoint copies of the complete graph K5 can have at
most n − m/5 vertices in any induced subgraph of treewidth at most 2, for
otherwise one of the copies of K5 would have only one of its vertices removed in
the subgraph, leaving a K4 subgraph which does not have treewidth 2.

The proof of Theorem 3 is similar in outline to this proof, but with a larger
set of cases and a more complex system of charges. We defer the details to the
full version of the paper [2].

5 No Very Large, Minor-Free Induced Subgraphs

In this section we prove Theorem 4. To prove this theorem, we begin with the
well-known result that Kh-minor free graphs are sparse [13, 14, 17, 18].

Lemma 3 (Theorem 1.1 [18]). Every simple Kh-minor-free graph with n ver-
tices has O(nh

√
log h) edges.

We will use this result to force the presence of a Kh minor even after deleting
many vertices. Lemma 4 allows us to densify a graph in terms of its girth (al-
lowing us to use Lemma 3 to argue the existence of a minor). We give a tighter
bound on the number of edges in a Kh-minor free graph with girth g in Corol-
lary 1. The proof of Theorem 4 may then be concluded by finding a family of
graphs that have sufficiently large girth.

Lemma 4. Let G be a graph with n vertices, m edges, and sufficiently large
girth g. Then it has a minor G′ that is a simple graph with n′ ≤ 5n

g vertices and

m− n+ n′ edges.

Proof. Let T be an arbitrary rooted spanning tree of G, let r be the root of T ,
and let Vi be the set of vertices at ith level of T . Let � =
 g−3

4 �. We choose an
integer a such that

S = r ∪

⎧⎨
⎩⋃

k≥0

Va+k�

⎫⎬
⎭ (1)

Planar Induced Subgraphs of Sparse Graphs 11

contains at most n
� ≤ 5n

g vertices. Set S is a collection of vertices at every �th

level starting from level a along with root r.
Now we perform the following operation to obtain a minor G′ of G: for every

vertex v ∈ G \ S contract the edge uv where u is the parent of v in T . That is,
for every v ∈ Vi, where i �= a + k�, we contract v to its ancestor in Vi−1. Since
the distance between two consecutive levels of vertices in S is � and the girth
of G is g, contracting these edges cannot result in self-loops or parallel edges.
Therefore G′ is simple.

Since we contract n − |S| = n − n′ edges, the number of edges in G′ is
m− (n− n′) = m− n+ n′. ��

Consider a graph G with n vertices, maximum degree 3, and girth g. If G has
n+ω(ng h

√
log h) edges, then, by Lemma 4, G has a minor G′ with O(ng) vertices

and ω(ng h
√
log h) edges. By Lemma 3, G′ is dense enough to have a Kh minor.

Therefore, we get:

Corollary 1. Every simple Kh-minor-free graph G with n vertices, maximum
degree 3, and girth g has n+O(ng h

√
log h) edges.

Proof of Theorem 4. Let G = (V,E) be a 3-regular graph with n vertices,
m = 3n

2 edges and girth Ω(log n); for example, the Ramanujan graphs have this
property [15]. In the following, we take h to be a constant. By Corollary 1, G
has a Kh minor. Any subgraph G∗ (with m∗ edges and n∗ vertices) of G also
has girth Ω(log n). By deleting k vertices, the best we can hope for is that we
delete 3k edges. That is, m∗ ≥ m − 3k. To ensure that G∗ does not have a Kh

minor, we need

3n

2
− 3k = m− 3k ≤ m∗ ≤ n∗ +O(n∗/g) = n− k +O

(
n− k

logn

)

Solving for k, we require that

k ≥
(
1

4
−O(1/ logn)

)
n.

Substituting 2m/3 for n gives the theorem. ��

Acknowledgments. This material is based upon work supported by the Na-
tional Science Foundation under Grant Nos. CCF-1252833 and CCF-1228639
and by the Office of Naval Research under Grant No. N00014-08-1-1015. The
authors thank Amir Nayyeri for helpful discussions.

12 G. Borradaile, D. Eppstein, and P. Zhu

References

1. Alon, N., Mubayi, D., Thomas, R.: Large induced forests in sparse graphs. J. Graph
Theory 113, 113–123 (2001) MR 1859785

2. Borradaile, G., Eppstein, D., Zhu, P.: Planar induced subgraphs of sparse graphs
(2014), arXiv:1408.5939

3. Borradaile, G., Klein, P., Marx, D., Mathieu, C.: Algorithms for Optimization
Problems in Planar Graphs (Dagstuhl Seminar 13421). Dagstuhl Reports 3(10),
36–57 (2014)

4. Călinescu, G., Fernandes, C.G., Finkler, U., Karloff, H.: A better approximation
algorithm for finding planar subgraphs. J. Algorithms 27(2), 269–302 (1998) MR
1622397

5. Cheng, C., McDermid, E., Suzuki, I.: Planarization and acyclic colorings of sub-
cubic claw-free graphs. In: Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS,
vol. 6986, pp. 107–118. Springer, Heidelberg (2011) MR 2914703

6. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs, 1st edn. Prentice-Hall (1998)

7. Edwards, K., Farr, G.: An algorithm for finding large induced planar subgraphs.
In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 75–80.
Springer, Heidelberg (2002) MR 2410446

8. Edwards, K., Farr, G.: Planarization and fragmentability of some classes of graphs.
Discrete Math. 308(12), 2396–2406 (2008) MR 2410446

9. Edwards, K., Farr, G.: Improved upper bounds for planarization and series-
parallelization of degree-bounded graphs. Electron. J. Combin. 19(2), P25 (2012)
MR 2928640

10. Halldórsson, M.M., Lau, H.C.: Low-degree graph partitioning via local search with
applications to constraint satisfaction, max cut, and coloring. J. Graph Algorithms
Appl. 1(3), 1–13 (1997) MR 1600712

11. Kawarabayashi, K.-I.: Planarity allowing few error vertices in linear time. In: 50th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), pp.
639–648 (2009) MR 2648441

12. Kawarabayashi, K.-I., Reed, B.: Computing crossing number in linear time. In: Pro-
ceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing
(STOC 2007), pp. 382–390 (2007) MR 2402463

13. Kostochka, A.V.: The minimum Hadwiger number for graphs with a given mean
degree of vertices. Metody Diskret. Analiz 38, 37–58 (1982) MR 0713722

14. Kostochka, A.V.: Lower bound of the Hadwiger number of graphs by their average
degree. Combinatorica 4(4), 307–316 (1984) MR 0779891

15. Lubotzky, A., Philips, R., Sarnak, R.: Ramanujan graphs. Combinatorica 8,
261–277 (1988) MR 0963118

16. Morgan, K., Farr, G.: Approximation algorithms for the maximum induced planar
and outerplanar subgraph problems. J. Graph Algorithms Appl. 11(1), 165–193
(2007) MR 2354168

17. Thomason, A.: An extremal function for contractions of graphs. Math. Proc.
Cambridge Philos. Soc. 95(2), 261–265 (1984) MR 0735367

18. Thomason, A.: The extremal function for complete minors. J. Combinatorial
Theory, Series B 81(2), 318–338 (2001) MR 1814910

Picking Planar Edges; or, Drawing a Graph

with a Planar Subgraph

Marcus Schaefer

School of Computing, DePaul University, Chicago, IL 60604, USA
mschaefer@cdm.depaul.edu

Abstract. Given a graph G and a subset F ⊆ E(G) of its edges, is there
a drawing of G in which all edges of F are free of crossings? We show
that this question can be solved in polynomial time using a Hanani-Tutte
style approach. If we require the drawing of G to be straight-line, but
allow up to one crossing along each edge in F , the problem turns out to
be as hard as the existential theory of the real numbers.

1 Introduction

Angelini, Binucci, Da Lozzo, Didimo, Grilli, Montecchiani, Patrignani, and Tol-
lis [1] asked the following problem:

“Given a non-planar graph G and a planar subgraph S of G, decide
whether G admits a drawing Γ such that the edges of S are not crossed
in Γ , and compute Γ if it exists”.

Their paper studies two variants of this problem: the unrestricted problem in
which Γ is an arbitrary poly-line drawing, and the straight-line variant, in which
Γ is restricted to straight-line drawings. Let us call these the partial planarity
and the geometric partial planarity problem. It seems that these two problems are
new to the literature. The closest previous variant may be the (also very recent)
notion of partially embedded planarity [2], which differs in that a particular
embedding of S is given, and the desired planar embedding of G has to extend
the given embedding of S. For partially embedded planarity, a linear-time testing
algorithm is known [2], as well as an obstruction set [13].

David Eppstein commented on the paper by Angelini et al. [1] in his blog [9]:

“If you’re given a graph in which some edges are allowed to participate
in crossings while others must remain uncrossed, how can you draw it,
respecting these constraints? Unfortunately the authors were unable to
determine the computational complexity of this problem, and leave it as
an interesting open problem”.

In other words, given a graph G and a subset of its edges F ⊆ E(G), is there
a (straight-line) drawing of G in which all edges of F are free of crossings? The
subgraph and subset formulations are equivalent, of course, but we slightly pre-
fer the second, since it emphasizes that we can specify for each edge whether it

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 13–24, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

14 M. Schaefer

has to be planar (crossing-free) or not: we can pick the planar edges. Looking
at planarity as a local requirement opens it up for combination with other prop-
erties; for example, what happens if we can specify a bound on the number of
crossings along each edge, or on the number of bends?

Previous Research

Angelini, et al. [1] show that (G,S) is always partially planar if S is a spanning
tree of G, even if the embedding of S is required to be a straight-line embedding.
For geometric partial planarity, they show that (G,S) can always be realized if
S is a spanning spider or caterpillar, even in polynomial area. However, they
also exhibit examples of (G,S) where S is a spanning tree of G for which (G,S)
has no geometric partial realization. There are further algorithms in the paper
to test geometric partial planarity for various types of spanning trees S, though
in some cases the layout algorithms require exponential area.

Our Contribution

In Section 2 we show that using a Hanani-Tutte style approach successfully
settles the complexity of the poly-line variant of the problem: partial planarity
can be solved in polynomial time. This is a further example of a planarity-style
problem for which there is (as yet) no traditional polynomial-time algorithm for
the problem, but the Hanani-Tutte approach leads to a solution. Other examples
of this are surveyed in [21].

We have to leave the complexity of the straight-line variant open, but there is a
good chance that it is as hard as the existential theory of the reals (see [20]). One
indication for this is that the layout algorithm for geometric partial planarity
suggested in [1] needs exponential area on some inputs. Secondly, the result is
true if we replace planarity with 1-planarity: testing partial geometric 1-planarity
is as hard as the existential theory of the reals, as we will see in Section 3.
In comparison, the special case of geometric 1-planarity is NP-complete (this
follows from known results in the literature, see Theorem 2).

2 Partial Planarity and Hanani-Tutte

We assume that the reader is somewhat familiar with the Hanani-Tutte charac-
terization of planarity (see [21,22]). Briefly, Hanani [6] and Tutte [27] established
the following algebraic characterization of planar graphs: a graph is planar if and
only if it has a drawing in which every two independent edges cross evenly. This
criterion can be rephrased as a linear system over GF(2): Create variables xe,v

for every e ∈ E(G) and v ∈ V (G), and let iD(e, f) denote the number of times
two edges e and f cross in a drawing D of G. Fix an arbitrary drawing D of G
(e.g. a convex drawing). Let P (D) be the system of linear equations over GF(2)
containing:

iD(uv, st) + xuv,s + xuv,t + xst,u + xst,v ≡ 0 mod 2,

Picking Planar Edges; or, Drawing a Graph with a Planar Subgraph 15

for every pair of independent edges uv, st ∈ E(G). Then G is planar if and only
if P (D) is solvable. The heart of the proof is showing that solvability of P (D)
leads to a planar drawing of G; we will not explain this part (see [21, Section 3]
for a detailed discussion). The other direction is a consequence of the following
well-known fact about drawings: as far as the crossing parity between pairs of
independent edges is concerned, one can turn any drawing of a graph into any
other drawing of the graph by performing a set of (e, v)-moves, where an (e, v)-
move consists of taking a small piece of e, moving it close to v and then pushing
it over v; the effect of an (e, v)-move is that the crossing parity between e and
any edge incident to v changes. Imagining one drawing of a graph morphing
into another, it is easy to believe that (e, v)-moves are sufficient to get from one
drawing to another. We state this result without proof. For further details see [7,
Section 4.6] or [22, Lemma 1.12].

Lemma 1. If D and D′ are two drawings of the same graph G, then there is a
set of (e, v)-moves so that

iD′(uv, st) ≡ iD(uv, st) + xuv,s + xuv,t + xst,u + xst,v mod 2,

for all edges uv, st ∈ E(G), where xe,v = 1 if an (e, v)-move is performed, and
xe,v = 0 otherwise.

For a graph G with a set of edges F ⊆ E(G), fix an arbitrary drawing D of
G, and let P (D,F) be the following system of equations over GF(2):

iD(uv, st) + xuv,s + xuv,t + xst,u + xst,v ≡ 0 mod 2,

for every pair of independent edges uv ∈ F and st ∈ E(G).

Lemma 2. G has a drawing Γ in which F is free of crossings if and only if
P (D,F) is solvable.

Since the solvability of a linear system of equations over a field (in this case
GF(2)) can be decided in polynomial time, the following corollary is immediate.

Corollary 1. Given a graph G with a set of edges F ⊆ E(G), it can be decided
in polynomial time whether G has a drawing in which all edges in F are free of
crossings. In such a drawing we can assume that edges in F are straight-line,
and each edge in E(G)− F has at most |E(G)− F | − 1 bends.

The running time of the algorithm is on the orderO((nm)3), where n = |V (G)|
and m = |E(G)|, since systems of linear equations over a field can be solved in
cubic time, and P (D,F) can have as many as O(nm) equations and O(nm)
variables (note that we can assume that |F | = O(n): if the graph (V (G), F) is
not planar, then there is no drawing of G in which all edges of F are free of
crossings; on the other hand, we cannot assume that G is planar). This may
seem impractical at a first glance, but recent experiments with an algorithm of
this type have been quite successful [11].

16 M. Schaefer

The hard direction in the proof of Lemma 2 is covered by the following result
from an earlier paper on the independent odd crossing number [19]. We call an
edge e in a drawing D independently even if it crosses every edge independent of
it an even number of times. More formally, iD(e, f) ≡ 0 mod 2 for every f which
is independent of e.

Lemma 3 (Pelsmajer, Schaefer, Štefankovič [19]). If D is a drawing of
a graph G in the plane, then G has a drawing in which the independently even
edges of D are crossing-free and every pair of edges crosses at most once.

The proof of Lemma 3 is constructive in the sense that the new drawing of G
can be found in polynomial time (there are no explicit time bounds in [19], but
a running time quadratic in O(|G|) seems achievable).

Proof (of Lemma 2). Suppose P (D,F) is solvable, and fix a solution xe,v ∈
{0, 1}, for e ∈ E(G), v ∈ V (G), for some initial drawing D of G. Construct
a drawing D′ from D by performing an (e, v)-move for every e ∈ E(G) and
v ∈ V (G) for which xe,v = 1. Pick uv ∈ F and let st ∈ E(G) be an arbitrary
edge independent of uv. Then

iD′(uv, st) = iD(uv, st) + xuv,s + xuv,t + xst,u + xst,v ≡ 0 mod 2,

since xe,v is a solution of the system P (D,F). Thus uv is independently even.
Since uv was arbitrary, all edges in F are independently even, and, by Lemma 3,
there is a drawing of G in which all edges of F are free of crossings, and every
pair of edges in E(G)−F crosses at most once. Temporarily replace each crossing
with a vertex, and take a planar straight-line embedding of the resulting graph.
In that drawing, all edges of F are straight-line, and (after turning crossings
into bends and perturbing them slightly), all remaining edges have at most
|E(G)− F | − 1 bends.

For the other direction, assume G has a drawing D′ in which all edges of F
are free of crossings. By Lemma 1 we know that there is a set of (e, v)-moves so
that

iD′(uv, st) ≡ iD(uv, st) + xuv,s + xuv,t + xst,u + xst,v mod 2

for all pairs of independent edges uv, st ∈ E(G). Now if uv ∈ F , then iD′(uv, st) =
0 for every edge st ∈ E(G). In particular,

iD(uv, st) + xuv,s + xuv,t + xst,u + xst,v ≡ iD′(uv, st) ≡ 0 mod 2,

so xe,v is a solution to P (D,F), which is what we had to show. ��

3 Geometric Partial 1-Planarity

In the straight-line version of the partial planarity problem, we ask whether for a
given G and F ⊆ E(G), there is a straight-line drawing of G in which the edges
of F are free of crossings. We cannot settle the complexity of this problem, but

Picking Planar Edges; or, Drawing a Graph with a Planar Subgraph 17

we have a suggestive result for a generalized version. Suppose we are allowed
to specify sets Fk ⊆ E(G), and ask whether G has a straight-line drawing in
which all edges in Fk have at most k crossings, for every k. The problem posed
by Angelini, Binucci, Da Lozzo, Didimo, Grilli, Montecchiani, Patrignani, and
Tollis [1] corresponds to specifying a set F0 of crossing-free edges. We will show
that if instead we specify a set F1 of edges that may be crossed at most once,
the problem has the same complexity as deciding the truth of statements in the
existential theory of the reals; in the terminology introduced in [24,20], it is ∃R-
complete. In analogy with the notion of 1-planarity (in which every edge may be
crossed at most once), we call the problem geometric partial 1-planarity.

Remark 1 (Equivalent Drawings). Geometric 1-planarity was first studied by
Eggleton [8] and Thomassen [26], and more recently in [12], and several other
papers, but with one important difference: in these papers one is given an intial
1-planar drawing of G and asks whether there is an equivalent geometric 1-planar
drawing, where two drawings are equivalent if they have the same facial structure
(for this definition to make sense, we consider crossings to be vertices). With this
stronger notion, Thomassen [26] was able to identify forbidden subconfigurations,
which led to a linear-time testing algorithm [12]. Similarly, Nagamochi [18] shows
that if we are given a drawing of G and a 2-connected, spanning subgraph S of
G, one can test in linear time whether there is an equivalent drawing of G in
which edges of S are free of crossings. ��

We will not give a formal definition of ∃R and ∃R-completeness (that can
be found in [24,20]), instead we will work with STRETCHABILITY, a complete
problem for the class. This is just like working with SAT, the Boolean satisfiabil-
ity problem, (or any other NP-complete problem) rather than the formal class
NP.

An arrangement of pseudolines in the plane is a collection of x-monotone
curves (that is, each pseudoline has exactly one crossing with every vertical
line) so that every pair of pseudolines crosses exactly once. An arrangement
of pseudolines is stretchable if all pseudolines can be replaced by straight lines
so that the order of crossings along the lines remains the same. See Figure 1
for an example of a pseudoline arrangement, and an equivalent straight-line
arrangement.

Mnëv [17] showed that STRETCHABILITY, the problem of deciding whether
an arrangement of pseudolines is stretchable, is computationally equivalent to
deciding the truth of a sentence in the existential theory of the real numbers (for
an accessible treatment of Mnëv’s proof, see Shor [25]).1 This led to the intro-
duction of the complexity class ∃R, which contains all problems which can be
translated in polynomial time to a sentence in the existential theory of the reals,
see [24,20] for more details. Similar to the theory of NP-completeness, there are
∃R-complete problems including stretchability, and truth in the existential the-
ory of the reals, but many other problems as well, such as the rectilinear crossing

1 Mnëv actually showed a stronger result, his universality theorem, here we are only
interested in the computational aspects.

18 M. Schaefer

Fig. 1. (Left) A pseudoline arrangement. (Right) A straight-line arrangement equiva-
lent to the pseudoline arrangement on the left.

number (there is a wikipedia page, for example [28]). We note that ∃R contains
NP, since the existential theory of the real numbers easily encodes satisfiability,
and in turn ∃R is contained in PSPACE, due to a famous result by Canny [5].
Therefore any ∃R-complete problem, such as partial geometric 1-planarity is
NP-hard, and can be solved in polynomial space.

Theorem 1. Partial Geometric 1-Planarity is ∃R-complete.

In particular, we conclude that the problem isNP-hard, and lies inPSPACE.
For the proof we make use of a simple gadget.

Lemma 4. There is no drawing of a K6 and a vertex-disjoint cycle C so that
all edges in the K6 have at most one crossing, and there is a crossing between
an edge of K6 and the cycle.

Proof. Suppose there were a drawing as described in the lemma, in which a K6-
edge e = uv crosses a cycle edge f ∈ E(C). Then e cannot cross any of the edges
in E(C) − {f}, since it has at most one crossing, and thus no edge incident to
u can cross an edge incident to v: to have a common point, one of them would
have to cross C, but then it would have two crossings, one with the cycle, and
one with the other edge. Therefore, the edges adjacent to e do not cross each
other at all. This implies that the drawing of the K6 contains 4 triangles with a
shared edge e whose other edges do not cross each other. On the sphere, there
is only one such drawing: 4 nested triangles (with a common base). But this
implies that two of the endpoints of those triangles are separated by the other
two triangles, which means the original endpoints cannot be joined by an edge in
a 1-planar drawing of the K6, since it would have to cross the other two triangles
(it cannot cross e, since e already has a crossing). ��

Proof (of Theorem 1). The problem can easily be expressed using an existentially
quantified statement over the real numbers: use the existential quantifiers to find
the locations of the vertices of the graph; once the vertices are located, it is easy
to express that each edge in F is crossed at most once. This shows that the
problem lies in ∃R.

Picking Planar Edges; or, Drawing a Graph with a Planar Subgraph 19

Since stretchability of pseudoline arrangements is ∃R-complete, it is sufficient
to show that stretchability can be reduced to partial geometric 1-planarity to
establish ∃R-hardness of partial geometric 1-planarity. Let A be an arbitrary
arrangement of pseudolines. We construct a graphGA and a set of edges F ⊆ GA
so that A is stretchable if and only if GA has a straight-line drawing in which
every edge in F has at most one crossing.

Let R be a parabola-shaped region (boundary of the form y = x2 + c for
some constant c ∈ R) so that all crossings of pseudolines in A lie within the
region R. Let VA be the intersection points of pseudolines with the parabolic
boundary of R (we can assume that all crossings of pseudolines lie in the convex
hull of V1). The region R is separated by A into faces, some of them adjacent
to the boundary of R, and some of them inner faces of the arrangement. We
choose a set of vertices VI consisting of an interior vertex for each inner face of
the arrangement; for each face on the boundary of R, we pick a vertex on the
interior of a boundary arc of the face, let VB of those boundary vertices; note
that all faces except the infinite face, are incident to a unique boundary arc; the
infinite face is incident to two boundary arcs, of which we pick one arbitrarily
to place the VB-vertex. Finally, pick a vertex p below R so that p can see all
vertices of VA ∪ VB; that is, a straight-line segment between p and any vertex in
VA ∪ VB does not cross the boundary of R. Let V = VA ∪ VR ∪ VI ∪ {p}.

For every two vertices in VA belonging to the same pseudoline, add an edge
between those vertices. Add a frame as follows: connect the vertices of VA ∪ VB

by a cycle that respects the order of those vertices along the boundary of R, and
connect p to every vertex in VA ∪VB by an edge. Identify each edge of the frame
with an edge in a (new) K6. Finally, add the dual graph of the line arrangement
to VI ∪ VB. Let F consist of all edges, except for the edges corresponding to the
original pseudolines. See Figure 2 for an example.

We first note that if A is stretchable, then GA has a straight-line drawing in
which every edge of F has at most one crossing. To see this, start with a straight-
line realization of A. Perform the construction of GA as we described it above.
Because of the convexity of R, we can draw the edges of the cycle on VA ∪ VB

as well as the straight-line edges to p. We can then add a straight-line drawing
of each K6 gadget to the frame so that the shared edge is free of crossings (and
the remainder of K6 does not participate in unnecessary crossings). Finally, the
dual graph of the line arrangement can be added to VI ∪ VB since any edge
connects two vertices in adjacent faces of the line arrangement which is always
possible with a straight-line arrangement, unless the resulting edge coincides
with the boundary of a cell. This cannot occur, however, since VI vertices lie
in the interior of faces, and the VB vertices lie on the boundary of the convex
region R. In this drawing, every edge in F has at most one crossing. Only edges
corresponding to the original pseudolines are crossed more than once by dual
edges.

For the other direction, start with a straight-line drawing of GA in which all
edges in F have at most one crossing. Suppose f is an edge of the frame and
let e be another edge in GA which does not belong to f ’s K6 gadget. If e and

20 M. Schaefer

• VA
◦ VB

� VI

� p

A
dual of A
frame
∂R

��

��
��

��
p

Fig. 2. The graph GA corresponding to the pseudoline arrangement A shown in Fig-
ure 1. K6-gadgets are not shown, and some edges are curved to improve readability.

f are adjacent, they cannot cross, since the drawing is straight-line. Hence e
either belongs to another K6-gadget or is one of the edges between vertices in
VA ∪ VB ∪ VI . In either case, e belongs to a cycle which is vertex-disjoint from
f ’s K6-gadget, so Lemma 4 implies that e does not cross f . This means that
after removal of all the K6-gadgets, the frame is free of crossings. In particular,
the cycle C on VA ∪VB is crossing-free, and hence its vertices occur in the order
determined by the line arrangement A. Let A′ be the line arrangement obtained
from GA by erasing the frame (and its gadgets), the dual graph, and extending
the edges corresponding to pseudolines to infinite lines. We claim that A′ is
equivalent to A.

We just saw that the order of pseudolines along C is correct, and, since the
frame does not cross edges corresponding to pseudolines, every two such edges
have to cross inside the region bounded by C (since their endpoints along C
alternate in A′ just as they do in A (recall that every pair of pseudolines crosses

Picking Planar Edges; or, Drawing a Graph with a Planar Subgraph 21

once). We now show that the dual graph of A forces the facial structure of the
line arrangement to be unique.

Let v ∈ VI ∪VB be an arbitrary vertex representing a face of the line arrange-
ment, and e an edge corresponding to some line in A. We show that v lies on
the same side of e (within the region bounded by the cycle C through VA ∪ VB)
in both A and A′, so the two line arrangements have to be equivalent. If v ∈ VB

this is forced by the cycle C; if v ∈ VI , we argue as follows: let s and t be the
VB-vertices closest to e (along C) and on the same side of e as v. We claim
that there is an st-path of length |A| − 1 on VI vertices that passes through v.
Clearly, any such path must have length at least |A| − 1, so we only need to
argue that a path of this length exists. To see this, start at s. Since v is an inner
vertex, s and v do not lie in the same face of the line arrangement, hence there
must be an edge f corresponding to a line of A so that s and v lie on opposite
sides of f . More strongly, there must be such an edge f which contributes to the
boundary of the cell v lies in (if the two vertices were on the same side of all
lines contributing to the boundary of the cell, they would have to be in the same
cell); in other words, there is a cell adjacent to the cell containing v (sharing f),
which is closer to s (note that t and v have to lie on the same side of f , since
otherwise s and t lie on the same side of both e and f , but then they cannot
both be closest to e). By induction we can now show that there are paths sv and
vt containing at most |A|−1 edges together (since e need never be crossed). But
then the path svt in GA on |A| − 1 edges cannot cross e, since it has to cross all
|A| − 1 edges corresponding to pseudolines (other than e). Hence v lies on the
same side of e in both A and A′.

Since A′ is a straight-line arrangement equivalent to A, we conclude that A
is stretchable, which is what we had to show. ��

In contrast, geometric 1-planarity is only NP-complete. This follows from
two well-known results: 1-planarity is NP-complete [10,14,4], and geometric 1-
planarity can be tested in linear time if a rotation system is given [26,12].

Theorem 2 (Folklore). Testing geometric 1-planarity is NP-complete.

Proof. The problem lies in NP, since we can guess the rotation system, and then
use the linear time algorithm from [12] to check whether there is an obstruction
to geometric 1-planarity with that rotation system. To see NP-hardness, we use
the NP-hardness of testing 1-planarity. If a graph G is 1-planar, then it has a
1-planar drawing in which each edge has at most one bend: simply apply Fary’s
theorem to the graph obtained from G by replacing each crossing by a dummy
vertex. To avoid that crossings and bends occur at the same location, we replace
each edge in G with a path of length three to get a new graph G′. Then G is
1-planar if and only if G′ has a geometric 1-planar embedding in which all edges
incident to the original vertices of G are free of crossings. And that we can easily
guarantee by identifying all of these edges with an edge of a K6-gadget. Let H
be this new graph. Then G is 1-planar if and only if H is geometrically 1-planar.
Therefore, geometric 1-planarity is NP-hard. ��

22 M. Schaefer

4 Future Research

What can we say about traditional approaches to partial planarity? More specif-
ically, can PQ-trees or SPQR-trees be used to solve this problem?

Recall that a bridge of S in G is either an edge in E(G) − E(S) with both
endpoints in S (a trivial bridge) or a connected component of G − S together
with its edges and vertices of attachment to S. Given an embedding of S, a
group of vertices of S is mutually visible [2] if there is a face of S containing all
vertices in the group on its boundary. The poly-line variant can be rephrased
as follows: is there a poly-line embedding of S so that for every bridge of S in
G, the vertices of attachment of the bridge are mutually visible? It seems quite
likely that SPQR-trees could be used to decide that question, even in linear time,
extending ideas for deciding partially embedded planarity developed in [2].

Another solution may come from progress on simultaneous embeddings, since
partial planarity can be viewed as a special case of simultaneous planarity.2 Two
graphs G1, G2 are simultaneously planar if there is a drawing of G1 ∪ G2 in
which the induced drawings of G1 and G2 are (each by itself) planar. Given a
graph G and S, we add edges in S to both G1 and G2. All other edges E(G)−S
we subdivide 2|E(G)| times, and assign the pieces along each subdivided edge
of G to G1 and G2 alternatingly. If G has a drawing in which all edges in S are
crossing-free, we can turn this into a simultaneous drawing of G1 and G2, since
we can assume that any two edges in E(G)−S cross at most once, so every edge
has less than |E(G)| crossings which we can now realize by matching up G1 and
G2 pieces of the subdivided edges.

Weak Realizability

Before we leave partial planarity, we want to draw one more connection, to the
weak realizability problem introduced by Kratochv́ıl [15,16]: Given a graph G
and a symmetric relation R on E(G), we can ask whether the abstract topological
graph (G,R) is weakly realizable, that is, if there is a drawing in which only pairs
of edges (e, f) ∈ R are allowed to cross (but do not have to cross). The general
problem is NP-complete [15,23], so one could ask whether there are special cases
which are solvable. Let us shift the focus by viewing R itself as the edge set of
a graph on the vertex set E(G).

From this point of view, R = ∅ corresponds to the planarity problem for
G, which can be solved in linear time. On the other hand, letting R be the
complete graph on E(G) leads to a trivial problem. What happens if we let R
be a complete graph on a subset E′ ⊆ E(G) of all edges of G? It turns out that
this captures partial planarity: (G,R) is weakly realizable, if and only if (G,E′)
is partially planar.

This could be the starting point of an attack on weak realizability using
structural properties of R, an approach from the intersection-graph point of
view. We quickly get into uncharted waters: If R is a complete bipartite graph,

2 This is based on a suggestion by Ignaz Rutter.

Picking Planar Edges; or, Drawing a Graph with a Planar Subgraph 23

then weak realizability of (G,R) expresses a simultaneous planarity problem
for two graphs: if R is a complete bipartite graph on E1(G) and E2(G), and
E0(G) contains the remaining (isolated) vertices of E(G), then (G,R) is weakly
realizable, if and only if G1 with edge set E0(G) ∪ E1(G) and G2 with edge set
E0(G)∪E2(G) have a simultaneous embedding with fixed edges. The complexity
of this problem is famously open, and related to several other open problems in
graph drawing (e.g. c-planarity [21]). If R is a complete k-partite graphs, then
the weak realizability problem corresponds to the sunflower case of the SEFE
problem for k graphs, which is NP-complete even for k = 3 [3,21].

If R consists of two disjoint complete graphs that together partition the vertex
set E(G), we get a problem which is the opposite of the SEFE problem: it asks
whether we can draw the two graphs G1 and G2 simultaneously (so that shared
edges are drawn the same way) so that edges belonging to the same graph may
cross each other, but edges belonging to different graphs may not. As far as we
know, nobody has investigated this version of the problem. Even the case where
R is a tree (or even a matching) does not seem immediately obvious.

References

1. Angelini, P., Binucci, C., Da Lozzo, G., Didimo, W., Grilli, L., Montecchiani, F.,
Patrignani, M., Tollis, I.G.: Drawings of non-planar graphs with crossing-free sub-
graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 292–303.
Springer, Heidelberg (2013)

2. Angelini, P., Di Battista, G., Frati, F., Jeĺınek, V., Kratochv́ıl, J., Patrignani,
M., Rutter, I.: Testing planarity of partially embedded graphs. In: Proceedings of
the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, pp. 202–221. Society for Industrial and Applied Mathematics, Philadelphia
(2010)

3. Angelini, P., Da Lozzo, G., Neuwirth, D.: On some NP-complete SEFE problems.
In: Pal, S.P., Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 200–212.
Springer, Heidelberg (2014)

4. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number
and 1-planarity hard. SIAM Journal on Computing 42(5), 1803–1829 (2013)

5. Canny, J.: Some algebraic and geometric computations in pspace. In: STOC 1988:
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
pp. 460–469. ACM, New York (1988)

6. Chojnacki, C. (Hanani, H.): Über wesentlich unplättbare Kurven im drei-
dimensionalen Raume. Fundamenta Mathematicae 23, 135–142 (1934)

7. de Longueville, M.: A course in topological combinatorics. Universitext. Springer,
New York (2013)

8. Eggleton, R.B.: Rectilinear drawings of graphs. Utilitas Math. 29, 149–172 (1986)
9. Eppstein, D.: Big batch of graph drawing preprints, http://11011110.

livejournal.com/275238.html (last accessed September 4, 2013)
10. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few cross-

ings per edge. Algorithmica 49(1), 1–11 (2007)
11. Gutwenger, C., Mutzel, P., Schaefer, M.: Practical experience with Hanani-Tutte

for testing c-planarity. In: McGeoch, C.C., Meyer, U. (eds.) 2014 Proceedings of
the Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX),
pp. 86–97. SIAM (2014)

http://11011110.livejournal.com/275238.html
http://11011110.livejournal.com/275238.html

24 M. Schaefer

12. Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs.
In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434,
pp. 335–346. Springer, Heidelberg (2012)

13. Jeĺınek, V., Kratochv́ıl, J., Rutter, I.: A Kuratowski-type theorem for planarity of
partially embedded graphs. Comput. Geom. 46(4), 466–492 (2013)

14. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of
1-planarity testing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417,
pp. 302–312. Springer, Heidelberg (2009)

15. Kratochv́ıl, J.: String graphs. I. The number of critical nonstring graphs is infinite.
J. Combin. Theory Ser. B 52(1), 53–66 (1991)

16. Kratochv́ıl, J.: Crossing number of abstract topological graphs. In: Whitesides,
S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 238–245. Springer, Heidelberg (1999)

17. Mäkinen, E.: On circular layouts. International Journal of Computer Mathemat-
ics 24(1), 29–37 (1988)

18. Nagamochi, H.: Straight-line drawability of embedded graphs. Technical Report
2013-005, Kyoto University (2013)

19. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing independently even cross-
ings. SIAM Journal on Discrete Mathematics 24(2), 379–393 (2010)

20. Schaefer, M.: Complexity of some geometric and topological problems. In: Epp-
stein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 334–344. Springer,
Heidelberg (2010)

21. Schaefer, M.: Toward a theory of planarity: Hanani-Tutte and planarity variants.
Journal of Graph Algortihms and Applications 17(4), 367–440 (2013)

22. Schaefer, M.: Hanani-Tutte and related results. In: Bárány, I., Böröczky, K.J., Fejes
Tóth, G., Pach, J. (eds.) Geometry—Intuitive, Discrete, and Convex—A Tribute to
László Fejes Tóth. Bolyai Society Mathematical Studies, vol. 24. Springer, Berlin
(2014)

23. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. In:
Proceedings of the 33th Annual ACM Symposium on Theory of Computing (STOC
2002) (2002)

24. Schaefer, M., Štefankovič, D.: Fixed points, Nash equilibria, and the existential
theory of the reals. Unpublished manuscript (2009)

25. Shor, P.W.: Stretchability of pseudolines is NP-hard. In: Applied Geometry and
Discrete Mathematics. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4,
pp. 531–554. Amer. Math. Soc., Providence (1991)

26. Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theory 12(3), 335–341
(1988)

27. Tutte, W.T.: Toward a theory of crossing numbers. J. Combinatorial Theory 8,
45–53 (1970)

28. Wikipedia. Existential theory of the reals (2012), http://en.wikipedia.org/

wiki/Existential theory of the reals (Online; accessed July 17, 2013)

http://en.wikipedia.org/wiki/Existential_theory_of_the_reals
http://en.wikipedia.org/wiki/Existential_theory_of_the_reals

Drawing Partially Embedded
and Simultaneously Planar Graphs

Timothy M. Chan1, Fabrizio Frati2, Carsten Gutwenger3, Anna Lubiw1,
Petra Mutzel3, and Marcus Schaefer4

1 Cheriton School of Computer Science, University of Waterloo, Canada
{tmchan,alubiw}@uwaterloo.ca

2 School of Information Technologies, The University of Sydney, Australia
fabrizio.frati@sydney.adu.au

3 Technische Universität Dortmund, Dortmund, Germany
{carsten.gutwenger,petra.mutzel}@tu-dortmund.de

4 DePaul University, Chicago, Illinois, USA
mschaefer@cdm.depaul.edu

Abstract. We investigate the problem of constructing planar drawings with few
bends for two related problems, the partially embedded graph (PEG) problem—
to extend a straight-line planar drawing of a subgraph to a planar drawing of the
whole graph—and the simultaneous planarity (SEFE) problem—to find planar
drawings of two graphs that coincide on shared vertices and edges. In both cases
we show that if the required planar drawings exist, then there are planar drawings
with a linear number of bends per edge and, in the case of simultaneous planarity,
a constant number of crossings between every pair of edges. Our proofs provide
efficient algorithms if the combinatorial embedding information about the draw-
ing is given. Our result on partially embedded graph drawing generalizes a classic
result of Pach and Wenger showing that any planar graph can be drawn with fixed
locations for its vertices and with a linear number of bends per edge.

1 Introduction

In many practical applications we wish to draw a planar graph while satisfying some
geometric or topological constraints. One natural situation is that we have a drawing of
part of the graph and wish to extend it to a planar drawing of the whole graph. Pach and
Wenger [20] considered a special case of this problem. They showed that any planar
graph can be drawn with its vertices lying at pre-assigned points in the plane and with
a linear number of bends per edge. In this case the pre-drawn subgraph has no edges.

If the pre-drawn subgraph H has edges, a planar drawing of the whole graph G
extending the given drawing H of H might not exist. Angelini et al. [1] gave a linear-
time algorithm for the corresponding decision problem; the algorithm returns, for a
positive answer, a planar embedding of G that extends that of H (i.e., if we restrict the
embedding of G to the edges and vertices of H , we obtain the embedding corresponding
to H). If one does not care about maintaining the actual planar drawing of H this is
the end of the story, since standard methods can be used to find a straight-line planar
drawing of G in which the drawing of H is topologically equivalent to the one of H. In

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 25–39, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

26 T.M. Chan et al.

this paper we show how to draw G while preserving the actual drawing H of H , so that
each edge has a linear number of bends. This bound is worst-case optimal, as proved by
Pach and Wenger [20] in the special case in which H has no edges.

A result analogous to ours was claimed by Fowler et al. [10] for the special case in
which H has the same vertex set as G. Their algorithm draws the edges of G one by
one in a certain order, and they claim a linear number of bends per edge. However, we
give an example where their algorithm produces exponentially many bends, confirming
a claim of Schaefer [23] that greedy extensions can in general give many bends.

We also address the simultaneous planarity problem [4], also known as “simulta-
neous embedding with fixed edges (SEFE)”. The SEFE problem is strongly related
to the partially embedded graph problem and—in a sense we will make precise later—
generalizes it. We are given two planar graphsG1 andG2 that share a common subgraph
G (i.e., G is composed of those vertices and edges that belong to both G1 and G2). We
wish to find a simultaneously planar drawing, i.e., a planar drawing of G1 and a planar
drawing of G2 that coincide on G. Graphs G1 and G2 are simultaneously planar if they
admit such a drawing. Both G1 and G2 may have private edges that are not part of G.
In a simultaneous planar drawing the private edges of G1 may cross the private edges
of G2. The simultaneous planarity problem arises in information visualization when we
wish to display two relationships on two overlapping element sets.

The decision version of the simultaneous planarity problem is not known to be NP-
complete, nor solvable in polynomial time, though it is NP-complete if more than two
graphs are given [11]. However, there is a combinatorial characterization of simultane-
ous planarity, based on the concept of a “compatible embedding”, due to Jünger and
Schulz [16] (see below for details). Erten and Kobourov [8], who first introduced the
problem, gave an efficient drawing algorithm for the special case where the two graphs
share vertices but no edges. In this case, a simultaneous planar drawing always exists,
and they construct a drawing in which each edge has at most three bends and therefore
any two edges cross (when they legally can) at most 16 times. In this paper we show
that if two graphs have a simultaneous planar drawing, then there is a drawing in which
every edge has a linear number of bends and in which any two edges cross at most 24
times. Our result is algorithmic, assuming a compatible embedding is given.

More formally, our paper addresses the following two problems:

– Planarity of a partially embedded graph (PEG). Given a planar graph G and a
straight-line planar drawing H of a subgraph H of G, find a planar drawing of G
that extends H (see [1,15]).

– Simultaneous planarity (SEFE). Given two planar graphs G1 and G2 that share
a subgraph G, find planar drawings of G1 and G2 that are the same on the shared
subgraph (see [4]).

We prove the following results:

Theorem 1. Let G be an n-vertex planar graph, let H be a subgraph of G, and let H
be a straight-line planar drawing of H . Suppose that G has a planar embedding E that
extends H. Then we can construct a planar drawing of G in O(n2)-time which realizes
E , extends H, and has at most 102|V (H)|+ 12 bends per edge.

Drawing Partially Embedded and Simultaneously Planar Graphs 27

Theorem 2. Let G1 and G2 be simultaneously planar graphs on a total of n vertices
with a shared subgraph G. Then there is a simultaneous planar drawing in which any
edge of G1 − G and any edge of G2 − G intersect at most 24 times, and one of the
following properties holds:

1. each edge of G is straight, and each private edge of G1 and of G2 has at most 72n
bends; also, vertices, bends, and crossings lie on an O(n2)×O(n2) grid; or

2. each edge of G1 is straight and each private edge ofG2 has at most 102|V (H)|+12
bends per edge.

If we are given a compatible embedding of the two graphs, we can construct such draw-
ings in O(n2) time.

Theorem 1 generalizes Pach and Wenger’s result, which corresponds to the special
case in which the pre-drawn subgraph has no edges. Observe that Theorem 1 directly
provides a weak form of Theorem 2: If G1 and G2 are simultaneously planar, then they
admit a compatible embedding. We can hence take any straight-line planar drawing of
G1 realizing the embedding and extend the induced drawing of G to a drawing of G2.
By Theorem 1, we obtain a simultaneous planar drawing where each edge of G1 is
straight and each private edge of G2 has at most 102|V (H)| + 12 bends per edge. Our
stronger result of 24 crossings between any two edges is obtained by modifying the
proof of Theorem 1, rather than applying that result directly.

We note that Grilli et al. [12] have a paper in this conference with a result similar
to Theorem 2. They show, using different techniques, that two simultaneously planar
graphs have a simultaneous planar drawing with at most 9 bends per edge, vastly better
than our 72n bound. Our primary goal, however, was to reduce crossings rather than
bends. We achieve 24 crossings per pair of edges. They do not address the number of
crossings, but the obvious bound from their result is 100 crossings per pair of edges.
We also achieve a polynomial-size grid, but the obvious way of forcing their drawing
onto a polynomial-sized grid increases the number of bends per edge to 300n.

1.1 Related Work

The decision version of simultaneous planarity generalizes partially embedded pla-
narity: given an instance (G,H,H) of the latter problem, we can augment H to a draw-
ing of a 3-connected graph G1 and let G2 = G. Then G1 and G2 are simultaneously
planar if and only if G has a planar embedding extending H. In the other direction, the
algorithm [1] for testing planarity of partially embedded graphs solves the special case
of the simultaneous planarity problem in which the embedding of the common graph G
is fixed (which happens, e.g., if G or one of the two graphs is 3-connected).

Several optimization versions of partially embedded planarity and simultaneous pla-
narity are NP-hard. Patrignani showed that testing whether there is a straight-line draw-
ing of a planar graph G extending a given drawing of a subgraph of G is NP-complete
[21], so bend minimization in partial embedding extensions is NP-complete; Patrig-
nani’s result holds even if a combinatorial embedding of G is given.1 Bend minimiza-

1 Patrignani does not explicitly claim NP-completeness in the case in which the embedding of
G is fixed, but that can be concluded by checking his construction; only the variable gadget,
pictured in his Figure 3, needs minor adjustments.

28 T.M. Chan et al.

tion in simultaneous planar drawings is NP-hard, since it is NP-hard to decide whether
there is a straight-line simultaneous drawing [9]. Crossing minimization in simultane-
ous planar drawings is also NP-hard, as follows from an NP-hardness result on an-
chored planar drawings by Cabello and Mohar [5] (see Section 4).

As mentioned above, the special cases of PEG and SEFE in which there are no edges
in the pre-drawn subgraph and in the common subgraph have been already studied.

Concerning PEG, Pach and Wenger [20] proved the following result: given an n-
vertex planar graph G with fixed vertex locations, a planar drawing of G in which each
edge has at most 120n bends can be constructed in O(n2) time. They also proved that
such a bound is tight in the worst case. A 3n+2 upper bound improving upon the 120n
upper bound of Pach and Wenger has been proved by Badent et al. [2].

Concerning SEFE, Erten and Kobourov [8] proved the following result: given two
planar graphs G1 and G2 sharing some vertices and no edges with a total number of n
vertices, there is an O(n)-time algorithm to construct a simultaneous planar drawing of
G1 and G2 on a grid of size O(n2) × O(n2), with at most 3 bends per edge, hence at
most 16 crossings between any edge of G1 and any edge of G2. Building on Kaufmann
and Wiese’s drawing algorithm [17], the number of bends per edge and the number of
crossings per pair of edges can be reduced to 2 and 9, respectively, at the expense of an
exponential increase in the area of the simultaneous drawing.

Haeupler et al. [13] showed that if two simultaneously planar graphs G1 and G2

share a subgraph G that is connected, then there is a simultaneous planar drawing in
which any edge of G1 −G and any edge of G2 −G intersect at most once. Introducing
vertices at crossing points yields a planar graph, and a straight-line drawing of that graph
provides a simultaneous planar drawing with O(n) bends per edge, O(n) crossings per
edge, and with vertices, bends, and crossings on an O(n2) × O(n2) grid. Our result
generalizes this to the case where the common graph G is not necessarily connected.

1.2 Graph Drawing Terminology

A rotation system for a graph is a cyclic ordering of the edges incident to each vertex. A
rotation system of a connected graph determines its facial walks—the closed walks in
which each edge (u, v) is followed by the next edge (v, w) in the cyclic order at v. The
facial walks are the boundaries of the faces in an embedding of the graph. The size |W |
of a facial walk W is the length of W (edge repetitions are counted). A rotation system
is planar if it corresponds to a planar drawing; a planar embedding of a connected
graph consists of a planar rotation system together with a specified outer face.

These definitions do not handle the situation in which the graph is not connected.
Following Jünger and Schulz [16], we define a topological embedding of a (possibly
non-connected) graph as follows: We specify a planar embedding for each connected
component. This determines a set of inner faces. For each connected component we
specify a “containing” face, which may be an inner face of some other component or the
unique outer face. Furthermore, we forbid cycles of containment—in other words, if a
connected component is contained in an inner face, which is contained in a component,
etc., then this chain of containments must lead eventually to the unique outer face.

A facial boundary in a topological embedding of a graph is the collection of facial
walks along the (not necessarily connected) boundary of a face. Each face (unless it is

Drawing Partially Embedded and Simultaneously Planar Graphs 29

the outer face) has a distinguished facial walk we call the outer facial walk separating
the remaining inner facial walks from the outer face of the embedding. The size of a
facial boundary is the sum of the sizes of the facial walks part of the facial boundary.

A compatible embedding of two planar graphs G1 and G2 consists of topological
embeddings of G1 and G2 such that the common subgraph G inherits the same topo-
logical embedding fromG1 as fromG2 (where a subgraph inherits a topological embed-
ding in a straightforward way; in particular, if we remove an edge that disconnects the
graph, the face containment is determined by the edge that was removed). Jünger and
Schulz [16] proved that G1 and G2 are simultaneously planar if and only if they have
a compatible embedding. For that proof, they construct a simultaneous planar drawing
of G1 and G2 by extending a drawing of G (thus proving a form of our Theorem 1).
However, their method does not yield any bounds on the number of bends or crossings.

2 Partially Embedded Graphs

In this section we prove Theorem 1. We will construct a planar drawing of G that
extends H, assuming that we are given a planar embedding of G that extends H. It
suffices to prove the result for a single face F of H and the connected components of G
that lie inside or on the boundary of F and are connected to H .

Pach and Wenger [20] proved their upper bound on the number of bends needed to
draw a graph with fixed vertex locations by drawing a tree with leaves at the fixed vertex
locations, and “routing” all the edges close to the tree, sometimes crossing the tree but
never crossing each other. We will adapt their method to our setting.

One important difference is that we have to deal with fixed facial boundaries instead
of fixed vertex locations. The solution is natural: We contract each facial boundary Wi

of F to a single vertex vi, fix vertex vi inside F near Wi, and then apply the Pach-
Wenger method to draw the contracted graph on the fixed vertex locations vi. This must
be done while keeping the drawing inside F . We keep the drawing at a small distance
from the boundary of F , inside a polygonal region F ′ that is an “inner approximation”
of F . Inside F ′ we draw a tree T with its leaves vi at the fixed vertex locations, suitably
bounding the size of T in order to get our bound on the number of bends. We then route
the edges of the contracted graph close to T as in Pach-Wenger. Finally, to get back our
uncontracted graph, we route the edges incident to vi to their true endpoint on the facial
boundary Wi—these routes use the empty buffer zone between F and F ′.

We now fill in further details. We use nA and mA for the number of vertices and
edges in subgraph A. Let Wi, with 1 ≤ i ≤ b, be the boundary walks of F .

We now introduce the concept of inner ε-approximations. The Hausdorff distance
dH(A,B) of two sets (in a space with metric d) is defined as:2

max {supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)}.
Intuitively, the Hausdorff distance measures how far a point in one set can be from
the other set. Sets A and B are ε-close if dH(A,B) < ε. Then A is an inner ε-
approximation of B if they are ε-close and there is a δ > 0 so that all the points δ-close
to A are a subset of B. The next lemma deals with inner ε-approximations of F .

2 The underlying metric d can be Euclidean or some other appropriate metric.

30 T.M. Chan et al.

Lemma 1. Let k be the size of the boundary of F . For any ε > 0 we can efficiently
construct an inner ε-approximationF ′ of F whose boundary has size 3k (see Figure 1).

We prove Lemma 1 using Lemma 2 in which, for every sufficiently small ε > 0 we
construct a closed polygonal arc Pε that is ε-close to the facial walk, does not have too
many bends, and so that the simple polygon bounded by Pε′ lies in the interior of the
simple polygon bounded by Pε for all 0 < ε′ < ε (in particular, any two polygonal
arcs are disjoint). There are various ways to achieve this. Pach and Wenger [20] use the
Minkowski sum of the facial walk (in their case the facial walk of a tree) and a square
diamond centered at 0. We use a slightly different construction, because it seems eas-
ier (both computationally and conceptually) and it gives a slightly better bound on the
number of bends (which is what we are most interested in); namely for the facial walk
of an n-vertex tree, Pach and Wenger construct a polygonal arc with 4n − 2 vertices,
while our polygonal arcs have 2n − 2 vertices. Our construction does have one disad-
vantage: the resulting drawings will get rather tight for sharp (acute or obtuse) angles
(the Minkowski-sum construction has the same problem for highly obtuse angles only).

Lemma 2. Let W be a facial walk in a face F of a drawing of a graph G in the plane.
We can efficiently construct a disjoint family of polygonal arcs Pε so that Pε is ε-close
to W and each Pε has at most max{3, |W |} vertices.

Proof. Let e, v, f be a corner of W , that is, two consecutive edges e, f and their shared
vertex v. At v erect the angle bisector of e and f of length ε (inside F), and let v′ be the
endpoint of the bisector different from v. For computational reasons, it may be better to
use the �1-norm at this point (the Euclidean norm will lead to square root expressions
in the coordinates). If (vi)

k
i=1 is the sequence of vertices along W , with k = |W |,

then (v′i)
k
i=1 defines a closed polygonal arc. If ε is sufficiently small, namely less than

half the distance between any vertex of W and a non-adjacent edge on W , the arc is
free of self-crossings, and therefore bounds a simple polygon with |W | vertices. There
are two special cases in which this argument does not work: if the boundary walk is a
boundary walk on an isolated vertex or an isolated edge. In both of these cases, we can
approximate W using a triangular shape. ��

Lemma 2 allows us to replace a facial boundary with a simple polygon with holes,
that is, a collection of closed polygonal arcs that bound a face which is very close
to the original boundary, has bounded complexity, and can be constructed efficiently.
This leads to a proof of Lemma 1. Namely, approximate each facial walk of the facial
boundary with an ε-close polygonal arc lying in F . The union of those arcs is a simple
polygon with holes as long as ε is less than half the distance between any two non-
adjacent vertices or edges. The upper bound of 3k will generally be a large overestimate,
but allows for the possibility that all the inner walks are walks on isolated vertices.

We now return to the proof of Theorem 1. After constructing an inner ε-approximation
F ′ of F by using Lemma 1, the next step is to construct tree T . Triangulate F ′ using at
most mF ′ + 2(b − 2) triangles3 and use a result of Bern and Gilbert [3] to construct a

3 Every n-vertex polygon with b boundary components can be triangulated by inserting edges
in O(n log n) time. The number of resulting triangles is n+ 2(b− 2) (see [19, Lemma 5.1]).

Drawing Partially Embedded and Simultaneously Planar Graphs 31

v
1

v
2

1

W
1

W
2

2

3

4

5

F'

(a) (b)

Fig. 1. A face F with outer and inner and boundary walks W1 and W2. (a) The 5 edges of G−H .
(b) The inner approximation F ′ (heavy blue lines), a triangulation of it (fine lines), and the dual
spanning tree (dashed red) with extra vertices v1 and v2 close to W1 and W2, respectively.

straight-line drawing of the dual of the triangulation. Bern and Gilbert place a vertex at
the incenter of each triangle (where the angle bisectors of the triangle meet) and prove
that the straight-line edge joining two vertices in adjacent triangles lies within the union
of the two triangles. Now take a spanning tree T of the dual. For each boundary walk
Wi, we augment T with a new leaf vi close to Wi and inside F ′. This adds b vertices to
T , so the number of vertices of T is now nT = mF ′ + 3b− 4.

Let GF be the embedded multi-graph obtained by restricting G to vertices and edges
lying inside or on the boundary of F and by contracting each boundary walk Wi of F
to a single vertex vi. We can now use the following result (extending ideas of Pach and
Wenger) to embed GF close to T .

Lemma 3. Let G be a multi-graph with a given planar embedding and fixed locations
for a subset U ⊆ V (G) of its vertices. Suppose we are given a straight-line drawing
of a tree T whose leaves include all the vertices in U at their fixed locations. Then
for every ε > 0 there is a planar poly-line drawing of G that is ε-close to T , that
realizes the given embedding, where the vertices in U are at their fixed locations, and
where each edge has at most 12nT bends. Moreover, each edge of G comes close to
each vertex in U at most six times (where coming close means entering and leaving an
ε-neighborhood of the vertex or terminating at the vertex).

The proof of Lemma 3 is long and involved, hence we defer it to the end of the
section, and we first proceed with the reminder of the proof of Theorem 1.

We use Lemma 3 to embed GF along T so that vertices vi are drawn at their fixed
locations. Each edge of GF has at most 12nT bends.

We now want to connect edges in GF to the boundary components they belong to. We
will use the buffer between F ′ and F to do this. In fact, we need to split the buffer zone
into two, so we apply Lemma 1 a second time to obtain an inner ε/2-approximationF ′′

of F , so that F ′ ⊆ F ′′ ⊆ F . See Figure 2. The size of the boundary of F ′′ is at most
3mF (just like F ′). Now for each walk Wi we extend the edges ending at vi to their
endpoint on Wi. Since we maintained the cyclic order of GF -edges at vi, we can simply

32 T.M. Chan et al.

W
2

v
2

1

2

3
4

5

e
f

F'

1

2

3
4

5

e
f

F'

F''

W
2

e
f

F'

F''

W
2

1

2

3
4

5

v
2

(a) (b) (c)

T T

Fig. 2. A close-up of the situation near inner boundary walk W2. (a) After drawing GF around
the tree T (heavy dashed line), edges 1, . . . , 5 are incident to v2 in the correct cyclic order, but
two other edges e and f pass by between v2 and F ′. (b) We add a second approximation F ′′ and
route the edges e and f (in dashed red) around W2 in the buffer zone between F ′′ and F ′. (c) We
route the edges incident to W2 in the buffer zone between F and F ′′.

route these edges around Wi using approximations to Wi via Lemma 1, and we can do
so in F−F ′′. This adds at most mWi+2 bends to an edge with endpoint on Wi; the two
additional bends are needed to separate edges at vi, and turn to connect to Wi. There
is one difficulty: there are edges of GF that pass by vi, separating it from the segment
of F ′ close to vi (which is our gate to Wi). To remedy this difficulty, we first route all
of these edges around the whole obstacle Wi in the F ′′ − F ′ part of the buffer, which
adds mWi + 2 bends to an edge every time it passes vi. Now we are free to route the
GF -edges incident to vi to their endpoints along Wi. Since an edge can pass by and/or
terminate at a vertex at most six times, the total number of additional bends in each edge
caused by going around Wi is 6(mWi + 2) ≤ 6(mF ′ + 2) ≤ 18mF + 12. Since each
GF edge started with 12nT bends, each GF edge now has at most 12nT + 18mF + 12
bends. Using mF ≤ mH ≤ 3nH , and nT ≤ mF ′ + 3b − 4 ≤ 3mF + 3b − 4 ≤ 4nH

we conclude that each edge has at most 48nH + 54nH + 12 = 102nH + 12 bends.
Let us now analyze the running time of the algorithm. Most of the steps in the

construction can be performed in linear time. Building the triangulation takes time
O(nH lognH). The overall running time is thus bounded by the size of the resulting
drawing which contains a linear number of edges each with a linear number of bends,
yielding the quadratic running time.

We conclude the section by proving Lemma 3. Pach and Wenger’s [20] algorithm
to draw a planar graph G with vertices at fixed locations has three ingredients: (i) they
show how to assume that G is Hamiltonian, (ii) they show how to draw the Hamiltonian
cycle of G, and (iii), they show how to draw the remaining edges of G. In order to prove
Lemma 3, we will follow their structure closely. We will use their result (i) directly:

Lemma 4 (Pach, Wenger [20]). Given a planar graph G we can in linear time con-
struct a Hamiltonian graphG′ with |E(G′)| ≤ 5|E(G)|−10 by adding and subdividing
edges of G (each edge is subdivided by at most two new vertices).

Drawing Partially Embedded and Simultaneously Planar Graphs 33

We will use a slightly stronger version of Lemma 4 in which G is allowed to be a
mulitgraph. Pach and Wenger’s proof of Lemma 4 works for this case.

For part (ii) Pach and Wenger show that a Hamiltonian cycle can be drawn at fixed
vertex locations ε-close to a star connecting all the vertices. For our application, we
replace their star with a straight-line drawing of a tree T whose leaves are the vertices vi.
Independently of our result, the generalization of part (ii) to trees has essentially been
shown by Chan et al. [6]. Since their goal was the minimization of the edge lengths,
they did not give an estimate on the number of bends. We now show how to draw the
Hamiltonian cycle. We will later show how to draw the remaining edges.

Lemma 5. Let C be a cycle with fixed vertex locations, and suppose we are given a
straight-line planar drawing of a tree T , in which the vertices of C are leaves of T at
their fixed locations. Then for every ε > 0 there is a planar poly-line drawing of C with
at most 2|E(T)| − 1 bends per edge and ε-close to T .

Proof. Let p1, . . . , pn be the vertices of C in their order along the cycle. We build a
planar poly-line drawing of C as follows. Let Θi be an iε/n-approximation of T for
1 ≤ i < n (which we can construct using Lemma 2). We start at p1. Suppose we have
already built the poly-line drawing of p1, . . . , pi and we want to add pipi+1. Let Qi be
the unique path in T connecting pi to pi+1. Create Θ′

i from Θi by keeping only the
vertices of Θi close to (approximating) vertices in Ti :=

⋃
j≤i Qj . This removes parts

of the walk along Θi which we patch up as follows: suppose v is an interior vertex of
Ti, and v is incident to e which does not lie on Ti. Then v is approximated by two
vertices v1 and v2 which lie on bisectors formed by e with neighboring edges. Now v1
and v2 belong to Θ′

i, but the path along Θi between them got removed (since e does
not belong to Ti). We add v1v2 to Θ′

i to connect them. Note that v1v2 does not pass
through v since v is incident to at least three edges (e and two edges of Ti), and it does
not cross any edges of any Θ′

j with j < i, since Ti is monotone: if e �∈ E(Θi), then
e �∈ E(Θj) for j < i. See Figure 3 for an illustration. Now both pi and pi+1 correspond
to unique vertices on Θ′

i (since they are leaves), so we can pick a facial walk v1, . . . , vk
on Θ′

i which connects pi to pi+1 and which avoids passing by p1. We now add line
segments piv2, v2v3, . . ., vk−2vk−1, vk−1pi+1 to the poly-line drawing of C. We treat
the final edge pnp1 similarly, except that we move along Θ′

n−1 back to p1 in the last
step, which we can do, since none of the intermediate paths passed by p1. Each edge of
C is replaced by a polygonal arc with at most 2|E(T)| − 1 bends. ��

As mentioned earlier, the following lemma is close to a result by Chan et al. [6],
except for the claim about the number of bends, and the rotation system (which we
require for our main result).

Lemma 6. Let G be a Hamiltonian multi-graph with a given planar embedding and
fixed vertex locations. Suppose we are given a straight-line drawing of a tree T whose
leaves include all the vertices of G at their fixed locations. Then for every ε > 0 there
is a planar poly-line drawing of G that is ε-close to T , that realizes the given embed-
ding, where the vertices of G are at their fixed locations, where each edge has at most
4|E(T)| − 1 bends, and where each edge comes close to any leaf of T at most twice.

34 T.M. Chan et al.

1

2

3

4

5

Fig. 3. The underlying tree T is in black (thick edges), angle bisectors in gray; the Θ′
i are drawn

as thin black edges; to reduce clutter, we are not showing the remaining edges of Θi; the drawing
of C is indicated by the green line.

The obvious idea—routing edges along the Hamiltonian cycle C—only gives a
quadratic bound on the number of bends, since each edge would follow the path of
a linear number of edges of C, and each edge of C has a linear number of bends. Pach
and Wenger came up with an ingenious way to construct auxiliary curves with few
bends based on the level curves Θ′

i which carry the cycle C in the proof of Lemma 5.

Proof. Let C be the Hamiltonian cycle of G and let G1 and G2 be the two outerplanar
graphs composed of C and, respectively, of the edges of G outside and inside C. Using
Lemma 5 we find a planar poly-line drawing of C on V (G). We need to show how to
draw G1 and G2 respecting the planar embeddings induced by the given embedding
of G. Let n = |V (G)| and mi = |E(Gi)|. We only describe how to draw G1, since
G2 can be handled analogously. Let Δi,k, 1 ≤ k ≤ m1 be a kε/(nm1)-approximation
of Θ′

i constructed using Lemma 2. For a fixed i, each Δi,k crosses C twice: when C
moves from pi to Θ′

i+1, and when it finally moves back from Θ′
n to p1. As in Pach and

Wenger, we can then split Δi,k at the crossings and connect their free ends to p1 and pi,
resulting (for each k) in two curves Δ′

i,k and Δ′′
i,k connecting p1 to pi, where Δ′

i,k lies
outside C (these are the curves we use for G1) and Δ′′

i,k inside C (these are the curves
we use for G2). Each such curve has at most 2|E(T)| − 1 bends. As in the proof of
Pach and Wenger, we can create edges pipj ∈ E(G1) by concatenating Δ′

i,k with Δ′
j,k.

Since we chose m1 such approximations, we can do this for each edge in G1. There are
two problems remaining: edges pipj now all pass through p1 and they could potentially
cross (rather than just touch) there. Pach and Wenger show that any two edges touch,
so the drawing can be modified close to p1 so as to separate all edges pipj from each
other. This introduces at most one more bend per edge, so that the resulting edges have

Drawing Partially Embedded and Simultaneously Planar Graphs 35

2(2|E(T)|−1)+1 = 4|E(T)|−1 bends. Finally, note that each edge pipj comes close
to each leaf of T (including p1) at most twice, once for Δ′

i,k and once for Δ′
j,k. ��

Now we are ready to finish the proof of Lemma 3. We show how to apply Lemma 6
in case G is not Hamiltonian, and not all its vertices are assigned fixed locations.

By Lemma 4, we can construct a graph G′ with a Hamiltonian cycle C by sub-
dividing each edge of G at most twice, and by adding some edges, where G′ has a
planar embedding extending the embedding of G. Traverse C: whenever we encounter
an edge of C with at least one endpoint not in U , contract that edge. This yields a new
Hamiltonian graph G′′ with V (G′′) = U and a planar embedding induced by the planar
embedding of G′. Use Lemma 6 to embed G′′ at the fixed vertex locations, and ε-close
to T , so that each edge of G′′ has at most 4|E(T)| − 1 bends. Each vertex u ∈ U of G′′

corresponds to a set of vertices Vu ⊆ V (G′) which was contracted to u, so the subgraph
G′

u of G′ induced by Vu is connected. Since we embedded G′′ with the induced planar
embedding of G′, we can now do some surgery to turn u back into G′

u.
To this end, we define a graph G+

u , which consists of G′
u, of a cycle Cu containing

G′
u in its interior, and of some further edges. Each vertex of Cu corresponds to an edge

of G′ “incident to” G′
u, i.e., with an end-vertex in Vu and with an end-vertex not in Vu.

Vertices appear in Cu in the same order as the corresponding edges incident to G′
u leave

G′
u (this order also corresponds to the cyclic order of the edges incident to v in G′′);

each vertex of Cu corresponding to an edge e of G′ is connected to the end-vertex of e
in Vu. Finally, G+

u contains further edges that triangulate its internal faces.
Now consider a small disk δ around u. We erase the part of the drawing of G′′

inside δ. We construct a straight-line convex drawing of G+
u in which each vertex of

Cu is mapped to the point in which the corresponding edge crosses the boundary of
δ. This drawing always exists (and can be constructed efficiently), given that G+

u is 2-
connected and internally-triangulated. Removing the edges that triangulate the internal
faces of G+

u completes the reintroduction of G′
u.

Overall, we added one bend to an edge with exactly one endpoint in Vu. Since an
edge can have endpoints in at most two Vu, this process adds at most two bends per
edge, so every edge has at most 4|E(T)|+1 bends. Since each edge ofG was subdivided
at most twice to obtain G′, each edge of G has at most 3(4|E(T)|+1)+2 = 12|E(T)|+
5 < 12|V (T)| bends. Each edge of G′ comes close to each leaf of T at most twice, so
each edge of G comes close to each vertex of U at most six times. This concludes the
proof of Lemma 3.

3 Extending Partial Straight-Line Planar Drawings Greedily

Let G be an n-vertex plane graph, let H be a spanning subgraph of G, let H be a
straight-line planar drawing of H , and let σ = [e1, . . . , em] be an ordering of the edges
in G \ H . A drawing Γ of G greedily extends H with respect to σ if it is obtained
by drawing edges e1, . . . , em in this order, so that ei is drawn as a polygonal curve that
respects the embedding of G and with the minimum number of bends, for i = 1, . . . ,m.

Fowler et al. claimed in [10] that, for every ordering σ of the edges in G\H such that
the edges between distinct connected components of H precede edges between vertices

36 T.M. Chan et al.

a

cw1w2w3wN−1wN wN−2

r1 d

e

rn−3N−5r2

v1
b

v2v3

v4 u1u2

u3uN−2uN uN−1

vN

b4

Fig. 4. A drawing Γ of G that greedily extends H with respect to σ. Drawing H consists of the
black circles. The first edges n − N − 1 edges in σ are (black) straight-line segments. The last
N edges (ui, vi) are (colored) polygonal lines whose bends have been made smooth to improve
the readability. Only four of the latter edges are shown.

in the same connected component of H , there exists a drawing Γ of G greedily extend-
ing H with respect to σ where each edge has O(n) bends. However, in the following
we confirm a claim of Schaefer [23] stating that greedy extensions do not, in general,
lead to drawings with a polynomial number of bends.

Theorem 3. For every n, there exists an n-vertex plane graph G, a planar drawing H
of the spanning empty subgraph H of G, and an order σ of the edges in G such that any
drawing of G that greedily extends H with respect to σ has edges with 2Ω(n) bends.

Proof. We adapt an example by Kratochvı́l and Matoušek [18]. Refer to Fig. 4. Let
N =
n3 �−6, for any integer n. GraphH consists of n isolated vertices; namely vertices
u1, . . . , uN , v1, . . . , vN , w1, . . . , wN , a, b, c, d, e, r1, . . . , rn−3N−5. The first n−N−1
edges in σ are (ui, wi) for i = 1, . . . , N , (wi, wi+1) for i = 1, . . . , N − 1, (ri, ri+1)
for i = 1, . . . , n − 3N − 6, (c, w1), (b, c), (c, e), (e, d), (a, d), and (a, rn−3N−5). All
these edges are straight-line segments in any drawing Γ of G that greedily extends H
with respect to σ. The last N edges in σ are (u1, v1), . . . , (uN , vN) in this order.

Consider any drawing Γ of G that greedily extends H with respect to σ. We claim
that edge (ui, vi) has 2i−1 bends in Γ . In fact, it suffices to prove that (ui, vi) has 2i−1

intersections with the straight-line segment ab in Γ . Indeed, (u1, v1) has exactly one in-
tersection with ab in Γ . Inductively assume that (ui, vi) has 2i−1 intersections with ab
in Γ ; we prove that (ui+1, vi+1) has 2i intersections with ab in Γ . This proof is accom-
plished by citing Kratochvı́l and Matoušek [18] almost verbatim. Since (ui+1, vi+1)
does not cross (ui, vi), it has a bend bi+1 around vi, i.e., inside the square defined by
ui−2, wi−2, wi−1, and ui−1. Thus the polygonal curve representing (ui+1, vi+1) in Γ
consists of two parts – one from ui+1 to bi+1, the other from bi+1 to vi+1. Both of these
parts may be used as an edge joining ui and vi – after contracting ui+1 and vi+1 into
ui, and bi+1 into vi. Hence, by induction, each of these two parts has 2i−1 intersections
with ab, and the whole edge (ui+1, vi+1) has 2i intersections with ab.

Hence, in any drawing Γ of G that greedily extends H with respect to σ, one edge
has 2N−1 = 2�

n
3 	−7 ∈ 2Ω(n) bends, which concludes the proof.

Note that the graphG in the proof of Theorem 3 is a tree, thus all of its edges connect
vertices in distinct connected components of H . ��

Drawing Partially Embedded and Simultaneously Planar Graphs 37

4 Simultaneous Planarity

Before turning to our algorithm for drawing simultaneously planar graphs, we justify
our claim that minimizing the number of crossings in a simultaneous planar drawing
is NP-hard. This result follows from Cabello and Mohar’s proof of NP-hardness for
the anchored planarity problem [5, Theorem 2.1], but a more direct proof of a slightly
stronger result is possible by reduction from the NP-complete crossing number prob-
lem. We briefly explain the reduction. Given a graph G with m edges, subdivide each
edge 2m times. Let G1 consist of all the edges incident to the original vertices of G
together with every other edge along the paths connecting the original vertices. Let G2

consist of the remaining edges. Note that G1 and G2 do not share any edges. It can
be easily seen that the crossing number of G equals the smallest number of crossings
between edges of G1 and edges of G2 in a simultaneous drawing of G1 and G2.4 We
now turn to the proof of Theorem 2.

Proof (of Theorem 2). We show how to find in O(n2) time a simultaneous planar draw-
ing Γ such that any private edge of G1 and any private edge of G2 intersect at most 24
times, such that every edge of G1 is straight, and such that every private edge of G2 has
at most 102|V (H)|+12 bends. In order to construct a simultaneous planar drawing Γ ′

on an O(n2) × O(n2) grid such that any private edge of G1 and any private edge of
G2 intersect at most 24 times, such that each edge of G is straight, and such that every
private edge has at most 72n bends, it suffices to introduce dummy vertces at the O(n2)
crossing points in Γ , and then to construct a straight-line drawing of the resulting planar
graph on a small grid. In particular, the number of bends per edge in Γ ′ is at most 72n,
since each edge in Γ crosses less than 3n edges, each at most 24 times.

We start by constructing any straight-line planar drawingΓ1 ofG1. We now construct
a drawing Γ2 of G2 by exploiting an approach analogous to the one of the proof of
Theorem 1. Drawing Γ1 induces a straight-line planar drawing Γ of G. Thus, in order
to determine Γ2, it remains to describe how to draw the private edges of G2. We will
accomplish this independently for each face F of G.

We construct a triangulation Σ of F by using all the vertices and edges of G1 that
lie inside F , as well as some extra edges. Next, we execute the same algorithm as for
the proof of Theorem 2. Namely, we construct a straight-line drawing of the dual D of
Σ and we take a spanning tree T of D. For each boundary walk Wi of F , we augment
T with a leaf vi close to Wi and inside F ′, where F ′ is an inner ε-approximation of
F . Let GF

2 be the embedded multi-graph obtained by restricting G2 to the vertices and
edges inside or on the boundary of F , and by contracting each boundary walk Wi of F
to a single vertex vi. We use Lemma 3 to construct a planar poly-line drawing of GF

2

that realizes the given embedding, that is ε-close to T , and in which vertices vi maintain
their fixed locations. Finally, we reconnect edges in GF

2 to the boundary components
they belong to. In order to do this, we first “wrap” the edges of GF

2 passing by a vertex

4 Using the fact that crossing number is hard for cubic graphs [14], we can even show that
minimizing the number of crossings in a simultaneous drawing of two graphs one of which is
the disjoint union of paths of length at most two and the other is a matching is NP-hard. This
is in some sense sharp, since the union of two matchings is always planar.

38 T.M. Chan et al.

vi around Wi, and we then extend the edges of GF
2 incident to vi to their endpoint on

Wi, by routing them around Wi.
By construction every edge of G1 is straight. By Theorem 1 every private edge of

G2 has at most 102|V (H)| + 12 bends. Also, the algorithmic steps are the same as for
the proof of Theorem 1, hence the algorithm runs in O(n2) time. It remains to prove
that any private edge of G1 and any private edge of G2 intersect at most 24 times.

Consider any private edge e of G2 and any private edge e′ of G1. Recall that e′ is an
edge of Σ. Denote by Wi and Wj the boundary walks the end-vertices of e′ belong to.
Edge e intersects e′ in two situations: when passing by vi or vj and when passing by
the point pT in which the edge of D dual to e′ crosses e′. We prove that each of these
two types of intersections happens at most 12 times.

For the first type of intersections, we have by Lemma 3 that edge e passes by each
of vi or vj at most 6 times, hence at most 12 times in total. For the second type of
intersections, we have by Lemma 4 that edge e is subdivided into at most three edges
e1, e2, and e3 in order to turn GF

2 into a Hamiltonian graph. For each j = 1, 2, 3,
ej either belongs to the Hamiltonian cycle of the subdivided GF

2 or not. In the former
case, ej is drawn as part of an iε/n-approximationΘi of T , as in the proof of Lemma 5,
hence it crosses e′ at most twice. In the latter case, ej is composed of two parts, denoted
by Δ′

p,k and Δ′
q,k , or by Δ′′

p,k and Δ′′
q,k in the proof of Lemma 6. Each of Δ′

p,k, Δ′
q,k,

Δ′′
p,k and Δ′′

q,k is part of a kε/(nm1)-approximation of Θ′
i, which is part of Θi. Hence,

each of Δ′
p,k, Δ′

q,k, Δ′′
p,k and Δ′′

q,k crosses e′ at most twice; thus ej crosses e′ at most
four times, and e crosses e′ close to pT at most 12 times. ��

5 Conclusions and Open Problems

We proved that if a graph has a planar drawing extending a straight-line planar drawing
of a subgraph then there is such a drawing with at most 102n+ O(1) bends per edge.
This is asymptotically tight, but can the constant 102 be reduced? Our second result
is that any two simultaneously planar graphs have a simultaneous planar drawing with
at most 24 crossings per pair of edges and a linear number of bends per edge with a
drawing on a polynomial-sized grid. The only lower bound on the number of crossings
between two edges in a simultaneous planar drawing is 2 (see [7] or the figure in the
margin for the entry “simultaneous crossing number” in [22]). There is a large gap
between 2 and 24. Can two edges be forced to cross more than twice in a simultaneous
planar drawing? Grilli et al. [12] showed that two simultaneously planar graphs have a
drawing with at most 9 bends per edge, though with a larger constant for the number of
crossings and not on a grid. Is it possible to achieve the best of both results: 9 bends per
edge, 24 crossings per pair of edges, and a nice grid?

Acknowledgements. The University of Waterloo co-authors thank Vincenzo Roselli
for contributions in the early stages of the work.

References

1. Angelini, P., Di Battista, G., Frati, F., Jelı́nek, V., Kratochvı́l, J., Patrignani, M., Rutter, I.:
Testing planarity of partially embedded graphs. In: Proc. Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, pp. 202–221. SIAM (2010)

Drawing Partially Embedded and Simultaneously Planar Graphs 39

2. Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points. Theor.
Comput. Sci. 408(2-3), 129–142 (2008)

3. Bern, M., Gilbert, J.R.: Drawing the planar dual. Inform. Process. Lett. 43(1), 7–13 (1992)
4. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embeddings of planar graphs. In:

Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. Discrete Mathematics
and Its Applications, ch. 11, pp. 349–382. Chapman and Hall/CRC (2013)

5. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-
planarity hard. SIAM Journal on Computing 42(5), 1803–1829 (2013)

6. Chan, T.M., Hoffmann, H.-F., Kiazyk, S., Lubiw, A.: Minimum length embedding of planar
graphs at fixed vertex locations. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242,
pp. 376–387. Springer, Heidelberg (2013)

7. Chimani, M., Jünger, M., Schulz, M.: Crossing minimization meets simultaneous drawing.
In: PacificVis, pp. 33–40. IEEE (2008)

8. Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J.
Graph Algorithms and Appl. 9(3), 347–364 (2005)

9. Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Si-
multaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD
2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg (2008)

10. Fowler, J.J., Jünger, M., Kobourov, S.G., Schulz, M.: Characterizations of restricted pairs
of planar graphs allowing simultaneous embedding with fixed edges. Comput. Geom. 44(8),
385–398 (2011)

11. Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph embed-
dings with fixed edges. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 325–335.
Springer, Heidelberg (2006)

12. Grilli, L., Hong, S.-H., Kratochvı́l, J., Rutter, I.: Drawing simultaneously embedded graphs
with few bends. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 40–51.
Springer, Heidelberg (2014)

13. Haeupler, B., Jampani, K.R., Lubiw, A.: Testing simultaneous planarity when the common
graph is 2-connected. J. Graph Algorithms and Appl. 17(3), 147–171 (2013)

14. Hliněný, P.: Crossing number is hard for cubic graphs. J. Combin. Theory Ser. B 96(4), 455–
471 (2006)

15. Jelı́nek, V., Kratochvı́l, J., Rutter, I.: A Kuratowski-type theorem for planarity of partially
embedded graphs. Comput. Geom. 46(4), 466–492 (2013)

16. Jünger, M., Schulz, M.: Intersection graphs in simultaneous embedding with fixed edges. J.
Graph Algorithms Appl. 13(2), 205–218 (2009)

17. Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs.
J. Graph Algorithms and Appl. 6(1), 115–129 (2002)

18. Kratochvı́l, J., Matoušek, J.: String graphs requiring exponential representations. J. Comb.
Theory, Ser. B 53(1), 1–4 (1991)

19. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, NY (1987)
20. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs Com-

bin. 17(4), 717–728 (2001)
21. Patrignani, M.: On extending a partial straight-line drawing. Internat. J. Found. Comput.

Sci. 17(5), 1061–1069 (2006)
22. Schaefer, M.: The graph crossing number and its variants: A survey. The Electronic Journal

of Combinatorics 20, 1–90 (2013), Dynamic Survey, #DS21.
23. Schaefer, M.: Toward a theory of planarity: Hanani-Tutte and planarity variants. J. of Graph

Algorthims and Appl. 17(4), 367–440 (2013)

Drawing Simultaneously Embedded Graphs
with Few Bends�

Luca Grilli1, Seok-Hee Hong2, Jan Kratochvíl3, and Ignaz Rutter3,4

1 Dipartimento di Ingegneria, Università degli Studi di Perugia
luca.grilli@unipg.it

2 School of Information Technologies, University of Sydney
shhong@it.usyd.edu.au

3 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University in Prague
honza@kam.mff.cuni.cz

4 Institute of Theoretical Informatics, Karlsruhe Institute of Technology
rutter@kit.edu

Abstract. We study the problem of drawing simultaneously embedded graphs
with few bends. We show that for any simultaneous embedding with fixed edges
(SEFE) of two graphs, there exists a corresponding drawing realizing this em-
bedding such that common edges are drawn as straight-line segments and each
exclusive edge has a constant number of bends. If the common graph is bicon-
nected and induced, a straight-line drawing exists. This yields the first efficient
testing algorithm for simultaneous geometric embedding (SGE) for a non-trivial
class of graphs.

1 Introduction

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs sharing a common graph
G = (V,E) = (V1 ∩ V2, E1 ∩ E2). The vertices and edges in Vi \ V and Ei \ E are
called exclusive. The problem of finding a simultaneous drawing ofG1 andG2 such that
each graph is drawn in a planar way and the subdrawing of G coincides in both draw-
ings is a long-standing problem in Graph Drawing with applications to, e.g., dynamic
graph drawing. The problem can be studied in a topological variant, SIMULTANEOUS

EMBEDDING WITH FIXED EDGES (or SEFE for short), where edges are represented
by arbitrary open Jordan curves between their endpoints or in the geometric variant,
SIMULTANEOUS GEOMETRIC EMBEDDING (or SGE for short), where edges are repre-
sented by straight-line segments. Both problems naturally generalize to more than two
input graphs. An important special case is the case of sunflower intersection, where one
requires that the pairwise intersection of any two input graphs is the same.

� This work was started at the Bertinoro Workshop on Graph Drawing 2012. L. Grilli was partly
supported by the MIUR project AMANDA “Algorithmics for MAssive and Networked DAta”,
prot. 2012C4E3KT_001. S. Hong was supported by ARC Future Fellowship and Humboldt
Fellowship. Work by Jan Kratochvíl was supported by the grant no. 14-14179S of the Czech
Science Foundation GAČR. Ignaz Rutter was supported by a fellowship within the Postdoc-
Program of the German Academic Exchange Service (DAAD).

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 40–51, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Drawing Simultaneously Embedded Graphs with Few Bends 41

The problem SGE is NP-hard [8] and, moreover, there are quite restricted graph
classes that do not always admit an SGE, e.g., even a path and a tree do not always admit
an SGE [3]. To date no efficient testing algorithms for a non-trivial class of restricted
input instances is known.

In contrast, the complexity of testing the existence of a SEFE drawing for two input
graphs is a long-standing open problem. Jünger and Schulz [13] showed that the prob-
lem is actually equivalent to determining planar embeddings of the two input graphs
that induce the same embedding on the common graph. For three input graphs the prob-
lem is NP-complete [9]. In recent years considerable progress has been made, providing
efficient testing algorithms for increasingly general sets of input instances. Most of the
results revolve around assumptions on the connectivity or the maximum degree of the in-
put graphs and the common subgraph. It is known that SEFE can be tested in polynomial
time if the common subgraph has a fixed planar embedding [1], if the common graph
is biconnected [2,10], if the two input graphs are biconnected and the common graph is
connected or a forest [6], and if each connected component of the common graph is either
biconnected or subcubic [18]. The last result can be improved to also allow connected
components of the common graph that are outerplanar and whose cutvertices have de-
gree at most 3 in the common graph [4]. See the recent survey by Bläsius et al. [5] for
further details.

While the rephrasing of the original drawing problem SEFE as an embedding prob-
lem has certainly been fundamental in starting this evolution, it also comes at a
disadvantage. Typically, the outputs of the above-mentioned algorithms are just pla-
nar embeddings of the input graphs, i.e., rotation systems and relative positions of the
connected components, that coincide on the common graph. We call this a SEFE em-
bedding. To obtain a visualization, it is necessary to transform this combinatorial de-
scription of a drawing into an actual drawing while preserving the given embedding.
For clarity, we refer to such a drawing as a SEFE drawing and say that the SEFE draw-
ing realizes the corresponding SEFE embedding. Although the complexity of SEFE is
still open, the existing results allow efficient testing algorithms for a large range of in-
stances, increasing the importance of the realization problem. The very first result on
simultaneous drawings with few bends was obtained by Erten and Kobourov [7] in the
context of SIMULTANEOUS EMBEDDING, where one only requires that common ver-
tices are drawn the same, whereas shared edges may be drawn differently for different
input graphs. They showed that three bends per edge suffice if the common graph does
not contain any edges. Haeupler et al. [10] initiated the study of the realization problem
for SEFE embeddings and showed that for any instance where the common graph is
connected, it is always possible to find a SEFE drawing realizing a given SEFE embed-
ding in such a way that one of the input graphs is drawn straight-line, whereas the other
graph has at most as many bends per edge as the number of vertices in the common sub-
graph. We show that a constant number of bends per edge suffices if bends are allowed
on the exclusive edges of both graphs, even if the common graph is disconnected.

A related notion is partially embedded graphs, where one seeks to extend a given
drawing of a subgraph (partial drawing) into a planar drawing of the whole graph.
Similar to the simultaneous drawing problem, the partial embedding problem has been
studied both in the topological setting [1,12,18] and in the straight-line setting [15,17].

42 L. Grilli et al.

In fact, to obtain their result about SEFE realizations, Haeupler et al. [10] essentially
show that k bends per edge suffice when extending a given drawing with k predrawn
vertices provided that the predrawn graph is connected. Their result is then obtained by
taking a straight-line drawing of G1, considering the drawing it induces on the common
graph G and extending it to a drawing of G2 with at most |V | bends per edge, where
V is the vertex set of the common graph G. In the setting of partially embedded graphs
their result is asymptotically tight; it is easy to construct an example that shows that
Ω(k) bends per edge are necessary. To achieve our result, which only requires O(1)
bends on the exclusive edges, we allow bends on the exclusive edges of both graphs
and make use of the fact that, in the SEFE realization problem, we can choose the draw-
ing of the straight-line drawing of the common graph in such a way that it fits with both
input graphs simultaneously.

Our Contribution. We study the problem of finding realizations of SEFE embeddings
where the common graph is drawn without bends and the exclusive edges have few
bends per edge. We refer to a drawing where the edges are represented by polygonal
curves with at most c1 bends per common edge and at most c2 bends per exclusive edge
as a (c1, c2)-drawing. In a SEFE drawing realizing a SEFE embedding, we require that
the planar embeddings of the input graphs are preserved.

Our main result is that every SEFE embedding of two graphs admits a (0, c)-drawing
with c ≤ 9; see Section 4. If the common graph is (bi)connected, we have c ≤ 3 and
this even holds for an arbitrary number of input graphs intersecting in a sunflower-way
(i.e., the pairwise intersections of the input graphs are identical); see Section 3. As a
side result, we obtain the first efficient algorithm for testing SGE for a non-trivial class
of graphs, namely for instances whose common graph is biconnected and an induced
subgraph of the input graphs. Finally, we study lower bounds in Section 5 and show that
some of the results from Section 3 are in fact tight. For the case of sunflower-intersection
we show that there exist k-tuples of input graphs (with a disconnected common graph)

that require Ω(
√
2
k
/k) bends per edge. We note that all proofs are constructive and can

be turned into efficient drawing algorithms.

2 Preliminaries

A graph G = (V,E) is planar if and only if it can be drawn in the Euclidean plane
such that its vertices are represented by points and its edges are represented by inter-
nally disjoint open Jordan curves between their endpoints. If G is connected, a planar
drawing can be combinatorially described by its rotation system, i.e., the circular order-
ing of the edges around each vertex and the choice of an outer face. We refer to this
rotation system as the associated (combinatorial) embedding. For disconnected graphs,
the embedding also encodes the relative positions of the connected components.

A plane graph H is a planar graph with an associated planar embedding. A drawing
of a plane graph is a planar drawing of the graph with its given planar embedding. A
plane subgraph of H is a subgraph G of H associated with the corresponding planar
embedding induced by H . In this case we also say that H is a plane supergraph of G.

Drawing Simultaneously Embedded Graphs with Few Bends 43

Consider a straight-line drawing Γ of a planar graph G. A face f is star-shaped if it
contains a point p such that the straight-line segment from p to each vertex of f lies in-
side f . The set of all such points p is the kernel of the face. We say that Γ is star-shaped
if all its faces are star-shaped. We will frequently use the following lemma, stating that
any planar graph admits a star-shaped drawing. Of course it is always possible to find a
drawing where the vertices are in general position. This implies that the kernel of each
face has positive area.

Lemma 1. Let G = (V,E) be a plane graph. There exists a star-shaped planar straight-
line drawing of G such that the kernel of the outer face contains points on or outside of
the convex hull of the vertices in G.

Proof. To construct such a drawing, we create for each face f of G a new vertex vf that
is connected to vertices incident to f and embed it inside f . Afterwards, we triangulate
the graph in such a way that the vertex v0 added for the outer face o is incident to the
outer face. Call the resulting graph G�.

We then produce a straight-line drawing of G�. Since this drawing is planar and each
vertex vf is connected by straight-line segments to all vertices incident to f , remov-
ing vf yields a drawing where face f is star-shaped. We remove all vertices vf of all
faces to obtain a star-shaped drawing. Note that the outer face o of G� is a triangle, and
hence vo lies on or outside of the convex hull of G. �

For an instance G1 = (V1, E1) and G2 = (V2, E2) of SEFE, we say that the com-
mon graph G = (V,E) is induced if the induced subgraph of V in G1 and G2 is G.
This is equivalent to the statement that each exclusive edge has at least one endpoint
that is not in V . Assuming that G is induced will often simplify our arguments. Given a
non-induced instance (G1, G2) of SEFE together with a SEFE embedding, we can con-
struct its associated induced instance by subdividing each exclusive edge once (with
an exclusive vertex). Note that this operation does not change the common graph G.
By interpreting the subdivision vertices as bends in a drawing of the associated induced
instance, we obtain the following lemma.

Lemma 2. Let (G1, G2) be an instance of SEFE with a fixed SEFE embedding and let
(G′

1, G
′
2) be the associated induced instance. If (G′

1, G
′
2) admits a (0, c)-drawing, then

(G1, G2) admits a (0, 2c+ 1)-drawing.

Proof. Consider a (0, c)-drawing of (G′
1, G

′
2). We can interpret it as a SEFE drawing

of (G1, G2) by interpreting the subdivision vertices as bends. Consider a subdivided
edge e. By assumption, each half-edge into which e is subdivided has at most c bends.
Together with the additional bend at the subdivision vertex this amounts to a total of
2c+ 1 bends per edge. �

3 SEFE Drawing with (Bi-)Connected Common Graph

In this section we study realizations of SEFE embeddings where the common graph is
biconnected or connected. The main result of this section is the following theorem.

44 L. Grilli et al.

Theorem 1. Let (G1, . . . , Gk) be a sunflower instance of SEFE with pairwise common
graph G together with a SEFE embedding. Then the following SEFE drawings realizing
the given SEFE embedding exist.

(i) If G is biconnected and induced, there exists a (0,0)-drawing.
(ii) If G is biconnected, there exists a (0,1)-drawing.

(iii) If G is connected and induced, there exists a (0,1)-drawing.
(iv) If G is connected, there exists a (0,3)-drawing.

Before we proceed to prove Theorem 1, we first mention an interesting implica-
tion; the first efficient algorithm for testing the existence of SGE on a non-trivial class
of graphs. By Theorem 1(i) two graphs whose common graph is biconnected and in-
duced admit an SGE if and only if they admit a SEFE. The latter can be tested in linear
time [2,10].

Corollary 1. There is a linear-time algorithm for SIMULTANEOUS GEOMETRIC EM-
BEDDING if the common graph is biconnected and induced.

The rest of this section is devoted to proving Theorem 1. The main tool for the proof
is the existence of certain planar straight-line drawings of the common graph, so-called
universal drawings, that can be extended to a drawing of any plane supergraph of G
with few bends per edge. Theorem 1 is an immediate consequence of the existence of
such drawings.

Let G be a planar graph and let Γ be a planar straight-line drawing of G. Let H ⊇ G
be a plane supergraph of G. We say that Γ is k-extendable for H if it can be extended
to a drawing of H that has at most k bends per edge. The drawing Γ is k-universal if it
is k-extendable to every plane supergraph H . The drawing Γ is induced k-universal if
it is k-extendable for any plane supergraph H that contains G as an induced subgraph.
Similar to Lemma 2, a drawing that is induced k-universal is 2k + 1-universal.

Lemma 3. Let G be a planar graph and let Γ be an induced k-universal drawing of G.
Then Γ is (2k + 1)-universal.

Proof. Let H ⊇ G be an arbitrary plane supergraph of G. Let H ′ be the graph obtained
from H by subdividing each edge of H−G whose endpoints both belong to H . Since Γ
is induced k-universal, we find a drawing Γ ′ of H ′ extending Γ that has at most k bends
per edge. By interpreting the subdivision vertices as bends, the drawing Γ ′ can be seen
as a drawing of H with at most (2k+1)-bends per edge, extending Γ . This finishes the
proof, since H is an arbitrary plane supergraph of G. �

We are now ready to prove the existence of universal drawings for biconnected planar
graphs.

Theorem 2. Every biconnected plane graph has an induced 0-universal drawing.

Proof. Let G be a biconnected plane graph. We claim that a star-shaped drawing of G,
which exists by Lemma 1 is induced 0-universal.

Let H ⊇ G be a planar supergraph of G with a fixed embedding that extends that
of G. Without loss of generality, we assume that H is a triangulation. If it is not, we add

Drawing Simultaneously Embedded Graphs with Few Bends 45

new vertices to triangulate its faces. Note that it may not be possible to triangulate H
without adding new vertices as this might violate the property of G being an induced
subgraph. All vertices and edges that are added during the triangulation can be removed
after a drawing has been found.

The vertices and edges of H −G are embedded in the faces of G. We show that, for
each face f of G, the parts of H − G embedded in f can be drawn inside f without
any bends. To this end, let f be a face of G and let H ′ denote the subgraph of H
consisting of the boundary of f and all edges and vertices of H that are embedded
in f . Let further C denote the facial cycle bounding f . Note that C is a simple cycle
since G is biconnected. Then the graph H ′ is a planar graph where one face is bounded
by C and all remaining faces are triangles. Hence, considering C as the boundary of
the outer face of H ′, it follows that H ′ is internally triconnected and, moreover, it is
triconnected if and only if it does not contain a chord of C. This is, however, not the
case since C is an induced subgraph of H ′. It hence follows that H ′ is triconnected.
Thus, H ′ is triconnected and its outer vertices have been fixed to a star-shaped polygon
with positive kernel. A result of Hong and Nagamochi [11, Theorem 10] shows that the
given drawing of C can be extended to one of H ′ without crossings and bends. Since
this reasoning can be applied independently to all faces, we find the claimed extension.

For the outer face we use a technique similar to [10] and position the vertices of
H − G incident to G on the boundary of a small disk in the interior of the kernel of
the outer face such that the edges between G and H − G can be drawn in a planar
way without intersecting the interior of the disk. Then, since the positioned exclusive
vertices are in convex position, the remaining drawing can be completed without any
bends by a Tutte drawing [19]. �

By applying Lemma 3, we immediately obtain the following corollary.

Corollary 2. Every biconnected plane graph has a 1-universal drawing.

Theorem 3. Every connected plane graph has an induced 1-universal drawing.

Proof. Let G be a connected planar graph with a fixed embedding. We show how to
construct an induced 1-universal drawing of G. Let v be a cutvertex of G, let f be a
face of G on whose boundary v occurs at least twice, and let vu and vw be two edges
incident to f and v that are consecutive in the circular ordering around v. We call such
a configuration an angle of G. We process this angle by adding to G a new vertex v′

with neighbors u, v and w. We call v′ the representative vertex of the angle; see Fig. 1.
Call G′ the graph resulting from G after processing all angles in this way. Note that G′

is biconnected and hence has an induced 0-universal drawing Γ ′ by Theorem 2.
We claim that the restriction Γ of Γ ′ to G is induced 1-universal. Let H ⊇ G be

a plane graph that contains G as an induced subgraph. For each cutvertex v of G, the
incident edges of H are embedded in one of the angles of v. Let u and w be the other
two vertices of such an angle at v and let vv1, . . . , vvk denote the edges of H that are
embedded inside this angle. We modify H by creating a new vertex v′ that is adjacent
to u, v and w. We further replace the edges vv1, . . . , vvk by v′v1, . . . , v

′vk, which is
clearly possible in a planar way; see Fig. 1, where the edges of E(H) \ E(G) are
shown dashed. Let H ′ be the graph resulting from H by treating all angles of G in

46 L. Grilli et al.

u
w

f

v

(a)

u
w

f

v

v′

(b)

Fig. 1. Augmentation technique for removing cutvertices. (a) The graph G is drawn solid, the
exclusive edges of H are dashed. (b) The modified graphs G′ (solid) and H ′ (exclusive edges are
dashed).

this way. Now H ′ contains G′ as an induced subgraph. Since Γ ′ is induced 0-universal,
there exists a straight-line drawing of H ′ that extends Γ ′. To obtain a 1-bend drawing
of H that extends Γ , we remove from this drawing the edges v′u and v′w for each angle
of G. Now each edge xv of H , where v is a cutvertex of G, is drawn with one bend at
the position of the representative vertex of the corresponding angle. We can remove any
overlaps of segments by slightly moving the bend points apart from each other without
creating any crossings. Thus Γ is induced 1-universal. �

Corollary 3. Every connected plane graph has a 3-universal drawing.

We note that Theorem 1 follows easily by applying one of Theorems 2, 3 and Corol-
laries 2, 3 to the common graph of the SEFE embedding.

4 SEFE Drawing for General Graphs

Unfortunately, universal drawings cannot be used to prove the existence of SEFE draw-
ings with few bends in general. Namely, Pach and Wenger [16] showed that drawing a
planar graph with fixed vertex locations may require an edge with Θ(n) bends. Thus,
even a graph consisting only of n isolated vertices has no (induced) o(n)-universal
drawing.

Our goal is to show that any SEFE embedding of two graphs G1 and G2 with
common graph G = G1 ∩ G2 admits a (0, c)-drawing for some constant c. Unlike
the previous constructions, this result does not generalize to an arbitrary number of
graphs intersecting in a sunflower-fashion. In fact, we will see later, in Section 5, that

for k graphs Ω(
√
2
k
/k) bends per edge are necessary even in the case of sunflower-

intersection.
As a first step, we show how to construct a (0, 3)-drawing of (G1, G2) if the common

graph is an induced subgraph of G1 and G2, respectively, and where we require that
each connected component of the common graph is biconnected. Afterwards, we apply
the technique from Theorem 3 to treat cutvertices in the connected components of G,
resulting in (0, 4)-drawings when G is an induced subgraph. Then Lemma 2 implies the
existence of a (0, 9)-drawing for any SEFE embedding.

Drawing Simultaneously Embedded Graphs with Few Bends 47

kernel of f

v1

v2

f0

f�

e0 ek

(a)

u

v

p

Ci

ε

(b)

last edge of Ci in G2

last edge of Ci

in G1

position of G[Ci]

(c)

Fig. 2. Illustration of the placement of the G[Ci] inside the face f for a (0, 3)-drawing

Theorem 4. Let (G1, G2) be two planar graphs with a SEFE embedding. Assume fur-
ther that G = G1 ∩ G2 is an induced subgraph of G1 and G2, respectively. If each
connected component of G is biconnected, there exists a (0, 3)-drawing of (G1, G2).

Sketch of Proof. Without loss of generality, we can assume that G1 and G2 are internally
triangulated and that the outer face of G does not contain any exclusive edges. Let C be
a connected component of G and denote by G[C] the subgraph of G consisting of all
vertices and edges that either belong to C or are embedded inside some inner face of C.
The graphs G1[C] and G2[C] are defined analogously. Note that if C′ is a connected
component of G with C′ ⊆ G[C], then G[C ′] ⊆ G[C]. Hence, the relation C′ ≺ C
if and only if G[C′] ⊆ G[C] defines a partial ordering of the components of G whose
transitive reduction is a tree. We prove the following claim by induction on the depth of
this tree; it implies the statement of the theorem.

Claim. Let C be a connected component ofG with depth d. The induced SEFE ofG1[C]
and G2[C] admits a (0, 3)-drawing such that the outer face of G[C] is star-shaped.

The base case, where G[C] = C is biconnected, follows from Theorem 1(i). For the
induction step, assume that C is a component such that G[C] has depth d. The graph C
is biconnected, and we take a star-shaped drawing with positive kernel area in all faces.
Clearly, the outer face is star-shaped. We show that we can embed the remaining parts
of G1[C] and G2[C] inside the inner faces of C using the given embedding and such
that the result is a (0, 3)-drawing. The faces of C can be treated independently. In the
following we fix an arbitrary internal face f and denote by C1, . . . , Cc the connected
components of G that are distinct from C and incident to f . Note that G[Ci] has depth
at most d − 1 and hence, by induction, we know that corresponding (0, 3)-drawings
of G1[Ci] and G2[Ci] exist for i = 1, . . . , c. We show how to arrange them in the
interior of f and how to draw the exclusive edges embedded inside f to obtain a (0, 3)-
drawing of G1[C] and G2[C]. We assume that the only exclusive edges of G1 and G2

are the ones embedded inside f . This is not a restriction since there is no interaction
between exclusive edges in distinct faces ofG. We can thus treat all faces independently.

Since G1 and G2 are triangulated, it follows that the subgraph induced by the ex-
clusive vertices of Gi that are embedded inside f is connected, and we contract it into
a single vertex vi for i = 1, 2, preserving the edge ordering of the given embedding.

48 L. Grilli et al.

Ci

Di

(a)

︸ ︷︷ ︸
1

2m

C
i

Ci′

Ci′

v1

qi

ej

Ci′

(b)

Ci

p
(C

i)

qi

(c)

Fig. 3. Illustration of the drawing of exclusive internal edges

Note that we remove loops but not multiple edges. We will produce the largest part of
the drawing inside a grid of size 2 deg(v1) × 2 deg(v2), which we position inside the
kernel of f . We distinguish the exclusive edges of G1 and G2 into two types. An ex-
clusive edge is internal if its endpoint distinct from v1 and v2 belongs to one of the Ci

for i = 1, . . . , c. Otherwise the endpoint belongs to C and the edge is external.
The vertices v1 and v2 are positioned below and left of the grid, respectively; see

Fig. 2a. By picking two external edges incident to v1 and v2 as the first edge, the circular
ordering around these vertices determine corresponding linear orderings. Second, for
each component Ci, we obtain a linear ordering of its incident internal edges by the
ordering around a point in the kernel of the outer face; see Fig. 2b. Our goal is to
draw the edges as shown in Fig. 3b. Since the linear ordering around v1 and the linear
ordering determined by Ci do not necessarily coincide, this requires that component Ci

is positioned at a specific position, namely slightly left of the so-called last edge, which
is shown bold in Fig. 3a and 3b. In this way, the ordering of the edges around v1 and v2
imply a certain ordering of the components Ci. Since these orderings generally differ,
we use the ordering around v1 to determine the x-coordinate and the ordering around
v2 to determine the y-coordinate on the grid. Thus, each of the two vertices “sees” the
components in the expected ordering; see Fig. 2c.

We now sketch how to draw the edges of G1. Graph G2 is drawn analogously,
but with exchanged x- and y-coordinates, which corresponds to mirroring the draw-
ing along a diagonal. Let e0, . . . , ek denote the internal edges incident to v1 linearly
ordered from left to right. Let Ci be a component incident to edge ej . We draw edge ei
first from v1 to the grid point (2j, 0), then vertically upwards up to some height y(ej),
then horizontally above the position of Ci (see Fig. 3b), and from there down to the
position of Ci and into its kernel. Finally, from there we route it to its endpoint in Ci

(see Fig. 3c). The main point is the height y(ej), which we choose such that ej passes
above all components Ci′ whose x-coordinate lies between the x-coordinate of ej , i.e.,
2j, and the x-coordinate of the target component Ci; see Fig. 3b. If ej is an internal
edge, then we draw it from v1 to (2j, 0) and from there vertically upwards through the
hole grid. It is then not hard to reach the target vertex of C with one or two more bends.

Drawing Simultaneously Embedded Graphs with Few Bends 49

(a) (b)

Fig. 4. SEFE instances that do not admit a (0, 0)-drawing

Finally, we undo the contraction of v1 and v2 using a technique similar to Haeupler et
al [10, Theorem 2]. �

If the connected components of the common graph are not biconnected, we use the
same technique as in the proof of Theorem 3 to make them biconnected, showing that
we obtain a (0, 4)-drawing of the given SEFE embedding if the common graph is in-
duced. Then, Lemma 2 implies the existence of a (0, 9)-drawing for any SEFE embed-
ding of two graphs.

Corollary 4. Let (G1, G2) be two planar graphs whose common graph is induced with
a SEFE embedding. Then (G1, G2) admits a (0, 4)-drawing.

Corollary 5. Any SEFE embedding of two graphs admits a (0, 9)-drawing.

5 Lower Bounds

In this section we study lower bounds on c for (0, c)-drawings of SEFE embeddings.
Since SEFE with an arbitrary number of input graphs is equivalent to the problem
WEAK REALIZABILITY, which asks for a drawing of a graph specifying for each pair of
edges whether they are allowed to cross, an example of Kratochvíl and Matoušek [14]
shows that there are SEFE instances that require an exponential number of crossings
between two edges. This implies that at least one of them must have an exponential
number of bends. However, these graphs do not have sunflower-intersection.

We first show that the results from Theorem 1(ii) and (iii) are tight; examples are
given in Fig. 4. Afterwards, we prove that for a SEFE embedding of k graphs with

sunflower intersection Ω(
√
2
k
/k) bends per edge are necessary.

Theorem 5. There exist SEFE embeddings that do not admit a (0, 0)-drawing even
when (i) the common graph is biconnected or (ii) the common graph is connected and
induced.

Proof. For (i), consider a SEFE instance whose common graph is a cycle C of length 4.
The exclusive edges are the two chords of C, which belong to different graphs and are
embedded outside of C; see Fig. 4a. Clearly, at least one of the exclusive edges requires
a bend.

50 L. Grilli et al.

For (ii), the common graph is a triangle with tip u and a path of length 2 attached to
u. Let the path be u, v, w. Additionally, each G1 and G2 contain one exclusive vertex
that is adjacent to u and v. The embedding is as shown in Fig. 4b. We claim that this
SEFE does not admit a (0, 0)-drawing.

Consider the red graph G1. For a (0, 0)-drawing, its exclusive vertex must be posi-
tioned such that it sees both u and v. This can only be achieved if the angle at v on
the left side of the path uvw is strictly greater than π. However, by applying the same
arguments for G2, we find that the angle at v on the right side of the path uvw must
be strictly greater than π. This is obviously not possible simultaneously, and hence a
(0, 0)-drawing does not exist. �

Theorem 6. There exist SEFE embeddings of k graphs with sunflower intersection
where any (0, c)-drawing has c ∈ Ω((

√
2)k/k).

Proof. We define a graph as follows. Let C be a cycle of length four with vertices
N,E, S,W in this clockwise ordering. In the interior, we embed 2k vertices, each la-
beled with a distinct binary vector of length k. Fix k colors. We connect each vertex v in
the interior of C by an edge of color i to either W or E. If the ith bit of the binary vector
associated with v is 1, the edge of color i is vW , otherwise it is vE. Finally, we add
edges of color i from S to N for i = 1, . . . , k. We require that edges of the same color
do not cross, whereas edges of different colors may cross and are drawn independently.
We prove a lower bound on the number of bends in this model.

A SEFE instance can be obtained by interpreting each color as the exclusive edges
of its own graph and subdividing each of the colored edges with an exclusive vertex of
the corresponding color. In particular, the common graph consists of the cycle C and
the 2k vertices in the interior and each Gi additionally connects each of the 2k vertices
by a path of length 2 to either E or W . The lower bound of the colored instance then
also yields a lower bound for this SEFE instance.

Consider an arbitrary admissible drawing of the colored graph. Since each of the 2k

vertices is attached by an edge of color i to either W or E, each of the edges from S
to N partitions the points inside C into two sets of 2k−1 points. The k SN -edges then
divide the interior of C into 2k areas, each nonempty, as it contains exactly one vertex.

Now consider only the SN -edges. Let f ≥ 2k be the number of such areas in the
interior ofC, let X be the number of crossings of the SN -edges in the drawing, and let e
be the number of arcs on the SN -edges in the arrangement. We thus have a planar graph
with f +1 faces (including the outer face), X+4 vertices (including the vertices of C),
and e = 2X+k+4 edges. By Euler’s formula, we haveX+4−(2X+k+4)+f+1 = 2,
i.e., −X − k2k + 1 ≥ 2 or equivalently X ≥ 2k + 1− k − 1. Since there are only

(
k
2

)
pairs of edges, at least one pair crosses 2(2k+1−k−1)

k(k−1) = Ω(2k/k2) times. Then at least

one of them requires Ω((
√
2)k/k) bends. �

6 Conclusion

We have studied the problem of constructing SEFE drawings with polygonal curves of
low complexity. Our main result is that any SEFE embedding of two graphs can be

Drawing Simultaneously Embedded Graphs with Few Bends 51

drawn with at most nine bends per edge. Fewer bends suffice if the common graph is
(bi)connected. Our main open questions concern lower bounds. What is the smallest c0
such that every SEFE of two graphs admits a (0, c0)-drawing? Is it possible to put some
bends on the edges of G in order to save bends on the exclusive edges?

References

1. Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.:
Testing planarity of partially embedded graphs. In: Discrete Algorithms (SODA 2010), pp.
202–221. SIAM (2010)

2. Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous
embeddability of two graphs whose intersection is a biconnected or a connected graph. J.
Discrete Alg. 14, 150–172 (2012)

3. Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with no geometric
simultaneous embedding. J. Graph Algorithms Appl. 16(1), 37–83 (2012)

4. Bläsius, T., Karrer, A., Rutter, I.: Simultaneous embedding: Edge orderings, relative posi-
tions, cutvertices. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 220–231.
Springer, Heidelberg (2013)

5. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamas-
sia, R. (ed.) Handbook of Graph Drawing and Visualization. CRC Press (2013)

6. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding
problems. In: Discrete Algorithms (SODA 2013), pp. 1030–1043. SIAM (2013)

7. Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J.
Graph Algorithms Appl. 9(3), 347–364 (2005)

8. Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Si-
multaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD
2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg (2008)

9. Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph embed-
dings with fixed edges. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 325–335.
Springer, Heidelberg (2006)

10. Haeupler, B., Jampani, K.R., Lubiw, A.: Testing simultaneous planarity when the common
graph is 2-connected. J. Graph Algorithms Appl. 17(3), 147–171 (2013)

11. Hong, S.H., Nagamochi, H.: Convex drawings of graphs with non-convex boundary con-
straints. Discrete Appl. Math. 156(12), 2368–2380 (2008)

12. Jelínek, V., Kratochvíl, J., Rutter, I.: A kuratowski-type theorem for planarity of partially
embedded graphs. Computational Geometry Theory & Applications 46(4), 466–492 (2013)

13. Jünger, M., Schulz, M.: Intersection graphs in simultaneous embedding with fixed edges. J.
Graph Algorithms Appl. 13(2), 205–218 (2009)

14. Kratochvíl, J., Matoušek, J.: String graphs requiring exponential representations. J. Comb.
Theory, Ser. B 53(1), 1–4 (1991)

15. Mchedlidze, T., Nöllenburg, M., Rutter, I.: Drawing planar graphs with a prescribed inner
face. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 316–327. Springer,
Heidelberg (2013)

16. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs and Combi-
natorics 17, 717–728 (2001)

17. Patrignani, M.: On extending a partial straight-line drawing. International Journal of Foun-
dations of Computer Science 17(5), 1061–1069 (2006)

18. Schaefer, M.: Toward a theory of planarity: Hanani-tutte and planarity variants. J. Graph
Algorithms Appl. 17(4), 367–440 (2013)

19. Tutte, W.T.: How to draw a graph. London Math. Soc. s3-13(1), 743–767 (1963)

Planar and Quasi Planar
Simultaneous Geometric Embedding�

Emilio Di Giacomo1, Walter Didimo1, Giuseppe Liotta1,
Henk Meijer2, and Stephen Wismath3

1 Dipartimento di Ingegneria, Università degli Studi di Perugia, Italy
{emilio.digiacomo,walter.didimo,giuseppe.liotta}@unipg.it

2 University College Roosevelt, The Netherlands
h.meijer@ucr.nl

3 Department of Mathematics and Computer Science, University of Lethbridge, Canada
wismath@uleth.ca

Abstract. A simultaneous geometric embedding (SGE) of two planar graphs G1

and G2 with the same vertex set is a pair of straight-line planar drawings Γ1 of
G1 and Γ2 of G2 such that each vertex is drawn at the same point in Γ1 and
Γ2. Many papers have been devoted to the study of which pairs of graphs admit
a SGE, and both positive and negative results have been proved. We extend the
study of SGE, by introducing and characterizing a new class of planar graphs
that makes it possible to immediately extend several positive results that rely on
the property of strictly monotone paths. Moreover, we introduce a relaxation of
the SGE setting where Γ1 and Γ2 are required to be quasi planar (i.e., they can
have crossings provided that there are no three mutually crossing edges). This
relaxation allows for the simultaneous embedding of pairs of planar graphs that
are not simultaneously embeddable in the classical SGE setting and opens up to
several new interesting research questions.

1 Introduction

The simultaneous embedding (SE) problem is one of the most studied in Graph Drawing
since the publication of the first seminal results on the subject by Braß et al. [5,6].
Given two planar graphs with the same vertex set G1 = (V,E1) and G2 = (V,E2),
the SE problem asks whether a planar drawing Γ1 of G1 and a planar drawing Γ2 of
G2 exist such that each vertex of V is drawn at the same point in Γ1 and Γ2. If so,
pair 〈Γ1, Γ2〉 is called a simultaneous embedding (SE) of 〈G1, G2〉. Several variants
and generalizations of the SE problem (e.g., extensions to k > 2 graphs) have also been
studied. A comprehensive survey on SE can be found in [4].

In this paper we concentrate on the most desirable, but also the most restrictive, set-
ting of the SE problem, namely the simultaneous geometric embedding (SGE) setting,
where drawings Γ1 and Γ2 are required to have straight-line edges. A paper by Angelini
et al. [3] establishes that there exist a tree of depth four and a path that do not admit a

� Research supported in part by the MIUR project AMANDA “Algorithmics for MAssive and
Networked DAta”, prot. 2012C4E3KT 001.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 52–63, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Planar and Quasi Planar Simultaneous Geometric Embedding 53

SGE. On the positive side, a path can always be simultaneously embedded with a tree
of depth at most two [3] and with other kinds of trees such as caterpillars (i.e., trees
that become paths after the removal of the degree-one vertices) or stars (trees with at
most one vertex of degree greater than one) and their extensions (see e.g., [6]). Other
positive results involve simple types of cyclic graphs (see, e.g., [6,7]).

Most of the positive results about SGE rely on reducing one of the two graphs G1

or G2 to a path that is realized in a strictly monotone fashion. The fundamental prop-
erty of a strictly monotone drawing of a path, say in the y-direction, is that it is planar
independently of the x-coordinates given to the vertices. This property makes it possi-
ble to arbitrarily assign the x-coordinates of the other graph when looking for a SGE.
Motivated by this observation, Fowler and Kobourov characterized the class of graphs
that can be simultaneously embedded with any given path drawn in a strictly monotone
way [11]; they call these graphs the Unlabeled Level Planar (ULP) graphs. A charac-
terization for ULP trees was previously given in [9].

In this paper we extend the study of SGE in two different directions:

(i) We characterize the class of graphs that have the same property as strictly monotone
paths; namely, the planar graphs such that there exists a suitable y-leveling of the ver-
tices for which a planar drawing exists for any x-leveling of the vertices. We prove that
this class, which we term EAP 1, is a proper sub-class of the ULP; every graph that can
be simultaneously embedded with a strictly monotone path is also simultaneously em-
beddable with an EAP graph, hence our finding immediately enlarges the set of positive
results on SGE. We also extend the result in [3], proving that EAP graphs can always
be simultaneously embedded with a tree of depth at most two. We remark that the SGE
technique in [3] does not rely on a strictly monotone drawing of the path.

(ii) Since SGE is a rather restricting setting, we study simultaneous geometric embed-
dings where both Γ1 and Γ2 are required to be “nearly planar” in some sense. Namely,
we require that each of the two drawings is quasi planar, i.e., it does not contain three
mutually crossing edges. We remark that quasi planar drawings have been widely stud-
ied in the literature (see, e.g., [1,2,12,13]); they fall into a line of research called “be-
yond planarity”, which is receiving lots of interest in the graph drawing community.
For simultaneous geometric quasi planar embedding (SGQPE) setting we generalize
the ULP and the EAP graph classes, thus obtaining several positive results; for exam-
ple, we prove that a tree and a path always admit a SGQPE in contrast to the negative
result in [3] for the SGE setting. More in general we prove that every tree has a SGQPE
with a meaningful subfamily of the outerplanar graphs.

The results of point (i) are presented in Sec. 3 and those of point (ii) are in Sec. 4.
Preliminaries are in Sec. 2. Conclusions and open problems are in Sec. 5.

2 Preliminaries

Let 〈G1 = (V,E1), G2 = (V,E2)〉 be a pair of planar graphs with the same vertex set.
A simultaneous geometric embedding (SGE) of 〈G1, G2〉 is a pair of drawings 〈Γ1, Γ2〉

1 The explanation of this acronym is clarified in the paper. The same class of graphs is defined
with the name of column planar graphs in [10].

54 E. Di Giacomo et al.

such that: (i) Γi is a planar straight-line drawing of Gi for i = 1, 2; (ii) each vertex
v ∈ V is represented by the same point in Γ1 and Γ2.

Let G be a planar graph. An x-leveling of G is a mappingX : V → R that assigns to
each vertex ofG a distinct real x-coordinate. A y-leveling ofG is a mappingY : V → R

that assigns to each vertex of G a distinct real y-coordinate. Let G be a planar graph
with a given x-leveling X and a given y-leveling Y . We denote by Γ (X ,Y) a straight-
line drawing of G obtained by drawing each vertex v at point (X (v),Y(v)) and each
edge as a straight-line segment between its endpoints. If Γ (X ,Y) has no three collinear
vertices we say that X is general with respect to Y , and Y is general with respect to X .

Let G be a graph and let Γ be a straight-line drawing of G. Two edges of G are
independent if they do not have an endvertex in common. The independent horizon-
tal stabbing number of Γ , denoted by ihs(Γ), is the maximum number of independent
edges of Γ intersected by a horizontal line. The independent horizontal stabbing num-
ber of G, denoted by ihs(G), is the minimum independent horizontal stabbing number
over all straight-line drawings of G. A horizontal line is called a stabber; the stabber of
equation y = l is the stabber at l. Two drawings with the same top-to-bottom order of
the vertices have the same independent horizontal stabbing number. The next lemmas
are used to remove collinear points in a drawing.

Lemma 1. Let G be a graph. Let Y be a y-leveling of G and let X be an x-leveling of G
that is not general with respect to Y . There exists an x-leveling X ′ that is general with
respect to Y and such that if two edges cross in Γ (X ′,Y) then they cross in Γ (X ,Y).

Lemma 2. Let G be a graph. Let Y be a y-leveling of G and let X be an x-leveling of
G that is not general with respect to Y . There exists a y-leveling Y ′ that is general with
respect to X and such that ihs(Γ (X ,Y ′)) = ihs(Γ (X ,Y)).

3 EAP Graphs and Simultaneous Geometric Embedding

Before defining EAP graphs, we recall the definition of ULP graphs (introduced in [11]),
which we rename as AEP graphs. Let G be a planar graph. G is an AEP graph if for any
y-levelingY ofG, there exists an x-levelingX such that Γ (X ,Y) is planar.G is an EAP
graph if there exists a y-leveling Y of G, called universal y-leveling, such that for any
x-leveling X that is general with respect to Y , Γ (X ,Y) is planar2. We denote by AEP
the set of AEP graphs and by EAP the set of EAP graphs. Note that, in the definition of
EAP graphs we consider only x-levelings that are general with respect to the y-leveling
Y . This restriction is necessary since otherwise no graphs other than paths could be
EAP. Namely, if three collinear points are allowed, then for any given y-leveling there
would exist an x-leveling such that the resulting drawing has edges that overlap each
other. These trivial counterexamples are avoided by restricting the definition to those
x-levelings that do not cause three collinear points. The interplay between AEP and

2 The names AEP and EAP are acronyms coming from the definitions of the AEP and EAP
graphs, respectively. Namely, a graph is an AEP graph if “for Any y-leveling, there Exists an
x-leveling such that the resulting drawing is Planar”, while a graph is EAP if “there Exists a
y-leveling such that for Any x-leveling the resulting drawing is Planar”.

Planar and Quasi Planar Simultaneous Geometric Embedding 55

EAP graphs makes it possible to extend several results about SGE previously described
in the literature, thanks to the following result (see also Theorem 2 and Corollary 2).

Theorem 1. Let 〈G1, G2〉 be a pair of graphs such that G1 ∈ AEP and G2 ∈ EAP .
Then 〈G1, G2〉 admits a SGE.

Proof. Since G2 is an EAP graph, there exists a universal y-levelingY of G2. Consider
Y as a y-leveling of G1; we aim at finding an x-leveling X of G1 that is general with
respect to Y and such that Γ (X ,Y) is planar. Since G1 ∈ AEP , then there exists an
x-leveling X ′ such that Γ1(X ′,Y) is a planar drawing of G1. If X ′ is general with
respect to Y we set X = X ′; if X ′ is not general with respect to Y , then, by Lemma 1,
there exists an x-leveling X ′′ that is general with respect to Y and such that Γ (X ′′,Y)
is planar; in this case we set X = X ′′. In either case we have the desired x-leveling X .
Consider X as an x-leveling for G2. Then Γ2(X ,Y) is a planar drawing of G2 because
G2 is an EAP graph, Y is a universal y-leveling of G2 and X is general with respect to
Y . Thus, 〈Γ1(X ,Y), Γ2(X ,Y)〉 is a SGE of 〈G1, G2〉. ��

Characterization of EAP graphs. AEP graphs have been characterized by Fowler and
Kobourov [11]. We first show that EAP graphs constitute a subfamily of AEP graphs
with stronger properties (Lemma 3) and then we characterize EAP graphs (Theorem 2).

Lemma 3. Let G ∈ EAP . Then G ∈ AEP .

Proof. LetY ′ be an arbitrary given y-leveling ofG. In order to prove that G ∈ AEP we
must show that there exists an x-leveling X ′ such that Γ (X ′,Y ′) is a planar drawing.
Since G is an EAP graph, there exists a universal y-leveling Y of G. We define an x-
leveling X for G as X = Y ′. In other words we assign to each vertex v an x-coordinate
X (v) that is equal to the y-coordinate Y ′(v) assigned to v by Y ′. We have two cases:

Case 1: X is general with respect to Y . In this case, since G ∈ EAP , Γ (X ,Y) is a
planar drawing. If we set X ′ = Y , we have that Γ (X ′,Y ′) is the drawing Γ (X ,Y)
rotated by 90◦ and hence it is planar.

Case 2: X is not general with respect to Y . By Lemma 2 there exists a y-leveling Y ′′

that is general with respect to X such that ihs(Γ (X ,Y ′′)) = ihs(Γ (X ,Y)). Let X ′′ be
an x-leveling that is general with respect to Y; we have ihs(Γ (X ,Y)) = ihs(Γ (X ′′,Y))
because Γ (X ,Y) and Γ (X ′′,Y) have the same y-leveling. Since G is an EAP graph,
ihs(Γ (X ′′,Y)) = 1 and hence ihs(Γ (X ,Y ′′)) = 1, which implies that Γ (X ,Y ′′) is
planar (otherwise its independent horizontal stabbing number would be at least two). If
we set X ′ = Y ′′ then Γ (X ′,Y ′) is Γ (X ,Y ′′) rotated by 90◦, and hence is planar.

In both cases we have found an x-leveling X ′ such that Γ (X ′,Y ′) is a planar draw-
ing. Since Y ′ is arbitrary, we have that G ∈ AEP . ��

By Lemma 3 we have that EAP ⊆ AEP . By the characterization of Fowler and
Kobourov [11] we know precisely the graphs in AEP ; therefore in order to character-
ize the class EAP we can establish which graphs of the set AEP are EAP graphs. The
family of AEP graphs is the union of the following three families: radius-2 stars, ex-
tended degree-3 spiders, and generalized caterpillars. In order to recall the definition of
these families we start by defining four gadgets each having two vertices called poles.

56 E. Di Giacomo et al.

(a) Kite gadget

...

(b) K∗
3 gadget (c) K3 gadget

...

(d) C+
4 gadget (e) C4 gadget (f) K4 gadget

Fig. 1. Illustration of the different gadgets. Bigger vertices are the poles of the gadget

Given an edge e of a graph, replacing e with one of the gadgets means to replace e
with the gadget so that the end-vertices of e coincide with the two poles of the gadget.
The kite gadget is a 4-cycle plus an edge connecting the two vertices that are not poles
(Fig. 1(a)). A K∗

3 gadget is a set of k ≥ 1 3-cycles sharing the two poles and the edge
connecting them (Fig. 1(b)). A K∗

3 gadget consisting of a single cycle is called a K3

gadget (Fig. 1(c)). A C+
4 gadget is a set of k ≥ 2 paths with two edges, connecting the

two poles (Fig. 1(d)). A C+
4 gadget consisting of exactly two paths is called a C4 gadget

(Fig. 1(e)). A K4 gadget is the complete graph on four vertices (Fig. 1(f)). The poles
of a K4 gadget are any two of its vertices. A star is a graph K1,k for some k ≥ 3. A
radius-2 star is a star in which at least one edge has been subdivided once (see Fig. 2(a)).
A degree-3 spider is an arbitrary subdivision of K1,3. A 1-connected extended degree-3
spider is a degree-3 spider with two optional additional edges: an edge connecting two
vertices adjacent to the unique degree-3 vertex and an edge connecting two leaves (see
Fig. 2(b)). A 2-connected extended degree-3 spider is either a cycle or a cycle where an
edge is replaced by a K3 gadget, a C4 gadget, or a kite gadget (see Fig. 2(c)). An ex-
tended degree-3 spider is either a 1-connected extended degree-3 spider or a 2-connected
extended degree-3 spider. A caterpillar is a tree such that removing all leaves we get a
path, called the spine of the caterpillar. A generalized caterpillar is a caterpillar in which
each edge of the spine can be replaced by a K∗

3 gadget, or a C+
4 gadget, or a kite gadget,

and for each endvertex u of the spine, one edge connecting u to a leaf can be replaced
by a K∗

3 gadget, or a C+
4 gadget, or a kite gadget, or a K4 gadget (see Fig. 2(d)).

We define a new family of graphs that we call fat caterpillars and that is a subfamily
of generalized caterpillars. A fat caterpillar is a graph obtained from a caterpillar by
replacing some of the edges of the spine with a K3 gadget (see Fig. 2(e)). Notice that fat
caterpillars are exactly the generalized caterpillars with no cycle of length larger than
three. Let G′ be the subgraph of G obtained by removing all degree-one vertices; G′

consists of a path Π = (v1, v2, . . . , vk) plus a set of vertices each adjacent to two con-
secutive vertices of Π . The vertices of Π are called the path vertices of G; in particular
v1 and vk are called extreme path vertices. The remaining vertices of G′ are called the
tip vertices of G; a tip vertex that is adjacent to vi and vi+1 will be denoted by ui. Each
vertex of G of degree one is adjacent to a path vertex. The degree-one vertices adjacent
to vi will be denoted by wi,j , with j = 1, 2, . . . , hi, where hi ≥ 0. We start with a
technical lemma that will be used to characterize EAP graphs.

Lemma 4. A graph G is an EAP graph if and only if ihs(G) = 1.

The next lemma can be proved by showing that, in each case, ihs(G) > 1, which, by
Lemma 4, implies that G �∈ EAP .

Planar and Quasi Planar Simultaneous Geometric Embedding 57

(a) (b) (c)

K3

gadget
C4

gadget
kite

gadget
K4

gadget

(d) (e)

Fig. 2. (a) A radius-2 star. (b) A 1-connected extended degree-3 spider. (c) A 2-connected extended
degree-3 spider (containing a kite gadget). (d) A generalized caterpillar. (e) A fat caterpillar.

Lemma 5. Let G be a graph such that either: (i) G is a radius-2 star that is not a
generalized caterpillar; or (ii) G contains a cycle of length at least 4; or (iii) G is an
extended degree-3 spider that is not a generalized caterpillar. Then G �∈ EAP .

Theorem 2. A planar graph G is an EAP graph if and only if it is a fat caterpillar.

Proof. “Only if part”. If G is an EAP graph, then by Lemma 3 it is also AEP and
therefore it is either a radius-2 star, or an extended degree-3 spider, or a generalized
caterpillar. By Lemma 5, G must be a generalized caterpillar and cannot contain a cycle
of length four. Hence it must be a fat caterpillar.

“If part”. Let G be a fat caterpillar. We prove that ihs(G) = 1. We define a y-leveling
Y of G as follows. For each path vertex vi (1 ≤ i ≤ k) of G we set Y(vi) = 2i. For each
tip vertex ui (1 ≤ i ≤ k) of G we set Y(ui) = Y(vi) + 1. For each degree-one vertex
wi,j we set Y(wi,j) = Y(vi) + j

hi+1 (j = 1, 2, . . . , hi). Observe that the vertices of
G have been assigned a different value and therefore Y is a valid y-leveling. Consider
now an arbitrary x-leveling X . We show that ihs(Γ (X ,Y)) = 1, which implies that
ihs(G) = 1. Consider a stabber � at l, l ∈ R. If l < 2 or l > 2k, then � does not intersect
any edge of Γ (X ,Y). If l = 2i for 1 ≤ i ≤ k, then � passes through vertex vi and it
intersects only the edges incident to vi, which are not independent. If l = 2i + 1 for
1 ≤ i ≤ k− 1, then � either intersects only the edge (vi, vi+1) (if the tip vertex ui does
not exist), or it intersects the three edges (vi, vi+1), (vi, ui), and (ui, vi+1) (if the tip
vertex ui exists) no two of which are independent. If 2i < � < 2i+1 for 1 ≤ i ≤ k−1,
then � intersects the edge (vi, vi+1), possibly the edge (vi, ui), and possibly some of
the edges (vi, wi,j) (j = 1, 2, . . . , hi). No two of these edges are independent. Finally,
if 2i + 1 < l < 2i + 2 for 1 ≤ i ≤ k − 1, then � intersects the edge (vi, vi+1) and
possibly the edge (ui, vi+1), which are not independent. Thus, no stabber intersects
two independent edges in Γ (X ,Y) and therefore ihs(Γ (X ,Y)) = 1. It follows that
ihs(G) = 1 and, by Lemma 4, G ∈ EAP . ��

58 E. Di Giacomo et al.

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

(a)

1

2 3

4

5 6

7 8

9

10

1112 13 14

15

16 17 18

19

2021

22

23

24 25

26

(b)

2

3

4

5

6

7

8

9

10

11

12

0

1

13

1

2

3 4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21
22

23
24

25

26

�0

�1 �2 �3 �4

(c)

2

3

4

5

6

7

8

9

10

11

12

0

1

13

1

2

3 4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21
22

23
24

25

26

�0

�1 �2 �3 �4

(d)

Fig. 3. (a)-(b) A pair of graphs 〈G1, G2〉; G1 is a tree of depth two while G2 is a fat caterpillar.
G1 and G2 have the same vertex set; each vertex has the same label in (a) and (b). (c)-(d) A
simultaneous embedding of 〈G1, G2〉.

An immediate consequence of Lemma 3 and Theorem 2 is that EAP is properly
contained in AEP (Corollary 1). Theorems 1 and 2 imply Corollary 2.

Corollary 1. EAP ⊂ AEP .

Corollary 2. Let 〈G1, G2〉 be a pair of graphs such that G1 is either a radius-2 star, an
extended degree-3 spider or a generalized caterpillar, and G2 is a fat caterpillar. Then
〈G1, G2〉 admits a SGE.

The characterization of Theorem 2 implies that all planar graphs that are known to
be simultaneously embeddable with a strictly monotone path [4] are in fact simultane-
ously embeddable with a fat caterpillar (i.e., EAP graphs). Moreover, EAP graphs open
up two further research directions. A first research direction is to extend to fat cater-
pillars other existing SGE results that involve paths that are not realized in a strictly
monotone fashion. A second research direction is to extend the result of Theorem 1 to
simultaneous drawings that are not planar but where some crossing configurations are
forbidden. Regarding the first research direction, we prove below that fat caterpillars
can be used to generalize a result by Angelini et al. [3] in which it is proved that a
path and a tree of depth two always admit a SGE. As for “nearly planar” simultaneous
geometric embeddings, we devote Sec. 4 to quasi planar drawings.

Theorem 3. Let 〈G1, G2〉 be a pair of graphs such that G1 is a tree of depth 2 and G2

is a fat caterpillar. Then 〈G1, G2〉 admits a SGE.

Sketch of Proof: The technique is inspired by the one described in [3]. Since G1 is a
tree of depth 2, removing the root of G1 we obtain a set of stars S1, S2, . . . , Sh. Let

Planar and Quasi Planar Simultaneous Geometric Embedding 59

�0, �1, . . . , �h be a set of half-lines each having initial point (0, 0) and all extending in
the upper half-plane, ordered as they are encountered rotating clockwise starting at the
negative x-axis. Let Ci be the cone delimited by �i−1 and �i. In order to obtain a planar
drawing of a star it is sufficient to map its vertices to a set of points in general position,
i.e., a set of points such that there are no three collinear points. So in order to draw
G1 we can map the vertices of each Si (i = 1, 2, . . . , h) to points in general position
of a different cone Cj and the root of G1 to point (0, 0) shared by all regions. In this
way each star Si is drawn planarly inside a different Cj (thus different stars do not cross
each other) and the root vertex can be connected without crossings to its adjacent vertex
of each star Si (see Fig. 3(c)). It can be shown that G2 admits a drawing such that the
vertex corresponding to the root of G1 is mapped to (0, 0) and the points corresponding
to each star Si are mapped to a different cone Cj (see Fig. 3(d)). ��

4 Simultaneous Geometric Quasi Planar Embeddings

We introduce and study geometric simultaneous embeddings where each of the two
drawings are not required to be planar but only quasi planar. We implicitly assume that
all drawings are straight-lines. Let G be a graph and let Γ be a drawing of G. Γ is quasi
planar if there are no three mutually crossing edges. A graph is quasi planar if it admits
a quasi planar drawing. Let 〈G1 = (V,E1), G2 = (V,E2)〉 be a pair of quasi planar
graphs with the same vertex set. A simultaneous geometric quasi planar embedding
(SGQPE) of 〈G1, G2〉 is a pair of drawings 〈Γ1, Γ2〉 such that: (i) Γi is a quasi planar
straight-line drawing of Gi for i = 1, 2; (ii) each vertex v ∈ V is represented by the
same point in Γ1 and Γ2. We extend the definition of AEP and EAP graphs to the quasi
planar case as follows. A quasi planar graph G is an AEQP graph if for any y-leveling
Y of G, there exists an x-leveling X such that Γ (X ,Y) is quasi planar. G is an EAQP
graph if there exists a y-leveling Y of G, called a universal quasi planar leveling, such
that for any x-leveling X that is general with respect to Y , Γ (X ,Y) is quasi planar.
Denote by AEQP and EAQP the set of AEQP and EAQP graphs, respectively. The
next result generalizes Theorem 1.

Theorem 4. Let 〈G1, G2〉 be a pair of graphs such that G1 ∈ AEQP and G2 ∈
EAQP . Then 〈G1, G2〉 admits a SGQPE.

Motivated by Theorem 4 we study the interplay between AEQP and EAQP graphs
and also their relationships with AEP and EAP graphs, which are summarized by Fig. 4
and Theorem 6. We first show that any AEP graph is an EAQP graph (Lemma 7). The
next technical lemma generalizes Lemma 4 (the proof is similar).

Lemma 6. A graph G is an EAQP graph if and only if ihs(G) ≤ 2.

Lemma 7. AEP ⊂ EAQP .

Sketch of Proof: Let G be an AEP graph; it is either a radius-2 star, or a generalized
degree-3 spider, or a generalized caterpillar. For each type of graph we describe a y-
leveling that is universal quasi planar. The proof of correctness is omitted.

60 E. Di Giacomo et al.

EAP

AEP = ULP

EAQP

AEQP

fat caterpillars

Fig. 4. Proper inclusions among the different classes of graphs studied in this paper

Radius-2 Star. (see Fig. 5(a)). Let G be a radius-2 star and let v be the unique vertex of
G with degree larger than two. Denote by u1, u2, . . . , uk the neighbors of v and denote
by wi the neighbor of ui different from v (if it exists). We define a y-leveling Y of G as
follows. We set Y(v) = 0, Y(ui) = 2i− 1, and Y(wi) = 2i.

Extended Degree-3 Spider. Let G be an extended degree-3 spider. Suppose first that G
is a 1-connected extended degree-3 spider (see Fig. 5(b)). We can assume that G is full,
i.e., it has the two optional edges (if G is not full we can temporarily add the additional
edges to G). Since G is full it consists of a cycle C, plus a vertex v connected to two
consecutive vertices of C, plus a path P attached to v. Denote by u1, u2, . . . uk the
vertices of C (in the order they appear on C), where u1 and u2 are the vertices adjacent
to v. Denote by w1, w2, . . . , wh the vertices of P (in the order they appear on P),
where w1 is the vertex adjacent to v. We define a y-leveling Y of G as follows. We set
Y(v) = 0, Y(ui) = i, and Y(wi) = −i. Suppose now that G is a 2-connected extended
degree-3 spider (see Fig. 5(c)). If G is a cycle where one edge has been replaced by
a K3 gadget, then it is a subgraph of a full 1-connected extended degree-3 spider and
therefore a y-leveling for G can be defined as in the previous case. If G is a cycle where
one edge has been replaced by a C4 gadget, then G is the subgraph of a 2-connected
extended degree-3 spider consisting of a cycle where one edge has been replaced by a
kite gadget, and a y-leveling for G can be defined as in the next case. Thus, suppose
that G is a cycle where one edge has been replaced by a kite gadget. In this case G
consists of a cycle C plus a vertex v adjacent to three consecutive vertices of C. Denote
by u1, u2, . . . uk the vertices of C (in the order they appear on C), where u1, u2, and u3

are the vertices adjacent to v. We define a y-levelingY settingY(v) = 0 and Y(ui) = i.

Generalized Caterpillar. (see Fig. 5(d)). Let G be a generalized caterpillar. G consists
of a caterpillar C where some edges of the spine and (possibly) two non spine edges
have been replaced by a gadget. We first describe a y-leveling Y for C and then extend
it to the vertices of G that are not in C. Let u1, u2, . . . , uk be the vertices of the spine of
C. If an edge connecting u1 to a leaf is replaced by a gadget in G, then let this leaf be
denoted by u0; analogously, if an edge connecting uk to a leaf is replaced by a gadget
in G, then let this leaf be denoted by uk+1. We set Y(ui) = 2i (i = 0, 1, . . . , k + 1).
Denote by wi,1, wi,2, . . . wi,h the leaves adjacent to ui. We set Y(wi,j) = Y(ui)+

j
h+1 .

Suppose that edge (ui, ui+1) (i = 0, 1, . . . , k) is replaced by a gadget γ in G. Let
vi,1, vi,2, . . . vi,h (h ≥ 1) be the vertices of γ other than ui and ui+1. We set Y(vi,j) =
2i+ 1 + j−1

h (for j = 1, 2, . . . , h).

Planar and Quasi Planar Simultaneous Geometric Embedding 61

0

1

2

3

4

5

6

7

8

v

u1

u2

u3

u4

w1

w2

w3

w4

0

1

2

3

4

5

6

-2

-1

v

u1

u2

u3

u4

u5

u6

w1

w2 0

1

2

3

4

5

6

7

8

v

u1

u2

u3

u4

u5

u6

u7

u8

K4 gadget

kite gadget

C4 gadget

K3 gadget

0

1

2

3

4

5

6

7

8

Fig. 5. Illustration of the y-levelings described in the proof of Lemma 7. (a) A radius-2 star. (b)
A full 1-connected extended degree-3 spider. (c) A 2-connected extended degree-3 spider (with
an edge replaced by a kite gadget). (d) A generalized caterpillar.

From the discussion above we have AEP ⊆ EAQP . Since the tree T in Fig. 6(a),
which is not in AEP [11], is in EAQP (see Fig. 6(b)), we have AEP �= EAQP . ��

The proof of the next lemma is analogous to the one of Lemma 3.

Lemma 8. Let G ∈ EAQP . Then G ∈ AEQP .

It is natural to ask whether AEQP and EAQP coincide or not. Also, it is natural to
study which families of graphs belong to AEQP and to EAQP . Theorem 5 answers
the first question and gives a result about the second research direction. Theorem 6
summarizes the relationships between EAP , AEP , EAQP , and AEQP .

Theorem 5. All trees are AEQP graphs and there exist trees that are not EAQP graphs.

Sketch of Proof: The fact that every tree is an EAQP graph follows easily from the result
in [8]. A tree that is not in EAQP is shown in Fig. 6(c). ��

Theorem 6. EAP ⊂ AEP ⊂ EAQP ⊂ AEQP .

In the next theorem we prove that maximal outerpillars are EAQP graphs. An outer-
planar graph is called an outerpillar if its weak dual is a a caterpillar. An outerpillar is

u1

u0

u3u5

u2 u6 u7 u4
u1

u0

u3

u5

u2

u6

u7

u4
u1

v

u3u2

Fig. 6. (a) A tree T that is an EAQP graph but is not an AEP graph. (b) A universal quasi planar
y-leveling of T . (c) A tree that is not an EAQP graph.

62 E. Di Giacomo et al.

maximal if all its faces have degree three. Let G = (V,E) be a maximal outerpillar and
let G∗ be its weak dual. Let E1 ⊆ E be the set of edges of G whose dual edges are in
the spine of G∗. The edges in E1 induce a subgraph C of G that is a caterpillar. C is
called the backbone caterpillar of G. The vertices not in C are called tip vertices of G.

Theorem 7. Every maximal outerpillar is an EAQP graph.

Proof. Let G be a maximal outerpillar. We define a y-leveling Y of G as follows. Let
C be the backbone caterpillar of G, and let v1, v2, . . . , vh be the vertices of the spine
of C in the order they appear along the spine (for a chosen walking direction). Let
ni (with ni ≥ 0) be the number of degree-one vertices of C adjacent to vi (for i =
1, 2, . . . , h). We set Y(v1) = 0 and for each vertex vi (1 < i ≤ h) of G we set
Y(vi) =

∑i−1
j=1 2(nj + 1). Let wi,1, wi,2, . . . , wi,ni be the degree one nodes of C that

are adjacent to vi (for i = 1, 2, . . . , h); we set Y(wi,j) = Y(vi) + 2 · j. Finally, let
u be a tip vertex of G; u is adjacent to two vertices u1 and u2 of C. Suppose that
Y(u1) < Y(u2), then we set Y(u) = Y(u2)− 1.

Since the vertices of G have been assigned a different value, Y is a valid y-leveling.
Consider now an arbitrary x-leveling X . We show that ihs(Γ (X ,Y)) ≤ 2. Let � be the
stabber at l, with l ∈ R. If l < 0 or l > 2nc − 2 (where nC is the number of vertices of
C) then � does not intersect any edge. If l = 2i for some 0 ≤ i ≤ nc − 1, then � passes
through a vertex w of C. If w is a vertex of the spine of C, say vj (for 1 ≤ j ≤ h), then
� intersects all edges incident to vj and at most two edges both incident to vj−1. Thus
� intersects at most two independent edges. If w is a degree-one vertex of C, say wi,j ,
then � intersects all edges incident to wi,j and some of the edges incident to vi. Also,
in this case it intersects at most two independent edges. Consider now the case when
2i < l < 2i+ 2, and let w1 and w2 be the two vertices of C such that Y(w1) = 2i and
Y(w2) = 2i+2. Suppose first that w1 is a vertex of the spine of C, say vj (1 ≤ j ≤ h);
in this case w2 is either the next vertex of the spine of C, i.e. vj+1, or a degree-one
vertex adjacent to vj , i.e. wi,1. In both cases � intersects some edges incident to vj ,
edge (vj−1, w2), and, if a tip vertex u adjacent to vj−1 and w2 exists, at most two edges
(vj−1, u) and (w2, u); in any case � intersects at most two independent edges. Suppose
then that w1 is a degree-one vertex of C, say wj,k (1 ≤ j ≤ h, 1 ≤ k ≤ nj); in
this case w2 is either another degree-one vertex adjacent to vj , i.e. wj,k+1, or the next
vertex on the spine of C, i.e. vj+1. In both cases � intersects some edges incident to vj ,
the edge (w1, w2), and, if a tip vertex u adjacent to w1 and w2 exists, at most the two
edges (w1, u) and (w2, u); again, � intersects at most two independent edges. Hence
ihs(Γ (X ,Y)) ≤ 2, which implies that ihs(G) ≤ 2 and that G is an EAQP graph. ��

Theorems 4, 5, and 7 imply the following.

Corollary 3. Any tree and any cycle have a SGQPE. Any tree and any maximal outer-
pillar have a SGQPE.

Planar and Quasi Planar Simultaneous Geometric Embedding 63

5 Discussion and Open Problems

Several open problems arise from the study of the SGQPE:

Problem 1. Fowler and Kobourov [11] characterized AEP graphs, while in this paper
we provided a characterization of EAP graphs. Thus the first obvious open problem is
to characterize AEQP and EAQP graphs.

Problem 2. Does every pair of trees (or even every pair of planar graphs) admit a
SGQPE? So far we were only able to prove the following.

Theorem 8. There exists a pair of quasi planar graphs that does not admit a SGQPE.

Problem 3. Extend the study of simultaneous embeddability to other families of draw-
ings with forbidden crossing configurations, such as k-planar, RAC, LAC, fan-planar,
fan-crossing-free-planar drawings.

References

1. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. of
Combinatorial Theory, Series A 114(3), 563–571 (2007)

2. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear
number of edges. Combinatorica 17(1), 1–9 (1997)

3. Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with no geometric
simultaneous embedding. J. of Graph Algorithms and Applications 16(1), 37–83 (2012)

4. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamas-
sia, R. (ed.) Handbook of Graph Drawing and Visualization. CRC Press (2014)

5. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G.,
Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. In: Dehne, F., Sack,
J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 243–255. Springer, Heidelberg
(2003)

6. Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lu-
biw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2),
117–130 (2007)

7. Cabello, S., van Kreveld, M.J., Liotta, G., Meijer, H., Speckmann, B., Verbeek, K.: Geomet-
ric simultaneous embeddings of a graph and a matching. J. Graph Algorithms and Applica-
tions 15(1), 79–96 (2011)

8. Didimo, W., Kaufmann, M., Liotta, G., Okamoto, Y., Spillner, A.: Vertex angle and crossing
angle resolution of leveled tree drawings. Inform. Process. Lett. 112(16), 630–635 (2012)

9. Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level
planar trees. Computational Geometry 42(6-7), 704–721 (2009)

10. Evans, W., Kusters, V., Saumell, M., Speckmann, B.: Column planarity and partial simultane-
ous geometric embedding. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871,
pp. 259–271. Springer, Heidelberg (2014)

11. Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar graphs. In: Hong,
S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 37–49. Springer, Hei-
delberg (2008)

12. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J. on Discrete
Mathematics 27(1), 550–561 (2013)

13. Valtr, P.: On geometric graphs with no k pairwise parallel edges. Discrete & Computational
Geometry 19(3), 461–469 (1998)

Simultaneous Embeddability of Two Partitions

Jan Christoph Athenstädt1, Tanja Hartmann2, and Martin Nöllenburg2

1 Department of Computer and Information Science, University of Konstanz, Germany
2 Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany

Abstract. We study the simultaneous embeddability of a pair of partitions of
the same underlying set into disjoint blocks. Each element of the set is mapped
to a point in the plane and each block of either of the two partitions is mapped
to a region that contains exactly those points that belong to the elements in the
block and that is bounded by a simple closed curve. We establish three main
classes of simultaneous embeddability (weak, strong, and full embeddability) that
differ by increasingly strict well-formedness conditions on how different block
regions are allowed to intersect. We show that these simultaneous embeddability
classes are closely related to different planarity concepts of hypergraphs. For each
embeddability class we give a full characterization. We show that (i) every pair of
partitions has a weak simultaneous embedding, (ii) it is NP-complete to decide
the existence of a strong simultaneous embedding, and (iii) the existence of a full
simultaneous embedding can be tested in linear time.

1 Introduction

Pairs of partitions of a given set of objects occur naturally when evaluating two alter-
native clusterings in the field of data analysis and data mining. A clustering partitions
a set of objects into blocks or clusters, such that objects in the same cluster are more
similar (according to some notion of similarity) than objects in different clusters. There
are a multitude of clustering algorithms that use, e.g., an underlying graph structure or
an attribute-based distance measure to define similarities. Many algorithms also pro-
vide configurable parameter settings. Consequently, different algorithms return differ-
ent clusterings and judging which clustering is the most meaningful with respect to
a certain interpretation of the data must be done by a human expert. For a structural
comparison of two clusterings several numeric measures exist [20], however, a single
numeric value hardly shows where the clusterings agree or disagree. Hence, a data an-
alyst may want to compare different clusterings visually, which motivates the study of
simultaneous embeddability of two partitions.

We provide fundamental characterizations and complexity results regarding the si-
multaneous embeddability of a pair of partitions. While simultaneous embeddability
can generally be defined for any number k ≥ 2 of partitions, we focus on the basic case
of embedding two partitions, which is also the most relevant one in the data analysis
application. We propose to embed two alternative partitions of the same set U into the
plane R2 by mapping each element of U to a unique point and each block (of either
of the two partitions) to a region bounded by a simple closed curve. Each block region
must contain all points that belong to elements in that block and no point whose element
belongs to a different block. Hence, in total, each point lies inside two block regions.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 64–75, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Simultaneous Embeddability of Two Partitions 65

A simultaneous embedding of two partitions shares certain properties with set visu-
alizations like Euler or Venn diagrams [8,12,19]. Its readability will be affected by well-
formedness conditions for the intersections of the different block regions. Accordingly,
we define a (strict) hierarchy of embeddability classes based on increasingly tight well-
formedness conditions: weak, strong, and full embeddability. We show that (i) any two
partitions are weakly embeddable, (ii) the decision problem for strong embeddability
is NP-complete, and (iii) there is a linear-time decision algorithm for full embeddabil-
ity. We fully characterize the embeddability classes in terms of the existence of a planar
support (strong embeddability) or in terms of the planarity of the bipartite map (full em-
beddability). Interestingly, both concepts are closely related to hypergraph embeddings
and different notions of hypergraph planarity. Our NP-completeness result implies that
vertex-planarity testing of 2-regular hypergraphs is also NP-complete.

1.1 Related Work

In information visualization there are a large variety of techniques for visualizing clus-
ters of objects, some of which simply map objects to (colored) points so that spatial
proximity indicates object similarity [6, 16], others explicitly visualize clusters or gen-
eral sets as regions in the plane [9, 19]. These approaches are visually similar to Euler
diagrams [8,12], however, they do not give hard guarantees on the final set layout, e.g.,
in terms of intersection regions or connectedness of regions, nor do they specifically
consider the simultaneous embedding of two or more clusterings or partitions.

Clustered planarity is a concept in graph drawing that combines a planar graph lay-
out with a drawing of the clusters of a single hierarchical clustering. Clusters are repre-
sented as regions bounded by simple closed and pairwise crossing-free curves. Such a
layout is called c-planar if no edge crosses a region boundary more than once [11].

The simultaneous embedding of two planar graphs on the same vertex set is a topic
that is well studied in the graph drawing literature, see the recent survey of Bläsius et
al. [2]. In a simultaneous graph embedding each vertex is located at a unique position
and edges contained in both graphs are represented by the same curve for both graphs.
The remaining (non-shared) edges are embedded so that each graph layout by itself is
crossing-free, but edges from the first graph may cross edges in the second graph.

Some of our results and concepts in this paper can be seen as a generalization of
simultaneous graph embedding to simultaneous hypergraph embedding if we consider
blocks as hyperedges: all vertices are mapped to unique points in the plane and two hy-
peredges, represented as regions bounded by simple closed curves, may only intersect if
they belong to different hypergraphs or if they share common vertices. Several concepts
for visualizing a single hypergraph are known [4, 5, 14, 15, 17], but to the best of our
knowledge the simultaneous layout of two or more hypergraphs has not been studied.

1.2 Preliminaries

Let U = {u1, . . . , um} be a finite universe. A partitionP = {B1, . . . , Bn} of U groups
the elements of U into disjoint blocks, i.e., every element u ∈ U is contained in exactly
one block Bi ∈ P . In this paper, we consider pairs {P0,P1} of partitions of the same

66 J.C. Athenstädt, T. Hartmann, and M. Nöllenburg

(a) weak embedding (b) strong embedding (c) full embedding

Fig. 1. Examples of simultaneous embeddings of two partitions

universe U , i.e., each element u ∈ U is contained in one block of P0 and in one block
of P1. In the following we often omit to mention U explicitly.

Let S be a collection of subsets of U . An embedding Γ of S maps every element
u ∈ U to a distinct point Γ (u) ∈ R2 and every set S ∈ S to a simple, bounded, and
closed region Γ (S) ⊂ R2 such that Γ (u) ∈ Γ (S) if and only if u ∈ S. Moreover,
we require that each contiguous intersection between the boundaries of two regions is
in fact a crossing point p ∈ R2, i.e., the local cyclic order of the boundaries alternates
around p. A simultaneous embeddingΓ of a pair of partitions {P0,P1} is an embedding
of the unionP0∪P1 of the two partitions. We define RB = Γ (B) as the block region of
a block B and denote its boundary by ∂RB . Figure 1 shows examples of simultaneous
embeddings in the three different embedding classes to be defined in Section 2.

A simultaneous embedding Γ induces a subdivision of the plane and we can derive a
plane multigraph GΓ by introducing a node for each intersection of two boundaries and
an edge for each section of a boundary that lies between two intersections. Furthermore,
a boundary without intersections is replaced by a node with a self loop nested inside its
surrounding face. We call GΓ the contour graph of Γ and its dual graph G∗

Γ the dual
graph of Γ . The faces of GΓ belong to zero, one, or two block regions. We call a face
that belongs to no block region a background face, a face that belongs to a single block
region a linking face, and a face that belongs to two block regions an intersection face.
Only intersection faces contain points corresponding to elements in the universe, and
no two faces of the same type are adjacent in the contour graph.

Alternatively, the union of the two partitions P0 ∪ P1 can also be seen as a hyper-
graph H = (U,P0 ∪ P1), where every element u ∈ U is a vertex and every block
defines a hyperedge, i.e., a non-empty subset of U . The hypergraph H is 2-regular
since every vertex is contained in exactly two hyperedges. We denote H = H(P0,P1)
as the corresponding hypergraph of the pair of partitions {P0,P1}.

Hypergraph supports [15] play an important role in hypergraph embeddings and
their planarity. A support of a hypergraph H = (V,S) is a graph Gp = (V,E) on
the vertices of H , such that the induced subgraph Gp[S] of every hyperedge S ∈ S is
connected. We extend the concept of supports to pairs of partitions, i.e., we say that a
graph Gp = (V,E) is a support for {P0,P1}, if it is a support of H(P0,P1).

We call a support path based, if the induced subgraphs of all hyperedges are paths,1

and tree based, if all hyperedge-induced subgraphs are trees, i.e., they do not contain

1 Brandes et al. [4] used a slightly different definition and called a support path based if the
induced subgraph of each hyperedge has a Hamiltonian path.

Simultaneous Embeddability of Two Partitions 67

any cycles. For any support Gp of a pair of partitions {P0,P1} we can always create
a tree-based support G′

p by removing edges from cycles: Suppose there exists a block
B ∈ P0 such that Gp[B] contains a cycle K . If the vertices in K are also contained in
a common block of P1, we can just remove a random edge from K without destroying
the support property. Otherwise, we can remove an edge from K that connects vertices
in two different blocks of P1 without destroying the support property.

The bipartite map Gb(H) of a hypergraph H = (V,S) is defined as the bipartite
graphGb(H) = (V ∪S, Eb) that has a node for each vertex in V and for each hyperedge
in S [21]. A node v ∈ V is adjacent to a node S ∈ S if v ∈ S. We say that Gb(H) is
the bipartite map of a pair of partitions {P0,P1} if H = H(P0,P1).

Finally, we define the block intersection graph Gs(P0,P1) as the graph with vertex
set Vs = P0∪P1 and edge set Es = {{B,B′} | B∩B′ �= ∅}. Thus Gs has a vertex for
each block and an edge between any two blocks that share a common element. Since
only blocks of different partitions can intersect, we know that Gs is bipartite.

2 The Main Classes of Embeddability

We define three main concepts of simultaneous embeddability for pairs of partitions.
We will see that these concepts induce a hierarchy of embeddability classes of pairs of
partitions. We begin with weak embeddability, which is the most general concept.

Definition 1 (Weak Embeddability). A simultaneous embedding of two partitions is
weak if no two block regions of the same partition intersect. Two partitions are weakly
embeddable if they have a weak simultaneous embedding.

Prohibiting intersections of block regions of the same partition is our first well-formed-
ness condition. A weak embedding emphasizes the fact that the blocks in each partition
are disjoint. Since the blocks of any partition are disjoint by definition, it is not surpris-
ing that any pair of partitions is weakly embeddable (see Fig. 1(a) for an example).

Theorem 1. Any two partitions of a common universe are weakly embeddable on any
point set.

Proof. A spanning forest (in fact, any planar graph) on n nodes can always be drawn in
a planar way on any fixed set of n points in the plane [18]. Let now P be a partition. We
choose arbitrary, but distinct points in the plane for the elements of U . We then generate
a spanning tree on the elements in each block and embed the resulting forest in a planar
way on the points. Slightly inflating the thickness of the edges of the trees yields simple
bounded block regions. We can do this independently for a second partition on the same
points and obtain a weak simultaneous embedding. �

Although the concept of weak embedding does not seem to provide interesting in-
sights into the structure of a given pair of partitions, it guarantees at least the existence
of a simultaneous embedding for any pair of partitions that is more meaningful than
an arbitrary embedding. An obvious drawback of weak embeddings is that the block
regions of disjoint blocks are allowed to intersect, as long as both blocks belong to
different partitions—even if they do not share common elements. Following the gen-
eral idea of Euler diagrams [8], which do not show regions corresponding to empty

68 J.C. Athenstädt, T. Hartmann, and M. Nöllenburg

intersections, we establish a stricter concept of embeddability. In a strong embedding
block regions may only intersect if the corresponding blocks have at least one element
in common, and even more, each intersection face of the contour graph must actually
contain a point, see Fig. 1(b). This is our second well-formedness condition.

Definition 2 (Strong Embeddability). A simultaneous embedding Γ of two partitions
is strong if each intersection face of the corresponding contour graph contains a point
Γ (u) for some u ∈ U . Two partitions are strongly embeddable if they have a strong
simultaneous embedding.

Obviously, a strong embedding is also weak, since blocks of the same partition have
no common elements, and thus, cannot form intersection faces. The class of strongly
embeddable pairs of partitions is characterized by Theorem 2; we show in Section 3
that deciding the strong embeddability of a pair of partitions is NP-complete.

Theorem 2. A pair of partitions of a common universe is strongly embeddable if and
only if it has a planar support.

Proof. Let {P0,P1} be a pair of partitions and let GΓ be the contour graph resulting
from a strong embedding Γ of {P0,P1}. We construct a planar support of {P0,P1}
along GΓ as follows. First recall that the elements of the universe, which correspond to
the nodes in a support, are represented in Γ by points that are drawn inside intersection
faces. Vice versa, since Γ is strong, each intersection face contains at least one point.
Hence, we choose one point in each intersection face as the center of this face. We now
create a dummy vertex for each linking face (observe that one block region may induce
several linking faces) and link it to the centers of all adjacent intersection faces. The
resulting graph is a subgraph of the dual graph of the contour graph GΓ and therefore
planar. We now connect all remaining vertices in a star-like fashion to the center of
their intersection face, routing the edges in a non-crossing way. We finally remove the
dummy vertices by merging them to an adjacent center, linking all adjacent vertices to
that center. This graph remains planar. It also has the support property, since all inter-
section and linking faces of any block region are connected into a single component,
and with them all vertices of that block region.

Now we construct a strong embedding from a planarly embedded support of{P0,P1}.
To this end, we first construct a tree-based support by deleting edges from cycles as de-
scribed in Section 1.2. Then, we simply inflate the edges of each block-induced subtree.
Since the underlying support is embedded in a planar way, this yields a simple block
region for every block in {P0,P1} such that two block regions only intersect at the po-
sitions of the nodes. Hence, the constructed block regions together with the nodes of the
support form a strong embedding of {P0,P1}. We note that the support graph as a planar
graph can in fact be embedded on any point set [18]. Hence, a strongly embeddable pair
of partitions can be strongly embedded on any point set. �

In a strong embedding, a single block region may still cross other block regions and
intersect the same block regions several times forming distinct intersection faces—as
long as each intersection face contains at least one common point. The last of our three
embeddability classes prevents this behavior and requires that the block regions form a
collection of pseudo-disks, i.e., the boundaries of every pair of regions intersect at most

Simultaneous Embeddability of Two Partitions 69

twice and the boundaries of two nested regions do not intersect. See Fig 1(c) for an
example. This implies in particular that every block intersection is connected, which is
a well-formedness condition widely used in the context of Euler diagrams [8], and that
block regions do not cross and are thus more locally confined.

Definition 3 (Full Embeddability). A simultaneous embedding of two partitions is full
if it is a strong embedding and the regions form a collection of pseudo-disks. Two par-
titions are fully embeddable if they have a full simultaneous embedding.

Using a linear-time algorithm for planarity testing [13], the following characterization
of fully embeddable pairs of partitions directly implies a linear-time algorithm for de-
ciding full embeddability. The proof of Theorem 3 constructs a bipartite map along a
given full embedding, and vice versa. It uses similar techniques as the proofs of Theo-
rems 1 and 2 and is found in the full version of this paper [1].

Theorem 3. A pair of partitions of a common universe is fully embeddable if and only
if its bipartite map is planar.

A full embedding is strong by definition and we have seen above that a strong em-
bedding is also weak. Hence, the three embeddability classes introduced in this section
induce a hierarchy of embeddability classes. In the full version [1] we show that this
hierarchy is strict. The weak embeddability class forms the basis of the hierarchy and
contains all pairs of partitions. The strong embeddability class and the full embeddabil-
ity class are characterized by the existence of a planar support and the planarity of the
bipartite map of a pair of partitions, respectively, where the latter directly implies a
linear time algorithm for the corresponding decision problem. Moreover, these char-
acterizations reveal close relations to the hypergraph planarity concepts of Zykov and
vertex planarity.

A hypergraph H = (V,S) is Zykov-planar [22], if there exists a subdivision of
the plane into faces, such that each hyperedge S ∈ S can be mapped to a face of the
subdivision, and each vertex v ∈ V can be mapped to a point on the boundary of all
faces that represent a hyperedge containing v. Walsh [21] showed that a hypergraph is
Zykov planar if and only if its bipartite map is planar.

In contrast, a hypergraph H = (V,S) is vertex-planar [14] if there exists a subdivi-
sion of the plane into faces, such that every vertex v ∈ V can be mapped to a face and
for every hyperedge S ∈ S, the interior of the union of all faces of the vertices in S is
connected. Kaufmann et al. [15] showed that a hypergraph is vertex planar if and only if
it has a planar support. This shows that the class of fully embeddable pairs of partitions
is a subclass of Zykov planar hypergraphs, and the class of strongly embeddable pairs
of partitions is a subclass of vertex planar hypergraphs.

3 Complexity of Deciding Strong Embeddability

In this section we show the NP-completeness of testing strong embeddability. As a
consequence, testing whether the corresponding hypergraph of a pair of partitions has
a planar support is also NP-complete by Theorem 2. This seems not very surprising
considering the more general hardness results of Johnson and Pollak [14] and Buchin et

70 J.C. Athenstädt, T. Hartmann, and M. Nöllenburg

(a) Removing a linking face (b) Removing a background face

Fig. 2. Two cases for transforming a strong embedding into a proper strong embedding

al. [5] who showed that deciding the existence of a planar support and a 2-outerplanar
support in general hypergraphs is NP-hard. However, we consider a restricted subclass
of 2-regular hypergraphs, thus, the NP-hardness of our problem does not directly follow
from the previous results. Moreover, other special cases, e.g., finding path, cycle, tree,
and cactus supports are known to be solvable in polynomial time [3, 5, 14]. Together
with the characterization of Theorem 2, Theorem 4 immediately implies that testing the
vertex planarity of a 2-regular hypergraph is NP-complete.

Theorem 4. Deciding the strong embeddability of a pair of partitions is NP-complete.

The existing hardness results [5,14] rely on elements that are contained in more than
two hyperedges and could not be adapted to our 2-regular setting. Instead we prove the
hardness of deciding strong embeddability by a quite different reduction from the NP-
complete problem MONOTONE PLANAR 3SAT [10]. A monotone planar 3Sat formulaϕ
is a 3Sat formula whose clauses either contain only positive or only negated literals (we
call these clauses positive and negative) and whose variable-clause graph Hϕ is planar.
A monotone rectilinear representation (MRR) of ϕ is a drawing of Hϕ such that the
variables correspond to axis-aligned rectangles on the x-axis and clauses correspond to
non-crossing E-shaped “combs” above the x-axis if they contain only positive variables
and below the x-axis otherwise; see Fig. 4(a).

An instance of MONOTONE PLANAR 3SAT is an MRR of a monotone planar 3Sat
formula ϕ. In the proof of Theorem 4 we will construct a pair of partitions {P0,P1}ϕ
that admits a strong embedding if and only if ϕ is satisfiable.

For the sake of simplicity, we restrict the class of strong embeddings to the sub-
class of proper strong embeddings, which is equivalent, as we can argue that a pair
of partitions has a strong embedding if and only if it also has a proper one. A strong
embedding is proper if the contour graph does not contain background or linking faces
that are adjacent to only two other faces. Figure 2 illustrates how background or linking
faces violating this condition can be removed, transforming a strong embedding into
a proper one. We say that two proper strong embeddings are equivalent if the embed-
dings of their contour graphs are equivalent, i.e. if the cyclic order of the edges around
each vertex is the same. A pair of partitions has a unique strong embedding if all proper
strong embeddings are equivalent. Note that, analogously to the definition of equiva-
lence of planar graph embeddings, two equivalent proper strong embeddings may have
different unbounded outer background faces. Our construction in the hardness proof is
independent of the choice of the outer face.

Next we define a special pair of partitions that has a unique grid-shaped embedding
as a scaffold for the gadgets in the subsequent proof of Theorem 4. The first step is

Simultaneous Embeddability of Two Partitions 71

. . .

. . .

..
.

..
.

Q0

Q1

Fig. 3. Graph G2,3 and the partitions {Q0,Q1} sketched for the top-left grid cell marked in gray

to construct a base graph Gm,n for two integers m and n. The graph Gm,n is a grid
with mn + 1 columns and 2m + 2 rows of vertices with integer coordinates (i, j) for
0 ≤ i ≤ mn and 0 ≤ j ≤ 2m+1. Each vertex v with coordinates (i, j) is connected to
the four vertices at coordinates (i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1) (if they exist).
Between the middle rows m and m+1 we remove all vertical edges except for those in
columns 0,m, 2m, . . . , nm. This defines n larger grid cells of width m in this particular
row. Figure 3 (left) shows an example.

From Gm,n we construct a pair of partitions {Q0,Q1} as follows (see Fig. 3).
For each vertex v with coordinates (i, j) we create a vertex block Bv in partition
Q(i+j) (mod 2). For each edge (u, v) in Gm,n we create a chain of four edge blocks
B1

u,v, B2
u,v , B3

u,v, B4
u,v, such that B1

u,v and B3
u,v are in the same partition as Bv and

B2
u,v and B4

u,v are in the same partition as Bu. We distribute five distinct elements
among the edge blocks of (u, v) and the vertex blocks for u and v such that they form
the desired chain pattern and each intersection face contains one common element. The
pair {Q0,Q1} is indeed a pair of partitions as every element belongs to exactly one
block of each partition. Edge blocks contain two and vertex blocks up to four elements
(depending on the degree of the corresponding vertex in Gm,n). Below we will add the
gadgets of the reduction on top of {Q0,Q1}, for which it is required that there is an
edge block in each partition that does not share any element with a vertex block. This
explains why we link blocks of adjacent vertices by chains of four blocks.

The next lemma shows that {Q0,Q1} has a unique embedding (proof in the full
version [1]), which is a consequence of the fact that Gm,n is a subdivision of a planar
3-connected graph (assuming n ≥ 2) and thus it has a unique embedding. This property
is inherited by {Q0,Q1} in our construction.

Lemma 1. The pair of partitions {Q0,Q1} has a unique embedding.

Now we have all the tools that we need to prove our main theorem in this section.

Proof (of Theorem 4). First we show that the problem is in NP. By Theorem 2 we know
that a pair of partitions is strongly embeddable if and only if it has a planar support.
Thus we can “guess” a graph on U and then test its planarity and support property in
polynomial time. This shows membership in NP. It remains to describe the hardness
reduction.

Let ϕ be a planar monotone 3Sat formula together with an MRR. First we construct
the pair of partitions {Q0,Q1} for the base graph Gm,n, where m is the number of
clauses of ϕ and n is the number of variables of ϕ. By Lemma 1 {Q0,Q1} has a unique

72 J.C. Athenstädt, T. Hartmann, and M. Nöllenburg

x1 x2 x3 x4 x5 x6

C1

C3

C2

C4

C5 C6
C7

C1 = (x1 ∨ x1 ∨ x2)
C2 = (x2 ∨ x3 ∨ x5)
C3 = (x3 ∨ x4 ∨ x5)
C4 = (x2 ∨ x5 ∨ x6)
C5 = (x2 ∨ x3 ∨ x4)
C6 = (x2 ∨ x4 ∨ x6)
C7 = (x1 ∨ x2 ∨ x6)

(a) Monotone rectilinear representation of a formula ϕ

C1

C4

C3

C2

C7

C6

C5

x3 x4 x5 x6x1 x2

(b) Sketch of the clause blocks laid on top of the grid {Q0,Q1} (empty columns omitted)

Fig. 4. Illustration of the NP-hardness reduction

proper grid-like embedding. We call {Q0,Q1} the base grid and the n special cells
between rows m and m+ 1 the variable cells of the base grid.

Next we augment the pair of partitions {Q0,Q1} by additional blocks, one for each
clause, where positive clauses are added to Q0 and negative clauses to Q1. The defini-
tion of these clause blocks closely follows the layout of the given MRR, see Fig. 4(a).
Let C1, C2, . . . , Cl be the positive clauses of ϕ ordered so that if Ci is nested inside
the E-shape of Cj in the given MRR then i < j. Analogously let Cl+1, . . . , Cm be
the ordered negative clauses. We describe the definition of the block Bi for a positive
clause Ci (1 ≤ i ≤ l); blocks for negative clauses are defined symmetrically. We create
an intermediate embedding of Bi (which is not yet strong but serves as a template for
a later strong embedding) by putting Bi on top of the base grid2 and adding new ele-
ments to Bi and to certain edge blocks in Q1. This fixes Bi to run through two mirrored
E-shaped sets of grid cells of our choice (Fig. 4(b)). In the upper half of the base grid,
Bi is assigned to run between rows m− i and m− i + 1. Furthermore, Bi is assigned
to three columns leading towards the variable cells from the top. Let xj be a variable
contained in Ci and assume that Ci is the k-th positive clause from the right connecting
to xj in the embedding of the given MRR. Then Bi runs between columns jm− k and

2 The idea of fixing paths to an underlying grid is inspired by Chaplick et al. [7].

Simultaneous Embeddability of Two Partitions 73

jm − k + 1. In the lower half of the base grid we translate and mirror the resulting
E-shape as follows. We let Bi occupy the cells between rows 2m+ 2 − l + i − 1 and
2m+2− l+i and the three columns are shifted to the left by the number of occurrences
of the respective variable in negative clauses (Fig. 4(b)). Since each variable cell is m
columns wide, we can always assign each clause to a unique column of xj in the top
and bottom half of the grid in this way.

We actually fix Bi to the base grid by adding one shared element for each crossed
edge of a grid cell to both Bi and the respective edge block of Q1 that does not share
an element with a vertex block in Q0 (recall that {Q0,Q1} contains such a block in
each partition and for each grid edge). No two blocks of the same clause type (positive
or negative) intersect, but blocks of different type do intersect in certain grid cells. For
each grid cell shared between a positive and negative block (except for the n variable
cells) we add one shared element (black dots in Fig. 4(b)) and call the respective grid
cell the home cell for this element. Recall that the orders of the incoming blocks from
the top and the bottom of each variable cell are inverted. Thus, within each variable
cell the blocks of each pair of a positive and negative clause using the corresponding
variable intersect, but no shared element is added. We denote the resulting new pair of
partitions as {P0,P1}ϕ and observe that its size is polynomial in the size of ϕ.

Next we argue about the strong embedding options in contrast to the immediate em-
bedding for a clause block Bi in {P0,P1}ϕ. In the intermediate embedding each block
has three connections through variable cells linking the upper E-shape with the lower
E-shape. Any element shared with an edge block of the uniquely embedded base grid
must obviously be reached by the block region of Bi. Since the block region must be
simple, any strong embedding of Bi results from opening the intermediate embedding
of Bi in exactly two grid cells so that the resulting block region of Bi is connected and
has no holes. Additionally, a shared element must be placed in any intersection of the
block region of Bi with block regions of other clause blocks.

First we assume that ϕ is a satisfiable formula and a satisfying variable assignment
is given. We need to show that {P0,P1}ϕ has a strong embedding. If a variable xj has
the value true in the given assignment we open all blocks of negative clauses using xj

in the corresponding variable cell; if xj is false we open all blocks of positive clauses
using xj . Thus no blocks intersect in variable cells any more. If a clause contains more
than one true literal, we open all but one connection in its variable cells of true literals.
Since the assignment satisfies ϕ, we know that each clause block is opened exactly
twice in its variable cells and thus forms a valid simple block region. Moreover, we
place all shared elements in their home cells so that every block intersection contains
an element and the embedding is strong. We call a strong embedding of {P0,P1}ϕ with
the above properties a canonical embedding.

Now assume that {P0,P1}ϕ has a strong embedding. We know that the base grid
has its unique embedding and that each block is embedded as a simple region that
results from opening the intermediate embedding (with its two E-shapes linked through
three variable cells) in exactly two cells. If the embedding is already canonical, we
can immediately construct a satisfying variable assignment for ϕ: if a variable cell is
crossed by clause blocks in Q0 we set the variable to true, otherwise we set it to false.
Since every clause block is connected we know that this assignment satisfies all clauses.

74 J.C. Athenstädt, T. Hartmann, and M. Nöllenburg

If the embedding is not canonical we show that it can be transformed into a canonical
embedding as follows. In a non-canonical embedding it is possible that two blocks Bi

and Bj intersect in a variable cell xk and have a shared element in their intersection face
in the cell of xk rather than in the home cell of that element. This means, on the other
hand, that in some shared home cell γ of Bi and Bj , say in the upper half, at least one of
the two blocks is opened (as there is no more shared element to put into an intersection
face). Thus the grid cell γ splits the E-shaped block region of one or both blocks in the
upper half into two disconnected components, meaning that each opened block crosses
at least two variable cells in order to connect both components via the lower half. Hence
we can safely split any block that is opened in γ in the cell of variable xk , re-connect it
inside γ, and place the shared element of Bi and Bj into its home cell γ. This removes
the block intersection in the cell of xk. Once all block crossings within variable cells
are removed, the resulting embedding is a canonical embedding and we can derive the
corresponding satisfying variable assignment. �

4 Extensions and Conclusion

We have characterized three main embeddability classes for pairs of partitions, which in
fact form a strict hierarchy (see full version [1]), and we have shown NP-completeness
of deciding strong embeddability. From a practical point of view the class of strong
embeddings is of particular interest: it guarantees that every intersection between block
regions is meaningful as it contains at least one element, but, in contrast to full embed-
dings, it allows multiple disconnected intersection regions between the same two blocks
and it allows two blocks to cross.

There are interesting subclasses of strong embeddings that further structure the space
between strong and full embeddability. They are discussed in more detail in the full
version [1]. In single-intersection strong embeddings we adapt the unique intersection
region condition of full embeddings, but still permit that two blocks cross in the em-
bedding. This new class is a true subclass of strong embeddings. It is open whether
the corresponding decision problem is still NP-complete since the proof of Theorem 4
is based on the existence of multiple intersection regions between pairs of blocks. In
strong grid embeddings, a true subclass of single-intersection strong embeddings, the
blocks of P0 and P1 are embedded as horizontal and vertical ribbons, respectively,
which intersect in a matrix-like fashion.

It is an interesting direction for future work to generalize our embeddability concepts
to k > 2 partitions. While weak embeddability and its properties extend readily to any
number of partitions, it is less obvious how to generalize strong and full embeddability.
One possibility is to require the properties in a pairwise sense; otherwise constraints
for new types of faces in the contour graph belonging to more than one but less than
k block regions might be necessary. On the practical side, future work could be the
design of algorithms that find visually appealing simultaneous embeddings of two or
more partitions. Finally, if the partitions are clusterings on a graph, one would ideally
want to simultaneously draw both the partitions and the underlying graphs.

Acknowledgments. We thank the anonymous reviewers for helpful comments.

Simultaneous Embeddability of Two Partitions 75

References

1. Athenstädt, J.C., Hartmann, T., Nöllenburg, M.: Simultaneous embeddability of two parti-
tions. CoRR, abs/1408.6019 (August 2014)

2. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamas-
sia, R. (ed.) Handbook of Graph Drawing and Visualization, ch. 11, pp. 349–381. CRC Press
(2013)

3. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Blocks of hypergraphs applied to hy-
pergraphs and outerplanarity. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS,
vol. 6460, pp. 201–211. Springer, Heidelberg (2011)

4. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Path-based supports for hypergraphs.
J. Discrete Algorithms 14, 248–261 (2012)

5. Buchin, K., van Kreveld, M., Meijer, H., Speckmann, B., Verbeek, K.: On planar sup-
ports for hypergraphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849,
pp. 345–356. Springer, Heidelberg (2010), see also Tech. Rep. UU-CS-2009-035, Utrecht
University (2009)

6. Buja, A., Swayne, D.F., Littman, M.L., Dean, N., Hofmann, H., Chen, L.: Data visualization
with multidimensional scaling. J. Comput. Graphical Statistics 17(2), 444–472 (2008)

7. Chaplick, S., Jelı́nek, V., Kratochvı́l, J., Vyskočil, T.: Bend-bounded path intersection graphs:
Sausages, noodles, and waffles on a grill. In: Golumbic, M.C., Stern, M., Levy, A., Morgen-
stern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 274–285. Springer, Heidelberg (2012)

8. Chow, S.: Generating and Drawing Area-Proportional Euler and Venn Diagrams. PhD thesis,
University of Victoria (2007)

9. Collins, C., Penn, G., Carpendale, S.: Bubble sets: Revealing set relations with isocontours
over existing visualizations. IEEE TVCG 15(6), 1009–1016 (2009)

10. de Berg, M., Khosravi, A.: Optimal binary space partitions in the plane. In: Thai, M.T., Sahni,
S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 216–225. Springer, Heidelberg (2010)

11. Feng, Q.-W., Cohen, R., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.) ESA
1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)

12. Flower, J., Fish, A., Howse, J.: Euler diagram generation. J. Visual Languages and Comput-
ing 19(6), 675–694 (2008)

13. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)
14. Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing Venn dia-

grams. J. Graph Theory 11(3), 309–325 (1987)
15. Kaufmann, M., van Kreveld, M., Speckmann, B.: Subdivision drawings of hypergraphs. In:

Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 396–407. Springer, Hei-
delberg (2009)

16. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer (2001)
17. Mäkinen, E.: How to draw a hypergraph. Int. J. Computer Math. 34(3-4), 177–185 (1990)
18. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs and Combi-

natorics 17(4), 717–728 (2001)
19. Simonetto, P., Auber, D., Archambault, D.: Fully automatic visualisation of overlapping sets.

Computer Graphics Forum 28(3), 967–974 (2009)
20. S. Wagner and D. Wagner. Comparing Clusterings – An Overview. Tech. Rep. 2006-04,

Department of Informatics, Universität Karlsruhe, 2007.
21. Walsh, T.R.: Hypermaps Versus Bipartite Maps. J. Combinatorial Theory Series B 18(2),

155–163 (1975)
22. Zykov, A.A.: Hypergraphs. Russian Mathematical Surveys 29(6), 89–156 (1974)

Luatodonotes:
Boundary Labeling for Annotations in Texts

Philipp Kindermann, Fabian Lipp, and Alexander Wolff

Lehrstuhl für Informatik I, Universität Würzburg, Germany
http://www1.informatik.uni-wuerzburg.de/en/staff

Abstract. We present a tool for annotating Latex documents with com-
ments. Our annotations are placed in the left, right, or both margins,
and connected to the corresponding positions in the text with arrows
(so-called leaders). Problems of this type have been studied under the
name boundary labeling. We consider various leader types (straight-line,
rectilinear, and Bézier) and modify existing algorithms to allow for anno-
tations of varying height. We have implemented our algorithms in Lua;
they are available for download as an easy-to-use Luatex package.

1 Introduction

Many word processing systems support annotations for the text. The most com-
mon case for this annotations are comments, which can be inserted in arbitrary
positions inside the text. The comments themselves are placed as labels in the
margin next to the text and connected to the corresponding position, called site,
by a line called leader. The endpoint of a leader at a label is called a port. Such
comments are available, for example, in LibreOffice (see Fig. 1) and Microsoft
Word. This task can be expressed in the boundary labeling notion introduced by
Bekos et al. [5]: the sites to be annotated lie inside the text area and the labels are
to be placed outside the text area. They describe several types of leaders, such
as straight-line leaders (s-leaders), rectilinear leaders with one bend (po-leaders)
and rectilinear leaders with two bends (opo-leaders).

Previous work. Boundary labeling has been extensively investigated in the last
few years, see a survey on the interaction between cartography and graph draw-
ing [17]. For labels of uniform size, the problem is well-studied. Most algorithms
try to minimize the total leader length. For s-leaders, it suffices to compute a
minimum-weight perfect matching, which can be done in O(n2+ε) time [1]. For
opo-leaders, Bekos et al. [5] gave three different algorithms for the number of sides
used by the labels, with running times O(n log n) (one-sided), O(n2) (two-sided),
and O(n2 log3 n) (four-sided). Further, they presented an O(n2)-time algorithm
for po-leaders that lie on one side or on two opposite sides of the text. The result
for po-leaders was improved by Benkert et al. [6] for the one-sided case. They
gave an O(n logn)-time algorithm for length minimization and an O(n3)-time
algorithm for a very general class of objective functions, including, for example,

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 76–88, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www1.informatik.uni-wuerzburg.de/en/staff

Luatodonotes: Boundary Labeling for Annotations in Texts 77

Fig. 1. Screenshot of comments in a document in LibreOffice 4.1.5

bend minimization. They also studied leaders that contain a diagonal part and
gave an O(n2)-time algorithm for the one-sided case. This result was extended
by Bekos et al. [3] to more than one side. Recently, Kindermann et al. [10] gave
the first efficient algorithms for po-leaders that decide whether an instance with
labels on two adjacent, three, or four sides has a crossing-free solution (and, if
yes, compute one).

Boundary labeling for non-uniform labels is still largely unexplored. Bekos
et al. [4] showed that it is NP-hard to find a crossing-free labeling if the labels
have to be placed on two sides (or two stacks on the same side). Huang et al. [9]
considered a version of the problem that is always feasible: labels are placed into
the right margin or into both margins, which are not bounded from below or
above. For this model, opo-leaders, and labels of non-uniform size, they gave an
O(n3)-time algorithm that minimizes the total leader length in the one-sided
case. For the two-sided case, they showed NP-hardness.

In this paper, we focus on comments for Latex documents. There are some
packages that support the placement of textual comments in the margin, namely
todonotes [12], fixme [16] and fixmetodonotes [2]. They have in common that
they use Latex’s \marginpar command to print the note as soon as the corre-
sponding command is encountered in the source of the document. The drawback
of this approach is that the positions of the following comments are not known

78 P. Kindermann, F. Lipp, and A. Wolff

and cannot be considered when placing a note. The first label is placed beside
the first site, and the following ones are placed below. Often it happens that a
lot of free space is wasted above the topmost label, while the bottommost label
is only partially visible (if at all), see Fig. 4a. Another disadvantage is that the
\marginpar method cannot be used inside floating environments such as tables
or algorithms. While the packages fixme and fixmetodonotes do not draw any
leaders, todonotes uses opo-leaders. With this leader style it is hard to match
a note to its corresponding site in the text when there are many comments in
a short piece of text. A similar problem occurs with the leader style used by
LibreOffice; see Fig. 1.

Other Latex packages support annotations as metadata for PDF documents,
for example, pdfcomment [11]. The drawback of this package is that the user
needs a compatible PDF viewer and that the annotations cannot be printed
with the text. Packages such as easy-todo [14] don’t place annotations in the
margins, but insert a marker into the text and list all comments at the end of
the document.

Our contribution. Our approach is different from all those listed above in that
we collect the comments for a whole page and then compute a good place-
ment for the labels. Of course, this computation needs more resources than
the ad-hoc placement of the existing packages. Additionally, our Latex pack-
age supports different leader types, which the user can select when loading the
package; see Section 2. We give several algorithms for non-uniform labels, most
of which are extensions of existing algorithms for the one-sided case; see Sec-
tion 3. We improve upon these basic algorithms by considering label clustering
and the two-sided case; see Section 4. We have implemented all of our algo-
rithms and have evaluated them experimentally; see Section 5. We conclude
with some open problems; see Section 6. The package is available on CTAN:

http://ctan.org/pkg/luatodonotes

2 Implementation

We have implemented the algorithms in Lua and have bundled them into a
Luatex package, which we call luatodonotes. The package requires the modern
Tex-processor Luatex [8], which allows us to embed Lua code inside our Tex
sources. This gives us access to a high-level programming language for imple-
menting our label-placement algorithms. From the user’s point of view, this does
not change much. Luatex is part of every modern Tex installation, for example,
Tex Live. Assuming such an installation, the difference in usage is simply that
instead of calling (pdf)latex, the user calls lualatex.

Our package is based on the todonotes package (see Section 1). It is down-
ward compatible as it provides the same commands to the user as the original
package. Usage is quite simple: the user loads the package with the command
\usepackage{luatodonotes} and inserts a comment into the text with the
command \todo{comment text}.

http://ctan.org/pkg/luatodonotes

Luatodonotes: Boundary Labeling for Annotations in Texts 79

Now, we describe how our package works. Wherever the user inserts a \todo
command in the text, we store its position and its argument (that is, the com-
ment) in a Lua list, but we do not print anything at this moment. When a
page is finished (“shipped out” in Tex terminology), we compute the position
of the labels and draw them. Before calling our label-placement algorithm, we
have Tex determine the label heights. To determine the absolute positions of the
sites, we use PGF/TikZ [15], a widely used Tex package for producing vector
graphics. This package can locate the position of a site on the page where the
\todo command was inserted, even when the command occurs inside a floating
environment (such as a figure or a table).

For each label, the placement algorithm computes the absolute coordinates
on the page on which the label is to be placed. Then, we use TikZ to draw the
labels and the leaders that connect the labels with their corresponding sites in
text. Finally, a mark is placed at each site. This modular design simplifies the
implementation of new algorithms and makes the package extensible.

The size and position of the rectangles that contain the label texts depend on
the current page layout. We provide options to control the distances between the
labels and the text (distanceNotesText) and between the labels and the border
of the page (distanceNotesPageBorder). The algorithms can place labels in the
left and in the right margin (see Section 4), but a margin is used only if it is
wide enough to accomodate a label, that is, if the label can be at least of width
minNoteWidth.

When loading the package with \usepackage{luatodonotes}, optional ar-
guments can be specified in square brackets. The most relevant options are
(a) the algorithm for label placement (positioning) and (b) the leader type
(leadertype). Other options control the layout: the minimum vertical distance
of the labels (interNoteSpace), the distance from the contents of the label to
its border (noteInnerSep) and the color of the leaders (linecolor).

3 Algorithms for Label Placement

In the following, the algorithms are categorized by the leader type that they
support. In principle, our package allows the user to combine any label-placement
algorithm with any leader type. Still, some algorithms have been designed with
certain leader types in mind. Other combinations will probably yield unwanted
results, such as label overlap or crossing leaders.

In the descriptions of our algorithms below, we assume that labels are placed
on the left side of the text, but this is not a restriction of our actual imple-
mentations. Additionally, we try to place the labels without gaps between them,
while in reality we want to preserve a certain minimum distance between them.
Clearly, this is easy to achieve.

3.1 s-Leaders

Our algorithms designed for s-leaders have a common property: they draw the
leaders without crossing each other. Their common objective is to place the labels

80 P. Kindermann, F. Lipp, and A. Wolff

one below the other on the boundary while avoiding gaps between them. They
differ in the position of the ports, that is, the position on the label boundary
to which the leader is attached. A pleasant position for the port would be the
center of the right side of the label. Unfortunately, we don’t have an algorithm
that can place the labels without gaps using this port position. We don’t even
know whether every instance of site positions and label heights is feasible w.r.t.
these criteria; see Section 6.

We don’t give algorithms that minimize the total leader length here, but
concentrate on drawings without crossings. The clustering approach described
in Section 4 can decrease the leader length as labels are placed closer to their
corresponding sites.

NorthEast. We use an algorithm of Bekos et al. [5] for fixed labels, which can
easily be adopted to our problem with labels of non-uniform heights: The
upper right corner of each label is used as its port. The labels are placed
consecutively from the top of the page to the bottom. In each step, we emit
a ray from the port of the next label vertically to the top and rotate it
clockwise until the first unlabeled site is hit. Obviously, by connecting this
site to a label at the current position, we don’t hide any other sites and can
label the remaining sites without crossings.

NorthEastBelow. This algorithm is based on the preceding one. The difference
is that we lower the port from the corner by a constant offset. In our opinion
the result looks better when the leader is not attached directly at the corner.
A good value for this offset is half of the height of the smallest label. As we
know the position for each port while placing the label, we can still use
the ray construction of the preceding algorithm to place the labels without
spaces between them.

East. In this algorithm the port of every label is located at the center of its
right side. When we try to find the next unlabeled site to be labeled, we
do not know the port position as it depends on the height of the label.
Therefore, we cannot use the ray construction from the previous algorithms.
Algorithm 1 is a heuristic that guarantees crossing-free leaders while trying
to avoid gaps between the labels. It can usually handle real-world inputs
without additional gaps.
An instance that is not handled optimally by the heuristic is depicted in
Fig. 2. The sites can be labeled without gaps when placing the labels in the
order 2, 1, 3. As mentioned above it is an open question if this is possible
for all instances.

3.2 Bézier Curves as Leaders

We base our Bézier curves on s-leaders using a force-directed algorithm described
by Fink et al. [7]. We use cubic Bézier curves that are required to enter the port
at the label horizontally. This means that the first control point has to stay on
the same horizontal line as the port and can only be moved to the left or the

Luatodonotes: Boundary Labeling for Annotations in Texts 81

Algorithm 1. Placing labels using east anchors
Input: p1, . . . , pn are the sites in the text
Output: y-coordinate y1, . . . , yn of the top edge of each label

1 P ← {p1, . . . , pn}
2 L ← [] // list contains labels in the order in which they are

placed
3 lastY ← 0
4 while P �= ∅ do
5 H ← {height(pj) | j = 1, . . . , n} // H is in ascending order
6 foreach h ∈ H do
7 place a label of height h directly below the last label
8 emit a ray from the port of the newly placed label
9 i ← index of first point in P that is hit by the ray (rotated clockwise)

10 if height(pi) ≤ h then
11 break

12 yi ← lastY − (h− height(pi))/2
13 L.add(pi)
14 P ← P − {pi}
15 lastY ← yi − height(pi)

// Postprocessing: try to shrink gaps
16 foreach l ∈ L do
17 if there is a gap above l then
18 move l up as far as possible without creating any new intersection

between leaders

right. The second control point is always placed in the center between the first
control point and the site.

In the first iteration of the algorithm, the control points are placed on the
endpoints of the leader, that is, it starts as a straight line. Later, the first control
point of each curve is moved by applying forces to it. We use a force that pulls
the control point to its optimal point, which is computed beforehand and usually
yields a good-looking curve. Other forces try to increase the distance between
curves. In every iteration the forces on every point are limited by the distance
to the nearest curve to inhibit new intersections between leaders. Therefore, the
algorithm guarantees crossing-free Bézier curves when starting with straight-line
leaders without intersections.

The runtime of this algorithm is dominated by the calculation of the distances
between each pair of curves. This calculation is done by an approximation of the
curves. We need the distances to update the forces in every iteration.

3.3 opo-Leaders and os-Leaders

Positioning the labels for crossing-free opo-leaders is simple as Bekos et al. [5]
show: we place the labels in the order given by the y-coordinates of their sites.

82 P. Kindermann, F. Lipp, and A. Wolff

1
2

3

1
2

3

Fig. 2. An instance where the East algorithm does not yield a drawing without gaps.
Left: label positions before postprocessing; Right: after postprocessing.

Sites with identical y-coordinates are processed from left to right. The vertical
parts of the leaders are drawn in the track routing area, that is, the vertical strip
between text and labels. The width of this track routing area is specified using
the option routingAreaWidth of the package. We split the labels into groups,
with labels sharing a common vertical segment being put in the same group.
This can be done by a simple linear-time algorithm. Thus the vertical segments
of the leaders in each group must be placed side by side. We draw the vertical
segments in one group with equal distances between them, using the whole width
of the track routing area.

The algorithm is even easier for os-leaders, a leader style that was not dis-
cussed until now. We list it here because this is the style that, for example,
LibreOffice uses (see Fig. 1). Labels are placed in the same order as for opo-
leaders. For the leaders, we connect the site with a horizontal line segment that
extends to a fixed x-coordinate inside the margin. Then we connect the end of
the horizontal segment to the label’s port with a straight-line segment.

3.4 po-Leaders

Benkert et al. [6] developed an algorithm to compute an optimal crossing-free
labeling using po-leaders with respect to an arbitrary badness function. This
algorithm, which uses a dynamic programming approach, is designed for uniform
labels only. It needs O(n3) running time and O(n2) space.

For our application, we extend the algorithm of Benkert et al. to non-uniform
labels. To be able to work with the arbitrary heights of the labels, we need to
raster the page, that is, we define the y-coordinates on which labels may be
placed. Our algorithm yields a labeling respecting this raster with minimum
total leader length. The height of the raster can be chosen using the parameter
rasterHeight of the Latex package. The port for each label can be chosen
arbitrarily. In the following, the ports are fixed to the center of the right side of
the labels.

Let p1, . . . , pn denote the sites from top to bottom and let r1, . . . , rm be
the slots obtained by rasterizing the page from top to bottom. We use a 5-
dimensional table in our dynamic program. The entry T [t, b, τ, β, k] represents
the minimum length of a labeling of the k leftmost sites in {pt, . . . , pb} using

Luatodonotes: Boundary Labeling for Annotations in Texts 83

rτ

rσ

rβ

pt

ps

pb

r(t, b, k)

Fig. 3. The labeling problem for T [t, b, τ, β, k] is split into two independent subproblems
by fixing the label position of r(t, b, k). The dashed lines show the raster slots. The light
gray area indicates the slots from rτ to rβ. The dark gray area shows the sites between
pt and pb.

only the raster slots rτ , . . . , rβ . The labels must lie completely inside the given
slots.

Let r(t, b, k) the k-th point from the left in the set {pt, . . . , pb}. The length
of the shortest po-leader from the site p to its corresponding label beginning in
slot rσ is denoted by l∗(p, σ). The entries of the table are computed using the
following decomposition (illustrated in Fig. 3):

T [t, b, τ, β, k] = min
feasible σ∈{τ,...,β}

l∗(r(t, b, k), σ) + T [t, s, τ, σ − 1, k1]

+ T [s+ 1, b, σ + h, β, k2]

In this formula ps is the lowest point that lies above the leader arm (the horizon-
tal part of the leader), when the label for r(t, b, k) is placed at slot rσ. Let h the
height of this label. The number of sites from {pt, . . . , pb} lying left of r(t, b, k)
and above resp. below the leader arm is denoted by k1 resp. k2.

A position for the label is feasible, if both partial solutions (above and below
the leader arm) are feasible, that is, there are enough slots to label the contained
sites.

Clearly, T [1, n, 1,m, n] is the optimal labeling of the whole instance. With this
algorithm we can compute an optimal solution in O(n4m3) time with O(n3m2)
space, where n is the number of sites to be labeled and m is the number of slots
in the raster on the page.

Avoid overlappings with text lines. The algorithm described above does not take
the position of the text lines of the document into account. Thus it can happen
that a line gets striked out by the horizontal segment of a leader. We modified
the algorithm to move the port up or down by a small offset to avoid such
overlappings and place the leader into the gap between the lines.

It is quite hard to determine the positions of the lines in Tex because they
are not fixed until the document is written to the output file. But in Luatex we
can modify the linebreaking algorithm such that it inserts special nodes into the
data structures of Tex that write the position of every line into a text file when

84 P. Kindermann, F. Lipp, and A. Wolff

Algorithm 2. Clustering labels
Input: p1, . . . , pn are the sites in the text ordered by their y-coordinate from

top to bottom
Output: list of clusters S

1 S ← [{p1}, {p2}, . . . , {pn}]
2 i ← 1
3 while i ≤ #S − 1 do
4 if clustersIntersect(S[i], S[i+ 1]) then
5 S[i] ← S[i] ∪ S[i+ 1]
6 S.delete(i+ 1)

// as the size of stack i has increased we check again for
intersection with the previous stack in next iteration

7 i ← max{1, i− 1}
8 else
9 i ← i+ 1

10 return S

typesetting the page. In a second Tex run we can read the line positions from
this file and use them for our algorithm.

4 Improvements

In this section we discuss some general improvements implemented in our pack-
age that can be used by every algorithm described in the previous section.

Label clustering. Most of the algorithms described in the previous sections place
labels in a single stack (that is, without gaps between them) beginning at the
upper margin of the page. This can produce unnecessarily long leaders, for ex-
ample when the text contains a single site near the end of the page. We split the
labels into separate clusters and place each of them near the corresponding sites
in the text. An algorithm for clustered labeling is also described by Nöllenburg
et al. [13]. Our approach is simpler but slower.

To group the labels into clusters we use Algorithm 2. It repeatedly joins
adjacent clusters as long as they intersect each other. To test if two clusters
intersect we place the contained labels as a stack each beneath the arithmetic
mean of the sites in the cluster. The clusters intersect if their corresponding
stacks overlap.

The positioning algorithm is executed independently for each of the identified
clusters. The intended position is passed to the algorithm as a parameter.

Two-sided label placement. On some page layouts there is enough space to place
labels in the margins on the left and the right side of the text. We have to decide
for each label on which side of the text it should be placed. Our approach is to
split the sites by a vertical line through the text. The sites which are left of this

Luatodonotes: Boundary Labeling for Annotations in Texts 85

split line are labeled on the left side, those right of the split line are labeled in
the right margin. There are several ways to determine the position of this split
line. We use a weighted median to split the sites such that the sum of the label
heights on the left side is approximately equal to that of the right side. With this
algorithm it is not an issue if the widths of the two margins are different (which
means that the height of a label depends on the side on which it is placed).

5 Experimental Results

We compare the leader styles presented in the previous sections on an example
document with nine comments in it. This document stays the same, only the
options of our package are modified to switch between the available algorithms.
We used the label clustering approach described in the previous section for all
examples except for that of the po-leader algorithm. For comparison, we also
processed the document with the todonotes package (see Fig. 4a).

The NorthEastBelow algorithm for s-leaders (Fig. 4b) is straight-forward and
fast. It is easy for the reader to match the sites to their corresponding label.
Using Bézier curves (Fig. 4c) instead of the straight-line leaders yields a more
aesthetic result with the disadvantage of a significantly higher runtime caused by
the iterations of the force-directed algorithm. Using two-sided label placement
with the same leader type produces shorter leaders because the labels can be
placed closer to their site. Especially in text segments with a lot of comments
this makes the relationship between sites and their labels clearer.

Our algorithm for po-leaders (Fig. 4d) has a high asymptotic runtime and
space consumption. But in practice when there are only few comments per page
this is not an issue. Among the algorithms we implemented, this is the only
algorithm minimizing the total leader length.

The opo-leaders and os-leaders are available mainly for comparison. Clearly,
it gets hard for the reader to match sites to their labels on pages with many
comments. In particular, if several sites are in the same line it is hard to tell
the matching between sites and labels. On the other hand the leaders only run
between the lines and in the track routing area and thus don’t disturb the text.

The running times of Luatex with the different leader types for some example
documents are shown in Table 1. Note that Documents 2 and 3 with 15 resp.
25 comments on one page are quite unrealistic. When using two-sided label
placement both sides are processed independently and thus the algorithm for
po-leaders becomes feasible again. The measured times are for a single run of
Tex only. When the absolute position of a site of a label changes, a second run
is needed. When we deactivate our package, processing still needs 1.4 seconds.
This means that s- and opo-leaders cause only small extra cost compared to
a standard Latex run. With the classical todonotes package processing needs
about 1.8 seconds, too.

We would have liked to give a numerical comparison of the drawing quality
of the different algorithms, but it is not obvious how to find an appropriate
indicator for the quality that is suitable for all of the available leader types. So
we ask the reader to inspect Fig. 4 visually.

86 P. Kindermann, F. Lipp, and A. Wolff

(a) todonotes with opo-leaders (b) luatodonotes with s-leaders

(c) luatodonotes with Bézier leaders (d) luatodonotes with po-leaders

Fig. 4. An example document with notes produced by the todonotes package (a) and
the luatodonotes package (b–d) with different leader styles

Luatodonotes: Boundary Labeling for Annotations in Texts 87

Table 1. Running times of the different label styles on three one-page documents D1,
D2, and D3 (in CPU seconds). The times were measured using a Intel Core 2 Duo
E8400 with 3.0 GHz. D1 is the instance with 9 comments shown in the figures above.
D2 has 15 comments, D3 has 25. For each document, we report two running times; for
label placement into one margin vs. both margins. We use a raster height of 1 cm for
po-leaders, resulting in 28 horizontal strips. We couldn’t use po-leaders for D3 with one
margin because the algorithm needed too much memory. For comparison we also give
the running times for the classical todonotes package (which does not support placing
labels in both margins) and the running times for the document without loading the
luatodonotes package.

Document D1 D2 D3
Number of margins 1 2 1 2 1 2
s-leaders 1.8 1.7 1.9 1.9 2.2 2.2
Bézier leaders 5.7 5.4 33.2 11.1 322.9 116.3
po-leaders 4.8 3.0 17.7 6.2 — 27.6
po-leaders avoiding text lines 7.0 4.0 26.8 9.5 — 42.4
opo-leaders 1.8 1.7 1.9 1.9 2.2 2.2
classical todonotes 1.9 2.2 2.6
without luatodonotes 1.4 1.4 1.3

6 Conclusion and Open Problems

All our algorithms turned out to work well in practice—some of them cannot
process too many labels on a single page. Using both margins helps in terms of
speed. By visual inspection we reached the conclusion that s-leaders or Bézier
leaders work better than the os-leaders used by other type-setting programs.
The reason may be that the reader’s eye can follow leaders without bends more
easily. It would be interesting to verify this in a user study. With the modular
design of our Latex package it is easy to improve the label-placement algorithms
or add additional ones.

An interesting theoretical problem remains open: Given an instance with non-
uniform label heights, is it always possible to place the labels without gaps so
that s-leaders do not cross each other even if we insist that the ports are centered
vertically at each label?

We have some ideas for further improvements of our package. The force-
directed Bézier curve algorithm is quite slow at the moment. We think that
we could speed up the computation of the distances between curves by doing a
rough estimate first and computing the fine approximation only when needed.
It would be interesting to transform the po-leaders into Bézier curves. As our
algorithm yields a length-minimal po-labeling this could produce a shorter leader
length than our approach with s-leaders. But it is not clear how to inhibit inter-
sections between the curves.

Admittedly, our dynamic program for po-leaders is quite slow. Can we save
time by computing labelings that are just feasible rather than length-minimal?
For the other leader types, on the contrary, it would be interesting to minimize

88 P. Kindermann, F. Lipp, and A. Wolff

the total leader length. Such algorithms are known only for the case of uniform
labels. When minimizing the leader length in the two-sided case, one could also
try to improve the approach for partitioning the labels.

References

1. Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in
3-dimensional arrangements and its applications. SIAM J. Comput. 29(3), 912–953
(1999)

2. Barabucci, G.: fixmetodonotes (2013), http://www.ctan.org/pkg/fixmetodonotes
3. Bekos, M.A., Kaufmann, M., Nöllenburg, M., Symvonis, A.: Boundary labeling

with octilinear leaders. Algorithmica 57(3), 436–461 (2010)
4. Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Multi-stack boundary label-

ing problems. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337,
pp. 81–92. Springer, Heidelberg (2006)

5. Bekos, M.A., Kaufmann, M., Symvonis, A., Wolff, A.: Boundary labeling: Models
and efficient algorithms for rectangular maps. Comput. Geom. Theory Appl. 36(3),
215–236 (2007)

6. Benkert, M., Haverkort, H.J., Kroll, M., Nöllenburg, M.: Algorithms for multi-
criteria boundary labeling. J. Graph Algorithms Appl. 13(3), 289–317 (2009)

7. Fink, M., Haunert, J.H., Schulz, A., Spoerhase, J., Wolff, A.: Algorithms for label-
ing focus regions. IEEE Trans. Vis. Comput. Graphics 18(12), 2583–2592 (2012)

8. Hagen, H., Henkel, H., Hoekwater, T.: Luatex (2007), http://www.luatex.org
9. Huang, Z.-D., Poon, S.-H., Lin, C.-C.: Boundary labeling with flexible label po-

sitions. In: Pal, S.P., Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp.
44–55. Springer, Heidelberg (2014)

10. Kindermann, P., Niedermann, B., Rutter, I., Schaefer, M., Schulz, A., Wolff, A.:
Two-sided boundary labeling with adjacent sides. In: Dehne, F., Solis-Oba, R.,
Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 463–474. Springer, Heidelberg
(2013)

11. Kleber, J.: pdfcomment (2012), http://www.ctan.org/pkg/pdfcomment
12. Midtiby, H.S.: todonotes (2012), http://www.ctan.org/pkg/todonotes
13. Nöllenburg, M., Polishchuk, V., Sysikaski, M.: Dynamic one-sided boundary label-

ing. In: Proc. 18th SIGSPATIAL Int. Conf. Adv. Geogr. Inform. Syst. (ACM-GIS),
pp. 310–319. ACM (2010)

14. Rada-Vilela, J.: easy-todo (2014), http://www.ctan.org/pkg/easy-todo
15. Tantau, T.: PGF and TikZ – Graphic systems for TeX,

http://www.sourceforge.net/projects/pgf (accessed April 2, 2014)
16. Verna, D.: Fixme (2013), http://www.ctan.org/pkg/fixme
17. Wolff, A.: Graph drawing and cartography. In: Tamassia, R. (ed.) Handbook of

Graph Drawing and Visualization, ch. 23. CRC Press (2013)

http://www.ctan.org/pkg/fixmetodonotes
http://www.luatex.org
http://www.ctan.org/pkg/pdfcomment
http://www.ctan.org/pkg/todonotes
http://www.ctan.org/pkg/easy-todo
http://www.sourceforge.net/projects/pgf
http://www.ctan.org/pkg/fixme

A Coloring Algorithm for Disambiguating Graph
and Map Drawings

Yifan Hu1 and Lei Shi2,�

1 Yahoo Labs, 111 W 40th St, New York, NY 10018, USA
yifanhu@yahoo.com

2 SKLCS, Institute of Software, Chinese Academy of Sciences, China
shil@ios.ac.cn

Abstract. Drawings of non-planar graphs always result in edge crossings. When
there are many edges crossing at small angles, it is often difficult to follow these
edges, because of the multiple visual paths resulted from the crossings that slow
down eye movements. In this paper we propose an algorithm that disambiguates
the edges with automatic selection of distinctive colors. Our proposed algorithm
computes a near optimal color assignment of a dual collision graph, using a
novel branch-and-bound procedure applied to a space decomposition of the color
gamut. We conduct a user study to establish the effectiveness and limitations of
this approach in clarifying drawings of real world graphs and maps.

Keywords: graph drawing, maps, edge coloring, branch-and-bound algorithm.

1 Introduction

Graphs are widely used for depicting relational information among objects. Typically,
graphs are visualized as node-link diagrams [1]. In such a representation, edges are
shown as straight lines, polylines or splines. Graphs that appear in real world applica-
tions are usually non-planar. For such graphs, edge crossings in the layout are unavoid-
able. It is a commonly accepted principle that the number of edge crossings should be
minimized whenever possible, this principle was confirmed by user evaluations which
showed that human performance in path-following is negatively correlated to the num-
ber of edge crossings [18,21]. Later studies found that the effect of edge crossings varies
with the crossing angle. In particular, the task response time decreases as the crossing
angle increases, and the rate of decrease levels off when the angle is close to 90 de-
gree [14,15]. This implies that it is important not only to minimize the number of edge
crossings, but also to maximize the angle of the crossings. Consequently, generating
drawings that give large crossing angles, or even right crossing angles, became an ac-
tive area of research (e.g., [6]). Nevertheless, for general non-planar graphs, there is
no known algorithm that can guarantee large crossing angles for straight line drawings.
Therefore, techniques to mitigate the adverse visual effect of small angle crossings are
important in practice.

In this paper we propose to use colors to help differentiate edges. Our starting point
is an existing layout, and our working assumption is that the graph is to be displayed as

� Supported by China National 973 project 2014CB340301 and NSFC grant 61379088.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 89–100, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

90 Y. Hu and L. Shi

a static image on paper, or on screen. The motivation comes from users of the Graphviz
[10] software. These users were generally happy with the layouts of their graphs, but
were asking whether there was any visual instrument that can help them follow edges
better. Examining their layouts, we realized that because edges were drawn using the
same color (e.g., black), when there were a lot of edge crossings, it was difficult to vi-
sually follow these edges. Thus the feedback from our users, and our own observation,
echo the findings by Huang et al. [14,15]. When explaining why small crossing angles
are detrimental to the task of following a path, they found, with the help of an eye track-
ing device, that “when edges cross at small angles, crossings cause confusion, slowing
down and triggering extra eye movements.” and that “in many cases, it is crossings that
cause confusion, making all the paths between two nodes, and branches along these
paths, unforeseeable. Due to the geometric-path tendency, human eyes can easily slip
into the edges that are close to the geometric path but not part of the target path.”.

Edge crossing is not the only hindrance to the visual clarity of a graph drawing. An
additional problem is that when an edge from node u passes underneath the label of a
node v and connects to a node w, it is impossible to tell visually whether there is one
edge u ↔ w, or two edges u ↔ v and v ↔ w, when all edges are of the same color (e.g.,
Fig. 3(b)). While these problems can be solved with user interactions by clicking on an
edge of interest, or on a node to bring its neighbors closer (see, e.g., [17]), this involves
an extra step for the user that may not be necessary if edges can be differentiated with
a proper visual cue. Furthermore, there are situations where interaction is not possible,
e.g., when looking at a static image of a graph on screen, or in print. These are the
situations that are of particular interest in this paper.

We believe all the above mentioned problems of visually distinguishing and fol-
lowing edges can be greatly alleviated by choosing appropriate colors or line styles to
differentiate edges. We first identify edge pairs that need to be differentiated (the collid-
ing edges), and represent them as nodes of a dual collision graph. We then propose an
algorithm to assign colors to the nodes of this collision graph, in a way that maximizes
the color difference between nodes that share an edge. Thus our main contributions are:

– A novel branch-and-bound graph coloring algorithm that finds the globally optimal
color embedding of each node with regard to its neighbors, and that works with
both continuous color spaces and discrete color palettes.

– A user study that establishes the effectiveness/limitations of the coloring approach.

2 Related Work

Graph coloring is a classic problem in algorithmic graph theory. Traditionally the prob-
lem is studied in a combinatorial sense. For example, finding the smallest number of k
colors on the vertices of a graph so that no two vertices sharing an edge have the same
color. The difference between this and our work is that in k−colorability problem, a
solution is valid as long as any pairs of vertices that share an edge have different colors,
no consideration is given to maximizing the actual color differences. So in essence, the
distance between colors is binary – either 0, or 1. For our problem we assume that even
among distinctive colors, the differences are not equal, and are measured by color dis-
tances. In the special case when only k colors are allowed, our algorithm degenerates to
find the optimal color assignment among all solutions of the k−colorability problem.

A Coloring Algorithm for Disambiguating Graph and Map Drawings 91

This last problem of optimal color assignment was also studied by Gansner et al. [9]
and by Hu et al. [12], in the context of coloring virtual maps to maximize the color
difference between neighboring regions. In these works, a set of k distinctive colors
are assumed to be given, with k the number of countries in the map. Maps were then
colored by an optimal permutation of the k colors. On the other hand, in this paper we
assume that the color space can be either continuous or discrete, and we select among
all colors in the color space to increase color differences. When applied to map coloring,
our algorithm produces k distinctive colors as a side product.

Dillencourt et al. [7] studied the problem of coloring geometric graphs so that colors
on nodes are as different as possible. The problem they studied is very related to ours,
except that in their case the application is the coloring of geometric regions, while we
are also interested in coloring edges of a graph. Dillencourt et al. used a force-directed
gradient descent algorithm to find a locally optimal coloring of each node with regard to
its neighbors. We propose a new algorithm based on a branch-and-bound process over
an octree decomposition of the color space, that finds a globally optimal coloring for
each node with regard to its neighbors. Furthermore, our approach is more flexible and
works for discrete color palettes, in addition to continuous color spaces.

The angular resolution of a drawing is the sharpest angle formed by any two edges
that meet at a common vertex.In addition to maximizing crossing angles (e.g., [6]),
for the same reason of visual clarity, there have been researches to maximize the an-
gular resolution of the drawing. Most recently, Lombardi Drawing of graphs was pro-
posed [8,3], in which edges are drawn as arcs with perfect angular resolution. However,
Purchase et al. [20] found that even though users prefer the Lombardi style drawings,
straight-line drawings created by a spring-embedder gives better performance for path
following and neighbor finding tasks. For straight-line drawings, while it is possible to
adjust the layout to improve the angular resolution (e.g., [5,11]), the extent to which this
can be done is limited. Although a previous study by Purchase et al. [19] did not find
sufficient support for maximizing angular resolution, we do find that when two edges
connected to the same node are almost on top to each other, it is difficult to tell whether
these are two edges or one. For this reason we consider such edges as in collision too.

We note that a nice way to follow an edge, or to find the neighbors of a node, is to
use interactive techniques such as “link sliding” and “bring & go” [17]. The algorithm
we propose is primarily aimed at disambiguating a static drawing displayed on screen
or on paper, it can nevertheless be used in conjunction with such interactive techniques.

Finally, we were made aware of the work of Jianu et al. [16] after the completion
of this work. Jianu et al. [16] proposed a similar idea of using colors to differentiate
edges. However there are multiple important differences between that work and ours.
The construction of dual collision graph is different: Jianu et al. set the edge weights
among all edges to be the inverse of either the intersection angle, or the edge distance
if the edges do not intersect, which is not optimal since it is perfectly harmless to color
edges that have no conflict with the same color. In fact, their method always results
in a complete collision graph, making it more expensive for relatively large graphs.
Furthermore, because of the complete collision graph, all edges of the original graph
must have different colors. Therefore the drawings in [16], which are all of very small
graphs, always contain a multitude of colors, which is unnecessary. Our collision graph

92 Y. Hu and L. Shi

almost always contains disconnected components.This decomposes the coloring prob-
lem into smaller ones, and allows us to use the same (black) colors for many edges.
Jianu et al. [16] solved the coloring problem using a force-directed algorithm, moti-
vated by Dillencourt et al. [7]. We were kindly given the source code for [16] from one
of the authors. Based on reading the code, we found that it applies force directed algo-
rithm to nodes of the collision graph in the 2D subspace of the LAB color space (the
AB subspace). It then sets a fixed L value of 75 (L is the lightness, between 0 to 100).
This observation is consistent with the drawings in [16], where black background is
used for all drawings due to the high lightness value (see also Fig. 5(d)). This makes the
algorithm limited to a small subset of all possible colors. Finally, the force-directed al-
gorithms of Dillencourt et al. [7] and Jianu et al. [16] can only be applied to continuous
color space in 2D or 3D. Neither works for user specified color palettes, or 1D colors.
Our algorithm works for both continuous or discrete color spaces. Overall, we believe
that the idea of using colors for disambiguating edges are quite natural to think of. It is
how to design appropriate algorithms to make the idea work effectively in practice that
is crucial and that differentiates our work and [16]. Furthermore, we present a first user
study to evaluate results of our algorithm with real users. The results suggest possible
scenarios when our edge coloring approach is effective.

3 The Edge Coloring Problem and a Coloring Algorithm

Appropriate coloring can help greatly in differentiating edges that cross at a small angle.
Fig. 1 (left) illustrates such a situation. With many crossing edges, it is difficult to follow
the edge from node 19 (top-middle, blue) to node 16 (lower-right, blue). In comparison,
in Fig. 1 (right), it is easier to see that 19 is connected to 16 by a blue edge. The objective
of this section is to identify situations where ambiguities in following edges can occur,
and propose an edge coloring algorithm to resolve such ambiguities.

3.1 Edge Collisions

Two edges are considered in collision if an ambiguity arises when they are drawn using
the same color. The following are four conditions for edge collision:

– C1: they cross at a small angle.
– C2: they are connected to the same node at a small angle.
– C3 (optional): they are connected to the same node at an angle close to 180 degree.
– C4: they do not cross or share a node, but are very close to each other and are

almost parallel.

We now explain the rationale for considering each of these four conditions as being
in collision. C1 is considered a collision following the user studies described in Sec-
tion 1 by Huang et al. [14,15]. When eyes try to follow an edge to its destination, small
crossing angles between this edge and other edges create multiple paths along the di-
rection of the eye movement, either taking eyes to the wrong path, or slowing down
the eye movement. C2 creates a situation where one edge is almost on top of the other,
making it difficult to visually follow one of these edges.

A Coloring Algorithm for Disambiguating Graph and Map Drawings 93

1

2

4

6

8

9 1012

13
15

17

19

20 7

14
5

11

1618

3

1

2

4

6

8

9 1012

13
15

17

19

20 7

14
5

11

1618

3

Fig. 1. Left: a graph with 20 nodes and 100 edges. It is difficult to follow some of the edges.
For example, is node 19 (blue) connected to node 16 (blue)? Is node 19 connected to 17 (blue)?
Right: the same graph, with the edges colored using our algorithm. Now it is easier to see that 19
and 16 are connected by a blue edge, but 19 and 17 are not connected.

C3 could create confusion as to whether the two edges connected at close to 180 de-
gree are one edge, or two edges, when node labels are drawn. For example in Fig. 1 (left),
it is difficult to tell whether nodes 19 and 17 are connected, or whether 19 is connected
to 20 and 20 is connected to 17. When edges are properly colored (Fig. 1 (right)), it is
clear that the latter is true. Note that if edges are allowed to be drawn on top of nodes,
then an edge between 19 and 17 would be seen over the label of 20, thus this kind of
confusion can be eliminated. Therefore we consider C3 as optional. But drawing edges
over the label of nodes introduce extra clutter and make the node labels harder to read.

C4 causes a problem because when two edges are very close and almost parallel, it
is difficult to differentiate between them. In addition, it can cause confusion when node
labels are drawn. Fig. 3(a) shows two lines very close and almost parallel. While it is
possible to differentiate between the two edges, when node labels are added (Fig. 3(b)),
it is difficult to tell whether there are two edges (1 ↔ 2 and 3 ↔ 4), or three edges
(1 ↔ 2, 1 ↔ 4 and 1 ↔ 3), or whether there even exists an edge 3 ↔ 2. This confusion
can be avoided if suitable edge coloring is applied (Fig. 3(c)).

To resolve these collisions, we propose to color the edges so that any two edges in
collision have as different colors as possible. We first construct a dual edge collision
graph.

3.2 Constructing the Dual Collision Graph

Let the original graph be G = {V,E}. Denote by N(v) the set of neighbors of a node
v. The dual collision graph is Gc = {Vc,Ec}, where each node in Vc corresponds to an
edge in the original graph. In other words, there is a one-to-one mapping e : Vc → E .
Two nodes of the collision graph i and j are connected if e(i) and e(j) collide in the
original graph.

94 Y. Hu and L. Shi

2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20

19
21

22

23 24 25

26

27

28
29

30

31

32

33

34
→ →

(a) original graph (b) generate a dual collision graph

→
2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20

19
21

22

23 24 25

26

27

28
29

30

31

32

33

34

(c) color vertices of the collision graph (d) color edges of the original graph

Fig. 2. The proposed pipeline for coloring the edges of the Zachary’s Karate Club Graph: (a) the
original graph; (b) the dual collision graph, with each node representing an edge of the original
graph, and positioned at the center of that edge; (c) the collision graph, with nodes colored to
maximize color differences along the edges; (d) the original graph, with edges colored using the
node coloring in (c).

The problem of coloring the edges of G then becomes that of coloring nodes of the
collision graph Gc. Let C be the color space, and c(i) ∈ C be the color of a node i ∈Vc,
we want to find a coloring scheme such that the color of each node in the collision
graph is as different to its neighbors as possible. This task can be posed as a MaxMin
optimization problem:

1
2

3
4

1
2

3
4

(a) (b) (c)

Fig. 3. An illustration of the rationale for collision condition C4. (a) Two edges that do not cross.
(b) When nodes are shown, it is difficult to tell if there are two edges (1 ↔ 2 and 3 ↔ 4), or three
edges (1 ↔ 2, 1 ↔ 4 and 1 ↔ 3), or whether there even exists an edge 3 ↔ 2. (c) After coloring
each edges with a distinctive color, it is clear that there are two edges, 1 ↔ 2 and 3 ↔ 4

argmax
c:Vc→C

min
{i, j}∈Ec

wi j‖c(i)− c(j)‖, (1)

where wi j > 0 is a weight inversely proportional to how important it is to differentiate
colors of nodes i and j, and ‖c(i)− c(j)‖ is a measure of the difference between the
colors assigned to the two nodes.

A Coloring Algorithm for Disambiguating Graph and Map Drawings 95

Note that (1) is stated rather generally: C could be a discrete, or continuous, color
space. This is intentional since we are interested in both scenarios. All we assume is
that C sits in a Euclidean space of dimension d.

Once we colored the collision graph, we can use the same coloring scheme for the
edges of the original graph. The complete pipeline of our proposed approach is illus-
trated in Fig. 2. Notice that the collision graph in Fig. 2(b) is disconnected. We apply
our algorithm on each component of the collision graph.

3.3 A Color Optimization Algorithm

Dillencourt et al. [7] proposed a force-directed algorithm in a Euclidean color space.
They wanted all pairs of nodes to have distinctively different colors. Consequently their
algorithm used a force model where repulsive forces exist among all pairs of nodes.

Because in our case edges can have the same color as long as they do not collide,
there is no need to push all pairs of nodes of the collision graph apart in the color space.
Therefore we can not use the algorithm of Dillencourt et al. [7] as is. Although it is
possible to adapt their algorithm, we opt to propose an alternative algorithm. One reason
is that we like to be able to use not only continuous color spaces, but also discrete color
palettes.Another reason is due to the fact that even when deciding the optimal color for
one node of the collision graph with regard to all its neighbors, this seemingly simple
problem can have many local maxima.

We give an example to illustrate this point. For simplicity of illustration, within this
example, we assume for that our color space is 2D, and that the color distance is the
Euclidean distance. Suppose we want to find the best color embedding for a node u in
the collision graph with six neighbors, and the six neighbors are currently embedded
as shown in Fig. 4 (left). We want to place u as far away from the set of six points as
possible. Fig. 4 (left) shows a color contour of the distance from the set of six points
(the distance of a point to a set of point is defined as the minimum distance between this
point and all the points in the set, assuming unit weighting factors). Color scale is given
in the figure, with blue for low values and off-white for large. From the contour plot
it is clear that there are seven or more local maxima. In 3D there could be even more
local maxima. A force-directed algorithm such as [7], even with the random jumps and
swaps, is likely to settle in one of the local maxima.

Instead we hope to find the global maximum. A naive way to find the global maxi-
mum position in the color space with regard to a set of points is to search exhaustively by
imposing a fine grid over the color space, and calculating the distance from each mesh
point to the set. However, given that the color space are typically of three dimensions,
even at a resolution of 100 subdivisions along each dimension, we need 106 distance
calculations. This is computationally too expensive, bear in mind that this computation
needs to be performed for each and every node of the collision graph repeatedly until
the overall embedding in the color space converges.

We propose a more efficient algorithm based on the octree data structure (quadtree
for 2D) that does not require evaluations of the distance over all mesh points. Pseudo
code for the algorithm is given in [13]. We give a high level description here. Using
Fig. 4 (left) as an example, we want to find a point in the color space that is of maximal
distance to a target set of points. Define the objective function value of a square to be

96 Y. Hu and L. Shi

Fig. 4. Left: contour plot of the distance to a set of six (white) points in the space [0,0.9]× [0,0.9].
There are seven or more local maxima. E.g., near {0,0.55} and {0.4,0.7}. Right: an illustration
of the quadtree structure generated during our algorithm for finding the global optimal embedding
of a node that is farthest away from the set of six points. The final solution is {0,0} (red point).

the distance from the center of the square to the target set. We start with a queue of one
square covering the color space, and define the current optimal value as the maximal
distance over all squares in the queue to the target set. Taking a square from the current
queue, we subdivide it into four squares. If the distance of one of the four squares to
the point set, plus the distance from the center of the square to a corner of the square,
is less than the current optimal distance, this square is discarded. This is because no
point in this square can have a larger distance to the target set than the current optimal
distance. If the square is outside of the color space, it is also discarded. Otherwise the
square is entered into the queue, and the optimal value updated. This continues until the
half width of all squares in the queue is smaller than a preset threshold ε . The point that
achieves the current optimal value is taken as the optimum. We know that the current
optimal value should be within a value δ = d1/2ε to the global optimal value, where δ
is the half diagonal of the final square in d-dimensional space.

This algorithm is in essence a branch-and-bound algorithm operating on the octree
(quadtree for 2D) decomposition of the color space. When applied to the problem in
Fig. 4 (right), we can see that in the top-left quadrant, the quadtree branched twice and
stopped, because the function values are relatively small in that quadrant. The top-right
and bottom-right quadrants branched 3 and 4 times, respectively. The final optimal point
is found in the bottom-left quadrant. Initially the algorithm homed in on two regions,
one around {0.375,0} and the other around {0,0}, eventually settled around the latter.

Of course this branch-and-bound algorithm only finds the global optimal embedding
for one node. After applying the algorithm to every node of the collision graph once
(one outer iteration), we repeated if the minimal color difference increases, or if it does
not change, but the total sum of color difference across all nodes increases.

We name the algorithm CLARIFY (Edge Coloring for CLARIFYing a Graph Layout)
and formally state it in Algorithm 1 in the technical report [13].

4 Implementation and Results

CLARIFY works for both continuous color spaces (RGB and LAB), as well as discrete
color space, including a fixed list of colors. Fig. 5 shows examples of applying CLAR-

A Coloring Algorithm for Disambiguating Graph and Map Drawings 97

2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20

19
21

22

23 24 25

26

27

28
29

30

31

32

33

34
2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20

19
21

22

23 24 25

26

27

28
29

30

31

32

33

34
2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20

19
21

22

23 24 25

26

27

28
29

30

31

32

33

34

(a) RGB (b) LAB (0 ≤ L ≤ 70) (c) ColorBrewer Accent 8

2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20

19
21

22

23 24 25

26

27

28
29

30

31

32

33

34
2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20

19
21

22

23 24 25

26

27

28
29

30

31

32

33

34
2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20

19
21

22

23 24 25

26

27

28
29

30

31

32

33

34

(d) ColorBrewer Dark2 8 (e) applying Jianu et al. [16] (f) LAB (L = 75)

Fig. 5. Applying CLARIFY on the Karate graph in RGB and LAB color spaces (a-b), and with
two ColorBrewer palettes (c-d). For comparison we include the result of applying the algorithm
of Jianu et al. [16], vs CLARIFY in LAB color space with fixed lightness of 75 (e-f).

IFY in the RGB color space, the LAB space with intensity 0 ≤ L ≤ 70, and using two
ColorBrewer [2] color palettes. In addition it shows how CLARIFY compared favor-
ably with the result of [16]. CLARIFY can also be applied for coloring of virtual maps.
Fig. 6 shows an author collaboration map (see [9]) colored using CLARIFY with two
color palettes.

Detailed information on implementation, including how CLARIFY is made to work
with both continuous and discrete color spaces, are given in the technical report [13].
CLARIFY is now available from Graphviz [10] as edgepaint (for edge coloring
only; map coloring will be made available soon as part of gvmap).

Tamassia

Tollis
Battista

Goodrich

LiottaBridgeman

Fanto

Garg

Vismara
Brandes

Wagner

Eades

Didimo

Gelfand

Vargiu

TassinariParise

Kosaraju

Shubina

Chan

Dogrusoz

Madden

Castello

Mili

Biedl

Kakoulis

Six

Xia

Papakostas

Whitesides

Bose

Demetrescu

Finocchi

Patrignani
Pizzonia

Lenhart

Lubiw

Bertolazzi

Buti

Carmignani

MateraMarcandalli

Lillo

Vernacotola

Barbagallo

Boyer

Cortese

Mariani

Cheng

Duncan

Gajer

Eppstein

Tanenbaum

Scheinerman

Wagner

DickersonMeng

Giacomo

Wismath

ElGindy

Meijer

Dujmovic

Fellows

Hallett

Kitching

McCartin

Nishimura

Ragde

RosamondSuderman

Felsner

Binucci

Nonato
Cruz

Rusu

Chanda

Cornelsen

Kenis

Marshall

Dwyer

Schreiber
Himsolt

Kopf

Kaufmann

Herman

BaurBenkert

Gaertler Lerner

Eiglsperger

Raitner

Kuchem

Schank

Lin Lin
Cohen

Huang Feng Houle

Webber
Ruskey

Garvan

Quigley
Lee

Friedrich

Nascimento

Murray

Leonforte

Pop

Madden

Genc

Kikusts

Freivalds

Frick

Bertault

Feng

Fosmeier

Grigorescu

Himsholt

Powers

Shermer

Bretscher

Thiele

Johansen

Ryall

Marks

Symvonis
Wood

Alt

GodauFekete

Dean

Hutchinson

Ramos
McAllister

Snoeyink

Gomez

Toussaint

Italiano
Lesh

Iturriaga

Efrat

Wenk

Hirschberg

Closson

Gartshore

Dyck

Joevenazzo
Nickle

Wilsdon

Morin

Fernau

Lambe

Twarog

Eckersley

Trumbach

Skodinis

Forster

Pick

Hes

Kant

SteckelbachBubeck

Ritt

Rosenstiel

Melancon
Ruiter

Delest

James

Scott
Chow

Rucevskis

Brus

Keskin

Vogelmann

Ludwig

Mehldau

Miller

Rohrer

Vince

Ruml

Shieber

Brandenburg

Mutzel
Junger

Kobourov

Bachl

Edachery

Sen

Bachmaier

Andalman

Kruja

Blair

Waters

Leipert

Lee

Odenthal

Gutwenger

Buchheim

Ziegler

Klau

Klein Barth

Kupke

Weiskircher

Percan

Hundack

Pouchkarev

Thome

Brockenauer

Fialko

Kruger
Naher

Alberts

Ambras
Koch

Erten

Harding

Wampler
Yee

Pitta

Le

Navabi

Roxborough

North

Dobkin

Gansner
Koutsofios

Ellson
Woodhull

Hurtado

Lynn

Marquez

Cobos

Dana

Garcia
Hernando

Tejel

Mateos

Sablowski

Lozada

Neto

Rosi

Stolfi

Pach

Toth

Tardos

Wenger

Agarwal

Aronov

Pollack

Sharir

Pinchasi

Hong

Sugiyama

Abelson
TaylorMaeda

Misue

Kanne

AbellanasGarcia-Lopez

Hernandez-Penver

Noy

Castro

Purchase

Allder

Carrington

Wiese

Carpendale
Cowperthwaite

Fracchia

Garrido

Aggarwal

Dillencourt

Tamassia

Tollis
Battista

Goodrich

LiottaBridgeman

Fanto

Garg

Vismara
Brandes

Wagner

Eades

Didimo

Gelfand

Vargiu

TassinariParise

Kosaraju

Shubina

Chan

Dogrusoz

Madden

Castello

Mili

Biedl

Kakoulis

Six

Xia

Papakostas

Whitesides

Bose

Demetrescu

Finocchi

Patrignani
Pizzonia

Lenhart

Lubiw

Bertolazzi

Buti

Carmignani

MateraMarcandalli

Lillo

Vernacotola

Barbagallo

Boyer

Cortese

Mariani

Cheng

Duncan

Gajer

Eppstein

Tanenbaum

Scheinerman

Wagner

DickersonMeng

Giacomo

Wismath

ElGindy

Meijer

Dujmovic

Fellows

Hallett

Kitching

McCartin

Nishimura

Ragde

RosamondSuderman

Felsner

Binucci

Nonato
Cruz

Rusu

Chanda

Cornelsen

Kenis

Marshall

Dwyer

Schreiber
Himsolt

Kopf

Kaufmann

Herman

BaurBenkert

Gaertler Lerner

Eiglsperger

Raitner

Kuchem

Schank

Lin Lin
Cohen

Huang Feng Houle

Webber
Ruskey

Garvan

Quigley
Lee

Friedrich

Nascimento

Murray

Leonforte

Pop

Madden

Genc

Kikusts

Freivalds

Frick

Bertault

Feng

Fosmeier

Grigorescu

Himsholt

Powers

Shermer

Bretscher

Thiele

Johansen

Ryall

Marks

Symvonis
Wood

Alt

GodauFekete

Dean

Hutchinson

Ramos
McAllister

Snoeyink

Gomez

Toussaint

Italiano
Lesh

Iturriaga

Efrat

Wenk

Hirschberg

Closson

Gartshore

Dyck

Joevenazzo
Nickle

Wilsdon

Morin

Fernau

Lambe

Twarog

Eckersley

Trumbach

Skodinis

Forster

Pick

Hes

Kant

SteckelbachBubeck

Ritt

Rosenstiel

Melancon
Ruiter

Delest

James

Scott
Chow

Rucevskis

Brus

Keskin

Vogelmann

Ludwig

Mehldau

Miller

Rohrer

Vince

Ruml

Shieber

Brandenburg

Mutzel
Junger

Kobourov

Bachl

Edachery

Sen

Bachmaier

Andalman

Kruja

Blair

Waters

Leipert

Lee

Odenthal

Gutwenger

Buchheim

Ziegler

Klau

Klein Barth

Kupke

Weiskircher

Percan

Hundack

Pouchkarev

Thome

Brockenauer

Fialko

Kruger
Naher

Alberts

Ambras
Koch

Erten

Harding

Wampler
Yee

Pitta

Le

Navabi

Roxborough

North

Dobkin

Gansner
Koutsofios

Ellson
Woodhull

Hurtado

Lynn

Marquez

Cobos

Dana

Garcia
Hernando

Tejel

Mateos

Sablowski

Lozada

Neto

Rosi

Stolfi

Pach

Toth

Tardos

Wenger

Agarwal

Aronov

Pollack

Sharir

Pinchasi

Hong

Sugiyama

Abelson
TaylorMaeda

Misue

Kanne

AbellanasGarcia-Lopez

Hernandez-Penver

Noy

Castro

Purchase

Allder

Carrington

Wiese

Carpendale
Cowperthwaite

Fracchia

Garrido

Aggarwal

Dillencourt

Fig. 6. CLARIFY on a virtual map with two ColorBrewer palettes: left: Accent 8, right: Dark2 8.

We now apply CLARIFY to graphs from real applications. Table 1 gives results on
six of the graphs we tested, including running time and objective function (1) (color
diff) achieved in LAB color space. These are from [4] or [10]. We intentionally avoided
choosing mesh-like graphs – such graphs are easy to layout aesthetically. Their layouts

98 Y. Hu and L. Shi

also tend to exhibit a low perceptual complexity, making it relatively easy to follow
edges and paths. Compared with a non-mesh-like graph, a mesh-like graph is easier for
our algorithm because there are typically fewer colliding edges. We ran the experiment
on a Macbook Pro laptop with a 2.3 GHz Intel Core i7 processor.

Table 1. Statistics on the original and dual test graphs, CPU time (in second) and objective
function (cdiff) for CLARIFY. The time in bracket is for constructing the dual collision graph.

graph |V | |E| |Ec| CPU cdiff
ngk 4 50 100 54 0.6 (0.) 122.69

NotreDame yeast 1458 1948 1685 1.3 (0.2) 67.9
GD00 c 638 1020 1847 1.7 (0.1) 64.32

Erdos971 429 1312 4427 2.1 (0.1) 59.3
Harvard500 500 2043 11972 2.3 (0.3) 35.0

extr1 5670 11405 34696 14.5 (7.9) 47.1

It can be seen from Table 1 that for graphs of up to a few thousand nodes and edges,
CLARIFY runs quickly. The majority of the CPU time is spent on color assignment,
while the construction of the collision graph takes relatively little time even with the
naive dual graph construction algorithm. The Harvard500 graph gives a large |Ec| (num-
ber of edges in the collision graph) in comparison to the number of edges, because it has
a few almost complete subgraphs, which results in a lot of crossings at small angles.

5 User Study

We conducted a controlled experiment to study the effect of edge coloring on user’s per-
formance in fundamental graph-related tasks, such as visually following edges, finding
neighbors and calculating the shortest path. Generally we compared two approaches,
defined as two visualization types: the baseline graph drawing in black-white (B/W)
and the improved graph drawing with edges colored by our algorithm (Color).

Experiment Design. We recruited 12 participants (8 male, 4 female) for this paper-
and-pencil experiment. 10 of the participants were graduate students majoring com-
puter science and the other 2 of them were department assistants with no technology
background. Half of the participants had experiences on node-link graphs, one student
was even an expert on graphs. The other half did not have previous knowledge with
the node-link graph. The experiment followed a within-subject design with every par-
ticipant doing all tasks with both visualization types. To eliminate the learning effect
over the same task, we used two different layouts of the same graph data. We had a full
factorial deign on the choice of two visualization types and two graph layouts. Each par-
ticipant entered the same task four times in total. The experiment order was randomized
across participants. Half of them completed the tasks first with the B/W approach and
then with the Color approach. Another half adopted the opposite order. Further, in half
of the time when participants were given the colored drawing, the algorithm is fixed to

A Coloring Algorithm for Disambiguating Graph and Map Drawings 99

use the LAB palette. In another half, the participants selected their favorite palette and
completed tasks with the colored drawings generated by this palette.

Data and Task. Two layouts of the Zachary’s Karate Club Graph were used. One was
exactly the layout in Fig. 2. Another was rotated and re-labeled. Three types of graph-
related tasks were designed:

T1 (Connectivity): Determine whether two nodes are connected by a direct edge;
T2 (Neighbor): Estimate the number of nodes a particular node connects directly;
T3 (Path): Estimate the minimum number of hops from a particular node to another,

including the source and destination.
On each type, four tasks were selected on each graph layout with similar difficulty

levels. To eliminate user’s visual node querying time from their task completion time,
we annotated the related nodes in each task on the corresponding graph layout before
participants took the task.

Result. Results were analyzed separately on each task type. Detailed analysis and
error bar charts are given in the technical report [13]. The major findings are that on
connectivity tasks, the average task error of the Color group is less than 30% of the
B/W group, and is statistically significant. Performance difference on neighbor/path
tasks and color palettes were not statistically significant.

6 Conclusions

Edge crossings, particularly those at small crossing angles, are known to be detrimental
to the visual understanding of graph drawings. This paper proposes an edge coloring al-
gorithm for disambiguating edges that are in collision because of small crossing angles
or partial overlaps. The algorithm, based on a branch-and-bound procedure applied to
a space decomposition of the color gamut, generates color assignments that maximize
color differences of the colliding edges, and works for both continuous color space and
discrete color palettes. The algorithm can also be applied to generate coloring for dis-
ambiguating virtual maps. Our user study found that coloring edges in graph drawings
helped user’s performance in 1-hop graph connectivity task significantly. Consequently
we have made the CLARIFY code available as part of Graphviz open source software.

The approach of coloring edges for disambiguating drawings has its limitations. Our
working assumption is that the drawing is to be displayed as a static image on paper
or screen. When an interactive environment is available, techniques such as “link slid-
ing” and “bring & go” [17] could be more effective. In such a situation, the algorithms
proposed here can be used as an additional visual aid to the interaction.

While the algorithm proposed here can run on relatively large graphs, our experience
is that for graphs with a lot of edges, a static image is insufficient to allow the user to
clearly see and follow each edge. Therefore our approach is best suited for small- to
medium- sized graphs. Typical usage scenarios are illustrations of diagrams, such as
computer or biological networks.

Finally, we note that sometimes edge colors are used to encode attributes on the
edges. To apply our approach without interfering with the need to display such at-
tributes, edges can be differentiated using dashed lines of different style and/or thick-
ness, using CLARIFY through mapping different line styles to 1D or 2D spaces.

100 Y. Hu and L. Shi

References

1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for the Visualization of
Graphs. Prentice-Hall (1999)

2. Brewer, C.: ColorBrewer - Color Advice for Maps, http://www.colorbrewer2.org
3. Chernobelskiy, R., Cunningham, K.I., Goodrich, M.T., Kobourov, S.G., Trott, L.: Force-

directed lombardi-style graph drawing. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034,
pp. 320–331. Springer, Heidelberg (2011)

4. Davis, T.A., Hu, Y.: University of Florida Sparse Matrix Collection. ACM Transaction on
Mathematical Software 38, 1–18 (2011)

5. Di Battista, G., Vismara, L.: Angles of planar triangular graphs. In: Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC 1993, pp. 431–437.
ACM, New York (1993)

6. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput.
Sci. 412(39), 5156–5166 (2011)

7. Dillencourt, M.B., Eppstein, D., Goodrich, M.T.: Choosing colors for geometric graphs via
color space embeddings. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372,
pp. 294–305. Springer, Heidelberg (2007)

8. Duncan, C., Eppstein, D., Goodrich, M.T., Kobourov, S., Nöllenburg, M.: Lombardi drawings
of graphs. J. Graph Algorithms and Applications 16, 85–108 (2012)

9. Gansner, E.R., Hu, Y., Kobourov, S.: Visualizing Graphs and Clusters as Maps. IEEE Com-
puter Graphics and Applications 30, 54–66 (2010)

10. Gansner, E.R., North, S.: An open graph visualization system and its applications to software
engineering. Software - Practice & Experience 30, 1203–1233 (2000)

11. Garg, A., Tamassia, R.: Planar drawings and angular resolution: Algorithms and bounds. In:
van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 12–23. Springer, Heidelberg (1994)

12. Hu, Y., Kobourov, S., Veeramoni, S.: On maximum differential graph coloring. In: Bran-
des, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 274–286. Springer, Heidelberg
(2011)

13. Hu, Y., Shi, L. (2014), http://arxiv.org/abs/1409.0436
14. Huang, W.: Using eye tracking to investigate graph layout effects. In: 2007 6th International

Asia-Pacific Symposium on Visualization, APVIS 2007, pp. 97–100 (2007)
15. Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: Proceedings of IEEE Pa-

cific Visualization Symposium, pp. 41–46. IEEE (2008)
16. Jianu, R., Rusu, A., Fabian, A.J., Laidlaw, D.H.: A coloring solution to the edge crossing

problem. In: Proceedings of the 13th International Conference in Information Visualization
(iV 2009), pp. 691–696. IEEE Computer Society (2009)

17. Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., Fekete, J.: Topology-aware navigation
in large networks. In: CHI 2009: Proceedings of the 27th International Conference on Human
Factors in Computing Systems, pp. 2319–2328. ACM, New York (2009)

18. Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBat-
tista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)

19. Purchase, H.C., Carrington, D., Allder, J.-A.: Experimenting with aesthetics-based graph
layout. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Diagrams 2000. LNCS (LNAI),
vol. 1889, pp. 498–501. Springer, Heidelberg (2000)

20. Purchase, H.C., Hamer, J., Nöllenburg, M., Kobourov, S.G.: On the usability of lombardi
graph drawings. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 451–
462. Springer, Heidelberg (2013)

21. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthet-
ics. Information Visualization 1(2), 103–110 (2002)

http://www.colorbrewer2.org
http://arxiv.org/abs/1409.0436

Untangling Hairballs�
From 3 to 14 Degrees of Separation

Arlind Nocaj, Mark Ortmann, and Ulrik Brandes

Computer & Information Science, University of Konstanz, Germany

Abstract. Small-world graphs have characteristically low average dis-
tance and thus cause force-directed methods to generate drawings that
look like hairballs. This is by design as the inherent objective of these
methods is a globally uniform edge length or, more generally, accurate
distance representation. The problem arises in graphs of high density
or high conductance, and in the presence of high-degree vertices, all of
which tend to pull vertices together and thus clutter variation in local
density.

We here propose a method to draw online social networks, a spe-
cial class of hairball graphs. The method is based on a spanning sub-
graph that is sparse but connected and consists of strong ties holding
together communities. To identify these ties we propose a novel measure
of embeddedness. It is based on a weighted accumulation of triangles in
quadrangles and can be determined efficiently. An evaluation on empir-
ical and generated networks indicates that our approach improves upon
previous methods using other edge indices. Although primarily designed
to achieve more informative drawings, our spanning subgraph may also
serve as a sparsifier that trims a hairball graph before the application of
a clustering algorithm.

1 Introduction

Online social networks such as Facebook friendship graphs are an amalgamation
of a variety of social relations. The existence of a friendship tie might be due
to shared interests, spatial proximity, kinship, or professional relations to name
but a few. When such a multitude of relations is conflated in the same network,
any two nodes are likely to be connected via at most a few links – thus leading
to a small world effect [21]. Visualizations of these graphs using standard layout
methods such as force-directed placement produce drawings in which variation
in local structure is hidden in a densely-looking, overlap-ridden hairball. An
example is given in Fig. 1(a).

Various approaches to reduce the clutter in drawings of small worlds and other
hairball graphs have been proposed [12], most notably edge bundling [10], edge
lensing [11], modified layout algorithms or representations [1,7,29], and graph
simplification [2,17,18,20,23,30]. The idea of graph simplification is to identify

� We gratefully acknowledge financial support from DFG under grants GRK 1042 and
Br 2158/6-1. The proposed method is available in visone.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 101–112, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.visone.info

102 A. Nocaj, M. Ortmann, and U. Brandes

a subset of edges such that only the resulting graph, the so-called backbone,
needs to be laid out. We adopt this approach and propose a new method to trim
hairballs.

Problem formulations in graph simplification include the preservation of prop-
erties such as cuts [2], spectra [23,24], connectivity [30], collapsing substructures
into supernodes [18], and emphasizing deeply embedded connections [17,20]. As
graph invariants such as cuts are more easily affected by noise in empirical net-
works, we opt for locally defined graph simplification criteria.

Substantiated by the sociological work of Simmel [22], Nick et al. [17] define
the strength of an edge by the number of triangles it is contained in, and then
determine the degree of structural embeddedness for an edge by comparing the
ranked neighborhoods of its two vertices. The purpose is to identify edges that
are more likely to be inside of cohesive groups than between such groups. If
the initial edge strengths are uniform, the Simmelian backbone reduces to a
backbone proposed by Satuliri et al. [20]. In both methods, the backbone is
obtained by finally removing all edges with weights below a specified nodal or
network wide threshold.

These filtering techniques are related to, but not the same as graph partition-
ing. Since we want to use them for graph drawing, the difference is even greater
because maintaining connectedness becomes a crucial constraint. Otherwise, the
layout algorithm is oblivious to edges of the original graph connecting vertices
in different components of the backbone as can be inferred from Fig. 1(b). When
connected components happen to be placed far apart, these edges will run across
the drawing and produce even worse clutter.

We present an efficient preprocessing technique that allows to draw a certain
class of small-world social networks with standard layout algorithms that would
produce hairball layouts otherwise. Our main contributions are:

– a novel method to identify strong ties,
– the use of the union of all maximum spanning trees as a sparsifier that

maintains connectedness and avoids subtree-ordering ambivalence, and
– an evaluation on observed and generated networks.

We outline our overall method for drawing hairball graphs in the next section
and describe our edge embeddedness metric in Sect. 3. Different metrics are
evaluated in Sect. 4 and we conclude in Sect. 5.

2 Drawing Algorithm

The main challenges in drawing hairball graphs are their high density, low di-
ameter and noisy group structure. Therefore, our goal is to find a backbone of
the graph that retains deeply embedded edges and thus can be used to draw the
original graph, e.g., by a force-directed method [13] to reveal the actual variation
in cohesiveness.

Since most drawing methods cannot put vertices of different graph compo-
nents into a meaningful spatial relation, cf. Fig. 1(b), we need to maintain the
graph connectivity to retain the global context.

Untangling Hairballs 103

(a) drawing, original network (b) triadic Simmelian backbone [17]

(c) triadic Simmelian backbone
with UMST

(d) quadrilateral Simmelian backbone
with UMST (our approach)

Fig. 1. Facebook friendships at California Institute of Technology (Caltech36). Vertex
color corresponds to dormitory (gray for missing values), but has not been utilized in
the layout algorithm. The layout in (a) is based on the entire hairball graph, whereas
(b)-(d) use edge embeddedness, which spreads the graph while keeping cohesive groups
together. Embeddedness mapped to edge color; backbone edges dark gray.

This leads to the following requirements on our backbone:

(i) Edges should be favored based on their structural embeddedness only.

(ii) Connectedness has to be maintained.

Two common approaches to simplify a graph G = (V,E,w) with vertex set V ,
edge set E, and edge weight w : E → R≥0, are sampling [2,23] and thresholding
[1,17,20]. Note that we assume that w reflects the embeddedness of an edge and
a higher value corresponds to stronger embeddedness. Although sampling can
be used for sparsification purposes the random selection of edges violates both
of our requirements. In contrast thresholding guarantees that edges are favored
by their weights and consequently their structural properties, as it retains only
the top k percent of edges with respect to w. Nevertheless, neither nodal nor
network wide thresholding can ensure that the simplified graph stays connected.

104 A. Nocaj, M. Ortmann, and U. Brandes

Algorithm 1: Hairball Drawing Algorithm

Input: Undirected Graph G = (V,E) and sparsification ratio s ∈ [0, 1].
Output: Vertex positions P ∈ R

|V |×2

1 w ← embeddedness weights of edges
2 sort edges by non-increasing weight
3 Eunion ← UMST with respect to w
4 Ethreshold ← {e ∈ E : w(e) ≥ w(e�(1−s)|E|�)}
5 P ← layout determined from spanning subgraph (V,Eunion ∪Ethreshold)

Algorithm 2: UMST: Union of all Maximum Spanning Trees

Input: Undirected Graph G = (V,E) and edge weights w : E → R≥0.
Data: Union-Find datastructure
Output: Edges belonging to any MST

1 Eunion ← ∅
2 partition edges by weight into buckets B1, . . . , Bk

3 sort buckets by decreasing weight
4 for i ← 1 to k do
5 M ← ∅
6 foreach e = (u, v) ∈ Bi do
7 if find(u) �= find(v) then M ← M ∪ {e}
8 foreach e = (u, v) ∈ M do union(u, v)
9 Eunion ← Eunion ∪M

Sparse connected subgraphs of edges not likely to be between cohesive groups
have been proposed, e.g., by van Ham and Wattenberg [28] (planar graphs)
and Tumminello et al. [27] (graph of bounded genus). A minimally connected
subgraph of edges with high weights is a maximum spanning tree (MST), and
Mantegna [14] proposed these as a backbone. Trees, however, have severe draw-
backs: firstly, they do not maintain any local variation in density and, secondly,
they introduce a subtree ordering ambiguity. While the first also means that ar-
bitrary choices must be made when edges have equal embeddedness, the second
creates a degree of freedom that is almost as bad as disconnected components.

We combine thresholding (to maintain local variation) with the union of all
maximum spanning trees (UMST; to maintain connectedness). The UMST does
not only solve the problem of tie breaks but also reduces the ordering problem
by resulting in higher connectivity (Fig. 1(b)-(d)).

The complete algorithm to compute the layout of a hairball graph is presented
in Alg. 1. Note that the UMST only contributes the (strongest) edges necessary
to connect the components that result from the thresholding process.

Kruskal’s algorithm for minimum spanning trees is easily adapted to deter-
mine the union of all maximum spanning trees. Since every edge of maximum
weight that has not been processed yet could be chosen next, we batch-process
them before components are merged; cf. Algorithm 2.

Untangling Hairballs 105

The final layout emphasizes variation in local density by considering only
deeply embedded edges as expressed by the weights introduced in the next
section.

3 Edge Embeddedness by Accumulating Triadic Effects

Real world networks are often aggregates of different relations, which can hamper
the detection of subgroups or clusters. Our goal is to determine strong embedded
edges, which are likely to be in dense groups, so that we can use them to em-
phasize the inherent structure. The assumption here is that vertices in the same
subgroup of a network are connected stronger with each other than to members
outside of the group.

Satuliri et al. [20] propose to capture the embeddedness of an edge e = (u, v)
by the Jaccard coefficient over u’s and v’s neighborhood. Nick et al. [17] suggest
a more general framework, consisting of the following main steps:

1. For each edge, determine its strength
2. For each vertex, rank all its neighbors according to the edge strength
3. For each edge, determine its redundancy

The approach of Satuliri et al. can be seen as using a uniform edge strength for
step one and the Jaccard coefficient for the redundancy in step three. Contrary to
this, Nick et al. use the number of triangles an edge is embedded in (Simmelian
strength) for step one and the best prefix Jaccard coefficient for step three.
The latter chooses k such that the Jaccard coefficient of the first top k ranked
neighbors of u and v is maximized. The effect of this ranking measure is that the
highly ranked neighbors have more importance attached, since fewer common
vertices are needed to get a high coefficient.

A more intuitive interpretation of this framework is that for an edge e = (u, v)
the edge strength allows us to determine the most important neighbors of u and
v. If these most important neighbors are the same, e is strongly embedded;
otherwise e is connecting two vertices, which are likely to be in different groups.

vu

t

s

e

Fig. 2. Triangles at edge e [17,20]
do not capture mediator edges
(bold), while quadrangles do.

We follow the main idea, but propose a differ-
ent edge strength than the number of triangles.

Consider the setting in Fig. 2. Clearly, edge
e is strongly embedded. Compared to all other
edges it closes many triangles resulting in an
increase of the group performance [5] by in-
troducing mediator effects. Similar to this, an
edge (s, t) connecting two triangles at e intro-
duces additional mediator effects on the trian-
gles, which in turn increases the importance of
e. We call these edges mediator edges on e.

Counting the number of triangles at e does not capture the importance of
mediator edges. But since each mediator edge creates two quadrangles at e, cf.
dashed-contour in Fig. 2, we can use the number of quadrangles containing e

106 A. Nocaj, M. Ortmann, and U. Brandes

to capture this mediator effect. While there can be additional quadrangles at e,
they will be counted only once from e’s perspective, which makes their influence
rather low. Furthermore, counting the two different types of quadrangles at e
would be too time consuming and therefore we will not distinguish between
them.

Using the absolute number of quadrangles poses difficulties, when the network
contains subgroups of different densities. Hence, we normalize this absolute value
by putting it into relation to all edges at vertex u and v. Let q(u, v) be the
number of quadrangles containing edge (u, v) ∈ E. We define the quadrilateral
edge embeddedness as

Q(u, v) =
q(u, v)√
q(u) · q(v)

,

where q(v) =
∑

w∈N(v) q(v, w), for v ∈ V , and N(v) the neighborhood of v. We
use the geometric mean over the arithmetic mean, since it takes the dependency
of two variables into stronger consideration. Note that edge-metrics using quad-
rangles have already been proposed by Auber et al. [1] and Radicchi et al. [19],
but are different from our method as they focus on density. For a comparison of
different edge metrics we refer the reader to Melançon and Sallaberry [16].

Computation and Time Complexity

The quadrangles of a graph G can be listed in O(mα(G)) [6], where m is the
number of edges and α(G), the arboricity of G, is the minimum number of edge-
disjoint forests necessary to cover all edges of G. While the arboricity can be as
large as

√
m, it is bounded from above by the h-index of a graph which in turn

is found to be very small in social networks [8]. Together with the normalization,
the computation of the edge strengths takes O(mα(G)) time.

Neighbors can be ranked in O(m log�(G)) time and redundancy can be com-
puted in O(m�(G)), where �(G) is the maximum vertex degree. For example,
the overall backbone computation took 0.2s on a network with 762 vertices
and 16k edges (Caltech65) and 2.3s on a network with 2970 vertices and 100k
edges (Smith60) with our Java 7 implementation and an Intel Core i7-2600K
CPU@3.40GHz. The approach thus scales to large networks and we turn to the
evaluation of its effectiveness in the next section.

4 Evaluating Methods for Edge Embeddedness

In this section we introduce the dataset and a graph model, from which we gener-
ate artificial hairball graphs. Then we explain our output quality indicators and
the different edge embeddedness methods. For each graph and edge embedded-
ness method, we iteratively increase the sparsification ratio by 10% and compute
the corresponding backbone. Layouts are computed using stress majorization [9]
initialized by PivotMDS [3] as suggested in [4].

Untangling Hairballs 107

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

PPM (50 samples) Caltech36 Rice31 Smith60

0.4

0.6

0.8

1.0

0.5

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

0.4

0.5

0.6

0.7

25%50%75%100% 25%50%75%100% 25%50%75%100% 25%50%75%100%
remaining edges

h
om

op
h
il
y

●●Ground Truth Quadrilateral Simmelian Jaccard Density Random

Fig. 3. Homophily (y-axis) is plotted against the number of remaining edges (x-axis) for
the synthetic model (PPM) and three of the Facebook networks. Overall Quadrilateral
performs better than the others. For the synthetic networks it comes very close to the
ground truth.

4.1 Dataset and Model

As real world samples, we use the Facebook100 dataset [26], which contains so-
cial relations of 100 higher educational institutes in the US. The network size
varies from 762 to 41K vertices and from 16K to 1.6M edges. The dataset is di-
rectly from Facebook, not sampled, and thus very complete in terms of capturing
the social relations according to a widely used service at that time. Additional
attributes obtained from the Facebook profiles are gender, year of graduation,
dormitory, etc. Due to incomplete profiles, a number of attribute values are
missing. We will use the dormitory attribute for our evaluation, because it has
been argued to be important for the creation of social relations in many of the
networks [26].

Note that, in spite of a strong empirical association with homophilous
attribute values, no ground-truth group structure is available for Facebook net-
works. Therefore, we also generated artificial networks from a model that repre-
sents the idealized version of the networks we are considering in this application.

A simple model generating random graphs with cohesive groups that are
connected into a small world is the planted partition model (PPM) [15]. Let
C = {C1, . . . , Ck} be a partition of V for a graph G = (V,E). Then C is called
a clustering of G with class c(v) ∈ C for a vertex v ∈ V . The probability of an
edge (u, v) is pin if c(u) = c(v) and pout if c(u) �= c(v). We generated 50 graphs
from a PPM with 500 vertices, k = 9, pin = 0.3, and pout = 0.01. On top of that,
we ran a random noise model with pin = pout = 0.1 to obfuscate the underlying
group structure. The resulting graphs are very dense, have a low diameter, and
are real hairballs without any visible structure when laid out using force-directed
methods. The presented results of our model are averaged over 50 samples.

108 A. Nocaj, M. Ortmann, and U. Brandes

Fig. 4. Dormitory-homophily of differ-
ent backbones, with sparsification ra-
tio 70%, (y-axis) compared to the ho-
mophily in the original network (x-axis)
for all Facebook100 networks. Points
above/below the dashed line indicate
homophily increase/decrease respective
the original network. Simmelian and
Quadrilateral homophily values for cor-
responding networks have been con-
nected by colored segments comparing
their performance.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●●0.25

0.50

0.75

0.1 0.2 0.3 0.4 0.5
homophily (original network)

h
om

op
h
il

y
 (

b
ac

k
b

on
e)

better performance

Quadrilateral
Simmelian

Random

4.2 Edge Embeddedness Methods

We compare different methods which assign a weight w : E → R≥0 to each edge
e = (u, v) ∈ E depicting its embeddedness. All these methods are then extended
using our UMST approach to guarantee the connectivity, such that a layout can
be computed from the resulting graph. We use the following approaches to assign
a weight to the edges.
Random: Assigns uniform random weights, as base line.

Jaccard: Jaccard coefficient, |N(u)∩N(v)|
|N(u)∪N(v)| , as proposed by Satuliri et al. [20].

Simmelian: Triadic Simmelian backbone, as proposed by Nick et al. [17].
Quadrilateral: Quadrilateral Simmelian backbone, based on our embeddedness
method, which accumulates triadic effects at an edge with quadrangles (Sect. 3).
Density:Metric by Auber et al. [1] accumulating densities of different subgroups
in the local neighborhood.
Ground Truth: Knowledge of class membership in the synthetic network is
used to assign directly a low value to inter-cluster edges and a big value to
intra-cluster edges.

4.3 Quality Metrics

In contrast to the synthetic networks there is no ground truth available for the
Facebook networks. This makes it hard to evaluate outcomes of the different
methods. Nevertheless, it was found that for many of the Facebook networks,
the housing structure (dormitory attribute) is very relevant for the underlying
formation of social relations [17,26]. We, therefore, use the dormitory attribute
as a reference for evaluation.

Assume that we know the ground truth, meaning the class membership c(v) of
each vertex. A perfect algorithm, for example, would first remove all inter-cluster
edges before starting to remove intra-cluster edges while obeying the required
sparsification ratio. Since inter-cluster edges are removed priorly, this increases
the ratio between intra-cluster or homophily edges and the total number of edges.

If the edge embeddedness methods perform similar to this, the ratio of ho-
mophily edges

Untangling Hairballs 109

(a) layout error

●

●

●

●
●

●
● ●

●

●

0.4

0.5

0.6

0.7

0.8

0.9

25%50%75%100%

remaining edges

la
y
ou

t
er

ro
r

●

Random
Density
Jaccard
Simmelian
Quadrilateral

(b) Caltech36

●

●

●
● ●

● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

25%50%75%100%

remaining edges

la
y
ou

t
er

ro
r

●

Random
Density
Jaccard
Simmelian
Quadrilateral
Ground Truth

(c) synthetic networks

Fig. 5. Layout error of different edge embedding methods combined with our UMST
for (b) a real world network and (c) synthetic networks. (a) shows the layout error for
a single point of the line chart in (b).

homophily(G) =
#homophily edges

#homophily edges + #heterophily edges

should monotonically increase, while gradually removing edges from the network
according to their weight. Edges for which the class membership (attribute) of
at least one vertex is missing are neglected.

Additionally, we would like to see how well this class membership is reflected
in the layouts. Vertex pairs of the same class should have a small Euclidean
distance, while pairs of different classes should have a large Euclidean distance.
Looking at the curve of the Euclidean distance distribution of the intra-cluster
and inter-cluster vertex pairs in Fig. 5(a), we define the layout error as the
intersection area of these two curves. The layout error can also be interpreted
as the percentage of vertex pairs, where the distinction whether they are in the
same cluster or not cannot clearly be made based on the Euclidean distance.
Since the computation of this quality metric is very time intensive, it was not
feasible to analyze all 100 Facebook networks with it.

4.4 Results and Discussion

An interesting observation from Fig. 3 is that Jaccard and Simmelian perform
very similar for most Facebook networks. Our method (Quadrilateral) clearly
manages to distinguish between the different types of edges better than the
other methods, especially in earlier phases of the sparsification.

For all 100 Facebook networks, the difference in homophily between Simmelian
and Quadrilateral is shown by the length of a vertical segment in Fig. 4. While
both approaches increase the percentage of homophily edges (all segments above
the diagonal dashed line), Quadrilateral clearly performs better, especially for
networks with higher percentage of homophily edges.

Although the homophily of Jaccard and Quadrilateral is nearly the same for
the last but one step of the Caltech network (Fig. 3) the Quadrilateral embedding

110 A. Nocaj, M. Ortmann, and U. Brandes

●
●

●

●

●

●

● ●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

Pepperdine86 Rice31 Smith60 Vassar85

0.71

0.73

0.75

0.77

0.7

0.8

0.9

0.7

0.8

0.9

0.86

0.87

0.88

0.89

0.90

25%50%75%100% 25%50%75%100% 25%50%75%100% 25%50%75%100%
remaining edges

la
y
ou

t
er

ro
r

●●Jaccard Simmelian Quadrilateral

Fig. 6. Layout error of Facebook networks w.r.t. the dormitory attribute. While im-
provement is not clear for Pepperdine86 and Vassar85, the layout is improved a lot for
the networks with high homophily (Rice31 and Smith60).

creates the superior layout (Fig. 5). Furthermore, for the synthetic networks,
Quadrilateral comes very close to the ground truth (Fig. 5).

Figure 6 shows the layout error for four Facebook networks and the three best
performing edge metrics (according to homophily). The layout clearly improves
for the Rice and Smith network, but not much for the other two. One possible
explanation for this could be that the dormitory attribute is not the explanatory
variable for the formation of social relations in these two networks.

The effectiveness of our layout quality metric can also be verified, by looking at
the final drawings in Fig. 1(c) and 1(d). In the latter many clusters, as light green
and light blue, are more clearly visible. For the synthetic networks our method
comes also very close to the ground truth, in terms of layout error (Fig. 5(c)).
Again, the drawings of a synthetic network (Fig. 7) support this conclusion.

5 Conclusion

We proposed a sparsification approach to draw hairball graphs as encountered in
online social networks. It is based on the idea that pairwise distances (the “degrees
of separation”) need to be increased without disrupting tightly-knit groups. The
deeply embedded edges such groups are made of are identified using a suitably
modified Simmelian backbone [17], and overall layout organization is stabilized
by maintaining connectedness via the union of all maximum spanning trees.

An evaluation with empirical and generated networks showed that our novel
metric manages to reveal relations deeply embedded in latent primary groups.
In the resulting drawings such groups are separated from each other but still
positioned in their global context. On the Facebook100 dataset, average distances
increased from about 3 in the original friendship networks to about 14 in the
backbone, thus easing the layout task for force-directed algorithms.

Our proposed edge embeddedness metric proved to be more effective than
previous approaches with respect to improving layout quality by way of ampli-
fying homophily. It is thus likely to be useful as a preprocessing step for graph
clustering algorithms as well.

Untangling Hairballs 111

(a) Jaccard [20] (b) triadic
Simmelian backbone [17]

(c) our quadrilateral
Simmelian backbone

Fig. 7. Layouts of the same synthetic network determined by different edge embed-
dedness methods combined with our UMST (sparsification ratio of 80%).
Colors encode groups – ground truth.

By design, our technique appears to be best suited for small-world networks
with multiple centers. While these are common, especially in social media, it will
be interesting to identify variants for hierarchically clustered graphs and single-
centered core-periphery structures such as the network of world trade [25].

References

1. Auber, D., Chiricota, Y., Jourdan, F., Melançon, G.: Multiscale visualization of
small world networks. In: INFOVIS. IEEE Computer Society (2003)

2. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in õ(n2) time. In:
Miller, G.L. (ed.) STOC, pp. 47–55. ACM (1996)

3. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling
of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp.
42–53. Springer, Heidelberg (2007)

4. Brandes, U., Pich, C.: An experimental study on distance-based graph drawing.
In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218–229.
Springer, Heidelberg (2009)

5. Burt, R.S.: Structural holes versus network closure as social capital. Social Capital:
Theory and Research, pp. 31–56 (2001)

6. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J.
Comput. 14(1), 210–223 (1985)

7. Cohen, J.D.: Drawing graphs to convey proximity: An incremental arrangement
method. ACM Trans. Comput.-Hum. Interact. 4(3), 197–229 (1997)

8. Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic
subgraph statistics. J. Graph Algorithms Appl. 16(2), 543–567 (2012)

9. Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)

10. Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization.
Comput. Graph. Forum 28(3), 983–990 (2009)

11. Hurter, C., Telea, A., Ersoy, O.: Moleview: An attribute and structure-based se-
mantic lens for large element-based plots. IEEE TVCG 17(12), 2600–2609 (2011)

112 A. Nocaj, M. Ortmann, and U. Brandes

12. Jankun-Kelly, T.J., Dwyer, T., Holten, D., Hurter, C., Nöllenburg, M., Weaver, C.,
Xu, K.: Scalability considerations for multivariate graph visualization. In: Kerren,
A., Purchase, H.C., Ward, M.O. (eds.) Multivariate Network Visualization 2013.
LNCS, vol. 8380, pp. 208–236. Springer, Heidelberg (2013)

13. Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Handbk.
of Graph Drawing and Visualization, pp. 383–408. Chapman & Hall/CRC (2013)

14. Mantegna, R.N.: Hierarchical structure in financial markets. The European Phys-
ical Journal B-Condensed Matter and Complex Systems 11(1), 193–197 (1999)

15. McSherry, F.: Spectral partitioning of random graphs. In: FOCS, pp. 529–537.
IEEE Computer Society (2001)

16. Melançon, G., Sallaberry, A.: Edge metrics for visual graph analytics: A compar-
ative study. In: IV, pp. 610–615. IEEE Computer Society (2008)

17. Nick, B., Lee, C., Cunningham, P., Brandes, U.: Simmelian backbones: amplify-
ing hidden homophily in facebook networks. In: Rokne, J.G., Faloutsos, C. (eds.)
ASONAM, pp. 525–532. ACM (2013)

18. Pfaltz, J.L.: The irreducible spine(s) of undirected networks. In: Lin, X.,
Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013, Part II. LNCS,
vol. 8181, pp. 104–117. Springer, Heidelberg (2013)

19. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-
tifying communities in networks. Proc. Natl. Acad. Sci. 101(9), 2658–2663 (2004)

20. Satuluri, V., Parthasarathy, S., Ruan, Y.: Local graph sparsification for scalable
clustering. In: Sellis, T.K., Miller, R.J., Kementsietsidis, A., Velegrakis, Y. (eds.)
SIGMOD Conference, pp. 721–732. ACM (2011)

21. Schnettler, S.: A structured overview of 50 years of small-world research. Social
Networks 31(3), 165–178 (2009)

22. Simmel, G.: The sociology of Georg Simmel, vol. 92892. Simon and Schuster (1950)
23. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM

J. Comput. 40(6), 1913–1926 (2011)
24. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning,

graph sparsification, and solving linear systems. In: Babai, L. (ed.) STOC, pp.
81–90. ACM (2004)

25. Subramanian, A., Wei, S.J.: The WTO promotes trade, strongly but unevenly.
Journal of International Economics 72(1), 151–175 (2007)

26. Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.: Comparing community struc-
ture to characteristics in online collegiate social networks. SIAM Review 53(3),
526–543 (2011)

27. Tumminello, M., Aste, T., Di Matteo, T., Mantegna, R.: A tool for filtering infor-
mation in complex systems. Proc. Natl. Acad. Sci. 102(30), 10421–10426 (2005)

28. Van Ham, F., Wattenberg, M.: Centrality based visualization of small world graphs.
Computer Graphics Forum 27(3), 975–982 (2008)

29. Zaidi, F., Sallaberry, A., Melançon, G.: Revealing hidden community structures
and identifying bridges in complex networks: An application to analyzing contents
of web pages for browsing. In: Web Intelligence, pp. 198–205. IEEE (2009)

30. Zhou, F., Mahler, S., Toivonen, H.: Network simplification with minimal loss of
connectivity. In: Webb, G.I., Liu, B., Zhang, C., Gunopulos, D., Wu, X. (eds.)
ICDM, pp. 659–668. IEEE Computer Society (2010)

GION: Interactively Untangling Large Graphs
on Wall-Sized Displays

Michael R. Marner1, Ross T. Smith1, Bruce H. Thomas1, Karsten Klein2,
Peter Eades2, and Seok-Hee Hong2

1 University of South Australia, Adelaide, Australia
{michael.marner,ross.smith,bruce.thomas}@unisa.edu.au

2 The University of Sydney, Sydney, Australia
{karsten.klein,peter.d.eades,seokhee.hong}@sydney.edu.au

Abstract. Data sets of very large graphs are now commonplace; the scale of
these graphs presents considerable difficulties for graph visualization methods.
The use of interactive techniques and large screens have been proposed as two
possible avenues to address these difficulties.This paper presents GION, a new
skeletal animation technique for interacting with large graphs on wall-sized dis-
plays. Our technique is based on a physical simulation, and aims to enhance the
users’ ability to efficiently interact with the graph visualization for exploratory
analysis. We conducted a user study to evaluate our technique against standard
operations available in most graph layout editors, and the study shows that the
new technique produces layouts with less stress, and fewer edge crossings. GION
is preferred by users, and requires significantly less mouse movement.

1 Introduction

Graphs provide a versatile model for data from a large variety of application domains,
including biology, finance, telecommunication, software engineering, and social sci-
ences. Graph visualization helps scientists and engineers to understand critical issues
in these domains. However, the depth of understanding depends on the quality of the
drawing. Automatic graph layout methods are developed for computational efficiency
and quality, i.e. readability. These methods however can only optimize a few criteria in
combination, and it is impossible to define a quality measure that allows to create opti-
mal layouts for all graphs, tasks, and observers. Moreover, the size of relevant data sets
for analysis has grown exponentially over the last years. For example, data from social
networks, biology, and finace continue to grow at a rate that is not accommodated by
current methodologies.

While some layout algorithms are capable of laying out graphs with hundreds of
thousands of nodes in a few seconds [4], data sizes from practice are still a challenge in
a number of ways:

– There is a trade-off between computational resources and layout quality. For exam-
ple, algebraic methods run quickly but in many cases give poor results [6], while
stress minimization [5] gives good quality layouts but is too slow for interactive
work on large graphs.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 113–124, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

114 M.R. Marner et al.

– Existing methods do not scale well visually. A standard screen with a few megapix-
els cannot faithfully display graphs of a few million edges.

– An underlying problem lies in the optimisation criteria for layout algorithms for
large graphs. For small scale graphs, criteria such as the number of edge cross-
ings have been successfully used and validated [13, 14]. However, all commonly
used algorithms for large graph layout ignore these criteria and generally use an
optimisation criterion based on a notion of energy or stress [4].

– Readable large graphs might not be sufficient for understanding, as requirements
differ based on the application and the task at hand. Moreover, the user can interac-
tively explore different regions of the graph which are not known in advance, e.g.
to compare or investigate the local structures, while keeping their global context.

This paper makes the contribution of a new interaction technique, GION, for ma-
nipulating layouts of large graphs. GION is novel by employing a physics engine to
simplify the process of interacting with large graphs, treating the graph as a set of con-
nected rigid bodies. The physics engine provides smooth animation for the user while
interactively laying out the graph, and this animation improves the understanding for
the user of the graphs underlying structure. When the user moves a cluster, the con-
nected clusters are also moved, as if they were connected in a chain. Our contribution
is validated with a user study conducted to evaluate the effectiveness of the technique
in a graph untangling task.

The remainder of this paper is structured as follows. Section 2 describes previous
research related to this paper. Section 3 describes the details of the new graph interaction
technique. Section 4 outlines the user study conducted to evaluate the new interaction
technique, with the results presented in Section 5 followed by a discussion of these
results in Section 6. Finally, the paper concludes with a discussion of future work.

2 Background

While readability of graph drawings has been a topic of research for decades, and there
is a wealth of papers on the evaluation of drawing quality, e.g. [7, 13], the research has
focused mainly on task based performance for diagrams of small to medium size. Sev-
eral well established quality criteria for graph layouts exist. The most prominent one is
the number of crossings, which was verified to be an impediment for the human under-
standing of small graphs in empirical experiments [13]. Further well established quality
criteria are angular resolution, edge length deviation, and stress. Recently, Huang et
al. [7] suggested that it is often better to make compromises between aesthetics, instead
of trying to satisfy one or two of them to the fullest. It has however not yet been in-
vestigated if the results obtained for small graphs can be extended to huge graphs or if
different quality criteria have to be employed.

Recently, Dwyer et al. [3] compared user-generated and automatic graph layouts,
where users were asked to optimize the layout for aesthetics and social network analysis
tasks. In their study, users that were asked to optimize a graph layout for an analysis task
used the term “untangling” to describe their process. In contrast the term “untangle”
here is not task related but used in a relatively informal sense: a user “untangles” a
graph drawing when they improve the layout, in the subjective opinion of the user. In

GION: Interactively Untangling Large Graphs on Wall-Sized Displays 115

particular, we did not ask the participants of our user study to optimize any pre-specified
quality metric. Indeed, our long-term goals include discovery of users’ metrics.

Our new technique employs animation techniques found in modern computers games,
and many applications apply animation techniques to enrich the look and feel of the
user interface. Animations to the interface smooth the rough edges and sudden transi-
tions common in many current graphical interfaces, and strengthen the illusion of direct
manipulation that many interfaces strive to present [16]. Animation improves a user’s
understanding of the direct manipulation of the data by better portraying such concepts
as constraints, relationships, and connectivity. These are powerful cues for the direct
manipulation of large graph structures.

Ball, North, and Bowman [1] evaluated interaction techiques for large display visu-
alisations. They tracked physical navigation in 3D space via the participants head with
a VICON system. Their experiments found with increased size of the display, there was
more physical navigation. When combined with the reduced performance time on large
displays, they found a compelling suggestion that physical navigation was also more ef-
ficient. They also found that physical navigation was preferred over virtual navigation.

Peck, North, and Bowman [12] defined a new 3D interaction technique, multiscale
interaction, which associates the user’s scale of perception to their scale of interaction.
Multiscale interactions exploit the user’s physical navigation in front of a large display
to directly control the scale of interaction, while adjusting their scale of perception.
Overall, they found evidence that multiscale interaction is a natural behavior, and this
technique can be useful in interaction design for large high-resolution displays.

Skeletal animation (see, for example, [8]) is a well established technique in graphics.
An object is modelled as a mesh, with “bones” as links between ”joints”. Movement of
the mesh in between keyframes can be computed using methods of inverse kinemat-
ics [17]. The skeletal animation technique is mainly used to animate people and ani-
mals, but Merrick et al. [9, 10] investigate application to graph interaction. Their work,
however, is limited to very small graphs.

3 GION: Graph Interaction Operation for Nodes

To untangle a graph G, the user has to rearrange nodes by dragging them to new po-
sitions. Moving nodes one by one is time consuming. With thousands to millions of
nodes, the human resources required are too large both for untangling in practice and
for evaluation experiments like the one in this paper. Large graphs thus need interaction
methods for untangling that move more than one node at a time. The GION technique
uses ideas and off-the-shelf software from skeletal animation to simplify the process of
interacting with large graphs. More specifically, GION adapts a physics engine to move
many nodes at a time. GION treats the graph as a skeleton, where bones simulate edges,
and joints simulate nodes. However, the simple approach of representing every edge as
a bone and each node as a joint does not scale to handle large graphs. Thus large graphs
are clustered to enable the user to move large numbers of nodes at once. The physics
engine treats clusters as rigid bodies connected by joints. The effect of this approach is
that connected clusters move as a chain. This section describes the interaction technique
in detail and provides rationale for design choices.

116 M.R. Marner et al.

Fig. 1. Untangling a graph layout on the tiled wall display

3.1 Graph Clustering

Allowing the user to move larger chunks of the graph at a time can help to reduce this
effort in case these chunks are specified in a way that supports the user’s untangling
process. Graph clustering partitions the nodes of the graph into clusters, that is, disjoint
node sets, aiming to have high cohesion (that is, many intra-cluster edges), and low
coupling (that is, few inter-cluster edges).

Many different clustering algorithms are available. We use a fast and simple clus-
tering method based on random walks [2]. This algorithm aims to detect dense local
substructures using a random walk based graph traversal. Roughly speaking, random
walks tend to stay within a highly cohesive substructure with a high probability [2].
This algorithm allows to influence the number of clusters over parameter settings; this
property is helpful for tuning the interaction fidelity. As the cluster boundaries created
by the random walk approach can be somewhat fuzzy, we apply a Kernigan-Lin style
postprocessing technique [18] that flips the cluster affiliation of single nodes that are
connected more strongly to a different cluster than to the cluster they are affiliated with.

Clusters as Rigid Bodies: Each cluster in the graph is represented as a polygonal
rigid body. The polygon shape is calculated by taking the convex hull of the vertices
in the cluster, and then simplifying the polygon down to a maximum of eight vertices.
This simplification greatly improves the performance of the simulation at runtime. The
polygon is given physical properties that drive the simulation: 1) Damping reduces the
velocity of rigid bodies when in motion. 2) Density determines the mass of the poly-
gon, and thus its momentum when in motion. 3) Static Friction prevents rigid bodies
from moving unless a minimum threshold force is applied. This is important in limiting
the number of nodes that move in response to the movement of a node. 4) Collision
In most physics simulations, rigid bodies can collide. For our purposes, collisions are
disabled and bodies can pass through each other. Physics engines such as that provided
by Box2D allow specification of control parameters for the above properties; for GION,
we chose values for these parameters from experience.

GION: Interactively Untangling Large Graphs on Wall-Sized Displays 117

(a) (b)

Fig. 2. (a) A section of a graph, and (b) physics system representation

Edges, clustered edges, and bones: If there is at least one edge between two clus-
ters C1 and C2, then we say that C1 and C2 are linked. If two clusters are linked, then
we place an elastic bone between them; physically this acts to approximately maintain
a specified distance between the two clusters. The bone has a length that defines this
distance. In GION, the length of a bone is held constant during a single user operation,
but varies from one operation to the next, as explained below. The physics engine pro-
vides two parameters to define the elasticity of a bone: frequency and damping ratio. In
GION, the elasticity is held constant throughout.

3.2 User Operations

Users interact with the graph using the mouse to drag clusters into new positions. Each
GION user operation consists of three steps: 1) The user selects a node with a button-
down mouse event. 2) The user moves the mouse. Mouse movement is applied to the
physics simulation as a force that acts on the cluster containing the node selected by the
user. Using a force provides intuitive feedback about the connections from the selected
cluster; heavily connected clusters are more difficult (require more mouse movement)
to move than clusters with only a few connections. 3) The user releases (button-up) the
mouse. GION then re-sets the length of each bone to the distance between its endpoints.

GION differs significantly from previous skeletal animation methods in that the
length of each bone can vary from one user operation to the next. In a classical skeletal
animation (say of a human walking), bones have constant length; but GION introduces
some elasticity to the bone length. This provides more information to the user, as they
can more easily see how the graph is connected. However, we found through informal
pilot studies that users felt as though they did not have enough control over the layout of
the graph. Users became frustrated when clusters, connected by constant length bones,
would rebound back towards their initial positions.

To improve this behaviour, GION resets all bone lengths when the user releases the
mouse. The distance between two clusters at that point in time becomes the new defined
distance for the bone: thus the clusters stay in their positions when the user releases the
mouse. This improves the control that users have over the layout. It also gives the users

118 M.R. Marner et al.

the ability to stretch out parts of the graph layout by quickly moving different clusters to
new positions. A future extension to this technique would allow users to explicitly shrink
bones, bringing clusters together. This extension was not included in the evaluation.

We also make use of the clustering information to color the graph, based on the
degree of physics bodies. The clusters with the highest degree (most linked) are drawn
in red, and clusters with the lowest degree are colored green. The remaining clusters
are colored as a gradient from red to green based on their cohesion. Coloring the graph
in this way allows users to quickly identify which parts of the graph will be easiest to
move into more desirable locations.

4 Evaluation

We conducted a user study to evaluate the benefits of the physics-based graph inter-
action technique. We chose an untangling task for the experiment. Participants were
shown a series of graph layouts, and were asked to ‘untangle’ the layout to better show
the overall structure. Untangling was chosen as the task because it would require many
mouse operations to complete, and resulting graphs could be compared to the initial
layout. The experiment is a 2x2, within participant, repeated measures design. The con-
ditions tested were interaction mode: physics or normal, and coloring: colored or plain.
Participants used the GION technique for the physics condition. The normal interaction
allowed users to move nodes to new locations one cluster at a time, emulating move-
ment operations commonly used in graph layout software.

The hypotheses tested in the experiment are as follows:

H1 Physics interaction leads to lower stress than normal interaction.
H2 Physics interaction leads to fewer edge crossings than normal interaction.
H3 Colored graphs would have lower stress than the plain graphs.
H4 Colored graphs would have fewer edge crossings than the plain graphs.
H5 Physics interaction requires less mouse movement than normal interaction.
H6 Physics interaction requires fewer clicks than normal interaction.
H7 Physics interaction leads to lower stress than the starting layout.
H8 Physics interaction leads to fewer edge crossings than the starting layout.
H9 Physics interaction is preferred by users.

The following data were collected during each trial of the experiment: mouse move-
ment, in millimetres on the videowall, mouse clicks, and snapshots of the graph layout
(captured every five seconds). From the graph layout snapshots other properties of the
layout could be calculated and analysed. Participants were asked to fill out a question-
naire at the end of the user study session. Participants answered questions 1-4 for both
the physics and normal interaction conditions, and questions 5-6 for the color condition.
All questions were answered using a visual analogue scale. The participants were asked
to rank the interaction conditions in order of preference, and comment on strategies
used for untangling the graphs.

1. Moving graph clusters into new positions was {very easy - very hard}
2. Untangling the graphs was {very easy - very hard}

GION: Interactively Untangling Large Graphs on Wall-Sized Displays 119

3. The interaction mode made the graphs {more understandable - less understandable}
4. With the results of untangling the graphs, I was {very happy - very unhappy}
5. When deciding which clusters to move first, the coloring made it {easy - hard}
6. Coloring the graph made untangling {fast - slow}

4.1 Graphs

We selected graphs that come from a real world application where graph visualization
is used for data analysis and the graph size and layout quality requirements pose a
challenge for state-of-the-art layout methods. Our graph set consists of RNA sequence
graphs that are used for the analysis of repetitive sequences in sequencing data [11].
They have been created by running pairwise alignment on genomic sequence reads,
and to represent reads as nodes and large overlaps between reads as edges. Eight graphs
were chosen for the experiment. Participants untangled all graphs, with the conditions
randomised for each graph.

We applied the Fruchterman-Reingold algorithm FR to obtain the initial layouts used
in the experiments. Our goal here was to start with a layout that did not reveal the overall
graph structure completely. A completely random layout might pose a too difficult chal-
lenge. Using a layout generated by FR allows the user to identify starting points for un-
tangling while leaving enough space for improvement based on individual preferences.
Graph properties are provided in Table 1. The set of graphs can be downloaded from
http://wcl.ml.unisa.edu.au/graph-untangling/graphs.zip. All graphs have
high local density, and a sparse global structure that allows to create layouts far from hair-
balls that are showing the structure well.

Table 1. Overview on the graph set used for the experiment

Graph # nodes # edges density avg deg. clus. coeff. avg sh. path diameter
A 1159 6424 5.5 11.1 0.65 19.5 59
B 1748 13957 8 16 0.64 17.9 63
C 1785 20459 11.5 22.9 0.61 10.7 41
D 3010 41757 13.9 27.7 0.67 26.4 77
E 4924 52502 10.7 21.3 0.65 36 121
F 5452 118404 21.7 43.4 0.73 46.6 216
G 5953 186279 31.3 62.6 0.72 56.2 163
H 7885 427406 54.2 108.4 0.69 24.4 55

4.2 Experimental Procedure

Each participant completed the experiment in a single session. Participants were first
asked to complete a graph theory quiz. This quiz asked simple graph structure questions
and was designed to allow results from participants with different levels of knowledge
to be compared, and did not affect the rest of the experiment. Participants were given
instructions on how to interact with the system, and that they would have two minutes to

http://wcl.ml.unisa.edu.au/graph-untangling/graphs.zip

120 M.R. Marner et al.

untangle each graph. Specifically, participants were shown an example starting layout
and untangled layout (shown in Fig. 3) and told “to untangle the graph. This involves
moving parts of the graph to new locations in order to make the underlying structure
of the graph clear”. Following this, the untangling trials began. The display provided
instructions informing the participant of the conditions of the next trial (for example,
physics colored). The participant clicked the mouse to begin the trial and the display
changed to show the initial graph layout. The participant then had two minutes to best
untangle the graph. After two minutes, the video wall went blank while the next trial
was loaded. After eight trials the participants were asked to complete the subjective
questionnaire and the session was concluded.

(a) (b) (c)

Fig. 3. (a) The starting layout for graph B. (b) Layout for graph B using stress minimization. (c)
Final layout created by one of the participants.

5 Results

Sixteen participants completed the experiment, recruited from staff and students from
the University of South Australia, and the general public. Participant ages ranged from
23 to 57, with a mean age of 33. Five of the participants were female, and all but
one of the participants were right handed. The mean score for the graph theory quiz
was 74.22% (std. dev 25.19). Pearson Correlation analysis was performed to see how
quiz score affected results. A significant correlation was found between quiz score and
change in edge crossings for the normal/color condition, r = −.505[−.876, .453], p<
0.05. Quiz results did not affect any other conditions. All other quantitative results were
analysed using a 2x2 repeated measures ANOVA.

5.1 Mouse Usage

There was a significant main effect on interaction mode, F(1,15) = 36.586, p < 0.001.
There was significantly less mouse travel in the physics condition compared to normal,
with 59294.661mm (SE 5001.180) of mouse travel for the physics condition compared
to 76227.881mm (SE 4153.657) for the normal condition. The graph coloring did not
produce a significant effect on mouse travel, and there was no significant interaction
between interaction mode and graph coloring.

There was a significant main effect on the interaction mode, F(1,15) = 6.279, p <
0.05. Participants made fewer mouse clicks for the normal condition than physics, with

GION: Interactively Untangling Large Graphs on Wall-Sized Displays 121

mean mouse clicks of 38.563 (SE 3.235) for the normal condition compared to 43.109
(SE 3.036) for the physics condition.

There was also a significant main effect on the graph coloring, F(1,15)= 11.614, p<
0.01. Participants made significantly fewer mouse clicks for the plain condition than
colored, with mean mouse clicks of 39.125 (SE 2.685) for the plain condition com-
pared to 42.547 (SE 3.367) for the colored condition.

5.2 Graph Layout Analysis

Layouts were analysed for stress and edge crossings. The results presented here are
represented as a ratio of change in values compared to the starting values of the ini-
tial graph layout, i.e. Result = (EndValue− StartValue)/StartValue. Using a ratio of
change allows comparisons between graph layouts of different sizes, numbers of clus-
ters, and vastly different initial stress and edge crossing values. In all conditions, stress
was higher after participants interacted with the graph. Of the 128 trials conducted in
the experiment, only two resulted in lower stress values than the initial conditions. How-
ever, there was a significant main effect on interaction mode, F(1,15), p < 0.05. The
physics based interaction produced layouts with significantly less stress than the normal
interaction mode, with mean stress change of 22.884 (SE 2.772) for the physics con-
dition compared to 95.763 (SE 14.955) for the normal condition. Graph coloring did
not produce a significant effect on graph stress, and no significant interaction between
interaction mode and graph coloring was found. Edge crossings were also higher after
participants interacted with the graph. Sixteen of the 128 trials showed a reduction in
edge crossings.

There was a significant main effect on interaction mode, F(1,15), p < 0.05. The
physics based interaction produced layouts with significantly fewer edge crossings than
the normal interaction mode, with mean change in edge crossings of 0.578 (SE 0.087)
compared to 2.811 (SE 0.538) for the normal interaction mode. Graph coloring did not
significantly affect edge crossings, and no significant interaction between interaction
mode and graph coloring was found.

5.3 Questionnaire Results

The results of the questionnaire comparing the physics interaction to normal interaction
are summarised in Fig. 4. Significant results (p < .05) were found for questions 1,
3, and 4, with participants giving higher scores for the physics condition in all three
questions. Participants overwhelmingly preferred the physics interaction, with 87.5%
of participants choosing physics as the preferred mode. Participants also responded
favourably to the graph coloring. Results for Q5 were 71.69 (SD 18.095), and Q6 68.19
(SD 15.753).

6 Discussion

The results of the user study show that the GION interaction technique is better in the
untangling task than existing interactive methods. Specifically, hypotheses H1, H2, H5,

122 M.R. Marner et al.

Fig. 4. Questionnaire Results for physics and normal interaction modes. Error bars show 95% CI

and H9 were confirmed in the experiment. An interesting result is that users moved
the mouse less in the GION condition, but made more mouse clicks. This suggests
that participants spent more time fine-tuning the layout. Another unexpected result is
that while GION produced layouts with lower stress and fewer edge crossings than the
normal interaction, those values were worse than for the starting graph layouts. Using
human interaction to untangle a large graph raises the question of what actually makes
a good layout in this context. In particular, classical metrics like stress or edge crossings
do not take into account the dynamics of the process and the mental map that the user
creates during interaction. Intermediate layouts might not be good with respect to such
metrics, but the user’s interactive operations to create them can increase the users insight
in the graph structure, and their value may depend on the preceding untangling process.
Trying to measure such effects is however beyond the scope of this paper.

We deliberately restricted the user interface for the sake of a robust evaluation. For
example, participants were not able to zoom or pan the graph drawing. A more complete
system would also allow users to temporarily disable the physics engine in order to
precisely control a single cluster. Multiple levels of clustering would also improve the
technique, by allowing users to switch from coarse to fine grained interaction.

7 Implementation Details

Our video-wall consists of six NEC NP510W projectors each with a resolution of
1280x800 arranged in a 3x2 configuration. A camera based technique, as described
by Raskar et al. [15], is used for geometric calibration of the projectors and for pro-
ducing blending masks for smooth transitions between projectors. The computer used
in this work consists of 2x Quad Core Xeon processors, 12GB of RAM, and 2x Nvidia
Geforce GTX 780 GPUs.

The system presented in this paper consists of a custom built application written in
C++ with OpenGL for rendering. The physics simulation was developed using Box2D1,

1 http://box2d.org

http://box2d.org

GION: Interactively Untangling Large Graphs on Wall-Sized Displays 123

an open source 2D physics library popular for game development. The Open Graph
Drawing Framework (OGDF)2 is used to provide graph data structures used by the ap-
plication, saving and loading graphs at runtime, as well as for layout metrics. Vertex
data is stored in an OpenGL Vertex Buffer Object (VBO). Edge data references the
VBO and is rendered using an Index array. This reduces the amount of data transferred
to the graphics card each frame and improves rendering performance by reducing the
number of draw calls needed. Further enhancements were needed to improve rendering
times on on a multi-projector display. A naive approach would simply involve rendering
the graph in its entirety for each projector. Instead, we use a deferred rendering tech-
nique. The entire display is first rendered to an off-screen Framebuffer Object (FBO).
Following this step, a portion of the FBO is rendered to each projector. This approach
scales much better as the number of projectors increases, as the cost of each projector
is just a single textured polygon.

8 Conclusion

In this paper we presented GION, a new interactive graph layout technique of large
graph structures. GION is based on a physics engine to provide smooth and under-
standable animations to update the graph layout while the user moves a cluster. The
results of a user study comparing GION with moving a single cluster at a time found
the use of physics engine produced graphs with less stress, fewer edge crossings, and
less mouse movement. Participants preferred the GION technique to moving a single
cluster during the experiment.

We applied two standard quality layout metrics: stress and crossings. With GION,
users constructed graph layouts that did not show significantly less stress or signifi-
cantly fewer edge crossings, in comparison with the Fruchterman-Reingold algorithm.
These results from our experiments lead us to question the validity of these two stan-
dard metrics for large graphs in the context of human layout improvement, and our work
raises the question as to what quality metrics should be applied instead. We conjecture
that measures like the precision of neighborhood preservation [5] will be better suited
in this context than standard metrics for small graphs.

Acknowledgment. This work was supported in part by a grant from the Australian
Research Council - Discovery Grant DP120100248, Linkage Grant H2814 A4421, Tom
Sawyer Software, and NewtonGreen Technologies.

References

1. Ball, R., North, C., Bowman, D.: Move to improve: promoting physical navigation to increase
user performance with large displays. In: Proc. of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 191–200. ACM (2007)

2. Catherine, R., Sudarshan, S.: Graph clustering for keyword search. In: Chawla, S., Karla-
palem, K., Pudi, V. (eds.) COMAD. Computer Society of India (2009)

2 http://www.ogdf.net

http://www.ogdf.net

124 M.R. Marner et al.

3. Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G.G., North, C.: A
comparison of user-generated and automatic graph layouts. IEEE Trans. Vis. Comput.
Graph. 15(6), 961–968 (2009)

4. Gansner, E.R., Hu, Y., Krishnan, S.: Coast: A convex optimization approach to stress-based
embedding. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 268–279.
Springer, Heidelberg (2013)

5. Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout. IEEE Trans. Vis.
Comput. Graph. 19(6), 927–940 (2013)

6. Hachul, S., Jünger, M.: Large-graph layout algorithms at work: An experimental study. J.
Graph Algorithms Appl. 11(2), 345–369 (2007)

7. Huang, W., Eades, P., Hong, S.H., Lin, C.C.: Improving force-directed graph drawings by
making compromises between aesthetics. In: VL/HCC, pp. 176–183 (2010)

8. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: A unified approach to shape
interpolation and skeleton-driven deformation. In: Proc. of the 27th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, pp. 165–172. ACM
Press/Addison-Wesley Publishing Co., New York (2000)

9. Merrick, D., Dwyer, T.: Skeletal animation for the exploration of graphs. In: Australasian
Symposium on Information Visualisation, InVis.au, pp. 61–70. Christchurch, New Zealand
(2004)

10. Murray, C., Merrick, D., Takatsuka, M.: Graph interaction through force-based skeletal
animation. In: Australasian Symposium on Information Visualisation, InVis, pp. 81–90.
Christchurch, New Zealand (2004)

11. Novák, P., Neumann, P., Macas, J.: Graph-based clustering and characterization of repetitive
sequences in next-generation sequencing data. BMC Bioinformatics 11, 378 (2010)

12. Peck, S., North, C., Bowman, D.: A multiscale interaction technique for large, high-
resolution displays. In: IEEE Symposium on 3D User Interfaces, 3DUI 2009, pp. 31–38.
IEEE (2009)

13. Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBat-
tista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)

14. Purchase, H.C.: Metrics for graph drawing aesthetics. Journal of Visual Languages & Com-
puting 13(5), 501–516 (2002)

15. Raskar, R., Brown, M.S., Yang, R., Chen, W.C., Welch, G., Towles, H., Seales, B., Fuchs,
H.: Multi-projector displays using camera-based registration. In: Proc. of the Conference on
Visualization 1999: Celebrating Ten Years, pp. 161–168. IEEE Computer Society Press, San
Francisco (1999)

16. Thomas, B.H., Calder, P.: Applying cartoon animation techniques to graphical user inter-
faces. ACM Transactions on Computer-Human Interaction (TOCHI) 8(3), 198–222 (2001)

17. Welman, C.: Inverse kinematics and geometric contraints for articulated figure movement.
Master’s thesis, Simon Fraser University (1993)

18. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Sys-
tem Technical Journal 49, 291–307 (1970)

Balanced Circle Packings for Planar Graphs

Md. Jawaherul Alam1, David Eppstein2, Michael T. Goodrich2,
Stephen G. Kobourov1, and Sergey Pupyrev1,3

1 Department of Computer Science, University of Arizona, Tucson, Arizona, USA
2 Department of Computer Science, University of California, Irvine, California, USA
3 Institute of Mathematics and Computer Science, Ural Federal University, Russia

Abstract. We study balanced circle packings and circle-contact representations
for planar graphs, where the ratio of the largest circle’s diameter to the smallest
circle’s diameter is polynomial in the number of circles. We provide a number of
positive and negative results for the existence of such balanced configurations.

1 Introduction

Circle packings are a frequently used and important tool in graph drawing [3, 5, 10, 11,
18]. In this application, they can be formalized using the notion of a circle-contact rep-
resentation for a planar graph; this is a collection of interior-disjoint circles in R2, corre-
sponding one-for-one with the vertices of the graph, such that two vertices are adjacent
if and only if their corresponding two circles are tangent to each other [15]. In a classic
paper, Koebe [16] proved that every triangulated planar graph has a circle-contact rep-
resentation, and this has been subsequently re-proved several times. Generalizing this,
every planar graph has a circle-contact representation: we can triangulate the graph by
adding “dummy” vertices connected to the existing vertices within each face, produce
a circle-contact representation for this augmented graph, and then remove the circles
corresponding to dummy vertices. It is not always possible to describe a circle-contact
representation for a given graph by a symbolic formula involving radicals [2, 5], but
they can nevertheless be constructed numerically and efficiently by polynomial-time
iterative schemes [7, 19].

One of the drawbacks of some of these constructions, however, is that the sizes of
the circles in some of these configurations may vary exponentially, leading to drawings
with very high area or with portions that are so small that they are below the resolu-
tion of the display. For this reason, we are interested in balanced circle packings and
circle-contact representations for planar graphs, where the ratio of the maximum and
minimum diameters for the set of circles is polynomial in the number of vertices in the
graph; see Fig. 1.

Related Work. There is a large body of work about representing planar graphs as con-
tact graphs, where vertices are represented by geometrical objects and edges correspond
to two objects touching in some pre-specified fashion. For example, Hliněný [15] stud-
ies contact representations using curves and line segments as objects. Several authors
have considered contact graphs of triangles of various types. For instance, de Frays-
seix et al. [12] show that every planar graph has a triangle-contact representation, and

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 125–136, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

126 Md. J. Alam et al.

(a) (b)

Fig. 1. Two planar graphs with possible circle-contact representations: (a) a representation that is
not optimally balanced; (b) a perfectly-balanced representation

Gonçalves et al. [14] prove that every 3-connected planar graph and its dual can be
simultaneously represented by touching triangles (and they point out that 4-connected
planar graphs also have contact representations with homothetic triangles). Also, Dun-
can et al. [9] show that every planar graph has a contact representation with convex
hexagons all of whose sides have one of three possible slopes, and that hexagons are
necessary for some graphs, if convexity is required. With respect to balanced circle-
contact representations, Breu and Kirkpatrick [4] show that it is NP-complete to test
whether a graph has a perfectly-balanced circle-contact representation, in which every
circle is the same size.

New Results. In this paper, we provide a number of positive and negative results re-
garding balanced circle-contact representations for planar graphs:

– Every planar graph with bounded maximum vertex degree and logarithmic outer-
planarity admits a balanced circle-contact representation.

– There exist planar graphs with bounded maximum degree and linear outerplanarity,
or with linear maximum degree and bounded outerplanarity, that do not admit a
balanced circle-contact representation.

– Every tree admits a balanced circle-contact representation.
– Every outerpath admits a balanced circle-contact representation.
– Every cactus graph admits a balanced circle-contact representation.
– Every planar graph with bounded tree-depth admits a balanced circle-contact rep-

resentation.

2 Bounded Degree and Logarithmic Outerplanarity

A plane graph (that is, a combinatorially fixed planar embedding of a planar graph) is
outerplanar if all of its vertices are on the outer face. A k-outerplanar graph is defined
recursively. As a base case, if a plane graph is outerplanar, then it is a 1-outerplanar
graph. A plane graph is k-outerplanar, for k > 1, if the removal of all the outer vertices

Balanced Circle Packings for Planar Graphs 127

(and their incident edges) yields a graph such that each of the remaining components is
(k− 1)-outerplanar. The outerplanarity of a plane graph G is the minimum value for k
such that G is k-outerplanar.

2.1 Balanced Circle-Contact Representations

Theorem 1. Every n-vertex k-outerplanar graph with maximum degree Δ admits a
circle-contact representation where the ratio of the maximum and the minimum diame-
ter is at most f(Δ)k+log n, for some positive function f . In particular, when Δ is a fixed
constant and k is O(log n), this ratio is polynomial in n.

In order to prove the theorem, we need the following result from [18].

Lemma 1 (Malitz-Papakostas). The vertices of every triangulated planar graph G
with the maximum degree Δ can be represented by nonoverlapping disks in the plane
so that two disks are tangent to each other if and only if the corresponding vertices are
adjacent, and for each two disks that are tangent to each other, the ratio of the radii of
the smaller to the larger disk is at least αΔ−2 with α = 1

3+2
√
3
≈ 0.15.

As a direct corollary, every maximal planar graph with maximum degree Δ = O(1)
and diameter d = O(logn) has a balanced circle-contact representation. Theorem 1
goes beyond this.

Proof of Theorem 1: To prove the claim, it is sufficient to show how to augment a given
k-outerplanar graph into a maximal planar graph with additional vertices so that its
maximum degree remains O(Δ) and its diameter becomes O(k+logn). By Lemma 1,
the resulting graph admits a circular contact representation with the given bounds on
the ratio of radii. Removing the circles corresponding to the added vertices yields the
desired balanced representation of the original graph.

Let G be an n-vertex k-outerplanar graph with the maximum degree Δ. If the outer-
planarity k of G is bounded by a constant, we can easily augment G to logarithmic di-
ameter, preserving its constant maximum degree, as follows. Inside each non-triangular
face f of G, insert a balanced binary tree with �log |f |� levels and |f | leaves and
then triangulate the remaining non-triangular faces by inserting an outerpath (an out-
erplanar graph whose weak dual is a path) with constant maximum degree; see Fig. 2.
However, such an augmentation results in a maximal planar graph with the diameter

(a) (b) (c)

Fig. 2. (a) A face, (b) augmentation with a balanced binary tree, (c) triangulation with grey edges

128 Md. J. Alam et al.

d = O(k logn), which does not yield a balanced circle-contact representation when k
is non-constant. For k = Ω(logn), we present a different augmentation to achieve the
diameter d = O(k + logn) in the resulting graph.

We augment the graph using weight-balanced binary trees. Let T be a binary tree
with leaves l1, l2, . . . , l|f | and a prespecified weight wi assigned to each leaf li. The
tree T is weight-balanced if the depth of each leaf li in T is O(�log(W/wi)�), where
W =

∑f
i=1 wi. There exist several algorithms for producing a weight-balanced binary

tree with positive integer weights defined on its leaves [13, 21].
To augment G, we label each vertex v of G with the number l + 1, where l is the

number of outer cycles that need to be removed before v becomes an outer vertex. By
our assumption that the outerplanarity of G is k, the label of every vertex is at most k.
It follows from this labeling that, for each vertex v of G with label l > 1, there exists
a face f containing v such that f has at least one vertex of label l − 1 and such that
all the vertices on f have label either l or l − 1. We insert a weight-balanced binary
tree inside f ; we choose an arbitrary vertex of f with label l − 1 as the root of the tree,
and a subset of vertices with label l as the leaves; see Fig. 3. We construct these trees
inside the different faces in such a way that each vertex of G with label l > 1 becomes
a leaf in exactly one of the trees. Finally, we insert another weight-balanced tree T0 on
the outer face containing all the outer vertices as the leaves. Note that we have yet to
specify the weights we assign to these leaves for producing the weight-balanced trees.
By the construction, the union of all these trees forms a connected spanning tree of G;
we can consider the root of T0 to be the root of the whole spanning tree.

Let us now specify the weights assigned to the leaves of the different weight-balanced
trees. We label each tree with the label of its root, and define the weights for the leaves
of each tree in a bottom-up ordering, by decreasing order of the labels of the trees. In
a tree T with label l = (k − 1), all the leaves have label k and are not the root of any
other tree; we assign each of these leave the weight 1. In this case, the total weight of T
is the number of its leaves. Similarly, for a tree with label l < k− 1, we assign a weight

r

1

u2

u3

level 1

level 2

level 3

u

Fig. 3. Augmentation of G with a weight-balanced binary trees

Balanced Circle Packings for Planar Graphs 129

(a) (b)

Fig. 4. Planar graphs with no balanced circle-contact representation: (a) the nested-triangles
graph [8]; (b) a 2-outerplanar graph

of 1 to those leaves v that do not have any tree rooted at them; otherwise, if v is the root
of a tree Tv with label l + 1, the weight of v is the total weight of Tv. The total weight
of T is defined as the summation of the weights of all its leaves.

Now, for each vertex v of G, the distance to v from the root r of T0 is O(k + logn).
Indeed, assume that v = ul is a vertex with label l and ul−1, . . ., u1, u0 = r are the
root vertices of the successive weight-balanced trees Tul−1

, . . ., Tu1 , T0 with labels l−
1, . . . , 1, 0, respectively on the way from v to r; see Fig. 3. Then the distance from v to r
is O(�logw(r)/w(u1)�)+O(�logw(u1)/w(u2)�)+ . . .+O(�logw(ul−1)/w(v)�) =
O(k + logw(r)). Here w(ui) denotes the weight of vertex ui as the root; w(r) is the
weight of the root of T0, which is equal to the total number of vertices, n, in G. There-
fore, the diameter of the augmented graph is O(k + logn), where the first term, k,
comes from the ceilings in the summation. Finally, we triangulate the graph by insert-
ing outerpaths with constant maximum degree inside each non-triangular face to obtain
a maximal planar graph with constant maximum degree andO(k+log n) diameter. The
result follows from Lemma 1. ��

2.2 Negative Results

Next we show that, for a graph with unbounded maximum degree or unbounded outer-
planarity, there might not be a balanced circle-contact representation with circles.

Lemma 2. There is no balanced circle-contact representation for the graphs in Fig. 4.

Lemma 2, which we prove in the full version of this paper [1], shows the tightness
of the two conditions for balanced circle-contact representations in Theorem 1. Note
that the example of the graph in Fig. 4(b) can be extended for any specified maximum
degree, by adding a simple path to the high-degree vertex. Furthermore, the example is
a 2-outerplanar graph with no balanced circle-contact representation.

130 Md. J. Alam et al.

d

a

c

p

n

k

o

j

m

hf

b

g

l

ie

(a)

a

b
c d

ih
m k

n o

ge

l
p

f j

(b)

o

b
c

d

e f g

l
p

h i
m j

k

n

a

(c)

Fig. 5. Construction of a balanced circle-contact representation

3 Trees and Outerplanar Graphs

Theorem 2. Every tree has a balanced circle-contact representation. Such a represen-
tation can be found in linear time.

Proof: We first find a contact representation Γ of a given tree T with squares such that
the ratio of the maximum and the minimum sizes for the squares is polynomial in the
number of vertices n in T . To this end, we consider T as a rooted tree with an arbitrary
vertex r as the root. Then we construct a contact representation of T with squares where
each vertex v of T is represented by a square R(v) such that R(v) touches the square
for its parent by its top side and it touches all the squares for its children by its bottom
side; see Figs. 5(a) and 5(b). We choose the size of R(v) as l(v) + ε(n(v) − 1), where
ε > 0 is a small positive constant and n(v) and l(v) denote the number of vertices and
the number of leaves in the subtree of T rooted at v. In particular, the size of R(v) is 1
when v is a leaf. If v is not a leaf, then suppose v1, . . ., vd are the children of v in the
counterclockwise order around v. Then we place the squares R(v1), . . ., R(vd) from
left-to-right touching the bottom side of R(v) such that for each i ∈ {1, . . . , d − 1},
R(vi+1) is placed ε unit to the right of R(vi); see Fig. 5(b). There is sufficient space
to place all these squares in the bottom side of R(v), since n(v) = (

∑d
i=1 n(vi)) − 1

and l(v) =
∑d

i=1 l(vi). The representation contains no crossings or unwanted contacts
since for each vertex v, the representation of the subtrees rooted at v is bounded in the
left and right side by the two sides of R(v), and all the subtrees rooted at the children
of v are in disjoint regions ε unit away from each other. The size of the smallest square
is 1, while the size of the largest square (for the root) has size l(T)+ ε(n− 1) = O(n),
where l(T) is the number of leaves in T .

Using Γ , we find a balanced circle-contact representation of T as follows. We replace
each square R(v), representing vertex v, by an inscribed circle of R(v); see Fig. 5(c).
The operation removes some contacts from the representation. We re-create these con-
tacts by a top-down traversal of T and moving each circle upward until it touches its
parent. Note that a given circle will not touch or intersect any circle other than the cir-
cles for its parent and its children, as for every vertex in the infinite strip between its
leftmost and rightmost point for its circle, the closest circle in the upward direction is

Balanced Circle Packings for Planar Graphs 131

its parent’s one. Thus, we obtain a contact representation of T with circles. The repre-
sentation is balanced since the diameter for every circle is equal to the side-length for
its square and we started with a balanced representation Γ .

The linear running time can be achieved by a linear-time traversal of T . First, by a
bottom-up traversal of T , we compute the values n(v) and l(v) for each vertex v of T .
Using the values for each vertex, we compute the square-contact representation for T
by a linear-time top-down traversal of T . Finally, in another top-down traversal of T ,
for each vertex v of T , we can compute the exact translation required for the inscribed
circles of R(v) to touch the parent circle. ��

Let us now describe how to compute a balanced circle-contact representation for a
cactus graph, which is a connected graph in which every biconnected component is
either an edge or a cycle. We use the algorithm described in the proof of Theorem 2,
and we call it Draw Tree.

Let T be a rooted tree with a plane embedding. For each vertex v of T , add an
edge between every pair of the children of v that are consecutive in the clockwise order
around v. Call the resulting graph an augmented fan-tree for T . Clearly for any rooted
tree T , the augmented fan-tree is outerplanar. We call an outerplanar graph a fan-tree
graph if it is an augmented fan-tree for some rooted tree. A star is the complete bipartite
graph K1,n−1. The center of a star is the vertex that is adjacent to every other vertex.
An augmented fan-tree for a star is obtained by taking the center as the root. Thus, an
augmented fan-tree for a star is a fan. The center of a fan is again the vertex adjacent to
all the other vertices.

Lemma 3. Every subgraph of a fan admits a contact representation with circles in
which, for each circle c(v) representing a vertex v other than the center, the vertical
strip containing c(v) is empty above c(v).

Proof: Let G be a subgraph of a fan and let T be the star contained in the fan. We now
use the contact representation Γ of T obtained by Draw Tree to compute a representa-
tion for G. Consider the square-contact representation computed for T in the algorithm.
This defines a vertical strip for each circle c(v) in Γ representing a vertex v, and for all
the vertices other than the center, these strips are disjoint; see Fig. 6(a). Call the left and
right boundary of this strip the left- and right-line for c, respectively.

We now consider a set S of circles, one for each vertex of G other than the center,
with the following properties:

(P1) The circles are interior-disjoint.
(P2) Each circle c′(v) representing a vertex v spans the entire width of the vertical strip

for v, and the vertical strip above c′(v) is empty.
(P3) For each vertex v, the circle c′(v) touches the circle c0 representing the center in

Γ if v is adjacent to the center; otherwise, c′(v) is exactly ε distance away from
c0, for some fixed constant ε > 0.

(P4) If a vertex v is not adjacent to the vertex on its left (or if v is the leftmost vertex),
then the leftmost point of c′(v) is on the left-line of v; similarly, if v is not adjacent
to the vertex on its right (or if v is the rightmost vertex), then the rightmost point
of c′(v) is on the right-line of v.

132 Md. J. Alam et al.

73 4 5 62

1
2 3 4 5 6

7

1

p

p

(a)

5 6 7

ε
7

1 2 3 4

5
61 2

3
4

p

p

(b)

Fig. 6. (a) A star T and a contact representation of T with circles; (b) a subgraph of the fan for T
and its contact representation with circles

(P5) The sizes for the circles are maximal with respect to the above properties.

Note that there exists a set of circles with the properties (P1)–(P4); in particular,
the set of circles in Γ representing the vertices of T other than the center is such a
set. We now claim that the set S of circles with properties (P1)–(P5) together with the
circle c0 gives a contact representation for G; see Fig. 6(b). First note that a circle c′(v)
cannot touch any circle other than c0 and the two circles c(vl) and c(vr) representing
the vertices vl and vr on its left and right, respectively. Indeed, it cannot pass the vertical
strip for vl and vr above them due to (P2) and behind them due to (P3). Furthermore,
the ε distance between c0 and the circles for vertices non-adjacent to the center and
the restriction on the left and right side in (P4) ensures that there is no extra contact.
Hence, it is sufficient to show that for each edge in G, we have the contact between the
corresponding circles.

Since each circle c′(v) is maximal in size, it must touch at least three objects. One of
them is either the circle c0 or the ε offset line for c0. Thus, if vl and vr are the left and
right neighbors of v (if any), then c′(v) must touch two of the followings: (i) c′(vl) (or
the left line of v if vl does not exists), (ii) the right line for vl, (iii) c′(vr) (or the right line
of v if vr does not exists), and (iv) the left line for vr. Assume without loss of generality
that both vl and vr exist for v. Then if c′(v) touches both c′(vl) and c′(vr), we have the
desired contacts for v. Therefore, for a desired contact of c′(v) to be absent, either c′(v)
touches both c′(vl) and the right-line of vl (and misses the contact with c′(vr)), or it
touches both c′(vr) and the left-line of vr (and misses the contact with c′(vr)).

Assume, for the sake of a contradiction, that there are two consecutive vertices x and
y that are adjacent in G but c′(x) and c′(y) do not touch each other. Let l and r be the
vertices to the left of x and to the right of y, respectively. Then it must be the case that
x touches both c′(l) and the right line for l and y touches both c′(r) and the left line of
r; see Fig. 7(a). One can then increase the size of either c′(x) or c′(y) (say c′(y)) such

Balanced Circle Packings for Planar Graphs 133

l r
p

x y

(a)

y

r
p

l

x

(b)

Fig. 7. Illustration for the proof of Lemma 3: if the circles for x and y do not touch each other, at
least one can be increased in size

that it now touches c′(x) and the left-line for r (but not c′(r)), a contradiction to the
maximality for the circles; see Fig. 7(b). ��

Using the lemma, we can obtain a quadratic-time algorithm as follows. Given a sub-
graph G of a fan, compute the balanced circle-contact representation Γ for the corre-
sponding star T using Draw Tree. Then pick the vertices of T other than the center
in an arbitrary order and for each vertex v, replace the circle c(v) in Γ by a circle of
maximum size that does not violate any of the properties (P1)–(P4) in the proof of
Lemma 3. This takes a linear time. Now for every edge (x, y) for which c(x) and c(y)
do not touch, replace one of the two circles (say, c(y)) with a circle that touches c(x)
as in Fig. 7(b). Note that this may result in a loss of a contact between c(y) and the
circle to its right. We perform a similar operation for the circle to the right of c(y),
then possibly for the circle on its right and so on, until all missing contact are repaired.
This process requires linear time per edge; hence, the total running time to compute the
desired contact representation is quadratic. The contact representation is balanced since
the representation obtained by Draw Tree is balanced and afterwards we only increase
the size of circles that are not of the largest size.

Theorem 3. Every n-vertex fan-tree graph has a balanced circle-contact representa-
tion. Such a representation can be found in O(n2) time.

Proof: Let G be a fan-tree graph and let T be the corresponding tree for which G is
the augmented fan-tree. Using Draw Tree, we first obtain a balanced circle-contact
representation of T . As in the proof of Lemma 3, this defines a vertical strip for each
vertex in T . In a top-down traversal of T , we can find a contact representation of G with
circles by repeating the quadratic-time algorithm for the subgraphs of fans. Hence, the
total complexity is

∑
v∈V (T)

deg2T (v) = O(n2). ��

As a corollary of Theorem 3, we obtain an algorithm for creating balanced circle-
contact representation of a cactus graph.

Corollary 1. Every n-vertex cactus graph has a balanced circle-contact representa-
tion. Such a representation can be found in O(n2) time.

134 Md. J. Alam et al.

(a) (b)

Fig. 8. (a) A cactus graph G; (b) augmenting G to a fan-tree so that the directed edges form a
rooted tree and are oriented towards the root

Proof: Given cactus graph G, choose a root vertex v arbitrarily. For each cycle C of G,
add an edge from each vertex of C to the (unique) closest vertex to v in C (Fig. 8). The
resulting supergraph of G is a fan-tree; the result follows by Theorem 3. ��

In the full version of this paper [1], we provide a linear-time algorithm for balanced
circle-contact representation of outerpaths. The main idea of this construction is to par-
tition a given outerpath into a sequence of fans, use unit circles to represent the zigzag
outerpath formed by the vertices at the ends of each fan, and then perturb these circles
by small rotations to make room for the other circles that should go between them.

Theorem 4. Every outerpath has a balanced circle-contact representation. Such a rep-
resentation can be found in linear time.

4 Bounded Tree-Depth

A graph G has tree-depth t if there exists a supergraph of G, and a depth-first search
tree T of the supergraph, with at most t vertices on every root–leaf path in T . A family
of graphs has bounded tree-depth if and only if there is a constant bound on the length
of the longest path that can be found in any of its graphs [20].

Theorem 5. For every constant bound d, every planar graph with tree-depth at most d
has a balanced circle-contact representation.

We sketch the proof from the full version of this paper [1]. The first step characterizes
the planar graphs with bounded tree-depth, using block-cut trees and SPQR trees to
represent the 2-vertex-connected and 3-vertex-connected components of a graph. We
show that a family of planar graphs has bounded tree-depth if and only if the block-
cut trees of graphs in the family have bounded depth, the SPQR trees of 2-connected
components of these graphs have bounded depth, and each 3-connected component has
a bounded number of vertices. If all three conditions are true, the longest path length can
be bounded by a recursion of bounded height and branching factor. Conversely, if any
one of these conditions is violated, then there exist paths of unbounded length: a long

Balanced Circle Packings for Planar Graphs 135

path in one of the trees leads directly to a long path in the graph and large 3-connected
components have long paths by results of Chen and Yu [6].

Because each 3-connected component must have bounded size, the circle packing
theorem gives it a balanced circle packing. Next, we construct a contact representation
for a supergraph of the given graph, by using Möbius transformations to glue together
these packings. The virtual edge representing two adjacent components in an SPQR tree
should be represented by a pair of tangent circles shared by the packings for the two
components; two tangent circles may be shared by an unbounded number of compo-
nents. We find a family of Möbius transformations that pack all these components into
the space surrounding the two shared tangent circles, so that the components are oth-
erwise disjoint from each other, and each is distorted by a polynomial factor. By using
this method to combine adjacent nodes of the block-cut and SPQR trees, we obtain a
balanced circle packing for the whole graph in which each component is transformed a
constant number of times with polynomial distortion per transformation. However, we
may have additional unwanted tangencies between circles, coming from virtual edges
in an SPQR tree node that do not correspond to graph edges.

The final part of our proof of Theorem 5 shows how to perturb these glued-together
packings, in a controlled way, to eliminate the contacts between pairs of vertices that
are connected by virtual edges but not by edges of the input graph while still allowing
the Möbius gluing to work correctly. The existence of a Möbius transformation from
one pair of circles to another is controlled by an invariant of pairs of circles called their
inversive distance that equals 1 for tangent circles, is less than 1 for crossing circles, and
is greater than 1 for disjoint circles. The theory of inversive distance circle packings is
not as well-developed as the theory of tangent circle packings, but a theorem of Luo [17]
implies that, for a maximal planar graph with specified positions for the centers of the
three circles representing the outer face of the graph and specified inversive distances
on each edge of the graph, a circle packing of this type is unique when it exists. By
combining this fact with Brouwer’s theorem of invariance of domain, we show that
for any fixed maximal planar graph (and fixed three outer circle centers) the space of
feasible assignments of inversive distances to edges of the graph forms an open set.
Therefore, for all sufficiently small ε > 0, there exist packings for which all virtual-
but-not-actual edges have inversive distance 1 + ε and all actual edges have inversive
distance 1. Choosing ε to be inverse-polynomially small allows the same gluing method
to complete the construction and the proof.

5 Conclusion

We studied balanced circle packings for planar graphs, showing that several rich classes
of graphs have balanced circle packings. One interesting open problem is whether or
not every outerplanar graph has a balanced circle packing representation. While we
identified several subclasses of outerplanar graphs that admit such representations, the
question remains open for general outerplanar graphs.

Acknowledgments. This work is supported in part by the National Science Foundation
under grants CCF-1228639, CCF-1115971, DEB 1053573, and by the Office of Naval
Research under Grant No. N00014-08-1-1015.

136 Md. J. Alam et al.

References

1. Alam, J., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Pupyrev, S.: Balanced circle pack-
ings for planar graphs. Arxiv report arxiv.org/abs/1408.4902 (2014)

2. Bannister, M.J., Devanny, W.E., Eppstein, D., Goodrich, M.T.: The Galois complexity of
graph drawing: Why numerical solutions are ubiquitous for force-directed, spectral, and cir-
cle packing drawings. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp.
149–161. Springer, Heidelberg (2014)

3. Bern, M., Eppstein, D.: Optimal Möbius transformations for information visualization and
meshing. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp.
14–25. Springer, Heidelberg (2001)

4. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. Th.
Appl. 9(1-2), 3–24 (1998)

5. Brightwell, G., Scheinerman, E.: Representations of planar graphs. SIAM J. Discrete
Math. 6(2), 214–229 (1993)

6. Chen, G., Yu, X.: Long cycles in 3-connected graphs. J. Comb. Theory B 86(1), 80–99 (2002)
7. Collins, C.R., Stephenson, K.: A circle packing algorithm. Comput. Geom. Th. Appl. 25(3),

233–256 (2003)
8. Dolev, D., Leighton, T., Trickey, H.: Planar embedding of planar graphs. Advances in Com-

puting Research 2, 147–161 (1984)
9. Duncan, C.A., Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G.: Optimal polygonal

representation of planar graphs. Algorithmica 63(3), 672–691 (2012)
10. Eppstein, D.: Planar Lombardi drawings for subcubic graphs. In: Didimo, W., Patrignani, M.

(eds.) GD 2012. LNCS, vol. 7704, pp. 126–137. Springer, Heidelberg (2013)
11. Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek, K.: Strict

confluent drawing. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 352–
363. Springer, Heidelberg (2013)

12. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Combina-
torics, Probability & Computing 3(2), 233–246 (1994)

13. Gilbert, E.N., Moore, E.F.: Variable-length binary encodings. Bell System Technical Jour-
nal 38(4), 933–967 (1959)

14. Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and duality. Discrete
Comput. Geom. 48(1), 239–254 (2012)

15. Hliněný, P.: Classes and recognition of curve contact graphs. J. Comb. Theory B 74(1), 87–
103 (1998)

16. Koebe, P.: Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig,
Math.-Phys. Kl. 88, 141–164 (1936)

17. Luo, F.: Rigidity of polyhedral surfaces, III. Geometry & Topology 15(4), 2299–2319 (2011)
18. Malitz, S.M., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. Discrete

Math. 7(2), 172–183 (1994)
19. Mohar, B.: A polynomial time circle packing algorithm. Discrete Math. 117(1-3), 257–263

(1993)
20. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms. Springer

(2012)
21. Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. SIAM J. Comput. 2,

33–43 (1973)

Unit Contact Representations of Grid Subgraphs
with Regular Polytopes in 2D and 3D

Linda Kleist and Benjamin Rahman

Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
{kleist,rahman}@math.tu-berlin.de

Abstract. We present a strategy to construct unit proper contact representations
(UPCR) for subgraphs of certain highly symmetric grids. This strategy can be
applied to obtain graphs admitting UPCRs with squares and cubes, whose recog-
nition is NP-complete.

We show that subgraphs of the square grid allow for UPCR with squares which
strengthens the previously known cube representation. Indeed, we give UPCR
for subgraphs of a d-dimensional grid with d-cubes. Additionally, we show that
subgraphs of the triangular grid admit a UPCR with cubes, implying that the same
holds for each subgraph of an Archimedean grid. Considering further polygons,
we construct UPCR with regular 3k-gons of the hexagonal grid and UPCR with
regular 4k-gons of the square grid.

1 Introduction

In this paper, we study unit contact representations (UCR) which are contact represen-
tations (CR) with congruent objects. We are particularly interested in proper contacts
(PCR), that is, contacts are realized by segments of non-zero length in 2D or polygons
with non-zero area in 3D. Contacts not of this type are disregarded. Typical objects
considered are regular polygons and cubes.

1.1 Related Work

Considering homothetic copies of disks, the celebrated circle packing theorem of Koebe
[10] states that every planar graph has a CR with disks. Schramm [11] gives the follow-
ing generalization: Assigning a convex set in 2D with smooth boundary to each vertex,
every planar graph has a CR with non-degenerated homothetic copies of the prescribed
sets. Allowing convex sets without smooth boundary, this results in CRs with possi-
bly degenerated homothetic copies of the assigned sets [11, 12]. Gonçalves, Lévêque
and Pinlou [8] observe that this result can be exploited for triangle CRs with non-
degenerated homothetic triangles for 4-connected planar triangulations. Felsner and
Francis [6] employ possibly degenerated homothetic triangle representations to show
that all planar graphs have a CR with cubes, where contacts are not necessarily proper.

Studying PCRs with polygons, Gansner et al. [7] show that every planar graph has a
PCR with hexagons, but not always with pentagons.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 137–148, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

138 L. Kleist and B. Rahman

Considering UCRs with congruent objects, Breu and Kirkpatrick [4] prove that the
recognition of unit disk graphs is NP-complete; indeed, this holds even for the recogni-
tion of bounded-ratio disk graphs. For a survey on recognition-complexity results with
balls and disks we refer to [9].

Czyzowicz et al. [5] are interested in discrete versions of unit disk graphs and study
UCRs of non-rotated copies of regular k-gons with two different contact types: vertex-
to-vertex and whole edge contact. For even k, these graph classes coincide (for odd k the
second class is empty). It turns out that these graphs are also unit disk graphs and that
the recognition of graphs allowing for a representation with 4k-gons is NP-complete.

In 3D, Bremner et al. [3], show that it is NP-complete to decide whether a graph
admits a UPCR with cubes. In [1, 2] UPCR with cubes of subgraphs of 5 Archimedean
grids are given. These are partly obtained by threshold colorings. However, threshold
colorings cannot be used to find UPCR with cubes for all subgraphs of Archimedean
grids; in particular, not for all subgraphs of the triangular grid [1].

1.2 Our Contributions

We develop a strategy to construct unit proper contact representations (UPCR) in 2D
and 3D for subgraphs of certain highly symmetric grids. This strategy is used to show
that subgraphs of the square grid allow for UPCR with squares. This is a strength-
ening of the unit cube representation of Alam et al. [2]. We generalize this result to
4k-gons as well as to higher dimensions, namely, we prove that subgraphs of a d-
dimensional grid have UPCR with d-cubes. Furthermore, we show that subgraphs of
the triangular grid admit UPCRs with cubes, implying that the same holds for all sub-
graphs of Archimedean grids (grids originating from regular and semi-regular tilings of
the plane). This solves an open problem posed by Alam et al. [2]. Considering other
geometric objects, we construct UPCRs with regular 3k-gons of the hexagonal grid.

Additionally, we observe that with the ideas of [3], we can show the NP-complete-
ness of recognizing unit square proper contact graphs.

2 Definitions and Properties

Let G = (V,E) be a graph. A function φ : V → P(Rd), v �→ Sv is called a proper
contact representation (PCR) in Rd of G if the sets in φ(V) :=

⋃
v∈V φ(v) are pairwise

interiorly disjoint and (u, v) ∈ E ⇐⇒ Su∩Sv is (d−1)-dimensional. Usually, the as-
signed sets are compact and path-connected and in this paper regular polytopes. A PCR
C is called unit (UPCR), if all sets in C are congruent. This means for UPCR with regu-
lar n-gons, the polygons (in a component of G) can be transformed into one another by
translations for even n, and by translations and rotation by π for odd n. In particular, we
consider UPCRs of squares (USqPCR), cubes (UCuPCR) and triangles (UTriPCR). We
define a unit square in R

2 by its characteristic corner (x, y) as S(x, y) := [x, x + 1]×
[y, y+1], and analogously, a unit d-cube in Rd as Q(x) := [x1, x1+1]×. . .×[xd, xd+1].
Further, we define an upward and downward unit triangle with height h := sin(π3) as

Unit Contact Representations of Grid Subgraphs with Regular Polytopes in 2D and 3D 139

�(x, y) :=
{(

a
b

)
∈ R2 |

(
a
b

)
=
(
x
y

)
+ r
(
1
0

)
+ s
(
1/2
h

)
; r, s ≥ 0; r + s ≤ 1

}
,

�(x, y) :=
{(

a
b

)
∈ R2 |

(
a
b

)
=
(
x
y

)
+ r
(
1
0

)
+ s
(
1/2
−h

)
; r, s ≥ 0; r + s ≤ 1

}
.

For two touching polygons Su, Sv in the plane, we define the size of contact cs(Su, Sv)
by the length of its realizing segment; and for two touching d-dimensional polytopes
Su, Sv, we define cs(Su, Sv) by the shortest edge length of the (d − 1)-dimensional
polytope realizing the contact. The contact size of a PCR C is given by cs(C) :=
min{cs(Su, Sv) | (u, v) ∈ E}. The translation of a set S ∈ Rn by a vector t ∈ Rn

is defined by the addition S + t :=
{
(x + t) ∈ Rn | x ∈ S

}
. The space sp(Su, Sv, d)

of two objects Su, Sv in direction d is the maximum δ ∈ R such that either object can
be translated by δd and they remain interiorly disjoint. Finally, [n] := {0, . . . , n}.

2.1 Some Properties

We start with some basic properties of UPCRs. Clearly, PCRs in the plane may only
exist for planar graphs. Due to the congruent objects, graphs with UPCR have bounded
maximum degree and fulfill spatial constraints.

Observation 1. Let G be a graph admitting a UPCR with regular n-gons. Then, the
maximum degree is bounded by 6, i.e. Δ(G) ≤ 6.

Fig. 1. Examples of polygons and a cube with maximum number of neighbors in a UPCR

For triangles and squares, it is easy to see that the maximum degree is 4 and 6,
respectively, see Figure 1. A general upper bound for regular polygons is given by
their kissing number, the maximal number of congruent copies a single polygon can be
touched by. Regular n-gons with n ≥ 5 have a kissing number of ≤ 6, see [13, 14] for
further explanation.

Together with Ω(
√
n) polygons at the boundary of any (component of a) represen-

tation, this results in a low edge density: If a graph G on n vertices has a UPCR with
k-gons, then the number of edges is ≤ 3n − Ω(

√
n). The analogous result for unit

cube graphs has already been shown in [3]: For G = (V,E) with UCuPCR it holds that
Δ(G) ≤ 14 and |E| ≤ 7n−Ω(n

2
3).

We formulate spatial restrictions, due to the congruent objects for d-cubes:

Observation 2. Let G be a graph with a UPCR with d-cubes in R
d. Then, every vertex

has at most (2r + 1)d vertices in distance ≤ r.

This follows easily by comparing the available space in distance ≤ r and the needed
space to place all congruent d-cubes. Consequently, there exist binary trees with no
UPCR with squares nor cubes.

For cubes, Bremner et al. [3], show that it is NP-complete to decide whether a graph
admits a UCuPCR. With the same ideas, we can show the analogous result for squares:

140 L. Kleist and B. Rahman

Theorem 1. The recognition of graphs with USqPCR or UCuPCR is NP-complete.

v1

v2v3

v4

v5 v6

v

(a) (b) (c) .

Fig. 2. (a) Aligning graph (b) Box graph (c) USqPCR of box graph

Due to the similarity, we only want to provide the strategy of the proof. The logic
engine of the proof by Bremner et al. [3] is composed of copies of the boxgraph, see
fig. 2. Since in any USqPCR of the boxgraph the rectangular shape of the USqPCR
remains, see fig. 2, the recognition of a USqPCR of the composed graph is equivalent
to the recognition of a non-overlapping layout of the corresponding logic engine.

3 The Strategy

Let G = (V,E) be a subgraph of some grid G = (VG, EG). In order to find a UPCR of
G, we set V := VG, since independent vertices can easily be removed from a CR. The
idea of the method is to start with a UPCR φ̂ : V → P(Rn) of G, and then to modify
φ̂ by removing unwanted contacts one by one, that are contacts corresponding to edges
in E := EG\E. We partition the edge set EG =

⋃
i Ei and assign to e ∈ Ei a direction

di ∈ R
n. For e ∈ E objects corresponding to vertices in a moving set M(e) ⊂ V

are translated by δdi. The translation step δ > 0 is chosen small enough, such that
apart from e all contacts remain and no additional ones occur. This strategy yields a
straight-forward construction of a final UPCR φ of G:

φ(v) = φ̂(v) +
∑
i

|{e ∈ E ∩Ei | v ∈ M(e)}| · δdi.

4 Representations with Unit Squares

The square grid Sm,n = (VS, ES) of size (m× n) is defined as follows:

Sm,n :=
({

vi,j
∣∣ i ∈ [m], j ∈ [n]

}
,
{(

vi,j , vi′,j′
) ∣∣ ∥∥(i−i′

j−j′
)∥∥

1
= 1
})

.

Theorem 2. Every subgraph of the square grid Sm,n has a USqPCR.

Proof. We consider subgraphs of type G = (VS, E); for subgraphs with V ⊂ VS,
the theorem follows by removing independent vertices. The proof applies the strategy
described in Section 3. We fix an ε ∈ (0, 1) and present a USqPCR φ̂ of Sm,n, see also
Figure 3:

φ̂ : V → P(R2)

φ̂(vi,j) = S(i− jε, j + iε).

Unit Contact Representations of Grid Subgraphs with Regular Polytopes in 2D and 3D 141

v1,0
v2,0

v3,0

v0,3
v0,2
v0,1

v0,0
(a) (b)

Fig. 3. (a) Square grid S3,3; for thick edges, the moving sets are indicated by the framed vertices
(b) USqPCR φ̂ of S3,3 with illustration of modification step.

We claim that φ̂ is a USqPCR of Sm,n

cs
(
φ̂(u), φ̂(v)

)
= 1− ε for all (u, v) ∈ ES and

sp
(
φ̂(u), φ̂(v), d

)
≥ ε for all (u, v) /∈ ES and the two directions d parallel to the

square’s sides: d1 :=
(
1
0

)
and d2 :=

(
0
1

)
Consider a vertex v and its four neighbors. Each contact is realized by one side of φ̂(v).
By definition of φ̂, the characteristic corners differ by ±

(
1
ε

)
,±
(−ε

1

)
. Hence, the squares

are disjoint and cs
(
φ̂(u), φ̂(v)

)
= (1 − ε), for all (u, v) ∈ ES. Consider a non-edge

(u, v) /∈ ES. The characteristic corners of φ̂(u) and φ̂(v) differ by a
(
1
ε

)
+ b
(−ε

1

)
with

a, b ∈ Z and |a|+ |b| ≥ 2. This implies that sp
(
φ̂(u), φ̂(v), di

)
≥ ε for i ∈ {1, 2}.

We now define the moving sets and translation vectors: For e = (vi,j , vi+1,j), we
set d(e) := d1 =

(
1
0

)
and M(e) := {vk,j ∈ V | k > i}, otherwise e = (vi,j , vi,j+1),

we set d(e) := d2 =
(
0
1

)
and M(e) := {vi,k ∈ V | k > j}. For simplification, we

define Ei := {e ∈ E | d(e) = di} for i ∈ {1, 2} and assume wlog n ≥ m. The
idea is to remove each contact of e ∈ E by translating M(e) in direction d(e). The
integer ri(v) describes how often v is moved in direction di, that is ri(v) := |{e ∈
E ∩ Ei | v ∈ M(e)}|. Observe that ri(v) ≤ n for i ∈ {1, 2} and v ∈ V . Choosing
δ < 1

n min{ε, 1− ε} the following mapping is a USqPCR of G ⊆ Sm,n:

φ : V → P(R2)

φ(v) = φ̂(v) + r1(v) · δd1 + r2(v) · δd2.

We verify that φ is a USqPCR of G by showing three properties: Let (u, v) /∈ ES. Recall
that sp

(
φ̂(u), φ̂(v), di

)
gives the maximum translation step λ such that φ̂(u) and φ̂(v)

remain interiorly disjoint when either one of them is translated by λdi. By construction
ri(w)δ ≤ nδ < ε ≤ sp

(
φ̂(u), φ̂(v), di

)
for w ∈ {u, v} and i ∈ {1, 2}. Consequently,

φ(u) and φ(v) remain disjoint.
Let (u, v) ∈ Ei, then φ̂(u) and φ̂(v) have a contact segment parallel to di+1 of

length cs(φ̂(u), φ̂(v)) ≥ 1 − ε. Hence, translations in direction di+1 have no effect on
the contact: cs

(
φ(u), φ(v)

)
≥ cs

(
φ̂(u), φ̂(v)

)
− ri+1(v)δ ≥ 1 − ε − nδ > 0. Wlog

we suppose that φ̂(u) is left or below of φ̂(v), then by definition of the moving sets:
ri(u) ≤ ri(v). This implies that φ(u) and φ(v) remain interiorly disjoint.

Since the translation vector di is not parallel to the contact segment, the contact
remains iff ri(u) = ri(v). By definition, this is the case iff (u, v) ∈ E. Note therefore,

142 L. Kleist and B. Rahman

that if (u, v) ∈ E, then ri(u) < ri(v) since u /∈ M((u, v)) and v ∈ M((u, v)).
Consequently, φ(u) and φ(v) have proper contact iff (u, v) ∈ E. ��

Remark 1. The construction has running time of O(|V |2): The parameters ri(v) can
be determined in O(n|V |) and the construction can be produced in O(|V |). Since n ≤
|V |, this gives an overall running time of O(|V |2).

Remark 2. Choosing specific values for ε and δ, further properties can be guaranteed:
With ε = 1

2 and δ = 1
2n+2 one obtains a USqPCR φ of G where the proper contacts

and non-contacts are guaranteed to be of size δ. As ε and δ approach 0, the constact
sizes are arbitrarily close to 1. This is exploited in Section 6 for USqPCR with 4k-gons.

5 Representations with Unit Cubes

In this section we investigate further subgraphs of grids for UPCR with cubes.

5.1 d-Dimensional Grid

Indeed, Theorem 2 can be generalized to all dimensions. As a generalization of the
square grid, we define the d-dimensional grid Sdn = (VS, ES):

S
d
n :=

({
vx
∣∣x ∈ [n]d

}
,
{
(vx, vy)

∣∣ ‖x− y‖1 = 1
})

(a) (b) (c)
Fig. 4. (a) Cubic grid S

3
2; for the thick edges, the moving sets are indicated by the framed vertices

(b) UCuPCR φ̂ of S3
2 (c) Illustration of modification step.

Theorem 3. Every subgraph of the grid Sdn admits a UPCR with d-cubes.

Proof. The proof applies the strategy presented in Section 3. First, we give a UPCR
with d-cubes of Sdn, depicted in Figure 4. We choose ε ∈ (0, 1), δ < 1

n min{ε, 1 − ε}
and define the UPCR with the help of matrix A ∈ Rd×d:

φ̂ : V → P(Rd)

φ̂(vx) = Q(A · x)
A :=

⎛
⎜⎜⎝

1 ε . . . ε

−ε 1
. . .

......
. . .

. . . ε
−ε . . . −ε 1

⎞
⎟⎟⎠

In order to prove that φ̂ is a UPCR of Sdn with d-cubes, we note: Two axis-aligned unit
d-cubes with characteristic corners x and y, have proper (d − 1)-dimensional contact

Unit Contact Representations of Grid Subgraphs with Regular Polytopes in 2D and 3D 143

iff there exist k ∈ [d] such that |xk − yk| = 1 and |xi − yi| < 1 for all i ∈ [d] \ {k}. It
remains to show that two cubes φ̂(vx) and φ̂(vy) have proper contact iff (vx, vy) ∈ ESdn

:
Suppose (vx, vy) ∈ ES. Then, it holds ‖x−y‖1 = 1; that is ∃!k ∈ [d] with |xk−yk| = 1
and |xi − yi| = 0 for all i ∈ [d] \ {k}. Wlog let x ≥dom y. Consider the characteristic
corners A·x and A·y of the cubes φ̂(vx) and φ̂(vy). Let ek denote the kth standard basis
vector ofRd, then for the characteristic corners hold: (A·x−A·y) = A·(x−y) = A·ek.
This implies that the two cubes φ̂(vx) and φ̂(vy) have proper contact which is of size
cs(φ̂(vx), φ̂(vy)) = 1− ε.

Suppose (vx, vy) /∈ ES, then ‖x − y‖1 ≥ 2. Either there is a coordinate k ∈ [d],
such that |xk − yk| ≥ 2 or there exist at least two coordinates k, j ∈ [d] such that
|xk−yk| ≥ 1. It is easy to check, that in either case, there is a coordinate in (A·x−A·y)
which has an absolute value of ≥ 1 + ε, and hence, the cubes φ̂(vx) and φ̂(vy) are
disjoint. Thus for (vx, vy) /∈ ES the space is sp(φ̂(vx), φ̂(vy), ek) ≥ ε for k = 1, . . . , d.

We proceed with the translation vectors and moving sets: For e = (vx, vy) ∈ ES,
there exists a unique k ∈ [d] with |xk − yk| = 1 and xi = yi for i �= k. Wlog we
assume x ≤dom y. Then, the direction vector is defined as d(e) := ek and the moving
set as M(e) := {vz | z ∈ [n]d, zk > xk, zi = xi for all i �= k}.

Observe that the translation vector d(e) of edge e is parallel to each of the following
crucial (d−1)-dimensional facets: These are facets realizing the contacts corresponding
to edges of type (u, v) ∈ E\{e} with u ∈ M(e) and v /∈ M(e). Additionally, it holds
that ri(w)δ ≤ nδ < ε ≤ sp

(
φ̂(u), φ̂(v), di

)
for w ∈ {u, v} /∈ ES and i ∈ {1, . . . , d}.

Following the same lines as the proof of Theorem 2, this shows that the construction
yields a UPCR with d-cubes for each subgraph of Sdn. ��

5.2 Triangular Grid

Alam et al. [2] asked whether subgraphs of the triangular grid have UCuPCRs. In this
section, we answer this question affirmatively.

We introduce an unconventional definition of the triangular grid Tm,n = (VT, ET)
of size m×n. For i ∈ [m], and j ∈ [n], the vertex set is V := {bi,j}∪{ti,j}. The set of
edges is E :=

⋃5
i=1 Ei, where E1 := (xi,j , xi,j+1) with x ∈ {b, t}, E2 := (bi,j , ti,j),

E3 := (bi,j , ti,j−1), E4 := (bi,j , ti−1,j−1), and E5 := (bi,j , ti−1,j), see also Figure 5.
For fixed j, we call the vertex set of type {xi,j}i∈[m] a line and two neighboring lines a
level. Edges between two lines are called level edges. Note that we have 2n lines.

b0,0 b1,0 b4,0. . .

b1,0

b2,0

t0,0

t1,0

t2,0

(a) (b) (c)
Fig. 5. (a) Triangular grid T4,2; for thick edges, the moving sets are indicated by framed vertices
(b) UCuPCR φ̂ of T4,2 (c) Illustration of modification step.

144 L. Kleist and B. Rahman

Theorem 4. Every subgraph of the triangular grid Tm,n has a UCuPCR.

Proof. The proof uses the observation that subgraphs ofT1,n allow for USqPCR. There-
fore, contacts corresponding to level edges are realized alternating in planes parallel to
the xy and xz plane. Choosing ε ∈ (0, 1) and δ < 1

n+1 min{ε, 1 − ε}, we define a
UCuPCR of Tm,n, see also Figure 5:

φ̂ : V → P(R3)

φ̂(v) =

{
Q
(
i, j(1 + ε), j

)
if v = bi,j ,

Q
(
i+ ε, j(1 + ε) + ε, j + 1

)
if v = ti,j .

It is easy to verify that φ̂ is a UCuPCR of Tm,n with contact size cs(φ̂) ≥ (1− ε).
Additionally, it holds that sp(φ̂(u), φ̂(v), di) ≥ ε for the following direction vectors:

For an edge e ∈ Ei we set the direction vector di to d1 := (1, 0, 0), d2 := (0, 0, 1),
d3 := (0, 0,−1), d4 := (0, 1, 0), d5 := (0,−1, 0). The moving set belonging to an edge
is slightly more involved. For a level edge e, M(e) roughly consists of the vertices in the
level with larger index; for a line edge, it consists of the line vertices with larger index:
for e = (bi,j , tk,l) ∈ E2 ∪ E4, we define M(e) := {bi,r | r > j} ∪ {tk,r | r ≥ l}, and
for e = (bi,j , tk,l) ∈ E3 ∪ E5, we define M(e) := {bi,r | r ≥ j} ∪ {tk,r | r > l}, and
for e = (xi,j , xi,j+1) ∈ E1, we define M(e) := {xi,r | r > j}. Figure 5 depicts the
moving sets, direction vectors and modifications.

As the proof is analogous to the proof of Theorem 2, we give some useful observa-
tions and leave the rest to the reader: The translation vector d(e) of an edge e is parallel
to each of the crucial cube facets, realizing contacts corresponding to edges of type
(u, v) ∈ E\{e} with u ∈ M(e) and v /∈ M(e). Also note that ri(v) ≤ n+1 and hence
ri(u) ·δ ≤ (n+1)δ ≤ ε ≤ sp(φ̂(u), φ̂(v), di) for all (u, v) /∈ ES and all di. Combining
this, the construction yields a UCuPCR for each subgraph of Tm,n. ��

5.3 Archimedean Grids

There exist eleven grids originating from regular and semi-regular tilings of the plane,
so called Archimedean grids, which are depicted in Table 1. As mentioned before,
UCuPCR for subgraphs of five Archimedean grids are known [1, 2]. With the results of
the previous section, UCuPCR for subgraphs of all Archimedean grids follow directly:

Corollary 1. Every subgraph of an Archimedean grid has a UCuPCR.

Proof. Observe that Archimedean grids are subgraphs of the triangular grid. For prov-
ing this fact, we provide convincing pictures in Table 1. With this observation, the claim
follows directly from Theorem 4. ��

Fig. 6. The pufferfish graph and the star K1,5

Unit Contact Representations of Grid Subgraphs with Regular Polytopes in 2D and 3D 145

The remaining question is, whether subgraphs of Archimedean grids admit a repre-
sentation with unit squares. In general, this is not the case since we find two forbidden
subgraphs:K1,5 and the pufferfish graph, which is a C6 together with two private neigh-
bors for all but one vertex, see Figure 6. Table 1 summarizes for which Archimedean
grids, all subgraphs allow for a USqPCR.

Table 1. The table gives an overview for which Archimedean grids each subgraph allows for a
USqPCR. By Corollary 1, each subgraph has a UCuPCR.

square

✓

hexagonal

✓

truncated square

✓

truncated hexagonal

✓

triangular

✗

elongated triangular

✗

snub square

✗

snub hexagonal

✗

rhombi-
trihexagonal

✗

trihexagonal

?

truncated
trihexagonal

?

Lemma 1. The pufferfish graph and K1,5 have no USqPCR.

Proof. We first note that for two touching squares, at least one corner of each square
is involved in the segment of contact; two corners are involved iff the squares have full
side contact. In a USqPCR of K1,5, there must be a corner involved in two contacts
which leads to full side contacts. Since a square has only four sides, it follows that K1,5

has no USqPCR.
Assume the pufferfish graph has a USqPCR. We first observe that no two squares

have full side contact: Suppose there are two such squares, then one of them represents
a vertex v of the C6 which has 4 independent neighbors. Due to its 4 independent
neighbors, it follows that all of its contacts are full side contacts. It is easy to see that
repeating the argument for a neighbor of v with degree 4 leads to a contradiction. Hence,
no two squares have full side contact and each corner of the squares in the C6 is involved
in a contact segment.

146 L. Kleist and B. Rahman

Consequently, the inner face bounded by the squares of the C6 is an orthogonal 8-
gon (of T- or Z-shape) with side lengths≤ 1. This implies that private neighbors cannot
be placed in the inner face and the two convex corners belonging to different squares
do not account for a contact: a contradiction. ��

Corollary 2. Not all subgraphs of the triangular, elongated triangular, snub square,
snub hexagonal, and rhombitrihexagonal grid have a USqPCR.

Proof. K1,5 (and the pufferfish graph) are induced subgraphs of the triangular, elon-
gated triangular, snub square, and snub hexagonal grid. The pufferfish graph is an in-
duced subgraph of rhombitrihexagonal grid. ��

6 Representations with Regular Polygons

In this section, we consider UPCR with further regular polygons and for ease, refer to
them as polygons. To do so, we introduce the notion of pseudo polygons. A pseudo n-
gon (with side length s) is a subset of a regular n-gon, which includes a central segment
(of length≥ s) of each boundary edge. A segment of a boundary edge is called central if
their midpoints coincide. It can be understood as a n-gon with cut-off corners, consider
Figure 7.

Fig. 7. Examples of pseudo-triangles and pseudo-squares

Lemma 1. Let G be a graph with a UPCR φ with regular k-gons and cs(φ) > 1 − s.
Then, G has a UPCR with pseudo k-gons with side length at least s.

Proof. This UPCR is obtained from φ by inscribing a pseudo k-gon into each k-gon:
Consider two touching k-gons and the sides realizing the proper contact. The midpoints
of these sides differ by < s since cs(φ) > 1−s. Hence, every contact can be certified by
two intersecting central segments of size s. Since the pseudo k-gons (with side length
s) contain these segments, the contacts remain. Additionally, no new contacts occur,
because each pseudo k-gon is a subsets of a k-gon. Hence, φ still serves as a UPCR.

��

6.1 Representations with Regular 4k-gons

Corollary 3. Every subgraph of the square grid Sm,n has a UPCR with regular 4k-
gons, k ≥ 1.

Proof. Note that 4k-gons are pseudo-squares with side length sk := sin(π
4k). Choosing

ε < sk
2 in the proof of Theorem 2, we obtain a UPCR φ for every subgraph G of

Sm,n with cs(φ) > 1 − sk. With this, the claim follows directly from Theorem 2 and
Lemma 1. ��

Unit Contact Representations of Grid Subgraphs with Regular Polytopes in 2D and 3D 147

6.2 Representations with Regular 3k-gons

We define the hexagonal grid Hm,n = (VH, EH) as a subgraph of the square grid Sm,n:

Hm,n :=
(
VS, ES\

{
(vi,j , vi+1,j) ∈ ES

∣∣ (i+ j) odd
})

.

(a) (b)
Fig. 8. (a) Hexagonal Grid H5,5; for thick edges, the moving sets are indicated by framed vertices
(b) UTriPCR φ̂ of H5,5 with illustration of modification step

Theorem 5. Every subgraph of the hexagonal grid Hm,n has a UTriPCR.

Proof. For the proof, we apply the already known technique. With ε∈ (0, 1), a UTriPCR
of Hm,n is given by the following mapping and depicted in Figure 8:

φ : V → P(R3)

φ(vi,j) =

⎧⎨
⎩�

(
i
4

[(
3
2h

)
+ ε
(

3
−6h

)]
+ j

4

[(−1
2h

)
+ ε
(
3
2h

)])
if i+ j even,

�
(

i
4

[(
3
2h

)
+ ε
(

3
−6h

)]
+ j

4

[(−1
2h

)
+ ε
(
3
2h

)]
+ 1

4

[(−1
h

)
+ ε
(−1

h

)])
else.

Analyzing the shifts of the characteristic corner, it is not hard to verify that φ̂ is a
UTriPCR of the triangular grid with contact size cs(φ̂) ≥ (1 − ε) and has moving
space sp

(
φ(u), φ(v), d

)
≥ ε for (u, v) ∈ EH and direction vectors d parallel to the

sides of the triangles.
Indeed, two types of edges and direction vectors suffice: For e = (vi,j , vi,j+1), we

define direction d(e) := (− 1
2 , h) and moving set M(e) := {vi,k ∈ V | k > j};

for e = (vi,j , vi+1,j), we define direction d(e) := (1, 0) and moving set M(e) :=
{vi+1+k,j−k ∈ V | k ∈ [m − i]} ∪ {vi+1+k,j−1−k ∈ V | k ∈ [m − i]}. A crucial
property is that, again, the translation vector d(e) of an edge e is parallel to each of
the segments realizing contacts corresponding to edges of type (u, v) ∈ E\{e} with
u ∈ M(e) and v /∈ M(e). Moreover, d(e) is not parallel to the segment realizing
this contact in φ̂. Note also that each edge belongs to at most n moving sets with the
same translation direction. Therefore, choosing δ < 1

n min{ε, 1 − ε} the construction
analogous to Theorem 2 yields a UTriPCR for each subgraph G of Hm,n. ��

Corollary 4. Every subgraph of the hexagonal grid Hm,n has a UPCR with regular
3k-gons, k ≥ 1.

Proof. Note that 3k-gons are pseudo-triangles with side length sk := tan(π
3k)h. Choos-

ing ε < sk
2 in the proof of Theorem 5, we obtain a UPCR φ for every subgraph G of

Hm,n with cs(φ) > 1 − sk. With this, the claim follows directly from Theorem 5 and
Lemma 1. ��

148 L. Kleist and B. Rahman

7 Open Questions

We want to conclude with a list of open questions:

What is the complexity of recognizing graphs admitting UPCRs with regular poly-
gons other than squares?
Can we characterize the graphs with USqPCRs? Or with other polygons?
Do the trihexagonal and truncated trihexagonal grid admit a USqPCR?
Do subgraphs of duals of Archimedean grids not containing K1,9 have UCuPCR?
What about USqPCR for duals not containing K1,5, namely the snubsquare grid?

References

[1] Alam, M.J., Kobourov, S.G., Pupyrev, S., Toeniskoetter, J.: Happy edges: Threshold-
coloring of regular lattices. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS,
vol. 8496, pp. 28–39. Springer, Heidelberg (2014)

[2] Alam, M.J., Chaplick, S., Fijavž, G., Kaufmann, M., Kobourov, S.G., Pupyrev, S.:
Threshold-coloring and unit-cube contact representation of graphs. In: Brandstädt, A.,
Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 26–37. Springer, Heidel-
berg (2013)

[3] Bremner, D., Evans, W., Frati, F., Heyer, L., Kobourov, S.G., Lenhart, W.J., Liotta, G.,
Rappaport, D., Whitesides, S.H.: On representing graphs by touching cuboids. In: Didimo,
W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 187–198. Springer, Heidelberg
(2013)

[4] Breu, H., Kirkpatrick, D.G.: On the complexity of recognizing intersection and touching
graphs of disks. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 88–98. Springer,
Heidelberg (1996)

[5] Czyzowicz, J., Kranakis, E., Krizanc, D., Urrutia, J.: Discrete realizations of contact and in-
tersection graphs. International Journal of Pure and Applied Mathematics 13(4), 429 (2004)

[6] Felsner, S., Francis, M.C.: Contact representations of planar graphs with cubes. In: Pro-
ceedings of the 27th Annual ACM Symposium on Computational Geometry, pp. 315–320.
ACM (2011)

[7] Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G.: Optimal polygonal representation
of planar graphs. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 417–432.
Springer, Heidelberg (2010)

[8] Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and duality. Dis-
crete & Computational Geometry 48(1), 239–254 (2012)

[9] Hliněnỳ, P., Kratochvı́l, J.: Representing graphs by disks and balls (a survey of recognition-
complexity results). Discrete Mathematics 229(1-3), 101–124 (2001)

[10] Koebe, P.: Kontaktprobleme der konformen abbildung. Berichte über die Verhandlungen
der Sächsischen Akademien der Wissenschaften zu Leipzig, Math.-Phys. Kl. 88, 141–164
(1936)

[11] Schramm, O.: Combinatorically prescribed packings and applications to conformal and qua-
siconformal maps. Ph. D. thesis. Princeton University (1990)

[12] Schramm, O.: Square tilings with prescribed combinatorics. Israel Journal of Mathemat-
ics 84(1-2), 97–118 (1993)

[13] Zhao, L.: The kissing number of the regular polygon. Discrete Mathematics 188(1), 293–
296 (1998)

[14] Zhao, L., Xu, J.: The kissing number of the regular pentagon. Discrete Mathematics 252(1),
293–298 (2002)

The Galois Complexity of Graph Drawing:
Why Numerical Solutions Are Ubiquitous for

Force-Directed, Spectral, and Circle Packing Drawings�

Michael J. Bannister, William E. Devanny,
David Eppstein, and Michael T. Goodrich

Department of Computer Science, University of California, Irvine

Abstract. Many well-known graph drawing techniques, including force directed
drawings, spectral graph layouts, multidimensional scaling, and circle packings,
have algebraic formulations. However, practical methods for producing such draw-
ings ubiquitously use iterative numerical approximations rather than constructing
and then solving algebraic expressions representing their exact solutions. To ex-
plain this phenomenon, we use Galois theory to show that many variants of these
problems have solutions that cannot be expressed by nested radicals or nested
roots of low-degree polynomials. Hence, such solutions cannot be computed ex-
actly even in extended computational models that include such operations.

1 Introduction

One of the most powerful paradigms for drawing a graph is to construct an algebraic
formulation for a suitably-defined optimal drawing of the graph and then solve this
formulation to produce a drawing. Examples of this algebraic graph drawing approach
include the force-directed, spectral, multidimensional scaling, and circle packing draw-
ing techniques (which we review in the full version of the paper for readers unfamiliar
with them).

Even though this paradigm starts from an algebraic formulation, the ubiquitous
method for solving such formulations is to approximately optimize them numerically in
an iterative fashion. That is, with a few exceptions for linear systems [1–3], approximate
numerical solutions for algebraic graph drawing are overwhelmingly preferred over
exact symbolic solutions. It is therefore natural to ask if this preference for numerical
solutions over symbolic solutions is inherent in algebraic graph drawing or due to some
other phenomena, such as laziness or lack of mathematical sophistication on the part of
those who are producing the algebraic formulations.

In this paper, we introduce a framework for deciding whether certain algebraic graph
drawing formulations have symbolic solutions, and we show that exact symbolic solu-
tions are, in fact, impossible in several algebraic computation models, for some simple
examples of common algebraic graph drawing formulations, including force-directed

� This research was supported in part by ONR MURI grant N00014-08-1-1015 and NSF grants
1217322, 1011840, and 1228639.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 149–161, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

150 M.J. Bannister et al.

graph drawings (in both the Fruchterman–Reingold [4] and Kamada–Kawai [5] ap-
proaches), spectral graph drawings [6], classical multidimensional scaling [7], and cir-
cle packings [8]. Note that these impossibility results go beyond saying that such sym-
bolic solutions are computationally infeasible or undecidable to find—instead, we show
that such solutions do not exist.

To prove our results, we use Galois theory, a connection between the theories of
algebraic numbers and abstract groups. Two classical applications of Galois theory
use it to prove the impossibility of the classical Greek problem of doubling the cube
using compass and straightedge, and of solving fifth-degree polynomials by nested
radicals. In our terms, these results concern quadratic computation trees and radical
computation trees, respectively. Our proofs build on this theory by applying Galois
theory to the algebraic numbers given by the vertex positions in different types of
graph drawings. For force-directed and spectral drawing, we find small graphs (in
one case as small as a length-three path) whose drawings directly generate unsolvable
Galois groups. For circle packing, an additional argument involving the compass and
straightedge constructibility of Möbius transformations allows us to transform arbitrary
circle packings into a canonical form with two concentric circles, whose construction is
equivalent to the calculation of certain algebraic numbers. Because of this mathematical
foundation, we refer to this topic as the Galois complexity of graph drawing.

Related Work. The problems for which Galois theory has been used to prove un-
solvability in simple algebraic computational models include shortest paths around
polyhedral obstacles [9], shortest paths through weighted regions of the plane [10], the
geometric median of planar points [11], computing structure from motion in computer
vision [12], and finding polygons of maximal area with specified edge lengths [13]. In
each of these cases, the non-existence of a nested radical formula for the solution is
established by finding a Galois group containing a symmetric group of constant degree
at least five. In our terminology, this shows that these problems cannot be solved by a
radical computation tree. We are not aware of any previous non-constant lower bounds
on the degree of the polynomial roots needed to solve a problem, comparable to our
new bounds using the root computation tree model. Brightwell and Scheinerman [14]
show that some circle packing graph representations cannot be constructed by compass
and straightedge (what we call the quadratic computation tree model).

2 Preliminaries

Models of Computation. We define models of computation based on the algebraic
computation tree [15, 16], in which each node computes a value or makes a decision
using standard arithmetic functions of previously computed values. Specifically, we
define the following variant models:

– A quadratic computation tree is an algebraic computation tree in which the set of
allowable functions for each computation node is augmented with square roots and
complex conjugation. These trees capture the geometric constructions that can be
performed by compass and unmarked straightedge.

The Galois Complexity of Graph Drawing 151

– A radical computation tree is an algebraic computation tree in which the set of
allowable functions is augmented with the kth root operation, where k is an integer
parameter to the operation, and with complex conjugation. These trees capture the
calculations whose results can be expressed as nested radicals.

– A root computation tree is an algebraic computation tree in which the allowable
functions include the ability to find complex roots of polynomials whose coeffi-
cients are integers or previously computed values, and to compute complex con-
jugates of previously computed values. For instance, this model can compute any
algebraic number. As a measure of complexity in this model, we define the degree
of a root computation tree as the maximum degree of any of its polynomials. A
bounded-degree root computation tree has its degree bounded by some constant
unrelated to the size of its input. Thus, a quadratic computation tree is exactly a
bounded-degree root computation tree (of degree two).

Our impossibility results and degree lower bounds for these models imply the same
results for algorithms in more realistic models of computation that use as a black box
the corresponding primitives for constructing and representing algebraic numbers in
symbolic computation systems. Because our results are lower bounds, they also apply a
fortiori to weaker primitives, such as systems limited to real algebraic numbers, which
don’t include complex conjugation.

It is important to note that each of the above models can generate algebraic numbers
of unbounded degree. For instance, even the quadratic computation tree (compass and
straightedge model) can construct regular 2k-gons, whose coordinates are algebraic
numbers with degrees that are high powers of two. Thus, to prove lower bounds and
impossibility results in these models, it is not sufficient to prove that a problem is
described by a high-degree polynomial; additional structure is needed.

Algebraic Graph Theory. In algebraic graph theory, the properties of a graph are
examined via the spectra of several matrices associated with the graph. The adjacency
matrix A = adj(G) of a graph G is the n × n matrix with Ai,j equal to 1 if there is
an edge between i and j and 0 otherwise. The degree matrix D = deg(G) of G is the
n × n matrix with Di,i = deg(vi). From these two matrices we define the Laplacian
matrix, L = lap(G) = D −A, and the transition matrix, T = tran(G) = D−1A.

Lemma 1. For a regular graph G, adj(G), lap(G), and tran(G) have the same set of
eigenvectors.

Lemma 2. For the cycle on n vertices, the eigenvalues of adj(G) are 2 cos(2πk/n),
for 0 ≤ k < n.

Möbius Transformations. We may represent each point p in the plane by a complex
number, z, whose real part represents p’s x coordinate and whose imaginary part rep-
resents p’s y coordinate. A Möbius transformation is a fractional linear transformation,
z �→ (az + b)/(cz + d), defined by a 4-tuple (a, b, c, d) of complex numbers, or the
complex conjugate of such a transformation. We prove the following in the full version
of the paper.

Lemma 3. Given any two disjoint circles, a Möbius transformation mapping them to
two concentric circles can be constructed using a quadratic computation tree.

152 M.J. Bannister et al.

Number Theory. The Euler totient function, φ(n), counts the number of integers in
the interval [1, n− 1] that are relatively prime to n. It can be calculated from the prime
factorization n =

∏
prii by the formula

φ(n) =
∏

pri−1
i (pi − 1).

A Sophie Germain prime is a prime number p such that 2p+ 1 is also prime [17]. It
has been conjectured that there are infinitely many of them, but the conjecture remains
unsolved. The significance of these primes for us is that, when p is a Sophie Germain
prime, φ(2p + 1) has the large prime factor p. An easy construction gives a number n
for which φ(n) has a prime factor of size Ω(

√
n): simply let n = p2 for a prime p, with

φ(n) = p(p− 1). Baker and Harman [18] proved the following stronger bound.

Lemma 4 (Baker and Harman [18]). For infinitely many prime numbers p, the largest
prime factor of φ(p) is at least p0.677.

Field Theory. A field is a system of values and arithmetic operations over them
(addition, subtraction, multiplication, and division) obeying similar axioms to those of
rational arithmetic, real number arithmetic, and complex number arithmetic: addition
and multiplication are commutative and associative, multiplication distributes over ad-
dition, subtraction is inverse to addition, and division is inverse to multiplication by
any value except zero. A field K is an extension of a field F , and F is a subfield of
K (the base field), if the elements of F are a subset of those of K and the two fields’
operations coincide for those values. K can be viewed as a vector space over F (values
in K can be added to each other and multiplied by values in F) and the degree [K : F]
of the extension is its dimension as a vector space. For an element α of K the notation
F (α) represents the set of values that can be obtained from rational functions (ratios
of univariate polynomials) with coefficients in F by plugging in α as the value of the
variable. F (α) is itself a field, intermediate between F and K . In particular, we will
frequently consider field extensions Q(α) where Q is the field of rational numbers and
α is an algebraic number, the complex root of a polynomial with rational coefficients.

Lemma 5. If α can be computed by a root computation tree of degree f(n), then
[Q(α) : Q] is f(n)-smooth, i.e., it has no prime factor > f(n). In particular, if α
can be computed by a quadratic computation tree, then [Q(α) : Q] is a power of two.

Proof. See the full version of the paper. ��

A primitive root of unity ζn is a root of xn − 1 whose powers give all other roots of
the same polynomial. As a complex number we can take ζn = exp(2iπ/n).

Lemma 6 (Corollary 9.1.10 of [19], p. 235). [Q(ζn) : Q] = φ(n).

Galois Theory. A group is a system of values and a single operation (written as
multiplication) that is associative and in which every element has an inverse. The set
of permutations of the set [n] = {1, 2, . . . , n}, multiplied by function composition, is a
standard example of a group and is denoted by Sn. A permutation group is a subgroup
of Sn; i.e., it is a set of permutations that is closed under the group operation.

The Galois Complexity of Graph Drawing 153

A field automorphism of the field F is a bijection σ : F → F that respects the field
operations, i.e., σ(xy) = σ(x)σ(y) and σ(x + y) = σ(x) + σ(y). The set of all field
automorphism of a field F forms a group denoted by Aut(F). Given a field extension
K of F , the subset of Aut(K) that leaves F unchanged is itself a group, called the
Galois group of the extension, and is denoted

Gal(K/F) = {σ ∈ Aut(K) | σ(x) = x for all x ∈ F}.

The splitting field of a polynomial, p, with rational coefficients, denoted split(p) is the
smallest subfield of the complex numbers that contains all the roots of the polynomial.
Each automorphism in Gal(split(p)/Q) permutes the roots of the polynomial, no two
automorphisms permute the roots in the same way, and these permutations form a
group, so Gal(split(p)/Q) can be thought of as a permutation group.

Lemma 7. If α can be computed by a radical computation tree and K is the splitting
field of an irreducible polynomial with α as one of its roots, then Gal(K/Q) does not
contain Sn as a subgroup for any n ≥ 5.

Proof. If α is computable by a radical computation tree, it can be written as an expres-
sion using nested radicals. If K is the splitting field of an irreducible polynomial with
such an expression as a root, Gal(K/Q) is a solvable group (Def. 8.1.1 of [19], p. 191
and Theorem 8.3.3 of [19], p. 204). But Sn is not solvable for n ≥ 5 (Theorem 8.4.5
of [19], p. 213), and every subgroup of a solvable group is solvable (Proposition 8.1.3
of [19], p. 192). Thus, Gal(K/Q) cannot contain Sn (n ≥ 5) as a subgroup. ��

The next lemma allows us to infer properties of a Galois group from the coefficients
of a monic polynomial, that is, a polynomial with integer coefficients whose first co-
efficient is one. The discriminant of a monic polynomial is (up to sign) the product of
the squared differences of all pairs of its roots; it can also be computed as a polynomial
function of the coefficients. The lemma is due to Dedekind and proven in [19].

Lemma 8 (Dedekind’s theorem). Let f(x) be an irreducible monic polynomial in
Z[x] and p a prime not dividing the discriminant of f . If f(x) factors into a product
of irreducibles of degrees d0, d1, . . . dr over Z/pZ, then Gal(split(f)/Q) contains a
permutation that is the composition of disjoint cycles of lengths d0, d1, . . . , dr.

A permutation group is transitive if, for every two elements x and y of the elements
being permuted, the group includes a permutation that maps x to y. If K is the splitting
field of an irreducible polynomial of degree n, then Gal(K/Q) (viewed as a permu-
tation group on the roots) is necessarily transitive. The next lemma allows us to use
Dedekind’s theorem to prove that Gal(K/Q) equals Sn. It is a standard exercise in
abstract algebra (e.g., [20], Exercise 3, p. 305).

Lemma 9. If a transitive subgroup G of Sn contains a transposition and an (n − 1)-
cycle, then G = Sn.

154 M.J. Bannister et al.

Fig. 1. Two stable drawings of K4.

a

b

Fig. 2. A drawing whose coordinates
cannot be computed by a quadratic
computation tree.

3 Impossibility Results for Force Directed Graph Drawing

In the Fruchterman and Reingold [4] force-directed model, each vertex is pulled toward
its neighbors with an attractive force, fa(d) = d2/k, and pushed away from all vertices
with a repulsive force, fr(d) = k2/d. The parameter k is a constant that sets the scale
of the drawing, and d is the distance between vertices. We say that a drawing is a
Fruchterman and Reingold equilibrium when the total force at each vertex is zero.

In the Kamada and Kawai [5] force-directed model, every two vertices are connected
by a spring with rest length and spring constant determined by the structure of the graph.
The total energy of the graph is defined to be

E =
∑
i

∑
j>i

1

2
kij
(
dist(pi, pj)− �ij

)2
,

where pi = position of vertex vi, dij = graph theoretic distance between vi and vj ,
L = a scaling constant, �ij = Ldij , K = a scaling constant, and kij = K/d2i,j . We
say that a drawing is a Kamada–Kawai equilibrium if E is at a local minimum. The
necessary conditions for such a local minimum are as follows:

∂E

∂xj
=
∑
i�=j

kji(xj − xi)

(
1− �ji

dist(pj , pi)

)
= 0 1 ≤ j ≤ n

∂E

∂yj
=
∑
i�=j

kji(yj − yi)

(
1− �ji

dist(pj , pi)

)
= 0 1 ≤ j ≤ n.

For either of these approaches to force-directed graph drawing, a graph can have
multiple equilibria (Figure 1). In such cases, typically, one equilibrium is the “expected”
drawing of the graph and others represent undesired drawings that are not likely to be
found by the drawing algorithm. To make the positions of the vertices in this drawing
concrete, we assume that the constants k (Fruchterman–Reingold),L, and K (Kamada–
Kawai) are all equal to 1. As we will demonstrate, there exist graphs whose expected
drawings cannot be constructed in our models of computation. Interestingly, the graphs
we use for these results are not complicated configurations unlikely to arise in practice,
but are instead graphs so simple that they might at first be dismissed as insufficiently
challenging even to be used for debugging purposes.

The Galois Complexity of Graph Drawing 155

Root Computation Trees. Consider the cycle Cn with n vertices. When drawn with
force directed algorithms, either Fruchterman and Reingold or Kamada and Kawai, the
embedding typically places all vertices equally spaced on a circle, such that neighbors
are placed next to each other, as shown in Figure 2. As an easy warm-up to our main
results, we observe that this is not always possible using a quadratic computation tree.

Theorem 1. There exist a graph with seven vertices such that it is not possible in a
quadratic computation tree to compute the coordinates of every possible Fruchterman
and Reingold equilibrium or every possible Kamada and Kawai equilibrium.

Proof. Let G be the cycle C7 on seven vertices. Both algorithms have the embedding
shown in Figure 2 (suitably scaled) as an equilibrium. In this embedding let a and b be
two neighboring vertices and α and β their corresponding complex coordinates. Then
α/β is equal to ±ζ7 the seventh root of unity. By Lemma 6

[Q(ζ7) : Q] = φ(7) = 6.

Since 6 is not a power of two, Lemma 5 implies that ζ7 cannot be constructed by a
quadratic computation tree. Therefore, neither can this embedding. ��

Theorem 2. For arbitrarily large values of n, there are graphs on n vertices such
that constructing the coordinates of all Fruchterman and Reingold equilibria on a
root computation tree requires degree Ω(n0.677). If there exists infinitely many Sophie
Germain primes, then there are graphs for which computing the coordinates of any
Fruchterman and Reingold equilibria requires degree Ω(n). The same results with the
same graphs hold for Kamada and Kawai equilibria.

Proof. As in the previous theorem we consider embedding cycles with their canonical
embedding, which is an equilibrium for both algorithms. The same argument used in
the previous theorem shows we can construct ζn from the coordinates of the canonical
embedding of the cycle on n vertices.

We consider cycles with p vertices where p is a prime number for which φ(p) = p−1
has a large prime factor q. If arbitrarily large Sophie Germain primes exist we let q be
such a prime and let p = 2q + 1. Otherwise, by Lemma 4 we choose p in such a way
that its largest prime factor q is at least p0.677. Now, by Lemma 6 we have:

[Q(ζp) : Q] = φ(p) = p− 1.

This extension is not D-smooth for any D smaller than q, and therefore every construc-
tion of it on a root computation tree requires degree at least q. ��

Thus, such drawings are not possible on a bounded-degree root computation tree.

Radical Computation Trees. To show that the coordinates of a Fruchterman and
Reingold equilibrium are in general not computable with a radical computation tree
we consider embedding the path with three edges, shown in Figure 3. We assume
that all of the vertices are embedded colinearly and without edge or vertex overlaps.
These assumptions correspond to the equilibrium that is typically produced by the
Fruchterman and Reingold algorithm.

156 M.J. Bannister et al.

v0 v1 v2 v3

Fig. 3. A graph whose Fruchterman–
Reingold coordinates cannot be com-
puted by a radical computation tree.

u0 u1

u2

u3

Fig. 4. A graph whose Kamada–Kawai
coordinates cannot be computed by a
radical computation tree.

Let a > 0 be the distance from v0 to v1 (equal by symmetry to the distance from v2
to v3) and let b > 0 be the distance from v1 to v2. We can then express the sum of all
the forces at vertex v0 by the equation

F0 = a2 − 1

a
− 1

a+ b
− 1

2a+ b
=

2a5 + 3a4b+ a3b2 − 5a2 − 5ab− b2

2a3 + 3a2b+ ab2
,

and the sum of all the forces at vertex v1 by the equation

F1 = −a2 +
1

a
+ b2 − 1

b
− 1

a+ b
=

−a4b− a3b2 + a2b3 − a2 + ab4 − ab+ b2

a2b+ ab2
.

In an equilibrium state we have F1 = F2 = 0. Equivalently, the numerator p of F1 and
the numerator q of F2 are both zero, where

p(a, b) = 2a5 + 3a4b + a3b2 − 5a2 − 5ab− b2 = 0

q(a, b) = −a4b− a3b2 + a2b3 − a2 + ab4 − ab+ b2 = 0.

To solve this system of two equations and two unknowns we can eliminate variable a
and produce the following polynomial, shown as a product of irreducible polynomials,
whose roots give the values of b that lead to a solution.

1

3
b2(3b15 − 48b12 + 336b9 − 1196b6 + 1440b3 + 144).

The factor b2 corresponds to degenerate drawings and may safely be eliminated. Let f
be the degree-fifteen factor; then f(x) = g(x3) for a quintic polynomial g. A radical
computation tree can compute the roots of f from the roots of g, so we need only show
that the roots of g cannot be computed in a radical computation tree. To do this, we
convert g to a monic polynomial h with the same splitting field, via the transformation

h(x) =
x5

144
g(6/x) = x5 + 60x4 − 299x3 + 504x2 − 432x+ 162.

The polynomial h can be shown to be irreducible by manually verifying that it has no
linear or quadratic factors. Its discriminant is −26 · 39 · 23412 · 2749, and h factors
modulo primes 5 and 7 (which do not divide the discriminant) into irreducibles:

h(x) ≡ (x+ 1)(x4 + 3x3 + 6x2 + x+ 1) (mod 7)

h(x) ≡ (x2 + 3x+ 4)(x3 + 2x2 + x+ 3) (mod 5).

The Galois Complexity of Graph Drawing 157

By Dedekind’s theorem, the factorization modulo 7 implies the existence of a 4-cycle in
Gal(split(h)/Q), and the factorization modulo 5 implies the existence of a permutation
that is the composition of a transposition and a 3-cycle. Raising the second permutation
to the power 3 yields a transposition. By Lemma 9, Gal(split(h)/Q) = S5. So by
Lemma 7 the value of b cannot be computed by a radical computation tree. Thus, we
cannot compute the equilibrium coordinates of the path with three edges under the
assumptions that the vertices are collinear and there are no vertex or edge overlaps.

Theorem 3. There exists a graph on four vertices such that it is not possible on a
radical computation tree to construct the coordinates of every possible Fruchterman
and Reingold equilibrium.

To show that the coordinates of a Kamada and Kawai equilibrium are in general not
computable with a radical computation tree we consider the graph depicted in Figure 4.

Theorem 4. There exists a graph on four vertices such that it is not possible on a
radical computation tree to construct the coordinates of every possible Kamada and
Kawai equilibrium.

Proof. See the full version of the paper. ��

4 Impossibility Results for Spectral Graph Drawing

Root computation trees. We begin with the following result for root computation trees.

Theorem 5. For arbitrarily large values of n, there are graphs on n vertices such
that constructing spectral graph drawings based on the adjacency, Laplacian, relaxed
Laplacian, or transition matrix requires a root computation tree of degree Ω(n0.677).
If there exist infinitely many Sophie Germain primes, then there are graphs for which
computing these drawings requires degree Ω(n).

Proof. Since all of the referenced matrices have rational entries, it suffices to consider
the computability of their eigenvalues. Further, if we restrict our attention to regular
graphs it suffices to consider the eigenvalues of just the adjacency matrix, M = adj(G),
by Lemma 1. Let p be a prime and G the cycle on p vertices. By Lemma 2 the eigenval-
ues of A = adj(G) are given by 2 cos(2πk/p) for 0 ≤ k ≤ p−1. In a root computation
tree of degree at least 2 the primitive root of unity ζp = exp(2iπ/p) can be computed
from 2 cos(2πk/p) for all k �= 0. Therefore, from the proof of Theorem 2, for arbitrarily
large n, there are graphs on n vertices such that M has one rational eigenvector (for
k = 0) and the computation of any other eigenvector on a root computation tree requires
degree Ω(n0.667). If infinitely many Sophie Germain primes exist, there are graphs for
which computing these eigenvectors requires degree Ω(n). ��

Thus, such drawings are not possible on a bounded-degree root computation tree.

Radical Computation Trees. To show that in general the eigenvectors associated
with a graph are not constructible with a radical tree we consider the graph, Y , on
nine vertices in Figure 5 for the Laplacian and relaxed Laplacian matrices, and in the

158 M.J. Bannister et al.

Fig. 5. A graph Y whose Laplacian eigenvectors are uncomputable by a radical tree

full version of the paper we consider another graph for the adjacency and transition
matrices.

The characteristic polynomial, p(x) = det(M − xI), for the Laplacian matrix for
Y , can be computed to be

p(x) = char(lap(Y))

= x(x8 − 16x7 + 104x6 − 354x5 + 678x4 − 730x3 + 417x2 − 110x+ 9).

Lemma 10 (Stäckel [21]). If f(x) is a polynomial of degree n with integer coefficients
and |f(k)| is prime for 2n+ 1 values of k, then f(x) is irreducible.

Let q = p(x)/x. The polynomial q is irreducible by Lemma 10, as it produces a
prime number for 17 integer inputs from 0 to 90. The discriminant of q is 28 · 9931583
and we have the following factorizations of q modulo the primes 31 and 41.

p1(x) ≡ (x+ 27)(x7 + 19x6 + 25x5 + 25x4 + 3x3 + 26x2 + 25x+ 21) (mod 31)

p1(x) ≡ (x+ 1)(x2 + 15x+ 39)(x5 + 9x4 + 29x3 + 10x2 + 36x+ 16) (mod 41).

By Dedekind’s theorem, the factorization modulo 31 implies the existence of a 7-
cycle, and the factorization modulo 41 implies the existence of a permutation that is
the composition of a transposition and a 5-cycle. The second permutation raised to the
fifth power produces a transposition. Thus, Lemma 9 implies Gal(split(p1)/Q) = S8.
So by Lemma 7 the only eigenvalue of lap(Y) computable in a radical computation
tree is 0. For the relaxed Laplacian we consider the two variable polynomial f(x, ρ) =
char(lapρ(Y)). Since setting ρ equal to 1 produces a polynomial with Galois group S8,
Hilbert’s irreducibility theorem tells us that the set of ρ for which the Galois group of
f(x, ρ) is S8 is dense in Q.

Theorem 6. There exists a graph on nine vertices such that it is not possible to con-
struct a spectral graph drawing based on the Laplacian matrix in a radical computation
tree. For this graph there exists a dense subset A of Q such that it is not possible to
construct a spectral graph drawing based on the relaxed Laplacian with ρ ∈ A in a
radical computation tree.

In the full version of the paper we similarly prove that spectral drawings based
on the adjacency matrix and the transition matrix cannot be constructed by a radical
computation tree. In the full version of the paper we similarly prove that drawings
produced by classical multidimensional scaling cannot be constructed by a radical
computation tree.

The Galois Complexity of Graph Drawing 159

Fig. 6. The graph Bipyramid(7) and its associated concentric circle packing

5 Impossibility Results for Circle Packings

Root Computation Trees. A given graph may be represented by infinitely many circle
packings, related to each other by Möbius transformations. But as we now show, if one
particular packing cannot be constructed in our model, then there is no other packing
for the same graph that the model can construct.

Lemma 11. Suppose that a circle packing P contains two concentric circles. Suppose
also that at least one radius of a circle or distance between two circle centers, at least
one center of a circle, and the slope of at least one line connecting two centers of
circles in P can all be constructed by one of our computation models, but that P itself
cannot be constructed. Then the same model cannot construct any circle packing that
represents the same underlying graph as P .

Proof. Suppose for a contradiction that the model could construct a circle packing Q
representing the same graph as P . By Lemma 3 it could transform Q to make the two
circles concentric, giving a packing that is similar either to P or to the inversion of P
through the center of the concentric circles. By one more transformation it can be made
similar to P . The model could then rotate the packing so the slope of the line connecting
two centers matches the corresponding slope in P , scale it so the radius of one of its
circles matches the corresponding radius in P , and translate the center of one of its
circles to the corresponding center in P , resulting in P itself. This gives a construction
of P , contradicting the assumption. ��

We define Bipyramid(k) to be the graph formed by the vertices and edges of a
(k + 2)-vertex bipyramid (a polyhedron formed from two pyramids over a k-gon by
gluing them together on their bases). In graph-theoretic terms, it consists of a k-cycle
and two additional vertices, with both of these vertices connected by edges to every
vertex of the k-cycle. The example of Bipyramid(7) can be seen in Figure 6, left.

Theorem 7. There exists a graph whose circle packings cannot be constructed by a
quadratic computation tree.

Proof. Consider the circle packing of Bipyramid(7) in which the two hubs are repre-
sented by concentric circles, centered at the origin, with the other circle centers all on
the unit circle and with one of them on the x axis. One of the centers of this packing
is at the root of unity ζ7. By Lemma 6, [Q(ζ7) : Q] = φ(7) = 6. 6 is not a power
of two, so by Lemma 5 ζ7 cannot be constructed by a quadratic computation tree. By
Lemma 11, neither can any other packing for the same graph. ��

160 M.J. Bannister et al.

In the full version of the paper, we prove that certain circle packings also cannot
be constructed by radical computation trees nor by bounded-degree root computation
trees.

6 Conclusion

We have shown that several types of graph drawing cannot be constructed by models
of computation that allow computation of arbitrary-degree radicals, nor by models that
allow computation of the roots of bounded-degree polynomials. Whether the degree of
these polynomials must grow linearly as a function of the input size, or only propor-
tionally to a sublinear power, remains subject to an open number-theoretic conjecture.

It is natural to ask whether these drawings might be computable in a model of
computation that allows both arbitrary-degree radicals and bounded-degree roots. We
leave this as open for future research.

Acknowledgements. We used the Sage software package to perform preliminary cal-
culations of the Galois groups of many drawings. Additionally, we thank Ricky Demer
on MathOverflow for guiding us to research on large factors of φ(n).

References

[1] Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two and three
dimensions. In: 12th Symp. on Computational Geometry (SoCG), pp. 319–328 (1996)

[2] Hopcroft, J.E., Kahn, P.J.: A paradigm for robust geometric algorithms. Algorithmica 7,
339–380 (1992)

[3] Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 3, 743–767 (1963)
[4] Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.

Software: Practice and Experience 21, 1129–1164 (1991)
[5] Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information

Processing Letters 31, 7–15 (1989)
[6] Koren, Y.: Drawing graphs by eigenvectors: theory and practice. Computers & Mathematics

with Applications 49, 1867–1888 (2005)
[7] Kruskal, J.B., Seery, J.B.: Designing network diagrams. In: Proc. First General Conf. on

Social Graphics, pp. 22–50 (1980)
[8] Koebe, P.: Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig,

Math.-Phys. Kl. 88, 141–164 (1936)
[9] Bajaj, C.: The algebraic complexity of shortest paths in polyhedral spaces. In: Proc. 23rd

Allerton Conf. on Communication, Control and Computing, pp. 510–517 (1985)
[10] Carufel, J.L.D., Grimm, C., Maheshwari, A., Owen, M., Smid, M.: A Note on the

unsolvability of the weighted region shortest path problem. In: Booklet of Abstracts of the
28th European Workshop on Computational Geometry, pp. 65–68 (2013)

[11] Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Comput.
Geom. 3, 177–191 (1988)

[12] Nister, D., Hartley, R., Stewenius, H.: Using Galois theory to prove structure from motion
algorithms are optimal. In: IEEE Conf. Computer Vision & Pattern Recog., pp. 1–8 (2007)

[13] Varfolomeev, V.V.: Galois groups of the Heron–Sabitov polynomials for inscribed
pentagons. Mat. Sb. 195, 3–16 (2004); Translation in Sb. Math. 195, 149–162 (2004)

The Galois Complexity of Graph Drawing 161

[14] Brightwell, G., Scheinerman, E.: Representations of planar graphs. SIAM J. Discrete
Math. 6, 214–229 (1993)

[15] Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proc. 15th Annu. Symp.
Theory of Computing, pp. 80–86 (1983)

[16] Yao, A.C.: Lower bounds for algebraic computation trees of functions with finite domains.
SIAM J. Comput. 20, 655–668 (1991)

[17] Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge Univ.
Press (2009)

[18] Baker, R.C., Harman, G.: Shifted primes without large prime factors. Acta Arith. 83, 331–
361 (1998)

[19] Cox, D.A.: Galois Theory. 2nd edn. Pure and Applied Mathematics. Wiley (2012)
[20] Jacobson, N.: Basic Algebra I, 2nd edn. Dover Books on Mathematics. Dover (2012)
[21] Stäckel, P.: Arithmetische Eigenschaften ganzer Funktionen (Fortsetzung.). J. Reine Angew.

Math. 148, 101–112 (1918)

Bitonic st-orderings of Biconnected Planar Graphs

Martin Gronemann

Institut für Informatik, Universität zu Köln, Germany
gronemann@informatik.uni-koeln.de

Abstract. Vertex orderings play an important role in the design of graph drawing
algorithms. Compared to canonical orderings, st-orderings lack a certain prop-
erty that is required by many drawing methods. In this paper, we propose a new
type of st-ordering for biconnected planar graphs that relates the ordering to the
embedding. We describe a linear-time algorithm to obtain such an ordering and
demonstrate its capabilities with two applications.

1 Introduction

Being a fundamental part of incremental drawing procedures, various types of orderings
have been developed and improved over the years. De Fraysseix, Pach and Pollack [3]
introduced the canonical ordering to create straight-line drawings of maximal planar
graphs. Afterwards, Kant [10] extended this concept to the triconnected case. Obtain-
able in linear-time, both have been used in the graph drawing literature extensively.
A few attempts have been made to generalize them to the biconnected case by relax-
ing their properties [7,9]. However, an alternative that in nature works for biconnected
graphs and that can be computed in linear time, are st-orderings [6]. In the field of
graph drawing, they have been used in several methods, reaching from the construction
of visibility representations to drawings of non-planar graphs, see e.g. [4,12]. Although
canonical and st-orderings share some properties in the planar case, it seems that they
are usually not used in the same context.

In the following, we investigate these differences in more detail, especially one prop-
erty of canonical orderings that is used implicitly in many drawing algorithms. Consider
the successors of a single vertex in the clockwise ordering as implied by the embed-
ding. Then their ranks in the canonical ordering form an increasing and then decreasing
sequence, i.e., a bitonic sequence. Common st-orderings do not necessarily have this
property, rendering them unsuitable for some applications.

We counteract by introducing a new type of st-ordering for biconnected planar
graphs: the bitonic st-ordering, an st-ordering in which the successors of every ver-
tex appear in the aforementioned pattern. We show that every biconnected planar graph
admits such an ordering. The proof is constructive and yields a linear-time algorithm
that computes the ordering and a corresponding embedding. For the case where a fixed
embedding is given, we prove that one cannot always find a bitonic st-order. In order to
further support our idea, we briefly describe two applications. In the first one, we extend
the straight-line algorithm of de Fraysseix, Pach and Pollack [3] to bitonic st-orderings.
In the second one, we describe how to obtain a special visibility representation and then
transform it into a rectilinear T-shaped polygon contact representation.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 162–173, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Bitonic st-orderings of Biconnected Planar Graphs 163

2 Preliminaries

In the following, we first introduce some notations and definitions that are used through-
out this work. If not stated otherwise, we consider only simple, planar biconnected
graphs. One exception is the following definition of st-orderings that does not require
planarity.

Definition 1. Let G = (V,E) be a biconnected graph with s, t ∈ V , s �= t and let
π : V → {1, . . . , |V |} be the rank of the vertices in an ordering s = v1, v2, . . . , vn = t,
i.e., π(vi) = i with 1 ≤ i ≤ n. π is called an st-ordering, if for all vertices v ∈ V with
1 < π(v) < n, there exists (u, v), (v, w) ∈ E with π(u) < π(v) < π(w).

From now on we assume that a graph is planar and a corresponding combinatorial em-
bedding is given. In that case an st-ordering π of G has a nice property which has been
used in the graph drawing literature extensively [4]: When considering the circular order
induced by the embedding, the set of predecessors and successors form a consecutive
sequence in the circular order of the embedding at a vertex. We denote this ordered se-
quence of successors of a vertex v by S(v) = {w1, . . . , wm} such that for 1 ≤ i < m,
wi precedes wi+1 in the circular clockwise order around v and π(v) < π(wi) holds for
all 1 ≤ i ≤ m. This property is particularly useful in an incremental drawing procedure.
However, one has no control over which successor is placed when.

Consider a simple example where a vertex v has been placed that has three succes-
sors, let us say S(v) = {w1, w2, w3}. Then, π may be chosen such that w2 must be
placed before w1 and w3, i.e., π(w2) < π(w1) and π(w2) < π(w3). This may cause
problems when attaching the edges (v, w1) and (v, w3), since (v, w2) has already been
attached. This lack of control is avoided by the canonical ordering that is limited to
triconnected planar graphs:

Definition 2 ([10]). Let G = (V,E) be a triconnected plane graph and (v1, v2) an edge
on the outer face. Let V1 ∪ · · · ∪ VK be an ordered partition of V and Gk (1 ≤ k ≤ K)
the subgraph induced by V1 ∪ · · · ∪Vk with outer face Ck. V1 ∪ · · · ∪VK is a canonical
ordering of G if:

– V1 = {v1, v2} and VK = {vn}, where vn lies on the outer face and is adjacent to v1.
– Each Ck (k > 1) is a cycle containing (v1, v2).
– Each Gk is biconnected and internally triconnected.
– For 1 < k < K one of the two following conditions holds:

1. Vk = {z} is a singleton where z belongs to Ck and has at least one neighbor in
G−Gk.

2. Vk = {z1, . . . , zm} where each zi (1 ≤ i ≤ m) has at least one neighbor in
G − Gk, and where z1 and zm each have one neighbor in Ck−1, and these are
the only two neighbors of Vk in Gk−1.

Clearly, a situation as in the small example cannot occur with canonical orderings,
because of the biconnectivity of Gk. In fact one can go one step further and claim (as
we did in the introduction) that the partition indices of the successors when considered
in the clockwise ordering as implied by the embedding, form an increasing and then

164 M. Gronemann

Table 1. Comparison of the features of various orderings.

biconnected successor bitonic
st-ordering yes yes no

biconnected shelling-
& canonical ordering

yes no yes

canonical ordering no yes yes
bitonic st-ordering yes yes yes

decreasing sequence. We will prove this for canonical orderings as an intermediate step
in the main section of this paper. For now we refer to this as the bitonic property.

The concept of canonical ordering has been generalized to the biconnected case.
Gutwenger and Mutzel [7] use an ordered partition of the vertices, referred to as bi-
connected shelling order, to create poly-line drawings in an incremental manner. A
similar but more vertex ordering-based concept is used by Harel and Sardas [9]. They
introduce the so called biconnected canonical ordering for drawing planar graphs in a
straight-line style. In both definitions, the constraints of the triconnected version have
been relaxed. But this generalization sacrifices an important property that is required
for some applications. In the triconnected case, every vertex v ∈ Vk, except for k = K ,
has a neighbor in G − Gk. We are not aware of any canonical ordering-like approach
for the biconnected case, where this is guaranteed. In order to draw a connection to
st-orderings, we refer to this property as the successor property. Table 1 summarizes
the orderings and their features including our contribution (bitonic st-ordering).

Another common technique for the biconnected case that can be found in the litera-
ture is to first develop an algorithm using the canonical ordering and is therefore limited
to triconnected graphs. Afterwards, the algorithm is extended to the biconnected case
using SPQR-trees. An SPQR-tree T reflects the decomposition of a biconnected graph
G = (V,E) into its triconnected components and their relationships [5,8]. In fact, every
triconnected component Gμ = (Vμ, Eμ) is represented by a tree node μ in T where Gμ

itself is called the skeleton of μ. The interrelationship between two triconnected com-
ponents is described by a pair of so called virtual edges. Both virtual edges share the
same endpoints that correspond to a split pair {s, t}. A split pair {s, t} is either a pair
of adjacent nodes in G or a separation pair, i.e., the removal of {s, t} disconnects G.
Every Gμ can be categorized to be one of four types based on its structure. A bundle
of at least three parallel edges is referred to as P-node. In case Gμ is a simple cycle
of length at least three, it classifies as an S-node, whereas if the skeleton is a simple
triconnected graph, we call it an R-node. The leaves of T are formed by Q-nodes that
are bundles of two edges, one being a virtual edge while the other corresponds to an
edge of G. Usually it is convenient to root T , hence, inducing a hierarchy on the tricon-
nected components. Except for the root, every skeleton Gμ contains then a virtual edge
(s, t) ∈ Eμ that represents a link to μ’s parent. We refer to (s, t) as the reference edge
of μ and to its endpoints {s, t} as the poles of μ. When considering a node μ in a rooted
SPQR-tree T , μ induces a subgraph of G referred to as the pertinent graph of μ.

Bitonic st-orderings of Biconnected Planar Graphs 165

v

2
4

5

6 3

7

1

(a)

6
57

3

4
2

1
v

(b)

Fig. 1. (a) Example in which seven successors of a vertex v are placed in a non-bitonic manner.
The last three edges to be attached to v (dashed) are separated by previously attached ones (solid).
In (b), when using a bitonic ordering, they appear consecutively in the embedding around v.

The main task, when extending a triconnected drawing procedure to a biconnected
one using SPQR-trees, can be sketched as follows. The original algorithm serves as a
basis for the case in which μ is an R-node. It is then modified such that each (virtual)
edge in the drawing can be replaced recursively by a drawing of the corresponding
pertinent graph. Usually a drawing has to match certain invariant properties. For S-
and P-nodes alternative methods are used. Finding a good invariant and presenting a
clear proof can be tedious work and its complexity may outweigh the description of the
original triconnected algorithm. We offer a different approach by defining a new type
of st-ordering whose successor lists have the aforementioned property of being bitonic.

3 The Bitonic st-ordering

A sequence is said to be bitonic, if it can be partitioned into two subsequences such that
one is monotonically increasing while the other is decreasing. More specifically:

Definition 3. An ordered sequence A = {a1, . . . , an} is bitonic increasing, if there
exists 1 ≤ k ≤ n such that a1 ≤ · · · ≤ ak ≥ · · · ≥ an holds and bitonic decreasing if
a1 ≥ · · · ≥ ak ≤ · · · ≤ an. Moreover, we say A is bitonic increasing (decreasing) with
respect to a function f if A′ = {f(a1), . . . , f(an)} is bitonic increasing (decreasing).

One property of bitonic sequences that is very useful in our context is the following:

Property 1. If a sequence A = {a1, . . . , an} is bitonic increasing (decreasing), then
the reversed sequence A′ = {an, . . . , a1} is bitonic increasing (decreasing) as well.

In the following, we restrict ourselves to bitonic increasing sequences. Thus, we abbre-
viate it by just referring to it as being bitonic.

Definition 4. Let G = (V,E) be a biconnected planar graph with a fixed embedding
and (s, t) ∈ E. We say an st-ordering π is a bitonic st-ordering, if at every vertex
v ∈ V the ordered sequence of successors S(v) = {w1, . . . , wm} as implied by the
embedding is bitonic with respect to π.

An ordering with this additional property is particularly useful in an incremental algo-
rithm; the edges that correspond to those successors of a vertex v that have not been
placed yet, appear consecutively in the embedding around v. See Figure 1 for an exam-
ple. Next, we describe how to obtain such a bitonic st-ordering.

166 M. Gronemann

v

wi

wi+1

wi−1

(a)

wi

Gk−1
v

wi+1

wi−1 ∈ Vk

(b)

wi

wi+1 ∈ Vk′

wi−1

Gk′−1

v

(c)

Fig. 2. (a) The initial situation at v with S(v) = {. . . , wi−1, wi, wi+1, . . .}. (b) Gk−1 with k =
π′(wi−1) where wi−1 has to be in the outer face of Gk−1. (c) Gk′−1 with k < k′ = π′(wi−1)
where wi+1 has to be in the outer face of Gk′−1.

Lemma 1. Every triconnected planar graph G = (V,E) admits a bitonic st-ordering
for every (s, t) ∈ E.

Proof. From its definition it is easy to see that a canonical ordering V1 ∪ · · · ∪ VK

can be transformed into an st-ordering π. We start by describing the construction of π
and then show that it is indeed bitonic with respect to π. Given an edge (s, t) ∈ E,
we compute a canonical ordering V1 ∪ · · · ∪ VK of G by choosing V1 = {s, s′} and
VK = {t} with s′ being the vertex that precedes t in the clockwise order around s.
Notice that by definition of the canonical ordering, the edges (s, t) and (s, s′) are on the
outer face. For the st-ordering π we follow a simple principle that is sometimes referred
to as the vertex ordering of a canonical ordering: Regardless of Vk = {v1, . . . , vm}
with 1 ≤ k ≤ K being a chain or singleton, we choose π for 1 ≤ i ≤ m such that
π(vi) = |V1|+ · · ·+ |Vk−1|+ i.

For the sake of notation we may refer to the partition of a vertex v ∈ Vk with π′(v) =
k. Notice that by construction of π for all u, v ∈ V with π′(u) < π′(v), it holds that
π(u) < π(v). By definition of the canonical ordering, every v ∈ Vk with k < K
has at least one neighbor w in Vk+1 ∪ · · · ∪ VK . It holds then that π(w) > π(v) and
as a result every v �= t has at least one successor. In case Vk = {v} (1 < k ≤ K)
is a singleton, v has at least two neighbors, say cl and cr, in V1 ∪ · · · ∪ Vk−1 with
π(cl) < π(v) and π(cr) < π(v), thus v has at least two predecessors. The other case,
i.e., Vk = {v1, . . . , vm} (k > 1) is a chain, only v1 and vm have one neighbor each, let
us say cl and cr, in V1 ∪ · · · ∪ Vk−1. However, for every vi ∈ Vk with i > 1 it holds
that π(vi−1) < π(vi). Hence, every vi with i < m has exactly one predecessor while
vm has even two. Special attention must be paid to V1 = {s, s′} since for this chain
no cl and cr exist. However, the predecessor of s′ is s and s itself does not require a
predecessor for π being an st-ordering. Since all vertices v �= s have predecessors the
order in S(v) is well-defined by considering them clockwise. For s we have to break
the cyclic order and set S(s) = {t = w1, w2, . . . , wm−1, wm = s′}.

In order to prove that π is a bitonic st-ordering, we first show that every successor
list obtained from π is bitonic with respect to π′ instead of π. To do so, assume to
the contrary that there exists a successor list S(v) = {w1, . . . , wi, . . . , wm} of some
vertex v that is not bitonic with respect to π′, i.e., there is a wi ∈ S(v) with 1 <

Bitonic st-orderings of Biconnected Planar Graphs 167

i < m for which π′(wi−1) > π′(wi) and π′(wi+1) > π′(wi) holds. Furthermore, let
w.l.o.g. π′(wi−1) < π′(wi+1). Notice that by construction of π and S(v), it follows
that π′(wi−1) �= π′(wi+1). See Figure 2a for the initial situation at v. Now we set
k = π′(wi−1) and k′ = π′(wi+1) and argue that in a canonical ordering this can only
occur for k = 2. By definition of the canonical ordering, wi−1 ∈ Vk has to be in the
outer face of Gk−1 as displayed in Figure 2b. Similarly, wi+1 ∈ Vk′ has to be in the
outer face of Gk′−1 (see Figure 2c). As a result, the outer face of Gk−1 must be on both
sides of the edge (v, wi) and there is only one such Gk−1 for which this is the case,
namely G1. Hence, k = 2, v = s, wi = s′ and wi+1 = t. However, we defined S(s)
such that it ends with wm = s′ which is a contradiction.

It remains to show that all S(v) are not only bitonic with respect to π′, but also
for π. As aforementioned, by construction of π from π′, for two vertices u, v ∈ V
with π′(u) < π′(v) it follows that π(u) < π(v). And since we have just shown for
the successor list S(v) = {w1, . . . , wi, . . . , wm} of every vertex v ∈ V it holds that
π′(wi−1) < π′(wi) or π′(wi+1) < π′(wi), we may deduce that π(wi−1) < π(wi) or
π(wi+1) < π(wi). Hence, every S(v) is bitonic with respect to π. ��

The proof is constructive and reveals one additional property: The successor list of s
is a special case, because it contains s′ and t. Furthermore, s is the only vertex with
π(s) < π(s′) and for every vertex v ∈ V with v �= t, π(v) < π(t) holds. Since the
successor list of s starts with t, ends with s′ by our construction, and is bitonic with
respect to π, we can state the following:

Corollary 1. The successor list of s starts with t, ends with s′ and is sorted decreas-
ingly with respect to π, i.e., S(s) = {t, w2, . . . , wm−1, s

′} such that π(t) > π(w2) >
· · · > π(wm−1) > π(s′).

While the above results follow the intuition of canonical orderings, they hold only for
the case where the input is triconnected. Next, we extend this result to the biconnected
case using SPQR-trees. Corollary 1 provides us with the necessary ingredient for an
invariant. More details are given in the proof of the main result of this section:

Theorem 1. Every biconnected planar graph G = (V,E) has a bitonic st-ordering π
for any given st-edge e∗ ∈ E. The ordering π and a corresponding embedding can be
computed in time O(|V |).

Proof. The overall challenge is to recursively compose a bitonic st-ordering along an
SPQR-tree. For a subtree, we assume that we have already constructed a bitonic st-
ordering that complies with an invariant. Then we show that we can combine it in the
skeleton of the parent node with the solutions of other subtrees.
Invariant: For the assignment of an index in π, we maintain a single global counter
that we use to label the vertices in an incremental manner. The poles {s, t} of a tree
node μ are labeled by the parent. Moreover, s has already been labeled such that we
may assume that the global counter has a value greater than π(s). Furthermore, π is a
bitonic st-ordering for the subgraph induced by μ when assigning t the current value
of the counter. Additionally, the successor list of s is sorted decreasingly with respect
to π. We start by embedding G, creating the SPQR-tree T and rooting it at the Q-node
representing the given st-edge e∗ = (s∗, t∗). Then we initialize the global counter,

168 M. Gronemann

label s∗, and recurse on the only child of the root. Following standard practice, we now
distinguish the different types of tree nodes.

Serial case: Let the skeleton of the S-node μ be the simple cycle s, v1, . . . , vm−1, t, s,
where (s, t) is the reference edge representing the parent of μ. The remaining edges
(s, v1), . . . , (vm−1, t) correspond to the children μ1, . . . , μm of μ. We recurse on μ1,
label v1, recurse on μ2, and so on, until μm. Notice that we do not label t. Clearly, the
result is an st-ordering when assigning t the current value of the counter. The successor
lists of s, v1, . . . , vm−1 are all sorted decreasingly due to our invariant, thus, are bitonic.

Parallel case: We first check if one of the children μ1, . . . , μm of the P-node μ is a Q-
node. In that case we change the order of the children such that μ1 is the Q-node. Notice
that this implies a change in the embedding of G. Then we recurse on the children in
their reverse order, i.e. μm, . . . , μ1. Consider now the successor list S(s) of s: The
neighbors wi

1, . . . , w
i
k′ with 1 ≤ i ≤ m that are located in the induced subgraph of μi

form a consecutive sequence in S(s):

S(s) = {. . . , wi
1, . . . , w

i
k︸ ︷︷ ︸

neighbors in μi

, wi+1
1 , . . . , wi+1

k′︸ ︷︷ ︸
neighbors in μi+1

, . . .}

By our invariant, it follows that π(wi
j) > π(wi

j+1) and since we recursed on μ1, . . . , μm

in reverse order, π(wi
k) > π(wi+1

1) holds. Hence, the sequence is decreasing.

Rigid case: We start by constructing a temporary ordering π′ for the triconnected
skeleton Gμ = (Vμ, Eμ) of the R-node μ using Lemma 1 and choosing the reference
edge (s, t) as input. Then we traverse the vertices of Vμ in the ordering as given by π′.
At a vertex v ∈ Vμ, we recurse on the incident edges (u, v) ∈ Eμ with π′(u) < π′(v),
i.e., the incoming edges of v with respect to π′. Afterwards, we label v unless v = t.
The resulting ordering is not necessarily a bitonic st-ordering. We proceed in two steps:
First we derive some useful properties of π and narrow down the problem. Then we ar-
gue that mirroring the embedding of some children of μ changes the successor lists such
that they become bitonic with respect to π.

Let us take a closer look at the properties of π: Since we labeled all v ∈ Vμ in
the order as provided by π′, for any two vertices u, v ∈ Vμ with u �= v, it holds that
π′(u) < π′(v) if and only if π(u) < π(v). Hence, π is a feasible bitonic st-ordering
for Gμ. Recall that we recursed on the children in a special way. Consider a vertex v′

in the induced subgraph of a child μuv represented by the virtual edge (u, v) ∈ Eμ

with π(u) < π(v). Furthermore, assume that v′ is not a pole of μuv , i.e., u �= v′ �= v.
Then v′ has been labeled before v and after any w ∈ Vμ with π(w) < π(v), thus
π(w) < π(v′) < π(v). When now considering a fourth vertex, say w′, that is defined
similar as v′, i.e., a non-pole vertex located in the subgraph induced by a virtual edge
(x,w) ∈ Eμ with π(x) < π(w), then we may deduce the implication π(w) < π(v) ⇒
π(w′) < π(v′). Stemming from the special traversal of the edges, this property is of
particular interest when considering the successor lists.

Let S′(v) = {w′
1, . . . , w

′
h, . . . , w

′
m} ⊂ Vμ be the successor list of v ∈ Vμ. See

Figure 3a for an example. Notice that π(w′
1) < · · · < π(w′

h) > · · · > π(w′
m) holds.

Furthermore, let μ1, . . . , μm be the corresponding children of μ that are represented
by the virtual edges (v, w′

1), . . . , (v, w
′
m) with π(v) < π(w′

i) for 1 ≤ i ≤ m. Similar

Bitonic st-orderings of Biconnected Planar Graphs 169

v

μ1

μ2
μ3

μ4

w′
1

w′
2 w′

3

w′
4

(a)

μ2 μ3

w′
2 w′

3

v v

(b)

v

μ1

μ2 μ3

μ4

w′
2 w′

4w′
1 w′

3

(c)

Fig. 3. (a) Example of virtual edges (v, w′
1), . . . , (v, w

′
4) in an R-node representing the tree nodes

μ1, . . . , μ4. (b) Mirroring the embedding of the subgraph induced by μ2 turning the decreasing
sequence into an increasing sequence. (c) The bitonic successor list at v after mirroring the em-
bedding of μ1 and μ2.

to the P-node case, we refer to the neighbors of v that are contained in the subgraph
induced by μi as wi

1, . . . , w
i
ki

. These form a consecutive sequence in S(v), hence, we
may write S(v) as

S(v) = {w1
1, . . . , w

1
k1︸ ︷︷ ︸

neighbors in μ1

, . . . , wh
1 , . . . , w

h
kh︸ ︷︷ ︸

neighbors in μh

, . . . , wm
1 , . . . , wm

km︸ ︷︷ ︸
neighbors in μm

}.

The idea now is to distinguish between two cases, depending on if either i < h or i ≥ h
holds, i.e., w′

i is in either the increasing or decreasing partition of S′(v).
Let us first consider the case h ≤ i: Since π(w′

i) > π(w′
i+1) for h ≤ i < m,

it follows that π(wi
ki
) > π(wi+1

1) for all h ≤ i < m, i.e., the last neighbor in the
subgraph induced by μi has a greater label than the one in μi+1. By our invariant we
may assume that π(wi

1) > · · · > π(wi
ki
) for all h ≤ i ≤ m holds, i.e., with respect

to π, we have a decreasing subsequence in S(v). Hence, the sequence wh
1 , . . . , w

m
km

is
decreasing with respect to π.

In the second case where 1 ≤ i < h holds, an increasing sequence is required. We
mirror the embedding of every subgraph induced by μi with 1 ≤ i < h along its poles
(v, w′

i). As a result the decreasing subsequences in S(v) turn into increasing ones, i.e.,
π(wi

1) < · · · < π(wi
ki
) for all 1 ≤ i < h (μ2 in Figure 3b). Notice that by Property 1

the successor list of every vertex in the mirrored subgraph remains bitonic. Now similar
to the first case, we argue that from π(w′

i) < π(w′
i+1) it follows that π(wi

ki
) < π(wi+1

1)

for all 1 ≤ i < h. Thus, the sequence w1
1 , . . . , w

h−1
kh−1

is increasing with respect to π.

And as a result, the sequence w1
1 , . . . , w

h−1
kh−1

, wh
1 , . . . , w

m
km

is bitonic with respect to π

(Figure 3c). Notice that for v = s, there exists no i with π(w′
i) < π(w′

i+1), thus, S(s)
is sorted decreasingly with respect to π as required by the invariant.

The case where μ is a Q-node is trivial. Both, the canonical ordering and the SPQR-
tree, can be computed in linear time, thus, the runtime follows immediately. ��

In the proof of the main theorem, we changed the embedding of G in two places. At first
in the P-node case, we had to ensure that a possible Q-node follows the reference edge
in clockwise order around s. Afterwards in the R-node case, we mirrored the embedding

170 M. Gronemann

s
s′

t

u v w

Fig. 4. A graph for which no bitonic st-
ordering exists for the given embedding

3

1

8

2

4

5
6

7

Fig. 5. Running example with its bitonic st-
ordering and corresponding embedding

along the poles to turn a decreasing sequence into an increasing one. The latter change is
caused by our invariant that only provides a decreasing sequence at s for the sake of an
easier maintainable invariant. In an actual implementation, this can easily be avoided by
mirroring the embedding twice, once before recursing on the corresponding child and
then afterwards. Thus, the resulting embedding is equivalent to the initial one. However,
for the P-node case it is not trivial and the question may arise if it is necessary in general,
or if one may always find a bitonic st-ordering for every edge when a fixed embedding
is given. To answer this question, we give a small counterexample.

Lemma 2. Given a fixed embedding, there exist biconnected planar graphs that do not
admit a bitonic st-ordering for every edge.

Proof. Consider the graph in Figure 4 and its embedding. The triangle consisting of s′,t
and w is attached to the source s via s′. Clearly, in any feasible st-ordering π(u) < π(t)
and π(v) < π(w) < π(t) must hold. Thus, the successor list S(s′) = {u, t, v, w} of
s′ as implied by the illustrated embedding is not bitonic with respect to π, because it
follows that π(u) < π(t) > π(v) < π(w), which is neither bitonic increasing nor
decreasing. ��

Although this is a drawback, it is worth mentioning that in many approaches that employ
SPQR-trees for drawing purposes, implicit changes to the embedding are made anyway.

4 Applications

In the following, we present two simple applications of bitonic st-orderings. The results
are not new, but we believe that the bitonic st-ordering simplify things. By its nature,
it works out of the box for biconnected planar graphs and therefore no augmentation of
the input is required. For both applications, we assume that a biconnected planar graph
G = (V,E) with a bitonic st-orderingπ and the corresponding embedding is given. The
graph, its embedding and ordering displayed in Figure 5 serves as a running example.

We start with a classic problem: Straight-line drawings of biconnected graphs by
borrowing some ideas from Harel and Sardas [9]. They first describe an algorithm to
obtain a biconnected canonical ordering. Then a modification of the classic algorithm
of de Fraysseix, Pach and Pollack [3] is used to obtain a planar straight-line layout. We

Bitonic st-orderings of Biconnected Planar Graphs 171

1

3 4

5 6

7

2

(a)

1 2

3
4

5
6

7

8

(b)

Fig. 6. (a) Adding v7 which has only one predecessor but right support. (b) The final straight-line
drawing produced by the modified de Fraysseix-Pach-Pollack algorithm.

only outline the approach here: during every step k, the algorithm maintains a straight-
line drawing for the already placed vertices, v1, . . . , vk−1 of the biconnected canonical
ordering. Similar to the original algorithm, they maintain for the contour of the outer
face of Gk−1 the property that it consists only of segments with slopes +1 or −1.
Adding a new vertex vk with leftmost neighbor cl and rightmost neighbor cr in Gk−1

results in a stretch of the drawing such that the edges (vk, cl) and (vk, cr) have slope +1
and −1, respectively. Of course, this works only for cl �= cr. In the other case, where
cl = cr holds, i.e., vk has only one predecessor, say u = cl = cr, one has to decide if vk
is placed to the right or to the left of u. Harel and Sardas [9] introduce for those vertices
the property of having left or right support. Their ordering guarantees that either the
successor or predecessor of vk in the clockwise ordering around u has already been
placed. Since π has by definition the same property, we may proceed similar. Avoiding
sub cases, we always try to place vk to the left, i.e., choosing a new cl such that cl is the
predecessor of u = cr on the contour of Gk−1. However, in the case where there exists
a w that precedes vk in S(u) and for which π(w) > π(vk) holds, we have to place vk to
the right by choosing cl = u and cr to be the successor of u on the contour. Figure 6b
shows an example generated by our implementation. Notice that in difference to the
ordering as proposed in [9], in an st-ordering every vertex except of t has a successor,
hence the faces of the drawing are y-monotone.

Next, we turn our attention to the second application: contact representations using
rectilinear T-shaped polygons. Alam et al. [1] recently used these as an intermediate step
to create cartograms. The idea is to represent a planar graph by touching sides of simple
interior-disjoint polygons, in this case upside-down oriented T-shaped polygons. Their
approach employs Schnyder realizer and their close relationship to canonical orderings.
For more details see [1]. However, we choose a different approach and consider instead
a special visibility representation of G. We assume that the reader is familiar with the
basics of visibility representations. For an introduction, see e.g. [4]. The common way to
obtain such a visibility representation can be summarized as follows: The y-coordinates
y(v) of the horizontal segments that represent the vertices v ∈ V of G are computed
by an optimal topological ordering of a planar st-graph induced by an st-ordering. For
the x-coordinate x(e) of a vertical segment that represents an edge e ∈ E, the same
procedure is repeated but on the dual planar st-graph. We skip the first step and choose
π itself for the y-coordinates, i.e., y(v) = π(v). As a result every vertex has now its own

172 M. Gronemann

wh

w1

wm

v

π(w1)

π(wh)

π(wm)

π(v)

(a)

wh

w1

wm

v

ymax(v)

ymin(v)

x(v) xmax(v)xmin(v)

(b)

1

2

3

4

5

6

7

8

(c) (d)

Fig. 7. (a) Successors w1, . . . , wh, . . . , wm of v whose ordering in the embedding is bitonic with
respect to the y-coordinates. (b) Creating a pole at wh, i.e., the highest successor, and pulling the
bars of the remaining towards it. (c) Visibility representation for the running example. The edges
to the highest successor are drawn solid. (d) The resulting T-shaped contact representation.

row that corresponds to its rank in π. See Figure 7c for such a visibility representation
for the running example. Although a visibility representation can be derived this way
for any st-ordering, we may now benefit from the property that π is a bitonic st-order.
Since for every v ∈ V , S(v) is bitonic with respect to π, by construction it is also
bitonic with respect to the y-coordinates, i.e., the successors are located above v in an
increasing and then a decreasing staircase pattern. See Figure 7a for an illustration.

By using a simple trick, we now transform this wedge-like structure into a rectilin-
ear T-shaped polygon. The idea is straightforward: We create a vertical segment on top
of the horizontal bar that reaches all the way up to wh, i.e., the highest successor of
v. Afterwards we pull the bars of the remaining successors towards this pole. See the
arrows in Figure 7b for a sketch of the idea. Notice that in case of a non-bitonic st-
ordering, a single pole is not sufficient. More specifically, let xmin(v) (xmax(v)) denote
the left (right) border of the upside-down T representing v and x(v) the horizontal off-
set of the pole. Furthermore, let ymin(v) and ymax(v) denote the vertical offset of the
horizontal bar and the upper border of the pole, respectively. Then, for every v ∈ V
with S(v) = {w1, . . . , wh, . . . , wm} in which y(w1) < · · · < y(wh) > · · · > y(wm)
holds, we create the vertical segment by choosing x(v) = x((v, wh)), where x(v, wh)
denotes the x-coordinate of (v, wh) in the visibility representation. Furthermore, we
set ymax(v) = ymin(wh). For the remaining successors wi with 1 ≤ i < h, i.e.,
those located to the left of the pole, we establish contact with the pole from the left
by choosing xmax(wi) = x(v). In a symmetric manner, we set xmin(wi) = x(v) with
h < i ≤ m for those successors that are located on the right. Notice that xmin(v)
and xmax(v) are only defined in the case where there exists such a pole on both sides.
Otherwise, we have to ensure that the horizontal bar of v covers at least the attaching
poles from below. Hence, for every u with v ∈ S(u) and π(v) = maxw∈S(u){π(w)},
i.e., all u for which v is the highest successor, we set xmax(v) = max{x(v), x(u)} and
xmin(v) = min{x(v), x(u)}. See v3 and v5 in Figure 7c. The final contact representa-
tion for our running example is shown in Figure 7d.

Bitonic st-orderings of Biconnected Planar Graphs 173

5 Implementation Details

The presented work has been implemented in C++ using the Open Graph Drawing
Framework (OGDF) [11]. For the canonical ordering, we implemented the leftist canon-
ical ordering algorithm as described by Badent et al. [2]. The linear-time implemen-
tation of Gutwenger and Mutzel [8] is used for the SPQR-tree that is required for
Theorem 1. It is part of the OGDF, publicly available and provides a convenient
interface to navigate the tree and the skeletons.

6 Conclusion

We have shown that every biconnected planar graph has a bitonic st-order that can be
obtained in linear time. Moreover, two applications have been presented, both requiring
the property of being bitonic. We believe that the bitonic st-ordering is a useful addition
to the set of existing tools. Besides having potentially a broad range of applications, it
may simplify existing methods considerably.

References

1. Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S.G., Ueckerdt, T.: Computing
cartograms with optimal complexity. In: Proceedings of the Twenty-Eighth Annual Sympo-
sium on Computational Geometry, SoCG 2012, pp. 21–30. ACM (2012)

2. Badent, M., Brandes, U., Cornelsen, S.: More canonical ordering. Journal of Graph Algo-
rithms and Applications 15(1), 97–126 (2011)

3. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinator-
ica 10(1), 41–51 (1990)

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)

5. Di Battista, G., Tamassia, R.: Incremental planarity testing. In: 30th Annual Symposium on
Foundations of Computer Science, pp. 436–441 (1989)

6. Even, S., Tarjan, R.E.: Computing an st-numbering. Theoretical Computer Science 2(3),
339–344 (1976)

7. Gutwenger, C., Mutzel, P.: Planar polyline drawings with good angular resolution. In: White-
sides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999)

8. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.)
GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

9. Harel, D., Sardas, M.: An algorithm for straight-line drawing of planar graphs. Algorith-
mica 20(2), 119–135 (1998)

10. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996)
11. OGDF - Open Graph Drawing Framework, http://www.ogdf.net/
12. Tamassia, R.: Handbook of Graph Drawing and Visualization (Discrete Mathematics and Its

Applications). Chapman & Hall/CRC (2007)

http://www.ogdf.net/

Drawing Outer 1-planar Graphs with Few Slopes�

Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani

Dip. di Ingegneria, Università degli Studi di Perugia, Italy
{emilio.digiacomo,giuseppe.liotta,fabrizio.montecchiani}@unipg.it

Abstract. A graph is outer 1-planar if it admits a drawing where each vertex
is on the outer face and each edge is crossed by at most another edge. Outer 1-
planar graphs are a superclass of the outerplanar graphs and a subclass of the
partial 3-trees. We show that an outer 1-planar graph G of bounded degree Δ
admits an outer 1-planar straight-line drawing that uses O(Δ) different slopes,
which extends a previous result by Knauer et al. about the planar slope number
of outerplanar graphs (CGTA, 2014). We also show that O(Δ 2) slopes suffice to
construct a crossing-free straight-line drawing of G; the best known upper bound
on the planar slope number of planar partial 3-trees of bounded degree Δ is O(Δ 5)
and is proved by Jelı́nek et al. (Graphs and Combinatorics, 2013).

1 Introduction

The slope number of a graph G is defined as the minimum number of distinct edge
slopes required to construct a straight-line drawing of G. Minimizing the number of
slopes used in a straight-line graph drawing is a desirable aesthetic requirement and an
interesting theoretical problem which has received considerable attention since its first
definition by Wade and Chu [21]. Let Δ be the maximum degree of a graph G and let m
be the number of edges of G, clearly the slope number of G is at least Δ

2 and at most m.
For non-planar graphs, there exist graphs with Δ ≥ 5 whose slope number is un-

bounded (with respect to Δ) [3,19], while the slope number of graphs with Δ = 4 is
unknown, and the slope number of graphs with Δ = 3 is four [18].

Concerning planar graphs, the planar slope number of a planar graph G is defined
as the minimum number of distinct slopes required by any planar straight-line drawing
of G (see, e.g., [9]). Keszegh, Pach and Pálvölgyi [14] prove that O(2O(Δ)) is an upper
bound and that 3Δ − 6 is a lower bound for the planar graphs of bounded degree Δ .
The gap between upper and lower bound has been reduced for special families of planar
graphs with bounded degree. Knauer, Micek and Walczak [15] prove that an outerplanar
graph of bounded degree Δ ≥ 4 admits an outerplanar straight-line drawing that uses at
most Δ −1 distinct edge slopes, and this bound is tight. Jelı́nek et al. [13] prove that the
slope number of the planar partial 3-trees of bounded degree Δ is O(Δ 5), while in [17]
it is proved that all partial 2-trees of bounded degree Δ have O(Δ) slope number. Di
Giacomo et al. [7] show that planar graphs of bounded degree Δ ≤ 3 and at least five
vertices have planar slope number four, which is worst case optimal.

� Research supported in part by the MIUR project AMANDA “Algorithmics for MAssive and
Networked DAta”, prot. 2012C4E3KT 001.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 174–185, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Drawing Outer 1-planar Graphs with Few Slopes 175

The research in this paper is motivated by the following observations. The fact that
the best known upper bound on the slope number is O(Δ 5) for planar partial 3-trees
while it is O(Δ) for partial 2-trees suggests to further investigate the planar slope num-
ber of those planar graphs whose treewidth is at most three. Also, the fact that non-
planar drawings may require a number of slopes that is unbounded in Δ while the planar
slope number of planar graphs is bounded in Δ , suggests to study how many slopes may
be needed to construct straight-line drawings that are “nearly-planar” in some sense, i.e.
where only some types of edge crossing are allowed.

We study outer 1-planar graphs that are graphs which admit drawings where each
edge is crossed at most once and each vertex is on the boundary of the outer face (see,
e.g., [2,5,11]). In 2013, Auer et al. [2], and independently Hong et al. [11], presented
a linear-time algorithm to test outer 1-planarity. Both algorithms produce an outer 1-
planar embedding of the graph if it exists. Given an outer 1-planar graph G, we define
the outer 1-planar slope number of G, as the minimum number of distinct slopes re-
quired by any outer 1-planar straight-line drawing of G. We prove the following results.

1. The outer 1-planar slope number of outer 1-planar graphs with maximum degree Δ
is at most 6Δ +12 (Section 3). Since outerplanar drawings are a special case of the
outer 1-planar drawings, this result extends the above mentioned upper bound on
the planar slope number of outerplanar graphs [15].

2. Outer 1-planar drawings are known to be planar graphs and they have treewidth
at most three [2]. We study crossing-free straight-line drawings of outer 1-planar
graphs of bounded degree Δ and show an O(Δ 2) upper bound to the planar slope
number (Section 4). Hence, for this special family, we are able to reduce the general
O(Δ 5) upper bound [13].

Our results are constructive and give rise to linear-time drawing algorithms. Also, it
may be worth recalling that the study of the 1-planar graphs, i.e. those graphs that can
be drawn with at most one crossing per edge, has received a lot of interest in the recent
graph drawing literature (see, e.g., [1,4,8,10,12,16,20]).

In Section 2 we introduce preliminaries. Section 5 lists some open problems. For
reasons of space some proofs are sketched or omitted.

2 Preliminaries and Basic Definitions

A drawing Γ of a graph G = (V,E) is a mapping of the vertices in V to points of the
plane and of the edges in E to Jordan arcs connecting their corresponding endpoints but
not passing through any other vertex. Also, no two edges that share an endpoint cross.
Γ is a straight-line drawing if every edge is mapped to a straight-line segment. Γ is a
planar drawing if no edge is crossed; it is a 1-planar drawing if each edge is crossed at
most once. A planar graph is a graph that admits a planar drawing; a 1-planar graph is
a graph that admits a 1-planar drawing.

A planar drawing of a graph partitions the plane into topologically connected regions,
called faces. The unbounded region is called the outer face. A planar embedding of a
planar graph is an equivalence class of planar drawings that define the same set of faces.
The concept of planar embedding can be extended to 1-planar drawings as follows. In a

176 E. Di Giacomo, G. Liotta, and F. Montecchiani

sμ tμ

(a)

tμ
sμ

(b)

sμ
tμ

(c)

sν tν
tμ

sμ

(d)

Fig. 1. Illustration of Properties 2– 4. The pertinent graph of: (a) an R-node μ; (b) a P-node μ
(case (ii) of Property 3);. (c) a P-node μ that is AOS with respect to sμ ; (d) An S-node ν with a
child μ that is AOS with respect to sμ . Dashed edges cross in the embedding of the graph.

1-planar drawing Γ of a graph G each crossed edge is divided into two edge fragments.
Also in this case, Γ partitions the plane into topologically connected regions, which
we call faces. A 1-planar embedding of a 1-planar graph is an equivalence class of
1-planar drawings that define the same set of faces. An outer 1-planar drawing is a 1-
planar drawing with all vertices on the outer face. An outer 1-plane graph G is a graph
with a given outer 1-planar embedding.

The slope s of a line � is the angle that an horizontal line needs to be rotated counter-
clockwise in order to make it overlap with �. The slope of a segment representing an
edge in a straight-line drawing is the slope of the supporting line containing the segment.

Our drawing techniques use SPQR-trees, whose definition can be found in [6].

Properties of Outer 1-planar Graphs. The structural properties of outer 1-planar
graphs have been studied in [2,11]. In this paragraph we derive properties that hold
in the fixed outer 1-planar embedding setting and that easily follow from the results
in [11]. In Section 4 we will use the same properties explaining how to adapt them to
the planar embedding setting. The following property can be found as Lemma 1 in [11].

Property 1. Let G be an outer 1-plane graph. If G is triconnected, then it is isomorphic
to K4 and it has exactly one crossing.

In what follows we consider a biconnected outer 1-plane graph G and its SPQR-tree
T . Let μ be a node of T , the pertinent graph Gμ of μ is the subgraph of G whose SPQR-
tree (with respect to the reference edge e of μ) is the subtree of T rooted at μ . Notice
that the edge e is not part of Gμ . From now on we assume Gμ to be an outer 1-plane
graph using the embedding induced from G. We give the following definition [11].

Definition 1. A node μ of T is one sided with respect to its poles sμ and tμ , or simply
OS, if the edge (sμ , tμ) is on the outer face of Gμ .

Furthermore, we consider T to be rooted at a Q-node ρ whose (only) child is denoted
by ξ . In particular, we choose ρ to be associated with an edge that is not crossed and
that belongs to the boundary of the outer face of G. It can be shown that such an edge
always exists. This choice implies that ξ is OS by definition. The next property derives
from Lemma 5 in [11] and defines the structure of the skeleton of R-nodes, see also
Figure 1(a).

Property 2. Let μ be an R-node of T . Then: (i) The skeleton σ(μ) is isomorphic to K4

and it has one crossing; (ii) The children of μ are all OS; (iii) Two children of μ are
Q-nodes whose associated edges cross each other in Gμ .

Drawing Outer 1-planar Graphs with Few Slopes 177

Observe that if μ is an R-node of T , then it is always OS. In order to handle P-nodes,
we first need to define a special kind of S-nodes [11].

Definition 2. Let μ be an S-node of T . Let η be the unique child of μ having sμ as a
pole, and let η ′ be the unique child of μ having tμ as a pole. Node μ has a tail at sμ
(tμ), if η (η ′) is a Q-node.

The next property derives from Lemma 6 in [11], see also Figure 1(b).

Property 3. Let μ be an OS P-node of T . One of the following cases holds: (i) μ has
two children one of which is a Q-node and the other one is OS; (ii) μ has two children
and none of them is a Q-node. Then both are OS S-nodes, one of them has a tail at sμ ,
and the other one has a tail at tμ . Also, the two edges associated with these two tails
cross each other in G; (iii) μ has three children and one of them is a Q-node. For the
remaining two children case (ii) applies.

Property 3 is restricted to P-nodes that are OS. However, an internal P-node μ (dif-
ferent from ξ) might not have the edge (sμ , tμ) on the outer face of Gμ [11], see also
Figure 1(c) for an illustration.

Definition 3. Let μ be a P-node of T different from ξ . Node μ is almost one sided with
respect to sμ (tμ), or simply AOS with respect to sμ (tμ), if μ has 2 ≤ k ≤ 4 children,
one of them is an S-node with a tail at sμ (tμ), and for the remaining children one of
the following cases applies: (i) If k = 2, then the other child is OS; (ii) If k > 2, all and
only the cases in Property 3 can apply for the remaining k− 1 children.

Let μ be AOS with respect to sμ (tμ), then, in order to guarantee that the graph is outer
1-planar, the edge associated with the tail at sμ (tμ) crosses another edge, represented
by a Q-node ψ in T , having tμ (sμ) as an end-vertex. This implies that in fact, μ and ψ
are two children of an S-node ν in T [11] (see also Figure 1(d)). This observation will
be used in Section 3 and in the next property, that is derived from Lemma 7 in [11].

Property 4. Let μ be an S-node of T . Let η1,η2, . . . ,ηk be the k children of μ in T , such
that tηi−1 = sηi , for i = 2, . . . ,k. For each 1 ≤ i ≤ k, one of the following cases applies:
(i) ηi is OS; (ii) ηi is AOS with respect to sηi and ηi+1 (i < k) is a Q-node; (iii) ηi is
AOS with respect to tηi and ηi−1 (i > 1) is a Q-node.

An immediate observation from these properties is that every node μ of T different
from ξ is OS if it is an S- or R-node, while it is either OS or AOS if it is a P-node.

3 The Outer 1-planar Slope Number

In this section we first present an algorithm, called BO1P-DRAWER, that takes as input
a biconnected outer 1-plane graph G with maximum degree Δ , and returns a straight-
line drawing Γ of G that uses at most 6Δ slopes. This result is then extended to simply
connected graphs with a number of slopes equal to 6Δ + 12.

178 E. Di Giacomo, G. Liotta, and F. Montecchiani

A Universal Set of Slopes. We define a universal set of slopes used by algorithm
BO1P-DRAWER to draw every biconnected outer 1-plane graph G with maximum de-
gree Δ . Let α = π

2Δ and observe that 0 < α ≤ π
6 when Δ ≥ 3. We call blue slopes

the set of slopes defined as bi = (i − 1)α , for i = 1,2, . . . ,2Δ . For each of the 2Δ
blue slopes, we also define two red slopes as r−i = bi − ε and r+i = bi + ε , for i =
1,2, . . . ,2Δ , where the value of ε only depends on Δ . The union of the blue and red
slopes defines the universal set of slopes SΔ of size 6Δ . We choose ε as follows:

ε = α − arctan
(

tan(α)
1+2 tan(2α) tan(α)−2 tan(α) tan(α)

)
. The reason of this choice will be clari-

fied in the proof of Lemma 3. Clearly, ε depends only on Δ and it is possible to see that
it is a positive value.

Algorithm Overview. Algorithm BO1P-DRAWER exploits SPQR-trees and the struc-
tural properties presented in Section 2. It takes as input a biconnected outer 1-plane
graph G with maximum degree Δ and returns a straight-line drawing Γ of G that uses
only slopes in SΔ . We first construct the SPQR-tree T rooted at a Q-node ρ , whose
(only) child is denoted by ξ . Moreover, the edge associated with ρ is not crossed and
belongs to the boundary of the outer face of G. Then we draw G by visiting T bottom-
up, handling ρ and ξ together as a special case. At each step we process an internal
node μ of T and compute a drawing Γμ of its pertinent graph Gμ by properly combin-
ing the already computed drawings of the pertinent graphs of the children of μ . Let sμ
and tμ be the poles of μ . With a slight overload of notation for the symbol Δ , we denote
by Δ(sμ) and Δ(tμ) the degree of sμ and tμ in Gμ , respectively. For each drawing Γμ we
aim at maintaining the following three invariants. I1. Γμ is outer 1-plane with respect to
the embedding of Gμ . I2. Γμ uses only slopes in SΔ . I3. Γμ is contained in a triangle τμ
such that sμ and tμ are placed at the corners of its base. Also, βμ < (Δ(sμ)+ 1)α and
γμ < (Δ(tμ)+ 1)α , where βμ and γμ are the internal angles of τμ at sμ and tμ .

We now explain how to compute a drawing Γμ of Gμ , by combining the drawings
Γη1 ,Γη2 , . . . ,Γηh of the pertinent graphs Gη1 ,Gη2 , . . . ,Gηh of the children η1,η2, . . . ,ηh

of μ . To this aim, the drawings Γη1 ,Γη2 , . . . ,Γηh are possibly manipulated. First, observe
that the triangle τη j (1 ≤ j ≤ h) can be arbitrarily scaled without modifying the slopes
used in Γη j . Furthermore, due to the symmetric choice of the blue and red slopes, if we
rotate τη j by an angle c ·α , with c integer, the resulting drawing maintains invariant
I2. Namely each blue slope bi, for i = 1,2, . . . ,2Δ , used in τη j will be transformed in
another blue slope bi+c = bi + c ·α = (i− 1+ c)α , where i+ c is considered modulo
2Δ . Similarly, any red slope will be transformed into another red slope. Moreover, let
η1 and η2 be two children of μ . When we draw Gη1 and Gη2 , although they may share
one or both the poles, we consider each graph to have its own copy of its poles. Then,
when computing Γμ , we say that we attach Γη1 to Γη2 if they share either two poles (this
is always true when μ is a P-node) or one pole (this may happen when μ is either an
S- or R-node), meaning that we may scale, shift and rotate Γη1 or Γη2 in such a way that
the points representing the shared poles on the drawing coincide.

As observed in Section 2, all the internal nodes of T are OS except for some P-nodes
which are AOS. Let μ be any of these P-nodes, we know that μ is one of the children
of an S-node, say ν , and it shares a pole with a Q-node, denoted by η (also a children
of ν). We replace μ and η in T with a new node ϕ , that, for the sake of description,
is called an S∗-node. Also, the children of μ become children of ϕ . If μ and η were

Drawing Outer 1-planar Graphs with Few Slopes 179

Γη1 Γηksμ tμ

τμ

(a)

Γψ1 Γψksμ tμ

τμ

α α

(b)

sμ tμ

τμ

α− ε

Γη1
Γη2
α− ε

(c)

sμ tμ

τμ

2α

Γψ
Γη

Γη1

(d)

sμ tμ

τμ

Γη1

Γη2
Γη3

Γη5 Γη4

(e)

Fig. 2. The drawing of the pertinent graph of: (a) an S-node; (b) a P-node with two children such
that one is a Q-node and the other one is an S-node; (c) a P-node with two children such that none
of them is a Q-node; (d) an S∗-node; (e) an R-node. Edges drawn with red slopes are dashed.

the only two children of ν , then we also replace ν with ϕ . The pertinent graph of ϕ is
Gϕ = Gμ ∪Gη , while the reference edge of ϕ is (sμ , tη), if μ is AOS with respect to sμ ,
or (sη , tμ), if μ is AOS with respect to tμ . It is easy to see that ϕ is OS. By means of this
transformation we can consider only P-nodes that are OS. Similarly we can handle just
S-nodes whose children are OS. In what follows we distinguish between S-, P-, S∗-, and
R-nodes different from ξ .

Lemma 1. Let μ be an S-node different from ξ . Then Gμ admits a straight-line drawing
Γμ that respects Invariants I1., I2. and I3.

Proof sketch: The drawings of the pertinent graphs of the children η1,η2, . . . ,ηk of μ
are attached to each other as shown in Figure 2(a). Clearly all invariants hold. ��

Lemma 2. Let μ be a P-node different from ξ . Then Gμ admits a straight-line drawing
Γμ that respects Invariants I1., I2. and I3.

Proof sketch: Recall that, thanks to the definition of S∗-nodes, here we need to only
handle only P-nodes that are OS. By Property 3, one of the following cases applies: (i)
μ has two children one of which is a Q-node and the other one is OS. (ii) μ has two
children and none of them is a Q-node. Then both are OS S-nodes, one of them has a
tail at sμ , and the other one has a tail at tμ . Also, the two edges associated with these
two tails cross each other in G. (iii) μ has three children and one of them is a Q-node.
For the remaining two children case (ii) applies.

Case (i) can be easily handled as shown in Figure 2(b). Consider case (ii) and let η1

be the child of μ that is an S-node with a tail at tμ , and η2 be the child of μ that is an S-
node with a tail at sμ . Refer to Figure 2(c). Recall that sη1 = sη2 = sμ and tη1 = tη2 = tμ .
We modify the drawing Γη1 as follows. We first rotate Γη1 so that the segment sη1 tη1 uses
the blue slope b2. Then we redraw the tail of η1 using the red slope r+2Δ = b2Δ + ε and
so that sη1 and tη1 are horizontally aligned. Similarly, we modify the drawing Γη2 . We
rotate Γη2 so that the segment sη2tη2 uses the blue slope b2Δ and redraw the tail of η2

180 E. Di Giacomo, G. Liotta, and F. Montecchiani

using the red slope r−2 = b2− ε and so that sη2 and tη2 are horizontally aligned. Finally,
we attach Γη1 and Γη2 (possibly scaling one of them). Invariants I1. and I2. hold by
construction. Also, Γμ is contained in a triangle τμ such that sμ and tμ are placed at the
corners of its base. Moreover, we have that Δ(sμ) = Δ(sη1)+ 1, and βμ = βη1 +α <
Δ(sη1 + 1)α +α = Δ(sη1 + 2)α = Δ(sμ + 1)α . Similarly, Δ(tμ) = Δ(tη2) + 1, and
γμ = γη2 +α < Δ(tη2 + 1)α +α = Δ(tη2 + 2)α = Δ(tμ + 1)α . Hence, Invariant I3.
holds. In case (iii) we can use the same construction as in case (ii). Notice that the edge
(sμ , tμ) can be safely drawn using the horizontal blue slope b1. All invariants hold. ��

Lemma 3. Let μ be an S∗-node different from ξ . Then Gμ admits a straight-line draw-
ing Γμ that respects Invariants I1., I2. and I3.

Proof. Refer to Figure 2(d). Denote by η the child of μ that is an S-node with a tail
at either sμ or tμ . Suppose that η has a tail at tμ (the case when the tail is at sμ is
symmetric). Denote by ψ the child of μ that is a Q-node having tψ = sη and sψ = sμ
as poles. Finally denote by η1,η2, . . . ,ηk the remaining children of μ . Recall that sη1 =
sηi = sηk and that tη1 = tηi = tηk . If k = 1, we first rotate Γη1 so that the segment sη1tη1

uses the blue slope b2Δ . If k > 1, we combine the drawings Γη1 ,Γη2 , . . . ,Γηk with the
same technique described for P-nodes (recall that indeed they were children of a P-
node before the creation of the S∗-node), and, again, we rotate the resulting drawing so
that the base of its bounding triangle uses the blue slope b2Δ . Then we attach Γη to Γη1

(after Γη has been horizontally flipped). Also, we scale Γη so that its tail can be redrawn
by using the red slope r+2Δ and such that tη = tμ coincides with tη1 = tηk . Finally, we
redraw the edge associated with ψ , starting from the point representing tψ = sη , using
the red slope r−2 and stretch it enough that sψ = sμ and tμ are horizontally aligned.
See also Figure 2(d) for an illustration. Invariants I1. and I2. hold by construction.
Consider now Invariant I3.. By construction Γμ is contained in a triangle τμ such that
sμ and tμ are placed at the corners of its base. For the sake of description, in what
follow we still denote by Γη the drawing of Gη minus the tail of η (i.e., minus an
edge), and as τη the surrounding triangle of Γη . To prove the second part of Invariant
I3., we should prove that the line � passing through sμ with slope b3 = 2α does not
cross the drawing of Γη , i.e., is such that Γη is placed in the half-plane H defined
by � and containing the segment sμtμ . Denote by δx the horizontal distance between
the point where sμ is drawn and the leftmost endpoint of τη . Also, denote by hη the
height of τη . Our condition is satisfied if the following inequality holds tan(2α)δx ≥
tan(α)δx+ hη . Let wη be the length of the base of τη , in the worst case (the case that
maximizes hη), we have that hη =

wη
2

1
tan (α) , which means that the degree of the two

vertices placed as endpoints of the base of τη is Δ . Moreover, it is possible to see that

wη = tan (α)δx−tan (α−ε)δx
tan (α−ε) . Substituting wη in hη and hη in the above inequality we have:

tan(2α) ≥ tan(α) +
tan (α)−tan (α−ε)
2 tan (α−ε) tan (α) . With some manipulation we get: tan(α − ε) ≥

tan (α)
2 tan(2α) tan (α)−2 tan(α) tan (α)+1 . Now, since the tangent function is strictly increasing in

(− π
2 ,

π
2), we have: ε ≤ α − arctan

(
tan (α)

2 tan(2α) tan (α)−2 tan (α) tan (α)+1

)
. Since the value of

ε has been chosen equal to the right-hand side of the above inequality, the inequality
holds. Hence, βμ < 2α = (Δ(sμ)+1)α (since Δ(sμ) = 1). With a symmetric argument

Drawing Outer 1-planar Graphs with Few Slopes 181

one can prove that the line �′ passing through tμ with slope b2Δ−1 =
(Δ−1)π

Δ does not
cross the drawing of Γη . Since Δ(tμ) = Δ(tηk)+1, and γμ = γηk +α < (Δ(tηk)+1)α +
α = (Δ(tηk)+ 2)α = (Δ(tμ)+ 1)α , Invariant I3. holds. ��
Lemma 4. Let μ be an R-node different from ξ . Then Gμ admits a straight-line draw-
ing Γμ that respects Invariants I1., I2. and I3.

Proof. Refer to Figure 2(e). Recall that, by Property 2, (i) the skeleton σ(μ) is isomor-
phic to K4 and it has one crossing; (ii) the children of μ are all OS; (iii) two children
of μ are Q-nodes whose associated edges cross each other in Gμ . Hence, denote by
η1,η2,η3 the three children of μ whose associated virtual edges lie on the boundary of
the outer face of σ(μ) with sμ = sη1 , tη1 = sη2 , tη2 = sη3 , and tη3 = tμ . Also, denote by
η4 and η5 the two children of μ that are Q-nodes whose associated edges cross each
other in Gμ , and so that the poles of η4 coincides with tη1 and tη3 , while the poles of η5

coincides with tη2 and sη1 . We rotate Γη1 in such a way that the segment sν1 tν1 uses the
blue slope b2. Similarly, we rotate Γη3 in such a way that the segment sη3 tη3 uses the
blue slope b2Δ . Furthermore, we scale one of the two drawings so that tη1 and sη3 are
horizontally aligned. Moreover, we redraw the edge associated with η4 by using the red
slope r+2Δ and we redraw the edge associated with η5 by using the red slope r−2 . Observe
that, attaching η4 and η5 to η1 and η3, the length of the segment tη1sη3 is determined.
Thus, we attach Γη2 so that sη2 coincides with tη1 and that tη2 coincides with sη3 .

It is easy to see that Invariant I1. and I2. are respected by construction. Concerning
Invariant I3., again by construction Γμ is contained in a triangle τμ such that sμ and
tμ are placed at the corners of its base. Moreover, with the same argument used in
the proof of Lemma 3, one can show that βμ = βη1 +α and that γμ = γη3 +α . Since
Δ(sμ) = Δ(η1)+ 1 and Δ(tμ) = Δ(η3)+ 1, Invariant I3. holds. ��
Lemma 5. Let ρ be the root of T and let ξ be its unique child. Graph G = Gρ ∪Gξ
admits a straight-line drawing Γ that respects Invariants I1., I2. and I3.

Proof sketch: It is possible to prove that at least one edge (s, t) of the outer face of G is
not crossed. If we root T at the Q-node associated with (s, t), the root’s child ξ is OS
and a drawing of Gρ ∪Gξ can be computed as in Lemmas 1, 2, 3, and 4. ��

Lemma 6. Let G be a biconnected outer 1-plane graph with n vertices and with max-
imum degree Δ . G admits an outer 1-planar straight-line drawing that maintains the
given outer 1-planar embedding, and that uses at most 6Δ slopes. Also, this drawing
can be computed in O(n) time.

Proof sketch: By Lemmas 1, 2, 3, 4, and 5, G has an outer 1-planar straight-line drawing
that maintains the embedding, with at most 6Δ slopes. ��

A simply connected outerplane graph can be augmented (in linear time) into a bi-
connected outerplane graph by adding edges so that the maximum degree is increased
by at most two. This technique can be directly applied also to outer 1-plane graphs.

Theorem 1. Let G be an outer 1-plane graph with n vertices and with maximum degree
Δ . G admits an outer 1-planar straight-line drawing that maintains the given outer 1-
planar embedding, and that uses at most 6Δ + 12 slopes. Also, this drawing can be
computed in O(n) time.

182 E. Di Giacomo, G. Liotta, and F. Montecchiani

4 The Planar Slope Number

In this section we describe an algorithm, called BP-DRAWER, that computes a planar
drawing of an outer 1-planar graph G, using at most 4Δ 2−4Δ slopes. This result is then
extended to simply connected graphs with a number of slopes equal to 4Δ 2 + 12Δ + 8.

A Universal Set of Slopes. We start by defining a universal set of slopes that are used
by algorithm BP-DRAWER. Let θ = π

4Δ and observe that 0 < θ ≤ π
12 when Δ ≥ 3. We

call green slopes the set of slopes defined as gi = (i−1)θ , for i = 1,2, . . . ,4Δ . For each

green slope gi, we define Δ − 1 yellow slopes as yi, j = gi + arctan
(

tan(g4Δ) tan(g3)
tan(g j)

)
with

j = 3Δ , . . . ,4Δ −2. The reason of this choice will be clarified in the proof of Lemma 10.
The union of the green and yellow slopes defines the universal set of slopes TΔ . It is
possible to see that gi < yi, j < gi+1, for each 1 ≤ i < 4Δ and 3Δ ≤ j ≤ 4Δ − 2.

Algorithm Overview. Algorithm BP-DRAWER takes as input a biconnected outer 1-
plane graph G with maximum degree Δ and returns a planar straight-line drawing Γ
of G that uses only slopes in TΔ . As in Section 3 we construct the SPQR-tree T of
G rooted at a Q-node associated with an edge that is not crossed and belongs to the
boundary of the outer face of G in the outer 1-planar embedding of G. Then we draw G
by visiting T bottom-up. At each internal node μ of T we compute a drawing Γμ of Gμ
by combining the already computed drawings of the pertinent graphs of the children
of μ . For each drawing Γμ we maintain the following three invariants: Ia. Γμ is planar.
Ib. Γμ uses only slopes in TΔ . Ic. Γμ is contained in a triangle τμ such that sμ and tμ
are placed at the corners of its base. Also, βμ < (Δ(sμ)− 1)θ and γμ < (Δ(tμ)− 1)θ ,
where βμ and γμ are the internal angles of τμ at sμ and tμ , respectively.

As in Section 3 the root ρ of T and its unique child ξ will be handled in a special
way. Also, in order to construct Γμ we may shift, scale and rotate the drawings of the
pertinent graphs of the children of μ . We observe that if we rotate τμ by an angle
c · θ , with c integer, the resulting drawing maintains invariant Ib. Namely each green
slope gi, for i = 1,2, . . . ,4Δ , used in τμ will be transformed in another green slope
gi+c = gi + c · θ = (i− 1+ c)θ , where i+ c is considered modulo 4Δ . Similarly, any
yellow slope yi, j will be transformed into another yellow slope yi+c, j.

Before describing how the drawing of the pertinent graph of each node μ is obtained
by combining the drawing of the pertinent graphs of its children, we observe that the
structural properties described in Properties 2, 3, or 4 hold, depending on the type of
μ . However, since we want to produce a planar drawing, our algorithm embeds each
pertinent graph in a planar way. One of the consequence of this fact is that we no longer
need to introduce S∗-nodes; namely, the P-nodes that are AOS in the outer 1-planar
embedding must be embedded in a planar way and therefore they do not need to be
handled in a special way anymore. On the other hand, we need to distinguish between
R-nodes whose poles are adjacent in G and R-nodes whose poles are not adjacent in G.
For this reason we introduce R∗-nodes. Let μ be an R-node; if the poles sμ and tμ of μ
are adjacent in G, then the parent ν of μ is a P-node that has (at least) another child η
that is a Q-node (the edge associated with η is (sμ , tμ)). We replace μ and η in T with
a new node ϕ , that, for the sake of description, is called an R∗-node. Also, the children
of μ become children of ϕ . If μ and η were the only two children of ν , then we also

Drawing Outer 1-planar Graphs with Few Slopes 183

sμ tμ

τμ

Γη1
Γη2

θ

Δ(sη1)θ

(a)

sμ tμ

τμ

Γη1

Γη2

θ

Δ(sη1)θ

(b)

sμ tμ

τμ

Γ′μ

Δ′(tμ)θ
Γη

Δ′(sμ)θ

(c)

sμ tμ

Γη1
Γη3

Γη2

τμ

θ

Δ(tη3)θ

(d)

2θsμ tμ

Γη3

Γη2τμ Δ(tη3)θ

Γη1
θ

(e)

sμ tμ

sη5

sη3

δx2 δx1

g3
φ gj
g2

(f)

Fig. 3. The planar drawing of the pertinent graph of: (a) a P-node with two children such that none
of them is a Q-node; (b) a P-node with three children, one of which is a Q-node; (c) a P-node
that is AOS in the outer 1-planar embedding of G; (d) an R-node; (e) an R∗-node. (f) Illustration
for the proof of Lemma 10.

replace ν with ϕ . The pertinent graph of ϕ is Gϕ = Gμ ∪Gη , and the reference edge of
ϕ is (sμ , tμ). We now explain how the different types of node are handled.

The proof of next lemmas are omitted. An illustration of how Γμ is constructed is
shown in Figures 2(a) and 3.

Lemma 7. Let μ be an S-node different from ξ . Then Gμ admits a straight-line drawing
Γμ that respects Invariants Ia., Ib. and Ic.

Lemma 8. Let μ be a P-node different from ξ . Then Gμ admits a straight-line drawing
Γμ that respects Invariants Ia., Ib. and Ic.

Lemma 9. Let μ be an R-node different from ξ . Then Gμ admits a straight-line draw-
ing Γμ that respects Invariants Ia., Ib. and Ic.

Lemma 10. Let μ be an R∗-node different from ξ . Then Gμ admits a straight-line
drawing Γμ that respects Invariants Ia., Ib. and Ic.

Proof. Since μ is an R∗-node, it is obtained by merging an R-node μ ′ and a Q-node
representing the edge (sμ ′ , tμ ′). By Property 2, the skeleton σ(μ ′) of μ ′ is isomorphic to
K4 and two children of μ ′ are Q-nodes. The two edges corresponding to these Q-nodes
do not share an end vertex and each one of them is incident to a distinct pole of μ . Let
η1,η2,η3,η4, and η5 be the children of μ ′; we assume that η4 and η5 are the two Q-
nodes. Also, μ has a sixth child η6 that is a Q-node corresponding to the edge (sμ , tμ).
We assume that sμ = sη1 = sη4 , tμ = tη3 = tη5 , tη1 = tη2 = sη5 , and tη4 = sη2 = sη3 .
We construct a drawing of Gμ as follows (see Figure 3(e)). We rotate Γη3 so that the
segment sη3tη3 uses the green slope g4Δ , and draw the edge associated with η5 as a
segment whose slope is the green slope (4Δ −Δ(tη3))θ and whose length is such that
sη5 is vertically aligned with sη3 . We rotate Γη2 so that the segment sη2 tη2 uses the green
slope g2Δ+1 =

π
2 . We then attach Γη2 , Γη3 , and Γη5 (possibly scaling some of them). We

draw the edge corresponding to η6 with the horizontal slope g1 and stretch it so that

184 E. Di Giacomo, G. Liotta, and F. Montecchiani

sη6 = sμ belongs to the line with slope g2 passing through sη5 . We now rotate Γη1 so
that the segment sη1 tη1 uses the green slope g2 and attach it to Γη5 and Γη6 . Finally, the
edge corresponding to η4 is drawn as the segment sμsη3 . Invariant Ia. holds because the
drawings Γη1 , Γη2 , Γη3 , Γη4 , Γη5 , and Γη6 do not intersect each other except at common
endpoints. About this, let τ be the triangle defined by the three vertices sμ , sη3 , and
sη5 ; it is easy to see that Γη2 is completely contained inside τ except for the segment
sη3sη5 that Γη2 shares with τ . Namely the angle inside τ at sη3 is π

2 +θ , while the angle
inside τ at sη5 is at least π

4 (because the angle inside τ at sμ is θ and 2θ < π
4). Since

βη2 <
π
4 and γη2 <

π
4 , the triangle τη2 is completely inside τ except for the vertical side

shared by the two triangles. Concerning Invariant Ib., we observe that Γη1 , Γη2 , Γη3 ,
Γη4 , and Γη5 are rotated by an angle that is a multiple of θ and therefore Ib. holds by
construction for each of them. We now show that the slope φ of the edge corresponding
to η4 is in fact either a green slope or a yellow one (refer to Figure 3(f)). Let δx1 be the
horizontal distance between sη3 and tμ and let δx2 be the horizontal distance between sμ
and sη3 . By simple trigonometry we have δx1 tan(g4Δ) = δx2 tan(φ) and δx1 tan(g j) =
δx2 tan(g3), where g j is the slope of the segment representing the edge corresponding
to η5 (and therefore j = 4Δ − Δ(tη3)). From the two previous equations we obtain

tan(φ) = tan(g4Δ) tan(g3)
tan(g j)

. Notice that 1 ≤ Δ(tη3) ≤ Δ and therefore 3Δ ≤ j ≤ 4Δ − 1. If

j = 4Δ −1, then tan(g3) =− tan(g j) and tan(φ) =− tan(g4Δ) = tan(g2), hence φ = g2,

i.e., φ is a green slope. Otherwise φ = arctan
(

tan(g4Δ) tan(g3)
tan(g j)

)
= and therefore φ is the

yellow slope y1, j (recall that g1 = 0). Concerning Invariant Ic., we have that Δ(sμ) =
Δ(sη1)+2 and Δ(tμ) = Δ(tη3)+2. Moreover, βμ = βη1 +2θ ≤ (Δ(sη1)−1)θ +2θ =
(Δ(sμ)− 1)θ . Finally, γμ = γη3 + 2θ ≤ (Δ(tη3)− 1)θ + 2θ = (Δ(tμ)− 1)θ . ��
Lemma 11. Let ρ be the root of T and let ξ be its unique child. Graph G = Gρ ∪Gξ
admits a straight-line drawing Γ that respects Invariants Ia., Ib. and Ic.

By Lemmas 7, 8, 9, 10, and 11, we can prove the following lemma.

Lemma 12. Let G be a biconnected outer 1-plane graph with n vertices and with max-
imum degree Δ . G admits a planar straight-line drawing that uses at most 4Δ 2 − 4Δ
slopes. Also, this drawing can be computed in O(n) time.

The result above can be extended to simply connected outer 1-planar graph with the
same technique described in Section 3. We obtain the following theorem.

Theorem 2. Let G be an outer 1-plane graph with n vertices and with maximum degree
Δ . G admits a planar straight-line drawing that uses at most 4Δ 2 + 12Δ + 8 slopes.
Also, this drawing can be computed in O(n) time.

5 Open Problems

An interesting open problem motivated by our result of Section 3 is whether the 1-
planar slope number of 1-planar straight-line drawable graphs (not all 1-planar graphs
admit a 1-planar straight-line drawing [12]), is bounded in Δ or not. A second problem
is whether the quadratic upper bound of Section 4 is tight or not. Finally, it could be
interesting to further explore trade-offs between slopes and crossings, e.g., can we draw
planar partial 3-trees with o(Δ 5) slopes and a constant number of crossings per edge?

Drawing Outer 1-planar Graphs with Few Slopes 185

References

1. Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line grid drawings of 3-connected
1-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 83–94.
Springer, Heidelberg (2013)

2. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Reisl-
huber, J.: Recognizing outer 1-planar graphs in linear time. In: Wismath, S., Wolff, A. (eds.)
GD 2013. LNCS, vol. 8242, pp. 107–118. Springer, Heidelberg (2013)

3. Barát, J., Matousek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large geometric
thickness. The Electronic Journal of Combinatorics 13(1) (2006)

4. Brandenburg, F.-J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.:
On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012.
LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg (2013)

5. Dehkordi, H.R., Eades, P.: Every outer-1-plane graph has a right angle crossing drawing.
International Journal on Computational Geometry and Applications 22(6), 543–558 (2012)

6. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM Journal on Computing 25(5),
956–997 (1996)

7. Di Giacomo, E., Liotta, G., Montecchiani, F.: The planar slope number of subcubic graphs. In:
Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 132–143. Springer, Heidelberg
(2014)

8. Didimo, W.: Density of straight-line 1-planar graph drawings. IPL 113(7), 236–240 (2013)
9. Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Computational

Geometry 38(3), 181–193 (2007)
10. Eades, P., Hong, S.-H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: Testing maximal

1-planarity of graphs with a rotation system in linear time. In: Didimo, W., Patrignani, M.
(eds.) GD 2012. LNCS, vol. 7704, pp. 339–345. Springer, Heidelberg (2013)

11. Hong, S.-H., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time al-
gorithm for testing outer-1-planarity. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 71–82. Springer, Heidelberg (2013)

12. Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs. In: Gud-
mundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 335–346.
Springer, Heidelberg (2012)

13. Jelı́nek, V., Jelı́nková, E., Kratochvı́l, J., Lidický, B., Tesar, M., Vyskocil, T.: The planar
slope number of planar partial 3-trees of bounded degree. Graphs and Combinatorics 29(4),
981–1005 (2013)

14. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few
slopes. SIAM Journal on Discrete Mathematics 27(2), 1171–1183 (2013)

15. Knauer, K.B., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes. Compu-
tational Geometry 47(5), 614–624 (2014)

16. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity
testing. Journal of Graph Theory 72(1), 30–71 (2013)

17. Lenhart, W., Liotta, G., Mondal, D., Nishat, R.: Planar and plane slope number of partial
2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 412–423. Springer,
Heidelberg (2013)

18. Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes. In: van
Kreveld, M.J., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 254–265. Springer,
Heidelberg (2011)

19. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. The
Electronic Journal of Combinatorics 13(1) (2006)

20. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Comb. 17(3), 427–439 (1997)
21. Wade, G.A., Chu, J.-H.: Drawability of complete graphs using a minimal slope set. The

Computer Journal 37(2), 139–142 (1994)

Fan-Planar Graphs: Combinatorial Properties
and Complexity Results�

Carla Binucci1, Emilio Di Giacomo1, Walter Didimo1, Fabrizio Montecchiani1,
Maurizio Patrignani2, and Ioannis G. Tollis3

1 Università degli Studi di Perugia, Italy
{carla.binucci,emilio.digiacomo,

walter.didimo,fabrizio.montecchiani}@unipg.it
2 Università Roma Tre, Italy

patrigna@dia.uniroma3.it
3 Univ. of Crete and Institute of Computer Science-FORTH, Greece

tollis@ics.forth.gr

Abstract. In a fan-planar drawing of a graph an edge can cross only edges with
a common end-vertex. Fan-planar drawings have been recently introduced by
Kaufmann and Ueckerdt, who proved that every n-vertex fan-planar drawing has
at most 5n − 10 edges, and that this bound is tight for n ≥ 20. We extend their
result from both the combinatorial and the algorithmic point of view. We prove
tight bounds on the density of constrained versions of fan-planar drawings and
study the relationship between fan-planarity and k-planarity. Also, we prove that
testing fan-planarity in the variable embedding setting is NP-complete.

1 Introduction

There is a growing interest in the study of non-planar drawings of graphs with forbidden
crossing configurations. The idea is to relax the planarity constraint by allowing edge
crossings that do not affect too much the drawing readability. Among the most popular
types of non-planar drawings studied so far we recall: k-planar drawings, where an
edge can have at most k crossings (see, e.g., [5,8,9,10,16,18,22,26,27,29,30,32]);
k-quasi-planar drawings, which do not contain k mutually crossing edges (see,
e.g., [1,3,4,15,24,33]); RAC drawings, where edges can cross only at right angles (see,
e.g., [19] and [20] for a survey); ACEα drawings [2] and ACLα drawings [6,14,21],
which are generalizations of RAC drawings; namely, in an ACEα drawing edges can
cross only at an angle that is exactly α (α ∈ (0, π/2]); in an ACLα drawing edges can
cross only at angles that are at least α (see also [20]); fan-crossing free drawings, where
there cannot be an edge that crosses two other edges with a common end-vertex [11].

Given a desired type T of non-planar drawing with forbidden crossing configu-
rations, a classical combinatorial problem is to establish bounds on the maximum

� Research supported in part by the MIUR project AMANDA “Algorithmics for MAssive and
Networked DAta”, prot. 2012C4E3KT 001. This work started at the Bertinoro Workshop on
Graph Drawing 2014. We thank Michael Kaufmann and Torsten Ueckerdt for suggesting the
study of fan-planar graphs during the workshop. We also thank all the participants of the
workshop for the useful discussions on this topic.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 186–197, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Fan-Planar Graphs: Combinatorial Properties and Complexity Results 187

(a) (b)

Fig. 1. (a) A fan-planar drawing of a graph G with 12 crossings; (b) A confluent drawing of G
with 3 crossings

number of edges that a drawing of type T can have; this problem is usually dubbed
a Turán-type problem, and several tight bounds have been proved for the types
of drawings mentioned above, both for straight-line and for polyline edges (see,
e.g., [1,2,4,10,11,18,19,21,24,30,33]). From the algorithmic point of view, the com-
plexity of testing whether a graph G admits a drawing of type T is one of the most
interesting. Also for this problem several results have been shown, both in the variable
and in the fixed embedding setting (see, e.g., [8,12,13,25,26,29]).

In this paper we investigate fan-planar drawings of graphs, in which an edge can-
not cross two independent edges, i.e., an edge can cross several edges provided that
they have a common end-vertex. Fan-planar drawings have been recently introduced
by Kaufmann and Ueckerdt [28]; they proved that every n-vertex graph without loops
and multiple edges that admits a fan-planar drawing has at most 5n − 10 edges, and
that this bound is tight for n ≥ 20. Fan-planar drawings are on the opposite side of
fan-crossing free drawings mentioned above. Besides its intrinsic theoretical interest,
we observe that fan-planarity can be also used for creating drawings with few edge
crossings in a confluent drawing style (see, e.g., [17,23]). For example, Fig. 1(a) shows
a fan-planar drawing Γ with 12 crossings; Fig. 1(b) shows a new drawing with just 3
crossings obtained from Γ by bundling crossing “fans”.

We prove both combinatorial properties and complexity results related to fan-planar
drawings of graphs. The main contributions of our work are as follows:

(i) We study the density of constrained versions of fan-planar drawings (Sec. 3), namely
outer fan-planar drawings, where all vertices must lie on the external boundary of the
drawing, and 2-layer fan-planar drawings, where vertices are placed on two distinct
horizontal lines and edges are vertically monotone lines. We prove tight bounds for
the edge density of these drawings. Namely, we show that n-vertex outer fan-planar
drawings have at most 3n − 5 edges (a tight bound for n ≥ 5), and that n-vertex 2-
layer fan-planar drawings have at most 2n − 4 edges (a tight bound for n ≥ 3). We
remark that outer and 2-layer non-planar drawings have been previously studied in the
1-planarity setting [8,18,26] and in the RAC planarity setting [12,13].

(ii) Since general fan-planar drawable graphs have at most 5n− 10 edges and the same
bound holds for 2-planar drawable graphs [30], we investigate the relationship between
these two graph classes. More in general, we are able to prove that in fact for any k ≥ 2
there exist fan-planar drawable graphs that are not k-planar, and vice versa (Sec. 4).

188 C. Binucci et al.

(iii) Finally, we show that testing whether a graph admits a fan-planar drawing in the
variable embedding setting is NP-complete (Sec. 5).

Preliminaries are in Sec. 2. Open problems can be found in Sec. 6. For space reasons
some proofs are sketched or omitted.

2 Preliminary Definitions and Results

A drawing Γ of a graph G maps each vertex to a distinct point of the plane and each
edge to a simple Jordan arc between the points corresponding to the end-vertices of the
edge. For a subgraphG′ ofG, we denote by Γ [G′] the restriction of Γ toG′. Throughout
the paper we consider only simple graphs, i.e., graphs with neither multiple edges nor
self-loops; also we only consider simple drawings, i.e., drawings such that the arcs
representing two edges have at most one point in common, which is either a common
end-vertex or a common interior point where the two arcs properly cross each other.

For each vertex v of G, the set of edges incident to v is called the fan of v. Clearly,
each edge (u, v) of G belongs to the fan of u and to the fan of v at the same time. Two
edges that do not share a vertex are called independent edges; two independent edges
always belong to distinct fans. A fan-planar drawing Γ of G, is a drawing of G such
that: (a) no edge is crossed by two independent edges; (b) there are not two adjacent
edges (u, v), (u,w) that cross an edge e from different “sides” while moving from u to
v and from u to w. The forbidden configurations (a) and (b) are depicted in Fig. 2(a)
and Fig. 2(b), respectively. Figures 2(c) and 2(d) show two allowed configurations of a
fan-planar drawing. A fan-planar graph is a graph that admits a fan-planar drawing.

(a)

u

v

w
x

y

(b) (c) (d)

Fig. 2. (a)-(b) Forbidden configurations in a fan-planar drawing: (c)-(d) Allowed configurations
in a fan-planar drawing

The next property immediately follows from the definition of fan-planar drawings.

Property 1. A fan-planar drawing does not contain 3-mutually crossing edges.

Let Γ be a non-planar drawing of G; the planar enhancement Γ ′ of Γ is the drawing
obtained from Γ by replacing each crossing point with a dummy vertex. The boundary
of each face f ′ of Γ ′ consists of a sequence of real and dummy vertices; the connected
region f of the plane that corresponds to f ′ in Γ consists of a sequence of vertices and
crossing points. For simplicity we call f a face of Γ . The outer face of Γ is the face
corresponding to the outer face of Γ ′. A fan-planar drawing of G with all vertices on the

Fan-Planar Graphs: Combinatorial Properties and Complexity Results 189

outer face is called an outer fan-planar drawing of G. Observe that the configuration in
Fig. 2(b) cannot occur in a drawing with all vertices on the outer face; hence, a drawing
is outer fan-planar if and only if all vertices are on the outer face and it does not contain
an edge crossed by two independent edges. An outer fan-planar graph is a graph that
admits an outer fan-planar drawing. An outer fan-planar graph G is maximal, if no edge
can be added to G without loosing the property that G remains outer fan-planar. An
outer fan-planar graph G with n vertices is maximally dense if it has the maximum
number of edges among all outer fan-planar graphs with n vertices. If G is maximally
dense then it is also maximal, but not vice versa. The following property holds.

Lemma 1. Let G = (V,E) be a maximal outer fan-planar graph and let Γ be an outer
fan-planar drawing of G. The outer face of Γ does not contain crossing points, i.e., it
consists of |V | uncrossed edges.

Given an outer fan-planar drawing Γ of a maximal outer fan-planar graph G, the
edges of G on the external boundary of Γ will be also called the outer edges of Γ .

A 2-layer fan-planar drawing is a fan-planar drawing such that: (i) each vertex is
drawn on one of two distinct horizontal lines, called layers; (ii) each edge connects
vertices of different layers and it is drawn as a vertical monotone curve. By definition,
a 2-layer fan-planar drawing is also an outer fan-planar drawing. A 2-layer fan-planar
graph is a graph that admits a 2-layer fan planar drawing.

3 Density of Outer and 2-layer Fan-Planar Graphs

We first prove that an n-vertex outer fan-planar graph G has at most 3n−5 edges. Then
we describe how to construct outer fan-planar graphs with n vertices and 3n− 5 edges.

Let G be a graph and let Γ be a drawing of G. The crossing graph of Γ , denoted as
CR(Γ), is a graph having a vertex for each edge of G and an edge between any two
vertices whose corresponding edges cross in Γ . A cycle of CR(Γ) of odd length will
be called an odd cycle of CR(Γ); similarly, an even cycle of CR(Γ) is a cycle of even
length. In order to prove the 3n − 5 upper bound, we can assume that G is a maxi-
mally dense outer fan-planar graph. We start by proving some interesting combinatorial
properties of G related to the cycles of the crossing graph of G.

Lemma 2. Let G = (V,E) be a maximal outer fan-planar graph with n = |V | vertices
and m = |E| edges. Let Γ be an outer fan-planar drawing of G. If CR(Γ) does not
have odd cycles then m ≤ 3n− 6.

Proof. If CR(Γ) does not contain odd cycles, then it is bipartite and its vertices can be
partitioned into two independent sets W1 and W2. Since by Lemma 1 the outer edges of
Γ are not crossed, they correspond to n isolated vertices in CR(Γ). We can arbitrarily
assign all these vertices to the same set, say W1. Denote by Ei the set of edges of G
corresponding to the vertices of Wi (i ∈ {1, 2}). Clearly, E1 and E2 partition the set
E. Since no two edges of Ei cross in Γ , then the two subgraphs G1 = (V,E1) and
G2 = (V,E2) are outerplanar graphs, where |E1| ≤ 2n − 3 and |E2| ≤ 2n − 3 − n.
Thus, m = |E| = |E1|+ |E2| ≤ 3n− 6. ��

The next lemma shows that the length of any odd cycle of CR(Γ) is at most 5.

190 C. Binucci et al.

Lemma 3. Let G be a maximally dense outer fan-planar graph with n vertices and let
Γ be an outer fan-planar drawing of G. CR(Γ) does not contain odd cycles of length
greater than 5.

Proof. Let C be an odd cycle of length � in CR(Γ). Let E(C) = {e0 =
(u0, v0), . . . , e�−1 = (u�−1, v�−1)} be the set of � edges of G corresponding to
the vertices of C, such that ei crosses ei+1 for i = 0, . . . , l − 1, where indices are
taken modulo �. Recall that all vertices of G are on the outer face of Γ , which implies
that the end-vertices of the edges in E(C) are encountered in the following order when
walking clockwise on the boundary of the outer face of Γ : ui precedes vi−1 and vi
precedes ui+2 (see, e.g., Fig. 3(a)). Furthermore, vertices vi and ui+2 must coincide,
for i = 0, . . . , �− 1. Indeed, if vi and ui+2 are distinct, for some i = 0, . . . , �− 1, then
edge ei+1 is crossed by two independent edges (i.e., ei and ei+2), which contradicts the
hypothesis that Γ is fan-planar. See also Fig. 3(a). Thus, we have that ui precedes ui+1

while walking clockwise on the boundary of the outer face of Γ , for i = 0, . . . , � − 1,
as shown in Fig. 3(b). Moreover, it can be seen that the edges in E(C) are not crossed
by any edge not in E(C), as otherwise the drawing would not be fan-planar.

u0

u1 u2

u3

u4
u5

u6

e0

e2

e3

e4

e1

e5

e6

v6 v0

v1

v2

v3

v4

v5

(a)

u0

u1 u2

u3

u4

u5

u6

e0
e2

e3

e4

e1

e5

e6

(b)

Fig. 3. Illustration for the proof of Lemma 3. (a) An edge set E(C) with � = 7. If v3 and u5 do
not coincide, e4 (dashed) is crossed by the two independent edges e3 and e5 (in bold). (b) E(C)
with � = 7, where vi coincides with ui+2, for i = 0, . . . , 7.

Now, suppose by contradiction that � is odd and greater than 5 (see Fig. 3(b)). Con-
sider a vertex ui, for some i = 0, . . . , �−1, and denote by V the set of vertices encoun-
tered between ui+3 and ui−3 while walking clockwise on the boundary of the outer
face of Γ (including ui+3 and ui−3). Vertex ui cannot be adjacent to any vertex in V .
Namely, if an edge e = (ui, uj) existed, for some uj ∈ V , then it would be crossed by
the two independent edges ei−1 and ej−1. Thus, removing ei−1 from Γ , one can suit-
ably connect ui to all the vertices in V , still obtaining a fan-planar drawing Γ ∗ with n
vertices. Since the size of V is �− 5, and � ≥ 7 by assumption, then Γ ∗ has at least two
edges more than Γ , which contradicts the hypothesis that G is maximally dense. ��

The following corollary is a consequence of Lemma 3 and Property 1.

Corollary 1. Let G be a maximally dense outer fan-planar graph. Any odd cycle in the
crossing graph of a fan-planar drawing of G has exactly length 5.

Fan-Planar Graphs: Combinatorial Properties and Complexity Results 191

The next lemma claims that odd cycles in the crossing graph correspond to K5 (the
proof uses similar arguments as the proof of Lemma 3.

Lemma 4. Let G be a maximally dense outer fan-planar graph and let Γ be an outer
fan-planar drawing of G. If CR(Γ) contains a cycle C of length 5, then the subgraph
of G induced by the end-vertices of the edges corresponding to the vertices of C is K5.

We now prove the upper bound on the density of outer fan-planar graphs.

Lemma 5. Let G be a maximally dense outer fan-planar graph with n vertices and m
edges. Then m ≤ 3n− 5 edges.

Proof. Let Γ be an outer fan-planar drawing of G. We first claim that G is biconnected.
Suppose by contradiction that G is not biconnected, and let C1 and C2 be two distinct
biconnected components of G that share a cut-vertex v. Let u be the first vertex of G
encountered while moving from v clockwise on the external boundary of Γ [C1], and
let w be the first vertex encountered while moving from v counterclockwise on the
external boundary of Γ [C2]. One can suitably add edge (u,w) in Γ , still getting an
outer fan-planar drawing, which contradicts the hypothesis that G is maximally dense.

Now, by Corollary 1, CR(Γ) can only have either even cycles or cycles of length 5.
Also, by Lemma 4, every cycle of length 5 in CR(Γ) corresponds to a subset of edges
whose end-vertices induce K5. We prove the statement by induction on the number h
of K5 subgraphs in G.

Base Case. If h = 0 then, by Lemma 2, G has at most 3n− 6 edges.

Inductive Case. Suppose by induction that the claim is true for h ≥ 0, and suppose
G contains h + 1 subgraphs that are K5. Let G∗ be one of these h + 1 subgraphs.
Let e = (u, v) be an edge on the outer face of Γ [G∗] that is not on the outer face of Γ .
Vertices u and v are a separation pair ofG, otherwise there would be a vertex of G that is
not on the outer face of Γ , which is impossible because Γ is an outer fan-planar drawing
by hypothesis. Hence, we can split G into two biconnected subgraphs that share only
edge e, one of them containing G∗. Let G1, G2, . . . , Gk (k ≤ 5) be the biconnected
subgraphs of G distinct from G∗ such that each Gi shares exactly one edge with G∗.
Each Gi (i = 1, 2, . . . , k) contains at most h subgraphs that are K5, and therefore it has
at most 3ni− 5 edges by induction, where ni denotes the number of vertices of Gi. On
the other hand, G∗ has 3n∗ − 5 = 10 edges, where n∗ = 5 is the number of vertices
of G∗. It follows that m ≤ 3(n∗ + n1 + · · · + nk) − 5(k + 1) − k (k ≤ 5). Since
n∗ + n1 + · · ·+ nk ≤ n+ 2k we have m ≤ 3(n+ 2k)− 5(k + 1)− k = 3n− 5. ��

The existence of an infinite family of outer fan-planar graphs that match the 3n− 5
bound is proved in the next lemma. Refer to Fig. 4 for an illustration.

Lemma 6. For any integer h ≥ 1 there exists an outer fan-planar graph G with n =
3h+ 2 vertices and m = 3n− 5 edges.

Proof. Consider h graphs X1, . . . , Xh, such that each Xi is a K5 graph, for i =
1, . . . , h. We now describe how to construct G. The idea is to “glue” X1, . . . , Xh to-
gether in such a way that they share single edges one to another. The proof is by induc-
tion on the number of merged graphs. Denote by Gi the graph obtained after merging

192 C. Binucci et al.

e

e′
X1

X2

(a)

G2

(b)

Gi

Xi+1

(c)

Fig. 4. Illustration for the proof of Lemma 6. (a) X1 and X2 before being merged. (b) Merging
X1 and X2 into G2. (c) Gi and Xi+1, the bold edges are used for merging.

X1, . . . , Xi, for 1 < i ≤ h. We prove by induction that Gi respects the following
invariants: (I1) it is an outer fan-planar graph; (I2) it has ni = 3i + 2 vertices and
mi = 3ni− 5 edges. In the base case i = 2, we merge G1 = X1 to X2 as follows. Pick
an edge e on the outer face of X1 and an edge e′ on the outer face of X2. Merge X1 and
X2 by identifying e with e′, see also Figs. 4(a) and 4(b). The new graph G2 is clearly
an outer fan-planar graph with n2 = 5+5−2 = 8 vertices and m2 = 10+10−1 = 19
edges. Thus, the two invariants hold. In the inductive case, suppose we constructed
Gi for 2 < i < h and we want to attach Xi+1 (see also Fig. 4(c)). Pick any edge
e on the outer face of Gi and any edge e′ on the outer face of Xi+1. Merge the two
graphs in the same way as done in the base case. It is immediate to see that (I1) holds.
Also, ni+1 = ni + 3 and mi+1 = mi + 9. Since by induction mi = 3ni − 5, then
mi+1 = 3ni − 5 + 9 = 3ni+1 − 5. ��

Lemmas 5 and 6 imply the following theorem.

Theorem 1. An outer fan-planar graph with n vertices has at most 3n− 5 edges, and
this bound is tight for n ≥ 5.

An obvious consequence of Theorem 1 and of the definition of outer fan-planar
graphs that are maximally dense is the following fact.

Corollary 2. Every maximally dense outer fan-planar graph with n = 3h+ 2 vertices
(h ≥ 1) has 3n− 5 edges.

Concerning 2-layer fan planar graphs, we already observed that a 2-layer fan planar
graph G is an outer fan-planar graph. Also, since all vertices on the same layer form an
independent set, G is bipartite.

Theorem 2. A 2-layer fan-planar graph with n vertices has at most 2n− 4 edges, and
this bound is tight for n ≥ 3.

Proof. Let G be a maximally dense 2-layer fan-planar graph with n vertices and m
edges, and let Γ be a 2-layer fan-planar drawing of G. Let V1 = {v1, . . . , vn1} and

Fan-Planar Graphs: Combinatorial Properties and Complexity Results 193

V2 = {vn1+1, . . . , vn} the two independent sets of vertices of G. Suppose that in Γ
vi precedes vi+1 along the layer of V1 (for i = 1, . . . , n1 − 1), and vj precedes vj+1

along the layer of V2 (for j = n1 + 1, . . . , n − 1). Construct from G a super-graph
G∗, by adding an edge (vi, vi+1), for i = 1, . . . , n1 − 1, and an edge (vj , vj+1), for
j = n1 + 1, . . . , n. Graph G∗ is still outer fan-planar. Moreover, since G does not
contain a K5 subgraph (because it is bipartite), also G∗ does not contain a K5 subgraph,
as otherwise at least three vertices of the same layer in G should form a 3-cycle in
G∗ (which does not happen by construction). Thus, by Lemma 3 and Property 1, the
crossing graph of any outer fan-planar drawing of G∗ contains only even cycles. Hence,
denoted as m∗ the number of edges of G∗, by Lemma 2 we have m∗ ≤ 3n − 6, and
therefore m = m∗ − (n − 2) ≤ 2n − 4. A family of 2-layer fan-planar graphs with
2n− 4 edges (for n ≥ 3) are the complete bipartite graphs K2,n−2. ��

4 Fan-Planar and k-planar Graphs

A k-planar drawing is a drawing where each edge is crossed at most k times, and
a k-planar graph is a graph that admits a k-planar drawing. Clearly, every 1-planar
graph is also a fan-planar graph. Also, both the maximum number of edges of fan-
planar graphs [28] and the maximum number of edges of 2-planar graphs [30] have
been shown to be 5n−10. Thus it is natural to ask what is the relationship between fan-
planar and 2-planar graphs. More in general, we prove that there are fan-planar graphs
that are not k-planar, for any k ≥ 1, and that there are k-planar graphs (for k > 1) that
are not fan-planar. The existence of fan-planar graphs that are not k-planar is proved
with a counting argument on the minimum number of crossings of graph drawings.
The crossing number cr(G) of G is the smallest number of crossings required in any
drawing of G. We give the following.

Theorem 3. For any integer k ≥ 1 there is a graph that is fan-planar but not k-planar.

Proof. Consider the complete 3-partite graph K1,3,h. This graph is fan-planar for every
h ≥ 1 (see Fig. 5(a)). It is known that cr(K1,3,h) = 2

⌊
h
2

⌋ ⌊
h−1
2

⌋
+
⌈
h
2

⌉
[7,31]. For

h = 4k+2, we have cr(K1,3,4k+2) = 2
⌊
4k+2

2

⌋ ⌊
4k+1

2

⌋
+
⌈
4k+2

2

⌉
= 4k(2k+1)+2k+

1 = 8k2 + 6k+ 1. Thus, in every drawing of K1,3,4k+2 there are at least 8k2 + 6k+ 1
crossings. On the other hand, in a k-planar drawing there can be at most km

2 crossings,
where m is the number of edges in the drawing. Since K1,3,4k+2 has 16k + 11 edges,

to be k-planar it should admit a drawing with at most km
2 = k(16k+11)

2 = 8k2 + 11
2 k

crossings. Since 6k + 1 > 11
2 k for every k ≥ 1, K1,3,4k+2 is not k-planar. ��

To prove that for any k > 1 there are k-planar graphs that are not fan-planar (Theo-
rem 4), we first give a technical result (Lemma 7), which will be also reused in Sec. 5.
Let Γ be a fan-planar drawing of a graph. We may regard crossed edges of Γ as com-
posed by fragments, where a fragment is the portion of the edge that is between two
consecutive crossings or between one of the two end-vertices of the edge and the first
crossing encountered while moving along the edge towards the other end-vertex. An
edge that is not crossed does not have any fragment. Figure 5(b) shows a fan-planar
drawing of the K7 graph and Fig. 5(c) shows the fragments of the drawing in Fig. 5(b).

194 C. Binucci et al.

. . .

(a)

1 2 3

4 6

5

7

(b)

1 2 3

4 6

5

7

(c)

Fig. 5. (a) A fan-planar drawing of K1,3,h. (b) A fan-planar drawing of the K7 graph. (c) The
fragments of the fan-planar drawing in (b) are the thicker lines.

We consider two fragments adjacent if they share a common crossing or a common
end-vertex. The next lemma provides an interesting and useful property.

Lemma 7. In any fan-planar drawing of the K7 graph, any pair of vertices is joined
by a sequence of adjacent fragments.

Theorem 4. For any integer k > 1 there is a graph that is k-planar but not fan-planar.

Proof sketch: Since 2-planar graphs are also k-planar graphs, for k > 1, we can prove
that there is a 2-planar graph that is not fan-planar. Let G′ be a graph consisting of a
cycle C = (v1, v2, . . . , v10) and of the edges (v1, v4), (v5, v10), (v6, v9) (see Fig. 6(a)).
Let G′′ be the graph obtained from G′ by replacing each edge (vi, vj) (1 ≤ i, j ≤ 10)
with a copy of K7, whose vertices are denoted as u1, u2, . . . , u7, so that vi = u1 and
vj = u7 (see Fig. 6(b)). The copy of K7 that replaces (vi, vj) is denoted as Ki,j

7 . Let G
be the graph obtained from G′′ by adding the edges (v1, v7), (v2, v6), (v3, v9), (v4, v8)
(see Fig. 6(c)). G is 2-planar (planarly embed G′ as shown in Fig. 6(a)). Construct
a drawing Γ of G by replacing each edge of G′ with a drawing of Ki,j

7 like that in
Fig. 5(b) (see Fig. 6(b)), and draw the edges (v1, v7), (v2, v6), (v3, v9), (v4, v8) inside
C as in Fig. 6(c). Γ is 2-planar. To prove that G is not fan-planar note that, by Lemma 7,
eachKi,j

7 (1 ≤ i, j ≤ 10) has a sequence of fragments leading from vi = u1 to vj = u7,
which we call spine. In any fan-planar drawing of G, this spine cannot be crossed by
edges that do not belong to Ki,j

7 (otherwise there would be an edge crossed by two
independent edges). Thus, every Ki,j

7 is not “traversed” by external edges, and this
forces (v1, v7), (v2, v6), (v3, v9), (v4, v8) to violate fan-planarity, as in Fig. 6(c). �

5 Complexity of the Fan-Planarity Testing Problem

We exploit the results of Secs. 3 and 4 to prove that testing whether a graph is fan-
planar in the variable embedding setting is NP-complete. We call this problem the fan-
planarity testing. We use a reduction from the 1-planarity testing, which is NP-complete
in the variable embedding setting [25,29]. The 1-planarity testing asks whether a given
graph admits a 1-planar drawing. We prove the following.

Theorem 5. Fan-planarity testing is NP-complete.

Fan-Planar Graphs: Combinatorial Properties and Complexity Results 195

v1

v2

v3

v4
v5

v6

v7

v8

v9
v10

(a)

K7

u1 u7
v1

v2

v3

v4
v5

v6

v7

v8

v9
v10

(b)

v1

v2

v3

v4
v5

v6

v7

v8

v9
v10

(c)

Fig. 6. (a)–(c) Illustration for the proof of Theorem 4: (a) the graph G′; (b) the graph G′′; (c) the
graph G

Proof. Similarly to [34], a non-deterministic algorithm to test if a graph admits a fan-
planar drawing with k crossings considers all possible k pairs of edges that cross (and
the order of the crossings along the edges), discards the configurations where an edge
crosses more than one fan, replaces crossings with dummy vertices, and tests the ob-
tained graph for planarity. Then the problem belongs to NP.

We now prove the hardness. Given an instance G = (V,E) of the 1-planarity
testing we build an instance Gf = (Vf , Ef) of the fan-planarity testing by replac-
ing each edge (u, v) ∈ E with two K7 graphs with vertices u = u1, u2, . . . , u7 and
v = v1, v2, . . . , v7, called attachment gadgets and joined by a spanning edge (u7, v7)
(see Fig. 7 for an illustration). Gf = (Vf , Ef) can be constructed in polynomial time,
having |Vf | = |V | + |E| × 12 vertices and |Ef | = |E| × 43 edges, where |E| × 42
of them belong to the attachment gadgets and the remaining |E| are spanning edges
that join different attachment gadgets. We show that G is 1-planar if and only if Gf is
fan-planar. If G admits a 1-planar drawing, replace each edge (u, v) of G with two fan-
planar drawings of K7 like those depicted in Fig. 5(b) and with edge (u7, v7), in such a
way that the possible crossing of (u, v) occurs on (u7, v7). The obtained drawing of Gf

is fan-planar since each attachment gadget has a fan-planar drawing and each spanning
edge has at most one crossing. Conversely, suppose Gf admits a fan-planar drawing
Γf . By Lemma 7, for any attachment gadget of Gf attached to vertex u, there is at least
a sequence of fragments leading from u = u1 to u7. As in the proof of Theorem 4,
call such a sequence of fragments the spine of the attachment gadget. Delete from Γf

all fragments except those in the spines. Delete from Γf all uncrossed edges except the
spanning edges. Remove also isolated vertices. A drawing Γ of G is obtained, where
the drawing of edge (u, v) is given by the spine from u = u1 to u7, the spanning edge
(u7, v7), and the spine from v7 to v1 = v. Observe that, u �= v, as otherwise there
would be a self-loop in G. We claim that Γ is a 1-planar drawing of G. Indeed, frag-
ments in the spines can not be crossed by any other fragment or spanning edge of Γf .
It follows that spanning edges can cross only among themselves in Γf . However, they
can cross only once, as they are a matching of Gf and Γf is fan-planar. Hence, Γ is a
1-planar drawing, but not necessarily simple; indeed, it may happen that two crossing
edges (u, v) and (w, z) in Γ share an end-vertex, say u = w (this happens when in Γf

there are two crossing spanning edges of two K7 attached to u). The crossing between
(u, v) and (u, z) in Γ can be easily removed by rerouting the edges (see Fig. 7(c)). ��

196 C. Binucci et al.

u

v

w
z

(a)

K7

v

v7

w

u

u7

z

(b)

v

z

u

(c)

Fig. 7. Illustration of the reduction used in Theorem 5. (a) An instance G of 1-planarity testing;
(b) The reduced instance Gf of fan-planarity testing. (c) Two adjacent edges of G that cross one
to another in Γ ; the crossing can be removed by rerouting the two edges as shown by the dashed
lines.

6 Open Problems

We suggest two questions: (i) What is the minimum number of edges of maximal fan-
planar graphs? (ii) Can we efficiently recognize maximally dense fan-planar graphs?

References
1. Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise

crossing edges. Discrete & Computational Geometry 41(3), 365–375 (2009)
2. Ackerman, E., Fulek, R., Tóth, C.D.: Graphs that admit polyline drawings with few crossing

angles. SIAM J. on Discrete Mathematics 26(1), 305–320 (2012)
3. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. of

Combinatorial Theory, Series A 114(3), 563–571 (2007)
4. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear

number of edges. Combinatorica 17(1), 1–9 (1997)
5. Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line grid drawings of 3-connected

1-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 83–94.
Springer, Heidelberg (2013)

6. Angelini, P., Di Battista, G., Didimo, W., Frati, F., Hong, S.H., Kaufmann, M., Liotta, G., Lu-
biw, A.: Large angle crossing drawings of planar graphs in subquadratic area. In: Márquez,
A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 200–209. Springer, Hei-
delberg (2012)

7. Asano, K.: The crossing number of K1,3,n and K2,3,n . J. of Graph Theory 10(1), 1–8 (1986)
8. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Reisl-

huber, J.: Recognizing outer 1-planar graphs in linear time. In: Wismath, S., Wolff, A. (eds.)
GD 2013. LNCS, vol. 8242, pp. 107–118. Springer, Heidelberg (2013)

9. Auer, C., Brandenburg, F.J., Gleißner, A., Hanauer, K.: On sparse maximal 2-planar graphs.
In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 555–556. Springer,
Heidelberg (2013)

10. Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.:
On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012.
LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg (2013)

11. Cheong, O., Har-Peled, S., Kim, H., Kim, H.S.: On the number of edges of fan-crossing free
graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp.
163–173. Springer, Heidelberg (2013)

Fan-Planar Graphs: Combinatorial Properties and Complexity Results 197

12. Dehkordi, H.R., Eades, P.: Every outer-1-plane graph has a right angle crossing drawing.
International J. on Computational Geometry and Appl. 22(6), 543–558 (2012)

13. Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing drawings.
Algorithmica 68(4), 954–997 (2014)

14. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and crossing
resolution of non-planar graph drawings. Theory of Computing Syst. 49(3), 565–575 (2011)

15. Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: h-quasi planar drawings of
bounded treewidth graphs in linear area. In: Golumbic, M.C., Stern, M., Levy, A., Mor-
genstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 91–102. Springer, Heidelberg (2012)

16. Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: Area requirement of graph draw-
ings with few crossings per edge. Computational Geometry 46(8), 909–916 (2013)

17. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: Visualizing
non-planar diagrams in a planar way. J. of Graph Algorithms and Appl. 9(1), 31–52 (2005)

18. Didimo, W.: Density of straight-line 1-planar graph drawings. Information Processing Let-
ters 113(7), 236–240 (2013)

19. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput.
Sci. 412(39), 5156–5166 (2011)

20. Didimo, W., Liotta, G.: The crossing angle resolution in graph drawing. In: Pach, J. (ed.)
Thirty Essays on Geometric Graph Theory. Springer (2012)

21. Dujmović, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs.
Chicago J. on Theoretical Computer Science 2011 (2011)

22. Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Applied Mathe-
matics 161(7-8), 961–969 (2013)

23. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorithmica 47(4),
439–452 (2007)

24. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J. on Discrete
Mathematics 27(1), 550–561 (2013)

25. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per
edge. Algorithmica 49(1), 1–11 (2007)

26. Hong, S.H., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time al-
gorithm for testing outer-1-planarity. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 71–82. Springer, Heidelberg (2013)

27. Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs. In: Gud-
mundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 335–346.
Springer, Heidelberg (2012)

28. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR abs/1403.6184 (2014),
http://arxiv.org/abs/1403.6184

29. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity
testing. J. of Graph Theory 72(1), 30–71 (2013)

30. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439
(1997)

31. Schaefer, M.: The graph crossing number and its variants: A survey. Electronic J. of Combi-
natorics 20(2) (2013)

32. Suzuki, Y.: Re-embeddings of maximum 1-planar graphs. SIAM J. on Discrete Mathemat-
ics 24(4), 1527–1540 (2010)

33. Valtr, P.: On geometric graphs with no k pairwise parallel edges. Discrete & Computational
Geometry 19(3), 461–469 (1998)

34. Garey, M., Johnson, D.: Crossing Number is NP-Complete. SIAM Journal on Algebraic
Discrete Methods 4(3), 312–316 (1983), doi:10.1137/0604033

http://arxiv.org/abs/1403.6184

On the Recognition of Fan-Planar
and Maximal Outer-Fan-Planar Graphs �

Michael A. Bekos1, Sabine Cornelsen2, Luca Grilli3,
Seok-Hee Hong4, and Michael Kaufmann1

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
{bekos,mk}@informatik.uni-tuebingen.de

2 Dept. of Computer and Information Science, University of Konstanz, Germany
sabine.cornelsen@uni-konstanz.de

3 Dipartimento di Ingegneria, Università degli Studi di Perugia, Italy
luca.grilli@unipg.it

4 School of Information Technologies, University of Sydney, Australia
shhong@it.usyd.edu.au

Abstract. Fan-planar graphs were recently introduced as a generalization of
1-planar graphs. A graph is fan-planar if it can be embedded in the plane, such
that each edge that is crossed more than once, is crossed by a bundle of two or
more edges incident to a common vertex. A graph is outer-fan-planar if it has
a fan-planar embedding in which every vertex is on the outer face. If, in addi-
tion, the insertion of an edge destroys its outer-fan-planarity, then it is maximal
outer-fan-planar.

In this paper, we present a polynomial-time algorithm to test whether a given
graph is maximal outer-fan-planar. The algorithm can also be employed to pro-
duce an outer-fan-planar embedding, if one exists. On the negative side, we show
that testing fan-planarity of a graph is NP-hard, for the case where the rotation
system (i.e., the cyclic order of the edges around each vertex) is given.

1 Introduction

A simple drawing of a graph is a representation of a graph in the plane, where each
vertex is represented by a point and each edge is a Jordan curve connecting its endpoints
such that no edge contains a vertex in its interior, no two edges incident to a common
end-vertex cross, no edge crosses itself, no two edges meet tangentially, and no two
edges cross more than once.

An important subclass of drawn graphs is the class of planar graphs, in which there
exist no crossings between edges. Although planarity is one of the most desirable prop-
erties when drawing a graph, many real-world graphs are in fact non-planar.

� This work started at the Bertinoro Workshop on Graph Drawing 2014. The work of Bekos is
implemented within the framework of the Action “Supporting Postdoctoral Researchers” of
the Operational Program “Education and Lifelong Learning” (Action’s Beneficiary: General
Secretariat for Research and Technology), and is co-financed by the European Social Fund
(ESF) and the Greek State. Grilli was partly supported by the MIUR project AMANDA “Al-
gorithmics for MAssive and Networked DAta”, prot. 2012C4E3KT 001. Hong was supported
by ARC Future Fellowship and Humboldt Fellowship.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 198–209, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs 199

(a) Fan-crossing (b) Forbidden pattern I (c) Forbidden pattern II (d) Triangle crossing

Fig. 1. (taken from [18]) (a) A fan-crossing. (b) Forbidden crossing pattern I: An edge cannot be
crossed by two independent edges. (c) Forbidden crossing pattern II: An edge cannot be crossed
by two edges having their common end-point on different sides of it. (d) Forbidden crossing
pattern II implies that an edge cannot be crossed by three edges forming a triangle.

On the other hand, it is accepted that edge crossings have negative impact on the
human understanding of a graph drawing [22] and simultaneously it is NP-complete
to find drawings with minimum number of edge crossings [13]. This motivated the
study of “almost planar” graphs which may contain crossings as long as they do not
violate some prescribed forbidden crossing patterns. Typical examples include k-planar
graphs [23], k-quasi planar graphs [2], RAC graphs [8] and fan-crossing free graphs [6].

Fan-planar graphs were recently introduced in the same context [18]. A fan-planar
drawing of graph G = (V,E) is a simple drawing which allows for more than one
crossing on an edge e ∈ E iff the edges that cross e are incident to a common vertex on
the same side of e. Such a crossing is called fan-crossing. An equivalent definition can
be stated by means of forbidden crossing patterns; see Fig. 1. A graph is fan-planar if
it admits a fan-planar drawing. So, the class of fan-planar graphs is in a sense the com-
plement of the class of fan-crossing free graphs [6], which simply forbid fan-crossings.

Kaufmann and Ueckerdt [18] showed that a fan-planar graph on n vertices cannot
have more than 5n − 10 edges; a tight bound. An outer-fan-planar drawing is a fan-
planar drawing in which all vertices are on the outer-face. A graph is outer-fan-planar
if it admits an outer-fan-planar drawing. An outer-fan-planar graph is maximal outer-
fan-planar if adding any edge to it yields a graph that is not outer-fan-planar. Note that
the forbidden pattern II is irrelevant for outer-fan-planarity.

Our main contribution is a polynomial time algorithm for the recognition of maximal
outer-fan-planar graphs (Section 2). We also prove that the general fan-planar problem
is NP-hard, for the case where the rotation system (i.e., the circular order of the edges
around each vertex) is given (Section 3). Due to space restrictions, some proofs are
omitted or only sketched in the text; full proofs for all results can be found in [5].

Related Work. As already stated, k-planar graphs [23], k-quasi planar graphs [2], RAC
graphs [8] and fan-crossing free graphs [6] are closely related to the class of graphs that
we study.

A graph is k-planar, if it can be embedded in the plane with at most k crossings per
edge. Obviously, 1-planar graphs are also fan-planar. A 1-planar graph with n vertices
has at most 4n−8 edges and this bound is tight [21]. Grigoriev and Bodlaender [14], and

200 M.A. Bekos et al.

independently Kohrzik and Mohar [19] proved that the problem of determining whether
a graph is 1-planar is NP-hard. On the positive side, Eades et al. [9] presented a linear
time algorithm for testing maximal 1-planarity of graphs with a given rotation system.
Testing outer-1-planarity of a graph can be solved in linear time, as shown indepen-
dently by Auer et al. [4] and Hong et al. [16]. In addition, every outer-1-planar graph
admits an outer-1-planar straight-line drawing [11]. Note that an outer-1-planar graph is
always planar [4], while this is not true in general for outer-fan-planar graphs. Indeed,
the complete graph K5 is outer-fan-planar, but not planar. Recently, it was shown that
testing full outer-2-planarity (i.e., outer-2-planar embedding with no crossing on the
outer face) of graphs can be solved in linear time [17].

A drawn graph is k-quasi planar if it has no k mutually crossing edges. It is conjec-
tured that the number of edges of a k-quasi planar graph is linear in the number of its
vertices. Pach et al. [20] and Ackerman [1] affirmatively answered this conjecture for
3- and 4-quasi planar graphs. Fox and Pach [12] showed that a k-quasi-planar n-vertex
graph has at most O(n log1+o(1) n) edges. Fan planar graphs are 3-quasi planar [18].

A different forbidden crossing pattern arises in RAC drawings where two edges are
allowed to cross, if the crossings edges form right angles. Graphs that admit such draw-
ings (with straight-line edges) are called RAC graphs. Didimo et al. [8] showed that a
RAC graph with n vertices has no more than 4n− 10 edges; a tight bound. RAC graphs
are quasi planar [8], while maximally dense (i.e., exactly 4n − 10 edges) RAC graphs
are 1-planar [10]. Testing whether a graph is RAC is NP-hard [3], while testing outer-
RAC graphs with a given vertex ordering and a rotation system can be solved in linear
time [7].

Preliminaries. Unless otherwise specified, we consider finite, undirected, simple
graphs. We also assume basic familiarity with SPQR-trees [15] (a short introduction
is given in [5]). The rotation system of a drawing is the counterclockwise order of the
incident edges around each vertex. The embedding of a drawn graph consists of its ro-
tation system and for each edge the sequence of edges crossing it. For a graph G and a
vertex v ∈ V [G], we denote by G− {v} the graph that results from G by removing v.

Lemma 1. A biconnected graphG is outer-fan-planar if and only if it admits a straight-
line outer-fan-planar drawing in which the vertices of G are restricted on a circle C.

Sketch of Proof. Let G be an outer-fan-planar graph and let Γ be an outer-fan-planar
drawing of G. We will only show that G has a straight-line outer-fan-planar drawing
whose vertices lie on a circle C (the other direction is trivial). The order of the vertices
along the outer face of Γ completely determines whether two edges cross, as in a simple
drawing no two incident edges can cross and any two edges can cross at most once.
Now, assume that two edges cross another edge in Γ . Then, both edges have to be
incident to the same vertex; hence, cannot cross each other. So, the order of the crossings
on an edge is also determined by the order of the vertices on the outer face. Therefore,
we can construct a drawing ΓC by placing the vertices of G on a circle C preserving
their order in the outer face of Γ and draw the edges as straight-line segments. ��

On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs 201

2 Recognizing and Drawing Maximal Outer-Fan-Planar Graphs

In this section, we prove that given a graph G = (V,E) on n vertices, there is a poly-
nomial time algorithm to decide whether G is maximal outer-fan-planar and if so a
corresponding straight-line drawing can be computed in linear time. By Lemma 1, we
only have to check, whetherG has a straight-line drawing on a circle C that is fan-planar.
Note that such a drawing is determined by the cyclic order of the vertices on C. Since
fan-planar graphs with n vertices have at most 5n− 10 edges [18], we may assume that
the number of edges is linear in the number of vertices. We first consider the case that G
is 3-connected and then using SPQR-trees we show how the problem can be solved for
biconnected graphs. Observe that biconnectivity is a necessary condition for maximal
outer-fan-planarity. Indeed, if an outer-fan-planar drawing has a cut-vertex c, it is easy
to see that it is always possible to draw an edge connecting two neighbors of c while
preserving the outer-fan-planarity.

The 3-Connected Case. Assume that a straight-line drawing of a 3-connected graph G
with n vertices on a circle C is given. Let v1, . . . , vn be the order of the vertices around
C. An edge {vi, vj} is an outer edge, if i − j ≡ ±1 (mod n), a 2-hop, if i − j ≡ ±2
(mod n), and a long edge otherwise. G is a complete 2-hop graph, if there are all outer
edges and all 2-hops, but no long edges. Two crossing long edges are a scissor if their
end-points form two consecutive pairs of vertices on C. We say that a triangle is an outer
triangle if two of its three edges are outer edges. We call an outer-fan-planar drawing
maximal, if adding any edge to it yields a drawing that is not outer-fan-planar.

Our algorithm is based on the observation that if a graph is 3-connected maximal
outer-fan-planar, then it is a complete 2-hop graph, or we can repeatedly remove any
degree-3 vertex from any 4-clique until only a triangle is left. In a second step, we
reinsert the vertices maintaining outer-fan-planarity (if possible). It turns out that we
have to check a constant number of possible embeddings. In the following, we prove
some necessary properties. The first three lemmas are used in the proof of Lemma 5.
Their proofs are based on the 3-connectivity of the input graph; see Fig. 2a, 2b and 2c.

Lemma 2. Let G be a 3-connected outer-fan-planar graph embedded on a circle C. If
two long edges cross, then two of its end-points are consecutive on C.

Lemma 3. Let G be a 3-connected outer-fan-planar graph embedded on a circle C. If
there are two long crossing edges, then there is a scissor, as well.

Lemma 4. Let G be a 3-connected graph embedded on a circle C with a maximal
outer-fan-planar drawing. If G contains a scissor, then its end vertices induce a K4.

Lemma 5. Let G be a 3-connected graph with a maximal outer-fan-planar drawing
and assume that the drawing contains at least one long edge. Then, G contains a K4

with all four vertices drawn consecutively on the circle.

Proof. First consider the case where the graph contains at least two crossing long edges
and, thus, by Lemma 3 a scissor. Removing the vertices of a scissor, splits G into two
connected components. Assume that we have chosen the scissor such that the smaller

202 M.A. Bekos et al.

vi1 vi2

vi3
vi4

vj1

vj2

vj3

(a)

v1

vi

vjvn

v�

vs

vk

(b)

v1

vi+1

vk

vn

vi

v�

(c)

v1

vn

v4

v3v2

(d)

vk′ v�′

v1

vn

vi

vi+1

vk v�

vk+1 vk+2

(e)

v5v1

vj

v4

v2
v3

v�
vk

(f)

v4

vk

v1

v2
v3

vk

(g)

v1

v4

v2
v3

vn
e

e′

v5

(h)

Fig. 2. Different configurations used in: (a) Lemma 2, (b) Lemma 3, (c, d) Lemma 4, (e) Lemma 5,
(f) Lemma 6, (g) Lemma 7, (h) Lemma 9

of the two components is as small as possible (thus, scissor-free) and that the vertices
around C are labeled such that this scissor is {v1, vi+1}, {vi, vn} with i ≤ n − i, i.e.,
the component induced by v2, . . . , vi−1 is the smaller one. Recall that by Lemma 4 a
scissor induces a K4.

If i = 3, i.e., if {v1, v3} is a 2-hop, then G should contain either {v2, vn} or {v2, v4},
as otherwise v1 and v3 is a separation pair; see Fig. 2d. Say w.l.o.g. {v2, vn}. Then, v1,
v2, v3 together with vn induce a K4 with all vertices consecutive on circle C.

If i > 3, let {vk, v�}, 1 ≤ k < � ≤ i be a long edge such that there is no long
edge {vk′ , v�′} �= {vk, v�} with k ≤ k′ < �′ ≤ �; see Fig. 2e. Then, no long edge
is crossing the edge {vk, v�}, as otherwise by Lemma 3 such a crossing would yield a
new scissor, contradicting the choice of {v1, vi+1} and {vi, vn}. Since {vk, v�} is not
crossed by a long edge, it must be crossed by exactly one 2-hop, say {vk−1, vk+1}.
Now, �− k > 3 is not possible, since we could add the edge {vk+1, v�}, which is long.
Hence, �−k = 3 and by maximality of the outer-fan-planar drawing, vk, vk+1, vk+2, v�
induces a K4 with all vertices consecutive on C. Finally, if G contains no two crossing
long edges, let {vk, v�}, 1 ≤ k < � ≤ n be a long edge such that there is no long edge
{vk′ , v�′} �= {vk, v�} with k ≤ k′ < �′ ≤ �. By the same argumentation as above, we
obtain that vk, vk+1, vk+2, v� induces a K4 with all vertices consecutive on C. ��

Lemma 6. Let G be a 3-connected outer-fan-planar graph with at least six vertices. If
G contains a K4 with all vertices drawn consecutively on circle C, then this K4 contains
exactly one vertex of degree three and this vertex is neither the first nor the last of the
four vertices.

Proof. Let the vertices around circle C be labeled so that v1, v2, v3, v4 induce a K4.
Since v1 and v4 is not a separation pair, there is an edge between v2 or v3 and a vertex,
say vk, among v5, . . . , vn. Hence, three out of the four vertices v1, v2, v3 and v4 have

On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs 203

degree at least four; see Fig. 2f. If v3 had a neighbor in v5, . . . , vn, then this could only
be vk, as otherwise {v1, v4} would be crossed by two independent edges. Since G has
at least 6 vertices, we assume w.l.o.g. that k > 5. Since v4 and vk is not a separation
pair, there has to be an edge {v�, vm} for some 4 < � < k and a j /∈ {4, . . . , k}. But
such an edge would not be possible in an outer-fan-planar drawing. ��

Lemma 7. Let G be a 3-connected outer-fan-planar graph with at least six vertices. If
G contains a K4 with a vertex of degree 3, then this K4 has to be drawn consecutively
on circle C in any outer-fan-planar drawing of G.

Proof. Observe that any outer-fan-planar drawing of a K4 contains exactly one pair of
crossing edges. If two 2-hops cross, then all vertices of the K4 are consecutive. If the
K4 contains two crossing long edges, then each of the vertices of the K4 is incident to
an outer edge not contained in the K4; thus, has degree at least four. If a long edge and a
2-hop cross, assume that the vertices around C are labeled such that v1, v2, v3, vk induce
a K4 for some 5 ≤ k < n; see Fig. 2g. Since v1, v3 and vk are incident to an outer edge
not contained in the K4, they have degree at least four. We claim that v2 has degree at
least four. Since v3 and vk is not a separation pair, there is an edge between a vertex
among v4, . . . , vk−1 and v2 or v1 and an edge between a vertex among vk+1, . . . , vn
and v2 or v3. Choosing v1 and v3 in the first and second case respectively, yields two
independent edges crossing {v2, vk}. So, v2 is connected to a vertex outside K4. ��

Lemma 8. Let G be a 3-connected graph with n ≥ 5 vertices and let v ∈ V [G] be a
vertex of degree three that is contained in a K4. Then, G− {v} is 3-connected.

Proof. Let a, b, c and d be four arbitrary vertices of G−{v}. Since G was 3-connected,
there was a path P from a to b in G − {c, d}. Assume that P contains v. Since v is
only connected to vertices that are connected to each other, there is also another path
from a to b in G − {c, d} not containing v. Hence, a and b cannot be a separation pair
in G− {v}. Since a and b were arbitrarily selected, G− {v} is 3-connected. ��

Lemma 9. Let G be a 3-connected graph with n > 6 vertices, let v1, v2, v3 and v4 be
four vertices that induce a K4, such that the degree of v3 is three. Then, G− {v3} has
a maximal outer-fan-planar drawing if G has a maximal outer-fan-planar drawing.

Proof. Consider a maximal outer-fan-planar drawing of G on a circle C and let v1,
v2, v3, v4, . . . , vn be the order of the vertices on C (recall Lemma 7). Assume to the
contrary that after removing v3, we could add an edge e to the drawing; see Fig. 2h. By
Lemma 6, {v3, v1} is the only edge incident to v3 that crosses some edges of G−{v3}.
Hence, there must be an edge e′ that is crossed by e and {v3, v1}. Since {v3, v1} crosses
only edges incident to v2 that also cross {v1, v4}, it follows that e′ has to be incident to
v2. Further, since G − {v3} plus e is outer-fan-planar it follows that e is incident to v1
or v4. Moreover, since G plus e is not outer-fan-planar it follows that e is incident to v4.

Let i be maximal so that there is an edge {v2, vi}. If i �= n, then v1 and vi is a
separation pair: Any edge connecting {vi+1, . . . , vn−1} to {v2, v3, . . . , vi−1} and not
being incident to v2 crosses {v2, vi}. But edges crossing {v2, vi} can only be incident
to v1, a contradiction. Now, let j > 4 be minimum such that there is an edge {v2, vj}.

204 M.A. Bekos et al.

We claim that j = 5. If this is not the case, then similarly to the previous case v4 and vj
would be a separation pair in G− {v3} plus e, which is not possible due to Lemma 8.

It follows that G has to contain edge {v1, v5}: Since G is outer-fan-planar, in G there
cannot be an edge {v4, vk} for some k = 6, . . . , n, since it would cross {v2, v5} which
is crossed by {v3, v1}. So, {v1, v5} crosses only edges incident to v2 that are already
crossed by {v3, v1} and {v4, v1}. Hence, {v1, v5} could be added to G without violating
outer-fan-planarity; a clear contradiction. Since e and {v2, vn} both cross {v1, v5} it
follows that e = {v4, vn}. But now, v5 and vn has to be a separation pair. ��
Remark 1. Let G be a graph with 6 vertices containing a vertex v of degree three. Then
G is maximal outer-fan-planar if and only if G− {v} is a K5 missing one of the edges
that connects a neighbor of v to one of the other two vertices.

Lemma 10. It can be tested in linear time whether a graph is a complete 2-hop graph.
Moreover, if a graph is a complete 2-hop graph, then it has a constant number of outer-
fan-planar embeddings and these can be constructed in linear time.

Proof. Let G be an n-vertex graph. We test whether G is a complete 2-hop as follows.
If n ∈ {4, 5}, then G is either K4 or K5. Otherwise, check first whether all vertices
have degree four. If so, pick one vertex as v1, choose a neighbor as v2 and a common
neighbor of v1 and v2 as v3 (if no such common neighbor exists then G is not a complete
2-hop). Assume now that we have already fixed v1, . . . , vi, 3 ≤ i < n. Test whether
there is a unique vertex v ∈ V \ {v1, . . . , vi} that is adjacent to vi and vi−1. If so, set
vi+1 = v. Otherwise reject. If we have fixed the order of all vertices check whether
there are only outer edges and 2-hops. Do this for any possible choices of v2 and v3,
i.e., for totally at most 6 choices. ��
Remark 2. No degree 3 vertex can be added to an n-vertex complete 2-hop with n ≥ 5.

We are now ready to describe our algorithm. If the graph is not a complete 2-hop
graph, recursively try to remove a vertex of degree 3 which is contained in a K4. If
G is maximal outer-fan-planar, Lemmas 5 and 6 guarantee that such a vertex always
exists in the beginning. Remark 2 guarantees that also in subsequent steps there is a
long edge and, thus, Lemmas 8 and 9 guarantee that also in subsequent steps, we can
apply Lemma 5 as long as we have at least six vertices. Remark 1 guarantees that we
can also remove two more vertices of degree 3 ending with a triangle.

At this stage, we already know that if the graph is outer-fan-planar, it is indeed max-
imal outer-fan-planar. Either, we started with a complete 2-hop graph or we iteratively
removed vertices of degree three yielding a triangle. Note that in the latter case we must
have started with 3n− 6 edges. On the other hand, if we apply the above procedure to
an n-vertex 3-connected maximal outer-fan-planar graph, we get that the number of its
edges is exactly 2n or 3n− 6.

Finally, we try to reinsert the vertices in the reversed order in which we have deleted
them. By Lemma 7, we can insert the vertex of degree three only between its neighbor,
that is, there are at most two possibilities where we could insert the vertex. Lemma 11
guarantees that in total, we have to check at most four possible drawings for G.

Lemma 11. When reinserting a sequence of degree 3 vertices starting from a triangle,
at most the first two vertices have two choices where they could be inserted.

On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs 205

Proof. Let H be a outer-fan-planar graph and let three consecutive vertices v1, v2, v3 in-
duce a triangle. Assume, we want to insert a vertex v adjacent to v1, v2, v3. By Lemma 6,
we have to insert v between v1 and v2 or between v2 and v3. Note that the edges that
are incident to v2 and cross {v1, v3} are also crossed by an edge e incident to v. So, if
there is an edge incident to v2 that was already crossed twice before inserting v, this
would uniquely determine whether e is incident to v1 or v3 and, thus, where to insert v.

We will now show that after the first insertion each relevant vertex is incident to an
edge that is crossed at least twice. When we insert the first vertex we create a K4. From
the second vertex on, whenever we insert a new vertex, it is incident to an edge that is
crossed at least twice. Also, after inserting the second degree 3 vertex, three among the
four vertices of the initial K4 are also incident to an edge that is crossed at least twice.
The forth vertex of the initial K4 is not the middle vertex of a triangle consisting of
three consecutive vertices. It can only become such a vertex if its incident inner edges
are crossed by a 2-hop. But then these inner edges are all crossed at least twice. ��

Summarizing, we obtain the following theorem; in order to exploit this result in the
biconnected case, it is also tested whether a prescribed subset (possibly empty) of edges
can be drawn as outer edges.

Theorem 1. Given a 3-connected graph G with a subset E′ of its edge set, it can be
tested in linear time whether G is maximal outer-fan-planar and has an outer-fan-
planar drawing such that the edges in E′ are outer edges. Moreover if such a drawing
exists, it can be constructed in linear time.

Sketch of Proof. Let n be the number of vertices. By Lemma 10, a complete 2-hop
graph has only a constant number of outer-fan-planar embeddings which can be com-
puted in linear time. Whenever we remove a vertex from the graph, we append it to
a queue. Any vertex that was removed from the queue will never be appended again.
Hence, there are at most n iterations.

To check whether the degree three vertices can be reinserted back in the graph, we
only have to consider in total four different embeddings. Assume that we want to insert
a vertex v into an outer triangle v1, v2, v3. Then we just have to check whether v1 or v3
are incident to edges other than the edge {v1, v3} that cross an edge incident to v2. This
can be done in constant time by checking only two pairs of edges. ��

The Biconnected Case. We now sketch how to test outer-fan-planar maximality on a
biconnected graph.

Lemma 12. Let v1, . . . , vn be the order of the vertices around the circle in an outer-
fan-planar drawing of a 3-connected graph G. If we can add a vertex v between v1 and
vn with an edge {v, vi} for some i = 2, . . . , n− 1, then i = 2 or i = n− 1.

Proof. Otherwise, since v1, vi cannot be a separation pair of G, there has to be an edge
from a vk for some k = 2, . . . , i − 1 that crosses {v, vi} and hence an edge {vk, vn}.
Since vn, vi cannot be a separation pair of G, there has to be an edge {v1, v�} for some
� = i+ 1, . . . , n− 1. But now there are three independent edges crossing. ��

206 M.A. Bekos et al.

v1
v2

v3
v4

v5

v6

(a)

t2
s2

s1

s

tt1

(b)

Fig. 3. (a) In the solid graph, edge {v2, v3} ({v5, v6}) is porous around v2 (v6, resp.). (b) Illus-
tration of Case 2 of Theorem 2.

We say that an outer edge {v1, vn} is porous around v1 if we could add a vertex v
between v1 and vn and an edge {v, v2} maintaining outer-fan-planarity. Note that any
edge of a simple cycle, i.e., of the skeleton of an S-node is porous around any of its end
vertices. Any outer edge of a K4 is porous around any of its end vertices; see Fig. 3.

We use the SPQR-tree of a biconnected graph to characterize whether it is maximal
outer-fan-planar; see [5] for a proof of this theorem.

Theorem 2. A biconnected graph is maximal outer-fan-planar iff the following hold:

1) The skeleton of any R-node is maximal outer-fan-planar and has an outer-fan-
planar drawing in which all virtual edges are outer edges,

2) No R-node is adjacent to an R-node or an S-node,
3) All S-nodes have degree three,
4) All P -nodes have degree three and are adjacent to a Q-node, and
5) Let G1 and G2 be the skeleton of the two neighbors of a P -node other than the

Q-node and let {s, t} be the common virtual edge of G1 and G2. Then Gi, i =
1, 2 must not admit an outer-fan-planar drawing with ti, s, t, si being consecutive
around the circle and
(a) edge {s, t} is porous in both G1 and G2 around the same vertex, or
(b) edge {t1, s} ({s2, t}) is real and porous around s (t, resp.), or
(c) edge {s1, t} ({t2, s}) is real and porous around t (s, resp.).

As the number of outer-fan-planar embeddings of a 3-connected graph is bounded by
a constant, the conditions of Thm. 2 can be tested in polynomial time. If the conditions
are fulfilled, then an outer-fan-planar drawing can be constructed in linear time.

3 Recognizing Fan-Planar Graphs with Rotation System

In this section, we study the FAN-PLANARITY WITH FIXED ROTATION SYSTEM prob-
lem (FP-FRS), that is, the problem of deciding whether a graph G = (V,E) with a
fixed rotation system R admits a fan-planar drawing preserving R.

Theorem 3. FAN-PLANARITY WITH FIXED ROTATION SYSTEM is NP-hard.

On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs 207

Proof. We prove the statement by using a reduction from 3-PARTITION (3P). An in-
stance of 3P is a multi-set A = {a1, a2, . . . , a3m} of 3m positive integers in the range
(B/4, B/2), where B is an integer such that

∑3m
i=1 ai = mB. 3P asks whether A can

be partitioned into m subsets A1, A2, . . . , Am, each of cardinality 3, such that the sum
of the numbers in each subset is B. As 3P is strongly NP-hard [13], it is not restrictive
to assume that B is bounded by a polynomial in m.

Before describing our transformation, we need to introduce the concept of barrier
gadget. An n-vertex barrier gadget is a graph consisting of a cycle of n ≥ 5 vertices
plus all its 2-hop edges; a barrier gadget is therefore a maximal outer-2-planar graph.
We make use of barrier gadgets in order to constraint the routes of some specific paths
of GA. Indeed, in a fan-planar drawing of a biconnected graph containing an outer-2-
planar drawing Γb of a barrier gadget, no path can enter inside the boundary cycle of Γb

and cross a 2-hop edge. Also, if a path enters in Γb without crossing any 2-hop edge,
then it must immediately exit from Γb forming a fan-crossing with an outer edge of Γb.

Now, we are ready to describe how to transform an instance A of 3P into an instance
〈GA,RA〉 of FP-FRS. We start from the construction of graph GA which will be al-
ways biconnected. First of all, we create a global ring barrier by attaching four barrier
gadgets Gt, Gr, Gb and Gl as depicted in Fig. 4. Gt is called the top beam and contains
exactly 3mK vertices, where K = �B/2� + 1. Gr is the right wall and has only five
vertices. Gb and Gr are called the bottom beam and the left wall, respectively, and they
are defined in a specular way. Observe that Gt, Gr, Gb and Gl can be embedded so that
all their vertices are linkable to points within the closed region delimited by the global
ring barrier. Then, we connect the top and bottom beams by a set of 3m columns, see
Fig. 4 for an illustration of the case m = 3. Each column consists of a stack of 2m− 1
cells; a cell consists of a set of pairwise disjoint edges, called the vertical edges of
that cell. In particular, there are m − 1 bottommost cells, one central cell and m − 1
topmost cells. Cells of a same column are separated by 2m− 2 barrier gadgets, called
floors. Central cells (that are 3m in total) have a number of vertical edges depending on
the elements of A. Precisely, the central cell Ci of the i-th column contains ai vertical
edges connecting its delimiting floors (i ∈ {1, 2, ..., 3m}). Instead, all the remaining
cells have, each one, K vertical edges. Hence, a non-central cell contains more edges
than any central cell. Further, the number of vertices of a floor is given by the number
of its incident vertical edges minus two. Let u and v be the “central” vertices of the left
and right walls, respectively (see also Fig. 4). We conclude the construction of graph
GA by connecting vertices u and v with m pairwise internally disjoint paths, called the
transversal paths of GA; each transversal path has exactly (3m− 3)K +B edges.

Concerning the choice of a rotation system RA, we define a cyclic order of edges
around each vertex that is compatible with the one depicted in Fig. 4. From what said,
it is straightforward to see that an instance of 3P can be transformed into an instance of
FP-FRS in polynomial time in m.

Let A be a Yes-instance of 3P, we show that 〈GA,RA〉 admits a fan-planar drawing
ΓA preserving RA. We observe that such a drawing is easy to compute if one omits
all the transversal paths. It is essentially a drawing like that one depicted in Fig. 4,
where columns are one next to the other within the closed region delimited by the
global ring barrier. However, by exploiting a solution {A1, A2, . . . , Am} of 3P for the

208 M.A. Bekos et al.

u v

top beam Gt

bottom beam Gb

le
ft

w
a
ll
G

l

ri
gh

t
w
al
l
G

r

π1

π2

π3

Fig. 4. Illustration of the reduction of FP-FRS from 3P, where m = 3, B = 24 and A =
{7, 7, 7, 8, 8, 8, 8, 9, 10}. Transversal paths are routed according to the following solution of 3P:
A1 = {7, 7, 10}, A2 = {7, 8, 9} and A3 = {8, 8, 8}.

instance A, also the transversal paths can be easily embedded without violating the fan-
planarity. The idea is to route these paths in such a way that: (R.1) they do not cross
each other; (R.2) they do not cross any barrier; (R.3) each path passes through exactly
3 central cells and 3m− 3 non-central cells; (R.4) each cell is traversed by at most one
path. Eventually, each transversal path crosses exactly (3m− 3)K +B vertical edges,
which is the same number of its edges. Therefore, it is possible to draw these paths by
ensuring that each of their edges crosses exactly one vertical edge, which preserves the
fan-planarity. Hence, eventually we get a fan-planar drawing ΓA preserving the rotation
system RA.

We conclude the proof by showing that if 〈GA,RA〉 is a Yes-instance of FP-FRS,
then A is a Yes-instance of 3P. Let ΓA be a fan-planar drawing of GA preserving the ro-
tation system RA. We first observe that the top beam and the bottom beam are disjoint,
otherwise there would be at least a 2-hope edge in one beam that is crossed by another
edge of the other beam, thus violating the fan-planarity. We also note that columns can
partially cross each other, but this does not actually affect the validity of the proof. In-
deed, an edge e of a column L might cross an edge e′ of another column L′ only if e
is incident to a vertex in the rightmost (leftmost) side of L, e′ is a leftmost (rightmost)
vertical edge of L′, and L and L′ are two consecutive columns. With a similar argu-
ment, it is immediate to see that vertices u and v must be separated by all the columns.
Therefore, every transversal path satisfies conditions R.1, R.2 and it must pass through
at least three central cells, if not it would cross a number of pairwise disjoint edges
that is greater than the number of its edges, hence ΓA would not be fan-planar. On the
other hand, because of condition R.4, which is obviously satisfied, there cannot be any
transversal path passing through more than three central cells. Otherwise, there would
be some other transversal path that traverses a number of central cells that is strictly less
than three. Hence, also condition R.3 is satisfied. In conclusion, every transversal path
πj (j ∈ {1, 2, . . . ,m}) crosses (3m−3)K+B vertical edges and traverses exactly three
central cells C1j , C2j and C3j . If m(C1j),m(C2j) and m(C3j) denote the number of
edges of these cells, then m(C1j) +m(C2j) +m(C3j) = B, because each non-central
cell has K edges. Therefore, the partitioning of A defined by A1, A2, . . . , Am, where
Aj = {m(C1j),m(C2j),m(C3j)}, is a solution of 3P for the instance A. ��

On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs 209

References

1. Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise
crossing edges. Discrete & Computational Geometry 41(3), 365–375 (2009)

2. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear
number of edges. Combinatorica 17(1), 1–9 (1997)

3. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is NP-
hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012)

4. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Reisl-
huber, J.: Recognizing outer 1-planar graphs in linear time. In: Wismath, S., Wolff, A. (eds.)
GD 2013. LNCS, vol. 8242, pp. 107–118. Springer, Heidelberg (2013)

5. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.H., Kaufmann, M.: On the recognition of
fan-planar and maximal outer-fan-planar graphs. CoRR abs/1409.0461 (September 2014)

6. Cheong, O., Har-Peled, S., Kim, H., Kim, H.S.: On the number of edges of fan-crossing free
graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp.
163–173. Springer, Heidelberg (2013)

7. Reisi Dehkordi, H., Nguyen, Q., Eades, P., Hong, S.-H.: Circular graph drawings with large
crossing angles. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748,
pp. 298–309. Springer, Heidelberg (2013)

8. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput.
Sci. 412(39), 5156–5166 (2011)

9. Eades, P., Hong, S.H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear time al-
gorithm for testing maximal 1-planarity of graphs with a rotation system. Theor. Comput.
Sci. 513, 65–76 (2013)

10. Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Applied Mathe-
matics 161(7-8), 961–969 (2013)

11. Eggleton, R.: Rectilinear drawings of graphs. Utilitas Mathematica 29, 149–172 (1986)
12. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J. Discrete

Math. 27(1), 550–561 (2013)
13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co., New York (1979)
14. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per

edge. Algorithmica 49(1), 1–11 (2007)
15. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.)

GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)
16. Hong, S.H., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time al-

gorithm for testing outer-1-planarity. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 71–82. Springer, Heidelberg (2013)

17. Hong, S.H., Nagamochi, H.: Testing full outer-2-planarity in linear time. Technical Report
2014-003, Department of Applied Mathematics and Physics, Kyoto University (2014)

18. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR abs/1403.6184 (2014)
19. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity

testing. Journal of Graph Theory 72(1), 30–71 (2013)
20. Pach, J., Radoičić, R., Tóth, G.: Relaxing planarity for topological graphs. In: Akiyama, J.,

Kano, M. (eds.) JCDCG 2002. LNCS, vol. 2866, pp. 221–232. Springer, Heidelberg (2003)
21. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439

(1997)
22. Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and

algorithms. Interacting with Computers 13(2), 147–162 (2000)
23. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamburg 29,

107–117 (1965)

Crossing Minimization for 1-page and 2-page

Drawings of Graphs with Bounded Treewidth

Michael J. Bannister and David Eppstein

Department of Computer Science, University of California, Irvine

Abstract. We investigate crossing minimization for 1-page and 2-page
book drawings. We show that computing the 1-page crossing number
is fixed-parameter tractable with respect to the number of crossings,
that testing 2-page planarity is fixed-parameter tractable with respect
to treewidth, and that computing the 2-page crossing number is fixed-
parameter tractable with respect to the sum of the number of crossings
and the treewidth of the input graph. We prove these results via Cour-
celle’s theorem on the fixed-parameter tractability of properties express-
ible in monadic second order logic for graphs of bounded treewidth.

1 Introduction

A k-page book embedding of a graph G is a drawing that places the vertices of G
on a line (the spine of the book) and draws each edge, without crossings, inside
one of k half-planes bounded by the line (the pages of the book) [16,19]. In one
common drawing style, an arc diagram, the edges in each page are drawn as
circular arcs perpendicular to the spine [24], but the exact shape of the edges
is unimportant for the existence of book embeddings. These embeddings can be
generalized to k-page book drawings : as before, we place each vertex on the spine
and each edge within a single page, but with crossings allowed. The crossing
number of such a drawing is defined to be the sum of the numbers of crossings
within each page, and the k-page crossing number crk(G) is the minimum number
of crossings in any k-page book drawing [22]. In an optimal drawing, two edges
in the same page cross if and only if their endpoints form interleaved intervals on
the spine, so the problem of finding an optimal drawing may be solved by finding
a permutation of the vertices and an assignment of edges to pages minimizing
the number of pairs of edges with interleaved intervals on the same page.

As with most crossing minimization problems, k-page crossing minimization
is NP-hard; even the simple special case of testing whether the 2-page crossing
number is zero is NP-complete [8]. However, it may still be possible to solve
these problems in polynomial time for restricted families of graphs and restricted
values of k. For instance, recently Bannister, Eppstein and Simons [3] showed the
computation of cr1(G) and cr2(G) to be fixed-parameter tractable in the almost-
tree parameter; here, a graph G has almost-tree parameter k if every biconnected
component of G can be reduced to a tree by removing at most k edges. In this
paper we improve these results by finding fixed-parameter tractable algorithms

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 210–221, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Crossing Minimization for 1-page and 2-page Drawings of Graphs 211

for stronger parameters, allowing k-page crossing minimization to be performed
in polynomial time for a much wider class of graphs.

New Results. We design fixed-parameter algorithms for computing the minimum
number of crossings cr1(G) in a 1-page drawing of a graph G, and the minimum
number of crossings cr2(G) in a 2-page drawing of G. Ideally, fixed-parameter
algorithms for crossing minimization should be parameterized by their natural
parameter, the optimal number of crossings. We achieve this ideal bound, for the
first time, for cr1(G). However, for cr2(G), even testing whether a given graph is
2-page planar (that is, whether cr2(G) = 0) is NP-complete [8]. Therefore, unless
P = NP, there can be no fixed-parameter-tractable algorithm parameterized by
the crossing number. Instead, we show that cr2(G) is fixed-parameter tractable
in the sum of the natural parameter and the treewidth of G. One consequence of
our result on cr2(G) is that it is possible to test whether a given graph is 2-page
planar, in time that is fixed-parameter tractable with respect to treewidth.

We construct these algorithms via Courcelle’s theorem [9,10], which connects
the expressibility of graph properties in monadic second order logic with the
fixed-parameter tractability of these properties with respect to treewidth. Re-
call that second order logic extends first order logic by allowing the quantifi-
cation of k-ary relations in addition to quantification over individual elements.
In monadic second order logic we are restricted to quantification over unary re-
lations (equivalently subsets) of vertices and edges. The property of having a
2-page book embedding is easy to express in (full) second-order logic, via the
known characterization that a graph has such an embedding if and only if it is
a subgraph of a Hamiltonian planar graph [4]. However, this expression is not
allowed in monadic second-order logic because the extra edges needed to make
the input graph Hamiltonian cannot be described by a subset of the existing
vertices and edges of the graph. Instead, we prove a new structural description
of 2-page planarity that is more easily expressed in monadic second order logic.

Related Work. As well as the previous work on crossing minimization for almost-
trees [3], related results in fixed-parameter optimization of crossing number in-
clude a proof by Grohe, using Courcelle’s theorem, that the topological crossing
number of a graph is fixed-parameter tractable in its natural parameter [15]. This
result was later improved by Kawarabayashi and Reed [17]. Based on these re-
sults the crossing number itself was also shown to be fixed-parameter tractable;
Pelsmajer et al. showed a similar result for the odd crossing number [20]. In
layered graph drawing, Dujmović et al. showed that finding a drawing with k
crossings and h layers is fixed-parameter tractable in the sum of these two pa-
rameters; this result depends on a bound on the pathwidth of such a drawing, a
parameter closely related to its treewidth [11].

Like many of these earlier algorithms, our algorithms have a high dependence
on their parameter, rendering them impractical. For this reason we have not
attempted an exact analysis of their complexity nor have we searched for opti-
mizations to our logical formulae that would improve this complexity.

212 M.J. Bannister, D. Eppstein

2 Preliminaries

Bridges vs Flaps and Isthmuses. There is an unfortunate terminological confu-
sion in graph theory: two different concepts, a maximal subgraph that is inter-
nally connected by paths that avoid a given cycle, and an edge whose removal
disconnects the graph, are both commonly called bridges. We need both concepts
in our algorithms. To avoid confusion, we call the subgraph-type bridges flaps
and the edge-type bridges isthmuses. To be more precise, given a graph G and
a cycle C, we define an equivalence relation on the edges of G \ C in which two
edges are equivalent if they belong to a path that has no interior vertices in C,
and we define a flap of C to be the subgraph formed by an equivalence class of
this relation. (Different cycles may give rise to different flaps.) Given a graph G,
we define an isthmus of G to be an edge of G that does not belong to any simple
cycles in G.

Treewidth and Graph Minors. The treewidth of G can be defined to be one less
than the number of vertices in the largest clique in a chordal supergraph ofG that
(among possible chordal supergraphs) is chosen to minimize this clique size [6].
The problem of computing the treewidth of a general graph is NP-hard [1], but
it is fixed-parameter tractable in its natural parameter [5].

A graph H is said to be a minor of a graph G if H can be constructed from
G via a sequence edge contractions, edge deletions, and vertex deletions. It can
be determined whether a graph H is a minor of a graph G, in time that is
polynomial in the size of G and fixed-parameter tractable in the size of H [21].

Logic of Graphs. We will be expressing graph properties in extended monadic
second-order logic (MSO2). This is a fragment of second-order logic that includes:

– variables for vertices, sets of vertices, edges, and sets of edges;

– binary relations for equality (=), inclusion of an element in a set (∈) and
edge-vertex incidence (I);

– the standard propositional logic operations: ¬,∧,∨,→;

– the universal quantifier (∀) and the existential quantifier (∃), both which
may be applied to variables of any of the four variable types.

To distinguish the variables of different types, we will use u, v, w, . . . for vertices,
e, f, g, . . . for edges, and capital letters for sets of vertices or edges (with context
making clear which type of set). Given a graph G and an MSO2 formula φ we
write G |= φ (“G models φ”) to express the statement that φ is true for the
vertices, edges, and sets of vertices and edges in G, with the semantics of this
relation defined in the obvious way. MSO2 differs from full second order logic in
that it allows quantification over sets, but not over higher order relations, such
as sets of pairs of vertices that are not subsets of the given edges.

The reason we care about expressing graph properties in MSO2 is the following
powerful algorithmic meta-theorem due to Courcelle.

Crossing Minimization for 1-page and 2-page Drawings of Graphs 213

Lemma 1 (Courcelle’s theorem [9, 10]). Given an integer k ≥ 0 and an
MSO2-formula φ of length �, an algorithm can be constructed that takes as in-
put a graph G of treewidth at most k and decides in O

(
f(k, �) · (n + m)

)
time

whether G |= φ, where the function f appearing in the time bound is a computable
function of the treewidth k and formula length �.

Combinatorial Enumeration of Crossing Diagrams. In order to show that the
properties we study can be represented by logical formulas of finite length, we
need to bound the number of combinatorially distinct ways that a subset of
edges in a k-page graph drawing can cross each other.

We define a 1-page crossing diagram to be a placement of some points on the
circumference of a circle, together with some straight line segments connecting
the points such that each point is incident to a segment, no segment is uncrossed
and no three segments cross at the same point. Two crossing diagrams are com-
binatorially equivalent if they have the same numbers of points and line segments
and there exists a cyclic-order-preserving bijection of their points that takes line
segments to line segments. The crossing number of a 1-page crossing diagram is
the number of pairs of its line segments that cross each other.

We define a 2-page crossing diagram to be a 1-page crossing diagram together
with a labeling of its line segments by two colors. For a 2-page crossing diagram
we define the crossing number to be the total number of crossing pairs of line
segments that have the same color as each other.

Lemma 2. There are 2O(k2) 1-page crossing diagrams with k crossings, and
there are 2O(k2) 2-page crossing diagrams with k crossings.

Proof. Place 4k points around a circle. Then every 1-page crossing diagram with
k or fewer crossings can be represented by choosing a subset of the points and
a set of line segments connecting a subset of pairs of the points. There are 4k
points and 4k(4k − 1)/2 pairs of points, so 2O(k2) possible subsets to choose.

Similarly, every 2-page crossing diagram can be represented by a subset of the
same 4k points, and two disjoint subsets of pairs of points, which again can be
bounded by 2O(k2). ��

Two combinatorially equivalent crossing diagrams, as defined above, may have
a topology that differs from each other, or from combinatorially equivalent dia-
grams with curved edges. This is because, for an edge with multiple crossings, the
order of the crossings along this edge may differ from one diagram to another, but
this ordering is not considered as part of the definition of combinatorial equiv-
alence. For our purposes such differences are unimportant, as we are concerned
only with the total number of crossings. So we consider two crossing diagrams to
be equivalent if they have the same crossing pairs of edges, regardless of whether
the crossings occur in the same order.

3 1-page Crossing Minimization

Outerplanarity. Recall that a graph is outerplanar if there exists a placement of
its vertices on the circumference of a circle such that when its edges are drawn

214 M.J. Bannister, D. Eppstein

as straight line segments they do not cross. Topologically, the circle and the half-
plane are equivalent, so a graph is outerplanar if and only if it has a crossing-free
1-page drawing. For incorporating a test of outerplanarity into methods using
Courcelle’s theorem, it is convenient to use a standard characterization of the
outerplanar graphs by forbidden minors:

Lemma 3 (Chartrand and Harary [7]). A graph G is outerplanar (1-page
planar) if and only if it contains neither K4 nor K2,3 as a minor.

Lemma 4 (Corollary 1.15 in [10]). Given any fixed graph H there exists a
MSO2-formula φ such that, for all graphs G, G |= φ if and only if G contains
H as a minor. We will write minorH for φ.

Let outerplanar be the formula ¬minorK4 ∧¬minorK2,3 . Then Lemma 3
implies that, for all graphsG, G |= outerplanar if and only if G is outerplanar.
Because outerplanar graphs have bounded treewidth (at most two), Courcelle’s
theorem together with Lemma 4 guarantee the existence of a linear time algo-
rithm for testing outerplanarity. There are of course much simpler linear time
algorithms for testing outerplanarity [18, 25].

Crossings vs Treewidth. Next, we relate the natural parameter for 1-page crossing
minimization (the number of crossings) to the parameter for Courcelle’s theo-
rem (the treewidth). This relation will allow us to construct a fixed-parameter-
tractable algorithm for the natural parameter.

Lemma 5. Every graph G has treewidth O(
√

cr1(G)).

See the full version of this paper (arXiv:1408.6321) for the proof.

Logical Characterization. Let G be a graph with bounded 1-page crossing num-
ber, and consider a drawing of G achieving this crossing number. Then the set
of crossing edges of the drawing partitions the halfplane into an arrangement
of curves, and we can partition G itself into the subgraphs that lie within each
face of this arrangement. Each of these subgraphs is itself outerplanar, because
it lies within a subset of the halfplane (with its vertices on the boundary of the
subset) and has no more crossing edges; see Figure 1. This intuitive idea forms
the basis for the following characterization of the 1-page crossing number, which
we will use to construct an MSO2-formula for the property of having a drawing
with low crossing number.

Lemma 6. A graph G = (V,E) has cr1(G) ≤ k if and only if there exist edges
F = {e0, . . . , er} with r = O(k), vertices W = {v0, . . . , v�} with � = O(k),
and a partition U0, . . . , U� of V \W into (possibly empty) subsets, satisfying the
following properties:

1. W is the set of vertices incident to edges in F .
2. F contains all edges in the induced subgraph on W .
3. There are no edges between Ui and Uj for i �= j.

http://arxiv.org/abs/1408.6321

Crossing Minimization for 1-page and 2-page Drawings of Graphs 215

U0

U1

U2

U3

U4

Fig. 1. A 1-page drawing of a
graph with two crossings and
five outerplanar subgraphs.

Fig. 2. A 2-page planar graph with its edges parti-
tioned into the six sets Ab (green edges), Ac (blue
edges), Ai (red edges), Bb (yellow edges), Bc (pur-
ple edges), and Bi (gray edges).

4. There is an outerplanar embedding of the induced subgraph on Ui∪{vi, vi+1}
with vi and vi+1 adjacent for all 0 ≤ i < �.

5. The edges in F produce at most k crossings when their endpoints (the vertices
in W) are placed in order according to their indices.

We now construct a formula onepagek, based on Lemma 6, such that G |=
onepagek if and only if cr1(G) ≤ k. The formula onepagek will have the
overall form of a disjunction, over all crossing configurations, of a conjunction
of sub-formulas representing Properties 1–4 in Lemma 6. Property 5 will be
represented implicitly, by the enumeration of crossing configurations. The first
three properties are easy to express directly: the formulas

θ1(W,F) ≡ (∀v)[v ∈ W → (∃e)[e ∈ F ∧ I(e, v)]]

θ2(F,W) ≡ (∀e)[(∀v)[I(e, v) → v ∈ W] → e ∈ F]

θ3(Ui, Uj) ≡ ¬(∃e)(∃u, v)[I(e, u) ∧ I(e, v) ∧ u ∈ Ui ∧ v ∈ Uj]

express in MSO2 Properties 1, 2, and 3 of Lemma 6 respectively.
To express Property 4 we first observe that it is equivalent to the property

that the induced subgraph on Ui∪{vi, vi+1} with vi and vi+1 identified (merged)
to form a single supervertex is outerpalanar. That is, the requirement in Prop-
erty 4 that vertices vi and vi+1 be adjacent in the outerplanar embedding can be
enforced by identifying the vertices. To express this property we need the follow-
ing lemma, which can be proved in straightforward manner using the method of
syntactic interpretations. (For details on this method see [13, 15].)

Lemma 7. For every MSO2-formula φ there exists an MSO2-formula φ∗(v1, v2)
such that G |= φ∗(a, b) if and only if G/a ∼ b |= φ, where G/a ∼ b is the graph
constructed from G by identifying vertices a and b.

Now, to construct θ4(Ui, vi, vj) we first modify the formula outerplanar
by restricting its quantifiers to only quantify over vertices (and sets of vertices)
in Ui ∪ {vi, vj} and edges (and sets of edges) between these vertices. This mod-
ified formula describes the outerplanarity of Ui ∪ {vi, vj}. We then apply the

216 M.J. Bannister, D. Eppstein

transformation of Lemma 7 to produce the formula θ4(Ui, vi, vj), expressing the
outerplanarity of the induced graph on Ui ∪ {vi, vj} with vi and vj identified.

Lemma 2 tells us that there are 2O(k2) ways of satisfying Property 5 of Lemma 6.
For each crossing diagramDwith k crossingswe can construct a formulaαD(v0, . . . ,
v�, e0, . . . , er) specifying that the vertices v0, . . . , v� and edges e0, . . . , er are in con-
figurationD. We then construct the formula

βD ≡ (∃v0, . . . v�)(∃e0, . . . , er)(∃U0, . . . , U�)[
αD(v0, . . . , v�, e0, . . . , er) ∧

�⋃
0

Ui = V \ {v0, . . . , v�} ∧
∧
i�=j

Ui ∩ Uj = ∅

∧ θ1(v0, . . . , v�; e0, . . . , er) ∧ θ2(e0, . . . , er; v0, . . . , v�)

∧
∧
i�=j

θ3(Ui, Uj) ∧
�∧

i=0

θ4(Ui, vi, vi+1)
]

of length O(k2). This formula expresses the property that, in the given graph G,
we can construct a crossing diagram of type D, and a corresponding partition of
the vertices into subsets Ui, that obeys Properties 1–4 of Lemma 6. By Lemma 6,
this is equivalent to the property that G has a 1-page drawing with k crossings
in configuration D. Finally, we construct onepagek by taking the disjunction
of the βD where D ranges over all crossing diagrams with ≤ k crossings. Thus,
onepagek is a formula of length 2O(k2), expressing the property that cr1(G) ≤ k.

Theorem 1. There exists a computable function f such that cr1(G) can be com-
puted in O(f(k)n) time for a graph G with n vertices and with k = cr1(G).

Proof. We have shown the existence of a formula onepagek such that a graph
G |= onepagek if and only if cr1(G) ≤ k. By Lemma 5, the treewidth of any
graph with crossing number k is O(k). Applying Courcelle’s theorem with the
formula onepagek and the O(k) treewidth bound, it follows that computing
cr1(G) is fixed-parameter tractable in k . ��

4 2-page Planarity

A classical characterization of the graphs with planar 2-page drawings is that
they are exactly the subhamiltonian planar graphs:

Lemma 8 (Bernhart and Kainen [4]). A graph is 2-page planar if and only
if it is the subgraph of planar Hamiltonian graph.

However, this characterization does not directly help us to construct an MSO2-
formula expressing the 2-page planarity of a graph, as we do not know how to
construct a formula that asserts the existence of a supergraph with the given
property. Hamiltonicity and planarity are both straightforward to express in
MSO2, but there is no obvious way to describe a set of edges that may be of

Crossing Minimization for 1-page and 2-page Drawings of Graphs 217

more than constant size, is not a subset of the existing edges, and can be used
to augment the given graph to form a planar Hamiltonian graph.

For this reason we provide a new characterization, which we model on a stan-
dard characterization of planar graphs: a graph is planar if and only if, for every
cycle C, the flaps of C can be partitioned into two subsets (the interior and
exterior of C) such that no two flaps in the same subset cross each other. For
instance, this characterization has been used as the basis for a cubic-time divide
and conquer algorithm for planarity testing, which recursively subdivides the
graph into cycles and non-crossing subsets of flaps [2,14,23]. In our characteriza-
tion of 2-page graphs, we apply this idea to a special set of cycles, the boundaries
of maximal regions within each halfplane that are separated from the spine of a
2-page book embedding by the edges of the embedding. The cycles of this type
are edge-disjoint, and if a single cycle of this type has been identified then its
interior flaps can also be identified easily: each interior flap is a single edge, and
an edge forms an interior flap if and only if it belongs to the same page as the
cycle in the book embedding and has both its endpoints on the cycle. As well
as identifying which of the two pages each edge of a given graph is assigned
to, our MSO2 formula will partition the edges into three different types of edge:
the ones that belong to these special cycles, the ones that form interior flaps
of these special cycles, and the remaining isthmus edges that, if deleted, would
disconnect parts of their page.

Suppose we are given a graph G = (V,E) and a partition of its edges into two
subsets A,B, intended to represent the two pages of a 2-page drawing of G. We
define the graph separate(G;A,B) that splits each vertex of G into two vertices,
one in each page, with a new edge connecting them. Thus, separate(G;A,B) has
2n vertices, which can be labeled by pairs of the form (v,X) where v is a vertex
in V and X is one of the two sets in A,B. It has an edge between (x,X) and
(y, Y) if either of two conditions is met: (1) x = y and X �= Y , or (2) X = Y
and there is an edge between x and y in X .

Lemma 9. A graph G = (V,E) is 2-page planar if and only if there exists a
partition Ab, Ac, Ai, Bb, Bc, Bi of E into six subsets such that, for each of the
two choices of X = A and X = B, these subsets satisfy the following properties:

1. Xc is a union of edge-disjoint cycles.
2. Xc ∪Xb does not contain any additional cycles that involve edges in Xb.
3. For every edge e in Xi there exists a cycle in Xc containing both endpoints

of e.
4. The graph formed by the edges Xi ∪Xc ∪Xb is outerplanar.
5. For each cycle C in Xc it is not possible to find two vertex-disjoint paths

P1 and P2 in E such that neither path is a single edge in Xi, all four path
endpoints are distinct vertices of C, neither path contains a vertex of C in its
interior, and the two pairs of path endpoints are in crossing position on C.

6. The subdivision separate(G;Ab ∪ Ac ∪ Ai, Bb ∪Bc ∪Bi) is planar.

Figure 2 illustrates the division of edge into six subsets described in Lemma 9.
For the proof of Lemma 9, see the full version of this paper.

218 M.J. Bannister, D. Eppstein

We construct a formula twopage based on Lemma 9 with the property that
G |= twopage if and only if G is 2-page planar. First, we construct formulas
θ1, . . . , θ5 expressing Properties 1 through 5 in Lemma 9, as we did for 1-page
crossing; each of these properties has a straightforward expression in MSO2. To
express Property 6 we will need the following technical lemma, which can be
proved using the method of syntactic interpretations.

Lemma 10. For every MSO2-formula φ there exists an MSO2-formula φ∗(A,B)
such that G |= φ∗(A,B) if and only if separate(G;A,B) |= φ.

Now, we can express Property 6 as an MSO2-formula θ6 using Lemma 10, as
planarity is expressible by Lemma 4 and the fact that planar graphs are the
graph that avoid K5 and K3,3 as minors. Thus, we define twopage to be the
formula expressing the existence of Ab, Ac, Ai, Bb, Bc, Bi satisfying θ1, . . . θ6.

Theorem 2. There exists a computable function f and an algorithm that can
decide whether a given graph with treewidth k is 2-page planar in O(f(k)n) time.

Proof. The result follows from Courcelle’s theorem together with the construc-
tion of the MSO2 formula twopage representing the existence of a two-page
planar embedding. ��

5 2-page Crossing Minimization

We now extend the results of the previous section from 2-page planarity to 2-
page crossing minimization. As in the 1-page case, we will use a formula that
involves a disjunction over crossing diagrams. Given a crossing diagramD with k
crossings and r+1 edges, whose graph is G, we define the planarization of G with
respect to D to be the graph in which each edge ei is replaced by a path of degree
four vertices, such that two of these replacement paths share a vertex if and only
if the original two edges cross in D. As explained earlier, we do not care about
the order of crossings along each edge (two crossing diagrams with the same
sets of crossing pairs but with different crossing orders are considered equivalent.
Nevertheless, we do preserve the order of crossings from (one representative of
an equivalence class of) crossing diagrams to their planarizations, in order to
ensure that the planarizations form planar graphs.

Lemma 11. A graph G = (V,E) has cr2(G) = k if and only if there exists edges
e0, e1, · · · , er with r < 2k and a 2-page crossing diagram D with k crossings on
these edges such that when G is planarized with respect to D the resulting graph
GD = (VD, ED) has a partition of ED into Ab, Ac, Ai, Bb, Bc, Bi such that, for
X = A,B:

1. Xc is a union of edge disjoint cycles.
2. None of the cycles Xc ∪Xb contains an edge in Xb.
3. If e is an edge introduced in the planarization, then e ∈ Ab ∪ Ac ∪ Ai if e is

in the first page of D, and e ∈ Bb ∪Bc ∪Bi if it is in the second page of D.

Crossing Minimization for 1-page and 2-page Drawings of Graphs 219

4. For every edge e in Xi, there exists a subgraph P containing e and a cycle C
in Xc such that P consists only of vertices of C and of degree-four vertices
introduced in the planarization, P contains at least two vertices of C, and P
includes all four edges incident to each of its planarization vertices.

5. For each two edges e and f in Xi, the two subgraphs Pe and Pf satisfying
Property 4 do not each have a pair of endpoints in crossing position on the
same cycle C.

6. For each cycle C in Xc there do not exist two paths in E, such that neither
path uses edges of Xi or interior vertices of C, with four distinct endpoints
on C in crossing position.

7. the subdivision separate(G;Ab ∪ Ac ∪ Ai, Bb ∪Bc ∪Bi) is planar.

Now, we construct a MSO2-formula ζk based on Lemma 11 such that G |= ζk if
and only if cr2(G) = k. To handle the planarization process we use the following
lemma. In the lemma, the notation Ge1×e2 describes the graph obtained from a
graph G by deleting two edges e1 and e2 that do not share a common endpoint,
and adding a new degree-4 vertex connected to the endpoints of e1 and e2.

Lemma 12 (Grohe [15]). For every MSO2-formula φ there exists an MSO-
formula φ∗(x1, x2) such that G |= φ∗(e1, e2) if and only if Ge1×e2 |= φ.

Given any MSO2-formula φ and crossing diagram D, we can repeatedly apply
the lemma above to construct a formula φD such that G |= φD(e0, . . . , er) if
and only if GD |= φ. With this tool in hand it is straightforward to construct
a formula γD , expressing the property that, in a given graph G we can build
a crossing diagram with the structure of D, and partition the planarization GD

into six sets, satisfying Lemma 11. So we can define ζk to be the disjunction of
the γD ranging over all 2-page crossing diagrams with k-crossings.

Theorem 3. There exists a computable function f such that cr2(G) can be
computed in O(f(k, t)n) time for a graph G with n vertices, k = cr2(G), and
t = tw(G).

6 Conclusion

We have provided new fixed-parameter algorithms for computing the crossing
numbers for 1-page and 2-page drawings of graphs with bounded treewidth. The
use of monadic second order logic and Courcelle’s theorem in our solutions causes
the running times of our algorithms to have an impractically high dependence
on their parameters. We believe that it should be possible to achieve a better
dependence by directly designing dynamic programming algorithms that use
tree-decompositions of the given graphs, rather than by relying on Courcelle’s
theorem to prove the existence of these algorithms. Can this dependency be
reduced to the point of producing practical algorithms? For 2-page crossing min-
imization the runtime is parameterized by both the treewidth and the crossing
number. Is 2-page crossing minimization NP-hard for graphs of fixed treewidth?
We leave these questions open for future research.

220 M.J. Bannister, D. Eppstein

Dujmović and Wood asked [?], “is there a polynomial-time algorithm for com-
puting the book thickness of graphs with bounded treewidth?” Our Theorem 2
provides a partial solution to this question for book thickness 2. Can the graph
property of having book thickness k be expressed in MSO2, answering the ques-
tion of Dujmović and Wood? The special case of k = 3 is of particular interest,
to provide a computational attack on the still-open problem of whether there
exist planar graphs that require four pages [12,26]. Heath has shown that every
planar graph of treewidth three has a planar 3-page drawing [?], but recognizing
three-page graphs of higher treewidth efficiently remains open.

Acknowledgments. This material is based upon work supported by the Na-
tional Science Foundation under Grant CCF-1228639 and by the Office of Naval
Research under Grant No. N00014-08-1-1015.

References

[1] Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in
a k-tree. SIAM J. Alg. Disc. Meth. 8(2), 277–284 (1987), doi:10.1137/0608024

[2] Auslander, L., Parter, S.V.: On imbedding graphs in the sphere. Journal of Math-
ematics and Mechanics 10(3), 517–523 (1961)

[3] Bannister, M.J., Eppstein, D., Simons, J.A.: Fixed parameter tractability of cross-
ing minimization of almost-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 340–351. Springer, Heidelberg (2013), doi:10.1007/978-3-319-03841-
4 30

[4] Bernhart, F., Kainen, P.C.: The book thickness of a graph. Journal of Combina-
torial Theory, Series B 27(3), 320–331 (1979), doi:10.1016/0095-8956(79)90021-2

[5] Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions
of small treewidth. In: Proceedings of the Twenty-fifth Annual ACM Sym-
posium on Theory of Computing, STOC 1993, pp. 226–234. ACM (1993),
doi:10.1145/167088.167161

[6] Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theo-
retical Computer Science 209(1-2), 1–45 (1998), doi:10.1016/S0304-3975(97)00228-
4

[7] Chartrand, G., Harary, F.: Planar permutation graphs. Annales de l’institut
Henri Poincaré (B) Probabilités et Statistiques 3(4), 433–438 (1967),
http://eudml.org/doc/76875

[8] Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: A
layout problem with applications to VLSI design. SIAM J. Alg. Disc. Meth. 8(1),
33–58 (1987), doi:10.1137/0608002

[9] Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation 85(1), 12–75 (1990), doi:10.1016/0890-
5401(90)90043-H

[10] Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic:
A Language-Theoretic Approach. Cambridge University Press (2012)

[11] Dujmović, V., Fellows, M.R., Kitching, M., Liotta, G., McCartin, C., Nishimura,
N., Ragde, P., Rosamond, F., Whitesides, S., Wood, D.R.: On the parameter-
ized complexity of layered graph drawing. Algorithmica 52(2), 267–292 (2008),
doi:10.1007/s00453-007-9151-1

http://eudml.org/doc/76875

Crossing Minimization for 1-page and 2-page Drawings of Graphs 221

[12] Dujmović, V., Wood, D.R.: Graph treewidth and geometric thickness parameters.
Discrete Comput. Geom. 37(4), 641–670 (2007), doi:10.1007/s00454-007-1318-7

[13] Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical logic, 2nd edn. Under-
graduate Texts in Mathematics. Springer (1994), doi:10.1007/978-1-4757-2355-7;
Translated from the German by Margit Meßmer

[14] Goldstein, A.J.: An efficient and constructive algorithm for testing whether a
graph can be embedded in a plane. In: Graph and Combinatorics Conference
(1963)

[15] Grohe, M.: Computing crossing numbers in quadratic time. Journal of Computer
and System Sciences 68(2), 285–302 (2004), doi:10.1016/j.jcss.2003.07.008

[16] Kainen, P.C.: Some recent results in topological graph theory. In: Graphs and Com-
binatorics. Lecture Notes in Mathematics, vol. 406, pp. 76–108. Springer (1974),
doi:10.1007/BFb0066436

[17] Kawarabayashi, K., Reed, B.: Computing crossing number in linear time.
In: ACM Symp. Theory of Computing (STOC 2007), pp. 382–390 (2007),
doi:10.1145/1250790.1250848

[18] Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerpla-
nar graphs. Information Processing Letters 9(5), 229–232 (1979), doi:10.1016/0020-
0190(79)90075-9

[19] Ollmann, L.T.: On the book thicknesses of various graphs. In: Proc. 4th South-
eastern Conference on Combinatorics, Graph Theory and Computing, vol. 8, p.
459 (1973)

[20] Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Crossing numbers and parameter-
ized complexity. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS,
vol. 4875, pp. 31–36. Springer, Heidelberg (2008), doi:10.1007/978-3-540-77537-
9 6.

[21] Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths
problem. Journal of Combinatorial Theory, Series B 63(1), 65–110 (1995),
doi:10.1006/jctb.1995.1006

[22] Shahrokhi, F., Sýkora, O., Székely, L.A., Vřťo, I.: Book embeddings and cross-
ing numbers. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS,
vol. 903, pp. 256–268. Springer, Heidelberg (1995)

[23] Shirey, R.W.: Implementation and Analysis of Efficient Graph Planarity Testing
Algorithms. Ph.D. thesis, The University of Wisconsin – Madison (1969)

[24] Wattenberg, M.: Arc diagrams: visualizing structure in strings. In: IEEE Sym-
posium on Information Visualization (INFOVIS 2002), pp. 110–116 (2002),
doi:10.1109/INFVIS.2002.1173155

[25] Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Tinhofer, G.,
Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg
(1987)

[26] Yannakakis, M.: Four pages are necessary and sufficient for planar graphs. In: Proc.
18th ACM Symp. on Theory of Computing (STOC 1986), pp. 104–108 (1986),
doi:10.1145/12130.12141

A Crossing Lemma for the Pair-Crossing

Number

Eyal Ackerman1 and Marcus Schaefer2

Dept. Math., Physics, and Comp. Sci., University of Haifa at Oranim, Tivon, Israel
ackerman@sci.haifa.ac.il

School of Computing, DePaul University, Chicago, Illinois 60604, USA
mschaefer@cdm.depaul.edu

Abstract. The pair-crossing number of a graph G, pcr(G), is the min-
imum possible number of pairs of edges that cross each other (possibly
several times) in a drawing of G. It is known that there is a constant
c ≥ 1/64 such that for every (not too sparse) graph G with n vertices

and m edges pcr(G) ≥ cm3

n2 . This bound is tight, up to the constant c.
Here we show that c ≥ 1/34.2 if G is drawn without adjacent crossings.

1 Introduction

Throughout this paper we consider graphs with no loops or parallel edges. A
topological graph is a graph drawn in the plane with its vertices as distinct
points and its edges as Jordan arcs that connect the corresponding points and
do not contain any other vertex as an interior point. Every pair of edges in
a topological graph has a finite number of intersection points. If every pair of
its edges intersect at most once, then a topological graph is called simple. The
intersection point of two edges is either a vertex that is common to both edges,
or a crossing point at which one edge passes from one side of the other edge to
its other side.

A crossing in a topological graph consists of a pair of crossing edges and
a point in which they cross. The crossing number of a graph G, cr(G), is the
minimum possible number of crossings in a drawing of G as a topological graph
in the plane. The pair-crossing number of a graph G, pcr(G), is the minimum
possible number of pairs of crossing edges in a drawing of G as a topological
graph in the plane. There has been some confusion between these two notions in
the literature, probably due to the fact that in a drawing with the least number of
crossings no pair of edges intersects more than once. Perhaps for the same reason
there has also been some confusion as to whether adjacent crossings are allowed
or counted.1 For examples and history of this confusion and other variants of
the crossing number, see the recent survey of Schaefer [14] and the paper titled
“Which crossing number is it anyway?” by Pach and Tóth [12].

Considering adjacent crossings, Pach and Tóth [11] introduced the following
notation:

1 By adjacent crossings we mean crossings between edges that share a common vertex.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 222–233, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A Crossing Lemma for the Pair-Crossing Number 223

Rule +: adjacent crossings are not allowed.
Rule -: adjacent crossings are allowed but not counted.
Rule 0: adjacent crossings are allowed and counted (this is the default rule).

Clearly, pcr−(G) ≤ pcr(G) ≤ pcr+(G) ≤ cr+(G) = cr(G) for every graph

G. On the other hand, it is known [7] that cr(G) = O(pcr(G)3/2 log2 pcr(G)),

and it follows from the results in [13] that cr(G) ≤
(2pcr−(G)

2

)
. Perhaps the

main related open problem is to determine whether there is a graph G for which
pcr(G) < cr(G).

The following lower bound on the crossing number was proved by Ajtai,
Chvátal, Newborn, Szemerédi [4] and, independently, by Leighton [6].

Theorem 1 ([4,6]). There is an absolute constant c > 0 such that for every

graph G with n vertices and m ≥ 4n edges we have cr(G) ≥ cm
3

n2 .

This celebrated result is known as the Crossing Lemma and has numer-
ous applications in combinatorial and computational geometry, number theory,
and other fields of mathematics. The Crossing Lemma is tight, apart from the
multiplicative constant c. This constant was originally small, and later was
shown to be at least 1/64 ≈ 0.0156, by a very elegant probabilistic argu-
ment due to Chazelle, Sharir, and Welzl [3]. Pach and Tóth [10] proved that
0.0296 ≈ 1/33.75 ≤ c ≤ 0.09 (the lower bound applies for m ≥ 7.5n). Their
lower bound was later improved by Pach, Radoičić, Tardos, and Tóth [9] to
c ≥ 1024/31827 ≈ 1/31.1 ≈ 0.0321 (when m ≥ 103

16 n). Recently, Ackerman [1]
further improved the lower bound to c ≥ 1

29 (when m ≥ 6.95n).
Pach et al. [9] pointed out that the original proofs of the Crossing Lemma gen-

eralize to the pair-crossing number, yielding pcr(G) ≥ 1
64

|E(G)|3
|V (G)|2 when |E(G)| ≥

4|V (G)|. They also remarked that they were unable to extend their lower bound
on the crossing number to the pair-crossing number. Our main result is the
following.

Theorem 2. For every graph G with n vertices and m ≥ 6.75n edges we have

pcr+(G) ≥ 26

37
m3

n2 ≥ 1
34.2

m3

n2 .

All the above-mentioned improvements for the crossing number were obtained
using the same approach, namely, by showing that a sparse graph has an edge
that is involved in several crossings. Denote by ek(n) the maximum number of
edges in a topological graph with n > 2 vertices in which every edge is involved
in at most k crossings. Let e∗k(n) denote the same quantity for simple topological
graphs. It follows from Euler’s Polyhedral Formula that e0(n) ≤ 3n−6. Pach and
Tóth showed that e∗k(n) ≤ 4.108

√
kn and also gave the following better bounds

for k ≤ 4.

Theorem 3 ([10]). e∗k(n) ≤ (k + 3)(n − 2) for 0 ≤ k ≤ 4. Moreover, these
bounds are tight when 0 ≤ k ≤ 2 for infinitely many values of n.

Pach et al. [9] observed that the upper bound in Theorem 3 applies also for
not necessarily simple topological graphs when k ≤ 3, and proved a better bound

224 E. Ackerman and M. Schaefer

for k = 3, namely, e3(n) ≤ 5.5n− 11. Ackerman [1] proved that e∗4(n) ≤ 6n− 12.
The last two bounds are tight up to an additive constant.

The bounds ek(n) are used to get a weak lower bound on the crossing number
of the form cr(G) ≥ α|E(G)| − β|V (G)|. This linear bound is then used instead
of the trivial bound cr(G) ≥ |E(G)| − 3|V (G)| in the well-known probabilistic
proof of the Crossing Lemma. The same approach would work to get a better
lower bound for the pair-crossing number (and its variant pcr+), if one can show
that a sparse graph has an edge that crosses several other edges (each of them
possibly many times).

Denote by e′′k(n) the maximum number of edges in a topological graph with
n > 2 vertices in which every edge crosses at most k other edges (each of them
possibly more than once).2 Clearly, e′′k(n) ≥ ek(n) ≥ e∗k(n). For 0 ≤ k ≤ 3 we
have the following upper bounds on e′′k(n).

Theorem 4. Let G be a graph with n ≥ 3 vertices that can be drawn as a
topological graph in which every edge crosses at most k other edges (each of
them possibly more than once). If 0 ≤ k ≤ 3, then G has at most (k + 3)(n− 2)
edges.

Note that for 0 ≤ k ≤ 2 it is known that there are infinitely many values
of n for which one can draw a (simple) topological graph with n vertices and
(k+ 3)(n− 2) edges such that every edge is crossed at most k times. Therefore,
the bounds for 0 ≤ k ≤ 2 in Theorem 4 are tight. On the other hand, our upper
bound for e′′3(n) is inferior to the known bound on e3(n).

Organization. In Section 2 we collect some useful facts towards proving The-
orem 4. A sketch of the proof of this theorem is then presented in Section 3.
In Section 4 we recall how such a result can be used to get a better bound for
the pair-crossing number when adjacent crossings are not allowed. Due to space
limitation, some of the proofs are omitted or only sketched. The missing details
can be found in the full version of the paper.

2 Preliminaries

In this section we collect some useful facts towards proving Theorem 4. Since
we will be interested in the number of crossing pairs and the number of edges
crossing a single edge, we may assume henceforth that the topological graphs
that we consider have no three edges crossing at a single point. Indeed, if more
than two edges cross at a point p, then we can redraw these edges in a small
neighborhood of p such that no three of them cross at a point without changing
the set of edges that each of these edges cross.

Recall that Pach et al. [9] proved that e∗k(n) = ek(n), for 0 ≤ k ≤ 3. This is
implied by the following lemma.

2 Think of the double prime symbol as a pair of prime symbols. Note that adjacent
crossings are allowed and counted although for improving the crossing lemma for
pcr+ it would suffice to consider drawings without adjacent crossings.

A Crossing Lemma for the Pair-Crossing Number 225

Lemma 1 ([9]). For every 0 ≤ k ≤ 3, if a graph can be drawn as a topological
graph such that each of its edges is crossed at most k times, then in a drawing
with that property and the least number of crossings every pair of edges intersects
at most once.

Let G be a graph and let D be a drawing of G as a topological graph. Let D′

be a drawing of G as a topological graph with the least number of crossings such
that every pair of crossing edges in D′ are also crossing in D. The following is
implied by the proof of Theorem 3.2 in [15].

Lemma 2. There is no pair of edges e and e′ in D′ such that there are two
crossing points between them that are consecutive along e.

Lemma 3. If every edge in D (and hence in D′) is crossed by at most k edges,
then every edge in D′ contains fewer than 2k crossing points with other edges.

3 Proof of Theorem 4

Recall that we wish to show that e′′k(n) ≤ (k + 3)(n − 2), for 0 ≤ k ≤ 3. That
is, for every 0 ≤ k ≤ 3, if a graph G with n > 2 vertices can be drawn such that
each of its edges crosses at most k edges (possibly several times), then G has at
most (k + 3)(n − 2) edges. Theorem 3 (due to Pach and Tóth) yields this edge
bound for k ≤ 3, but under the stronger assumption that each edge is crossed
at most k times. As we see in the next section, for k ≤ 2, the assumption is not
really stronger, so that we can use Theorem 3 for these cases (though for k = 0
and k = 1 direct proofs are easier). For k = 3 we need a more sophisticated
discharging argument, detailed in Section 3.2.

3.1 The Local Pair-Crossing Number and Bounding e′′k for k ≤ 2

The local crossing number, lcr(G), of a graph G is the smallest k so that G can
be drawn with at most k crossings per edge. The local pair-crossing number,
lpcr(G), is the smallest k so that G has a drawing in which each edge is crossed
by at most k other edges. By definition, lpcr(G) ≤ lcr(G). Following the hints
in [14], it is possible to construct a graphG for which lpcr(G) = 4 and lcr(G) = 5,
therefore, the two local crossing numbers differ. This is in marked contrast to the
pair crossing number, which we cannot at this point separate from the standard
crossing number.

Theorem 5. If lpcr(G) ≤ 2, then lpcr(G) = lcr(G).

This leaves open the question whether equality holds for lpcr(G) = 3. We
believe a counterexample is possible, implying that we cannot take the easy
route via the local crossing number to establish the bound of e′′3 .

Proof. The statement is immediate for lpcr(G) = 0 (by definition), and follows
from Lemma 2 for lpcr(G) ≤ 1. Therefore, suppose that G is a graph with

226 E. Ackerman and M. Schaefer

lpcr(G) = 2. Fix a drawing D of G in which every edge crosses at most two
other edges and (under this condition) the least possible number of crossings.

It follows from Lemma 3 that every edge in D is crossed at most three times.
We claim that every edge in D is crossed at most twice. Suppose for the sake of
contradiction that there is an edge e that is crossed exactly three times. Orient
e arbitrarily and let x1, x2, x3 be the crossing points on e, in the order they
appear on e according to its orientation. Denote by e1, e2, e3 the edges that
cross e at x1, x2, x3, respectively. It follows from Lemma 2 that e1 = e3 and
e1 �= e2. Moreover, by the same argument, the segment of e1 between x1 and x3

must contain a crossing point of e1 with an edge e′. Note also that e′ crosses e1
once and e crosses e2 once, since e and e1 cross each other twice and there are at
most three crossing points on every edge. Denote by D′ the topological graph we
obtain by swapping the segments of e and e1 between x1 and x3 and redrawing
them at small neighborhoods of x1 and x3 such that these segments are disjoint
(see Fig. 1 for an illustration). Note that in D′ every edge still crosses at most

e

e1 e2

x1 x2 x3

e′

(a) before

e

e1 e2

x2

e′

(b) after

Fig. 1. Decreasing the number of crossings in case of an edge that is crossed three
times

two other edges, however, D′ has fewer crossing points than D, contradicting
the minimality of D.

Thus, every edge in D is crossed at most twice, showing that lcr(G) ≤ 2. �

For k ≤ 2, we can now conclude that e′′k(n) ≤ (k + 3)(n − 2) as follows: By
Theorem 5, if a graph G can be drawn so that each of its edges crosses at most
k ≤ 2 other edges, then G has a drawing in which each of its edges is crossed at
most k times; by Lemma 1, we can assume that G has such a drawing which is
simple. Now Theorem 4 yields the desired bound e′′k(n) ≤ e∗(n) = (k+3)(n−2).

The local pair-crossing number seems to be a useful tool for approaching
arguments about the pair-crossing number, so we would like to know more about
its properties. For example, one can ask whether lcr can be bounded in lpcr?
This is true, by Lemma 3, which yields the exponential bound lcr(G) < 2lpcr(G),
however, we think that much better bounds should be true, since we have much
more flexibility with the local pair-crossing number than with string graphs.

In particular, it would bear investigating whether the upper bounds achieved
by Tóth and Matoušek (bounding the crossing number in a function of the
pair-crossing number), aren’t really arguments about the local version of these
crossing numbers.

A Crossing Lemma for the Pair-Crossing Number 227

3.2 A Proof that e′′3 (n) ≤ 6(n − 2)

Suppose that G is a graph with n > 2 vertices that can be drawn such that every
edge crosses at most three other edges (possibly several times), and let D be a
drawing of G as a topological graph with that property and the least possible
number of crossings.

We prove that G has at most 6n− 12 edges by induction on n. For n ≤ 10 we
have 6n− 12 ≤

(
n
2

)
and thus the theorem trivially holds. Therefore, we assume

that n ≥ 11. Furthermore, we may assume that the degree of every vertex in G
is at least 7, for otherwise the theorem easily follows by removing a vertex of
small degree and applying induction.

We denote by M(D) the plane map induced by D. That is, the vertices of
M(D) are the vertices and crossing points in D, and the edges of M(D) are the
crossing-free segments of the edges of D (where each such edge-segment connects
two vertices of M(D)). If a certain vertex of M(D) is known to be a vertex of D
we will denote it by a capital letter, otherwise, we will use small letters. Unless
the context is clear, we will refer to edges of D as D-edges and to edges of M(D)
asM -edges. An edge-segment will be denoted by a concatenation of its endpoints
(no comma in between), where round or square brackets will indicate whether
an endpoint is included in the edge-segment. E.g., [xy) is an edge-segment whose
endpoints are x and y, such that x is included in [xy) and y is not. In all the
following figures bold edge-segments mark M -edges.

Proposition 1. If M(D) is not 2-connected, then D has at most 6n−12 edges.

By Proposition 1, we may assume henceforth that M(D) is 2-connected. The
boundary of a face f in M(D) consists of all the M -edges that are incident to
f . Since M(D) is 2-connected, the boundary of every face in M(D) is a simple
cycle. Thus, we can define the size of a face f , |f |, as the number of M -edges
on its boundary. It can be shown that if M(D) contains a face of size two, then
there is a drawing of G as a topological with fewer crossings than D and such
that every edge crosses at most three other edges. Therefore, the size of every
face in M(D) is at least three.

We use the Discharging Method (see, e.g., [5]) to prove that |E(D)| ≤ 6(n−2).
We begin by assigning a charge to every face of the planar map M(D) such that
the total charge is 4n− 8. Then, we redistribute the charge in several steps such
that eventually the charge of every face is nonnegative and the charge of every
vertex A ∈ V (D) is 1

3 deg(A). Hence,
2
3 |E(D)| =

∑
A∈V (D)

1
3 deg(A) ≤ 4n − 8

and we get the desired bound on |E(D)|. Next we describe the proof in details.

Charging. Let V ′, E′, and F ′ denote the vertex, edge, and face sets of M(D),
respectively. For a face f ∈ F ′ we denote by V (f) the set of vertices ofD that are
incident to f . It is easy to see that

∑
f∈F ′ |V (f)| =

∑
A∈V (D) deg(A) and that∑

f∈F ′ |f | = 2|E′| =
∑

u∈V ′ deg(u). Note also that every vertex in V ′ \ V (D) is

a crossing point in D and therefore its degree in M(D) is four. Hence,
∑

f∈F ′
|V (f)| =

∑

A∈V (D)

deg(A) =
∑

u∈V ′
deg(u)−

∑

u∈V ′\V (D)

deg(u) = 2|E′| − 4
(
|V ′| − n

)
.

228 E. Ackerman and M. Schaefer

Assigning every face f ∈ F ′ a charge of |f |+ |V (f)|−4, we get that total charge
over all faces is∑

f∈F ′
(|f |+ |V (f)| − 4) = 2|E′|+ 2|E′| − 4 (|V ′| − n)− 4|F ′| = 4n− 8,

where the last equality follows from Euler’s Polyhedral Formula by which |V ′|+
|F ′| − |E′| = 2 (recall that M(D) is connected).

Discharging. We will redistribute the charges in several steps. We denote by
chi(x) the charge of an element x (either a face in F ′ or a vertex in V (D)) after
the ith step, where ch0(·) represents the initial charge function. We will use the
terms triangles, quadrilaterals and pentagons to refer to faces of size 3, 4 and 5,
respectively. An integer before the name of a face denotes the number of original
vertices it is incident to. For example, a 2-triangle is a face of size 3 that is
incident to 2 original vertices.

Step 1: Charging the Vertices of D. In this step every vertex of D takes
1/3 units of charge from each face it is incident to. �

After Step 1 the charge of every vertex A ∈ V (D) is 1
3 deg(A). Next, we need

to make sure that the charge of every face is nonnegative. Let f ∈ F ′ be a face.
Note that ch1(f) ≥ |f |+ 2

3 |V (f)| − 4 and therefore ch1(f) ≥ 0 if |f | ≥ 4. Recall
that M(D) has no faces of size two. Thus, it remains to consider the case that
f is a triangle: if f is a 3-triangle, then ch1(f) = 1; if f is a 2-triangle, then
ch1(f) =

1
3 ; if f is a 1-triangle, then ch1(f) = − 1

3 ; and if f is a 0-triangle, then
ch1(f) = −1.

In order to describe the way the charge of 0- and 1-triangles becomes nonneg-
ative, we will need the following definitions. Let f be a face, let e be one of its
edges, and let f ′ be the other face that shares e with f . We say that f ′ is the
immediate neighbor of f at e.

Let f0 be a face in M(D) and let x1 and y1 be two vertices of f0 that are
consecutive on its boundary and are crossing points in D. Denote by e1 (resp.,
e2) the D-edge that crosses the D-edge that contains the edge-segment [x1y1]
at x (resp., y). Notice that it follows from Lemma 2 that e1 and e2 are distinct
D-edges. Let f1 be the immediate neighbor of f0 at [x1y1]. For i ≥ 1, if fi is a
0-quadrilateral, then denote by [xi+1yi+1] the edge opposite to [xiyi] in fi, such
that e1 contains xi+1 and e2 contains yi+1, and let fi+1 be immediate neighbor
of fi at [xi+1yi+1] (see Fig. 2 for an illustration).

Clearly, it is impossible that xj = xk or yj = yk for j �= k, since e1 and e2 do
not cross themselves. Suppose that xj = yk for some j and k. Assume without
loss of generality that j ≤ k. It cannot happen that j = k for then fj−1 is not
a 0-quadrilateral. Since xj = yk, e2 crosses e1 at xj . The M -edges [xj−1xj] and
[xjxj+1] are contained in e1 (note that [xjxj+1] exists since j < k). Therefore,
e2 contains [xjyj]. However, this implies that e2 crosses itself at yj (see Fig. 2
for an illustration).

It follows that it cannot happen that there are two 0-quadrilaterals fi and fj
such that i �= j and fi = fj . By Lemma 3 every edge in D contains at most

A Crossing Lemma for the Pair-Crossing Number 229

f0

x1 x2 x3 xj = yk

y1 y2 y3

f1 f2 fj−1

yjyj−1

xj−1

e2

e1

Fig. 2. If xj = yk, then e2 crosses itself

seven crossing points. Therefore there must be an index 1 ≤ k ≤ 7 such that fk
is not a 0-quadrilateral (notice that if fi is not a 0-quadrilateral, then fi+1 is
not defined). We say that fk is the distant neighbor of f0 at [x1y1], and that the
M -edge [xkyk] is the edge of fk that faces [x1y1]. Note that xk and yk must be
crossing points, since they belong to the 0-quadrilateral fk−1 or coincide with x1

and y1, if k = 1. It is also important to note that if f0 is not a 0-quadrilateral,
then f0 is the distant neighbor of fk at [xkyk] and [x1y1] is the edge of f0 that
faces [xkyk]. Indeed, this follows from the definition of a distant neighbor and
from the fact that the relation immediate neighbor at a certain M -edge and the
relation opposite edge in a 0-quadrilateral are one-to-one.

Proposition 2. Let t be a 0- or 1-triangle whose vertices are x, y and z, such
that x and y are crossing points in D, and let e1 (resp., e2) be the D-edge that
contains [zx] (resp., [zy]). Suppose that f is the distant neighbor of t at [xy] and
e′ is the edge of f that faces [xy]. Then:

1. the endpoints of e′ are crossing points in D;

2. one endpoint of e′ (denote it by p) lies on e1 and the other endpoint of e′

(denote it by q) lies on e2;

3. t is the distant neighbor of f at [pq], and [xy] is the edge of t that faces [pq];

4. the edge-segment (zp] of e1 (resp., (zq] of e2) does not intersect e2 (resp.,
e1); and

5. |f | ≥ 5 or |f | = 4 and |V (f)| ≥ 1.

Step 2: Charging 0-triangles. Let t be a 0-triangle, let e be one of its edges,
let f be the distant neighbor of t at e, and let e′ be the edge of f that faces t.
We move 1/3 units of charge from f to t, and say that f contributed 1/3 units
of charge to t through e′.

In a similar way t obtains 1/3 units of charge from each of its distant neighbors
at its other edges. �

After the second discharging step the charge of every 0-triangle becomes zero.
It remains to deal with 1-triangles, and then to make sure that the charge of
every face did not become negative after the discharging steps. Let t be a 1-
triangle and let A ∈ V (D) be the vertex of D that is incident to t. Let g be
an immediate neighbor of t that is incident to A. We call g a good neighbor of

230 E. Ackerman and M. Schaefer

t if ch2(g) > 0, and a bad neighbor if ch2(g) ≤ 0. Note that t has two distinct
(good/bad) neighbors, for otherwise deg(A) = 2 < 7 ≤ δ(G) or A is cut vertex
in M(D).

Step 3: Charging 1-triangles. Let t be a 1-triangle, let f be the distant
neighbor of t and let e be the edge of f that faces t. (a) Every good neighbor of
t contributes 1/6 units of charge to t through the M -edge that they share. (b) If
after Step 3(a) the charge of t is still negative, then f contributes 1/6 units of
charge to t through e. �

See Fig. 3 for an illustrations of the discharging steps.

t′

f1

g1

f2 f3
A

g2

t

Fig. 3. Discharging steps: in Step 1 each of t, g1 and g2 contributes 1/3 units of charge
to A; in Step 2 f3 contributes 1/3 units of charge to t′; in Step 3(a) g2 contributes 1/6
units of charge to t; and in Step 3(b) f3 contributes 1/6 units of charge to t.

Considering Steps 2 and 3 and Proposition 2, we have the following observa-
tions.

Observation 3. Let f be a face that contributes charge through one of its M -
edges [xy], and let z (resp., w) be the other vertex of f that is adjacent to x (resp.,
y). If x (resp., y) is a crossing point, then denote by (X,X ′) (resp., (Y, Y ′)) the
D-edge that contains xz (resp., yw) such that x ∈ [Xz] (resp., y ∈ [Y w]). We
have:

1. f contributes charge through [xy] exactly once;

2. if f contributes charge through [xy] in Step 3(a), then one of x and y is a
crossing point and the other is a vertex of D; and

3. if f contributes charge through [xy] in Step 2 or Step 3(b), then both x and
y are crossings points and f is a distant neighbor of a 0- or 1-triangle t.
Furthermore, [Xx] and [Y y] intersect at a point q that is a vertex of t, (qx)
and (qy) do not intersect, and q = X = Y if t is a 1-triangle (otherwise, q
is a crossing point).

Recall that our plan was to distribute the initial charge such that the charge
of every original vertex is one third of its degree and the charge of every face is
nonnegative.

A Crossing Lemma for the Pair-Crossing Number 231

Lemma 4. For every vertex A ∈ V (D) we have ch3(A) = 1
3 deg(A) and for

every face f ∈ F ′ we have ch3(f) ≥ 0.

Proof. (sketch) The first part of the claim follows from the first discharging step.
Let f be a face in M(D). Since f contributes at most 1/3 units of charge through
each of its edges, we have ch3(f) ≥ 2

3 |f |+
2
3 |V (f)|−4. Therefore, if |f | ≥ 6, then

ch3(f) ≥ 0. Recall that there are no faces of size two in M(D), thus, it remains
to consider faces of size three, four and five, i.e., triangles, quadrilaterals and
pentagons.

Triangles. Suppose that |f | = 3. It is easy to show that ch3(f) ≥ 0 if f is not
a 1-triangle. If f is a 1-triangle, then we show that after Step 3(a) its charge is
at least −1/6, since it cannot have two bad neighbors (for otherwise, there is
an edge of D crossing four other edges). It then follows from Step 3(b) that the
final charge of f is zero.

Quadrilaterals. Suppose that |f | = 4. A 0-quadrilateral does not contribute
charge and therefore if |V (f)| = 0 we have ch3(f) = 0. If |V (f)| ≥ 2, then
it is easy to see that ch3(f) ≥ 0. It remains to consider the case that f is a
1-quadrilateral. Observe that if f is a 1-quadrilateral and ch3(f) < 0, it must
be that f contribute 1/3 units of charge through precisely one of its edges in
Step 2, and 1/6 units of charge through each of its other edges. However, this
case implies that there is an edge of D that crosses four other edges (see Fig. 4
for an illustration).

Pentagons. Suppose that |f | = 5. Recall that ch3(f) ≥ 2
3 |f | +

2
3 |V (f)| − 4.

Therefore, if |V (f)| ≥ 1, then ch3(f) ≥ 0, and it remains to consider the case
that f is a 0-pentagon. Recall that we may assume that the boundary of f
consists of a simple 5-cycle. It follows from Lemma 2 that all the D-edges that
contain the M -edges of f are distinct. From this fact and Observation 3 one
concludes that it is impossible that f contributes charge through two of its
edges that are not consecutive on its boundary. Thus, if ch3(f) < 0, then f must
contribute 1/3 units of charge through two (consecutive) edges in Step 2 and

A

Z ′ Y ′

Z = Y

q p

Q

x

y

f

z

X ′

X

Fig. 4. If f is a 1-quadrilateral that contributes 1/3 units of charge through [xy] and
1/6 units of charge through each of [Az] and [yz], then (Y ′, Z′) crosses four edges

232 E. Ackerman and M. Schaefer

fv0

v1 v2

v3
v4

w0

A1

A2 B0

A3 = B1

A4 = B2A0 = B3

B4 w1

x4t4

y4

X

Y
P

(a) If [v4v0] is not an edge of t4,
then there are four D-edges that cross
(A0, B0).

fv0

v1 v2

v3
v4

w0

A1

A2 B0

A3 = B1

A4 = B2A0 = B3

B4 w1

t4

P

(b) If [v4v0] is an edge of t4, then there
are four D-edges that cross (A4, B4).

Fig. 5. The 0-pentagon f contributes charge through [v0v1] and [v1v2] in Step 2 and
through [v2v3], [v3v4] and [v4v0] in Step 3(b)

1/6 units of charge through each of its other three edges in Step 3(b). A simple
case-analysis shows that this scenario is impossible, as it implies that there is an
edge of D that crosses four other edges (see Fig. 5 for illustrations).

It follows from Lemma 4 that the final charge of every face in M(D) is nonneg-
ative and that the charge of every vertex of D equals to one third of its degree.
Recall that the total charge is 4n−8. Therefore, 2

3 |E(D)| =
∑

A∈V (D)
1
3 deg(A) ≤

4n− 8 and thus |E(G)| = |E(D)| ≤ 6n− 12. This concludes the proof of Theo-
rem 4. �

4 A Better Lower Bound on pcr+

Recall that e′′k(n) is the maximum number of edges in a topological graph with
n > 2 vertices in which every edge crosses at most k other edges (each of them
possibly more than once). Using the bounds on e′′k(n) from Theorem 4, one can
prove:

Theorem 6. For every graph G with n > 2 vertices and m edges we have:
pcr(G) ≥ m− 3(n− 2); pcr(G) ≥ 2m− 7(n− 2); pcr(G) ≥ 3m− 12(n− 2); and
pcr(G) ≥ 4m− 18(n− 2).

Using the new linear bounds it is now possible to obtain a better lower bound
for pcr+, following the probabilistic proof of the Crossing Lemma, as in [8,9,10].

Proof of Theorem 2: Let G be a graph with n vertices and m ≥ 6.75n edges and
consider a drawing of G as a topological graph with pcr+(G) pairs of crossings
edges and without adjacent crossings. Construct a random subgraph of G by
selecting every vertex independently with probability p = 6.75n/m ≤ 1. Let
G′ be the subgraph of G that is induced by the selected vertices. Denote by n′

and m′ the number of vertices and edges in G′, respectively. Clearly, E[n′] = pn
and E[m′] = p2m. Denote by x′ the number of pairs of crossing edges in the

A Crossing Lemma for the Pair-Crossing Number 233

drawing of G′ inherited from the drawing of G. Then E[pcr+(G
′)] ≤ E[x′] =

p4 · pcr+(G).3 It follows from Theorem 6 that pcr+(G
′) ≥ pcr(G′) ≥ 4m′ − 18n′

(note that this it true for any n′ ≥ 0), and this holds also for the expected
values: E[pcr+(G

′)] ≥ 4E[m′] − 18E[n′]. Plugging in the expected values we get

that pcr+(G) ≥ 26

37
m3

n2 ≥ 1
34.2

m3

n2 . �

References

1. Ackerman, E.: On topological graphs with at most four crossings per edge
(manuscript)

2. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Combinatorial Theory, Ser. A 114(3), 563–571 (2007)

3. Aigner, M., Ziegler, G.: Proofs from the Book. Springer, Heidelberg (2004)
4. Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs. In:

Theory and Practice of Combinatorics. North-Holland Math. Stud., vol. 60, pp.
9–12. North-Holland, Amsterdam (1982)

5. Cranston, D.W., West, D.B.: A guide to discharging (manuscript)
6. Leighton, F.T.: Complexity Issues in VLSI: Optimal Layouts for the Shuffle-

Exchange Graph and Other Networks. MIT Press, Cambridge (1983)
7. Matoušsek, J.: Near-optimal separators in string graphs, ArXiv (February 2013)
8. Montaron, B.: An improvement of the crossing number bound. J. Graph The-

ory 50(1), 43–54 (2005)
9. Pach, J., Radoičić, R., Tardos, G., Tóth, G.: Improving the crossing lemma by

finding more crossings in sparse graphs. Disc. Compu. Geometry 36(4), 527–552
(2006)

10. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3),
427–439 (1997)

11. Pach, J., Tóth, G.: Thirteen problems on crossing numbers. Geombinatorics 9(4),
194–207 (2000)

12. Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser.
B 80(2), 225–246 (2000)

13. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing independently even cross-
ings. SIAM J. on Disc. Math. 24(2), 379–393 (2010)

14. Schaefer, M.: The graph crossing number and its variants: A survey. Electronic
Journal of Combinatorics, Dynamic Survey 21 (2013)

15. Schaefer, M., Štefankovič, D.: Decidability of string graphs. J. Comput. System
Sci. 68(2), 319–334 (2004)

3 Here we need the restriction that there are no adjacent crossings: an adjacent crossing
would survive with probability p3 instead of p4. This was overlooked in a preliminary
version of this paper when this theorem was stated for pcr instead of pcr+.

Are Crossings Important for Drawing Large Graphs?

Stephen G. Kobourov1, Sergey Pupyrev1,2, and Bahador Saket1

1 Department of Computer Science, University of Arizona, Tucson, Arizona, USA
2 Institute of Mathematics and Computer Science, Ural Federal University, Russia

Abstract. Reducing the number of edge crossings is considered one of the most
important graph drawing aesthetics. While real-world graphs tend to be large and
dense, most of the earlier work on evaluating the impact of edge crossings utilizes
relatively small graphs that are manually generated and manipulated. We study
the effect on task performance of increased edge crossings in automatically gen-
erated layouts for graphs, from different datasets, with different sizes, and with
different densities. The results indicate that increasing the number of crossings
negatively impacts accuracy and performance time and that impact is significant
for small graphs but not significant for large graphs. We also quantitatively eval-
uate the impact of edge crossings on crossing angles and stress in automatically
constructed graph layouts. We find a moderate correlation between minimizing
stress and the minimizing the number of crossings.

1 Introduction

Graphs are often used to model a set of entities and their relationships. They are usu-
ally visualized with node-link diagrams, where vertices are depicted as points and
edges as line-segments connecting the corresponding points. Many different methods
for drawing graphs have been developed and they typically aim to optimize one or
more aesthetic criteria. According to the seminal work of Purchase [20], aesthetic
criteria include: number of edge crossings, number of edge bends, symmetry of the
drawing, angular resolution, crossing angles, and vertex distribution. Such criteria are
often proposed based on human intuition and the personal judgement of algorithm de-
signers, and therefore the task of validating graph drawing aesthetics is of high impor-
tance.

A great deal of the prior experimental evaluations of graph drawing aesthetics utilize
relatively small and nearly planar graphs and networks. For example, Purchase et al. [21]
conduct a user study with graphs on 16 vertices and 18−28 edges. Huang et al. [13,14]
generate graphs having between 10 and 40 vertices. Larger graphs with 50 vertices are
used by Dwyer et al. [5] but the number of edges is only 75, which results in graphs
with almost tree-like structure. Real-world graphs, however, tend to be large, dense, and
non-planar.

There are several of-the-shelf methods for drawing large graphs. Classical force-
directed methods such as Fruchterman-Reingold [7] and Kamada-Kawai [17], and more
recent multiscale variants [10, 12], define and minimize the “energy” of the layout;
layouts with minimal energy tend to be aesthetically pleasing and to exhibit symme-
tries. Similarly, methods based on multidimensional scaling (MDS) minimize a partic-
ular energy function of the layout, called “stress” [8]. Note that the classical methods

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 234–245, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Are Crossings Important for Drawing Large Graphs? 235

are not designed to directly optimize a specific graph drawing aesthetic criterion. Yet
minimizing edge crossings remains the most cited and the most commonly used aes-
thetic [13,15,20,21,23]. With this in mind, we consider the impact of edge crossings on
the readability of graphs in automatically generated straight-line layouts of real-world
large graphs.

Many real-world graphs (e.g., biological networks, social networks, research cita-
tion graphs) have tens of thousands or even millions of vertices. Such graphs are not
usually explored with static node-link diagrams, but rather with alternative visualiza-
tion methods based on interaction, abstraction, overview-detail views, etc [1, 16]. Still,
static node-link diagrams with more than a hundred vertices are common today. We
would like to determine a reasonable upper limit on the size of a graph, for which typ-
ical tasks can be performed using a static node-link diagram. In order to empirically
define the notion of a “large graph” in this setting, we run a preliminary experiment
with graphs on 100-150 vertices. For graphs with 150 vertices and density (the number
of edges divided by the number of vertices) of 3.5, task accuracy is steadily below 39%,
even in the most advantageous setting (e.g., high resolution display, unlimited time, the
simplest path-finding tasks, graph layouts with close-to-optimal number of edge cross-
ings, etc). The results of this preliminary experiment helped us determine useful ranges
of size and density of the graphs used in our main experiment. In the main experi-
ment, we consider small (40 vertices) and large (120 vertices) graphs. The graphs are
constructed from two real-world datasets and drawn with the classical force-directed
and MDS-based algorithms. We vary edge density (from 1.5 to 2.5) and the number
of crossings (by a factor of two), and analyze accuracy and completion time for four
tasks, frequently utilized in prior experiments. We also quantitatively evaluate the re-
lationship between edge crossings and several other layout quality measures. Thus our
contributions are two-fold:

1. We measure accuracy and completion time for four graph tasks to evaluate the
effect of edge crossings on small and large graphs with varying densities. The ex-
periments indicate that increasing the number of crossings has a negative impact,
but the change is not significant for large graphs.

2. We quantitatively evaluate the impact of edge crossings on crossing angles and
stress in automatically constructed graph layouts. We find a moderate correlation
between minimizing stress and minimizing the number of edge crossings.

2 Related Work

Several empirical studies aim to determine the impact of various aesthetic criteria on hu-
man understanding of graph visualizations. A series of experiments by Purchase shows
that many of the aesthetics are indeed important [20]. The experiments indicate that the
number of edge crossings is by far the most important aesthetic, while the number of
edge bends and the local symmetry displayed have a lesser impact. These results are
confirmed by Huang et al. [15], who found that edge crossings significantly impact user
preference and task performance. Overall, it is a common belief that minimizing the
number of edge crossings is one of the most important goals in drawing graphs.

236 S.G. Kobourov, S. Pupyrev, and B. Saket

These findings have made the area of crossing minimization one of the most active
research topics in the graph drawing community; see [3] for an excellent survey. How-
ever, the problem of crossing minimization is computationally hard [9], and it remains
hard even when restricted to special graphs [11]. In fact, one cannot even compute in
polynomial time a crossing-optimal solution for a graph obtained from a planar one
by adding a single edge [4]. Given that the problem is difficult, several heuristics have
been designed. The heuristics are usually hard to implement and they do not scale well
with the size of a graph [3]. Hence, it is a reasonable question to ask to what extent one
should try to minimize edge crossings to justify the cost.

Other graph aesthetics have also been considered. Huang et al. [14] study crossing
angles (the minimum angle between pairs of crossing edges) and conclude that larger
crossing angles make graphs easier to read. This motivates the research area of right-
angle-crossing (RAC) drawings, where the goal is to make all crossing angles close to
90 degrees. Several studies consider the relative importance of various aesthetic criteria,
which is relevant as some of them can be conflicting (e.g., minimizing crossings in pla-
nar graph drawings usually results in poor angular resolution). Huang and Huang [13]
argue that the number of edge crossings is relatively more important than the crossing
angles.

Alternative representations of large graphs and networks have also been considered.
Archambault et al. [1] show that coarsening graph representations, in which several in-
terconnected vertices are merged into metanodes, does not result in significant improve-
ments over node-link diagrams. However, such representations might be beneficial for
specific tasks in very dense graphs. Jianu et al. [16], and Saket et al. [22] investigate
several methods of representing cluster information in large graphs. Their results indi-
cate that classical node-link diagrams are not the most efficient way to visualize large
clustered datasets.

3 Experiments

Objectives. We conduct a controlled experiment to explore how edge crossings affect
the understandability of graph layouts. Although several studies assess the impact of
crossings, a number of important questions remain open. Our specific objectives are:

1. to confirm the results of prior studies that increasing the number of edge crossings
negatively impacts the usability of node-link diagrams for small graphs;

2. to verify whether increasing the number of edge crossings also negatively impacts
the usability of node-link diagrams for large graphs;

3. to explore the impact of edge crossings while varying the edge density for both
large and small graphs;

4. to analyze the impact of edge crossings on different tasks.

Controlled experiments in graph drawing often involve manually creating different
layouts of the same graph, by varying only one aesthetic, while the others are kept
unchanged. However, due to the computational hardness of the crossing minimization
problem, and the use of larger graphs than those in previous studies, it is almost impossi-
ble to do this in our setting. Instead we use a different approach to accomplish a similar

Are Crossings Important for Drawing Large Graphs? 237

lettuce

mint

brandy

lobster

peppermint_oil

potato
vegetable

pimenta

emmental_cheese

sturgeon_caviar

cumin

lime_juice
lamb

red_kidney_bean

pork_sausage

kale

fennel

meat

rapeseed

horseradish

roasted_beef

baked_potato

barley

japanese_plum artemisia

shallot

spearmint

sage

brussels_sprout

roasted_almond

pork_liver

savory
porcini

cheese parmesan_cheese
macaroni

rosemary

asparagus

broccoli

basil

(a) 139 edge crossings

lettuce

mint

brandy

lobster

peppermint_oil

potato

vegetable

pimenta

emmental_cheese

sturgeon_caviar

cumin

lime_juice

lamb

red_kidney_bean

pork_sausage

kale

fennel

meat

rapeseed

horseradish

roasted_beef

baked_potato

barley

japanese_plum

artemisia

shallot

spearmint

sage

brussels_sprout

roasted_almond
pork_liver

savory

porcini

cheese
parmesan_cheese

macaroni

rosemary
asparagus

broccoli

basil

(b) 259 edge crossings

Fig. 1. A small dense graph with 40 vertices and 100 edges constructed from the Recipes dataset
with (a) the low number of crossings and (b) the high number of crossings.

result by automatically generating all our drawings, without any manual postprocess-
ing, as suggested in [13, 23]. We emphasize here that unlike most previous studies, we
work only with real-world graphs and automatically computed layouts.

Our study involves a two-phase evaluation. In the first step (Experiment 1), the par-
ticipant perform simple tasks on several graphs with different sizes (number of vertices)
and densities (ratio of number of edges to number of vertices). This is how we deter-
mine the size of the largest graphs for which task accuracy is steadily above 50%. We
use the information to design the main experiment (Experiment 2) in which we record
performance, in terms of accuracy and completion time for our four tasks.

Datasets and Visualization. In order to minimize potential bias, we use two different
datasets in our evaluation. The Recipes dataset contains 381 unique ingredients ex-
tracted from cooking recipes. The edges correspond to co-occurrence of the ingredients
in the recipes. The GD dataset models co-authorship in the Graph Drawing conference.
The vertices represent 506 authors and an edge between two vertices indicates that this
pair of authors have co-authored a paper. For each dataset, we randomly sample vertices
and edges creating graphs with different sizes and densities. The number of vertices is
40 (small) and 120 (large), and the edge density is 1.5 (sparse) and 2.5 (dense), mak-
ing a total of 4 unweighted undirected graphs per dataset. Section 3.1 explains why we
choose these sizes and densities.

We use two classical straight-line drawing algorithms implemented in GRAPHVIZ [6].
The Recipes graphs are embedded using the multidimensional scaling layout algorithm;
for this purpose, we utilize the neato tool in GRAPHVIZ. For drawing the GD graphs,
we use the force-directed placement algorithm, fdp in GRAPHVIZ. In order to perform
our experiments, we need to have layouts of the same graph with different number of
crossings. To this end, we run the layout algorithms 10, 000 times on the same graph,
varying the initial positions of the vertices. Since both algorithms are sensitive to the

238 S.G. Kobourov, S. Pupyrev, and B. Saket

initial embedding, the resulting layouts are different. We choose two layouts of the same
graph: the one with the minimum number of crossings and one with approximately twice
as many crossings. These two layouts are referred to as the drawings with the low and
high number of crossings; see Fig. 1. Note that neither MDS-based nor force-directed
algorithms provide any guarantees about the number of crossings. However, due to the
many runs for each graph, we expect that the low number of crossings is not too far from
optimal.

Tasks. We choose the tasks for our experiments based on several considerations. First,
the tasks should represent standard problems, commonly encountered when analyz-
ing relational data. Second, the number of edge crossings in a graph visualization
should likely affect task performance. Finally, the tasks should be present in exist-
ing graph task taxonomies and often utilized in other graph drawing user evaluations.
With this in mind, we consider the task taxonomy for graph visualization suggested by
Lee et al. [19], which categorizes the tasks into groups: topology-based, attribute-based,
browsing, and overview tasks. Each of the categories specifies different subcategories.
Previous studies clearly indicate that the number of edges crossings affects tasks in
the topology-based category, while tasks in the other three categories are less likely to
be significantly impacted by the number of crossings or do not fit in our experimen-
tal setup. The graphs in our experiments do not contain special attributes (e.g., color
or shape), and hence the attribute-based tasks are not suitable. The browsing category
deals with navigational tasks that do not require a specific answer, making it difficult
to measure the task performance. Overview tasks are related to compound tasks (e.g.,
identifying changes over time, comparing the relative size of a pair of graphs) are also
not suitable to our setting and less likely to be affected by the number of edge cross-
ings. Therefore, we focus on topology-based tasks, grouped into four subcategories:
connectivity, accessibility, adjacency, and common connections. For each subcategory,
we choose a task that is frequently used in prior user studies on graph visualization.

Task 1: How many edges are in a shortest path between two given nodes?

Task 2: What is the node with the highest degree?
Task 3: What nodes are all adjacent to the given node?
Task 4: Which of the following nodes are adjacent to both given nodes?

The vertices for each question were randomly selected (in the case of Task 1, addi-
tionally ensuring that the pair of vertices is at most 5 edges away).

Participants and Apparatus. For the first experiment we recruited 6 participants (3
male, 3 female) aged 21–27 years (mean 23) with normal vision. For the second experi-
ment we recruited 16 new participants (12 male, 4 female) aged 21–30 years (mean 25)
with normal vision. All the participants were undergraduate and graduate science and
engineering students familiar with graphs and networks. Both experiments were con-
ducted on a computer with i7 CPU 860 @ 2.80GHz processor and 24 inch screen with
1600x900 resolution. The participants interacted with a standard mouse to complete
the tasks. We used custom-built software to guide the users through the experiment by
providing instructions and collecting data about time and accuracy.

Are Crossings Important for Drawing Large Graphs? 239

3.1 Procedure: Experiment 1

Real-world graphs are typically large and non-planar. In drawings of such graphs there
could be many edge crossings, which likely makes the drawings difficult to understand.
To evaluate the impact of the number of crossings for different sizes and densities of
graphs, while keeping the experiment to a reasonable length and complexity, we want
to choose the graphs so that the average completion time is below 120 seconds and the
average accuracy for a single task is higher than 50%.

To determine reasonable upper limits for the main experiment, we generated different
graphs with 100-150 vertices, in increments of 10, and densities ranging from 1.5 to
3.5, in increments of 1. For every graph, we used the layout with the smallest number
of crossings and for each of these layouts the participants performed the four tasks
described above. The resulting completion time ranges from 63 seconds for a 100-
vertex graph to 184 seconds for a 150-vertex graph. The accuracy (the number of correct
answers divided by the total number of questions) ranges from 85% for 100-vertex
graphs with 1.5 density to 39% for 150-vertex graphs with 3.5 density. Based on these
results, we choose 120 vertices as the maximum number of vertices and 2.5 as the
maximum density value for our main experiment.

3.2 Procedure: Experiment 2

An experimental system was implemented to present the 64 (2 sizes × 2 number of
crossings × 2 densities × 2 datasets × 4 tasks) stimuli and questions for this within-
subjects experiment, and to collect the participant answers and response times.

Before the controlled experiment, the participants were briefed about the purpose
of the study. Although all participants were familiar with graphs, we explained all the
required definitions (e.g., graphs, edges, paths). The participants then answered 8 train-
ing questions (two for each of the tasks) as quickly and as accurately as possible. The
participants were encouraged to ask questions during this stage and we did not record
time and accuracy for the training questions.

The main experiment consisted of the 64 tasks, presented in a reduced Latin square
to counterbalance learning and order effects (to prevent participants from extrapolating
new judgements from previous ones). The participants were able to zoom and pan the
diagram on the screen (if needed) and were required to select one of the provided mul-
tiple choices. We recorded time and accuracy for each task. After every 12 questions,
there was a break and the participants could continue when they were ready.

Hypotheses. Based on prior work and results from our preliminary experiment, we
hypothesize that:

H1 Increasing the number of crossings negatively impacts accuracy and performance
time and that impact is significant for small graphs but not significant for large
graphs.

H2 The negative impact of increasing the number of crossings on performance is sig-
nificant for both small sparse and small dense graphs.

H3 The negative impact of increasing the number of crossings on performance is not
significant for both large sparse and large dense graphs.

240 S.G. Kobourov, S. Pupyrev, and B. Saket

100

80

60

40

20

0

co
m

pl
et

io
n

tim
e,

 s
ec

small largegraph size

the number of crossings: low high
100

80

60

40

20

0

ac
cu

ra
cy

, %

small largegraph size

Fig. 2. Mean and standard deviation for time and accuracy in small and large graphs with different
number of crossings. The differences are significant (indicated by the diagonal line segments)
only for small graphs.

3.3 Results

We used a Shapiro-Wilk test to check normality of the collected data. The p-values for
graphs with low/high number of crossings were 0.15 and 0.42, respectively. This, to-
gether with Q-Q plots, indicates that the data has close to normal distribution. With this
in mind, we use the within-subjects t-test to analyze the results. Accuracy is measured
using the number of correct trials divided by the total number of trials, thus showing a
percentage. Time is measured in seconds.

Completion Time. We exclude incorrect answers, about 11% of the total, and analyze
the completion time data only for the correct answers. Otherwise, the measurements of
performance time might not be fair (e.g., a participant might quickly give up and give
a random answer). Exclusion of incorrect answers does not decrease our sample size
significantly since the average number of wrong answers per participant was 7 out of
64 questions.

Increasing the number of edge crossings for small graphs results in statistically sig-
nificant reduction in performance time. For large graphs there is also a negative impact
on performance time, but the results are not statistically significant; see Fig. 2. These
results support H1.

Looking at the breakdown into large and small and dense and sparse provides further
information. The data are summarized in Table 1, where the small (large) category refers
to the average results computed for small (large) sparse and dense graphs.

Increasing the number of edge crossings results in statistically significant reduction
in performance time for both small sparse and small dense graphs. This supports H2.

Increasing the number of edge crossings does not result in statistically significant
reduction in performance time for large dense graphs (but the reduction is statistically
significant for large sparse graphs). This partially supports H3.

Further breakdown by task, reveals more interesting results. For small graphs the
main contributors to the statistically significant impacts observed earlier are Tasks 2
and 3 . For large graphs, there is a statistically significant impact for Task 1, although

Are Crossings Important for Drawing Large Graphs? 241

Table 1. Mean (μ) and standard deviation (σ) of Completion Time (in seconds). Statistically
significant differences between performance time in layouts with the low and high number of
edge crossings are highlighted.

graphs the number of crossings t-test results

low high p-value t-value

small μ = 48.8 σ = 9.4 μ = 56.6 σ = 8.4 p < .05 t(15) = 2.9
large μ = 58.0 σ = 10.1 μ = 62.2 σ = 9.0 p = .24 t(15) = 2.0

small sparse μ = 44.2 σ = 11.0 μ = 51.3 σ = 6.7 p < .05 t(15) = 2.4
small dense μ = 53.4 σ = 11.9 μ = 62.0 σ = 11.9 p < .05 t(15) = 2.3
large sparse μ = 53.6 σ = 12.7 μ = 59.8 σ = 9.6 p = .13 t(15) = 1.6
large dense μ = 62.5 σ = 11.2 μ = 64.7 σ = 16.0 p = .61 t(15) = 0.5

over all tasks the impact is not significant. Surprisingly, increasing the crossings in large
graphs improved the performance time of Task 3 by 10 seconds.

Accuracy. Increasing the number of edge crossings for small graphs results in statis-
tically significant reduction in performance accuracy. For large graphs there is also a
negative impact on performance accuracy, but the results are not statistically signifi-
cant; see Fig. 2. These results support H1.

Looking at the breakdown into large and small and dense and sparse provides further
information; see Table 2.

Increasing the number of edge crossings results in statistically significant reduction
in accuracy for small dense graphs (but the reduction is not statistically significant for
small sparse graphs). This partially supports H2.

Increasing the number of edge crossings results in statistically significant reduction
in accuracy for large dense graphs (but the reduction is not statistically significant for
large sparse graphs). This partially supports H3.

Further breakdown by task shows that for small graphs Tasks 2 and 4 contribute to
the statistically significant impacts observed earlier. Although over all tasks the impact
is not significant for large graphs, there is statistically significant difference in accuracy
of Tasks 1 and 2. This is counterbalanced with a statistically significant difference in
accuracy in opposite direction for Task 4; see more about this below.

3.4 Discussion

Our first hypothesis (H1) is confirmed: increasing the number of edge crossings signifi-
cantly affects performance time and accuracy for small graphs and the impact is not sta-
tistically significant for large graphs. The second hypothesis (H2) is partially confirmed:
crossings have a statistically significant impact on time for both sparse and dense small
graphs. However, the effect is not statistically significant for accuracy in both sparse
and dense small graphs. The third hypothesis (H3) is also only partially confirmed: in-
creasing the number of edge crossings has no significant impact on completion time
for large graphs. However, there is statistically significant impact on accuracy for large
dense graphs.

242 S.G. Kobourov, S. Pupyrev, and B. Saket

Table 2. Mean (μ) and standard deviation (σ) of Accuracy (in percentage). Statistically significant
differences between completion time in layouts with the low and high number of edge crossings
are highlighted.

graphs the number of crossings t-test results

low high p-value t-value

small μ = 94.1% σ = 4.3 μ = 89.4% σ = 4.4 p < .05 t(15) = 2.8
large μ = 86.3% σ = 3.4 μ = 83.1% σ = 4.0 p = .06 t(15) = 2.0

small sparse μ = 93.7% σ = 6.4 μ = 92.9% σ = 6.3 p = .77 t(15) = 0.2
small dense μ = 94.5% σ = 7.8 μ = 85.9% σ = 13.5 p < .05 t(15) = 2.2
large sparse μ = 89.1% σ = 11.1 μ = 89.0% σ = 9.0 p = .81 t(15) = 0.2
large dense μ = 83.5% σ = 7.5 μ = 77.3% σ = 13.1 p < .05 t(15) = 2.4

It is somewhat surprising to see that increasing the crossings affects different task in
markedly different ways. It is particularly unexpected to see a statistically significant
positive impact on accuracy, with the increase of edge crossings, for Task 4 in large
graphs! It is also worth noting that with the increase of edge crossings, the average ac-
curacy increases for Task 3 in small graphs for Tasks 3 and 4 in large graphs. This might
be due to participants paying more attention in the cases where the problem was more
difficult, possibly related to the “chart junk” effect [2]. But it is also possible that edge
crossings may not be as bad as we normally think, as indicated by Huang et al. [15],
who found that crossings have negative effect only on some of their tasks.

There are good indications that density plays a possibly independent role, especially
on accuracy. Note that we only considered two density settings (1.5 and 2.5), both of
which are relatively low. Yet, together with increased number of crossings, the high
density settings resulted in statistically significant decrease in accuracy both for small
and large graphs. It is probably worth exploring further the nature of the interactions
between size (number of vertices), density (ratio of number of edges to number of ver-
tices) and edge crossings upper limit of density.

4 Edge Crossings and Other Aesthetic Criteria

As mentioned earlier, several traditional methods for drawing large undirected graphs
are based on the assumption that minimizing a suitably-defined energy function of the
graph layout results in aesthetically pleasant drawing. But do such methods also (pos-
sibly indirectly) optimize some of the standard aesthetic criteria? Next we qualitatively
analyze layouts produced by fdp (force-directed) and neato (MDS-based), with re-
spect to three commonly used and well-defined quality measures: the energy of the
layout, the number of crossings, and the angles between pairs of crossing edges.

In a number of studies, the energy of a layout is defined as the variance of edge
lengths in the drawing, known as stress [18]. Assume a graph G = (V,E) is drawn
with pi being the position of vertex i ∈ V . Denote the distance between two vertices

Are Crossings Important for Drawing Large Graphs? 243

Table 3. Correlations between three aesthetics: r(En,Cr), r(En,Ang), r(Cr,Ang) stand for
the correlation coefficients r between the layout energy En, the number of crossings Cr, and
the average crossing angle Ang. Absolute values between 0.7 and 1.0 indicate a strong relation-
ship (highlighted), while absolute values between 0.3 and 0.7 indicates a moderate relationship.
Negative values indicate a negative correlation.

MDS force-directed

graph r(En,Cr) r(En,Ang) r(Cr,Ang) r(En,Cr) r(En,Ang) r(Cr,Ang)

GD 0.64 0.00 0.26 0.59 −0.02 −0.39
Recipes 0.81 −0.27 −0.15 0.61 −0.13 −0.13
Trade 0.91 -0.82 -0.83 0.62 0.02 −0.24
Universities 0.68 −0.53 −0.56 0.66 −0.09 −0.16
SODA 0.67 −0.69 −0.07 0.54 −0.16 0.10
IPL 0.82 −0.37 −0.12 0.72 −0.11 −0.04
TARJAN 0.62 −0.02 −0.08 0.54 −0.10 −0.04
SOCG 0.22 −0.64 −0.04 0.72 −0.61 −0.11
ALGO 0.41 −0.47 0.15 0.78 −0.64 −0.28

i, j ∈ V by ||pi − pj ||. The energy of the graph layout is measured by∑
i,j∈V

wij(||pi − pj || − dij)
2, (1)

where dij is the ideal distance between vertices i and j, and wij is a weight factor.
Typically an ideal distance dij is defined as the length of the shortest path in G between
i and j. Lower stress values correspond to a better layout. We use the conventional
weighting factor of wij =

1
d2
ij

.

We run the two algorithms fdp and neato on 9 graphs for 1, 000 times on each
graph. As in Section 3.2, we vary the initial layout to produce different drawings of
the same graph. For each run, we measure stress, the number of edge crossings, and the
average of all crossing angles of the layout. Note that Huang et al. [14] use the minimum
crossing angle; in our dataset the minimum values range from 0.1 to 0.9 degrees and
so the average angle provides a wider range. Then we consider the computed values
for each graph as three random variables and compute the pairwise Pearson correlation
coefficients; see Table 3.

The results indicate that there is a moderate positive correlation between the number
of crossings and the energy of the layout for all 9 graphs processed with the force-
directed algorithm and for 7 graphs processed with MDS. This means that there is a
tendency for low-energy drawings to have fewer number of crossings (and vice versa).
The effect is illustrated in Fig. 3, where crossings and energy are calculated for the
Recipes dataset. We note here that the force-directed algorithm fdp (unlike neato)
is not designed to reduce the energy function as defined by Equation (1). Yet the number
of crossings is steadily correlated with the energy. This experimental evidence partially
supports the observation of Dwyer et al. [5], who show that users prefer graph layouts
with lower stress.

244 S.G. Kobourov, S. Pupyrev, and B. Saket

9600

9500

9400

9300

9200

9100

9000

st
re

ss

1100001050001000009500090000

number of crossings

(a) r(En,Cr) = 0.81

9600

9500

9400

9300

9200

9100

9000

st
re

ss

6058565452

average crossing angle

(b) r(En,Ang) = −0.27

Fig. 3. Relationship between the energy of the drawing (stress) and (a) the number of crossings,
(b) the average crossing angle. Dots represent values of the aesthetics computed for different
layouts created by the multidimensional scaling algorithm for the Recipes graph.

On the other hand, there are no strong correlations between the other aesthetics. Our
results indicate that the number of crossings and the crossing angles are independent in
the layouts created by the two evaluated algorithms. We also note a negative correlation
between the average crossing angle and the energy on 4 graphs processed with the
MDS-based layout algorithm.

5 Conclusion and Future Work

All relevant materials for this study, including more detailed data analysis, are available
at http://sites.google.com/site/gdpaper2014.

Our experimental results hopefully serve to inform designers of graph drawing algo-
rithms that minimizing the number of edge crossings in large graphs is not as important
as in small graphs. The correlation between low energy layouts and layouts with few
crossings indicates that traditional energy-based methods might already result in some
reduction in crossings. Although we attempted to be as diverse as possible, our results
should be interpreted in the context of the specified graphs, sizes, densities, and tasks.

Due to natural limitations (e.g., length and complexity of experiments), we could not
include graphs with more than 120 vertices and density greater than 2.5. Obtaining more
results for larger range of the parameters would hopefully help provide a more com-
plete picture. In our experiment we only considered relational reading of static graph
drawings; results may be different in experiments that require an interpretive reading of
graph drawings in the context of application domains. It would be also worthwhile to
consider tasks beyond the network-topology category.

Another interesting direction would be to study in depth the effect of layout energy
on understandability of graphs. Different energy function formulations (e.g., stress, dis-
tortion) likely have different impact. Evaluating such impact on a greater number of
quantitatively measurable aesthetic criteria, as well as on actual tasks performance, is
also a promising direction for future work.

Acknowledgements. The work supported in part by NSF grants CCF-1115971 and
DEB-1053573.

http://sites.google.com/site/gdpaper2014

Are Crossings Important for Drawing Large Graphs? 245

References

1. Archambault, D., Purchase, C.H., Pinadu, B.: The readability of path-preserving clustering
of graphs. EuroVis 29(3), 1173–1182 (2010)

2. Bateman, S., Mandryk, R.L., Gutwin, C., Genest, A., McDine, D., Brooks, C.: Useful junk?
The effects of visual embellishment on comprehension and memorability of charts. In: CHI,
pp. 2573–2582 (2010)

3. Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Crossings and planariza-
tion. In: Handbook of Graph Drawing and Visualization. CRC Press (2013)

4. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-
planarity hard. SIAM Journal on Computing 42(5), 1803–1829 (2013)

5. Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G., North, C.: A com-
parison of user-generated and automatic graph layouts. IEEE Trans. Vis. Comput. Graph-
ics 15(6), 961–968 (2009)

6. Ellson, J., Gansner, E.R., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz - open source
graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265,
pp. 483–484. Springer, Heidelberg (2002)

7. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Software:
Practice and Experience 21(11), 1129–1164 (1991)

8. Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In: Pach, J.
(ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)

9. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal on Algebraic
Discrete Methods 4(3), 312–316 (1983)

10. Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. J. Graph Algorithms
Appl. 6(3), 179–202 (2002)

11. Hliněnỳ, P.: Crossing number is hard for cubic graphs. J. Comb. Theory B 96(4), 455–471
(2006)

12. Hu, Y.: Efficient, high-quality force-directed graph drawing. Mathematica Journal 10(1), 37–
71 (2005)

13. Huang, W., Huang, M.: Exploring the relative importance of number of edge crossings and
size of crossing angles: A quantitative perspective. Advanced Intelligence 3(1), 25–42 (2014)

14. Huang, W., Eades, P., Hong, S.H.: Larger crossing angles make graphs easier to read. Visual
Languages & Computing 1 (2014)

15. Huang, W., Hong, S.H., Eades, P.: Layout effects on sociogram perception. In: Healy, P.,
Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 262–273. Springer, Heidelberg (2006)

16. Jianu, R., Rusu, A., Hu, Y., Taggart, D.: How to display group information on node–link
diagrams: an evaluation. IEEE Trans. Vis. Comput. Graphics (to appear, 2014)

17. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Proc.
Let. 31(1), 7–15 (1989)

18. Koren, Y., Çivril, A.: The binary stress model for graph drawing. In: Tollis, I.G., Patrignani,
M. (eds.) GD 2008. LNCS, vol. 5417, pp. 193–205. Springer, Heidelberg (2009)

19. Lee, B., Plaisant, C., Parr, C., Fekete, J.D., Henry, N.: Task taxonomy for graph visualization.
In: BELIV, pp. 81–85. ACM Press (2006)

20. Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBat-
tista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)

21. Purchase, H., Cohen, R., James, M.: Validating graph drawing aesthetics. In: Brandenburg,
F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer, Heidelberg (1996)

22. Saket, B., Simonetto, P., Kobourov, S., Börner, K.: Node, node-link, and node-link-group
diagrams: An evaluation. In: IEEE InfoVis (to appear, 2014)

23. Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aes-
thetics. Information Visualization 1(2), 103–110 (2002)

The Importance of Being Proper
(In Clustered-Level Planarity and T -Level Planarity)

Patrizio Angelini1, Giordano Da Lozzo1, Giuseppe Di Battista1,
Fabrizio Frati2, and Vincenzo Roselli1

1 Department of Engineering, Roma Tre University, Italy
{angelini,dalozzo,gdb,roselli}@dia.uniroma3.it

2 School of Information Technologies, The University of Sydney, Australia
fabrizio.frati@sydney.edu.au

Abstract. In this paper we study two problems related to the drawing of level
graphs, that is, T -LEVEL PLANARITY and CLUSTERED-LEVEL PLANARITY.
We show that both problems are NP-complete in the general case and that they
become polynomial-time solvable when restricted to proper instances.

1 Introduction and Overview
A level graph is proper if every of its edges spans just two consecutive levels. Several
papers dealing with the construction of level drawings of level graphs assume that the
input graph is proper. Otherwise, they suggest to make it proper by “simply adding
dummy vertices” along the edges spanning more than two levels. In this paper we show
that this apparently innocent augmentation has dramatic consequences if, instead of
constructing just a level drawing, we are also interested in representing additional con-
straints, like a clustering of the vertices or consecutivity constraints on the orderings of
the vertices along the levels.

A level graph G = (V,E, γ) is a graph with a function γ : V → {1, 2, ..., k},
with 1 ≤ k ≤ |V | such that γ(u) �= γ(v) for each edge (u, v) ∈ E. The set Vi =
{v|γ(v) = i} is the i-th level of G. A level graph G = (V,E, γ) is proper if for every
edge (u, v) ∈ E, it holds γ(u) = γ(v) ± 1. A level planar drawing of (V,E, γ) maps
each vertex v of each level Vi to a point on the line y = i, denoted by Li, and each
edge to a y-monotone curve between its endpoints so that no two edges intersect. A
level graph is level planar if it admits a level planar drawing. A linear-time algorithm
for testing level planarity was presented by Jünger et al. in [10].

A clustered-level graph (cl-graph) (V,E, γ, T) is a level graph (V,E, γ) equipped
with a cluster hierarchy T , that is, a rooted tree where each leaf is an element of V
and each internal node μ, called cluster, represents the subset Vμ of V composed of
the leaves of the subtree of T rooted at μ. A clustered-level planar drawing (cl-planar
drawing) of (V,E, γ, T) is a level planar drawing of level graph (V,E, γ) together
with a representation of each cluster μ as a simple closed region enclosing all and
only the vertices in Vμ such that: (1) no edge intersects the boundary of a cluster more
than once; (2) no two cluster boundaries intersect; and (3) the intersection of Li with
any cluster μ is a straight-line segment, that is, the vertices of Vi that belong to μ are
consecutive along Li. A cl-graph is clustered-level planar (cl-planar) if it admits a cl-
planar drawing. CLUSTERED-LEVEL PLANARITY (CL-PLANARITY) is the problem

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 246–258, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The Importance of Being Proper 247

of testing whether a given cl-graph is cl-planar. This problem was introduced by Forster
and Bachmaier [9], who showed a polynomial-time testing algorithm for the case in
which the level graph is a proper hierarchy and the clusters are level-connected.

A T -level graph (also known as generalized k-ary tanglegram) (V,E, γ, T) is a
level graph (V,E, γ) equipped with a set T = T1, . . . , Tk of trees such that the leaves
of Ti are the vertices of level Vi of (V,E, γ), for 1 ≤ i ≤ k. A T -level planar drawing
of (V,E, γ, T) is a level planar drawing of (V,E, γ) such that, for i = 1, . . . , k, the
order in which the vertices of Vi appear along Li is compatible with Ti, that is, for each
node w of Ti, the leaves of the subtree of Ti rooted at w appear consecutively along
Li. A T -level graph is T -level planar if it admits a T -level planar drawing. T -LEVEL

PLANARITY is the problem of testing whether a given T -level graph is T -level planar.
This problem was introduced by Wotzlaw et al. [13], who showed a quadratic-time
algorithm for the case in which the level graph is proper and the number of vertices of
each level is bounded by a constant.

The definition of proper naturally extends to cl-graphs and T -level graphs. Note that,
given any non-proper level graph G it is easy to construct a proper level graph G′ that is
level planar if and only if G is level planar. However, as mentioned above, there exists
no trivial transformation from a non-proper cl-graph (a non-proper T -level graph) to an
equivalent proper cl-graph (resp., an equivalent proper T -level graph).

In this paper we show that CLUSTERED-LEVEL PLANARITY and T -LEVEL PLA-
NARITY are NP-complete for non-proper instances. Conversely, we show that both
problems are polynomial-time solvable for proper instances. Our results have several
consequences: (1) They narrow the gap between polynomiality and NP-completeness
in the classification of Schaefer [12] (see Fig. 1). The reduction of Schaefer between
T -LEVEL PLANARITY and SEFE-2 holds for proper instances [12]. (2) They allow
to partially answer a question from [12] asking whether a reduction exists from CL-
PLANARITY to SEFE-2. We show that such a reduction exists for proper instances and
that a reduction from general instances would imply the NP-hardness of SEFE-2. (3)
They improve on [9] and [13] by extending the classes of instances which are decidable
in polynomial-time for CL-PLANARITY and T -LEVEL PLANARITY, respectively. (4)
They provide the first, as far as we know, NP-completeness for a problem that has all
the constraints of the clustered planarity problem (and some more).

The paper is organized as follows. The NP-completeness proofs are in Section 2,
while the algorithms are in Section 3. We conclude with open problems in Section 4.

2 NP-Hardness
In this section we prove that the T -LEVEL PLANARITY and the CL-PLANARITY prob-
lems are NP-complete. In both cases, the NP-hardness is proved by means of a
polynomial-time reduction from the NP-complete problem BETWEENNESS [11], that
takes as input a finite set A of n objects and a set C of m ordered triples of distinct
elements of A, and asks whether a linear ordering O of the elements of A exists such
that for each triple 〈α, β, δ〉 of C, we have either O =<. . . , α, . . . , β, . . . , δ, . . .> or
O =<. . . , δ, . . . , β, . . . , α, . . .>.

248 P. Angelini et al.

P

?

NPC

Radial
Level

Partitioned
T -coherent
2-page

SEFE2

SEFE3Upward

Partitioned
2-page

T -level

ec-planar
with free
edges

Partial
rotation

Partial
Rotation
(with flips)

Proper
T -level

[3]

[4]

Level

Proper
Clustered
Level

Clustered
level (cl)

Clustered (c)

[1]

Partitioned
3-Page

[1]

Partitioned
T -coherent
3-page

Outer

Standard

ec-planar

Partially
Embedded

Weak
realizabilitySEFE

Fig. 1. Updates on the classification proposed by Schaefer in [12]. Dashed lines represent the
boundaries between problems that were known to be polynomial-time solvable, problems that
were known to be NP-complete, and problems whose complexity was unknown before this pa-
per. Solid lines represent the new boundaries according to the results of this paper. Reductions that
can be transitively inferred are omitted. Results proved after [12] are equipped with references.
The prefix “proper” has been added to two classes in [12] to better clarify their nature.

Theorem 1. T -LEVEL PLANARITY is NP-complete.

Proof: The problem clearly belongs to NP . We prove the NP-hardness. Given an
instance 〈A,C〉 of BETWEENNESS, we construct an equivalent instance (V ,E, γ, T)
of T -LEVEL PLANARITY as follows. Let A = {1, . . . , n} and m = |C|. Graph (V,E)
is a tree composed of n paths all incident to a common vertex v. Refer to Fig. 2(a).
Initialize V = {v}, E = ∅, and γ(v) = 0. Let T0 ∈ T be a tree with a single node v.

For each j = 1, . . . , n, add a vertex vj to V and an edge (v, vj) to E, with γ(vj) = 1.
Also, let T1 ∈ T be a star whose leaves are all the vertices of level V1. Further, for each
j = 1, . . . , n, we initialize variable last(j) = vj .

Then, for each i = 1, . . . ,m, consider the triple ti = 〈α, β, δ〉. Add six vertices
uα(i), u′

α(i), uβ(i), u′
β(i), uδ(i), and u′

δ(i) to V with γ(uα(i)) = γ(uβ(i)) = γ(uδ(i))
= 2i and γ(u′

α(i)) = γ(u′
β(i)) = γ(u′

δ(i)) = 2i+1. Also, add edges (last(α), uα(i)),
(last(β), uβ(i)), (last(δ), uδ(i)), (uα(i), u

′
α(i)), (uβ(i), u

′
β(i)), and (uδ(i), u

′
δ(i)) to

E. Further, set last(α) = u′
α(i), last(β) = u′

β(i), and last(δ) = u′
δ(i). Let T2i ∈ T

be a binary tree with a root r2i, an internal node x2i and a leaf uα(i) both adjacent to
r2i, and with leaves uβ(i) and uδ(i) both adjacent to x2i. Moreover, let T2i+1 ∈ T be
a binary tree with a root r2i+1, an internal node x2i+1 and a leaf u′

δ(i) both adjacent to
r2i+1, and with leaves u′

α(i) and u′
β(i) both adjacent to x2i+1.

The Importance of Being Proper 249

T2i+1

L0

L1

L2i+1

L2i
uα(i) uβ(i) uδ(i)

v

r2i+1

T2i

u′
δ(i)

vα vβ vδ

u′
α(i)

r2i
u′
β(i)

x2i

x2i+1

T1

(a)

L0

L1

L2i+1

L2i

v

vα vβ vδ

μ2i+1

μ2i

ν2i+1

ν2i

(b)

Fig. 2. Illustrations for the proof of (a) Theorem 1 and (b) Theorem 2

The reduction is easily performed in O(n+m) time. We prove that (V ,E, γ, T) is
T -level planar if and only if 〈A,C〉 is a positive instance of BETWEENNESS.

Suppose that (V ,E, γ, T) admits a T -level planar drawing Γ . Consider the left-to-
right order O1 in which the vertices of level V1 appear along L1. Construct an order O
of the elements of A such that α ∈ A appears before β ∈ A if and only if vα ∈ V1

appears before vβ ∈ V1 in O1. In order to prove that O is a positive solution for 〈A,C〉,
it suffices to prove that, for each triple ti = 〈α, β, δ〉 ∈ C, vertices vα, vβ , and vδ
appear either in this order or in the reverse order in O1. Note that tree T2i enforces
uα(i) not to lie between uβ(i) and uδ(i) along L2i; also, tree T2i+1 enforces u′

δ(i) not
to lie between u′

α(i) and u′
β(i) along L2i+1. Since the three paths connecting u′

α(i),
u′
β(i), and u′

δ(i) with v are y-monotone, do not cross each other, and contain uα(i) and
vα, uβ(i) and vβ , and uδ(i) and vδ , respectively, we have that vα, vβ , and vδ appear
either in this order or in the reverse order in O1.

Suppose that an ordering O of the elements of A exists that is a positive solution of
BETWEENNESS for instance 〈A,C〉. In order to construct Γ , place the vertices of V1

along L1 in such a way that vertex vj ∈ V1 is assigned x-coordinate equal to s if j is
the s-th element of O, for j = 1, . . . , n. Also, for i = 1, . . . ,m, let ti = 〈α, β, δ〉 ∈ C.
Place vertices uλ(i) and u′

λ(i), with λ ∈ {α, β, δ}, on L2i and L2i+1, respectively, in
such a way that uλ(i) and u′

λ(i) are assigned x-coordinate equal to s if λ is the s-th
element of O. Finally, place v at any point on L0 and draw the edges of E as straight-
line segments. We prove that Γ is a T -level planar drawing of (V ,E, γ, T). First, Γ
is a level planar drawing of (V,E, γ), by construction. Further, for each i = 1, . . . ,m,
vertices uα(i), uβ(i), and uδ(i) appear along L2i either in this order or in the reverse
order; in both cases, the order is compatible with tree T2i. Analogously, vertices u′

α(i),
u′
β(i), and u′

δ(i) appear along L2i+1 either in this order or in the reverse order; in both
cases, the order is compatible with tree T2i+1. Finally, the order in which vertices of V0

and V1 appear along L0 and L1 are trivially compatible with T0 and T1, respectively. �

250 P. Angelini et al.

Theorem 2. CLUSTERED-LEVEL PLANARITY is NP-complete.

Proof: The problem clearly belongs to NP . We prove the NP-hardness. Given
an instance 〈A,C〉 of BETWEENNESS, we construct an instance (V ,E, γ, T) of T -
LEVEL PLANARITY as in the proof of Theorem 1; then, starting from (V ,E, γ, T),
we construct an instance (V ,E, γ, T) of CL-PLANARITY that is cl-planar if and only
if (V ,E, γ, T) is T -level planar. This, together with the fact that (V ,E, γ, T) is T -
level planar if and only if 〈A,C〉 is a positive instance of BETWEENNESS, implies the
NP-hardness of CL-PLANARITY. Refer to Fig. 2(b).

Cluster hierarchy T is constructed as follows. Initialize T with a root μ2m+1. Next,
for i = m, . . . , 1, let u′

δ(i) be a leaf of T that is child of μ2i+1; add an internal node
ν2i+1 to T as a child of μ2i+1; then, let u′

α(i) and u′
β(i) be leaves of T that are children

of ν2i+1; add an internal node μ2i to T as a child of ν2i+1. Further, let uα(i) be a leaf
of T that is a child of μ2i; add an internal node ν2i to T as a child of μ2i; then, let uβ(i)
and uδ(i) be leaves of T that are children of ν2i; add an internal node μ2i−1 to T as a
child of ν2i. Finally, let vertices v ∈ V0 and vj ∈ V1, for j = 1, . . . , n, be leaves of T
that are children of μ1.

We prove that (V ,E, γ, T) is cl-planar if and only if (V ,E, γ, T) is T -level planar.
Suppose that (V ,E, γ, T) admits a cl-planar drawing Γ . Construct a T -level pla-

nar drawing Γ ∗ of (V ,E, γ, T) by removing from Γ the clusters of T . The draw-
ing of (V,E, γ) in Γ ∗ is level-planar, since it is level-planar in Γ . Further, for each
i = 1, . . . ,m, vertex uα(i) does not appear between uβ(i) and uδ(i) along L2i, since
uβ(i), uδ(i) ∈ ν2i and uα(i) /∈ ν2i; analogously, vertex u′

δ(i) does not appear between
u′
α(i) and u′

β(i) alongL2i+1, since u′
α(i), u

′
β(i) ∈ ν2i+1 and u′

δ(i) /∈ ν2i+1. Hence, the
order of the vertices of V2i and V2i+1 along L2i and L2i+1, respectively, are compatible
with trees T2i and T2i+1. Finally, the order in which the vertices of V0 and V1 appear
along lines L0 and L1 are trivially compatible with T0 and T1, respectively.

Suppose that (V ,E, γ, T) admits a T -level planar drawing Γ ∗; we describe how
to construct a cl-planar drawing Γ of (V ,E, γ, T). Assume that Γ ∗ is a straight-line
drawing, which is not a loss of generality [8]. Initialize Γ = Γ ∗. Draw each cluster α in
T as a convex region R(α) in Γ slightly surrounding the border of the convex hull of its
vertices and slightly surrounding the border of the regions representing the clusters that
are its descendants in T . Let j be the largest index such that Vj contains a vertex of α.
Then, R(α) contains all and only the vertices that are descendants of α in T ; moreover,
any two clusters α and β in T are one contained into the other, hence R(α) and R(β)
do not cross; finally, we prove that no edge e in E crosses more than once the boundary
of R(α) in Γ . First, if at least one end-vertex of e belongs to α, then e and the boundary
of R(α) cross at most once, given that e is a straight-line segment and that R(α) is
convex. All the vertices in V0 ∪ . . . ∪ Vj−1 and at least two vertices of Vj belong to α,
hence their incident edges do not cross the boundary of R(α) more than once. Further,
all the vertices in Vj+1 ∪ . . . ∪ V2m+3 have y-coordinates larger than every point of
R(α), hence edges between them do not cross R(α). It remains to consider the case in
which e connects a vertex x1 in Vj not in α (there is at most one such vertex) with a
vertex x2 in Vj+1 ∪ . . . ∪ V2m+2; in this case e and R(α) do not cross given that x1 is
outside R(α), that x2 has y-coordinate larger than every point of R(α), and that R(α)
is arbitrarily close to the convex hull of its vertices. �

The Importance of Being Proper 251

The reductions described in Theorems 1 and 2 can be modified so that (V,E) consists
of a set of paths (by removing levels V0 and V1), or that (V,E) is a 2-connected series-
parallel graph (by introducing levels V2m+2 and V2m+3 “symmetric” to levels V1 and
V0, respectively).

3 Polynomial-Time Algorithms
In this section we prove that both T -LEVEL PLANARITY and CL-PLANARITY are
polyomial-time solvable problems if restricted to proper instances.

3.1 T -LEVEL PLANARITY

We start by describing a polynomial-time algorithm for T -LEVEL PLANARITY. The
algorithm is based on a reduction to the Simultanoues Embedding with Fixed Edges
problem for two graphs (SEFE-2), that is defined as follows.

A simultanoues embedding with fixed edges (SEFE) of two graphs G1 = (V,E1) and
G2 = (V,E2) on the same set of vertices V consists of two planar drawings Γ1 and Γ2

of G1 and G2, respectively, such that each vertex v ∈ V is mapped to the same point in
both drawings and each edge of the common graph G∩ = (V,E1 ∩ E2) is represented
by the same simple curve in the two drawings. The SEFE-2 problem asks whether a
given pair of graphs 〈G1, G2〉 admits a SEFE [5]. The computational complexity of the
SEFE-2 problem is unknown, but there exist polynomial-time algorithms for instances
that respect some conditions [2,5,6,7,12]. We are going to use a result by Bläsius and
Rütter [7], who proposed a quadratic-time algorithm for instances 〈G1, G2〉 of SEFE-2
in which G1 and G2 are 2-connected and the common graph G∩ is connected.

In the analysis of the complexity of the following algorithms we assume that the in-
ternal nodes of the trees in T in any instance (V ,E, γ, T) of T -LEVEL PLANARITY

and of tree T in any instance (V ,E, γ, T) of CL-PLANARITY have at least two chil-
dren. It is easily proved that this is not a loss of generality; also, this allows us to describe
the size of the instances in terms of the size of their sets of vertices.

Lemma 1. Let (V ,E, γ, T) be a proper instance of T -LEVEL PLANARITY. There
exists an equivalent instance 〈G∗

1, G
∗
2〉 of SEFE-2 such that G∗

1 = (V ∗, E∗
1) and G∗

2 =
(V ∗, E∗

2) are 2-connected and the common graph G∩ = (V ∗, E∗
1 ∩ E∗

2) is connected.
Further, instance 〈G∗

1, G
∗
2〉 can be constructed in linear time.

Proof: We describe how to construct instance 〈G∗
1, G

∗
2〉. Refer to Fig. 3.

Graph G∩ contains a cycle C = t1, t2, . . . , tk, qk, pk, qk−1, pk−1, . . . , q1, p1, where
k is the number of levels of (V ,E, γ, T). For each i = 1, . . . , k, graph G∩ contains
a copy Ti of tree Ti ∈ T , whose root is vertex ti, and contains two stars Pi and Qi

centered at vertices pi and qi, respectively, whose number of leaves is determined as
follows. For each vertex u ∈ Vi such that an edge (u, v) ∈ E exists connecting u to a
vertex v ∈ Vi−1, star Pi contains a leaf u(Pi); also, for each vertex u ∈ Vi such that
an edge (u, v) ∈ E exists connecting u to a vertex v ∈ Vi+1, star Qi contains a leaf
u(Qi). We also denote by u(Ti) a leaf of Ti corresponding to vertex u ∈ Vi.

Graph G∗
1 contains G∩ plus the following edges. For i = 1, . . . , k, consider each

vertex u ∈ Vi. Suppose that i is even. Then, G∗
1 has an edge connecting the leaf u(Ti)

of Ti corresponding to u with either the leaf u(Qi) of Qi corresponding to u, if it exists,

252 P. Angelini et al.

Li+1

Li

Li−1

Ti−1

Ti+1

TiTT −1

x

z

y

Ti

u

(a)

Ti−1 Ti Ti+1

C

pi−1 qi−1 pi qi pi+1 qi+1

ti−1 ti+1ti

Pi−1 Qi−1 Pi Qi Pi+1 Qi+1

(b)

Fig. 3. Illustration for the proof of Lemma 1. Index i is assumed to be even. (a) A T -level planar
drawing Γ of instance (V ,E, γ, T). (b) The SEFE 〈Γ1, Γ2〉 of instance 〈G∗

1, G
∗
2〉 of SEFE-2

corresponding to Γ . Correspondence between a vertex u ∈ Vi and leaves u(Ti) ∈ Ti, u(Pi) ∈
Pi, and u(Qi) ∈ Qi is highlighted by representing all such vertices as white boxes.

or with qi, otherwise; also, for each edge in E connecting a vertex u ∈ Vi with a vertex
v ∈ Vi−1, graph G∗

1 has an edge connecting the leaf u(Pi) of Pi corresponding to u
with the leaf v(Qi−1) of Qi−1 corresponding to v (such leaves exist by construction).
Suppose that i is odd. Then, graph G∗

1 has an edge between u(Ti) and either u(Pi),
if it exists, or pi, otherwise. Graph G∗

2 contains G∩ plus the following edges. For i =
1, . . . , k, consider each vertex u ∈ Vi. Suppose that i is odd. Then, G∗

2 has an edge
connecting u(Ti) with either the leaf u(Qi) of Qi corresponding to u, if it exists, or
with qi, otherwise; also, for each edge in E connecting a vertex u ∈ Vi with a vertex
v ∈ Vi−1, graph G∗

2 has an edge (u(Pi), v(Qi−1)). Suppose that i is even. Then, graph
G∗

2 has an edge between u(Ti) and either u(Pi), if it exists, or pi, otherwise.
Graph G∩ is clearly connected. We prove that G∗

1 and G∗
2 are 2-connected, that is,

removing any vertex v disconnects neither G∗
1 nor G∗

2. If v is a leaf of Ti, Pi, or Qi,
with 1 ≤ i ≤ k, then removing v disconnects neither G∗

1 nor G∗
2, since G∩ remains

connected. If v is an internal node (the root) of Ti, Pi, or Qi, say of Ti, with 1 ≤ i ≤ k,
then removing v disconnects G∩ into one component Ti(v) containing all the vertices
of C (resp. all the vertices of C, except for v) and into some subtrees Ti,j of Ti rooted the
children of v; however, by construction, each leaf u(Ti) of Ti,j is connected to Ti(v) via
an edge of G∗

1, namely either (u(Ti), u(Pi)), (u(Ti), pi), (u(Ti), u(Qi)), or (u(Ti), qi)
(and similar for G∗

2), hence G∗
1 (and G∗

2) is connected after the removal of v.
Observe that, if (V ,E, γ, T) has nT nodes in the trees of T (where |V | < nT), then

〈G∗
1, G

∗
2〉 contains at most 3nT vertices. Also, the number of edges of 〈G∗

1, G
∗
2〉 is at

most |E|+2nT . Hence, the size of 〈G∗
1, G

∗
2〉 is linear in the size of (V ,E, γ, T); also,

it is easy to see that 〈G∗
1, G

∗
2〉 can be constructed in linear time.

We prove that 〈G∗
1, G

∗
2〉 admits a SEFE if and only if (V ,E, γ, T) is T -level planar.

Suppose that 〈G∗
1, G

∗
2〉 admits a SEFE 〈Γ ∗

1 , Γ
∗
2 〉. We show how to construct a draw-

ing Γ of (V ,E, γ, T). For 1 ≤ i ≤ k, let Θ(Ti) be the order in which the leaves of Ti

appear in a pre-order traversal of Ti in 〈Γ ∗
1 , Γ

∗
2 〉; then, let the orderingOi of the vertices

of Vi along Li be either Θ(Ti), if i is odd, or the reverse of Θ(Ti), if i is even.
We prove that Γ is T -level planar. For each i = 1, . . . , k, Oi is compatible with

Ti ∈ T , since the drawing of Ti, that belongs to G∩, is planar in 〈Γ ∗
1 , Γ

∗
2 〉. Suppose, for

The Importance of Being Proper 253

a contradiction, that two edges (u, v), (w, z) ∈ E exist, with u,w ∈ Vi and v, z ∈ Vi+1,
that intersect in Γ . Hence, either u appears before w in Oi and v appears after z in
Oi+1, or vice versa. Since i and i + 1 have different parity, either u appears before
w in Θ(Ti) and v appears before z in Θ(Ti+1), or vice versa. We claim that, in both
cases, this implies a crossing in 〈Γ ∗

1 , Γ
∗
2 〉 between paths (qi, u(Qi), v(Pi+1), pi+1) and

(qi, w(Qi), z(Pi+1), pi+1) in 〈G∗
1, G

∗
2〉. Since the edges of these two paths belong all

to G∗
1 or all to G∗

2, depending on whether i is even or odd, this yields a contradiction.
We now prove the claim. The pre-order traversal Θ(Qi) of Qi (the pre-order traversal
Θ(Pi+1) of Pi+1) in 〈Γ ∗

1 , Γ
∗
2 〉 restricted to the leaves of Qi (of Pi+1) is the reverse of

Θ(Ti) (of Θ(Ti+1)) restricted to the vertices of Vi (of Vi+1) corresponding to leaves
of Qi (of Pi+1). Namely, each leaf x(Qi) of Qi (y(Pi+1) of Pi+1) is connected to
leaf x(Ti) of Ti (y(Ti+1) of Ti+1) in the same graph, either G∗

1 or G∗
2, by construction.

Hence, the fact that u appears before (after) w in Θ(Ti) and v appears before (after) z in
Θ(Ti+1) implies that u appears after (before) w in Θ(Qi) and v appears after (before)
z in Θ(Pi+1). In both cases, this implies a crossing in 〈Γ ∗

1 , Γ
∗
2 〉 between the two paths.

Suppose that (V ,E, γ, T) admits a T -level planar drawing Γ . We show how to
construct a SEFE 〈Γ ∗

1 , Γ
∗
2 〉 of 〈G∗

1, G
∗
2〉. For 1 ≤ i ≤ k, let Oi be the order of the

vertices of level Vi along Li in Γ . Since Γ is T -level planar, there exists an embedding
Γi of tree Ti ∈ T that is compatible with Oi. If i is odd (even), then assign to each
internal vertex of Ti the same (resp. the opposite) rotation scheme as its corresponding
vertex in Γi. Also, if i is odd, then assign to pi (to qi) the rotation scheme in G∗

1 (resp.
in G∗

2) such that the paths that connect pi (resp. qi) to the leaves of Ti, either with an
edge or passing through a leaf of Pi (resp. of Qi), appear in the same clockwise order as
the vertices of Vi appear in Oi; if i is even, then assign to pi (to qi) the rotation scheme
in G∗

2 (resp. in G∗
1) such that the paths that connect pi (resp. qi) to the leaves of Ti

appear in the same counterclockwise order as the vertices of Vi appear in Oi. Finally,
consider the embedding Γi,i+1 obtained by restricting Γ to the vertices and edges of the
subgraph induced by the vertices of Vi and Vi+1. If i is odd (even), then assign to the
leaves of Qi and Pi+1 in G∗

1 (in G∗
2) the same rotation scheme as their corresponding

vertices have in Γi,i+1. This completes the construction of 〈Γ ∗
1 , Γ

∗
2 〉.

We prove that 〈Γ ∗
1 , Γ

∗
2 〉 is a SEFE of 〈G∗

1, G
∗
2〉. Since the rotation scheme of the

internal vertices of each Ti are constructed starting from an embedding of Γi of tree
Ti ∈ T that is compatible with Oi, the drawing of Ti is planar. Further, since the
rotation schemes of pi (of qi) are also constructed starting from Oi, there exists no
crossing between two paths connecting ti and pi (ti and qi), one passing through a leaf
u(Ti) of Ti and, possibly, through a leaf u(Pi) of Pi (through a leaf u(Qi) of Qi), and
the other passing through a leaf v(Ti) of Ti and, possibly, through a leaf v(Pi) of Pi

(through a leaf v(Qi) of Qi). Finally, since the rotation schemes of the leaves of Qi

and Pi+1 are constructed from the embedding Γi,i+1 obtained by restricting Γ to the
vertices and edges of the subgraph induced by the vertices of Vi and Vi+1, there exist
no two crossing edges between leaves of Qi and Pi+1. �

We remark that a reduction from T -LEVEL PLANARITY to SEFE-2 was described
by Schaefer in [12]; however, the instances of SEFE-2 obtained from that reduction do
not satisfy any conditions that make SEFE-2 known to be solvable in polynomial-time.

254 P. Angelini et al.

(a) (b) (c)

Fig. 4. Illustration for the proof of Lemma 2. (a) Instance (V ,E, γ, T) with flat hierarchy con-
taining clusters μ�, μ�, and μ◦. (b) Insertion of dummy vertices in (V ,E, γ, T) to obtain
(V ′, E′, γ′, T ′). (c) Level-connected instance (V ∗, E∗, γ∗, T ∗) obtained from (V ′, E′, γ′, T ′).

Theorem 3. There exists an O(|V |2)-time algorithm that decides whether a proper
instance (V ,E, γ, T) of T -LEVEL PLANARITY is T -level planar.

Proof: The statement follows from Lemma 1 and from the existence of a quadratic-time
algorithm [7] that decides whether an instance 〈G1, G2〉 of SEFE-2 such that G1 and
G2 are 2-connected and the common graph G∩ is connected admits a SEFE. �

3.2 CLUSTERED-LEVEL PLANARITY

In the following we show how to test in polynomial time the existence of a cl-planar
drawing for a proper instance (V ,E, γ, T) of CL-PLANARITY.

A proper cl-graph (V ,E, γ, T) is μ-connected between two levels Vi and Vi+1 if
there exist two vertices u ∈ Vμ ∩ Vi and v ∈ Vμ ∩ Vi+1 such that edge (u, v) ∈ E. For
a cluster μ ∈ T , let γmin (μ) = min {i|Vi ∩ Vμ �= ∅} and let γmax (μ) = max {i|Vi ∩
Vμ �= ∅}. A proper cl-graph (V ,E, γ, T) is level-μ-connected if it is μ-connected
between levels Vi and Vi+1 for each i = γmin(μ), . . . , γmax(μ) − 1. A proper cl-graph
(V ,E, γ, T) is level-connected if it is μ-level-connected for each cluster μ ∈ T .

Our strategy consists of first transforming a proper instance of CL-PLANARITY into
an equivalent level-connected instance, and then transforming such a level-connected
instance into an equivalent proper instance of T -LEVEL PLANARITY.

Lemma 2. Let (V ,E, γ, T) be a proper instance of CL-PLANARITY. An equivalent
level-connected instance (V ∗, E∗, γ∗, T ∗) of CL-PLANARITY whose size is quadratic
in the size of (V ,E, γ, T) can be constructed in quadratic time.

Proof: The construction of (V ∗, E∗, γ∗, T ∗) consists of two steps. See Fig. 4.
In the first step we turn (V ,E, γ, T) into an equivalent instance (V ′, E′, γ′, T ′).

Initialize V ′ = V , E′ = E, and T ′ = T . For each i = 1, . . . , k and for each vertex
u ∈ Vi, set γ′(u) = 3(i− 1) + 1. Then, for each i = 1, . . . , k − 1, consider each edge
(u, v) ∈ E such that γ(u) = i and γ(v) = i+ 1; add two vertices du and dv to V ′, and
replace (u, v) in E′ with edges (u, du), (du, dv), and (dv, v). Set γ′(du) = 3(i− 1)+2
and γ′(dv) = 3i. Finally, add du (dv) to T ′ as a child of the parent of u (of v) in T ′.

We prove that (V ′, E′, γ′, T ′) is equivalent to (V ,E, γ, T).
Suppose that (V ,E, γ, T) admits a cl-planar drawing Γ ; a cl-planar drawing Γ ′ of

(V ′, E′, γ′, T ′) is constructed as follows. Initialize Γ ′ = Γ . Scale Γ ′ up by a factor
of 3 and vertically translate it so that the vertices in V ′

1 lie on line y = 1. After the

The Importance of Being Proper 255

two affine transformations have been applied (i) Γ ′ has no crossing, (ii) every edge is
a y-monotone curve, (iii) for i = 1, . . . , k, the vertices in Vi = V ′

3(i−1)+1 are placed
on line y = 3(i− 1) + 1, that we denote by L′

3(i−1)+1, and (iv) the order in which the
vertices in Vi = V ′

3(i−1)+1 appear along L′
3(i−1)+1 is the same as the order in which

they appear alongLi. For each i = 1, . . . , k−1, consider each edge (u, v) ∈ E such that
γ(u) = i and γ(v) = i+1. Place vertices du and dv in Γ ′ on the two points of the curve
representing (u, v) having y-coordinate equal to 3(i−1)+2 and 3i, respectively. Then,
the curves representing in Γ ′ any two edges in E′ are part of the curves representing in
Γ ′ any two edges in E. Hence Γ ′ is a cl-planar drawing of (V ′, E′, γ′, T ′).

Suppose that (V ′, E′, γ′, T ′) admits a cl-planar drawing Γ ′; a cl-planar drawing Γ of
(V ,E, γ, T) is constructed as follows. Initialize Γ = Γ ′. For i = 1, . . . , k−1, consider
each path (u, du, dv, v) such that γ′(u) = 3(i − 1) + 1 and γ′(v) = 3i + 1; remove
vertices du and dv , and their incident edges in E′ from Γ ; draw edge (u, v) ∈ E in Γ
as the composition of the curves representing edges (u, du), (du, dv), and (dv, v) in Γ ′.
Scale Γ down by a factor of 3 and vertically translate it so that the vertices of V1 lie on
line y = 1. After the two affine transformations have been applied (i) Γ has no crossing,
(ii) every edge is a y-monotone curve, (iii) for i = 1, . . . , k, the vertices of level Vi are
placed on line y = i, and (iv) the order in which the vertices in Vi = V ′

3(i−1)+1 appear
along Li is the same as the order in which they appear along L′

3(i−1)+1. Since Γ ′ is
cl-planar, this implies that Γ is cl-planar, as well.

The goal of this transformation was to obtain an instance (V ′, E′, γ′, T ′) such that,
if there exists a vertex u ∈ V ′

j , with 1 ≤ j ≤ 3(k − 1) + 1, that is adjacent to two
vertices v, w ∈ V ′

h, with h = j± 1, then u, v, and w have the same parent node μ ∈ T ′;
hence, (V ′, E′, γ′, T ′) is μ-connected between levels V ′

j and V ′
h.

In the second step we transform (V ′, E′, γ′, T ′) into an equivalent level-connected
instance (V ∗, E∗, γ∗, T ∗). Initialize (V ∗, E∗, γ∗, T ∗) =(V ′, E′, γ′, T ′). Consider each
cluster μ ∈ T ′ according to a bottom-up visit of T ′. If there exists a level V ′

i , with
γ′
min (μ) ≤ i < γ′

max (μ), such that no edge in E′ connects a vertex u ∈ V ′
i ∩ V ′

μ with
a vertex v ∈ V ′

i+1 ∩ V ′
μ, then add two vertices u∗ and v∗ to V ∗, add an edge (u∗, v∗) to

E∗, set γ∗(u∗) = i and γ∗(v∗) = i+ 1, and add u∗ and v∗ to T ∗ as children of μ.
Observe that, for each cluster μ ∈ T ′ and for each level 1 ≤ i ≤ 3k− 2, at most two

dummy vertices are added to (V ∗, E∗, γ∗, T ∗). This implies that |V ∗| ∈ O(|V ′|2) ∈
O(|V |2). Also, the whole construction can be performed in O(|V |2) time.

It remains to prove that (V ∗, E∗, γ∗, T ∗) is equivalent to (V ′, E′, γ′, T ′).
Suppose that (V ∗, E∗, γ∗, T ∗) admits a cl-planar drawing Γ ∗; a cl-planar drawing

Γ ′ of (V ′, E′, γ′, T ′) can be constructed as follows. Initialize Γ ′ = Γ ∗ and remove
from V ′, E′, and Γ ′ all the vertices and edges added when constructing Γ ∗. Since all
the other vertices of V ′ and edges of E′ have the same representation in Γ ′ and in Γ ∗,
and since Γ ∗ is cl-planar, it follows that Γ ′ is cl-planar, as well.

Suppose that (V ′, E′, γ′, T ′) admits a cl-planar drawing Γ ′; a cl-planar drawing Γ ∗

of (V ∗, E∗, γ∗, T ∗) can be constructed as follows. Initialize Γ ∗ = Γ ′. Consider a level
V ′
i , with 1 ≤ i ≤ 3(k− 1), such that vertices u∗, v∗ ∈ μ with γ′(u∗) = i and γ′(v∗) =

i + 1, for some cluster μ ∈ T , have been added to (V ∗, E∗, γ∗, T ∗). By construction,
(V ′, E′, γ′, T ′) is notμ-connected between levels V ′

i and V ′
i+1. As observed before, this

implies that no vertex u ∈ V ′
i ∩V ′

μ exists that is connected to two vertices v, w ∈ V ′
i+1,

256 P. Angelini et al.

and no vertex u ∈ V ′
i+1 ∩ V ′

μ exists that is connected to two vertices v, w ∈ V ′
i . Hence,

vertices u∗ and v∗, and edge (u∗, v∗), can be drawn in Γ ∗ entirely inside the region
representing μ in such a way that u∗ and v∗ lie along lines L′

i and L′
i+1 and there exists

no crossing between edge (u∗, v∗) and any other edge.
This concludes the proof of the lemma. �

Lemma 3. Let (V ,E, γ, T) be a level-connected instance of CL-PLANARITY. An
equivalent proper instance (V ,E, γ, T) of T -LEVEL PLANARITY whose size is lin-
ear in the size of (V ,E, γ, T) can be constructed in linear time.

Proof: We construct (V ,E, γ, T) from (V ,E, γ, T) as follows. Initialize T = ∅.
For i = 1, . . . , k, add to T a tree Ti that is the subtree of the cluster hierarchy T whose
leaves are all and only the vertices of level Vi. Note that the set of leaves of the trees in
T corresponds to the vertex set V . Since each internal node of the trees in T has at least
two children, we have that the size of (V ,E, γ, T) is linear in the size of (V ,E, γ, T).
Also, the construction of (V ,E, γ, T) can be easily performed in linear time.

We prove that (V ,E, γ, T) is T -level planar if and only if (V ,E, γ, T) is cl-planar.
Suppose that (V ,E, γ, T) admits a T -level planar drawing Γ ∗; we show how to

construct a cl-planar drawing Γ of (V ,E, γ, T). Initialize Γ = Γ ∗. Consider each
level Vi, with i = 1, . . . , k. By construction, for each cluster μ ∈ T such that there
exists a vertex v ∈ Vi ∩ Vμ, there exists an internal node of tree Ti ∈ T whose leaves
are all and only the vertices of Vi ∩Vμ. Since Γ ∗ is T -level planar, such vertices appear
consecutively alongLi. Hence, in order to prove that Γ is a cl-planar drawing, it suffices
to prove that there exist no four vertices u, v, w, z such that (i) u, v ∈ Vi and w, z ∈ Vj ,
with 1 ≤ i < j ≤ k; (ii) u,w ∈ Vμ and v, z ∈ Vν , with μ �= ν; and (iii) u appears before
v on Li and w appears after z on Lj , or vice versa. Suppose, for a contradiction, that
such four vertices exist. Note that, we can assume j = i ± 1 without loss of generality,
as (V ,E, γ, T) is level-connected. Assume that u appears before v along Li and w
appears after z along Lj , the other case being symmetric. Since Γ ∗ is T -level planar,
all the vertices of Vμ appear before all the vertices of Vν along Li and all the vertices
of Vμ appear after all the vertices of Vν along Lj . Also, since (V ,E, γ, T) is level-
connected, there exists at least an edge (a, b) such that a ∈ Vi ∩ Vμ and b ∈ Vj ∩ Vμ,
and an edge (c, d) such that c ∈ Vi ∩ Vν and d ∈ Vj ∩ Vν . However, under the above
conditions, these two edges intersect in Γ and in Γ ∗, hence contradicting the hypothesis
that Γ ∗ is T -level planar.

Suppose that (V ,E, γ, T) admits a cl-planar drawing Γ ; we show how to construct
a T -level planar drawing Γ ∗ of (V ,E, γ, T). Initialize Γ ∗ = Γ . Consider each level
Vi, with i = 1, . . . , k. By construction, for each internal node w of tree Ti ∈ T , there
exists a cluster μ ∈ T such that the vertices of Vi ∩ Vμ are all and only the leaves of
the subtree of Ti rooted at w. Since Γ is cl-planar, such vertices appear consecutively
along Li. Hence, Γ ∗ is T -level planar. �

We get the following.

Theorem 4. There exists an O(|V |4)-time algorithm that decides whether a proper
instance (V ,E, γ, T) of CLUSTERED-LEVEL PLANARITY is cl-planar.

The Importance of Being Proper 257

Proof: By Lemma 2, it is possible to construct in O(|V |2) time a level-connected in-
stance (V ′, E′, γ′, T ′) of CL-PLANARITY that is cl-planar if and only if (V ,E, γ, T)
is cl-planar, with |V ′| = O(|V |2). By Lemma 3, it is possible to construct in O(|V ′|)
time a proper instance (V ′, E′, γ′, T ′) of T -LEVEL PLANARITY that is T -level planar
if and only if (V ′, E′, γ′, T ′) is cl-planar. Finally, by Theorem 3, it is possible to test in
O(|V ′|2) time whether (V ′, E′, γ′, T ′) is T -level planar. �

4 Open Problems
Several problems are opened by this research:
1. The algorithms for testing level planarity [10] and for testing cl-planarity for level-

connected proper hierarchies [9] both have linear-time complexity. Although our
algorithms solve more general problems than the ones above, they are less efficient.
This leaves room for future research aiming at improving our complexity bounds.

2. Our NP-hardness result on the complexity of CL-PLANARITY exploits a cluster
hierarchy whose depth is linear in the number of vertices of the underlying graph.
Does the NP-hardness hold if the cluster hierarchy is flat?

3. The NP-hardness of CL-PLANARITY is, to the best of our knowledge, the first
hardness result for a variation of the clustered planarity problem in which none
of the c-planarity constraints is dropped. Is it possible to use similar techniques to
tackle the problem of determining the complexity of CLUSTERED PLANARITY?

Acknowledgments. Work partially supported by ESF EuroGIGA GraDR, by the Aus-
tralian Research Council (grant DE140100708), by the MIUR project AMANDA “Al-
gorithmics for MAssive and Networked DAta”, prot. 2012C4E3KT 001, and by EU
FP7 STREP ”Leone: From Global Measurements to Local Management”, no. 317647.

References
1. Angelini, P., Da Lozzo, G., Neuwirth, D.: On the complexity of some problems related to

SEFE. CoRR abs/1207.3934 (2013)
2. Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous

embeddability of two graphs whose intersection is a biconnected or a connected graph. J. of
Discrete Algorithms 14, 150–172 (2012)

3. Angelini, P., Da Lozzo, G.: Deepening the relationship between SEFE and C-planarity. CoRR
abs/1404.6175 (2014)

4. Angelini, P., Da Lozzo, G., Neuwirth, D.: On some NP-complete SEFE problems. In: Pal,
S.P., Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 200–212. Springer, Heidel-
berg (2014)

5. Blasiüs, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamas-
sia, R. (ed.) Handbook of Graph Drawing and Visualization. CRC Press (2013)

6. Bläsius, T., Rutter, I.: Disconnectivity and relative positions in simultaneous embeddings. In:
Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 31–42. Springer, Heidel-
berg (2013)

7. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding
problems. In: Khanna, S. (ed.) SODA, pp. 1030–1043. SIAM (2013)

8. Eades, P., Feng, Q.W., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierar-
chical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)

258 P. Angelini et al.

9. Forster, M., Bachmaier, C.: Clustered level planarity. In: Van Emde Boas, P., Pokorný, J.,
Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 218–228. Springer,
Heidelberg (2004)

10. Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S.H.
(ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg (1999)

11. Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)
12. Schaefer, M.: Toward a theory of planarity: Hanani-Tutte and planarity variants. J. of Graph

Alg. and Appl. 17(4), 367–440 (2013)
13. Wotzlaw, A., Speckenmeyer, E., Porschen, S.: Generalized k-ary tanglegrams on level

graphs: A satisfiability-based approach and its evaluation. Discrete Applied Mathemat-
ics 160(16-17), 2349–2363 (2012)

Column Planarity and Partial Simultaneous

Geometric Embedding

William Evans1, Vincent Kusters2, Maria Saumell3, and Bettina Speckmann4

1 University of British Columbia, Canada
will@cs.ubc.ca

2 Department of Computer Science, ETH Zürich, Switzerland
vincent.kusters@inf.ethz.ch

3 Department of Mathematics and European Centre of Excellence NTIS,
University of West Bohemia, Czech Republic

saumell@kma.zcu.cz
4 Technical University Eindhoven, The Netherlands

b.speckmann@tue.nl

Abstract. We introduce the notion of column planarity of a subset R
of the vertices of a graph G. Informally, we say that R is column planar
in G if we can assign x-coordinates to the vertices in R such that any
assignment of y-coordinates to them produces a partial embedding that
can be completed to a plane straight-line drawing of G. Column planarity
is both a relaxation and a strengthening of unlabeled level planarity. We
prove near tight bounds for column planar subsets of trees: any tree on
n vertices contains a column planar set of size at least 14n/17 and for
any ε > 0 and any sufficiently large n, there exists an n-vertex tree in
which every column planar subset has size at most (5/6 + ε)n.

We also consider a relaxation of simultaneous geometric embedding
(SGE), which we call partial SGE (PSGE). A PSGE of two graphs G1

and G2 allows some of their vertices to map to two different points in the
plane. We show how to use column planar subsets to construct k-PSGEs
in which k vertices are still mapped to the same point. In particular,
we show that any two trees on n vertices admit an 11n/17-PSGE, two
outerpaths admit an n/4-PSGE, and an outerpath and a tree admit a
11n/34-PSGE.

1 Introduction

A graph G = (V,E) on n vertices is unlabeled level planar (ULP) if for all
injections γ : V → R, there exists an injection ρ : V → R, so that embed-
ding each v ∈ V at (ρ(v), γ(v)) results in a plane straight-line embedding of

W. Evans is supported by an NSERC Discovery Grant. V. Kusters is partially sup-
ported by the ESF EUROCORES programme EuroGIGA, CRP GraDR and the
Swiss National Science Foundation, SNF Project 20GG21-134306. M. Saumell is
supported by the project NEXLIZ CZ.1.07/2.3.00/30.0038, which is co-financed by
the European Social Fund and the state budget of the Czech Republic. B. Speck-
mann is supported by the Netherlands Organisation for Scientific Research (NWO)
under project no. 639.023.208.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 259–271, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

260 W. Evans et al.

(a) (b) (c)

a b

c

d

e

f

d
a

e

f

bc

1 2 3 4 1 2 3 4

a

d e
f

c b

Fig. 1. (a) A graph G = (V,E) with R = {a, d, e, f} which is ρ-column planar for
ρ = {d �→ 1, a �→ 2, e �→ 3, f �→ 4}. (b-c) Two assignments of y-coordinates to the
vertices R and corresponding plane straight-line completions of G.

G. Estrella-Balderrama, Fowler and Kobourov [10] originally introduced ULP
graphs and characterized ULP trees in terms of forbidden subgraphs. Fowler
and Kobourov [12] extended this characterization to general ULP graphs. ULP
graphs are exactly the graphs that admit a simultaneous geometric embedding
with a monotone path: this was the original motivation for studying them.

In this paper we introduce the notion of column planarity of a subset R of the
vertices V of a graph G = (V,E). Informally, we say that R is column planar in
G if we can assign x-coordinates to the vertices in R such that any assignment
of y-coordinates to them produces a partial embedding that can be completed to
a plane straight-line drawing of G. Column planarity is both a relaxation and a
strengthening of unlabeled level planarity. It is a relaxation since it applies only
to a subset R of the vertices and a strengthening since the requirements on R
are more strict than in the case of unlabeled level planarity.

More formally, for R ⊆ V , we say that R is column planar in G = (V,E)
if there exists an injection ρ : R → R such that for all ρ-compatible injections
γ : R → R, there exists a plane straight-line embedding of G where each v ∈ R
is embedded at (ρ(v), γ(v)). Injection γ is ρ-compatible if the combination of ρ
and γ does not embed three vertices on a line. Clearly, if R is column planar in
G then any subset of R is also column planar in G. We say that R is ρ-column
planar when we need to emphasize the injection ρ (see Fig. 1 for an example).
If R = V is column planar in G then G is ULP since column planarity implies
the existence of one assignment of x-coordinates to vertices that will produce a
planar embedding for all assignments of y-coordinates, while to be a ULP graph
the x-coordinate assignment may depend on the y-coordinate assignment. In
this sense, column planarity of V is strictly more restrictive than unlabeled level
planarity of G. Di Giacomo et al. [8] study column planarity under a different
name. Specifically, they define EAP graphs as the graphs G = (V,E) where V
is column planar in G. They consider a family of graphs called fat caterpillars
and prove that these are exactly the EAP graphs.

As mentioned above, the study of ULP was originally motivated by simulta-
neous geometric embedding, a concept introduced by Brass et al. [4]. Formally,
given two graphs G1 = (V,E1) and G2 = (V,E2) on the same set of n vertices,
they defined a simultaneous geometric embedding (SGE) of G1 and G2 as an

Column Planarity and Partial Simultaneous Geometric Embedding 261

(a) (b) (c)

a

(d)

b

cc d

ed

e f

f

a

b

a
b

cd

e

f

a
b

cd

e

f

f

e

d

Fig. 2. (a-b) Two graphs on the same vertex set. (c) An SGE of these graphs. (d) A
3-PSGE of these graphs.

injection ϕ : V → R2 such that the straight-line drawings of G1 and G2 induced
by ϕ are both plane. With slight abuse of notation, we refer to these drawings as
ϕ(G1) and ϕ(G2). Fig. 2c depicts an SGE of the graphs in Fig. 2a and Fig. 2b.
Bläsius et al. [2] give an excellent survey of the subsequent papers on SGE with
a comprehensive list of results. On the positive side, Brass et al. [4] prove that
two paths, cycles or caterpillars always admit an SGE. Cabello et al. [5] prove
that a matching and a tree or outerpath (a type of outerplanar graph) always
admit an SGE. On the negative side, Brass et al. [4] prove that three paths
sometimes do not admit an SGE. Erten and Kobourov [9] prove that a planar
graph and a path may not admit an SGE. Frati, Kaufmann and Kobourov [13]
strengthen this result to the case where the planar graph and the path do not
share any edges. Geyer, Kaufmann and Kobourov [14] describe two trees that
do not admit an SGE. Angelini et al. [1] close a long-standing open question by
describing a tree and a path that admit no SGE. Finally, Estrella-Balderrama
et al. [11] show that the decision problem for SGE is NP-hard.

In light of the restrictiveness of simultaneous geometric embedding, several
other variations on the abstract problem have been studied. Cappos et al. [6] con-
sider a version of SGE where edges are embedded as circular arcs or with bends.
Di Giacomo et al. [7] consider matched drawings : a version of SGE where the
location of a vertex in the drawing of G1 need only have the same y-coordinate
as its location in the drawing of G2.

In this paper we consider a variant on SGE which we call partial simultaneous
geometric embedding (PSGE). We do not require every vertex to map to a single
point in the plane. Instead, some vertices can have a “split personality” and map
to two different locations, one associated with G1 and one associated with G2.
Specifically, given two graphs G1 = (V,E1) and G2 = (V,E2) on the same set of
n vertices, a k-partial simultaneous geometric embedding (k-PSGE) of G1 and
G2 is a pair of injections ϕ1 : V → R2 and ϕ2 : V → R2 such that (i) the
straight-line drawings ϕ1(G1) and ϕ2(G2) are both plane; (ii) if ϕ1(v1) = ϕ2(v2)
then v1 = v2 and; (iii) ϕ1(v) = ϕ2(v) for at least k vertices v ∈ V . An n-PSGE
is simply an SGE. Fig. 2d depicts a 3-PSGE of the graphs in Fig. 2a and Fig. 2b.

PSGE is related to the notion of planar untangling : Given a straight-line
drawing of a planar graph, change the embedding of as few vertices as possible
in order to obtain a plane drawing. Goaoc et al. [15] describe an improvement of
a result by Bose et al. [3] to show that 4

√
(n+ 1)/2 vertices can always be kept

262 W. Evans et al.

in their original positions. Since we can simply take any plane embedding of G1,
use the same embedding for G2 and then untangle G2, it immediately follows
that every two planar graphs on n vertices admit a 4

√
(n+ 1)/2-PSGE.

Results and Organization. In Section 2, we study column planarity for subsets
of trees. We prove that every tree on n vertices contains a column planar subset
of size 14n/17 and we show that there exist trees where every column planar
subset has size at most 5n/6. In Section 3, we establish the relation between
column planarity and PSGE. We show that every two trees admit an 11n/17-
PSGE, that every tree and ULP graph admit a 14n/17-PSGE, that every two
outerpaths admit an n/4-PSGE, and that every outerpath and a tree admit an
11n/34-PSGE.

2 Column Planar Sets in Trees

In this section, we show how to find large column planar sets in trees. Let p(v)
be the parent of vertex v in a rooted tree T , and let r(T) be the root of T . Given
a subset R of the vertices of T , let CR(v) be the non-leaf children of v in R
and let C+

R (v) be those vertices in CR(v) with at least one child in R. We first
prove that subsets of T satisfying certain conditions are always column planar
and next that every tree contains a large such subset.

Lemma 1. For a rooted tree T , R is column planar in T if for all v ∈ R, either
(1) p(v) ∈ R, the number of non-leaf children of v in R is at most two, and at
most one of these children has a child in R (i.e. CR(v) ≤ 2 and C+

R (v) ≤ 1); or
(2) p(v) �∈ R, the number of non-leaf children of v in R is at most four, and at
most two of these children have a child in R (i.e. CR(v) ≤ 4 and C+

R (v) ≤ 2).

Proof. We will embed T recursively. The x-coordinates of V will be fixed in
such a way that any assignment γ : R → R of y-coordinates to R can be
accommodated by embedding the vertices of V \ R with y-coordinates much
larger than max γ or much smaller than min γ. Thus, the edges between V \ R
andR are embedded as near-vertical line segments. In the figures that accompany
this proof, such edges will be drawn as curves.

For a subtree T ′ of T , let p(T ′) be the parent of r(T ′). If r(T ′) is the root
of T then p(T ′), though it does not exist, is viewed as not in R. Our embed-
ding will have the following properties for each subtree T ′: (i) if r(T ′) �∈ R or
{r(T ′), p(T ′)} ⊆ R, then r(T ′) has either the smallest or largest x-coordinate
among all vertices in T ′; (ii) if r(T ′) �∈ R, then r(T ′) has either the smallest
or largest y-coordinate among all vertices in T ′; and (iii) no almost-vertical ray
from r(T ′) intersects any edge from T ′.

Let T be the rooted tree we want to embed. Let r = r(T). If r ∈ R, then
recursively generate embeddings of all non-leaf children of r. Scale each such
embedding horizontally to width 1. Suppose first that p(T) ∈ R. See Fig. 3a.

Embed r at x = 1 and its � leaf children at x = 2, . . . , � + 1. (Their y-
coordinates are determined by γ.) Suppose CR(v) ⊆ {r1, s1} and C+

R (v) ⊆ {r1}.
Embed r1 and its subtree recursively and scale its x-coordinates to lie in [�+3, �+

Column Planarity and Partial Simultaneous Geometric Embedding 263

(a) (b) (c)

r1r1
r

r

s1

r

s1 s2

r2

Fig. 3. Embedding a tree with a column planar set. The column planar vertices are black.

4]. By (i), and possibly after mirroring the embedding of the subtree rooted at
r1 horizontally, the edge {r, r1} does not cross edges in the subtree rooted at r1.

Embed s1 at x = � + 2. Let T1, . . . , Tk be the child subtrees of s1. Embed
Ti recursively and scale its x-coordinates to lie in [� + 3 + 2i, � + 4 + 2i] for all
1 ≤ i ≤ k. Vertex s1 will be above {r, r1} for some γ and below {r, r1} for other
γ. If it is above, let r(T1), . . . , r(Tk) have progressively larger y-coordinates (by
scaling up and mirroring vertically if necessary). If it is below, let them have
progressively smaller y-coordinates. Then none of the edges {s1, r(Ti)} cross
{r, r1} and the edge {s1, r(Ti)} does not cross any edges in Ti by (i) and (ii).

Recursively, embed the remaining child subtrees T ′
1, . . . , T

′
t (none of whose

roots are in R) with x-coordinates in [� + 3 + 2k + 2i, � + 4 + 2k + 2i] for all
1 ≤ i ≤ t such that r(T ′

1), . . . , r(T
′
t) have progressively larger y-coordinates. The

edge {r, r(T ′
i)} does not cross any edges in T ′

i by (ii). In the completed drawing,
note that r has the lowest x-coordinate, and thus (i) is satisfied. Properties (ii)
and (iii) are trivially satisfied.

Suppose that p(T) �∈ R. Proceed first as in the previous case. Suppose CR(v) ⊆
{r1, r2, s1, s2} and C+

R (v) ⊆ {r1, r2}. Mirror the recursive embedding of the
subtree rooted at r2 horizontally and scale it to have x-coordinates in [−3,−2].
Embed the subtree rooted at s1 as in the previous case. For s2, proceed similarly
but embed s2 and its subtree to the left of r. See Fig. 3b. Properties (i)-(iii) are
trivially satisfied.

Finally, suppose that r = r(T) �∈ R. Embed its child subtrees T1, . . . , Tt to
have x-coordinates in [2i, 2i+ 1] for all 1 ≤ i ≤ t, starting with the ones rooted
at a vertex in R. Embed r sufficiently high on the line x = 1. For subtrees Ti

with r(Ti) ∈ R, note that the edge {r, r(Ti)} does not cross any edges of Ti due
to (iii). For the other ones, {r, r(Ti)} does not cross edges of Ti due to (i) and
(ii). See Fig. 3c. Properties (i-iii) are satisfied. ��

It remains to show that every tree contains a subset that satisfies the conditions
imposed by Lemma 1. We show that every tree on n vertices contains such a
subset of size at least 14n/17 and that there are trees with no column planar

264 W. Evans et al.

subset of size larger than 5n/6. Note that 14/17 ≈ 5/6 − 0.01, and thus our
results are almost tight.

Lemma 2. Let T be a tree on n vertices rooted at any vertex r(T). Let ci be the

number of vertices with exactly i children. Then c0 = (n+1+
∑n−1

i=1 (i− 2)ci)/2.

Proof. The number of edges in T is n−1 and also equals the degree sum divided
by two. Thus,

∑n−1
i=0 ci(i + 1) = 2(n − 1) + 1 = 2n − 1. Since

∑n−1
i=0 ci = n,∑n−1

i=0 ci(i− 2)+ 3n = 2n− 1, and −2c0 = −n− 1−
∑n−1

i=1 ci(i− 2). The lemma
follows. ��

Theorem 1. A tree T on n vertices contains a column planar set of size at least
14n/17.

Proof. Root T at an arbitrary non-leaf vertex r(T). Orient every edge towards
the root and topologically sort T to obtain an order v1, . . . , vn. We will greedily
add vertices to R in this order. More precisely, let R0 = ∅ and let Ri := Ri−1 ∪
{vi} if Ri−1 ∪ {vi} satisfies Lemma 1 and let Ri := Ri−1 otherwise. Let R = Rn

be our final subset of T .
We say that a vertex is marked if it is in R. Consider a vertex v = vi �∈ R.

The reason that v is not in R is that Ri−1 ∪ {v} does not satisfy the condition
in Lemma 1 for v or a child u of v (or both). More precisely, v is contained in
exactly one of the following sets:

Xa = {v ∈ T \R : |C+
R (v)| > 2}

Xb = {v ∈ T \R \Xa : |CR(v)| > 4}
Xc = {v ∈ T \R \Xa \Xb : |C+

R (u)| > 1}
Xd = {v ∈ T \R \Xa \Xb \Xc : |CR(u)| > 2}.

We associate with each such v a witness tree W (v) as follows (see Fig. 4). If
v ∈ Xa, then let W (v) be v, three vertices of C+

R (v) and a marked child of each
of them (which must exist by definition of C+

R (v)). If v ∈ Xb, then let W (v) be
v and five marked children of v. If v ∈ Xc, then let W (v) be v, u, two vertices of
C+

R (u) and a marked child of each of them. If v ∈ Xd, let W (v) be v, u and three

vv

u

v

u

v

v ∈ Xa v ∈ Xb v ∈ Xc v ∈ Xd

Fig. 4. The witness tree W (v) when v is in Xa, Xb, Xc or Xd. The marked vertices
are black. Dotted line segments indicate that a vertex has at least one child.

Column Planarity and Partial Simultaneous Geometric Embedding 265

marked children of u. Note that W (v) and W (v′) are disjoint for v, v′ ∈ T \ R
with v �= v′. We have

|Xa|+ |Xb|+ |Xc|+ |Xd|+ |R| = n. (1)

Let Lt and It be the set of marked vertices of
⋃

v∈Xt
W (v) that are leaves and

internal vertices in T , respectively, for t = a, b, c, d. We have

|Ia|+ |La| = 6|Xa| |La| ≤ 3|Xa| (2)

|Ib|+ |Lb| = 5|Xb| |Lb| = 0 (3)

|Ic|+ |Lc| = 5|Xc| |Lc| ≤ 2|Xc| (4)

|Id|+ |Ld| = 4|Xd| |Ld| = 0 (5)

Since R always contains all leaves of T , we have

|R| ≥ c0 + |Ia|+ |Ib|+ |Ic|+ |Id|, (6)

where ci is the number of vertices with exactly i children in T . Note that W (v)
contains a vertex with at least three children if v ∈ Xa ∪ Xb ∪ Xd. Hence, by
Lemma 2,

c0 >
n− c1 +

∑n−1
i=3 ci

2
≥ n− c1 + |Xa|+ |Xb|+ |Xd|

2
. (7)

In addition, we have
c0 ≥ |La|+ |Lb|+ |Lc|+ |Ld|. (8)

Before we bound |R|, consider the set S formed by all leaves and all vertices with
one child. Then S is column planar by Lemma 1 and |S| = c0 + c1. Whenever
the greedily chosen R has size less than c0 + c1, we choose R = S instead. Thus,
we may assume

|R| ≥ c0 + c1. (9)

Equations (7) and (9) yield

|R| > n− c0 + |Xa|+ |Xb|+ |Xd|; (10)

equations (2) and (8) yield

c0 ≥ 6|Xa| − |Ia|+ |Lc|; (11)

and equations (3), (4), (5), and (6) yield

|R| ≥ c0 + 5|Xb|+ 5|Xc|+ 4|Xd| − |Lc|+ |Ia|. (12)

To eliminate c0, we combine equation (10) with two times (11) and three times (12)
to obtain 4|R| > n + 13|Xa| + 16|Xb| + 15|Xc| + 13|Xd| − |Lc| + |Ia|. With
equation (4), this gives 4|R| > n + 13|Xa| + 16|Xb| + 13|Xc| + 13|Xd| + |Ia| ≥
n+13(|Xa|+|Xb|+|Xc|+|Xd|). Together with equation (1), this yields the desired
bound of |R| > 14n/17. ��

266 W. Evans et al.

· · ·

Fig. 5. A tree for which |R| = |S| = 14n/17. The set R is colored black.

The greedy algorithm achieves exactly this amount on the tree depicted in Fig. 5.
Note that also |S| = c0+ c1 = 14n/17 in this tree. In general, Theorem 1 is close
to best possible:

Theorem 2. For any ε > 0 and any n > 2/ε+ 5, there exists a tree T with n
vertices in which every column planar subset in T has at most (5/6+ε)n vertices.

Proof. Let p =
n/6�. Let T be p copies, T1, T2, . . . , Tp, of the tree shown in
Fig. 6a in which the root of Ti+1 is made a child of the rightmost leaf of Ti, for
i = 1, . . . , p− 1. Suppose there is a column planar set R of marked vertices in T
with |R|/n > 5/6 + ε. Then in some sequence of at most k = �1/(3ε)� subtrees
Ti, Ti+1, . . . , Tj there must be at least two trees with 6 marked vertices and the
other trees with 5 marked vertices. If not, since each subtree has 6 vertices, the
average fraction of marked vertices per tree is less than 5k+2

6k < 5/6 + ε.
Let Ti, Ti+1, . . . , Tj be such a sequence. By possibly deleting a prefix of the

sequence, we can assume that Ti has 6 marked vertices. Let � > i be the smallest
index such that the root of T� is marked. Since Ti, Ti+1, . . . , Tj contains at least
two trees with 6 marked vertices, T� exists. Let H be the subtree induced by the
root of T� and the vertices in Ti ∪ Ti+1 ∪ · · · ∪T�−1. By definition, the unmarked
vertices in H are exactly the roots of the subtrees Ti+1, Ti+2, . . . , T�−1. We claim
that the marked vertices are not column planar in H .

To simplify notation, let H1, H2, . . . , Hq−1 be the sequence of subtrees in H
and let rq be the (marked) root of T�. Label the vertices of Hi as in Fig. 6a
subscripted by i. See Fig. 6b. Let R′ be the marked vertices in H and suppose
R′ is ρ-column planar in H . For an edge {a, b} in H with a, b ∈ R′, let ρ(a, b) =

r

s

t

u

v

w

(a) (b)

H1 H2 Hq−1

· · ·

r1 r2 rq−1 rq

s1

t1

u1

v1

w1

Fig. 6. (a) The tree Ti and (b) H used in the proof of Theorem 2

Column Planarity and Partial Simultaneous Geometric Embedding 267

s2

t2

u2

v2w2

r3

r1

s1

t1

u1

v1w1

r2

s3

t3

u3

v3
w3

r4

u4

v4

s4

t4w4

r5

Fig. 7. An example of how γ is chosen in the proof of Theorem 2 where q = 5. Note
that forcing r5 (bottom left) below the x-axis causes the edge {w4, r5} to intersect
another edge.

[ρ(a), ρ(b)] be the x-interval of edge {a, b}. For two edges {a, b} and {c, d} in H
where a, b, c, and d are distinct vertices in R′, ρ(a, b)∩ρ(c, d) = ∅: otherwise, by
choosing γ appropriately we can cause the edges to intersect within their shared
x-interval. This implies, for example, that the x-interval spanned by marked
vertices in one subtree does not intersect that of a different subtree.

For H1, since ρ(s1, t1) ∩ ρ(u1, v1) = ∅ and ρ(t1, u1) ∩ ρ(r1, s1) = ∅, ρ(t1) is
between ρ(r1, s1) and ρ(u1, v1) (meaning either ρ(r1, s1) < ρ(t1) < ρ(u1, v1) or
ρ(u1, v1) < ρ(t1) < ρ(r1, s1), where A < B if for all a ∈ A and b ∈ B, a < b).
By similar reasoning, ρ(w1) is between ρ(t1) and ρ(u1, v1) or between ρ(t1) and
ρ(r1, s1). Let us assume, by renaming vertices if necessary, that ρ(w1) is between
ρ(t1) and ρ(u1, v1). See Fig. 7.

The basic idea is to choose γ so that vertices in R are close to the x-axis
(with γ(ui) < γ(si) < 0 = γ(wi) < γ(ti) < γ(vi) for all i except when mentioned
otherwise) and so that unmarked vertices are forced to be above the x-axis.
We set γ(u1) to be negative and γ(v1) to be positive (so w1 lies in the triangle
t1u1v1). This, together with the fact that r2 is connected to s2, forces the edge
from w1 to r2 to be upward and thus r2 to be above the x-axis.

Consider the order of ρ(s2), ρ(t2) and ρ(u2, v2). If ρ(s2) is between ρ(t2) and
ρ(u2, v2), then setting γ so that the path t2, u2, v2 is above s2 (γ(t2) < γ(v2) <
0 < γ(s2) < γ(u2)) causes the path to intersect {r2, s2}. Note that ρ(u2, v2)
cannot be between ρ(t2) and ρ(s2) since ρ(u2, v2) ∩ ρ(s2, t2) = ∅. Hence, ρ(t2)
is between ρ(s2) and ρ(u2, v2). Now let us consider the possible positions of
ρ(w2). If ρ(s2) is between ρ(w2) and ρ(t2), then setting γ so that the path
u2, t2, w2 is above s2 (γ(w2) < γ(u2) < 0 < γ(s2) < γ(t2)) causes the path to
intersect {r2, s2}. Note that ρ(u2, v2) cannot be between ρ(w2) and ρ(t2) since
ρ(u2, v2) ∩ ρ(t2, w2) = ∅. Hence, ρ(w2) is between ρ(s2) and ρ(t2) or between
ρ(t2) and ρ(u2, v2). In the first case, we set γ(s2) < 0 = γ(w2) < γ(t2) so the
edge from w2 to r3 is forced upward to avoid intersecting path r2, s2, t2. In the
second case, we set γ so that the path t2, u2, v2 is below w2 (γ(u2) < 0 = γ(w2) <
γ(t2) < γ(v2)) and the edge from w2 to r3 is forced upward. By repeating this
argument, we force all the unmarked vertices as well as rq to be above the x-axis.
Since rq is marked, we derive a contradiction by setting γ(rq) < 0. ��

268 W. Evans et al.

(a) (b)

d
a

e

f

bc

1 2 3 4 1 2 3

a
b

cd e

f

(c)
1 2 3 4

a

f

c b

d

e

d

e

c

b

1

2

3

Fig. 8. (a) Graph G1 with R1 = {a, d, e, f} and ρ1 = {d �→ 1, a �→ 2, e �→ 3, f �→ 4}.
(b) Graph G2 with R2 = {a, b, f} and ρ2 = {a �→ 1, b �→ 2, f �→ 3}. (c) A 2-PSGE of
G1 and G2 where vertex set R = R1 ∩ R2 = {a, f} is shared.

3 Partial Simultaneous Geometric Embedding

The relation between column planarity and PSGE is expressed by the following
theorem, which relates the size of column planar sets to PSGE.

Theorem 3. Consider planar graphs G1 = (V,E1) and G2 = (V,E2) on n
vertices. If R1 is column planar in G1, R2 is column planar in G2 and |R1| +
|R2| > n, then G1 and G2 admit a (|R1|+ |R2| − n)-PSGE.

Proof. Fig. 8 illustrates the construction. The set R = R1 ∩R2 has size at least
|R1|+ |R2| − n > 0 and is column planar in both G1 and G2. More specifically,
there exist injections ρ1 : R → R and ρ2 : R → R such that R is ρ1-column
planar in G1 and ρ2-column planar in G2. By exchanging the roles of the x-
and y-coordinates in the definition of column planar in G2, we see that for all
injections γ : R → R, there exists a plane straight-line embedding of G2 that
embeds each v ∈ R at (γ(v), ρ2(v)). In particular, we may choose γ = ρ1. ��

Two trees. Combining Theorem 3 and Theorem 1 immediately yields the fol-
lowing lower bound on the size of a PSGE of two trees.

Corollary 1. Every two trees on a set of n vertices admit an 11n/17-PSGE.

There are two trees T1 and T2 on 226 vertices that do not admit an SGE [14].
Thus, an upper bound on the size of the common set in a PSGE of T1 and T2

is 225. Root T1 arbitrarily and let T k
1 be the result of taking k copies of T1 and

connecting their roots with a path. Define T k
2 similarly. Then an upper bound on

the size of the common set in a PSGE of T k
1 and T k

2 is 225k. It follows that there
exist two trees on a set of n vertices that admit no k-PSGE for k > 225n/226.

Tree and ULP graph. If one of the two graphs in our PSGE is ULP, then the
size of the common set depends only on how large a column planar set we can
find in the other graph:

Lemma 3. Consider a planar graph G1 = (V,E1) and a ULP graph G2 =
(V,E2) on n vertices. If R is column planar in G1, then G1 and G2 admit a
|R|-PSGE.

Column Planarity and Partial Simultaneous Geometric Embedding 269

Proof. By exchanging the roles of x- and y-coordinates in the definition of col-
umn planar, we see that for all injections γ : R → R, there exists a plane
straight-line embedding of G1 with v ∈ R at (γ(v), ρ(v)). Since G2 is a ULP
graph, for all injections y : V → R, there exists an injection x : V → R such that
placing v ∈ V at (x(v), y(v)) results in a straight-line embedding of G2. Thus,
placing the vertices v ∈ R at (x(v), ρ(v)) permits both a straight-line embedding
of G1 and G2. ��

Combining this with Theorem 1 yields

Corollary 2. A tree and a ULP graph admit a 14n/17-PSGE.

Two outerpaths & outerpath and tree. An outerplanar graph is a planar
graph that admits an embedding (called the outerplane embedding) that places
all its vertices on the unbounded face. An outerpath is an outerplanar graph
whose weak dual (the graph obtained from the dual graph by deleting the ver-
tex corresponding to the unbounded face) is a path. A maximal outerpath has
exactly two vertices of degree two: these vertices are on the faces that corre-
spond to the terminal vertices of the dual path. Consider a maximal outerpath
G = (V,E). The outer cycle of G is the Hamiltonian cycle of G that bounds the
unbounded face in the outerplane embedding of G. Denote by C(G) the vertices
of degree two in G. Deleting C(G) from G partitions the outer cycle of G into
two connected components whose vertices we refer to as A(G) and B(G). Note
that A(G) ∪B(G) ∪C(G) = V . It is easy to see that:

Lemma 4. Given a maximal outerpath G = (V,E), the subsets A(G) ∪ C(G)
and B(G) ∪C(G) are column planar.

Unlike in the tree setting, Theorem 3 does not immediately give a lower bound
on the size of a PSGE of two outerpaths, since we might have |A(G)| = |B(G)| =
n/2− 1. Fortunately, this is easily resolved:

Theorem 4. Every two outerpaths on a set of n vertices admit an n/4-PSGE.

Proof. Consider outerpaths G1 = (V,E1) and G2 = (V,E2). Without loss of
generality, G1 and G2 are maximal. Let X+

i := X(Gi) ∪ C(Gi) for X = A,B
and i = 1, 2. Then by Theorem 3 and Lemma 4, G1 and G2 admit a max{|A+

1 ∩
A+

2 |, |A+
1 ∩B+

2 |, |B+
1 ∩A+

2 |, |B+
1 ∩B+

2 |}-PSGE. Since the union of these four sets
is again V , the maximum of their cardinalities must be at least n/4. ��

Since |C(G)|+max{|A(G)|, |B(G)|} ≥ n/2 + 1, Theorem 1 and 3 yield:

Corollary 3. An outerpath and a tree on n vertices admit a 11n/34-PSGE.

270 W. Evans et al.

4 Discussion and Open Problems

Our results leave several directions for future research. The tree drawings pro-
duced by Theorem 1 may have exponential area. It would be interesting to see
whether polynomial area is sufficient. Further research could be directed towards
closing the gap between the lower and upper bound on the size of column planar
sets for trees and on developing bounds for such sets in general planar graphs.

Acknowledgments. Research on the topic of this paper was initiated at the 1st
International Workshop on Drawing Algorithms for Networks of Changing En-
tities (DANCE’2014) in Langbroek, The Netherlands, supported by the Nether-
lands Organisation for Scientific Research (NWO) under project no. 639.023.208.
We wish to thank all participants, and in particular Csaba Tóth and Michael
Hoffmann, for useful discussions on the topic of this paper.

References

1. Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with
no geometric simultaneous embedding. In: Brandes, U., Cornelsen, S. (eds.) GD
2010. LNCS, vol. 6502, pp. 38–49. Springer, Heidelberg (2011)

2. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs.
In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization (2013)

3. Bose, P., Dujmović, V., Hurtado, F., Langerman, S., Morin, P., Wood, D.R.:
A polynomial bound for untangling geometric planar graphs. Disc. & Comp.
Geom. 42(4), 570–585 (2009)

4. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D.P.,
Kobourov, S.G., Lubiw, A., Mitchell, J.S.: On simultaneous planar graph embed-
dings. Comp. Geom. 36(2), 117–130 (2007)

5. Cabello, S., van Kreveld, M., Liotta, G., Meijer, H., Speckmann, B., Verbeek, K.:
Geometric simultaneous embeddings of a graph and a matching. J. Graph Alg.
Appl. 15(1), 79–96 (2011)

6. Cappos, J., Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Simultaneous
graph embedding with bends and circular arcs. Comp. Geom. 42(2), 173–182 (2009)

7. Di Giacomo, E., Didimo, W., van Kreveld, M., Liotta, G., Speckmann, B.: Matched
drawings of planar graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007.
LNCS, vol. 4875, pp. 183–194. Springer, Heidelberg (2008)

8. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Wismath, S.: Planar and quasi
planar simultaneous geometric embedding. In: Duncan, C., Symvonis, A. (eds.) GD
2014. LNCS, vol. 8871, pp. 52–63. Springer, Heidelberg (2014)

9. Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few
bends. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 195–205. Springer, Hei-
delberg (2005)

10. Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unla-
beled level planar trees. Comp. Geom. 42(6), 704–721 (2009)

11. Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz,
M.: Simultaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T.,
Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg
(2008)

Column Planarity and Partial Simultaneous Geometric Embedding 271

12. Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar graphs.
In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp.
37–49. Springer, Heidelberg (2008)

13. Frati, F., Kaufmann, M., Kobourov, S.G.: Constrained simultaneous and near-
simultaneous embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD
2007. LNCS, vol. 4875, pp. 268–279. Springer, Heidelberg (2008)

14. Geyer, M., Kaufmann, M., Vrt’o, I.: Two trees which are self-intersecting when
drawn simultaneously. Disc. Math. 309(7), 1909–1916 (2009)

15. Goaoc, X., Kratochv́ıl, J., Okamoto, Y., Shin, C.S., Spillner, A., Wolff, A.: Untan-
gling a planar graph. Disc. & Comp. Geom. 42(4), 542–569 (2009)

Flat Foldings of Plane Graphs

with Prescribed Angles and Edge Lengths

Zachary Abel1, Erik D. Demaine2, Martin L. Demaine2, David Eppstein3,
Anna Lubiw4, and Ryuhei Uehara5

1 Department of Mathematics, MIT, Cambridge, USA
2 MIT Computer Science and Artificial Intelligence Lab., Cambridge, USA
3 Department of Computer Science, University of California, Irvine, USA

4 David R. Cheriton School of Computer Science, University of Waterloo, Canada
5 School of Information Science, Japan Advanced Institute of Science and

Technology, Ishikawa, Japan

Abstract. When can a plane graph with prescribed edge lengths and
prescribed angles (from among {0, 180◦, 360◦}) be folded flat to lie in
an infinitesimally thick line, without crossings? This problem generalizes
the classic theory of single-vertex flat origami with prescribed mountain-
valley assignment, which corresponds to the case of a cycle graph. We
characterize such flat-foldable plane graphs by two obviously necessary
but also sufficient conditions, proving a conjecture made in 2001: the
angles at each vertex should sum to 360◦, and every face of the graph
must itself be flat foldable. This characterization leads to a linear-time
algorithm for testing flat foldability of plane graphs with prescribed edge
lengths and angles, and a polynomial-time algorithm for counting the
number of distinct folded states.

1 Introduction

The modern field of origami mathematics began in the late 1980s with the goal
of characterizing flat-foldable crease patterns, i.e., which plane graphs form the
crease lines in a flat folding of a piece of paper [12]. This problem turns out to be
NP-complete in the general case, with or without an assignment of which folds
are mountains and which are valleys [6].

On the other hand, flat foldability can be solved in polynomial time for crease
patterns with just a single vertex (thus characterizing the local behavior of a
vertex in a larger graph). By slicing the paper with a small sphere centered at
the single vertex (the geometric link of the vertex), single-vertex flat foldabil-
ity reduces to the 1D problem of folding a polygon (closed polygonal chain)
onto a line; see Figure 1. This problem can be solved by a greedy algorithm
that repeatedly folds both ends of a shortest edge with opposite fold directions
(mountain and valley)—either because such directions have already been pre-
assigned or, if the mountain-valley assignment is not given, by making such
an assignment [4, 6, 12, 20]. The spherical, self-touching Carpenter’s Rule Theo-
rem [1, 11, 26] implies that any flat-folded single-vertex origami can be reached

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 272–283, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths 273

a
a

a

b
b

b

c

d

c

d

c
d

o

o

Fig. 1. Flat folding at a single vertex on a disc reduces to the problem of folding a
polygon onto a line

o

b

a

o

b

a

c
c

d

d

b

a c

d

Fig. 2. Flat folding a two-dimensional cell complex with a single vertex reduces to the
problem of folding a plane graph onto a line

from the unfolded piece of paper by a continuous motion that avoids bending or
folding the uncreased parts of the paper.

In practical applications of folding beyond origami, the object being folded
may not be a single flat sheet, but rather some 2D polyhedral cell complex with
nonmanifold topology (more than two facets joined at an edge). Flat foldability
of such complexes is no easier than the origami case, but again we can hope
for reduced complexity when a complex has only a single vertex. As with one-
vertex origami, we can reduce the problem to 1D by slicing with a small sphere
centered at the vertex—now resulting in a general plane graph rather than a
simple cycle—and asking whether this graph can be flattened onto a line [2]; see
Figure 2. In this way, the problem of flat-folding single-vertex complexes can be
reduced to finding embeddings of a given plane graph onto a line.

It is this problem that we study here: given a plane graph with specified edge
lengths, does it have a straight-line plane embedding with all vertices arbitrarily
close to a given line and with all edges arbitrarily close to their specified lengths?
In the version of the problem we study, we are additionally given a specification
of whether the angle between every two consecutive edges at each vertex is a
mountain fold (the angle is arbitrarily close to 360◦), a valley fold (the angle is
arbitrarily close to 0), or flat (the angle is arbitrarily close to 180◦). Without this
information, the problem of testing whether a given plane graph can be folded
flat with specified edge lengths (allowing angles of 180◦) is weakly NP-complete,
even for graphs that are just simple cycles, by a straightforward reduction from

274 Z. Abel et al.

Table 1. Complexity of flat folding a plane graph, by input model

Flat angles forbidden Flat angles allowed

Angle assignment given Linear time (new) Linear time (new)

Angle assignment unspecified Open NP-complete [2]

the subset sum problem. For general plane graphs, the problem becomes strongly
NP-complete [2]. Therefore, we concentrate in this paper on the version of the
problem with given angle assignments, posed as an open problem in [2].

1.1 New Results

We show that it is possible to test in linear time whether a given plane graph,
with given edge lengths and angle assignment, can be folded flat; refer to Table 1.
Additionally, in polynomial time, we can count the number of combinatorially
distinct flat foldings.

Our algorithms are based on a new characterization of flat-foldable graphs: a
flat folding exists if and only if the angles at each vertex sum to 360◦ and each
individual face in the given graph can be folded flat. Even stronger, we show that
independent flat foldings of the interior of each face can always be combined into
a flat folding of the whole graph. Figure 3 shows an example of this combination
of face foldings. A form of the theorem was conjectured in 2001 by Ilya Baran,
Erik Demaine, and Martin Demaine, but not proved until now; it contradicts the
intuitive (but false) idea that, for faces with ambiguous spiraling shapes, each
face must be folded consistently with its neighboring faces. With this theorem in
hand, our algorithms for constructing and counting folded states follow by using
a greedy “crimping” strategy for flat-folding simple cycles [4,6,12] and by using
dynamic programming to count cycles within each face.

Our characterization necessarily concerns flat folded states, not continuous
folding motions from a given (nonflat) configuration. As shown by past work,
even for trees, there exist locked states that cannot be continuously moved to a
flat folded state [5,8], and testing the existence of a continuous motion between
two states is PSPACE-complete [3].

We leave open the problem of finding a flat folded state for a graph in which
the planar embedding and edge lengths are preassigned, and angles of 180◦ are
forbidden, but the choice of which angles at each vertex are 0 and which are
360◦ is left free (bottom-left cell of Table 1). Even for trees, this open problem
appears to be nontrivial; see Figure 4 and [15].

1.2 Related Work

There has been intensive study of straight-line drawings of graphs with specified
edge lengths and/or specified angles between consecutive edges in a cyclic order-
ing of edges around each vertex. If only edge lengths are specified then—whether
the drawing must be planar or not—the problem is NP-hard [9,24], or worse [25].

Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths 275

interior visibilities

ex
te

ri
or

 v
is

ib
ili

tie
s

4

9

6

4

9

6

4

9

6

2

5

7

2

5

7 2

7

5

2
0

1

3

9

6

4
8 5

7
20

1

3

9

6

4

8
5

7 2

0
1

3

9

6
4

8
5
7

2

0
1

3
9

6

4

8
5

7

2

0

1

3

9

6

4

8
5

7

20
1

3
9

6

4

8

5

7

2

0

1

3

9

6

4

8

5
7

2

0
1

3

9

6

4

8

5

7
20 1

3
9

6
4

8

5
7

Fig. 3. A planar graph with two faces, each of which can be flat-folded to give three
different patterns of vertical visibility (or “touching”) within it. These patterns can be
combined independently, giving nine flat-foldings of the whole graph.

It is also NP-hard to draw a plane graph with specified angles [16]. If both edge
lengths and angles are specified then the drawing is uniquely determined and
easy to construct, except in situations like ours where coincident edges give rise
to ambiguities.

There are a number of results for special cases that have a similar flavor to
ours, in that the whole plane graph can be realized if and only if each face can.
We now describe some of these special cases, most of which arise as the prelude
to finding an appropriate angle assignment.

Upward Planarity. A directed acyclic graph (DAG) is upward planar [17] if it
has a planar drawing in which each edge is drawn as an increasing y-monotone
curve. Recognizing upward planar graphs is NP-hard [18] but Bertolazzi et al. [7]
gave a polynomial time algorithm for the special case of a plane graph whose
cyclic order of edges around each vertex is prescribed. The main issue in their
solution is to distinguish “small” versus “large” angles; if an upward planar
drawing is flattened onto a vertical line, then its small and large angles corre-
spond to our valley and mountain folds. The angle assignment is forced except at

276 Z. Abel et al.

Fig. 4. A tree with fixed edge lengths that (when angles equal to 180◦ are forbidden)
has no flat folding, regardless of planar embedding or angle assignment

vertices with only incoming or only outgoing edges, where exactly one angle
should be large and the rest small. Bertolazzi et al. used network flows to de-
termine these angles. To prove their algorithm’s correctness, they showed that a
graph with a given angle assignment has an upward planar drawing if and only if
each face cycle has an upward planar drawing. The condition for drawing a single
face, given an angle assignment, is particularly simple: an acyclic orientation of
a cycle has an upward planar drawing if and only if it has two more small than
large angles. Their proof also shows that embedding choices for the faces can be
combined arbitrarily.

Level Planarity. Our flat folding problem differs from upward planarity in that
we have assigned edge lengths as well as assigned angles. This makes it more
similar to the problem of level planarity [13,19,21]. The input to this problem is a
leveled directed acyclic graph: a DAG whose vertices have been partitioned into
a sequence of levels (independent sets of its vertices), with all edges directed
from earlier to later levels. The goal is to find an upward planar embedding
that places the vertices of each level on a horizontal line [22]. This problem has
a linear time solution [21] based on PQ-trees. When the cyclic order of edges
around vertices is specified (and in fact for more general constraints) there is a
quadratic time solution based on solving systems of binary equations [19].

The input to our folding problem may be interpreted as a leveled plane DAG.
(Since our convention is to flatten to a horizontal line, we will map to a level
planarity problem with levels progressing rightward rather than upward—this is
a superficial difference.) Arbitrarily choose an x-coordinate for one vertex and
a direction (left-to-right) for one edge incident to that vertex. These choices
can be propagated to all the vertices and edges using the specified edge lengths
and angles. The set of vertices at a given x-coordinate constitute a level, giving

Fig. 5. A four-vertex cycle with vertices alternating between two levels is not level
planar, but can be folded flat, representing a sheet of paper folded into quarters.

Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths 277

us an input to the level planarity problem with a prescribed plane embedding.
However, the embeddings we seek in the folding problem are not the same as
level planar embeddings. In a level planar embedding, vertices within a single
level must be linearly ordered by the second coordinate value. In contrast, in the
folding problem a vertex that has only incoming or only outgoing edges may be
nested between two adjacent edges of another vertex at the same level. A four-
vertex cycle, oriented with alternating edge directions, illustrates the difference
between these two types of embedding: it is not level planar, but it still has a
flat folding with three mountain folds and one valley fold, corresponding to the
usual way of folding a square sheet of paper into quarters (Figure 5).

We have therefore been unable to apply level planarity algorithms to solve
our flattening problem. On the other hand, our algorithm can be used to test
level planarity of a plane graph (with a linear order of incoming and outgo-
ing edges at each vertex) in linear time. Given an input to the level planarity
problem, we assign increasing coordinates to the levels, and assign the length of
an edge to be the difference in coordinates between the levels of its endpoints.
Mountain/valley/flat angles are determined from the level assignment. Finally,
to preclude the nesting of vertices that is allowed in flattening but not in level
planarity, we add an extra edge incident to each vertex that has only incoming
or only outgoing edges: if vertex v on level i has only outgoing edges, we add a
new incoming edge from a new level just before i. The resulting plane graph has
a flat-folding respecting the angles and edge-lengths if and only if the original
has a level planar drawing. From this we also obtain the result that a leveled
plane graph has a level planar drawing if and only if each cycle does.

Rectilinear Planarity. In our flat folding problem, the angles are multiples of
180◦. When angles are multiples of 90◦, we arrive at the important problems
of orthogonal and rectilinear graph drawing [14]. A graph is rectilinear planar
if it can be drawn in the plane so that every edge is a horizontal or vertical
line segment. Coincident edges are forbidden, so the graph must have maximum
degree 4. This problem is NP-complete in general [18] but—as with upward
planarity—there is a polynomial time algorithm, due to Tamassia [27], if the
cyclic order of edges around vertices is prescribed. Again, the main issue is to
find an assignment of angles or, equivalently, a labeling of the edges incident
to a vertex with distinct labels from the set U,D,L,R, where U stands for
“Up”, etc. Tamassia finds the angles using network flows (in fact, he solves
a more general problem of minimizing the number of bends in the drawing).
At the heart of this method is the result that, given an angle assignment that
is locally consistent (i.e., the angles at every vertex sum to 360◦), the graph
has a rectilinear planar drawing if and only if each face cycle does [27]. As
in the other cases we have discussed, the proof shows the stronger result that
embedding choices for the faces can be combined arbitrarily. A cycle with an
angle assignment has a rectilinear planar drawing if and only if the number of
right turns minus the number of left turns is 4 in a clockwise traversal inside the
cycle [27, 28].

278 Z. Abel et al.

Our result on flat folding can be used to prove an extension of the above result
to rectilinear graph drawings with angles specified and with lengths assigned to
the “horizontal” edges. (Note that the angle information allows us to distinguish
the two classes of edges, although it is arbitrary which class is horizontal and
which is vertical.) Given a rectilinear plane graph, contract all vertical edges,
assigning angles of 0, 180◦, 360◦ in the obvious way. Finally, in order to avoid
“nested” vertices at the same coordinate (as in Figure 5), we use the same trick
of adding an extra edge incident to each vertex that has only incoming or only
outgoing edges. We claim that the resulting multi-graph has a flat-folding if and
only if the original has a rectilinear planar drawing with horizontal edges of the
specified lengths. For the non-trivial direction, suppose we have a flat folding of
the constructed graph. We must expand each vertex to a vertical line segment
with the horizontal edges touching the line segment in a way that is consistent
with the original graph. This can easily be done in a left to right sweep.

From this reduction we obtain the following result.

Corollary 1. If G is a plane graph of maximum degree 4 with specified angles
that sum to 360◦ at each vertex and with lengths assigned to the horizontal edges,
then G has a rectilinear planar drawing realizing these angles and edge lengths if
and only if every cycle has a rectilinear planar drawing realizing the angles and
lengths. Furthermore, we can combine any embedding choices for the faces that
involve different vertical visibilities, so long as every vertical edge has the same
length in its two cycles.

2 Definitions

Following previous works in this area [10, 23] we formalize the notion of a flat
folding using self-touching configurations. Intuitively, these are planar embed-
dings in which edges and vertices are allowed to be infinitesimally close to each
other. A one-dimensional self-touching configuration of a graph G consists of a
mapping from G to a path graph H that maps vertices of G to vertices of H
and edges of G to paths in H , together with a magnified view of each vertex and
edge of H that describes the local connectivity of the image of G at that point.
In a self-touching configuration, the multiplicity of an edge in H is a positive
integer, the number of different edges of G that map to it. The magnified view of
an edge gives a linear ordering of the edges in its preimage. The magnified view
of a vertex v of H is a planar embedding of a neighborhood of the preimage of
v into a disk, consistent with the magnified views of the edges incident to v.

By replacing each vertex of H by its magnified view, and each edge of H
by a corridor of finite width through which each edge passes, it is possible to
transform a self-touching configuration into a conventional planar drawing (with
edges that may curve or bend) of the given graph G. We call this the expanded
drawing of a self-touching configuration (Figure 6).

We may now define a flat folding to be a self-touching configuration in which
all edges of H lie on a single line. We consider two flat foldings to be equivalent if
they have the same magnified views in the same order or in the reversed order as

Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths 279

a

ab bc
c

d

d

e

e

f

f

p q r s

p q r s

g

g

Fig. 6. A flat-folding of a seven-vertex graph G (left), described as a self-touching
configuration in which G is mapped onto a four-vertex path H (right), shown with
magnified views of its edges and vertices of H .

each other. A face of a flat folding or self-touching configuration is a cycle formed
by a face of the expanded drawing. The angle formed by a pair of incident edges
in a flat folding is one of three values, 0, 180◦, or 360◦, accordingly as the face lies
between the two edges, the two edges extend in opposite directions from their
common endpoint, or the two edges extend in the same direction with the face
on both sides of them. An angle assignment to a plane graph is an assignment
of the values 0, 180◦, or 360◦ to each of its angles, regardless of whether this
assignment is compatible with a flat-folding of the graph. An angle assignment
is consistent if the angles sum to 360◦ at every vertex.

We define a touching pair of edges in a self-touching configuration of a graph
G to be two edges e and f of G such that these two edges are consecutive in the
magnified view of at least one edge in H . Each touching pair can be assigned to
a single face of G, the face that lies between the two edges.

3 Local Characterization

In this section we show that for a plane graph with assigned lengths and consis-
tent angles, being able to fold the whole graph flat is equivalent to being able to
fold each of its faces flat.

Theorem 1. Let G be a plane graph with given edge lengths and a consistent
angle assignment. Then G has a flat folding if and only if every face cycle of
G (with the induced assignment of lengths and angles) has a flat folding. More
strongly, for every combination of flat foldings of the faces of G, there exists a
flat folding of G itself whose touching pairs for each face are exactly the ones
given in the folding of that face.

Proof. One direction is straightforward: if G has a flat folding, then restricting
to the faces of G gives flat foldings of the faces with the same touching pairs.

For the other direction, assume we have flat foldings of the faces of G. We
will show that G has a flat folding with the same touching pairs. As described
in Section 1.2, the assignment of lengths and angles given with G (together with
an arbitrary choice of an x coordinate for one vertex and an orientation for one
edge) gives us a unique assignment of x coordinates for the vertices of G in any
possible flat folding. We will start by subdividing all the edges of G. Take the

280 Z. Abel et al.

set of x-coordinates of vertices of G and add an extra “half” x-coordinate at the
midpoint between any two consecutive coordinate values. Subdivide each edge of
G by adding vertices at all the x-coordinates in this set. The same subdivisions
can be made in any flat folding of G, so there is no change to the existence or
number of flat foldings. The subdivision does change the set of touching pairs,
but two edges of the original graph form a touching pair if and only if two of
the edges in the paths they are subdivided into form a touching pair, so the
correctness of the part of the theorem about touching pairs carries over.

With G subdivided in this way, we carry out the proof by induction on the
number of face angles that are assigned to be 360◦ (mountain folds). The base
case of the induction is the case in whichG has only two such angles, on the outer
face. In this case every cycle consists of two paths of increasing x-coordinates and
has a unique flat folding, and it is easy to see that G has a flat folding with the
same touching pairs. (Equivalently, the graph in this case is a directed st-plane
graph so it is upward planar with each face drawn as two upward paths.)

If G contains a vertex v, and an interior face f in which v is a mountain fold,
then let e be one of the two edges of f incident to v, the one that is uppermost
in the magnified view of the flat folding edge corresponding to these two edges,
and let e′ be the edge immediately above that one. Edge e′ must exist, because if
e were the topmost edge in this magnified view, then f would necessarily be the
exterior face. (For example, in Figure 6, vertex g is a mountain fold in a cycle;
edge bg is the uppermost edge incident to g; and bc is the edge immediately
above it.) Let v′ be the endpoint of e′ whose x-coordinate is the same as v. We
form a graph G′ by identifying v with v′, ordering the edges of the combined
super-vertex so that e′ and e remain consecutive. This produces a graph, not a
multigraph, because the other endpoints of e and e′ are subdivision points at a
“half” x-coordinate, and so cannot coincide with each other. (In the example, we
would identify vertices g and c; the figure does not show the extra subdivision
points.) This vertex identification reduces the number of mountain folds by one
compared with G, and splits f into two simpler faces f1 and f2. The same split
operation can be done to the flat folding of f , giving flat foldings of f1 and f2.
Thus, G′ meets the conditions of the theorem and has fewer mountain folds; by
induction it has a flat folding realizing all the touching pairs of its face foldings,
which are the same as the touching pairs of the face foldings of G. In this flat
folding, the supervertex of G′ formed from v and v′ can be split back into the
two separate vertices v and v′, giving the desired flat folding of G.

The case when there exist three or more mountain folds on the exterior face
is similar, but we must be more careful in our choice of v. Each mountain folded
vertex on the exterior face is either a local minimum or local maximum of x-
coordinates; because there are three or more of them, we may choose v to be a
vertex that is not a unique global extremum. Then, as above, we find a vertex
v′ with the same coordinate, above or below v, and merge v and v′ into a single
vertex, giving a graph G′ with fewer mountain folds in which the outer face has
been split into two faces, one outer and one inner. As before, these two faces
inherit a flat folded state from the given flat folding of the outer face of G, so by

Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths 281

induction G′ has a flat folding. And as before, v and v′ may be split back into
separate vertices in this flat folding, giving the desired flat folding of G. ��

4 Algorithm to Find a Folding

For completeness, we briefly describe a greedy “crimping” strategy for find-
ing flat-folded states of simple cycles with pre-assigned fold angles. Bern and
Hayes [6] used a similar strategy to flat-fold cycles without pre-assigned angles.
Arkin et al. [4] applied this method to open polygonal chains with assigned an-
gles. The version here for cycles with assigned angles is described by Demaine
and O’Rourke [12]. We do not describe its (non-trivial) correctness proof.

First, remove any flat folds from the input by merging the edges on either
side of the fold. Then, repeatedly find an edge e such that the two edges on
either side of e are at least as long as e, with folds of opposite type at its ends.
If no such edge e exists, the cycle has no folding. If an edge e that meets these
conditions can be found, it is safe to perform both folds, merging e with its two
neighboring edges into a single edge of a simpler polygon.

Maintaining a set of edges that are ready to be folded, and performing each
fold, takes constant time per fold, so folding a cycle in this way, and recovering
the covering relation of its ordered line embedding, may be done in linear time.
Putting the characterization from Section 3 together with the algorithm for
folding a single cycle described above gives us an algorithm for testing whether
a given plane graph G with edge length and angle assignment is flat foldable:

Theorem 2. We can test flat foldability of a plane graph with given edge lengths
and given angle assignment in linear time.

Proof. We partition the graph into its component faces, and apply the crimping
algorithm to an Euler tour of each face. Each face takes time proportional to its
size, so the total time is linear. For the correctness of forming simple cycles from
each face by taking Euler tours, see the full version of this paper. ��

5 Counting Flat Foldings

We cannot use crimping to count the flat foldings of a cycle, because some flat
foldings cannot be formed by a sequence of crimping steps (Figure 7). Instead,
to count flat foldings in a single cycle, we use dynamic programming.

Lemma 1 (proof in the full version of this paper). Given a single n-vertex
cycle, with an assignment of edge lengths and angles, it is possible to count the
flat foldings of the cycle in time Õ(n5).

Theorem 3. We can count the flat foldings of an n-vertex planar graph G with
an assignment of edge lengths and angles in time Õ(n5).

Proof. We apply Lemma 1 to the Euler tour of each face of G and return the
product of the resulting numbers. ��

282 Z. Abel et al.

Fig. 7. Magnified view of a flat folding that cannot be obtained by crimping

Acknowledgements. This research was performed in part at the 29th Bellairs
Winter Workshop on Computational Geometry. Erik Demaine thanks Ilya Baran
and Muriel Dulieu, and the authors of [2], for many discussions attempting to
solve this problem. We also thank Jason Ku for helpful comments on a draft
of this paper. Erik Demaine was supported in part by NSF ODISSEI grant
EFRI-1240383 and NSF Expedition grant CCF-1138967. David Eppstein was
supported in part by NSF grant 1228639 and ONR grant N00014-08-1-1015.

References

1. Abbott, T.G., Demaine, E.D., Gassend, B.: arXiv:0901.1322 (January 2009),
http://arxiv.org/abs/0901.1322

2. Abel, Z., Demaine, E.D., Demaine, M.L., Eisenstat, S., Lynch, J., Schardl, T.B.,
Shapiro-Ellowitz, I.: Folding equilateral plane graphs. Internat. J. Comput. Geom.
Appl. 23(2), 75–92 (2013)

3. Alt, H., Knauer, C., Rote, G., Whitesides, S.: On the complexity of the linkage
reconfiguration problem. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs,
Contemp. Math., vol. 342, pp. 1–13. Amer. Math. Soc., Providence (2004)

4. Arkin, E.M., Bender, M.A., Demaine, E.D., Demaine, M.L., Mitchell, J.S.B.,
Sethia, S., Skiena, S.S.: When can you fold a map? Comput. Geom. Th. Appl. 29(1),
23–46 (2004)

5. Ballinger, B., Charlton, D., Demaine, E.D., Demaine, M.L., Iacono, J., Liu, C.-H.,
Poon, S.-H.: Minimal locked trees. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth,
C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 61–73. Springer, Heidelberg (2009)

6. Bern, M., Hayes, B.: The complexity of flat origami. In: Proc. 7th ACM-SIAM
Symposium on Discrete Algorithms (SODA 1996), pp. 175–183 (1996)

7. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of tri-
connected digraphs. Algorithmica 12(6), 476–497 (1994)

8. Biedl, T., Demaine, E.D., Demaine, M.L., Lazard, S., Lubiw, A., O’Rourke, J.,
Robbins, S., Streinu, I., Toussaint, G., Whitesides, S.: A note on reconfiguring tree
linkages: trees can lock. Discrete Appl. Math. 117(1-3), 293–297 (2002)

9. Cabello, S., Demaine, E.D., Rote, G.: Planar embeddings of graphs with specified
edge lengths. J. Graph Algorithms & Appl. 11(1), 259–276 (2007)

10. Connelly, R., Demaine, E.D., Rote, G.: Infinitesimally locked self-touching linkages
with applications to locked trees. In: Physical Knots: Knotting, Linking, and Fold-
ing Geometric Objects in R

3 (Las Vegas, NV, 2001). Contemp. Math., vol. 304,
pp. 287–311. Amer. Math. Soc., Providence (2002)

11. Connelly, R., Demaine, E.D., Rote, G.: Straightening polygonal arcs and convexi-
fying polygonal cycles. Discrete & Computational Geometry 30(2), 205–239 (2003)

http://arxiv.org/abs/0901.1322

Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths 283

12. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press (2007)

13. Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Trans. Systems
Man Cybernet. 18(6), 1035–1046 (1988)

14. Duncan, C.A., Goodrich, M.T.: Planar orthogonal and polyline drawing algorithms.
In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, ch. 7, pp.
223–246. Chapman and Hall/CRC (2013)

15. Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unla-
beled level planar trees. Comput. Geom. Th. Appl. 42(6-7), 704–721 (2009)

16. Garg, A.: New results on drawing angle graphs. Comput. Geom. Th. Appl. 9(1),
43–82 (1998)

17. Garg, A., Tamassia, R.: Upward planarity testing. Order 12(2), 109–133 (1995)
18. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear

planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)
19. Harrigan, M., Healy, P.: Practical level planarity testing and layout with embed-

ding constraints. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS,
vol. 4875, pp. 62–68. Springer, Heidelberg (2008)

20. Hull, T.C.: The combinatorics of flat folds: a survey. In: Hull, T.C. (ed.) Origami3

(Asilomar, CA, 2001), pp. 29–38. A K Peters, Natick (2002)
21. Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: White-

sides, S.H. (ed.) GD 1998. LNCS, vol. 1547, p. 224. Springer, Heidelberg (1999)
22. Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1),

39–47 (2004)
23. Ribó Mor, A.: Realization and counting problems for planar structures. Ph.D.

thesis, Free Univ. Berlin (2006)
24. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In:

Proc. 17th Allerton Conf. Commun. Control Comput., pp. 480–489 (1979)
25. Schaefer, M.: Realizability of graphs and linkages. In: Pach, J. (ed.) Thirty Essays

on Geometric Graph Theory, pp. 461–482. Springer, New York (2013)
26. Streinu, I., Whiteley, W.: Single-vertex origami and spherical expansive motions.

In: Akiyama, J., Kano, M., Tan, X. (eds.) JCDCG 2004. LNCS, vol. 3742, pp.
161–173. Springer, Heidelberg (2005), http://dx.doi.org/10.1007/11589440_17

27. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987)

28. Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM J.
Comput. 14(2), 355–372 (1985)

http://dx.doi.org/10.1007/11589440_17

Disjoint Edges in Topological Graphs
and the Tangled-Thrackle Conjecture�

Andres J. Ruiz-Vargas1, Andrew Suk2, and Csaba D. Tóth3

1 École polytechnique fédérale de Lausanne, Lausanne, Switzerland
andres.ruizvargas@epfl.ch

2 University of Illinois at Chicago, Chicago, IL, USA
suk@math.uic.edu

3 California State University Northridge, Los Angeles, CA, USA
cdtoth@acm.org

Abstract. It is shown that for a constant t ∈ N, every simple topological graph
on n vertices has O(n) edges if the graph has no two sets of t edges such that ev-
ery edge in one set is disjoint from all edges of the other set (i.e., the complement
of the intersection graph of the edges is Kt,t-free). As an application, we settle
the tangled-thrackle conjecture formulated by Pach, Radoičić, and Tóth: Every
n-vertex graph drawn in the plane such that every pair of edges have precisely
one point in common, where this point is either a common endpoint, a crossing,
or a point of tangency, has at most O(n) edges.

1 Introduction

A topological graph is a graph drawn in the plane such that its vertices are represented
by distinct points and its edges are represented by Jordan arcs between the correspond-
ing points satisfying the following (nondegeneracy) conditions: (a) no edge intersects
any vertex other than its endpoints, (b) any two edges have only a finite number of inte-
rior points in common, (c) no three edges have a common interior point, and (d) if two
edges share an interior point, then they properly cross at that point [7]. A topological
graph is simple if every pair of edges intersect in at most one point. Two edges of a
topological graph cross if their interiors share a point, and are disjoint if they neither
share a common vertex nor cross.

In 2005, Pach and Tóth [10] conjectured that for every constant t ≥ 3, an n-vertex
simple topological graph has O(n) edges if no t edges are pairwise disjoint. They gave
an upper bound of |E(G)| ≤ O(n log4t−8 n) for all such graphs. Despite much atten-
tion over the last 10 years (see related results in [3,11,15,16]), the conjecture is still
open.

� Work on this paper began at the AIM workshop Exact Crossing Numbers (Palo Alto, CA,
2014). Research by Ruiz-Vargas was supported by the Swiss National Science Foundation
grants 200021-125287/1 and 200021-137574. Research by Suk was supported by an NSF Post-
doctoral Fellowship and by the Swiss National Science Foundation grant 200021-125287/1.
Research by Tóth was supported in part by the NSF award CCF 1423615.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 284–293, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Disjoint Edges in Topological Graphs and the Tangled-Thrackle Conjecture 285

The condition that no t edges are pairwise disjoint means that the intersection graph
of the edges (Jordan arcs) contains no anti-clique of size t, or equivalently the com-
plement of the intersection graph of the edges is Kt-free. In this paper, we consider a
weaker condition that the complement of the intersection graph of the edges is Kt,t-
free, where t ∈ N is a constant. This means that graph G has no set of t edges that
are all disjoint from another set of t edges. Since no such graph G contains 2t pairwise
disjoint edges, [10] implies |E(G)| ≤ O(n log8t−8 n). Our main result improves this
upper bound to O(n).

Theorem 1. Let t ∈ N be a constant. The maximum number of edges in a simple
topological graph with n vertices that does not contain t edges all disjoint from another
set of t edges is O(n).

Application to thrackles. More than 50 years ago, Conway asked what is the maximum
number of edges in an n-vertex thrackle, that is, a simple topological graph G in which
every two edges intersect, either at a common endpoint or at a proper crossing [1].
He conjectured that every n-vertex thrackle has at most n edges. The first linear upper
bound was obtained by Lovász, Pach, and Szegedy [4], who showed that all such graphs
have at most 2n edges. This upper bound was successively improved, and the current
record is |E(G)| ≤ 167

117n < 1.43n due to Fulek and Pach [2].
As an application of Theorem 1, we prove the tangled-thrackle conjecture recently

raised by Pach, Radoičić, and Tóth [9]. A drawing of a graph G is a tangled-thrackle
if it satisfies conditions (a)-(c) of topological graphs and every pair of edges have pre-
cisely one point in common: either a common endpoint, or a proper crossing, or a point
of tangency. Note that such a drawing is not a topological graph due to tangencies.
Pach, Radoičić, and Tóth [9] showed that every n-vertex tangled-thrackle has at most
O(n log12 n) edges, and described a construction with at least
7n/6� edges. They con-
jectured that the upper bound can be improved to O(n). Here, we settle this conjecture
in the affirmative.

Theorem 2. Every tangled-thrackle on n vertices has O(n) edges.

2 Disjoint Edges in Topological Graphs

In this section, we prove Theorem 1. We start with reviewing a few graph theoretic
results used in our argument. The following is a classic result in extremal graph theory
due to Kővári, Sós, and Turán.

Theorem 3 (see [8]). Let G = (V,E) be a graph that does not contain Kt,t as a
subgraph. Then |E(G)| ≤ c1|V (G)|2−1/t, where c1 is an absolute constant.

Two edges in a graph are called independent if they do not share an endpoint. We
define the odd-crossing number odd-cr(G) of a graph G to be the minimum number of
unordered pairs of edges that are independent and cross an odd number of times over all

286 A.J. Ruiz-Vargas, A. Suk, and C.D. Tóth

topological drawings of G. The bisection width of a graph G, denoted by b(G), is the
smallest nonnegative integer such that there is a partition of the vertex set V = V1 ∪ V2

with 1
3 |V | ≤ Vi ≤ 2

3 |V | for i = 1, 2, and |E(V1, V2)| = b(G). The following result,
due to Pach and Tóth, relates the odd-crossing number of a graph to its bisection width.1

Theorem 4 ([10]). There is an absolute constant c2 such that if G is a graph with n
vertices of vertex degrees d1, . . . , dn, then

b(G) ≤ c2 log n

√√√√odd-cr(G) +

n∑
i=1

d2i .

We also rely on the result due to Pach and Tóth [10] stated in the introduction.

Theorem 5 ([10]). Let G = (V,E) be an n-vertex simple topological graph, such that
G does not contain t pairwise disjoint edges. Then |E(G)| ≤ c3n log4t−8 n, where c3
is an absolute constant.

From disjoint edges to odd crossings. Using a combination of Theorems 3–5, we es-
tablish the following lemma.

Lemma 1. Let G = (V,E) be simple topological bipartite graph on n vertices with
vertex degrees d1, . . . , dn, such that G does not contain a set of t edges all disjoint from
another set of t edges. Then

b(G) ≤ c4n
1− 1

2t log8t−3 n+ c4 logn

√√√√ n∑
i=1

d2i , (1)

where c4 is an absolute constant.

Proof: Since G does not contain 2t pairwise disjoint edges, Theorem 5 yields

|E(G)| ≤ c3n log8t−8 n. (2)

Let Va and Vb be the vertex classes of the bipartite graph G. Consider a simple
curve γ that decomposes the plane into two parts, containing all points in Va and Vb,
respectively. By applying a suitable homeomorphism to the plane that maps γ to a
horizontal line, G is deformed into a topological graph G′ such that (refer to Fig. 1)

1. The vertices in Va are above the line y = 1, the vertices in Vb are below the line
y = 0,

1 Pach and Tóth [10] defined the odd-crossing number of a graph G to be the minimum number
of pairs of edges that cross an odd number of times (over all drawings of G), including pairs of
edges with a common endpoint. However, since the number of pairs of edges with a common
endpoint is at most

∑n
i=1 d

2
i , this effects Theorem 4 only by a constant factor.

Disjoint Edges in Topological Graphs and the Tangled-Thrackle Conjecture 287

y = 1

y = 0

=⇒

G′ G′′

Fig. 1. Redrawing procedure

2. The part of any edge lying in the horizontal strip 0 ≤ y ≤ 1 consists of vertical
segments.

Since a homeomorphism neither creates nor removes intersections between edges, G
and G′ are isomorphic and their edges have the same intersection pattern.

Next we transform G′ into a topological graph G′′ by the following operations. Re-
flect the part of G′ that lies above the y = 1 line about the y-axis. Replace the vertical
segments in the horizontal strip 0 ≤ y ≤ 1 by straight line segments that reconnect the
corresponding pairs on the line y = 0 and y = 1, and perturb the segments if necessary
to avoid triple intersections. Notice that if any two edges cross in G (and G′), then they
must cross an even number of times in G′′. Indeed, suppose the edges e1 and e2 cross
in G. Since G is simple, they share exactly one point in common. Let ki denote the
number of times edge ei crosses the horizontal strip for i ∈ 1, 2, and note that ki must
be odd since the graph is bipartite. These k1 + k2 segments within the strip pairwise
cross in G′′, creating

(
k1+k2

2

)
crossings. Since edge ei now crosses itself

(
ki

2

)
times in

G′′, there are (
k1 + k2

2

)
−
(
k1
2

)
−
(
k2
2

)
= k1k2 (3)

crossings between edges e1 and e2 within the strip, which is odd when k1 and k2 are
odd. Since e1 and e2 had one point in common outside the strip in both G and G′′, then
e1 and e2 cross each other an even number of times in G′′. (Note that one can easily
eliminate self-intersections by local modifications around these crossings.)

Hence, the number of pairs of edges that are independent and cross an odd number
of times in G′′ is at most the number of disjoint pairs of edges in G, which is in turn at
most c1|E(G)|2−1/t by Theorem 3. Combined with (2), we have

odd-cr(G) ≤ c1(c3n log8t−8 n)2−
1
t

≤ cn2− 1
t log16t−8 n,

288 A.J. Ruiz-Vargas, A. Suk, and C.D. Tóth

where c is an absolute constant. Together with Theorem 4, we have

b(G) ≤ c2 logn

√√√√(cn2− 1
t log16t−8 n

)
+

n∑
i=1

d2i

≤ c2
√
cn1− 1

2t log8t−3 n+ c2 logn

√√√√ n∑
i=1

d2i

≤ c4n
1− 1

2t log8t−3 n+ c4 logn

√√√√ n∑
i=1

d2i ,

where c4 is an absolute constant, as required. �
If the maximum degree of G is relatively small, we obtain a sublinear bound on the

bisection width.

Corollary 1. Let G = (V,E) be simple topological bipartite graph on n vertices with
vertex degrees d1, . . . , dn ≤ n1/5 such that G does not contain a set of t edges all
disjoint from another set of t edges. Then

b(G) ≤ c5n
1− 1

4t , (4)

where c5 is an absolute constant.

Proof: Substituting di ≤ n1/5 into (1), we have

b(G) ≤ c4n
1− 1

2t log8t−3 n+ c4 logn
√
n · n2/5

≤ c4n
1− 1

2t log8t−3 n+ c4n
7/10 logn

≤ c5n
1− 1

4t , (5)

for a sufficiently large constant c5. �

Vertex splitting for topological graphs. Given a simple topological graph with n ver-
tices, we reduce the maximum degree below n1/5 by a standard vertex splitting opera-
tion. Importantly, this operation can be performed such that it preserves the intersection
pattern of the edges.

Lemma 2. Let G be a simple topological graph with n vertices and m edges; and let
Δ ≥ 2m/n. Then there is a simple topological graph G′ with maximum degree at most
Δ, at most n+ 2m/Δ vertices, and precisely m edges such that the intersection graph
of its edges is isomorphic to that of G.

Proof: We successively split every vertex in G whose degree exceeds Δ as follows.
Refer to Fig. 2. Let v be a vertex of degree d(v) = d > Δ, and let vu1, vu2, . . . , vud

be the edges incident to v in counterclockwise order. In a small neighborhood around v,
replace v by �d/Δ� new vertices, v1, . . . , v�d/Δ� placed in counterclockwise order on a

Disjoint Edges in Topological Graphs and the Tangled-Thrackle Conjecture 289

circle of small radius centered at v. Without introducing any new crossings, connect uj

to vi if and only if Δ(i− 1) < j ≤ Δi for j ∈ {1, . . . , d} and i ∈ {1, . . . , Δ}. Finally,
we do a local change within the small circle by moving each vertex vi across the circle,
so that every edge incident to vi crosses all edges incident to vi′ , for all i �= i′. As a
result, any two edges incident to some vertex {v1, . . . , v�d/Δ�} intersect precisely once:
either at a common endpoint or at a crossing within the small circle centered at v.

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

v1

v2 v3

v2

v3

v1

v

Fig. 2. Splitting a vertex v into new vertices v1, v2, v3, such that each vi has degree at most Δ.
Moreover, we do not introduce any disjoint pairs of edges and our new graph remains simple.

After applying this procedure to all vertices G, we obtain a simple topological graph
G′ of maximum degree at most Δ. By construction,G′ hasm edges, and the intersection
pattern of the edges is the same as in G. The number of vertices in G′ is

|V (G′)| ≤
∑
v∈V

⌈
d(v)

Δ

⌉
≤ n+

∑
v∈V

d(v)

Δ
≤ n+

2m

Δ
,

as claimed. �

Putting things together. Since all graphs have a bipartite subgraph with at least half of
its edges, Theorem 1 immediately follows from the following.

Theorem 6. Let G be an n-vertex simple topological bipartite graph such that G does
not contain t edges all disjoint from another set of t edges. Then

|E(G)| ≤ c6(n− n1− 1
7t), (6)

where c6 = c6(t) depends only on t.

Proof: Let t ∈ N be a constant. We proceed by induction on n. Let n0 = n0(t) be a
sufficiently large constant (specified in (8) and (9) below) that depends only on t, and
on the constants c3 and c5 defined in Theorem 5 and Corollary 1, respectively. Let c6 be
a sufficiently large constant such that c6 ≥ 2c5 and for every positive integer n ≤ n0,
we have

c3n log8t−8 n ≤ c6(n− n1− 1
7t), (7)

The choice of n0 and c6 ensures that (6) holds for all graphs with at most n0 vertices.
Now consider an integer n > n0, and assume that (6) holds for all graphs with fewer
than n vertices. Let G be a simple topological bipartite graph with n vertices such that
G does not contain t edges all disjoint from another set of t edges.

290 A.J. Ruiz-Vargas, A. Suk, and C.D. Tóth

By Theorem 5, G has m ≤ c3n log8t−8 n edges. By Lemma 2, there is a simple
topological graph G′ of maximum degree at most Δ = n1/5, n′ ≤ n + 2m/n1/5

vertices, and m′ = m edges, such that the intersection graph of its edges is isomorphic
to that of G. Theorem 5 implies that n′ ≤ n + 2m/n1/5 ≤ n + 2c3n

4/5 log8t−8 n. If
n ≥ n0 for a sufficiently large constant n0, then

n′ ≤ n+ 2c3n
4/5 log8t−8 n ≤ n+ n5/6. (8)

Since G andG′ have the same number of edges, it is now enough to estimate |E(G′)|.
Note that Δ = n1/5 ≤ (n′)1/5, and by Corollary 1, the bisection width of G′ is bounded
by

b(G′) ≤ c5(n
′)1−

1
4t ≤ c5(n+ n5/6)1−

1
4t ≤ 2c5n

1− 1
4t .

Partition the vertex set of G′ as V ′ = V1 ∪ V2 with 1
3 |V ′| ≤ Vi ≤ 2

3 |V ′| for
i = 1, 2, such that G′ has b(G′) edges between V1 and V2. Denote by G1 and G2 the
subgraphs induced by V1 and V2, respectively. Put n1 = |V1| and n2 = |V2|, where
n1 + n2 = n′ ≤ n+ n5/6.

Note that both G1 and G2 are simple topological graphs that do not contain t edges
all disjoint from another set of t edges. By the induction hypothesis, |E(Gi)| ≤ c6(ni−
n
1−1/7t
i) for i = 1, 2. The total number of edges in G1 and G2 is

|E(G1)|+ |E(G2)| ≤ c6(n1 − n
1− 1

7t
1) + c6(n2 − n

1− 1
7t

2)

≤ c6(n1 + n2)− c6(n
1− 1

7t
1 + n

1− 1
7t

2)

≤ c6(n
′)− c6

((n1

n′

)1− 1
7t

+
(n2

n′

)1− 1
7t

)
(n′)1−

1
7t

≤ c6(n+ n5/6)− c6

((
1

3

)1− 1
7t

+

(
2

3

)1− 1
7t

)
n1− 1

7t

= c6(n+ n5/6)− c6αn
1− 1

7t

≤ c6(n− n1− 1
7t) + c6

(
n5/6 − (α− 1)n1− 1

7t

)
,

where we write α = (1/3)1−1/7t + (2/3)1−1/7t for short. Note that for every t ∈ N,
we have α > 1. Taking into account the edges between V1 and V2, the total number of
edges in G′ (and hence G) is

|E(G′)| = |E(G1)|+ |E(G2)|+ b(G′)

≤ c6(n− n1− 1
7t) + c6

(
n5/6 − (α− 1)n1− 1

7t

)
+ 2c5n

1− 1
4t

≤ c6(n− n1− 1
7t) + c6

(
n5/6 + n1− 1

4t − (α− 1)n1− 1
7t

)
≤ c6(n− n1− 1

7t), (9)

where the last inequality holds for n ≥ n0 if n0 is sufficiently large (independent of
c6). This completes the induction step, hence the proof of Theorem 6. �

Disjoint Edges in Topological Graphs and the Tangled-Thrackle Conjecture 291

3 Application: The Tangled-Thrackle Conjecture

Let G be tangled-thrackle with n vertices. By slightly modifying the edges (i.e., Jordan
arcs) near the points of tangencies, we obtain a simple topological graph G̃ with the
same number of vertices and edges such that every pair of tangent edges in G become
disjoint in G̃ and all other intersection points between edges remain the same. In order
to show that |E(G)| ≤ O(n), invoking Theorem 1, it suffices to prove the following.

Lemma 3. For every tangled-thrackleG, the simple topological graph G̃ does not con-
tain a set of 200 edges all disjoint from another set of 200 edges.

Before proving the lemma, we briefly review the concept of Devenport-Schinzel se-
quences and arrangements of pseudo-segments.

A finite sequence U = (u1, . . . , ut) of symbols over a finite alphabet is a Davenport-
Schinzel sequence of order s if it satisfies the following two properties:

– no two consecutive symbols in the sequence are equal to each other;
– for any two distinct letters of the alphabet, a and b, the sequence does not contain

a (not necessarily consecutive) subsequence (a, b, a, . . . , b, a) consisting of s + 2
symbols alternating between a and b.

The maximum length of a Davenport-Schinzel sequence of order s over an alpha-
bet of size n is denoted λs(n). Sharp asymptotic bounds for λs(n) were obtained by
Nivasch [6] and Pettie [13]. However, to avoid the constants hidden in the big-Oh no-
tation, we use simpler explicit bounds. Specifically, we use the following upper bound
for λ3(n).

Theorem 7 (see Proposition 7.1.1 in [5]). λ3(n) < 2n lnn+ 3n.

A set L of m Jordan arcs in the plane is called an arrangement of pseudo-segment
if each pair of arcs intersects in at most one point (at an endpoint, a crossing, or a
point of tangency), and no three arcs have a common interior point. An arrangement
of pseudo-segments naturally defines a plane graph: The vertices of the arrangement
are the endpoints and the intersection points of the Jordan arcs, and the edges are the
portions of the Jordan arcs between consecutive vertices. The faces of the arrangement
are the connected components of the complement of the union of the Jordan arcs. The
vertices and edges are said to be incident to a face if they are contained in the (topolog-
ical) closure of that face. The following theorem is a particular case of Theorem 5.3 of
[14].

Theorem 8 (see [14]). Let L be an arrangement of m pseudo-segments and F be a
face of L. Then number of edges incident to F is at most λ3(2m).

Lemma 4. Let L1 ∪ L2 be an arrangement of pseudo-segments such that every arc in
L1 is tangent to all arcs in L2; and L1 and L2 each form a connected arrangement.
Then L1 or L2 contains at most 200 arcs.

Proof: Suppose to the contrary, that both L1 and L2 contain at least 200 arcs. Without
loss of generality, we may assume |L1| = |L2| = 200. Since no arc in L1 crosses any

292 A.J. Ruiz-Vargas, A. Suk, and C.D. Tóth

arc in L2, the arrangement L1 lies in the closure of a single face F2 of the arrangement
L2, and vice versa L2 lies in the closure of a single face F1 of the arrangement L1. We
construct a plane graph H representing the tangencies between the edges of the two
arrangements: place a vertex on the relative interior of each edge of L1 incident to F1

and each edge of L2 incident to F2. Join two vertices, v and u, by an edge iff their
corresponding edges of the arrangements, eu and ev, are tangent to each other. To see
that H is indeed planar, note that each edge uv can be drawn closely following the arcs
eu and ev to their intersection point in such a way that H has no crossings. As every arc
in L1 is tangent to all arcs in L2, the graph H has exactly 2002 edges. By Theorem 8,
H has at most 2λ3(400) vertices. However,

|E(H)|
|V (H)| ≥

2002

2λ3(400)
>

2002

4 · 400 ln 400 + 6 · 400 > 3.3,

which contradicts Euler’s formula. �
Note that Lemma 4 easily generalizes to the case when the arrangements L1 and L2

are not necessarily connected but they have the property that every pseudo-segment in
L1 lies in the same face of L2, and vice versa.

It is now easy to see that Lemma 3 follows directly from Lemma 4: if 200 edges of the
simple topological graph G̃ are disjoint from another set of 200 edges of G̃, then a set
of the corresponding 200 edges of the tangled-thrackle G are tangent to corresponding
other set of 200 edges of G.

Proof of Theorem 2: The statement follows by combining Theorem 1 and Lemma 3.�

We now show an analogue of Lemma 4 where we drop the condition that the ar-
rangements L1 and L2 are connected. We find this interesting for its own sake.

Proposition 1. Let L1 ∪ L2 be an arrangements of pseudo-segments such that every
arc in L1 is tangent to all arcs in L2. Then L1 or L2 contains at most 400 arcs.

Proof: Suppose to the contrary, that both L1 and L2 contain at least 400 arcs. Without
loss of generality, we may assume |L1| = |L2| = 400. The difference from Lemma 3
is that the arrangement L1 or L2 may not be connected, and so the arcs in L1 could be
distributed in several faces of the arrangement L2.

Consider an arc � ∈ L1, and denote by s the number of other arcs in L1 that intersect
�, where 0 ≤ s ≤ 399. Then � contains precisely s + 1 edges of the arrangement L1.
Partition � into two Jordan arcs: �a ⊂ � consists of the first
(s + 1)/2� edges along �,
and �b = �\�a. Recall that � is tangent to all 400 arcs in L2. By the pigeonhole principle,
we may assume w.l.o.g. that �a is tangent to at least 200 arcs in L2. Let L′

2 ⊂ L2 be
a set of 200 arcs in L2 that are tangent to �1. By construction, �a intersects at most
�s/2� ≤ 200 arcs in L1. Consequently, there is a set L′

1 ⊂ L1 of 200 arcs in L1 that do
not intersect �a. Observe that �a lies in a single face of the arrangementL′

1. Since every
arc in L′

2 intersects �a, all arcs in L′
2 lie in the same face of the arrangement L′

1.
We have found subsets L′

1 ⊂ L1 and L′
2 ⊂ L2 of size |L′

1| = |L′
2| = 200 such that

every arc in L′
1 is tangent to all arcs in L′

2; and all arcs of L′
1 lie in the same face of L′

2

and vice versa. This contradicts Lemma 4 and the remark following its proof. �

Disjoint Edges in Topological Graphs and the Tangled-Thrackle Conjecture 293

4 Concluding Remarks

1. We showed that for every integer t, the maximum number of edges in a simple topo-
logical graph with n vertices that does not contain t edges all disjoint from another set of
t edges is cn, where c = c(t). A careful analysis of the proof shows that c = 2O(t log t).
It would be interesting to see if one could improve the upper bound on c to O(t).

2. We suspect that the bounds of 200 and 400 in Lemma 4 and Proposition 1 are not
optimal. Since any constant bound yields a linear upper bound for the number of edges
in tangled-thrackles, we have not optimized these values. However, finding the best
possible constants, or shorter proofs for some arbitrary constant bounds, would be of
interest.

Acknowledgments. We would like to thank Gábor Tardos for some suggestions on
how to simplify the main proof.

References

1. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York
(2005)

2. Fulek, R., Pach, J.: A computational approach to Conway’s thrackle conjecture. Computa-
tional Geometry: Theory and Applications 44, 345–355 (2011)

3. Fulek, R., Ruiz-Vargas, A.J.: Topological graphs: empty triangles and disjoint matchings. In:
Proc. Symposium on Computational Geometry, pp. 259–266. ACM Press (2013)

4. Lovász, L., Pach, J., Szegedy, M.: On Convway’s trackle conjecture. Discrete & Compua-
tional Geometry 18, 369–376 (1998)

5. Matousek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212.
Springer (2002)

6. Nivasch, G.: Improved bounds and new techniques for Davenport–Schinzel sequences and
their generalizations. JACM 57(3), article 17 (2010)

7. Pach, J.: Geometric graph theory. In: Goodman, J., O’Rourke, J. (eds.) Handbook of Discrete
and Computational Geometry, 2nd edn., ch. 10. CRC Press, Boca Rotan (2007)

8. Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley, New York (1995)
9. Pach, J., Radoičić, R., Tóth, G.: Tangled thrackles. In: Márquez, A., Ramos, P., Urrutia, J.

(eds.) EGC 2011. LNCS, vol. 7579, pp. 45–53. Springer, Heidelberg (2012)
10. Pach, J., Tóth, G.: Disjoint edges in topological graphs. In: Akiyama, J., Baskoro, E.T., Kano,

M. (eds.) IJCCGGT 2003. LNCS, vol. 3330, pp. 133–140. Springer, Heidelberg (2005)
11. Pach, J., Sterling, E.: Conway’s conjecture for monotone thrackles. American Mathematical

Monthly 118(6), 544–548 (2011)
12. Pach, J., Tóth, G.: Which crossing number is it anyway? J. Comb. Theory Ser. B 80, 225–246

(2000)
13. Pettie, S.: Sharp bounds on Davenport-Schinzel sequences of every order. In: Proc. Sympo-

sium on Computational Geometry, pp. 319–328. ACM Press (2013)
14. Sharir, M., Agarwal, P.K.: Devenport-Schinzel Sequences and their Geometric Applications.

Cambridge University Press (1995)
15. Suk, A.: Density theorems for intersection graphs of t-monotone curves. SIAM Journal on

Discrete Mathematics 27, 1323–1334 (2013)
16. Suk, A.: Disjonit edges in complete toplogical graphs. Discrete & Computational Geome-

try 49, 280–286 (2013)

Morphing Schnyder Drawings
of Planar Triangulations

Fidel Barrera-Cruz1, Penny Haxell1, and Anna Lubiw1

University of Waterloo, Waterloo, Canada
{fbarrera,pehaxell,alubiw}@uwaterloo.ca

Abstract. We consider the problem of morphing between two planar
drawings of the same triangulated graph, maintaining straight-line pla-
narity. A paper in SODA 2013 gave a morph that consists of O(n2) steps
where each step is a linear morph that moves each of the n vertices in a
straight line at uniform speed [1]. However, their method imitates edge
contractions so the grid size of the intermediate drawings is not bounded
and the morphs are not good for visualization purposes. Using Schnyder
embeddings, we are able to morph in O(n2) linear morphing steps and
improve the grid size to O(n) × O(n) for a significant class of drawings
of triangulations, namely the class of weighted Schnyder drawings. The
morphs are visually attractive. Our method involves implementing the
basic “flip” operations of Schnyder woods as linear morphs.

Keywords: algorithms, computational geometry, graph theory.

1 Introduction

Given a triangulation on n vertices and two straight-line planar drawings of it, Γ
and Γ ′, that have the same unbounded face, it is possible to morph from Γ to Γ ′

while preserving straight-line planarity. This was proved by Cairns in 1944 [6].
Cairns’s proof is algorithmic but requires exponentially many steps, where each
step is a linear morph that moves every vertex in a straight line at uniform speed.
Floater and Gotsman [13] gave a polynomial time algorithm using Tutte’s graph
drawing algorithm [19], but their morph is not composed of linear morphs so the
trajectories of the vertices are more complicated, and there are no guarantees
on how close vertices and edges may become. Recently, Alamdari et al. [1] gave
a polynomial time algorithm based on Cairns’s approach that uses O(n2) linear
morphs, and this has now been improved to O(n) by Angelini et al. [2]. The main
idea is to contract (or almost contract) edges. With this approach, perturbing
vertices to prevent coincidence is already challenging, and perturbing to keep
them on a nice grid seems impossible.

In this paper we propose a new approach to morphing based on Schnyder
drawings. We give a planarity-preserving morph that is composed of O(n2) linear
morphs and for which the vertices of each of the O(n2) intermediate drawings are
on a 6n×6n grid. Our algorithm works for weighted Schnyder drawings which are
obtained from a Schnyder wood together with an assignment of positive weights

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 294–305, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Morphing Schnyder Drawings 295

to the interior faces. A Schnyder wood is a special type of partition (colouring)
and orientation of the edges of a planar triangulation into three rooted directed
trees. Schnyder [15,16] used them to obtain straight-line planar drawings of tri-
angulations in an O(n)×O(n) grid. To do this he defined barycentric coordinates
for each vertex in terms of the number of faces in certain regions of the Schnyder
wood. Dhandapani [7] noted that assigning any positive weights to the faces still
gives straight-line planar drawings. We call these weighted Schnyder drawings—
they are the drawings on which our morphing algorithm works.

Two weighted Schnyder drawings may differ in weights and in the Schnyder
wood. We address these separately: we show that changing weights corresponds
to a single planar linear morph; altering the Schnyder wood is more significant.

The set of Schnyder woods of a given planar triangulation forms a distributive
lattice [5], [11], [14] possibly of exponential size [12]. The basic operation for
traversing this lattice is a “flip” that reverses a cyclically oriented triangle and
changes colours appropriately. It is known that the flip distance between two
Schnyder woods in the lattice is O(n2) (see Section 2). Therefore, to morph
between two Schnyder drawings in O(n2) steps, it suffices to show how a flip
can be realized via a constant number of planar linear morphs. We show that
flipping a facial triangle corresponds to a single planar linear morph, and that a
flip of a separating triangle can be realized by three planar linear morphs.

1 1

2

1

2 3

1
2

3

4

1
2

3

4

12

3

4
1

2
3

4

Fig. 1. A sequence of triangle flips, counterclockwise along the top row and clockwise
along the bottom row. In each drawing the triangle to be flipped is darkly shaded, and
the one most recently flipped is lightly shaded. The linear morph from each drawing
to the next one is planar. Vertex trajectories are shown bottom right.

There is hope that our method will give good visualizations for morphing.
See Figure 1. The edge-contraction method of Alamdari et al. [1] is not good
for visualization purposes—at the end of the recursion, the whole graph has
contracted to a triangle. The method of Floater and Gotsman [13] gives good
visualizations, based on experiments and heuristic improvements developed by

296 F. Barrera-Cruz, P. Haxell, and A. Lubiw

Shurazhsky and Gotsman [17]. However, their method suffers the same draw-
backs as Tutte’s graph drawing method, namely that vertices and edges may
come very close together. Our intermediate drawings lie on a 6n× 6n grid where
vertices are at least distance 1 apart and face areas are at least 1

2 .
Not all straight-line planar triangulations are weighted Schnyder drawings,

but we can recognize those that are in polynomial time. The problem of extending
our result to all straight-line planar triangulations remains open. There is partial
progress in the first author’s thesis [3].

This paper is structured as follows. Section 2 contains the relevant background
on Schnyder woods. Section 3 contains the precise statement of our main result,
and the general outline of the proof. In Section 4 we show that changing face
weights corresponds to a linear morph. Flips of facial triangles are handled in
Section 5 and flips of separating triangles are handled in Section 6. In Section 7
we explore which drawings are weighted Schnyder drawings.

1.1 Definitions and Notation

Consider two drawings Γ and Γ ′ of a planar triangulation T . A morph between
Γ and Γ ′ is a continuous family of drawings of T , {Γ t}t∈[0,1], such that Γ 0 = Γ
and Γ 1 = Γ ′. We say a face xyz collapses during the morph {Γ t}t∈[0,1] if there
is t ∈ (0, 1) such that x, y and z are collinear in Γ t. We call a morph between Γ
and Γ ′ planar if Γ t is a planar drawing of T for all t ∈ [0, 1]. Note that a morph
is planar if and only if no face collapses during the morph. We call a morph
linear if each vertex moves from its position in Γ 0 to its position in Γ 1 along a
line segment and at constant speed. Note that each vertex may have a different
speed. We denote such a linear morph by 〈Γ 0, Γ 1〉.

Throughout the paper we deal with a planar triangulation T with a distin-
guished exterior face with vertices a1, a2, a3 in clockwise order. The set of interior
faces is denoted F(T). A 3-cycle C whose removal disconnects T is called a sep-
arating triangle, and in this case we define T |C to be the triangulation formed
by vertices inside C together with C as the exterior face, and we define T \C to
be the triangulation obtained from T by deleting the vertices inside C.

2 Schnyder Woods and Their Properties

A Schnyder wood of a planar triangulation T with exterior vertices a1, a2, a3 is
an assignment of directions and colours 1, 2, and 3 to the interior edges of T
such that the following two conditions hold.

(D1) Each interior vertex has three outgoing edges and they have colours 1, 2, 3
in clockwise order. All incoming edges in colour i appear between the two
outgoing edges of colours i− 1 and i+ 1 (index arithmetic modulo 3).

(D2) At the exterior vertex ai, all the interior edges are incoming and of colour
i.

Morphing Schnyder Drawings 297

The following basic concepts and properties are due to Schnyder [16]. For any
Schnyder wood the edges of colour i form a tree Ti rooted at ai. The path from
internal vertex v to ai in Ti is denoted Pi(v).

(P1) If T−
i denotes the tree in colour i with all arcs reversed, then T−

i−1∪Ti∪T−
i+1

contains no directed cycle. In particular, any two outgoing paths from a
vertex v have no vertex in common, except for v, i.e., Pi(v) ∩ Pj(v) = {v}
for i �= j.

The descendants of vertex v in Ti, denoted Di(v), are the vertices that have paths
to v in Ti. For any interior vertex v the three paths Pi(v), i = 1, 2, 3 partition
the triangulation into three regions Ri(v), i = 1, 2, 3, where Ri(v) is bounded
by Pi+1(v), Pi−1(v) and ai+1ai−1. Schnyder proved that every triangulation T
has a Schnyder wood and that a planar drawing of T can be obtained from
coordinates that count faces inside regions:

Theorem 1 (Schnyder [15,16]). Let T be a planar triangulation on n vertices
equipped with a Schnyder wood S. Consider the map f : V (T) → R3, where
f(ai) = (2n−5)ei, where ei denotes the i-th standard basis vector in R3, and for
each interior vertex v, f(v) = (v1, v2, v3), where vi denotes the number of faces
contained inside region Ri(v). Then f defines a straight-line planar drawing.

Dhandapani [7] noted that the above result generalizes to weighted faces. A
weight distribution w is a function that assigns a positive weight to each internal
face such that the weights sum to 2n− 5. For any weight distribution, the above
result still holds if vi is defined as:

vi =
∑

{w(f) : f ∈ Ri(v)}. (1)

We call the resulting straight-line planar drawing the weighted Schnyder drawing
obtained from w and S.

We now describe results of Brehm [5], Ossona De Mendez [14], and Felsner [11]
on the flip operation that can be used to convert any Schnyder wood to any
other. Let S be a Schnyder wood of planar triangulation T . A flip operates on
a cyclically oriented triangle C of T . We use the following properties of such a
triangle (proofs in the long version).

(S1) The triangle C has an edge of each colour in S. Furthermore, if C is
oriented counterclockwise then the edges along C have colours i, i− 1, i+1.

(S2) If C is a separating triangle, then the restriction of S to the interior edges
of T |C is a Schnyder wood of T |C .

Let C = xyz be oriented counterclockwise with edges xy, yz, zx of colour
1, 3, 2 respectively. A clockwise flip of C alters the colours and orientations of S
as follows:

1. Edges on the cycle are reversed and colours change from i to i − 1. See
triangle xyz in Figure 3.

298 F. Barrera-Cruz, P. Haxell, and A. Lubiw

2. Any interior edge of T |C remains with the same orientation and changes
colour from i to i+ 1. See edges incident to b in Figure 4.

Other edges are unchanged. The reverse operation is a counterclockwise flip,
which Brehm calls a flop. Brehm [5, p. 44] proves that a flip yields another
Schnyder wood. Consider the graph with a vertex for each Schnyder wood of T
and a directed edge (S, S′) when S′ can be obtained from S by a clockwise flip.
This graph forms a distributive lattice [5], [11], [14]. Ignoring edge directions, the
distance between two Schnyder woods in this graph is called their flip distance.

Lemma 2 (Brehm (see the long version)). In a planar triangulation on n
vertices the flip distance between any two Schnyder woods is O(n2), and a flip
sequence of that length can be found in linear time per flip.

3 Main Result

Theorem 3. Let T be a planar triangulation and let S and S′ be two Schnyder
woods of T . Let Γ and Γ ′ be weighted Schnyder drawings of T obtained from
S and S′ together with some weight distributions. There exists a sequence of
straight-line planar drawings of T Γ = Γ0, . . . , Γk+1 = Γ ′ such that k is O(n2),
the linear morph 〈Γi, Γi+1〉 is planar, 0 ≤ i ≤ k, and the vertices of each Γi,
1 ≤ i ≤ k, lie in a (6n− 15)× (6n− 15) grid. Furthermore, these drawings can
be obtained in polynomial time.

We now describe how the results in the upcoming sections prove the theorem.
Lemma 4 (Section 4) proves that if we perform a linear morph between two
weighted Schnyder drawings that differ only in their weight distribution then
planarity is preserved. Thus, we may take Γ1 and Γk to be the drawings obtained
from the uniform weight distribution on S and S′ respectively. By Schnyder’s
Theorem 1 these drawings lie on a (2n−5)× (2n−5) grid and we can scale them
up to our larger grid. By Lemma 2 (Section 2) there is a sequence of k flips,
k ∈ O(n2), that converts S to S′. Therefore it suffices to show that each flip in
the sequence can be realized via a planar morph composed of a constant number
of linear morphs. In Theorem 7 (Section 5) we prove that if we perform a linear
morph between two weighted Schnyder drawings that differ only by a flip of a
face then planarity is preserved. In Theorem 11 (Section 6) we prove that if two
Schnyder drawings with the same uniform weight distribution differ by a flip of a
separating triangle then there is a planar morph between them composed of three
linear morphs. The intermediate drawings involve altered weight distributions
(here Lemma 4 is used again), and lie on a grid of the required size. Putting
these results together gives the final sequence Γ0, . . . , Γk+1. All the intermediate
drawings lie in a (6n− 15)× (6n− 15) grid and each of them can be obtained in
O(n) time from the previous one. This completes the proof of Theorem 3 modulo
the proofs in the following sections.

Morphing Schnyder Drawings 299

4 Morphing to Change Weight Distributions

Lemma 4. (proof in the long version) Let T be a planar triangulation and let
S be a Schnyder wood of T . Consider two weight distributions w and w′ on
the faces of T , and denote by Γ and Γ ′ the weighted Schnyder drawings of T
obtained from w and w′ respectively. Then the linear morph 〈Γ, Γ ′〉 is planar.

5 Morphing to Flip a Facial Triangle

In this section we prove that the linear morph from one Schnyder drawing to
another one, obtained by flipping a cyclically oriented face and keeping the same
weight distribution, preserves planarity. See Figure 2. We begin by showing how
the regions for each vertex change during such a flip and then we use this to
show how the coordinates change.

a1

a2a3

a1

a2a3

a1

a2a3

Fig. 2. Snapshots from a linear morph defined by a flip of the shaded face at times
t = 0, t = 0.5 and t = 1. The trajectory of rectangular shaped vertices is parallel to
a2a3. Similar properties hold for triangular and pentagonal shaped vertices.

Let S and S′ be Schnyder woods of triangulation T that differ by a flip on
face xyz oriented counterclockwise in S with (x, y) of colour 1. Let (v1, v2, v3)
and (v′1, v

′
2, v

′
3) be the coordinates of vertex v in the weighted Schnyder drawings

from S and S′ respectively with respect to weight distribution w. For an interior
edge pq of T , let Δi(pq) be the set of faces in the region bounded by pq and the
paths Pi(p) and Pi(q) in S, and we define δi(pq) to be the weight of that region,
i.e., δi(pq) =

∑
f∈Δi(pq)

w(f). We use notation Pi(v), Ri(v), and Di(v) as defined
in Section 2 and Δi(pq) as above and add primes to denote the corresponding
structures in S′. Let us begin by identifying properties of S and S′. The following
two lemmas are proved formally in the long version.

Lemma 5. The following conditions hold (see Figure 3):

1. R1(x) = R′
1(x), R3(y) = R′

3(y) and R2(z) = R′
2(z).

2. R′
2(x) = R2(x)\(Δ1(yz)∪{f}), R′

3(x) = R3(x)∪(Δ1(yz)∪{f}) and similarly
for y and z.

300 F. Barrera-Cruz, P. Haxell, and A. Lubiw

3. D1(x) = D′
1(x), D2(z) = D′

2(z) and D3(y) = D′
3(y).

4. The interiors of R1(x), R2(z) and R3(y) are pairwise disjoint.
5. D1(x) \ {x} is contained in the interior of R1(x) and similarly for y and z.

Consequently D1(x), D2(z) and D3(y) are pairwise disjoint.

a1

a2a3

Δ1(yz)

Δ2(xy)Δ3(xz)
S

D1(x)

D3(y)D2(y)

x

y

z
f

a1

a2a3

a1

a2a3

Δ′
1(yz)

Δ′
2(xy)

S ′
Δ′

3(xz)

D′
1(x)

D′
3(y)D′

2(y)

x y

z

f

a1

a2a3

Fig. 3. A flip of a counterclockwise oriented face triangle xyz showing changes to the
regions. Observe that Δ1(yz) ∪ {f} leaves R2(x) and joins R′

3(x).

Next we study the difference between the coordinates of the weighted Schny-
der drawings corresponding to S and S′.

Lemma 6. For each v ∈ V (T),

(v′1, v
′
2, v

′
3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(v1, v2, v3) if v �∈ D1(x) ∪D2(z) ∪D3(y)

(v1, v2 − (δ1(yz) +w(f)), v3 + δ1(yz) +w(f)) if v ∈ D1(x)

(v1 + δ2(xy) +w(f), v2, v3 − (δ2(xy) +w(f))) if v ∈ D2(z)

(v1 − (δ3(xz) +w(f)), v2 + δ3(xz) +w(f), v3) if v ∈ D3(y).

We are ready to prove the main result of this section. We express it in terms
of a general weight distribution since we will need that in the next section.

Theorem 7. Let S be a Schnyder wood of a planar triangulation T that contains
a face f bounded by a counterclockwise directed triangle xyz, and let S′ be the
Schnyder wood obtained from S by flipping f . Denote by Γ and Γ ′ the weighted
Schnyder drawings obtained from S and S′ respectively with weight distribution
w. Then 〈Γ, Γ ′〉 is a planar morph.

Proof. If a triangle collapses during the morph, then it must be incident to at least
one vertex that moves, i.e., one ofD1(x), D2(y) or D3(z). By Lemma 5, apart from
x, y, z these vertex sets lie in the interiors of regions R1(x), R2(y), R3(z) respec-
tively. Thus it suffices to show that no triangle in one of these regions collapses,
and that no triangle incident to x, y or z collapses.

Let t be a triangle such that t ∈ R1(x). (The argument for triangles in other
regions is similar.) Any vertex of R1(x) that moves is in D1(x) and by Lemma 6

Morphing Schnyder Drawings 301

these vertices are all translated by the same amount. We argue that if triangle
b, c, e in clockwise order collapses as we translate a subset of its vertices then
the end result is triangle b, c, e in counterclockwise order. This contradicts the
fact that Γ and Γ ′ have the same faces. A rigorous proof is in the long version.
The same argument applies to a triangle in Δ3(xz) ∪Δ2(xy) that is incident to
x but not incident to either y or z.

It remains to prove that no triangle t incident to at least two vertices of x, y
and z collapses. Here we only consider the case where t = xyz, the other case
can be handled similarly. We will show that x never lies on the line segment yz
during the morph. (The other two cases are similar.) Since (x, y) has colour 1
in S, it follows that x ∈ R1(y). Similarly, since (z, x) has colour 2 in S, we have
that x ∈ R1(z). Therefore x1 < y1, z1. Using a similar argument on S′ we obtain
that x′

1 < y′1, z
′
1. Finally, note that x1 = x′

1. This implies that x never lies on
the line segment yz during the morph.

6 Morphing to Flip a Separating Triangle

In this section we prove that there is a planar morph between any two weighted
Schnyder drawings that differ by a separating triangle flip. Our morph will be
composed of three linear morphs. Throughout this section we let S and S′ be
Schnyder woods of a planar triangulation T such that S′ is obtained from S after
flipping a counterclockwise oriented separating triangle C = xyz, with (x, y)
coloured 1 in S. Let Γ and Γ ′ be two weighted Schnyder drawings obtained
from S and S′ respectively with weight distribution w. For the main result of
the section, it suffices to consider a uniform weight distribution because we can
get to it via a single planar linear morph, as shown in Section 4. However, for the
intermediate results of the section we need more general weight distributions.

We now give an outline of the strategy we follow. Morphing linearly from Γ
to Γ ′ may cause faces inside C to collapse. An example is provided in the long
version. However, we can show that there is a “nice” weight distribution that
prevents this from happening. Our plan, therefore, is to morph linearly from Γ
to a drawing Γ with a nice weight distribution, then morph linearly to drawing
Γ

′
to effect the separating triangle flip. A final change of weights back to the

uniform distribution gives a linear morph from Γ
′
to Γ ′.

This section is structured as follows. First we study how the coordinates
change between Γ and Γ ′. Next we show that faces strictly interior to T |C
do not collapse during a linear morph between Γ and Γ

′
. We then give a similar

result for faces of T |C that share a vertex or edge with C provided that the
weight distribution satisfies certain properties. Finally we prove the main result
by showing that there is a weight distribution with the required properties.

Let us begin by examining the coordinates of vertices. For vertex b ∈ V (T)
let (b1, b2, b3) and (b′1, b

′
2, b

′
3) denote its coordinates in Γ and Γ ′ respectively.

For b an interior vertex of T |C let βi be the i-th coordinate of b in T |C when
considering the restriction of S to T |C with weight distribution w. By analyzing

302 F. Barrera-Cruz, P. Haxell, and A. Lubiw

Figure 4, we can see that the coordinates for b in Γ are

(b1, b2, b3) = (x1 + δ3(xz) + β1, z2 + δ1(yz) + β2, y3 + δ2(xy) + β3)

= (x1, z2, y3) + (δ3(xz), δ1(yz), δ2(xy)) + (β1, β2, β3).
(2)

We now analyze how the coordinates of vertices change from Γ to Γ ′. We use
wC to denote the weight of faces inside C, i.e., wC =

∑
f∈F(T |C) w(f).

Lemma 8. (proof in the long version) For each b ∈ V (T),

(b′1, b
′
2, b

′
3) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(b1, b2 − (δ1(yz) +wC), b3 + δ1(yz) +wC) if b ∈ D1(x)

(b1 + δ2(xy) +wC , b2, b3 − (δ2(xy) +wC)) if b ∈ D2(z)

(b1 − (δ3(xz) +wC), b2 + δ3(xz) +wC , b3) if b ∈ D3(y)

(x1, z2, y3) + (δ2(xy), δ3(xz), δ1(yz)) + (β3, β1, β2) if b ∈ I
(b1, b2, b3) otherwise

where I is the set of interior vertices of T |C.

a1

a2a3

Δ1(yz)

Δ2(xy)Δ3(xz)
S

x

y

z
b

a1

a2a3

a1

a2a3

Δ′
1(yz)

Δ′
2(xy)

S ′
Δ′

3(xz)

x

y

z

b

a1

a2a3

Fig. 4. A flip of a counter-clockwise oriented separating triangle xyz

We now examine what happens during a linear morph from Γ to Γ ′. We
first deal with faces strictly interior to C. The following two lemmas are proved
formally in the long version.

Lemma 9. For an arbitrary weight distribution no face formed by interior ver-
tices of T |C collapses in the morph 〈Γ, Γ ′〉.
Proof sketch. Consider a face inside C formed by internal vertices b, c, e whose
coordinates with respect to T |C are β, γ, ε, respectively. Examining (2) and
Lemma 8 we see that the coordinates of b, c, e in Γ and Γ ′ depend in exactly
the same way on the parameters from T \ C and differ only in the parameters
β, γ, ε. Therefore triangle bce collapses during the morph if and only if it col-
lapses during the linear transformation on β, γ, ε where we perform a cyclic shift
of coordinates, viz., (β1, β2, β3) becomes (β3, β1, β2), etc. No triangle collapses
during this transformation because it corresponds to moving each of the three
outer vertices x, y, z in a straight line to its clockwise neighbour.

Morphing Schnyder Drawings 303

Next we consider the faces interior to C that share an edge or vertex with C.
We show that no such face collapses, provided that the weight distribution w
satisfies δ1 = δ2 = δ3 where we use δ1, δ2 and δ3 to denote δ1(yz), δ2(xy) and
δ3(xz) respectively.

Lemma 10. Let w be a weight distribution for the interior faces of T such that
δ1 = δ2 = δ3. No interior face of T |C incident to an exterior vertex of T |C
collapses during 〈Γ, Γ ′〉.

Proof sketch. We examine separately the case where the interior face is incident
to the edge xy of C and the case where the interior face is only incident to the
vertex x of C. The other cases follow by analogous arguments.

Consider the case of an interior face bxy incident to edge xy. Suppose by
contradiction that at time r ∈ [0, 1] during the morph the face collapses with
br lying on segment xryr, say br = (1 − s)xr + syr for some s ∈ [0, 1]. We
use formula (2) and Lemma 8 to re-write this equation. Some further algebraic
manipulations (details in the long version) show that there is no solution for r.
The case of a face involving vertex x and two interior vertices is similar.

We are now ready to prove the main result of this section.

Theorem 11. Let T be a planar triangulation and let S and S′ be two Schny-
der woods of T such that S′ is obtained from S by flipping a counterclock-
wise cyclically oriented separating triangle C = xyz in S. Let Γ and Γ ′ be
weighted Schnyder drawings obtained from S and S′, respectively, with uniform
weight distribution. Then there exist weighted Schnyder drawings Γ and Γ

′
on a

(6n− 15)× (6n− 15) integer grid such that each of the following linear morphs
is planar: 〈Γ, Γ 〉, 〈Γ , Γ

′〉, and 〈Γ ′
, Γ ′〉.

Proof. Our aim is to define the planar drawings Γ and Γ
′
. Each one will be

realized in a grid that is three times finer than the (2n − 5) × (2n − 5) grid,
i.e., in a (6n−15)× (6n−15) grid with weight distributions that sum to 6n−15.
Under this setup, the initial uniform weight distribution u takes a value of 3 in
each interior face.

Drawings Γ and Γ
′
will be the weighted Schnyder drawings obtained from S

and S′ respectively with a new weight distribution w. We use Δ1, Δ2 and Δ3

to denote the regions Δ1(yz), Δ2(xy) and Δ3(xz) respectively, in S. We use δi
and δi to denote the weight of Δi, i = 1, 2, 3 with respect to the uniform weight
distribution and the new weight distribution w, respectively.

We will define w so that δ1, δ2, and δ3 all take on the average value δ :=
(δ1 + δ2 + δ3)/3. The idea is to remove weight from faces in a region of above-
average weight, and add weight to faces in a region of below-average weight. The
new face weights must be positive integers. Note first that δ is an integer. Note
secondly that δ > δi/3 for any i since the other δj ’s are positive. Thus δi−δ < 2

3δi.
This means that we can reduce δi to the average δ without removing more than
2 weight units from any face (of initial weight 3) in any region. There is more
than one solution for w, but the morph might look best if w is as uniform as

304 F. Barrera-Cruz, P. Haxell, and A. Lubiw

possible. To be more specific, we can define new face weights w via the following
algorithm: Initialize w = w. While some δi is greater than the average δ, remove
1 from a maximum weight face of Δi and add 1 to a minimum weight face in a
region Δj whose weight is less than the average.

This completes the description of Γ and Γ
′
. It remains to show that the three

linear morphs are planar. The morphs 〈Γ, Γ 〉 and 〈Γ ′
, Γ ′〉 only involve changes

to the weight distribution so they are planar by Lemma 4. Consider the linear
morph 〈Γ , Γ

′〉. The two drawings differ by a flip of a separating triangle. They
have the same weight distribution w which satisfies δ1 = δ2 = δ3. By Lemmas 9,
and 10 no interior face of T |C collapses during the morph. By Theorem 7 no face
of T \ C collapses during the morph. Thus 〈Γ, Γ ′〉 defines a planar morph.

7 Identifying Weighted Schnyder Drawings

In this section we give a polynomial time algorithm to test if a given straight-line
planar drawing Γ of triangulation T is a weighted Schnyder drawing. The first
step is to identify the Schnyder wood. A recent result of Bonichon et al. [4] shows
that, given a point set P with triangular convex hull, a Schnyder drawing on
P is exactly the “half-Θ6-graph” of P , which can be computed efficiently. Thus,
given drawing Γ , we first ignore the edges and compute the half-Θ6 graph of
the points. If this differs from Γ , we do not have a weighted Schnyder drawing.
Otherwise, the half-Θ6 graph determines the Schnyder wood S. We next find
the face weights. We claim that there exists a unique assignment of (not neces-
sarily positive) weights w on the faces of T such that Γ is precisely the drawing
obtained from S and w as described in (1). Furthermore, w can be found in
polynomial time by solving a system of linear equations in the 2n− 5 variables
w(f), f ∈ F(T). The equations are those from (1). The rows of the coefficient
matrix are the characteristic vectors of Ri(v), i ∈ {1, 2, 3}, v an interior vertex of
T , and the system of equations has a solution because the matrix has rank 2n−5.
This was proved by Felsner and Zickfeld [10, Theorem 9]. (Note that their the-
orem is about coplanar orthogonal surfaces; however, their proof considers the
exact same set of equations and Claims 1 and 2 give the needed result.)

8 Conclusions and Open Problems

We have made a first step towards morphing straight-line planar graph drawings
with a polynomial number of linear morphs and on a well-behaved grid. Our
method applies to weighted Schnyder drawings. There is hope of extending to
all straight-line planar triangulations. The first author’s thesis [3] gives partial
progress: an algorithm to morph from any straight-line planar triangulation to
a weighted Schnyder drawing in O(n) steps—but not on a nice grid.

It might be possible to extend our results to general (non-triangulated) pla-
nar graphs using Felsner’s extension [8,9] of Schnyder’s results. The problem of
efficiently morphing planar graph drawings to preserve convexity of faces is wide
open—nothing is known besides Thomassen’s existence result [18].

Morphing Schnyder Drawings 305

Acknowledgements. We thank Stefan Felsner for discussions, David Eppstein
for suggestions, and an anonymous referee for pointing us to the work of Boni-
chon et al. [4]. F. Barrera-Cruz partially supported by Conacyt. P. Haxell and
A. Lubiw partially supported by NSERC.

References

1. Alamdari, S., Angelini, P., Chan, T.M., Di Battista, G., Frati, F., Lubiw, A.,
Patrignani, M., Roselli, V., Singla, S., Wilkinson, B.T.: Morphing planar graph
drawings with a polynomial number of steps. In: Proc. of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pp. 1656–1667.
SIAM (2013)

2. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli,
V.: Morphing planar graph drawings optimally. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 126–137.
Springer, Heidelberg (2014)

3. Barrera-Cruz, F.: Morphing planar triangulations. Ph.D. thesis, University of Wa-
terloo (2014)

4. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-
graphs, Delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.)
WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010)

5. Brehm, E.: 3-orientations and Schnyder 3-tree-decompositions. Master’s thesis, FB
Mathematik und Informatik, Freie Universität Berlin (2000)

6. Cairns, S.S.: Deformations of plane rectilinear complexes. The American Mathe-
matical Monthly 51(5), 247–252 (1944)

7. Dhandapani, R.: Greedy drawings of triangulations. Discrete & Computational
Geometry 43(2), 375–392 (2010)

8. Felsner, S.: Convex drawings of planar graphs and the order dimension of 3-
polytopes. Order 18(1), 19–37 (2001)

9. Felsner, S.: Geodesic embeddings and planar graphs. Order 20(2), 135–150 (2003)
10. Felsner, S., Zickfeld, F.: Schnyder woods and orthogonal surfaces. Discrete & Com-

putational Geometry 40(1), 103–126 (2008)
11. Felsner, S.: Lattice structures from planar graphs. The Electronic Journal of Com-

binatorics 11(1), 15 (2004)
12. Felsner, S., Zickfeld, F.: On the number of α-orientations. In: Brandstädt, A.,

Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 190–201. Springer,
Heidelberg (2007)

13. Floater, M.S., Gotsman, C.: How to morph tilings injectively. Journal of Compu-
tational and Applied Mathematics 101(1), 117–129 (1999)

14. Ossona de Mendez, P.: Orientations bipolaires. Ph.D. thesis, Ecole des Hautes
Etudes en Sciences Sociales, Paris (1994)

15. Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)
16. Schnyder, W.: Embedding planar graphs on the grid. In: Proc. of the First Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 138–148. SIAM,
Philadelphia (1990)

17. Surazhsky, V., Gotsman, C.: Controllable morphing of compatible planar triangu-
lations. ACM Trans. Graph. 20(4), 203–231 (2001)

18. Thomassen, C.: Deformations of plane graphs. Journal of Combinatorial Theory,
Series B 34(3), 244–257 (1983)

19. Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13(3), 743–768 (1963)

Trade-Offs in Planar Polyline Drawings

Stephane Durocher∗ and Debajyoti Mondal∗∗

Department of Computer Science, University of Manitoba, Canada
{durocher,jyoti}@cs.umanitoba.ca

Abstract. Angular resolution, area and the number of bends are some
important aesthetic criteria of a polyline drawing. Although trade-offs
among these criteria have been examined over the past decades, many
of these trade-offs are still not known to be optimal. In this paper we
give a new technique to compute polyline drawings for planar trian-
gulations. Our algorithm is simple and intuitive, yet implies significant
improvement over the known results. We present the first smooth trade-
off between the area and angular resolution for 2-bend polyline drawings
of any given planar graph. Specifically, for any given n-vertex triangula-
tion, our algorithm computes a drawing with angular resolution r/d(v)
at each vertex v, and area f(n, r), for any r ∈ (0, 1], where d(v) denotes
the degree at v. For r < 0.389 or r > 0.5, f(n, r) is less than the drawing
area required by previous algorithms; f(n, r) ranges from 7.12n2 when
r ≤ 0.3 to 32.12n2 when r = 1.

1 Introduction

Polyline drawing is a classic style of drawing planar graphs, which has a wide
range of applications in the area of software visualization [8,18] and layout of
circuit diagrams [7]. Given an n-vertex planar graph G, a polyline drawing Γ of
Gmaps each vertex to a distinct point in R2, and each edge to a simple polygonal
chain between its endpoints such that no two edges intersect except possibly at
their common end point. Γ is a k-bend polyline drawing if the number of line
segments per edge is bounded by at most k+1, i.e., each edge contains at most
k bend points. Consequently, a k-bend polyline drawing can be considered as
a (k + λ)-bend drawing for any λ > 0. Figures 1(a) and (b) illustrate a plane
graph G and a 2-bend polyline drawing of G, respectively.

Researchers have examined the theoretical aspects of planar polyline drawings
over a long time [2,4,9,10,13,17,20]. Area (i.e., the size of the smallest integer grid
containing the drawing), angular resolution (i.e., the smallest angle formed at
any vertex), number of bends per edge, edge separation and bend resolution are
some examples of such aesthetic criteria. Even after decades of research effort,
finding the optimal trade-off between the number of total bends and area still

∗ Work of the author is supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

∗∗ Work of the author is supported in part by a University of Manitoba Graduate
Fellowship.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 306–318, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Trade-Offs in Planar Polyline Drawings 307

a
b

c
d

e
f

g

h

b
a

d c

e
g f

h

a b

c

d f
e

(a) (b) (c)

h

g

Fig. 1. (a) A planar graph G. (b)–(c) Two polyline drawings of G

seems to be an elusive goal. For example, every planar triangulation with n
vertices admits a straight-line drawing (i.e., a 0-bend polyline drawing) in O(n2)
area [9]. Several improvements on the constant hidden in O(.) notation have been
achieved [2,4,9,17], and the best known bound is 8n2/9 = 0.89n2 [4]. Better upper
bounds, i.e., 4n2/9 < 0.45n2, can be attained if we use 1-bend polyline drawings,
which takes at most 2n/3 bends in total [20]. Although these drawings require
small area, the compactness comes at the expense of bad angular resolution, i.e.,
Ω(1/n). Garg and Tamassia [19] showed that there exists planar graphs such
that any of its straight-line drawing with angular resolution Ω(1/ρ) requires
at least Ω(cρn) area, where c > 1, which suggests that drawings with angular
resolution Ω(1/Δ) and polynomial area may exist only if we allow the edges to
have bends.

Allowing bends helps both to reduce area and to improve angular resolution,
e.g., given an n-vertex planar graph with maximum degree Δ, one can construct
a 3-bend polyline drawing with 2/Δ radians of resolution and 3n2 area [13]. The
angular resolution can be improved to Ω(1/d(v)) radians (for each vertex v)
with an expense of higher area [10,12], which also helps to reduce the number of
bends per edge. Table 1 presents a brief summary of the related results.

Table 1. Angular resolution, area and total bends in k-bend polyline drawings, where
α ∈ [1/4, 1/2], and β ∈ [1/3, 1].

Graph Class Area Resolution k-Bends T. Bends Reference

Maximal Planar 7n2/8 Ω(1/n2) 0 0 [4]

Maximal Planar 9n2/2 Ω(1/n) 0 0 [16]

Maximal Planar 12.5n2 0.5/d(v) 1 3n [10]

Maximal Planar 450n2 1/d(v) 1 3n [5]

Maximal Planar 4n2/9 Ω(1/n2) 1 2n/3 [20]

Maximal Planar 200n2 1/d(v) 2 6n [12]

Maximal Planar (6α + 8/3)2n2 α
(d(v)(α2+1/4) 2 5.5n Theorem 2

Maximal Planar (6β + 2/3)2n2 β
(d(v)(β2+1) 2 5.5n Theorem 3

3-connected Planar 6n2 2/Δ 3 5n− 15 [15]

General Planar 3n2 2/Δ 3 5n− 15 [13]

308 S. Durocher and D. Mondal

0.3 0.4
5
0.2

15

20

25

10

0.6 0.7 0.8 0.9 1

Angular Resolution in 1/d(v)

0.5

30

35

200

Area

in n2

Fig. 2. Trade-off between angular resolution and area for 2-bend polyline drawings,
where the bold line denotes the trade-off established in this paper. The square, circle
and diamond denote the reference [10], [12] and [5], respectively.

Early polyline drawing algorithms were developed as a generalization of or-
thogonal drawings [1]. Before Duncan and Kobourov’s algorithm [10], all the
polyline drawing techniques with good angular resolution and O(n2) area were
based on the idea of assigning an empty square surrounding each vertex (e.g.,
Figure 1(c)), which forced the constant factor in the O(.) notation to be very
large. The algorithm of Duncan and Kobourov [10] finds a drawing with smaller
area, but loses the square-emptiness property around the vertices, as well as
decreasing the angular resolution by a factor of 2. Observe that two solutions
in a multi-objective optimization are comparable if and only if one of them
dominates the other with respect to every optimization criteria. Hence although
the drawing of [10] has smaller area than that of [5] (see Table 1), it is not an
improvement over [5] because of its lower angular resolution.

Contributions. In this paper we examine the trade-offs between the angular
resolution and area for 2-bend polyline drawings of planar triangulations. Fig-
ure 2 illustrates the solution space dominated by our algorithm in gray, which
dominates all the previous 2-bend polyline drawing algorithms except Duncan
and Kobourov’s algorithm [10], which dominates our algorithm along a small
interval of X-axis. Even under the model where each vertex v is surrounded by
an empty square of size d(v)× d(v), we can construct a 2-bend polyline drawing
with angular resolution 1/Δ and area 32.12n2, where the best known bounds can
achieve an Ω(1/d(v)) angular resolution with an area at least 200n2 [5,12,14],
or an 1/Δ angular resolution with 3 bends per edge [13].

2 Technical Background

Let G be a plane graph, i.e., a planar graph with a fixed combinatorial em-
bedding and a specified outerface. If every face of G including (respectively,
excluding) the outer face is a cycle of length three, then G is called triangulated
(respectively, internally triangulated). Let G be an n-vertex triangulated plane
graph, where v1, v2 and vn are the outer vertices of G in clockwise order, and

Trade-Offs in Planar Polyline Drawings 309

let σ = (v1, v2, ..., vn) be an ordering of all the vertices of G. Then Gk, where
2 ≤ k ≤ n, is the subgraph of G induced by v1 ∪ v2 ∪ ...∪ vk, and Pk is the path
(while walking clockwise) on the outer face of Gk that starts at v1 and ends at
v2. The vertex-ordering σ is called a canonical ordering [9] with respect to the
outer edge (v1, v2) if for each k, 3 ≤ k ≤ n, the following conditions are satisfied:
(a) Gk is 2-connected and internally triangulated. (b) If k ≤ n, then vk is an
outer vertex of Gk and the neighbors of vk in Gk−1 appears consecutively on
Pk−1. Figures 3(a)–(b) illustrate an example.

For some j, where 3 ≤ j ≤ n, let Pj be the path w1(= v1), . . . , wl, vk(=
wl+1), wr, . . . , wt(= v2). We call the edges (wl, vj) and (vj , wr) the l-edge and
the r-edge of vj , respectively. The other edges incident to vj in Gj are called the
m-edges of vj . For example, in Figure 3(c), the edges (v6, v4), (v6, v5), and (v3, v6)
are the l-, r- andm-edges of v6, respectively. By dl(v), dr(v) and dm(v) we denote
the number of l, r andm-edges that are incoming to v, e.g., dl(v6) = 0, dr(v6) = 1
and dm(v6) = 1.

Let Em be the set of allm-edges in G. Then the graph Tm induced by the edges
in Em is a tree with root vn. Similarly, the graph Tl induced by all l-edges except
(v1, vn) is a tree rooted at v1 (Figure 3(d)), and the graph Tr induced by all r-
edges except (v2, vn) is a tree rooted at v2. These three trees form the Schnyder
realizer [17] of G. A Schnyder realizer is called a minimum realizer if all the
cyclic inner faces are oriented clockwise. By Δ0 we denote the number of cyclic
inner faces in the minimum realizer [21]. If {Tl, Tr, Tm} is a minimum Schnyder
realizer of G, then we have leaf(Tl) + leaf(Tr) + leaf(Tm) = 2n− 5−Δ0 [3].
Hence we can observe the following property.

Remark 1. Let {Tl, Tr, Tm} be a minimum Schnyder realizer of an n-vertex
triangulation. Then min{leaf(Tl)+ leaf(Tr), leaf(Tl)+ leaf(Tm), leaf(Tr)+
leaf(Tm)} ≤ (4n− 2Δ0 − 10)/3.

A non-root vertex in Tl is called a primary vertex of Tl if it is the first child of
its parent in the clockwise order. Similarly, a non-root vertex in Tr is a primary
vertex of Tr if it is the first child of its parent in the anticlockwise order. We now
have the following lemma, whose proof is omitted due to space constraints.

Lemma 1. Let nl and nr be the nonprimary vertices in Tl and Tr, respectively.
Then nl + nr ≤ leaf(Tl) + leaf(Tr).

(a)
v2

v3
v4

v6

v5

v7

v8
v9

v1
(c)

v2

v3
v4

v6

v5

v7

v8
v9

v1

v4

v6

v5

(b)
v2v1

v3

(d)
v2

v3
v4 v5

v7

v1

v8

v6

Fig. 3. (a) A canonical ordering of a plane triangulation G. (b) G6. (c) The l-, r- and
m- edges are shown in dashed, bold-solid, and thin-solid edges respectively. (d) Tl.

310 S. Durocher and D. Mondal

In a plus-contact representation of G, each vertex of G is represented as an axis-
aligned plus shape (i.e., a shape consisting of two intersecting line segments)
such that two plus shapes touch if and only if their corresponding vertices are
adjacent in G [11]. Let Γ be a plus contact representation, and let v be any
vertex in Γ . Then by P(v) we denote the plus-shape that corresponds to v in
Γ . By the center C(v) of P(v), we denote the intersection point of the vertical
and horizontal straight line segments of P(v). The four straight line segments
that start at C(v) and extend to the left, right, above and below C(v) are the
left, right, up and down hands of v, which we denote by L(v), R(v), U(v) and
D(v), respectively. A j-shift operation on Γ with respect to an infinite horizontal
line (respectively, vertical line) � is performed as follows: Remove all the edges
that are lying completely above (respectively, to the right of) �. Increase the y-
coordinate (respectively, x-coordinate) of every vertex lying above (respectively,
to the right of) � by j units. Draw the edges that were removed using the new
vertex positions. Extend the edges intersected by � upwards (respectively, to the
right) until they reach to their other endpoint.

3 Polyline Drawing

Let G be an n-vertex maximal planar graph. We construct the drawing of G
in three phases. In the first phase we construct a plus-contact representation
of G \ Tm on a rectangular grid. In the next phase we expand the drawing by
inserting dummy grid lines, and in the third phase we use these grid lines to
draw the edges of Tm, and route the l- and r-edges avoiding degeneracy.

Phase 1 (Plus-Contact): Let σ = (v1, v2, . . . , vn) be a canonical ordering of
G and let {Tl, Tr, Tm} be the corresponding Schnyder realizer. Let Γk, where
2 ≤ k ≤ n, be the drawing of all the edges of Gk except the m-edges. We first
construct the drawing Γ2 for G2, as follows. Place C(v1) and C(v2) at coordinates
(1, 2) and (2, 1), respectively. Then the horizontal and vertical unit-segments to
the left and below (1, 2) correspond to L(v1) and D(v1), respectively. Similarly,
the horizontal and vertical unit-segments to the left and below (2, 1) correspond
to L(v2) and D(v2), respectively, as illustrated in Figure 4(b). We now insert the
vertices in the canonical ordering maintaining the following invariants. While
inserting a new vertex, we only draw the l and r-edges.

I1. The upper envelope of Γi is x-monotone, where the upper envelope is deter-
mined by the left and down hands of the vertices in Pi.

I2. The ray with slope +1 starting at any outer vertex of Γi can be extended
towards infinity avoiding any edge crossing.

I3. Every l-edge starts as a left hand of some plus shape and ends either at a
center or at a down hand of some other plus shape.

I4. Every r-edge starts as a down hand of some plus shape and ends either at a
center or at a left hand of some other plus shape.

Since the upper envelope of G2 forms a staircase, and does not contain any l-
or r-edge, it is straightforward to verify the invariants for Γ2. We now assume

Trade-Offs in Planar Polyline Drawings 311

that invariants I1–I4 hold for G2, G3, . . . , Gk−1, where k − 1 < n, and consider
the insertion of vertex vk.

Insertion of vk: Let wl, wl+1, . . . , wr−1, wr be the neighbors of vk on Pk−1.
Consider an infinite horizontal line �h that lies in between the horizontal grid
line determined by L(wl) and the horizontal grid line immediately below L(wl).
Similarly, let �v be an infinite vertical line that lies in between the vertical grid
line determined by D(wr) and the vertical grid line immediately to the left of
D(wr). We now add vk considering the following cases. The case when k = n is
special, which is handled by Case 4.

Case 1 (vk is a nonprimary vertex in both Tl and Tr): We first perform
a 1-shift with respect to �h. This increases the number of horizontal lines by 1
and ensures that D(wl) contains at least 1 grid point p that does not contain
any vertex or contact point. Similarly, we perform a 1-shift with respect to
�v, which increases the number of vertical lines by 1 and ensures that L(wr)
contains at least 1 grid point q that does not contain any vertex or contact
point. We now consider the horizontal ray rp that starts at p. Since the upper
envelope of Γk−1 is x monotone and p does not contain any vertex or contact
point, rp does not intersect Γk−1 except at p. Similarly, we define a vertical ray
rq that starts at q, which does not intersect Γk−1 except at q. We now place vk
at the intersection point of rp and rq, and draw the edges (vk, wl) and (vk, wr).
Since rp and rq do not intersect Γk−1 except at p and q, respectively, drawing
of these edges does not introduce any crossing. Figure 4(c) illustrates such a
scenario. We omit the proof that Γk respects the invariants I1–I4 due to space
constraints.
Case 2 (vk is a primary vertex in Tl but a nonprimary vertex in Tr):
In this case we perform a 1-shift with respect to �v, which increases the number
of vertical lines by 1 and ensures that L(wr) contains at least 1 grid point q
that does not contain any vertex or contact point. Assume that p = C(wl). We
now consider the horizontal ray rp that starts at p. Since the upper envelope
of Γk−1 is x monotone and p does not contain any vertex or contact point,
rp does not intersect Γk−1 except at p. Similarly, we define a vertical ray rq
starting at q, which does not intersect Γk−1 except at q. We now place vk at
the intersection point of rp and rq, and draw the edges (vk, wl) and (vk, wr).
Figure 4(e) illustrates such a scenario.

v2

v3
v4

v7

v5

v6

v8

v1

v1
v1

v1 v1

v1 v1 v1

v2 v2 v2 v2 v2 v2 v2

v3 v3 v5 v3 v3

v4

v6
v4 v4 v4v4

v6
v7 v7

v6
v8

v5 v5v3 v5 v3

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. (a) A plane graph G and a minimum Schnyder realizer of G. (b)–(h) Illustration
for the drawing of G \ Tm.

312 S. Durocher and D. Mondal

Case 3 (vk is a nonprimary vertex in Tl but a primary vertex in Tr):
This case is symmetric to Case 2, i.e., we perform a 1-shift with respect to �h
to obtain a new grid point p on D(wl) and assume that q = C(wr).
Case 4 (vk is a primary vertex in both Tl and Tr): In this case we do
not perform any shift, and assume that p = C(wl) and q = C(wr).

We now have the following lemma whose proof is omitted due to space con-
straints.

Lemma 2. Γn is a drawing on a (W + 2) × (H + 2) grid, where W + H ≤
leaf(Tl) + leaf(Tr).

Phase 2 (Expansion): For any plus-contact representation on an integer grid,
we define a free grid line as a grid line that does not contain any vertex-center
or contact points. We refer the reader to Figure 5.

Consider the horizontal grid lines from top to bottom. For every horizontal
grid line � containing at least one vertex of Γ , we now perform two
d(v)/2�-
shifts, where v is the vertex with the largest degree over all the vertices on �. Let
�h (respectively, �′h) be an infinite horizontal line that lies in between the hori-
zontal grid line � and the horizontal grid line immediately below (respectively,
above) �. Perform a
d(v)/2�-shift with respect to �h, and then a
d(v)/2�-shift
with respect to �′h. Observe that for each vertex w on �, we now have a set of

d(v)/2� free grid lines above w and a set of
d(v)/2� free grid lines below w.
We consider a corresponding set Sw that consists of these 2
d(v)/2� free grid
lines along with the line �. Furthermore, we assume that the grid lines of Sw are
ordered in the increasing order of y-coordinates. Figure 5(b) illustrates Sv4 .

Similarly, we consider the vertical grid lines from right to left, and for every
vertical grid line �′ containing at least one vertex of Γ , we perform two
d(v)/2�-
shifts to the left and right side of �′, where v is the vertex with the largest degree
over all the vertices on �′. We consider a corresponding set S′

w that contains
these 2
d(v)/2� free vertical grid lines along with the line �′, where the lines are
ordered in the decreasing order of x-coordinates. Let the resulting drawing be Γ ′

n,
as shown in Figure 5(c). The following property is a straightforward consequence
of the Expansion phase.

Remark 2. For every vertex v in Γ ′
n, the point C(v) lies at the center of an

integer grid Av of size (2
d(v)/2� + 1) × (2
d(v)/2� + 1). The grid Av does
not contain any vertex, contact point, or edge of Γ ′ except the four hands of v.
Furthermore, for any other vertex u(�= v), the grids Au and Av are disjoint, i.e.,
they do not share any common grid point.

Phase 3 (Edge Routing): For each vertex in canonical order, we first route
the incoming m-edges incident to vk, as follows. Recall that the m-edges start
at the vertices wl+1, . . . , wr−1 and ends at vk.

By the construction of Γ ′
n, the vertices wl+1, . . . , wr−1 lie below Svk and to

the left of S′
vk
. Hence all the boundary grid points of Avk , which lie below Svk

and to the left of S′
vk , are visible from the top-right corner cwj of Awj , for all

l + 1 ≤ j ≤ r − 1. Assume that z = �dm(v)/2�. Let M be the monotone chain

Trade-Offs in Planar Polyline Drawings 313

determined by the last line of Sw and first line of S′
w, where w ∈ {wl+1, . . . wr−1}.

Figure 5(d) illustrates M with a dotted line. For each w ∈ {wl+1, . . . wz}, we
now route the m-edge incident to w through the top-right corner cw upto M ,
and then to a distinct grid point on the leftmost boundary of Avk below L(vk).
Observe that �dm(vk)/2� ≤ dm(vk)/2 + 1 ≤ (d(vk) − 3)/2 + 1 ≤ (d(vk) − 1)/2.
Since (d(vk)− 1)/2 is at most
d(vk)/2� (irrespective of the parity of d(vk)), the
grid points on the leftmost boundary of Avk below L(vk) are sufficient to route all
the m-edges incident to {wl+1, . . . wz}. Similarly, for each w ∈ {wz+1, . . . wr−1},
we now route the m-edge incident to w through the top-right corner cw upto
M , and then to a distinct grid point to the left of D(vk) on the bottommost
boundary of Avk . Since
dm(vk)/2� ≤
d(vk)/2� − 1 (irrespective of the parity
of d(vk)), we have sufficient number of boundary points to route all the m-edges
incident to {wz+1, . . . wr−1}.

The l- and r-edges of Γ ′
n contain edge overlapping on the left and down hands.

From the Expansion phase it is straightforward to observe that the l-edges that
are incoming to some vertex v in Γ ′

n, are incident to D(v), and properly intersects
the first half of the S′

v. Let � be the nearest vertical grid line to the right of S′
v, and

remove the parts of these l-edges that lie in between D(v) and � (except for the l-
edge incident to C(v)). Since all these l-edges lie below Sv, the points where these
l-edges are incident to � can see all the grid points on the rightmost boundary of
Av and on the right-half of the bottommost boundary of Av. Consequently, we
can route the l-edges to C(v) through these boundary grid points, which removes
the edge overlaps on D(v). Figure 5(e) illustrates such a scenario. Symmetrically,
we can remove the degeneracy of r-edges on L(v). Remark 2 and the property
that the lines in Sv and S′

v do not contain any vertex except v ensure that
the above modifications do not introduce any edge crossing. Let the resulting
drawing be Γ ′′, which is a planar polyline drawing of G, e.g., see Figure 5(e).

Area: By Lemma 2, the area before the Expansion phase was (W+2)×(H+2).
For each i, where 1 ≤ i ≤ W + 2, the Expansion phase increases the width of
the drawing by 2
d(ui)/2�, where ui is the vertex with the largest degree on

the ith column. Hence the total increase is at most (
∑W+2

i=1 d(ui))− 3(n−W −
2) ≤ (6n − 12) − 3(n − W − 2) = 3n + 3W − 6. Similarly, the increase in

v1

v2

v3
v4

v7
v6

v8

v5

v1

v6 v7

v3

v4

v5

v2

v8v1

(a) (c)(b) (e)

v8

v7
v6

v4

v3 v5

v2

}Sv4

(d)

d(v1) = 5,d(v2) = 4,
d(v3) = 5,d(v4) = 4,
d(v5) = 4,d(v6) = 4,
d(v7) = 5,d(v8) = 5.

v6 v7

v3

v4

v5

v2

v8v1

wl+1

wr−1

cwr−1

vk

M

Fig. 5. Illustration for (a) Γn, (b) Svk , and (c) Γ ′
n, where the grid Av, for each vertex

v, is shown in black squares. (d) Illustration for M . Note that Aws are bounded by
gray rectangles determined by Sw and S′

w. (e) Γ
′′.

314 S. Durocher and D. Mondal

height is at most 3n+ 3H − 6. Hence Γ ′′ is a drawing on an integer grid of size
(3n+4W−4)×(3n+4H−4). SinceW+H ≤ (4n−2Δ0−10)/3 (see Remark 1), the
area can be at most (3n+4(2n−Δ0−5)/3)2 = ((17n−4Δ0−20)/3)2 ≤ 32.12n2.

Bends per Edge: If (v, v′) is an l-edge or r-edge in ΓG, which starts at v
and ends at v′, then the edge has at most 2 bends: one before entering Av′ , and
another at the boundary of Av′ . If (v, v′) is an m-edge, then it contains one bend
on M , and another bend on the boundary of Av′ . The l-and r-edges that connect
a primary vertex to its parent, do not contain any bend. Since Δ0 < n/2 and
leaf(Tm) < n, the drawing has at most 6n−leaf(Tl)−leaf(Tr)≤11n/2 bends.

Angular Resolution: To compute the angular resolution, observe that the
smallest possible angle θ at v is realized by a pair of consecutive integer grid
points on the boundary of Av where one of them is the corner of Av, e.g., see
Figure 6(a). Since Av is a grid of size (2
d(v)/2� + 1) × (2
d(v)/2� + 1), the
length of the line segment l connecting the center to any corner is

√
2
d(v)/2�.

Hence we have θ = arctan
(

1/
√
2

(
√
2�d(v)/2	−1/

√
2

)
> 1/d(v), by the MacLaurin series

expansion of arctan [12]. Observe that any edge e that intersects some grid Av,
where v does not correspond to any end vertex of e, must be an m-edge. We can
avoid any such intersection by choosing for each vertex u, a rectangular grid of
size (2
d(u′)/2�+ 1)× (2
d(u′′)/2�+ 1) (instead of Au), where u′ (respectively,
u′′) is the vertex with the largest degree over all the vertices on the horizontal
(respectively, vertical) line through u. For example, see the gray rectangles in
Figure 5(d). However, the angular resolution increases to 1/Δ.

Theorem 1. Every n-vertex maximal planar graph admits a 2-bend polyline
drawing Γ with angular resolution at least 1/d(v) for each vertex v, and area
at most (3n + 4W − 4) × (3n + 4H − 4), where W +H ≤ (4n − 2Δ0 − 10)/3.
Within the same area, we can assign each vertex v in Γ a bounding box of size
(2
d(v)/2�+ 1) × (2
d(v)/2� + 1) that only intersect with the edges incident to
v, but the angular resolution increases to 1/Δ.

4 Trade-Offs between Angular Resolution and Area

In this section we show that one can significantly improve the area with an small
expense of angular resolution. We consider the following two scenarios.

Angular Resolution is γ/d(v), where γ ∈ [0.8, 1]: Observe that the
bottom-left quadrants of Av (with respect to the center C(v)) has at most
2
d(v)/2� − 1 ≥ dm(v) boundary points, which are sufficient to route the m-
edges, and sometimes necessary. However, the boundary points that are available
to route the l-edges (similarly, r-edges) are significantly more than necessary, e.g.,
the number of boundary points to route the l-edges is 3
d(v)/2� − 2 (lying on
the bottom-right quadrants and on the right-boundary of Av). Hence assigning
a grid of size (
d(v)/2�+1+ �d(v)/4�)× (
d(v)/2�+1+ �d(v)/4�) to each vertex
v would be sufficient for routing the edges.

Observe that for each vertex v, the increase in width is at most (
d(v)/2� +
�d(v)/4�) ≤ (3d(v)/4+ 1). Since one column may contain multiple vertices, and

Trade-Offs in Planar Polyline Drawings 315

(e)

wl+1

wr−1

vk

lvk

l′vk

(a) (b) (d)

vk = (0, 0)

(−d(v),−h)

d(v)

h

(c)

C(v)

θ
d(v)/2�

d(v)/2�

d(v)/4�
C(v)

d(v)/2�
θ

αd(v)
C(v)

d(v)/2� θ

Fig. 6. Illustration for angular resolution

the degree of each vertex is at least three, we are overcounting the increase for
(n−W − 2) vertices. The amount of over computation for each such vertex v′ is
at least
3d(v′)/4�+ 1 ≥ 3. Consequently, the total increase in the width in the

Expansion phase is now bounded by (
∑W+2

i=1 (3d(vi)/4 + 1)) − 3(n −W − 2) ≤
3n/2+ 4W − 1. Similarly, the increase in height is at most 3n/2+ 4H +1. Since
W +H ≤ (4n−2Δ0−10)/3, the area can be at most (3n/2+5(2n−Δ0−5)/3+
5)2 ≤ 23.37n2. The number of bends remains the same, but the minimum angle
θ is now at least 0.8/d(v), which is now determined by two consecutive points
along the bottom-right corner, as shown in Figure 6(b).

We can parametrize the grid size with a parameter α, i.e., consider the grid
assigned to v as (
d(v)/2�+1+αd(v))× (
d(v)/2�+1+αd(v)), where α ≥ 1/4.

Then the increase in width is at most (
∑W+2

i=1 ((α+1/2)d(vi) + 1))− 3(n−W −
2) ≤ (6(α + 1/2)n − 3n + 4W + 8) ≤ (6αn + 4W + 8). Similarly, the increase
in height is at most (6αn + 4H + 8), respectively. Hence the area is at most
(6αn+4(W +H)/2+ 10)2 ≤ (6αn+8n/3+ 10)2 ≈ (6α+8/3)2n2. The angular

resolution is at least
α/
√

α2+1/4

d(v)
√

α2+1/4
> α

d(v)(α2+1/4) , as illustrated in Figure 6(c).

Theorem 2. Every n-vertex maximal planar graph admits a 2-bend polyline
drawing with angular resolution α

d(v)(α2+1/4) for each vertex v, and area (6αn+

4W+10)×(6αn+4H+10). Here α ∈ [1/4, 1/2], and W+H ≤ (4n−2Δ0−10)/3.

Angular Resolution is γ/d(v), where γ ∈ [0.3, 0.5]: Recall that the
new grid lines in the Expansion phase are inserted such that each vertex v has
h = βvd(v) free grid lines, where βv ≥ 1/d(v), in each of the four sides (above,
below, left, right) around v, i.e., C(v) is at the center of a free integer grid Av of
size h×h. As in the Expansion phase, let Sv be the ordered set of horizontal free
grid lines along with the horizontal line through v, and let S′

v be the ordered set
of vertical free grid lines along with the vertical line through v. We now show
that these free grids are sufficient for routing the l-, r- and m-edges.

Routing m-edges: Let lvk and l′vk be the grid lines that are immedi-
ately below and to the left of Svk and S′

vk
, respectively. For each w ∈

{wl+1, . . . , wr−1}, we now extend a line segment with slope +1 from C(w)
until we hit either lvk or l′vk . Let B = {b(wl+1), . . . , b(wr−1)} be the set
of points on lvk and l′vk reached by these extensions. We now extend these
extensions further to reach C(vk), as follows:

316 S. Durocher and D. Mondal

- If the number of points of B that lie on lvk is z, where z ≤ h, then we route
the extensions of lvk through z consecutive grid points lying on the left
side of Avk immediately below L(vk). We then route the extensions on l′vk
through the next consecutive grid points along the same vertical line. Since
there are at most dm(vk) m-edges, we need at most d(v) consecutive grid
points below L(vk). Figure 6(d) illustrates such a scenario, where h = 2.

- If the number of points of B that lie on l′vk is at most z′, where z′ ≤ h,
then the drawing is symmetric to the case when z < h.

- Otherwise, both lvk and l′vk contains more than h extensions. In this case
min{z, z′} > h, and hence max{z, z′} ≤ dm(v) − h. We first extend the
extensions on lvk to the grid points that lie consecutively to the left of
Av (on the first line of Svk). We then extend the extensions on l′vk to the
grid points that lie consecutively below of Av (on the last line of S′

vk
).

Finally, we connect all these new extensions directly to C(vk). Note that
the maximum horizontal (respectively, vertical) distance between C(v) and
a bend point on lvk (respectively, l′vk) is at most (dm(v)− h) + h ≤ d(v).

Routing l-edges: Let u1, u2, . . . , uq be the vertices in top-to-bottom order
that are incident to D(vk) by incoming l-edges. Let � be the nearest vertical
grid line to the right of S′

v, and remove the parts of these l-edges that lie
in between D(vk) and � (except for the l-edge incident to C(vk)). We then
connect these extensions to the q consecutive grid points on the first line
of S′

vk
that lie immediately below the top-right corner of Av. Finally, we

connect all these new extensions directly to C(vk).
Routing r-edges: This scenario is symmetric for routing l-edges.

Angular Resolution and Area: In all the cases, the smallest angle θ at any
vertex v is equal to the angle determined by the points (−d(v),−h) and (−d(v)+
1,−h) at C(v) = (0, 0), as illustrated in Figure 6(e). Here the angular resolution
is at least βv

d(v)(1+β2
v)
, where 1/d(v) ≤ βv ≤ 1, and the area is (6β + 2/3)2n2. We

omit the details due to space constraints.

Theorem 3. Every n-vertex maximal planar graph admits a 2-bend polyline
drawing with angular resolution β

d(v)(1+β2) for each vertex v, and area (6nβ +

W + 2)× (6nβ +H + 2). Here β ∈ [1/3, 1], and W +H ≤ (4n− 2Δ0 − 10)/3.

5 Conclusion

In this paper we have given the first smooth trade-off between the area and
angular resolution for 2-bend polyline drawings of any given planar graph. Our
algorithm dominates all the previous 2-bend polyline drawing algorithms except
Duncan and Kobourov’s algorithm [10], which uses 1-bend per edge and dom-
inates our algorithm when the angular resolution is in the interval [0.38/d(v),
0.5/d(v)]. Similar to the previously known polyline drawing algorithms, one can
implement our algorithm using standard techniques [6] such that the drawings
are computed in linear time.

Trade-Offs in Planar Polyline Drawings 317

A natural open question is whether Duncan and Kobourov’s algorithm could
be modified (allowing 2-bends per edge) to achieve a better trade-off. Finding
tight lower bounds would also be very interesting. Finally, we hope that the re-
sults in this paper will encourage the study of smooth trade-offs among different
aesthetic criteria for other styles of drawing graphs.

References

1. Biedl, T.C., Kaufmann, M.: Area-efficient static and incremental graph drawings.
In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 37–52.
Springer, Heidelberg (1997)

2. Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane
graphs. Algorithmica 47(4), 399–420 (2007)

3. Bonichon, N., Le Saëc, B., Mosbah, M.: Wagner’s theorem on realizers. In: Wid-
mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 1043–1053. Springer, Heidelberg (2002)

4. Brandenburg, F.J.: Drawing planar graphs on 8
9
n2 area. Electronic Notes in Dis-

crete Mathematics 31, 37–40 (2008)
5. Cheng, C.C., Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Drawing planar

graphs with circular arcs. Discrete & Computational Geometry 25(3), 405–418
(2001)

6. Chrobak, M., Payne, T.: A linear-time algorithm for drawing planar graphs. Infor-
mation Processing Letters 54, 241–246 (1995)

7. CircuitLogix, https://www.circuitlogix.com/ (accessed June 03, 2014)
8. ConceptDraw: http://www.conceptdraw.com/ (accessed June 03, 2014)
9. De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.

Combinatorica 10(1), 41–51 (1990)
10. Duncan, C.A., Kobourov, S.G.: Polar coordinate drawing of planar graphs with

good angular resolution. Journal of Graph Algorithms and Applications 7(4), 311–
333 (2003)

11. Durocher, S., Mondal, D.: On balanced +-contact representations. In: Proceedings
of GD. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 143–154.
Springer, Heidelberg (2013)

12. Goodrich, M.T., Wagner, C.G.: A framework for drawing planar graphs with curves
and polylines. Journal of Algorithms 37(2), 399–421 (2000)

13. Gutwenger, C., Mutzel, P.: Planar polyline drawings with good angular resolu-
tion. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer,
Heidelberg (1999)

14. Hong, S.H., Mader, M.: Generalizing the shift method for rectangular shaped ver-
tices with visibility constraints. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008.
LNCS, vol. 5417, pp. 278–283. Springer, Heidelberg (2009)

15. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1),
4–32 (1996)

16. Kurowski, M.: Planar straight-line drawing in an o(n) × o(n) grid with angular
resolution ω(1/n). In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.)
SOFSEM 2005. LNCS, vol. 3381, pp. 250–258. Springer, Heidelberg (2005)

17. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of ACM-
SIAM SODA, January 22-24, pp. 138–148. ACM (1990)

https://www.circuitlogix.com/
http://www.conceptdraw.com/

318 S. Durocher and D. Mondal

18. SmartDraw Software, LLC, http://www.smartdraw.com/ (accessed June 03, 2014)
19. Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability

of diagrams. IEEE Transactions on Systems, Man and Cybernetics 18(1), 61–79
(1988)

20. Zhang, H.: Planar polyline drawings via graph transformations. Algorithmica 57(2),
381–397 (2010)

21. Zhang, H., He, X.: Canonical ordering trees and their applications in graph drawing.
Discrete & Computational Geometry 33(2), 321–344 (2005)

http://www.smartdraw.com/

Stress-Minimizing Orthogonal Layout

of Data Flow Diagrams with Ports

Ulf Rüegg1, Steve Kieffer2,
Tim Dwyer2, Kim Marriott2, and Michael Wybrow2

1 Department of Computer Science, Kiel University, Kiel, Germany
uru@informatik.uni-kiel.de

2 Faculty of Information Technology, Monash University, NICTA Victoria, Australia
{Steve.Kieffer,Tim.Dwyer,Kim.Marriott,Michael.Wybrow}@monash.edu

Abstract. We present a fundamentally different approach to orthogonal
layout of data flow diagrams with ports. This is based on extending con-
strained stress majorization to cater for ports and flow layout. Because
we are minimizing stress we are able to better display global structure, as
measured by several criteria such as stress, edge-length variance, and as-
pect ratio. Compared to the layered approach, our layouts tend to exhibit
symmetries, and eliminate inter-layer whitespace, making the diagrams
more compact.

Keywords: actor models, data flow diagrams, orthogonal routing,
layered layout, stress majorization, force-directed layout.

1 Introduction

Actor-oriented data flow diagrams are commonly used to model movement of
data between components in complex hardware and software systems [13]. They
are provided in many widely used modeling tools including LabVIEW (National
Instruments Corporation), Simulink (The MathWorks, Inc.), EHANDBOOK
(ETAS), SCADE (Esterel Technologies), and Ptolemy (UC Berkeley). Complex
systems are modeled graphically by composing actors, i. e., reusable block dia-
grams representing well-defined pieces of functionality. Actors can be nested—
i. e., composed of other actors—or atomic. Fig. 1a shows an example of a data
flow diagram with four nested actors. Data flow is shown by directed edges from
the source port where the data is constructed to the target port where the data
is consumed. By convention the edges are drawn orthogonally and the ports are
fixed in position on the actors’ boundaries. Automatic layout of data flow di-
agrams is important: Klauske and Dziobek [12] found that without automatic
layout about 30% of a modeler’s time is spent manually arranging elements.

Current approaches to automatic layout of data flow diagram are modifica-
tions of the well-known Sugiyama layer-based layout algorithm [18] extended to
handle ports and orthogonal edges. In particular Schulze et al. [16] have spent
many years developing specialised layout algorithms that are used, for instance,
in the EHANDBOOK and Ptolemy tools. However, their approach has a number

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 319–330, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

320 U. Rüegg et al.

(a) Layout with layer-based algorithm KLay Layered by Schulze et al.

(b) Layout with the CoDaFlow algorithm presented here

Fig. 1. Two layouts of the same diagram. The result of our method, shown in (b), has
less stress, lower edge length variance, less area, and better aspect ratio.

of drawbacks. First, it employs a strict layering which may result in layouts with
poor aspect ratio and poor compactness, especially when large nodes are present.
Furthermore, the diagrams often have long edges and the underlying structure
and symmetries may not be revealed. A second problem with the approach of
Schulze et al. is that it uses a recursive bottom-up strategy to compute a layout
for nested actors independent of the context in which they appear. This can lead
to bad arrangements with poor aspect ratio and a lack of compactness.

This paper presents a fundamentally different approach to the layout of actor-
oriented data flow diagrams designed to overcome these problems. A comparison
of our new approach with standard layer-based algorithm KLay Layered is shown
in Fig. 1. Our starting point is constrained stress majorization [3]. Minimizing
stress has been shown to improve readability by giving a better understanding
of important graph structure such as cliques, chains and cut nodes [4]. However,
stress-minimization typically results in a quite “organic” look with nodes placed
freely in the plane that is quite different to the very “schematic” arrangement
involving orthogonal edges, a left-to-right “flow” of directed edges, and precise
alignment of node ports that practitioners prefer.

The main technical contribution of this paper is to extend constrained stress
majorization to handle the layout conventions of data flow diagrams. In particu-
lar we: (1) augment the P -stress [7] model to handle ports that are constrained
to node boundaries but are either allowed to float subject to ordering constraints

Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with Ports 321

or else are fixed to a given node boundary side, and (2) extend Adaptive Con-
strained Alignment (ACA) [10] for achieving grid-like layout to handle directed
edges, orthogonal routing, ports, and widely varying node dimensions.

An empirical evaluation of the new approach (Sect. 4) shows it produces lay-
outs of comparable quality to the method of Schulze et al. but with a different
trade-off between aesthetic criteria. The layouts have more uniform edge length,
better aspect ratio, and are more compact but have slightly more edge crossings
and bends. Furthermore, our method is more flexible and requires far less im-
plementation effort. The Schulze et al. approach took a team of developers and
researchers several years to implement by extensively augmenting the Sugiyama
method. While their infrastructure allows a flexible configuration of the existing
functionality [16], it is very restrictive and brittle when it comes to extensions
that affect multiple phases of the algorithm. The method described in this paper
took about two months to implement and is also more extendible since it is built
on modular components with well-defined work flows and no dependencies on
each other.

Related Work. The most closely related work is the series of papers by
Schulze et al. that show how to extend the layer-based approach to handle the
layout requirements of data flow diagrams [16,17]. Their work presents several
improvements over previous methods to reduce edge bend points and crossings
in the presence of ports. While the five main phases (classically three) of the
layer-based approach are already complex, they introduce between 10 and 20
intermediate processes in order to address additional requirements. The authors
admit that their approach faces problems with unnecessary crossings of inter-
hierarchy edges as they layout compound graphs bottom-up, i. e., processing the
most nested actor diagrams first. Related work in the context of the layer-based
approach has been studied thoroughly in [16,17]. Chimani et al. present methods
to consider ports and their constraints during crossing minimization within the
upward planarization approach [2]. While the number of crossings is significantly
reduced, the approach eventually induces a layering, suffering from the same is-
sues as above. There is no evaluation with real-world examples. Techniques from
the area of VLSI design and other approaches that specifically target compound
graphs have been discussed before and found to be insufficient to fulfil the layout
requirements for data flow diagrams [17], especially due to lacking support for
different port constraints.

2 CoDaFlow – The Algorithm

Data flow diagrams can be modeled as directed graphs G = (V,E, P, π) where
nodes or vertices v ∈ V are connected by edges e ∈ E ⊆ P × P through ports
p ∈ P—certain positions on a node’s perimeter—and π : P → V maps each port
p to the parent node π(p) to which it belongs. An edge e = (p1, p2) is directed,
outgoing from port p1 and incoming to p2. A hyperedge is a set of edges where
every pair of edges shares a common port.

322 U. Rüegg et al.

(a) After Node Positioning (b) After Node Alignment (c) After Edge Routing

Fig. 2. The results of pipeline stages (1), (2), (3) are shown in (a), (b), (c), respectively.

To better show flow it is preferable for sources of edges to be to the left of
their targets and by convention edges are routed in an orthogonal fashion. Ports
can—depending on the application—be restricted by certain constraints, e. g.,
all ports with incoming edges should be placed on the left border of the node.
Spönemann et al. define five types of port constraints [17], ranging from ports
being free to float arbitrarily on a node’s perimeter, to ports having well-defined
positions relative to nodes. Nodes that contain nested diagrams, i. e., child nodes,
are referred to as compound or nested nodes (as opposed to atomic nodes); a
graph that contains compound nodes is a compound graph. We refer to the ports
of a compound node as hierarchical ports. These can be used to connect atomic
nodes inside a compound node to atomic nodes on the outside.

The main additional requirements for layout of data flow diagrams on top
of standard graph drawing conventions are therefore [17]: (R1) clearly visible
flow, (R2) ports and port constraints, (R3) compound nodes, (R4) hierarchical
ports, (R5) orthogonal edge routing, and (R6) orthogonalized node positions to
emphasize R1 using horizontal edges.

The starting point for our approach is constrained stress majorization [3]. This
extends the original stress majorization model [9] to support separation con-
straints that can be used to declaratively enforce node alignment, non-overlap
of nodes, flow in directed graphs, and to cluster nodes inside non-overlapping
regions. Brandes et al. [1] provide one method to orthogonalise an existing layout
based on the topology-shape-metrics approach, but in order to handle require-
ments R1–6 we instead use the heuristic approach of Kieffer et al. [10] to apply
alignment constraints within the stress-based model.

Our Constrained Data Flow (CoDaFlow) layout algorithm is a pipeline with
three stages:

1. Constrained Stress-Minimizing Node Positioning

2. Grid-Like Node Alignment

3. Orthogonal Edge Routing

The intermediate results of this pipeline are depicted in Fig. 2. Single stages can
be omitted, e. g., when no edge routing is required or initial node positions are
given. In this section we restrict our attention to flat graphs, i. e., those without
compound nodes, while Sect. 3 extends the ideas to compound graphs.

Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with Ports 323

(a) (b)

(c) (d)

Fig. 3. Awareness of ports is important to achieve good node positioning. (a) and (c)
show internal representations of what is passed to the layout algorithm, (b) and (c)
show the resulting drawings. (a) is unaware of ports and yields node positions that
introduce an edge crossing in (b). In (c) ports are considered and the unnecessary
crossing is avoided in (d). Note, however, while the chance is higher that (c) is cross
free, it is not guaranteed.

2.1 Constrained Stress-Minimizing Node Positioning

Traditional stress models for graph layout expect a simple graph without ports,
so a key idea in order to handle data flow diagrams is to create a small node
to represent each port, called a port node or port dummy, as in Fig. 3c. If D is
the set of all these, and δ : P → D maps each port to the dummy node that
represents it, we construct a new graph G′ = (V ′, E′) where V ′ = V ∪D, and

E′ = {(δ(p1), δ(p2)) : (p1, p2) ∈ E} ∪ {(π(p), δ(p)) : p ∈ P}

includes one edge representing each edge of the original graph, and an edge
connecting each port dummy to its parent node. We refer to the v ∈ V as proper
nodes.

Depending on the specified port constraints (R2) we restrict the position of
each port dummy δ(p) relative to its parent node π(p) using separation con-
straints. For instance, for a rigid relative position we use one separation con-
straint in each dimension, whereas we retain only the x-constraint if δ(p) need
only appear on the left or right side of π(p). The use of port nodes allows the
constrained stress-minimizing layout algorithm to untangle the graph while be-
ing aware of relative port positions, resulting in fewer crossings, as illustrated in
Fig. 3, and a better overall placement of nodes.

Our constrained stress-based layout uses the methods of Dwyer et al. [3] to
minimize the P-stress function [7], a variant of stress [9] that does not penalise
unconnected nodes being more than their desired distance apart:

∑
u<v∈V ′

wuv

(
(�puv − b(u, v))

+
)2

+
∑

(u,v)∈E′
�−2
(
(b(u, v)− �)

+
)2

(1)

324 U. Rüegg et al.

where b(u, v) is the Euclidean distance between the boundaries of nodes u and v
along the straight line connecting their centres, puv the number of edges on the
shortest path between nodes u and v, � an ideal edge length, wuv = (�puv)

−2,
and (z)+ = max(z, 0).

Ideal Edge Lengths. Instead of using a single ideal edge length � as in (1),
which can result in cluttered areas where multiple nodes are highly connected,
we may assign custom edge lengths �uv, choosing larger values to separate such
nodes. In Fig. 3 the ideal edge lengths of the two outgoing edges of the Front-
DropQueue actor are chosen slightly larger than for the two other edges.

The length of the edge (π(p), δ(p)) connecting a port dummy to its parent
node is set to the exact distance from the node’s center to the port’s center.

Emphasizing Flow. A common requirement for data flow diagrams is that
the majority of edges point in the same direction (here left-to-right). For this we
introduce separation (flow) constraints for edges (u, v) of the form xu + g ≤ xv,
where g > 0 is a pre-defined spacing value, ensuring that u is placed left of v.

Special care has to be taken for cycles, as they would introduce contradicting
constraints. We experimented with different strategies to handle this. 1) We
introduced the constraints even though they were contradicting (and let the
solver choose which one(s) to reject); 2) We did not generate any flow constraints
for edges that are part of a strongly connected component; 3) We employed a
greedy heuristic by Eades et al. [8] (known from the layer-based approach) to
find the minimal feedback arc set, and withheld flow constraints for the edges in
this set. Our experiments showed that the third strategy yields the best results.

Execution. We perform three consecutive layout runs, iteratively adding con-
straints: 1) Only port constraints are applied, allowing the graph to untangle and
expose symmetry; 2) Flow constraints are added, but overlaps are still allowed
so that nodes can float past each other, swapping positions where necessary; 3)
Non-overlap constraints are applied to separate all nodes as desired.

2.2 Grid-Like Node Alignment

While yielding a good distribution of nodes overall, stress-minimization tends to
produce an organic layout with paths splayed at all angles, which is inappropriate
for data flow diagrams. The layout needs to be orthogonalized, i. e., connected
nodes brought into alignment with one another so that where possible edges
form straight horizontal lines, visually emphasizing horizontal flow.

For this purpose we apply the Adaptive Constrained Alignment (ACA) algo-
rithm [10]. Since it respects existing flow constraints, it only attempts to align
edges horizontally. However, our replacement of the given graph G by the auxil-
iary graph G′ with port nodes tends to subvert the original intentions of ACA,
so it requires some adaptation. Whereas the original ACA algorithm expected at

Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with Ports 325

(a) Proper nodes con-
nected via port nodes

(b) Ports aligned by
ACA

Fig. 4. In the new port model, two
proper nodes may be connected to the
same side of another via ports, as in
(a). The systematic use of offset align-
ments between port nodes and their
parents, i. e., constraints of the form
yδ(p)+ δ = yπ(p), δ �= 0 as shown in (b),
creates a risk of node-edge and node-
node overlaps far exceeding what was
anticipated with the original ACA algo-
rithm, as could have occurred here had
node B been as tall as node C, for ex-
ample. We have extended ACA to prop-
erly handle such cases.

most one proper node to be aligned with another in a given compass direction,
in our case (with ports) it will often be desirable to have more. See Fig. 4.

In order to adapt ACA to the new port model we made it possible to ignore
certain edges—namely those connecting port nodes to their parents—and also
generalised its overlap prevention methods significantly. Instead of the simple
procedure for preventing multiple alignments in a single compass direction [10],
we use the VPSC solver [5] for trial satisfaction of existing constraints, the new
potential alignment, as well as non-overlap constraints between all nodes and a
dummy node representing the potentially aligned edge.

Thus, while the ACA process continues to merely centre-align nodes—in this
case port nodes d ∈ D—we have allowed it to in effect align several proper nodes
v1, . . . , vk ∈ V with a single one u ∈ V at port positions as in Fig. 4, meeting
the requirement R6 of data flow diagrams.

2.3 Edge Routing

We now consider node positions to be fixed, and use the methods of Wybrow et
al. [19] to route the edges orthogonally. We return from G′ to G, using the final
positions of the port nodes d ∈ D to set routing pins, fixed port positions on the
nodes v ∈ V where the edges should connect.

3 Handling Compound Graphs

Graphs containing compound nodes can be handled using several different strate-
gies. Schulze et al. employ a bottom-up strategy, treating every compound node
as a separate graph, starting with the inner-most nodes. This allows application
of different layout algorithms to each subgraph which reduces the size of the
layout problem, and possibly the overall execution time. They remark, however,
that the procedure can yield unsatisfying layouts since the surroundings of a
compound node are not known; see Fig. 5a for an example where two unnec-
essary crossings are created inside the TM controllers actor and two separate

326 U. Rüegg et al.

(a) Layout with layer-based methods by Schulze et al.

(b) Layout with the CoDaFlow algorithm presented here.

Fig. 5. Two layouts of the same Ptolemy diagram. While two distinct networks are
interleaved in (a), they are clearly separated and the two crossings are avoided in (b).

networks are interleaved. A global approach would solve this issue, positioning
all compound nodes along with their children at the same time.

Even though we focus our attention on a global approach in what follows, our
methods are flexible in that we may choose between a bottom-up and a global
strategy in each stage of our pipeline.

A compound graph G is transformed into G′ as above, which is used to con-
struct a flat graph G′′ = (A,E′′) where A ⊆ V ′ is the set of atomic nodes and
their port nodes, and E′′ = U ∪H with

U ={(δ(p1), δ(pn)) : π(p1), π(pn) ∈ A}
H ={(δ(p1), δ(pn)) : ∃(p1, p2), (p2, p3), . . . , (pn−2, pn−1), (pn−1, pn) ∈ E :

π(p1), π(pn) ∈ A ∧ π(p2), . . . , π(pn−1) ∈ V \A}

Intuitively, compound nodes are neglected along with their ports and only
atomic nodes are retained. Sequences of edges that span hierarchy boundaries,
e. g., the three edges between Sampler2 and Controller2 in Fig. 5b, are replaced
by a single edge that directly connects the two atomic nodes. Note that for
hyperedges multiple edges have to be created. Cluster constraints [3] guarantee
that children of compound nodes are kept close together and are not interleaved
with any other nodes. For instance, the CompositeActor in Fig. 5b yields a cluster
containing Controller1 and Controller2.

Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with Ports 327

To return to G, the clusters’ dimensions, i. e., their rectangular bounding
boxes, are applied to the compound nodes in V \A. The edges in H are split into
segments s1, . . . , sn based on the crossing points ci with clusters. The route of
si is applied to the corresponding edge e ∈ E and the ci determine the positions
of the hierarchical ports.

4 Evaluation and Discussion

We evaluate our approach on a set of data flow diagrams that ship with the
Ptolemy project1, comparing with the KLay Layered algorithm of Schulze et al.
Diagrams were chosen to be roughly the size Klauske found to be typical for
real-world Simulink models from the automotive industry [11] (about 20 nodes
and 30 edges per hierarchy level).

Metrics. Well established metrics to assess the quality of a drawing are edge
crossings and edge bends [14], two metrics directly optimized by the layer-based
approach. More recently, stress and edge length variance were found to have a
significant impact on the readability of a drawing [4]. Additionally, we regard
compactness in terms of aspect ratio and area.

So that comparisons of edge length and of layout area can be meaningful, we
set the same value for KLay Layered’s inter-layer distance and CoDaFlow’s ideal
separation between nodes.

The P -stress of a given (already layouted) diagram depends on the choice
of the ideal edge length � in (1), and the canonical choice �̄ is that where the
function takes its global minimum. If L is a list of all the individual ideal lengths
�uv = b(u, v)/puv, then �̄ is equal to the contraharmonic mean C(Lj) (i. e., the
weighted arithmetic mean in which the weights equal the values) over a certain
sublist Lj ⊆ L. Namely, if LE = 〈�uv : (u, v) ∈ E〉 and L\LE = 〈�1 ≤ �2 ≤ · · · ≤
�ν〉, then Lj = LE ∪ 〈�1, �2, . . . , �j〉 for some 0 ≤ j ≤ ν. Since ν is finite, we can
compute each C(Lj) and take �̄ to be that at which the P -stress is minimized,
cf. [15].

Results. Table 1 and 2 show detailed results for layouts created by CoDaFlow
and KLay Layered. We used two variations of the Ptolemy diagrams: small flat
diagrams and compound diagrams (cf. [15] for further examples).

For flat diagrams CoDaFlow shows a better performance on stress, average
edge length, and variance in edge length. CoDaFlow produced slightly more
crossings, bends per edge, and slightly increased area.

More interesting are the results for the compound diagrams, which show more
significant improvements. On average, CoDaFlow’s diagram area was 88% that
of KLay Layered, and edge length variance was only 29%. Also, the average
aspect ratio shifts closer to that of monitors and sheets of paper. However, there
is an increase in crossings. Currently our approach does not consider crossings

1 http://ptolemy.eecs.berkeley.edu/

http://ptolemy.eecs.berkeley.edu/

328 U. Rüegg et al.

Table 1. Evaluations of 110 flat diagrams with 10–23 nodes (9–30 edges) and 10
compound diagrams with 12–38 nodes (12–52 edges). Figures for stress, average edge
length, variance in edge length, and area are given as the ratio of CoDaFlow divided by
KLay Layered. Values below 1 indicate a better performance of CoDaFlow. An average
value shows the general tendency while minimal and maximal values show the best and
worst performance.

Stress EL Variance EL Average Area
Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Comp. 0.27 0.75 0.97 0.11 0.29 0.61 0.39 0.57 0.79 0.50 0.88 1.28

Flat 0.34 0.77 1.13 0.03 0.60 1.92 0.34 0.84 1.10 0.62 1.11 2.01

Table 2. Results for the metrics aspect ratio, crossings, and average bends per edge.
As opposed to Table 1, figures are absolute values.

Aspect Ratio Crossings Bends/Edge
Min Avg Max Min Avg Max Min Avg Max

Comp.
CoDaFlow 1.27 1.83 2.51 0.00 3.40 10.0 0.92 1.25 1.56
KLay 1.51 2.76 4.94 0.00 1.20 6.00 0.68 0.97 1.22

Flat
CoDaFlow 0.32 2.47 5.96 0.00 1.25 11.0 0.42 1.16 2.31
KLay 0.37 2.77 9.00 0.00 1.02 7.00 0.22 1.04 1.73

at all, thus the increased average. As can be seen in Fig. 1, the small number of
additional crossings are not ruinous to diagram readability, and they could be
easily avoided by introducing further constraints, as discussed in Sect. 5.

As seen in Fig. 6, the current CoDaFlow implementation performs signifi-
cantly slower than KLay Layered, but it still finishes in about half a second even
on a larger diagram of 60 nodes. There is room for speedups, for instance, by
avoiding re-initialization of internal data structures between pipeline stages. In
addition, we plan to improve the incrementality of constraint solving in the ACA
stage, as well as performing faster satisfiability checks wherever full projections
are not required.

Compared to KLay Layered our approach is both easier to understand and
implement, and more flexible in its application.

In addition to the five main phases of KLay Layered, about 10 to 20 interme-
diate processes of low to medium complexity are used during each layout run.
Dependencies between these units have to be carefully managed and the phases
have to be executed in strict order, e. g., the edge routing phase requires all
previous phases.

CoDaFlow optimizes only one goal function and addresses the requirements
of data flow diagrams by successively adding constraints to the optimization
process. While we divide the algorithm into multiple stages, each stage merely
introduces the required constraints. CoDaFlow’s stages can be used indepen-
dently of each other, e. g., to improve existing layouts. Also, users can fine-tune
generated drawings using interactive layout [6] methods.

Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with Ports 329

1

20

400

10 23 35 47 60

Ex
ec

ut
io

n
Ti

m
e

[m
s]

(a) Overall

1

201

411

21 34 40 57 61

Ex
ec

ut
io

n
Ti

m
e

[m
s]

(b) Pipeline Stages

Fig. 6. Execution time plotted against the number of nodes n. For each n 10 graphs
were generated randomly with an average of 1.5 outgoing edges per node. (a) Overall
execution time of KLay Layered (solid line) and CoDaFlow (dashed line). (b) Execution
time of the pipeline steps: Untangling (solid line), Alignment (dashed line), and Edge
Routing (dotted line). Timings were conducted on an Intel i7 2.0 GHz with 8 GB RAM.

5 Conclusions

We present a novel approach to layout of data flow diagrams based on stress-
minimization. We show that it is superior to previous approaches with respect
to several diagram aesthetics. Also, it is more flexible and easier to implement.2

The approach can easily be extended to further diagram types with similar
drawing requirements, such as the Systems Biology Graphical Notation (SBGN).
To allow interactive browsing of larger diagram instances, however, execution
time has to be reduced, e. g., by removing overhead from both the implemen-
tation and the pipeline steps. Avoiding the crossing in Fig. 3 is currently not
guaranteed. We plan to detect such obvious cases via ordering constraints. In
addition to ACA, the use of topological improvement strategies [7] could help to
reduce the number of edge bends further where edges are almost straight.

Acknowledgements. Ulf Rüegg was funded by a doctoral scholarship (FIT-
weltweit) of the German Academic Exchange Service. Michael Wybrow was
supported by the Australian Research Council (ARC) Discovery Project grant
DP110101390.

References

1. Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D.: Sketch-driven orthog-
onal graph drawing. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS,
vol. 2528, pp. 1–11. Springer, Heidelberg (2002)

2. Chimani, M., Gutwenger, C., Mutzel, P., Spönemann, M., Wong, H.M.: Crossing
minimization and layouts of directed hypergraphs with port constraints. In: Bran-
des, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 141–152. Springer,
Heidelberg (2011)

2 Author Ulf Rüegg has worked on both KLay Layered and CoDaFlow.

330 U. Rüegg et al.

3. Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: An incremental procedure for
separation constraint layout of graphs. IEEE Transactions on Visualization and
Computer Graphics 12(5), 821–828 (2006)

4. Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G., North, C.:
A comparison of user-generated and automatic graph layouts. IEEE Transactions
on Visualization and Computer Graphics 15(6), 961–968 (2009)

5. Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P.,
Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg
(2006)

6. Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: A constraint-based network di-
agram authoring tool. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS,
vol. 5417, pp. 420–431. Springer, Heidelberg (2009)

7. Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph lay-
out. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 230–241.
Springer, Heidelberg (2009)

8. Eades, P., Lin, X., Smyth, W.F.: A fast and effective heuristic for the feedback arc
set problem. Information Processing Letters 47(6), 319–323 (1993)

9. Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)

10. Kieffer, S., Dwyer, T., Marriott, K., Wybrow, M.: Incremental grid-like layout
using soft and hard constraints. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 448–459. Springer, Heidelberg (2013)

11. Klauske, L.K.: Effizientes Bearbeiten von Simulink Modellen mit Hilfe eines spez-
ifisch angepassten Layoutalgorithmus. Ph.D. thesis, Technische Universität Berlin
(2012)

12. Klauske, L.K., Dziobek, C.: Improving modeling usability: Automated layout gen-
eration for Simulink. In: Proceedings of the MathWorks Automotive Conference,
MAC 2010 (2010)

13. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers
(JCSC) 12(3), 231–260 (2003)

14. Purchase, H.C.: Which aesthetic has the greatest effect on human understand-
ing? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer,
Heidelberg (1997)

15. Rüegg, U., Kieffer, S., Dwyer, T., Marriott, K., Wybrow, M.: Stress-minimizing or-
thogonal layout of data flow diagrams with ports. Technical report (August 2014),
http://arxiv.org/abs/1408.4626

16. Schulze, C.D., Spönemann, M., von Hanxleden, R.: Drawing layered graphs with
port constraints. Journal of Visual Languages and Computing, Special Issue on
Diagram Aesthetics and Layout 25(2), 89–106 (2014)

17. Spönemann, M., Fuhrmann, H., von Hanxleden, R., Mutzel, P.: Port constraints
in hierarchical layout of data flow diagrams. In: Eppstein, D., Gansner, E.R. (eds.)
GD 2009. LNCS, vol. 5849, pp. 135–146. Springer, Heidelberg (2010)

18. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchi-
cal system structures. IEEE Transactions on Systems, Man and Cybernetics 11(2),
109–125 (1981)

19. Wybrow, M., Marriott, K., Stuckey, P.J.: Orthogonal connector routing. In: Epp-
stein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 219–231. Springer,
Heidelberg (2010)

http://arxiv.org/abs/1408.4626

Planar Octilinear Drawings
with One Bend Per Edge�

Michael A. Bekos1, Martin Gronemann2, Michael Kaufmann1, and Robert Krug1

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
{bekos,mk,krug}@informatik.uni-tuebingen.de

2 Institut für Informatik, Universität zu Köln, Germany
gronemann@informatik.uni-koeln.de

Abstract. In octilinear drawings of planar graphs, every edge is drawn as an
alternating sequence of horizontal, vertical and diagonal line-segments. In this
paper, we study octilinear drawings of low edge complexity, i.e., with few bends
per edge. A k-planar graph is a planar graph in which each vertex has degree less
or equal to k. In particular, we prove that every 4-planar graph admits a planar
octilinear drawing with at most one bend per edge on an integer grid of size
O(n2)×O(n). For 5-planar graphs, we prove that one bend per edge still suffices
in order to construct planar octilinear drawings, but in super-polynomial area.
However, for 6-planar graphs we give a class of graphs whose planar octilinear
drawings require at least two bends per edge.

1 Motivation

Drawing edges as octilinear paths plays a central role in the design of metro-maps
(see e.g., [9,18,19]), which dates back to the 1930’s when Henry Beck, an engineering
draftsman, designed the first schematic map of London Underground using mostly hor-
izontal, vertical and diagonal segments. Laying out networks in such a way is called
octilinear graph drawing, i.e., an octilinear drawing of a (planar) graph G = (V,E) of
maximum degree eight is a (planar) drawing Γ (G) of G in which each vertex occupies
a point on the integer grid and each edge is drawn as a sequence of horizontal, vertical
and diagonal line-segments.

For drawings of (planar) graphs to be readable, special care is needed to keep the
number of bends small. However, the problem of determining whether a given em-
bedded 8-planar graph (that is, a planar graph of maximum degree eight with given
combinatorial embedding) admits a bendless octilinear drawing is NP-hard [17]. This
negative result motivated us to study octilinear drawings of low edge complexity, that is,
with few bends per edge. Surprisingly enough, very few results relevant to this problem
were known, even if the octilinear model has been well-studied in the context of metro-
map visualization and map schematization (see e.g. [21]). As an immediate byproduct

� The work of M.A. Bekos is implemented within the framework of the Action “Supporting
Postdoctoral Researchers” of the Operational Program “Education and Lifelong Learning”
(Action’s Beneficiary: General Secretariat for Research and Technology), and is co-financed
by the European Social Fund (ESF) and the Greek State.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 331–342, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

332 M.A. Bekos et al.

of a result of Keszegh et al. [13], it turns out that every d-planar graph, with 3 ≤ d ≤ 8,
admits a planar octilinear drawing with at most two bends per edge; see Section 1. On
the other hand, every 3-planar graph on five or more vertices admits a planar octilinear
drawing in which all edges are bendless [6,12].

In this paper, we bridge the gap between the two aforementioned results. We prove
that every 4-planar graph admits a planar octilinear drawing with at most one bend per
edge in cubic area. We also show that every 5-planar graph also admits a planar octi-
linear drawing with at most one bend per edge, but our construction may require super-
polynomial area. Finally, we demonstrate an infinite class of 6-planar graphs whose
planar octilinear drawings require at least two bends per edge.

Related Work. The research on the (planar) slope number of graphs focuses on mini-
mizing the number of used slopes (see e.g., [10,13,14,15,16]). Octilinear drawings can
be seen as a special case thereof, since only four slopes are used. Keszegh et al. [13]
showed that any d-planar graph admits a planar drawing with one bend per edge, in
which all edge-segments have at most 2d different slopes. So, for d = 4 and d = 5, we
reduce the number of different slopes from 8 and 10 to 4. They also proved that d-planar
graphs, d ≥ 3, admit planar drawings with two bends per edge that require at most �d2�
different slopes. One can transfer this technique to the octilinear model and show that
any d-planar graph, with 3 ≤ d ≤ 8, admits a planar octilinear drawing with two bends
per edge. For d = 3, Di Giacomo et al. [6] recently proved that any 3-planar graph
with n ≥ 5 vertices has a bendless planar drawing with at most 4 different slopes and
angular resolution π/4 (see also [12]); their approach also yields octilinear drawings.

Tamassia [20] showed that one can minimize the total number of bends in orthogo-
nal drawings of embedded 4-planar graphs. However, minimizing the number of bends
over all embeddings of a 4-planar graph is NP-hard [7]. The core of Tamassia’s ap-
proach is a min-cost flow algorithm that specifies the angles and the bends of the draw-
ing, producing an orthogonal representation, and then computes the actual drawing by
specifying the drawing’s exact coordinates. Tamassia’s algorithm can be employed to
produce a bend-minimum octilinear representation for any given embedded 8-planar
graph. However, a bend-minimum octilinear representation may not be realizable by a
corresponding planar octilinear drawing [4].

Biedl and Kant [2] showed that any 4-planar graph except the octahedron admits
a planar orthogonal drawing with at most two bends per edge on an O(n2) integer
grid. Hence, the octilinear drawing model allows us to reduce the number of bends per
edge at the cost of an increased area. On the other hand, not all 4-planar graphs admit
orthogonal drawings with one bend per edge; however, testing whether a 4-planar graph
admits such a drawing can be done in polynomial time [3]. In the context of metro-
map visualization, several approaches have been proposed to produce metro-maps using
octilinear or nearly-octilinear polylines; see e.g., [9,18,19].

Preliminaries. In our algorithms, we incrementally construct the drawings similar to
the method of Kant [11]. We first employ the canonical order to cope with triconnected
graphs. Then, we extend them to biconnected graphs using the SPQR-tree and to simply
connected graphs using the BC-tree. In this section we briefly recall them.

Planar Octilinear Drawings with One Bend Per Edge 333

Definition 1 (Canonical order [11]). For a given triconnected plane graphG = (V,E)
let Π = (P0, . . . , Pm) be a partition of V into paths such that P0 = {v1, v2}, Pm =
{vn} and v2 → v1 → vn is a path on the outer face of G. For k = 0, . . . ,m let Gk be
the subgraph induced by ∪k

i=0Pi and assume it inherits its embedding from G. Partition
Π is a canonical order of G if for each k = 1, . . . ,m − 1 the following hold: (i) Gk

is biconnected, (ii) all neighbors of Pk in Gk−1 are on the outer face, of Gk−1 (iii) all
vertices of Pk have at least one neighbor in Pj for some j > k. Pk is called a singleton
if |Pk| = 1 and a chain otherwise.

Definition 2 (BC-tree). The BC-tree B of a connected graph G has a B-node for each
biconnected component of G and a C-node for each cutvertex of G. Each B-node is
connected with the C-nodes that are part of its biconnected component.

An SPQR-tree [8,5] provides information about the decomposition of a biconnected
graph into its triconnected components. Every triconnected component is associated
with a node μ in the SPQR-tree T . The triconnected component itself is referred to
as the skeleton of μ, denoted by Gskel

μ = (V skel
μ , Eskel

μ). We refer to the degree of a

vertex v ∈ V skel
μ in Gskel

μ as degskel
μ (v). We say that μ is an R-node, if Gskel

μ is a simple
triconnected graph. A bundle of at least three parallel edges classifies μ as a P-node,
while a simple cycle of length at least three classifies μ as an S-node. By construction
R-nodes are the only nodes of the same type that are allowed to be adjacent in T .
The leaves of T are formed by the Q-nodes. Their skeleton consists of two parallel
edges; one of them corresponds to an edge of G and is referred to as real edge. The
skeleton edges that are not real are referred to as virtual edges. A virtual edge e in Gskel

μ

corresponds to a tree node μ′ that is adjacent to μ in T , more exactly, to another virtual
edge e′ in Gskel

μ′ . We assume that T is rooted at a Q-node. Hence, every skeleton (except
the one of the root) contains exactly one virtual edge e = (s, t) that has a counterpart
in the skeleton of the parent node. We call this edge the reference edge of μ denoted
by ref(μ). Its endpoints, s and t, are named the poles of μ denoted by Pμ = {s, t}.
Every subtree rooted at a node μ of T induces a subgraph of G called the pertinent
graph of μ that we denote by Gpert

μ = (V pert
μ , Epert

μ). We abbreviate the degree of a
node v in Gpert

μ with degpert
μ (v). The pertinent graph is the subgraph of G for which the

subtree describes the decomposition. The following lemmata provide useful properties
of SPQR-trees. Due to lack of space, their proofs are given in [1].

Lemma 1. Let μ be a tree node that is not the root in the SPQR-tree T of a sim-
ple, biconnected, k-planar graph G and μ′ its parent in T . For v ∈ Pμ, it holds that
degpert

μ (v) ≤ k − 2, if μ′ is a P- or an R-node and degpert
μ (v) ≤ k − 1 otherwise, i.e. μ′

is an S- or a Q-node.

Lemma 2. In the SPQR-tree T of a planar biconnected graph G = (V,E) with deg(v)
≥ 3 for every v ∈ V , there exists at least one Q-node that is adjacent to a P- or an
R-node.

2 Octilinear Drawings of 4-Planar Graphs

In this section, we focus on octilinear drawings of 4-planar graphs. We first consider the
triconnected case and then we extend it to biconnected and simply connected graphs.

334 M.A. Bekos et al.

The Triconnected Case. Let G = (V,E) be a triconnected 4-planar graph and Π =
{P0, . . . , Pm} be a canonical order of G. We momentarily neglect the edge (v1, v2)
of the first partition P0 of Π and we start by placing the second partition, say a chain
P1 = {v3, . . . , v|P1|+2}, on a horizontal line from left to right. Since v3 and v|P1|+2 are
adjacent to v1 and v2, we place v1 to the left of v3 and v2 to the right of v|P1|+2. So, they
form a single chain where all edges are drawn using horizontal line-segments that are
attached to the east and west port at their endpoints. The case where P1 is a singleton
is analogous. Having laid out the base of our drawing, we now place in an incremental
manner the remaining partitions. Assume that we have already constructed a drawing
for Gk−1 and we now have to place Pk, for some k = 2, . . . ,m− 1.

In case where Pk = {vi, . . . , vj} is a chain of j − i + 1 vertices, we draw them
from left to right along a horizontal line one unit above Gk−1. Since vi and vj are the
only vertices that are adjacent to vertices in Gk−1, both only to one, we place the chain
between those two as in Fig.1a. The port used at the endpoints of Pk in Gk−1 depends
on the following rule: Let v′i (v′j , resp.) be the neighbor of vi (vj , resp.) in Gk−1. If
the edge (vi, v

′
i) ((vj , v′j), resp.) is the last to be attached to vertex v′i (v′j , resp.), i.e.,

there is no vertex v in Pl ∈ Π , l > k such that (v′i, v) ∈ E ((v′j , v) ∈ E, resp.), then
we use the northern port of v′i (v′j , resp.). Otherwise, we choose the north-east port for
(vi, v

′
i) or the north-west port for (vj , v′j).

In case of a singleton Pk = {vi}, we can apply the previous rule if the singleton
is of degree three. However, if vi is of degree four, then we may have to deal with an
additional third edge (vi, v) that connects vi with Gk−1. However, we may assume that
v lies between the other two endpoints, thus, we place vi such that x(vi) = x(v). This
enables us to draw (vi, v) as a vertical line-segment; see Fig.1b.

The above procedure is able to handle all chains and singletons except the last par-
tition Pm, as vn may have 4 edges pointing downwards. We exclude (vn, v1) and draw
vn as an ordinary singleton. Then, we shift v1 to the left and up as in Fig.1c and draw
(v1, vn) as a horizontal-vertical segment combination. Vertex v2 is analogously moved.
The drawings of the remaining edges incident to vn are depicted in Fig.1c.

A cut is a y-monotone continuous curve that crosses only horizontal segments and
divides the current drawing into a left and a right part. Since every edge, except the ones
drawn as vertical line-segments, contains exactly one horizontal segment, we can shift
the right part of the drawing that is defined by the cut further to the right while keeping
the left part of the drawing on place and the result remains a valid octilinear drawing.

To compute the x-coordinates, we first assign consecutive x-coordinates to the first
two partitions. We may have to stretch the drawing in two cases: (i) when we introduce a
chain, say Pk, as it may not fit into the gap defined by its two adjacent vertices in Gk−1,
and, (ii) when an edge that contains a diagonal segment is to be drawn, to prevent it
from intersecting any horizontal-vertical combinations in the face below it. We can cope
with both cases by horizontally stretching the drawing by a factor that is bounded by
the current height of the drawing. Since the height of the resulting drawing is bounded
by |Π | = O(n), it follows that in the worst case its width is O(n2). Note that our
algorithm produces drawings that have a linear number of bends in total (in particular,
exactly 2|Π | = O(n) bends). One can prove that this bound is asymptotically tight (see
[1]). We are now ready to state the main theorem of this subsection.

Planar Octilinear Drawings with One Bend Per Edge 335

v1 v2

vi vj
v′i v′j

(a)

vi

v1 v2

v

(b)

v2

vn

v3

v1

(c)

Fig. 1. (a) Horizontal placement of a chain Pk = {vi, . . . , vj}. (b) Placement of a singleton
Pk = {vi} with degree four. (c) Final layout after repositioning v1 and v2 (the shape of the
dotted edges can be obtained by extending the stubs until they intersect).

Theorem 1. Given a triconnected 4-planar graph G, we can compute in O(n) time an
octilinear drawing of G with at most 1 bend per edge on an O(n2)×O(n) integer grid.

Proof. In order to keep the time complexity of our algorithm linear, we employ a simple
trick. We assume that any two adjacent points of the underlying integer grid are by n
units apart in the horizontal direction and by one unit in the vertical direction. This
a priori ensures that all edges that contain a diagonal segment will not be involved
in crossings and simultaneously does not affect the total area of the drawing, which
asymptotically remains cubic. On the other hand, the advantage of this approach is that
we can use the shifting method of Kant [11] to cope with the introduction of chains in
the drawing, that needs O(n) time in total by keeping relative coordinates that can be
efficiently updated and computing the absolute values only at the last step. ��

The Biconnected Case. Consider a node μ in the rooted SPQR-tree T of G with poles
Pμ = {s, t}. In the drawing of Gpert

μ , s should be located at the upper-left and t at the
lower-right corner of the drawing’s bounding box with a port assignment as in Fig.2a.
We also assume that the edges incident to s (t, resp.) use the western (eastern, resp.)
port at their other endpoint, except of the northern (southern, resp.) most edge which
may use the north (south, resp.) port instead. In that case we refer to s and t as fixed;
see es, et in Fig.2a. We maintain the following invariants:

IP-1: The width (height) of the drawing of μ is quadratic (linear) in the size of Gpert
μ . s

is located at the upper-left; t at the lower-right corner of the drawing’s bounding
box.

IP-2: If degpert
μ (s) ≥ 2, s is fixed; t is fixed if degpert

μ (t) = 3 and μ’s parent is not the
root.

IP-3: The edges that are incident at s and t in Gpert
μ use the south, south-east and east

ports at s and the north, north-west and west port at t, resp. If s or t is not fixed,
incident edges are attached at their other endpoints via the west and east port,
respectively. If s or t is fixed, the northern-most edge at s and the southern-most
edge at t may use the north (south, resp.) port at its other endpoint.

The port assignment, i.e. IP-3, guarantees the ability to stretch the drawing horizon-
tally even in the case where both poles are fixed. Furthermore, IP-2 is interchangeable
in the following sense: If degpert

μ (s) = 2 and degpert
μ (t) = 1, then s is fixed but t is

336 M.A. Bekos et al.

s

t

O(n)

O(n2)

es

et

(a)

t

s

t

(b)

μ2

s
μ1

t

(c)

s
μ2

t

μ1

(d)

Fig. 2. (a) Schematic view of the layout requirements. (b) Creating a nose at t. (c) First P-node
subcase without an (s, t)-edge but s might be fixed in a child μ1. (d) Second P-node subcase with
an (s, t)-edge where t might get fixed in a child μ2.

not. But, if we relabel s and t such that t′ = s and s′ = t, then degpert
μ (s′) = 1 and

degpert
μ (t′) = 2. By IP-2, we can create a drawing where both s′ and t′ are not fixed and

located in the upper-left and lower-right corner of the drawing’s bounding box. After-
wards, we mirror the resulting layout vertically and horizontally to obtain one where s
and t are in their respective corners and not fixed. For a non-fixed vertex, we introduce
an operation referred to as forming or creating a nose; see Fig.2b, where t has been
moved downwards at the cost of a bend. As a result, its west port is no longer occupied.

First consider the case where μ is a P-node. If there is no (s, t)-edge, then we draw
the children of μ from top to bottom such that a possible child in which s is fixed, is
drawn topmost (see μ1 in Fig.2c). If there is an (s, t)-edge, then we draw it at the top
and afterwards the remaining children of μ (see Fig.2d). This is possible only if s is
not fixed in any of the other children. Let μ′ be such a potential child where s is fixed,
i.e., degpert

μ′ (s) = 2, and thus, the only child that remains to be drawn. Here, we use
the property of interchangeability to “unfix” s in μ′. As a result s can form a nose,
whereas t may now be fixed in μ′ when degpert

μ′ (t) = 2 holds, as in Fig.2d. However,
then degpert

μ (t) = 3 follows. Notice that the presence of an (s, t)-edge implies that the
parent of μ is not the root of T , since this would induce a pair of parallel edges. Hence,
by IP-2 we are allowed to fix t in μ. Port assignment and area requirements comply in
both cases with our invariant properties.

In the case where μ is an S-node, we place the drawings of its children, say μ1, . . . , μ�

in a “diagonal manner” such that their corners touch as in Fig.3a. In case of Q-nodes
being involved, we draw their edges as horizontal segments (see, e.g., (v3, v4) in Fig.3a).
s and t inherit their port assignment and pertinent degree from μ1 and μ�, respectively.
So, s (t, resp.) is fixed in μ, if it is fixed in μ1 (μ�, resp.). By IP-2, t is not allowed to
be fixed in the case where the parent of μ is the root of T . However, from Lemma 2 we
can choose the root such that t is not fixed in that case, and thus, complies with IP-2.
Since we only concatenated the drawings of the children, IP-1 and IP-3 are satisfied.

For the case where μ is an R-node with poles Pμ = {s, t}, we follow the idea of the
triconnected algorithm and describe only the required modifications. We assume the
worst case where no child of μ is a Q-node. Let μuv be the child that is represented by
the virtual edge (u, v) ∈ Eskel

μ . Due to Lemma 1, degpert
μuv

(u) ≤ 2 and degpert
μuv

(v) ≤ 2
holds. By IP-2 we may assume that either u or v is fixed in μuv and choose the first
partition in the canonical ordering to be P0 = {s, t}.

In case of a chain, say Pk = {vi, . . . , vj} with two neighbors v′i and v′j in Gk−1,
we have to replace two types of edges with the drawings of the corresponding children:

Planar Octilinear Drawings with One Bend Per Edge 337

μ1

μ2

μ4

μ3

s = v1

v2

v3
v4

v5 = t

(a)

vi vi+1 vj

μ′
i

μi μ′
j

v′i v′j
Gk−1

μi+1

(b)

μ′
i

μ′
j

μ′
v

v′i
v′j

v

vi

Gk−1

(c)

s

t

μsn
vn

s

(d)

Fig. 3. (a) S-node with children μ1, . . . , μ4; μ3 is a Q-node representing the edge (v3, v4). Op-
tional edges are drawn dotted. (b) Example for a chain vi, . . . , vj with virtual edges representing
μi, . . . , μj−1 in the R-node case. (c) Singleton vi with possibly three incident virtual edges rep-
resenting μ′

i, μ
′
v , μ

′
j . (d) Placing vn and moving up s which might be fixed in μsn.

the edges (vi, vi+1), . . . , (vj−1, vj) representing the children μi, . . . , μj−1 and (v′i, vi)
((vj , v′j) resp.) representing μ′

i (μ′
j resp.). We place the vertices of Pk on a horizontal

line high enough above Gk−1 so that every drawing fits in-between. Then, we insert the
drawings aligned below the horizontal line and choose for i ≤ l < j, vl to be the fixed
node in μl, whereas in μ′

i (μ′
j resp.), we set vi (vj resp.) to be fixed. So, for i ≤ l < j,

vl+1 may form a nose in μl pointing upwards while v′i and v′j form each one downwards
as in Fig.3b. For the extra height and width, we stretch the drawing horizontally.

In case where Pk = {vi}, i �= n is a singleton, we only outline the difference
which is a possible third edge (vi, v) to Gk−1 representing say μ′

v . While the other two
involved children, say μ′

i and μ′
j , are handled as in the chain-case, μ′

v requires extra
height. We place vi so that μ′

v fits below μ′
j as in Fig.3c. Notice that degpert

μ′
v
(vi) = 1 and

by IP-2 both vi and v are not fixed in μ′
v. So, forming a nose at vi and v is feasible.

For the last singleton Pk = {vn}, observe that since s, t ∈ P0, both have not been
fixed. As in the triconnected algorithm we move s = v1 above vn as in Fig.3d to
accommodate the drawing of the child μsn represented by the edge (s, vn). Since we
may require vn to form a nose in μsn as in Fig.3d, we choose s to be fixed in μsn. By
IP-2 we are allowed to fix s since t remains unfixed. Although some diagonal segments
may force us to stretch the whole drawing by its height, the height of the drawing has
been kept linear in the size of Gpert

μ . Since we increase the width by the height a constant
number of times per step, the resulting width remains quadratic.

If there is a vertex v ∈ V with deg(v) ≤ 3, then we root T at a Q-node μ that
represents one of its three incident edges and orient the poles {s, t} such that t = v. So,
for the child μ′ of μ follows degpert

μ′ (t) ≤ 2. If deg(v) = 4 for every v ∈ V , then we
root T at a Q-node that is not adjacent to an S-node, which exists due to Lemma 2. In
both cases, we may form a nose with t pointing downwards.

338 M.A. Bekos et al.

Theorem 2. Given a biconnected 4-planar graph G, we can compute in O(n) time an
octilinear drawing of G with at most 1 bend per edge on an O(n2)×O(n) integer grid.

Proof. The SPQR-tree T can be computed in O(n)-time and its size is linear to the
size of G [8]. The pertinent degrees of the poles at every node can be pre-computed by
a bottom-up traversal of T . Drawing a P-node requires constant time; S- and R-nodes
require time linear to the size of the skeleton. However, the sum over all skeleton edges
is linear, as every virtual edge corresponds to a tree node. ��

The Simply Connected Case. The main idea of our algorithm is to root the BC-tree at
some arbitrary B-node. With exception of the root, every B-node contains a designated
cut vertex that links it to the parent. Similar to the biconnected case, we define an
invariant for the drawing of a subtree. The cut vertex that links the subtree to the parent
is located in the upper left corner of the bounding box. Due to lack of space, we only
state the main result; its proof is given in [1].

Theorem 3. Given a connected 4-planar graph G, we can compute in O(n) time an
octilinear drawing of G with at most 1 bend per edge on an O(n2)×O(n) integer grid.

3 Octilinear Drawings of 5-Planar Graphs

In this section, we focus on planar octilinear drawings of 5-planar graphs. As in Sec-
tion 2, we first consider the case of triconnected 5-planar graphs and then we extend
our approach first to biconnected and then to the simply connected graphs.

The Triconnected Case. Let G = (V,E) be a triconnected 5-planar graph and Π =
{P0, . . . , Pm} be a canonical order of G. We place partitions P0 and P1 similar to the
4-planar case. Assume that we have already constructed a drawing for Gk−1 which is
stretchable in the following sense: If e ∈ E(Gk−1) is an edge incident to the outer face,
then there is a cut which crosses e and can be utilized to horizontally stretch the drawing
of Gk−1. In other words, one can define a cut through every edge incident to the outer
face of Gk−1 (stretchability-invariant).

If Pk = {vi, . . . , vj} is a chain, it is placed exactly as in the case of 4-planar graphs,
but with different port assignment. Among the northern available ports of vertex v′i
(v′j , resp.), edge (vi, v

′
i) ((vj , v′j), resp.) uses the eastern-most unoccupied port of v′i

(western-most unoccupied port of v′j , resp.); see Fig.4a. If Pk does not fit into the gap
between v′i and v′j in Gk−1, then we horizontally stretch Gk−1 between v′i and v′j to
ensure that the horizontal distance between v′i and v′j is at least |Pk| + 1. This can
be done due to the stretchability-invariant, as both v′i and v′j are on the outer face of
Gk−1. Potential crossings introduced by edges of Pk containing diagonal segments can
be eliminated by employing similar cuts to the ones presented in the 4-planar case. So,
we may assume that Gk is plane. Also, Gk complies with the stretchability-invariant, as
one can define a cut that crosses any of the newly inserted edges of Pk and then follows
one of the cuts of Gk−1 that crosses an edge between v′i and v′j .

Planar Octilinear Drawings with One Bend Per Edge 339

v1 v2

vi vj
v′i v′j

(a)

vi

v1 v2

v
v′

(b)

vn

v1 v2v3

(c)

Fig. 4. (a) Horizontal placement of a chain Pk = {vi, . . . , vj}. (b) Placement of a singleton
Pk = {vi} of degree five. (c) Final layout (the shape of the dotted edges can be obtained by
extending the stubs until they intersect).

In case of a singleton Pk = {vi} of degree 5, we have to deal with two additional
edges (called nested) that connect vi with Gk−1, say (vi, v) and (vi, v

′); see Fig.4b.
Such a pair of edges does not always allow vertex vi to be placed along the next avail-
able horizontal grid line. A careful case analysis on the type of ports that are unoccupied
at v and v′ in conjunction with the fact that Gk−1 is horizontally stretchable shows that
we can find a feasible placement for vi. Potential crossings due to the remaining edges
incident to vi are eliminated by employing similar cuts to the ones presented in the 4-
planar case. So, Gk is planar. Also, Gk complies with the stretchability-invariant. The
last partition Pm = {vn} is treated in the same way, even if vn can be incident to three
nested edges. Since v1 and v2 are along a common horizontal line, (v1, v2) can be drawn
using two diagonal segments that form a bend pointing downwards; see Fig.4c. Note
that our algorithm may result in drawings of super-polynomial area, as proven in [1].

Theorem 4. Given a triconnected 5-planar graph G, we can compute in O(n2) time
an octilinear drawing of G with at most one bend per edge.

Proof. We can no longer use the shifting method of Kant [11], since the x- and y-
coordinates are not independent. However, the computation of each cut can be done in
linear time, which implies that our drawing algorithm needs O(n2) time in total. ��

The Biconnected Case. For the 4-planar case we defined several invariants in order
to keep the area of the resulting drawings polynomial. Since we drop this requirement
now we can define a simpler new invariant for the biconnected 5-planar case. When
considering a node μ in T and its poles Pμ = {s, t}, then in the drawing of Gpert

μ , s and
t are horizontally aligned at the bottom of the drawing’s bounding box as in Fig.5a. If
an (s, t)-edge is present, it can be drawn at the bottom. An (s, t)-edge only occurs in the
pertinent graph of a P-node (and Q-node). We use the term fixed for a pole-node that is
not allowed to form a nose. We maintain the following properties through the recursive
construction process: In S- and R- nodes, s and t are not fixed. In P- and Q-nodes, only
one of them is fixed, say s. But as in the 4-planar case, we may swap their roles.

If μ is a P-node, then it has at most 4 children; one of them might be a Q-node, i.e., an
(s, t)-edge, which can be drawn at the bottom as a horizontal segment. Since P-nodes
are not adjacent to each other in T , the remaining children are S- or R-nodes. By our
invariant we may form noses enabling us to stack them as in Fig.5b.

340 M.A. Bekos et al.

s t

μ

(a)

s t

μ2

μ3

μ1

(b)

s tv1 v2

μ1 μ2 μ4

v3

μ3

(c)

Fig. 5. (a) Layout specification; s and t are located at the bottom. (b) P-node with an (s, t)-
edge from a Q-node μ1. s and t form a nose in μ2, μ3. (c) S-node example with four children
μ1, . . . , μ4.

In case where μ is an S-node, we align its children μ1, . . . , μl horizontally; see
Fig.5c. The poles inherit their pertinent degree from the children. The same holds for
the property of being fixed. However, by our new invariant this is forbidden, as it re-
quires that s and t are not fixed. It is easy to see that when μ1 is a P-node, s is fixed
by the invariant in μ1. In this case, we swap the roles of the poles in μ1 such that s is
not fixed. However, the other pole of μ1, say v1, is fixed now. Since the skeleton of an
S-node is a cycle of length at least three, v1 �= t. So, s and t are not fixed in the resulting
drawing.

To compute a layout of an R-node μ, we employ the triconnected algorithm (with
s = v1 and t = v2). Let μe be a child of μ that corresponds to virtual edge e =
(u, v) in Gskel

μ . Then, degpert
μe

(u), degpert
μe

(v) ≤ 3. When inserting the drawing of Gpert
μe

,
we require at most three consecutive ports at u and v for the additional edges. As
the triconnected algorithm assigns ports in a consecutive manner based on the rela-
tive position of the endpoints, we modify the port assignment so that an edge may have
more than one port assigned. To do so, we assign each edge e = (u, v) in Gskel

μ a pair
(degpert

μe
(u), degpert

μe
(v)) ∈ {1, 2, 3}2 that reflects the number of ports required by this

edge at its endpoints. Then, we extend the triconnected algorithm such that when a port
of u is assigned to an edge e = (u, v), degpert

μe
(u) − 1 additional consecutive ports in

clockwise or counterclockwise order are reserved. The direction depends on the differ-
ent types of edges that we will discuss next.

The simplest type of edges are the ones among consecutive vertices vi, vi+1 of
a chain. For each such edge we reserve the additional ports at vi in counterclock-
wise and at vi+1 in clockwise order; see Fig.6a. So, we can later plug the drawing
of the children into the layout as in Fig.6b without forming noses. In the same manner,
we reserve the ports for the edges that connect Pk = {vi, . . . , vj} to v′i and v′j in Gk−1

(where Pk is singleton or chain), i.e., at vi clockwise, (vj counter-clockwise, resp.) and
at v′i counter-clockwise (v′j clockwise); see Fig.6c. In case where (vi, v

′
i) or (vj , v′j) is

a virtual edge, we choose the poles such that vi (vj resp.) is fixed in μ(vi,v′
i)

(μ(vj ,v′
j)

resp.). Thus, we can create a nose with v′i (v′j resp.). Having exactly the ports required
at both endpoints, we insert the drawing by replacing the bend with a nose as in Fig.6d.
The remaining edges from Pk to Gk−1 in case of a singleton Pk = {vi} are handled
similarly; see Fig.6. During the replacement of the edges, the fixed vertex is always the
upper one. The only exception are the horizontal drawn edges of a chain, for which it
does not matter which one is fixed. Finally, we root T at an arbitrarily chosen Q-node
representing a real edge (s, t). By our invariant we may construct a drawing with s and
t at the bottom of the drawing’s bounding box, so that (s, t) has a 90◦ bend downwards.

Planar Octilinear Drawings with One Bend Per Edge 341

vi
2

e

Gk−1

vi+1

2

(a)

vi

Gk−1

vi+1

μe

(b)

vj

v′j

2

3
e

Gk−1

(c)

vj

v′j

μe

Gk−1

(d)

vi

v
Gk−1

e

(e)

vi

v
Gk−1

μ
e

(f)

Fig. 6. (a) Virtual edge e = (vi, vi+1) connecting two consecutive vertices of a chain. At both
endpoints the drawing of μe requires two ports. (b) Replacing e in (a) with the corresponding
drawing of the child μe. (c) Example of an edge e = (vj , v

′
j) that requires three ports at vj and

two at v′j . (d) Inserting the drawing of μe into (c) with vj being fixed and v′j forming a nose.
(e) Reserving ports for the nested edges. A single port for a real edge is reserved and then two
ports for the virtual edge e = (vi, v). (f) Final layout after inserting the drawing of μe.

Theorem 5. Given a biconnected 5-planar graph G, we can compute in O(n2) time an
octilinear drawing of G with at most one bend per edge.

Proof. The ability to rotate and scale suffices to extend the result from 4-planar to 5-
planar at the expense of the area. Similar to the 4-planar case, computing T takes linear
time. Hence, the overall runtime is governed by the triconnected algorithm. ��

The Simply Connected Case. Due to lack of space, we outline the differences in
comparison to the 4-planar case in [1]. Here, we simply state the main theorem.

Theorem 6. Given a connected 5-planar graph G, we can compute in O(n2) time an
octilinear drawing of G with at most one bend per edge.

4 A Note on Octilinear Drawings of 6-Planar Graphs

In this section, we show that it is not always possible to construct a planar octilinear
drawing of a given 6-planar graph with at most one bend per edge.

Theorem 7. There exists an infinite class of 6-planar graphs which do not admit planar
octilinear drawings with at most one bend per edge.

Sketch of Proof. Due to lack of space the detailed proof of this theorem is given in [1].
The main idea is to construct an infinite class of maximal 6-planar graphs, whose outer
face is always delimited by exactly three vertices, say v, v′ and v′′, such that deg(v) =
deg(v′) = 6 and 5 ≤ deg(v′′) ≤ 6. Then, it is not difficult to prove that it is not feasible
to draw all edges incident to the outer face with at most one bend per edge. ��

5 Conclusions

We presented algorithms for the construction of planar octilinear drawings with at most
one bend per edge for 4- and 5-planar graphs. Our work raises several open problems:
(i) Is it possible to construct planar octilinear drawings of 4-planar (5-planar) graphs
with at most one bend per edge in o(n3) (polynomial, resp.) area? (ii) Does any triangle-
free 6-planar graph admit a planar octilinear drawing with at most one bend per edge?
(iii) What is the number of necessary slopes for bendless drawings of 4-planar graphs?

342 M.A. Bekos et al.

References

1. Bekos, M.A., Gronemann, M., Kaufmann, M., Krug, R.: Planar octilinear drawings with one
bend per edge. Arxiv report arxiv.org/abs/1408.5920 (2014)

2. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. In: van Leeuwen, J.
(ed.) ESA 1994. LNCS, vol. 855, pp. 24–35. Springer, Heidelberg (1994)

3. Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with flexibility con-
straints. Algorithmica 68(4), 859–885 (2014)

4. Bodlaender, H.L., Tel, G.: A note on rectilinearity and angular resolution. Journal of Graph
Algorithms and Applications 8(1), 89–94 (2004)

5. Di Battista, G., Tamassia, R.: On-line graph algorithms with SPQR-trees. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 598–611. Springer, Heidelberg (1990)

6. Di Giacomo, E., Liotta, G., Montecchiani, F.: The planar slope number of subcubic graphs.
In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 132–143. Springer, Hei-
delberg (2014)

7. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity
testing. SIAM Journal on Computing 31(2), 601–625 (2001)

8. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.)
GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

9. Hong, S.H., Merrick, D., do Nascimento, H.A.D.: Automatic visualisation of metro maps.
Journal of Visual Languages and Computing 17(3), 203–224 (2006)

10. Jelı́nek, V., Jelı́nková, E., Kratochvı́l, J., Lidický, B., Tesar, M., Vyskocil, T.: The planar
slope number of planar partial 3-trees of bounded degree. Graphs and Combinatorics 29(4),
981–1005 (2013)

11. Kant, G.: Drawing planar graphs using the lmc-ordering. In: 33rd Annual Symposium on
Foundations of Computer Science (FOCS 1992), pp. 101–110. IEEE (1992)

12. Kant, G.: Hexagonal grid drawings. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp.
263–276. Springer, Heidelberg (1993)

13. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few
slopes. SIAM Journal of Discrete Mathematics 27(2), 1171–1183 (2013)

14. Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most five slopes.
Computational Geometry 40(2), 138–147 (2008)

15. Lenhart, W., Liotta, G., Mondal, D., Nishat, R.I.: Planar and plane slope number of partial
2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 412–423. Springer,
Heidelberg (2013)

16. Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes. In: van Krev-
eld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 254–265. Springer, Heidelberg
(2011)

17. Nöllenburg, M.: Automated drawings of metro maps. Tech. Rep. 2005-25, Fakultät für In-
formatik, Universität Karlsruhe (2005)

18. Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer
programming. IEEE Transactions on Visualization and Computer Graphics 17(5), 626–641
(2011)

19. Stott, J.M., Rodgers, P., Martinez-Ovando, J.C., Walker, S.G.: Automatic metro map layout
using multicriteria optimization. IEEE Transactions on Visualization and Computer Graph-
ics 17(1), 101–114 (2011)

20. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM
Journal of Computing 16(3), 421–444 (1987)

21. Wolff, A.: Graph drawing and cartography. In: Tamassia, R. (ed.) Handbook of Graph Draw-
ing and Visualization, ch. 23, pp. 697–736. CRC Press (2013)

On the Complexity of HV-rectilinear Planarity Testing�

Walter Didimo1, Giuseppe Liotta1, and Maurizio Patrignani2

1 Dept. of Engineering, University of Perugia, Italy
2 Dept. of Engineering, Roma Tre University, Italy

Abstract. An HV-restricted planar graph G is a planar graph with vertex-degree
at most four and such that each edge is labeled either H (horizontal) or V (verti-
cal). The HV-rectilinear planarity testing problem asks whether G admits a pla-
nar drawing where every edge labeled V is drawn as a vertical segment and every
edge labeled H is drawn as a horizontal segment. We prove that HV-rectilinear
planarity testing is NP-complete even for graphs having vertex degree at most
three, which solves an open problem posed by both Manuch et al. (GD 2010) and
Durucher et al. (LATIN 2014). We also show that HV-rectilinear planarity can
be tested in polynomial time for partial 2-trees of maximum degree four, which
extends a previous result by Durucher et al. (LATIN 2014) about HV-restricted
planarity testing of biconnected outerplanar graphs of maximum degree three.
When the test is positive, our algorithm returns an orthogonal representation of
G that satisfies the given H- and V-labels on the edges.

1 Introduction

Let G = (V,E) be a planar graph with vertex-degree at most four. A rectilinear orthog-
onal drawing Γ of G is a planar drawing of G where each vertex v ∈ V corresponds to
a distinct point pv of the plane and each edge (u, v) ∈ E corresponds to a horizontal or
vertical segment between pu and pv. If G is a planar embedded graph, i.e., a graph with
a given planar embedding (a planar embedding defines for each vertex v ∈ V the cir-
cular order of the edges incident to v and it also specifies the external face), we assume
that a rectilinear orthogonal drawing of G preserves its embedding. If v is a vertex of a
planar embedded graph and if e1 and e2 are two (possibly coincident) edges of v that
are consecutive in the clockwise order around v, we say that a = 〈e1, v, e2〉 is an angle
at v of G or simply an angle of G. Two rectilinear orthogonal drawings Γ and Γ ′ of
the same planar embedded graph G are shape equivalent if for any angle a of G, the
geometric angle corresponding to a is the same in Γ and Γ ′. A rectilinear orthogonal
representationH of a planar embedded graphG is a class of shape equivalent rectilinear
orthogonal drawings of G; H can be described by the embedding of G equipped with a
label for each angle of G; the labels for an angle can be R, F , L, or LL, corresponding
to a geometric angle of 90, 180, 270, and 360 degrees, respectively.

The rectilinear planarity testing problem asks whether a planar graph G with vertex-
degree at most four admits a rectilinear orthogonal drawing (or equivalently, a rectilin-
ear orthogonal representation). The problem can be solved in polynomial time in the
� This research is supported in part by the Italian Ministry of Education, University, and Re-

search (MIUR) under PRIN 2012C4E3KT national research project “AMANDA – Algorith-
mics for MAssive and Networked DAta”

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 343–354, 2014.
© Springer-Verlag Berlin Heidelberg 2014

344 W. Didimo, G. Liotta, and M. Patrignani

1

2

3

4

6

7

8
9

145

10
11

12

15

13

H

H

H

H
H

H

HH

H

VV
V

V

V

V

V

V

V

42

1 3

5

610

15 12
8

7

V V

V

V V V

V

V

H

H

H

H

HH

H

H

11

V
H

14 13 9

3

14

131 H

9

4

V 15

12

11

62

5 8

V

H

V

H

H 7V
V

H H

V
10H

V

H

V V

H

V

H

31

2

4

5

6

7

8

9

10

11

12

14

15

H V

H
V

H

V

VV

H

V

H

V

H
V

13V

V

H H

(a) (b) (c) (d)

Fig. 1. (a) An HV-graph. (b) An HV-drawing of the HV-graph of Fig. 1(a). (c) An HV-graph that
does not admit an HV-drawing. (d) A rectilinear orthogonal drawing of the graph of Fig. 1(c).

fixed embedding setting, i.e., when the rectilinear orthogonal representation must pre-
serve a planar embedding of G given as part of the input [18]. The rectilinear planarity
testing problem is however NP-complete in the variable embedding setting, i.e., over
all planar embeddings of G [11]. Polynomial-time solutions exist if G is a biconnected
series-parallel graph or if G has maximum vertex-degree three (see, e.g., [7,16,20]).

The rectilinear planarity testing problem is a classical subject of investigation in the
graph drawing literature, and it can be regarded as a special case of the bend mini-
mization problem for orthogonal drawings, probably one of the most explored topics in
the field (see, e.g., [1,2,7,10,14,15,18]). Direction constrained versions of the rectilinear
planarity testing problem also have a long tradition in the literature. An example is when
every edge of G is labeled ‘Up”, or “Down”, or “Left”, or “Right” and one wants to test
whether G has a rectlinear drawing where every edge has a direction consistent with its
label (see, e.g. [12,19]); the 3D version of this problem has also been studied [5,6,8].

In this paper we study another direction constrained version of the rectilinear pla-
narity testing problem that has been receiving increasing interest. An HV-restricted
planar graph (HV-graph for short) G = (V,E) is a planar graph with vertex-degree
at most four such that each edge is labeled either H (horizontal) or V (vertical).
Denote by EH ⊂ E and EV ⊆ E the subsets of H- and V-labeled edges, respec-
tively. An HV-drawing of G is a rectilinear orthogonal drawing of G such that each
edge e ∈ EH (resp. e ∈ EV) corresponds to an orthogonal (resp. vertical) segment.
An HV-realization of G is a rectilinear orthogonal representation H of G such that
every drawing of H is an HV-drawing of G, up to a rotation of 90 degrees. The
HV-rectilinear planarity testing problem asks whether an HV-graph admits an HV-
realization. Figure 1 (b) shows an HV-drawing of the HV-graph in Fig. 1 (a). Fig-
ure 1 (c) shows an HV-graph that does not admit HV-realizations, although it admits
a rectilinear orthogonal drawing (Fig. 1 (d)).

Manuch et al. [13] ask what is the time complexity of HV-rectilinear planarity test-
ing both in the fixed and in the variable embedding setting. Durocher et al. [9] describe
a polynomial-time testing algorithm in the fixed embedding setting; for the variable
embedding setting they present a quadratic-time testing algorithm for biconnected out-
erplanar graphs of vertex-degree at most three. The authors leave as open problem both
to characterize the outerplanar HV-graphs that admit an HV-realization and to establish

On the Complexity of HV-rectilinear Planarity Testing 345

the complexity of HV-rectilinear planarity testing in the variable embedding setting for
general HV-graphs. We study these problems and establish the following results:

(i) HV-rectilinear planarity testing is NP-complete in the variable embedding setting
even for HV-graphs with vertex-degree at most three. We recall, for a contrast, that
Garg and Tamassia proved the NP-completeness of rectlinear planarity testing for planar
graphs of vertex-degree at most four [11], but that rectlinear planarity testing can be
solved in linear time for planar graphs of vertex-degree at most three [16].

(ii) There exists a polynomial-time algorithm to test HV-rectilinear planarity for HV-
graphs that are partial 2-trees. In the affirmative case, the algorithm returns an HV-
realization of the graph. Recall that biconnected outerplanar graphs are a sub-family of
partial 2-trees, hence our result provides an algorithmic answer to the open problem of
Durocher et al. [9], even for graphs with maximum vertex-degree four.

The remainder of the paper is organized as follows. Section 2 proves that HV- rec-
tilinear planarity testing is NP-complete. Section 3 describes a polynomial-time algo-
rithm for HV-rectilinear planarity testing of series-parallel graphs, which is used as a
building-block for the design of an HV-rectilinear planarity testing algorithm for partial
2-trees presented in Sec. 4. Conclusions and open problems are in Sec. 5. For space
reasons several proofs are sketched.

2 NP-completeness of HV-rectilinear Planarity Testing

It is easy to see that HV-rectilinear planarity testing is in NP, since the problem is poly-
nomial when a planar embedding of the graph is given [9] and since all planar embed-
dings can be non-deterministically explored [1]. We show the hardness of this problem
even on instances of maximum vertex-degree three by reducing SWITCH FLOW NET-
WORK to it. Hence, the following theorem holds.

Theorem 1. HV-rectilinear planarity testing is NP-complete even for HV-graphs of
maximum vertex-degree three.

A switch-flow network N is an undirected graph where each edge e is labeled with
a range [c′...c′′] of nonnegative integers, called the capacity range of e. For simplicity,
the capacity range [c...c] is denoted with [c]. A flow for a switch-flow network is an
orientation of its edges and an assignment of integer values to them. A flow is feasible
if it satisfies the following two properties: (i) the total flow entering a vertex from the
incoming edges is equal to the total flow exiting the vertex from the outgoing edges,
and (ii) the flow assigned to an edge is an integer within the capacity range of the edge.
Given a switch-flow networkN , the SWITCH FLOW NETWORK problem is the problem
of finding a feasible flow for N .

The SWITCH FLOW NETWORK problem is trivially in NP, by assigning to the edges
all possible flow values and orientations and computing the sum of the flows at each
vertex. In [11] it is shown that SWITCH FLOW NETWORK is NP-hard even in a very
restrictive setting, that is, if its instances are such that: (a) the lower bounds of the
capacities ranges of the edges are either zero (as in [0...c]) or equal to the upper bounds
(as in [c]), (b), edges with a proper capacity range (as in [0...c]) do not form a cut, and

346 W. Didimo, G. Liotta, and M. Patrignani

A

G

F

B

E

D

C

[0]

[0]

[1]

[0..2] [1]

[1]

[1]

[1]

[0]

[1]

[0]

[1]

A

G

F

B

E

D

C

[0] [0]

[1]

[1]

[0..2]

[1]

[1]

[0]

[1] [0]

[0]

[1]

[0] [0]

[1]

A

G

F

B

E

D

C

[1]

[1]

[0]

[0]

[0]

[0]

[0..2]

[1]

[0]

[1]

[0][1]

[0]

[1]
[1]

(a) (b) (c)

Fig. 2. (a) A feasible flow for an instance N of the SWITCH FLOW NETWORK problem; the
instance is the underlying undirected graph. The thick arrow represents a flow of two units while
the thinner arrows represent flows of one unit. (b) The maximal planar SWITCH FLOW NETWORK

instance N ∗ obtained from N . (b) Graph N ∗ and its dual D.

(c) the network is planar. Starting from an instanceN of the SWITCH FLOW NETWORK

problem satisfying Properties (a), (b), and (c), we create an instance G of HV-planarity
testing of maximum degree three as follows (refer to Figs 2 and 3):

Step 1. Construct a maximal planar instance N ∗ by inserting dummy edges with ca-
pacity range [0] into N . Observe that N ∗ admits a feasible flow if and only if N does.

Step 2. Compute the dual plane graph D of N ∗. Observe that, since N ∗ is a maximal
triconnected graph, each vertex of D has degree three and D is also triconnected. We
label the edges of D with the capacity range of the corresponding edge of N ∗.

Step 3. Compute an orthogonal drawing ΓD of D with the linear-time algorithm in [17].
This algorithm takes as input a 4-plane biconnected graph and computes a drawing with
at most 2n+ 4 bends and such that each edge has at least one vertical segment.

Step 4. Transform ΓD into a positive instance F of HV-planarity testing by replacing
orthogonal and vertical segments with rectangular boxes and by labeling each horizontal
and vertical edge of F with labels H and V, respectively (see also Fig. 3(b)). Note that
F has maximum vertex-degree three and, as D is triconnected, it has a unique HV-
realization HF up to horizontal and vertical flips.

Step 5. Build the instance G of HV-planarity testing. First, identify for each edge e of
D with a label different from [0] a rectangular box of F corresponding to a vertical
segment of ΓD. If the label of e is [c], insert the HV-graph Tc, called tendril, in the
rectangular box, attaching it with two edges e′ and e′′ called the handles of the tendril.
See Fig 3(d) and 3(e) for T1 and T2. If e is labeled [0...c] insert into the rectangular box
the HV-graph Wc, called wiggle. Wiggles W1 and W2 are shown in Figs. 3(f) and 3(g).

Lemma 1. An HV-realization of the HV-graph G corresponds to a feasible flow of the
switch network N and vice versa.

Proof sketch: First, we show that, starting from an HV-realization HG of G, a feasi-
ble flow for N can be found. Observe that each tendril Th necessarily has the HV-
realization HTh

or HTh
, giving to its left and right faces fl and fr, 4h and −4h (or

On the Complexity of HV-rectilinear Planarity Testing 347

A

B

E
F

D

C

G

[0] [1] [0]

[1][0]

[0]

[1]

[1][0]

[0][1][1]

[0]

[1]

[0..2]

G

F
D

B

A C

E

1T 1T 1T 1T

1T

1T

1TW2

G

F
E

D
B

A C

(a) (b) (c)

e’
e"

(d) (e) (f) (g)

Fig. 3. (a) An orthogonal drawing ΓD of the dual graph D. (b) The positive instance F of HV-
planarity testing built by Step 4. (c) The instance G of HV-planarity testing corresponding to the
SWITCH FLOW NETWORK instance N depicted in Fig. 2(a). (d) Tendril T1. Edges e′ and e′′ are
the handles of the tendril. (e) Tendril T2. (f) Wiggle W1. (g) Wiggle W2.

−4h and 4h, respectively) right angles. Since in any HV-realization of G, the subgraph
of G obtained by neglecting tendrils and wiggles is drawn as it is in F , and since in F
each face is balanced in terms of left and right turns, it follows that the HV-realization
chosen for tendrils and wiggles of G decides a flow traversing the faces of G. By con-
struction, such a flow (divided by 4) gives a feasible flow for N . Conversely, suppose
a feasible flow exists for N . By choosing the corresponding HV-realizations for ten-
drils and wiggles, each face is balanced in terms of right and left angles, yielding an
HV-realization for G. �

3 Testing Algorithm for Series-Parallel Graphs

The decomposition of a biconnected graph G into its triconnected components is de-
scribed by the SPQR-tree data structure, which implicitly represents all planar embed-
dings of G. We assume familiarity with SPQR-trees and related terminology [4]. If
the SPQR-tree T of G has no R-nodes (corresponding to triconnected components
that are triconnected graphs), G is a series-parallel graph and T is called an SPQ-tree:
S-nodes represent series compositions, P -nodes parallel compositions, and Q-nodes
single edges. Series-parallel graphs are a super-class of biconnected outerplanar graphs.

In [7] a polynomial-time algorithm is described that computes an orthogonal drawing
of a series-parallel graph G, with the minimum number of bends over all planar embed-
dings of G. Our testing algorithm enhances the approach given in [7] to deal with H- and
V-labels on the edges. As in [7] we use a variant of the SPQ-trees called SPQ∗-tree.

348 W. Didimo, G. Liotta, and M. Patrignani

The SPQ∗-tree T of G for a given reference edge e implicitly describes all possible
planar embeddings of G with e on the external face and is such that: (i) each edge or a
chain of edges joined by vertices of degree two in G is represented by a Q∗-node; (ii)
the root of T is a P -node with two children, one of which is the Q∗-node associated
with e; (iii) each S-node has two children. An example of an SPQ∗-tree of a series-
parallel graph is shown in Fig. 4(b). See [7] for more details. Another basic ingredient
of the algorithm in [7] is the concept of spirality of an orthogonal representation H; it
gives a measure of how much H is “rolled-up”. We now recall basic definitions and re-
sults about spirality, restricted to rectilinear orthogonal representations, and we provide
additional properties for the spirality of HV-realizations.

Spirality of Rectilinear Orthogonal Representations and HV Representations. Let
T be the SPQ∗-tree of a series-parallel graph G for a given reference edge e = (s, t).
Let H be a rectilinear orthogonal representation of G for some planar embedding of G
with edge e on the external face. Also, let μ be a node of T with poles u and w, and
let Hμ be the restriction of H to the pertinent graph Gμ of μ. We also say that Hμ is
a component of H. For each pole v ∈ {u,w}, let indegμ(v) and outdegμ(v) be the
degree of v inside and outside Hμ, respectively. Define two (possibly coincident) alias
vertices of v, denoted by v′ and v′′, as follows: (a) If indegμ(v) = 1, then v′ = v′′ = v;
(b) If indegμ(v) > 1 and outdegμ(v) = 1, then v′ = v′′ is a dummy vertex that splits
the edge of v that is outside Hμ; (c) If indegμ(v) = outdegμ(v) = 2, then v′ and v′′

are dummy vertices, each splitting a distinct edge of v that is outside Hμ.
Let Av denote the set of distinct alias vertices of a pole v (if G has vertex-degree at

most three, |Av| = 1). Let Puw be any simple path from u to w inside Hμ and let u′ and
w′ be alias vertices of u and of w, respectively. The path Su′w′

obtained concatenating
(u′, u), Puw, and (w,w′) is called a spine of Hμ. Denote by n(Su′w′

) the number of
right turns minus the number of left turns encountered moving along Su′w′

from u′

to w′. The spirality σ(Hμ) of a component Hμ with poles u and w is defined based
on the following cases: (i) If Au = {u′} and Aw = {w′}, then σ(Hμ) = n(Su′w′

).
(ii) If Au = {u′} and Aw = {w′, w′′}, then σ(Hμ) = (n(Su′w′

) + n(Su′w′′
)/2.

(iii) If Au = {u′, u′′} and Aw = {w′}, then σ(Hμ) = (n(Su′w′
) + n(Su′′w′

))/2.
(iv) If Au = {u′, u′′} and Aw = {w′, w′′}, assume w.l.o.g. that (u, u′) immediately
precedes (u, u′′) counterclockwise around u and that (w,w′) immediately precedes
(w,w′′) clockwise around w. Then σ(Hμ) = (n(Su′w′

) + n(Su′′w′′
))/2.

We now briefly recall the spirality properties used in this paper, restricted to our
setting. We assume that G is a series-parallel graph equipped with an SPQ∗-tree T .

Substituting Components with the Same Spirality. Let H and H′ be two rectilinear
orthogonal representations of the same planar graph G and let μ be a node of T . We
say that H and H′ are μ-different if their planar embeddings may differ only for the
clockwise orderings of the edges inside Gμ and if the labels of the external angles
at the poles of μ stay the same in the two representations. See Figs. 4(c) and 4(d)
for an example. Suppose that H and H′ are μ-different and that σ(Hμ) = σ(H′

μ).
The next theorem claims that it is always possible to get a new rectilinear orthogonal
representation H′′ by substituting Hμ with H′

μ in H (see, e.g., Fig. 4(e)).

On the Complexity of HV-rectilinear Planarity Testing 349

Gμ2

3

4

5
6

8

9

1011

12
13

14

15

20

18

17

16

19

7

1

(a)

S

P

S

6,20

Q*

1,2,3

P

Q* Q*

S

P

Q* Q*

S

Q*

P

Q*

1,20

P

Q*

Q* Q*

Q*

3,4,5,63,6

12,15 12,13,14,15

9,10,12

1,7,8,9

15,16,17,18,19,20

9,11,12

μS

(b)

6

4 3

5 20

1918

1716

14

131211

109

15

12

8 7

(c)

6

4 3

5 20

12

78

1918

16 17

14

13 12 11

10 9

15

(d)

14

13 12 11

10 9

15 6

4 3

5 20

1918

1716

12

78

(e)

Fig. 4. (a) A planar graph G; (b) The SPQ∗-tree of G for the reference edge (1, 20), and a high-
lighted node μ (the pertinent graph Gμ of μ is highlighted in the graph); (c)-(d) Two rectilinear
orthogonal representations H and H′ that are μ-different; both Hμ and H′

μ have spirality 2. (e)
The rectilinear orthogonal representation obtained by substituting Hμ with H′

μ in H.

Theorem 2. [7] Let H and H′ be two rectilinear orthogonal representations of the
same planar graph G such that H and H′ are μ-different and σ(Hμ) = σ(H′

μ). Then
the embedded labeled graph H′′ obtained by substituting Hμ with H′

μ in H is a recti-
linear orthogonal representation.

Intuitively, Theorem 2 implies that in an orthogonal representation H we can always
substitute a certain component Hμ with a component H′

μ having the same spirality,
independently of the planar embedding of Hμ and H′

μ.

Spirality Relationships for Series- and Parallel-Compositions. Let H be a rectlinear
orthogonal representation of G. For an S- or a P -node μ of T , the spirality of Hμ is
related to the spiralities of the orthogonal representations of the pertinent graphs of the
children of μ. For an S-node the relationship is given by Lemma 2. For a non-root
P -node the relationship depends on the number of its children (see Lemmas 3 and 4).

Lemma 2. [7] Let μ be an S-node of T with children μ1 and μ2. Then: σ(Hμ) =
σ(Hμ1) + σ(Hμ2).

Lemma 3. [7] Let μ be a P -node of T with three children μ1, μ2, and μ3. Let ei be
the edge of Hμ〉 incident to pole w (i = 1, 2, 3) and let eout be the external edge of Hμ

350 W. Didimo, G. Liotta, and M. Patrignani

incident to w; also, suppose that eout, e1, e2, e3 are encountered in this clockwise order
around w. Then: σ(Hμ) = σ(Hμ1) + 2 = σ(Hμ2) = σ(Hμ3)− 2.

Lemma 4. [7] Let μ be a non-root P -node of T with two children μ1, μ2. Suppose that
while moving clockwise around w from an external edge of Hμ incident to w, the edges
of Hμ1 incident to w precede those of Hμ2 incident to w. For each pole v ∈ {u,w}
and for i = 1, 2, let eout be the external edge of Hμ incident to v that is circularly
consecutive around v to an edge ei of Hμi incident to v, and let liv be the label of the
angle at v formed by eout and ei. Also, let αi

v = 0 if liv = F andαi
v = 1 if liv = R. Then:

(i) σ(Hμ) = σ(Hμ1) + kiuα
1
u + kiwα

1
w and (ii) σ(Hμ) = σ(Hμ2) − kiuα

2
u − kiwα

2
w,

where kiv = 1 if indegμi
(v) = 1 and outdegμ(v) = 1, while kiv = 1/2 otherwise.

Finally, if μ is the root node it has two children, one of which is associated with the
reference edge e (see, e.g., Figs. 4(a) and 4(b)). The following result comes immediately
from [7], considering that in a rectilinear orthogonal representation each edge (included
e) is a segment, and the number of angles with R-labels minus the number of angles
with L-labels in an internal face equals 4.

Lemma 5. Let μ be the root of T and let ν be the child of μ that does not correspond to
the reference edge (s, t). Let f be the internal face of H that contains (s, t), and let ls
(resp. lt) be the label of the angle in f at vertex s (resp. at vertex t). Assume that moving
along e from s to t corresponds to walking counterclockwise on the boundary of f . For
v ∈ {s, t}, let αv = 0 if lv = F , αv = 1 if lv = R, and αv = −1 if lv = L. Then:
σ(Hν) + ksαs + ktαt = 4, where kv = 1 if indegν(v) = 1 and kv = 0 otherwise.

Spirality and HV-realizations. Let G be an HV-graph and let T be an SPQ∗-tree of
G for a reference edge e = (s, t). W.l.o.g, from now on we assume that for any 2-
degree vertex v the two edges incident to v have different labels (otherwise, they can
be simply replaced by a single edge with the same label as the original edges). With
this assumption, the chain associated with a Q∗-node always consists of an alternated
sequence of H-labeled and V-labeled edges. The following lemma can be easily proved.

Lemma 6. Let μ be a Q∗-node of T and let k be the number of edges of Gμ. If k is
even (resp. odd), then there exists an HV-realization of Gμ with spirality j, for every
odd (resp. even) j ∈ [−k + 1, k − 1].

Testing Algorithm. Let G be a series-parallel HV-graph and let T be the SPQ∗-tree
for a given reference edge e = (s, t). The testing is done by traversing T bottom-up;
if the test fails, G does not admit an HV-realization with e on the external face, a new
reference edge is chosen and the test is repeated. If the test succeed for some reference
edge of G, the algorithm reconstructs an HV-realization ofG with a top-down visit of T ,
exploiting suitable information stored in the nodes of T during the bottom-up traversal.

Theorem 3. Let G be a series-parallel HV-graph with n vertices and maximum vertex-
degree four. There exists an O(n4)-time algorithm that tests whether G admits an HV-
realization and, if so, it computes an HV-realization of G. Also, if G has vertex-degree
at most 3, the time-complexity can be reduced to O(n3 logn).

On the Complexity of HV-rectilinear Planarity Testing 351

Proof sketch: Let T be the SPQ∗-tree for a given reference edge e. We describe an
algorithm that tests whether G admits an HV-realization with e on the external face.
Let μ the current node of T when traversing T from bottom to top. Let u and w be
the poles of μ. The algorithm associates with μ a set of tuples, each one corresponding
to a distinct value of spirality that an HV-realization Hμ of Gμ can have within an
HV-realization H of G. The size of the set of tuples associated with μ is O(n), since,
by definition, the absolute value of spirality of Hμ cannot exceed the length of the
shortest path from u to w in Gμ plus one. A tuple contains a value of spirality σμ and
an encoding of an embedding of Gμ for which an HV-realization of Gμ with spirality
σμ exists; this encoding describes for a P -node the cyclic order of the edges of Gμ

incident to u and w (i.e., the permutation of the edges of the skeleton of μ); if μ is
either a Q∗-node or an S-node, the algorithm does not keep any embedding information
for μ (because the embedding is uniquely defined). It is sufficient to keep only one
representative tuple for each possible value of spirality, since by Theorem 2 rectilinear
orthogonal representations with the same spirality are interchangeable.

If during the bottom-up visit we obtain an empty set of tuples for a node of T , the
algorithm reports that G does not admit an HV-realization with e on the external face.
Otherwise, let ν be the child of the root that does not correspond to edge e; if the set
of tuples of ν has a tuple whose spirality verifies the condition of Lemma 5, then the
algorithm reports that an HV-realization of G exists; otherwise, it reports again that G
does not have an HV-realization with e on the external face. Note that, the values αs

and αt in Lemma 5 are uniquely determined by the H- and V-labels once the circular
ordering of the edges around s and t is decided. If the algorithm fails on T , a different
edge e is chosen and it is executed again. The tuples of Q∗-nodes are computed using
Lemma 6, and those of non-root P -nodes using Lemmas 3 and 4. For an S-node μ
with children μ1 and μ2, based on Lemma 2, we consider all distinct values of spirality
obtained by summing up the spiralities of a tuple of μ1 and of a tuple of μ2. However,
if μ1 and μ2 share a pole v of degree 4, the H- and V-labels on the edges incident to
v may not be compatible with some pairs of spirality values for μ1 and μ2, and these
pairs must be discarded.

The tuple sets for all nodes of T are computed in O(|S|n2 + |P |n + |Q∗|n) time,
where |S|, |P |, |Q| denote the number of S-, P -, and Q∗-nodes in T , respectively.
Hence, we have O(n3)-time complexity for a specific reference edge and O(n4) over
all possible reference edges for G. If the test is positive the algorithm reconstructs an
HV-realization of G in O(n2) time, by visiting T top-down.

If G has maximum vertex-degree 3, there cannot be forbidden pairs of spirality val-
ues for the children of an S-node, and finding its possible spiralities corresponds to
computing a Cartesian sum of two sets of integers, which takes O(n log n) time [3].
Hence, the overall time complexity for series-parallel HV-graphs of vertex-degree at
most 3 is O(n(|S|(n log n) + |P |n+ |Q∗|n)) = O(n3 logn). �

4 Testing Algorithm for Partial 2-Trees

We extend the HV-realizability testing algorithm described in the proof of Theorem 3
to simply connected graphs that do not contain rigid components. Namely, a 2-tree is a

352 W. Didimo, G. Liotta, and M. Patrignani

graph obtained by starting from an edge and iteratively attaching a new vertex per time
to two already adjacent vertices. A partial 2-tree is any subgraph of a 2-tree. We give a
testing algorithm for the class of partial 2-trees, which includes series-parallel graphs.

Let G be an HV-graph that is a connected partial 2-tree (if G is not connected one
can execute the test independently on each connected component). We assume that G
does not contain three adjacent edges with the same label (H or V), because in this case
it is trivial to conclude that G does not admit an HV-realization. The testing algorithm
exploits a constrained version of the algorithm described in Sec. 3 for the biconnected
components and the popular data structure known as the block-cutvertex tree T of G,
which describes the decomposition of G into its biconnected components, also called
blocks. A block consisting of a single edge is called a trivial block. T has a node vB
for each block B of G and a node vc for each cutvertex c of G; there is an arc (vB , vc)
in T if c belongs to B in G. A key-ingredient of our testing algorithm is the following;
the proof is easy and is omitted for space reasons.

Lemma 7. Let B1 and B2 be any two blocks of G and let Π be the path from vB1 to
vB2 in T . Let vc1 and vc2 be the cutvertex-nodes on Π adjacent to vB1 and to vB2 ,
respectively (c1 and c2 may coincide). In any planar embedding of G, either c1 is on
the external face of B1 or c2 is on the external face of B2.

Let B be a block of G and c a cutvertex of G that belongs to B. Suppose we want to
construct an HV-realization of G for a planar embedding where B has c on the external
face and such that some other block is attached to c in the external face of B. To do this,
we need the angle at c in the external face of B to be greater than 90 degrees. We say
that B is HV-extrovert with respect to c if B admits an HV-realization HB such that: (i)
c on the external face of HB; (ii) the external angle at c is greater than 90 degrees. We
also say that HB is extrovert with respect to c. The testing algorithm works as follows:

Step 1. Consider all degree-1 block-nodes of T and for each of these nodes vB let vc be
its adjacent cutvertex-node; test if B is HV-extrovert with respect to c (we explain how
to test it right after the description of Step 2); if so, store its extrovert HV-realization in
a list L and remove vB from T , otherwise mark B as not HV-extrovert. At the end of
this step remove from T all cutvertex-nodes of degree less than 2, previously attached
to some degree-1 block-node.

Step 2. Check whether one of the following cases holds; if not repeat Step 1:

Case 1. Two blocks that are not HV-extrovert are found: in this case the test is negative,
because the property of Lemma 7 cannot be satisfied in any HV-realization of G.

Case 2. T becomes empty. The test is positive. Indeed, in this case there exists a planar
embedding of G and every block B has an extrovert HV-realization, stored in L, that
is compatible with this embedding; an HV-realization of G can be easily obtained by
suitably merging the extrovert HV-realizations stored in L.

Case 3. T consists of just one block-node vB marked as not HV-extrovert. In this case
the algorithm tests whether B admits any HV-realization HB , using the algorithm de-
scribed in Sec. 3. In the affirmative case the test is positive and we can still construct an
HV-realization of G by suitably merging the HV-realizations stored in L. Namely: (i)
embed the HV-realization of each block that shares a cutvertex c with B inside a face

On the Complexity of HV-rectilinear Planarity Testing 353

of G with angle at c larger than 90 degrees (such a face always exists, because c has
degree at most 3 in B); (ii) merge the extrovert HV-realizations of the other blocks as
in Case 2. If B does not admit any HV-realization, then the test is clearly negative.

We now explain how to test whether a block B is HV-extrovert with respect to a
desired cutvertex c. If B is trivial (i.e., a single edge) the test is clearly positive. If B is
not trivial, then c has degree greater than 2 in G and we distinguish between two cases:

Vertex c has Degree 3 in G. In this case c has degree 2 in B. Let s and u be the two
vertices adjacent to c in B, and let T be the SPQ∗-tree of B with reference edge (s, c).
Execute an HV-realizability testing of B with respect to T , using the algorithm of Sec. 3.
If the test is negative, B does not have an HV-realization with c on the external face,
and we conclude that B is not HV-extrovert with respect to c. If the test is positive, there
exists an HV-realization HB with c on the external face, but we have to verify that we
can get an HV-realization with the external angle at c greater than 90 degrees. If edges
(s, c) and (u, c) have the same label (H or V), we do not need to do any additional check,
asHB surely has two angles of 180 degrees at c. If (s, c) and (u, c) have different labels,
let ν be the child-node of the root of T that does not correspond to the reference edge;
it suffices to check whether ν has a tuple whose spirality value satisfies the equation of
Lemma 5, with the constraint that αc (i.e., αt of Lemma 5) is 1 (corresponding to an
internal angle at c of 90 degrees, and hence to an external angle at c of 270 degrees).
Vertex c has degree 4 in G. If c has degree 2 in B, the algorithm applies the same check
as in the previous case. If c has degree 3 in B, let e = (s, c) and e′ = (u, c) be the edges
of B incident to c with the same label (H or V), and let e′′ = (v, c) be the third edge
of B incident to c. Let T be the SPQ∗-tree of B with reference edge e = (s, c). Note
that T has a P -node μ such that one of its poles is c and such that Gμ contains both
e′ and e′′. Also, in any HV-realization that is extrovert with respect to c, e and e′ must
be both on the external face. Hence, to check whether B is HV-extrovert with respect
to c, we can execute an HV-realizability testing of B on tree T , using the algorithm of
Sec. 3, with the restriction that when we compute the tuple set of μ we only consider
the arrangement of its children corresponding to having e′ on the external face.

About the computational complexity of the test described above, let n be the number
of vertices of G, let B1, B2, . . . , Bh be the biconnected components of G, and let ni

be the number of vertices of Bi (i = 1, . . . , h). Also, let T the block-cutvertex tree
of G. For each block-node vBi of T , the algorithm takes O(ni

3) to test whether Bi is
HV-extrovert with respect to a desired cutvertex using the algorithm of Sec. 3, as it only
needs to test the HV-realizability of Bi for a suitably chosen reference edge. Also, if one
block Bi is not HV-extrovert, an additional HV-realizability testing on Bi is run over
all possible reference edges, spending O(ni

4) time. Since
∑

i=1,...,h ni = O(n), the
overall time complexity of the algorithm is O(n4). The time complexity is reduced to
O(n3 logn) if G has vertex-degree at most 3, with the same argument as in Theorem 3.

Theorem 4. Let G be an HV-graph that is a partial 2-tree with n vertices and maximum-
vertex degree four. There exists an O(n4)-time algorithm that tests whether G admits
an HV-realization and, if so, it computes an HV-realization of G. Also, if G has vertex-
degree at most 3, the time-complexity can be reduced to O(n3 logn).

354 W. Didimo, G. Liotta, and M. Patrignani

5 Conclusions and Open Problems

We suggest the study of these problems: (i) Can the polynomial bound of Theorem 4
be improved? Recall that there is a linear-time algorithm for the rectilinear planarity
testing of series-parallel graphs with vertex-degree at most three [20], but it relies on
properties that do not apply for HV-graphs. (ii) Find a combinatorial characterization,
e.g. in terms of forbidden substructures, for the HV-graphs that have an HV-realization.

References

1. Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the mini-
mum number of bends. IEEE Transactions on Computers 49(8), 826–840 (2000)

2. Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with flexibility con-
straints. Algorithmica 68(4), 859–885 (2014)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press
(2009)

4. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. on Comp. 25, 956–997
(1996)

5. Di Battista, G., Kim, E., Liotta, G., Lubiw, A., Whitesides, S.: The shape of orthogonal cycles
in three dimensions. Discrete & Computational Geometry 47(3), 461–491 (2012)

6. Di Battista, G., Liotta, G., Lubiw, A., Whitesides, S.: Embedding problems for paths with
direction constrained edges. Theoretical Computer Science 289(2), 897–917 (2002)

7. Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. on
Comp. 27(6), 1764–1811 (1998)

8. Di Giacomo, E., Liotta, G., Patrignani, M.: A note on 3D orthogonal drawings with direction
constrained edges. Inf. Proc. Lett. 90(2), 97–101 (2004)

9. Durocher, S., Felsner, S., Mehrabi, S., Mondal, D.: Drawing HV-restricted planar graphs. In:
Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 156–167. Springer, Heidelberg
(2014)

10. Felsner, S., Kaufmann, M., Valtr, P.: Bend-optimal orthogonal graph drawing in the general
position model. Computational Geometry 47(3), 460–468 (2014)

11. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity
testing. SIAM J. on Comp. 31(2), 601–625 (2001)

12. Hoffman, F.: Embedding rectilinear graphs in linear time. Inf. Proc. Lett. 29(2), 75–79 (1988)
13. Maňuch, J., Patterson, M., Poon, S.-H., Thachuk, C.: Complexity of finding non-planar rec-

tilinear drawings of graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502,
pp. 305–316. Springer, Heidelberg (2011)

14. Mutzel, P., Weiskircher, R.: Bend minimization in planar orthogonal drawings using integer
programming. SIAM J. on Opt. 17(3), 665–687 (2006)

15. Rahman, M.S., Nakano, S.I., Nishizeki, T.: A linear algorithm for bend-optimal orthogonal
drawings of triconnected cubic plane graphs. J. of Graph Alg. and Appl. 3(4), 31–62 (1999)

16. Rahman, M.S., Nishizeki, T., Naznin, M.: Orthogonal drawings of plane graphs without
bends. J. of Graph Alg. and Appl. 7(4), 335–362 (2003)

17. Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Transactions on Cir-
cuits Systems CAS-36(9), 1230–1234 (1989)

18. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM
J. on Comp. 16(3), 421–444 (1987)

19. Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM J. on
Comp. 14(2), 355–372 (1985)

20. Zhou, X., Nishizeki, T.: Orthogonal drawings of series-parallel graphs with minimum bends.
SIAM J. on Discr. Math. 22(4), 1570–1604 (2008)

Embedding Four-Directional Paths
on Convex Point Sets�

Oswin Aichholzer1, Thomas Hackl1, Sarah Lutteropp2,
Tamara Mchedlidze2, and Birgit Vogtenhuber1

1 Institute for Software Technology, Graz University of Technology, Austria
{oaich,thackl,bvogt}@ist.tugraz.at

2 Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany
sarah.lutteropp@student.kit.edu, mched@iti.uka.de

Abstract. A directed path whose edges are assigned labels “up”, “down”, “right”,
or “left” is called four-directional, and three-directional if at most three out of
the four labels are used. A direction-consistent embedding of an n-vertex four-
directional path P on a set S of n points in the plane is a straight-line drawing
of P where each vertex of P is mapped to a distinct point of S and every edge
points to the direction specified by its label. We study planar direction-consistent
embeddings of three- and four-directional paths and provide a complete picture
of the problem for convex point sets.

1 Introduction

In 1974, Rosenfeld proved that every tournament has a spanning antidirected path [17]
and conjectured that there exists an integer n0 such that every tournament with more
than n0 vertices contains every oriented path as a spanning subgraph. A tournament is
a digraph whose underlying undirected structure is a complete graph and an oriented
path is a digraph whose underlying undirected structure is a simple path. An oriented
path is antidirected if the directions of its edges alternate. During the following decade
several simplifications of Rosenfeld’s conjecture had been shown to be true. Alspach
and Rosenfeld [4] and Straight [18] settled the conjecture for oriented paths with either
a single source or a single sink. Forcade [12] proved the conjecture to be true for every
tournament whose size is a power of two. Reid and Wormald[16] showed that any tour-
nament of size n contains every oriented path of size 2n/3 and Zhang [20] improved
this result to n− 1. Finally, in 1986, the conjecture was established by Thomason [19].

More than two decades later, with the expansion of Geometric Graph Theory and
Graph Drawing, a geometric counterpart of Rosenfeld’s conjecture was considered. The
subject of this study is an upward geometric tournament, that is, a tournament drawn
on the plane with straight-line edges so that each edge points in the upward direction.
It was asked whether an upward geometric tournament contains a planar copy of any

� O.A. supported by the ESF EUROCORES programme EuroGIGA - ComPoSe, Austrian Sci-
ence Fund (FWF): I 648-N18. T.H. supported by the Austrian Science Fund (FWF): P23629-
N18 ‘Combinatorial Problems on Geometric Graphs’.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 355–366, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

356 O. Aichholzer et al.

oriented path [9]. Despite several independent approaches to attack the problem by dif-
ferent research groups, this question is still unsolved. However, it was answered in the
affirmative for several special cases of paths and tournaments. We use the following
definitions to list these results. A vertex of a digraph which is either a source or a sink
is called a switch. An oriented path whose edges are all oriented in the same direction
is called monotone. For the following cases it was shown that every upward tournament
contains a planar copy of each oriented path: the vertices of the tournament are in con-
vex position [9], the oriented path has at most 3 switches [9], the oriented path has at
most 5 switches and at least two of its monotone subpaths contain a single edge [5], the
oriented path where every sink is directly followed by a source [9]. It was also shown
that each oriented path of size n is contained in any upward geometric tournament of
size n2k−2, where k is the number of switches [5]. This result was later improved to
(n−1)2+1 in [15]. Recently, with the help of a computer, we could verify that every
upward geometric tournament of size 10 contains a planar copy of any oriented path as
a spanning subgraph. This was done by exhaustive testing of all distinct directed order
types, that is, all order types [2] with an additional combinatorial upward direction.

The question whether any upward geometric tournament contains a planar copy of
any oriented path was originally stated in terms of so-called point set embeddings. Here
we are given a set S of n points in the plane and a planar n-vertex graph G, and we
are asked to determine whether G has a planar straight-line drawing where each ver-
tex of G is mapped to a distinct point of S. This problem has been extensively studied
and many exciting facts were established, see for example [6,8,10,11,13]. In the
upward counterpart of point set embeddings,G is an upward planar digraph and the ob-
tained drawing is additionally required to be upwards oriented. Such a drawing, if it ex-
ists, is called an upward point set embedding. Upward point set embeddings have been
studied for different classes of digraphs [5,7,9,14]. Observe that the question whether
any upward geometric tournament contains a planar copy of any oriented path is equiv-
alent to asking whether any oriented path has an upward planar embedding on any set
of n points. We will refer to the latter as the oriented path question.

The number of distinct plane embeddings of an (undirected) spanning path on a
point set could provide us some additional evidence for the oriented path question. It
is not difficult to see that if S is a set of n points in convex position, then it admits
n2n−3 distinct plane spanning path embeddings. Further it is known that this is the
minimum number of distinct plane spanning path embeddings that a point set can admit,
i.e., convex point sets minimize this number [3]. Comparing this lower bound with the
number of distinct oriented paths, which is 2n−1, it sounds even surprising that every
oriented path has an upward planar embedding on every convex point set [9]. In order to
approach the oriented path question in its general form, we aim to understand better how
the nature of the problem changes when in addition to planarity of a path one requires
its upwardness. To this end, we generalize the oriented path problem with respect to
the number of considered directions (see Section 2 for a rigorous definition). Observe
that, instead of considering an oriented path, one can consider a monotone path with
labels on edges that declare whether an edge is required to point up or down. In this
work we study monotone paths with four possible labels on the edges: up, down, left,
and right. We call such paths four-directional, and three-directional if at most three

Embedding Four-Directional Paths on Convex Point Sets 357

out of the four labels are used. An embedding of such a path on a point set where
each edge points into the direction specified by its label is called direction-consistent.
We study planar direction-consistent embeddings of three- and four-directional paths
on convex point sets. Recall that convex point sets are extremal in the sense that they
minimize the number of plane embeddings of (undirected) spanning paths. We provide
a complete picture regarding four-directional paths and convex point sets. Our results
are as follows:

– Every three-directional path admits a planar direction-consistent embedding on any
convex point set.

– There exists a four-directional path P and a one-sided1 convex point set S such that
P does not admit a planar direction-consistent embedding on S. On the other hand,
a four-directional path always admits a planar direction-consistent embedding for
special cases of one-sided point sets, namely so-called quarter-convex point sets.

– Given a four-directional path P and a convex point set S, we can decide in O(n2)
time whether P admits a planar direction-consistent embedding on S.

Our study is also motivated by applications similar to those of upward point set em-
beddings, i.e., any situation where a hierarchical structure must be represented and ad-
ditional constraints on the positions of vertices are given. Our scenario, where instead
of two directions the edges can point into four directions, allows for a more detailed
control over a drawing.

The remainder of the paper is organized as follows. In Section 2, we give the neces-
sary definitions. In Section 3, we prove several preliminary results which are utilized in
our main Section 4, where the existence of a planar direction-consistent embedding of
a three-directional path on a convex point set is shown. All results on four-directional
paths are concentrated in Section 5. Due to space constraints omitted proofs can be
found in the full version [1].

2 Definitions

Graphs. The graphs we study in this paper are directed and we denote by (u, v) an
edge directed from u to v. A directed edge when drawn as a straight-line segment is
said to point up or being upward, if its source is below its sink. Similarly we define the
notions of pointing down, left, and right. Our study concentrates on directed paths each
edge of which is assigned one of four labels U,D,L,R, which means that (when the
path is embedded on a point set) this edge is required to point up, down, left, or right,
respectively. For simplicity, we will denote such a path containing vertices v1, . . . , vn
by P = d1, . . . , dn−1, where di ∈ {U,D,L,R}, 1 ≤ i ≤ n−1. Let T ⊆ {U,D,L,R}.
If di ∈ T , 1 ≤ i ≤ n − 1, then P is called T -path and |T |-directional path in order
to emphasize the number of directions it contains. We denote by Pi,j = di, . . . , dj ,
1 ≤ i ≤ j ≤ n− 1, a subpath of P . In addition, we define Pi,i−1 = vi.

1 A convex point set is called one-sided if all of its points lie on the same side of the line through
its bottommost and topmost points.

358 O. Aichholzer et al.

Point Sets. We say that a set S of points in the plane is in general position if no three
points are collinear and no two points have the same x- or y-coordinate. All point sets
mentioned in this paper are in general position. Let S be a convex point set. We denote
by �(S), r(S), t(S), b(S) the leftmost, the rightmost, the topmost, and the bottommost
point of S, respectively. A subset of points of S is called (clockwise) consecutive if its
points appear consecutively as we (clockwise) traverse the convex hull of S.

A convex point set S is called left-sided (resp. right-sided) if t(S) and b(S) (resp.
b(S), t(S)) are clockwise consecutive on S, and S is called one-sided if S is left-
sided or right-sided. S is called strip-convex if (i) the points b(S) and �(S) are either
consecutive or coincide, and (ii) the points t(S) and r(S) are either consecutive or
coincide. For p, q ∈ S, the points of S which lie between the vertical lines through p
and q (including them) are said to be vertically between p and q.

Embeddings. Let P be an n-vertex path (labeled) with vertex set V (P) and S be a
set of n points in general position. An embedding of P on S is an injective function
E : V (P) → S. If the edges of P are drawn as straight-line segments connecting corre-
sponding end-vertices, the embedding E yields a drawing of P . We say that the embed-
ding E is planar if this drawing is planar. We say that E is direction-consistent if each
edge points to the direction corresponding to its label. Planar direction-consistent em-
beddings are abbreviated by PDCE. During the construction of an embedding, a point
p is called used if a vertex has already been mapped to it. Otherwise, p is called free.
Throughout the paper we consider embeddings of n-vertex paths on sets of n points,
unless explicitly stated differently.

Operations with Paths, Point Sets, and Embeddings. Let T ⊆ {U,D,R, L} and
consider a T -path P = d1d2 . . . dn−1. Let S be a set of n points and let E be a direction-
consistent embedding of P on S. Observe that E describes a direction-consistent em-
bedding of another path P I on the same point set S. Path P I is called the reverse
path of P , and is constructed by reversing the directions of the edges of P and chang-
ing the labels to their opposite. Thus, formally P I = I(dn−1) . . . I(d2)I(d1), where
I(U) = D, I(D) = U , I(R) = L, and I(L) = R. This embedding of P I on S is
denoted by EI . For example, if P = UUDRL, then P I = RLUDD. Observe also
that (P I)I = P .

Observation 1. Let E be a PDCE of a path P on a point set S. Then EI is a PDCE of
P I on the same point set S.

Let P , S, and E be as above. The embedding E yields a straight-line drawing Γ of P .
Consider the rotation of Γ counterclockwise by π/2. This rotated drawing represents a
direction-consistent embedding, denoted by R(E), of a new path, denoted by R(P), on
the rotated point set, denoted by R(S). This new path R(P) is formally defined as fol-
lows: R(P) = R(d1)R(d2) . . .R(dn−1), where R(U) = L, R(D) = R, R(R) = U ,
andR(L) = D. We use the notationRk for k applications ofR. Thus,R4(P) = P and
R4(S) = S. Also, if P is an {U,D,L}-path and S is a right-sided point set thenR2(P)
is an {U,D,R}-path and R2(S) is a left-sided point set. Note that P I �= R2(P).

Embedding Four-Directional Paths on Convex Point Sets 359

Observation 2. Let E be a PDCE of a path P on a point set S. Then R(E) is a PDCE
of R(P) on the point set R(S).

Finally, we define the operation of mirroring. Let P , S, E , and Γ be as before. Con-
sider a vertical mirroring of Γ through a vertical line not separating the points of S.
This mirrored drawing represents a direction-consistent embedding, denoted by M(E),
of a new path, denoted by M(P), on the mirrored point set, denoted by M(S). This
new pathM(P) is formally defined as follows: M(P) = M(d1)M(d2) . . .M(dn−1),
where M(U) = U , M(D) = D, M(R) = L, and M(L) = R.

Observation 3. Let E be a PDCE of a path P on a point set S. Then M(E) is a PDCE
of M(P) on the point set M(S).

3 Preliminaries

In this work we prove that every n-vertex three-directional path P admits a PDCE on
any set of n points in convex position. As an overview, we sketch the basic idea of the
proof. First, we show that it is possible to construct a PDCE of an {U,D,R}-path on
a one-sided point set, while controlling the position of one of its end-points (Lemma 2
and Lemma 3). Then we show that we can embed a two-directional {U,R}-path on a
strip-convex point set S while controlling the positions of both end vertices of the path
(Lemma 4). We use these results to show that an {U,D,R}-path admits an embedding
on any convex point set (Lemma 5). For this, we separate a given convex point set into
one-sided point sets and a strip-convex point set and go through a case distinction on
the labels of the edges which correspond to the separation of the point set. Finally, we
show that an embedding of any three-directional path can be reduced to the embedding
of an {U,D,R}-path (Theorem 1). We discuss the direction-consistency of constructed
embeddings in detail in the flow of the proofs. However, the planarity of the embedding
always follows from a single simple principle that is described by the following lemma
and which is based on Lemma 3 of Binucci et al. [9].

Lemma 1. An embedding of an n-vertex path on a convex point set is planar if and
only if for each i, 1<i<n, path P1,i is mapped to a consecutive subset of S.

We next show that Algorithm BACKWARD EMBEDDING is able to accomplish two
tasks: to construct a PDCE of an {U,D,R}-path on a left-sided point set, and to con-
struct a PDCE of an {U,R}-path on a strip-convex point set. The algorithm traverses
the path backwards and places the vertex vi, 1 < i ≤ n, so that, wherever vertex vi−1

is placed, edge (vi−1, vi) is guaranteed to be direction-consistent. The algorithm is a
generalization of the algorithm constructing a PDCE of an {U,D}-path [9].

Lemma 2. Let S be a left-sided point set and let P = d1, . . . , dn−1 be an {U,D,R}-
path. Algorithm BACKWARD EMBEDDING computes a PDCE E of P on S such that
E(vn) is t(S), b(S), or r(S) ∈ {t(S), b(S)}, dependent on whether dn−1 is U , D, or R,
respectively.

360 O. Aichholzer et al.

Algorithm 1. BACKWARD EMBEDDING

Input: {U,D,L, R}-path P = d1, . . . , dn−1, convex point set S of size n
Output: Function E : V (P) → S
for i ← n− 1 downto 1 do1

switch di do2

case U : E(vi+1) ← t(S) case D: E(vi+1) ← b(S) case L: E(vi+1) ← �(S)3

case R: E(vi+1) ← r(S)

S ← S\{E(vi+1)}4

E(v1) ← v ∈ S //S contains only one element5

return E6

Proof. Observe that the algorithm traverses the path backwards and decides the place-
ment of vertex vi+1 based on the label of the edge (vi, vi+1), i.e., di. If di = U (resp.
D, L, R), vertex vi+1 is placed on the topmost (resp. bottommost, leftmost, rightmost)
of the currently free points. Hence, when vertex vi is placed at the next step on any
other free point, edge (vi, vi+1) is guaranteed to be direction-consistent.

For the planarity, observe that the procedure picking the rightmost, the topmost, and
the bottommost points of a left-sided point set, creates a consecutive subset of S. Thus,
for any i, 1 ≤ i ≤ n − 1, path Pi,n−1 (and therefore also P1,i−1) is mapped to a
consecutive subset of S. Hence, by Lemma 1, the created embedding is also planar. ��

The following lemmas can be proven based on Lemma 2 and the operations of rota-
tion of a point set and reverse of a path. See [1] for the missing proofs.

Lemma 3. An {U,D,R}-path P = d1, . . . , dn−1 admits a PDCE on any right-sided
point set S such that E(v1) is b(S), t(S), or �(S) ∈ {t(S), b(S)}, dependent on
whether d1 is U, D, or R, respectively.

Lemma 4. Let S be a strip-convex point set and let P = d1, . . . , dn−1 be an {U,R}-
path. Algorithm BACKWARD EMBEDDING computes a PDCE E of P on S such that (i)
E(v1) is b(S) or l(S), and (ii) E(vn) is t(S) or r(S), dependent on whether dn−1 is U
or R, respectively.

4 Three-Directional Paths

The following lemma is the key ingredient for the proof of a main result of this paper.
We postpone its proof until we have seen how the lemma is used.

Lemma 5. Let S be a convex point set with the property that t(S) is to the right of
b(S). Any {U,D,R}-path admits a PDCE on S.

Theorem 1. Any three-directional path admits a PDCE on a convex point set.

Proof. Case 1: P is an {U,D,R}-path. Since S is in general position, t(S) is either
to the right or to the left of b(S). In the former case a PDCE of P on S exists by

Embedding Four-Directional Paths on Convex Point Sets 361

t(S)

b(S) = vm+1

P1,m

Pm+1,n−1

(a)

Pm+1,n−1

b(S)

t(S) = vm

P1,m

(b)

vb = t(S)

va = b(S)

Pa,b

P1,a−1

Pb+1,n−1

A

B

C

(c)

Fig. 1. Illustration of the construction in Cases 1-3

Lemma 5. For the latter case, observe that in M(S), point t(M(S)) is to the right of
b(M(S)). Moreover, P I is an {U,D,L}-path, and M(P I) is again an {U,D,R}-
path. By Lemma 5, there exists a PDCE E of M(P I) on M(S). By Observation 3,
M(E) is a PDCE of P I on S. Due to Observation 1, M(E)I is a PDCE of P on S.

Case 2: P is an {U,D,L}-path. Observe that P I is an {U,D,R}-path. Let E be a
PDCE of P I on S, which exists by Case 1. Then EI is a PDCE of P on S.

Case 3: P is an {U,L,R}-path. Thus, R(P) is an {U,D,L}-path. Due to Case 2, there
exists a PDCE E of R(P) on R(S). By Observation 2, R(E) is a PDCE of P on S.

Case 4: P is a {D,L,R}-path. Notice that R(P) is an {U,D,R}-path. Thus, for a
PDCE E of R(P) on R(S), which exists due to Case 1, R(E) is a PDCE of P on S.
This concludes the proof of the theorem. ��

Proof of Lemma 5. Let S� denote the subset of S containing all points on the left of the
line through b(S) and t(S), and let m = |S�|. We distinguish several cases based on the
labels dm and dm+1.

Case 1: dm = D, dm+1 ∈ {U,R} (see Fig. 1(a) for an illustration). We embed P1,m

on Sl∪{b(S)} using Algorithm BACKWARD EMBEDDING. By Lemma 2, vertex vm+1

is mapped to b(S). Then, we embed Pm+1,n−1 on Sr ∪ {t(S), b(S)} in the way given
by Lemma 3. Since �(Sr ∪ {t(S), b(S)}) = b(Sr ∪ {t(S), b(S)}) = b(S) and dm+1 ∈
{U,R}, vertex vm+1 is mapped to b(S). Thus, the union of these embeddings is a PDCE
of P on S.
Case 2: dm ∈ {U,R}, dm+1 = D (see Fig. 1(b)). We embed P1,m on Sl ∪ {t(S)}
using Algorithm BACKWARD EMBEDDING. By Lemma 2, vertex vm+1 is mapped to
t(S) since r(Sl∪{t(S)}) = t(Sl∪{t(S)}) = t(S) and dm ∈ {U,R}. Due to Lemma 3,
we can embed Pm+1,n−1 on Sr∪{t(S), b(S)} such that vertex vm+1 is mapped to t(S),
since t(Sr∪{t(S), b(S)}) = t(S) and dm+1 = D. Thus, the union of these embeddings
is a PDCE of P on S.

Case 3: dm = D, dm+1 = D (see Fig. 1(c)). Let Pa,b, 1 ≤ a ≤ m < m + 1 ≤ b ≤
n − 1, be the maximal subpath of P containing dm, dm+1 and only D labels. Let A
be the a highest points of Sl ∪ {t(S)}. Observe that A exists since a ≤ m. We embed
P1,a−1 on A using Algorithm BACKWARD EMBEDDING. By Lemma 2, vertex va is
mapped to t(S), since da−1 ∈ {U,R} and r(A) = t(A) = t(S). Let C be the n − b
lowest points of Sr ∪ {b(S)}. Since |Sr ∪ {b(S)}| = n−m− 1, and b ≥ m+ 1, thus
n− b ≤ n−m− 1, and therefore C exists. By Lemma 3, we can embed Pb+1,n−1 on

362 O. Aichholzer et al.

{U,D,R}-path

vi−1

{U,R}-path

vj+1vi
di−1 = D

{U,D,R}-path
vj+2

dj+1 = D

va vb+1

db+1 = R/D

{U,D,R}-path

vi−1

{U,R}-path

va−1vi

di−1 = D

{U}-path

da−1 = R

{U,D,R}-path
vb+2

(a)

t(S) = vj+1

b(S) = vi

P1,i−1

Pj+1,n−1

Pi,j

A

C

B

(b)

Fig. 2. (a) Structure of the path in Cases 4A (above) and 4B (below) (b) Construction in Case 4A

C such that vb+1 is mapped to b(S) since �(C) = b(C) = b(S) and db+1 ∈ {U,R}.
Let B be (S\(A ∪ C)) ∪ {t(S), b(S)}. We embed the D-path Pa,b on B, starting with
va at t(S) and ending with vb+1 at b(S), by sorting the points of B by decreasing y-
coordinate. Merging the PDCEs for P1,a−1, Pa,b, and Pb+1,n−1, we obtain a PDCE of
P on S.

Case 4: dm, dm+1 ∈ {U,R}. Let Pi,j where 1 ≤ i ≤ m < m+ 1 ≤ j ≤ n− 1 be the
maximal subpath of P containing dm, dm+1 and only U/R-labels. Thus di−1=dj+1=
D, if they exist. Let α (resp. β) denote the number of points of S lying to the left of
b(S) (resp. t(S), including t(S)). We consider several cases based on how the indices
i, j are related to the indices α, β. The intuition behind this is to distinguish whether or
not the points that are vertically between b(S) and t(S) are enough to embed Pi,j .

Case 4A: i > α and j < β, i.e., the points vertically between b(S) and t(S) are enough
to embed Pi,j (see Fig. 2).
Let A be the i lowest points of Sl∪{b(S)}; A exists since i ≤ m. By Lemma 2, we can
embed P1,i−1 on A such that vi is mapped to b(S). Let C be the n− j highest points of
Sr∪{t(S)}; C exists since n−j < n−m. By Lemma 3, we can embed Pj+1,n−1 on C
such that vj+1 is mapped to t(S) since dj+1 = D. Let B be (S\(A∪C))∪{b(S), t(S)}.
Since i > α, �(B) = b(B) = b(S), and since j < β, r(B) = t(B) = t(S). Thus, B is
a strip-convex point set. By Lemma 4, we can embed the {U,R}-path Pi,j on B such
that vi lies on b(S) and vj+1 lies on t(S). By merging the constructed embeddings of
P1,i−1, Pi,j , and Pj+1,n−1, we obtain a PDCE of P on S.
Observe that if either i − 1 = α and dα = R or j + 1 = β and dβ = R or both, then
the embedding can be constructed identically. In case dα = R, vertex vi is mapped to
r(A) = b(S). In case dβ = R, vertex vj+1 is mapped to �(C) = t(S). Thus, these
embeddings can be merged with the above embedding of Pi,j on B.

Case 4B: i > α and j ≥ β. In this case dβ ∈ {U,R}. If dβ = R then the embedding is
constructed as explained at the end of Case 4A. In the following we assume dβ = U .
Let Pa,b, i ≤ a ≤ β ≤ b ≤ j be the maximal subpath of P containing dβ and only U -
edges; see Fig. 2(a)(below) for the structure of the constructed path. If a > i, da−1 = R.
Otherwise, if a = i then da−1 = D, i.e., the {U,R}-path Pi,a−2 is empty. Let A be
the i lowest points of Sl ∪ {b(S)} (see Fig. 3(a)). Notice that A is a left-sided point
set and b(A) = b(S). We can embed P1,i−1 on A by Lemma 2 such that vertex vi is

Embedding Four-Directional Paths on Convex Point Sets 363

t(S) = vb+1

b(S) = vi

P1,i−1

Pb+1,n−1

Pi,a−2

va

Pa,b

va−1

C

B

D

A

(a)

t(S) = vj+1

b(S) = va

P1,a−1

Pj+1,n−1Pa,b

Pb+2,j

vb+1

vb+2

A

B
D

C

(b)

t(S) = ve+1

b(S) = va

P1,a−1

Pe+1,n−1

Pa,b

vc

Pc,e

vb+1
B

E

D

Pb+2,c−2

C

vb+2 vc−1

A

(c)

Fig. 3. Constructions for (a) Case 4B, (b) Case 4C, and (c) Case 4D when Pb+2,c−2 is non-empty
(if c = b+ 2 the set C is empty; if a = c and b = e the sets B and D are not distinguished).

mapped to b(S). Let D be the n − b highest points of Sr ∪ {t(S)}. By Lemma 3, we
can embed Pb+1,n−1 on D such that vertex vb+1 is mapped to t(S). Let B be the a− i
leftmost points of (S\A) ∪ {b(S)}. If a = i then B is empty. Otherwise, since i > α,
�(B) = b(B) = b(S) and since a ≤ β, the points t(B) and r(B) are consecutive in B.
Thus, B is a strip-convex point set and by Lemma 4 we can embed the {U,R}-path
Pi,a−2 on B such that vertex vi is mapped to b(S) and vertex va−1 is mapped to either
t(B) or r(B). Let C = S\(A ∪B ∪D) ∪ {t(S)}. We embed Pa,b on C by sorting the
points by increasing y-coordinate. Thus, vertex va is mapped to b(C) and vertex vb+1

is mapped to t(S). If a = i, vertex vi = va is already mapped to b(S), thus at this step
we only embed the vertices of the {U}-path Pa+1,b.
Next we merge the constructed PDCEs of P1,i−1, Pi,a−2, Pa,b, and Pb+1,n−1. If a = i,
the edge di points upward since vi is mapped to b(S). Otherwise, since va−1 is mapped
to t(B) or r(B), va is mapped to b(C), B and C are separable by a vertical line, and
edge (va−1, va) points to the right and does not cross the remaining drawing.
Recall that this case considers the situation where i > α. In case i ≤ α, we know that
dα ∈ {U,R}. If it happens that dα = R, the construction can be accomplished identi-
cally by considering index α + 1 everywhere in place of i. Here, Lemma 2 guarantees
a mapping of P1,α with vα+1 on b(S) since it is the rightmost point of A and dα = R.

Case 4C: i ≤ α and j < β. This case is symmetric to Case 4B. If dα = R the
embedding is constructed as explained at the end of Case 4A. Otherwise dα = U and
we again identify the maximal {U}-subpath Pa,b of P containing dα. The structure of
the path in this case is shown in Fig. 4 and the embedding in Fig. 3(b).
Also, similar to Case 4B, we can use this construction to embed a path where j ≥ β
and dβ = R. For that, consider the illustration of Fig. 3(b). We set D to contain only
points to the right of t(S) and t(S), i.e., |D| = n− β + 1. We embed Pβ,n−1 on D. By
Lemma 3, we can map vβ to t(S), since dβ = R and t(S) is the leftmost point of D.
The remaining construction is identical.

Case 4D: i ≤ α and j ≥ β, dα = dβ = U . Let Pa,b, a ≤ α ≤ b, be the maximal
{U}-subpath of P containing dα. Similarly, let Pc,e, c ≤ β ≤ e, be the maximal
{U}-subpath of P containing dβ . If there is no R-edge between dα and dβ then a = c

364 O. Aichholzer et al.

vb+2 vj+1

dj+1 = D

{U,D,R}-path
va−1

{U,R}-path
vb+1va

da−1 = R/D

{U}-path

db+1 = R

{U,D,R}-path
vj+2

vb+2 vc−1

dc−1 = R

{U,D,R}-path
va−1

{U,R}-path
vb+1va

da−1 = R/D

{U}-path

db+1 = R

{U}-path
vc

de+1 = D/R

{U,D,R}-path
ve+2ve+1

Fig. 4. Structure of the path in Cases 4C (above) and 4D (below)

and b = e. If there is a single R-edge between them then c = b+2. Otherwise, Pb+2,c−2

is a {U,R}-path containing at least one vertex; see Fig. 4 for this case.
We embed the {U,D,R}-path P1,a−1 on the a lowest points, denoted by A, of S� ∪
{b(S)}. By Lemma 2, we can map va to b(S), since the rightmost point of A is b(S)
and da−1 ∈ {D,R}. By Lemma 3, we can embed Pe+1,n−1 on the n − e − 1 highest
points, denoted by E, of Sr ∪ {t(S)}, such that ve+1 is mapped to t(S), since it is the
leftmost point of E and de+1 ∈ {D,R}. Fig. 3(c) shows the case where Pb+2,c−2 is
non-empty. However, it presents the idea of the embedding in the remaining cases as
well.
If a = c and b = e then Pa,e is a {U}-path. We embed it on S \ (A∪E)∪{b(S), t(S)},
by sorting the points by increasing y-coordinate. This completes the construction of a
PDCE of P on S. Otherwise, we let B (resp. D) be the b−a+2 leftmost (resp. e−c+2
rightmost) points of S \(A∪E)∪{b(S), t(S)}. We embed Pa,b (resp. Pc,e) on B (resp.
D) by sorting its points by y-coordinates.
If c = b + 2, the {U}-paths Pa,b and Pc,e are joined by a single R-edge. Since vb+1

is to the left of vb+2 = vc, the constructed embedding yields a direction-consistent
embedding of the edge (vb+1, vb+2) and this completes the construction of a PDCE of
P on S. Otherwise, Pb+2,c−2 is an {U,R}-path that contains at least one vertex and
db−1 = dc−1 = R. We embed Pb+2,c−2 on the remaining free points, i.e., on the point
set C = S \ (A ∪ B ∪ D ∩ E). By construction of B and D, the set C is separated
from the remaining points by vertical lines. Thus, �(C) and b(C) are either consecutive
or coincide. Similarly, points t(C) and r(C) are either consecutive or coincide. Thus,
C is a strip-convex point set. By Lemma 4, we can embed Pb+2,c−2 on C such that
vb+2 is mapped to one of �(C) or b(C), and vc−1 to one of t(C) or r(C). As vb+2 is
mapped to the highest point of B and vc is mapped to the lowest point of D, we infer
that the obtained embedding of P on S is planar. Since db+1 = dc−1 = R and by the
fact that C is separated from B and D by vertical lines, it is also direction-consistent.
This concludes the proof of the lemma. ��

5 Four-Directional Paths

The proof of the following theorem, which can be found in the full version [1], is based
on a counterexample showing that the path P = LULRDR does not admit a PDCE on
a left-sided point set.

Embedding Four-Directional Paths on Convex Point Sets 365

Theorem 2. There exists a one-sided point set S and an {U,D,L,R}-pathP such that
there is no PDCE of P on S.

A one-sided point set S is a special case of a convex point set, such that b(S) and
t(S) are consecutive. However, as Theorem 2 states, such a point set does not always
admit a PDCE of every four-directional path. On the other hand, consider a one-sided
convex point set S where one of the following pairs represents a clockwise consecu-
tive subset of S: (i) t(S) and �(S), (ii) r(S) and t(S), (iii) b(S) and r(S), (iv) �(S)
and b(S). Such a point set is called quarter-convex. It can be easily seen that every
quarter-convex point set admits a PDCE of any four-directional path. Actually, in case
(i) an edge pointing right always points up and an edge pointing left always points
down. Thus, the problem of embedding a {U,D,R, L}-path is reduced to embedding a
{U,D}-path, which always admits a PDCE on any convex point set [9]. Similar reduc-
tions can be made for any other type of a quarter-convex point set. Therefore, we state
the following:

Observation 4. Any {U,D,L,R}-path has a PDCE on any quarter-convex point set.

Based on Lemma 1, it is easy to derive a dynamic programming algorithm to decide
whether a four-directional path admits a PDCE on a convex point set. This is formal-
ized in the following theorem. A similar algorithm, described in [14], tests whether an
upward planar digraph admits an upward planar embedding on a convex point set.

Theorem 3. Let P be an n-vertex four-directional path and S be a convex point set. It
can be decided in O(n2) time whether P admits a PDCE on S.

6 Conclusion

We investigated the question of finding a planar direction-consistent embedding on a
convex point set for any given four-directional path. We have shown that this is always
possible for paths that are restricted to at most three out of the four directions. To the
contrary, we have provided an example showing that for paths using all four directions,
this is not always possible. We also presented an O(n2) time algorithm to decide em-
beddability for a given four-directional path and convex point set.

The most challenging open problem is to determine whether any two- or three-
directional path always admits a planar direction-consistent embedding on any point
set in general position.

References

1. Aichholzer, O., Hackl, T., Lutteropp, S., Mchedlidze, T., Vogtenhuber, B.: Embedding four-
directional paths on convex point sets. arXiv e-prints arXiv:1408.4933 [cs.CG] (2014)

2. Aichholzer, O., Krasser, H.: The point set order type data base: A collection of applica-
tions and results. In: 13th Annual Canadian Conference on Computational Geometry (CCCG
2001), pp. 17–20 (2001)

3. Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.: On the
number of plane geometric graphs. Graphs and Comb. 23(1), 67–84 (2007)

366 O. Aichholzer et al.

4. Alspach, B., Rosenfeld, M.: Realization of certain generalized paths in tournaments. Discrete
Math 34, 199–202 (1981)

5. Angelini, P., Frati, F., Geyer, M., Kaufmann, M., Mchedlidze, T., Symvonis, A.: Upward
geometric graph embeddings into point sets. In: Brandes, U., Cornelsen, S. (eds.) GD 2010.
LNCS, vol. 6502, pp. 25–37. Springer, Heidelberg (2011)

6. Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and universal point
sets. J. Graph Alg. Appl. 18(2), 177–209 (2014)

7. Bannister, M.J., Devanny, W.E., Eppstein, D.: Small superpatterns for dominance drawing.
CoRR abs/1310.3770 (2013)

8. Biedl, T., Vatshelle, M.: The point-set embeddability problem for plane graphs. In: 28th
Annual Symposium on Computational Geometry (SoCG 2012), pp. 41–50. ACM (2012)

9. Binucci, C., Di Giacomo, E., Didimo, W., Estrella-Balderrama, A., Frati, F., Kobourov, S.,
Liotta, G.: Upward straight-line embeddings of directed graphs into point sets. Computat.
Geom. Th. Appl. 43, 219–232 (2010)

10. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard.
J. Graph Alg. Appl. 10(2), 353–366 (2006)

11. Durocher, S., Mondal, D.: On the hardness of point-set embeddability. In: Rahman, M.S.,
Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 148–159. Springer, Heidelberg
(2012)

12. Forcade, R.: Parity of paths and circuits in tournaments. Discrete Math. 6(2), 115 (1973)
13. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with ver-

tices at specified points. The American Math. Monthly 98(2), 165–166 (1991)
14. Kaufmann, M., Mchedlidze, T., Symvonis, A.: On upward point set embeddability. Comput.

Geom. 46(6), 774–804 (2013)
15. Mchedlidze, T.: Upward planar embedding of an n-vertex oriented path on O(n2) points.

Comp. Geom.: Theory and Appl. 47(3), 493–498 (2014)
16. Reid, K., Wormald, N.: Embedding oriented n-trees in tournaments. Studia Sci. Math. Hun-

garica 18, 377–387 (1983)
17. Rosenfeld, M.: Antidirected hamiltonian circuits in tournaments. Journal of Comb. Theory,

Ser. B 16(3), 234–242 (1974)
18. Straight, J.: The existence of certain type of semi-walks in tournaments. Congr. Numer. 29,

901–908 (1980)
19. Thomason, A.: Paths and cycles in tournaments. Trans. of the American Math. Soci-

ety 296(1), 167–180 (1986)
20. Zhang, C.Q.: Some results on tournaments. J. Qufu Teachers College (1), 51–53 (1985)

Drawing Graphs within Restricted Area�

Maximilian Aulbach1, Martin Fink2, Julian Schuhmann1, and Alexander Wolff1

1 Lehrstuhl für Informatik I, Universität Würzburg, Germany
2 Department of Computer Science, University of California, Santa Barbara, USA

Abstract. We study the problem of selecting a maximum-weight subgraph of a
given graph such that the subgraph can be drawn within a prescribed drawing area
subject to given non-uniform vertex sizes. We develop and analyze heuristics both
for the general (undirected) case and for the use case of (directed) calculation
graphs which are used to analyze the typical mistakes that high school students
make when transforming mathematical expressions in the process of calculating,
for example, sums of fractions.

1 Introduction

Our motivation for the problem that we study in this paper stems from so-called calcu-
lation graphs. Calculation graphs represent calculations starting from some initial task.
They are used in studies [13] involving large numbers of high school students in order
to analyze the students’ typical mistakes in elementary mathematics. Even for relatively
simple tasks such as evaluating the term “3 · (2+ 1/5)”, the different transformations
performed by a large number of subjects can result in calculation graphs with hundreds
of vertices. With the help of drawings of calculation graphs, human experts can ana-
lyze how students calculate and, in particular, which mistakes they frequently make.
As Hennecke [13] suggests, such drawings are only useful if they are not too large,
that is, if they fit into a relatively small drawing area. Hence, well-readable drawings
of important parts of the graphs must be generated in an automated fashion. Certainly,
the drawn subgraph should represent as much information of the original calculation
graph as possible. Therefore, we consider the graphs to be edge- and vertex-weighted;
see Fig. 1 for an example. The weight of an edge is the number of students who applied
the respective calculation step; the weight of a vertex is the number of students who had
the given term as an intermediate result in their calculation. Since we want the labels
of the vertices to be readable, we assume that their sizes are fixed. Hence, often only a
small fraction of the graph will fit into the prescribed drawing area. Note that a user of
such a drawing must be made aware that only a subgraph is shown.

Certainly, vertices and edges that occur only in a single student’s calculation can
easily be dropped. For higher weights, however, this is not as easy. For instance, it
is conceivable that dropping a single vertex of weight W makes it possible to include
several other vertices into the drawing, each of weight slightly less than W ; then the
resulting drawing potentially allows for a better analysis. Hence, we need to select
the subgraph to be drawn based on the graph structure and not only on the weights.

� M. Fink was partially supported by a fellowship within the Postdoc-Program of the German
Academic Exchange Service (DAAD). A. Wolff acknowledges support by the ESF EuroGIGA
project GraDR (DFG grant Wo 758/5-1).

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 367–379, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

368 M. Aulbach et al.

1−1
2 0

1
2

2−1
2

1− 1
2

2

65

3

1

2

Fig. 1. Example of a calculation graph. Edge weights are indicated on the edges

Further Examples. There are many other scenarios in which most of the information of
a large graph should be presented in a limited area. A first example are social networks,
which are usually quite large. In this setting, vertices usually have labels and weights;
the weight may describe the person’s activity in the network. By drawing a heavy sub-
graph in a restricted area, a user can quickly get an overview over important actors in
the network and connections between them. A second example, which we will use in
the main part of the paper, are coauthor networks, where the weights represent numbers
of publications. Here, we want to find a drawing of a subgraph that represents as many
of the publications as possible, i.e., we prefer to keep authors with many publications.

Related Work. Surprisingly, the very natural problem of selecting a subgraph that can
be drawn within a prescribed area seems to be new. Some work on related problems,
however, is worth being mentioned. Rather than fixing the drawing area and maximiz-
ing the size of the subgraph that fits into this area, graph drawing research has focussed
on drawing the whole input graph and minimizing the area needed for the drawing,
which has also been the task in some graph drawing contests [6]. This problem is called
compation and known to be NP-hard for orthogonal drawings with given orthogonal
representation (that is, fixed bends) [14]. In constrained graph layout [12,9], the user
can constrain the region into which a vertex must be placed. Dwyer et al. [8] presented
the algorithm IPSep-CoLa where constraints demanding a vertical or horizontal sepa-
ration of vertex labels can be specified. Such constraints make it possible to enforce
that vertices are placed within a prescribed rectangular area. However, in contrast to our
work, they do not consider dropping vertices. If the vertices do not fit into the area, their
algorithm will not find a feasible drawing. The well-known algorithm of Fruchterman
and Reingold [10] for force-directed graph drawing allows to specify a rectangular area
within which the whole graph has to be drawn. However, in contrast to our work, the
algorithm can easily achieve this since vertices are drawn as points without labels and
edges can be made arbitrarily short, which we do not allow.

Dwyer et al. [7] developed a method for interactive exploration of graphs based on
constrained graph layout. They use a fast heuristic for the overview drawing; for the
detailed view of a smaller part of the graph, however, they can afford to use a slower
constrained graph layout algorithm that yields better results. Constraints ensure con-
sistency between the views and preserve the users’s mental map. Da Lozzo et al. [5]
considered the problem of drawing graphs on the very small display of a smartphone.
They did not try to represent the whole graph on the display, but rather decided to pro-
vide only a local view around a focus vertex; their approach then offers interactive ways
of navigating through the graph and exploring the graph based on the local view.

Drawing Graphs within Restricted Area 369

Our Contribution. While calculation graphs have quite specific characteristics and
drawing requirements (see Section 3), the problem of graph drawing under area re-
strictions is also of interest for general, undirected graphs. For both cases, we present
heuristics and evaluate them experimentally.

For the general case, we use the force-directed approach, reusing forces defined by
Fruchterman and Reingold [10] and by Bertault [3]. We add extra phases in which the
graph is pressed together; from time to time we remove vertices or edges from the
graph if this is needed for further compaction. We use the desired edge length as pa-
rameter both for the usual iterations and our extra phases. In our tests, this proved to be
effective for parametrizing the density of the output drawing. Furthermore, we experi-
mentally improved the way of avoiding vertex-edge intersections and we developed a
postprocessing that routes some of the edges as curves.

For calculation graphs, we chose the well-known Sugiyama framework [17] as basis
for our algorithm since we want calculation paths to be readable from left to right. We
add a method that successively removes the least important vertices and edges until
the drawing fits into the given area. We also consider the weight of edges for crossing
minimization so that important edges have few crossings. In our tests, it turned out
that removing the lightest vertices as a preprocessing often improved the weight of the
final subgraph. Furthermore, routing the edges as curves gave very nice results, also
compared to the original orthogonal drawing style for calculation graphs.

2 General Graphs

We first present an algorithm for drawing arbitrary graphs. The input of our problem
consists of an unweighted graph G= (V,E) with a weight function w : V ∪E →R+. For
each vertex v ∈V , we are given a geometric object �(v) that will represent the vertex in
the drawing. Vertices can be represented by different shapes, e.g., rectangles, disks, or
ellipses. We will focus on rectangular vertices which are well-suited for text labels of
vertices. We will denote the height and the width of �(v) by hv and wv, respectively.

In addition to the graph input, we are given an axis-parallel rectangle of height H
and width W , the drawing area. The task is to find a subgraph G′ = (V ′,E ′) of G with
a nice drawing of G′ within the given drawing area.

The hard constraints for the drawing are clear: Each vertex v ∈ V ′ must be repre-
sented by �(v), the vertices must not overlap, and each edge must connect its incident
vertices. However, it needs to be clarified, what a nice drawing is. In our setting with
a restricted drawing area, putting vertices close together can allow us to have more
vertices—and thus more weight—in the final drawing. Certainly, a drawing with ver-
tices that are very close is not nice; the same holds for very short edges. We will discuss
these criteria and more later in detail.

By a straightforward reduction from SUBSET SUM, where we use height 1 for all
vertices and the drawing area, we can easily observe that maximizing the weight of the
subgraph that can be drawn in a prescribed area is NP-hard.

370 M. Aulbach et al.

2.1 Our Algorithm

Our approach uses the force-directed framework; in this class of algorithms, the drawing
is incrementally improved, starting with an arbitrary layout. Each improvement step is
done by letting forces, defined using physical analogies, move the vertices.

In contrast to usual force-directed algorithms, we have to take both the dimensions
of vertices and of the prescribed drawing area into account. Therefore, we add two
important ingredients: We try to fit the drawing into a frame of decreasing size, and we
remove vertices or edges from the graph in order to make the graph smaller so that the
current drawing can fit into the current frame. While, as a first idea, fitting the drawing
into the given area could be steered by a force pulling all vertices towards the center of
the drawing region, this idea has some drawbacks. Therefore, we will introduce a more
advanced approach. Similarly, removing vertices could simply be done by removing the
lightest vertex in each step. However, this would take neither the structure of the graph
nor the current drawing into account. Hence, we introduce a measure for the stress of
vertices in the current situation; we will always remove the vertex with the highest stress
value. In the following paragraphs, we will detail out our algorithm’s individual steps.

Forces. We first define the forces used in our algorithm.
– We reuse existing forces from the algorithm of Fruchterman and Reingold [10];

that is, for any pair u,v∈V of vertices, there is a force Fr (u,v) = l2
unit/(d (u,v)) ·

−→uv
on v that repels v from u, where −→uv is the unit vector pointing from u towards v. If
the vertices are adjacent, that is, if uv ∈ E , there is an additional force Fa(u,v) =
(d(u,v))2/lunit · −→vu that attracts v towards u. Both forces use a factor lunit which
describes the desired unit edge length. Since the desired edge length heavily influ-
ences the density of the drawing, and, hence, the number and weight of vertices
and edges that can be placed within the given drawing area, the choice of lunit is
crucial for the results. While we allow the parameter to be set freely, we stress that
the value must be chosen carefully, taking the sizes of vertices into account, so that
one gets nice output drawings.

– Due to the high density of the input graphs and the given sizes of vertices, it may
easily occur that vertices are intersected by nonincident edges, which reduces the
readability significantly. As a first step to overcome this problem, we use a force
that has been introduced by Bertault in his PrEd algorithm [3]: If an edge {u,w}
intersects a vertex v in its inner region, that is, close to the center of v, then we let a
force Fe (v,{u,w}) = (lunit− d (v, iv))

2 ·−→ivv repel v from {u,w}, where the point iv is
the orthogonal projection of v onto the straight-line segment uw. Note that this does
not guarantee that intersections between vertices and edges are avoided. However,
such intersections become less likely; in Sec. 2.2, we will see how their number can
be further reduced by routing edges as curves.

– For making the drawing more compact, we introduce a force Fg(v) = d (v, pc) ·−→vpc

that attracts each vertex v to the center pc of the drawing area. In our experiments it
turned out that activating this force in later steps of the algorithm reduces the time
for finding a final drawing, but also the quality of the output. Therefore, as a default,
the force is only active when computing the very first equilibrium layout.

Drawing Graphs within Restricted Area 371

Handling the Frame. The forces described above yield a functional force-directed algo-
rithm which can be applied for getting an initial layout. Once we have an initial drawing,
we initialize the frame F as the bounding box of the drawing. Our algorithm iteratively
reduces the size of the frame until it matches the prescribed drawing area.

In each step, we first uniformly reduce the height and the width of F by a small
amount. It may happen that some vertices (partially) lie outside of the resulting new
frame F ′. If this is the case for a vertex v, we just place it at the closest position that lies
completely within F ′. This operation can result in intersections of vertices. Therefore,
we compute a new equilibrium state which hopefully solves the intersections.

In all force-directed iterations in which there is a frame, we will always ensure that
no vertex leaves the frame. This is done by cutting off the resulting movement vectors;
Fruchterman and Reingold [10] did the same for ensuring that no vertex leaves the
drawing area in their algorithm—with the difference that they did not shrink the frame
but rather started with a very compressed drawing since in their setting vertices are
points that can be arbitrarily close.

If there are intersections after computing a new equilibrium layout, we have a clear
indication that the graph is still too large for the current frame and, hence, for the desired
drawing area. In this case, and also in some more cases, we will remove vertices or
edges as described in the next section.

Removing Vertices and Edges. Our indicator for the necessity of the removal of vertices
or edges is, roughly speaking, the density of the drawing. If there are too many vertices
in the graph for the current frame, then vertices will come very close. Therefore, we de-
cide to remove a vertex or an edge if the minimum edge length is less than a value ladj

or if the minimum distance between two nonadjacent vertices is less than a value lnadj.
Note that this includes the case of two intersecting vertices.

Deciding what should be removed is more difficult. Since we want to keep as much
weight as possible, the natural idea is to remove the lightest vertex. However, this is
often not the best choice—even if it is unambiguous. A more advanced criterion should
take also the degree of a vertex into account. The higher the number of neighbors of a
vertex is, the more information on the graph is lost by removing the vertex.

Stress Calculation. However, we can still do better: So far, the current drawing is not
taken into account, although it yields valuable information about the density of vertices
in the vicinity of the vertex that should be removed. Thus, we suggest considering the
forces in the last equilibrium layout. Even if the total movement vector of a vertex has
length zero, this may actually result from strong forces that try to move the vertex to
different directions, e.g., if the vertex is “trapped” between many other vertices.

These considerations lead us to a measure that we call the pressure of a vertex. In-
tuitively, the pressure is the maximum strength of forces in roughly opposite directions
that act on a vertex. For formalizing this, we subdivide all force vectors applied on the
vertex v into eight octants. For each octant, we sum up the force vector. For i = 0, . . . ,7
let li be the length of the resulting force vector for octant i. Now, we first build the pres-
sure pi for octant i by comparing li with the force vectors in the three opposite directions,
i.e., with li+3, li+4, and li+5 (mod 8); see Fig. 2. The pressure then is the maximum over

372 M. Aulbach et al.

the pairwise minima, i.e., pi =max{min{pi, pi+3} ,min{pi, pi+4} ,min{pi, pi+5}}. The
total pressure on v is p(v) = max{p0, . . . , p7}.

v

i

i+ 3 i+ 4

i+ 5

Fig. 2. Pressure computation
for one of the octants

Now, we must integrate the weight w(v) and the de-
gree deg(v)—indicators of the vertex’s resistance against
pressure—with the pressure in order to get the stress s(v).
We do so by setting s(v) = p(v)/(w(v) · (deg(v)+ cdeg)).
Here, cdeg is a small positive constant that ensures that we
do not get problems for isolated vertices and that steers
our preference for keeping isolated vertices in the drawing.
With this definition of the stress, we can always choose the
vertex with the highest stress for removal.

Boundary Vertices. There is a special case for vertices
close to the boundary of the frame. We never move a ver-
tex over the boundary although, in many cases, vertices are repelled in this direction by
the inner vertices. This phenomenon is a cause of pressure on a vertex that is, so far, not
covered by our definition. We therefore introduce a new “virtual” force that mimics the
resistance against movements that push the vertex out of the frame. This force repels
the vertex perpendicularly to the inside of the frame, away from the closest point pf

of the frame’s boundary. More precisely, the virtual force is Ff(v) =
−→pfv · l2

unit/d(v, pf).
We stress that Ff is only taken into account for the stress computation and not actually
applied.

Edges. In some cases, one may try to remove only an edge instead of a whole vertex;
the hope is that after removing the edge, the graph becomes more flexible so that the
available space can be used better. As an indicator for such a situation, we use the
average edge length in the current drawing. If this length is larger than lunit ·clen, with a
factor clen > 0, we decide for removing an edge instead of a vertex. The intuition is that,
on average, the edges are not very short, which means that by removing one of these
longer edges we could allow more flexibility to the placement of vertices.

In order to determine which edge will be removed, we, again, use a definition of
stress. To this end, we take both the weight w(e) and the weights of the edges crossing e
into account. Let E ′ be the set of these edges. Then, we set s(e)=∑e′∈E ′ w(e′)· |E ′|/w(e)
to be the stress of e, and we remove the edge with the highest stress value.

2.2 Extensions

We developed and implemented two extensions that can help improve the runtime of
the algorithm and the quality of the resulting drawings, respectively.

Preprocessing. In many input instances, there is a large number of vertices with very
small weight, for which it is very unlikely to occur in the final drawing. To speed up
the algorithm, we can remove all vertices that are lighter than a threshold value w�.
Our choice of w� is based on guessing a bound on the maximum number of vertices in
the final drawing and depends on the height H and the weight W of the drawing area,
the minimum height hmin and the minimum width wmin of a vertex as well as on the
desired edge length lunit and a factor cpre > 0. We will make sure that we keep at least
(H ·W)/

(
(lunitcpre + hmin) · (lunitcpre +wmin)

)
vertices in the graph.

Drawing Graphs within Restricted Area 373

pe

v2

v1

v3
u

w

(a) Repelling forces

pe

v2

v1

v3
u

w

(b) Attracting forces; v3 is too far away for an attraction.

Fig. 3. Repelling and attracting forces for Bézier curves

Postprocessing: Bézier Curves. In Sec. 2.1, we explained the force that aims at avoiding
intersections between vertices and nonincident edges. However, we cannot guarantee
that we do not have such intersections. We can do two things about this: (i) Intersections
of an edge with the outer region of a vertex are relatively easy to distinguish from
incidences and can, therefore, be tolerated. (ii) We can remove more edges if necessary.

Here, we present a third possibility: If we allow edges to be curves rather than
only straight-line segments, we can avoid more intersections. In their improvement to
Bertault’s PrEd algorithm, Simonetto et al. [16] allowed polyline edges, where bends
are introduced and removed based on the current drawing. However, this approach made
the algorithm much slower; also, use a postprocessing in which edges are routed as
Bézier curves around intersected nonadjacent vertices. We do this by representing edge
e = {u,w} by a quadratic Bézier curve, i.e., a parametric curve with a control point pe

in addition to the endpoints.
The computation of the curve is done as a postprocessing in the very last step of

the algorithm. It is realized as an additional force-directed algorithm in which only the
control point is moved, starting at the position in the middle between u and w. Each
vertex v that is not far away from e causes a repelling force on pe; see Fig. 3a. This
force is parametrized by the width wv and the height hv of v as well as by the point p′v
of v that is closest to e and the point p′e of e that is closes to v. The repelling force is

defined as Frb(e,v) =
−−→
p′v p′e · (w2

v + h2
v)/d(p′v, p′e).

In order to avoid that the edge is curved too much, we also have an attracting force for
vertices that have been (almost) intersected by e. If v is such a vertex, then the attracting

force Fab(e,v) =
−−→
p′e p′v ·d(p′v, p′e)

2/
√

w2
v + h2

v is applied to pe; see Fig. 3b.

2.3 Experiments and Evaluation

We implemented our heuristic in Java, using the graph library JUNG[1]. Our experi-
ments were performed on a Core i5-2500K CPU with 8 GB of RAM. For the force-
directed part of the algorithm, we also used a cooling factor that slows down the move-
ment of vertices over the iterations in order to accelerate the computation of an equi-
librium. We configured our algorithm such that there are always 25 steps of shrinking
the frame around the current drawing. As input data, we primarily used (subgraphs of)
the graph drawing collaboration graph from 1994 till 2012; in total, the graph has 950
vertices and 2559 edges. The weight of each vertex is the number of publications of

374 M. Aulbach et al.

Ye

Nikola S. Nikolov

Cesim Ertena Binucci

Christian A. Duncan

G

Maarten Löffler
ni Michael T. Goodrich

Peter Eades

Seok-Hee Hong

ara Mchedlidze

David Eppstein

Stephen G. Kobourov

Fabrizio Frati

Emden R. Gansner

Stephen C. North

Yifan Hu

J. Joseph Fowler

Alejandro Estrella-Balderrama

(a) clipping of an output with lunit = 2cm

Patrizio Angelini

urizio Pizzonia

Fabrizio Frati

Therese C. Biedl

Giuseppe Di Battista Sue Whitesides

David R. Wood

Giuseppe LiottaWalter Didimo

Stephen K. Wismath

Maurizio Patrignani

(b) clipping of an output with lunit = 3cm

Fig. 4. Output examples with different choices for lunit

the respective author and the weight of an edge connecting two authors is the num-
ber of their joint publications. We focused on a drawing area of 29.7cm× 21cm (DIN
A4) where the size of vertices was determined by the author’s name (in 10pt font). For
the complete publication graph, the runtimes were about 2 minutes, depending on the
parameters.

The main results of our tests are the following.
– The preprocessing step described in Sec. 2.2 pays off; depending on the parameter

cpre, we may save runtime and get better results. In our tests, cpre = 0.7 seemed a
good choice; see Table 1 in the extended version of the paper [2].

– For testing whether something has to be removed, we set ladj = 0.1lunit and lnadj =
0.15lunit. For the parameter clen that determines whether an edge or a vertex will
be removed, clen = 0.9 gave a good compromise between the vertex and the edge
weight in the final drawing; see also Table 2 in the extended version [2].

– We tested the effect of not always activating the force that repels vertices from
edges; instead, we first computed an equilibrium without the force and then another
one with it, so that we have more flexibility for vertices to cross edges. In our
tests, this proved to have a significant impact on the total weight of edges in the
final drawing, yielding an increase of almost 80%; see Table 3 in the extended
version [2].

– The following way of computing the total force vector F for a vertex based on
putting weights to the single forces showed the best results: F = 0.01Fr+ 0.01Fa+
0.005Fg+ 0.0075Fe+ 0.01Ff. Note that not all forces are active at the same time.

A central parameter used in our algorithm is lunit, describing the desired edge length.
Figure 4 shows output examples that demonstrate that higher values lead to drawings
that are less dense. Full outputs are available in the extended version of the paper [2]

3 Calculation Graphs

We now consider the initial problem of drawing calculation graphs in prescribed area.
In our terminology, most of the input stays the same compared to general graphs, except

Drawing Graphs within Restricted Area 375

that now our edges are directed since they represent calculation steps. Additionally, we
are given a start vertex s∈V that represents the task given to the students. Hence, s must
be present in the output drawing and, furthermore, we insist that in the subgraph that is
finally drawn, each vertex can be reached from s. To further improve the readability of
the steps, we want as many edges as possible pointing from left to right. As a drawing
convention for the edges, we will use the orthogonal drawing style with edges leaving
vertices horizontally; we try to minimize the numbers of crossings and of bends and to
optimize the gaps between edges and vertices. The hardness proof for general graphs
can easily be adjusted. Hence, the problem remains NP-hard.

3.1 Our Algorithm

Due to the required readability from left to right, our approach is based on the Sugiyama
framework [17] for hierarchical graph drawing. This framework consists of several steps
that we will adjust to our problem. Our adjustments are optimized for our drawing style
and especially for the task of removing vertices or edges from the graph, if necessary.
We first briefly review the steps of the Sugiyama framework before going into detail
and describing our adjustments.

In the first step, the graph is made acyclic by reverting some of the edges. Next, the
vertices are assigned to layers from left to right. Then, based on the layer assignment,
the number of edge crossings is minimized resulting in relative orders of the vertices of
each layer. Eventually, final vertex coordinates are computed and the edges are routed.

Breaking the Cycles. In later steps of the Sugiyama framework, it is assumed that all
edges are directed from left to right, i.e., the graph must be acyclic. Hence, we must
revert some edges. For reverting the smallest number of edges, the NP-hard Feedback
Set problem must be solved. We can either use existing heuristics, or even afford solving
the problem optimally with the help of an MIP solver; in our tests, this worked quite
fast and allows us also to minimize the weight of the reverted edges rather than their
number.

Layer Assignment. Several approaches for the layer assignment in the Sugiyama frame-
work exist, depending on the objective, e.g., of minimizing the number of layers or the
number of vertices in a layer. Often, the number of layers is minimized subject to a
prescribed maximum height of each layer. However, we will not use the height of our
drawing area as the maximum height of a layer, although, at first, this may seem a good
idea: If we do so, we would most probably have to remove many layers of vertices com-
pletely from the graph in later steps, which, subsequently, can also cause the removal of
vertices of layers that are not removed, making these layers automatically smaller. In-
stead, we will set nmax = �|V |/k�, where k is the length of the longest path in the graph,
so that we can hope for roughly equal numbers of vertices per layer. We mainly used the
heuristic of Coffman and Graham [4] with the minor adjustment that preferably the left-
most layers have more vertices; we also tested Graham’s list scheduling algorithm [11]
and an assignment with the minimum number of layers.

Vertex Removal. After the layer assignment, the configuration usually does not fit into
the drawing area. We now remove vertices until all vertices can be placed in the drawing

376 M. Aulbach et al.

area. We first remove vertices from each layer, so that the height of the layer is small
enough. Afterwards, we remove whole layers until the width requirement is fulfilled.
We first remove single vertices because this step can significantly influence the total
weight of layers and, therefore, the choice of layers that will be deleted. The removal
from the layers is done from left to right since the removal of a vertex from a layer can
cause other vertices right of it to also be removed, if they become unreachable from s.

When removing from a layer, we should prefer light vertices. However, we must
also take the heights of vertices into account: Removing a high vertex may save as
much space as removing several lighter vertices whose weight sums up to a larger value.
Hence, we measure the importance of a vertex v as i(v) = w(v)/hv and remove as many
vertices of lowest importance as necessary so that the layer fits into the drawing area.
We also tried other importance measures by taking the possible decrease of the width
of the layer or the decrease of its area into account when removing a vertex. However,
these measures did not perform better than the simpler height-based measure.

Once all layers have a feasible height, we will remove complete layers so that we are
within the allowed total width. Note that we must always keep gaps between adjacent
layers so that the edges can be drawn. The removal of layers is also done from left
to right. We do this based on the importance of a layer L, which we define as i(L) =
∑v∈L w(v)/width(L), where the width of L is determined by its widest vertex.

Crossing Minimization. For the crossing minimization, we use the methods commonly
used in the Sugiyama framework, which are based on considering only (parts of) edges
between adjacent layers, but do so multiple times. For the adjacent exchange heuristic,
we also considered the version where the weight of crossing edges is minimized. This
heuristic just performs swaps of adjacent vertices in a layer—if this reduces the number
(or weight) of crossings. Hence, weights can easily be integrated.

Edge Removal. Even after crossing minimization, there could still be too many cross-
ings for the drawing to be well readable, if the graph is dense. Hence, we add a step
in which edges are removed, if necessary. To this end, we introduce a measure for the
importance of an edge e: If E ′(e) is the set of edges that cross e, then the importance
of e is i(e) = w(e)/(∑e′∈E ′(e) w(e′)). The result is that edges without a crossing are con-
sidered most important and will never be removed. Furthermore, an edge that crosses
heavy edges—which are more valuable to us—will more likely be removed.

Gaps in Layers. Now, we know the orders of vertices in layers, where a layer also
contains edges that are routed through several layers. We improve readability by using
different gaps between the objects in a layer: Two edges are drawn closer together than
two vertices, and edges that stay parallel until the next layer can be drawn even closer.
While the different gaps make the drawings nicer, the consequence is also that only
now we know the precise height each a layer. In some cases, this can make it necessary
to remove another vertex of a layer, which, again, is done based on the importance
measure.

Coordinate Assignment. For the final adjustment of the vertex positions, we still have
some flexibility if the vertices (and edges) in the layer do not consume the total avail-
able height. We can use this flexibility and try to minimize the number of edge bends.

Drawing Graphs within Restricted Area 377

Therefore, we integrated a part of the heuristic of Sander [15]. However, due to the
height constraint, we usually cannot save too many bends.

Edge Routing. Finally, only the edges need to be drawn, with several subproblems:
– We have to distribute the ports of the edges at the incident vertices or use a single

port shared by all edges.
– We indicate the weight of edges by drawing them with different width. Since there

are only few edges that are very heavy, it makes sense to not use a linear dependency
between width and height but, e.g., a logarithmic dependency, or a dependency to
the cube root (which gave the nicest results for our drawings).

– We have to distribute the vertical segments of the edges between consecutive layers
such that both overlaps between segments and unnecessary (double) crossings are
avoided. We first find a relative order of the segments from left to right for each pair
of adjacent layers as follows: For any pair of edges between the layers that do not
have to cross, there is at most one order with an unnecessary crossing. Using these
orders, we build a directed graph of vertical segments. A topological sorting of this
graph yields an order of the segments that avoids all unnecessary crossings.
Once a relative order of the vertical segments is found, we assign the final coordi-
nates. Small improvements are possible that locally optimize the spacing between
the edge segments and we have put a lot of effort into implementing some of them.
The most valuable optimization was using a force-directed algorithm with repelling
forces between adjacent segments that optimizes the distances between the seg-
ments.

3.2 Extensions

Preprocessing. Similar to our algorithm for general graphs, we use a preprocessing step
in which very light vertices and edges are removed in order to speed up the later steps.

Reinsertion of Removed Vertices. After crossing minimization, when the order of ver-
tices is fixed, it is possible that we could safely reinsert some of the removed vertices so
that the available area is used in a better way. We prefer the vertices with the highest im-
portance as defined before and insert them in the leftmost available layer. Note that after
reinserting vertices, we may have to reorder some of layers for crossing minimization.

Bézier Curves. While we try to avoid bends of the orthogonal edges, there still can be
longer edges that have several bends, making them hard to follow. We suggest draw-
ing the edges as smooth curves instead. To this end, we represent each edge segment
between two adjacent layers as a cubic Bézier curve. As a simple version, this can be
done by making the two bends of the orthogonal edge the two middle control points of
the curve; this yields already quite nice results. We can further improve the drawings by
adjusting the force-directed algorithm for the vertical segments (i.e., the control points):
First, we can allow horizontal segments to overlap since they are not actual segments
any more. Second, we can add a tendency to put the segments close to the middle be-
tween the layers in order to avoid sharp bends. We can, however, not place all vertical
segments in the middle; doing so could result in unnecessary crossings of the respective
curves.

378 M. Aulbach et al.

32
40

6
10

17
40

7
8

3
40

(38 +
1
5)

(15+8)
40

(1540 +
9
40)

((3·5)(8·5) +
(1·8)
(5·8))

1
5

120
40

23
45

4
14

11
20

(1540 +
5
40)

29
40

23
80

4
12

13
40

(1540 +
8
40)

21
40

1
10

(38 +
3
8)

16
40

1
2

1
4

11740

4
5

(3
40 +

1
40)

22
40

3
13

19
40

1
3

3
5

4
8

18
40

23
40

4
13

4
40

7
40

24
40

3 1
13

(3080 +
16
80)

20
40

(3+1)
(8+5)

Fig. 5. An output example with edges drawn as Bézier curves (scaled down)

Weight Transfer. Suppose we delete a vertex v such that the edges (u,v) and (v,w)
for vertices u and w exist. If both edges are heavy, it is possible that many students
reached w from u with v as an intermediate step. Hence, after the removal, an edge
(u,w) becomes more valuable to us because this edge can also partially represent the
steps described above. We can model this by creating edge (u,w)—if it did not exist—
and increasing its weight by min{w(u,v),w(v,w)} for the remainder of the algorithm.
Similar weight transfers make sense also in more complicated situations.

3.3 Experiments and Evaluation

Also the algorithm for calculation graphs was implemented in Java. We used real-world
data generated in user studies, with graphs of 107 and more vertices. The largest graph
had 1031 vertices and 1549 edges. As for general graphs, we mainly used the A4 paper
size as the prescribed drawing area. The tests were performed on a 3 GHz CPU with 4
GB RAM. Figure 5 shows an output example using Bézier curves, which, in our opinion,
is the nicer and more interesting style compared to the version with orthogonal edges.
Full examples can be found in the extended version [2]. Our main results are as follows.

– A preprocessing that removes the lightest vertices often improves the output, i.e.,
the drawn subgraph is heavier; see Table 4 in the extended version [2].

– There was no significant influence of the chosen layering algorithm on the weight of
the final subgraph, especially when using the postprocessing for vertex reinsertion.

– Taking the weight of crossing edges into account in the adjacent exchange heuristic
for crossing minimization reduces the weight of crossing edges significantly (factor
> 2) and causes only few additional crossings; see Table 5 (extended version [2]).

– The computation for the largest graph with 1031 vertices took 3 to 4 seconds, de-
pending on the parameters; most of the time was spent on the adjustment of seg-
ments in the edge routing step and on writing the output file (about 2 seconds).

Drawing Graphs within Restricted Area 379

4 Conclusion

We have introduced the problem of drawing a heavy subgraph in a prescribed area.
Both for general graphs without further constraints and for calculation graphs, we have
developed and tested heuristics which yield quite nice results.

Acknowledgement. We thank Martin Hennecke for introducing the problem of drawing
calculation graphs to us and for providing us with input data.

References

1. Java Universal Network/Graph Framework (JUNG), http://www.jung.sourceforge.net
2. Aulbach, M., Fink, M., Schuhmann, J., Wolff, A.: Drawing graphs within restricted area.

CoRR (2014), ArXiv e-print http://arxiv.org/abs/1409.0499
3. Bertault, F.: A force-directed algorithm that preserves edge crossing properties. Inf. Proc.

Letters 74(1-2), 7–13 (2000)
4. Coffman, E.G., Graham, R.L.: Optimal scheduling for two-processor systems. Acta In-

form. 1(3), 200–213 (1972)
5. Da Lozzo, G., Di Battista, G., Ingrassia, F.: Drawing graphs on a smartphone. J. Graph Algo-

rithms Appl. 16(1), 109–126 (2012)
6. Duncan, C.A., Gutwenger, C., Nachmanson, L., Sander, G.: Graph drawing contest report.

In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 575–579. Springer,
Heidelberg (2013)

7. Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P., Woodward, M., Wybrow, M.: Exploration
of networks using overview+detail with constraint-based cooperative layout. IEEE Trans. Vis.
Comput. Graph. 14(6), 1293–1300 (2008)

8. Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: An incremental procedure for separation
constraint layout of graphs. IEEE Trans. Vis. Comput. Graph. 12(5), 821–828 (2006)

9. Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph layout. In: Tol-
lis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 230–241. Springer, Heidelberg
(2009)

10. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw.
Pract. Exper. 21(11), 1129–1164 (1991)

11. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9),
1563–1581 (1966)

12. He, W., Marriott, K.: Constrained graph layout. Constraints 3(4), 289–314 (1998)
13. Hennecke, M.: Rechengraphen. Math. Didact. 30(1), 68–96 (2007)
14. Patrignani, M.: On the complexity of orthogonal compaction. Comput. Geom. Theory

Appl. 19(1), 47–67 (2001)
15. Sander, G.: A fast heuristic for hierarchical Manhattan layout. In: Brandenburg, F.J. (ed.) GD

1995. LNCS, vol. 1027, pp. 447–458. Springer, Heidelberg (1996)
16. Simonetto, P., Archambault, D., Auber, D., Bourqui, R.: ImPrEd: An improved force-

directed algorithm that prevents nodes from crossing edges. Comput. Graphics Forum 30(3),
1071–1080 (2011)

17. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system
structures. IEEE Trans. Syst. Man Cyber. 11(2), 109–125 (1981)

http://www.jung.sourceforge.net
http://arxiv.org/abs/1409.0499

Height-Preserving Transformations

of Planar Graph Drawings

Therese Biedl�

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

biedl@uwaterloo.ca

Abstract. There are numerous styles of planar graph drawings, such
as straight-line drawings, poly-line drawings, orthogonal graph draw-
ings and visibility representations. Given a planar drawing in one of
these styles, can it be converted it to another style while keeping the
height unchanged? This paper answers this question for (nearly) all pairs
of these styles, as well as for related styles that additionally restrict
edges to be y-monotone and/or vertices to be horizontal line segments.
These transformations can be used to develop new graph drawing results,
especially for height-optimal drawings.

Keywords: Planar graph drawing, poly-line drawing, straight-line draw-
ing, orthogonal drawing, visibility representation, minimizing height.

1 Introduction

Let G = (V,E) be a simple graph with n = |V | vertices and m = |E| edges.
All graphs in this paper are planar, i.e., can be drawn without crossings. Some
of the most commonly used drawings styles are the following: (1) A straight-
line drawing is a drawing where vertices are points and edges are straight-line
segments between their endpoints. Any planar graph has a planar straight-line
drawing in an O(n) × O(n)-grid [8][17]. (2) A poly-line drawing (called mixed
model in [12]) is a drawing where vertices are points and edges are polygonal
curves. Some results exist for poly-line drawings for which no equivalent straight-
line drawing result is known; for example Kant gave drawings in an O(n)×O(n)-
grid with large minimum angle [12]. (3) A (2-directional) visibility representation
is a drawing where vertices are axis-aligned boxes and edges are horizontal or
vertical line segments. Every planar graph has a visibility representation in an
O(n)×O(n)-grid [16][20][21]. (4) An orthogonal (box-)drawing is a drawing where
all vertices are axis-aligned boxes and edges are polygonals curves for which all
line segments are horizontal or vertical. Every planar graph has an orthogonal
drawing in an O(n) ×O(n)-grid [18].

� Supported by NSERC and the Ross and Muriel Cheriton Fellowship. The author
would like to thank the referees of a preliminary version for helpful comments, and
Fabrizio Frati and Géza Tóth for pointing out reference [15].

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 380–391, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Height-Preserving Transformations of Planar Graph Drawings 381

The research of this paper was driven by the following question: Does one
really need to develop algorithms and lower bounds for these four drawing styles
separately? Or is it possible to take a drawing in one style, and convert it directly
to another style, preserving some of the features along the way? This would
significantly simplify the development of algorithms and lower bounds.

This paper studies the existence of such transformations under the objective
of maintaining the height of the drawing. It also includes some discussion on
the width, and shows that transformations that maintain the height sometimes
require an exponential blow-up in the width. Due to some prior work and ap-
plications, two variations of the drawing styles are included. First, a drawing is
called y-monotone if each edge is drawn as a y-monotone curve. Every straight-
line drawing and every visibility representation is y-monotone, but orthogonal
drawings and poly-line drawings need not be. Second, a drawing is called flat
if every vertex is represented by a horizontal line segment. Every straight-line
drawing and every poly-line drawing is automatically flat, but orthogonal draw-
ings and visibility representations need not be. Fig. 1 lists the results, which can
be summarized as follows:

– Straight-line drawings, y-monotone poly-line drawings, flat visibility repre-
sentations and flat y-monotone orthogonal drawings are equivalent, where
“equivalent” means “can be transformed into each other such that the height
of the drawings remains the same”.

– Poly-line drawings and orthogonal drawings are also equivalent.
– y-monotone orthogonal drawings are strictly between orthogonal drawings

and visibility representations.
– Visibility representations are between orthogonal y-monotone drawings and

straight-line drawings, where the latter relationship may be an equality.

The transformations keep the width linearly bounded or better, with the notable
exception of creating straight-line drawings: here we show that an exponential
increase in width is required for some graphs if the height must stay the same.

These results have some applications given in Section 6. Most importantly,
they allow to derive some height-bounds for which no direct proof appears
known, and they can be used to formulate some NP-hard graph drawing prob-
lems as integer programs.

2 Preliminaries

Throughout this paper G denotes a planar graph, and Γ denotes a planar draw-
ing of G that represents vertices of G as axis-aligned boxes (possibly degenerated
into horizontal segments or points) and edges of G as polygonal curves (possibly
straight line segments). The common end of two line segments in a polygonal
curve is called a bend. Γ is called y-monotone if for all edges the y-coordinates
monotonically increase while going from one end to the other; horizontal seg-
ments are allowed. Γ is called flat if all vertices are horizontal segments.

Call a drawing a grid-drawing if all corners of vertex-boxes and all endpoints
of segments of polygonal curves have integer coordinates. A grid drawing is said

382 T. Biedl

orthogonal
drawing

visibility
representation

flat visibility
representation

flat y-mon.
orth. drawing

y-monotone
orth. drawing

flat orth.
drawing

poly-line
drawing

y-monotone
poly-line drawing

R
ep
re
se
n
ta
ti
o
n
o
f
ed
g
es

R e p r e s e n t a t i o n o f v e r t i c e s

Thm.3 Thm.3

Thm.8

horizontal segments boxespoints

straight-line
drawing

li
n
e
s

s
t
r
a
ig

h
t

y
-m

o
n
o
t
o
n
e

p
o
ly

-l
in

e
s

p
o
ly

-l
in

e
s Thm.4

Thm.4

Thm.5

Thm.5

Thm.6

Thm.8

Thm.7

Cor.2

[15]

?

Cor.3

transformation not always possible

existence unknown in general?

transformation possible for bipartite graphs,

trivial implication

non-trivial transformation

Fig. 1. Summary of height-preserving transformations

to have width w and height h if (possibly after translation) vertices and bends are
placed on the [1, w]× [1, h]-grid. The height is thus measured by the number of
rows, i.e., horizontal lines with integer y-coordinates that intersect the drawing.1

Drawings in this paper are required to be grid-drawings, with some exceptions
for ease of description that will be pointed out as they occur.

The goal is to transform a planar drawing Γ into a different planar drawing
Γ ′ which has the same height but uses a different drawing style. If Γ and Γ ′ are
both flat, then these transformations will have two useful properties as follows.
Γ ′ preserves y-coordinates if any vertex has the same y-coordinate in Γ and
Γ ′. This is well-defined since both drawings are flat. Γ ′ preserves left-to-right-
orders if, scanning each row from left to right, one encounters the same edges
and vertices, in the same order, in both Γ and Γ ′. One can easily show that if Γ
is planar and Γ ′ preserves y-coordinates and left-to-right-orders, then Γ ′ is also
planar and has the same height. Furthermore, Γ ′ is y-monotone if Γ was.

3 Point-Drawings

This section considers transformations among drawing styles that represent ver-
tices by points. One of the few existing results about height-preserving transfor-
mations is by Pach and Tóth:

Theorem 1. [15] Any planar y-monotone poly-line drawing Γ can be trans-
formed into a planar straight-line drawing Γ ′ with the same height.

1 In the pictures vertex representations are thickened for ease of readability, but this
is not counted towards the height; e.g. the drawings in Fig. 1 have height 3.

Height-Preserving Transformations of Planar Graph Drawings 383

3.1 Exponential Width

Pach and Tóth did not analyze what happens to the width during the transfor-
mation. In fact, they did not even worry about achieving integer coordinates,
but it is clear that this can be done with minor modifications. One can show
that the width must increase exponentially for some graphs:

ad

1

2

3

4

v

u

a1 a3

a2 a4

ad

1

2

3

4

v

u

a1 a3

a2 a4

Fig. 2. (Left) A planar graph. (Right) Inserting vertices into inner faces.

Lemma 1. Let Γ be the drawing in Fig. 2(left). Any planar straight-line drawing
Γ ′ that preserves the y-coordinates and left-to-right-orders of Γ has width at least
1
32

d+1.

Proof. Denote by x(w) the x-coordinate of vertex w in Γ ′. Assume that x(v) ≤
x(u); the other case is proved similar and in fact gives an even larger width
bound. For ease of arithmetic operations, assume the drawing has been translated
so that x(v) = 0. One can now show by induction on i (details are omitted) that

x(a2i−1) ≥
1

3
(x(u) + 22i)− 1 and x(a2i) ≥

1

3
(2x(u) + 22i+1)− 1

for i ≥ 1. This implies the result. ��

Theorem 2. There exists a graph H that has a planar straight-line drawing of
height 4, but any such drawing has width at least 1

32
n/3.

Proof. The graph H is obtained by taking the graph G from Fig. 2(left) with
d ≥ 11 and inserting into each inner face except {u, v, a1} a new vertex adjacent
to the three vertices of the face. Note that H is triangulated and has 3d vertices.
It has a y-monotone poly-line drawing on four rows (see Fig. 2(right)), and hence
by Thm. 1 also a straight-line drawing on 4 rows.

Let ΓH be an arbitrary planar straight-line drawing of H that uses four rows.
Let ΓG be the induced planar straight-line drawing of G. One can argue (details
are omitted) that ΓG − ad preserves, after possible horizontal and vertical flips,
the y-coordinates and left-to-right-orders of the drawing of Fig. 2(left). Hence it
requires width at least 1

32
d by the previous lemma and ΓH cannot be smaller. ��

One can easily show that H requires at least 4 rows in any straight-line draw-
ing. Thm. 2 hence has the following consequence:

Corollary 1. There exists an infinite class of planar graphs such that any pla-
nar straight-line drawing that has optimal height has exponential area.

384 T. Biedl

1

2

3

4

5

6

b

r

c a

Fig. 3. A graph that can be drawn on 6 rows, but not if edges must be y-monotone

3.2 y-monotonicity

Thm. 1 used y-monotonicity of the poly-line drawing. One can show that y-
monotonicity is required.

Theorem 3. The graph in Fig. 3 has a planar poly-line drawing on 6 rows, but
no planar y-monotone orthogonal drawing on 6 rows.

Proof. (Sketch) Due to the K2,5’s between r and each of {a, b, c}, vertices a, b, c
must all be in the same row. This makes it impossible to draw cycle a− b− c−a
with y-monotone curves. ��

Corollary 2. There exists a planar graph with a planar poly-line drawing on 6
rows that has no planar straight-line drawing on 6 rows.

Proof. If the graph in Fig. 3 had a straight-line drawing on 6 rows, then by
Thm. 5 (below) it would have a y-monotone orthogonal drawing on 6 rows,
contradicting Thm. 3. ��

4 Flat Drawings

This section is devoted to drawings where vertices are horizontal segments or
points, and in particular aims to show that poly-line drawings are equivalent
to flat orthogonal drawings as far as height is concerned. Note that neither of
these implications is trivial: A poly-line drawing allows slanted line segments
while a flat orthogonal drawing does not, and a flat orthogonal drawing allows
horizontal segments for vertices while a poly-line drawing does not.

Theorem 4. Any planar flat orthogonal drawing Γ can be transformed into a
planar poly-line drawing Γ ′ of the same height that preserves y-coordinates and
left-to-right orders. Γ ′ has no more width than Γ . Moreover, if Γ is y-monotone
then so is Γ ′.

Proof. First insert pseudo-vertices obtained by subdividing edges at bends and
whenever a vertical segment of an edge crosses a row. Any pseudo-vertex is
located on a grid-point since the edge segment was vertical, so this does not

Height-Preserving Transformations of Planar Graph Drawings 385

increase the width. Now within each row r enumerate the vertices and pseudo-
vertices as w1, . . . , wk from left to right, and assign wi to the point (r, i); clearly
this preserves y-coordinates and left-to-right-orders. Since w1, . . . , wk had integer
x-coordinates before, the x-coordinate of each can only decrease. Due to the
pseudo-vertices edge-segments connect vertices in the same or two adjacent rows,
so they can be drawn without crossings. Replacing the pseudo-vertices by bends
gives the desired poly-line drawing Γ ′. The claim on height and y-monotonicity
holds since y-coordinates and left-to-right-orders are preserved. ��

Theorem 5. Any planar poly-line drawing Γ can be transformed into a planar
flat orthogonal drawing Γ ′ of the same height that preserves y-coordinates and
left-to-right orders. If Γ is y-monotone, then so is Γ ′.

Proof. Insert pseudo-vertices at bends and whenever a segment of an edge crosses
a row, temporarily allowing non-integer x-coordinates. Now within each row r
enumerate the vertices and pseudo-vertices as w1, . . . , wk from left to right. In
Γ ′, replace each wi by a box of width max{1, degup(wi), degdown(wi)}, where
degup(wi) and degdown(wi) are the number of neighbours above and below wi,
respectively. Place these boxes in row r in the same left-to-right order.

If an edge was drawn horizontally in Γ , then draw it horizontally in Γ ′ as well.
Each non-horizontal edge ends in two adjacent rows due to the pseudo-vertices.
Connect the edges between two adjacent rows using VLSI channel routing (see
e.g. [13]), using two bends per edge and lots of new rows with non-integer y-
coordinates that contain horizontal edge segments and nothing else.

xr

xl move rightward by xr − xl

Fig. 4. Replace bends and row-crossings by pseudo-vertices (white). Replace points by
boxes and route non-horizontal segments as zig-zags. Then remove zig-zags by shifting
parts of the drawing rightward.

Each non-horizontal edge is now routed as a “zig-zag”, ending vertically at
its endpoints. It is well known (see e.g. [3]) that such a zig-zag can be removed
as follows: Let [xl, xr]× ys by the horizontal segment of a zig-zag. Let M be all
bends and endpoints of vertices with x-coordinate exceeding xr, or y-coordinate
at least ys and x-coordinate at least xl. Then move all points in M rightwards,
i.e., add xr − xl to their x-coordinate. See also Fig. 4. Notice that this preserves
y-coordinates and planarity, and eliminates the horizontal segment.

386 T. Biedl

Repeating this for all zig-zags removes all horizontal segments with non-
integer coordinates and hence gives the desired height and a flat visibility rep-
resentation of the graph with pseudo-vertices. Any pseudo-vertex can now be
removed and replaced by a bend or line-segment, if needed, to give an orthogo-
nal drawing that satisfies all conditions. ��

A very similar construction converts y-monotone flat orthogonal drawings into
flat visibility representations.

Theorem 6. Any planar flat y-monotone orthogonal drawing Γ can be trans-
formed into a planar flat visibility representation Γ ′ of the same height that
preserves y-coordinates and left-to-right orders.

Proof. Assume that there exists an edge e in Γ that attaches horizontally at one
endpoint v and has bends. Since Γ is flat, v is a horizontal segment, which can
expand until it covers the bend of e nearest to v. Afterwards e attaches vertically
at v. Repeat this until all edges with bends attach vertically at both endpoints.

If there are now no bends then the claim holds. Otherwise, let e be an edge
with bends; by the above it attaches vertically at both its endpoints. Since e
is drawn y-monotone, it attaches at the top of one endpoint and the bottom of
the other endpoint, and inbetween must have a zig-zag. As before (see Fig. 4)
such a zig-zag can be removed by shifting parts of the drawing rightwards. This
does not add height or bends. Applying this to all edges that have bends gives
a planar visibility representation. ��

One height-transformation among point drawings and flat drawings remains to
be studied: Can flat orthogonal drawings be made y-monotone without increasing
the height? The answer here is “no” since the graph of Thm. 3 has a poly-line
drawing on 6 rows, hence also (by Thm. 5) a flat orthogonal drawing on 6 rows,
but it has no y-monotone orthogonal drawing, much less one that is flat.

Summary: Combining all the above results yields that straight-line draw-
ings, y-monotone poly-line drawings, y-monotone flat orthogonal drawings and
flat visibility representations are equivalent with respect to the height of planar
drawings. 2 Poly-line drawings and flat orthogonal drawings are also equivalent,
and the former group sometimes requires strictly more height than the latter.

Width Considerations: For Thm. 1 the width may have to increase exponen-
tially (Thm. 3). For Thm. 4 the width did not increase. For Thm. 5 and 6 the
width may increase, but after eliminating all zig-zags many columns are redun-
dant: They contain no vertical edge, nor are they the only column of a vertex.
In an orthogonal drawing redundant columns can simply be deleted. One can
easily show the following:

2 Historical note: At WAOA’12 [2], I claimed that any flat visibility representation
can be transformed into a straight-line drawing of the same height directly, without
using [15]. Unfortunately the transformation in [2] is incorrect since the resulting
drawing may not be planar; details are in the full version.

Height-Preserving Transformations of Planar Graph Drawings 387

Lemma 2. Any visibility representation of a connected graph has width at most
max{m,n} after deleting redundant columns.

Hence for Thm. 6 the width is max{m,n}. For Thm. 5 it is at most max{n,m}+
b, where b is the number of local minima and maxima of polygonal curves in the
poly-line drawing, since all other pseudo-vertices are eliminated when removing
zig-zags.

5 Box-Drawings Made Flat

Theorem 7. Any planar orthogonal drawing Γ can be transformed into a planar
flat orthogonal drawing Γ ′ of the same height.

Proof. For any vertex v, let r be a row that intersects the box B(v) representing
v and set B′(v) := B(v) ∩ r. Any edge that attached vertically at B(v) can be
extended to end at B′(v) instead. Any edge that attached at B(v) horizontally
in row r also attaches at B′(v). Any edge e that attached at B(v) horizontally,
but not in row r, is re-routed by inserting a bend where e attached at B(v),
and then going vertically towards B′(v). Now vertical edge segments at v may
overlap, but this can easily be remedied by replacing the leftmost and rightmost
column of B(v) by sufficiently many columns. See Fig. 5. ��

Fig. 5. Transforming orthogonal drawings into flat orthogonal drawings

Thm. 7 does not generally preserve y-monotonicity, and this is unavoidable.

Theorem 8. The planar graph in Fig. 6 has a y-monotone orthogonal drawing
on 6 rows, but it has no planar y-monotone flat orthogonal drawing on 6 rows,
and also no planar visibility representation on 6 rows.

Proof. (Sketch) The 4×2-grids force vertices v, w onto row 5 and v′, w′ onto row
2. The two cycles {v, w, c} and {v′, w′, c′} enclose x and x′, respectively, which
forces c to span both rows 3 and 4. ��

One transformation remains to be studied: Can every visibility representation
be turned into a flat visibility representation? A variation of Thm. 7 shows that
this is possible for bipartite graphs.

Corollary 3. Any planar visibility representation of a bipartite graph G can be
transformed into a planar flat visibility representation of the same height.

388 T. Biedl

1

2

3

4

5

6

v w

w′ v′
x′x c

Fig. 6. A graph that has an orthogonal y-monotone on 6 rows, but not if vertices must
be horizontal segments or edges have no bends

Proof. Since G is bipartite, it has a vertex-coloring with 2 colors. Proceed as
in Thm. 7, but use the topmost row intersecting B(v) for each vertex v in one
color-class, and the bottommost row for each vertex in the other color-class. Each
vertical edge remains vertical. Each horizontal edge becomes y-monotone since
it connects two differently-colored vertices. So the result is a flat y-monotone
orthogonal drawing, which can be converted into a flat visibility representation
by Thm. 6. ��

It remains open whether visibility representations of arbitrary graphs can also
be made flat without increasing the height.

6 Applications

This section highlights some applications of the above results.

Best Drawing Styles for Lower Bounds and Algorithms: Whenever
possible, lower bounds for the height of planar graph drawings should be done
for poly-line drawings or for orthogonal drawings: by the above transformations
such a lower bound then also holds for visibility representations and straight-line
drawings. Vice versa, algorithms to create planar graph drawings of small height
should ideally be for straight-line drawings; they then also hold for all other
models. Alternative, algorithms could be given for flat visibility representations;
the same height-bound then also holds for straight-line drawings and all other
models, though the width does not transfer.

Drawings of Small Height: Two examples of using height-transformations
to achieve new results shall suffice:

Theorem 9. Every outer-planar graph G has a planar straight-line drawing of
height O(pw(G)), which is in O(log n). Here pw(G) is the so-called pathwidth
of the graph.3

Proof. Every outer-planar graph can be made 2-connected while increasing the
pathwidth by at most a constant factor [1]. Every 2-connected outer-planar graph
has a flat visibility representation of height O(pw(G)) [2]. This flat visibility
representation is a flat y-monotone orthogonal drawing, which by Thms. 4 and
1 can be turned into a straight-line drawing of the same height. ��
3 A similar result was claimed in [2], but required the (incorrect) transformation in
that paper.

Height-Preserving Transformations of Planar Graph Drawings 389

Theorem 10. Any 4-connected planar graph has a planar flat visibility repre-
sentation of height at most
n/2�.

Proof. Any 4-connected planar graph has a straight-line drawing where the sum
of the width and height is at most n [14]. After possible rotation, the height is at
most
n/2�, and with Thms. 5 and 6 one obtains a flat visibility representation
of height at most
n/2�. ��

The best previous bound on the height of visibility representations of 4-
connected planar graphs was � 3n4 � [10].

Simplified Proofs: Some results are known about graphs that have planar
straight-line drawings of height h. In particular, any such graph has pathwidth
at most h [7], and there exists an algorithm that is fixed-parameter tractable in h
to test whether a graph has a straight-line drawing of height at most h [6]. By the
results in this paper a graph has a straight-line drawing of height h if and only
if it has a flat visibility representation of height h. While “simplicity of proof” is
a subjective matter, in my opinion the presentation of both of the above results
can be simplified if one shows the properties for flat visibility representations of
height h, rather than straight-line drawings.

HH-drawings: In a previous paper [19] we studied HH-drawings, where a
planar graph G with a vertex partition V = A∪B should be drawn such that all
vertices in A have positive y-coordinates and all vertices in B have negative y-
coordinates. We gave a condition that is necessary for straight-line HH-drawings
and sufficient for y-monotone poly-line HH-drawings. By the result by Pach and
Tóth (Thm. 1) the condition is hence necessary and sufficient for straight-line
HH-drawings. This proves:

Theorem 11. Any planar bipartite graph has a planar straight-line HH-drawing.
Testing whether a planar graph with a given partition has a planar straight-line
HH-drawing can be done in linear time.

Minimizing Heights Using Integer Programs: In a recent paper, we devel-
oped integer program (IP) formulations for many graph drawing problems where
vertices and edges are represented by axis-aligned boxes [4]. In particular, we
gave an integer program with O(hn2) variables and constraints to test whether
a graph has a bar-visibility representation (i.e., a visibility representation where
vertices are horizontal segments and all edges are vertical) that has height h. It
is not hard to modify this IP so that horizontal edges are allowed as well; then it
tests the existence of flat visibility representations of height h. Since straight-line
drawings and flat visibility representations are equivalent with respect to height,
therefore:

Theorem 12. There exists an integer program with O(hn2) variables and con-
straints to test whether a graph has a planar straight-line drawing of height h.

While an algorithm was already known to test whether G has a planar drawing
of height at most h [6], its rather large run-time of O(232h

3

poly(n)) means that
solving the above integer program might well be faster in practice.

390 T. Biedl

Upward Drawings: A directed acyclic graph has an upward planar drawing if
it has a planar straight-line drawing such that for any directed edge v → w the
y-coordinate of v is smaller than the y-coordinate of w. Testing whether a graph
has an upward planar drawing is NP-hard [9]. There exists a way to formulate
“G has an upward planar drawing” as either IP or as a Satisfiability-problem,
using partial orders on the edges and vertices [5]. The transformations in this
paper give a different way of testing this via IP:

Lemma 3. A directed acyclic graph has an upward planar drawing if and only if
it has a planar bar-visibility representation where for all edges the head is above
the tail.

Proof. Any straight-line upward planar drawing can be transformed into a flat
visibility representation using Thm. 5 and 6. Since y-coordinates are unchanged,
any edge is necessarily drawn vertical with the head above the tail, so this is a
bar-visibility representation. Vice versa, given such a bar-visibility representa-
tion, it can be transformed into a y-monotone poly-line drawing (Thm. 4) and
from there into a straight-line drawing (Thm. 1). Since y-coordinates and left-
to-right-orders are preserved this gives an upward planar drawing. ��

It is easy to express “the head of edge v → w must be above the tail” as
constraints in the IP for bar-visibility representations defined in [4]. Therefore:

Corollary 4. There exists an integer program with O(n3) variables and con-
straints to test whether a planar graph has an upward planar drawing. Moreover,
the same integer program also finds the minimum-height upward planar drawing.

7 Conclusion

This paper considered transformations of one type of planar drawings into an-
other without increasing the height. In particular planar straight-line drawings
are equivalent with respect to the height to flat visibility representations or
y-monotone poly-line drawing, while they are more powerful than either orthog-
onal drawings or poly-line drawings. The latter two drawing styles are again
equivalent with respect to drawing height.

The main gap left open concerns visibility representations. Is it possible to
transform any visibility representation into a flat visibility representation of the
same height?

As for future problems, it would be interesting to study other drawing ob-
jectives, and whether they can be preserved while changing the layout style.
Hoffman et al. [11] recently gave some worst-case ratios, but for other graph
drawing styles. Is it possible to transform any y-monotone poly-line drawing
into a straight-line drawing of the same area? The example in Thm. 2 makes
this unlikely, but can it be transformed into a straight-line drawing of asymp-
totically the same area?

Height-Preserving Transformations of Planar Graph Drawings 391

References

1. Babu, J., Basavaraju, M., Chandran Leela, S., Rajendraprasad, D.: 2-connecting
outerplanar graphs without blowing up the pathwidth. In: Du, D.-Z., Zhang, G.
(eds.) COCOON 2013. LNCS, vol. 7936, pp. 626–637. Springer, Heidelberg (2013)

2. Biedl, T.: A 4-approximation for the height of drawing 2-connected outer-planar
graphs. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp.
272–285. Springer, Heidelberg (2013)

3. Biedl, T., Lubiw, A., Petrick, M., Spriggs, M.J.: Morphing orthogonal planar graph
drawings. ACM Transactions on Algorithms 9(4), 29 (2013)

4. Biedl, T., Bläsius, T., Niedermann, B., Nöllenburg, M., Prutkin, R., Rutter, I.:
Using ILP/SAT to Determine Pathwidth, Visibility Representations, and other
Grid-Based Graph Drawings. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 460–471. Springer, Heidelberg (2013)

5. Chimani,M., Zeranski,R.:Upward planarity testing via SAT. In:Didimo,W.,Patrig-
nani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 248–259. Springer, Heidelberg (2013)

6. Dujmovic, V., Fellows, M., Kitching, M., Liotta, G., McCartin, C., Nishimura,
N., Ragde, P., Rosamond, F., Whitesides, S., Wood, D.: On the parameterized
complexity of layered graph drawing. Algorithmica 52, 267–292 (2008)

7. Felsner, S., Liotta, G., Wismath, S.: Straight-line drawings on restricted integer
grids in two and three dimensions. Journal of Graph Algorithms and Applica-
tions 7(4), 335–362 (2003)

8. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10, 41–51 (1990)

9. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

10. He, X., Wang, J., Zhang, H.: Compact visibility representation of 4-connected plane
graphs. Theor. Comput. Sci. 447, 62–73 (2012)

11. Hoffmann, M., van Kreveld, M., Kusters, V., Rote, G.: Quality ratios of measures
for graph drawing styles. In: Canadian Conference on Computational Geometry,
CCCG 2014 (to appear, 2014)

12. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16,
4–32 (1996)

13. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Teub-
ner/Wiley & Sons, Stuttgart/Chicester (1990)

14. Miura, K., Nakano, S., Nishizeki, T.: Convex grid drawings of four-connected plane
graphs. Int. J. Found. Comput. Sci. 17(5), 1031–1060 (2006)

15. Pach, J., Tóth, G.: Monotone drawings of planar graphs. Journal of Graph The-
ory 46(1), 39–47 (2004)

16. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientation of
planar graphs. Discrete Computational Geometry 1, 343–353 (1986)

17. Schnyder, W.: Embedding planar graphs on the grid. In: ACM-SIAM Symposium
on Discrete Algorithms (SODA 1990), pp. 138–148 (1990)

18. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Computa-
tional Geometry: Theory and Applications 9, 159–180 (1998)

19. Biedl, T., Kaufmann, M., Mutzel, P.: Drawing planar partitions II: HH-drawings.
In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 124–136.
Springer, Heidelberg (1998)

20. Tamassia, R., Tollis, I.: A unified approach to visibility representations of planar
graphs. Discrete Computational Geometry 1, 321–341 (1986)

21. Wismath, S.: Characterizing bar line-of-sight graphs. In: ACM Symposium on
Computational Geometry (SoCG 1985), pp. 147–152 (1985)

Drawing Planar Graphs with Reduced Height

Stephane Durocher� and Debajyoti Mondal��

Department of Computer Science, University of Manitoba, Canada
{durocher,jyoti}@cs.umanitoba.ca

Abstract. A straight-line (respectively, polyline) drawing Γ of a planar
graph G on a set Lk of k parallel lines is a planar drawing that maps each
vertex of G to a distinct point on Lk and each edge of G to a straight line
segment (respectively, a polygonal chain with the bends on Lk) between
its endpoints. The height of Γ is k, i.e., the number of lines used in the
drawing. In this paper we compute new upper bounds on the height of
polyline drawings of planar graphs using planar separators. Specifically,
we show that every n-vertex planar graph with maximum degree Δ,
having a simple cycle separator of size λ, admits a polyline drawing with
height 4n/9+O(λΔ), where the previously best known bound was 2n/3.
Since λ ∈ O(

√
n), this implies the existence of a drawing of height at

most 4n/9 + o(n) for any planar triangulation with Δ ∈ o(
√
n). For

n-vertex planar 3-trees, we compute straight-line drawings with height
4n/9 +O(1), which improves the previously best known upper bound of
n/2. All these results can be viewed as an initial step towards compact
drawings of planar triangulations via choosing a suitable embedding of
the input graph.

1 Introduction

A polyline drawing of a planar graph G is a planar drawing of G such that each
vertex of G is mapped to a distinct point in the Euclidean plane, and each edge is
mapped to a polygonal chain between its endpoints. Let Lk = {l1, l2, . . . , lk} be a
set of k horizontal lines such that for each i ≤ k, line li passes through the point
(0, i). A polyline drawing of G is called a polyline drawing on Lk if the vertices
and bends of the drawing lie on the lines of Lk. The height of such a drawing is k,
i.e., the number of parallel horizontal lines used by the drawing. Such a drawing is
also referred to as a k-layer drawing in the literature [13,18]. Let Γ be a polyline
drawing of G. We call Γ a t-bend polyline drawing if each of its edges has at most
t bends. Thus a 0-bend polyline drawing is also known as a straight-line drawing.
Drawing planar graphs on a small integer grid is an active research area in graph
drawing [7,16], which is motivated by the need of compact layout of VLSI circuits
and visualization of software architecture. Since simultaneously optimizing the

� Work of the author is supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

�� Work of the author is supported in part by a University of Manitoba Graduate
Fellowship.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 392–403, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Drawing Planar Graphs with Reduced Height 393

width and height of the drawing is very challenging, researchers have also focused
their attention on optimizing one dimension of the drawing [6,11,13,17], while
the other dimension is unbounded. In this paper we develop new techniques
that can produce drawings with small height. We distinguish between the terms
‘plane’ and ‘planar’. A plane graph is a planar graph with a fixed combinatorial
embedding and a specified outer face. While drawing a planar graph, we allow
the output to represent any planar embedding of the graph. On the other hand,
while drawing a plane graph, the output is further constrained to respect the
input embedding.

State-of-the-art algorithms that compute straight-line drawings of n-vertex
plane graphs on an (O(n) × 2n/3)-size grid imply an upper bound of 2n/3 on
the height of straight-line drawings [5,6]. This bound is tight for plane graphs,
i.e., there exist n-vertex plane graphs such as plane nested triangles graphs
and some plane 3-trees that require a height of 2n/3 in any of their straight-
line drawings. Recall that an n-vertex nested triangles graph is a plane graph
formed by a sequence of n/3 vertex disjoint cycles, C1, C2, . . . , Cn/3, where for
each i ∈ {2, . . . , n/3}, cycle Ci contains the cycles C1, . . . , Ci−1 in its interior, and
a set of edges that connect each vertex of Ci to a distinct vertex in Ci−1. Besides,
a plane 3-tree is a triangulated plane graph that can be constructed by starting
with a triangle, and then repeatedly adding a vertex to some inner face of the
current graph and triangulating that face.

The 2n/3 upper bound on the height is also the currently best known bound
for polyline drawings, even for planar graphs, i.e., when we are allowed to choose
a suitable embedding for the output drawing. Frati and Patrignani [10] showed
that in the variable embedding setting, an n-vertex nested triangles graph can
be drawn with height at most n/3 + O(1), which is significantly smaller than
the lower bound of 2n/3 in the fixed embedding setting. Similarly, Hossain et
al. [11] showed that an universal set of n/2 horizontal lines can support all n-
vertex planar 3-trees, i.e., every planar 3-tree admits a drawing with height at
most n/2. They also showed that 4n/9 lines suffice for some subclasses of planar
3-trees, and asked whether 4n/9 is indeed an upper bound for planar 3-trees.

In the context of optimization, Dujmović et al.[9] gave fixed-parameter-
tractable (FPT) algorithms, parameterized by pathwidth, to decide whether a
planar graph admits a straight-line drawing on k horizontal lines. Drawings with
minimum number of parallel lines have been achieved for trees [13]. Recently,
Biedl [2] gave an algorithm to approximate the height of straight-line drawings
of 2-connected outerplanar graphs within a factor of 4.

Contributions. In this paper we show that every n-vertex planar graph with
maximum degree Δ, having a simple cycle separator of size λ, admits a drawing
with height 4n/9+O(λΔ), which is better than the previously best known bound
of 2n/3 for any λΔ ∈ o(n). This result is an outcome of a new application of
the planar separator theorem [8]. Although the technique is simple, it has the
potential to be a powerful tool while computing compact drawings for planar tri-
angulations in the variable embedding setting. If the input graphs are restricted
to planar 3-trees, then we can improve the upper bound to 4n/9 +O(1), which

394 S. Durocher and D. Mondal

settles the question of Hossain et al. [11]. Furthermore, the drawing we construct
in this case is a straight-line drawing.

2 Preliminary Definitions and Results

Let G be an n-vertex triangulated plane graph. A simple cycle C in G is called a
cycle separator if the interior and the exterior of C each contains at most 2n/3
vertices. Let v1, vn and v2 be the outer vertices of G in clockwise order on the
outer face. Let σ = (v1, v2, ..., vn) be an ordering of all vertices of G. By Gk,
2 ≤ k ≤ n, we denote the subgraph of G induced by v1 ∪ v2 ∪ ... ∪ vk. For each
Gk, the notation Pk denotes the path (while walking clockwise) on the outer
face of Gk that starts at v1 and ends at v2. We call σ a canonical ordering of
G with respect to the outer edge (v1, v2) if for each k, 3 ≤ k ≤ n, the following
conditions are satisfied [7]:

(a) Gk is 2-connected and internally triangulated.
(b) If k ≤ n, then vk is an outer vertex of Gk and the neighbors of vk in Gk−1

are consecutive on Pk−1.

Let Pk, for some k ∈ {3, 4, . . . , n}, be the path w1(= v1), . . . , wl, vk(= wl+1),
wr, . . . , wt(= v2). The edges (wl, vk) and (vk, wr) are the l-edge and r-edge of
vk, respectively. The other edges incident to vk in Gk are called the m-edges.
For example, in Figure 1(c), the edges (v6, v1), (v6, v4), and (v5, v6) are the l-, r-
and m-edges of v6, respectively. Let Em be the set of all m-edges in G. Then the
graph Tvn induced by the edges in Em is a tree with root vn. Similarly, the graph
Tv1 induced by all l-edges except (v1, vn) is a tree rooted at v1 (Figure 1(b)),
and the graph Tv2 induced by all r-edges except (v2, vn) is a tree rooted at v2.
These three trees form the Schnyder realizer [16] of G.

Lemma 1 (Bonichon et al. [4]). The total number of leaves in all the trees
in any Schnyder realizer of an n-vertex triangulation is at most 2n− 5.

Let G be a planar graph and let Γ be a straight-line drawing on k parallel
lines. By l(v), where v is a vertex of G, we denote the horizontal line in Γ that
passes through v. We now have the following lemma that bounds the height of
a straight-line drawing in terms of the number of leaves in a Schnyder tree. The

(a) (b) (c)

Tv1v1 v2

v3
v5

v6 v4

v8

v7

v1
v3

v5

v6 v4

v7

v3
v5

v6 v4

v1
v2

(e)(d)

Fig. 1. (a) A plane triangulation G with a canonical ordering. The associated realizer,
where the l-, r- and m- edges are shown in dashed, bold-solid, and thin-solid lines,
respectively. (b) Tv1 . (c) Neighbors of v6 in G6. (d)–(e) Illustrating Lemma 3.

Drawing Planar Graphs with Reduced Height 395

lemma can be derived from the known straight-line [5] and polyline drawing
algorithms [4]. We omit the proof due to space constraints.

Lemma 2. Let G be an n-vertex plane triangulation and let v1, vn, v2 be the
outer vertices of G in clockwise order on the outer face. Assume that Tvn has
at most p leaves. Then for any placement of vn on line l1 or lp+2, there exists a
straight-line drawing Γ of G on Lp+2 such that v2 and v1 lie on lines lp+2 and
l1, respectively.

Chrobak and Nakano [6] showed that every planar graph admits a straight-
line drawing with height 2n/3. We now observe some properties of Chrobak and
Nakano’s algorithm [6]. Let G be a plane triangulation with n vertices and let
x, y be two user prescribed outer vertices of G in clockwise order. Let Γ be the
drawing of G produced by the Algorithm of Chrobak and Nakano [6]. Then Γ
has the following properties:

(CN1) Γ is a drawing on Lq, where q ≤ 2n/3.
(CN2) For the vertices x and y, we have l(x) = l1 and l(y) = lq in Γ . The

remaining outer vertex z lies on either l1 or lq.

Note that the user cannot choose the placement of z, i.e., the algorithm may
produce a drawing where l(x) = l1, l(y) = lq and l(z) = l1, however, this does
not imply that there exists another drawing where l(x) = l1, l(y) = lq and
l(z) = lq. We end this section with the following lemma.

Lemma 3. Let G be a plane graph and let Γ be a straight-line drawing of G on
k horizontal lines, but the lines are not necessarily equally spaced. Then there
exists a drawing Γ ′ of G on a set of k horizontal lines that are equally spaced.
Furthermore, for every i ∈ {1, 2, . . . , k}, the left to right order of the vertices on
the ith line in Γ coincides with that of Γ ′.

Proof (Outline). One can construct Γ ′ by first transforming Γ into a ‘flat-
visibility representation’ on equally spaced horizontal lines, as shown in Fig-
ures 1(d)–(e), and then transforming this representation again into a straight-
line drawing [1,3]. ��

In the following sections we describe our drawing algorithms. Note that for
simplicity we often omit the floor and ceiling functions while defining different
parameters of the algorithms. One can describe a more careful computation using
proper floor and ceiling functions, but that does not affect the asymptotic results
discussed in this paper.

3 Drawing Triangulations with Small Height

LetG = (V,E) be an n-vertex planar triangulation and let Γ be a planar drawing
of G on the Euclidean plane. Let C = (Vc, Ec) be a simple cycle separator of
G of size λ. Let Gi = (Vi, Ei) be the graph induced by the vertices that lie
inside C and on the boundary of C. Similarly, let Go = (Vo, Eo) be the graph
induced by the vertices that lie outside C and on the boundary of C. Specifically,
V = Vi ∪ Vo, E = Ei ∪ Eo, Vi ∩ Vo = Vc, and Ei ∩ Eo = Ec. We now compute a
polyline drawing of G.

396 S. Durocher and D. Mondal

3.1 Drawing Technique

If any edge (a, b) ∈ Ec lies on the outer face of Γ , then we will draw G respecting
the combinatorial embedding determined by Γ . Otherwise, there exists an edge
(a, b) ∈ Ec such that the face a, b, c with c ∈ Vo does not lie interior to C. We
redefine Γ as the embedding of G obtained by choosing a, b, c as the outer face,
as illustrated in Figures 2(a)–(b).

Drawing Gi. Assume that x = 4n/9 + 2λ/3 + 3. Construct a plane graph G′
i

by taking a copy of Gi from Γ , and then adding a vertex z to the outer face of
Gi along with the edges (z, w), for all w ∈ Vc. Figure 2(c) illustrates G′

i. Since
Gi has at most (2n+ 3λ)/3 vertices, we now use the algorithm of Chrobak and
Nakano [6] to compute a drawing Γi of G

′
i on Lx, where a, b lie on l1, lx and z

lies on either l1 or lx. Assume without loss of generality that z is in the right
half-plane of the line through a, b.

Drawing Go. Take a copy of Go from Γ . Let u be any vertex in Go. Then by
do(u) we denote the degree of vertex u in Go. Let the cycle C be a(= w1), w2, . . . ,
b(= wλ). For each vertex wi ∈ Vc, where 1 ≤ i ≤ λ and wλ+1 = w1, if

do(wi) > 3, then replace (wi, wi+1) with a path wi, w
1
i , w

2
i , . . . , w

do(wi)−3
i , wi+1

of do(wi)−3 division vertices. Let u1, u2, . . . , udo(wi)−2 be the neighbors of wi in
clockwise order outside of C. Then delete the edges from wi to these neighbors,

and add the edges (wi, u1), (w
1
i , u2), . . . , (w

do(wi)−3
i , udo(wi)−2). Replace the edge

(w1, w
do(wλ)−3
λ) by a path w1, w

′, w′′, w
do(wλ)−3
λ , and redefine a and b such that

a = w′′ and b = w′. Let the resulting graph be H and let the newly constructed
cycle be C′. Figure 2(d) illustrates H .

If z lies on l1 in Γi, then we add the edges (a, w) to H , for each vertex w on C′.
Otherwise, we add the edges (b, w) to H . Finally, we add a vertex z′ on the outer
face and triangulate H such that (a, b) remains an outer edge. Let the resulting
graph be G′

o. Figure 2(e) illustrates G′
o. Observe that the number of vertices in

G′
o is at most 2n/3 + λΔ + 3. Hence we can use the algorithm of Chrobak and

Nakano [6] to compute a drawing Γo of G′
o on Ly, where y = (4n+6λΔ+18)/9,

such that a, b lie on l1, ly, respectively, and the segment ab is vertical. Assume
without loss of generality that all the vertices of G′

o are in the right half-plane
of the line through a, b.

Merging Gi and Go. Without loss of generality assume that l(z) = lx in
Γi, and recall that in this case b is adjacent to all the vertices on C′ in Γo.
Let �o be a vertical line to the right of segment ab in Γo such that all the
other vertices of Γo are in the right half-plane of �o. Furthermore, �o must be
close enough such that all the intersection points with the edges incident to b
lie in between the horizontal line through b and the next horizontal line. For
each intersection point, we insert a division vertex at that point and create a
horizontal line through that vertex. We then delete vertex b from Γo, but not the
division vertices. Figures 2(i)–(j) illustrate this scenario. By Lemma 3, we can
modify Γo such that the horizontal lines are equally spaced. Since C′ contains at
most λΔ vertices, Γo is a drawing on at most y+ λΔ horizontal lines. Similarly,
we modify Γi, as follows.

Drawing Planar Graphs with Reduced Height 397

(a)

v1
v2

v3
v5

v6 v4

v8

v7

(b) (c) (e)(d)

v8

v4

v6

v1

v5

v7

v2

v3

v8

v4

v6

v5

v7 v1
z

v8

v4

v6
v1

v5

v2

v3
a

b

v8

v6
b v1

a

v2

v3

z′

v5
v4

b
�i

z �i �i

(g)

�o

(f) (h) (j)(i)

Fig. 2. (a) A plane triangulation G, where C is shown in bold. (b) Γ , where v4 =
a, v8 = b and v2 = c. (c) G′

i. (d) H , where the division vertices are shown in white. (e)
G′

o, where the edges added to H are shown in gray. (f)–(j) Drawing G.

Let �i be a vertical line to the left of z in Γi such that all the other vertices
of Γi are in the left half-plane of �i. Furthermore, �i must be close enough such
that all the intersection points with the edges incident to z lie in between two
consecutive parallel lines. For each intersection point, we insert a division vertex
at that point and create a horizontal line through that vertex. Let v1, v2, . . . , vλ
be the division vertices on �i in the order of decreasing y-coordinate, where for
each i ∈ {1, 2, . . . , λ}, vi is incident to the vertex wi on C. Delete vertex z, but
not the division vertices. For each vertex wi, if do(wi) > 3, then we place a set

of division vertices v1i , v
2
i , . . . , v

do(wi)−3
i below vi and above the horizontal line

closest to vi. Besides, these new division vertices must be sufficiently close to vi
such that drawing of the edges (wi, v

j
i), where 1 ≤ j ≤ do(wi)− 3, do not create

any edge crossing. Figures 2(f)–(h) illustrate this scenario. Finally, by Lemma 3,
we can modify Γi such that the horizontal lines are equally spaced. Note that Γi

is a drawing on at most x+ λΔ horizontal lines.
Since the division vertices in Γi and Γo take a set of consecutive horizontal

lines from their respective topmost lines, it is straightforward to merge these
two drawings on a set of λΔ + max{x, y} = 4n/9 + O(λΔ) horizontal lines.
We delete the edges on C′, and consider all vertices of C′ as division vertices.
Since the division vertices correspond to the bends, each edge may contain at
most six bends (two bends to enter Γo from Γi, two bends on C′, and two bends
to return to Γi from Γo). Since there are at most λΔ edges that may have
bends, the number of bends is at most 6λΔ in total. However, via ‘flat-visibility
representation’ (similar to the proof of Lemma 3) one can reduce the number of
bends to enter and exit Γo by one, we omit the details due to space constraints.
Hence the number of bends reduces to 4λΔ. The following theorem summarizes
the result of this section.

398 S. Durocher and D. Mondal

Theorem 1. Let G be an n-vertex planar graph with maximum degree Δ. If
G contains a simple cycle separator of size λ, then G admits a 4-bend polyline
drawing with height 4n/9 +O(λΔ) and at most 4λΔ bends in total.

Since every planar triangulation has a simple cycle separator of size O(
√
n) [8],

we obtain the following corollary.

Corollary 1. Every n-vertex planar triangulation with maximum degree o(
√
n)

admits a polyline drawing with height at most 4n/9 + o(n).

Pach and Tóth [15] showed that polyline drawings can be transformed into
straight-line drawings while preserving the height if the polyline drawing is mono-
tone, i.e., if every edge in the polyline drawing is drawn as a y-monotone curve.
Unfortunately, our algorithm does not necessarily produce monotone drawings.

4 Drawing Planar 3-Trees with Small Height

In this section we examine straight-line drawings of planar 3-trees.

4.1 Technical Background

Let G be an n-vertex planar 3-tree and let Γ be a straight-line drawing of G.
Then Γ can be constructed by starting with a triangle, which corresponds to the
outer face of Γ , and then iteratively inserting the other vertices into the inner
faces and triangulating the resulting graph. Let a, b, c be the outer vertices of Γ
in clockwise order. If n > 3, then Γ has a unique vertex p that is incident to all
the outer vertices. This vertex p is called the representative vertex of G.

For any cycle i, j, k in G, let Gijk be the subgraph induced by the vertices
i, j, k and the vertices lying inside the cycle. Let G∗

ijk be the number of vertices
in Gijk. The following two lemmas describe some known results.

Lemma 4 (Mondal et al. [14]). Let G be a plane 3-tree and let i, j, k be a
cycle of three vertices in G. Then Gijk is a plane 3-tree.

Lemma 5 (Hossain et al. [11]). Let G be an n-vertex plane 3-tree with
the outer vertices a, b, c in clockwise order. Let D be a drawing of the outer
cycle a, b, c on Ln, where the vertices lie on l1, lk and li with k ≤ n and
i ∈ {l1, l2, ln, ln−1}. Then G admits a straight-line drawing Γ on Lk, where
the outer cycle of Γ coincides with D.

Let G be a plane 3-tree and let a, b, c be the outer vertices of G. Assume that
G has a drawing Γ on Lk, where a, b lie on lines l1, lk, respectively, and c lies on
line li, where 1 ≤ i ≤ k. Then the following properties hold for Γ [11].

Reshape. Let p, q and r be three different points on lines l1, lk and li, respec-
tively. Then G has a drawing Γ ′ on Lk such that the outer face of Γ ′ coincides
with triangle pqr (e.g., Figures 3(a)–(b)).

Drawing Planar Graphs with Reduced Height 399

Stretch. For any integer t ≥ k, G admits a drawing Γ ′ on Lt such that a, b, c
lie on l1, lt, li, respectively (e.g., Figure 3(c)).

For any triangulation H with the outer vertices a, b, c, let Ta,H , Tb,H , Tc,H

be the Schnyder trees rooted at a, b, c, respectively. By leaf(T) we denote the
number of leaves in T . The following lemma establishes a sufficient condition for
a plane 3-treeG to have a straight-line drawing with height at most 4(n+3)/9+4.

Lemma 6. Let G be an n-vertex plane 3-tree with outer vertices a, b, c in
clockwise order. Let w1, . . . , wk(= p), wk+1(= q), . . . , wt(= c) be the maximal
path P such that each vertex on P is adjacent to both a and b. Assume that
n′ = n + 3, and x = 4n′/9. If G∗

apq ≤ (n′ + 2)/3, G∗
bpq ≤ G∗

abp ≤ n′/2 and
max∀i>k+1{G∗

awiwi−1
, G∗

bwiwi−1
} ≤ 4n′/9, then G admits a drawing with height

at most 4n′/9 + 4.

Proof. Let H be the subgraph of G induced by the vertices {a, b}∪{wk, . . . , wt}.
The idea of the proof is first to construct a drawing of H on Lx+4, and then to
extend it to the required drawing using Lemmas 2–5. We distinguish two cases
depending on whether leaf(Tp,Gabp

) ≤ x or not.

Case 1 (leaf(Tp,Gabp) ≤ x). Since G∗
bqp≤n′/2, by Lemma 1, one of the trees

in the Schnyder realizer of Gbqp has at most n′/3 ≤ x leaves. We now draw Gabq

considering the following scenarios.

Case 1A(leaf(Tp,Gbqp) ≤ x).ByLemma 2and the Stretch condition,Gabp ad-
mits a drawingΓabp onLx+2 such that the vertices a, b, p lie on l1, lx+2, lx+2, re-
spectively. Similarly,Gbqp admits a drawingΓbpq onLx+2 such that the vertices
q, b, p lie on l1, lx+2, lx+2, respectively, as shown in Figure 3(d). By the Stretch
property, Γabp can be extended to a drawing Γ ′

abp on Lx+3, where a, b, p lie on
l1, lx+3, lx+2, respectively. Similarly,Γbqp can be extended to a drawingΓ

′
bqp on

Lx+3, where q, b, p lie on l1, lx+3, lx+2, respectively. SinceG
∗
apq ≤ (n′+2)/3, by

Lemma 5 and the Stretch condition,Gapq admits a drawing Γapq onL(n′+2)/3.
Finally, by the Stretch property Γapq can be extended to a drawing Γ ′

apq on
Lx+2 such that a, p, q lie on l1, lx+2, l1, respectively, and by the Reshape prop-
erty we can merge these drawings to obtain a drawing of Gabq on Lx+3. Fig-
ure 3(e) depicts an illustration.

Case 1B (leaf(Tb,Gbqp) ≤ x). By Lemma 2 and the Stretch condition, Gabp

admits a drawing Γabp on Lx+2 such that the vertices a, b, p lie on l1, lx+2, l1,

a

b

cd

e

p

(a)
q

r

(b)

lk

li

l1 a
(c)

lk

li

l1

cd

e

blt

a

lx+2

li

l1

pb b p

q
a q

p

a q

p

b

(d) (e)
a

lx+2

li

l1 p a p

q

a

q

(f) (g)
p

b b q b

p

Fig. 3. (a)–(b) Illustrating Reshape. (c) Illustrating Stretch. (d)–(e) Illustration for
Case 1A. (d)–(e) Illustration for Case 1B.

400 S. Durocher and D. Mondal

respectively. Similarly, Gbqp admits a drawing Γbpq on Lx+2 such that the
vertices p, b, q lie on l1, lx+2, lx+2, respectively. By Lemma 5, Gapq admits
a drawing Γapq on L(n′+2)/3 such that a, p, q lie on l1, l1, lx+2, respectively.
Finally, by Stretch and Reshape we can merge these drawings to obtain a
drawing of Gabq on Lx+3. Figures 3(f)–(g) show an illustration.

Case 1C (leaf(Tq,Gbqp) ≤ x). The drawing of this case is similar to Case
1B. The only difference is that we use Tq,Gbqp

while drawing Gbqp.

Observe that each of the Cases 1A–1C produces a drawing of Gabq such that
a, b lie on l1, lx+3, respectively, and q lies on either l1 or lx+3. We stretch it to a
drawing on Lx+4 such that a, b lies on l1, lx+4, respectively, and q lies on either
l2 or lx+3. If q lies on l2, then we draw the path wk+1, . . . , wt(= c) in a zigzag
fashion, placing the vertices on l2 and lx+3 alternatively such that each vertex
is visible to both a and b. Similarly, if q lies on lx+3, then we place the vertices
wk+1, . . . , wt(= c) on lx+3 and l2 alternatively, as shown in Figure 4(a). For each
i > k + 1, Lemma 4 ensures that the graphs Gawiwi−1 and Gbwiwi−1 are plane
3-trees. Since max∀i>k+1{G∗

awiwi−1
, G∗

bwiwi−1
} ≤ x, we can draw Gawiwi−1 and

Gbwiwi−1 using Lemma 5 inside their corresponding triangles.

Case 2 (leaf(Tp,Gabp) > x). Since G∗
abp≤n′/2, by Lemma 1, leaf(Ta,Gabp

) +
leaf(Tb,Gabp

) ≤ n′ − leaf(Tp,Gabp
) ≤ 5n′/9. Hence we draw Gabq considering

the following scenarios.

Case 2A (leaf(Ta,Gabp) ≤ x and leaf(Tb,Gabp) ≤ x). Since G∗
bqp≤n′/2,

by Lemma 1, one of the trees in the Schnyder realizer of Gbqp has at most
n′/3 ≤ x leaves. If leaf(Tp,Gbpq

) ≤ x, then we draw Gabq on Lx+3, where
a, b, p, q lie on l1, lx+3, lx+2, l1, respectively, as in Figure 4(b). Otherwise,
either leaf(Tb,Gbpq

) ≤ x or leaf(Tq,Gbpq
) ≤ x. In this case we draw Gabq on

Lx+3, where a, b, p, q lie on l1, lx+3, l2, lx+3, respectively, as in Figure 4(c).
Case 2B (leaf(Ta,Gabp) > x and leaf(Tb,Gabp)≤ n′/9). If leaf(Tp,Gbpq

) ≤
n′/3, then we first draw Gbpq using Lemma 2 such that b, p, q lie on ln′/3+2,
ln′/3+2, l1, respectively, and then use the Stretch condition to shift b to lx+3.
By Lemma 2 and the Stretch condition, there exists a drawing of Gabp on
Lx+3 with a, b, p lying on l1, lx+3, ln′/3+2, respectively. Since G∗

apq ≤ (n′ +
2)/3, we can draw Gapq using Lemma 5 inside triangle apq. Figure 4(d)
illustrates the scenario after applying Stretch and Reshape.

If leaf(Tp,Gbpq
) > n′/3, then by Lemma 1 either leaf(Tb,Gbpq

) ≤ n′/3 or
leaf(Tq,Gbpq

) ≤ n′/3. Hence we can use Lemma 2 and the Stretch condition

(a) (b) (c) (d) (e)
a

b
q

wk+1

wk+2

lx+4

l1 a

lx+3

l1 q

b

p

a

qb

p

lx+3

l1

ln′/3+2

a

lx+3

l1

qb

ln′/9 p
a q

b

p

Fig. 4. (a) Illustrating Case 1. (b)–(c) Illustrating Case 2A. (d)–(e) Case 2B.

Drawing Planar Graphs with Reduced Height 401

to drawGbpq such that b, p, q lie on lx+3, ln′/9, lx+3, respectively. On the other
hand, we use Lemma 2 and the Stretch condition to drawGabp such that a, b, p
lie on l1, lx+3, ln′/9, respectively. Since G

∗
apq ≤ (n′ + 2)/3, we can draw Gapq

using Lemma 5 inside triangle apq. Figure 4(e) illustrates the scenario.
Case 2C (leaf(Ta,Gabp) ≤ n′/9 and leaf(Tb,Gabp) > x). Since each of the

edges among (a, b) and (b, p) spans at least n′/9 + 2 parallel lines in Case 2B,
the drawing in this case is analogous to Case 2B. The only difference is that
we use Ta,Gabp

while drawing Gabp.

Each of the Cases 2A–2C produces a drawing of Gabq such that a, b lies on
l1, lx+3, respectively, and q lies on either l1 or lx+3. Hence we can extend these
drawings to draw G as in Case 1. ��

4.2 Drawing Algorithm

Decomposition. Let G be an n-vertex plane 3-tree with the outer vertices
a, b, c and the representative vertex p. A tree spanning the inner vertices of G is
called the representative tree T if it satisfies the following conditions [14]:

(a) If n = 3, then T is empty.
(b) If n = 4, then T consists of a single vertex.
(c) If n > 4, then the root p of T is the representative vertex of G and the

subtrees rooted at the three clockwise ordered children p1, p2 and p3 of p in
T are the representative trees of Gabp, Gbcp and Gcap, respectively.

Recall that every n-vertex tree T ′ has a vertex v′ such that the connected com-
ponents of T ′\v′ are all of size atmost n/2 [12]. Such a vertex v in T corresponds to
a decomposition ofG into four smaller plane 3-treesG1, G2, G3, andG4, as follows.

- The plane 3-tree Gi, where 1 ≤ i ≤ 3, is determined by the representative tree
rooted at the ith child of v, and thus contains at most (n+ 3)/2 vertices.

- The plane 3-tree G4 is obtained by deleting v and the vertices from G that are
descendent of v in T , and contains at most (n+ 3)/2 vertices.

Drawing Technique. Without loss generality assume that G∗
3 ≤ G∗

2 ≤ G∗
1. If

G1 is incident to the outer face of G, then let (a, b) be the corresponding outer
edge. Otherwise,G1 does not have any edge incident to the outer face ofG. In this
case there exists an inner face f in G that is incident to G1, but does not belong
to G1. We choose f as the outer face of G, and now we have an edge (a, b) of G1

that is incident to the outer face. Let P=(w1, . . . , wk(= p), wk+1(= q), . . . , wt)
be the maximal path in G such that each vertex on P is adjacent to both a and b,
where {a, b, p}, {a, p, q}, {b, q, p} are the outer vertices of G1, G2, G3, respectively.
Assume that n′ = n + 3 and x = 4n′/9. We draw G on Lx+4 by distinguishing
two cases depending on whether G∗

4 > x or not.

Case 1 (G∗
4 > x). Observe that G∗

2 ≤ G∗
1 ≤ n′/2 and since G∗

3 + G∗
2 + G∗

1 ≤
n′ + 5 − G∗

4, we haveG
∗
3 ≤ 5n′/27 + 5/3 ≤ n′/3 for sufficiently large values of n.

402 S. Durocher and D. Mondal

If max∀i>k+1{G∗
awiwi−1

, G∗
bwiwi−1

} ≤ x holds, then G admits a drawing on Lx+4

by Lemma 6. We may thus assume that there exists some j > q such that either
G∗

awjwj−1
> x or G∗

bwjwj−1
> x. Hence max∀i>k+1,i�=j{G∗

awiwi−1
, G∗

bwiwi−1
} ≤

n′/9.
We first show that Gabq can be drawn on Lx+3 in two ways: One drawing Γ1

contains the vertices a, b, q on l1, lx+3, l2, respectively, and the other drawing Γ2

contains a, b, q on l1, lx+3, lx+2, respectively. We then extend these drawings to
obtain the required drawing of G. Consider the following scenarios depending
on whether G∗

1 ≤ x or not.

- If G∗
1 ≤ x, then G∗

3 ≤ G∗
2 ≤ G∗

1 ≤ x. Here we draw the subgraph G′ induced
by the vertices a, b, p, q such that they lie on l1, lx+3, lx+2, l2, respectively. Since
G∗

3 ≤ G∗
2 ≤ G∗

1 ≤ x, by Lemma 5, G1, G2 and G3 can be drawn inside their
corresponding triangles, which corresponds to Γ1. Similarly, we can find another
drawingΓ2 ofGabq ,where theverticesa, b, p, q lie on l1, lx+3, l2, lx+2, respectively.

- If G∗
1 > x, then G∗

3 ≤ G∗
2 ≤ n′/9. We use Chrobak and Nakano’s algorithm [6]

and the Stretch condition to draw G1 on Lx+3 layers such that a, b lie on
l1, lx+3, respectively, and p lies either on l2 or ln′/3+2. If l(p) = l2 (i.e., Γ2),
then we place q on lx+2. Otherwise, l(p) = ln′/3+2 (i.e., Γ1), and we place q on
l2. Since G∗

3 ≤ G∗
2 ≤ n′/9, for each of these two placements we can draw G2

and G3 using Lemma 5 inside their corresponding triangles.

We now show how to extend the drawing of Gabq to compute the drawing of G.
Consider two scenarios depending on whether G∗

awjwj−1
> x or G∗

bwjwj−1
> x.

- Assume that G∗
awjwj−1

> x. Shift b to lx+4, and draw the path wk+1, . . . , wj−1

in a zigzag fashion, placing the vertices on l2 and lx+3 alternatively, such that
l(wk+1) �= l(wk+2), and each vertex is visible to both a and b. Choose Γ1 or Γ2

such that the edge (a, wj−1) spans at least x+3 lines. We now draw Gawjwj−1

using Chrobak and Nakano’s algorithm [6]. Since x < Gawjwj−1 ≤ n′/2, we
can draw Gawjwj−1 on at most n′/3 parallel lines. By the Stretch and Reshape
conditions, we merge this drawing with the current drawing such that wj lies on
either lx+3 or ln′/9+2. Since G

∗
bwjwj−1

≤ n′/9, we can draw Gbwjwj−1 inside its

corresponding triangle using Lemma 5. Since max∀i>j{G∗
awiwi−1

, G∗
bwiwi−1

} ≤
n′/9, it is straightforward to extend the current drawing to a drawing of G on
x+ 4 parallel lines by continuing the path wj , . . . , wt in the zigzag fashion.

- Assume that G∗
bwjwj−1

> x. The drawing in this case is similar to the case when
G∗

awjwj−1
> x.Theonlydifference is thatwhile drawing thepathwk+1, . . . , wj−1,

we choose Γ1 or Γ2 such that the edge (b, wj−1) spans at least x+ 3 lines.

Case 2 (G∗
4 ≤ x). Observe that G∗

2 ≤ G∗
1 ≤ n′/2. Since G∗

3 ≤ G∗
2 ≤ G∗

1 and
G∗

3 +G∗
2 +G∗

1 = n+ 5, we have G∗
3 ≤ (n′ + 2)/3. Hence G admits a drawing on

Lx+4 by Lemma 6.
The following theorem summarizes the result of this section.

Theorem 2. Every n-vertex planar 3-tree admits a straight-line drawing with
height 4(n+ 3)/9 + 4 = 4n/9 +O(1).

Drawing Planar Graphs with Reduced Height 403

Acknowledgement. We thank the anonymous reviewers for their detailed feed-
back to improve the presentation of the paper.

References

1. Biedl, T.: Height-preserving transformations of planar graph drawings. In: Dun-
can, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 380–391. Springer,
Heidelberg (2014)

2. Biedl, T.: A 4-approximation for the height of drawing 2-connected outer-planar
graphs. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846,
pp. 272–285. Springer, Heidelberg (2013)

3. Biedl, T.C.: Transforming planar graph drawings while maintaining height. CoRR
abs/1308.6693 (2013), http://arxiv.org/abs/1308.6693

4. Bonichon, N., Le Saëc, B., Mosbah, M.: Wagner’s Theorem on Realizers. In: Wid-
mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 1043–1053. Springer, Heidelberg (2002)

5. Brandenburg, F.J.: Drawing planar graphs on 8
9
n2 area. Electronic Notes in Dis-

crete Mathematics 31, 37–40 (2008)
6. Chrobak, M., Nakano, S.: Minimum width grid drawings of plane graphs. In:

Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 104–110. Springer,
Heidelberg (1995)

7. De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

8. Djidjev, H., Venkatesan, S.M.: Reduced constants for simple cycle graph separation.
Acta Informatica 34(3), 231–243 (1997)

9. Dujmović, V., et al.: On the parameterized complexity of layered graph drawing. In:
Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 488–499. Springer,
Heidelberg (2001)

10. Frati, F., Patrignani, M.: A note on minimum-area straight-line drawings of planar
graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875,
pp. 339–344. Springer, Heidelberg (2008)

11. Hossain, M.I., Mondal, D., Rahman, M.S., Salma, S.A.: Universal line-sets for
drawing planar 3-trees. Journal of Graph Algorithms and Applications 17(2),
59–79 (2013)

12. Jordan, C.: Sur les assemblages de lignes. Journal für die reine und angewandte
Mathematik 70(2), 185–190 (1969)

13. Mondal, D., Alam, M.J., Rahman, M.S.: Minimum-layer drawings of trees -
(extended abstract). In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS,
vol. 6552, pp. 221–232. Springer, Heidelberg (2011)

14. Mondal, D., Nishat, R.I., Rahman, M.S., Alam, M.J.: Minimum-area drawings of
plane 3-trees. Journal of Graph Algorithms and Applications 15(2), 177–204 (2011)

15. Pach, J., Tóth, G.: Monotone drawings of planar graphs. Journal of Graph The-
ory 46(1), 39–47 (2004)

16. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of ACM-
SIAM SODA, January 22-24, pp. 138–148. ACM (1990)

17. Suderman, M.: Pathwidth and layered drawing of trees. Journal of Computational
Geometry & Applications 14(3), 203–225 (2004)

18. Suderman, M.: Pathwidth and layered drawings of trees. International Journal of
Computational Geometry and Applications 14, 203–225 (2004)

http://arxiv.org/abs/1308.6693

Anchored Drawings of Planar Graphs�

Patrizio Angelini1, Giordano Da Lozzo1, Marco Di Bartolomeo1,
Giuseppe Di Battista1, Seok-Hee Hong2, Maurizio Patrignani1, and Vincenzo Roselli1

1 Department of Engineering, Roma Tre University, Italy
{angelini,dalozzo,dibartolomeo,gdb,
patrigna,roselli}@dia.uniroma3.it

2 School of Information Technologies, The University of Sydney, Australia
shhong@it.usyd.edu.au

Abstract. In this paper we study the ANCHORED GRAPH DRAWING (AGD)
problem: Given a planar graph G, an initial placement for its vertices, and a dis-
tance d, produce a planar straight-line drawing of G such that each vertex is at
distance at most d from its original position.

We show that the AGD problem is NP-hard in several settings and provide
a polynomial-time algorithm when d is the uniform distance L∞ and edges are
required to be drawn as horizontal or vertical segments.

1 Introduction

Several applications require to draw graphs whose vertices are constrained to be not
too much distant from specific points [1,9]. As an example, consider a graph whose
vertices are cities and whose edges are relationships between cities. It is conceivable
that the user wants to draw the graph on a geographic map where vertices have the
coordinates of the corresponding cities. Unfortunately, depending on the local density
of the cities, the drawing may be cluttered or may contain crossings between edges that
might disappear if the vertices could move from their locations. Hence, the user may be
interested to trade precision for quality of the drawing, accepting that the vertices move
of a certain distance from the location of the cities, provided that the readability of the
drawing increases. Problems in which the input consists of a set of imprecise points
have also been studied in Computational Geometry [4,7].

In this paper we consider the following problem, that we call ANCHORED GRAPH

DRAWING (AGD)1. Given a graph G = (V,E), an initial placement for its vertices,
and a distance δ, we ask whether there exists a planar drawing of G, according to a
certain drawing convention, such that each vertex v ∈ V can move at distance at most
δ from its initial placement. Note that the problem can have different formulations de-
pending on how the concepts of “readability” and “distance” are defined.

We consider both straight-line planar drawings and rectilinear planar drawings. Fur-
ther, in addition to the traditional L2 Euclidean distance, we consider the L1 Manhattan

� Work partially supported by ESF EuroGIGA GraDR, by the MIUR project AMANDA “Al-
gorithmics for MAssive and Networked DAta”, prot. 2012C4E3KT 001, and by the EU FP7
STREP Project ”Leone: From Global Measurements to Local Management”, no. 317647.

1 We remark that the term ‘anchored graph’ was used within a different setting in [3].

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 404–415, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Anchored Drawings of Planar Graphs 405

Table 1. The complexity of the ANCHORED GRAPH DRAWING problem depending on the metric
and drawing style adopted when the areas of the vertices do not overlap

Metric Distance Region Shape Straight-line Rectilinear
L1 Manhattan � NP-hard NP-hard
L2 Euclidean � NP-hard NP-hard
L∞ Uniform � NP-hard Polynomial

distance and the L∞ ‘uniform’ distance. Note that, adoptingL2 distance is equivalent to
allowing vertices to be placed into circular regions centered at their original positions,
and adopting L1 or L∞ distances is equivalent to allowing vertices to be placed into
diamond-shaped or square-shaped areas, respectively.

Observe that, if the regions of two vertices overlap, the positions of the two vertices
can be swapped with respect to their initial placement, which may be confusing to a user
of the drawing. Moreover, overlapping between vertex regions would make problem
AGD as difficult as known Clustered Planarity variants, such as the Strip Planarity
problem [2] in the straight-line setting, whose complexity is a non-trivial open problem.
Hence, we restrict to instances such that the regions of the vertices do not overlap.

We remark that the version of the problem where each circle may have a different size
was shown to be NP-hard in [6] by reducing Planar-(3, 4)-SAT with variable repetitions
(where repeated occurrences of one variable in one clause are counted repeatedly). The
proof in [6] uses disks with radius zero and disks with large radii. Also, the reduction
relies on overlapping disks.

Furthermore, we observe that the NP-hardness of the problem with different dis-
tances and overlapping areas trivially follows from the NP-hardness of extending a pla-
nar straight-line drawing [10] by setting δ(v) = 0 for each fixed vertex v and allowing
suitably large distances for vertices that have to be planarly added to the drawing.

In this paper we show that the ANCHORED GRAPH DRAWING problem is NP-hard
for any combination of metrics and drawing standards that we considered, with the ex-
ception of rectilinear drawings and uniform distance metric (square-shaped regions).
These results, summarized in Table 1, were somehow unexpected, as computing a pla-
nar rectilinear drawing of a graph, without any further constraint, is NP-hard [5].

The paper is organized as follows. Section 2 contains basic definitions and termi-
nology. Section 3 describes a polynomial-time algorithm when the considered distance
is the uniform distance L∞ and edges are required to be drawn as either horizontal
or vertical segments. Section 4 is devoted to the NP-hardness proofs of all the other
considered settings of the problems. Finally, Section 5 discusses some open problems.

2 Problem Definition and Instances Classification

A straight-line planar drawing of a graph G is a drawing of G where edges are straight-
line segments that do not intersect except at common end-points. A rectilinear planar
drawing is a straight-line planar drawing where edges are parallel to the axes.

Given two points p and q in the plane, denote by dx(p, q) and dy(p, q) the differences
of their coordinates, i.e., dx(p, q) = |x(p)− x(q)| and dy(p, q) = |y(p)− y(q)|, where

406 P. Angelini et al.

Tr
ivi
all
y Y

ES
TriviallyNO

Property A:
no VV overlap

Property C:
no PP overlap

Property B:
no VP overlap

ly
YE

S

Fig. 1. Venn diagram describing the logical relationships among Properties A–C

x(r) and y(r) are the x- and y-coordinate of a point r, respectively. The Euclidean
distance d2(p, q) of p and q is defined as d2(p, q) = (dx(p, q)2 + dy(p, q)2)

1
2 . The

Manhattan distance is defined as d1(p, q) = dx(p, q) + dy(p, q). The uniform distance
d∞(p, q) = limi→∞(dx(p, q)i + dy(p, q)i)

1
i = max(dx(p, q), dy(p, q)).

We define the ANCHORED GRAPH DRAWING problem parametrically in the metric
Lk and the drawing style X , which can be straight-line (X = S) or rectilinear (X =
R). Hence, for any Lk ∈ {L1, L2, L∞} and any X ∈ {S,R} we define: Problem:
ANCHORED GRAPH DRAWING-Lk-X (AGD-Lk-X). Instance: A graph G = (V,E),
an initial placement for its vertices α(v) : V → '2, and a distance δ. Question: Does
there exist a planar drawing of G according to the X drawing convention such that each
vertex v ∈ V is at distance Lk at most δ from α(v)?

We define anchored drawing a planar drawing satisfying all the requirements of the
particular version of problem ANCHORED GRAPH DRAWING.

Given an instance 〈G,α, δ〉 of the ANCHORED GRAPH DRAWING problem, each
vertex v identifies a region R(v) of the plane, called vertex region, that encloses the
initial position of the vertex and whose shape depends on the metric adopted for com-
puting the distance. In particular, for the Euclidean distance the vertex regions are cir-
cles, for the Manhattan distance they are diamonds, and for the uniform distance they
are squares. Each edge (u, v) of the graph, instead, identifies a pipe P (u, v), defined
as follows. Consider the convex hull H of R(u) and R(v); pipe P (u, v) is the closed
region obtained by removing R(u) and R(v) from H .

Instances can be classified based on the intersections among vertex and pipe regions.
Namely, we can have instances satisfying the following properties:
Property A. No overlap between two vertex regions (VV-overlaps);
Property B. No overlap between a vertex region and a pipe (VP-overlaps);
Property C. No overlap between pipes (PP-overlaps) not incident to the same vertex.

The Venn diagram in Fig. 1 shows the logical relationships between the three prop-
erties. The following observation is immediate.

Observation 1. If Properties A, B, and C are all satisfied, then the instance is trivially
positive, since choosing any point in the vertex region (including the initial placement
of the vertex) yields an anchored drawing of the input graph.

Anchored Drawings of Planar Graphs 407

In this paper we always assume that Property A is satisfied. In fact, if vertex regions
were allowed to overlap, then it would be possible to reduce to this problem a variant
of the Clustered Planarity problem whose complexity is still unknown. In this variant,
which includes Strip Planarity [2] as a special case, the cluster regions are already drawn
and edges are straight-line.

Two further observations can be made which reduce the set of instances of interest.

Observation 2. An instance satisfying Property B but not satisfying Property C (i.e.,
with PP-overlaps but without VP-overlaps) is trivially false, as in this case any PP-
overlap would enforce a crossing between two edges for any placement of their end-
vertices in the corresponding vertex regions.

Observation 3. An instance satisfying Property C but not satisfying Property B (i.e.,
with VP-overlaps but without PP-overlaps) is trivially true.

Proof: Since Property C holds, no crossing can occur outside a vertex region. First,
suppose that regions are diamonds or squares. If the center of region R(v) of a vertex v
lies inside a pipe P (x, y), then at least two consecutive vertices, say a and b, delimiting
R(v) lie inside P (x, y). This implies that v has degree at most 1, as otherwise there
would be a PP -overlap between P (x, y) and a pipe P (v, w) delimited by either a or b.

As for the case in which regions are circles, if the center of R(v) lies inside P (x, y),
then at least half of the circle delimiting R(v) lies inside P (x, y). Hence, a similar
argument applies to prove that deg(v) ≤ 1.

In all the three cases, since deg(v) ≤ 1 and R(v) is not completely contained into
P (x, y), v can be placed on any point of R(v) outside P (x, y). Hence, placing each
other vertex at the center of its region yields an anchored drawing. �

Due to the above properties and observations, the remaining part of this paper focuses
on the instances for which Property A holds, while Properties B and C do not. These
instances correspond to the blue region at the top of Fig. 1.

3 Polynomial-Time Algorithm

In this section we describe an algorithm, called Algo-AGD-L∞-R, that decides in poly-
nomial time instances 〈G,α, δ〉 of problem AGD-L∞-R such that G is connected.

For each vertex v ∈ V , denote by xl(v) and xr(v) the x-coordinate of the left and
right side of R(v), respectively. Similarly, denote by yt(v) and yb(v) the y-coordinate
of the top and bottom side of R(v), respectively. See region R(u) in Fig. 2.

First note that, for each edge (u, v) ∈ E, the relative placement of R(u) and R(v)
determines whether (u, v) has to be drawn as a vertical or a horizontal segment, or
(u, v) cannot be drawn neither horizontal nor vertical with its endpoints lying inside
their corresponding regions. In the latter case, instance I is negative. An edge that has
to be drawn as a horizontal (vertical) segment is a horizontal (vertical) edge. In the fol-
lowing we assume w.l.o.g. that any horizontal edge (u, v) is such that xr(u) < xl(v),
while any vertical edge (u, v) is such that yt(u) < yb(v). A path composed only of
horizontal (vertical) edges is a horizontal (vertical) path. Given that each edge (u, v)

408 P. Angelini et al.

R(u) R(v) R(z)P (u, v)

xl(u) xr(u)
yt(u)

yb(u)

yt(P)
yb(P)

Fig. 2. Geometric description of a region R(u) and of a pipe P (u, v), after procedure PIPEE-
QUALIZER has been applied

can be categorized as either horizontal or vertical, we can label its pipe P (u, v) as ei-
ther horizontal or vertical accordingly. Also, we can determine the minimum
and maximum y-coordinate (x-coordinate) that a horizontal (vertical) edge (u, v) can
assume while placing both its endvertices inside their regions. In the following we de-
scribe pipe P (u, v) by means of these coordinates, which are denoted by yb(P) and
yt(P) (xl(P) and xr(P)), respectively. See horizontal pipe P (u, v) in Fig. 2.

Also note that, if a vertex v of degree 2 is incident to two horizontal (vertical) edges
(u, v) and (v, z), then replacing v and its incident edges with a horizontal (vertical)
edge (u, z) yields an equivalent instance. Hence, we assume that, if there exists a vertex
of degree 2, then it is incident to both a horizontal and a vertical edge.

As a preliminary step of the algorithm, we initialize the geometric description of each
pipe P (u, v) as follows. If P is vertical, then set xr(P) = min(xr(u), xr(v)) and
xl(P) = max(xl(u), xl(v)). IfP ishorizontal, then setyt(P) = min(yt(u), yt(v))
and yb(P) = max(yb(u), yb(v)). Here and in the following, whenever a vertex region
R(w) (a pipe P (u, v)) is modified by the algorithm, we assume the pipes incident to w
(the regions R(u) and R(v)) to be modified accordingly.

In order to ensure that horizontal (vertical) pipes whose edges belong to the
same horizontal (vertical) path have the same geometric description, we refine the pipes
by applying the following procedure, that we call PIPEEQUALIZER. As long as there ex-
ist two vertical pipes P ′(u, v) and P ′′(v, w) incident to the same vertex v such that
xl(P

′) �= xl(P
′′) or xr(P

′) �= xr(P
′′), set xl(P

′) = xl(P
′′) = max(xl(P

′), xl(P
′′))

and xr(P
′) = xr(P

′′) = min(xr(P
′), xr(P

′′)). Analogously, as long as there exist
two horizontal pipes P ′(u, v) and P ′′(v, w) incident to the same vertex v such that
yb(P

′) �= yb(P
′′) or yt(P ′) �= yt(P

′′), set yb(P ′) = yb(P
′′) = max(yb(P

′), yb(P
′′))

and yt(P
′) = yt(P

′′) = min(yt(P
′), yt(P

′′)). See pipe P (u, v) in Fig. 2 after the
application of PIPEEQUALIZER.

We then perform the following procedure, that we call PIPECHECKER. It first checks
whether there exists a pipe P such that xr(P) < xl(P) or yt(P) < yb(P). Then, it
checks whether there exists a PP-overlap between two pipes P (u, v) and P (w, z) such
that: (i) neither of R(u) or R(v) has a VP-overlap with P (w, z); and (ii) neither of
R(w) or R(z) has a VP-overlap with P (u, v). If one of the two checks succeeds, then
we conclude that instance I is negative, otherwise we proceed with the algorithm.

In the following, every time a pipe is modified, we will apply procedure PIPEE-
QUALIZER to extend this modification to other pipes, and procedure PIPECHECKER to
test whether such modifications resulted in uncovering a negative instance.

Anchored Drawings of Planar Graphs 409

u v
P (u, v)

w

h
(a)

u w

w′

v z

(b)

u w z
v

w′ v′

(c)

Fig. 3. Vertices exiting pipes. (a) Vertex w exits P (u, v) from below. The cut of P (u, v) applied
by procedure PIPEBLOCKCHECKER is described by a dashed line. (b) Vertex v exits P (w, z)
through w. The cut of R(w) and the consequent cut of P (w, z) applied by procedure VERTEX-
CHECKER is described by a dashed line. (c) A situation recognized by procedure PIPEINTER-
LEAVECHECKER.

The general strategy of the main part of the algorithm is to progressively reduce the
size of the pipes. In particular, at each step we consider the current instance Ii and
modify it to obtain an instance Ii+1 with smaller pipes than Ii that admits an anchored
drawing if and only if Ii admits an anchored drawing. Eventually, such a process will
lead either to an instance Im for which it is easy to construct an anchored drawing or to
conclude that instance I = I1 is negative.

Let P (u, v) be a horizontal pipe, and w be a vertex having a VP-overlap with
P (u, v). Refer to Fig. 3(a). We say that w exits P from below if there exists a vertex
h such that: (i) yb(P) < yb(w) < yt(P) and xr(u) < xl(w) < xr(w) < xl(v);
(ii) yt(h) < yb(P) and xr(u) < xl(h) < xr(h) < xl(v); and (iii) there exists a path
γ = (w, . . . , h) in G connecting w to h in which every internal vertex r is such that
R(r) intersects P . Symmetrically, we say that w exits P from above if there exists a
vertex h with the same properties as before, except for the fact that yb(P) < yt(w) <
yt(P), yb(h) > yt(P). Otherwise, we say that w exits P through a vertex, either u
or v. In Fig. 3(b), vertex v exits pipe P (w, z) through w. Observe that, since G is
connected and no VV-overlap occurs in I , there always exists a path γ = (w, . . . , h) in
G connecting w to a vertex h such that h does not have any VP-overlap with P ; hence,
w always exits P , either from above or below, or through a vertex.

For the case of a vertical pipe P (u, v), we assume analogous definitions of ver-
tices exiting P from left, right or through a vertex, either u or v. As long as one of the
following conditions is satisfied, we apply one of the procedures described hereunder.

Procedure VERTEXCHECKER: Consider a vertex w having a VP-overlap with a
horizontal (vertical) pipe P (u, v) such that yb(w) ≤ yb(P) < yt(P) ≤ yt(w)
(resp., xl(w) ≤ xl(P) < xr(P) ≤ xr(w)). If w is incident to two vertical (hori-
zontal) pipes, then we conclude that instance I is negative. Otherwise, if w is incident
to a vertical (horizontal) pipe P (w,w′), then set yb(w) = max(yb(w), yb(P))
(set xl(w) = max(xl(w), xl(P)). See Fig. 3(b). Analogously, if w is incident to a
vertical (horizontal) pipe P (w′, w), then set yt(w) = min(yt(w), yt(P) (set
xr(w) = min(xr(w), xr(P)).

Procedure PIPEBLOCKCHECKER: Consider a pipe P (u, v) having a VP-overlap
with a vertex w such that w does not exit through a vertex. If w exits P (u, v) both

410 P. Angelini et al.

from above and from below (a vertical pipe both from left and from right), then
we conclude that instance I is negative. Otherwise, if w exits P from (i) above, we set
yt(P) = yt(w); (ii) below, we set yb(P) = yb(w); (iii) left, we set xl(P) = xl(w); or
(iv) right, we set xr(P) = xr(w). See Fig. 3(a).

Procedure PIPESIDECHECKER: Consider a horizontal (vertical) pipe
P (u, v) and a vertex w exiting P (u, v) both through vertex u and through vertex v. If u
and v are incident to vertical (horizontal) pipes, either P (u, u′) and P (v′, v),
or P (u′, u) and P (v, v′), respectively, then we conclude that instance I is negative.

Procedure PIPEINTERLEAVECHECKER: Suppose that there exist two horizon-
tal (vertical) pipes P (u, v) and P (w, z) such that v and P (w, z) have a VP-
overlap, and w and P (u, v) have a VP-overlap. If either v is incident to a verti-
cal (horizontal) pipe P (v, v′) and w is incident to a vertical (horizontal)
pipe P (w,w′), or v is incident to a vertical (horizontal) pipe P (v′, v) and
w is incident to a vertical (horizontal) pipe P (w′, w), then we conclude that
instance I is negative. See Fig. 3(c).

If none of the above procedures can be applied, then we conclude that I is a positive
instance.

Theorem 1. Let I = 〈G,α, δ〉 be an instance of AGD-L∞-R such that G is con-
nected. Algorithm Algo-AGD-L∞-R decides in polynomial time whether 〈G,α, δ〉
admits an anchored drawing.

Proof: The initialization of the pipes and their refinement operated by procedure PIPEE-
QUALIZER, both after the initialization and after each further modification, is trivially
necessary to meet the requirements that vertices are placed inside their regions and
edges are drawn as either horizontal or vertical segments.

Suppose that procedure PIPECHECKER concluded that instance I is negative at some
point of the algorithm. If xr(P) < xl(P) (if yt(P) < yb(P)), then there exist two
vertical (horizontal) pipes sharing a vertex that cannot be placed inside its re-
gion while drawing both its incident edges as rectilinear segments. Otherwise, there
exists a PP-overlap between two pipes P (u, v) and P (w, z) not overlapping with re-
gions R(u), R(v), R(w), and R(z). By Observation 2, the instance is negative.

We prove that the modifications operated by VERTEXCHECKER, when a vertex w
has a VP-overlap with a horizontal (vertical) pipe P (u, v) and w is incident to
a vertical (horizontal) P (w,w′), do not restrict the possibility of constructing
an anchored drawing of 〈G,α, δ〉. Refer to Fig. 3(b). In fact, in this case, in any anchored
drawing of 〈G,α, δ〉, edge (w,w′) cannot traverse P (u, v) from top to bottom. As for
the fact that an instance in which w is incident to two vertical (horizontal)
pipes is correctly recognized as negative, observe that in this case one of the two vertical
edges incident to w necessarily crosses edge (u, v).

We prove that the modifications operated by PIPEBLOCKCHECKER, when a vertex
w overlaps a pipe P (u, v) and does not exit through one of its vertices, do not restrict
the possibility of constructing an anchored drawing of 〈G,α, δ〉. Suppose that w exits
P (u, v) from below, the other cases being analogous. Refer to Fig. 3(a). The statement

Anchored Drawings of Planar Graphs 411

u1 u2 u3v1

v2

(a)

u1
u2

u3

v2v1 w1 w2

(b)

Fig. 4. Construction of the drawing when none of the procedures can be applied. (a) Two maximal
horizontal paths (u1, u2, u3) and (v1, v2) whose pipes have the same y-coordinates. Path (v1, v2)
is assigned a y-coordinate slightly larger than (u1, u2, u3). (b) Three maximal horizontal paths
(u1, u2, u3), (v1, v2), and (w1, w2)whose pipes have the same y-coordinates. Path (v1, v2) is
assigned a y-coordinate slightly larger than (w1, w2).

follows from the fact that, in any anchored drawing of 〈G,α, δ〉, the drawing of path
γ = (w, . . . , h) blocks visibility from R(u) to R(v) inside P (u, v) at least for all the
y-coordinates in the range between the point where w is placed and the point where h
is placed. Since yt(h) < yb(P), the point where w is placed determines a new lower
bound for the value of yb(P). Since such a point cannot be below yb(w), the statement
follows. As for the fact that an instance containing a vertex w that exits a horizon-
tal pipe both from above and from below (a vertical pipe both from left and from
right) is correctly recognized as negative, observe that in this case the two paths starting
from w completely block visibility between from R(u) to R(v) inside P (u, v).

We prove that an instance containing a vertex w that exits P (u, v) through both of
its vertices, and such that u and v are also incident to pipes P (u, u′) and P (v′, v),
or vice versa, reaching them from different sides, is correctly recognized as negative
by procedure PIPESIDECHECKER. Namely, observe that in this case path (u′, u, v, v′)
necessarily crosses one of the two paths starting from w.

Finally, suppose that procedure PIPEINTERLEAVECHECKER concluded that instance
I is negative. Refer to Fig. 3(c). It is easy to observe that the fact that v andw are reached
from the same side is not compatible with an anchored drawing of 〈G,α, δ〉.

We conclude the proof of the theorem by showing that, when none of the described
procedures can be applied, it is always possible to draw every edge (u, v) inside its pipe
P (u, v), as follows.

Consider every maximal horizontal path (u1, . . . , ur). Note that, each vertex ui, with
1 ≤ i ≤ r, is incident to at least a vertical pipe, either (ui, u

′
i) or (u′

i, ui), as other-
wise edges (ui−1, ui) and (ui, ui+1) would have been replaced with edge (ui−1, ui+1).
If all the vertices ui are incident to a vertical (ui, u

′
i), then assign y-coordinate

equal to yt(ui) to ui, for i = 1, . . . , r; if all the vertices ui are incident to a vertical
(u′

i, ui), then assign y-coordinate equal to yb(ui) to ui, for i = 1, . . . , r; finally, if there
exists at least a vertex ui incident to a vertical (ui, u

′
i) and at least a vertex uj in-

cident to a vertical (u′
j , uj), then assign y-coordinate equal to yb(ui)+yt(ui)

2 to ui,
for i = 1, . . . , r. Assign x-coordinates to vertices of every maximal vertical path equal
to xl(ui), to xr(ui), or to xl(ui)+xr(ui)

2 , in an analogous way.
With a straightforward case analysis, it is possible to observe that, since none of

the conditions activating the described procedures is satisfied, there exists no cross-
ing in the drawing, apart from possible overlaps between edges belonging to different

412 P. Angelini et al.

maximal horizontal (vertical) paths whose pipes have the same bottom and top y-
coordinates (the same left and right x-coordinates). However, these overlaps can be
always eliminated by increasing (decreasing) of an arbitrarily small amount the coordi-
nates of the overlapping paths (see two examples in Fig. 4(a) and 4(b)), again due to the
fact that none of the conditions activating the described procedures is satisfied. �

4 Hardness Results

In this section we prove the hardness of the ANCHORED GRAPH DRAWING problem
in different settings. In particular, Theorem 2 is devoted to the hardness of the AGD-
L2-S problem, i.e., the problem of generating planar straight-line drawings of the input
graph where the vertex regions are circles of radius δ. Theorem 3, instead, is devoted to
the hardness of the AGD-L2-R problem, where the regions are circles of radius δ and
edges are required to be drawn as horizontal or vertical segments.

The proofs of hardness for the remaining variants of the problem listed in Table 1
can be derived from these two and, thus, will not be explained in detail. Namely, the re-
duction to AGD-L1-R is very similar to that used for AGD-L2-R, and can be obtained
by suitably replacing circles with diamond-shaped regions that ensure analogous geo-
metric visibility and obstruction properties. The same holds for the hardness proof of
AGD-L∞-S, that can be obtained from AGD-L2-S with small adaptations of the gad-
gets. Finally, the reduction to AGD-L1-S is the same as the one for AGD-L∞-S where
all the geometric constructions are rotated by 45o, transforming the square-shaped re-
gions of AGD-L∞-S into the diamond-shaped regions of AGD-L1-S.

All our proofs are based on a reduction from the NP-complete problem PLANAR

3-SATISFIABILITY [8], defined as follows. Problem: PLANAR 3-SATISFIABILITY

(P3SAT). Instance: A planar bipartite graph G = (Vv, Vc, E) where: (i) Vv is a set
of variables; (ii) Vc is a set of clauses, each consisting of exactly three literals repre-
senting variables in Vv; and (iii) E is a set of edges connecting each variable v ∈ Vv

to all the clauses containing a literal representing v. Question: Does there exist a truth
assignment to the variables so that each clause has at least one true literal?

For each of our problems, we describe gadgets that, given an instance φ of P3SAT,
can be combined to construct an instance γ of the considered problem. Namely, we
describe a gadget for each of the following: variable, not, turn, split, and clause.

The variable gadget has two families of planar drawings, corresponding to the two
truth values. The not gadget admits planar drawings that invert its input truth value. The
turn gadget admits planar drawings that propagate its input truth value in a direction that
is orthogonal to the original one. The split gadget admits planar drawings that propagate
its input truth value to two different directions. Finally, the clause gadget is planar if and
only if at least one of its input literals is true. The gadgets are combined following
the structure of a planar drawing of φ, so that any planar drawing of γ corresponds to
a truth assignment for the variables satisfying φ. Similarly, given a truth assignment
for the variables that satisfies φ, the gadgets for variables can be drawn accordingly to
obtain a planar drawing of γ.

Anchored Drawings of Planar Graphs 413

R(v1)

R(v3) R(v4)

R(v2)

(a)

R(v1)

R(v3) R(v4)

R(v2)

(b) (c) (d)

Fig. 5. Variable gadget for the reduction to the AGD-L2-S problem in its false (a) and true (b)
configurations. (c) Propagation of the true configuration of a variable gadget. (d) Turn gadget in
its false configuration.

(a)

R(va)

R(vb)

R(vc)

R(vd)

(b)

Fig. 6. (a) Split gadget in its true configuration. (b) Not gadget.

Theorem 2. AGD-L2-S is NP-hard.

Proof: To prove hardness we reduce problem P3SAT to AGD-L2-S, under the hy-
pothesis that Property A is satisfied (no overlap among vertex regions).

Let φ be an instance of P3SAT with n variables and m clauses. We describe how to
construct an equivalent instance γ of AGD-L2-S. For each variable xi, i = 1, . . . , n,
we create a variable gadget, whose two families of planar drawings are depicted in
Figs. 5(a) and 5(b), consisting of four vertices v1, v2, v3, and v4 and edges (v1, v2)
and (v3, v4). The regions assigned to the vertices are placed as follows: (i) the centers
of R(v1) and of R(v2) lie on the same vertical line; (ii) the centers of R(v3) and
of R(v4) lie on the same horizontal line; (iii) pipe P (v1, v2) has an intersection of
arbitrarily small area with both R(v3) and R(v4); and (iv) pipe P (v3, v4) intersects
neither R(v1) nor R(v2). Hence, in any anchored drawing of γ, edge (v1, v2) is drawn
either to the left of v3 (as in Fig. 5(a)) or to the right of v4 (as in Fig. 5(b)). In both cases,
edge (v1, v2) is drawn almost vertical. We call these two configurations false and true
configurations for the variable gadget, respectively, and associate them with the false
and true values for the corresponding variable xi. The truth value of a variable can be
propagated by concatenating a sequence of variable gadgets μ1, . . . , μk in which R(v1)
of μi is identified with R(v2) of μi+1, for each i = 1, . . . , k − 1. See Fig. 5(c).

The turn gadget can be constructed by concatenating three variable gadgets, μ1, μ2

and μ3, as depicted in Fig. 5(d), in such a way that μ2 has a clockwise rotation of 45◦

with respect to μ1, and μ3 has a clockwise rotation of 90◦ with respect to μ1.

414 P. Angelini et al.

R(v1)

R(v3)

R(v2)R(v4)

R(v6)

l r
R(v5)

(a)

F

F

F

R(v1)

R(v3)

R(v2)R(v4)

R(v6)
R(v5)

(b)

T

F

F

R(v1)

R(v3)

R(v2)R(v4)

R(v6)
R(v5)

(c)

Fig. 7. Clause for the reduction to the AGD-L2-S problem. Vertices v1, v2, and v3 represent
the three literals of the clause. For readability, we show only pipes P (v1, v2) and P (v5, v6).
(a) Arrangement of the regions. (b) All literals are assigned false, and edges (v5, v6) and
(v3, v4) cross. The darker wedge represents all the possible positions for edge (v3, v4) in this
truth assignment, which implies that the crossing is unavoidable. (c) Assigning true to any of
the literals allows for a planar drawing.

The split gadget can be constructed by combining two turn gadgets τL=〈μL
1 , μ

L
2 , μ

L
3 〉

and τR = 〈μR
1 , μ

R
2 , μ

R
3 〉, with μL

1 = μR
1 and where τL is obtained from τR by a vertical

mirroring. See Fig. 6(a).
The not gadget is constructed as follows. Consider two horizontally (vertically)

aligned variable gadgets μ1 and μ2. Add an edge connecting v2 of μ1 to v1 of μ2,
as in Fig. 6(b). Place between μ1 and μ2 two pairs of adjacent vertices (va, vb) and
(vc, vd) whose regions are placed in such a way that: (i) any drawing of edge (va, vb)
blocks the visibility between the true configurations of μ1 and μ2; (ii) any drawing of
edge (vc, vd) blocks the visibility between the false configurations of μ1 and μ2; and
(iii) edges (va, vb) and (vc, vd) can be drawn in such a way that there exists visibility
between different truth configurations of μ1 and μ2. Hence, in any anchored drawing of
γ, the configurations of μ1 and μ2 are different.

The clause gadget is constructed as follows. Refer to Fig. 7(a). Consider three ver-
tices v1, v2, and v3 whose regions are placed in such a way that their centers induce
a non-degenerated triangle T and the centers of R(v1) and of R(v2) lie on the same
horizontal line. These three vertices represent the three literals of the clause. While
R(v2) and R(v3) maintain the usual convention to encode the truth value of the repre-
sented variable, for R(v1) it is inverted. It can be easily realized by negating the value
of the variable. The gadget contains three more vertices: v4, v5, and v6, and edges
(v1, v2), (v2, v3), (v1, v3), (v3, v4), and (v5, v6). The center of R(vi), with i = 4, 5, 6,
lies inside T . Region R(v4) is completely contained in pipe P (v1, v2), except for an
arbitrarily small part Π, which lies inside T . Consider the two points l and r in which
the boundary of R(v4) intersects P (v1, v2). The boundary of R(v5) is tangent to the
leftmost segment of the convex hull H of {l, r}∪R(v3). Region R(v6) completely lies
to the right of the rightmost segment of H , except for an arbitrarily small part. Neither
R(v5) nor R(v6) intersects P (v1, v2).

If all the literals are set to false, then v4 must lie below edge (v1, v2) (and hence in
Π). However, visibility between Π and R(v3) is prevented by edge (v5, v6) (Fig. 7(b)).

Anchored Drawings of Planar Graphs 415

Otherwise, if at least one of the literals is set to true, then an anchored drawing of γ
can be realized (see Fig. 7(c) for an example). �
Theorem 3. AGD-L2-R is NP-hard.

Proof sketch: To prove hardness we reduce problem P3SAT to AGD-L2-R, un-
der the hypothesis that Property A is satisfied (no overlap among vertex regions). The
adopted gadgets are similar to those used in the proof of Theorem 2 with the exception
of the clause gadget. That gadget is based on creating three horizontal strips that are the
only possible containers of a specific edge. If all the literals are false, then suitable
edges obstruct such strips and make it not possible to construct an anchored drawing. �
5 Conclusions and Open Problems

We considered the ANCHORED GRAPH DRAWING problem in several settings, show-
ing that, provided that the input instance do not have overlaps between vertex regions
(Property A), the problem of producing planar drawings is NP-hard in most of the set-
tings. The only exception is for the case with rectilinear drawings and uniform dis-
tances (square-shaped regions), for which a polynomial-time algorithm is provided in
Section 3.

We leave open the following questions: (i) Does problem AGD belong to class NP?
(ii) The instances in our NP-hardness proofs can be augmented to equivalent instances
whose graphs are biconnected (we omit details for space reasons). In these instances,
different truth values correspond to different embeddings. What is the complexity of
AGD when the input graph is triconnected or has at least a fixed embedding? (iii) What
if we allow the vertex regions to (at least partially) overlap?

References

1. Abellanas, M., Aiello, A., Hernández, G., Silveira, R.I.: Network drawing with geographical
constraints on vertices. In: Actas XI Encuentros de Geom. Comput., pp. 111–118 (2005)

2. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing. In: Wismath, S.,
Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 37–48. Springer, Heidelberg (2013)

3. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-
planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013)

4. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neighborhoods in
the plane. J. Algorithms 48(1), 135–159 (2003)

5. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity
testing. SIAM J. Comput. 31(2), 601–625 (2001)

6. Godau, M.: On the difficulty of embedding planar graphs with inaccuracies. In: Tamassia,
R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 254–261. Springer, Heidelberg (1995)

7. Löffler, M., van Kreveld, M.J.: Largest and smallest convex hulls for imprecise points. Algo-
rithmica 56(2), 235–269 (2010)

8. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 185–225 (1982)
9. Lyons, K.A., Meijer, H., Rappaport, D.: Algorithms for cluster busting in anchored graph

drawing. J. Graph Algorithms Appl. 2(1) (1998)
10. Patrignani, M.: On extending a partial straight-line drawing. International Journal of Foun-

dations of Computer Science (IJFCS) 17(5), 1061–1069 (2006)

Advances on Testing C-Planarity
of Embedded Flat Clustered Graphs�

Markus Chimani1, Giuseppe Di Battista2, Fabrizio Frati3, and Karsten Klein3

1 Theoretical Computer Science, University Osnabrück, Germany
markus.chimani@uni-osnabrueck.de

2 Dipartimento di Ingegneria, University Roma Tre, Italy
gdb@dia.uniroma3.it

3 School of Information Technologies, The University of Sydney, Australia
{fabrizio.frati,karsten.klein}@sydney.edu.au

Abstract. We show a polynomial-time algorithm for testing c-planarity of em-
bedded flat clustered graphs with at most two vertices per cluster on each face.

1 Introduction

A clustered graph C(G, T) consists of a graph G(V,E), called underlying graph, and
of a rooted tree T , called inclusion tree, representing a cluster hierarchy on V . The
vertices in V are the leaves of T , and the inner nodes of T , except for the root, are called
clusters. The vertices that are descendants of a cluster α in T belong to α or are in α. A
c-planar drawing of C is a planar drawing of G together with a representation of each
cluster α as a simple connected region Rα enclosing all and only the vertices that are in
α; further, the boundaries of no two such regions Rα and Rβ intersect; finally, only the
edges connecting vertices in α to vertices not in α cross the boundary of Rα, and each
does so only once. A clustered graph is c-planar if it admits a c-planar drawing.

Clustered graphs find numerous applications in computer science [22], thus theoreti-
cal questions on clustered graphs have been deeply investigated. From the visualization
perspective, the most intriguing question is to determine the complexity of testing c-
planarity of clustered graphs. Unlike for other planarity variants [21], like upward pla-
narity [14] and partial embedding planarity [1], the complexity of testing c-planarity
remains unknown since the problem was posed nearly two decades ago [13].

Polynomial-time algorithms to test the c-planarity of a clustered graph C are known
if C belongs to special classes of clustered graphs [7–11,13,15,16,18,19], including c-
connected clustered graphs, that are clustered graphsC(G, T) in which, for each cluster
α, the subgraphG[α] of G induced by the vertices in α is connected [8,10,13]. Effective
ILP formulations and FPT algorithms for testing c-planarity have been presented [5,6].
Generalizations of the c-planarity testing problem have also been considered [2, 12].

An important variant of the c-planarity testing problem is the one in which the clus-
tered graph C(G, T) is flat and embedded. That is, every cluster is a child of the root of
T and a planar embedding for G (an order of the edges incident to each vertex) is fixed

� Research partially supported by the Australian Research Council (grant DE140100708).

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 416–427, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Advances on Testing C-Planarity of Embedded Flat Clustered Graphs 417

in advance; then, the c-planarity testing problem asks whether a c-planar drawing exists
in which G has the prescribed planar embedding. This setting can be highly regarded
for several reasons. First, several NP-hard graph drawing problems are polynomial-
time solvable in the fixed embedding scenario, e.g., upward planarity testing [3, 14]
and bend minimization in orthogonal drawings [14, 23]. Second, testing c-planarity of
embedded flat clustered graphs generalizes testing c-planarity of triconnected flat clus-
tered graphs. Third, testing c-planarity of embedded flat clustered graphs is strongly
related to a seemingly different problem, that we call planar set of spanning trees in
topological multigraphs (PSSTTM): Given a non-planar topological multigraph A with
k connected componentsA1, . . . , Ak, do spanning trees S1, . . . , Sk of A1, . . . , Ak exist
such that no two edges in

⋃
i Si cross? Starting from an embedded flat clustered graph

C(G, T), an instance A of the PSSTTM problem can be constructed that admits a solu-
tion if and only if C(G, T) is c-planar: A is composed of the edges that can be inserted
inside the faces of G between vertices of the same cluster, where each cluster defines a
multigraph Ai. The PSSTTM problem is NP-hard, even if k = 1 [20].

Testing c-planarity of an embedded flat clustered graph C(G, T) is a polynomial-
time solvable problem ifG has no face with more than five vertices and, more in general,
if C is a single-conflict clustered graph [11], i.e., the instance A of the PSSTTM problem
associated with C is such that each edge has at most one crossing. A polynomial-time
algorithm is also known for testing c-planarity of embedded flat clustered graphs such
that the graph induced by each cluster has at most two connected components [17].
Finally, the c-planarity of clustered cycles with at most three clusters [9] or with each
cluster containing at most three vertices [19] can be tested in polynomial time.

Our Contribution. In this paper we show how to test c-planarity in polynomial time
for embedded flat clustered graphs C(G, T) such that at most two vertices of each clus-
ter are incident to any face of G. While this setting might seem unnatural at a first
glance, its study led to a deep (in our opinion) exploration of some combinatorial prop-
erties of highly non-planar topological graphs. Namely, every instance A of the PSSTTM

problem arising from our setting is such that there exists no sequence e1, e2, . . . , eh of
edges in A with e1 and eh in the same connected component of A and with ei crossing
ei+1, for every 1 ≤ i ≤ h − 1; these instances might contain a quadratic number of
crossings, which is not the case for single-conflict clustered graphs [11]. Within our
setting, performing all the “trivial local” tests and simplifications results in the rise of
nice global structures, called α-donuts, whose study was interesting to us.

Refer to the full version of the paper [4] for complete proofs.

2 Saturators, Con-Edges, and Spanning Trees

A natural approach to test c-planarity of a clustered graph C(G(V,E), T) is to search
for a saturator for C. A set S ⊆ V × V is a saturator for C if C ′(G′(V,E ∪ S), T) is
a c-connected c-planar clustered graph. Determining the existence of a saturator for C
is equivalent to testing the c-planarity of C [13]. Thus, the core of the problem consists
of determining S so that G′[α] is connected, for each α ∈ T , and so that G′ is planar.
For embedded flat clustered graphs (see Fig. 1(a)), the problem of finding saturators

418 M. Chimani et al.

(a) (b) (c) (d)

Fig. 1. (a) A clustered graph C. (b) Con-edges in C. (c) Multigraph A. (d) A planar set S of
spanning trees for A. Edges in S are thick and solid, while edges in A \ S are thin and dashed.

becomes seemingly simpler. Since the embedding of G is fixed and since G′ has to
be planar, edges in S can only be embedded inside faces of G. This implies that, for
any two edges e1 and e2 that can be inserted inside a face f of G, it is known a priori
whether e1 and e2 can be both in S, namely only if their end-vertices do not alternate
along the boundary of f . Also, S can be assumed to contain only edges between vertices
in distinct connected components of G[α], for each cluster α, as other types of edges
do not help to connect any cluster.

Consider a face f of G and let (o1, . . . , ok) be the clockwise order of the occur-
rences of vertices along the boundary of f , where oi and oj might be occurrences of
the same vertex u (this might happen if u is a cut-vertex of G). A con-edge (short for
connectivity-edge) is a pair of occurrences (oi, oj) of distinct vertices both belonging
to a cluster α, both incident to f , and belonging to different connected components of
G[α] (see Fig. 1(b)). If there are � distinct pairs of occurrences of vertices u and v along
a single face f , then there are � con-edges connecting u and v in f , one for each pair
of occurrences. A con-edge for α is a con-edge connecting vertices in a cluster α. Two
con-edges e and e′ in f have a conflict or cross (we write e ⊗ e′) if the occurrences in
e alternate with the occurrences in e′ along the boundary of f .

The multigraph A of the con-edges is an embedded multigraph that is defined as
follows. Starting from G, insert all the con-edges inside the faces of G; then, for each
cluster α and for each connected component Gi[α] of G[α], contract Gi[α] into a single
vertex; finally, remove all the edges of G. See Fig. 1(c). With a slight abuse of notation,
we denote by A both the multigraph of the con-edges and the set of its edges. For each
cluster α, we denote by A[α] the subgraph of A induced by the con-edges for α. A
planar set of spanning trees for A is a set S ⊆ A such that: (i) for each cluster α,
the subset S[α] of S induced by the con-edges for α is a tree that spans the vertices
belonging to α; and (ii) there exist no two edges in S that have a conflict. See Fig. 1(d).
The PSSTTM problem asks whether a planar set of spanning trees for A exists.

The following lemma relates the c-planarity problem for embedded flat clustered
graphs to the PSSTTM problem.

Lemma 1 ([11]). An embedded flat clustered graph C(G, T) is c-planar if and only if:
(1) G is planar; (2) there exists a face f in G such that when f is chosen as outer face
for G no cycle composed of vertices of the same cluster encloses a vertex of a different
cluster; and (3) a planar set of spanning trees for A exists.

Advances on Testing C-Planarity of Embedded Flat Clustered Graphs 419

uρ
o1 oj

vρ
o�

op oq
f

x y

uρ
o1 oj

vρ
o�

op oq
f

x y

uρ

vρ

f

uρ

vρ

f

(a) (b) (c) (d)

Fig. 2. Illustration for the reduction to a multigraph of the con-edges satisfying Property 1

We now introduce the concept of conflict graph KA, which is defined as follows.
Graph KA has a vertex for each con-edge in A and has an edge (e, e′) if e ⊗ e′. In the
remainder of the paper we will show how to decide whether a set of planar spanning
trees for A exists by assuming that the following property holds for A.

Property 1. No two con-edges for the same cluster belong to the same connected com-
ponent of KA.

We now show that A can be assumed to satisfy Property 1, since C(G, T) has at
most two vertices per cluster on each face. Consider any face f of G and any cluster
� that has two vertices u� and v� incident to f . No con-edge for � that connects a pair
of vertices different from (u�, v�) is in the connected component of KA containing
(u�, v�), given that no vertex of � different from u� and v� is incident to f . However, it
might be the case that several con-edges (u�, v�) are in the same connected component
of KA, which happens if u�, or v�, or both have several occurrences on the boundary
of f . We show a simple reduction that gets rid of these multiple con-edges.

Let (o1, . . . , ok) be the clockwise order of the occurrences of vertices along f . Let
o1, oj , and o� be occurrences of u�, u�, and v�, respectively, with 1 < j < � ≤ k.
Suppose that op and oq are occurrences of vertices x and y in a cluster τ �= �, for some
1 < p < j < q < �, as in Fig. 2(a). Then, all the con-edges (x, y) have a conflict with
con-edge e� = (oj , o�); moreover, the con-edges (x, y) form a separating set for A[τ],
hence any planar set S of spanning trees for A contains one of them. Thus, e� /∈ S
and e� can be removed from A, as in Fig. 2(b). Similar reductions can be performed if
� < q ≤ k and by exchanging the roles of u� and v�. If no two occurrences op and oq
as above exist, then all the con-edges (u�, v�) left cross the same set of con-edges for
clusters different from � (see Fig. 2(c)). Hence, a single edge (u�, v�) can be kept in
A, and all the other con-edges (u�, v�) can be removed from A (see Fig. 2(d)). After
repeating this reduction for all the con-edges inA, an equivalent instanceA is eventually
obtained in which Property 1 is satisfied. Observe that the described simplification can
be easily performed in O(|C|2) time. Thus, we get the following:

Lemma 2. Assume that the PSSTTM problem can be solved in f(|A|) time for instances
satisfying Property 1. Then the c-planarity of any embedded flat clustered graph C with
at most two vertices per cluster on each face can be tested in O(f(|A|) + |C|2) time.

Proof. Consider any embedded flat clustered graph C with at most two vertices per
cluster on each face. Conditions (1) and (2) in Lemma 1 can be tested in O(|C|) time

420 M. Chimani et al.

(see [11]); hence, testing the c-planarity of C is equivalent to solve the PSSTTM problem
for A. Finally, as described before the lemma, there exists an O(|C|2)-time algorithm
that modifies multigraph A so that it satisfies Property 1. �

3 Algorithm Outline

In this section we give an outline of our algorithm for testing the existence of a planar
set S of spanning trees for A. We assume that A satisfies Property 1.

Our algorithm repeatedly tries to detect certain substructures in A. When it does
find one of such substructures, the algorithm either “simplifies” A or concludes that A
does not admit any planar set of spanning trees. For example, if a cluster α exists such
that A[α] is not connected, then the algorithm concludes that no planar set of spanning
trees exists and terminates; as another example, if conflicting con-edges eα and eβ
for clusters α and β exist in A such that eα is a bridge for A[α], then the algorithm
determines that eα has to be in S and that eβ can be assumed not to be in S.

If the algorithm determines that certain edges have to be in S or can be assumed not
to be in S, these edges are contracted or removed, respectively. Given a set A′ ⊆ A,
the operation of removing A′ from A consists of updating A := A \ A′. Given a set
A′ ⊆ A, the operation of contracting the edges in A′ consists of identifying the end-
vertices of each con-edge e in A′ (all the con-edges different from e and incident to the
end-vertices of e remain in A), and of updating A := A \A′.

Edges are removed or contracted only when this does not alter the possibility of
finding a planar set of spanning trees for A. Also, contractions are only applied to
con-edges that cross no other con-edges; hence, after any contraction, graph KA only
changes for the removal of the isolated vertices corresponding to the contracted edges.

As a consequence of a removal or of a contraction operation, the number of edges
in A decreases, that is, A is “simplified”. After any simplification due to the detection
of a certain substructure in A, the algorithm will run again all previous tests for the
detection of the other substructures. In fact, it is possible that a certain substructure
arises from performing a simplification on A (e.g., a bridge might be present in A after
a set of edges has been removed from A). Since detecting each substructure that leads
to a simplification in A can be performed in quadratic time, and since the initial size of
A is linear in the size of C, the algorithm has a cubic running time.

If none of the four tests (called TEST 1–4) and none of the eight simplifications
(called SIMPLIFICATION 1–8) described in Section 4 applies to A, then A is a single-
conflict multigraph. That is, each con-edge in A crosses at most one con-edge in A.
A linear-time algorithm for deciding the existence of a planar set of spanning trees
in a single-conflict multigraph A is known [11]. Hence, our algorithm uses that algo-
rithm [11] to conclude the test of the existence of a planar set of spanning trees in A.

4 Algorithm

To ease the reading and avoid text duplication, when introducing a new lemma we al-
ways assume, without making it explicit, that all the previously defined simplifications

Advances on Testing C-Planarity of Embedded Flat Clustered Graphs 421

do not apply, and that all the previously defined tests fail. Also, we do not make explicit
the removal and contraction operations that we perform, as they straight-forwardly fol-
low from the statement of each lemma. We start with the following test.

Lemma 3 (TEST 1). Let α be a cluster such that A[α] is disconnected. Then, there
exists no planar set S of spanning trees for A.

Proof. No set S ⊆ A is such that S[α] induces a tree spanning the vertices in α. �
We continue with the following simplification.

Lemma 4 (SIMPLIFICATION 1). Let e be a bridge of A[α]. Then, for every planar set
S of spanning trees for A, we have e ∈ S.

Proof. Graph A[α] \ {e} is disconnected; hence, by Lemma 3, no planar set of
spanning trees for A exists with e /∈ S. �

The following lemma is used massively in the remainder of the paper.

Lemma 5. Let eα, eβ ∈ A be con-edges such that eα ⊗ eβ . Let S be a planar set of
spanning trees for A and suppose that eα /∈ S. Then, eβ ∈ S.

Proof sketch. If S contains neither eα nor eβ , then the two paths in S connecting the
end-vertices of eα and connecting the end-vertices of eβ cross, a contradiction. �

The algorithm continues with the following test.

Lemma 6 (TEST 2). If the conflict graph KA is not bipartite, then there exists no pla-
nar set S of spanning trees for A.

Proof sketch. If an odd cycle C exists in KA, then by repeated applications of
Lemma 5 and of the fact that S does not contain two conflicting edges, we get that
any edge of C simultaneously should be in S and should not be in S, a contradiction. �

The contraction of con-edges chosen to be in S might lead to self-loops in A, a
situation that is handled in the following.

Lemma 7 (SIMPLIFICATION 2). Let e ∈ A be a self-loop. Then, for every planar set S
of spanning trees for A, we have e /∈ S.

Proof. Since a tree does not contain any self-loop, the lemma follows. �
Con-edges that do not cross any other con-edge can be safely chosen to be in S.

Lemma 8 (SIMPLIFICATION 3). Let e be any con-edge in A that does not have a con-
flict with any other con-edge in A. Then, there exists a planar set S of spanning trees
for A if and only if there exists a planar set S′ of spanning trees for A such that e ∈ S′.

Proof sketch. Let S be any planar set of spanning trees for A. If e /∈ S, then S ∪{e}
contains a cycle C of con-edges for the same cluster. Let e′ be any edge of C different
from e. Then, S′ = S ∪ {e} \ {e′} is a planar set of spanning trees for A. �

422 M. Chimani et al.

uα
vα eα eγ eβ

Cα
eα eγ eβ

Cα

e′γe′β

e′α

eα eγ eβ

Cα

e′βe′γ

e′α

e′′βe′′α

(a) (b) (c)

Fig. 3. The setting for (a) Lemma 9, (b) Lemma 10, and (c) Lemma 11

uα
vα

vγ

uγ uβ

vβ

Cα

C

e′α

Pγ

Pβ

D

e′′α

Fig. 4. Illustration for the proof of Lemma 9

In the next three lemmata we deal with the following setting. Assume that there exist
con-edges eα, eβ, eγ ∈ A for distinct clusters α, β, and γ, respectively, such that eα⊗eβ
and eα ⊗ eγ . Since TEST 2 fails on A, eβ does not cross eγ . Let Cα be any of the two
facial cycles of A[α] incident to eα, where a facial cycle of A[α] is a simple cycle all of
whose edges appear on the boundary of a single face of A[α]. Assume w.l.o.g. that eα
is crossed first by eβ and then by eγ when Cα is traversed clockwise. See Fig. 3(a).

The next lemma presents a condition in which we can delete eα from A.

Lemma 9 (SIMPLIFICATION 4). Suppose that there exists no con-edge of Cα different
from eα that has a conflict with both a con-edge for β and a con-edge for γ. Then, for
every planar set S of spanning trees for A, we have eα /∈ S.

Proof sketch. See Fig. 4. Let uα and vα (uβ and vβ , uγ and vγ) be the end-vertices
of eα (resp. of eβ , of eγ). By Property 1, a closed simple curve C can be drawn through
uα, uβ , uγ , vα, vγ , and vβ , with eα, eβ , and eγ in its interior and every other con-edge
for α, β, and γ in its exterior. If eα ∈ S, then eβ , eγ /∈ S. Then, the path Pβ in S
connecting uβ and vβ and the path Pγ in S connecting uγ and vγ cross Cα at different
edges e′α and e′′α. Hence, the end-vertices of e′α are on different sides of the cycle D
composed of Pβ , of Pγ , and of the paths in C between uβ and uγ and between vβ and
vγ . However, no con-edge for α in S crosses D, hence S does not connect α. �

The next two lemmata state conditions in which no planar set of spanning trees for A
exists. Their statements are illustrated in Figs. 3(b) and 3(c), respectively; further, they
can be proved with arguments similar to the ones in the proof of Lemma 9.

Lemma 10 (TEST 3). Suppose that there exist con-edges e′α, e
′
β, e

′
γ ∈ A for clusters

α, β, and γ, respectively, such that e′α �= eα, e′α belongs to Cα, and e′α ⊗ e′β as well

Advances on Testing C-Planarity of Embedded Flat Clustered Graphs 423

C1
α

C2
α

C3
α

C5
α

C4
α

e1α

e2α

e3α

e4α

e5α

e1β1
e1βm

e1β2

e1β3

Fig. 5. A partial representation of the α-donut for eα

as e′α ⊗ e′γ . Assume that e′α is crossed first by e′β and then by e′γ when Cα is traversed
clockwise. Then, no planar set of spanning trees for A exists.

Lemma 11 (TEST 4). Suppose that con-edges e′α, e
′′
α ∈ A for α exist in Cα, and such

that eα, e′′α, and e′α occur in this order along Cα, when clockwise traversing Cα. Suppose
also that there exist con-edges e′β, e

′′
β ∈ A for β and e′γ ∈ A for γ such that e′α ⊗ e′β ,

e′α ⊗ e′γ , and e′′α ⊗ e′′β . Then, no planar set of spanning trees for A exists.

If SIMPLIFICATIONS 1–4 do not apply to A and TESTS 1–4 fail on A, then the con-
edges for a cluster α that are crossed by con-edges for (at least) two other clusters have
a nice structure, that we call α-donut (see Fig. 5). Consider a con-edge eα ∈ A for
α crossing con-edges eβ1 , . . . , eβm for clusters β1, . . . , βm, with m ≥ 2. An α-donut
for eα consists of a sequence e1α, . . . , e

k
α, e

k+1
α of con-edges for α with k ≥ 2, called

spokes of the α-donut, of a sequence C1
α, . . . , Ck

α, Ck+1
α = C1

α of facial cycles in A[α],
and of sequences e1βj

, . . . , ekβj
of con-edges for βj , for each 1 ≤ j ≤ m, such that the

following hold for every 1 ≤ i ≤ k: (a) eα = e1α; (b) eiα⊗eiβj
, for every 1 ≤ j ≤ m; (c)

Ci
α and Ci+1

α share edge eiα; (d) edge eiα is crossed by eiβ1
, . . . , eiβm

in this order when
Ci
α is traversed clockwise; (e) all the con-edges of Ci+1

α encountered when clockwise
traversing Ci+1

α from eiα to ei+1
α do not cross any con-edge for β2, . . . , βm; and (f) all

the con-edges of Ci+1
α encountered when clockwise traversing Ci+1

α from ei+1
α to eiα do

not cross any con-edge for β1, . . . , βm−1. We have the following.

Lemma 12. For every con-edge eα ∈ A for α, there exists an α-donut for eα.

Proof sketch. Let e1α = eα and let C1
α and C2

α be the facial cycles incident to e1α.
Since SIMPLIFICATION 1 does not apply to A, C1

α �= C2
α. Let e1β1

, . . . , e1βm
be the con-

edges for β1, . . . , βm, respectively, ordered as they cross e1α when clockwise traversing
C1
α. Since SIMPLIFICATION 4 does not apply to A and TESTS 3-4 fail on A, a con-edge

e2α exists in C2
α that is crossed by con-edges e2β1

, . . . , e2βm
for β1, . . . , βm, respectively,

in this order when clockwise traversing C2
α; further, all the con-edges of C2

α encountered
when clockwise traversing C2

α from e1α to e2α (from e2α to e1α) do not cross any con-edges
for β2, . . . , βm (resp. for β1, . . . , βm−1). This argument is repeated for i = 3, . . . , k to
determine a facial cycle Ci

α containing ei−1
α and to determine edges eiα, e

i
β1
, . . . , eiβm

.

424 M. Chimani et al.

Eventually, facial cycle Ck+1
α = C1

α of A[α] is considered in which the two con-edges
that are crossed by con-edges for all of β1, . . . , βm are ekα and e1α. �

The α-donut for eα can be computed efficiently. Further, we have the following
lemma, whose proof is similar to the one of Lemma 9.

Lemma 13. Let e1α, . . . , e
k
α be the spokes of the α-donut for eα. Then, if a planar set S

of spanning trees for A exists, it contains exactly one of e1α, . . . , e
k
α.

Consider a con-edge e for a cluster α. The conflicting structure M(e) of e is a se-
quence of sets H0(e), L1(e), H1(e), L2(e), H2(e), . . . of con-edges which correspond
to the layers of a BFS traversal starting at e of the connected component of KA con-
taining e. That is: H0(e) = {e}; then, for i ≥ 1, Li(e) is the set of con-edges that cross
con-edges in Hi−1(e) and that are not in Li−1(e), and Hi(e) is the set of con-edges
that cross con-edges in Li(e) and that are not in Hi−1(e).

We now study the conflicting structures of the spokes e1α, . . . , e
k
α of the α-donut of

a con-edge eα for α. No two edges in a set Hi(eα) or in a set Li(eα) have a conflict,
as otherwise TEST 2 would succeed. Also, by Lemma 5, any planar set S of spanning
trees for A contains either all the edges in

⋃
iHi(eα) or all the edges in

⋃
i Li(eα).

Assume that eα has a conflict with at least two con-edges for other clusters. For
any 1 ≤ i ≤ k, we say that eiα and ei+1

α have isomorphic conflicting structures if
they belong to isomorphic connected components of KA and if the vertices of these
components that are in correspondence under the isomorphism represent con-edges for
the same cluster. Formally, eiα and ei+1

α have isomorphic conflicting structures if there
exists a bijective mapping δ from the edges in M(eiα) to the edges in M(ei+1

α) such
that: (1) e is a con-edge for a cluster � if and only if δ(e) is a con-edge for �, for every
e ∈ M(eiα); (2) e ∈ Hj(e

i
α) if and only if δ(e) ∈ Hj(e

i+1
α), for every e ∈ M(eiα);

(3) e ∈ Lj(e
i
α) if and only if δ(e) ∈ Lj(e

i+1
α), for every e ∈ M(eiα); and (4) e ⊗ f if

and only if δ(e)⊗ δ(f), for every e, f ∈ M(eiα). Observe that the isomorphism of two
conflicting structures can be tested efficiently.

We will prove in the following four lemmata that by examining the conflicting struc-
tures for the spokes of the α-donut for eα, a decision on whether some spoke is or is
not in S can be taken without loss of generality. We start with the following:

Lemma 14 (SIMPLIFICATION 5). Suppose that spokes eiα and ei+1
α have isomorphic

conflicting structures. Then, there exists a planar set S of spanning trees for A if and
only if there exists a planar set S′ of spanning trees for A such that eiα /∈ S′.

Proof sketch. Suppose that a planar set S of spanning trees for A exists with eiα ∈ S.
By Lemma 5,

⋃
j Hj(e

i
α) ⊆ S and S ∩

⋃
j Lj(e

i
α) = ∅. By Lemma 13, ei+1

α /∈ S,
hence

⋃
j Lj(e

i+1
α) ⊆ S and S ∩

⋃
j Hj(e

i+1
α) = ∅. Let S′ be the set of con-edges

obtained from S by removing
⋃

j Hj(e
i
α) and

⋃
j Lj(e

i+1
α) and by adding

⋃
j Lj(e

i
α)

and
⋃

j Hj(e
i+1
α). The lemma follows from the claim that S′ is a planar set of spanning

trees for A. The proof for this claim consists of two parts. In the first one, it is shown
that no two con-edges in S′ cross, by exploiting the absence of crossings in S and the
properties of M(eiα) and M(ei+1

α). In the second one, it is shown that, for each cluster
μ, the graph induced by the con-edges in S′[μ] is a tree that spans the vertices in μ; this

Advances on Testing C-Planarity of Embedded Flat Clustered Graphs 425

proof uses topological arguments to establish that the only con-edge for μ in S′ \S has
its end-vertices in different connected components of the graph obtained from S[μ] by
removing the only con-edge for μ in S \ S′. �

Next, we study non-isomorphic spokes. Let eiα be a spoke of the α-donut for eα.
Assume that L1(e

i
α) contains a con-edge eiβ for a cluster β, and that H1(e

i
α) contains a

con-edge eiγ for a cluster γ, where eiα⊗ eiβ and eiβ ⊗ eiγ . By Property 1, since eiγ and eiα
belong to the same connected component of KA and do not cross (as otherwise TEST

2 would succeed), it follows that eiγ does not cross any con-edge for α, hence it lies in
one of the two faces f i

α and f i+1
α of A[α] that eiα shares with spokes ei−1

α and ei+1
α ,

respectively. Assume w.l.o.g. that eiγ lies in f i+1
α . By Lemma 12, L1(e

i+1
α) contains a

con-edge ei+1
β for β, where ei+1

α ⊗ ei+1
β .

The next two lemmata discuss the case in which M(ei+1
α) contains a con-edge for γ

that has a conflict with ei+1
β and the case in which it does not. We start with the latter.

Lemma 15 (SIMPLIFICATION 6). Suppose that no con-edge ei+1
γ for γ exists such that

ei+1
γ ⊗ ei+1

β , and that a planar set S of spanning trees for A exists. Then, eiα ∈ S.

Proof sketch. If a planar set S of spanning trees for A exists with eiα /∈ S, then by
Lemma 5 we have eiβ ∈ S and eiγ /∈ S. Then, the paths P i

α and P i
γ connecting the

end-vertices of eiα and eiγ , together with a closed simple curve C surrounding eiα, eiβ ,
and eiγ form a closed curve D that contains vertices in β on both sides. However, D
cannot be crossed by any con-edge for β in S, thus S does not connect β. �

Lemma 16 (SIMPLIFICATION 7). Suppose that a con-edge ei+1
γ for γ exists with ei+1

γ ⊗
ei+1
β . If a planar set S of spanning trees for A exists, then either eiα ∈ S or ei+1

α ∈ S.

Proof sketch. By Lemma 13, at most one out of eiα and ei+1
α belongs to S. To prove

that at least one out of eiα and ei+1
α belongs to S, by Lemma 5 it suffices to prove that

at most one out of eiβ and ei+1
β belongs to S. This is accomplished again by Lemma 13

and by proving that ei+1
β is a spoke of the β-donut for eiβ . �

Observe that Simplification 7 can be applied in the case in which the α-donut for eα
has at least three spokes. Namely, in that case, by Lemmata 13 and 16 all the spokes
different from eiα and ei+1

α can be removed from A.
Next, assume that there exists an α-donut with exactly two spokes e1α and e2α. Con-

sider the smallest j ≥ 1 such that one of the following holds:
(1) there exist con-edges eμ ∈ Lj(e

a
α) and eν ∈ Hj−1(e

a
α) for clusters μ and ν, resp.,

such that eμ ⊗ eν , and there exists no con-edge gμ ∈ Lj(e
b
α) for μ such that gμ ⊗ gν

with gν con-edge for ν in Hj−1(e
b
α), for some a, b ∈ {1, 2} with a �= b; or

(2) there exist con-edges eμ ∈ Hj(e
a
α) and eν ∈ Lj(e

a
α) for clusters μ and ν, resp., such

that eμ⊗ eν , and there exists no con-edge gμ ∈ Hj(e
b
α) for μ such that gμ⊗ gν with gν

con-edge for ν in Lj(e
b
α), for some a, b ∈ {1, 2} with a �= b. We have the following.

Lemma 17 (SIMPLIFICATION 8). Assume that a planar set S of spanning trees for A
exists. Then, eμ ∈ S.

426 M. Chimani et al.

Proof sketch. The proof uses topological arguments to establish the following claim:
If eμ /∈ S, then the end-vertices of eμ are on diffent sides of a cycle composed of con-
edges for ν that cannot be crossed by con-edges for μ in S, hence S does not connect
μ, a contradiction. �

We now prove that our simplifications form a “complete set”.

Lemma 18. Suppose that SIMPLIFICATIONS 1–8 do not apply to A and that TESTS

1–4 fail on A. Then, every con-edge in A crosses exactly one con-edge in A.

Proof sketch. Since SIMPLIFICATIONS 2-3 do not apply toA, every con-edge crosses
at least one con-edge. Suppose, for a contradiction, that there exists a con-edge for a
cluster α that has a conflict with at least two con-edges. Since SIMPLIFICATIONS 1–4
do not apply to A and TESTS 1–4 fail on A, by Lemma 12 there exists an α-donut
with spokes e1α, . . . , e

k
α. If the conflicting structures of e1α and e2α are isomorphic, then

SIMPLIFICATION 5 applies to A. Otherwise, if k ≥ 3 and the conflicting structures of
e1α and e2α are isomorphic (not isomorphic) when restricted to sets H0(e

j
α), L1(e

j
α), and

H1(e
j
α), then SIMPLIFICATION 7 (resp. SIMPLIFICATION 6) applies to A. If k = 2

and the conflicting structures of e1α and e2α are not isomorphic, then SIMPLIFICATION

8 applies to A. This provides a contradiction. �
A linear-time algorithm to determine whether a planar set S of spanning trees exists

for a single-conflict graph is known [11]. We thus finally get:

Theorem 1. There exists an O(|C|3)-time algorithm to test the c-planarity of an em-
bedded flat clustered graph C with at most two vertices per cluster on each face.

Proof. MultigraphA can be easily constructed in O(|C|2) time, so that A has O(|C|)
vertices and edges and satisfies Property 1. By Lemma 2, it suffices to show how to
solve the PSSTTM problem for A in O(|C|3) time. Algorithm 1 correctly determines
whether a planar set S of spanning trees for A exists, by Lemmata 3–18. It can be
easily tested in O(|A|2) time whether the pre-conditions of each of SIMPLIFICATIONS

1–8 and TESTS 1–4 are satisfied; also, the actual simplifications, that is, removing and
contracting edges in A, can be performed in O(|A|) time. Furthermore, the algorithm
in [11] runs in O(|A|) time. Since the number of performed tests and simplifications is
in O(|A|), the total running time is in O(|A|3), and hence in O(|C|3). �

5 Conclusions

We presented a polynomial-time algorithm for testing c-planarity of embedded flat clus-
tered graphs with at most two vertices per cluster on each face. An interesting extension
of our results would be to devise an FPT algorithm to test c-planarity of embedded flat
clustered graphs, where the parameter is the maximum number k of vertices of the same
cluster on any face. Several key lemmata (e.g. Lemmata 5 and 6) do not apply if k > 2,
hence even an algorithm with running time nO(f(k)) seems to be an elusive goal.

References

1. Angelini, P., Di Battista, G., Frati, F., Jelı́nek, V., Kratochvı́l, J., Patrignani, M., Rutter, I.:
Testing planarity of partially embedded graphs. In: SODA 2010, pp. 202–221. ACM (2010)

Advances on Testing C-Planarity of Embedded Flat Clustered Graphs 427

2. Angelini, P., Frati, F., Patrignani, M.: Splitting clusters to get C-planarity. In: Eppstein, D.,
Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 57–68. Springer, Heidelberg (2010)

3. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected
digraphs. Algorithmica 12(6), 476–497 (1994)

4. Chimani, M., Di Battista, G., Frati, F., Klein, K.: Advances on testing c-planarity of embed-
ded flat clustered graphs. CoRR, abs/1408.2595 (2014)

5. Chimani, M., Gutwenger, C., Jansen, M., Klein, K., Mutzel, P.: Computing maximum c-
planar subgraphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 114–
120. Springer, Heidelberg (2009)

6. Chimani, M., Klein, K.: Shrinking the search space for clustered planarity. In: Didimo, W.,
Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 90–101. Springer, Heidelberg (2013)

7. Cornelsen, S., Wagner, D.: Completely connected clustered graphs. J. Discrete Algo-
rithms 4(2), 313–323 (2006)

8. Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity of c-
connected clustered graphs. J. Graph Algorithms Appl. 12(2), 225–262 (2008)

9. Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of
clusters. J. Graph Alg. Appl. 9(3), 391–413 (2005)

10. Dahlhaus, E.: A linear time algorithm to recognize clustered planar graphs and its paralleliza-
tion. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 239–248.
Springer, Heidelberg (1998)

11. Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with
small faces. J. Graph Alg. Appl. 13(3), 349–378 (2009)

12. Didimo, W., Giordano, F., Liotta, G.: Overlapping cluster planarity. J. Graph Algorithms
Appl. 12(3), 267–291 (2008)

13. Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Moore, W., Luk, W.
(eds.) FPL 1995. LNCS, vol. 975, pp. 213–226. Springer, Heidelberg (1995)

14. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity
testing. SIAM Journal on Computing 31(2), 601–625 (2001)

15. Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs. In: Healy,
P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer, Heidelberg
(2006)

16. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in
c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002.
LNCS, vol. 2528, pp. 220–235. Springer, Heidelberg (2002)

17. Jelı́nek, V., Jelı́nková, E., Kratochvı́l, J., Lidický, B.: Clustered planarity: Embedded clus-
tered graphs with two-component clusters. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008.
LNCS, vol. 5417, pp. 121–132. Springer, Heidelberg (2009)

18. Jelı́nek, V., Suchý, O., Tesař, M., Vyskočil, T.: Clustered planarity: Clusters with few out-
going edges. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 102–113.
Springer, Heidelberg (2009)

19. Jelı́nková, E., Kára, J., Kratochvı́l, J., Pergel, M., Suchý, O., Vyskocil, T.: Clustered pla-
narity: Small clusters in cycles and Eulerian graphs. J. Graph Alg. Appl. 13(3), 379–422
(2009)

20. Kratochvı́l, J., Lubiw, A., Nesetril, J.: Noncrossing subgraphs in topological layouts. SIAM
J. Discrete Math. 4(2), 223–244 (1991)

21. Schaefer, M.: Toward a theory of planarity: Hanani-Tutte and planarity variants. J. Graph
Algorithms Appl. 17(4), 367–440 (2013)

22. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
23. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM

J. Comput. 16(3), 421–444 (1987)

Clustered Planarity Testing Revisited

Radoslav Fulek1,4,�, Jan Kynčl1,��, Igor Malinović2, and Dömötör Pálvölgyi3,� � �

1 Department of Applied Mathematics and Institute for Theoretical Computer Science,
Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25,

118 00 Praha 1, Czech Republic
radoslav.fulek@gmail.com, kyncl@kam.mff.cuni.cz

2 Faculté Informatique et Communications, École Polytechnique Fédérale de Lausanne,
1015 Lausanne, Switzerland

igor.malinovic@epfl.ch
3 Institute of Mathematics, Eötvös University, Pázmány Péter sétány 1/C,

H-1117 Budapest, Hungary
domotorp@gmail.com

4 Department of Industrial Engineering and Operations Research, Columbia University,
New York City, NY, USA

Abstract. The Hanani–Tutte theorem is a classical result proved for the first time
in the 1930s that characterizes planar graphs as graphs that admit a drawing in
the plane in which every pair of edges not sharing a vertex cross an even number
of times. We generalize this classical result to clustered graphs with two disjoint
clusters, and show that a straightforward extension of our result to flat clustered
graphs with three or more disjoint clusters is not possible.

We also give a new and short proof for a related result by Di Battista and Frati
based on the matroid intersection algorithm.

1 Introduction

Investigation of graph planarity can be traced back to the 1930s and developments ac-
complished at that time by Hanani [21], Kuratowski [26], Whitney [38] and others.
Forty years later, with the advent of computing machinery, a linear time algorithm for
graph planarity was discovered [23]. Nowadays, a polynomial time algorithm for testing
whether a graph admits a crossing-free drawing in the plane could almost be considered
a folklore result.

Nevertheless, many variants of planarity are still only poorly understood. As a con-
sequence of this state of affairs, the corresponding decision problem for these variants
has neither been shown to be polynomial nor NP-hard. Clustered planarity is one of

� The author gratefully acknowledges support from the Swiss National Science Foundation
Grant No. 200021-125287/1 and ESF Eurogiga project GraDR as GAČR GIG/11/E023.

�� Supported by the ESF Eurogiga project GraDR as GAČR GIG/11/E023 and by the grant
SVV-2013-267313 (Discrete Models and Algorithms).

� � � Supported by Hungarian National Science Fund (OTKA), under grant PD 104386 and un-
der grant NN 102029 (EUROGIGA project GraDR 10-EuroGIGA-OP-003) and the János
Bolyai Research Scholarship of the Hungarian Academy of Sciences.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 428–439, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Clustered Planarity Testing Revisited 429

the most prominent [5] of such planarity notions. Roughly speaking, an instance of this
problem is a graph whose vertices are partitioned into clusters. The question is, then,
whether the graph can be drawn in the plane so that the vertices from the same clus-
ter belong to the same region and no edge crosses the boundary of a particular region
more than once. The aim of the present work is to offer novel perspectives on clustered
planarity, which seem to be worth pursuing in order to better our understanding of the
problem.

More precisely, a clustered graph is a pair (G, T) where G = (V,E) is a graph and
T is a rooted tree whose set of leaves is the set of vertices of G. The non-leaf vertices of
T represent the clusters. For ν ∈ V (T), let Tν denote the subtree of T rooted at ν. The
cluster V (ν) is the set of leaves of Tν . The subgraph of G induced by V (ν) is denoted
by G(ν).

A drawing of G is a representation of G in the plane where every vertex is repre-
sented by a unique point and every edge e = uv is represented by a simple arc joining
the two points that represent u and v. If it leads to no confusion, we do not distinguish
between a vertex or an edge and its representation in the drawing and we use the words
“vertex” and “edge” in both contexts. We assume that in a drawing no edge passes
through a vertex, no two edges touch and every pair of edges cross in finitely many
points. A drawing of a graph is an embedding if no two edges cross.

A clustered graph (G, T) is clustered planar (or briefly c-planar) if G has an embed-
ding in the plane such that

(i) for every ν ∈ V (T), there is a topological disc d(ν) containing all the leaves of
Tν and no other vertices of G such that if μ ∈ Tν then d(μ) ⊆ d(ν);

(ii) if μ1 and μ2 are children of ν in T , then d(μ1) and d(μ2) are internally disjoint;
(iii) every edge of G intersects the boundary of d(ν) at most once for every ν ∈ V (T).

A clustered drawing (or embedding) of a clustered graph (G, T) is a drawing (or em-
bedding, respectively) of G satisfying (i)–(iii). See Fig. 1 for an illustration. We will be
using the word “cluster” for both the topological disc d(ν) and the subset of vertices
V (ν).

(G,T)
T

(a) (b)

Fig. 1. (a) A clustered embedding of a clustered graph (G,T) and its tree T ; (b) A clustered
graph with two non-trivial clusters, which is not c-planar

The notion of clustered planarity was introduced in the work of Feng, Cohen and
Eades [13,14] under the name of c-planarity and a similar problem was considered

430 R. Fulek et al.

already in [28]. Since then an efficient algorithm for c-planarity testing or embedding
has been discovered only in some special cases. The general problem whether the c-
planarity of a clustered graph can be tested in polynomial time is wide open, already
when we restrict ourselves to three pairwise disjoint clusters and the case when the
embedding of G is a part of the input!

A clustered graph (G, T) is c-connected if every cluster of (G, T) induces a con-
nected subgraph. In order to test a c-connected clustered graph (G, T) for c-planarity, it
is enough to test whether there exists an embedding of G in which for every ν ∈ V (T)
all vertices u ∈ V (G) such that u �∈ V (ν) are drawn in a single face of the sub-
graph G(ν) [14]. Cortese et al. [6] gave a structural characterization of c-planarity for
c-connected clustered graphs and provided a linear-time algorithm. The extended ab-
stract of Gutwenger et al. [19] contains an efficient algorithm in a more general case
of almost connected clustered graphs, which can be also used in the case of two clus-
ters. Biedl [2] is usually credited for giving the first polynomial time algorithm for
c-planarity with two clusters, including the case of straight-line or y-monotone draw-
ing. An alternative approach to the problem is given in [22]. On the other hand, only
very little is known in the case of three clusters, where already clustered cycles are
non-trivial to test for c-planarity [7] in a polynomial time.

The Hanani–Tutte theorem [21,37] is a classical result that provides an algebraic
characterization of planarity with interesting (and not only algorithmic) consequences;
see Section 2. The (strong) Hanani–Tutte theorem says that a graph is planar as soon as
it can be drawn in the plane so that no pair of independent edges crosses an odd num-
ber of times. Moreover, its variant known as the weak Hanani–Tutte theorem [3,30,33]
states that if we have a drawing D of a graph G where every pair of edges cross an even
number of times then G has an embedding that preserves the cyclic order of edges at
vertices from D. Note that the weak variant does not directly follow from the strong
Hanani–Tutte theorem. For sub-cubic graphs, the weak variant implies the strong vari-
ant. Other variants of the Hanani–Tutte theorem were proved for surfaces of higher
genus [32,34], x-monotone drawings [17,31], partially embedded planar graphs, and
several special cases of simultaneously embedded planar graphs [36]. See [35] for a
(not too recent) survey on applications of the Hanani–Tutte theorem and related results.

We prove a variant of the Hanani–Tutte theorem for clustered graphs consisting only
of two non-trivial clusters forming a partition of the vertex set. Similarly, as in the case
of other variants of the Hanani–Tutte theorem, as a byproduct of our result, we im-
mediately obtain a polynomial-time algorithm based on linear algebra for c-planarity
testing in the corresponding case. The downside is that the running time of the algo-
rithm is in O(|V (G)|2ω), where O(nω) is the complexity of multiplication of square
n × n matrices; see Section 2. The best current algorithms for matrix multiplication
give ω < 2.3729 [18,39]. This fact does not make our work less interesting, since the
purpose of our results lies more in theoretical foundations than in its immediate conse-
quences. Also the worst case running time analysis often gives an unfair perspective on
the performance of algebraic algorithms, e.g., the simplex method.

We remark that there exist more efficient algorithms for planarity testing using the
Hanani–Tutte theorem such as the one in [9,10], which runs in linear time, see also [35,
Section 1.4.1]. Moreover, in the case of x-monotone drawings a computation study [4]

Clustered Planarity Testing Revisited 431

showed that the Hanani–Tutte approach [17] performs really well in practice. This
should come as no surprise, since Hanani–Tutte theory seems to provide solid theo-
retical foundations for graph planarity that brings together its combinatorial, algebraic,
and computational aspects [36].

Notation. In the present paper we assume that G = (V,E) is a (multi)graph. We use a
shorthand notation G−v and G∪E′ for (V \{v}, E \{vw| vw ∈ E}), and (V,E∪E′),
respectively. The rotation at a vertex v is the clockwise cyclic order of the end pieces
of edges incident to v. The rotation system of a graph is the set of rotations at all its
vertices. We say that two embeddings of a graph are the same if they have the same
rotation system up to switching the orientations of all the rotations simultaneously. We
say that a pair of edges in a graph are independent if they do not share a vertex. An edge
in a drawing is even if it crosses every other edge an even number of times. A drawing
of a graph is even if all edges are even.

Hanani–Tutte for Clustered Graphs. A clustered graph (G, T) is two-clustered if the
root of T has exactly two children and only leaves as grandchildren. In other words, a
two-clustered graph has exactly two non-trivial clusters, which form a partition of the
vertex set.

We extend the strong version of the Hanani–Tutte theorem as follows. A drawing of
a graph is independently even if every pair of independent edges in the drawing cross
an even number of times.

Theorem 1. If a two-clustered graph (G, T) admits an independently even clustered
drawing then (G, T) is c-planar.

The weak variant of Theorem 1 is a special case of the result obtained recently by the
first author [15]. On the other hand, we exhibit examples of clustered graphs with more
than two disjoint clusters that are not c-planar, but admit an even clustered drawing.

Theorem 2. For every r ≥ 3 there exists a flat clustered cycle with r clusters that is
not c-planar and admits an even clustered drawing.

Gutwenger et al. [20] recently showed that by using the reduction from [36] our
counter-examples can be turned into counter-examples for [36, Conjecture 1.2] and
for a variant of the Hanani–Tutte theorem for two simultaneously embedded planar
graphs [36, Conjecture 6.20]. Our counter-examples show that a straightforward ex-
tension of Theorem 1 or its weak variant to flat clustered graphs with more than two
clusters is not possible. Nevertheless, interesting extensions are still possible, e.g., in
the c-connected case, as shown in the full version of this extended abstract [16], or for
strip clustered graphs [15].

A clustered graph (G, T) is flat if no non-root cluster of (G, T) has a non-trivial sub-
cluster; that is, if every root-leaf path in T has at most three vertices. A pair (D(G), T) is
an embedded clustered graph if (G, T) is a clustered graph and D(G) is an embedding
of G in the plane, not necessarily a clustered embedding. The embedded clustered graph
(D(G), T) is c-planar if it can be extended to a clustered embedding of (G, T), by
choosing a topological disc for each cluster.

432 R. Fulek et al.

We give an alternative polynomial time algorithm for deciding c-planarity of em-
bedded flat clustered graphs with small faces, reproving a result of Di Battista and
Frati [11]. Our algorithm is based on the matroid intersection theorem. Its running time
is O(|V (G)|3.5) by [8], so it does not outperform the linear algorithm from [11], and
similarly as for our other results we see its purpose more in mathematical foundations
than in giving an efficient algorithm. We find it quite surprising that by using completely
different techniques we obtained an algorithm for exactly the same case. Our approach
is very similar to a technique used [25] for deciding the global connectivity of switch
graphs.

Theorem 3. [11] Let G denote an embedded planar graph such that all its faces are
incident to at most five vertices. Let (G, T) denote a flat clustered graph. We can decide
in polynomial time whether (G, T) admits a c-planar embedding, in which G keeps its
given embedding.

The rest of the paper is organized as follows. In Section 2 we describe an algorithm
for c-planarity testing of clustered graphs belonging to classes for which the correspond-
ing variant of the strong Hanani-Tutte theorem holds. In Section 3, we prove Theorem 1.
In Section 4 we prove Theorem 2. In Section 5 we prove Theorem 3. We conclude with
some remarks in Section 6.

2 Algorithm

Let (G, T) belong to a class of clustered graph for which the corresponding variant of
the strong Hanani-Tutte theorem holds, i.e., an independently even clustered drawing
of (G, T) implies that (G, T) is c-planar.

Our algorithm for c-planarity testing is an adaption of the algorithm for planarity test-
ing from [35, Section 1.4.2]. The algorithm tests whether we can continuously deform
a given clustered drawing D of (G, T) into an independently even clustered drawing
D′ of (G, T). By the corresponding variant of the strong Hanani–Tutte theorem, the
existence of such a drawing is equivalent to c-planarity of (G, T).

During the deformation the parity of crossings between a pair of edges is affected
only when an edge e passes over a vertex v, in which case we change the parity of
crossings of e with all the edges adjacent to v. We call such an event an edge-vertex
switch. Note that every edge-vertex switch can be performed independently of others,
for any initial drawing: we can always deform a given edge to pass close to a given
vertex, while introducing new crossings only in pairs. Thus, for our purpose the contin-
uous deformation of D can be represented by a set S of edge-vertex switches. In S, an
edge-vertex switch of an edge e with a vertex v is represented as the ordered pair (e, v).

A drawing of (G, T) can then be represented as a vector v ∈ ZM
2 , where M denotes

the number of unordered pairs of independent edges. The component of v correspond-
ing to a pair {e, f} is 1 if e and f cross an odd number of times and 0 otherwise. An
edge-vertex switch (e, v) is represented as a vector w(e,v) ∈ ZM

2 such that its only
components equal to 1 are those indexed by pairs {e, f} where f is incident to v. The
set of all drawings that can be obtained from (G, T) by the switches from S then cor-
responds to an affine subspace v +W , where W is the subspace generated by the set

Clustered Planarity Testing Revisited 433

{w(e,v); (e, v) ∈ S}. The algorithm tests whether 0 ∈ v + W , which is equivalent to
the solvability of a system of linear equations over Z2.

The difference between the original algorithm for planarity testing and our version
for c-planarity testing is the following. To keep the drawing of (G, T) clustered after
every deformation, for every edge e = v1v2, we allow only those edge-vertex switches
(e, v) such that v is a child of some vertex of the shortest path between v1 and v2 in T .
We also include edge-cluster switches (e, C), where C is a child of some vertex of the
shortest path between v1 and v2 in T , that move e over all vertices of C simultaneously.
The corresponding vector w(e,C) is the sum of all w(e,v) for v ∈ C. Therefore, the set
of allowed switches generates a subspace Wc of W . Our algorithm then tests whether
0 ∈ v +Wc.

Before running the algorithm, we first remove any loops and parallel edges and check
whether |E(G′)| < 3|V (G′)| for the resulting graph G′. Then we run our algorithm on
(G′, T). This means solving a system ofO(|E(G′)||V (G′)|) = O(|V (G)|2) linear equa-
tions inO(|E(G′)|2) = O(|V (G)|2) variables. This can be performed inO(|V (G)|2ω)≤
O(|V (G)|4.752) time using the algorithm by Ibarra, Moran and Hui [24].

3 Two Clusters

Let (G, T) be a two-clustered graph. Let A and B denote the two clusters of (G, T)
forming a partition of V = V (G). For a subset V ′ ⊆ V , let G[V ′] denote the subgraph
of G induced by V ′. By the assumption of Theorem 1 and the strong Hanani–Tutte
theorem, G has an embedding. However, in this embedding, G[B] does not have to be
contained in a single face of G[A] and vice-versa. Hence, we cannot guarantee that a
clustered embedding of (G, T) exists so easily.

For an induced subgraph H of G, the boundary of H is the set of vertices in H that
have a neighbor in G − H . We say that an embedding D(H) of H is exposed if all
vertices from the boundary of H are incident to the outer face of D(H).

The following lemma is an easy consequence of the strong Hanani–Tutte theorem. It
helps us to find an exposed embedding of each connected component X of G[A] and
G[B]. Later in the proof of Theorem 1 this allows us to remove non-essential parts of
each such component X and concentrate only on a subgraph G′ of G in which both
G[A] and G[B] are outerplanar.

Lemma 1. Suppose that (G, T) admits an independently even clustered drawing. Then
every connected component of G[A] ∪G[B] admits an exposed embedding.

Our proof of Theorem 1 proceeds by reducing the problem to an application of the
following lemma.

Lemma 2. Let (G, T) denote a two-clustered bipartite graph in which the two non-
trivial clusters induce independent sets. If G admits an even drawing then (G, T) is
c-planar. Moreover, there exists a clustered embedding of (G, T) with the same rotation
system as in the given even drawing of G.

434 R. Fulek et al.

3.1 Proof of Theorem 1

The proof is inspired by the proof of the strong Hanani–Tutte theorem from [33] and
its outline is as follows. First we obtain a subgraph G′ of G containing the boundary of
each component of G[A] and G[B] and such that each of G′[A] and G′[B] is a cactus
forest, that is, a graph where every two cycles are edge disjoint. Equivalently, a cactus
forest is a graph with no subdivision of K4− e. A connected component of a cactus for-
est is called a cactus.

Then we apply the strong Hanani–Tutte theorem on a graph which is constructed
from G′ by turning all cycles in G′[A] and G′[B] into wheels, and by splitting certain
vertices of G′ into edges. The wheels in G′ guarantee that everything that has been
removed from G in order to obtain G′ can be inserted back.

Let X1, . . . , Xk denote the connected components of G[A] and G[B]. By Lemma 1
we find an exposed embedding D(Xi) of each Xi. Let X ′

i denote the subgraph of Xi

obtained by deleting from Xi all the vertices and edges not incident to the outer face of
D(Xi). Observe that X ′

i is a cactus.
Let G′ = (

⋃k
i=1 X

′
i) + E(A,B). That is, G′ is subgraph of G that consists of all

X ′
i-s and all edges between the two clusters. Let D′ denote the drawing of G′ obtained

from the initial independently even drawing of G by deleting the edges and vertices of
G not belonging to G′. Thus, D′ is independently even.

In what follows we process the cycles of G′[A] and G′[B] one by one. We will be
modifying G′ and therefore also the drawing D′. At each stage of this process some
cycles in G′[A] and G′[B] will be labeled as processed and the rest will be labeled as
unprocessed. We will maintain the property that all processed cycles are vertex disjoint
and that all their edges are even. We start with all the cycles in G′[A] and G′[B] being
labeled as unprocessed. Let C denote an unprocessed cycle in G′[A]. For cycles in
G′[B], the procedure is analogous. We consider two cases.

a) C Shares no Vertex with an Already Processed Cycle. We two-color the con-
nected regions in the complement of C so that two regions sharing a non-trivial part
of the boundary receive opposite colors. We say that a point not lying on C is “out-
side” of C if it is contained in the region with the same color as the unbounded region.
Otherwise, such a point is “inside” of C.

We locally modify the drawing D′ at the vertices of C so that all the edges of C
cross every other edge an even number of times [33]. Since D′ is a clustered drawing
of G′, all vertices of B are “outside” of C. Therefore, every path joining C with a
vertex in B internally vertex disjoint from C is attached to its endpoint on C from the
“outside” of C.

Now we fill the cycle C with a wheel. More precisely, we add a vertex vC into A and
place it very close to an arbitrary vertex of C “inside” of C. We connect vC with all the
vertices of C by edges that closely follow the closed curve representing C either from
the left or from the right, and attach to their endpoints on C from “inside”. Portions
of these new edges may lie “outside” of C due to self-crossings of C, but not in the
neighborhood of vertices of C. Therefore, the new edges can introduce an odd crossing
pair only with an edge e attached to a vertex v of C from the “inside” of C.

Since G′[A] is a cactus forest, it follows that such a vertex v is a cut vertex in G′[A]
and that the endpoint of e different from v belongs to a connected component K of

Clustered Planarity Testing Revisited 435

G′[A]−v, which is also a connected component of G′−v. Thus, we shrink the drawing
of G′[V (K) ∪ v] so that G′[V (K) ∪ v] is drawn very close to v and none of its edges
crosses an edge in the rest of the graph. In particular, by shrinking G′[V (K)∪ v] we do
not introduce a pair of edges crossing an odd number of times. We label all the cycles
in G′[V (K) ∪ v] as processed. By repeating this for all the troublesome cut-vertices of
C we modify D′ so that none of the edges incident to vC crosses another edge an odd
number of times. Finally, we label C as processed.

b) C Shares a Vertex with an Already Processed Cycle. Let v be a vertex on C
belonging to an already processed cycle Cp. Since processed cycles are vertex disjoint,
the cycle Cp is unique. Since the edges of Cp are even, the edges v1v and v2v of Cp

adjacent to v are attached to v both from the “inside” or both from the “outside” of C.
Suppose the latter. (The other case is analogous.) We split the vertex v by replacing it
with two new vertices v′ and v′′ connected by an edge. Every edge uv attaching to v
from the “outside” of C is replaced by an edge uv′ (including the edges v1v and v2v).
All other edges uv are replaced by an edge uv′′. The cycle that is obtained from Cp

by replacing v with v′ is then labeled as processed. Note that we can do such vertex-
splitting in D′ without introducing any pair of edges crossing an odd number of times
by drawing v′ and v′′ very close to v. After performing all necessary vertex splits for
vertices of C, we may apply the procedure in case a) to the modified cycle C.

It is easy to see that the algorithm terminates after a finite number of steps a) or b)
with all cycles processed. Let G′′ denote the graph we obtain from G′ after processing
all the cycles of G′[A] and G′[B]. By applying the strong Hanani–Tutte theorem on
G′′ we obtain an embedding which can be easily modified so that the only vertices of
G′′ not incident to the outer face of G′′[A] or G′′[B] are the vertices vC that form the
centers of the wheels. In particular, G′′[A] is drawn in the outer face of G′′[B] and vice-
versa. In the resulting embedding we delete all the vertices vC and contract the edges
between the pairs of vertices v′, v′′ that were obtained by vertex-splits.

Thus, we obtain an embedding of G′ in which for every component X of G′[A] ∪
G′[B], all vertices of G′−X are drawn in the outer face of X . By inserting the removed
parts of G back to G′ we obtain an embedding of G in which for every componentX of
G[A]∪G[B], all vertices ofG−X are drawn in the outer face ofX . The theorem follows
by contracting each component of G[A] ∪G[B] to a point and applying Lemma 2.

4 Proof of Theorem 2

In this section we construct a family of even clustered drawings of flat clustered cycles
on more than two clusters that are not clustered planar. Thus, the straightforward gen-
eralization of the Hanani–Tutte theorem for graphs with three or more clusters is not
possible. For any r ≥ 3 and any odd k ≥ 3, our counterexample is a clustered cycle
with kr vertices and r clusters. In our clustered drawing the clusters are drawn as re-
gions bounded by a pair of rays emanating from the same vertex p. We call p the center
of our drawing.

Topologically our construction is equivalent to a cylindrical drawing, where c clus-
ters are separated by vertical lines. For every odd integer k > 0, we can describe the
curve representing the cycle analytically as a height function f(α) = sin

(
rk+1
k α

)
on

436 R. Fulek et al.

a standing cylinder taking the angle as the parameter. The vertices of the cycle are at(
i 2k
rk+1π, 0

)
, where i = 0, . . . , rk − 1, and the lines separating clusters at 2ki+1

rk+1 π, for

i = 0, . . . r − 1, see Fig. 2. By [7], for any clustered drawing of any of our examples,
the curve representing the cycle has winding number k around p, and therefore, it is not
c-planar when k > 1.

13 14 15 114710 11 8 5 2 12 9 6 3 471013

Fig. 2. A counter-example to the variant of the Hanani–Tutte theorem with parameters r = 3
and k = 5, and hence, the underlying graph is a cycle on 15 vertices. The vertices are labeled
by positive integers in correspondence with their appearance on the cycle. The leftmost and the
rightmost cluster need to be identified in the actual cylindrical drawing.

5 Small Faces

This section reproves a result of Di Battista and Frati [11] that c-planarity can be de-
cided in polynomial time for embedded flat clustered graphs if all faces are incident
to at most five vertices. Our approach seems quite different from theirs, as we use (a
corollary of) the matroid intersection theorem [12,27], which says that the largest com-
mon independent set of two matroids can be found in polynomial time. See e.g. [29] for
further references.

In this section, we will use a shorthand notation (G, T) instead of (D(G), T) for an
embedded clustered graph. Let (G, T) be a embedded flat clustered graph. A saturator
of (G, T) is a subset F of

(
V
2

)
disjoint from E(G) such that (G∪F, T) is planar, every

cluster of (G ∪ F, T) is connected, and the edges in F can be embedded so that every
cluster of (G ∪ F, T) is in the outer face of every other cluster. We have the following
simple fact regarding saturators already observed by Feng, Cohen and Eades [14].

Observation 1. An embedded flat clustered graph (G, T) is c-planar if and only if
(G, T) has a saturator.

In order to model our problem by matroids we need to avoid two saturating edges
in one face coming from two different clusters (even if they do not cross). In general,
this is not possible if the face is not a simple cycle. Thus, we first augment the graph by
adding some edges inside the faces.

Lemma 3. An embedded flat clustered graph (G, T), all of whose faces are incident to
at most five vertices, can be augmented by adding edges into an embedded flat clustered
graph (G′, T ′) such that (G, T) is c-planar if and only if (G′, T ′) is c-planar, and the
following holds for (G′, T ′). If (G′, T ′) is c-planar then (G′, T ′) has a saturator F
whose edges can be embedded so that each face of G′ contains at most one edge of F .

Clustered Planarity Testing Revisited 437

Proof of Theorem 3

We give an algorithm for deciding c-planarity for embedded flat clustered graphs sat-
isfying the hypothesis of the claim. By an algorithmic version of Lemma 3, from the
given embedded flat clustered graph (G, T) we obtain a new embedded graph (G′, T ′)
such that every minimal saturator of (G′, T ′) has at most one edge inside each face and
(G′, T ′) is c-planar if and only if (G, T) is c-planar. This can be done easily in linear
time in the number of vertices. Thus, it is enough to show that we can decide c-planarity
of (G′, T ′) in polynomial time.

By Observation 1, it is enough to decide whether we can saturate G′ so that all the
clusters are connected and every cluster is drawn in the outer face of every other cluster.
The latter can be tested in quadratic time in the number of vertices. In order to test
the existence of a saturator we define two matroids for which we will use the matroid
intersection algorithm. The ground set of each matroid is the multiset E′ of non-edges
of G′ defined as the union

⋃
f Ef , over faces of G′, where Ef is the set of diagonals of

the face f .
The first matroid, M1, is the direct sum of graphic matroids constructed for each

cluster. More precisely, denote the clusters by Ci, i = 1, . . . , k, and let v ∼i u if
u and v are connected in G′[Ci]. Denote by Gi the multigraph obtained from G′ =
(V,E′) by deleting the vertices not in Ci, contracting the ∼i-equivalent vertices into
new vertices, and deleting all loops. Now, the ground set of the graphic matroid M(Gi)
can be identified with the set of edges from E′ that go between two vertices from Ci

belonging to distinct connected components of Ci. The rank of M(Gi) is the number of
vertices of Gi minus one. Since the matroidsM(Gi), i = 1, . . . , k, are pairwise disjoint,
their direct sum, M1, is also a matroid and its rank is the sum of the ranks of M(Gi)-s.
The second matroid, M2, is a partition matroid. A subset of E′ is independent in M2 if
it has at most one edge in every face of G′.

Let M be the intersection of M1 and M2. If M has the same rank as M1 then there
exists a saturator of (G′, T ′) that has at most one edge inside each face. Thus, (G′, T ′)
is c-planar by Observation 1, and that in turn implies that (G, T) is c-planar as well. On
the other hand, if (G, T), and hence (G′, T ′), is c-planar then there exists a minimal
saturator F of G′ that has at most one edge inside each face by the property of G′

guaranteed by Lemma 3. Thus, F witnesses the fact that the rank of M1 and the rank of
M are the same. Hence, M has the same rank as M1 if and only if (G′, T ′) is c-planar
and the theorem follows by the matroid intersection algorithm.

6 Concluding Remarks

By the construction in Section 4 we cannot hope for the fully general variant of the
Hanani–Tutte theorem for clustered graphs. Nevertheless, it is still interesting to ask
whether the weak or the strong Hanani–Tutte theorem for the case of flat clustered
graphs holds if the graph obtained by contracting the clusters is acyclic (after deleting
loops and multiple edges). More formally, given a flat clustered graph (G, T), let GT

denote the simple graph whose vertices correspond to clusters of (G, T) and two distinct
vertices μ and ν are joined by an edge if and only if there exists an edge in G between
the clusters V (μ) and V (ν).

438 R. Fulek et al.

Conjecture 1. If GT is acyclic and (G, T) admits an independently even clustered
drawing then (G, T) is c-planar.

A variant of the conjecture when GT is a path would provide a polynomial time algo-
rithm for c-planarity testing for strip clustered graph, which is an open problem stated
in [1]. Note that our proof from Section 5 fails if the graph has hexagonal faces. We
wonder if this difficulty can be overcome or rather could lead to NP-hardness.

Acknowledgements. We are grateful to the numerous anonymous reviewers for many
valuable comments.

References

1. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing. In: Wismath, S.,
Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 37–48. Springer, Heidelberg (2013)

2. Biedl, T.C.: Drawing planar partitions III: Two constrained embedding problems. Technical
report, RUTCOR, Rutgers University (1998)

3. Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput.
Geom. 23(2), 191–206 (2000)

4. Chimani, M., Zeranski, R.: Upward planarity testing: A computational study. In: Wismath,
S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 13–24. Springer, Heidelberg (2013)

5. Cortese, P.F., Di Battista, G.: Clustered planarity (invited lecture). In: Twenty-First Annual
Symposium on Computational Geometry (Proc. SoCG 2005), pp. 30–32. ACM (2005)

6. Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity of c-
connected clustered graphs. J. Graph Algorithms Appl. 12(2), 225–262 (2008)

7. Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of
clusters. J. Graph Algorithms Appl. 9(3), 391–413 (2005)

8. Cunningham, W.H.: Improved bounds for matroid partition and intersection algorithms.
SIAM Journal on Computing 15(4), 948–957 (1986)

9. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: Trémaux trees and planarity. International
Journal of Foundations of Computer Science 17(05), 1017–1029 (2006)

10. de Fraysseix, H., Rosenstiehl, P.: A characterization of planar graphs by Trémaux orders.
Combinatorica 5(2), 127–135 (1985)

11. Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with
small faces. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp.
291–302. Springer, Heidelberg (2008)

12. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Jünger, M., Reinelt,
G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570,
pp. 11–26. Springer, Heidelberg (2003)

13. Feng, Q.-W., Cohen, R.F., Eades, P.: How to draw a planar clustered graph. In: Li, M., Du,
D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 21–30. Springer, Heidelberg (1995)

14. Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.)
ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)

15. Fulek, R.: Towards Hanani–Tutte theorem for clustered graphs. In: 40th International Work-
shop on Graph-Theoretic Concepts in Computer Science (accepted)

16. Fulek, R., Kynčl, J., Malinović, I., Pálvölgyi, D.: Efficient c-planarity testing algebraically.
arXiv:1305.4519

Clustered Planarity Testing Revisited 439

17. Fulek, R., Pelsmajer, M., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone drawings
and level-planarity. In: Pach, J. (ed.) Thirty Essays in Geometric Graph Theory, pp. 263–288
(2012)

18. Gall, F.L.: Powers of tensors and fast matrix multiplication. CoRR abs/1401.7714 (2014)
19. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in

c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002.
LNCS, vol. 2528, pp. 220–236. Springer, Heidelberg (2002)

20. Gutwenger, C., Mutzel, P., Schaefer, M.: Practical experience with Hanani-Tutte for testing
c-planarity. In: 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering and
Experiments (ALENEX), pp. 86–97 (2014)

21. Hanani, H.: Über wesentlich unplättbare Kurven im drei-dimensionalen Raume. Fundamenta
Mathematicae 23, 135–142 (1934)

22. Hong, S., Nagamochi, H.: Two-page book embedding and clustered graph planarity. Techni-
cal report, Dept. of Applied Mathematics and Physics, University of Kyoto (2009)

23. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)
24. Ibarra, O.H., Moran, S., Hui, R.: A generalization of the fast LUP matrix decomposition

algorithm and applications. J. Algorithms 3(1), 45–56 (1982)
25. Katz, B., Rutter, I., Woeginger, G.: An algorithmic study of switch graphs. In: Paul, C., Habib,

M. (eds.) WG 2009. LNCS, vol. 5911, pp. 226–237. Springer, Heidelberg (2010)
26. Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fund. Math. 15, 271–283

(1930)
27. Lawler, E.L.: Matroid intersection algorithms. Mathematical Programming 9, 31–56 (1975)
28. Lengauer, T.: Hierarchical planarity testing algorithms. J. ACM 36(3), 474–509 (1989)
29. Oxley, J.: Matroid Theory. Oxford University Press (2011)
30. Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser. B 80(2),

225–246 (2000)
31. Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1), 39–47

(2004), updated version: arXiv:1101.0967
32. Pelsmajer, M.J., Schaefer, M., Stasi, D.: Strong Hanani–Tutte on the projective plane. SIAM

Journal on Discrete Mathematics 23(3), 1317–1323 (2009)
33. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings. J. Combin. Theory

Ser. B 97(4), 489–500 (2007)
34. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings on surfaces. Euro-

pean Journal of Combinatorics 30(7), 1704–1717 (2009)
35. Schaefer, M.: Hanani-Tutte and related results. To appear in Bolyai Memorial Volume
36. Schaefer, M.: Toward a theory of planarity: Hanani-tutte and planarity variants. J. Graph

Algorithms Appl. 17(4), 367–440 (2013)
37. Tutte, W.T.: Toward a theory of crossing numbers. J. Combin. Theory 8, 45–53 (1970)
38. Whitney, H.: Non-separable and planar graphs. Trans. Amer. Math. Soc. 34, 339–362 (1932)
39. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of

the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC 2012, pp. 887–
898 (2012)

A New Perspective on Clustered Planarity
as a Combinatorial Embedding Problem�

Thomas Bläsius and Ignaz Rutter

Faculty of Informatics, Karlsruhe Institute of Technology (KIT), Germany
{blaesius,rutter}@kit.edu

Abstract. The clustered planarity problem (c-planarity) asks whether a hierar-
chically clustered graph admits a planar drawing such that the clusters can be
nicely represented by regions. We introduce the cd-tree data structure and give a
new characterization of c-planarity. It leads to efficient algorithms for c-planarity
testing in the following cases. (i) Every cluster and every co-cluster has at most
two connected components. (ii) Every cluster has at most five outgoing edges.

Moreover, the cd-tree reveals interesting connections between c-planarity and
planarity with constraints on the order of edges around vertices. On one hand,
this gives rise to a bunch of new open problems related to c-planarity, on the
other hand it provides a new perspective on previous results.

1 Introduction

When visualizing graphs whose nodes are structured in a hierarchy, one usually has two
objectives. First, the graph should be drawn nicely. Second, the hierarchical structure
should be expressed by the drawing. Regarding the first objective, we require drawings
without edge crossings, i.e., planar drawings. A natural way to represent a cluster is a
simple region containing exactly the vertices in the cluster. To express the hierarchical
structure, the boundaries of two regions must not cross and edges of the graph can cross
region boundaries at most once (if only one of its endpoints lies inside the cluster).
Such a drawing is called c-planar; see Sec. 2 for a formal definition. Testing a clustered
graph for c-planarity is a fundamental open problem in the field of Graph Drawing.

C-planarity was first considered by Lengauer [21] (in a different context). He gave
an efficient algorithm for the case that every cluster is connected. Feng et al. [13], who
coined the name c-planarity, rediscovered the problem and gave a similar algorithm.
Cornelsen and Wagner [7] showed that c-planarity is equivalent to planarity when addi-
tionally every co-cluster is connected.

Relaxing the condition that every cluster must be connected, makes testing c-planarity
surprisingly difficult. Efficient algorithms are known only for very restricted cases and
many of these algorithms are very involved. One example is the efficient algorithm by
Jelínek et al. [17, 18] for the case that every cluster consists of at most two connected
components while the planar embedding of the graph is fixed. Another algorithm by
Jelínek et al. [19] solves the case that every cluster has at most four outgoing edges.

� Partly done within GRADR – EUROGIGA project no. 10-EuroGIGA-OP-003. Supported by a
fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD).

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 440–451, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem 441

A popular restriction is to require a flat hierarchy, i.e., every pair of clusters has
empty intersection. For example, Di Battista and Frati [12] solve the case where the
clustering is flat, the graph has a fixed embedding and the faces have size at most 5.
Sec. 4.1 and Sec. 4.2 contain additional related work viewed from the new perspective.

Contribution and Outline. We first present the cd-tree data structure (Sec. 3) and use it
to characterize c-planarity in terms of combinatorial embeddings of planar graphs. This
provides a useful new perspective and significantly simplifies some previous results.

In Sec. 4 we define different constrained-planarity problems. We show in Sec. 4.1
that they are equivalent to different variants of the c-planarity problem of flat-clustered
graphs. We also discuss which cases of the constrained embedding problems are solved
by previous results on c-planarity. Based on these insights we derive a generic algorithm
for testing c-planarity in Sec. 4.2 and discuss previous work in this context.

In Sec. 5, we show how the cd-tree characterization together with results on the prob-
lem SIMULTANEOUS PQ-ORDERING [4] lead to efficient algorithms for the cases that
(i) every cluster and every co-cluster consists of at most two connected components; or
(ii) every cluster has at most five outgoing edges. The latter extends the result by Jelínek
et al. [19], where every cluster has at most four outgoing edges.

2 Preliminaries

We denote graphs by G with vertex set V and edge set E . We implicitly assume graphs to
be simple (no multiple edges or loops). We use the prefix multi- to indicate that a graph
may have multiple edges (but no loops), e.g., a multi-cycle is obtained from a cycle by
multiplying edges. A (multi-)graph G is planar if it admits a planar drawing (no edge
crossings). The edge-ordering of a vertex v is the clockwise cyclic order of its incident
edges in a planar drawing of G. An embedding of G consists of an edge-ordering for
every vertex such that G has a planar drawing with these edge-orderings.

A PQ-tree [5] is an unrooted tree T with leaves L such that every inner node is either
a P-node or a Q-node. When embedding T , one can choose the edge-orderings of P-
nodes arbitrarily, whereas the edge-orderings of Q-nodes are fixed up to reversal. Every
such embedding of T defines a cyclic order on the leaves L. The PQ-tree T represents
the orders one can obtain in this way. A set of orders is PQ-representable if it can be
represented by a PQ-tree. The valid edge-orderings of non-cutvertices in planar graphs
are PQ-representable (e.g., [4]). Conversely, replace each Q-node of a PQ-tree T by
a wheel (to fix its edge-ordering) and connect all leaves to a new vertex v. Then T
represents the edge-orderings of v in embeddings of the resulting graph (e.g., [21]).

C-Planarity. A clustered graph (G,T) is a graph G together with a rooted tree T
whose leaves are the vertices of G. Let μ be a node of T . The tree Tμ is the subtree of
T consisting of the root μ and all its successors. The graph induced by the leaves of Tμ
is a cluster in G. We identify this cluster with the node μ . A cluster is proper if it is
neither the whole graph (root cluster) nor a single vertex (leaf cluster).

A c-planar drawing of (G,T) is a planar drawing of G together with a simple
(= simply-connected) region Rμ for every cluster μ satisfying the following properties.

442 T. Bläsius and I. Rutter

(i) Every region Rμ contains exactly the vertices of the cluster μ . (ii) Two regions have
non-empty intersection only if one contains the other. (iii) Edges cross the boundary of
a region at most once. A clustered graph is c-planar if it admits a c-planar drawing.

This definition relies on embeddings in the plane using terms like “outside” and
“inside”. Instead, one can consider drawings on the sphere by unrooting T , using cuts
instead of clusters and simple closed curves instead of simple regions. Removing an
edge ε of T splits T in two components. As the leaves of T are the vertices of G, this
induces a corresponding cut (Vε ,V

′
ε) with V ′

ε = V \Vε on G. For a c-planar drawing of
G on the sphere, we require a planar drawing of G together with a simple closed curve
Cε for every cut (Vε ,V

′
ε) with the following properties. (i) The curve Cε separates Vε

from V ′
ε . (ii) No two curves intersect. (iii) Edges of G cross Cε at most once.

Using clusters instead of cuts corresponds to orienting the cuts, using one side as
cluster and the other side as the cluster’s complement (co-cluster). C-planarity on the
sphere and in the plane are equivalent; one simply has to choose an appropriate point on
the sphere to lie in the outer face. We use the rooted and unrooted view interchangeably.

3 The CD-Tree

The cd-tree (cut- or cluster-decomposition-tree) of a clustered graph (G,T) is the tree T
together with a multi-graph associated with each node of T that represents the decompo-
sition of G along its cuts corresponding to edges in T ; see Fig. 1a and b for an example.
Lengauer [21] uses a similar structure. Our notation is inspired by SPQR-trees.

Let μ be a node of T with neighbors μ1, . . . ,μk and incident edges εi = {μ ,μi}.
Removing μ separates the leaves of T into k subsets and thus partitions the vertices
of G into V1, . . . ,Vk ⊆ V . The skeleton skel(μ) of μ is the multi-graph obtained from
G by contracting each subset Vi into a virtual vertex νi (we keep multiple edges but
remove loops). Note that skeletons of inner nodes of T contain only virtual vertices,
while skeletons of leaves consist of one virtual and one non-virtual vertex. The node μi
is the neighbor of μ corresponding to νi and the virtual vertex in skel(μi) corresponding
to μ is the twin of νi, denoted by twin(νi). Note that twin(twin(νi)) = νi.

The edges incident to νi are exactly the edges of G crossing the cut corresponding to
the tree edge εi. Thus, the same edges of G are incident to νi and twin(νi). This gives a
bound on the total size c of the cd-tree’s skeletons (which we shortly call the size of the
cd-tree). The total number of edges in skeletons of T is twice the total size of all cuts
represented by T . Since T represents O(n) cuts, each of size O(n), it is c ∈ O(n2).

Assume the cd-tree is rooted. Recall that in this case every node μ represents a
cluster of G. The pertinent graph pert(μ) of the node μ is the cluster represented by μ .
Note that one could also define the pertinent graph recursively, by removing the virtual
vertex corresponding to the parent of μ (the parent vertex) from skel(μ) and replacing
each remaining virtual vertex by the pertinent graph of the corresponding child of μ .
Clearly, the pertinent graph of a leaf of T is a single vertex and the pertinent graph of
the root is the whole graph G. A similar concept, also defined for unrooted cd-trees,
is the expansion graph. The expansion graph exp(νi) of a virtual vertex νi in skel(μ) is
the pertinent graph of its corresponding neighbor μi of μ , when rooting T at μ . One can
think of the expansion graph exp(νi) as the subgraph of G represented by νi in skel(μ).

A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem 443

b d

g
h

e
1

23

4

5

6

7 8

1

2

3

4

5

6

7 8

a

b

c
d

e

f

gh

i

e

f

i

c

a

b

d

b
d

g
h

e b

d

g

h
g

e h

e

h
i

1
2

3 e

c
ab

d
f

4

5

bd

gh

6
i g

e

h

7 8

e

h

i

(a) (b) (c)

Fig. 1. (a) A c-planar drawing of a clustered graph. (b) The corresponding (rooted) cd-tree (with-
out leaves). The skeletons are drawn inside their corresponding (gray) nodes. Every pair of twins
has the same edge-ordering. (c) Construction of a c-planar drawing from the cd-tree.

The leaves of a cd-tree represent singleton clusters that exist only due to technical
reasons. It is often more convenient to consider cd-trees with all leaves removed as
follows. Let μ be a node with virtual vertex ν in skel(μ) that corresponds to a leaf.
The leaf contains twin(ν) and a non-virtual vertex v ∈ V in its skeleton (with an edge
between twin(ν) and v for each edge incident to v in G). We replace ν in skel(μ)
with the non-virtual vertex v and remove the leaf containing v. Clearly, this preserves
all clusters except for the singleton cluster. Moreover, the graph G represented by the
cd-tree remains unchanged as we replaced the virtual vertex ν by its expansion graph
exp(ν) = v. In the following we always assume the leaves of cd-trees to be removed.

The CD-Tree Characterization. We show that c-planarity testing can be expressed in
terms of edge-orderings in embeddings of the skeletons of T .

Theorem 1. A clustered graph is c-planar if and only if the skeletons of all nodes in
its cd-tree can be embedded such that every virtual vertex and its twin have the same
edge-ordering.

Proof. Assume G admits a c-planar drawing Γ on the sphere. Let μ be a node of T
with incident edges ε1, . . . ,εk connecting μ to its neighbors μ1, . . . ,μk, respectively. Let
further νi be the virtual vertex in skel(μ) corresponding to μi and let Vi be the nodes
in the expansion graph exp(νi). For every cut (Vi,V

′
i) (with V ′

i = V \Vi), Γ contains a
simple closed curve Ci representing it. Since the Vi are disjoint, we can choose a point
on the sphere to be the outside such that Vi lies inside Ci for i = 1, . . . ,k. Since Γ is a c-
planar drawing, the Ci do not intersect and only the edges of G crossing the cut (Vi,V

′
i)

cross Ci exactly once. Thus, one can contract the inside of Ci to a single point while
preserving the embedding of G. Doing this for each of the curves Ci yields skel(μ)
together with a planar embedding. Moreover, the edge-ordering of νi is the same as
the order in which the edges cross the curve Ci. Applying the same construction for
the neighbor μi corresponding to νi yields a planar embedding of skel(μi) in which the
edge-ordering of twin(νi) is the same as the order in which these edges cross the curve
Ci, when traversing Ci in counter-clockwise direction. Thus, in the resulting embeddings

444 T. Bläsius and I. Rutter

of the skeletons, the edge-ordering of a virtual vertex and its twin is the same up to
reversal. To make them the same one can choose a 2-coloring of T and mirror the
embeddings of all skeletons of nodes in one color class.

Conversely, assume that all skeletons are embedded such that every virtual vertex and
its twin have the same edge-ordering. Let μ be a node of T . Consider a virtual vertex νi
of skel(μ) with edge-ordering e1, . . . ,e�. We replace νi by a cycle Ci = (ν1

i , . . . ,ν�
i) and

attach the edge e j to the vertex ν j
i ; see Fig. 1c. Recall that twin(νi) has in skel(μi) the

same incident edges e1, . . . ,e� appearing in this order around twin(νi). We also replace
twin(νi) by a cycle of length �. This cycle is the twin of Ci and denote it by twin(Ci) =

(twin(ν1
i), . . . , twin(ν�

i)) where twin(ν j
i) denotes the new vertex incident to the edge

e j. As the interiors of Ci and twin(Ci) are empty, we can glue the skeletons skel(μ) and
skel(twin(μ)) together by identifying the vertices of Ci with the corresponding vertices
in twin(Ci) (one of the embeddings has to be flipped). Applying this replacement for
every virtual vertex and gluing it with its twin leads to an embedded planar graph G+

with the following properties. First, G+ contains a subdivision of G. Second, for every
cut corresponding to an edge ε = {μ ,μi} in T , G+ contains the cycle Ci with exactly
one subdivision vertex of an edge e of G if the cut corresponding to ε separates the
endpoints of e. Third, no two of these cycles share a vertex. The planar drawing of G+

gives a planar drawing of G. Moreover, the drawings of the cycles can be used as curves
representing the cuts, yielding a c-planar drawing of G. ��

Cutvertices in Skeletons. We show that cutvertices in skeletons correspond to different
connected components in a cluster or in a co-cluster.

Lemma 1. Let ν be a virtual vertex that is a cutvertex in its skeleton. The expansion
graphs of virtual vertices in different blocks incident to ν belong to different connected
components in exp(twin(ν)).

Proof. Let μ be the node whose skeleton contains ν . Recall that one can obtain the
graph exp(twin(ν)) by removing ν from skel(μ) and replacing all other virtual vertices
of skel(μ) with their expansion graphs. Clearly, this yields (at least) one connected
component for each of the blocks incident to ν . ��

Lemma 2. Every cluster in a clustered graph is connected if and only if in every node
μ of the rooted cd-tree the parent vertex is not a cutvertex in skel(μ).

Proof. By Lemma 1, the existence of a cutvertex implies a disconnected cluster. Con-
versely, let pert(μ) be disconnected and assume without loss of generality that pert(μi)
is connected for every child μ1, . . . ,μk of μ in the cd-tree. One obtains skel(μ) without
the parent vertex ν by contracting in pert(μ) the child clusters pert(μi) to virtual ver-
tices νi. As the contracted graphs pert(μi) are connected while the initial graph pert(μ)
is not, the resulting graph must be disconnected. Thus, ν is a cutvertex in skel(μ). ��

4 Clustered and Constrained Planarity

We first describe several constraints on planar embeddings, each restricting the edge-
orderings of vertices. We then show the relation to c-planarity.

A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem 445

Consider a finite set S (e.g., edges incident to a vertex). Denote the set of all cyclic
orders of S by OS. An order-constraint on S is simply a subset of OS (only the orders in
the subset are allowed). A family of order-constraints for the set S is a set of different
order constraints, i.e., a subset of the power set of OS. We say that a family of order-
constraints has a compact representation, if one can specify every order-constraint in
this family with polynomial space (in |S|). In the following we describe families of
order-constraints with compact representations.

A partition-constraint is given by partitioning S into subsets S1 ·∪ . . . ·∪ Sk = S. It
requires that no two partitions alternate, i.e., elements ai,bi ∈ Si and a j,b j ∈ S j must
not appear in the order ai,a j,bi,b j. A PQ-constraint requires that the order of elements
in S is represented by a given PQ-tree with leaves S. A full-constraint contains only one
order, i.e., the order of S is completely fixed.

A partitioned full-constraint restricts the orders of elements in S according to a parti-
tion constraint (partitions must not alternate) and additionally completely fixes the order
within each partition. Similarly, partitioned PQ-constraints require the elements in each
partition to be ordered according to a PQ-constraint. Clearly, this notion of partitioned
order-constraints generalizes to arbitrary order-constraints.

Consider a planar graph G. By constraining a vertex v of G, we mean that there is an
order-constraint on the edges incident to v. We then only allow planar embeddings of G
where the edge-ordering of v is allowed by the order-constraint. By constraining G, we
mean that several (or all) vertices of G are constrained.

4.1 Flat-Clustered Graph

Consider a flat-clustered graph, i.e., a clustered graph where the cd-tree is a star. We
choose the center μ of the star to be the root. Let ν1, . . . ,νk be the virtual vertices in
skel(μ) corresponding to the children μ1, . . . ,μk of μ . Note that skel(μi) contains ex-
actly one virtual vertex, namely twin(νi). The possible ways to embed skel(μi) restrict
the possible edge-orderings of twin(νi) and thus, by the characterization in Theorem 1,
the edge-orderings of νi in skel(μ). Hence, the graph skel(μi) essentially yields an order
constraint for νi in skel(μ). We consider c-planarity with differently restricted instances
leading to different families of order-constraints. To show that testing c-planarity is
equivalent to testing whether skel(μ) is planar with respect to order-constraints of a
specific family, we have to show two directions. First, the embeddings of skel(μi) only
yield order-constraints of the given family. Second, we can get every possible order-
constraint of the given family by choosing an appropriate graph for skel(μi).

Theorem 2. Testing c-planarity of flat-clustered graphs (i) where each proper cluster
consists of isolated vertices; (ii) where each cluster is connected; (iii) with fixed pla-
nar embedding; (iv) without restriction is linear-time equivalent to testing planarity of
a multi-graph with (i) partition-constraints; (ii) PQ-constraints; (iii) partitioned full-
constraints; (iv) partitioned PQ-constraints, respectively.

Proof. We start with case (i); see Fig. 2. Consider a flat-clustered graph G and let μi be
one of the leaves of the cd-tree. As pert(μi) is a proper cluster, it consists of isolated
vertices. Thus, skel(μi) is a set of vertices v1, . . . ,v�, each connected (with multiple

446 T. Bläsius and I. Rutter

a

b c
d

ef

a
b

c
d

ef a

b
c
d

e
fνi

twin(νi)

μ
μi

G

Fig. 2. A graph G with a single cluster consisting of isolated vertices together with an illustration
of its cd-tree. An edge-ordering of twin(νi) corresponds to a planar embedding of skel(μi) if and
only if no two partitions of {{a,b},{c,d, f },{e}} alternate.

edges) to the virtual vertex twin(νi). The vertices v1, . . . ,v� partition the edges incident
to twin(νi) into � subsets. Clearly, in every planar embedding of skel(μi) no two par-
titions alternate. Moreover, every edge-ordering of twin(νi) in which no two partitions
alternate gives a planar embedding of skel(μi). Thus, the edges incident to νi in skel(μ)
are constrained by a partition-constraint, where the partitions are determined by the in-
cidence of the edges to the vertices v1, . . . ,v�. One can easily construct the resulting
instance of planarity with partition-constraints problem in linear time in the size of the
cd-tree, which is linear in the size of G for flat-clustered graphs.

Conversely, given a planar graph H with partition-constraints, we set skel(μ) = H.
For every vertex of H we have a virtual vertex νi in skel(μ) with corresponding child μi.
We can simulate every partitioning of the edges incident to νi by connecting edges
incident to twin(νi) (in skel(μi)) with vertices such that two edges are connected with
the same vertex if and only if they belong to the same partition.

Consider case (ii). By Lemma 2 the condition of connected clusters is equivalent to
requiring that the virtual vertex twin(νi) in the skeleton of any leaf μi of the cd-tree is
not a cutvertex. The statement follows from the fact that the possible edge-orderings of
non-cutvertices is PQ-representable and that any PQ-tree can be achieved by choosing
an appropriate planar graph in which twin(νi) is not a cutvertex (see Sec. 2).

Consider case (iii). As in case (i), the blocks incident to twin(νi) in skel(μi) partition
the edges incident to νi in skel(μ) such that two partitions must not alternate. The
fixed embedding of G fixes the edge-ordering of non-virtual vertices and thus fixes the
embeddings of the blocks in skel(μi). Hence, we get partitioned full-constraints for νi.
Conversely, we can construct an arbitrary partitioned full-constraint as in case (i).

For case (iv) the arguments from case (iii) show that we again get partitioned order-
constraints, while the arguments from case (ii) show that these order-constraints (for
the blocks) are PQ-constraints. ��

Related Work. Biedl [1] proposes different drawing-models for graphs whose vertices
are partitioned into two subsets. The model matching the requirements of c-planar draw-
ings is called HH-drawings. Biedl et al. [2] show that one can test for the existence of
HH-drawings in linear time. Hong and Nagamochi [16] rediscovered this result in the
context of 2-page book embeddings. These results solve c-planarity for flat-clustered
graphs if the skeleton of the root node contains two virtual vertices. This is equiva-
lent to testing planarity with partitioned PQ-constraints for multi-graphs with only two

A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem 447

vertices (Theorem 2). Thus, to solve c-planarity for flat-clustered graphs, one needs to
solve an embedding problem on general planar multi-graphs that is so far only solved
on a set of parallel edges (with absolutely non-trivial algorithms). This indicates that we
are still far away from solving the c-planarity problem even for flat-clustered graphs.

Cortese et al. [9] give a linear-time algorithm for testing c-planarity of a flat-clustered
cycle (i.e., G is a simple cycle) if the skeleton of the cd-tree’s root is a multi-cycle.
Requiring that G is a cycle implies that the skeleton of each non-root node in T has the
property that the blocks incident to the parent vertex are simple cycles. Thus, in terms
of constrained planarity, they show how to test planarity of multi-cycles with partition-
constraints where each partition has size two. The result can be extended to a special
case of c-planarity where the clustering is not flat. However, the cd-tree fails to have
easy-to-state properties in this case, which shows that the cd-tree perspective of course
has some limitations. Later, Cortese et al. [10] extended this result to the case where G
is still a cycle, while the skeleton of the root can be an arbitrary planar multi-graph that
has a fixed embedding up to the ordering of parallel edges. This is equivalent to testing
planarity of such a graph with partition-constraints where each partition has size two.

Jelínková et al. [20] consider the case where each cluster contains at most three
vertices (with additional restrictions). Consider a cluster containing only two vertices
u and v. If u and v are connected, then the region representing the cluster can be always
added and we can omit the cluster. Otherwise, the region representing the cluster in
a c-planar drawing implies that one can add the edge uv to G, yielding an equivalent
instance. Thus, one can assume that every cluster has size exactly 3, which yields flat-
clustered graphs. In this setting they give efficient algorithms for the cases that G is a
cycle and G is 3-connected. Moreover, they give an FPT-algorithm for the case that G
is an Eulerian graph with k nodes, i.e., a graph obtained from a 3-connected graph of
size k by multiplying and then subdividing edges.

In case G is 3-connected, its planar embedding is fixed and thus the edge-ordering
of non-virtual vertices is fixed. Thus, one obtains partitioned full-constraints with the
restriction that there are only three partitions. Clearly, the requirement that G is 3-
connected also restricts the possible skeletons of the root of the cd-tree. It is an in-
teresting open question whether planarity with partitioned full-constraints with at most
three partitions can be tested efficiently for arbitrary planar graphs. In case G is a cy-
cle, one obtains partition constraints with only three partitions and each partition has
size two. Note that this in particular restricts the skeleton of the root to have maximum
degree 6. Although these kind of constraints seem pretty simple to handle, the algo-
rithm by Jelínková et al. is pretty involved. It seems like one barrier where constrained
embedding becomes difficult is when there are partition constraints with three or more
partitions (see also Theorem 4). The result about Eulerian graphs in a sense combines
the cases where G is 3-connected and a cycle. A vertex has either degree two and thus
yields a partition of size two or it is one of the constantly many vertices with higher
degree for which the edge-ordering is partly fixed.

4.2 General Clustered Graphs

Expressing c-planarity for general clustered graphs (not necessarily flat) in terms of
constrained planarity problems is harder for the following reason. Consider a leaf μ in

448 T. Bläsius and I. Rutter

the cd-tree. The skeleton of μ is a planar graph yielding (as in the flat-clustered case)
partitioned PQ-constraints for its parent μ ′. This restricts the possible embeddings of
skel(μ ′) and thus the order-constraints one obtains for the parent of μ ′ are not neces-
sarily again partitioned PQ-constraints.

One can express this issue in the following, more formal way. Let G be a planar
multi-graph with vertices v1, . . . ,vn and designated vertex v = vn. The map ϕv

G maps
a tuple (C1, . . . ,Cn) where Ci is an order-constraint on the edges incident to vi to an
order-constraint C on the edges incident to v. The order-constraint C = ϕv

G(C1, . . . ,Cn)
contains exactly those edge-orderings of v that one can get in a planar embedding of
G that respects C1, . . . ,Cn. Note that C is empty if and only if there is no such embed-
ding. Note further that testing planarity with order-constraints is equivalent to deciding
whether ϕv

G evaluates to the empty set. We call such a map ϕv
G a constrained-embedding

operation.
The issue mentioned above (constraints iteratively handed to parents) boils down to

the fact that partitioned PQ-constraints are not closed under constrained-embedding op-
erations. On the positive side, we obtain a general algorithm for solving c-planarity as
follows. Assume we have a family of order-constraints C with compact representations
that is closed under constrained-embedding operations. Assume further that we can
evaluate the constrained embedding operations in polynomial time on order-constraints
in C. Then one can simply solve c-planarity by traversing the cd-tree bottom-up, eval-
uating for a node μ with parent vertex ν the constrained-embedding operation ϕν

skel(μ)
on the constraints one computed in the same way for the children of μ .

Clearly, when restricting the skeletons of the cd-tree or requiring properties for
the parent vertices in these skeletons, these restrictions carry over to the constrained-
embedding operations one has to consider. More precisely, let R be a set of pairs (G,v),
where v is a vertex in G. We say that a clustered graph isR-restricted if (skel(μ),ν)∈R
holds for every node μ in the cd-tree with parent vertex ν . Moreover, the R-restricted
constrained-embedding operations are those operations ϕv

G with (G,v) ∈ R. The fol-
lowing theorem directly follows.

Theorem 3. One can solve c-planarity of R-restricted clustered graphs in polynomial
time if there is a family C of order-constraints such that

– C has a compact representation,
– C is closed under R-restricted constrained-embedding operations,
– every R-restricted constrained-embedding operation on order-constraints in C can

be evaluated in polynomial time.

When dropping the requirement that C has a compact representation the algorithm
becomes super-polynomial only in the maximum degree d of the virtual vertices (the
number of possible order-constraints for a set of size d depends only on d). Moreover,
if ϕv

G has only k order constraints (whose sizes are bounded by a function of d) as
input, then ϕv

G can be evaluated by iterating over all combinations of orders, applying a
planarity test in every step. This gives an FPT-algorithm with parameter d + k (running
time O(f (d+k)p(n)), where f is a computable function depending only on d+k and p
is a polynomial). In other words, we obtain an FPT-algorithm where the parameter is the
sum of the maximum degree of the tree T and the maximum number of edges leaving

A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem 449

a cluster. Note that this generalizes the FPT-algorithm by Chimani and Klein [6] with
respect to the total number of edges connecting different clusters.

Moreover, Theorem 3 has the following simple implication. Consider a clustered
graph where each cluster is connected. This restricts the skeletons of the cd-tree such
that none of the parent vertices is a cutvertex (Lemma 1). Thus, we have R-restricted
clustered graphs where (G,v) ∈R implies that v is not a cutvertex in G. PQ-constraints
are closed under R-restricted constrained-embedding operations as the valid edge-
ordering of non-cutvertices is PQ-representable and planarity with PQ-constraints is
basically equivalent to planarity (one can model a PQ-tree with a simple gadget; see
Sec. 2). Thus, Theorem 3 directly implies that c-planarity can be solved in polynomial
time if each cluster is connected.

Related Work. The above algorithm resulting from Theorem 3 is more or less the one
described by Lengauer [21]. The algorithm was later rediscovered by Feng et al. [13]
who coined the term “c-planarity”. The algorithm runs in O(c)⊆O(n2) time (recall that
c is the size of the cd-tree). Dahlhaus [11] improves the running time to O(n). Cortese
et al. [8] give a characterization that also leads to a linear-time algorithm.

Goodrich et al. [14] consider the case where each cluster is either connected or ex-
trovert. Let μ be a node in the cd-tree with parent μ ′. The cluster pert(μ) is extrovert
if the parent cluster pert(μ ′) is connected and every connected component in pert(μ) is
connected to a vertex not in the parent pert(μ ′). They show that one obtains an equiv-
alent instance by replacing the extrovert cluster pert(μ) with one cluster for each of its
connected components while requiring additional PQ-constraints for the parent vertex
in the resulting skeleton. In this instance every cluster is connected and the additional
PQ-constraints clearly do no harm.

Another extension to the case where every cluster must be connected is given by
Gutwenger et al. [15]. They give an algorithm for the case where every cluster is con-
nected with the following exception. Either, the disconnected clusters form a path in
the tree or for every disconnected cluster the parent and all siblings are connected. This
has basically the effect that at most one order-constraint in the input of a constrained-
embedding operation is not a PQ-tree.

Jelínek et al. [17, 18] assume each cluster to have at most two connected compo-
nents and the underlying (connected) graph to have a fixed planar embedding. Thus,
they consider R-restricted clustered graphs where (G,v) ∈ R implies that v is incident
to at most two different blocks. The fixed embedding of the graph yields additional
restrictions that are not so easy to state within this model.

5 Cutvertices with Two Non-trivial Blocks

The input of the SIMULTANEOUS PQ-ORDERING problem consists of several PQ-trees
together with child-parent relations between them (the PQ-trees are the nodes of a di-
rected acyclic graph) such that the leaves of every child form a subset of the leaves of
its parents. SIMULTANEOUS PQ-ORDERING asks whether one can choose orders for
all PQ-trees simultaneously in the sense that every child-parent relation implies that the
order of the leaves of the parent are an extension of the order of the leaves of the child.

450 T. Bläsius and I. Rutter

In this way one can represent orders that cannot be represented by a single PQ-tree. For
example, adding one or more children to a PQ-tree T restricts the set of orders repre-
sented by T by requiring the orders of different subsets of leaves to be represented by
some other PQ-tree. Moreover, one can synchronize the orders of different trees that
share a subset of leaves by introducing a common child containing these leaves.

SIMULTANEOUS PQ-ORDERING is NP-hard but efficiently solvable for so-called
2-fixed instances [4]. For every biconnected planar graph G, there exists an instance
of SIMULTANEOUS PQ-ORDERING, the PQ-embedding representation, that represents
all planar embeddings of G [4]. It has the following properties.

– For every vertex v in G there is a PQ-tree T (v), the embedding tree, that has the
edges incident to v as leaves.

– For every solution of the PQ-embedding representation, setting the edge-ordering
of every vertex v to the order given by T (v) yields a planar embedding. Moreover,
one can obtain every embedding of G in this way.

– The instance remains 2-fixed when adding up to one child to each embedding tree.

A PQ-embedding representation still exists if every cutvertex in G is incident to at most
two non-trivial blocks (blocks that are not just bridges) [3].

Theorem 4. C-planarity can be tested in O(c2)⊆ O(n4) time if every virtual vertex in
the skeletons of the cd-tree is incident to at most two non-trivial blocks.

Proof. Let G be a clustered graph with cd-tree T . For the skeleton of each node in T ,
we get a PQ-embedding representation with the above-mentioned properties. Let μ be
a node of T and let ν be a virtual vertex in skel(μ). Let μ ′ be the node whose skeleton
contains twin(ν). The embedding representations of skel(μ) and skel(μ ′) contain the
embedding trees T(ν) and T (twin(ν)) representing the edge-orderings of ν and twin(ν),
respectively. To ensure that ν and twin(ν) have the same edge-ordering, one can simply
add a PQ-tree as common child of T (ν) and T (twin(ν)). We do this for every virtual
node in the skeletons of T . Due to the last property of the PQ-embedding representations,
the resulting instance remains 2-fixed and can thus be solved efficiently.

Every solution of this SIMULTANEOUS PQ-ORDERING instance D yields planar
embeddings of the skeletons such that every virtual vertex and its twin have the same
edge-ordering and vice versa. By Theorem 1, testing c-planarity is equivalent to solving
D. The size of D is linear in the size c of T . Moreover, solving SIMULTANEOUS PQ-
ORDERING for 2-fixed instances can be done in quadratic time [4], yielding the running
time O(c2). ��

Theorem 4 includes the following interesting cases. The latter extends the result by
Jelínek et al. [19] from four to five outgoing edges per cluster.

Corollary 1. C-planarity can be tested in O(c2)⊆O(n4) time if every cluster and every
co-cluster has at most two connected components.

Corollary 2. C-planarity can be tested in O(n2) time if every cluster has at most five
outgoing edges.

A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem 451

References

1. Biedl, T.: Drawing planar partitions I: LL-drawings and LH-drawings. In: SoCG 1998, pp.
287–296. ACM (1998)

2. Biedl, T., Kaufmann, M., Mutzel, P.: Drawing planar partitions II: HH-drawings. In:
Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 124–136. Springer, Hei-
delberg (1998)

3. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding
problems. CoRR abs/1112.0245, 1–46 (2011)

4. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding
problems. In: SODA 2013. SIAM (2013)

5. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms. J. Comput. System Sci. 13(3), 335–379 (1976)

6. Chimani, M., Klein, K.: Shrinking the search space for clustered planarity. In: Didimo, W.,
Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 90–101. Springer, Heidelberg (2013)

7. Cornelsen, S., Wagner, D.: Completely connected clustered graphs. J. of Disc. Alg. 4(2),
313–323 (2006)

8. Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity of c-
connected clustered graphs. J. Graph Alg. Appl. 12(2), 225–262 (2008)

9. Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of
clusters. J. Graph Alg. Appl. 9(3), 391–413 (2005)

10. Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: On embedding a cycle in a plane
graph. Disc. Math. 309(7), 1856–1869 (2009)

11. Dahlhaus, E.: A linear time algorithm to recognize clustered planar graphs and its paralleliza-
tion. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 239–248.
Springer, Heidelberg (1998)

12. Di Battista, G., Frati, F.: Efficient C-planarity testing for embedded flat clustered graphs with
small faces. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp.
291–302. Springer, Heidelberg (2008)

13. Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.)
ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)

14. Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs. In: Healy,
P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer, Heidelberg (2006)

15. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in
c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002.
LNCS, vol. 2528, pp. 220–235. Springer, Heidelberg (2002)

16. Hong, S.H., Nagamochi, H.: Two-page book embedding and clustered graph planarity. Tech.
Rep. 2009-004, Kyoto University, Depart. Appl. Math. & Phys. (2009)

17. Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B.: Clustered pla-
narity: Embedded clustered graphs with two-component clusters (2009),
http://kam.mff.cuni.cz/~bernard/pub/flat.pdf (manuscript)

18. Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B.: Clustered planarity: Embedded clus-
tered graphs with two-component clusters (extended abstract). In: Tollis, I.G., Patrignani, M.
(eds.) GD 2008. LNCS, vol. 5417, pp. 121–132. Springer, Heidelberg (2009)

19. Jelínek, V., Suchý, O., Tesař, M., Vyskočil, T.: Clustered planarity: Clusters with few out-
going edges. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 102–113.
Springer, Heidelberg (2009)

20. Jelínková, E., Kára, J., Kratochvíl, J., Pergel, M., Suchý, O., Vyskočil, T.: Clustered pla-
narity: Small clusters in cycles and eulerian graphs. J. Graph Alg. Appl. 13(3), 379–422
(2009)

21. Lengauer, T.: Hierarchical planarity testing algorithms. J. ACM 36(3), 474–509 (1989)

http://kam.mff.cuni.cz/~bernard/pub/flat.pdf

MapSets: Visualizing Embedded and Clustered Graphs

Alon Efrat1, Yifan Hu2, Stephen G. Kobourov1, and Sergey Pupyrev1,3

1 Department of Computer Science, University of Arizona, Tucson, Arizona, USA
2 Yahoo Labs, New York, USA

3 Institute of Mathematics and Computer Science, Ural Federal University, Russia

Abstract. We describe MapSets, a method for visualizing embedded and clus-
tered graphs. The proposed method relies on a theoretically sound geometric
algorithm, which guarantees the contiguity and disjointness of the regions rep-
resenting the clusters, and also optimizes the convexity of the regions. A fully
functional implementation is available online and is used in a comparison with
related earlier methods.

1 Introduction

In many real-world examples of relational datasets, groups of objects (clusters) are an
inherent part of the input. For example, scientists belong to specific research communi-
ties, politicians are affiliated with specific parties, and living organisms are divided into
biological species in the tree of life. Such clusters are often visualized with regions in
the plane that enclose related objects. By explicitly defining the boundary and coloring
the regions, the cluster information becomes evident. In many instances the data objects
are often associated with fixed or relative positions in the plane. In geo-referenced data,
for example, the positions of the objects might be based on their geographic coordi-
nates. Thus a natural problem arises: How to best visualize graphs in which vertices are
divided into clusters and embedded with fixed positions in the plane?

Several existing visualization approaches seem suitable. For example, methods for
visualizing set relations over existing embedded pointsets, such as BubbleSets [6] and
LineSets [2] use colored shapes to connect objects that belong to the same set. Alter-
natively, a geographic map metaphor can be used to represent such data. With self-
organizing maps [22] or geometry-based GMaps [9], objects become cities and cluster
information is captured by uniquely colored countries. While both approaches can pro-
duce compelling visualizations, we argue that neither is perfectly suited to the problem
of visualizing embedded and clustered graphs.

As the number of sets increases, set-based methods generate complex and some-
times ambiguous results. More recent methods, such as KelpDiagrams [7] and Kelp-
Fusion [15], reduce visual clutter and guarantee unambiguous visualization. But more
importantly, all of these methods result in overlapping regions for the sets, even when the
input sets are disjoint. This unnecessarily increases visual complexity and might mislead
the viewer about the disjointness of the sets. The geographic map approach suffers from
a different problem. A country in the map, that represents a given cluster of vertices,
might not be a contiguous region in the plane. Even though each cluster is colored with

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 452–463, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

MapSets: Visualizing Embedded and Clustered Graphs 453

(a) (b) (c)

Fig. 1. (a) An embedded and clustered (red/blue) pointset. (b-c) Two different ways to construct
contiguous shapes bounding points of the same color.

a unique color, such fragmented maps are difficult to read as human perception of color
changes based on surrounding colors [19] and can be misinterpreted [11].

We want to combine the advantages of existing methods, while attempting to avoid
their problems. That is, we are interested in visualizing embedded and clustered graphs
with non-fragmented and non-overlapping regions. While constructing such represen-
tations is easy in theory, in practice the regions may still have high visual complexity;
see Fig. 1. Ideally the regions should be as convex as possible, as the convex hull best
captures cohesive grouping according to Gestalt theory [12].

With this in mind, we describe MapSets, a method for creating non-fragmented, non-
overlapping regions that are as convex as possible, from a given embedded and clustered
graph. We consider several criteria for measuring convexity of a shape, and propose
a novel geometric problem aiming at optimizing convexity. We present a theoretical
analysis of the problem in Section 3. Next, in Section 4, we describe a practical method
for visualizing clustered graphs. A comparison of the method with existing techniques
is provided in Section 5.

2 Related Work

Set Visualization. Graph clusters can be viewed as sets over graph vertices. In Venn
diagrams and their generalization, Euler diagrams, closed curves correspond to (possi-
bly overlapping) sets, and overlaps between the curves indicate intersections. Simon-
etto et al. [21] automatically generate Euler-like diagrams, by allowing disconnected
regions, which can be complex and non-convex. Riche and Dwyer [20] propose a way
to avoid the visual complexity problem by drawing simplified rectangular Euler-like
diagrams, that do not depict the intersections between the sets explicitly, by duplicating
objects that belong to multiple sets. In a user study, they found that it is beneficial to
show intersections using simple set regions and strict containment, enabled by the du-
plication. For the setting where the positions of the objects are fixed, Collins et al. [6]
present BubbleSets, a method based on isocontours to overlay such an arrangement
with enclosing set regions. The readability of these visualizations suffer when there are
many overlapping regions. LineSets [2] aim to improve the readability of complex set
intersections and to minimize the overall visual clutter by reducing set regions to simple
curved lines drawn through set elements. KelpDiagrams [7] incorporate classic graph-
drawing “bubble and stick” style graph or tree spanners over the member points in a

454 A. Efrat et al.

set. KelpFusion [15] adds filled-in regions to provide a stronger sense of grouping for
close elements. A significant limitation of all these set visualization techniques is that
they produce overlapping regions even when the sets are disjoint.

Visualizing Graphs as Maps. The geographic map metaphor is utilized as visual in-
terface for relational data, where objects, relations between objects, and clustering are
captured by cities, roads, and countries. Using maps to visualize non-cartographic data
has been considered in the context of spatialization [22]. Maps of science showing
groups of scientific disciplines are used by a wide range of professionals to grasp de-
velopments in science and technology [4].

The geographic map metaphor is used in the Graph-to-Map approach (GMap) [9].
GMap combines graph layout and graph clustering, together with appropriate coloring
of the clusters and creating boundaries based on clusters and connectivity in the original
graph. However, since layout and clustering are two separate steps, a region represent-
ing a cluster may often be fragmented; see Fig. 7(b). Such fragmentation makes it dif-
ficult to identify the correct regions and can result in misinterpretation of the map [11].
Note that in the setting when either an input embedding or clustering can be modified,
the GMap approach can be improved to achieve contiguous regions [13].

Colored Spanning Trees. From an algorithmic perspective, our geometric approach
of optimizing convexity of regions that cover points in the plane is related to several
problems in which the input is a multicolored point set [1, 3]. The group Steiner tree
problem deals with a graph with colored vertices, and the objective is to find a minimum
weight subtree covering all colors [16]. Also related is the problem of computing span-
ning graphs for multicolored point set [10]. The problem is motivated by optimizing the
amount of “ink” needed to connect monochromatic points that arise when visualizing
sets using the KelpFusion technique. These trees cannot be directly used as “skeletons”
of regions in the plane as they can result in overlapping regions.

3 Constructing Contiguous Non-overlapping Regions

We assume that the input instance consists of a set of objects P with fixed positions
pi ∈ R2 for all i ∈ P , for example, cities and their geographic locations. In practical
applications labels are often associated with the objects. In this case, we assume that
non-overlapping bounding boxes for the labels are given. The input also specifies a
clustering C = {C1, . . . , Ck} of the objects with ∪k

i=1Ci = P and Ci ∩ Cj = ∅ for
i �= j. We wish to enclose all objects of the same cluster by a single contiguous region
so that regions corresponding to different clusters do not overlap.

On one hand, simply overlaying each cluster with a convex region (e.g., bounding
box or convex hull) is not always a valid solution, as it might cover elements in other
clusters. On the other hand, representing clusters by some minimal regions (e.g., span-
ning or Steiner trees) is also not always valid, as it might result in intersecting regions.

We require regions that are contiguous and disjoint, and it is not difficult to see that
such regions can be easily computed. We can begin by computing a crossing-free span-
ning tree of points belonging to some cluster. Once the tree is constructed, its vertices
and edges become “obstacles” that should be avoided by subsequent trees. Note that

MapSets: Visualizing Embedded and Clustered Graphs 455

(a)

S

CH(S)

(b) (c) (d) (e)

Fig. 2. Convexity measures for a shape S enclosing red points. (a) Solid segments are within S,
while dashed ones are not. (b) A shape and its convex hull (dashed). (c) Area-based measure
ignores boundary defects. (d-e) Ink needed to connect the points is much bigger than the length
of the minimum spanning tree. The shape is enclosed in solid black, while the tree is dashed red.

all the clusters will be processed as the trees do not separate the plane into more than
one region. Finally, contiguous non-overlapping regions can be grown, starting from
these disjoint trees. However, this procedure often generates “octopus”-like shapes that
are neither aesthetically pleasant nor practically useful for visualization; see Fig. 1.
Hence, we require a method for creating regions that are as convex as possible. In order
to design such a method, a quality criterion for measuring the convexity of regions is
needed. Next we review and formalize several convexity measures.

3.1 Convexity Measures

A shape S is said to be convex if it has the following property: If points p, q ∈ R belong
to S then all points from the line segment [pq] belong to S as well. The definition allows
for several different ways to measure the convexity of non-convex shapes.

Point/Vertex Visibility. For a given shape S, this convexity measure is defined as the
probability that for points p and q, chosen uniformly at random from S, all points from
the line segment [pq] also belong to S [24]. The result is a real number from [0, 1], with
1 corresponding to convex shapes. A problem with this definition is that it is difficult
to compute, even if S is a polygon. Hence, we consider its discrete variant, taking into
account that the input of our problem specifies points in the plane; see Fig. 2(a).

This vertex-based measure takes into account how many segments [pq] are com-
pletely in S for pairs of input points p, q ∈ P of the cluster corresponding to S. The

measure is defined as
∑

p,q∈P δ(p,q)

|P |2 , where the sum is over all pairs of input points P
and δ(p, q) = 1 if [pq] lies inside S and δ(p, q) = 0, otherwise.

Convex Hull Area/Perimeter. Recall that the smallest convex set which includes a
shape S is called the convex hull, CH(S), of S; see Fig. 2(b). The area-based convexity
measure is defined as Area(S)

Area(CH(S)) ; it is frequently used and appears in textbooks [23].
The result is a real number from [0, 1], with 1 corresponding to convex shapes. Unlike
visibility-based measures, the convex hull-based one is very easy to calculate efficiently
and is robust with respect to noise. However, the definition does not allow to detect
defects on boundary that have a relatively small impact on the shape area; see Fig. 2(c).
The perimeter-based definition attempts to remedy this: Perimeter(S)

Perimeter(CH(S)) .

456 A. Efrat et al.

(a) (b)

Fig. 3. (a) An input for CST with n = 10 points and k = 3 colors. (b) An optimal solution with
minimum ink containing Steiner points.

If a shape S is convex, then there exists a minimum spanning tree on the given
point set such that every edge of the tree lies completely in S; non-convex shapes do
not necessarily admit such a spanning tree. Hence, the length of a shortest curve that
belongs to S and connects all the input points is an indicator of convexity of S. In the
following measure, we compare the length of such a curve (or equivalently, the amount
of “ink” needed to connect all the points) with the length of a minimum spanning tree
on the same point set; see Figs. 2(d)-2(e).

Minimum Ink. Let | INK(P)| be the length of the shortest curve connecting all vertices
of V lying in S, and let |MST(P)| be the length of the minimum spanning tree of V .
The measure is defined as |MST(P)|

| INK(P)| . Again, 1 indicates the best possible value (though,
it does not always correspond to a convex shape); smaller values are worse.

There are advantages and disadvantages of all of the proposed convexity measures, and
there are also many other ways to define convexity of shapes or polygons. In an attempt
to balance theoretical and practical considerations, we focus on visibility-based and the
ink-based measures. Similar ink-based criteria are used for constructing LineSets and
KelpDiagrams. By minimizing the ink needed for drawing, all of these techniques aim
to reduce visual clutter and increase the readability of the representation.

3.2 Algorithm for Ink Minimization

Here we study a problem motivated by computing contiguous regions with minimum
ink. The input consists of n points in the plane, and each point is associated with one of
k colors. The CST (COLORED SPANNING TREES) problem is to connect points of the
same color by mutually non-intersecting curves of shortest total length. In an optimal
solution each curve forms a tree spanning points of the corresponding color. The trees
may use additional (Steiner) points that do not belong to the original pointset; see Fig. 3.

Computing an optimal solution for CST is NP-hard. This follows from the observa-
tion that the known NP-complete MINIMUM STEINER TREE problem is a special case
of CST, in which the input consists of monochromatic points. Next we present a heuris-
tic for CST and prove that it is an approximation algorithm in the theoretical sense.

We refer to the minimum spanning and Steiner trees of a set of points P as MST(P)
and SMT(P), respectively; their lengths are denoted by |MST(P)| and | SMT(P)|.
We use the Steiner ratio, denoted by ρ, which is the supremum of the ratio of the length
of a minimum spanning tree to the length of a minimum Steiner tree. It is conjectured
that ρ = 2√

3
≈ 1.15, and ≈ 1.21 is the best-known upper bound on ρ [5].

MapSets: Visualizing Embedded and Clustered Graphs 457

(a) (b) (c) (d)

Fig. 4. Steps of the algorithm for the CST problem. (a) An input with n = 10 points and k = 3.
(b) Computing minimum spanning trees. (c) Bounding the tree having the shortest length, and
removing red-blue crossings. (d) Merging with the green tree.

We begin with the description of our algorithm in the setting when the input consists
of blue and red points. First, we compute a minimum spanning tree of the blue points
(ignoring the red ones), and a minimum spanning tree of the red points; see Fig.4(b).
If the trees do not intersect, then they form a solution for CST. Otherwise, we create a
red “shell” bounding the blue tree; see Fig.4(c). Now red-blue crossings appear inside
the constructed shell, and they can be eliminated by removing all portions of the red
tree inside the shell. Finally, the red curve, consisting of the original spanning tree
and the constructed shell, can be transformed to a tree by disconnecting its cycles; see
Fig.4(d).

The general algorithm works in the following steps. First, create a minimum tree
MST(Ci) spanning the set of points Ci for 1 ≤ i ≤ k, ignoring points of the other
colors. Sort the colors with respect to the length of the corresponding spanning trees.
Without loss of generality, we may assume that the resulting order is C1, . . . , Ck and
|MST(C1)| ≤ · · · ≤ |MST(Ck)|. Then the resulting curve forC1 is the treeMST(C1).
A curve for each successive color Ci is constructed by adding a “shell” bounding the
curve corresponding to Ci−1. The length of the shell is exactly 2

∑
j<i |MST(Cj)|,

since it bounds all the spanning trees corresponding to already processed colors; see
Fig. 4. The length of a curve for Ci is then |MST(Ci)|+ 2

∑
j<i |MST(Cj)|.

In order to analyze the algorithm, we denote the amount of ink in the optimal so-
lution by OPT, and the total length of the constructed solution by ALG. An optimal
solution induces a curve connecting all points of the same cluster, that is, the solution
is a Steiner tree for the set of points (but not necessarily the minimum one). Hence,
OPT ≥

∑
i | SMT(Ci)| ≥

∑
i |MST(Ci)|/ρ. On the other hand,

ALG ≤
k∑

i=1

(
|MST(Ci)|+ 2

i−1∑
j=1

|MST(Cj)|
)
=

k∑
i=1

(2k − 2i+ 1)|MST(Ci)|, and

ALG

OPT
≤
∑k

i=1(2k − 2i+ 1)|MST(Ci)|∑k
i=1 |MST(Ci)|/ρ

=

= ρ

∑�k/2	
i=1 (2k − 2i+ 1)|MST(Ci)|+

∑�k/2�
i=1 (2i− 1)|MST(Ck−i+1)|∑k

i=1 |MST(Ci)|
≤ kρ.

Hence, our algorithm is a (kρ)-approximation for the CST problem for any k ≥ 1.

458 A. Efrat et al.

(a) Input (b) Tree Construction (c) Force-directed Adjustment

(d) Edge Augmentation (e) Adding Auxiliary Points (f) Computing Map Regions

Fig. 5. Algorithmic pipeline of MapSets

4 MapSets

Here we describe MapSets, starting with a high-level overview; see Fig. 5. We assume
that the input is a set of rectangular shapes (bounding boxes of labels) embedded in
the plane along with a clustering. In the first step, we compute spanning mutually non-
crossing trees interconnecting centers of rectangles corresponding to the same cluster,
while minimizing the total ink needed to draw the trees. In the second step, we modify
the trees by adding buffers of free space around the segments of the trees, using a force-
directed heuristic. In the third step, we try to optimize the convexity of the resulting
regions based on the vertex visibility measure, by adding edges between vertices in the
same cluster, while ensuring that edges of different clusters do not cross. In the fourth
step, we use the modified trees and the added edges to build contiguous non-overlapping
boundaries for all clusters.

Tree Construction. In order to construct the trees, we employ the approximation al-
gorithm described in Section 3.2. For each cluster, we first compute a minimum tree
spanning the set of rectangle centers, ignoring other clusters. The clusters are then
sorted in non-decreasing order by the length of the computed trees and processed in
this order. At each step we consider all the precomputed trees as obstacles that should
be avoided when constructing the current tree. The rectangles are also treated as obsta-
cles. We compute a sparse visibility graph on the set of obstacles, where the vertices
are all the centers and corners of the rectangles, and there is an edge between two ver-
tices if one can draw a straight-line segment without crossing the obstacles. The sparse
visibility graph (unlike the full visibility graph) has a linear number of edges and can
be constructed efficiently [8]. We then compute shortest paths (of the visibility graph)
between every pair of rectangles of the current cluster. From these shortest paths, we
compute a minimum spanning tree for the current cluster. We add the tree to the set of
obstacles and proceed with the next cluster.

MapSets: Visualizing Embedded and Clustered Graphs 459

Force-directed Adjustment. This step improves the constructed trees. Our goal is to
provide some free space around the edges of the trees so as to avoid (1) narrow channels
between parts of the same region and (2) region borders lying too close to the input ver-
tex labels. To accomplish this, we consider an adjustment graph Gadj in which vertices
are the end points and bends of the constructed trees and edges are maximal straight-
line segments of the trees. We then build a force system moving the vertices of Gadj

that correspond to the bends of the tree. The system relies on the following forces.

– Vertex-vertex Attraction. We would like to keep the ink of the drawing low.
Therefore, for every vertex of Gadj , there is a force pushing the vertex towards
its neighbor vertices in Gadj .

– Edge-edge Repulsion. This repulsive force attempts to push the edges of Gadj

apart to provide enough space to draw the regions. In order to compute the force,
it is convenient to replace edges of Gadj with cylinders of a specified thickness.
Then, if two cylinders corresponding to different trees intersect, the force repels
them away from each other. This force also ensures that the trees do not overlap
and do not intersect during the adjustment process.

– Edge-label Repulsion. This force prevents edges from being routed too close to
the input text labels. Again, it is convenient to consider the edges of Gadj as cylin-
ders. If a cylinder occludes a label, then we introduce a repulsive force moving the
corresponding vertices of Gadj away from the label.

We use iterative refinement similar to that used in drawing graphs with edge bun-
dles [18] to adjust the positions of the vertices of Gadj under these three forces: repul-
sive forces have equal priorities, and the attractive force is weaker. In our experiments,
the force system provides the desired buffer of free space around the trees and converges
quickly; see Fig. 8.

Edge Augmentation. In this step we try to optimize the convexity of the regions us-
ing the vertex visibility metric. Consider all possible straight-line segments connecting
centers of rectangles corresponding to the same cluster. Our goal is to select and add as
many of these segments as possible, subject to the condition that they do not cross each
other. To this end, we construct a graph H in which vertices are the straight-line seg-
ments. A segment is added to H only if it does not intersect the trees found in the previ-
ous step. Two vertices of H are connected by an edge if the corresponding straight-line
segments cross each other. Notice that now the problem reduces to the problem of find-
ing a maximum non-crossing (independent) set of segments in the plane. The problem
can be solved optimally in polynomial time for two clusters, that is, if k = 2. Indeed,
in this setting the graph H is bipartite, and the size of a maximum independent set in a
bipartite graph equals to the number of edges in a minimum edge covering by König’s
theorem. The latter can be found using a maximum matching algorithm. Unfortunately,
the general variant is NP-hard even for k = 3 [14]. Therefore, unless k = 2, we use
a greedy strategy to solve the problem. At every step, we choose the minimum degree
vertex in H and remove its neighbors. It is well-known that this strategy guarantees an
approximation ratio of (Δ+ 2)/3 on graphs with maximum degree Δ.

Adding Auxiliary Points and Computing Map Regions. Given the initial placement
of the labels and curves connecting the labels from the previous steps, we need explicit

460 A. Efrat et al.

(a) MapSets (b) GMap (c) BubbleSets (d) KelpFusion

Fig. 6. The senator voting graph (the part of the U.S. west of Mississippi). The vertices are sena-
tors (red republicans and blue democrats) positioned according to their home-cities.

regions grouping together labels and curves in the same cluster. As in GMap, we gen-
erate boundaries by adding dummy points to the current embedding. There are three
types of the dummy points: (a) random points, sufficiently far away from the set of the
input labels, lead to more rounded and thus more realistic region boundaries; (b) ran-
dom points along bounding boxes of the labels help ensure that the labels are drawn
inside the regions; (c) auxiliary points along all the edges constructed on the previous
step, that keep the regions connected. The distance between consecutive points on an
edge is chosen to be less than the distance to any other point of a different color. After
adding the dummy points, we compute the Voronoi diagram of the set of all points and
merge the Voronoi cells that belong to the points of the same color.

Time Complexity. Now we discuss the complexity of our algorithm on an input with
n points and k clusters, assuming we can compute distances and intersections between
geometric primitives (points, line-segments, rectangles) in constant time. The sparse
visibility graph can be constructed in O(n log n) time and it contains O(n) edges [8].
Therefore, computing all pairwise distances takes O(n2) time and finding a minimum
spanning tree for one cluster takes O(n2+n logn) time. Summing over all clusters, we
get O(kn2). In the iterative force-directed heuristic we compute forces between pairs
of edges, which can take O(n2) in the worst case. Hence, the time complexity of the
force-directed heuristic is O(cn2), where c is the maximum number of iterations in the
adjustment (c = 10 in our implementation). The complexity of the edge augmentation
step is O(n3), as we may add quadratic number of edges in the greedy process. Finally,
computing the boundaries takes O(n logn) time. Therefore, the overall time complexity
is O(kn2 + n3). More details and actual running times are given in the next section.

5 Experiments

Here we compare our new algorithm, MapSets, with the existing approaches for map-
like visualizations: GMap [9], BubbleSets [6], and KelpFusion [15]. A fully functional
implementation of MapSets, GMap, and BubbleSets, together with a complete dataset,
is available in an online system at http://gmap.cs.arizona.edu.

Our first example is the senator voting graph; see Fig. 6. The vertices in the graph
are the U.S. senators in 2010 positioned according to their home-cities in the U.S. The

http://gmap.cs.arizona.edu

MapSets: Visualizing Embedded and Clustered Graphs 461

AL

AL

AL

YG

YG

YG

YG

YG

YG

YG

YG

YG
YG

BA
BA

BA BA

BA

RO

RO

RO

RO

RO

RO

RO

RO

RO RO

BG

BG

MK

MK

MK

MK

KSKS

(a) MapSets

AL

AL

AL

YG

YG

YG

YG

YG

YG

YG

YG

YG
YG

BA
BA

BA BA

BA

RO

RO

RO

RO

RO

RO

RO

RO

RO RO

BG

BG

MK

MK

MK

MK

KSKS

(b) GMap

AL

AL

AL

YG

YG

YG

YG

YG

YG

YG

YG

YG
YG

BA
BA

BA BA

BA

RO

RO

RO

RO

RO

RO

RO

RO

RO RO

BG

BG

MK

MK

MK

MK

KSKS

(c) BubbleSets (d) KelpFusion

Fig. 7. The graph of genetic similarities between 50 individuals in Europe. The layout is computed
using the principal component analysis, while the clusters correspond to the countries of origin
of the individuals.

clustering is based on the political party they represent, red for republicans and blue for
democrats. Clearly, both clustering and geographic information of the vertices are fixed
and cannot be changed. One can see that GMap produces fragmented clusters, while
BubbleSets and KelpFusion compute overlapping regions. On the other hand, the result
of MapSets is contiguous and non-overlapping, which makes it easier to analyze the
distribution of senators over the map.

The second example shows the population structure within Europe [17]. The origi-
nal points correspond to genetic data from 1, 387 Europeans (but we sampled only 50
vertices corresponding to Eastern Europe for illustration purposes). The positions of the
vertices come from the original principal component analysis, based on the similarity
matrix. As the authors point out, the PCA plot (appropriately rotated) closely matches
the geographic outlines of Europe; hence, it is undesirable to change the node positions.
The clusters are extracted independently and corresponds to the countries of origin of
the individuals. Again, only MapSets constructs non-fragmented disjoint regions; see
Fig. 7. Arguably, this is easier to analyze than the overlapping regions produced by
BubbleSets and KelpFusion.

We next analyze the performance of our ink minimization heuristic. To this end, we
utilize a collection of 9 real-world networks, that are embedded and clustered using the
GMap tool with the default setting. Table 1 gives details about the graphs and mea-
surements of our ink saving algorithm. Here, ALG shows the ratio of the total ink of
the computed trees to the total length of the minimum spanning trees computed indi-
vidually for every cluster. In other words, this is an approximation factor achieved by
our algorithm on the test cases. Although we can only guarantee factor kρ, in practice
the algorithm performs very well, always producing a solution at most 1.6 times worse
than the optimal. Our experiments indicate that ink minimization strategy often results
in aesthetically more pleasant map visualizations.

Similarly, ALGfd indicates the utilized ink after the force-directed adjustments. As
expected, the ink increases after the step, but the increase is not significant. On the other
hand, the adjustments improve the quality of the resulting regions.

462 A. Efrat et al.

Table 1. Measurements of MapSets on test cases:
ALG and ALGfd stand for the ratio between the to-
tal ink of the drawing and the total length of the mini-
mum spanning trees after the steps Tree Construction
and Force-directed Adjustment, respectively.

graph |P | k ALG ALGfd

Colors 50 6 1.002 1.012
GD 506 23 1.582 1.612
Recipes 381 15 1.356 1.502
Trade 211 8 1.101 1.259
Universities 161 8 1.366 1.443
SODA 316 11 1.204 1.296
IPL 336 11 1.337 1.414
SOCG 500 11 1.492 1.601
TARJAN 252 16 1.150 1.197
ALGO 500 5 1.547 1.650

15

10

5

0

ru
nn

in
g

tim
e,

 s
ec

Colors GD Recipes Trade Universities

graph

 Tree Construction
 Force-directed Adjustment
 Edge Augmentation

Fig. 8. Running times of the different
steps of MapSets on some of the test
cases.

The algorithm is implemented in C++. We use a machine with Intel i5 3.2GHz and
8GB RAM for measuring running time; see Fig. 8. The last two steps, Adding Auxiliary
Points and Computing Regions, are very efficient taking few milliseconds for the largest
graphs, and hence are not included in the chart. The first step, Tree Construction, is usu-
ally the most time consuming; it is more efficient for nearly contiguous clusters (e.g,
Colors) and less efficient for graphs with many fragments (e.g., GD). Although Edge
Augmentation theoretically has cubic time complexity, it is among the fastest steps in
practice, because there are usually not many edges added. Overall, our algorithm pro-
cesses all the graphs (most with hundreds of vertices) in less than a minute. This is
slower than the GMap and LineSets but comparable to BubbleSets. Since our algorithm
extensively utilizes many primitive geometric operations (e.g., testing for segment in-
tersections), using a specialized geometric library will likely improve the performance.

6 Conclusion and Future Work

We designed and implemented a new approach for visualizing embedded and clustered
graphs. Unlike existing techniques, our MapSets method always produces contiguous
and non-overlapping regions. Results of the initial evaluations seem promising. We also
presented a simple approximation algorithm for the geometric problem of ink minimiza-
tion motivated by the method. A natural future direction is to improve the approximation
factor. It would be also worthwhile to carefully evaluate different convexity measures and
select one that offers the best balance between ease of computation and visual quality
of the resulting regions. Similarly interesting would be in-depth user study comparing
map-based visualizations constructed with different approaches considered in the paper.

Acknowledgements. The work supported in part by NSF grants CCF-1115971 and
DEB 1053573. We thank the authors of [17] for the DNA dataset. The drawings of
KelpFusion are courtesy of the authors of [15].

MapSets: Visualizing Embedded and Clustered Graphs 463

References

1. Agarwal, P.K., Edelsbrunner, H., Schwarzkopf, O., Welzl, E.: Euclidean minimum spanning
trees and bichromatic closest pairs. Discrete & Comput. Geom. 6(1), 407–422 (1991)

2. Alper, B., Riche, N.H., Ramos, G., Czerwinski, M.: Design study of LineSets, a novel set
visualization technique. IEEE Trans. Vis. Comput. Graphics 17(12), 2259–2267 (2011)

3. Arora, S., Chang, K.: Approximation schemes for degree-restricted MST and red–blue sepa-
ration problems. Algorithmica 40(3), 189–210 (2004)

4. Boyack, K.W., Klavans, R., Börner, K.: Mapping the backbone of science. Scientometrics 64,
351–374 (2005)

5. Chung, F., Graham, R.: A new bound for Euclidean Steiner minimal trees. Annals of the New
York Academy of Sciences 440(1), 328–346 (1985)

6. Collins, C., Penn, G., Carpendale, S.: Bubble sets: Revealing set relations with isocontours
over existing visualizations. IEEE Trans. Vis. Comput. Graphics 15(6), 1009–1016 (2009)

7. Dinkla, K., van Kreveld, M.J., Speckmann, B., Westenberg, M.A.: Kelp diagrams: Point set
membership visualization. Comput. Graph. Forum 31(3, pt1), 875–884 (2012)

8. Dwyer, T., Nachmanson, L.: Fast edge-routing for large graphs. In: Eppstein, D., Gansner,
E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 147–158. Springer, Heidelberg (2010)

9. Hu, Y., Gansner, E.R., Kobourov, S.G.: Visualizing graphs and clusters as maps. IEEE Com-
put. Graphics and Appl. 30(6), 54–66 (2010)

10. Hurtado, F., Korman, M., van Kreveld, M., Löffler, M., Sacristán, V., Silveira, R.I., Speck-
mann, B.: Colored spanning graphs for set visualization. In: Wismath, S., Wolff, A. (eds.)
GD 2013. LNCS, vol. 8242, pp. 280–291. Springer, Heidelberg (2013)

11. Jianu, R., Rusu, A., Hu, Y., Taggart, D.: How to display group information on node-link
diagrams: An evaluation. IEEE Trans. Vis. Comput. Graphics 20(11), 1530–1541 (2014)

12. Kanizsa, G., Gerbino, W.: Convexity and symmetry in figure-ground organization. Vision
and Artifact, 25–32 (1976)

13. Kobourov, S.G., Pupyrev, S., Simonetto, P.: Visualizing graphs as maps with contiguous
regions. Comput. Graph. Forum (2014)

14. Kratochvı́l, J., Nešetřil, J.: Independent set and clique problems in intersection-defined
classes of graphs. Commentationes Math. Univ. Carolinae 31(1), 85–93 (1990)

15. Meulemans, W., Riche, N., Speckmann, B., Alper, B., Dwyer, T.: KelpFusion: A hybrid set
visualization technique. IEEE Trans. Vis. Comput. Graphics 19(11), 1846–1858 (2013)

16. Mitchell, J.S.: Geometric shortest paths and network optimization. Handbook of Computa-
tional Geometry 334, 633–702 (2000)

17. Novembre, et al.: Genes mirror geography within Europe. Nature 456(7218), 98–101 (2008)
18. Pupyrev, S., Nachmanson, L., Bereg, S., Holroyd, A.E.: Edge routing with ordered bun-

dles. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 136–147.
Springer, Heidelberg (2011)

19. Purves, D., Lotto, R.B.: Why we see what we do: An empirical theory of vision. Sinauer
Associates (2003)

20. Riche, N.H., Dwyer, T.: Untangling Euler diagrams. IEEE Trans. Vis. Comput. Graph-
ics 16(6), 1090–1099 (2010)

21. Simonetto, P., Auber, D., Archambault, D.: Fully automatic visualisation of overlapping sets.
Comput. Graph. Forum 28(3), 967–974 (2009)

22. Skupin, A., Fabrikant, S.I.: Spatialization methods: a cartographic research agenda for non-
geographic information visualization. Cartogr. Geogr. Inform. 30, 95–119 (2003)

23. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision.
Thomson-Engineering (2007)

24. Zunic, J., Rosin, P.L.: A convexity measurement for polygons. IEEE Trans. Pattern Anal.
Mach. Intell. 26, 173–182 (2002)

Increasing-Chord Graphs On Point Sets�

Hooman Reisi Dehkordi1, Fabrizio Frati2, and Joachim Gudmundsson2

1 School of Information Technologies, Monash University, Australia
hooman.dehkordi@monash.edu

2 School of Information Technologies, The University of Sydney, Australia
{fabrizio.frati,joachim.gudmundsson}@sydney.edu.au

Abstract. We tackle the problem of constructing increasing-chord graphs span-
ning point sets. We prove that, for every point set P with n points, there exists an
increasing-chord planar graph with O(n) Steiner points spanning P . Further, we
prove that, for every convex point set P with n points, there exists an increasing-
chord graph with O(n log n) edges (and with no Steiner points) spanning P .

1 Introduction

A proximity graph is a geometric graph that can be constructed from a point set by
connecting points that are “close”, for some local or global definition of proximity.
Proximity graphs constitute a topic of research in which the areas of graph drawing
and computational geometry nicely intersect. A typical graph drawing question in this
topic asks to characterize the graphs that can be represented as a certain type of prox-
imity graphs. A typical computational geometry question asks to design an algorithm
to construct a proximity graph spanning a given point set.

Euclidean minimum spanning trees and Delaunay triangulations are famous exam-
ples of proximity graphs. Given a point set P , a Euclidean minimum spanning tree
(MST) ofP is a geometric tree with P as vertex set and with minimum total edge length;
the Delaunay triangulation of P is a triangulation T such that no point in P lies inside
the circumcircle of any triangle of T . From a computational geometry perspective, given
a point set P with n points, an MST of P with maximum degree five exists [12] and can
be constructed in O(n log n) time [4]; also, the Delaunay triangulation of P exists and
can be constructed in O(n logn) time [4]. From a graph drawing perspective, every tree
with maximum degree five admits a representation as an MST [12] and it is NP-hard to
decide whether a tree with maximum degree six admits such a representation [7]; also,
characterizing the class of graphs that can be represented as Delaunay triangulations is
a deeply studied question, which still eludes a clear answer; see, e.g., [5,6]. Refer to the
excellent survey by Liotta [10] for more on proximity graphs.

While proximity graphs have constituted a frequent topic of research in graph draw-
ing and computational geometry, they gained a sudden peak in popularity even outside
these communities in 2004, when Papadimitriou et al. [14] devised an elegant routing
protocol that works effectively in all the networks that can be represented as a certain
type of proximity graphs, called greedy graphs. For two points p and q in the plane,

� Work partially supported by the Australian Research Council (grant DE140100708).

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 464–475, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Increasing-Chord Graphs On Point Sets 465

denote by pq the straight-line segment having p and q as end-points, and by |pq| the
length of pq. A geometric path (v1, . . . , vn) is greedy if |vi+1vn| < |vivn|, for every
1 ≤ i ≤ n − 1. A geometric graph G is greedy if, for every ordered pair of vertices u
and v, there exists a greedy path from u to v in G. A result related to our paper is that,
for every point set P , the Delaunay triangulation of P is a greedy graph [13].

In this paper we study self-approaching and increasing-chord graphs, that are types
of proximity graphs defined by Alamdari et al. [2]. A geometric path P = (v1, . . . , vn)
is self-approaching if, for every three points a, b, and c in this order on P from v1 to vn
(possibly a, b, and c are internal to segments of P), it holds that |bc| < |ac|. A geometric
graph G is self-approaching if, for every ordered pair of vertices u and v, G contains
a self-approaching path from u to v; also, G is increasing-chord if, for every pair of
vertices u and v, G contains a path between u and v that is self-approaching both from
u to v and from v to u; thus, an increasing-chord graph is also self-approaching. The
study of self-approaching and increasing-chord graphs is motivated by their relationship
with greedy graphs (a self-approaching graph is also greedy), and by the fact that such
graphs have a small geometric dilation, namely at most 5.3332 [9] (self-approaching
graphs) and at most 2.094 [15] (increasing-chord graphs).

Alamdari et al. showed: (i) how to test in linear time whether a path in R2 is self-
approaching; (ii) a characterization of the class of self-approaching trees; and (iii) how
to construct, for every point set P with n points in R2, an increasing-chord graph that
spans P and uses O(n) Steiner points.

In this paper we focus our attention on the problem of constructing increasing-chord
graphs spanning given point sets in R2. We prove two main results.

– We show that, for every point set P with n points, there exists an increasing-chord
planar graph with O(n) Steiner points spanning P . This answers a question of
Alamdari et al. [2] and improves upon their result (iii) above, since our increasing-
chord graphs are planar and contain increasing-chord paths between every pair of
points, including the Steiner points (which is not the case for the graphs in [2]). It is
interesting that our result is achieved by studying Gabriel triangulations, which are
proximity graphs strongly related to Delaunay triangulations (a Gabriel triangula-
tion of a point set P is a subgraph of the Delaunay triangulation of P). It has been
proved in [2] that Delaunay triangulations are not, in general, self-approaching.

– We show that, for every convex point set P with n points, there exists an increasing-
chord graph that spans P and that has O(n log n) edges (and no Steiner points).

2 Definitions and Preliminaries

A geometric graph (P, S) consists of a point set P in the plane and of a set S of straight-
line segments (called edges) between points in P . A geometric graph is planar if no two
of its edges cross. A planar geometric graph partitions the plane into connected regions
called faces. The bounded faces are internal and the unbounded face is the outer face. A
geometric planar graph is a triangulation if every internal face is delimited by a triangle
and the outer face is delimited by a convex polygon.

Let p, q, and r be points in the plane. We denote by ∠pqr the angle defined by a
clockwise rotation around q bringing pq to coincide with qr.

466 H.R. Dehkordi, F. Frati, and J. Gudmundsson

p1=p

p2

p3
pn−1
pn=q

d

Fig. 1. A convex point set that is one-sided with respect to a directed straight line d

A convex combination of a set of points P = {p1, . . . , pk} is a point
∑

αipi where∑
αi = 1 and αi ≥ 0 for each 1 ≤ i ≤ k. The convex hull HP of P is the set

of points that can be expressed as a convex combination of the points in P . A convex
point set P is such that no point is a convex combination of the others. Let P be a
convex point set and d be a directed straight line not orthogonal to any line through two
points of P . Order the points in P as their projections appear on d; then, the minimum
point and the maximum point of P with respect to d are the first and the last point in
such an ordering. We say that P is one-sided with respect to d if the minimum and the
maximum point of P with respect to d are consecutive along the border of HP . See
Fig. 1. A one-sided convex point set is a convex point set that is one-sided with respect
to some directed straight line d. The proof of our first lemma shows an algorithm to
construct an increasing-chord planar graph spanning a one-sided convex point set.

Lemma 1. Let P be any one-sided convex point set with n points. There exists an
increasing-chord planar graph spanning P with 2n− 3 edges.

Proof. Assume that P is one-sided with respect to the positive x-axis x. Such a
condition can be met after a suitable rotation of the Cartesian axes. Let {p1, p2, . . . , pn}
be the points in P , ordered as their projections appear on x.

We show by induction on n that an increasing-chord planar graph G spanning P
exists, in which all the edges on the border of HP are in G. If n = 2 then the graph
with a single edge p1p2 is an increasing-chord planar graph spanning P . Next, assume
that n > 2 and let pj be a point with largest y-coordinate in P (possibly j = 1 or
j = n). Point set Q = P \ {pj} is convex, one-sided with respect to x, and has n− 1
points. By induction, there exists an increasing-chord planar graph G′ spanning Q in
which all the edges on the border of HQ are in G′. Let G be the graph obtained by
adding vertex pj and edges pj−1pj and pjpj+1 to G′. We have that G is planar, given
that G′ is planar and that edges pj−1pj and pjpj+1 are on the border of HP . Further, all
the edges on the border of HP are in G. Moreover,G contains an increasing-chord path
between every pair of points in Q, by induction; also, G contains an increasing-chord
path between pj and every point pi in Q, as one of the two paths on the border of HP

connecting pj and pi is both x- and y-monotone, and hence increasing-chord by the
results in [2]. Finally, G is a maximal outerplanar graph, hence it has 2n− 3 edges. �

The Gabriel graph of a point set P is the geometric graph that has an edge pq be-
tween two points p and q if and only if the closed disk whose diameter is pq contains
no point of P \ {p, q} in its interior or on its boundary. A Gabriel triangulation is a tri-
angulation that is the Gabriel graph of its point set P . We say that a point set P admits

Increasing-Chord Graphs On Point Sets 467

a Gabriel triangulation if the Gabriel graph of P is a triangulation. A triangulation is a
Gabriel triangulation if and only if every angle of a triangle delimiting an internal face
is acute [8]. See [8,10,11] for more properties about Gabriel graphs.

In Section 3 we will prove that every Gabriel triangulation is increasing-chord. A
weaker version of the converse is also true, as proved in the following.

Lemma 2. Let P be a set of points and let G(P, S) be an increasing-chord graph
spanning P . Then all the edges of the Gabriel graph of P are in S.

Proof. Suppose, for a contradiction, that there exists an increasing-chord graph
G(P, S) and an edge uv of the Gabriel graph of P such that uv /∈ S. Then, con-
sider any increasing-chord path P = (u = w1, w2, . . . , wk = v) in G. Since uv /∈ S, it
follows that k > 2. Assume w.l.o.g. that w1, w2, and wk appear in this clockwise order
on the boundary of triangle (w1, w2, wk). Since the closed disk with diameter uv does
not contain any point in its interior or on its boundary, it follows that ∠wkw2w1 < 90◦.
If ∠w2w1wk ≥ 90◦, then |w1wk| < |w2wk|, a contradiction to the assumption that
P is increasing-chord. If ∠w2w1wk < 90◦, then the altitude of triangle (w1, w2, wk)
incident to wk hits w1w2 in a point h. Hence, |hwk| < |w2wk|, a contradiction to the
assumption that P is increasing-chord which proves the lemma. �

3 Planar Increasing-Chord Graphs with Few Steiner Points

We show that, for any point set P , one can construct an increasing-chord planar graph
G(P ′, S) such that P ⊆ P ′ and |P ′| ∈ O(|P |). Our result has two ingredients. The first
one is that Gabriel triangulations are increasing-chord graphs. The second one is a result
of Bern et al. [3] stating that, for any point set P , there exists a point set P ′ such that
P ⊆ P ′, |P ′| ∈ O(|P |), and P ′ admits a Gabriel triangulation. Combining these two
facts proves our main result. The proof that Gabriel triangulations are increasing-chord
graphs consists of two parts. In the first one, we prove that geometric graphs having a
θ-path between every pair of points are increasing-chord. In the second one, we prove
that in every Gabriel triangulation there exists a θ-path between every pair of points.

We introduce some definitions. The slope of a straight-line segment uv is the angle
spanned by a clockwise rotation around u that brings uv to coincide with the positive
x-axis. Thus, if θ is the slope of uv, then θ + k · 360◦ is also the slope of uv, ∀k ∈ Z.
A straight-line segment uv is a θ-edge if its slope is in the interval [θ − 45◦; θ + 45◦].
Also, a geometric path P = (p1, . . . , pk) is a θ-path from p1 to pk if pipi+1 is a θ-edge,
for every 1 ≤ i ≤ k − 1. Consider a point a on a θ-path P from p1 to pk. Then, the
subpath Pa of P from a to pk is also a θ-path. Moreover, denote by Wθ(a) the closed
wedge with an angle of 90◦ incident to a and whose delimiting lines have slope θ− 45◦

and θ + 45◦; then Pa is contained in Wθ(a) (see Fig. 2). We have the following:

Lemma 3. Let P be a θ-path from p1 to pk. Then, P is increasing-chord.

Proof. Lemma 3 in [9] states the following (see also [1]): A curve C with end-points
p and q is self-approaching from p to q if and only if, for every point a on C, there
exists a closed wedge with an angle of 90◦ incident to a and containing the part of C

468 H.R. Dehkordi, F. Frati, and J. Gudmundsson

a

pk
p1 Wθ(a)

Fig. 2. Wedge Wθ(a) contains path Pa

between a and q. By definition of θ-path, for every point a on P , the closed wedge
Wθ(a) with an angle of 90◦ incident to a and whose delimiting lines have slope θ−45◦

and θ+45◦ contains the subpath Pa of P from a to pk. Hence, by Lemma 3 in [9], P is
self-approaching from p1 to pk. An analogous proof shows that P is self-approaching
from pk to p1, given that P is a (θ + 180◦)-path from pk to p1. �

We now prove that Gabriel triangulations contain θ-paths.

Lemma 4. Let G be a Gabriel triangulation on a point set P . For every two points
s, t ∈ P , there exists an angle θ such that G contains a θ-path from s to t.

Proof. Consider any two points s, t ∈ P . Clockwise rotate G of an angle φ so that
y(s) = y(t) and x(s) < x(t). Observe that, if there exists a θ-path from s to t after the
rotation, then there exists a (θ + φ)-path from s to t before the rotation.

A θ-path (p1, . . . , pk) in G is maximal if there is no z ∈ P such that pkz is a θ-
edge. For every maximal θ-path P = (p1, . . . , pk) in G, pk lies on the border of HP .
Namely, assume the converse, for a contradiction. Since G is a Gabriel triangulation, the
angle between any two consecutive edges incident to an internal vertex of G is smaller
than 90◦, thus there is a θ-edge incident to pk. This contradicts the maximality of P .
A maximal θ-path (s = p1, . . . , pk) is high if either (a) y(pk) > y(t) and x(pk) <
x(t), or (b) pipi+1 intersects the vertical line through t at a point above t, for some
1 ≤ i ≤ k − 1. Symmetrically, a maximal θ-path (s = p1, . . . , pk) is low if either (a)
y(pk) < y(t) and x(pk) < x(t), or (b) pipi+1 intersects the vertical line through t at a
point below t, for some 1 ≤ i ≤ k− 1. High and low (θ+180◦)-paths starting at t can
be defined analogously. The proof of the lemma consists of two main claims.

Claim 1. If a maximal θ-path Ps starting at s and a maximal (θ+180◦)-path Pt starting
at t exist such that Ps and Pt are both high or both low, for some −45◦ ≤ θ ≤ 45◦,
then there exists a θ-path in G from s to t.

Claim 2. For some −45◦ ≤ θ ≤ 45◦, there exist a maximal θ-path Ps starting at s and
a maximal (θ + 180◦)-path Pt starting at t that are both high or both low.

Observe that Claims 1 and 2 imply the lemma.
We now prove Claim 1. Suppose that G contains a maximal high θ-path Ps starting

at s and a maximal high (θ + 180◦)-path Pt starting at t, for some −45◦ ≤ θ ≤ 45◦.
If Ps and Pt share a vertex v ∈ P , then the subpath of Ps from s to v and the subpath
of Pt from v to t form a θ-path in G from s to t. Thus, it suffices to show that Ps

and Pt share a vertex. For a contradiction assume the converse. Let ps and pt be the
end-vertices of Ps and Pt different from s and t, respectively. Recall that ps and pt

Increasing-Chord Graphs On Point Sets 469

s t

qs
qt

rt

Pt

Pt
Ps

ls lt

pt

rs

s t

qs
qt

rt

Pt

Ps

ls lt

pt
ps

s t

qs
qt

PtPs

ls lt
ps=a1

pt=aha2

(a) (b) (c)

Fig. 3. Paths Ps and Pt intersect if: (a) x(ps) ≥ x(t), (b) x(s) < x(pt) < x(ps) < x(t), and
(c) x(s) < x(ps) < x(pt) < x(t)

lie on the border of HP . Denote by ls and lt the vertical half-lines starting at s and t,
respectively, and directed towards increasing y-coordinates; also, denote by qs and qt
the intersection points of ls and lt with the border of HP , respectively. Finally, denote
by Q the curve obtained by clockwise following the border of HP from qs to qt.

Assume that x(ps) ≥ x(t), as in Fig. 3(a). Path Ps starts at s and passes through
a point rs on lt (possibly rs = qt), given that x(ps) ≥ x(t). Path Pt starts at t and
either passes through a point rt on ls, or ends at a point pt on Q, depending on whether
x(pt) ≤ x(s) or x(pt) > x(s), respectively. Since Ps is x-monotone and lies in HP ,
it follows that rt and pt are above or on Ps; also, t is below Ps given that Ps is a high
path. It follows Ps and Pt intersect, hence they share a vertex given that G is planar.

Analogously, if x(pt) ≤ x(s), then Ps and Pt share a vertex.
If x(pt) = x(ps), then Ps ∪ Pt is a θ-path from s to t.
Next, if x(s) < x(pt) < x(ps) < x(t), as in Fig. 3(b), then the end-points of Ps and

Pt alternate along the boundary of the region R that is the intersection of HP , of the
half-plane to the right of ls, and of the half-plane to the left of lt. Since Ps and Pt are
x-monotone, they lie in R, thus they intersect, and hence they share a vertex.

Finally, assume that x(s) < x(ps) < x(pt) < x(t), as in Fig. 3(c). Let a1, . . . , ah be
the clockwise order of the points along Q, starting at ps = a1 and ending at ah = pt.
By the assumption x(ps) < x(pt) we have h ≥ 2. We prove that a1a2 is a θ-edge.
Suppose, for a contradiction, that a1a2 is not a θ-edge. Since the slope of a1a2 is larger
than −90◦ and smaller than 90◦, it is either larger than θ + 45◦ and smaller than 90◦,
or it is larger than −90◦ and smaller than θ − 45◦. First, assume that the slope of a1a2
is larger than θ + 45◦ and smaller than 90◦, as in Fig. 4(a). Since the slope of sa1 is
between θ − 45◦ and θ + 45◦, it follows that a1 is below the line composed of sa2 and
a2t, which contradicts the assumption that a1 is on Q. Second, if the slope of a1a2 is
larger than −90◦ and smaller than θ − 45◦, then we distinguish two further cases. In
the first case, represented in Fig. 4(b), the slope of a1t is larger than θ − 45◦, hence a2
is below the line composed of sa1 and a1t, which contradicts the assumption that a2
is on Q. In the second case, represented in Fig. 4(c), the slope of a1t is in the interval
[−90◦; θ − 45◦]. It follows that the slope of ta1 is in the interval [90◦; θ + 135◦]; since
the slope of tah is smaller than the one of ta1, we have that Pt is not a (θ + 180◦)-
path. This contradiction proves that a1a2 is a θ-edge. However, this contradicts the
assumption that Ps is a maximal θ-path, and hence concludes the proof of Claim 1.

We now prove Claim 2. First, we prove that, for every θ in the interval [−45◦; 45◦],
there exists a maximal θ-path starting at s that is low or high. Indeed, it suffices to prove

470 H.R. Dehkordi, F. Frati, and J. Gudmundsson

s t

ls lt
a2

a1

θ s t

ls lt

a2

a1

θ s
t

ls lt

a2

a1

θ

ah

(a) (b) (c)

Fig. 4. Illustration for the proof that a1a2 is a θ-edge

that there exists a θ-edge incident to s, as such an edge is also a θ-path starting at s, and
the existence of a θ-path starting at s implies the existence of a maximal θ-path starting
at s. Consider a straight-line segment eθ that is the intersection of a directed half-line
incident to s with slope θ and of a disk of arbitrarily small radius centered at s. If eθ is
internal to HP , then consider the two edges e1 and e2 of G that are encountered when
counter-clockwise and clockwise rotating eθ around s, respectively. Then, e1 or e2 is
a θ-edge, as the angle spanned by a clockwise rotation bringing e1 to coincide with
e2 is smaller than 90◦, given that G is a Gabriel triangulation, and eθ is encountered
during such a rotation. If eθ is outside HP , which might happen if s on the boundary
of HP , then assume that the slope of eθ is in the interval [0◦; 45◦] (the case in which
the slope of eθ is in the interval [−45◦; 0◦] is analogous). Then, the angle spanned by a
clockwise rotation bringing eθ to coincide with st is at most 45◦. Since st is in interior
or on the boundary of HP , an edge e1 of G is encountered during such a rotation, hence
e1 is a θ-edge. An analogous proof shows that, for every θ in the interval [−45◦; 45◦],
there exists a maximal (θ + 180◦)-path starting at t that is low or high.

Second, we prove that, for some θ ∈ [−45◦; 45◦], there exist a maximal low θ-path
and a maximal high θ-path both starting at s. All the maximal (−45◦)-paths (all the
maximal (45◦)-paths) starting at s are low (resp. high), given that every edge on these
paths has slope in the interval [−90◦; 0◦] (resp. [0◦; 90◦]). Thus, let θ be the smallest
constant in the interval [−45◦; 45◦] such that a maximal high θ-path exists. We prove
that there also exists a maximal low θ-path starting at s. Consider an arbitrarily small
ε > 0. By assumption, there exists no high (θ − ε)-path. Hence, from the previous
argument there exists a low (θ − ε)-path P . If ε is sufficiently small, then no edge of P
has slope in the interval [θ − 45◦ − ε; θ − 45◦). Thus every edge of P has slope in the
interval [θ − 45◦; θ + 45◦ − ε), hence P is a maximal low θ-path starting at s.

Since there exist a maximal high θ-path starting at s, a maximal low θ-path starting
at s, and a maximal (θ+180◦)-path starting at t that is low or high, it follows that there
exist a maximal θ-path Ps starting at s and a maximal (θ + 180◦)-path Pt starting at t
that are both high or both low. This proves Claim 2 and hence the lemma. �

Lemma 3 and Lemma 4 immediately imply the following.

Corollary 1. Any Gabriel triangulation is increasing-chord.

We are now ready to state the main result of this section.

Theorem 1. Let P be a point set with n points. One can construct in O(n logn) time
an increasing-chord planar graph G(P ′, S) such that P ⊆ P ′ and |P ′| ∈ O(n).

Increasing-Chord Graphs On Point Sets 471

d

pa(d)

pb(d)
P1(d)

P2(d)

Fig. 5. Subsets P1(d) and P2(d) of a point set P determined by a directed straight line d

Proof. Bern, Eppstein, and Gilbert [3] proved that, for any point set P , there exists a
point set P ′ with P ⊆ P ′ and |P ′| ∈ O(n) such that P ′ admits a Gabriel triangula-
tion G. Both P ′ and G can be computed in O(n logn) time [3]. By Corollary 1, G is
increasing-chord, which concludes the proof. �

We remark that o(|P |) Steiner points are not always enough to augment a point set P
to a point set that admits a Gabriel triangulation. Namely, consider any point set B with
O(1) points that admits no Gabriel triangulation. Construct a point set P out of |P |/|B|
copies of B placed “far apart” from each other, so that any triangle with two points in
different copies of B is obtuse. Then, a Steiner point has to be added inside the convex
hull of each copy of B to obtain a point set that admits a Gabriel triangulation.

4 Increasing-Chord Convex Graphs with Few Edges

In this section we prove the following theorem;

Theorem 2. For every convex point set P with n points, there exists an increasing-
chord geometric graph G(P, S) such that |S| ∈ O(n log n).

The main idea behind the proof of Theorem 2 is that any convex point set P can
be decomposed into some one-sided convex point sets P1, . . . , Pk (which by Lemma 1
admit increasing-chord spanning graphs with linearly many edges) in such a way that
every two points of P are part of some Pi and that

∑
|Pi| is small. In order to perform

such a decomposition, we introduce the concept of balanced (d1,d2)-partition.
Let P be a convex point set and let d be a directed straight line not orthogonal to

any line through two points of P . See Fig. 5. Let pa(d) and pb(d) be the minimum and
maximum point of P with respect to d, respectively. Let P1(d) be composed of those
points in P that are encountered when clockwise walking along the boundary of HP

from pa(d) to pb(d), where pa(d) ∈ P1(d) and pb(d) /∈ P1(d). Analogously, let P2(d)
be composed of those points in P that are encountered when clockwise walking along
the boundary of HP from pb(d) to pa(d), where pb(d) ∈ P2(d) and pa(d) /∈ P2(d).

Let d1 and d2 be two directed straight lines not orthogonal to any line through two
points of P , where the clockwise rotation that brings d1 to coincide with d2 is at most
180◦. The (d1,d2)-partition of P partitions P into subsets Pa = P1(d1) ∩ P1(d2),

472 H.R. Dehkordi, F. Frati, and J. Gudmundsson

d2
d1

q1

qj

qj+1

ql
rk

rk+1

r1

rmPb

Pa

Pd

Pc

qj+1

qj+2

qj

d2

rk

rk+1

rk+2

d2

(a) (b)

Fig. 6. (a) Sets Pa, Pb, Pc, and Pd at a certain time instant during the rotation of d2. (b) The slope
of d2 with respect to the slopes of the lines orthogonal to qjqj+1, to qj+1qj+2, to rkrk+1, and to
rk+1rk+2.

Pb = P1(d1) ∩ P2(d2), Pc = P2(d1) ∩ P1(d2), and Pd = P2(d1) ∩ P2(d2). Note
that every point in P is contained in one of Pa, Pb, Pc, and Pd. A (d1,d2)-partition
of P is balanced if |Pa| + |Pd| ≤ |P |

2 + 1 and |Pb| + |Pc| ≤ |P |
2 + 1. We now argue

that, for every point set P , a balanced (d1,d2)-partition of P always exists, even if d1

is arbitrarily prescribed.

Lemma 5. Let P be a convex point set and let d1 be a directed straight line not or-
thogonal to any line through two points of P . Then, there exists a directed straight line
d2 that is not orthogonal to any line through two points of P such that the (d1,d2)-
partition of P is balanced.

Proof. Denote by q1 = pa(d1), q2, . . . , ql, ql+1 = pb(d1) the points of P encoun-
tered when clockwise walking on the boundary of HP from pa(d1) to pb(d1). Also,
denote by r1 = pb(d1), r2, . . . , rm, rm+1 = pa(d1) the points of P encountered when
clockwise walking on the boundary of HP from pb(d1) to pa(d1).

Initialize d2 to be a directed straight line coincident with d1. When d2 = d1, we
have Pa = {q1, q2, . . . , ql}, Pd = {r1, r2, . . . , rm}, Pb = ∅, and Pc = ∅. We now
clockwise rotate d2 until it is opposite to d1 (that is, parallel and pointing in the op-
posite direction). As we rotate d2, sets P1(d2) and P2(d2) change, hence sets Pa, Pb,
Pc, and Pd change as well. When d2 is opposite to d1, we have Pa = ∅, Pd = ∅,
Pb = {q1, q2, . . . , ql}, and Pc = {r1, r2, . . . , rm}. We will argue that there is a mo-
ment during such a rotation of d2 in which the corresponding (d1,d2)-partition of P is
balanced. Assume that at any time instant during the rotation of d2 the following hold
(see Figs. 6(a)–(b)):

– Pb = {q1, q2, . . . , qj} (possibly Pb is empty);
– Pa = {qj+1, qj+2, . . . , ql} (possibly Pa is empty);
– Pc = {r1, r2, . . . , rk} (possibly Pc is empty);
– Pd = {rk+1, rk+2, . . . , rm} (possibly Pd is empty); and
– qj+1 and rk+1 are the minimum and maximum point of P w.r.t. d2, respectively.

The assumption is indeed true when d2 starts moving, with j = 0 and k = 0.

Increasing-Chord Graphs On Point Sets 473

As we keep on clockwise rotating d2, at a certain moment d2 becomes orthogonal
to qj+1qj+2 or to rk+1rk+2 (or to both if qj+1qj+2 and rk+1rk+2 are parallel). Thus,
as we keep on clockwise rotating d2, sets Pa, Pb, Pc, and Pd change. Namely:

If d2 becomes orthogonal first to qj+1qj+2 and then to rk+1rk+2, then as d2 rotates
clockwise after the position in which it is orthogonal to qj+1qj+2, we have

– Pb = {q1, q2, . . . , qj , qj+1};
– Pa = {qj+2, qj+3, . . . , ql} (possibly Pa is empty);
– Pc = {r1, r2, . . . , rk} (possibly Pc is empty);
– Pd = {rk+1, rk+2, . . . , rm} (possibly Pd is empty); and
– qj+2 and rk+1 are the minimum and maximum point of P w.r.t. d2, respectively.

If d2 becomes orthogonal first to rk+1rk+2 and then to qj+1qj+2, then as d2 rotates
clockwise after the position in which it is orthogonal to rk+1rk+2, we have that Pa and
Pb stay unchanged, that rk+1 passes from Pd to Pc, and that qj+1 and rk+2 are the
minimum and maximum point of P w.r.t. d2, respectively.

If d2 becomes orthogonal to qj+1qj+2 and rk+1rk+2 simultaneously, then as d2

rotates clockwise after the position in which it is orthogonal to qj+1qj+2, we have that
qj+1 passes from Pa to Pb, that rk+1 passes from Pd to Pc, and that qj+2 and rk+2 are
the minimum and maximum point of P w.r.t. d2, respectively.

Observe that:

1. whenever sets Pa, Pb, Pc, and Pd change, we have that |Pa|+ |Pd| and |Pb|+ |Pc|
change at most by two;

2. when d2 starts rotating we have that |Pa|+ |Pd| = |P |, and when d2 stops rotating
we have that |Pa|+ |Pd| = 0;

3. when d2 starts rotating we have that |Pb| + |Pc| = 0, and when d2 stops rotating
we have that |Pb|+ |Pc| = |P |; and

4. |Pa|+ |Pb|+ |Pc|+ |Pd| = |P | holds at any time instant.

By continuity, there is a time instant in which |Pa|+|Pd| =
|P |/2� and |Pb|+|Pc| =
�|P |/2�, or in which |Pa| + |Pd| =
|P |/2�+ 1 and |Pb|+ |Pc| = �|P |/2� − 1. This
completes the proof of the lemma. �

We now show how to use Lemma 5 in order to prove Theorem 2.
Let P be any point set. Assume that no two points of P have the same y-coordinate.

Such a condition is easily met after rotating the Cartesian axes. Denote by l a vertical
straight line directed towards increasing y-coordinates. Each of P1(l) and P2(l) is con-
vex and one-sided with respect to l. By Lemma 1, there exist increasing-chord graphs
G1 = (P1(l), S1) and G2 = (P2(l), S2) with |S1| < 2|P1(l)| and |S2| < 2|P2(l)|.
Then, graph G(P, S1∪S2) has less than 2(|P1(l)|+ |P2(l)|) = 2|P | edges and contains
an increasing-chord path between every pair of vertices in P1(l) and between every pair
of vertices in P2(l). However, G does not have increasing-chord paths between any pair
(a, b) of vertices such that a ∈ P1(l) and b ∈ P2(l).

We now present and prove the following claim. Consider a convex point set Q and
a directed straight line d1 not orthogonal to any line through two points of Q. Then,
there exists a geometric graph H(Q,R) that contains an increasing-chord path between
every point in Q1(d1) and every point in Q2(d1), such that |R| ∈ O(|Q| log |Q|).

474 H.R. Dehkordi, F. Frati, and J. Gudmundsson

The application of the claim with Q = P and d1 = l provides a graph H(P,R)
that contains an increasing-chord path between every pair (a, b) of vertices such that
a ∈ P1(l) and b ∈ P2(l). Thus, the union of G and H is an increasing-chord graph
with O(|P | log |P |) edges spanning P . Therefore, the above claim implies Theorem 2.

We show an inductive algorithm to construct H . Let f(Q,d1) be the number of
edges that H has as a result of the application of our algorithm on a point set Q and
a directed straight-line d1. Also, let f(n) = max{f(Q,d1)}, where the maximum is
among all point sets Q with n = |Q| points and among all the directed straight-lines d1

that are not orthogonal to any line through two points of Q.
Let Q be any convex point set with n points and let d1 be any directed straight

line not orthogonal to any line through two points of Q. By Lemma 5, there exists a
directed straight line not orthogonal to any line through two points of Q and such that
the (d1,d2)-partition of Q is balanced.

Let Qa = Q1(d1)∩Q1(d2), let Qb = Q1(d1)∩Q2(d2), let Qc = Q2(d1)∩Q1(d2),
and let Qd = Q2(d1) ∩Q2(d2).

Point set Qa ∪ Qc is convex and one-sided with respect to d2. By Lemma 1 there
exists an increasing-chord graph H1(Qa ∪Qc, R1) with |R1| < 2(|Qa|+ |Qc|) edges.
Analogously, by Lemma 1 there exists an increasing-chord graph H2(Qb ∪ Qd, R2)
with |R2| < 2(|Qb|+ |Qd|) edges.

Hence, there exists a graph H3(Q,R1 ∪ R2) with |R1 ∪ R2| < 2(|Qa| + |Qc| +
|Qb| + |Qd|) = 2|Q| = 2n edges containing an increasing-chord path between every
point in Qa and every point in Qc, and between every point in Qb and every point in
Qd. However, G does not have an increasing-chord path between any point in Qa and
any point in Qd, and does not have an increasing-chord path between any point in Qb

and any point in Qc.
By Lemma 5, it holds that |Qa|+|Qd| ≤ n

2+1 and |Qb|+|Qd| ≤ n
2+1. By definition,

we have f(Qa ∪ Qd,d1) ≤ f(|Qa| + |Qd|) ≤ f(n2 + 1). Analogously, it holds that
f(Qb ∪ Qc,d1) ≤ f(|Qb| + |Qc|) ≤ f(n2 + 1). Hence, f(n) ≤ 2n + 2f(n2 + 1) ∈
O(n log n). This proves the claim and hence Theorem 2.

5 Conclusions

We considered the problem of constructing increasing-chord graphs spanning point sets.
We proved that, for every point set P , there exists a planar increasing-chord graph
G(P ′, S) with P ⊆ P ′ and |P ′| ∈ O(|P |). We also proved that, for every convex point
set P , there exists an increasing-chord graph G(P, S) with |S| ∈ O(|P | log |P |).

Despite our research efforts, the main question on this topic remains open:

Problem 1. Is it true that, for every (convex) point set P , there exists an increasing-
chord planar graph G(P, S)?

One of the directions we took in order to tackle this problem is to assume that the
points in P lie on a constant number of straight lines. While a simple modification of the
proof of Lemma 1 allows us to prove that an increasing-chord planar graph always exists
spanning a set of points lying on two straight lines, it is surprising and disheartening
that we could not prove a similar result for sets of points lying on three straight lines.

Increasing-Chord Graphs On Point Sets 475

The main difficulty seems to lie in the construction of planar increasing-chord graphs
spanning sets of points lying on the boundary of an acute triangle.

Gabriel graphs naturally generalize to higher dimensions, where empty balls replace
empty disks. In Section 3 we showed that, for points in R2, every Gabriel triangulation
is increasing-chord. Can this result be generalized to higher dimensions?

Problem 2. Is it true that, for every point set P in Rd, any Gabriel triangulation of P is
increasing-chord?

Finally, it would be interesting to understand if increasing-chord graphs with few
edges can be constructed for any (possibly non-convex) point set:

Problem 3. Is it true that, for every point set P , there exists an increasing-chord graph
G(P, S) with |S| ∈ o(|P |2)?

References

1. Aichholzer, O., Aurenhammer, F., Icking, C., Klein, R., Langetepe, E., Rote, G.: Generalized
self-approaching curves. Discr. Appl. Math. 109(1-2), 3–24 (2001)

2. Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching graphs. In:
Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 260–271. Springer, Hei-
delberg (2013)

3. Bern, M.W., Eppstein, D., Gilbert, J.R.: Provably good mesh generation. J. Comput. Syst.
Sci. 48(3), 384–409 (1994)

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algo-
rithms and Applications, 3rd edn. Springer, Heidelberg (2008)

5. Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete Math. 9(3),
349–359 (1996)

6. Dillencourt, M.B., Smith, W.D.: Graph-theoretical conditions for inscribability and Delaunay
realizability. Discrete Mathematics 161(1-3), 63–77 (1996)

7. Eades, P., Whitesides, S.: The realization problem for Euclidean minimum spanning trees is
NP-hard. Algorithmica 16(1), 60–82 (1996)

8. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Sys-
tematic Biology 18, 259–278 (1969)

9. Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Camb. Phil.
Soc. 125(3), 441–453 (1999)

10. Liotta, G.: Chapter 4 of Handbook of Graph Drawing. CRC Press (2014); Tamassia, R. (ed.)
11. Matula, D.W., Sokal, R.R.: Properties of Gabriel graphs relevant to geographic variation

research and clustering of points in the plane. Geographical Analysis 12(3), 205–222 (1980)
12. Monma, C.L., Suri, S.: Transitions in geometric minimum spanning trees. Discrete & Com-

putational Geometry 8, 265–293 (1992)
13. Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theoretical

Computer Science 344(1), 3–14 (2005)
14. Rao, A., Papadimitriou, C.H., Shenker, S., Stoica, I.: Geographic routing without location

information. In: Johnson, D., Joseph, A., Vaidya, N. (eds.) MOBICOM 2003, pp. 96–108
(2003)

15. Rote, G.: Curves with increasing chords. Math. Proc. Camb. Phil. Soc. 115(1), 1–12 (1994)

On Self-Approaching and Increasing-Chord Drawings
of 3-Connected Planar Graphs

Martin Nöllenburg, Roman Prutkin, and Ignaz Rutter

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany

Abstract. An st-path in a drawing of a graph is self-approaching if during a
traversal of the corresponding curve from s to any point t′ on the curve the dis-
tance to t′ is non-increasing. A path has increasing chords if it is self-approaching
in both directions. A drawing is self-approaching (increasing-chord) if any pair
of vertices is connected by a self-approaching (increasing-chord) path.

We study self-approaching and increasing-chord drawings of triangulations and
3-connected planar graphs. We show that in the Euclidean plane, triangulations
admit increasing-chord drawings, and for planar 3-trees we can ensure planarity.
Moreover, we give a binary cactus that does not admit a self-approaching drawing.
Finally, we show that 3-connected planar graphs admit increasing-chord drawings
in the hyperbolic plane and characterize the trees that admit such drawings.

1 Introduction

Finding a path between two vertices is one of the most fundamental tasks users want
to solve when considering graph drawings. Empirical studies have shown that users
perform better in path-finding tasks if the drawings exhibit a strong geodesic-path ten-
dency [10,17]. Not surprisingly, graph drawings in which a path with certain properties
exists between every pair of vertices have become a popular research topic. Over the
last years a number of different drawing conventions implementing the notion of strong
geodesic-path tendency have been suggested, namely greedy drawings [18], (strongly)
monotone drawings [2], and self-approaching and increasing-chord drawings [1]. Note
that throughout this paper, all drawings are straight-line and vertices are mapped to
distinct points.

The notion of greedy drawings came first and was introduced by Rao et al. [18].
Motivated by greedy routing schemes, e.g., for sensor networks, one seeks a drawing,
where for every pair of vertices s and t there exists an st-path, along which the dis-
tances to t decrease in every vertex. This ensures that greedily sending a message to
a vertex that is closer to the destination guarantees delivery. Papadimitriou and Rata-
jczak conjectured that every 3-connected planar graph admits a greedy embedding into
the Euclidean plane [16]. This conjecture has been proved independently by Leighton
and Moitra [13] and Angelini et al. [5]. Kleinberg [12] showed that every connected
graph has a greedy drawing in the hyperbolic plane. Eppstein and Goodrich [7] showed
how to construct such an embedding, in which the coordinates of each vertex are repre-
sented using only O(log n) bits, and Goodrich and Strash [9] provided a corresponding
succinct representation for greedy embeddings of 3-connected planar graphs in R2. An-
gelini et al. [3] showed that some graphs require exponential area for a greedy drawing

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 476–487, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

On Self-Approaching and Increasing-Chord Drawings of 3-Connected Planar Graphs 477

in R2. Wang and He [21] used a custom distance metric to construct planar, convex
and succinct greedy embeddings of 3-connected planar graphs using Schnyder realiz-
ers [20]. Nöllenburg and Prutkin [14] characterized trees admitting a Euclidean greedy
embedding. However, a number of interesting questions remain open, e.g., whether ev-
ery 3-connected planar graph admits a planar and convex Euclidean greedy embedding
(strong Papadimitriou-Ratajczak conjecture [16]). Regarding planar greedy drawings of
triangulations, the only known result is an existential proof by Dhandapani [6].

While getting closer to the destination, a greedy path can make numerous turns and
may even look like a spiral, which hardly matches the intuitive notion of geodesic-path
tendency. To overcome this, Angelini et al. [2] introduced monotone drawings, where
one requires that for every pair of vertices s and t there exists a monotone path, i.e., a
path that is monotone with respect to some direction. Ideally, the monotonicity direction
should be

#»
st. This property is called strong monotonicity. Angelini et al. showed that

biconnected planar graphs admit monotone drawings [2] and that plane graphs admit
monotone drawings with few bends [4]. The existence of strongly monotone planar
drawings remains open, even for triangulations.

Both greedy and monotone paths may have arbitrarily large detour, i.e., the ratio of
the path length and the distance of the endpoints can, in general, not be bounded by
a constant. Motivated by this fact, Alamdari et al. [1] recently initiated the study of
self-approaching graph drawings. Self-approaching curves, introduced by Icking [11],
are curves where for any point t′ on the curve, the distance to t′ decreases continuously
while traversing the curve from the start to t′. Equivalently, a curve is self-approaching
if, for any three points a, b, c in this order along the curve, it is dist(a, c) ≥ dist(b, c),
where dist denotes the Euclidean distance. An even stricter requirement are so-called
increasing-chord curves, which are curves that are self-approaching in both directions.
The name is motivated by the characterization of such curves, which states that a curve
has increasing chords if and only if for any four distinct points a, b, c, d in that order,
it is dist(b, c) ≤ dist(a, d). Self-approaching curves have detour at most 5.333 [11]
and increasing-chord curves have detour at most 2.094 [19]. Alamdari et al. [1] studied
the problem of recognizing whether a given graph drawing is self-approaching as well
as connecting given points to a self-approaching drawing. They also gave a complete
characterization of trees admitting self-approaching drawings.

We note that every increasing chord drawing is self-approaching and strongly mono-
tone [1]. The converse is not true. A self-approaching drawing is greedy, but not
necesserily monotone, and a greedy drawing is generally neither self-approaching nor
monotone. For trees, the notions of self-approaching and increasing-chord drawing co-
incide.

Contribution. We obtain the following results on constructing self-approaching or
increasing-chord drawings.

1. We show that every triangulation has an increasing-chord drawing (answering an
open question of Alamdari et al. [1]) and construct a binary cactus that does not admit
a self-approaching drawing (Sect. 3). The latter is a notable difference to greedy draw-
ings since both constructions of greedy drawings for 3-connected planar graphs [5, 13]
essentially show that every binary cactus has a greedy drawing.

478 M. Nöllenburg, R. Prutkin, and I. Rutter

2. We show how to construct plane increasing-chord drawings for planar 3-trees (a
special class of triangulations) using Schnyder realizers (Sect. 4). To the best of our
knowledge, this is the first construction for this graph class, even for greedy and strongly
monotone plane drawings, which addresses an open question of Angelini et al. [2].
3. We show that, similarly to the greedy case, the hyperbolic plane H2 allows repre-
senting a broader class of graphs than R

2 (Sect. 5). We prove that a tree has a self-
approaching or increasing-chord drawing in H2 if and only if it either has maximum
degree 3 or is a subdivision of K1,4 (this is not the case in R2; see the characterization
by Alamdari et al. [1]), implying every 3-connected planar graph has an increasing-
chord drawing. We also show how to construct planar increasing-chord drawings of
binary cactuses in H2.

2 Preliminaries

For points a, b, c, d ∈ R2, let ray(a, b) denote the ray with origin a and direction
#»

ab

and ray(a,
#»

bc) the ray with origin a and direction
#»

bc. Let dir(ab) be the vector
#»

ab nor-
malized to unit length. Let ∠(#»

ab,
#»

cd) denote the smaller angle formed by the two vectors
#»

ab and
#»

cd. For an angle α ∈ [0, 2π], let Rα denote the rotation matrix
(
cosα − sinα
sinα cosα

)
.

For vectors #»v1,
#»v2 with dir(#»v2) = Rα ·dir(#»v1), α ∈ [0, 2π), we write ∠ccw(

#»v1,
#»v2) :=

α. Further, let [#»v1,
#»v2] denote the cone of directions { #»v | dir(#»v) = Rβ · dir(#»v1), β ∈

[0, α]}. Let |[#»v1,
#»v2]| := α be its size. For a set of directions D, let D denote a minimum

cone of directions containing D, and let |D| = |D|. Note that if |D| < 180◦, D is
unique.

We reuse some notation from the work of Alamdari et al. [1]. For points p, q ∈
R2, p �= q, let l+pq denote the halfplane not containing p bounded by the line through q
orthogonal to the segment pq. A piecewise-smooth curve is self-approaching if and
only if for each point a on the curve, the line perpendicular to the curve at a does not
intersect the curve at a later point [11]. This leads to the following characterization of
self-approaching paths.

Fact 1 (Corollary 2 in [1]). Let ρ = (v1, v2, . . . , vk) be a directed path embedded
in R

2 with straight-line segments. Then, ρ is self-approaching if and only if for all
1 ≤ i < j ≤ k, the point vj lies in l+vivi+1

.

ρ

fron
t(ρ

)

Fig. 1. self-approach-
ing path ρ and front(ρ)

We shall denote the reverse of a path ρ by ρ−1. Let ρ =
(v1, v2, . . . , vk) be a self-approaching path. Define front(ρ) =⋂k−1

i=1 l+vivi+1
, see also Fig. 1. Using Fact 1, we can decide

whether a concatenation of two paths is self-approaching.

Fact 2. Let ρ1 = (v1, . . . , vk) and ρ2 = (vk, vk+1, . . . , vm) be
self-approaching paths. The path ρ1.ρ2 := (v1, . . . , vk, vk+1,
. . . , vm) is self-approaching if and only if ρ2 ⊆ front(ρ1).

A path ρ has increasing chords if for any points a, b, c, d in this order along ρ, it is
dist(b, c) ≤ dist(a, d). A path has increasing chords if and only if it is self-approaching
in both directions. The following result is easy to see.

On Self-Approaching and Increasing-Chord Drawings of 3-Connected Planar Graphs 479

Lemma 1. Let ρ = (v1, . . . , vk) be a path such that for any i < j, i, j ∈ {1, . . . , k−1},
it is ∠(−−−→vivi+1,

−−−−→vjvj+1) ≤ 90◦. Then, ρ has increasing chords.

Let G = (V,E) be a connected graph. A separating k-set is a set of k vertices whose
removal disconnects the graph. A vertex forming a separating 1-set is called cutvertex. A
graph is c-connected if it does not admit a separating k-set with k ≤ c− 1; 2-connected
graphs are also called biconnected. A connected graph is biconnected if and only if it
does not contain a cutvertex. A block is a maximal biconnected subgraph. The block-
cutvertex tree (or BC-tree) TG of G has a B-node for each block of G, a C-node for
each cutvertex of G and, for each block ν containing a cutvertex v, an edge between the
corresponding B- and C-node. We associate B-nodes with their corresponding blocks
and C-nodes with their corresponding cutvertices.

The following notation follows the work of Angelini et al. [5]. Let TG be rooted
at some block ν containing a non-cutvertex (such a block ν always exists). For each
block μ �= ν, let π(μ) denote the parent block of μ, i.e., the grandparent of μ in TG.
Let π2(μ) denote the parent block of π(μ) and, generally, πi+1(μ) the parent block
of πi(μ). Further, we define the root r(μ) of μ as the cutvertex contained in both μ
and π(μ). Note that r(μ) is the parent of μ in TG. In addition, for the root node ν of
TG, we define r(ν) to be some non-cutvertex of ν. Let depthB(μ) denote the number
of B-nodes on the νμ-path in TG minus 1, and let depthC(r(μ)) = depthB(μ). If μ is
a leaf of TG, we call it a leaf block.

If every block of G is outerplanar, G is called a cactus. In a binary cactus every
cutvertex is part of exactly two blocks. For a binary cactus G with a block μ containing
a cutvertex v, let Gv

μ denote the maximal connected subgraph containing v but no other
vertex of μ. We say that Gv

μ is a subcactus of G.
A cactus is triangulated if each of its blocks is internally triangulated. A triangular

fan with vertices Vt = {v0, v1, . . . , vk} and root v0 is a graph on Vt with edges vivi+1,
i = 1, . . . , k − 1, as well as v0vi, i = 1, . . . , k. Let us consider a special kind of
triangulated cactuses, each of whose blocks μ is either an edge or a triangular fan with
root r(μ). We call such a cactus downward-triangulated and every edge of a block μ
incident to r(μ) a downward edge.

For a fixed straight-line drawing of a binary cactus G, we define sets U(G) =

{
»

r(μ)v | μ is a block of G containing v, v �= r(μ)} and D(G) = { # »uv | # »vu ∈ U(G)},
i.e. the sets of upward and downward directions of G.

3 Graphs with Self-Approaching Drawings

A natural approach to construct (not necessarily plane) self-approaching drawings is to
construct a self-approaching drawing of a spanning subgraph. For instance, to draw a
graph G containing a Hamiltonian path H with increasing chords, we simply draw H
consecutively on a line. In this section, we consider 3-connected planar graphs and the
special case of triangulations, which addresses an open question of Alamdari et al. [1].
These graphs are known to have a spanning binary cactus [5, 13]. Angelini et al. [5]
showed that every triangulation has a spanning downward-triangulated binary cactus.

480 M. Nöllenburg, R. Prutkin, and I. Rutter

α v0

v1 vk
vi vj

(a)

v1

s

vi

ρi
ε
4k

t

vj

ρ−1
j

(b)

vi−1

vi

�i
sri−1

β

γ

(c)

Fig. 2. Drawing a triangulated binary cactus with increasing chords inductively. The draw-
ings Γi,ε′ of the subcactuses, ε′ = ε

4k
, are contained inside the gray cones. It is β = 90◦ − ε′,

γ = 90◦ + ε′/2.

3.1 Increasing-Chord Drawings of Triangulations

We show that every downward-triangulated binary cactus has an increasing-chord draw-
ing. The construction is similar to the one of the greedy drawings of binary cactuses in
the two proofs of the Papadimitriou-Ratajczak conjecture [5,13]. Our proof is by induc-
tion on the height of the BC-tree. We show that G can be drawn such that all downward
edges are almost vertical and the remaining edges almost horizontal. For vertices s, t,
an st-path with increasing chords goes downwards to some block μ, then sideways to
another cutvertex of μ and, finally, upwards to t. Let #»e1,

#»e2 be vectors (1, 0)�, (0, 1)�.

Theorem 1. Let G = (V,E) be a downward-triangulated binary cactus. For any 0◦ <
ε < 90◦, there exists an increasing-chord drawing Γε of G, such that for each vertex v

contained in some block μ, v �= r(μ), the angle formed by
»

r(μ)v and #»e2 is at most ε
2 .

Proof. Let G be rooted at block ν. As our base case, let ν = G be a triangular fan
with vertices v0, v1, . . . , vk and root v0 = r(ν). We draw v0 at the origin and distribute
v1, . . . , vk on the unit circle, such that ∠(#»e2,

»v0v1) = kα/2 and ∠(# »v0vi,
»v0vi+1) = α,

α = ε/k; see Fig. 2a. By Lemma 1, path (v1, . . . , vk) has increasing chords.
Now let G have multiple blocks. We draw the root block ν, v0 = r(ν), as in the pre-

vious case, but with α = ε
2k . Then, for each i = 1, . . . , k, we choose ε′ = ε

4k and draw
the subcactus Gi rooted at vi inductively, such that the corresponding drawing Γi,ε′ is
aligned at # »v0vi instead of #»e2; see Fig 2b. Note that ε′ is the angle of the cones (gray)
containing Γi,ε′ . Obviously, all downward edges form angles at most ε

2 with #»e2.
We must be able to reach any t in any Gj from any s in any Gi via an increasing-

chord path ρ. To achieve this, we make sure that no normal on a downward edge of Gi

crosses the drawing of Gj , j �= i. Let Λi be the cone with apex vi and angle ε′ aligned
with # »v0vi, v0 �∈ Λi (gray regions in Fig. 2b). Let sli and sri be the left and right boundary
rays of Λi with respect to # »v0vi, and hl

i, h
r
i the halfplanes with boundaries containing vi

and orthogonal to sli and sri respectively, such that v0 ∈ hl
i ∩ hr

i . Define ♦i = Λi ∩
hr
i−1 ∩ hl

i+1 (thin blue quadrangle in Fig. 2c), and analogously ♦j for j �= i. It holds
♦j ⊆ hr

i ∩ hl
i for each i �= j. We now scale each drawing Γi,ε′ such that it is contained

in ♦i. In particular, for any downward edge uv in Γi,ε′ , we have Γj,ε′ ⊆ ♦j ⊆ l+uv for
j �= i. We claim that the resulting drawing of G is an increasing-chord drawing.

On Self-Approaching and Increasing-Chord Drawings of 3-Connected Planar Graphs 481

Consider vertices s,t of G. If s and t are contained in the same subgraph Gi, an
increasing-chord st-path in Gi exists by induction. If s is in Gi and t is v0, let ρi be the
svi-path in Gi that uses only downward edges. By Lemma 1, path ρi is increasing-chord
and remains so after adding edge viv0.

Finally, assume t is in Gj with j �= i. Let ρj be the tvj-path in Gj that uses only
downward edges. Due to the choice of ε′, hr

i ∩hl
i ⊆ front(ρi) contains v1, . . . , vk in its

interior. Consider the path ρ′ = (vi, vi+1, . . . , vj). It is self-approaching by Lemma 1;
also, ρ′ ⊆ front(ρi) and ρj ⊆ front(ρ′). It also holds ρj ⊆ ♦j ⊆ front(ρi). Fact 2 lets
us concatenate ρi, ρ′ and ρ−1

j to a self-approaching path. By a symmetric argument, it
is also self-approaching in the opposite direction and, thus, is increasing-chord. �

Since every triangulation has a spanning downward-triangulated binary cactus [5],
this implies that planar triangulations admit increasing-chord drawings.

Corollary 1. Every planar triangulation admits an increasing-chord drawing.

3.2 Non-triangulated Cactuses

The above construction fails if the blocks are not triangular fans since we now cannot
just use downward edges to reach the common ancestor block. Consider the family of
rooted binary cactuses Gn = (Vn, En) defined as follows. Graph G0 is a single 4-cycle,
where an arbitrary vertex is designated as the root. For n ≥ 1, consider two disjoint
copies of Gn−1 with roots a0 and c0. We create Gn by adding new vertices r0 and b0
both adjacent to a0 and c0; see Fig. 3a. For the new block ν containing r0, a0, b0, c0,
we set r(ν) = r0. We select r0 as the root of Gn and ν as its root block. For a block μi

with root ri, let ai, bi, ci be its remaining vertices, such that biri /∈ En. For a given
drawing, due to the symmetry of Gn, we can rename the vertices ai and ci such that
∠ccw(

»rici,
»riai) ≤ 180◦. We now prove the following negative result.

Theorem 2. For n ≥ 9, Gn has no self-approaching drawing.

The outline of the proof is as follows. We show that every self-approaching draw-
ing Γ of G9 contains a self-approaching drawing of G3 with the following properties.

1. If μi is contained in the subcactus rooted at cj , each self-approaching biaj-path uses
edge biai, and analogously for the symmetric case; see Lemma 5.
2. Each block is drawn significantly smaller than its parent block; see Lemma 6(i).
3. If the descendants of block μ form subcactuses Gk with k ≥ 2 on both sides, the
parent block of μ must be drawn smaller than μ; see Lemma 6(ii).

Obviously, the second and third conditions are contradictory. The following lemmas
will be used to show that the drawings of certain blocks must be relatively thin, i.e., their
downward edges have similar directions; see the full version for the omitted proofs [15].

Lemma 2. For cactus G = (V,E) and s, t ∈ V , consider cutvertices v1, . . . , vk lying
on any st-path in G in this order. Then, the path (s, v1, . . . , vk, t) is drawn greedily, i.e.,
each of its subpaths is greedy. In particular, ray(v1, s) and ray(vk, t) diverge.

Obviously, this divergence property also holds for a self-approaching drawing of
any cactus. From now on, we consider a fixed self-approaching drawing Γ of G9. For

482 M. Nöllenburg, R. Prutkin, and I. Rutter

b0

G0 Gn

Gn−1 Gn−1

νa0 c0

r0

(a)

a0 c0

a1 c1
r2

a2 c2
b2

(b)
90◦ ± ε

c2

r2
c1a0

b2

(c)

μ0

μ1

μ2
μ3

(d)

Fig. 3. (a) cactuses Gn; (b),(c) construction for Lemma 5; (d) subcactus G5 providing the contra-
diction in the proof of Theorem 2

a block μ of G9 with root r = r(μ), we write Gr for (G9)
r
μ, i.e., the binary cactus

subgraph of G9 rooted at r. We write U r for the set of directions of the upward edges
of Gr and define Ir = U r. Using Lemma 2, we can show that vectors in Uai ∪ U ci

have the following circular order: first vectors in Uai , then vectors in U ci . It follows
easily: min{|Iai |, |Ici |} < |Iri |/2. Thus, we can provide a bound for the smallest of
the cones of a subcactus depending on the depth of its root.

Lemma 3. Every self-approaching drawing of G9 contains a cutvertex r̄ with
depthC(r̄) = 4 and |I r̄| < 22.5◦.

Let r̄ be a cutvertex from Lemma 3 in the fixed drawing, and let ε := |I r̄|. Then,
Gr̄ is isomorphic to G6. From now on, we only consider non-leaf blocks μi and ver-
tices ri, ai, bi, ci in Gr̄. We shall sometimes name the points a instead of ai etc. for
convenience. We assume ∠(#»e2,

»ra), ∠(#»e2,
#»rc) < ε/2. The following lemma is proved

using basic trigonometric arguments.

Lemma 4. It holds: (i) ∠abc ≥ 90◦; (ii) Ga ⊆ l+ba, Gc ⊆ l+bc; (iii) ∠bar ≤ 90◦ + ε,
∠bcr ≤ 90◦ + ε. (iv) For vertices u in Ga, v in Gc of degree 4 it is ∠(# »uv, #»e1) ≤ ε/2

We can now describe block angles at ai, ci more precisely and characterize certain
self-approaching paths in Gr̄. We show that a self-approaching path from bi downwards
and to the left, i.e., to an ancestor block μj of μi, such that μi is in Gcj , must use ai.
Similarly, a self-approaching path downwards and to the right must use ci. Since for
several ancestor blocks of μi the roots lie on both of these two kinds of paths, we can
bound the area containing them and show that it is relatively small. This implies that
the ancestor blocks are small as well, providing a contradiction.

Lemma 5. Consider non-leaf blocks μ0, μ1, μ2, such that r(μ1) = c0 and μ2 in Ga1 ;
see Fig. 3b. (i) It is ∠r2a2b2,∠r2c2b2 ∈ [90◦, 90◦+ε], b2 lies to the right of ray(r2, a2)
and to the left of ray(r2, c2). (ii) Each self-approaching b2a0-path uses a2; each self-
approaching b2c1-path uses c2.

Proof. (i) Assume ∠r2a2b2 < 90◦. Then, all self-approaching b2a0 and b2c1-paths
must use c2. By Lemma 4(iv), the lines through a0c2 and c2c1 are “almost horizontal”,
i.e., ∠(# »a0c2,

#»e1), ∠(# »c2c1,
#»e1) ≤ ε/2. Since r2c2 is “almost vertical”, r2 must lie below

these lines and it is ∠a0c2r2, ∠c1c2r2 ∈ [90◦−ε, 90◦+ε]; see Fig. 3c. First, let b2 lie to
the left of ray(r2, c2). Then, b2 is abovea0c2, and it is ∠r2c2b2 = ∠a0c2r2+∠a0c2b2 ≥

On Self-Approaching and Increasing-Chord Drawings of 3-Connected Planar Graphs 483

r

a c

ar cral cl

(a)
r

a c

(b)

r

a c

a′c′

r′

da

s1 s2

d

(c)

Fig. 4. Showing the contradiction in Theorem 2

(90◦ − ε) + 90◦. Now let b2 lie to the right of ray(r2, c2). Then, b2 is above c2c1, and it
is ∠r2c2b2 = ∠c1c2r2 +∠c1c2b2 ≥ (90◦− ε)+ 90◦. Since ε < 22.5◦, this contradicts
Lemma 4(iii). Similarly, ∠r2c2b2 ≥ 90◦. Thus, by Lemma 4(iii), ∠r2c2b2,∠r2c2b2 ∈
[90◦, 90◦ + ε]. Since ∠a2b2c2 ≥ 90◦, b2 lies to the right of ray(r2, a2) and to the left
of ray(r2, c2). (If b2 lies to the left of both rays, it is ∠a2b2c2 = ∠(# »

a2b2,
»

c2b2) ≤ 2ε <
90◦.) (ii) Similarly, if a self-approaching b2a0-path uses c2 instead of a2, it is ∠r2c2b2 ≥
180◦ − ε. The last part follows analogously. �

From now on, let μ0 be the root block of Gr̄ and μ1, μ2, μ3 its descendants such
that r(μ1) = c0, r(μ2) = a1, r(μ3) ∈ {a2, c2}; see Fig. 3d. Light gray blocks are the
subject of Lemma 6(i), which shows that several ancestor roots lie inside a cone with
a small angle. Dark gray blocks are the subject of Lemma 6(ii), which considers the
intersection of the cones corresponding to a pair of sibling blocks and shows that some
of their ancestor roots lie inside a narrow strip; see Fig. 4a for a sketch.

Lemma 6. Let μ be a block in Gc2 with vertices a, b, c, r(μ). (i) Let μ have depth 5
in Gr̄. Then, the cone l+ba ∩ l+bc contains r(μ), r(π(μ)), r(π2(μ)) and r(π3(μ)). (ii)
Let μ have depth 4 in Gr̄. There exist u in Ga and v in Gc of degree 4 and a strip S
containing r(μ), r(π(μ)), r(π2(μ)) = r(μ2), such that u and v lie on the different
boundaries of S.

Again, we consider two siblings and the intersection of their corresponding strips,
which forms a small diamond containing the root of the ancestor block; see Fig. 4b, 4c.

Lemma 7. Consider block μ = μ3 containing r = r(μ), a, b, c, and let rπ := r(π(μ3)).

It holds: (i) |rπr| ≤ (1+2 tan ε)(tan ε)2

cos ε (|ra|+ |rc|); (ii) |ra|, |rc| ≤ |rrπ |(tan ε)2.

For ε ≤ 22.5◦, the two claims of Lemma 7 contradict each other. This concludes the
proof of Theorem 2.

4 Planar Increasing-Chord Drawings of 3-Trees

In this section, we show how to construct planar increasing-chord drawings of 3-trees.
We make use of Schnyder labelings [20] and drawings of triangulations based on them.
For a plane triangulation G = (V,E) with external vertices r, g, b, its Schnyder label-
ing is an orientation and partition of the interior edges into three trees Tr, Tg, Tb (called

484 M. Nöllenburg, R. Prutkin, and I. Rutter

red, green and blue tree), such that for each internal vertex v, its incident edges appear
in the following clockwise order: exactly one outgoing red, an arbitrary number of in-
coming blue, exactly one outgoing green, an arbitrary number of incoming red, exactly
one outgoing blue, an arbitrary number of incoming green. Each of the three outer ver-
tices r, g, b serves as the root of the tree in the same color and all its incident interior
edges are incoming in the respective color. For v ∈ V , let Rr

v (the red region of v) de-
note the region bounded by the vg-path in Tg, the vb-path in Tb and the edge gb. Let |Rr

v|
denote the number of the interior faces in Rr

v. The green and blue regions Rg
v , Rb

v are
defined analogously. Assigning v the coordinates (|Rr

v|, |Rg
v|, |Rb

v|) ∈ R3 results in a
plane straight-line drawing of G in the plane {x = (x1, x2, x3) | x1+x2+x3 = f−1}
called Schnyder drawing. Here, f denotes the number of faces of G. For a thorough in-
troduction to this topic, see the book of Felsner [8].

For α, β ∈ [0◦, 360◦], let [α, β] denote the corresponding counterclockwise cone of
directions. We consider drawings satisfying the following constraints.

Definition 1. Let G = (V,E) be a plane triangulation graph with a Schnyder labeling.
For 0◦ ≤ α ≤ 60◦, we call an arbitrary planar straight-line drawing of Gα-Schnyder if
for each internal vertex v ∈ V , its outgoing red edge has direction in [90◦− α

2 , 90
◦+ α

2],
blue in [210◦ − α

2 , 210
◦ + α

2] and green in [330◦ − α
2 , 330

◦ + α
2] (see Fig. 5a).

According to Def. 1, classical Schnyder drawings are 60◦-Schnyder. The next lemma
shows an interesting connection between α-Schnyder and increasing-chord drawings.

Lemma 8. 30◦-Schnyder drawings are increasing-chord drawings.

Proof. Let G = (V,E) be a plane triangulation with a given Schnyder labeling and Γ
a corresponding 30◦-Schnyder drawing. Let r, g, b be the red, green and blue external
vertex, respectively, and Tr, Tg, Tb the directed trees of the corresponding color.

Consider vertices s, t ∈ V . First, note that monochromatic directed paths in Γ have
increasing chords by Lemma 1. Assume s and t are not connected by such a path. Then,
they are both internal and s is contained in one of the regions Rr

t , Rg
t , Rb

t . Without loss
of generality, we assume s ∈ Rr

t . The sr-path in Tr crosses the boundary of Rr
t , and

we assume without loss of generality that it crosses the blue boundary of Rr
t in u �= t;

see Fig. 5b. The other cases are symmetric.
Let ρr be the su-path in Tr and ρb the tu-path in Tb; see Fig. 5c. On the one hand,

the direction of a line orthogonal to a segment of ρr is in [345◦, 15◦]∪ [165◦, 195◦]. On
the other hand, ρb is contained in a cone [15◦, 45◦] with apex u. Thus, ρ−1

b ⊆ front(ρr),
and ρr.ρ

−1
b is self-approaching by Fact 2. By a symmetric argument it is also self-ap-

proaching in the other direction, and hence has increasing chords. �

Planar 3-trees are the graphs obtained from a triangle by repeatedly choosing a
(triangular) face f , inserting a new vertex v into f , and connecting v to each vertex
of f .

Lemma 9. Planar 3-trees have α-Schnyder drawings for any 0◦ < α ≤ 60◦.

Proof. We describe a recursive construction of an α-Schnyder drawing of a planar 3-
tree. We start with an equilateral triangle and put a vertex v in its center. Then, we align

On Self-Approaching and Increasing-Chord Drawings of 3-Connected Planar Graphs 485

120◦

α
2

(a)
b g

r

s
u

t

(b)

ρb

ρr
s

u

t

(c) (d) (e)

Fig. 5. (a)–(c) 30◦-Schnyder drawings are increasing-chord; (d),(e) special case of planar 3-trees.

the pattern from Fig. 5a at v. For the induction step, consider a triangular face xyz
and assume that the pattern is centered at one of its vertices, say x, such that the other
two vertices are in the interiors of two distinct cones; see Fig. 5d. It is now possible
to move the pattern inside the triangle slightly, such that the same holds for all three
vertices x, y, z; see Fig. 5e. We insert the new vertex at the center of the pattern and
again get the situation as in Fig. 5d. �

Lemmas 8 and 9 provide a constructive proof for the following theorem.

Theorem 3. Every planar 3-tree has a planar increasing-chord drawing.

5 Self-Approaching Drawings in the Hyperbolic Plane

Kleinberg [12] showed that any tree can be drawn greedily in the hyperbolic plane H
2.

This is not the case in R2. Thus, H2 is more powerful than R2 in this regard. Since self-
approaching drawings are closely related to greedy drawings, it is natural to investigate
the existence of self-approaching drawings in H2.

We shall use the Poincaré disk model for H2, in which H2 is represented by the unit
disk D = {x ∈ R2 : |x| < 1} and lines are represented by circular arcs orthogonal
to the boundary of D. For an introduction to the Poincaré disk model, see e.g. Klein-
berg [12] and the references therein.

First, let us consider a tree T = (V,E). A drawing of T in R
2 is self-approaching if

and only if no normal on an edge of T in any point crosses another edge [1]. The same
condition holds in H2; see full version for the proof [15]. According to the characteriza-
tion by Alamdari et al. [1], some binary trees have no self-approaching drawings in R2.
We show that this is no longer the case in H2.

Theorem 4. Let T = (V,E) be a tree, such that each node of T has degree either 1
or 3. Then, T has a self-approaching drawing in H2, in which every arc has the same
hyperbolic length and every pair of incident arcs forms an angle of 120◦.

Proof. For convenience, we subdivide each edge of T once. We shall show that both
pieces are collinear in the resulting drawing Γ and have the same hyperbolic length.

First, consider a regular hexagon � = p0p1p2p3p4p5 centered at the origin o of D;
see Fig. 6a. In H2, it can have angles smaller than 120◦. We choose them to be 90◦ (any
angle between 0◦ and 90◦ would work). Next, we draw a K1,3 with center v0 in o and
the leaves v1, v2, v3 in the middle of the arcs p0p1, p2p3, p4p5 respectively.

486 M. Nöllenburg, R. Prutkin, and I. Rutter

p0p1

p2

p3 p4

p5v0

v1

v2 v3

(a) (b)

vj

vj+1
vk

μ

vj−1

v0

(c)

Fig. 6. Constructing increasing-chord drawings of binary trees and cactuses in H
2

For each such building block of the drawing consisting of a K1,3 inside a regular
hexagon with 90◦ angles, we add its copy mirrored at an arc of the hexagon containing
a leaf node of the tree constructed so far. For example, in the first iteration, we add
three copies of � mirrored at p0p1, p2p3 and p4p5, respectively, and the corresponding
inscribed K1,3 subtrees. The construction after two iterations is shown in Fig. 6b. This
process can be continued infinitely to construct a drawing Γ∞ of the infinite binary tree.
However, we stop after we have completed Γ for the tree T .

We now show that Γ∞ (and thus also Γ) has the desired properties. Due to isometries
and the aforementioned sufficient condition, it suffices to consider edge e = v0v1 and
show that a normal on e does not cross Γ∞ in another point. To see this, consider Fig. 6a.
Due to the choice of the angles of �, all the other hexagonal tiles of Γ∞ are contained in
one of the three blue quadrangular regions �i := l+v0vi \ (l+vip2i−1

∪ l+vip2i−2
), i = 1, 2, 3.

Thus, the regions l+v1p1
and l+v1p0

(gray) contain no point of Γ∞. Therefore, since each
normal on v0v1 is contained in the “slab” D \ (l+v0v1 ∪ l+v1v0) bounded by the diameter
through p2, p5 and the line through p0, p1 (dashed) and is parallel to both of these lines,
it contains no other point of Γ∞. �

We note that our proof is similar in spirit to the one by Kleinberg [12], who also used
tilings of H2 to prove that any tree has a greedy drawing in H2.

As in the Euclidean case, it can be easily shown that if a tree T contains a node v
of degree 4, it has a self-approaching drawing in H2 if and only if T is a subdivision
of K1,4 (apply an isometry, such that v is in the origin of D). This completely charac-
terizes the trees admitting a self-approaching drawing in H2. Further, it is known that
every binary cactus and, therefore, every 3-connected planar graph has a binary span-
ning tree [5, 13].

Corollary 2. (i) A tree T has an increasing-chord drawing in H2 if and only if T
either has maximum degree 3 or is a subdivision of K1,4. (ii) Every binary cactus and,
therefore, every 3-connected planar graph has an increasing-chord drawing in H2.

Again, note that this is not the case for binary cactuses in R
2; see the example in

Theorem 2. We use the above construction to produce planar self-approaching drawings
of binary cactuses in H2. We show how to choose a spanning tree and angles at vertices
of degree 2, such that non-tree edges can be added without introducing crossings; see
Fig. 6c for a sketch and the full version [15] for the proof.

Corollary 3. Every binary cactus has a planar increasing-chord drawing in H2.

On Self-Approaching and Increasing-Chord Drawings of 3-Connected Planar Graphs 487

References

1. Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching Graphs. In:
Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 260–271. Springer, Hei-
delberg (2013)

2. Angelini, P., Colasante, E., Di Battista, G., Frati, F., Patrignani, M.: Monotone drawings of
graphs. J. Graph Algorithms Appl. 16(1), 5–35 (2012)

3. Angelini, P., Di Battista, G., Frati, F.: Succinct greedy drawings do not always exist. Net-
works 59(3), 267–274 (2012)

4. Angelini, P., Didimo, W., Kobourov, S., Mchedlidze, T., Roselli, V., Symvonis, A., Wismath,
S.: Monotone drawings of graphs with fixed embedding. In: Speckmann, B. (ed.) GD 2011.
LNCS, vol. 7034, pp. 379–390. Springer, Heidelberg (2012)

5. Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations.
J. Graph Algorithms Appl. 14(1), 19–51 (2010)

6. Dhandapani, R.: Greedy drawings of triangulations. Discrete Comput. Geom. 43, 375–392
(2010)

7. Eppstein, D., Goodrich, M.T.: Succinct greedy geometric routing using hyperbolic geometry.
IEEE Trans. Computers 60(11), 1571–1580 (2011)

8. Felsner, S.: Geometric Graphs and Arrangements. Vieweg+Teubner Verlag (2004)
9. Goodrich, M.T., Strash, D.: Succinct greedy geometric routing in the Euclidean plane. In:

Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 781–791. Springer,
Heidelberg (2009)

10. Huang, W., Eades, P., Hong, S.-H.: A graph reading behavior: Geodesic-path tendency. In:
IEEE Pacific Visualization Symposium (PacificVis 2009), pp. 137–144 (2009)

11. Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Camb. Phil.
Soc. 125, 441–453 (1999)

12. Kleinberg, R.: Geographic routing using hyperbolic space. In: Computer Communications
(INFOCOM 2007), pp. 1902–1909. IEEE (2007)

13. Moitra, A., Leighton, T.: Some Results on Greedy Embeddings in Metric Spaces. Discrete
Comput. Geom. 44, 686–705 (2010)

14. Nöllenburg, M., Prutkin, R.: Euclidean greedy drawings of trees. In: Bodlaender, H.L., Ital-
iano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 767–778. Springer, Heidelberg (2013)

15. Nöllenburg, M., Prutkin, R., Rutter, I.: On Self-Approaching and Increasing-Chord Drawings
of 3-Connected Planar Graphs. CoRR arXiv:1409.0315 (2014)

16. Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor.
Comput. Sci. 344(1), 3–14 (2005)

17. Purchase, H.C., Hamer, J., Nöllenburg, M., Kobourov, S.G.: On the usability of Lombardi
graph drawings. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 451–
462. Springer, Heidelberg (2013)

18. Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing
without location information. In: Mobile Computing and Networking (MobiCom 2003),
pp. 96–108. ACM (2003)

19. Rote, G.: Curves with increasing chords. Math. Proc. Camb. Phil. Soc. 115, 1–12 (1994)
20. Schnyder, W.: Embedding planar graphs on the grid. In: Discrete Algorithms (SODA 1990),

pp. 138–148. SIAM (1990)
21. Wang, J.-J., He, X.: Succinct strictly convex greedy drawing of 3-connected plane graphs.

Theor. Comput. Sci. 532, 80–90 (2014)

On Monotone Drawings of Trees�

Philipp Kindermann1, André Schulz2, Joachim Spoerhase1, and Alexander Wolff1

1 Lehrstuhl für Informatik I, Universität Würzburg, Germany
http://www1.informatik.uni-wuerzburg.de/en/staff

2 Institut für Mathematische Logik und Grundlagenforschung, Universität Münster, Germany
andre.schulz@uni-muenster.de

Abstract. A crossing-free straight-line drawing of a graph is monotone if there
is a monotone path between any pair of vertices with respect to some direction.
We show how to construct a monotone drawing of a tree with n vertices on an
O(n1.5)×O(n1.5) grid whose angles are close to the best possible angular reso-
lution. Our drawings are convex, that is, if every edge to a leaf is substituted by a
ray, the (unbounded) faces form convex regions. It is known that convex drawings
are monotone and, in the case of trees, also crossing-free.

A monotone drawing is strongly monotone if, for every pair of vertices, the
direction that witnesses the monotonicity comes from the vector that connects the
two vertices. We show that every tree admits a strongly monotone drawing. For
biconnected outerplanar graphs, this is easy to see. On the other hand, we present
a simply-connected graph that does not have a strongly monotone drawing in any
embedding.

1 Introduction

A natural requirement for the layout of a connected graph is that between any source
vertex and any target vertex, there should be a source–target path that approaches the
target according to some distance measure. A large body of literature deals with prob-
lems of this type; various measures have been studied. For example, in a greedy drawing
it is possible to decide locally where to go, by selecting in the current vertex any neigh-
bor closer to the target. In a monotone drawing, the distance between vertices (on the
desired source-target path) is measured with respect to their projections on some line,
which may be different for any source–target pair. In strongly monotone drawings, that
line is always the line from source to target, and in upward drawings, the line is always
the vertical line, directed upwards.

In this paper, we focus on monotone and strongly monotone drawings of trees with
additional aesthetic properties such as convexity or small area. Given a tree, we call the
edges incident to the leaves leaf edges and all other edges interior edges. We direct all
edges away from the root. Given a straight-line drawing of a tree, we substitute each
leaf edge by a ray whose initial part coincides with the edge. The embedding of the
tree defines a combinatorial embedding of the tree, that is the order of the edges around
every vertex. The faces are then specified by this combinatorial embedding as leaf-to-
leaf paths. If the faces of the augmented drawing are realized as convex nonoverlapping

� This research was supported by the ESF EuroGIGA project GraDR (DFG grant Wo 758/5-1).

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 488–500, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

On Monotone Drawings of Trees 489

(unbounded) polygonal regions, then we call the original drawing a convex drawing.
If every region is strictly convex (that is, all interior angles are strictly less than π), we
also call the drawing strictly convex. Note that a convex drawing is also monotone [4,2],
but a monotone drawing is not necessarily convex. Strict convexity forbids vertices of
degree 2. In this paper, when we talk about (strongly) monotone drawings, this always
includes the planarity requirement. Otherwise, as Angelini et al. [2] observed, drawing
any spanning tree of the given graph in a (strongly) monotone way and inserting the
remaining edges would yield a (strongly) monotone drawing.

Previous Work. While any 3-connected plane graph has a greedy drawing in the Eu-
clidean plane [10] (even without crossing [7]), this is, unfortunately, not true for trees.
Nöllenburg and Prutkin [11] gave a complete characterization for the tree case, which
shows that no tree with a vertex of degree 6 or more admits a greedy drawing. Alam-
dari et al. [1] have studied a subclass of greedy drawings, so-called self-approaching
drawings which require that there always is a source–target path such that the distance
decreases for any triplet of intermediate points on the edges, not only for the vertices.

Carlson and Eppstein [6] study convex drawings of trees. They give linear-time algo-
rithms that optimize the angular resolution of the drawings, both for the fixed- and the
variable-embedding case. They observe that convexity allows them to pick edge lengths
arbitrarily, without introducing crossings.

For monotone drawings, Angelini et al. [2] studied the variable-embedding case.
They showed that anyn-vertex tree admits a straight-line monotone drawing on a grid of
size O(n1.6)×O(n1.6) (using a BFS-based algorithm) or O(n)×O(n2) (using a DFS-
based algorithm). They also showed that any biconnected planar graph has a monotone
drawing (using exponential area). Further, they observed that not every planar graph
admits a monotone drawing if its embedding is fixed. They introduced the concept
of strong monotonicity and showed that there is a drawing of a planar triangulation
that is not strongly monotone. Hossain and Rahman [9] improve some of the results
of Angelini et al. by showing that every connected planar graph admits a monotone
drawing of size O(n)×O(n2) and that such a drawing can be computed in linear time.

Both the BFS- and the DFS-based algorithms of Angelini et al. precompute a set of
n−1 vectors in decreasing order of slope. For this, they use two different partial traver-
sals of the so-called Stern–Brocot tree, an infinite tree whose vertices are in bijection
with the irreducible positive rational numbers. Such numbers can be seen as primitive
vectors in 2d, that is, as vectors with pairwise different slopes. Then both algorithms do
a depth-first (pre-order) traversal of the input tree. Whenever they hit a new edge, they
assign to it the steepest unused vector. They place the root of the input tree at the origin
and draw each edge (u, v) by adding the vector assigned to (u, v) to the position of u.
They call such tree drawings slope-disjoint. We won’t formally define this notion here,
but it is not hard to see that it implies monotonicity.

Angelini, with a different set of co-authors [3], investigated the fixed-embedding
case. They showed that, on theO(n)×O(n2) grid, every connected plane graph admits a
monotone drawing with two bends per edge and any outerplane graph admits a straight-
line monotone drawing.

490 P. Kindermann et al.

Our contribution. We present two main results. First, we show that any n-vertex tree
admits a strictly convex and, hence, monotone drawing on the O(n1.5)× O(n1.5) grid
(see Section 3). As the drawings of Angelini et al. [2], our drawings are slope-disjoint,
but we use a different set of primitive vectors (based on Farey sequences), which slightly
decreases the grid size. (This also works for the BFS-based algorithm of Angelini et al.)
Instead of pre-oder, we use a kind of in-oder traversal (first child – root – other children)
of the input tree, which helps us to achieve convexity. Our ideas can be applied to
modify the optimal angular resolution algorithm of Carlson and Eppstein [6] such that
a drawing on an O(n1.5) × O(n1.5) grid is constructed at the expense of missing the
optimal angular resolution by a constant factor. Second, we show that any tree admits a
strongly monotone drawing (see Section 4). So far, no positive results have been known
for strongly monotone drawings.

In the case of proper binary trees, our drawings are additionally strictly convex. For
biconnected outerplanar graphs, it is easy to construct strongly monotone drawings.
On the other hand, we present a simply-connected planar graph that does not have a
strongly monotone drawing in any embedding.

We leave it as an open question whether trees admit strongly monotone drawings on
a grid of polynomial size (see Section 5).

2 Building Blocks: Primitive Vectors

The following algorithms require a set of integral vectors with distinct directed slopes
and bounded length. In particular, we ask for a set of primitive vectors Pd = {(x, y) |
gcd(x, y) ∈ {1, d}, 0 ≤ x ≤ y ≤ d}. Our goal is to find the right value of d such that
Pd contains at least k primitive vectors, where k is a number that we determine later.
We can then use the reflections on the lines x = y, y = 0 and x = 0 to get a sufficiently
large set of integer vectors with distinct directed slopes. The edges of the monotone
drawings in Section 3 are translates of these vectors; each edge uses a different vector.

Fig. 1. The 13 primitive vectors ob-
tained from F6. The smallest angle
of ≈ 1.14◦ is realized between the
vectors (4, 5) and (5, 6) marked
with white dots; the best possible
angular resolution in this case is
45◦/12 = 3.75◦.

Assume that we have fixed d and want to gener-
ate the set Pd. If we consider each entry (x, y) of Pd

to be a rational number x/y and order these numbers
by value, we get the Farey sequence Fd (see, for ex-
ample, Hardy and Wright’s book [8]). The Farey se-
quence is well understood. In particular, it is known
that |Fd| = 3d2/π2 + O(d log d) [8, Thm. 331].
Furthermore, the entries of Fd can be computed in
time O(|Fd|). We remark that the set

⋃
dFd coin-

cides with the entries of the Stern–Brocot tree. How-
ever, collecting the latter level by level is not the most
effective method to build a set of primitive vectors for
our purpose.

To get access to a set of k primitive vectors, we use
the first k entries of the Farey sequence Fd, for d :=
4�
√
k�, replacing each rational by its corresponding

2d vector. By selecting k vectors form this set we get
a set of exactly k primitive vectors, which we denote by Vk; see Fig. 1.

On Monotone Drawings of Trees 491

If we wish to have more control over the aspect ratio in our final drawing, we can pick
a set of primitive vectors contained inside a triangle spanned by the grid points (0, 0),
(mx, 0), (mx,my). By stretching the triangle and keeping its area fixed, we may end
up with fewer primitive vectors. This will result in an (only slightly) smaller constant
compared to the case mx = my . As proven by Bárány and Rote [5, Thm. 2], any such
triangular domain contains at least mxmy/4 primitive vectors. This implies that we
can adapt the algorithm easily to control the aspect ratio by selecting the box for the
primitive vectors accordingly. For the sake of simplicity, we detail our algorithms only
for the most interesting case (mx = my).

Lemma 1. Let P ⊆ Pd be a set of k = |Pd|/c primitive vectors with no coordinate
greater than d for some constant c ≥ 1. Then any two primitive vectors of P are
separated by an angle of Ω(1/k).

Proof. Since |Pd| = 3d2/π2 +O(d log d) we have that 2d2 ≈ 2π2ck/3. Any line with
slope m encloses an angle α with the x-axis, such that tan(α) = m. Let m1 and m2

be the slopes of two lines and let α1 and α2 be the corresponding angles with respect
to the x-axis. By the trigonometric addition formulas we have that the separating angle
of these two lines equals

tanφ := tan(α1 − α2) =
tanα1 − tanα2

1 + tanα1 tanα2
=

m1 −m2

1 +m1m2
.

For any two neighboring entries p/q and r/s in the Farey sequence, it holds that qr −
ps = 1 [8, Thm. 3.1.2], and therefore p/q and r/s differ by exactly (qr − ps)/(qs) =
1/(qs). As a consequence, tanφ = 1/(pr + qs). The angle φ is minimized if pr +
qs is maximized. Clearly, we have that pr + qs < 2d2 ≈ 2π2ck/3. By the Taylor
expansion, arctan(x) = x− x2ξ/(1 + ξ2)2 for some value 0 ≤ ξ ≤ x. Substituting x
with 3/(2π2ck) yields, for k ≥ 2, that

φ ≥ 3

2π2ck
− 9ξ

4π4c2k2(1 + ξ2)2
>

3

2π2ck
− 9

4π4c2k2
= Ω(1/k).

�

Since the best possible resolution for a set of k primitive vectors is 2π/k, Lemma 1
shows that the resolution of our set differs from the optimum by at most a constant.

3 Monotone Grid Drawings with Good Angles

We start by ensuring that convex tree drawings are crossing-free. This has already been
stated by Carlson and Eppstein [6].

Lemma 2. Any convex straight-line drawing of a tree is crossing-free.

We now present a simple method for drawing a tree on a grid in a strictly convex,
and therefore monotone and, by Lemma 2, crossing-free way. We name our strategy
the inorder-algorithm. The algorithm first computes a reasonable large set of primitiv
vectors, then selects a subset of these vectors and finally assigns the slopes to the edges.

492 P. Kindermann et al.

1

2

4

3

5 7

6

8

9

10 12

11

13

14 15

(a) tree with edge numbers s(·)

1

2

4

3

5

7

6

8

9

10
12

11

13 14

15

14

3

(b) grid drawing of the tree

Fig. 2. A strictly convex drawing of a tree

The drawing is then generated by translating the selected primitive vectors. In the fol-
lowing, an extended subtree will refer to a subtree including the edge leading into the
subtree (if the subtree is not the whole tree).

Every edge e will be assign with a number s(e). This number will refer to the rank of
the edge’s slope (in circular order) in the final assignment. The rank assignment is done
in a recursive fashion. At any time, let ŝ be 1 plus the maximum rank s(e) assigned
so far. Initially, ŝ = 1. Let e = uv be an edge (directed away from the root), and
let v1, v2, . . . , v� be the children of v ordered from left to right. We recursively set the
ranks of all edges in the extended subtree rooted at v1. Then we set s(e) = ŝ (which
increases ŝ by one). Finally, we set, for i = 2, . . . , �, the ranks of the edges in the
extended subtree rooted at vi. For an example of a tree with its edge ranks, see Fig. 2a.

Second, we assign actual slopes to the edges. Let e be an edge with s(e) = j. Then
we assign to e some vector sj ∈ Z2 and draw e as a translate of sj . We pick the
vectors s1, s2, . . . , sn−1 by selecting a sufficiently large set of primitive vectors and
their reflections in counterclockwise order, see Section 2. Our drawing algorithm has
the following requirements, which can be fulfilled as the following lemma shows:

(R1) Edges that are incident to the root and consecutive in circular order are assigned
to vectors that together span an angle less than π.

(R2) In every extended subtree hanging off the root, the edges are assigned to a set of
vectors that spans an angle less than π.

Lemma 3. We can select n − 1 vectors with distinct directed slopes from a [−d, d] ×
[−d, d] grid with d = 4�

√
n� such that the requirements (R1) and (R2) are fulfilled.

Proof. We first preprocess our tree by adding temporary edges at some leaves. These
edges will receive slopes, but are immediately discarded after the assignment.

First, our objective is to ensure that the tree can be split up into three parts that all
have n edges. In particular, we adjust the sizes of the extended subtrees hanging off
the root by adding temporary edges such that we can partition them into three sets of
consecutive extended subtrees which all contain n edges. Note that we have to add 2n+
1 edges to achieve this.

On Monotone Drawings of Trees 493

C1

π/2

π/2

π/4

C2

C3

Fig. 3. The cones that
contain the slopes used
in the algorithm

Second, we define three cones C1, C2, and C3 (see Fig. 3).
Each cone has its apex at the origin and spans an angle of π/4.
The angular ranges are C1 = [0, π/4], C2 = [3π/4, π], and
C3 = [3π/2, 7π/4]; angles are measured from the x-axis point-
ing in positive direction. Note that C2 is separated from the two
other cones by an angle of π/2. As mentioned in Section 2 the
set Vn contains n primitive vectors in the [0, d] × [0, d] grid.
When reflected on the x = y line these vectors lie in C1. Re-
flecting the vectors in C1 further we generate n vectors in C2

and n vectors in C3. In every cone we “need” at most n − 3
edges, hence we can remove the vectors on the boundary of each cone. After removing
the temporary edges, the number of vectors will drop from 3n to n− 1.

Now, we observe the following. Every two consecutive edges incident to the root lie
in the interiors of our cones. This yields requirement (R1) given the sizes and angular
distances of the cones. Furthermore, any extended subtree is assigned slopes from a
single cone. This yields (R2). ��

For the example tree of Fig. 2a, it suffices to pick the 16 vectors that one gets from
reflecting the primitive vectors from the [0, 2]× [0, 2] grid. These vectors already fulfill
requirements (R1) and (R2). Hence, we did not have to apply the more involved slope
selection as described in Lemma 3. The resulting drawing is shown in Fig. 2b.

Every face in the drawing contains two leaves. The leaves are ordered by their ap-
pearance in some DFS-sequence D respecting some rooted combinatorial embedding
of T . For a face f , we call the leaf that comes first in D the left leaf and the other leaf
of f the right leaf of f . The only exception is the face whose leaves are the first and
last child of D. Here we call the first vertex in D the right leaf and the last vertex in D
the left leaf.

Lemma 4. Let u be the left leaf, and let v be the right leaf of a face of T . Further, let w
be the lowest common ancestor of u and v. The above assignment of slope ranks s to
the tree edges implies the following.
(a) If edge e1 is on the w–u path and edge e2 is on the w–v path, then s(e1) < s(e2).
(b) The ordered sequence of edges on the path w → u is increasing in s(·).
(c) The ordered sequence of edges on the path w → v is decreasing in s(·).

The proof is omitted because of space constraints. We now prove the correctness of our
algorithm.

Theorem 1. Given an embedded tree with n vertices (none of degree 2), the inorder-
algorithm produces a strictly convex and crossing-free drawing with angular resolution
Ω(1/n) on a grid of size O(n1.5)×O(n1.5). The algorithm runs in O(n) time.

Proof. We first show that in the drawing no face is incident to an angle larger than π.
Let f be a face, let e and e′ be two consecutive edges on the boundary of f , and let α
be the angle formed by e and e′ in the interior of f . If e and e′ are incident to the root,
requirement (R1) implies α < π. If both edges contain the lowest common ancestor
of the leafs belonging to f , then by requirement (R2) also α < π. In the remaining
case, e and e′ both lie on a path to the left leaf of f , or both lie on a path to the right

494 P. Kindermann et al.

leaf of f . At vertex v we have at least two outgoing edges. Let e1 be the first outgoing
edge and e2 be the last outgoing edge at v – one of the edges is e′. By the selection of
the slope ranks we have s(e1) < s(e) < s(e2). As a consequence, the supporting line
of e separates e1 and e2, and hence both faces containing e have an angle less than π
at v and therefore α < π.

Next, we show that the edges and rays of a face do not intersect. Then, by Lemma 2,
no edges will cross. Assume that there are two edges/rays � and r in a common face
that have an intersection in some point x. Let t be the lowest common ancestor of �
and r and assume that � lies on the path to the left leaf and r on the path to the right
leaf. We define a closed polygonal chain P of as follows. The chain starts with the path
from t to �, continues via x to r, and finally returns to t. We direct the edges according
to this walk (for measuring the directed slopes) and call them e1, e2, . . . , ek. We may
assume that P is simple, otherwise we find another intersection point. By Lemma 4, the
slopes are monotone when we traverse P . For i = 1, . . . , k− 1, let αi be the difference
between the directed slopes of the edges ei and ei+1. Then the sum

∑
i<k αi equals

the angle between the slopes of e1 and ek. Due to requirement (R2), this angle is less
than π. Let βi = π − αi be the angle between ei and ei+1 in P , and let β0 > 0 be the
“interior” angle at t. We have that∑

0≤i<k

βi = β0 +
∑

1≤i<k

(π − αi) > 0 + (k − 1)π − π = (k − 2)π.

This, however, contradicts the fact that the angle sum of the polygon with boundary P
is (k − 2)π. Thus, our assumption that two edges/rays cross was wrong.

Since the drawing is assembled from n−1 vectors whose absolute coordinates are at
most O(

√
n), the complete drawing uses a grid of dimension O(n1.5)×O(n1.5). Since

all vectors are reflections of (a subset of) vectors defined by a Farey sequence with at
most n entries, Lemma 1 yields that the angular resolution is bounded by Ω(1/n). ��

We conclude this section with comparing our result with the drawing algorithm of
Carlson and Eppstein [6]. Their algorithm produces a drawing with optimal angular res-
olution. It draws trees convex, but, in contrast to our algorithm, not necessarily strictly
convex. Allowing parallel leaf edges can have a great impact on the angular resolution.
However, our ideas can be applied to modify the algorithm of Carlson and Eppstein.
For the leaf edges, their algorithm uses a set of k slopes and picks the slopes such that
they are separated by an angle of 2π/k. The slopes of interior edges have either one
of the slopes of the leaf edges, or are chosen such that they bisect the wedge spanned by
their outermost child edges. However, it suffices to assure that the slope of an interior
edge differs from the extreme slopes in the following subtree by at least 2π/(2k).

We can now modify the algorithm as follows. We pick 2k/8 primitive vectors and
reflect them such that they fill the whole angular space with 2k distinct integral vectors.
We use every other vector of this set for the leaf edges. For an interior edge we take any
vector from our preselected set whose slope lies in between the extreme slopes of the
edges in its subtree. We can always find such a vector, since we have sufficiently spaced
out our set of primitive vectors. By this we obtain a drawing on the O(n1.5)×O(n1.5)
grid. Clearly, the drawing doesn’t have optimal angular resolution. However, since we

On Monotone Drawings of Trees 495

use 2k integral vectors having, by Lemma 1, an angular resolution of Ω(1/k), we differ
from the best possible angular resolution 2π/k only by a constant factor.

4 Strongly Monotone Drawings

We first show how to draw any proper binary tree (that is, any internal vertex has exactly
two children). We name our strategy the disk-algorithm. Then, we generalize our result
to arbitrary trees. Further, we show that connected planar graphs do not necessarily have
a strongly monotone drawing. Finally, we show how to draw biconnected outerplanar
graphs in a strongly monotone fashion.

Let T be a proper binary tree, let D be any disk with center c, and let C be the
boundary of D. Recall that a strictly convex drawing cannot have a vertex of degree 2.
Thus, we consider the root of T a dummy vertex and ensure that the angle at the root
is π. We draw T inside D. We start by mapping the root of T to c. Then, we draw a
horizontal line h through c and place the children of the root on h ∩ int(D) such that
they lie on opposite sites relative to c. We cut off two circular segments by dissecting D
with two vertical lines running through points representing the children of the root.
We inductively draw the right subtree of T into the right circular segment and the left
subtree into the left circular segment.

In any step of the inductive process, we are given a vertex v of T , its position in D
(which we also denote by v) and a circular segment Dv; see Fig. 4a. The preconditions
for our construction are that

(i) v lies in the relative interior of the chord sv that delimits Dv, and
(ii) Dv is empty, that is, the interiors of Dv and Du are disjoint for any vertex u that

does not lie on a root–leaf path through v.
In order to place the two children l and r of v (if any), we shoot a ray v from v per-
pendicular to sv into Dv. Let v′ be the point where v hits C. Consider the chords that
connect the endpoints of sv to v′. The chords and sv form a triangle with height vv′.
The height is contained in the interior of the triangle and splits it into two right sub-
triangles. The chords are the hypotenuses of the subtriangles. We contruct l and r by
connecting v to these chords perpendicularly. Note that, since the subtriangles are right
triangles, the heights lie inside the subtriangles. Hence, l and r lie in the relative interi-
ors of the chords. Further, note that the circular segments Dl and Dr delimited by the
two chords are disjoint and both are contained in Dv. Hence, Dl and Dr are empty, and
the preconditions for applying the above inductive process to r and l with Dl and Dr

are fulfilled. See Fig. 4b for the output of our algorithm for a tree of height 3.

Lemma 5. For a proper binary tree rooted in a dummy vertex, the disk-algorithm yields
a strictly convex drawing.

Proof. Let T be a proper binary tree and let f be a face of the drawing generated by the
algorithm described above. Clearly, f is unbounded. Let a and b be the leaves of T that
are incident to the two unbounded edges of f , and let v be the lowest common ancestor
of a and b; see Fig. 4b. Consider the two paths from v to a and b. We assume that the
path from v through its left child ends in a and the path through its right child ends in b.

496 P. Kindermann et al.

v

v′

l r

sv

Dv

Dr

Dl

(a) sketch of the inductive step

b

a

c
v′

f

III

III IV

d

v

(b) output of our algorithm for a tree of height 3

Fig. 4. Strongly monotone drawings of proper binary trees

Due to our inductive construction that uses disjoint disk sections for different sub-
trees, it is clear that the two paths do not intersect. Moreover, each vertex on the two
paths is convex, that is, the angle that such a vertex forms inside f is less than π. This
is due to the fact that we always turn right when we go from v to a, and we always turn
left when we go to b. Vertex v is also convex since the two edges from v to its children
lie in the same half-plane (bounded by sv).

It remains to show that the two rays a and b (defined analogously to v above) don’t
intersect. To this end, recall that v′ = v∩C. By our construction,a and b are orthogonal
to two chords of C that are both incident to v′. Clearly, the two chords form an angle of
less than π in v′. Hence, the two rays diverge, and the face f is strictly convex. ��

For the proof that the algorithm described above yields a strongly monotone draw-
ing, we need the following tools. Let v1 and v2 be two vectors. We say that v3 lies
between v1 and v2 if v3 is a positive linear combination of v1 and v2. For two vec-
tors v and w, we define 〈v,w〉 = |v||w| cos(v,w) as the scalar product of v and w.

Lemma 6. If a path p is monotone with respect to two vectors v1 and v2, then it is
monotone with respect to any vector v3 between v1 and v2.

Proof. Let v3 = λ1v1 + λ2v2 with λ1, λ2 > 0. Assume that the path p is given by the
sequence of vectors w1,w2, . . . ,wk. Since p is monotone with respect to vectors v1

and v2, we have that 〈v1,wi〉 > 0 and 〈v2,wi〉 > 0 for all i ≤ k. This yields, for all
i ≤ k,

〈v3,wi〉 = 〈λ1v1 + λ2v2,wi〉 = λ1〈v1,wi〉+ λ2〈v2,wi〉 > 0,

since λ1, λ2 > 0. It follows that p is monotone with respect to v3. ��

Lemma 7. For a proper binary tree rooted in a dummy vertex, the disk-algorithm yields
a strongly monotone drawing.

Proof. We split the drawing into four sectors: I, II, III and IV; see Fig. 4b. Let a and b
be two vertices in the graph. We will show that the path that connects a and b in the
drawing output by our algorithm is strongly monotone. Let c be the root of the tree.
W.l.o.g., assume that a lies in sector III. Then, we distinguish three cases.

On Monotone Drawings of Trees 497

Case 1: a and b lie on a common root–leaf path; see a and v in Fig. 4b. Obviously, b
lies in sector III. W.l.o.g., assume that b lies on a path between a and c. By construc-
tion, all edges in sector III, seen as vectors directed towards c, lie between x = (0, 1)
and y = (1, 0). Thus, all edges on the path from a to b, and in particular ab, lie be-
tween x and y. Since x is perpendicular to y, the path from a to b is monotone with
respect to x and y. Following Lemma 6, the path between a and b is monotone with
respect to

−→
ab, and thus strongly monotone.

Case 2: b lies in sector I; see a and d in Fig. 4b. In Case 1, we have shown that the
all edges on the path from a to c lie between x = (0, 1) and y = (1, 0). Analogously,
the same holds for the path from c to b. Thus, the path between a and b is monotone
with respect to x and y and, following Lemma 6, strongly monotone.

Case 3: a and b do not lie on a common root–leaf path, and b does not lie in
sector I; see a and b in Fig. 4b. Let d be the lowest common ancestor of a and b.
Let a0, a1, . . . , ak−1, ak be the path from d to a where a0 = d and ak = a. Now,
let b0, b1, . . . , bm−1, bm be the path from d to b where d = b0 and b = bm. Finally, let
p = ak, ak−1, . . . , a0, b1, . . . , bm−1, bm be the path from a to b.

a
b

d
ai−1

ai

AiA′
i

A

B

Bm

Fig. 5. Illustration of case 3 in the proof of
Lemma 7

Below, we describe how to rotate and
mirror the drawing such that the any vec-
tor −−−−→ai, ai−1, 1 ≤ i ≤ k lies between x =

(0, 1) and y = (1, 0), and any vector
−−−−→
bj−1, bj ,

1 ≤ j ≤ m lies between x and −y. This
statement is equivalent to x(ai) < x(d) <
x(bj), 1 ≤ i ≤ k, 1 ≤ j ≤ m and y(ak) <
. . . < y(a1) < y(d) > y(b1) > . . . > y(bm);
see Fig. 5. If b lies in sector IV, then d = c and this statement is true by construction. If b
lies in sector II, then d is a child of c. We rotate the drawing by π/2 in counterclockwise
direction and then mirror it horizontally. If b lies in sector III, let p(d) be the parent of d.
We rotate the drawing such that the edge (p(d), d) is drawn vertically. Recall that, by

construction, the ray from d in direction
−−−→
p(d)d = −y separates the subtrees of the two

children of d; see Fig. 4a. Further, the angle between any edge (directed away from d)

in the subtree of d and
−−−→
p(d)d = −y is at most π/2, i.e., they are directed downwards.

Let Ai, 1 ≤ i ≤ k be the straight line through ai and perpendicular to −−−−→ai−1ai.
Let A′

i be the parallel line to Ai that passes through a. Due to the x-monotonicity of p
the point a lies below Ai. During the construction of the tree, the line Ai defined a
circular sector in which the subtree rooted at ai including a was exclusively drawn. It
follows that a and b lie on opposite sites of Ai. Thus, b lies above Ai and also above A′

i.

Let Bj , 1 ≤ j ≤ m be the straight line through bj and perpendicular to
−−−−→
bj−1bj . Let B′

j

be the parallel line to Bj that passes through a. By construction, b lies below Bj and a
lies above Bj . Thus, b lies below B′

j .
Let A be the line A′

i with maximum slope and let B be the line B′
j with minimum

slope. First, we will show that the path is monotone with respect to the unit vector A
on A directed to the right. By choice of A, the angle between any edge (ai, ai−1), 1 ≤
i ≤ k and A is at most π/2. Recall that any vector −−−−→ai, ai−1, 1 ≤ i ≤ k lies between x
and y. Since A is perpendicular to one of these edges and directed to the right, it lies

498 P. Kindermann et al.

between x and −y. Since any vector
−−−−→
bj−1, bj , 1 ≤ j ≤ m also lies between x and −y,

the angle between A and these edges is at most π/2. Because the angle between A and
any edge on the path from a to b is at most π/2, the path is monotone with respect to A.

Analogously, it can be shown that the path is monotone with respect to B. Recall
that b lies above A and below B. So the vector

−→
ab lies between A and B. Following

Lemma 6, the path is monotone with respect to
−→
ab and thus strongly monotone. ��

Lemmas 5 and 7 immediately imply the following.

Theorem 2. Any proper binary tree rooted in a dummy vertex has a strongly monotone
and strictly convex drawing.

Next, we (partially) extend this result to arbitrary trees.

Theorem 3. Any tree has a strongly monotone drawing.

Proof. Let T be a tree. If T has a vertex of degree 2, we root T in this vertex. Otherwise,
we subdivide any edge by creating a vertex of degree 2, which we pick as root. Then,
we add a leaf to every vertex of degree 2, except the root. Now, let v be a vertex with
out-degree k > 2. Let (v, w1), . . . , (v, wk) be the outgoing edges of v ordered from
right to left. We substitute v by a path 〈v = v1, . . . , vk+1〉, where vi+1 is the left child
of vi, for i = 1, . . . , k. Then, we substitute the edges (v, wi) by (vi, wi), i = 2, . . . , k;
see Fig. 6.

Let T ′ be the resulting proper binary tree. Clearly, all vertices of T ′, except its root,
have degree 1 or 3, so T ′ is a proper binary tree. We use Theorem 2 to get a strongly
monotone drawing ΓT ′ of T ′. Then, we remove the dummy vertices inserted above and
draw the edges that have been subdivided by a path as a straight-line. This yields a
drawing ΓT of T that is crossing-free since the only new edges form a set of stars that
are drawn in disjoint areas of the drawing.

Now, we show that ΓT is strongly monotone. Let (v, w) be an edge in T . Let p =
〈v = v1, . . . , vm = w〉 be the path in T ′ between v and w. Suppose p is monotone
with respect to some direction d. Thus, ∠{−−−→vivi+1,d} < π/2 for 1 ≤ i ≤ m − 1.
Clearly, −→vw =

∑m−1
i=1

−−−→vivi+1 is a positive linear combination of −−−→vivi+1, i = 1, . . . ,m
and hence ∠{−→vw,d} < π/2. It follows that the path between two vertices a and b is
monotone to a direction d in ΓT if the path between a and b is monotone to d in ΓT ′ .
With d =

−→
ab, it follows that ΓT is strongly monotone. ��

We add to this another positive result concerning biconnected outerplanar graphs.

Theorem 4. Any biconnected outerplanar graph has a strongly monotone and strictly
convex drawing.

Proof. Let G be a biconnected outerplanar graph with outer cycle 〈v1, . . . , vn, v1〉. We
place the vertices v2, . . . , vn−1 in counterclockwise order on a quarter circle C that
has v1 = (0, 0) and vn = (1, 1) as its endpoints; see Fig. 7. Since the outer cy-
cle is drawn strictly convex, the drawing is planar and strictly convex. Clearly, the
path 〈v1, . . . , vn〉 is x- and y-monotone. Also, every vector−−→vivj , j > i lies betweenx =
(0, 1) and y = (1, 0). Thus, by Lemma 6, the drawing is strongly monotone. ��

On Monotone Drawings of Trees 499

v

wk w1wi

T T ′ v = v1

w1

wi

wk

vi

vk

vk+1

Fig. 6. Subdivision of a vertex v
with k outgoing edges

C
v1

vn

Fig. 7. A strongly mono-
tone drawing of a bicon-
nected outerplanar graph

v1

v2
v3w

v4

Fig. 8. A planar graph with-
out any strongly monotone
drawing

We close with a negative result. Note that the graphs in the family that we construct
are neither outerplanar nor biconnected.

Theorem 5. There is an infinite family of connected planar graphs that do not have a
strongly monotone drawing in any combinatorial embedding.

Proof. Let C be the graph that arises by attaching to each vertex of K4 a “leaf”; see
Fig. 8. Let v1, . . . , v4 be the vertices of K4. For K4 to be crossing-free, one of its ver-
tices, say v1, lies in the interior. Let w be the leaf incident to v1. Because of planarity, w
has to be placed inside a triangular face incident to v1. W.l.o.g., assume that w is placed
in the face (v1, v2, v3). If the drawing is strongly monotone, then ∠(−−→wv2,−−→wv1) < π/2
and ∠(−−→wv1,−−→wv3) < π/2 and thus ∠(−−→wv3,−−→wv2) > π. However, this means that w
does not lie inside the triangle (v1, v2, v3), which is a contradiction to the assumption.
Thus, C does not have a strongly monotone drawing in any combinatorial embedding.
We create an infinite family from C by adding more leaves to the vertices of K4. ��

5 Conclusion and Open Problems

We have shown that any tree has a monotone drawings on a grid with area O(n3) and a
strongly monotone drawing, but can we combine the two features, that is, does any tree
have a strongly monotone drawing on a grid of polynomial size?

Angelini et al. [2, Fig. 18(b)] have constructed a drawing of a triangulation that is
not strongly monotone. But is there a triconnected (or biconnected) planar graph that
does not have any strongly monotone drawing? If yes, can this be tested efficiently?

If we could show that our drawings for general trees are not just strongly monotone
but also convex (as in the proper binary case), then all Halin graphs would automatically
have convex and strictly monotone drawings, too.

References

1. Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching graphs. In:
Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 260–271. Springer, Hei-
delberg (2013)

2. Angelini, P., Colasante, E., Battista, G.D., Frati, F., Patrignani, M.: Monotone drawings of
graphs. J. Graph Algorithms Appl. 16(1), 5–35 (2012)

500 P. Kindermann et al.

3. Angelini, P., Didimo, W., Kobourov, S., Mchedlidze, T., Roselli, V., Symvonis, A., Wis-
math, S.: Monotone drawings of graphs with fixed embedding. To appear in Algorithmica,
http://dx.doi.org/10.1007/s00453-013-9790-3

4. Arkin, E.M., Connelly, R., Mitchell, J.S.: On monotone paths among obstacles with applica-
tions to planning assemblies. In: Proc. 5th Ann. ACM Symp. Comput. Geom. (SoCG 1989),
pp. 334–343 (1989)

5. Bárány, I., Rote, G.: Strictly convex drawings of planar graphs. Doc. Math. 11, 369–391
(2006)

6. Carlson, J., Eppstein, D.: Trees with convex faces and optimal angles. In: Kaufmann, M.,
Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 77–88. Springer, Heidelberg (2007)

7. Dhandapani, R.: Greedy drawings of triangulations. Discrete Comput. Geom. 43(2), 375–392
(2010)

8. Hardy, G., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford Uni-
versity Press (1979)

9. Hossain, M. I., Rahman, M. S.: Monotone Grid Drawings of Planar Graphs. In: Chen, J.,
Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 105–116. Springer, Heidel-
berg (2014)

10. Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. Discrete
Comput. Geom. 44(3), 686–705 (2010)

11. Nöllenburg, M., Prutkin, R.: Euclidean greedy drawings of trees. In: Bodlaender, H.L., Ital-
iano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 767–778. Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/s00453-013-9790-3

Graph Drawing Contest Report

Carsten Gutwenger1, Maarten Löffler2, Lev Nachmanson3, and Ignaz Rutter4

1 Technische Universität Dortmund, Germany
carsten.gutwenger@tu-dortmund.de

2 Utrecht University, The Netherlands
m.loffler@uu.nl

3 Microsoft, USA
levnach@microsoft.com

4 Karlsruhe Institute of Technology, Germany
rutter@kit.edu

Abstract. This report describes the 21st Annual Graph Drawing Contest, held in
conjunction with the 2014 Graph Drawing Symposium in Würzburg, Germany.
The purpose of the contest is to monitor and challenge the current state of graph-
drawing technology.

1 Introduction

This year, the Graph Drawing Contest was divided into an offline contest and an online
challenge. The offline contest had two categories: the first one dealt with creating a
metro map layout from a given bus and tram network, and the second one was a com-
poser’s network. The data sets for the offline contest were published months in advance,
and contestants could solve and submit their results before the conference started. The
submitted drawings were evaluated according to aesthetic appearance, domain specific
requirements, and how well the data was visually represented.

The online challenge took place during the conference in a format similar to a typical
programming contest. Teams were presented with a collection of challenge graphs and
had approximately one hour to submit their highest scoring drawings. This year’s topic
was the same as last year, namely to minimize the area for orthogonal grid layouts, where
we allowed crossings (the number of crossings was not judged, only the area counted).

Overall, we received 24 submissions: 5 submissions for the offline contest and 19
submissions for the online challenge.

2 Metro Map Layout

In this category, the task was to visualize the bus and tram network of Würzburg in a
metro map style layout. The data for the network included information about the stops
like the name of the stops and their geographic locations, as well as the bus/tram lines
with their stops and the distances between stops. We asked for a visualization of the
whole network, presenting the connections in a clear way for a possible user of public
transport in Würzburg. The data had been kindly provided by the WVV1.

1 http://www.wvv.de

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 501–506, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.wvv.de

502 C. Gutwenger et al.

(a) Martin Nöllenburg

Wöllrieder Höhe

Louis-Pasteur-Straße

Briefzentrum

Justizvollzugsanstalt

Paradiesstraße

Werk Stürtz

Albert-Einstein-Straße

Neuer Hafen Mitte

Werk Noell

Alfred-Nobel-Straße

Freidrich-Kohlrausch-Straße

Mainaustraße

Max-Born-Straße

Hafenschänke

Abzweig Dürrbachau

Hafeneinfahrt

Hinterer Steinbach

Dürrbachau/B27

Sieboldmuseum

Vogel-Verlag

Finkenweg

Waldesruh

Am Dürrbach

DJK-Sportzentrum

Obere Landwehr

Frankenwarte

Annaschlucht

Schwarzer
Weg

Hoher Weg

Sedanstraße

Oberer Burgweg

Am Klößberg

Hartmannstraße

Kniebreche

Mainauwiesen

Friedrichstraße

Wredestraße

Albert-Günther-Weg

Waldhaus

Unterdürrbach/Schule

Mittlerer Wiesenweg

Oberer Steinbachweg

Wörthstraße

Eiseneckstraße

Neunerplatz

An den Mühltannen

Kleßbergsteige

Am Sand

Bergpfad

Versorgungsamt

Waldfriedhof/Süd

Kuhberg

Unterdürrbach/Kirche

Hirschlein

Parkplatz
Talavera

Waldfriedhof/Nord

Talavera

Mainleitenweg

Steinburgstraße

Wandweg

Oberdürrbach Schule

Schafhof

Rothweg

Drei Pappeln (Allerheiligen)

Käppele

Am Schaftrieb

Hubertusweg

Kulturspeicher

Klara-Löwe-Straße

Zehnthofstraße
Oberhofstraße

Leistenstraße

Am Wald

Nikolausstraße

Oberer Dallenbergweg

Alte Mainbrücke

Löwenbrücke

Ruderzentrum

Congress-Centrum

Dr.-Onymus-Straße

Rotkreuzstraße

Judenbühlweg

Zollhaus
Steinbachtal

Ulmer Hof

Steinbachtal

Rathaus

Liebigstraße

Neubaustraße

Dom

Blosenbergpfad

Sanderring

Dominikaner-
gasse

Julius-
promenade

Sanderglacisstraße

Neuenbrunner Weg

Nikolaus-Fey-Straße

Rotkreuzhof

Am Hungrigen Bühl

Eichendorffstraße

Barbarossaplatz

Spiegelstraße

Busbahn-
hof

Studentenhaus

Hauptbahnhof
West

Stift Haug

Sterntalerweg

Ehehaltenhaus

Mainfranken
Theater
Theaterstraße

Residenzplatz

Hauptbahnhof Ost

Arndtstraße

Ottostraße

Adalberokirche

Karl-Straub-Straße

Dallenbergbad

Resenweg

Fechenbachstraße

Königsberger Straße

Ablösung
Fechenbachstr.

Allendorfweg

Wiesenweg

Neutor-
straße

Holzweg

Andreas-Grieser-Straße

Berliner Platz

Rennweg

Südbahnhof

Fichtestraße

Wendelweg

Valentin-Becker-Straße E-Hst.

Heriedenweg

Brücknerstraße

Ebertsklinge

Schweinfurter Straße

Klingenstraße
Hofmannstraße

Hauptfriedhof

Lange Bögen

Wagnerplatz

Schlörstraße

Schellingstraße

Erthalstraße

Heigelsbach

Annastraße

Wellhöferweg

Reuterstraße

Bockspfad

König-Ludwig-Haus

Josefskirche

Frauenland-
platz

Felix-
Fechenbach-
Haus

Unterer
Katzenbergweg

Zeppelinstraße

Sandgrubenweg

Greisingstraße

Steigerfurtweg

Klosterstraße

Gegenbaurstraße

Senefelderstraße

Wittelsbacher-
platz

Pestalozzistraße
Uni-Klinikum A

Hans-Brandmann-Weg

Letzter Hieb

Missionsärtzliches
Institut

Eisenbahnstraße

Ostbahnhof

Zwerchgraben

Wittelsbacherstraße

Walther-Schule

Aumühle

Silcherstraße

R.-Koch-Str.
Uni-Klinikum B/C

Sanderrothstraße

Uni-Klinikum Bereich D

St.-Alfons-Kirche

Berner Straße

Lindleinstraße

Barbarastraße

Europastern

Bremenweg

Scharoldstraße

Trautenauerstraße

Toräckerweg

Uni-Klinikum Bereich A
Parkplatz ZIM-ZOM

Athener Ring

Richard-Wagner-Straße

Straubmühlweg

Hans-Löffler-Straße

Franz-Liszt-Straße

Straßburger Ring

Zollhaus Galgenberg

Kaulstraße

Miravilla

Unterer Kirchbergweg

Neumühle

Heimgarten

Madrider Ring

Oberer
Schwarzenberg

Nopitschstraße

Wiener Ring

Am Kugelfang

Bayernstraße

Taschenäckerweg

Zum Tännig

Unterer
Schwarzenberg

Schwaben-
straße

Steinlein

Fachhochschule

Albert-Hoffa-Straße

Zweierweg

Bonhoefferstraße

Gustav-
Wallle-
Schule

Straubberg

Kühlenbergstraße

Rottenbauer

Äußeres Hubland

Gertrud-von-le-Fort-Straße

Wolffskeel-
Schule

Faulenbergkaserne

Max-Mengeringhausen-Straße

Thüringerstraße

Philosophisches
Institut

Hubland/Mensa

Brombergweg

Oberer Geisbergweg

Universitätszentrum

Matthias-Noell-Weg

AW-Altenheim

Frankenstraße
Ost

Brunnenstraße

Kneipp-Werk

Am Hubland

Mittlere
Heerbergstraße

Ohmstraße

Frankenstraße Nord

Sprachenzentrum

Greinberg

Heisenbergstraße

Josefshof

Winterhäuser Straße

Hessenstraße

Emil-Fischer-Straße

Auf der
Schanz

Hertzstraße

Bibliothekszentrum

Mathematisches Institut

Robert-Kirchhoff-Straße

Oswald-Külpe-Weg

Rosenmühlweg

Israelitischer Friedhof

Sonnfeld

Holzmühle

Albert-Schweitzer-Straße

Jahnstraße

Rosenmühle

Sandbühl

Am Handelshof auswärts

St.-Lioba-
Kírche

Gattingerstraße West

Odenwaldstraße

Elsa-Brandström-Straße

Gerbrunn/Rathaus

Pilziggrund/Mitte

Oekumenisches Zentrum

Am Kirschberg

Casteller Platz

Paul-Ehrlich-Straße

Gattingerstraße Mitte

Dorfgraben

Flürleinstraße

Am Happach

Am Stuck

Stauferstrasse einwärts

Gattingerstraße Ost

Alte Landstraße

Essiggarten

Fr.-Bergius-Ring

Sandäcker

Seinsheimstraße

Höchberger Tor
Schönborntor

(b) Arturs Verza

Fig. 1. Metro map layout of Würzburg’s public transport network

Graph Drawing Contest Report 503

We received two submissions in this category, both presenting the network in a very
nice way. Martin Nöllenburg’s submission (see Fig. 1(a)) is a typical metro map draw-
ing with a very nice routing of lines, created using their ILP-based metro map layout
algorithm [1]. Fig. 1(b) shows Arturs Verza’s submission, which gives a clear picture of
the cluttered city center.

The winner in this category was Martin Nöllenburg from the Karlsruhe Institute of
Technology, since we preferred the nicer global layout of his submission, which allows
a user of the map to easily figure out possible connections.

3 Composers Graph

For this category, we used a data set that was already a contest graph in 2011. The com-
posers graph is a large directed graph, where its 3,405 nodes represent Wikipedia arti-
cles about composers, and its 13,382 edges represent links between these articles. This
graph has too many nodes and edges to be effectively presented in a straightforward
way. Therefore, this time the task was to select the about 150 most important nodes and
to create a drawing of a subgraph containing these nodes. Part of the task was to define
important in a suitable way. The criterion should only depend on the given graph, not
on any other sources or knowledge. It was also allowed to filter out some edges between
important nodes using a reasonable criterion for filtering.

We received three submissions for this graph. Fig. 2(a) shows the submission from
Remus Zelina et al.; they divided the composers into influencers and influencees (a
composer could appear twice) and then used Girvan Newman modularization to obtain
a set of modules. For selecting the most important composers, they used the corre-
sponding factor in the modularity formula as well as the page rank algorithm. They also
categorized the edges with respect to the module structure and selected only the most
important ones. The final layout was then obtained by applying a layered approach that
emphasized the module structure. The submission by Ulf Rüegg (see Fig. 2(b)) used
the notion of betweenness to select the most important nodes in the graph; the edges
were then selected as a maximum spanning tree, where the edges were weighed using
edge betweenness. The resulting tree was laid out with a stress minimization approach.
The third submission came again from Arturs Verza. He used centrality for selecting
the top 150 composers, removed transitive edges in the subgraph, and finally applied a
circular layout algorithm (due to lack of space we omit the drawing; it can be found on
the contest web page).

The winner in this category was the team Remus Zelina, Sebastian Bota, Siebren
Houtman, and Radu Balaban from Meurs, Romania, for their clear representation of
global as well as local structure.

4 Online Challenge

The online challenge, which took place during the conference, dealt with minimizing
the area in an orthogonal grid drawing. The challenge graphs were not necessarily pla-
nar and had at most four incident edges per node. Edge crossings were allowed and
their number did not affect the score of a layout. Since typical drawing systems first try

504 C. Gutwenger et al.

(a) Remus Zelina et al.

(b) Ulf Rüegg

Fig. 2. Composers graph

Graph Drawing Contest Report 505

(a) initial (b) best automatic

Fig. 3. Challenge graph with 64 nodes and 124 edges: (a) initial layout and (b) best automatic
result by the team of Mchedlidze et al

to minimize the number of crossings, which might result in long edges increasing the
required area, we were in particular interested in the effect of allowing crossings on the
quality of layouts when trying to reduce the area.

The task was to place nodes, edge bends, and crossings on integer coordinates so
that the edge routing is orthogonal and the layout contains no overlaps. At the start of
the one-hour on-site competition, the contestants were given five graphs with an initial
legal layout with a large area. The goal was to rearrange the layout to reduce the area,
defined as the number of grid points in the smallest rectangle enclosing the layout. Only
the area was judged; other aesthetic criteria, such as the number of crossings or edge
bends, were ignored.

The contestants could choose to participate in one of two categories: automatic and
manual. To determine the winner in each category, the scores of each graph, determined
by dividing the area of the best submission in this category by the area of the current
submission, were summed up. If no legal drawing of a graph was submitted (or a draw-
ing worse than the initial solution), the score of the initial solution was used.

In the automatic category, contestants received six graphs ranging in size from 20
nodes / 29 edges to 100 nodes / 182 edges and were allowed to use their own sophis-
ticated software tools with specialized algorithms. Manually fine-tuning the automati-
cally obtained solutions was allowed. Fig. 3 shows a challenge graph from the automatic
category with 64 nodes, 124 edges, and a very bad initial layout. The best obtained re-
sult improved the area from 1089 to 192. With a score of 4.964, the winner in the
automatic category was the team of Tamara Mchedlidze, Martin Nöllenburg and their

506 C. Gutwenger et al.

(a) initial (b) best manual (c) optimal

Fig. 4. Challenge graph with 20 nodes and 29 edges: (a) initial layout, (b) best manual result
obtained by the team of Will and Jawaherul, and (c) optimal solution

Graph Drawing lecture students Igor, Alexander, and Denis from the Karlsruhe Institute
of Technology, who found the best results for four of the five contest graphs.

The 19 manual teams solved the problems by hand using IBM’s Simple Graph Edit-
ing Tool provided by the committee. They received five graphs ranging in size from 6
nodes / 8 edges to 20 nodes / 29 edges. The largest input graph was also in the auto-
matic category. For this graph, both the best automatic and the best manual team could
improve the area from initially 1056 to 54, whereas the optimal solution has an area
of 25; see Fig. 4. With a score of 4.425, the winner in the manual category was the
team of Philipp Kindermann, Fabian Lipp and Wadim Reimche from the University of
Würzburg, who found the best results for three of the five contest graphs.

Acknowledgments. The contest committee would like to thank the generous sponsors
of the symposium and all the contestants for their participation. Further details including
winning drawings and challenge graphs can be found at the contest website:

http://www.graphdrawing.de/contest2014/results.html

References

1. Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer
programming. IEEE Trans. Vis. Comput. Graph. 17(5), 626–641 (2011)

http://www.graphdrawing.de/contest2014/results.html

A User Study on the Visualization of Directed Graphs�

Walter Didimo1, Fabrizio Montecchiani1, Evangelos Pallas2, and Ioannis G. Tollis2

1 Dip. di Ingegneria, Università degli Studi di Perugia, Italy
2 University of Crete and Institute of Computer Science-FORTH, Greece

(a) HD (b) OD (c) OOD (d) MR

Fig. 1. Different drawing styles for directed graphs

In a node-link visualization of a directed acyclic graph it is desirable that edges flow
in a common direction (say upward) according to their orientations, as in Hierarchical
Drawings (HD) (see, e.g., [3]). More general requirements are that the number of edge
crossings, the number of edge bends, the drawing area, etc., are kept low. These are
well addressed by Orthogonal Drawings (OD), where edges are chains of horizontal
and vertical segments (see, e.g., [4]). Unfortunately, OD algorithms do not control the
flow of the edges in a desired direction. Overloaded Orthogonal Drawing (OOD) is a
recent visualization paradigm conceived for drawing directed graphs, that merges and
enforces the benefits of HD and of OD [2]. Indeed, edges are still represented using
only horizontal and vertical segments, and if the digraph is acyclic, any directed edge
(u, v) is drawn as an upward-rightward polyline consisting of one bend point (v is
above and to the right of u). Also, adjacent edge segments can partially overlap to draw
graphs with arbitrary vertex degree. We present the results of a user study aimed at
measuring the usability of OOD on directed graphs against HD and OD. Moreover,
we consider Matrix-based Representations (MR). Indeed, a user study on undirected
graphs [1] suggests that MR are more suitable than node-link diagrams computed with
force-directed algorithms to perform some simple tasks when the size of the graph
increases, but remains relatively small. Thus, we also aim to understand whether OOD
maintains the same readability properties as MR with respect to user’s tasks similar to
those considered in [1], but tailored to directed graphs. See Figure 1 for an illustration.

� An extended abstract of this work has been presented at the 5th Conference on Information,
Intelligence, Systems & Applications (IISA 2014). Research supported in part by the MIUR
project AMANDA: Algorithmics for MAssive and Networked DAta, prot. 2012C4E3KT 001.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 507–508, 2014.
© Springer-Verlag Berlin Heidelberg 2014

508 W. Didimo et al.

Table 1. The mean values and the pairwise significance between each pair of drawing paradigms
are shown for error rate and for response time considering all the tasks (Overall) and single tasks

Error rate Response time (s)
Overall PA DE CA CY Overall PA DE CA CY

mean OOD 0.119 0.190 0.047 0.154 0.083 58 78 36 69 48
mean HD 0.199 0.250 0.142 0.190 0.214 55 69 41 55 56
mean OD 0.369 0.547 0.095 0.369 0.452 67 114 17 71 66
mean MR 0.423 0.559 0.047 0.285 0.809 129 187 27 145 158
OOD vs HD .003 n.s. n.s. n.s. 0.008 n.s. n.s. n.s. .002 n.s.
OOD vs OD < .001 .001 n.s. .003 < .001 n.s. n.s. < .001 n.s. n.s.
OOD vs MR < .001 < .001 n.s n.s. < .001 < .001 .001 n.s. < .001 < .001
HD vs OD < .001 .002 n.s. .003 .001 n.s. .003 < .001 .006 n.s.
HD vs MR < .001 .001 n.s. n.s. < .001 < .001 .001 .001 < .001 < .001
OD vs MR n.s. n.s. n.s. n.s. < .001 < .001 .002 .001 < .001 < .001

Experiments. We chose 4 different graphs, modeling both real and artificial networks,
with and without cycles, with size (number of vertices) varying in the range [77, 122]
and density in the range [2.5, 3.5]; for each graph we computed 4 drawings using the
yEd Graph Editor1 implementations of HD and OD and our own implementations of
OOD and MR. After a training session, for each drawing the participants had to solve 4
tasks: (PA) “Is there a path between the two highlighted vertices?”; (DE) “What is the
out-degree of the highlighted vertex?”; (CA) “Do the two highlighted vertices have any
common adjacent vertex?”; (CY) “Is there a cycle including the highlighted vertex?”.
We compared the performance of all the drawing paradigms in terms of error rate and
response time. 21 volunteering students participated in the experiments. We performed
a non parametric analysis, the results are summarized in Table 1.
Conclusions. The results show a clear advantage in terms of accuracy in the reading
of the displayed graphs when using the OOD paradigm, over all tasks and in particular
for the tasks involving paths (PA) and cycles (CY). In terms of response time, the per-
formance on the node-link representations (OOD, HD, OD) are comparable, although
most tasks are executed slightly faster using HD. MR led to slower performance, ex-
cept for task DE. In addition, node-link representations outperformed the matrix-based
representation, both in terms of error rate and response time, especially for task CY.

References

1. Ghoniem, M., Fekete, J.-D., Castagliola, P.: A comparison of the readability of graphs using
node-link and matrix-based representations. In: INFOVIS, pp. 17–24. IEEE (2004)

2. Kornaropoulos, E.M., Tollis, I.G.: Overloaded orthogonal drawings. In: Speckmann, B. (ed.)
GD 2011. LNCS, vol. 7034, pp. 242–253. Springer, Heidelberg (2011)

3. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system
structures. IEEE Tran. on Sys., Man, and Cyb. 11(2), 109–125 (1981)

4. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM
J. on Comp. 16(3), 421–444 (1987)

1 http://www.yworks.com/en/index.html

http://www.yworks.com/en/index.html

GraphBook: Making Graph Paging Real�

Alessio Arleo1, Felice De Luca1, Giuseppe Liotta1,
Fabrizio Montecchiani1, and Ioannis G. Tollis2

1 Dip. di Ingegneria, Università degli Studi di Perugia, Italy
2 University of Crete and Institute of Computer Science-FORTH, Greece

In the last years we observed an impressive growth of different mobile devices, like
tablets and smartphones, that allow people to access and share a large variety of con-
tents. These devices are often used to access social networks, route networks, or other
kinds of networks that for example may deal with the job of the user. Although design-
ing drawing algorithms and visualization systems tailored for mobile devices would be
the best choice in this case (see, e.g., [1]), this is often not possible, as for example the
drawing of the network might be computed by some diagram server in a collaborative
environment, or attached to an e-mail, or returned by a web application that does not
consider limited display capabilities. We present a system whose goal is to facilitate the
reading of a given drawing on a mobile device by exploiting an analogy with electronic
books1. It takes as input a drawing Γ of a graph G=(V,E) and computes a graph book
B(Γ). The idea is to adapt the drawing’s aspect-ratio to the device display and distribute
the visual complexity of the drawing in different pages that are browsed by using stan-
dard gestures. This is done in three steps. We describe two possible implementations for
each step, depending on whether Γ is a straight-line drawing or an overloaded orthog-
onal drawing (OOD) [4]. In the first case we can assume that Γ has been computed by
some force-directed algorithm (see, e.g., [3]). In the second case we recall that OOD is
a graph visualization paradigm conceived for digraphs [4], which has similarities with
hierarchical and orthogonal drawings. The presence of an edge (u, v) is conveyed by an
e-point (a small circle) placed at the intersection point of the vertical segment passing
through u and the horizontal segment passing through v. The information in an OOD is
enriched by computing the transitive closure of G and by conveying paths as p-points.

Sizing. This step takes as input Γ and returns a resized drawing ΓR that matches the
device display resolution and that guarantees all the drawing conventions of the input
drawing Γ . Also, ΓR should preserve as much as possible some of the drawing original
prominent features. If Γ is straight-line, a technique like the one described in [5] can be
used. If Γ is OOD, it is enough to properly adjust the horizontal and vertical grid unit.

Paging. In this step the set of edges E is partitioned into subsets E1, E2, . . . , Ek, such
that the subdrawing pi = ΓR[Ei] (1 ≤ i ≤ k), called page, guarantees some desired
property (e.g., planarity). In each subdrawing, the vertices remain fixed in their original
positions as in ΓR. The goal is to distribute the drawing visual complexity along the
pages, which can be explored separately. On the negative side, the user has to face

� Research supported in part by the MIUR project AMANDA: Algorithmics for MAssive and
Networked DAta, prot. 2012C4E3KT 001.

1 A demo video is available at http://youtu.be/Toi9lnkbzlo

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 509–510, 2014.
© Springer-Verlag Berlin Heidelberg 2014

http://youtu.be/Toi9lnkbzlo

510 A. Arleo et al.

Fig. 1. Two screenshots of the GraphBook system. Left: The input is an overloaded orthogonal
drawing [4] of a DBLP coauthorship network and the displayed page shows the paths of length
one in the network. Right: The input is a straight-line drawing of a social network and the read-
ability property used to compute the displayed page is planarity (see also [2]).

the difficulty of making sense of a distributed information, thus it is important to have
as few pages as possible. If ΓR is straight-line, then a user could prefer to see each
page pi without any edge crossing, i.e., as planar, or that any two crossing edges form a
sufficiently large angle. Computing a minimum set of pages that cover all the edges ofG
and such that each page guarantees a prescribed readability property can be heuristically
computed in polynomial time [2]. If ΓR is an OOD, a natural choice to build the set of
pages is to assign to page pi all edges that represent shortest paths of length i.

Binding. Binding all the pages together is done by a set of interactive operations that
can be used to browse the pages of the book and to explore a single page. To go from one
page to the next one or to the previous one, it is enough to swipe the screen from left to
right or from right to left, respectively: The edges in the current page will fade out, while
the edges in the new page will fade in. Zooming in and out is done by the pinch and
stretch gesture. The edges incident on a vertex, even those assigned to different pages,
can be highlighted by tapping on the vertex. If tapping on two vertices the system shows
the edge that connects the two vertices (if any). By selecting a region of the screen with
a circle gesture the subdrawing induced by the vertices inside the region is highlighted.

References

1. Da Lozzo, G., Di Battista, G., Ingrassia, F.: Drawing graphs on a smartphone. JGAA 16(1),
109–126 (2012)

2. Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F., Tollis, I.G.: Techniques for edge
stratification of complex graph drawings. JVLC 25(4), 533–543 (2014)

3. Eades, P.A.: A heuristic for graph drawing. In: Congr. Num., vol. 42, pp. 149–160 (1984)
4. Kornaropoulos, E.M., Tollis, I.G.: Overloaded orthogonal drawings. In: van Kreveld, M.J.,

Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 242–253. Springer, Heidelberg (2011)
5. Wu, Y., Liu, X., Liu, S., Ma, K.-L.: Visizer: A visualization resizing framework. IEEE

TVCG 19(2), 278–290 (2013)

Circular Tree Drawing by Simulating

Network Synchronisation Dynamics and Scaling

Farshad Ghassemi Toosi� and Nikola S. Nikolov

CSIS Department, University of Limerick, Ireland
{farshad.toosi,nikola.nikolov}@ul.ie

Abstract. We present an algorithm which produces circular-shape lay-
outs of trees by simulating synchronisation dynamics on the tree. Our
approach consists of evolving scalar dynamical values assigned to the
nodes. Then the dissimilarities between the values of each pair of nodes
are utilised to calculate the coordinates of the nodes by using a lower
bound on dissimilarities and scaling up the lower bound per iteration.

1 Introduction

We propose a new algorithm for tree drawing with a circular shape; nodes with
higher betweenness centrality are placed near the center of the circle and leaves
towards the periphery. A force-directed algorithm with a similar result has been
proposed by Bannister et al. [2]; it utilises a third gravity force in addition
to forces of attraction and repulsion between nodes. Our algorithm produces
similar results without introducing gravity, and the layouts take an exact circular
shape. We achieve this by simulating network synchronisation dynamics on the
tree according to a modified version of the Kuramoto model [1]. That is, we
evolve scalar (dynamical) variables assigned to the tree nodes according to a
rule that brings variables of connected nodes close to each other. We then use
the dissimilarities between pairs of dynamical values to compute the tree layout.
Our experimental results demonstrate that we are able to find tree layouts with
either no or a small number of edge crossings.

2 Algorithm

Consider tree T with a node set V rooted at node vr with the highest betweenness
centrality. Let wi be a dynamic variable assigned to node vi ∈ V and let wi(t) be
the value of wi at time step t ∈ {0, 1, . . .}. We choose to have dynamic variables
with values in the interval [0, 2π), so that they can be interpreted as angular
coordinates of the nodes. The tree drawing algorithm we propose consists of the
following four steps.

Step 0: t ← 0; let wr(t) = 0 for any t; for each vi �= vr assign a random value
in the interval [0, 2π) to wi(0); assign random x- and y-coordinates to all nodes;
set a lower bound L on the dissimilarity of a pair of dynamical variables.

� Supported by the Irish Research Council (IRC) under project no. GOIPG/2014/938.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 511–512, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

512 F. Ghassemi Toosi and N.S. Nikolov

Step 1: t ← t+1; for each vi �= vr with parent vk calculate wi(t) according to the

equation dwi(t)
dt = sin(wk(t))−wi(t)+φi(t) which models network synchronisation

dynamics. The term φi(t) is an adjustment which allows larger drawing space
for subtrees rooted at nodes with a relatively high degree.

Step 2: For each pair of nodes vi �= vj , calculate the dissimilarity of their
dynamic variables disij(t) = max{L, ((cos(wi(t)) − cos(wj(t)))

2 + (sin(wi(t)) −
sin(wj(t)))

2)
1
2 }.

Step 3: Update the coordinates of all nodes in force-directed manner. If vi and
vj are adjacent then the force of attraction between them is q × p

√
(disij(t)); if

they are not adjacent then −1 ×
√
(disij(t)) is the force of repulsion between

them. The values of q ≥ 1 and 0 < p ≤ 1 grow with the size of the tree.

Step 4: Scaling up the value of L at each iteration gradually and continuing
this process until layout gets stable (typically |V | steps).

Figure 1 shows two trees drawn with our algorithm. The one in the left is one of
the example trees which is also drawn by Bannister et al. [2]. We have observed
that our algorithm achieves more even distribution of nodes within a circular
drawing area compared to other tree drawing algorithms. Our algorithm has the
same time complexity as the classical force-directed graph drawing algorithms,
i.e. O(m|V |2), where m is the number of iterations.

Fig. 1. A tree with 70 nodes (right) and a tree with 82 nodes (left). Nodes have different
size and color depending on the distance to the root.

References

1. Arenas, A., Daz-Guilera, A., Prez-Vicente, C.J.: Synchronization reveals topological
scales in complex networks. Phys. Rev. Lett. 96(11), 114102-1–114102-4 (2006)

2. Bannister, M.J., Eppstein, D., Goodrich, M.T., Trott, L.: Force-directed graph draw-
ing using social gravity and scaling. In: Didimo, W., Patrignani, M. (eds.) GD 2012.
LNCS, vol. 7704, pp. 414–425. Springer, Heidelberg (2013)

PIGRA– A Tool for Pixelated Graph Representations

Thomas Bläsius, Fabian Klute, Benjamin Niedermann, and Martin Nöllenburg

Karlsruhe Institute of Technology (KIT), Germany

At GD 2013 Biedl et al. presented a simple and versatile formulation of grid-based
graph representation problems as integer linear programs (ILPs) and corresponding
SAT-instances [1]. In a grid-based representation each vertex and each edge of a graph is
represented by a set of grid cells, which we also call pixels. Biedl et al. described a gen-
eral ILP model, where each object (vertex or edge) corresponds to a set of variables that
determine which pixels represent the object. They introduced constraints that restrict
the shapes of objects (e.g., requiring the pixels of a vertex to form a 2D box) and how
the representations of different objects can intersect. In this way, one can solve a variety
of NP-hard graph problems, including pathwidth, bandwidth, optimum st-orientation,
area-minimal (bar-k) visibility representation, boxicity-k graphs and others. For exam-
ple, in a grid-based drawing of a visibility representation, each vertex is represented by
a horizontal box of height 1 and each edge is represented by a vertical box of width 1.
Moreover, two boxes overlap if and only if they represent a vertex and an incident edge.

Biedl et al. [1] implemented and evaluated the ILP-models for the above problems.
The experiments showed that their models successfully solve NP-hard problems within
few minutes on small to medium-size graphs. They further provided their C++ imple-
mentation as the framework GDSAT1, which can be freely downloaded and adapted.

With GDSAT it requires little effort to solve problems that are already modeled
within GDSAT for a given graph. However, adapting the models to solve different grid-
based graph drawing problems requires deeper insights and adaptions. Moreover, there
is no graphical output of the result. Hence, it is not an easy-to-use tool for tasks like
running initial experiments to explore new grid-based graph drawing problems.

To make the framework of Biedl et al. [1] more widely accessible and useful to the
community, we developed the GUI-based tool PIGRA (pixelated graphs) that allows
to easily combine pre-defined general constraints in order to model the above men-
tioned problems as well as other grid-based layout problems. Additionally, in case the
pre-defined constraints are not sufficient, the user may adapt existing or define new
constraints using the simple, mathematically-oriented language PGL (pixelated graphs
language), which we have introduced for this purpose.

In PIGRA the typical workflow consists of the following three steps; see Fig. 1.
1. The user defines the problem as a generic ILP-formulation in PIGRA, using com-

binations of pre-defined and custom constraints formulated in PGL.
2. PIGRA instantiates the ILP-formulation for a user-specified graph and solves it with

GUROBI2 (an automatic conversion to an equivalent SAT-instance is planned).
3. The resulting grid-based representation is graphically displayed and can be interac-

tively explored.

1 i11www.iti.kit.edu/gdsat – The name GDSAT comes from the fact that solving an
equivalent SAT-instance performs better than solving the ILP itself.

2 www.gurobi.com

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 513–514, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://i11www.iti.kit.edu/gdsat
http://www.gurobi.com/

514 T. Bläsius et al.

Fig. 1. Screenshots of a typical workflow in PIGRA using the example of bar-k visibility represen-
tations. Model formulation using a combination of pre-defined constraints and custom constraints
expressed in PGL (left). Graphical output of the ILP solution for a small example graph (right).

PIGRA provides a variety of pre-defined ILP-constraints that are useful to formulate
many custom grid-based graph drawing problems and can simply be selected by ticking
the corresponding check-boxes. Among others, the following constraints are available:
(a) vertices or edges are represented by boxes, (b) boxes have a certain height or width,
(c) certain types of boxes may not overlap, (d) boxes of edges overlap exactly the boxes
of their incident vertices. Additional constraints on shapes and intersections can be
specified directly in PIGRA using PGL. For example, vertices could be modeled as
the union of two boxes with non-empty intersection, including the special case of L-
shapes. Or a constraint could be added so that each vertex box may only intersect a
single incident edge, which models selecting a set of matching edges. In summary, the
main features of PIGRA are:

– A macro system with pre-defined ILP-constraints for grid-based graph layouts.
– The simple, mathematically-oriented language PGL providing the capability to for-

mulate ILP constraints with low overhead.
– A simple editor for writing constraints in PGL. Since all pre-defined constraints

are also written in PGL, the user may adapt those constraints.
– A well-structured graphical user interface for presenting the result of the ILP as

grid-based graph drawing.
– Support of GML-format for loading graphs (we use OGDF3 to parse GML-files).
– Implemented in C++ and soon available for download4 under the GPL.

References

1. Biedl, T., Bläsius, T., Niedermann, B., Nöllenburg, M., Prutkin, R., Rutter, I.: Using ILP/SAT
to determine pathwidth, visibility representations, and other grid-based graph drawings. In:
Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 460–471. Springer, Heidelberg
(2013)

3 www.ogdf.net
4 i11www.iti.kit.edu/pigra

http://www.ogdf.net
http://i11www.iti.kit.edu/pigra

Simultaneous Drawing of Planar Graphs
with Right-Angle Crossings and Few Bends�

Michael A. Bekos1, Thomas C. van Dijk2, Philipp Kindermann2,
and Alexander Wolff2

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
bekos@informatik.uni-tuebingen.de

2 Lehrstuhl für Informatik I, Universität Würzburg, Germany
http://www1.informatik.uni-wuerzburg.de/en/staff

1 Introduction

A simultaneous embedding of two planar graphs embeds each graph in a planar way—
using the same vertex positions for both embeddings. Edges of one graph are allowed
to intersect edges of the other graph. There are two versions of the problem: In the first
version, called Simultaneous Embedding with Fixed Edges (SEFE), edges that occur in
both graphs must be embedded in the same way in both graphs (and hence, cannot be
crossed by any other edge). In the second version, these edges can be drawn differently
for each of the graphs. Both versions of the problem have a geometric variant where
edges must be drawn using straight-line segments.

When actually drawing these simultaneous embeddings, a natural choice is to use
straight-line segments. Only very few graphs can be drawn in this way, however, and
some existing results need exponential area. We suggest a new approach that overcomes
these problems. We insist that crossings occur at right angles, thereby “taming” them.
We do this while drawing on a grid of size O(n) × O(n) for n-vertex graphs, and we
can still draw any pair of planar graphs simultaneously. We do not consider the problem
of fixed edges. In a way, our results give a measure for the geometric complexity of
simultaneous embeddability for various pairs of graph classes, some of which can be
combined more easily (with fewer bends) and some not as easily (needing more bends).

More formally, in this paper we study the RAC simultaneous drawing problem
(RACSIM drawing problem). Let G1 = (V,E1) and G2 = (V,E2) be two planar
graphs on the same vertex set. We say that G1 and G2 admit a RACSIM drawing if we
can place the vertices on the plane such that (i) each edge is drawn as a polyline, (ii)
each graph is drawn planar, (iii) there are no edge overlaps and (iv) crossings between
edges in E1 and E2 occur at right angles.

Argyriou et al. [1] introduced and studied the geometric version of RACSIM drawing.
In particular, they proved that it is always possible to construct a geometric RACSIM

drawing of a cycle and a matching in quadratic area, while there exists a pair of graphs
(a wheel and a cycle) which which do not admit a geometric RACSIM drawing. The
problem that we study was left as an open problem.

� This research was supported by the ESF EuroGIGA project GraDR (DFG grant Wo 758/5-1).

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 515–516, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

516 M.A. Bekos et al.

Table 1. A short summary of our results

Graph classes Number of bends Grid size
Planar + Planar 6 + 6 (14n− 26) × (14n− 26)
2-page book embed. + 2-page book embed. 4 + 4 (11n− 32) × (11n− 32)
Outerplanar + Outerplanar 3 + 3 (7n− 10) × (7n− 10)

Cycle + Cycle 1 + 1 2n × 2n
Caterpillar + Cycle 1 + 1 (2n− 1) × 2n
Four Matchings 1 + 1 + 1 + 1 2n × 2n
Tree + Matching 1 + 0 n × (n− 1)

Wheel + Matching 2 + 0 (1.5n− 1) × (n+ 2)
Outerpath + Matching 2 + 1 (3n− 2) × (3n− 2)

2 Our Contribution

First, we look at the most general version of the problem, where the input is a pair of
planar graphs. (In a simultaneous drawing, certainly both graphs must—individually—
be planar.) We give a linear-time algorithm for this case, which produces a drawing in
quadratic area with at most six bends per edge. For 2-page book embeddable graphs and
outerplanar graphs, we give algorithms that guarantee four and three bends respectively.
Then we turn our attention to graph classes that are more restricted, but for which we can
give algorithms that use very few bends. See Table 1 for a full list of results. The main
approach in these algorithms is to find linear orders on the vertices of the two graphs
and then to compute coordinates for the vertices based on these orders. All drawings can
be computed in linear time on a grid whose size is quadratic in the number of vertices.
The proofs of these claims can be found in the full version of the paper [2].

3 Open Problems

The results presented in this paper raise several questions that remain open, such as the
following. (i) As a variant of the problem, it might be possible to reduce the required
number of bends per edge by relaxing the strict constraint that intersections must be
right-angle and instead ask for drawings that have close to optimal crossing resolution.
(ii) The computational complexity of the general problem remains open: Given two or
more planar graphs on the same set of vertices and an integer k, is there a RACSIM

drawing in which each graph is drawn with at most k bends per edge and the crossing
are at right angles?

References

1. Argyriou, E.N., Bekos, M.A., Kaufmann, M., Symvonis, A.: Geometric RAC simultaneous
drawings of graphs. J. Graph Algorithms Appl. 17(1), 11–34 (2013)

2. Bekos, M.A., van Dijk, T.C., Kindermann, P., Wolff, A.: Simultaneous drawing of
planar graphs with right-angle crossings and few bends. Arxiv report (August 2014),
http://arxiv.org/abs/1408.3325

http://arxiv.org/abs/1408.3325

Touching Triangle Represenations in a k-gon

of Biconnected Outerplanar Graphs

Nieke Aerts

Technische Universität Berlin, Institut für Mathematik, Berlin, Germany
aerts@math.tu-berlin.de

Introduction. A side-contact representation by triangles, without holes, is
called a touching triangle representation. Gansner et al. have shown that ev-
ery biconnected outerplanar graph has a touching triangle representation [2].
In their construction the boundary is a polygon with concave and convex an-
gles. Fowler characterized the strongly-connected outerplanar graphs that have
a proper touching triangle representation [1], i.e., the outer face is a triangle
as well. An outerplanar graph is strongly-connected if it is biconnected and the
graph induced by the interior edges is connected. Here we expand this character-
ization to biconnected outerplanar graphs. Moreover, the characterization allows
for deciding precisely how many corners the boundary polygon needs to have. A
touching triangle representation in a k-gon is called a kTTR.

Definitions. First we construct the graph H such that G is the weak dual of
H . Start with the weak dual of G. Add an edge and a new endpoint for every
boundary edge of G. The newly added points are cyclically connected. Every
boundary edge, whose contraction does not induce a 2-face, is contracted.

Let vein(G) be the graph consisting of all strictly interior edges of G and
their endpoints. The venation graph of vein(G), denoted by venation(G), is
the graph that has as vertices the components of vein(G) and the faces between
two components. There is an edge between a component and a face if and only
if the face has a chord of this component on its boundary. There are no other
edges.

The vertices of the venation graph can be divided into five classes, the compo-
nents without interior face C0, the components with precisely one interior face
C1, the components with precisely two interior faces C2, the components with

H vein(G)G

Fig. 1. A biconnected outerplanar graph G, its auxiliary graph H and vein(G)

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 517–518, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

518 N. Aerts

more than two interior faces C3 and the connecting faces F . An orientation of
the edges of venation(G) is called valid if all edges are oriented and:
• every vertex in C2 has only incoming arcs,
• every vertex in C1 has at most one outgoing arc,
• every vertex in C0 has at most two outgoing arcs,
• every vertex in F has at precisely one outgoing arc.
We need one more definition, which will make it possible to decide how many

suspensions are needed.

Dividing Path. Let c a component of vein(G) with two interior faces, f and
f ′. An edge on the boundary of G with one end on f , is called a petiole of f .
A simple path P , between two boundary vertices of a biconnected outerplanar
graph is said to be a dividing path for c if
[D1] there is at most one edge of c in P , and,
[D2] the interior faces of c are on opposite sides of P , and,
[D3] each face has at least one petiole that is not completely in P .

Fig. 2. A dividing path (red) and petioles (dashed), a valid orientation and a 3TTR

Theorem 1. Let G be a biconnected outerplanar graph and v2 the number of
degree two vertices in of G. Let k be an integer such that 2 < k ≤ v2 if v2 ≥ 3
and let k = 3 otherwise. A biconnected outerplanar graph has a kTTR iff
[K1] Each component of vein(G) has at most two interior faces.
[K2] The graph venation(G) admits a valid orientation.
[K3] There is a way to select k vertices of degree 2 in G, such that, for every

component c ∈ C2, there are two representatives in this set, vi, vj, and
between the representatives there is a dividing path for c.

References

1. Fowler, J.J.: Strongly-Connected Outerplanar Graphs with Proper Touching Trian-
gle Representations. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242,
pp. 155–160. Springer, Heidelberg (2013)

2. Gansner, E.R., Hu, Y., Kobourov, S.G.: On Touching Triangle Graphs. In: Brandes,
U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 250–261. Springer, Heidelberg
(2011)

3D Graph Visualization with the Oculus Rift�

Farshad Barahimi and Stephen Wismath

University of Lethbridge, Canada

Abstract. Visualization of large graphs in 3D has been hampered by
the expense and inconvenience of virtual reality equipment. The Oculus
Rift is an affordable head-mounted VR system that is becoming popular
in the gaming and education markets. The GLuskap software package for
creating and editing graphs in 3D has been extended to include support
on the Oculus Rift for stereographic 3D viewing, and navigation.

Introduction. There are many theoretical results in the graph drawing litera-
ture regarding three-dimensional (3D) representations of graphs. However, the
actual usefulness of such 3D drawings has always been questioned; in particu-
lar, the effectiveness of visualization has been a main concern, as ultimately the
graph must be presented to the user, commonly:

– projected onto a (2D) monitor, possibly with a stereographic effect such as
shutter glasses, or anaglyphically,

– displayed in a virtual reality environment such as a CAVE, or
– printed as a physical model with a 3D printer.

Early studies on the effectiveness of head-mounted VR systems vs. fish tank
VR noted that the hardware suffered from latency and resolution problems [1].
However, more recent HCI experiments indicate that users can improve perfor-
mance on graph tasks (such as determining paths) for large graphs in a 3D VR
environment [3].

The GLuskap [4] software package allows for the creation and editing of graphs
in 3D and has been extended over the past decade to include each of the above
three output techniques; interactive visualization of 3D graphs has always been
a priority. The Oculus Rift [2] headset provides an affordable, individual, 3D
stereo experience with head tracking and display of appropriate left and right
eye information (Fig. 1). The low latency and accurate orientational tracking
allow an acceptable immersive experience.

Implementation. The Oculus Rift Software Development Kit provides pro-
grammable support in a C environment. Although GLuskap is written in python,
suitable wrappers and libraries permit its use as the main engine for creating the
virtual (graph) world. Head tracking on the first generation (DK1) rift is only
rotational and does not detect translational movements. For more effective and
convenient navigation, a simple game controller was added, allowing the user to

� Research supported by N.S.E.R.C.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 519–520, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

520 F. Barahimi and S. Wismath

Fig. 1. Left and right eye information provided by the rift

efficiently and intuitively move through the displayed graph. For visualization
purposes, when a user discovers an appropriate viewpoint and viewing angle, a
snapshot or picture of the visible portion of the graph can be made. Note that
the left/right eye information provided by the rift does not provide an accept-
able 2D picture and thus the scene is totally recreated and supplied to separate
rendering software (POVRay) for processing and generation.

The rift headset prevents the wearer from easily accessing the keyboard,
mouse, and computer screen and thus the graph editing features of GLuskap

(such as adding, deleting, and moving vertices and edges) are unavailable – only
navigation, scrolling through stored graphs, and snapshots are provided in this
mode, which required about 700 additional lines of python code.

Graph Drawing 2014. The poster presentation at GD14 will include a demo
of navigating and viewing 3D graph drawings with an Oculus Rift.

References

1. Arthur, K.W., Booth, K.S., Ware, C.: Evaluating 3d task performance for fish tank
virtual worlds. ACM Trans. Inf. Syst. 11(3), 239–265 (1993)

2. Oculus, http://www.oculusvr.com/rift/
3. Ware, C., Mitchell, P.: Visualizing graphs in three dimensions. TAP 5(1) (2008)
4. Wismath, S.: Website: GLuskap software, people.uleth.ca/~wismath/gluskap/

http://www.oculusvr.com/rift/
people.uleth.ca/~wismath/gluskap/

Force-Directed 3D Arc Diagrams

Michael J. Bannister, Michael T. Goodrich, and Peter Sampson

University of California, Irvine, USA

Abstract. We discuss a force-directed algorithm for constructing 3D arc dia-
grams. We introduce forces that allow curves in a 2D force directed graph to bow
out and away from each other in the third dimension in order to achieve better
angular resolution.

1 Introduction

In a 2D arc diagram1, a graph is drawn by placing its vertices on a line and drawing
its edges as circular arcs. Goodrich and Pszona [4] extend this definition to 3D arc
diagrams, where vertices are placed in the xy-plane and edges are drawn as circular
arcs that may bow out of that plane in the third dimension, and they show how to use
graph coloring methods to determine tangent angles. Their approach works well for
some types of graphs, but not all. In this poster, we present a general force-directed
method for constructing a 3D arc diagram for any graph.

2 Our Algorithm

We start with a 2D force-directed layout produced with Fruchterman-Reingold [3]
forces, that is, where all vertices repel each other based on electromagnetic forces and
vertices connected by an edge are attracted to each other by a force that views the edge
as a spring. Vertex placements are refined iteratively, where each iteration brings the 2D
graph closer to a low energy state where nodes are experiencing the same forces in ev-
ery direction. Our implementation starts with the standard 2D forces, without any kind
of distortion, allowing vertices to move freely. Thus, in the xy-plane, all vertices ex-
ert a force inversely related to their distance, similar to an electromagnetic force, which
tends to push away vertices that are not related to each other. Vertices that share an edge
are pulled toward each other with a spring force, positively related to their distance, so
that nodes that are related can be closer spatially. These two forces are tempered by
a cooling function that gradually reduces the impact of the forces to avoid any case
where nodes are pulled forward and backward indefinitely. This phase of the algorithm
is similar to the first phase in the “dummy node” approach of Chemobelskiy et al. [2]
for force-directed Lombardi drawings.

After a small number of iterations, our algorithm enters its second phase, where
we allow intersecting edges to “pop” out of the xy-plane. We also allow edges that
share common node to bow away from each other in the third dimension, based on their

1 See http://en.wikipedia.org/wiki/Arc_diagram.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 521–522, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://en.wikipedia.org/wiki/Arc_diagram

522 M.J. Bannister, M.T. Goodrich, and P. Sampson

proximity and the angle between them. This is implemented by viewing edges as Bezier
curves with 1 control point. The bowing force is exerted on the control points of two
edges sharing a common node and is constructed by the current distance between the
control points and the angle formed by the shared node and the location of each control
point. Specifically, we compute a force that 2 control points will exert on each other as

F = c/(ra · db),
where r is the angle of the control points and their shared node and d is the distance
between the two control points. In our case, we found that the values, c = .5 and b = 2,
worked well, with r = 1.5 initially.

This force is applied in the x- and y-directions, leading the two control points away
from each other and in the positive z-direction on both. It is then reduced so that the xy-
force is perpendicular to the original straight line edge before any curve bowing force
is applied. The control points are then pulled back to their original, unmoved location
laying on the xy-plane by a spring force with power proportional to how far away the
control point currently is from its origin. The spring force for a direction (x in this case)
is given by

−Fx = kFx,

where k = .5.
When edges intersect, as detected by an orientation algorithm [1], we repel their

control points in the z-direction only. This lifts up the higher edge and lowers the other.
The magnitude of the force exerted on each control point is based on their distance in
the xy-plane.

In the initial state, where all edges are lying on the xy-plane and have a z-value of 0,
we exert a force to only one of the edges (at random), leaving the other edge still on the
xy-plane.

3 Conclusion

We have observed that by adding another dimension to a graph drawing and allowing
control points to enter this new dimension with forces that cause edges to bow out of
the plane in a fashion dictated by intersections, angles, and proximity, we can improve
the angular resolution of the graph as a whole. For almost all cases, using additional
forces will provide better angular resolution than if we were in the xy-plane alone.

References

1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visu-
alization of Graphs (1998)

2. Chernobelskiy, R., Cunningham, K.I., Goodrich, M.T., Kobourov, S.G., Trott, L.: Force-
directed lombardi-style graph drawing. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034,
pp. 320–331. Springer, Heidelberg (2011)

3. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software:
Practice and Experience 21(11), 1129–1164 (1991), doi:10.1002/spe.4380211102

4. Goodrich, M.T., Pszona, P.: Achieving good angular resolution in 3D arc diagrams. In: Wis-
math, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 161–172. Springer, Heidelberg
(2013)

People Prefer Less Stress and Fewer Crossings�

Markus Chimani1, Patrick Eades2, Peter Eades2, Seok-Hee Hong2, Weidong Huang3,
Karsten Klein2, Michael Marner4, Ross T. Smith4, and Bruce H. Thomas4

1 University of Osnabrück, Germany
Markus.Chimani@uni-osnabrueck.de

2 University of Sydney, Australia
patrick.f.eades@gmail.com,

{peter.eades,seokhee.hong,karsten.klein}@sydney.edu.au
3 University of Tasmania, Australia
tony.huang@utas.edu.au

4 University of South Australia, Adelaide, Australia
{michael.marner,ross.smith,bruce.thomas}@unisa.edu.au

Human experiments in Graph Drawing, such as the seminal papers of Purchase et al. [1],
have concentrated on tasks, such as path-tracing. Here we report the first results in an
ongoing series of experiments to investigate the geometric properties of graph drawings
that users prefer. The specific experiment described in this poster investigates the impact
of edge crossings and stress in straight-line drawings on human preference. Our results
suggest a positive preference for drawings with less stress and fewer crossings.

Experiment. Seventy nine subjects were recruited; subjects were about 50% Computer
Science students and 50% Cognitive Science at the University of Osnabrück. After
standard introductory material, subjects were shown a sequence of ten “instances”. Each
instance consisted of a screen containing a pair of graph drawings. The subject was
asked to click on which one of the pair they prefer. A typical screenshot is in Fig. 1. The
data set used in the experiment comes from publicly available graph sets, including the
Hachul library, Walshaw’s Graph Partitioning Archive, and sets of randomly generated
biconnected and scale free graphs (using the OGDF generators). We used a total of 118
graphs, ranging in size from small (25 nodes and 29 edges) to moderately large (8000
nodes and 15580 edges). For each graph in the data set, four drawings were computed
using a force-directed method; these four drawings varied in stress and crossings. For
each instance of the experiment, a graph was randomly selected from the data set, and
two drawings of the four drawings of that graph were randomly selected and displayed
as in Fig. 1. The subject was then asked to click on the drawing that he/she prefers.

Results. The subject preferred the drawing with less (scaled1) stress in 57% of all (790)
instances, and preferred the drawing with fewer crossings in 65% of all instances. We
found that preference for lower stress drawings increases with (scaled) stress ratio, that
is, the ratio of the stress between the two drawings presented to the user, to a maxi-
mum of 70% of instances when stress ratio is greater than 4. Curiously, the percentage

� Research supported by the Australian Research Council and Tom Sawyer Software.
1 Scaled by average edge length

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 523–524, 2014.
© Springer-Verlag Berlin Heidelberg 2014

524 M. Chimani et al.

Fig. 1. Example of a typical “instance” (a graph pair shown to participants)

50

55

60

65

70

75

80

1 1.5 2 2.5 3 3.5 4 4.5 5

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es
 w

he
re

lo

w
er

 st
re

ss
 is

 p
re

fe
re

d

Stress ratio: higher stress / lower stress

Stress ratio vs preference %

50

55

60

65

70

75

80

1 1.5 2 2.5 3 3.5 4 4.5 5

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es
 w

he
re

fe

w
er

 cr
os

sin
gs

 a
re

 p
re

fe
re

d

Crossing ratio: higher crossings / lower
crossings

Crossings ratio vs preference %

Fig. 2. Stress ratios, crossing ratios, and preferences

decreases when the stress ratio is between 4 and 5. Further, the user’s preference for
lower crossings increases from crossing ratio 1 to 1.5, where crossing ratio is the ratio
of the crossings between the two drawings presented to the user. For 76% of instances
where the crossing ratio was at least 2, the human preferred the drawing with fewer
crossings. The relationships between stress ratios, crossing ratios, and preferences are
illustrated in Fig. 2.

Remarks. Our results suggest that people prefer less stress; further, this effect increases
as the stress decreases. A similar result can be inferred for crossings. However, this
initial experiment raises a number of questions: In particular, crossings and stress are
weakly correlated in our data set, in that graphs with higher stress tend to have more
crossings. It is unclear whether the preference is for less stress or less crossings (or
both).

Our experimental software is web-deployable. We welcome more researchers to
collaborate in this project.

References

[1] Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBat-
tista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)

A New Approach to Visualizing General Trees

Using Thickness-Adjustable Quadratic Curves

M. Ali Rostami1, Azin Azadi2, and H. Martin Bücker1

1 Friedrich Schiller University Jena, Germany
{a.rostami,martin.buecker}@uni-jena.de

2 Jovoto Company, Berlin, Germany
aazadi@gmail.com

In this abstract, we present a new algorithm for visualization of trees. This
algorithm illustrates the hierarchical data by using curve segments for each edge
and how edges evolve on a path from the root to the leaves. More clearly, we
visualize a tree based on the shape of a botanical tree. The software tool Graph-
Tea [3,4] implements this algorithm where the adjustable thicknesses of the curve
segments reflect the expansion [2] of botanical trees. Here, we consider a simple
expansion definition for each vertex as the sum over the number of children and
the children of its children up to the some specific level.

Given a tree and a layout of this tree, the algorithm computes a set of curve
segments as follows. A quadratic parameter curve segment is drawn for each
node starting from the tree root moving toward all leaves. Each curve segment
is associated to three consecutive nodes on a path. Suppose that these nodes
are located at the positions P0, P1 and P2 in the layout. Then, the quadratic
parameter curve segment

B(t) = (1 − t)2P0 + 2(1− t)tP1 + t2P2, t ∈ [0, 1],

is computed. After generating these curve segments for each node, a general
shape is generated from them by interpolating the segments. This approach
generates a tree like Fig. 1 (a) with a fixed thickness.

Although this visualization with a fixed thickness gives an overall image of
the tree structure, we can visualize more information using thickness. To control
the thickness, we visualize each curve segment by two so-called boundary curves.
As a result, we can generate different thicknesses by changing the start and end
positions of these boundary curves. More clearly, suppose we are given points
P0, P1, P2 of the curve segment and the angles θ0, θ1, θ2, between their position
vectors. Also, let w0, w1, and w2 denote the starting, the middle, and the end
thicknesses of the curve segment, i.e., the distance between the boundary curves
in their different parts. First, we compute three values: the start width S, the
middle width M , and the end width E,

S =
w0 + w1

2
, M = w1, and E =

w1 + w2

2
.

These widths specify the distances between the two boundary curves at three
positions.

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 525–526, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

526 M.A. Rostami, A. Azadi, and H.M. Bücker

Then, the two boundary curves are generated using the two sets of points

{P0 − SR(θ0), P1 −MR(θ1), P2 − ER(θ2)},
{P0 + SR(θ0), P1 +MR(θ1), P2 + ER(θ2)}.

where R(θ) = (cos(θ), sin(θ))T . This new definition controls the shape of each
boundary curve segment. Fig. 1 (b) shows a tree generated by this new method.
Here, all curve segments have different thicknesses. However, the tree is drawn
smoothly and there is no inconsistency.

Fig. 1. (a) A general path is generated from quadratic curves with a fixed thickness.
(b) A tree is drawn by different thicknesses for branches. (c,d) The thicknesses are
changing by adding new nodes as a result of extending by the feature of adjustable
thickness. (e) A tree is visualized using the adjustable thickness and adding circles for
fruits.

Holton [1] was one of the first who proposed a strand model to investigate
the tree drawing. Based on this model, we adjust the thicknesses automatically.
Suppose α is a basic default thickness and l0 is the number of levels we want
to consider. Hence, the thickness of a node is computed by the number of its
children and the children of its children up to the level l0, multiplied by α. Figs. 1
(c,d) illustrate this model in the evolution of the tree. Computing this thickness
for each node through the tree and interpolating the connection of two curve
segments produce Fig. 1 (e). In this figure, circles are added as fruits only in
favour of a better visualization.

References

1. Holton, M.: Strands, gravity and botanical tree imagery. Computer Graphics Fo-
rum 13(1), 57–67 (1994)

2. Hoory, S., Linial, N., Wigderson, A., Overview, A.: Expander graphs and their
applications. Bull. Amer. Math. Soc. (N.S.) 43, 439–561 (2006)

3. Rostami, M.A., Azadi, A., Seydi, M.: GraphTea: Interactive Graph Self-Teaching
Tool. In: Proc. 2014 Int. Conf. Edu. & Educat. Technol. II, pp. 48–52 (2014)

4. Rostami, M.A., Bücker, H.M., Azadi, A.: Illustrating a graph coloring algorithm
based on the principle of inclusion and exclusion using GraphTea. In: Rensing, C.,
de Freitas, S., Ley, T., Muñoz-Merino, P.J. (eds.) EC-TEL 2014. LNCS, vol. 8719,
pp. 514–517. Springer, Heidelberg (2014)

Minimum Representations

of Rectangle Visibility Graphs

John S. Caughman1, Charles L. Dunn2, Joshua D. Laison3,
Nancy Ann Neudauer4, and Colin L. Starr3

1 Department of Mathematics and Statistics, Portland State University,
Box 751, Portland, OR 97202, USA

2 Department of Mathematics, Linfield College, 900 SE Baker Street,
McMinnville, OR 97128, USA

3 Department of Mathematics, Willamette University, Salem, OR 97301, USA
4 Department of Mathematics & Computer Science, Pacific University,

Forest Grove, OR 97116, USA

Let S be a set of nonintersecting open rectangles in the plane with horizontal
and vertical sides. Two rectangles R1 and R2 are visible if there exists a line
of sight between them, a horizontal or vertical line segment that intersects
both R1 and R2 but no other object in S. We construct a graph G with a
vertex for each rectangle in S, and an edge between two vertices if and only
if their corresponding rectangles are visible. Note that we require rectangles to
have positive width and height, but two rectangles may share a part of their
boundary, so the distance between two rectangles may be 0. For a given graph
G, if such a representation of G with rectangles exists then G is a rectangle
visibility graph (RVG) and S is a rectangle visibility representation of
G [1].

Suppose the corners of the rectangles in S have integer coordinates. For a
given RVG G, we ask how small its rectangle visibility representation can be.
We think of the size of a rectangle visibility representation as the area of the
smallest axis-parallel rectangle that encloses it (the area of S), or as the length
of the shorter side of this rectangle (the height of S). Kant, Liotta, Tamassia,
and Tollis [2] found the area of a rectangle visibility representation of a tree
up to a multiplicative constant. In this work, we find the height of a rectangle
visibility representation of a tree within an additive constant of 1. We also ask
for the RVG with n vertices and largest area (i.e. the maximum over all graphs
G on n vertices of the minimum area of any rectangle visibility representation
of G). We begin answering this question for small values of n. Specifically, we
prove the following theorems.

Theorem 1. Among graphs with n vertices, 1 ≤ n ≤ 6, the empty graphs En

have largest area, n2.

Theorem 2. Among graphs with n vertices, n ≥ 7, the empty graphs En do not
have largest area.

To prove Theorem 2, we show first that the graphs K7 and K8 must be
enclosed by axis-parallel rectangles of dimensions at least 7× 8 and 10× 10, and

C. Duncan and A. Symvonis (Eds.): GD 2014, LNCS 8871, pp. 527–528, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

528 J.S. Caughman et al.

so have area 56 and 100, respectively. Then note that if n ≥ 9 the disjoint union
of K8 and n − 8 isolated vertices has area at least (n − 8 + 10)2, greater than
the area of En.

Theorem 3. A tree T with � leaves has representation height ��/2� or ��/2�+1.
Further, if T has no vertices of degree 2 then T has representation height ��/2�
exactly.

We prove Theorem 3 by converting a rectangle visibility representation of a
tree T into an orienting path cover of T . An orienting path cover of T is a set
of directed paths in T containing all of its vertices, such that whenever two paths
share an edge, they point the same direction. We prove the following lemmas:

Lemma 1. A tree has a representation with height k if and only if it has an
orienting path cover with k paths.

Lemma 2. A tree with � leaves has an orienting path cover with at most ��/2�+1
paths.

Note that every orienting path cover must include a path ending at every
leaf. This is at least ��/2� paths. So equivalently, Lemma 2 says that T has an
orienting path cover using at most one extra path. We find a family of examples
for which this extra path is necessary.

References

1. Dean, A.M., Hutchinson, J.P.: Rectangle-visibility representations of bipartite
graphs. Discrete Appl. Math. 75(1), 9–25 (1997)

2. Kant, G., Liotta, G., Tamassia, R., Tollis, I.G.: Area requirement of visibility rep-
resentations of trees. Inform. Process. Lett. 62(2), 81–88 (1997)

Author Index

Abel, Zachary 272
Ackerman, Eyal 222
Aerts, Nieke 517
Aichholzer, Oswin 355
Alam, Md. Jawaherul 125
Angelini, Patrizio 246, 404
Arleo, Alessio 509
Athenstädt, Jan Christoph 64
Aulbach, Maximilian 367
Azadi, Azin 525

Bannister, Michael J. 149, 210, 521
Barahimi, Farshad 519
Barrera-Cruz, Fidel 294
Bekos, Michael A. 198, 331, 515
Biedl, Therese 380
Binucci, Carla 186
Bläsius, Thomas 440, 513
Borradaile, Glencora 1
Brandes, Ulrik 101
Bücker, H. Martin 525

Caughman, John S. 527
Chan, Timothy M. 25
Chimani, Markus 416, 523
Cornelsen, Sabine 198

Da Lozzo, Giordano 246, 404
Dehkordi, Hooman Reisi 464
De Luca, Felice 509
Demaine, Erik D. 272
Demaine, Martin L. 272
Devanny, William E. 149
Di Bartolomeo, Marco 404
Di Battista, Giuseppe 246, 404, 416
Didimo, Walter 52, 186, 343, 507
Di Giacomo, Emilio 52, 174, 186
Dunn, Charles L. 527
Durocher, Stephane 306, 392
Dwyer, Tim 319

Eades, Patrick 523
Eades, Peter 113, 523
Efrat, Alon 452

Eppstein, David 1, 125, 149, 210, 272
Evans, William 259

Fink, Martin 367
Frati, Fabrizio 25, 246, 416, 464
Fulek, Radoslav 428

Ghassemi Toosi, Farshad 511
Goodrich, Michael T. 125, 149, 521
Grilli, Luca 40, 198
Gronemann, Martin 162, 331
Gudmundsson, Joachim 464
Gutwenger, Carsten 25, 501

Hackl, Thomas 355
Hartmann, Tanja 64
Haxell, Penny 294
Hong, Seok-Hee 40, 113, 198, 404, 523
Hu, Yifan 89, 452
Huang, Weidong 523

Kaufmann, Michael 198, 331
Kieffer, Steve 319
Kindermann, Philipp 76, 488, 515
Klein, Karsten 113, 416, 523
Kleist, Linda 137
Klute, Fabian 513
Kobourov, Stephen G. 125, 234, 452
Kratochv́ıl, Jan 40
Krug, Robert 331
Kusters, Vincent 259
Kynčl, Jan 428

Laison, Joshua D. 527
Liotta, Giuseppe 52, 174, 343, 509
Lipp, Fabian 76
Löffler, Maarten 501
Lubiw, Anna 25, 272, 294
Lutteropp, Sarah 355

Malinović, Igor 428
Marner, Michael R. 113, 523
Marriott, Kim 319
Mchedlidze, Tamara 355

530 Author Index

Meijer, Henk 52
Mondal, Debajyoti 306, 392
Montecchiani, Fabrizio 174, 186, 507,

509
Mutzel, Petra 25

Nachmanson, Lev 501
Neudauer, Nancy Ann 527
Niedermann, Benjamin 513
Nikolov, Nikola S. 511
Nocaj, Arlind 101
Nöllenburg, Martin 64, 476, 513

Ortmann, Mark 101

Pallas, Evangelos 507
Pálvölgyi, Dömötör 428
Patrignani, Maurizio 186, 343, 404
Prutkin, Roman 476
Pupyrev, Sergey 125, 234, 452

Rahman, Benjamin 137
Roselli, Vincenzo 246, 404
Rostami, M. Ali 525
Rüegg, Ulf 319
Ruiz-Vargas, Andres J. 284
Rutter, Ignaz 40, 440, 476, 501

Saket, Bahador 234
Sampson, Peter 521
Saumell, Maria 259
Schaefer, Marcus 13, 25, 222
Schuhmann, Julian 367
Schulz, André 488
Shi, Lei 89
Smith, Ross T. 113, 523
Speckmann, Bettina 259
Spoerhase, Joachim 488
Starr, Colin L. 527
Suk, Andrew 284

Thomas, Bruce H. 113, 523
Tollis, Ioannis G. 186, 507, 509
Tóth, Csaba D. 284

Uehara, Ryuhei 272

van Dijk, Thomas C. 515
Vogtenhuber, Birgit 355

Wismath, Stephen 52, 519
Wolff, Alexander 76, 367, 488, 515
Wybrow, Michael 319

Zhu, Pingan 1

	Preface
	Organization
	Good Drawings and Rotation Systems of Complete Graphs
	Matrix-Based Visualization of Graphs
	Table of Contents
	Planar Subgraphs
	Planar Induced Subgraphs of Sparse Graphs
	1 Introduction
	1.1 New Results
	1.2 Related Work

	2 Preliminaries
	3 Large Induced Pseudoforests
	4 Large Induced Treewidth Two Graphs
	5 No Very Large, Minor-Free Induced Subgraphs
	References

	Picking Planar Edges; or, Drawing a Graphwith a Planar Subgraph
	1 Introduction
	2 Partial Planarity and Hanani-Tutte
	3 Geometric Partial 1-Planarity
	4 Future Research
	References

	Drawing Partially Embedded and Simultaneously Planar Graphs
	1 Introduction
	1.1 RelatedWork
	1.2 Graph Drawing Terminology

	2 Partially Embedded Graphs
	3 Extending Partial Straight-Line Planar Drawings Greedily
	4 Simultaneous Planarity
	5 Conclusions and Open Problems
	References

	Simultaneous Embeddings
	Drawing Simultaneously Embedded Graphs with Few Bends
	1 Introduction
	2 Preliminaries
	3 SEFE Drawing with (Bi-)Connected Common Graph
	4 SEFE Drawing for General Graphs
	5 Lower Bounds
	6 Conclusion
	References

	Planar and Quasi Planar Simultaneous Geometric Embedding
	1 Introduction
	2 Preliminaries
	3 EAP Graphs and Simultaneous Geometric Embedding
	4 Simultaneous Geometric Quasi Planar Embeddings
	5 Discussion and Open Problems
	References

	Simultaneous Embeddability of Two Partitions
	1 Introduction
	1.1 RelatedWork
	1.2 Preliminaries

	2 The Main Classes of Embeddability
	3 Complexity of Deciding Strong Embeddability
	4 Extensions and Conclusion
	References

	Applications
	Luatodonotes: Boundary Labeling for Annotations in Texts
	1 Introduction
	2 Implementation
	3 Algorithms for Label Placement
	3.1 s-Leaders
	3.2 Bézier Curves as Leaders
	3.3 opo-Leaders and os-Leaders
	3.4 po-Leaders

	4 Improvements
	5 Experimental Results
	6 Conclusion and Open Problems
	References

	A Coloring Algorithm for Disambiguating Graph and Map Drawings
	1 Introduction
	2 Related Work
	3 The Edge Coloring Problem and a Coloring Algorithm
	3.1 Edge Collisions
	3.2 Constructing the Dual Collision Graph
	3.3 A Color Optimization Algorithm

	4 Implementation and Results
	5 User Study
	6 Conclusions
	References

	Untangling Hairballs
	1 Introduction
	2 Drawing Algorithm
	3 Edge Embeddedness by Accumulating Triadic Effects
	4 Evaluating Methods for Edge Embeddedness
	4.1 Dataset and Model
	4.2 Edge Embeddedness Methods
	4.3 Quality Metrics
	4.4 Results and Discussion

	5 Conclusion
	References

	GION: Interactively Untangling Large Graphs onWall-Sized Displays
	1 Introduction
	2 Background
	3 GION: Graph Interaction Operation for Nodes
	3.1 Graph Clustering
	3.2 User Operations

	4 Evaluation
	4.1 Graphs
	4.2 Experimental Procedure

	5 Results
	5.1 Mouse Usage
	5.2 Graph Layout Analysis
	5.3 Questionnaire Results

	6 Discussion
	7 Implementation Details
	8 Conclusion
	References

	Contact Representations
	Balanced Circle Packings for Planar Graphs
	1 Introduction
	2 Bounded Degree and Logarithmic Outerplanarity
	2.1 Balanced Circle-Contact Representations
	2.2 Negative Results

	3 Trees and Outerplanar Graphs
	4 Bounded Tree-Depth
	5 Conclusion
	References

	Unit Contact Representations of Grid Subgraphs with Regular Polytopes in 2D and 3D
	1 Introduction
	1.1 RelatedWork
	1.2 Our Contributions

	2 Definitions and Properties
	2.1 Some Properties

	3 The Strategy
	4 Representations with Unit Squares
	5 Representations with Unit Cubes
	5.1 d-Dimensional Grid
	5.2 Triangular Grid
	5.3 Archimedean Grids

	6 Representations with Regular Polygons
	6.1 Representations with Regular 4k-gons
	6.2 Representations with Regular 3k-gons

	7 Open Questions
	References

	The Galois Complexity of Graph Drawing: Why Numerical Solutions Are Ubiquitous for Force-Directed, Spectral, and Circle Packing Drawings
	1 Introduction
	2 Preliminaries
	3 Impossibility Results for Force Directed Graph Drawing
	4 Impossibility Results for Spectral Graph Drawing
	5 Impossibility Results for Circle Packings
	6 Conclusion
	References

	Bitonic st-orderings of Biconnected Planar Graphs
	1 Introduction
	2 Preliminaries
	3 The Bitonic st-ordering
	4 Applications
	5 Implementation Details
	6 Conclusion
	References

	k-Planar Graphs
	Drawing Outer 1-planar Graphs with Few Slopes
	1 Introduction
	2 Preliminaries and Basic Definitions
	3 The Outer 1-planar Slope Number
	4 The Planar Slope Number
	5 Open Problems
	References

	Fan-Planar Graphs: Combinatorial Properties and Complexity Results
	1 Introduction
	2 Preliminary Definitions and Results
	3 Density of Outer and 2-layer Fan-Planar Graphs
	4 Fan-Planar and k-planar Graphs
	5 Complexity of the Fan-Planarity Testing Problem
	6 Open Problems
	References

	On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs
	1 Introduction
	2 Recognizing and Drawing Maximal Outer-Fan-Planar Graphs
	3 Recognizing Fan-Planar Graphs with Rotation System
	References

	Crossing Minimization
	Crossing Minimization for 1-page and 2-pageDrawings of Graphs with Bounded Treewidth
	1 Introduction
	2 Preliminaries
	3 1-page Crossing Minimization
	4 2-pagePlanarity
	5 2-page Crossing Minimization
	6 Conclusion
	References

	A Crossing Lemma for the Pair-CrossingNumber
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 4
	3.1 The Local Pair-Crossing Number and Bounding e��k for k ≤ 2
	3.2 A Proof that e��3 (n) ≤ 6(n − 2)

	4 A Better Lower Bound on pcr+
	References

	Are Crossings Important for Drawing Large Graphs?
	1 Introduction
	2 Related Work
	3 Experiments
	3.1 Procedure: Experiment 1
	3.2 Procedure: Experiment 2
	3.3 Results
	3.4 Discussion

	4 Edge Crossings and Other Aesthetic Criteria
	5 Conclusion and Future Work
	References

	Level Drawings
	The Importance of Being Proper
	1 Introduction and Overview
	2 NP-Hardness
	3 Polynomial-Time Algorithms
	3.1 T -LEVEL PLANARITY
	3.2 CLUSTERED-LEVEL PLANARITY

	4 Open Problems
	References

	Column Planarity and Partial SimultaneousGeometric Embedding
	1 Introduction
	2 Column Planar Sets in Trees
	3 Partial Simultaneous Geometric Embedding
	4 Discussion and Open Problems
	References

	Flat Foldings of Plane Graphswith Prescribed Angles and Edge Lengths
	1 Introduction
	1.1 New Results
	1.2 Related Work

	2 Definitions
	3 Local Characterization
	4 Algorithm to Find a Folding
	5 Counting Flat Foldings
	References

	Theory
	Disjoint Edges in Topological Graphs and the Tangled-Thrackle Conjecture
	1 Introduction
	2 Disjoint Edges in Topological Graphs
	3 Application: The Tangled-Thrackle Conjecture
	4 Concluding Remarks
	References

	Morphing Schnyder Drawings of Planar Triangulations
	1 Introduction
	1.1 Definitions and Notation

	2 Schnyder Woods and Their Properties
	3 MainResult
	4 Morphing to Change Weight Distributions
	5 Morphing to Flip a Facial Triangle
	6 Morphing to Flip a Separating Triangle
	7 Identifying Weighted Schnyder Drawings
	8 Conclusions and Open Problems
	References

	Trade-Offs in Planar Polyline Drawings
	1 Introduction
	2 Technical Background
	3 Polyline Drawing
	4 Trade-Offs between Angular Resolution and Area
	5 Conclusion
	References

	Fixed Edge Directions
	Stress-Minimizing Orthogonal Layoutof Data Flow Diagrams with Ports
	1 Introduction
	2 CoDaFlow – The Algorithm
	2.1 Constrained Stress-Minimizing Node Positioning
	2.2 Grid-Like Node Alignment
	2.3 Edge Routing

	3 Handling Compound Graphs
	4 Evaluation and Discussion
	5 Conclusions
	References

	Planar Octilinear Drawings with One Bend Per Edge
	1 Motivation
	2 Octilinear Drawings of 4-Planar Graphs
	3 Octilinear Drawings of 5-Planar Graphs
	4 A Note on Octilinear Drawings of 6-Planar Graphs
	5 Conclusions
	References

	On the Complexity of HV-rectilinear Planarity Testing
	1 Introduction
	2 NP-completeness of HV-rectilinear Planarity Testing
	3 Testing Algorithm for Series-Parallel Graphs
	4 Testing Algorithm for Partial 2-Trees
	5 Conclusions and Open Problems
	References

	Embedding Four-Directional Paths on Convex Point Sets
	1 Introduction
	2 Definitions
	3 Preliminaries
	4 Three-Directional Paths
	5 Four-Directional Paths
	6 Conclusion
	References

	Drawing under Constraints
	Drawing Graphs within Restricted Area
	1 Introduction
	2 General Graphs
	2.1 Our Algorithm
	2.2 Extensions
	2.3 Experiments and Evaluation

	3 Calculation Graphs
	3.1 Our Algorithm
	3.2 Extensions
	3.3 Experiments and Evaluation

	4 Conclusion
	References

	Height-Preserving Transformationsof Planar Graph Drawings
	1 Introduction
	2 Preliminaries
	3 Point-Drawings
	3.1 Exponential Width
	3.2 y-monotonicity

	4 FlatDrawings
	5 Box-DrawingsMadeFlat
	6 Applications
	7 Conclusion
	References

	Drawing Planar Graphs with Reduced Height
	1 Introduction
	2 Preliminary Definitions and Results
	3 Drawing Triangulations with Small Height
	3.1 Drawing Technique

	4 Drawing Planar 3-Trees with Small Height
	4.1 Technical Background
	4.2 Drawing Algorithm

	References

	Anchored Drawings of Planar Graphs
	1 Introduction
	2 Problem Definition and Instances Classification
	3 Polynomial-Time Algorithm
	4 Hardness Results
	5 Conclusions and Open Problems
	References

	Clustered Planarity
	Advances on Testing C-Planarity of Embedded Flat Clustered Graphs
	1 Introduction
	2 Saturators, Con-Edges, and Spanning Trees
	3 Algorithm Outline
	4 Algorithm
	5 Conclusions
	References

	Clustered Planarity Testing Revisited
	1 Introduction
	2 Algorithm
	3 Two Clusters
	3.1 Proof of Theorem 1

	4 Proof of Theorem 2
	5 Small Faces
	6 Concluding Remarks
	References

	A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem
	1 Introduction
	2 Preliminaries
	3 The CD-Tree
	4 Clustered and Constrained Planarity
	4.1 Flat-Clustered Graph
	4.2 General Clustered Graphs

	5 Cutvertices with Two Non-trivial Blocks
	References

	MapSets: Visualizing Embedded and Clustered Graphs
	1 Introduction
	2 Related Work
	3 Constructing Contiguous Non-overlapping Regions
	3.1 ConvexityMeasures
	3.2 Algorithm for Ink Minimization

	4 MapSets
	5 Experiments
	6 Conclusion and Future Work
	References

	Greedy Graphs
	Increasing-Chord Graphs On Point Sets
	1 Introduction
	2 Definitions and Preliminaries
	3 Planar Increasing-Chord Graphs with Few Steiner Points
	4 Increasing-Chord Convex Graphs with Few Edges
	5 Conclusions
	References

	On Self-Approaching and Increasing-Chord Drawings of 3-Connected Planar Graphs
	1 Introduction
	2 Preliminaries
	3 Graphs with Self-Approaching Drawings
	3.1 Increasing-Chord Drawings of Triangulations
	3.2 Non-triangulated Cactuses

	4 Planar Increasing-Chord Drawings of 3-Trees
	5 Self-Approaching Drawings in the Hyperbolic Plane
	References

	On Monotone Drawings of Trees
	1 Introduction
	2 Building Blocks: Primitive Vectors
	3 Monotone Grid Drawings with Good Angles
	4 Strongly Monotone Drawings
	5 Conclusion and Open Problems
	References

	Graph Drawing Contest
	Graph Drawing Contest Report
	1 Introduction
	2 Metro Map Layout
	3 Composers Graph
	4 Online Challenge
	References

	Posters
	A User Study on the Visualization of Directed Graphs
	References

	GraphBook: Making Graph Paging Real
	References

	Circular Tree Drawing by SimulatingNetwork Synchronisation Dynamics and Scaling
	1 Introduction
	2 Algorithm
	References

	PIGRA– A Tool for Pixelated Graph Representations
	References

	Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends
	1 Introduction
	2 Our Contribution
	3 Open Problems
	References

	Touching Triangle Represenations in a k-gonof Biconnected Outerplanar Graphs
	References

	3D Graph Visualization with the Oculus Rift
	References

	Force-Directed 3D Arc Diagrams
	1 Introduction
	2 Our Algorithm
	3 Conclusion
	References

	People Prefer Less Stress and Fewer Crossings
	References

	A New Approach to Visualizing General TreesUsing Thickness-Adjustable Quadratic Curves
	References

	Minimum Representationsof Rectangle Visibility Graphs
	References

	Author Index

