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II Theoretical Advances 175

7 Exact Minimax Predictive Density Estimation and MDL 177
Feng Liang and Andrew Barron

8 The Contribution of Parameters to Stochastic Complexity 195
Dean P. Foster and Robert A. Stine



vi

9 Extended Stochastic Complexity and Its Applications to
Learning 215

Kenji Yamanishi

10 Kolmogorov’s Structure Function in MDL Theory and Lossy
Data Compression 245

Jorma Rissanen and Ioan Tabus

III Practical Applications 263

11 Minimum Message Length and Generalized Bayesian Nets
with Asymmetric Languages 265

Joshua W. Comley and David L. Dowe

12 Simultaneous Clustering and Subset Selection via MDL 295
Rebecka Jörnsten and Bin Yu

13 An MDL Framework for Data Clustering 323
Petri Kontkanen, Petri Myllymäki, Wray Buntine,
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Series Foreword

The yearly Neural Information Processing Systems (NIPS) workshops bring to-
gether scientists with broadly varying backgrounds in statistics, mathematics, com-
puter science, physics, electrical engineering, neuroscience, and cognitive science,
unified by a common desire to develop novel computational and statistical strate-
gies for information processing, and to understand the mechanisms for information
processing in the brain. As opposed to conferences, these workshops maintain a
flexible format that both allows and encourages the presentation and discussion of
work in progress, and thus serve as an incubator for the development of important
new ideas in this rapidly evolving field.
The series editors, in consultation with workshop organizers and members of the

NIPS Foundation board, select specific workshop topics on the basis of scientific
excelllence, intellectual breadth, and technical impact. Collections of papers chosen
and edited by the organizers of specific workshops are built around pedagogical
introductory chapters, while research monographs provide comprehensive descrip-
tions of workshop-related topics to create a series of books that provides a timely,
authoritative account of the latest developments in the exciting field of neural com-
putation.

Michael I. Jordan, Sara Al. Solla, and Terrence J. Sejnowski





Preface

To be able to forecast future events, science wants to infer general laws and prin-
ciples from particular instances. This process of inductive inference is the central
theme in statistical modeling, pattern recognition, and the branch of computer sci-
ence called “machine learning.” The minimum description length (MDL) principle
is a powerful method of inductive inference. It states that the best explanation (i.e.,
model) given a limited set of observed data is the one that permits the greatest
compression of the data. Put simply, the more we are able to compress the data,
the more we learn about the regularities underlying the data.
The roots of MDL can be traced back to the notion of Kolmogorov complexity,

introduced independently by R.J. Solomonoff, A.N. Kolmogorov, and G.J. Chaitin
in the 1960s. These and other early developments are summarized at the end of
Chapter 1 of this book, where a brief history of MDL is presented. The development
of MDL proper started in 1978 with the publication of Modeling by the Shortest
Data Description by J. Rissanen. Since then, significant strides have been made
in both the mathematics and applications of MDL. The purpose of this book is to
bring these advances in MDL together under one cover and in a form that could be
easily digested by students in many sciences. Our intent was to make this edited
volume a source book that would inform readers about state-of-the-art MDL and
provide examples of how to apply MDL in a range of research settings.
The book is based on a workshop we organized at the annual Neural Information

Processing Systems (NIPS) conference held in Whistler, Canada in December
2001. It consists of sixteen chapters organized into three parts. Part I includes six
introductory chapters that present the theoretical foundations of the MDL principle,
its various interpretations, and computational techniques. In particular, chapters 1
and 2 offer a self-contained tutorial on MDL in a technically rigorous yet readable
manner. In Part II, recent theoretical advances in modern MDL are presented.
Part III begins with a chapter by J. Comley and D. Dowe that describes minimum
message length (MML), a “twin sister” of MDL, and highlights the similarities
and differences between these two principles. This is followed by five chapters that
showcase the application of MDL in diverse fields, from bioinformatics to machine
learning and psychology.
We would like to thank our editor, Bob Prior, for the support and encouragement

we received during the preparation of the book. We also thank Peter Bartlett,
Alex Smola, Bernhard Schölkopf, and Dale Schuurmans for providing LATEX-macros
to facilitate formatting and creation of the book. We also thank the authors for



x Preface

contributing papers and the referees for reviewing the manuscripts. Finally, we
thank our families for putting up with our foolishness.

Peter Grünwald, In Jae Myung, Mark A. Pitt
Amsterdam and Columbus, Ohio, February 2004
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1 Introducing the Minimum Description

Length Principle

Peter Grünwald

Centrum voor Wiskunde en Informatica
Kruislaan 413
1098 SJ Amsterdam
The Netherlands
pdg@cwi.nl
www.grunwald.nl

This chapter provides a conceptual, entirely nontechnical introduction and overview
of Rissanen’s minimum description length (MDL) principle. It serves as a basis for
the technical introduction given in Chapter 2, in which all the ideas discussed here
are made mathematically precise.

1.1 Introduction and Overview

How does one decide among competing explanations of data given limited obser-
vations? This is the problem of model selection. It stands out as one of the most
important problems of inductive and statistical inference. The minimum descrip-
tion length (MDL) principle is a relatively recent method for inductive inference
that provides a generic solution to the model selection problem. MDL is based on
the following insight: any regularity in the data can be used to compress the data,
that is, to describe it using fewer symbols than the number of symbols needed to
describe the data literally. The more regularities there are, the more the data can
be compressed. Equating “learning” with “finding regularity,” we can therefore say
that the more we are able to compress the data, the more we have learned about
the data. Formalizing this idea leads to a general theory of inductive inference with
several attractive properties:

1. Occam’s razor. MDL chooses a model that trades off goodness-of-fit on the
observed data with ‘complexity’ or ‘richness’ of the model. As such, MDL embodies
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a form of Occam’s razor, a principle that is both intuitively appealing and informally
applied throughout all the sciences.

2. No overfitting, automatically. MDL procedures automatically and inher-
ently protect against overfitting and can be used to estimate both the parameters
and the structure (e.g., number of parameters) of a model. In contrast, to avoid
overfitting when estimating the structure of a model, traditional methods such as
maximum likelihood must be modified and extended with additional, typically ad
hoc principles.

3. Bayesian interpretation. MDL is closely related to Bayesian inference, but
avoids some of the interpretation difficulties of the Bayesian approach,1 especially
in the realistic case when it is known a priori to the modeler that none of the models
under consideration is true. In fact:

4. No need for “underlying truth.” In contrast to other statistical methods,
MDL procedures have a clear interpretation independent of whether or not there
exists some underlying “true” model.

5. Predictive interpretation. Because data compression is formally equivalent
to a form of probabilistic prediction, MDL methods can be interpreted as searching
for a model with good predictive performance on unseen data.

In this chapter, we introduce the MDL principle in an entirely nontechnical way,
concentrating on its most important applications: model selection and avoiding
overfitting. In Section 1.2 we discuss the relation between learning and data
compression. Section 1.3 introduces model selection and outlines a first, ‘crude’
version of MDL that can be applied to model selection. Section 1.4 indicates how
these crude ideas need to be refined to tackle small sample sizes and differences in
model complexity between models with the same number of parameters. Section 1.5
discusses the philosophy underlying MDL, and considers its relation to Occam’s
razor. Section 1.7 briefly discusses the history of MDL. All this is summarized in
Section 1.8.

1.2 The Fundamental Idea: Learning as Data Compression

We are interested in developing a method for learning the laws and regularities in
data. The following example will illustrate what we mean by this and give a first
idea of how it can be related to descriptions of data.

Regularity . . . Consider the following three sequences. We assume that each
sequence is 10000 bits long, and we just list the beginning and the end of each
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sequence.

00010001000100010001 . . . 0001000100010001000100010001 (1.1)

01110100110100100110 . . . 1010111010111011000101100010 (1.2)

00011000001010100000 . . . 0010001000010000001000110000 (1.3)

The first of these three sequences is a 2500-fold repetition of 0001. Intuitively, the
sequence looks regular; there seems to be a simple ‘law’ underlying it; it might make
sense to conjecture that future data will also be subject to this law, and to predict
that future data will behave according to this law. The second sequence has been
generated by tosses of a fair coin. It is, intuitively speaking, as “random as possible,”
and in this sense there is no regularity underlying it. Indeed, we cannot seem to
find such a regularity either when we look at the data. The third sequence contains
approximately four times as many 0s as 1s. It looks less regular, more random than
the first, but it looks less random than the second. There is still some discernible
regularity in these data, but of a statistical rather than of a deterministic kind.
Again, noticing that such a regularity is there and predicting that future data will
behave according to the same regularity seems sensible.

... and Compression We claimed that any regularity detected in the data can be
used to compress the data, that is, to describe it in a short manner. Descriptions
are always relative to some description method which maps descriptions D′ in a
unique manner to data sets D. A particularly versatile description method is a
general-purpose computer language like C or Pascal. A description of D is then
any computer program that prints D and then halts. Let us see whether our claim
works for the three sequences above. Using a language similar to Pascal, we can
write a program

for i = 1 to 2500; print ”0001”; next; halt

which prints sequence (1.1) but is clearly a lot shorter. Thus, sequence (1.1) is indeed
highly compressible. On the other hand, we show in Chapter 2, Section 2.1, that
if one generates a sequence like (1.2) by tosses of a fair coin, then with extremely
high probability, the shortest program that prints (1.2) and then halts will look
something like this:

print ”011101001101000010101010...1010111010111011000101100010”; halt

This program’s size is about equal to the length of the sequence. Clearly, it does
nothing more than repeat the sequence.
The third sequence lies in between the first two: generalizing n = 10000 to

arbitrary length n, we show in Chapter 2, Section 2.1 that the first sequence can be
compressed to O(log n) bits; with overwhelming probability, the second sequence
cannot be compressed at all; and the third sequence can be compressed to some
length αn, with 0 < α < 1.
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Example 1.1 (compressing various regular sequences) The regularities un-
derlying sequences (1.1) and (1.3) were of a very particular kind. To illustrate that
any type of regularity in a sequence may be exploited to compress that sequence,
we give a few more examples:

The Number π Evidently, there exists a computer program for generating the
first n digits of π — such a program could be based, for example, on an infinite
series expansion of π. This computer program has constant size, except for the
specification of n which takes no more thanO(log n) bits. Thus, when n is very large,
the size of the program generating the first n digits of π will be very small compared
to n: the π-digit sequence is deterministic, and therefore extremely regular.

Physics Data Consider a two-column table where the first column contains num-
bers representing various heights from which an object was dropped. The second
column contains the corresponding times it took for the object to reach the ground.
Assume both heights and times are recorded to some finite precision. In Section 1.3
we illustrate that such a table can be substantially compressed by first describing
the coefficients of the second-degree polynomial H that expresses Newton’s law,
then describing the heights, and then describing the deviation of the time points
from the numbers predicted by H .

Natural Language Most sequences of words are not valid sentences according to
the English language. This fact can be exploited to substantially compress English
text, as long as it is syntactically mostly correct: by first describing a grammar
for English, and then describing an English text D with the help of that grammar
[Grünwald 1996],D can be described using many fewer bits than are needed without
the assumption that word order is constrained.

1.2.1 Kolmogorov Complexity and Ideal MDL

To formalize our ideas, we need to decide on a description method, that is, a formal
language in which to express properties of the data. The most general choice is
a general-purpose2 computer language such as C or Pascal. This choice leads to
the definition of the Kolmogorov complexity [Li and Vitányi 1997] of a sequence as
the length of the shortest program that prints the sequence and then halts. The
lower the Kolmogorov complexity of a sequence, the more regular it is. This notion
seems to be highly dependent on the particular computer language used. However,
it turns out that for every two general-purpose programming languages A and B
and every data sequence D, the length of the shortest program for D written in
language A and the length of the shortest program for D written in language B
differ by no more than a constant c, which does not depend on the length of D. This
so-called invariance theorem says that, as long as the sequence D is long enough,
it is not essential which computer language one chooses, as long as it is general-
purpose. Kolmogorov complexity was introduced, and the invariance theorem was
proved, independently by Kolmogorov [1965], Chaitin [1969] and Solomonoff [1964].
Solomonoff’s paper, called “A Formal Theory of Inductive Inference,” contained
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the idea that the ultimate model for a sequence of data may be identified with the
shortest program that prints the data. Solomonoff’s ideas were later extended by
several authors, leading to an ‘idealized’ version of MDL [Solomonoff 1978; Li and
Vitányi 1997; Gács, Tromp, and Vitányi 2001]. This idealized MDL is very general
in scope, but not practically applicable, for the following two reasons:

1. Uncomputability. It can be shown that there exists no computer program that,
for every set of data D, when given D as input, returns the shortest program that
prints D [Li and Vitányi 1997].

2. Arbitrariness/dependence on syntax. In practice we are confronted with small
data samples for which the invariance theorem does not say much. Then the
hypothesis chosen by idealized MDL may depend on arbitrary details of the syntax
of the programming language under consideration.

1.2.2 Practical MDL

Like most authors in the field, we concentrate here on nonidealized, practical
versions of MDL that deal explicitly with the two problems mentioned above. The
basic idea is to scale down Solomonoff’s approach so that it does become applicable.
This is achieved by using description methods that are less expressive than general-
purpose computer languages. Such description methods C should be restrictive
enough so that for any data sequence D, we can always compute the length of the
shortest description of D that is attainable using method C; but they should be
general enough to allow us to compress many of the intuitively “regular” sequences.
The price we pay is that, using the “practical” MDL principle, there will always
be some regular sequences which we will not be able to compress. But we already
know that there can be no method for inductive inference at all which will always
give us all the regularity there is — simply because there can be no automated
method which for any sequence D finds the shortest computer program that prints
D and then halts. Moreover, it will often be possible to guide a suitable choice of
C by a priori knowledge we have about our problem domain. For example, below
we consider a description method C that is based on the class of all polynomials,
such that with the help of C we can compress all data sets which can meaningfully
be seen as points on some polynomial.

1.3 MDL and Model Selection

Let us recapitulate our main insights so far:
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MDL: The Basic Idea
The goal of statistical inference may be cast as trying to find regularity in
the data. “Regularity” may be identified with “ability to compress.” MDL
combines these two insights by viewing learning as data compression: it tells
us that, for a given set of hypotheses H and data set D, we should try to find
the hypothesis or combination of hypotheses in H that compresses D most.

This idea can be applied to all sorts of inductive inference problems, but it turns
out to be most fruitful in (and its development has mostly concentrated on) prob-
lems of model selection and, more generally, those dealing with overfitting. Here is
a standard example (we explain the difference between “model” and “hypothesis”
after the example).

Example 1.2 (Model Selection and Overfitting) Consider the points in Fig-
ure 1.1. We would like to learn how the y-values depend on the x-values. To this
end, we may want to fit a polynomial to the points. Straightforward linear re-
gression will give us the leftmost polynomial — a straight line that seems overly
simple: it does not capture the regularities in the data well. Since for any set of n
points there exists a polynomial of the (n − 1)st degree that goes exactly through
all these points, simply looking for the polynomial with the least error will give
us a polynomial like the one in the second picture. This polynomial seems overly
complex: it reflects the random fluctuations in the data rather than the general
pattern underlying it. Instead of picking the overly simple or the overly complex
polynomial, it seems more reasonable to prefer a relatively simple polynomial with
a small but nonzero error, as in the rightmost picture. This intuition is confirmed
by numerous experiments on real-world data from a broad variety of sources [Ris-
sanen 1989; Vapnik 1998; Ripley 1996]: if one naively fits a high-degree polynomial
to a small sample (set of data points), then one obtains a very good fit to the data.
Yet if one tests the inferred polynomial on a second set of data coming from the
same source, it typically fits these test data very badly in the sense that there is a
large distance between the polynomial and the new data points. We say that the
polynomial overfits the data. Indeed, all model selection methods that are used in
practice either implicitly or explicitly choose a tradeoff between goodness-of-fit and

Figure 1.1 A simple, complex and tradeoff (third-degree) polynomial.
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complexity of the models involved. In practice, such tradeoffs lead to much better
predictions of test data than one would get by adopting the ‘simplest’ (one degree)
or most “complex”3 (n−1-degree) polynomial. MDL provides one particular means
of achieving such a tradeoff.

It will be useful to make a precise distinction between “model” and “hypothesis”:

Model vs. Hypothesis
We use the phrase point hypothesis to refer to a single probability distribution
or function. An example is the polynomial 5x2 +4x+3. A point hypothesis is
also known as a “simple hypothesis” in the statistical literature.
We use the word model to refer to a family (set) of probability distributions or
functions with the same functional form. An example is the set of all second-
degree polynomials. A model is also known as a “composite hypothesis” in the
statistical literature.
We use hypothesis as a generic term, referring to both point hypotheses and
models.

In our terminology, the problem described in Example 1.2 is a “hypothesis selec-
tion problem” if we are interested in selecting both the degree of a polynomial and
the corresponding parameters; it is a “model selection problem” if we are mainly
interested in selecting the degree.

To apply MDL to polynomial or other types of hypothesis and model selection, we
have to make precise the somewhat vague insight “learning may be viewed as data
compression.” This can be done in various ways. In this section, we concentrate on
the earliest and simplest implementation of the idea. This is the so-called two-part
code version of MDL, see Figure 1.2.

Crude4, Two-Part Version of MDL principle (Informally Stated)
Let H(1),H(2), . . . be a list of candidate models (e.g., H(k) is the set of kth-
degree polynomials), each containing a set of point hypotheses (e.g., individual
polynomials). The best point hypothesis H ∈ H(1) ∪H(2) ∪ . . . to explain the
data D is the one which minimizes the sum L(H) + L(D|H), where

L(H) is the length, in bits, of the description of the hypothesis; and

L(D|H) is the length, in bits, of the description of the data when encoded
with the help of the hypothesis.

The best model to explain D is the smallest model containing the selected H .

Figure 1.2 The two-part MDL principle: first, crude implementation of the MDL ideas.
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Example 1.3 (Polynomials, cont.) In our previous example, the candidate
hypotheses were polynomials. We can describe a polynomial by describing its
coefficients in a certain precision (number of bits per parameter). Thus, the higher
the degree of a polynomial or the precision, the more5 bits we need to describe
it and the more ‘complex’ it becomes. A description of the data ‘with the help
of’ a hypothesis means that the better the hypothesis fits the data, the shorter the
description will be. A hypothesis that fits the data well gives us a lot of information
about the data. Such information can always be used to compress the data (Chapter
2, Section 2.1). Intuitively, this is because we only have to code the errors the
hypothesis makes on the data rather than the full data. In our polynomial example,
the better a polynomial H fits D, the fewer bits we need to encode the discrepancies
between the actual y-values yi and the predicted y-values H(xi). We can typically
find a very complex point hypothesis (large L(H)) with a very good fit (small
L(D|H)). We can also typically find a very simple point hypothesis (small L(H))
with a rather bad fit (large L(D|H)). The sum of the two description lengths will
be minimized at a hypothesis that is quite (but not too) “simple,” with a good (but
not perfect) fit.

1.4 Crude and Refined MDL

Crude MDL picks the H minimizing the sum L(H)+L(D|H). To make this proce-
dure well-defined, we need to agree on precise definitions for the codes (description
methods) giving rise to lengths L(D|H) and L(H). We now discuss these codes in
more detail. We will see that the definition of L(H) is problematic, indicating that
we somehow need to “refine” our crude MDL principle.

Definition of L(D|H) Consider a two-part code as described above, and assume
for the time being that all H under consideration define probability distributions.
If H is a polynomial, we can turn it into a distribution by making the additional
assumption that the Y -values are given by Y = H(X) + Z, where Z is a normally
distributed noise term.
For each H we need to define a code with length L(· | H) such that L(D|H)

can be interpreted as “the code length of D when encoded with the help of H .” It
turns out that for probabilistic hypotheses, there is only one reasonable choice for
this code. It is the so-called Shannon-Fano code, satisfying, for all data sequences
D, L(D|H) = − logP (D|H), where P (D|H) is the probability mass or density of
D according to H – such a code always exists; see Chapter 2, Section 2.1.

Definition of L(H): A Problem for Crude MDL It is more problematic to
find a good code for hypotheses H . Some authors have simply used ‘intuitively
reasonable’ codes in the past, but this is not satisfactory: since the description
length L(H) of any fixed point hypothesis H can be very large under one code,
but quite short under another, our procedure is in danger of becoming arbitrary.
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Instead, we need some additional principle for designing a code for H. In the first
publications on MDL [Rissanen 1978, 1983], it was advocated to choose some sort
of minimax code for H, minimizing, in some precisely defined sense, the shortest
worst-case total description length L(H) + L(D|H), where the worst case is over
all possible data sequences. Thus, the MDL principle is employed at a “metalevel”
to choose a code for H . However, this code requires a cumbersome discretization
of the model space H, which is not always feasible in practice. Alternatively,
Barron [1985] encoded H by the shortest computer program that, when input
D, computes P (D|H). While it can be shown that this leads to similar code
lengths, it is computationally problematic. Later, Rissanen [1984] realized that
these problems could be sidestepped by using a one-part rather than a two-part
code. This development culminated in 1996 in a completely precise prescription of
MDL for many, but certainly not all, practical situations [Rissanen 1996]. We call
this modern version of MDL refined MDL:

Refined MDL In refined MDL, we associate a code for encoding D not with
a single H ∈ H, but with the full model H. Thus, given model H, we encode
data not in two parts but we design a single one-part code with lengths L̄(D|H).
This code is designed such that whenever there is a member of (parameter in) H
that fits the data well, in the sense that L(D | H) is small, then the code length
L̄(D|H) will also be small. Codes with this property are called universal codes in the
information-theoretic literature [Barron, Rissanen, and Yu 1998]. Among all such
universal codes, we pick the one that is minimax optimal in a sense made precise
in Chapter 2, Section 2.4. For example, the set H(3) of third-degree polynomials
is associated with a code with lengths L̄(· | H(3)) such that, the better the data
D are fit by the best-fitting third-degree polynomial, the shorter the code length
L̄(D | H). L̄(D | H) is called the stochastic complexity of the data given the model.

Parametric Complexity The second fundamental concept of refined MDL is the
parametric complexity of a parametric model H which we denote by COMP(H).
This is a measure of the ‘richness’ of model H, indicating its ability to fit random
data. This complexity is related to the degrees of freedom in H, but also to the
geometric structure of H; see Example 1.4. To see how it relates to stochastic
complexity, let, for given data D, Ĥ denote the distribution in H which maximizes
the probability, and hence minimizes the code length L(D | Ĥ) of D. It turns out
that

Stochastic complexity of D given H = L(D | Ĥ) +COMP(H).

Refined MDL model selection between two parametric models (such as the models
of first- and second-degree polynomials) now proceeds by selecting the model such
that the stochastic complexity of the given data D is smallest. Although we used
a one-part code to encode data, refined MDL model selection still involves a
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tradeoff between two terms: a goodness-of-fit term L(D | Ĥ) and a complexity term
COMP(H). However, because we do not explicitly encode hypotheses H anymore,
there is no arbitrariness anymore. The resulting procedure can be interpreted in
several different ways, some of which provide us with rationales for MDL beyond
the pure coding interpretation (see Chapter 2, Sections 2.5.1–2.5.4):

1. Counting/differential geometric interpretation. The parametric complex-
ity of a model is the logarithm of the number of essentially different, distinguishable
point hypotheses within the model.

2. Two-part code interpretation. For large samples, the stochastic complexity
can be interpreted as a two-part code length of the data after all, where hypotheses
H are encoded with a special code that works by first discretizing the model space
H into a set of “maximally distinguishable hypotheses,” and then assigning equal
code length to each of these.

3. Bayesian interpretation. In many cases, refined MDL model selection coin-
cides with Bayes factor model selection based on a noninformative prior such as
Jeffreys’ prior [Bernardo and Smith 1994].

4. Prequential interpretation. Refined MDL model selection can be interpreted
as selecting the model with the best predictive performance when sequentially
predicting unseen test data, in the sense described in Chapter 2, Section 2.5.4.
This makes it an instance of Dawid’s [1984] prequential model validation and also
relates it to cross-validation methods.

Refined MDL allows us to compare models of different functional form. It even
accounts for the phenomenon that different models with the same number of
parameters may not be equally “complex”:

Example 1.4 Consider two models from psychophysics describing the relationship
between physical dimensions (e.g., light intensity) and their psychological counter-
parts (e.g., brightness) [Myung, Balasubramanian, and Pitt 2000]: y = axb + Z
(Stevens’s model) and y = a ln(x + b) + Z (Fechner’s model) where Z is a nor-
mally distributed noise term. Both models have two free parameters; nevertheless,
it turns out that in a sense, Stevens’s model is more flexible or complex than Fech-
ner’s. Roughly speaking, this means there are a lot more data patterns that can be
explained by Stevens’s model than can be explained by Fechner’s model. Myung
and co-workers [2000] generated many samples of size 4 from Fechner’s model, using
some fixed parameter values. They then fitted both models to each sample. In 67%
of the trials, Stevens’s model fitted the data better than Fechner’s, even though the
latter generated the data. Indeed, in refined MDL, the ‘complexity’ associated with
Stevens’s model is much larger than the complexity associated with Fechner’s, and
if both models fit the data equally well, MDL will prefer Fechner’s model.

Summarizing, refined MDL removes the arbitrary aspect of crude, two-part code
MDL and associates parametric models with an inherent ‘complexity’ that does not
depend on any particular description method for hypotheses. We should, however,
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warn the reader that we only discussed a special, simple situation in which we
compared a finite number of parametric models that satisfy certain regularity
conditions. Whenever the models do not satisfy these conditions, or if we compare
an infinite number of models, then the refined ideas have to be extended. We then
obtain a “general” refined MDL principle, which employs a combination of one-part
and two-part codes.

1.5 The MDL Philosophy

The first central MDL idea is that every regularity in data may be used to compress
those data; the second central idea is that learning can be equated with finding
regularities in data. Whereas the first part is relatively straightforward, the second
part of the idea implies that methods for learning from data must have a clear
interpretation independent of whether any of the models under consideration is
“true” or not. Quoting Rissanen [1989], the main originator of MDL:

‘We never want to make the false assumption that the observed data actually were
generated by a distribution of some kind, say Gaussian, and then go on to analyze the
consequences and make further deductions. Our deductions may be entertaining but quite
irrelevant to the task at hand, namely, to learn useful properties from the data.’
- Jorma Rissanen, 1989

Based on such ideas, Rissanen has developed a radical philosophy of learning and
statistical inference that is considerably different from the ideas underlying main-
stream statistics, both frequentist and Bayesian. We now describe this philosophy
in more detail:

1. Regularity as Compression. According to Rissanen, the goal of inductive
inference should be to ‘squeeze out as much regularity as possible’ from the given
data. The main task for statistical inference is to distill the meaningful information
present in the data, that is, to separate structure (interpreted as the regularity, the
‘meaningful information’) from noise (interpreted as the ‘accidental information’).
For the three sequences of Example 1.2, this would amount to the following: the
first sequence would be considered as entirely regular and “noiseless.” The second
sequence would be considered as entirely random — all information in the sequence
is accidental, there is no structure present. In the third sequence, the structural part
would (roughly) be the pattern that 4 times as many 0s than 1s occur; given this
regularity, the description of exactly which of all sequences with four times as many
0s than 1s occurs is the accidental information.

2. Models as Languages. Rissanen interprets models (sets of hypotheses) as
nothing more than languages for describing useful properties of the data — a model
H is identified with its corresponding universal code L̄(· | H). Different individual
hypotheses within the models express different regularities in the data, and may
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simply be regarded as statistics, that is, summaries of certain regularities in the
data. These regularities are present and meaningful independently of whether some
H∗ ∈ H is the “true state of nature” or not. Suppose that the model H under
consideration is probabilistic. In traditional theories, one typically assumes that
some P ∗ ∈ H generates the data, and then ‘noise’ is defined as a random quantity
relative to this P ∗. In the MDL view ‘noise’ is defined relative to the model H as
the residual number of bits needed to encode the data once the model H is given.
Thus, noise is not a random variable: it is a function only of the chosen model and
the actually observed data. Indeed, there is no place for a “true distribution” or a
“true state of nature” in this view — there are only models and data. To bring
out the difference to the ordinary statistical viewpoint, consider the phrase ‘these
experimental data are quite noisy.’ According to a traditional interpretation, such a
statement means that the data were generated by a distribution with high variance.
According to the MDL philosophy, such a phrase means only that the data are not
compressible with the currently hypothesized model — as a matter of principle, it
can never be ruled out that there exists a different model under which the data are
very compressible (not noisy) after all!

3. We Have Only the Data. Many (but not all6) other methods of inductive
inference are based on the idea that there exists some “true state of nature,”
typically a distribution assumed to lie in some model H. The methods are then
designed as a means to identify or approximate this state of nature based on as
little data as possible. According to Rissanen,7 such methods are fundamentally
flawed. The main reason is that the methods are designed under the assumption
that the true state of nature is in the assumed model H, which is often not the case.
Therefore, such methods only admit a clear interpretation under assumptions that
are typically violated in practice. Many cherished statistical methods are designed in
this way — we mention hypothesis testing, minimum-variance unbiased estimation,
several non-parametric methods, and even some forms of Bayesian inference — see
Example 2.22. In contrast, MDL has a clear interpretation which depends only on
the data, and not on the assumption of any underlying “state of nature.”

Example 1.5 (Models That Are Wrong, Yet Useful) Even though the models
under consideration are often wrong, they can nevertheless be very useful. Examples are
the successful ‘naive Bayes’ model for spam filtering, hidden Markov models for speech
recognition (is speech a stationary ergodic process? probably not), and the use of linear
models in econometrics and psychology. Since these models are evidently wrong, it seems
strange to base inferences on them using methods that are designed under the assumption
that they contain the true distribution. To be fair, we should add that domains such as
spam filtering and speech recognition are not what the fathers of modern statistics had
in mind when they designed their procedures – they were usually thinking about much
simpler domains, where the assumption that some distribution P ∗ ∈ H is “true” may not
be so unreasonable.

4. MDL and Consistency. Let H be a probabilistic model, such that each
P ∈ H is a probability distribution. Roughly, a statistical procedure is called
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consistent relative to H if, for all P ∗ ∈ H, the following holds: suppose data are
distributed according to P ∗. Then given enough data, the learning method will
learn a good approximation of P ∗ with high probability. Many traditional statistical
methods have been designed with consistency in mind (Chapter 2, Section 2.2).
The fact that in MDL, we do not assume a true distribution may suggest that

we do not care about statistical consistency. But this is not the case: we would
still like our statistical method to be such that in the idealized case, where one of
the distributions in one of the models under consideration actually generates the
data, our method is able to identify this distribution, given enough data. If even
in the idealized special case where a ‘truth’ exists within our models, the method
fails to learn it, then we certainly cannot trust it to do something reasonable in
the more general case, where there may not be a “true distribution” underlying the
data at all. So: consistency is important in the MDL philosophy, but it is used as
a sanity check (for a method that has been developed without making distributional
assumptions) rather than as a design principle.
In fact, mere consistency is not sufficient. We would like our method to converge

to the imagined true P ∗ fast, based on as small a sample as possible. Two-part code
MDL with ‘clever’ codes achieves good rates of convergence in this sense (Barron
and Cover [1991], complemented by Zhang [2004], show that in many situations,
the rates are minimax optimal). The same seems to be true for refined one-part
code MDL [Barron et al. 1998], although there is at least one surprising exception
where inference based on the normalized maximum likelihood (NML) and Bayesian
universal model behaves abnormally— see Csiszár and Shields [2000] for the details.

Summarizing this section, the MDL philosophy is quite agnostic about whether
any of the models under consideration is “true”, or whether something like a “true
distribution” even exists. Nevertheless, it has been suggested [Webb 1996; Domingos
1999] that MDL embodies a naive belief that “simple models are a priori more likely
to be true than complex models.” Below we explain why such claims are mistaken.

1.6 MDL and Occam’s Razor

When two models fit the data equally well, MDL will choose the one that is the
“simplest” in the sense that it allows for a shorter description of the data. As such,
it implements a precise form of Occam’s razor – even though as more and more
data become available, the model selected by MDL may become more and more
‘complex’! Occam’s razor is sometimes criticized for being either (1) arbitrary or
(2) false [Webb 1996; Domingos 1999]. Do these criticisms apply to MDL as well?

“1. Occam’s Razor (and MDL) Is Arbitrary” Because “description length”
is a syntactic notion it may seem that MDL selects an arbitrary model: different
codes would have led to different description lengths, and therefore, to different
models. By changing the encoding method, we can make ‘complex’ things ‘simple’
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and vice versa. This overlooks the fact we are not allowed to use just any code
we like! ‘Refined’ MDL tells us to use a specific code, independent of any specific
parameterization of the model, leading to a notion of complexity that can also
be interpreted without any reference to ‘description lengths’ (see also Chapter 2,
Section 2.9.1).

“2. Occam’s Razor Is False” It is often claimed that Occam’s razor is false
— we often try to model real-world situations that are arbitrarily complex, so why
should we favor simple models? In the words of Webb [1996], “What good are simple
models of a complex world?” 8

The short answer is: even if the true data-generating machinery is very complex,
it may be a good strategy to prefer simple models for small sample sizes. Thus,
MDL (and the corresponding form of Occam’s razor) is a strategy for inferring
models from data (“choose simple models at small sample sizes”), not a statement
about how the world works (“simple models are more likely to be true”) — indeed,
a strategy cannot be true or false; it is “clever” or “stupid.” And the strategy of
preferring simpler models is clever even if the data-generating process is highly
complex, as illustrated by the following example:

Example 1.6 (“Infinitely” Complex Sources) Suppose that data are subject
to the law Y = g(X) + Z where g is some continuous function and Z is some
noise term with mean 0. If g is not a polynomial, but X only takes values in a
finite interval, say [−1, 1], we may still approximate g arbitrarily well by taking
polynomials of higher and higher degree. For example, let g(x) = exp(x). Then,
if we use MDL to learn a polynomial for data D = ((x1, y1), . . . , (xn, yn)), the
degree of the polynomial f̈ (n) selected by MDL at sample size n will increase with
n, and with high probability f̈ (n) converges to g(x) = exp(x) in the sense that
maxx∈[−1,1] |f̈ (n)(x)− g(x)| → 0. Of course, if we had better prior knowledge about
the problem we could have tried to learn g using a model class M containing the
function y = exp(x). But in general, both our imagination and our computational
resources are limited, and we may be forced to use imperfect models.

If, based on a small sample, we choose the best-fitting polynomial f̂ within the
set of all polynomials, then, even though f̂ will fit the data very well, it is likely
to be quite unrelated to the “true” g, and f̂ may lead to disastrous predictions of
future data. The reason is that, for small samples, the set of all polynomials is very
large compared to the set of possible data patterns that we might have observed.
Therefore, any particular data pattern can only give us very limited information
about which high-degree polynomial best approximates g. On the other hand, if
we choose the best-fitting f̂◦ in some much smaller set such as the set of second-
degree polynomials, then it is highly probable that the prediction quality (mean
squared error) of f̂◦ on future data is about the same as its mean squared error on
the data we observed: the size (complexity) of the contemplated model is relatively
small compared to the set of possible data patterns that we might have observed.
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Therefore, the particular pattern that we do observe gives us a lot of information
on what second-degree polynomial best approximates g.
Thus, (a) f̂◦ typically leads to better predictions of future data than f̂ ; and

(b) unlike f̂ , f̂◦ is reliable in that it gives a correct impression of how good it
will predict future data even if the “true” g is ‘infinitely’ complex. This idea does
not just appear in MDL, but is also the basis of Vapnik’s [1998] structural risk
minimization approach and many standard statistical methods for nonparametric
inference. In such approaches one acknowledges that the data-generating machin-
ery can be infinitely complex (e.g., not describable by a finite-degree polynomial).
Nevertheless, it is still a good strategy to approximate it by simple hypotheses
(low-degree polynomials) as long as the sample size is small. Summarizing:

The Inherent Difference between Under- and Overfitting
If we choose an overly simple model for our data, then the best-fitting point
hypothesis within the model is likely to be almost the best predictor, within
the simple model, of future data coming from the same source. If we overfit
(choose a very complex model) and there is noise in our data, then, even if
the complex model contains the “true” point hypothesis, the best-fitting point
hypothesis within the model is likely to lead to very bad predictions of future
data coming from the same source.

This statement is very imprecise and is meant more to convey the general idea
than to be completely true. As will become clear in Chapter 2, Section 2.9.1, it
becomes provably true if we use MDL’s measure of model complexity; we measure
prediction quality by logarithmic loss; and we assume that one of the distributions
in H actually generates the data.

1.7 History

The MDL principle has mainly been developed by Jorma Rissanen in a series
of papers starting with [Rissanen 1978]. It has its roots in the theory of Kol-
mogorov or algorithmic complexity [Li and Vitányi 1997], developed in the 1960s
by Solomonoff [1964], Kolmogorov [1965], and Chaitin [1966, 1969]. Among these
authors, Solomonoff (a former student of the famous philosopher of science, Rudolf
Carnap) was explicitly interested in inductive inference. The 1964 paper contains
explicit suggestions on how the underlying ideas could be made practical, thereby
foreshadowing some of the later work on two-part MDL. Although Rissanen was
not aware of Solomonoff’s work at the time, Kolmogorov’s [1965] paper did serve
as an inspiration for Rissanen’s [1978] development of MDL.
Another important inspiration for Rissanen was Akaike’s [1973] information

criterion (AIC) method for model selection, essentially the first model selection
method based on information-theoretic ideas. Even though Rissanen was inspired
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by AIC, both the actual method and the underlying philosophy are substantially
different from MDL.
MDL is much more closely related to the minimum message length (MML)

principle, developed byWallace and his co-workers in a series of papers starting with
the groundbreaking [Wallace and Boulton 1968]; other milestones were [Wallace and
Boulton 1975] and [Wallace and Freeman 1987]. Remarkably, Wallace developed
his ideas without being aware of the notion of Kolmogorov complexity. Although
Rissanen became aware of Wallace’s work before the publication of [Rissanen 1978],
he developed his ideas mostly independently, being influenced rather by Akaike and
Kolmogorov. Indeed, despite the close resemblance of both methods in practice, the
underlying philosophy is quite different (Chapter 2, Section 2.8).
The first publications on MDL only mention two-part codes. Important progress

was made by Rissanen [1984], in which prequential codes are employed for the first
time and [Rissanen 1987], introducing the Bayesian mixture codes into MDL. This
led to the development of the notion of stochastic complexity as the shortest code
length of the data given a model [Rissanen 1986, 1987]. However, the connection
to Shtarkov’s normalized maximum likelihood code was not made until 1996, and
this prevented the full development of the notion of “parametric complexity.”
In the meantime, in his impressive Ph.D. thesis, Barron [1985] showed how a
specific version of the two-part code criterion has excellent frequentist statistical
consistency properties. This was extended by Barron and Cover [1991] who achieved
a breakthrough for two-part codes: they gave clear prescriptions on how to design
codes for hypotheses, relating codes with good minimax code length properties
to rates of convergence in statistical consistency theorems. Some of the ideas of
Rissanen [1987] and Barron and Cover [1991] were, as it were, unified when Rissanen
[1996] introduced a new definition of stochastic complexity based on the normalized
maximum likelihood (NML) code (Chapter 2, Section 2.4). The resulting theory was
summarized for the first time by Barron and co-workers [1998], and is called ‘refined
MDL’ in the present overview.

1.8 Summary and Outlook

We have discussed how regularity is related to data compression, and how MDL
employs this connection by viewing learning in terms of data compression. One
can make this precise in several ways; in idealized MDL one looks for the shortest
program that generates the given data. This approach is not feasible in practice,
and here we concern ourselves with practical MDL. Practical MDL comes in a crude
version based on two-part codes and in a modern, more refined version based on
the concept of universal coding. The basic ideas underlying all these approaches can
be found in the boxes spread throughout the text.
These methods are mostly applied to model selection but can also be used

for other problems of inductive inference. In contrast to most existing statistical
methodology, they can be given a clear interpretation irrespective of whether or not



References 19

there exists some “true” distribution generating data — inductive inference is seen
as a search for regular properties in (interesting statistics of) the data, and there is
no need to assume anything outside the model and the data. In contrast to what is
sometimes thought, there is no implicit belief that ‘simpler models are more likely
to be true’ — MDL does embody a preference for ‘simple’ models, but this is best
seen as a strategy for inference that can be useful even if the environment is not
simple at all.
In the next chapter, we make precise both the crude and the refined versions of

practical MDL. For this, it is absolutely essential that the reader familiarizes him-
or herself with two basic notions of coding and information theory: the relation
between code length functions and probability distributions, and (for refined MDL),
the idea of universal coding — a large part of Chapter 2 is devoted to these.

Notes
1. See Section 2.8.2, Example 2.22.
2. By this we mean that a universal Turing machine can be implemented in it [Li and Vitányi

1997].
3. Strictly speaking, in our context it is not very accurate to speak of “simple” or “complex”

polynomials; instead we should call the set of first-degree polynomials “simple,’ and the set of
100th-degree polynomials “complex.”

4. The terminology ‘crude MDL’ is not standard. It is introduced here for pedagogical reasons,
to make clear the importance of having a single, unified principle for designing codes. It should
be noted that Rissanen’s and Barron’s early theoretical papers on MDL already contain such
principles, albeit in a slightly different form than in their recent papers. Early practical applications
[Quinlan and Rivest 1989; Grünwald 1996] often do use ad hoc two-part codes which really are
‘crude’ in the sense defined here.

5. See the previous endnote.
6. For example, cross-validation cannot easily be interpreted in such terms of ‘a method hunting

for the true distribution.’
7. My own views are somewhat milder in this respect, but this is not the place to discuss them.
8. Quoted with permission from KDD Nuggets 96,28, 1996.
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This chapter provides a tutorial-style introduction to and overview of Rissanen’s
minimum description length (MDL) Principle. The main ideas are discussed in great
conceptual and technical detail.

Plan of the Tutorial

In Chapter 1 we introduced the minimum description length (MDL) Principle in an
informal way. In this chapter we give an introduction to MDL that is mathematically
precise. Throughout the text, we assume some basic familiarity with probability
theory. While some prior exposure to basic statistics is highly useful, it is not
required. The chapter can be read without any prior knowledge of information
theory. The tutorial is organized according to the following plan:

The first two sections are of a preliminary nature:

Any understanding of MDL requires some minimal knowledge of information
theory — in particular the relationship between probability distributions and
codes. This relationship is explained in Section 2.1.

Relevant statistical notions such as ‘maximum likelihood estimation’ are
reviewed in Section 2.2. There we also introduce the Markov chain model which
will serve as an example model throughout the text.

Based on this preliminary material, in Section 2.3 we formalize a simple version
of the MDL principle, called the crude two-part MDL principle in this text. We
explain why, for successful practical applications, crude MDL needs to be refined.
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Section 2.4 is once again preliminary: it discusses universal coding, the information-
theoretic concept underlying refined versions of MDL.

Sections 2.5, 2.6, and 2.7 define and discuss refined MDL. They are the key
sections of the tutorial:

Section 2.5 discusses basic refined MDL for comparing a finite number of
simple statistical models and introduces the central concepts of parametric and
stochastic complexity. It gives an asymptotic expansion of these quantities and
interprets them from a compression, a geometric, a Bayesian, and a predictive
point of view.

Section 2.6 extends refined MDL to harder model selection problems, and in
doing so reveals the general, unifying idea, which is summarized in Figure 2.4.

Section 2.7 briefly discusses how to extend MDL to applications beyond
model section.

Having defined ‘refined MDL’ in Sections 2.5, 2.6, and 2.7, the next two sections
place it in context:

Section 2.8 compares MDL with other approaches to inductive inference,
most notably the related but different Bayesian approach.

Section 2.9 discusses perceived as well as real problems with MDL. The per-
ceived problems relate to MDL’s relation to Occam’s razor; the real problems
relate to the fact that applications of MDL sometimes perform suboptimally
in practice.

Finally, Section 2.10 provides a conclusion.

Reader’s Guide
Throughout the text, paragraph headings reflect the most important concepts.
Boxes summarize the most important findings. Together, paragraph headings
and boxes provide an overview of MDL theory.
It is possible to read this chapter without having read the nontechnical overview
of Chapter 1. However, we strongly recommend reading at least Sections 1.3
and 1.4 before embarking on the this chapter.

2.1 Information Theory I: Probabilities and Code Lengths

This section is a miniprimer on information theory, focusing on the relationship
between probability distributions and codes. A good understanding of this rela-
tionship is essential for a good understanding of MDL. After some preliminaries,
Section 2.1.1 introduces prefix codes, the type of codes we work with in MDL. These
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are related to probability distributions in two ways. In Section 2.1.2 we discuss the
first relationship, which is related to the Kraft inequality: for every probability mass
function P , there exists a code with lengths − logP , and vice versa. Section 2.1.3
discusses the second relationship, related to the information inequality, which says
that if the data are distributed according to P , then the code with lengths − logP
achieves the minimum expected code length. Throughout the section we give ex-
amples relating our findings to our discussion of regularity and compression in
Section 1.2 of Chapter 1.

Preliminaries and Notational Conventions — Codes We use log to denote
logarithm to base 2. For real-valued x we use 	x
 to denote the ceiling of x, that is,
x rounded up to the nearest integer. We often abbreviate x1, . . . , xn to xn. Let X
be a finite or countable set. A code for X is defined as a one-to-one mapping from
X to ∪n≥1{0, 1}n. ∪n≥1{0, 1}n is the set of binary strings (sequences of 0s and 1s)
of length 1 or larger. For a given code C, we use C(x) to denote the encoding of
x. Every code C induces a function LC : X → N called the code length function.
LC(x) is the number of bits (symbols) needed to encode x using code C.
Our definition of code implies that we only consider lossless encoding in MDL1:

for any description z it is always possible to retrieve the unique x that gave rise to
it. More precisely, because the code C must be one-to-one, there is at most one x
with C(x) = z. Then x = C−1(z), where the inverse C−1 of C is sometimes called
a ‘decoding function’ or ‘description method’.

Preliminaries and Notational Conventions — Probability Let P be a
probability distribution defined on a finite or countable set X . We use P (x) to
denote the probability of x, and we denote the corresponding random variable by
X . If P is a function on finite or countable X such that

∑
x P (x) < 1, we call P a

defective distribution. A defective distribution may be thought of as a probability
distribution that puts some of its mass on an imagined outcome that in reality will
never appear.
A probabilistic source P is a sequence of probability distributions P (1), P (2), . . .

on X 1,X 2, . . . such that for all n, P (n) and P (n+1) are compatible: P (n) is equal
to the ‘marginal’ distribution of P (n+1) restricted to n outcomes. That is, for
all xn ∈ Xn, P (n)(xn) =

∑
y∈X P

(n+1)(xn, y). Whenever this cannot cause any
confusion, we write P (xn) rather than P (n)(xn). A probabilistic source may be
thought of as a probability distribution on infinite sequences.2 We say that the
data are independently and identically distributed (i.i.d.) under source P if for
each n, xn ∈ Xn, P (xn) =

∏n
i=1 P (xi).

2.1.1 Prefix Codes

In MDL we only work with a subset of all possible codes, the so-called prefix codes.
A prefix code3 is a code such that no code word is a prefix of any other code word.
For example, let X = {a, b, c}. Then the code C1 defined by C1(a) = 0, C1(b) = 10,
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C1(c) = 11 is prefix. The code C2 with C2(a) = 0, C2(b) = 10 and C2(c) = 01,
while allowing for lossless decoding, is not a prefix code since 0 is a prefix of 01.
The prefix requirement is natural, and nearly ubiquitous in the data compression
literature. We now explain why.

Example 2.1 Suppose we plan to encode a sequence of symbols (x1, . . . , xn) ∈ Xn.
We already designed a code C for the elements in X . The natural thing to do
is to encode (x1, . . . , xn) by the concatenated string C(x1)C(x2) . . . C(xn). In
order for this method to succeed for all n, all (x1, . . . , xn) ∈ Xn, the resulting
procedure must define a code, that is, the function C(n) mapping (x1, . . . , xn) to
C(x1)C(x2) . . . C(xn) must be invertible. If it were not, we would have to use some
marker such as a comma to separate the code words. We would then really be using
a ternary rather than a binary alphabet.
Since we always want to construct codes for sequences rather than single symbols,

we only allow codes C such that the extension C(n) defines a code for all n. We
say that such codes have ‘uniquely decodable extensions’. It is easy to see that
(a) every prefix code has uniquely decodable extensions. Conversely, although this
is not at all easy to see, it turns out that (b), for every code C with uniquely
decodable extensions, there exists a prefix code C0 such that for all n, xn ∈ Xn,
LC(n)(xn) = L

C
(n)
0

(xn) [Cover and Thomas 1991]. Since in MDL we are only
interested in code lengths, and never in actual codes, we can restrict ourselves
to prefix codes without loss of generality.
Thus, the restriction to prefix code may also be understood as a means to send

concatenated messages while avoiding the need to introduce extra symbols into the
alphabet.

Whenever in the sequel we speak of ‘code’, we really mean ‘prefix code’. We call
a prefix code C for a set X complete if there exists no other prefix code that
compresses at least one x more and no x less then C, that is, if there exists no code
C′ such that for all x, LC′(x) ≤ LC(x) with strict inequality for at least one x.

2.1.2 The Kraft Inequality — Code Lengths and Probabilities, Part I

In this subsection we relate prefix codes to probability distributions. Essential for
understanding the relation is the fact that no matter what code we use, most
sequences cannot be compressed, as demonstrated by the following example:

Example 2.2 (Compression and Small Subsets: Example 1.2, cont.) In
Example 1.2 we featured the following three sequences:

00010001000100010001 . . . 0001000100010001000100010001 (2.1)

01110100110100100110 . . . 1010111010111011000101100010 (2.2)

00011000001010100000 . . . 0010001000010000001000110000 (2.3)
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We showed that (a) the first sequence — an n-fold repetition of 0001 — could be
substantially compressed if we use as our code a general-purpose programming
language (assuming that valid programs must end with a halt-statement or a
closing bracket, such codes satisfy the prefix property). We also claimed that (b) the
second sequence, n independent outcomes of fair coin tosses, cannot be compressed,
and that (c) the third sequence could be compressed to αn bits, with 0 < α < 1. We
are now in a position to prove statement (b): strings which are ‘intuitively’ random
cannot be substantially compressed. Let us take some arbitrary but fixed description
method over the data alphabet consisting of the set of all binary sequences of length
n. Such a code maps binary strings to binary strings. There are 2n possible data
sequences of length n. Only two of these can be mapped to a description of length
1 (since there are only two binary strings of length 1: ‘0’ and ‘1’). Similarly, only
a subset of at most 2m sequences can have a description of length m. This means
that at most

∑m
i=1 2

m < 2m+1 data sequences can have a description length ≤ m.
The fraction of data sequences of length n that can be compressed by more than k
bits is therefore at most 2−k and as such decreases exponentially in k. If data are
generated by n tosses of a fair coin, then all 2n possibilities for the data are equally
probable, so the probability that we can compress the data by more than k bits is
smaller than 2−k. For example, the probability that we can compress the data by
more than 20 bits is smaller than one in a million.
We note that after the data (2.2) have been observed, it is always possible to

design a code which uses arbitrarily few bits to encode these data - – the actually
observed sequence may be encoded as ‘1’ for example, and no other sequence
is assigned a code word. The point is that with a code that has been designed
before seeing any data, it is virtually impossible to substantially compress randomly
generated data.

The example demonstrates that achieving a short description length for the data is
equivalent to identifying the data as belonging to a tiny, very special subset out of
all a priori possible data sequences.

AMost Important Observation Let Z be finite or countable. For concreteness,
we may take Z = {0, 1}n for some large n, say n = 10000. From Example 2.2 we
know that, no matter what code we use to encode values in Z, ‘most’ outcomes in Z
will not be substantially compressible: at most two outcomes can have description
length 1 = − log 1/2; at most four outcomes can have length 2 = − log 1/4, and so
on. Now consider any probability distribution on Z. Since the probabilities P (z)
must sum up to 1 (

∑
z P (z) = 1), ‘most’ outcomes in Z must have small probability

in the following sense: at most 2 outcomes can have probability ≥ 1/2; at most 4
outcomes can have probability ≥ 1/4; at most 8 can have ≥ 1/8-th and so on. This
suggests an analogy between codes and probability distributions: each code induces
a code length function that assigns a number to each z, where most z’s are assigned
large numbers. Similarly, each distribution assigns a number to each z, where most
z’s are assigned small numbers.
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Probability Mass Functions correspond to Code Length Functions
Let Z be a finite or countable set and let P be a probability distribution
on Z. Then there exists a prefix code C for Z such that for all z ∈ Z,
LC(z) = 	− logP (z)
. C is called the code corresponding to P .
Similarly, let C ′ be a prefix code for Z. Then there exists a (possibly defective)
probability distribution P ′ such that for all z ∈ Z, − logP ′(z) = LC′(z). P ′ is
called the probability distribution corresponding to C′.

Moreover C′ is a complete prefix code iff P is proper (
P

z P (z) = 1).

Thus, large probability according to P means small code length according to
the code corresponding to P and vice versa.
We are typically concerned with cases where Z represents sequences of n
outcomes; that is, Z = Xn (n ≥ 1) where X is the sample space for one
observation.

Figure 2.1 The most important observation of this tutorial.

It turns out that this correspondence can be made mathematically precise by
means of the Kraft inequality [Cover and Thomas 1991]. We neither precisely
state nor prove this inequality; rather, in Figure 2.1 we state an immediate and
fundamental consequence: probability mass functions correspond to code length
functions. The following example illustrates this and at the same time introduces
a type of code that will be frequently employed in the sequel:

Example 2.3 (Uniform Distribution Corresponds to Fixed-Length Code)
Suppose Z hasM elements. The uniform distribution PU assigns probabilities 1/M
to each element. We can arrive at a code corresponding to PU as follows. First, order
and number the elements in Z as 0, 1, . . . ,M − 1. Then, for each z with number
j, set C(z) to be equal to j represented as a binary number with 	logM
 bits.
The resulting code has, for all z ∈ Z, LC(z) = 	logM
 = 	− logPU (z)
. This
is a code corresponding to PU (Figure 2.1). In general, there exist several codes
corresponding to PU , one for each ordering of Z. But all these codes share the
same length function LU (z) := 	− logPU (z)
.; therefore, LU (z) is the unique code
length function corresponding to PU .
For example, ifM = 4, Z = {a, b, c, d}, we can take C(a) = 00, C(b) = 01, C(c) =

10, C(d) = 11 and then LU (z) = 2 for all z ∈ Z. In general, codes corresponding
to uniform distributions assign fixed lengths to each z and are called fixed-length
codes. To map a nonuniform distribution to a corresponding code, we have to use
a more intricate construction [Cover and Thomas 1991].

In practical applications, we almost always deal with probability distributions P
and strings xn such that P (xn) decreases exponentially in n; for example, this will
typically be the case if data are i.i.d., such that P (xn) =

∏
P (xi). Then − logP (xn)



2.1 Information Theory I: Probabilities and Code Lengths 29

New Definition of Code Length Function
In MDL we are NEVER concerned with actual encodings; we are only

concerned with code length functions. The set of all code length functions
for finite or countable sample space Z is defined as:

LZ =
{
L : Z → [0,∞] |

∑
z∈X

2−L(z) ≤ 1
}
, (2.4)

or equivalently, LZ is the set of those functions L on Z such that there exists
a function Q with

∑
z Q(z) ≤ 1 and for all z, L(z) = − logQ(z). (Q(z) = 0

corresponds to L(z) =∞).
Again, Z usually represents a sample of n outcomes: Z = Xn (n ≥ 1) where
X is the sample space for one observation.

Figure 2.2 Code lengths are probabilities.

increases linearly in n and the effect of rounding off − logP (xn) becomes negligible.
Note that the code corresponding to the product distribution of P on Xn does not
have to be the n-fold extension of the code for the original distribution P on X
— if we were to require that, the effect of rounding off would be on the order
of n . Instead, we directly design a code for the distribution on the larger space
Z = Xn. In this way, the effect of rounding changes the code length by at most
1 bit, which is truly negligible. For this and other4 reasons, we henceforth simply
neglect the integer requirement for code lengths. This simplification allows us to
identify code length functions and (defective) probability mass functions, such that
a short code length corresponds to a high probability and vice versa. Furthermore,
as we will see, in MDL we are not interested in the details of actual encodings
C(z); we only care about the code lengths LC(z). It is so useful to think about
these as log-probabilities, and so convenient to allow for noninteger values, that
we will simply redefine prefix code length functions as (defective) probability mass
functions that can have noninteger code lengths — see Figure 2.2. The following
example illustrates idealized code length functions and at the same time introduces
a type of code that will be frequently used in the sequel:

Example 2.4 (‘Almost’ Uniform Code for the Positive Integers) Suppose
we want to encode a number k ∈ {1, 2, . . .}. In Example 2.3, we saw that in order
to encode a number between 1 and M , we need logM bits. What if we cannot
determine the maximumM in advance? We cannot just encode k using the uniform
code for {1, . . . , k}, since the resulting code would not be prefix. So in general, we
will need more than log k bits. Yet there exists a prefix-free code which performs
‘almost’ as well as log k. The simplest of such codes works as follows. k is described
by a code word starting with 	log k
 0s. This is followed by a 1, and then k is encoded
using the uniform code for {1, . . . , 2	log k
}. With this protocol, a decoder can first
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reconstruct 	log k
 by counting all 0s before the leftmost 1 in the encoding. He or
she then has an upper bound on k and can use this knowledge to decode k itself.
This protocol uses less than 2	log k
 + 1 bits. Working with idealized, noninteger
code lengths we can simplify this to 2 log k+1 bits. To see this, consider the function
P (x) = 2−2 log x−1. An easy calculation gives∑

x∈1,2,...
P (x) =

∑
x∈1,2,...

2−2 log x−1 =
1
2

∑
x∈1,2,...

x−2 <
1
2
+

1
2

∑
x=2,3,...

1
x(x− 1)

= 1,

so that P is a (defective) probability distribution. Thus, by our new definition
(Figure 2.2), there exists a prefix code with, for all k, L(k) = − logP (k) = 2 log k+1.
We call the resulting code the ‘simple standard code for the integers’. In Section 2.4
we will see that it is an instance of a so-called universal code.
The idea can be refined to lead to codes with lengths log k+O(log log k); the ‘best’

possible refinement, with code lengths L(k) increasing monotonically but as slowly
as possible in k, is known as ‘the universal code for the integers’ [Rissanen 1983].
However, for our purposes in this tutorial, it is good enough to encode integers k
with 2 log k + 1 bits.

Example 2.5 (Examples 1.2 and 2.2, cont.) We are now also in a position to prove
the third and final claim of Examples 1.2 and 2.2. Consider the three sequences (2.1),
(2.2), and (2.3) on page 26 again. It remains to investigate how much the third sequence
can be compressed. Assume for concreteness that, before seeing the sequence, we are told
that the sequence contains a fraction of 1s equal to 1/5+ ε for some small unknown ε. By
the Kraft inequality, Figure 2.1, for all distributions P there exists some code on sequences
of length n such that for all xn ∈ Xn, L(xn) = �− logP (xn)�. The fact that the fraction
of 1s is approximately equal to 1/5 suggests modeling xn as independent outcomes of a
coin with bias 1/5th. The corresponding distribution P0 satisfies

− logP0(x
n) = log

„
1

5

«n[1]
„
4

5

«n[0]

= n
ˆ−`1

5
+ ε

´
log

1

5
− `4

5
− ε

´
log

4

5

˜
=

n[log 5− 8

5
+ 2ε],

where n[j] denotes the number of occurrences of symbol j in xn. For small enough ε,
the part between parentheses is smaller than 1, so that, using the code L0 with lengths
− logP0, the sequence can be encoded using αn bits where α satisfies 0 < α < 1. Thus,
using the code L0, the sequence can be compressed by a linear amount if we use a specially
designed code that assigns short code lengths to sequences with about four times as many
0s than 1s.
We note that after the data (2.3) have been observed, it is always possible to design a
code which uses arbitrarily few bits to encode xn — the actually observed sequence may
be encoded as ‘1’ for example, and no other sequence is assigned a code word. The point
is that with a code that has been designed before seeing the actual sequence, given only
the knowledge that the sequence will contain approximately four times as many 0s as 1s,
the sequence is guaranteed to be compressed by an amount linear in n.

Continuous Sample Spaces How does the correspondence work for continuous-
valued X ? In this tutorial we only consider P on X such that P admits a density.5

Whenever in the following we make a general statement about sample spaces X and
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The P that corresponds to L minimizes expected code length
Let P be a distribution on (finite, countable or continuous-valued) Z and let
L be defined by

L:= argmin
L∈LZ

EP [L(Z)]. (2.5)

Then L exists, is unique, and is identical to the code length function corre-
sponding to P , with lengths L(z) = − logP (z).

Figure 2.3 The second most important observation of this tutorial.

distributions P , X may be finite, countable, or any subset of R
l, for any integer

l ≥ 1, and P (x) represents the probability mass function or density of P , as the
case may be. In the continuous case, all sums should be read as integrals. The
correspondence between probability distributions and codes may be extended to
distributions on continuous-valued X : we may think of L(xn) := − logP (xn) as a
code length function corresponding to Z = Xn encoding the values in Xn at unit
precision; here P (xn) is the density of xn according to P . See [Cover and Thomas
1991] for further details.

2.1.3 The Information Inequality — Code Lengths and Probabilities,
Part II

In the previous subsection, we established the first fundamental relation between
probability distributions and code length functions. We now discuss the second
relation, which is nearly as important.
In the correspondence to code length functions, probability distributions were

treated as mathematical objects and nothing else. That is, if we decide to use a
code C to encode our data, this definitely does not necessarily mean that we assume
our data to be drawn according to the probability distribution corresponding to L:
we may have no idea what distribution generates our data, or conceivably, such a
distribution may not even exist.6 Nevertheless, if the data are distributed according
to some distribution P , then the code corresponding to P turns out to be the
optimal code to use, in an expected sense – see Figure 2.3. This result may be
recast as follows: for all distributions P and Q with Q �= P ,

EP [− logQ(X)] > EP [− logP (X)].

In this form, the result is known as the information inequality. It is easily proved
using concavity of the logarithm [Cover and Thomas 1991].
The information inequality says the following: suppose Z is distributed according

to P (‘generated by P ’). Then, among all possible codes for Z, the code with lengths
− logP (Z) ‘on average’ gives the shortest encodings of outcomes of P . Why should
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we be interested in the average? The law of large numbers [Feller 1968] implies that,
for large samples of data distributed according to P , with high P -probability, the
code that gives the shortest expected lengths will also give the shortest actual code
lengths, which is what we are really interested in. This will hold if data are i.i.d.,
but also more generally if P defines a ‘stationary and ergodic’ process.

Example 2.6 Let us briefly illustrate this. Let P ∗, QA, and QB be three probability
distributions on X , extended to Z = Xn by independence. Hence P ∗(xn) =

Q
P ∗(xi) and

similarly for QA and QB. Suppose we obtain a sample generated by P ∗. Mr. A and Mrs. B
both want to encode the sample using as few bits as possible, but neither knows that P ∗

has actually been used to generate the sample. Mr. A decides to use the code corresponding
to distribution QA and Mrs. B decides to use the code corresponding to QB. Suppose that
EP∗ [− logQA(X)] < EP∗ [− logQB(X)]. Then, by the law of large numbers , with P ∗-
probability 1, n−1[− logQj(X1, . . . , Xn)] → EP∗ [− logQj(X)], for both j ∈ {A,B} (note
− logQj(X

n) = −Pn
i=1 logQj(Xi)). It follows that, with probability 1, Mr. A will need

less (linearly in n) bits to encode X1, . . . ,Xn than Mrs. B.

The qualitative content of this result is not so surprising: in a large sample generated
by P , the frequency of each x ∈ X will be approximately equal to the probability
P (x). In order to obtain a short code length for xn, we should use a code that assigns
a small code length to those symbols in X with high frequency (probability), and
a large code length to those symbols in X with low frequency (probability).

Summary and Outlook In this section we introduced (prefix) codes and thor-
oughly discussed the relation between probabilities and code lengths. We are now
almost ready to formalize a simple version of MDL — but first we need to review
some concepts of statistics.

2.2 Statistical Preliminaries and Example Models

In the next section we make precise the crude form of MDL informally presented
in Section 1.3. We will freely use some convenient statistical concepts which we
review in this section; for details see, for example, [Casella and Berger 1990]. We
also describe the model class of Markov chains of arbitrary order, which we use as
our running example. These admit a simpler treatment than the polynomials, to
which we return in Section 2.7.

Statistical Preliminaries A probabilistic model7 M is a set of probabilistic
sources. Typically one uses the word ‘model’ to denote sources of the same func-
tional form. We often index the elements P of a model M using some parameter
θ. In that case we write P as P (· | θ), and M as M = {P (· | θ) | θ ∈ Θ}, for some
parameter space Θ. IfM can be parameterized by some connected Θ ⊆ R

k for some
k ≥ 1 and the mapping θ → P (· | θ) is smooth (appropriately defined), we callM a
parametric model or family. For example, the modelM of all normal distributions
on X = R is a parametric model that can be parameterized by θ = (µ, σ2) where
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µ is the mean and σ2 is the variance of the distribution indexed by θ. The family
of all Markov chains of all orders is a model, but not a parametric model. We call
a model M an i.i.d. model if, according to all P ∈ M, X1, X2, . . . are i.i.d. We
call M k-dimensional if k is the smallest integer k so that M can be smoothly
parameterized by some Θ ⊆ R

k.
For a given model M and sample D = xn, the maximum likelihood (ML) P is

the P ∈ M maximizing P (xn). For a parametric model with parameter space Θ,
the maximum likelihood estimator θ̂ is the function that, for each n, maps xn to
the θ ∈ Θ that maximizes the likelihood P (xn | θ). The ML estimator may be
viewed as a ‘learning algorithm.’ This is a procedure that, when input a sample xn

of arbitrary length, outputs a parameter or hypothesis Pn ∈ M. We say a learning
algorithm is consistent relative to distance measure d if for all P ∗ ∈M, if data are
distributed according to P ∗, then the output Pn converges to P ∗ in the sense that
d(P ∗, Pn)→ 0 with P ∗-probability 1. Thus, if P ∗ is the ‘true’ state of nature, then
given enough data, the learning algorithm will learn a good approximation of P ∗

with very high probability.

Example 2.7 (Markov and Bernoulli Models) Recall that a kth-order
Markov chain on X = {0, 1} is a probabilistic source such that for every n > k,

P (Xn = 1 | Xn−1 = xn−1, . . . , Xn−k = xn−k) =

P (Xn = 1 | Xn−1 = xn−1, . . . , Xn−k = xn−k, . . . , X1 = x1). (2.6)

That is, the probability distribution onXn depends only on the k symbols preceding
n. Thus, there are 2k possible distributions of Xn, and each such distribution is
identified with a state of the Markov chain. To fully identify the chain, we also
need to specify the starting state, defining the first k outcomes X1, . . . , Xk. The
kth-orderMarkov model is the set of all kth-order Markov chains, that is, all sources
satisfying (2.6) equipped with a starting state.
The special case of the 0th-order Markov model is the Bernoulli or biased

coin model, which we denote by B(0). We can parameterize the Bernoulli model
by a parameter θ ∈ [0, 1] representing the probability of observing a 1. Thus,
B(0) = {P (· | θ) | θ ∈ [0, 1]}, with P (xn | θ) by definition equal to

P (xn | θ) =
n∏

i=1

P (xi | θ) = θn[1](1− θ)n[0] ,

where n[1] stands for the number of 1s, and n[0] for the number of 0s in the sample.
Note that the Bernoulli model is i.i.d. The log-likelihood is given by

logP (xn | θ) = n[1] log θ + n[0] log(1 − θ). (2.7)

Taking the derivative of (2.7) with respect to θ, we see that for fixed xn, the
log-likelihood is maximized by setting the probability of 1 equal to the observed
frequency. Since the logarithm is a monotonically increasing function, the likelihood
is maximized at the same value: the ML estimator is given by θ̂(xn) = n[1]/n.
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Similarly, the first-order Markov model B(1) can be parameterized by a vector
θ = (θ[1|0], θ[1|1]) ∈ [0, 1]2 together with a starting state in {0, 1}. Here θ[1|j]
represents the probability of observing a 1 following the symbol j. The log-likelihood
is given by

logP (xn | θ) = n[1|1] log θ[1|1]+n[0|1] log(1−θ[1|1])+n[1|0] log θ[1|0]+n[0|0] log(1−θ[1|0]),

n[i|j] denoting the number of times outcome i is observed in state (previous
outcome) j. This is maximized by setting θ̂ = (θ̂[1|0], θ̂[1|1]), with θ̂[i|j] = n[i|j] =
n[ji]/n[j] set to the conditional frequency of i preceded by j. In general, a kth-order
Markov chain has 2k parameters and the corresponding likelihood is maximized by
setting the parameter θ[i|j] equal to the number of times i was observed in state j
divided by the number of times the chain was in state j.

Suppose now we are given data D = xn and we want to find the Markov chain
that best explains D. Since we do not want to restrict ourselves to chains of fixed
order, we run a large risk of overfitting: simply picking, among all Markov chains
of each order, the ML Markov chain that maximizes the probability of the data,
we typically end up with a chain of order n − 1 with starting state given by the
sequence x1, . . . , xn−1, and P (Xn = xn | Xn−1 = xn−1) = 1. Such a chain will
assign probability 1 to xn. Below we show that MDL makes a more reasonable
choice.

2.3 Crude MDL

Based on the information-theoretic (Section 2.1) and statistical (Section 2.2) pre-
liminaries discussed before, we now formalize a first, crude version of MDL.
Let M be a class of probabilistic sources (not necessarily Markov chains). Sup-

pose we observe a sample D = (x1, . . . , xn) ∈ Xn. Recall ‘the crude8 two-part code
MDL principle’ from Chapter 1, Section 1.3, page 9:

Crude,9 Two-Part Version of MDL principle
Let H(1),H(2), . . . be a set of candidate models. The best point hypothesis
H ∈ H(1) ∪ H(2) ∪ . . . to explain data D is the one which minimizes the sum
L(H) + L(D|H), where

L(H) is the length, in bits, of the description of the hypothesis; and

L(D|H) is the length, in bits, of the description of the data when encoded
with the help of the hypothesis.

The best model to explain D is the smallest model containing the selected H .

In this section, we implement this crude MDL principle by giving a precise defi-
nition of the terms L(H) and L(D|H). To make the first term precise, we must
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design a code C1 for encoding hypotheses H such that L(H) = LC1(H). For the
second term, we must design a set of codes C2,H (one for each H ∈ M) such that
for all D ∈ Xn, L(D|H) = LC2,H (D). We start by describing the codes C2,H .

2.3.1 Description Length of Data Given Hypothesis

Given a sample of size n, each hypothesis H may be viewed as a probability
distribution on Xn. We denote the corresponding probability mass function by
P (· | H). We need to associate with P (· | H) a code, or really, just a code length
function for Xn. We already know that there exists a code with length function L
such that for all xn ∈ Xn, L(xn) = − logP (xn | H). This is the code that we will
pick. It is a natural choice for two reasons:

1. With this choice, the code length L(xn | H) is equal to minus the log-likelihood
of xn according to H , which is a standard statistical notion of ‘goodness-of-fit’.

2. If the data turn out to be distributed according to P , then the code L(· | H)
will uniquely minimize the expected code length (Section 2.1).

The second item implies that our choice is, in a sense, the only reasonable choice.10 To see
this, suppose M is a finite i.i.d. model containing, say,M distributions. Suppose we assign
an arbitrary but finite code length L(H) to each H ∈ M. Suppose X1,X2, . . . are actually
i.i.d. according to some ‘true’ H∗ ∈ M. By the reasoning of Example 2.6, we see that
MDL will select the true distribution P (· | H∗) for all large n, with probability 1. This
means that MDL is consistent for finite M. If we were to assign codes to distributions
in some other manner not satisfying L(D | H) = − logP (D | H), then there would exist
distributions P (· | H) such that L(D|H) �= − logP (D|H). But by Figure 2.1, there must
be some distribution P (· | H ′) with L(·|H) = − logP (· | H ′). Now let M = {H,H ′} and
suppose data are distributed according to P (· | H ′). Then, by the reasoning of Example 2.6,
MDL would select H rather than H ′ for all large n! Thus, MDL would be inconsistent
even in this simplest of all imaginable cases — there would then be no hope for good
performance in the considerably more complex situations we intend to use it for.11

2.3.2 Description Length of Hypothesis

In its weakest and crudest form, the two-part code MDL principle does not give
any guidelines as to how to encode hypotheses (probability distributions). Every
code for encoding hypotheses is allowed, as long as such a code does not change
with the sample size n.

To see the danger in allowing codes to depend on n, consider the Markov chain example:
if we were allowed to use different codes for different n, we could use, for each n, a code
assigning a uniform distribution to all Markov chains of order n − 1 with all parameters
equal to 0 or 1. Since there are only a finite number (2n−1) of these, this is possible. But
then, for each n, xn ∈ Xn, MDL would select the ML Markov chain of order n− 1. Thus,
MDL would coincide with ML and, no matter how large n, we would overfit.

Consistency of Two-Part MDL Remarkably, if we fix an arbitrary code for
all hypotheses, identical for all sample sizes n, this is sufficient to make MDL
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consistent12 for a wide variety of models, including the Markov chains. For example,
let L be the length function corresponding to some code for the Markov chains.
Suppose some Markov chain P ∗ generates the data such that L(P ∗) <∞ under our
coding scheme. Then, broadly speaking, for every P ∗ of every order, with probability
1 there exists some n0 such that for all samples larger than n0, two-part MDL will
select P ∗ — here n0 may depend on P ∗ and L.
While this result indicates that MDL may be doing something sensible, it

certainly does not justify the use of arbitrary codes - different codes will lead to
preferences of different hypotheses, and it is not at all clear how a code should be
designed that leads to good inferences with small, practically relevant sample sizes.
Barron and Cover [1991] have developed a precise theory of how to design codes

C1 in a ‘clever’ way, anticipating the developments of ‘refined MDL’. Practitioners
have often simply used ‘reasonable’ coding schemes, based on the following idea.
Usually there exists some ‘natural’ decomposition of the models under consid-
eration, M =

⋃
k>0M(k) where the dimension of M(k) grows with k but is not

necessarily equal to k. In the Markov chain example, we have B =
⋃B(k) where

B(k) is the kth-order, 2k-parameter Markov model. Then within each submodel
M(k), we may use a fixed-length code for θ ∈ Θ(k). Since the set Θ(k) is typically
a continuum, we somehow need to discretize it to achieve this.

Example 2.8 (a Very Crude Code for the Markov Chains) We can describe
a Markov chain of order k by first describing k, and then describing a parameter
vector θ ∈ [0, 1]k

′
with k′ = 2k. We describe k using our simple code for the

integers (Example 2.4). This takes 2 log k + 1 bits. We now have to describe the
k′-component parameter vector. We saw in Example 2.7 that for any xn, the best-
fitting (ML) kth-order Markov chain can be identified with k′ frequencies. It is
not hard to see that these frequencies are uniquely determined by the counts
n[1|0...00], n[1|0...01], . . . , n[1|1...11]. Each individual count must be in the (n + 1)-
element set {0, 1, . . . , n}. Since we assume n is given in advance,13 we may use a
simple fixed-length code to encode this count, taking log(n+1) bits (Example 2.3).
Thus, once k is fixed, we can describe such a Markov chain by a uniform code using
k′ log(n + 1) bits. With the code just defined we get for any P ∈ B, indexed by
parameter Θ(k),

L(P ) = L(k,Θ(k)) = 2 log k + 1 + k log(n+ 1),

so that with these codes, MDL tells us to pick the k, θ(k) minimizing

L(k, θ(k)) + L(D | k, θ(k)) = 2 log k + 1 + k log(n+ 1)− logP (D | k, θ(k)), (2.8)

where the θ(k) that is chosen will be equal to the ML estimator for M(k).

Why (Not) This Code? We may ask two questions about this code. First, why
did we only reserve code words for θ that are potentially ML estimators for the given
data? The reason is that, given k′ = 2k, the code length L(D | k, θ(k)) is minimized
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by θ̂(k)(D), the ML estimator within θ(k). Reserving code words for θ ∈ [0, 1]k
′

that cannot be ML estimates would only serve to lengthen L(D | k, θ(k)) and can
never shorten L(k, θ(k)). Thus, the total description length needed to encode D will
increase. Since our stated goal is to minimize description lengths, this is undesirable.
However, by the same logic we may also ask whether we have not reserved too

many code words for θ ∈ [0, 1]k
′
. And in fact, it turns out that we have: the distance

between two adjacent ML estimators is O(1/n). Indeed, if we had used a coarser
precision, only reserving code words for parameters with distances O(1/

√
n), we

would obtain smaller code lengths — (2.8) would become

L(k, θ(k)) + L(D | k, θ(k)) = − logP (D | k, θ̂(k)) + k
2
logn+ ck, (2.9)

where ck is a small constant depending on k, but not n [Barron and Cover 1991].
In Section 2.5 we show that (2.9) is in some sense ‘optimal’.

The Good News and the Bad News The good news is (1) we have found a
principled, nonarbitrary manner to encode data D given a probability distribution
H , namely, to use the code with lengths − logP (D | H); and (2), asymptotically,
any code for hypotheses will lead to a consistent criterion. The bad news is that we
have not found clear guidelines to design codes for hypotheses H ∈ M. We found
some intuitively reasonable codes for Markov chains, and we then reasoned that
these could be somewhat ‘improved’, but what is conspicuously lacking is a sound
theoretical principle for designing and improving codes.
We take the good news to mean that our idea may be worth pursuing further.

We take the bad news to mean that we do have to modify or extend the idea to get
a meaningful, nonarbitrary and practically relevant model selection method. Such
an extension was already suggested in Rissanen’s early works [Rissanen 1978, 1983]
and refined by Barron and Cover [1991]. However, in these works, the principle was
still restricted to two-part codes. To get a fully satisfactory solution, we need to
move to ‘universal codes’, of which the two-part codes are merely a special case.

2.4 Information Theory II: Universal Codes and Models

We have just indicated why the two-part code formulation of MDL needs to be
refined. It turns out that the key concept we need is that of universal coding. Broadly
speaking, a code L̄ that is universal relative to a set of candidate codes L allows us
to compress every sequence xn almost as well as the code in L that compresses that
particular sequence most. Two-part codes are universal (Section 2.4.1), but there
exist other universal codes such as the Bayesian mixture code (Section 2.4.2) and
the normalized maximum likelihood (NML) code (Section 2.4.3). We also discuss
universal models, which are just the probability distributions corresponding to
universal codes. In this section, we are not concerned with learning from data; we
only care about compressing data as much as possible. We reconnect our findings
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with learning in Section 2.5.

Coding as Communication Like many other topics in coding, ‘universal coding’
can best be explained if we think of descriptions as messages : we can always view
a description as a message that some sender or encoder, say Mr. A, sends to some
receiver or decoder, say Mrs. B. Before sending any messages, Mr. A and Mrs. B
meet in person. They agree on the set of messages that A may send to B. Typically,
this will be the set Xn of sequences x1, . . . , xn, where each xi is an outcome in the
space X . They also agree upon a (prefix) code that will be used by A to send
his messages to B. Once this has been done, A and B go back to their respective
homes and A sends his messages to B in the form of binary strings. The unique
decodability property of prefix codes implies that, when B receives a message, she
should always be able to decode it in a unique manner.

Universal Coding Suppose our encoder/sender is about to observe a sequence
xn ∈ Xn which he plans to compress as much as possible. Equivalently, he wants to
send an encoded version of xn to the receiver using as few bits as possible. Sender
and receiver have a set of candidate codes L for Xn available.14 They believe or hope
that one of these codes will allow for substantial compression of xn. However, they
must decide on a code for Xn before sender observes the actual xn, and they do not
know which code in L will lead to good compression of the actual xn. What is the
best thing they can do? They may be tempted to try the following: upon seeing xn,
sender simply encodes/sends xn using the L ∈ L that minimizes L(xn) among all
L ∈ L. But this naive scheme will not work: since decoder/receiver does not know
what xn has been sent before decoding the message, she does not know which of
the codes in L has been used by sender/encoder. Therefore, decoder cannot decode
the message: the resulting protocol does not constitute a uniquely decodable, let
alone a prefix code. Indeed, as we show below, in general no code L̄ exists such
that for all xn ∈ Xn, L̄(xn) ≤ minL∈L L(xn): in words, there exists no code which,
no matter what xn is, always mimics the best code for xn.

Example 2.9 Suppose we think that our sequence can be reasonably well com-
pressed by a code corresponding to some biased coin model. For simplicity, we
restrict ourselves to a finite number of such models. Thus, let L = {L1, . . . , L9}
where L1 is the code length function corresponding to the Bernoulli model P (· | θ)
with parameter θ = 0.1, L2 corresponds to θ = 0.2 and so on. From (2.7) we see
that, for example,

L8(xn) = − logP (xn|0.8) = −n[0] log 0.2− n[1] log 0.8
L9(xn) = − logP (xn|0.9) = −n[0] log 0.1− n[1] log 0.9.

Both L8(xn) and L9(xn) are linearly increasing in the number of 1s in xn. However,
if the frequency n1/n is approximately 0.8, then minL∈LL(xn) will be achieved
for L8. If n1/n ≈ 0.9 then minL∈L L(xn) is achieved for L9. More generally,
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if n1/n ≈ j/10, then Lj achieves the minimum.15 We would like to send xn

using a code L̄ such that for all xn, we need at most L̂(xn) bits, where L̂(xn)
is defined as L̂(xn) := minL∈L L(xn). Since − log is monotonically decreasing,
L̂(xn) = − logP (xn | θ̂(xn)). We already gave an informal explanation as to why
a code with lengths L̂ does not exist. We can now explain this more formally as
follows: if such a code were to exist, it would correspond to some distribution P̄ .
Then we would have for all xn, L̄(xn) = − log P̄ (xn). But, by definition, for all
xn ∈ Xn, L̄(xn) ≤ L̂(xn) = − logP (xn|θ̂(xn)) where θ̂(xn) ∈ {0.1, . . . , 0.9}. Thus
we get for all xn, − log P̄ (xn) ≤ − logP (xn | θ̂(xn)) or P̄ (xn) ≥ P (xn | θ̂(xn)), so
that, since |L| > 1,∑

xn

P̄ (xn) ≥
∑
xn

P (xn | θ̂(xn)) =
∑
xn

max
θ
P (xn | θ) > 1, (2.10)

where the last inequality follows because for any two θ1, θ2 with θ1 �= θ2, there is
at least one xn with P (xn | θ1) > P (xn | θ2). Equation (2.10) says that P̄ is not
a probability distribution. It follows that L̄ cannot be a code length function. The
argument can be extended beyond the Bernoulli model of the example above: as
long as |L| > 1, and all codes in L correspond to a nondefective distribution, (2.10)
must still hold, so that there exists no code L̄ with L̄(xn) = L̂(xn) for all xn. The
underlying reason that no such code exists is the fact that probabilities must sum
up to something ≤ 1; or equivalently, that there exists no coding scheme assigning
short code words to many different messages (see Example 2.2).

Since there exists no code which, no matter what xn is, always mimics the best
code for xn, it may make sense to look for the next best thing: does there exist a
code which, for all xn ∈ Xn, is ‘nearly’ (in some sense) as good as L̂(xn)? It turns
out that in many cases, the answer is yes: there typically exist codes L̄ such that no
matter what xn arrives, L̄(xn) is not much larger than L̂(xn), which may be viewed
as the code that is best ‘with hindsight’ (i.e., after seeing xn). Intuitively, codes
which satisfy this property are called universal codes — a more precise definition
follows below. The first (but perhaps not foremost) example of a universal code is
the two-part code that we have encountered in Section 2.3.

2.4.1 Two-Part Codes as Simple Universal Codes

Example 2.10 (Finite L) Let L be as in Example 2.9. We can devise a code
L̄2-p for all xn ∈ Xn as follows: to encode xn, we first encode the j ∈ {1, . . . , 9}
such that Lj(xn) = minL∈L L(xn), using a uniform code. This takes log 9 bits. We
then encode xn itself using the code indexed by j. This takes Lj bits. Note that
in contrast to the naive scheme discussed in Example 2.9, the resulting scheme
properly defines a prefix code: a decoder can decode xn by first decoding j, and
then decoding xn using Lj. Thus, for every possible xn ∈ Xn, we obtain

L̄2-p(xn) = min
L∈L

L(xn) + log 9.
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For all L ∈ L, minxn L(xn) grows linearly in n: minθ,xn − logP (xn | θ) =
−n log 0.9 ≈ 0.15n. Unless n is very small, no matter what xn arises, the extra
number of bits we need using L̄2-p compared to L̂(xn) is negligible.

More generally, let L = {L1, . . . , LM} whereM can be arbitrarily large, and the Lj

can be any code length functions we like; they do not necessarily represent Bernoulli
distributions anymore. By the reasoning of Example 2.10, there exists a (two-part)
code such that for all xn ∈ Xn,

L̄2-p(xn) = min
L∈L

L(xn) + logM. (2.11)

In most applications minL(xn) grows linearly in n, and we see from (2.11) that,
as soon as n becomes substantially larger than logM , the relative difference in
performance between our universal code and L̂(xn) becomes negligible. In general,
we do not always want to use a uniform code for the elements in L; note that
any arbitrary code on L will give us an analogue of (2.11), but with a worst-case
overhead larger than logM — corresponding to the largest code length of any of
the elements in L.

Example 2.11 (Countably Infinite L) We can also construct a two-part code
for arbitrary countably infinite sets of codes L = {L1, L2, . . .}: we first encode some
k using our simple code for the integers (Example 2.4). With this code we need
2 log k + 1 bits to encode integer k. We then encode xn using the code Lk. L̄2-p is
now defined as the code we get if, for any xn, we encode xn using the Lk minimizing
the total two-part description length 2 logk + 1 + Lk(xn).
In contrast to the case of finite L, there does not exist a constant c anymore

such that for all n, xn ∈ Xn, L̄2-p(xn) ≤ infL∈L L(xn) + c. Instead we have the
following weaker, but still remarkable property: for all k, all n, all xn, L̄2-p(xn) ≤
Lk(xn) + 2 log k + 1, so that also,

L̄2-p(xn) ≤ inf
L∈{L1,...,Lk}

L(xn) + 2 log k + 1.

For any k, as n grows larger, the code L̄2-p starts to mimic whatever L ∈
{L1, . . . , Lk} compresses the data most. However, the larger k, the larger n has
to be before this happens.

2.4.2 From Universal Codes to Universal Models

Instead of postulating a set of candidate codes L, we may equivalently postulate
a set M of candidate probabilistic sources, such that L is the set of codes corre-
sponding to M. We already implicitly did this in Example 2.9.
The reasoning is now as follows: we think that one of the P ∈M will assign a high

likelihood to the data to be observed. Therefore we would like to design a code that,
for all xn we might observe, performs essentially as well as the code corresponding
to the best-fitting, maximum likelihood (minimum code length) P ∈ M for xn.
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Similarly, we can think of universal codes such as the two-part code in terms of the
(possibly defective; see Section 2.1 and Figure 2.1)) distributions corresponding to
it. Such distributions corresponding to universal codes are called universal models.
The use of mapping universal codes back to distributions is illustrated by the
Bayesian universal model which we now introduce.

Universal Model: Twice Misleading Terminology The words ‘universal’ and ‘model’
are somewhat of a misnomer: first, these codes/models are only ‘universal’ relative to a
restricted ‘universe’ M. Second, the use of the word ‘model’ will be very confusing to
statisticians, who (as we also do in this chapter) call a family of distributions such as
M a ’model’. But the phrase originates from information theory, where a ‘model’ often
refers to a single distribution rather than a family. Thus, a ‘universal model’ is a single
distribution, representing a statistical ‘model’ M.

Example 2.12 (Bayesian Universal Model) Let M be a finite or countable
set of probabilistic sources, parameterized by some parameter set Θ. Let W be
a distribution on Θ. Adopting terminology from Bayesian statistics, W is usually
called a prior distribution. We can construct a new probabilistic source P̄Bayes by
taking a weighted (according to W ) average or mixture over the distributions in
M. That is, we define for all n, xn ∈ X ,

P̄Bayes(xn) :=
∑
θ∈Θ

P (xn | θ)W (θ). (2.12)

It is easy to check that P̄Bayes is a probabilistic source according to our definition.
In case Θ is continuous, the sum gets replaced by an integral, but otherwise nothing
changes in the definition. In Bayesian statistics, P̄Bayes is called the Bayesian
marginal likelihood or Bayesian mixture [Bernardo and Smith 1994]. To see that
P̄Bayes is a universal model, note that for all θ0 ∈ Θ,

− log P̄Bayes(xn) := − log
∑
θ∈Θ

P (xn | θ)W (θ) ≤ − logP (xn | θ0) + cθ0 , (2.13)

where the inequality follows because a sum is at least as large as each of its terms,
and cθ = − logW (θ) depends on θ but not on n. Thus, P̄Bayes is a universal model
or equivalently, the code with lengths − log P̄Bayes is a universal code. Note that the
derivation in (2.13) only works if Θ is finite or countable; the case of continuous Θ
is treated in Section 2.5.

Bayes is Better than Two-Part The Bayesian model is in a sense superior to
the two-part code. Namely, in the two-part code we first encode an element of M
or its parameter set Θ using some code L0. Such a code must correspond to some
‘prior’ distribution W onM so that the two-part code gives code lengths

L̄2-p(xn) = min
θ∈Θ

− logP (xn|θ)− logW (θ), (2.14)
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whereW depends on the specific code L0 that was used. Using the Bayes code with
prior W , we get, as in (2.13),

− log P̄Bayes(xn) = − log
∑
θ∈Θ

P (xn | θ)W (θ) ≤ min
θ∈Θ

− logP (xn|θ)− logW (θ).

The inequality becomes strict whenever P (xn|θ) > 0 for more than one value of θ.
Comparing to (2.14), we see that in general the Bayesian code is preferable over
the two-part code: for all xn it never assigns code lengths larger than L̄2-p(xn), and
in many cases it assigns strictly shorter code lengths for some xn. But this raises
two important issues: (1) What exactly do we mean by ‘better’ anyway? (2) Can
we say that ‘some prior distributions are better than others’? These questions are
answered below.

2.4.3 NML as an Optimal Universal Model

We can measure the performance of universal models relative to a set of candidate
sourcesM using the regret :

Definition 2.13 (Regret) Let M be a class of probabilistic sources. Let P̄ be a
probability distribution on Xn (P̄ is not necessarily inM). For given xn, the regret
of P̄ relative toM is defined as

− log P̄ (xn)− min
P∈M

{− logP (xn)}. (2.15)

The regret of P̄ relative to M for xn is the additional number of bits needed to
encode xn using the code/distribution P̄ , as compared to the number of bits that
had been needed if we had used code/distribution in M that was optimal (‘best-
fitting’) with hindsight. For simplicity, from now on we tacitly assume that for all
the models M we work with, there is a single θ̂(xn) maximizing the likelihood for
every xn ∈ Xn. In that case (2.15) simplifies to

− log P̄ (xn)− {− logP (xn | θ̂(xn))}.

We would like to measure the quality of a universal model P̄ in terms of its regret.
However, P̄ may have small (even < 0) regret for some xn, and very large regret
for other xn. We must somehow find a measure of quality that takes into account
all xn ∈ Xn. We take a worst-case approach, and look for universal models P̄ with
small worst-case regret, where the worst case is over all sequences. Formally, the
maximum or worst-case regret of P̄ relative to M is defined as

Rmax(P̄ ):= max
xn∈Xn

{− log P̄ (xn)− {− logP (xn | θ̂(xn))}}.
If we use Rmax as our quality measure, then the ‘optimal’ universal model relative
to M, for given sample size n, is the distribution minimizing

min
P̄

Rmax(P̄ ) = min
P̄

max
xn∈Xn

{− log P̄ (xn)− {− logP (xn | θ̂(xn))}}, (2.16)
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where the minimum is over all defective distributions on Xn. The P̄ minimizing
(2.16) corresponds to the code minimizing the additional number of bits compared
to code inM that is best in hindsight in the worst case over all possible xn. It turns
out that we can solve for P̄ in (2.16). To this end, we first define the complexity of
a given modelM as

COMPn(M):= log
∑

xn∈Xn

P (xn | θ̂(xn)). (2.17)

This quantity plays a fundamental role in refined MDL, Section 2.5. To get a first
idea of why COMPn is called model complexity, note that the more sequences
xn with large P (xn | θ̂(xn)), the larger COMPn(M). In other words, the more
sequences that can be fit well by an element ofM, the largerM’s complexity.

Proposition 2.14 (Shtarkov 1987) Suppose that COMPn(M) is finite. Then
the minimax regret (2.16) is uniquely achieved for the distribution P̄nml given by

P̄nml(xn):=
P (xn | θ̂(xn))∑

yn∈Xn P (yn | θ̂(yn))
. (2.18)

The distribution P̄nml is known as the Shtarkov distribution or the normalized
maximum likelihood (NML) distribution.

Proof Plug in P̄nml in (2.16) and notice that for all xn ∈ Xn,

− log P̄ (xn)− {− logP (xn | θ̂(xn))} = Rmax(P̄ ) = COMPn(M), (2.19)

so that P̄nml achieves the same regret, equal to COMPn(M), no matter what xn

actually obtains. Since every distribution P on Xn with P �= P̄nml must satisfy
P (zn) < P̄nml(zn) for at least one zn ∈ Xn, it follows that

Rmax(P ) ≥ − logP (zn) + logP (zn | θ̂(zn)) >
− log P̄nml(zn) + logP (zn | θ̂(zn)) = Rmax(P̄nml).

P̄nml is quite literally a ‘normalized maximum likelihood’ distribution: it tries
to assign to each xn the probability of xn according to the ML distribution for
xn. By (2.10), this is not possible: the resulting ‘probabilities’ add to something
larger than 1. But we can normalize these ‘probabilities’ by dividing by their sum∑

yn∈Xn P (yn | θ̂(yn)), and then we obtain a probability distribution on Xn after
all.
Whenever X is finite, the sum COMPn(M) is finite so that the NML distri-

bution is well defined. If X is countably infinite or continuous-valued, the sum
COMPn(M) may be infinite and then the NML distribution may be undefined. In
that case, there exists no universal model achieving constant regret as in (2.19). If
M is parametric, then P̄nml is typically well defined as long as we suitably restrict
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the parameter space. The parametric case forms the basis of ‘refined MDL’ and is
discussed at length in the next section.

Summary: Universal Codes and Models
LetM be a family of probabilistic sources. A universal model in an individual
sequence sense16 relative to M, in this text simply called a ‘universal model
forM’, is a sequence of distributions P̄ (1), P̄ (2), . . . on X 1,X 2, . . . respectively,
such that for all P ∈ M, for all ε > 0,

max
xn∈Xn

1
n

{
− log P̄ (n)(xn)− [− logP (xn)]

}
≤ ε as n→∞.

Multiplying both sides with n we see that P̄ is universal if for every P ∈ M,
the code length difference − log P̄ (xn) + logP (xn) increases sublinearly in n.
If M is finite, then the two-part, Bayes and NML distributions are universal
in a very strong sense: rather than just increasing sublinearly, the code length
difference is bounded by a constant.
We already discussed two-part, Bayesian and minimax optimal (NML) univer-
sal models, but there several other types. We mention prequential universal
models (Section 2.5.4), the Kolmogorov universal model, conditionalized two-
part codes [Rissanen 2001] and Cesaro-average codes [Barron, Rissanen, and
Yu 1998].

2.5 Simple Refined MDL and Its Four Interpretations

In Section 2.3, we indicated that ‘crude’ MDL needs to be refined. In Section 2.4 we
introduced universal models. We now show how universal models, in particular the
minimax optimal universal model P̄nml, can be used to define a refined version of
MDL model selection. Here we only discuss the simplest case: suppose we are given
data D = (x1, . . . , xn) and two models M(1) and M(2) such that COMPn(M(1))
and COMPn(M(2)) (2.17) are both finite. For example, we could have some
binary data and M(1) and M(2) are the first- and second-order Markov models
(Example 2.7), both considered possible explanations for the data. We show how
to deal with an infinite number of models and models with infinite COMPn in
Section 2.6.
Denote by P̄nml(· | M(j)) the NML distribution on Xn corresponding to model

M(j). Refined MDL tells us to pick the model M(j) maximizing the normalized
maximum likelihood P̄nml(D | M(j)), or, by (2.18), equivalently, minimizing

− log P̄nml(D | M(j)) = − logP (D | θ̂(j)(D)) +COMPn(M(j)). (2.20)
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From a coding-theoretic point of view, we associate with each M(j) a code with
lengths P̄nml(· | M(j)), and we pick the model minimizing the code length of the
data. The code length − log P̄nml(D | M(j)) has been called the stochastic complex-
ity of the data D relative to modelM(j) [Rissanen 1987], whereas COMPn(M(j))
is called the parametric complexity or model cost of M(j) (in this survey we sim-
ply call it ‘complexity’). We have already indicated in the previous section that
COMPn(M(j)) measures something like the ‘complexity’ of model M(j). On the
other hand, − logP (D | θ̂(j)(D)) is minus the maximized log-likelihood of the data,
so it measures something like (minus) fit or error — in the linear regression case, it
can be directly related to the mean squared error, Section 2.7. Thus, (2.20) embod-
ies a tradeoff between lack of fit (measured by minus log-likelihood) and complexity
(measured by COMPn(M(j))). The confidence in the decision is given by the code
length difference ∣∣∣∣− log P̄nml(D | M(1))− [− log P̄nml(D | M(2))]

∣∣∣∣.
In general, − log P̄nml(D | M) can only be evaluated numerically – the only
exception I am aware of is when M is the Gaussian family, Example 2.20. In
many cases even numerical evaluation is computationally problematic. But the
reinterpretations of P̄nml we provide below also indicate that in many cases,
− log P̄ (D | M) is relatively easy to approximate.

Example 2.15 (Refined MDL and GLRT) Generalized likelihood ratio test-
ing (GLRT) [Casella and Berger 1990] tells us to pick the M(j) maximizing
logP (D | θ̂(j)(D)) + c where c is determined by the desired Type I and Type
II errors. In practice one often applies a naive variation,17 simply picking the model
M(j) maximizing logP (D | θ̂(j)(D)). This amounts to ignoring the complexity
terms COMPn(M(j)) in (2.20): MDL tries to avoid overfitting by picking the
model maximizing the normalized rather than the ordinary likelihood. The more
distributions in M that fit the data well, the larger the normalization term.

The hope is that the normalization term COMPn(M(j)) strikes the right balance
between complexity and fit. Whether it really does depends on whether COMPn

is a ‘good’ measure of complexity. In the remainder of this section we shall argue
that it is, by giving four different interpretations of COMPn and of the resulting
tradeoff (2.20):

1. Compression interpretation

2. Counting interpretation

3. Bayesian interpretation

4. Prequential (predictive) interpretation
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2.5.1 Compression Interpretation

Rissanen’s original goal was to select the model that detects the most regularity in
the data; he identified this with the ‘model that allows for the most compression
of data xn’. To make this precise, a code is associated with each model. The NML
code with lengths − log P̄nml(· | M(j)) seems to be a very reasonable choice for such
a code because of the following two properties:

1. The better the best-fitting distribution in M(j) fits the data, the shorter the
code length − log P̄nml(D | M(j)).

2. No distribution in M(j) is given a prior preference over any other distribution,
since the regret of P̄nml(· | M(j)) is the same for all D ∈ Xn (Equation (2.19)).
P̄nml is the only complete prefix code with this property, which may be restated as:
P̄nml treats all distributions within each M(j) on the same footing!

Therefore, if one is willing to accept the basic ideas underlying MDL as first
principles, then the use of NML in model selection is now justified to some
extent. Below we give additional justifications that are not directly based on data
compression; but we first provide some further interpretation of − log P̄nml.

Compression and Separating Structure from Noise We present the follow-
ing ideas in an imprecise fashion — Rissanen and Tabus [2005] recently showed how
to make them precise. The stochastic complexity of data D relative toM, given by
(2.20) can be interpreted as the amount of information in the data relative to M,
measured in bits. Although a one-part code length, it still consists of two terms: a
term COMPn(M) measuring the amount of structure or meaningful information
in the data (as ‘seen through M’), and a term − logP (D | θ̂(D)) measuring the
amount of noise or accidental information in the data. To see that this second
term measures noise, consider the regression example, Example 1.2, again. As will
be seen in Section 2.7, Equation (2.40), in that case − logP (D | θ̂(D)) becomes
equal to a linear function of the mean squared error of the best-fitting polynomial
in the set of kth-degree polynomials. To see that the first term measures structure,
we reinterpret it below as the number of bits needed to specify a ‘distinguishable’
distribution in M, using a uniform code on all ‘distinguishable’ distributions.

2.5.2 Counting Interpretation

The parametric complexity can be interpreted as measuring (the log of) the number
of distinguishable distributions in the model. Intuitively, the more distributions a
model contains, the more patterns it can fit well so the larger the risk of overfitting.
However, if two distributions are very ‘close’ in the sense that they assign high
likelihood to the same patterns, they do not contribute so much to the complexity
of the overall model. It seems that we should measure complexity of a model in
terms of the number of distributions it contains that are ‘essentially different’



2.5 Simple Refined MDL and Its Four Interpretations 47

(distinguishable), and we now show that COMPn measures something like this.
Consider a finite model M with parameter set Θ = {θ1, . . . , θM}. Note that∑

xn∈Xn

P (xn|θ̂(xn)) =
∑

j=1..M

∑
xn:θ̂(xn)=θj

P (xn|θj) =
∑

j=1..M

(
1−

∑
xn:θ̂(xn) �=θj

P (xn|θj)
)
=M −

∑
j

P (θ̂(xn) �= θj |θj).

We may think of P (θ̂(xn) �= θj |θj) as the probability, according to θj , that the
data look as if they come from some θ �= θj . Thus, it is the probability that
θj is mistaken for another distribution in Θ. Therefore, for finite M, Rissanen’s
model complexity is the logarithm of the number of distributions minus the summed
probability that some θj is ‘mistaken’ for some θ �= θj . Now suppose M is i.i.d. By
the law of large numbers [Feller 1968], we immediately see that the ‘sum of mistake
probabilities’

∑
j P (θ̂(x

n) �= θj |θj) tends to 0 as n grows. It follows that for large
n, the model complexity converges to logM . For large n, the distributions in M
are ‘perfectly distinguishable’ (the probability that a sample coming from one is
more representative of another is negligible), and then the parametric complexity
COMPn(M) of M is simply the log of the number of distributions in M.

Example 2.16 (NML vs. Two-Part Codes) Incidentally, this shows that for
finite i.i.d. M, the two-part code with uniform prior W on M, is asymptotically
minimax optimal: for all n, the regret of the two-part code is logM (Equation 2.11),
whereas we just showed that for n → ∞, R(P̄nml) = COMPn(M) → logM .
However, for small n, some distributions in M may be mistaken for one another;
the number of distinguishable distributions in M is then smaller than the actual
number of distributions, and this is reflected in COMPn(M) being (sometimes
much) smaller than logM .

For the more interesting case of parametric models, containing infinitely many
distributions, Balasubramanian [1997, 2005] has a somewhat different counting
interpretation ofCOMPn(M) as a ratio between two volumes. Rissanen and Tabus
[2005] give a more direct counting interpretation ofCOMPn(M). These extensions
are both based on the asymptotic expansion of P̄nml, which we now discuss.

Asymptotic Expansion of P̄nml and COMPn Let M be a k-dimensional
parametric model. Under regularity conditions on M and the parameterization
Θ → M, to be detailed below, we obtain the following asymptotic expansion of
COMPn [Rissanen 1996; Takeuchi and Barron 1997, 1998; Takeuchi 2000]:

COMPn(M) =
k

2
log

n

2π
+ log

∫
θ∈Θ

√
|I(θ)|dθ + o(1) (2.21)

Here k is the number of parameters (degrees of freedom) in model M, n is the
sample size, and o(1)→ 0 as n→∞. |I(θ)| is the determinant of the k × k Fisher
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information matrix18 I evaluated at θ. In case M is an i.i.d. model, I is given by

Iij(θ∗):=Eθ∗

{
− ∂2

∂θi∂θj
lnP (X |θ)

}
θ=θ∗

.

This is generalized to non-i.i.d. models as follows:

Iij(θ∗):= lim
n→∞

1
n
Eθ∗

{
− ∂2

∂θi∂θj
lnP (Xn|θ)

}
θ=θ∗

.

Equation (2.21) only holds if the modelM, its parameterization Θ, and the sequence
x1, x2, . . . all satisfy certain conditions. Specifically, we require:

1. COMPn(M) <∞ and
∫ √|I(θ)|dθ <∞;

2. θ̂(xn) does not come arbitrarily close to the boundary of Θ: for some ε > 0, for
all large n, θ̂(xn) remains farther than ε from the boundary of Θ.

3. M and Θ satisfy certain further conditions. A simple sufficient condition is that
M be an exponential family [Casella and Berger 1990]. Roughly, this is a family
that can be parameterized so that for all x, P (x | β) = exp(βt(x))f(x)g(β), where
t : X → R is a function of X . The Bernoulli model is an exponential family, as can
be seen by setting β := ln(1−θ)−ln θ and t(x) = x. Also the multinomial, Gaussian,
Poisson, gamma, exponential, Zipf, and many other models are exponential families;
but, for example, mixture models are not.

More general conditions are given by Takeuchi and Barron [1997, 1998] and
Takeuchi [2000]. Essentially, ifM behaves ‘asymptotically’ like an exponential fam-
ily, then (2.21) still holds. For example, (2.21) holds for the Markov models and for
AR and ARMA processes.

Example 2.17 (Complexity of the Bernoulli Model) The Bernoulli model
B(0) can be parameterized in a one-one way by the unit interval (Example 2.7).
Thus, k = 1. An easy calculation shows that the Fisher information is given by
1/(θ(1− θ)), giving ∫ √|1/θ(1− θ)|dθ = 2. Plugging this into (2.21) gives

COMPn(B(0)) = 1
2
log

n

2π
+ log 2 + o(1) =

1
2
logn+

1
2
− 1

2
log π + o(1).

Computing the integral of the Fisher determinant is not easy in general. Hanson
and Fu [2005] compute it for several practically relevant models.

Whereas for finite M, COMPn(M) remains finite, for parametric models it gen-
erally grows logarithmically in n. Since typically − logP (xn | θ̂(xn)) grows linearly
in n, it is still the case that for fixed dimensionality k (i.e. for a fixed M that is
k-dimensional) and large n, the part of the code length − log P̄nml(xn | M) due to
the complexity ofM is very small compared to the part needed to encode data xn

with θ̂(xn). The term
∫
Θ

√|I(θ)|dθ may be interpreted as the contribution of the
functional form of M to the model complexity [Balasubramanian 2005]. It does
not grow with n so that, when selecting between two models, it becomes irrele-
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vant and can be ignored for very large n. But for small n, it can be important, as
can be seen from Example 1.4, Fechner’s and Stevens’s model. Both models have
two parameters, yet the

∫
Θ

√|I(θ)|dθ-term is much larger for Fechner’s than for
Stevens’s model. In the experiments of Myung, Balasubramanian, and Pitt [2000],
the parameter set was restricted to 0 < a < ∞, 0 < b < 3 for Stevens’s model
and 0 < a < ∞, 0 < b < ∞ for Fechner’s model. The variance of the error Z
was set to 1 in both models. With these values, the difference in

∫
Θ

√|I(θ)|dθ is
3.804, which is non-negligible for small samples. Thus, Stevens’s model contains
more distinguishable distributions than Fechner’s, and is better able to capture
random noise in the data — as Townsend [1975] already speculated 30 years ago.
Experiments suggest that for regression models such as Stevens’s and Fechner’s’,
as well as for Markov models and general exponential families, the approximation
(2.21) is reasonably accurate already for small samples. But this is certainly not
true for general models:

The Asymptotic Expansion of COMPn Should Be Used with Care!
Equation (2.21) does not hold for all parametric models; and for some models
for which it does hold, the o(1) term may only converge to 0 only for quite
large sample sizes. Foster and Stine [1999, 2005] show that the approximation
(2.21) is, in general, only valid if k is much smaller than n.

Two-Part Codes and COMPn(M) We now have a clear guiding principle
(minimax regret) which we can use to construct ‘optimal’ two-part codes that
achieve the minimax regret among all two-part codes. How do such optimal two-
part codes compare to the NML code length? LetM be a k-dimensional model. By
slightly adjusting the arguments of Barron and Cover [1991, Appendix], one can
show that, under regularity conditions, the minimax optimal two-part code P̄2-p
achieves regret

− log P̄2-p(xn | M)+logP (xn | θ̂(xn)) = k

2
log

n

2π
+log

∫
θ∈Θ

√
|I(θ)|dθ+f(k)+o(1),

where f : N → R is a bounded positive function satisfying limk→∞ f(k) = 0. Thus,
for large k, optimally designed two-part codes are about as good as NML. The
problem with the two-part code MDL is that in practice, people often use much
cruder codes with much larger minimax regret.

2.5.3 Bayesian Interpretation

The Bayesian method of statistical inference provides several alternative approaches
to model selection. The most popular of these is based on Bayes factors [Kass and
Raftery 1995]. The Bayes factor method is very closely related to the refined MDL



50 Minimum Description Length Tutorial

approach. Assuming uniform priors on modelsM(1) andM(2), it tells us to select
the model with largest marginal likelihood P̄Bayes(xn | M(j)), where P̄Bayes is as in
(2.12), with the sum replaced by an integral, and w(j) is the density of the prior
distribution on M(j):

P̄Bayes(xn | M(j)) =
∫
P (xn | θ)w(j)(θ)dθ (2.22)

M Is Exponential Family Let now P̄Bayes = P̄Bayes(· | M) for some fixed model
M. Under regularity conditions on M, we can perform a Laplace approximation
of the integral in (2.12). For the special case that M is an exponential family, we
obtain the following expression for the regret [Jeffreys 1961; Schwarz 1978; Kass
and Raftery 1995; Balasubramanian 1997]:

− log P̄Bayes(xn)− [− logP (xn | θ̂(xn))] = k

2
log

n

2π
− logw(θ̂) + log

√
|I(θ̂)|+ o(1)

(2.23)
Let us compare this with (2.21). Under the regularity conditions needed for (2.21),
the quantity on the right of (2.23) is within O(1) of COMPn(M). Thus, the
code length achieved with P̄Bayes is within a constant of the minimax optimal
− log P̄nml(xn). Since − logP (xn | θ̂(xn)) increases linearly in n, this means that
if we compare two models M(1) and M(2), then for large enough n, Bayes and
refined MDL select the same model. If we equip the Bayesian universal model with
a special prior known as the Jeffreys-Bernardo prior [Jeffreys 1946; Bernardo and
Smith 1994],

wJeffreys(θ) =

√|I(θ)|∫
θ∈Θ

√|I(θ)|dθ , (2.24)

then Bayes and refined NML become even more closely related: plugging (2.24) into
(2.23), we find that the right-hand side of (2.23) now simply coincides with (2.21). A
concrete example of Jeffreys’ prior is given in Example 2.19. Jeffreys introduced his
prior as a ‘least informative prior’, to be used when no useful prior knowledge about
the parameters is available [Jeffreys 1946]. As one may expect from such a prior,
it is invariant under continuous one-to-one reparameterizations of the parameter
space. The present analysis shows that, when M is an exponential family, then it
also leads to asymptotically minimax code length regret: for large n, refined NML
model selection becomes indistinguishable from Bayes factor model selection with
Jeffreys’ prior.

M Is Not an Exponential Family Under weak conditions on M, Θ and the
sequence xn, we get the following generalization of (2.23):

− log P̄Bayes(xn | M) =

− logP (xn | θ̂(xn)) + k
2
log

n

2π
− logw(θ̂) + log

√∣∣Î(xn)∣∣+ o(1) (2.25)
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Here Î(xn) is the so-called observed information, sometimes also called observed
Fisher information; see [Kass and Voss 1997] for a definition. IfM is an exponential
family, then the observed Fisher information at xn coincides with the Fisher
information at θ̂(xn), leading to (2.23). If M is not exponential, then if data
are distributed according to one of the distributions in M, the observed Fisher
information still converges with probability 1 to the expected Fisher information.
If M is neither exponential nor are the data actually generated by a distribution
in M, then there may be O(1)-discrepancies between − log P̄nml and − log P̄Bayes
even for large n.

2.5.4 Prequential Interpretation

Distributions as Prediction Strategies Let P be a distribution on Xn. Ap-
plying the definition of conditional probability, we can write for every xn:

P (xn) =
n∏

i=1

P (xi)
P (xi−1)

=
n∏

i=1

P (xi | xi−1), (2.26)

so that also

− logP (xn) =
n∑

i=1

− logP (xi | xi−1). (2.27)

Let us abbreviate P (Xi = · | X i−1 = xi−1) to P (Xi | xi−1). P (Xi | xi−1)
(capital Xi) is the distribution (not a single number) of Xi given xi−1; P (xi | xi−1)
(lowercase xi) is the probability (a single number) of actual outcome xi given xi−1.
We can think of − logP (xi | xi−1) as the loss incurred when predicting Xi based
on the conditional distribution P (Xi | xi−1), and the actual outcome turned out
to be xi. Here ‘loss’ is measured using the so-called logarithmic score, also known
simply as ‘log loss’. Note that the more likely x is judged to be, the smaller the
loss incurred when x actually obtains. The log loss has a natural interpretation in
terms of sequential gambling [Cover and Thomas 1991], but its main interpretation
is still in terms of coding: by (2.27), the code length needed to encode xn based
on distribution P is just the accumulated log loss incurred when P is used to
sequentially predict the ith outcome based on the past (i− 1)st outcomes.
Equation (2.26) gives a fundamental reinterpretation of probability distributions

as prediction strategies, mapping each individual sequence of past observations
x1, . . . , xi−1 to a probabilistic prediction of the next outcome P (Xi | xi−1). Con-
versely, (2.26) also shows that every probabilistic prediction strategy for sequential
prediction of n outcomes may be thought of as a probability distribution on Xn:
a strategy is identified with a function mapping all potential initial segments xi−1

to the prediction that is made for the next outcome Xi, after having seen xi−1.
Thus, it is a function S : ∪0≤i<nX i → PX , where PX is the set of distributions
on X . We can now define, for each i < n, all xi ∈ X i, P (Xi | xi−1):=S(xi−1). We
can turn these partial distributions into a full distribution on Xn by sequentially
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plugging them into (2.26). The resulting distribution on Xn will then, of course,
automatically satisfy (2.26).

Log Loss for Universal Models Let M be some parametric model and let P̄
be some universal model/code relative to M. What do the individual predictions
P̄ (Xi | xi−1) look like? Readers familiar with Bayesian statistics will realize that
for i.i.d. models, the Bayesian predictive distribution P̄Bayes(Xi | xi−1) converges
to the ML distribution P (· | θ̂(xi−1)); Example 2.19 provides a concrete case. It
seems reasonable to assume that something similar holds not just for P̄Bayes but
for universal models in general. This in turn suggests that we may approximate
the conditional distributions P̄ (Xi | xi−1) of any ‘good’ universal model by the ML
predictions P (· | θ̂(xi−1)). Indeed, we can recursively define the maximum likelihood
plug-in distribution P̄plug-in by setting, for i = 1 to n,

P̄plug-in(Xi = · | xi−1):=P (X = · | θ̂(xi−1)). (2.28)

Then

− log P̄plug-in(xn):=
n∑

i=1

− logP (xi | θ̂(xi−1)). (2.29)

Indeed, it turns out that under regularity conditions onM and xn,

− log P̄plug-in(xn) = − logP (xn | θ̂(xn)) + k
2
logn+O(1), (2.30)

showing that P̄plug-in acts as a universal model relative toM, its performance being
within a constant of the minimax optimal P̄nml. The construction of P̄plug-in can be
easily extended to non-i.i.d. models, and then, under regularity conditions, (2.30)
still holds; we omit the details.

We note that all general proofs of (2.30) that we are aware of show that (2.30) holds
with probability 1 or in expectation for sequences generated by some distribution in M
[Rissanen 1984, 1986, 1989]. Note that the expressions (2.21) and (2.25) for the regret of
P̄nml and P̄Bayes hold for a much wider class of sequences; they also hold with probability
1 for i.i.d. sequences generated by sufficiently regular distributions outside M. Not much
is known about the regret obtained by P̄plug-in for such sequences, except for some special
cases such as if M is the Gaussian model.

In general, there is no need to use the ML estimator θ̂(xi−1) in the definition (2.28).
Instead, we may try some other estimator which asymptotically converges to the
ML estimator — it turns out that some estimators considerably outperform the
ML estimator in the sense that (2.29) becomes a much better approximation of
− log P̄nml, see Example 2.19. Irrespective of whether we use the ML estimator
or something else, we call model selection based on (2.29) the prequential form of
MDL in honor of A.P. Dawid’s ‘prequential analysis’, Section 2.8. It is also known as
‘predictive MDL’. The validity of (2.30) was discovered independently by Rissanen
[1984] and Dawid [1984].
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The prequential view gives us a fourth interpretation of refined MDL model
selection: given models M(1) and M(2), MDL tells us to pick the model that
minimizes the accumulated prediction error resulting from sequentially predicting
future outcomes given all the past outcomes.

Example 2.18 (GLRT and Prequential Model Selection) How does this
differ from the naive version of the generalized likelihood ratio test (GLRT) that
we introduced in Example 2.15? In GLRT, we associate with each model the log-
likelihood (minus log loss) that can be obtained by the ML estimator. This is the
predictor within the model that minimizes log loss with hindsight, after having seen
the data. In contrast, prequential model selection associates with each model the
log-likelihood (minus log loss) that can be obtained by using a sequence of ML
estimators θ̂(xi−1) to predict data xi. Crucially, the data on which ML estimators
are evaluated has not been used in constructing the ML estimators themselves.
This makes the prediction scheme ‘honest’ (different data are used for training and
testing) and explains why it automatically protects us against overfitting.

Example 2.19 (Laplace and Jeffreys) Consider the prequential distribution for
the Bernoulli model, Example 2.7, defined as in (2.28). We show that if we take
θ̂ in (2.28) equal to the ML estimator n[1]/n, then the resulting P̄plug-in is not a
universal model; but a slight modification of the ML estimator makes P̄plug-in a
very good universal model. Suppose that n ≥ 3 and (x1, x2, x3) = (0, 0, 1) — a not
so unlikely initial segment according to most θ. Then P̄plug-in(X3 = 1 | x1, x2) =
P (X = 1 | θ̂(x1, x2)) = 0, so that by (2.29),

− log P̄plug-in(xn) ≥ − log P̄plug-in(x3 | x1, x2) =∞,

whence P̄plug-in is not universal. Now let us consider the modified ML estimator

θ̂λ(xn):=
n[1] + λ
n+ 2λ

. (2.31)

If we take λ = 0, we get the ordinary ML estimator. If we take λ = 1, then
an exercise involving beta-integrals shows that, for all i, xi, P (Xi | θ̂1(xi−1)) =
P̄Bayes(Xi | xi−1), where P̄Bayes is defined relative to the uniform prior w(θ) ≡ 1.
Thus θ̂1(xi−1) corresponds to the Bayesian predictive distribution for the uniform
prior. This prediction rule was advocated by the great probabilist Pierre Simon de
Laplace, co-originator of Bayesian statistics. It may be interpreted as ML estimation
based on an extended sample, containing some ‘virtual’ data: an extra 0 and an extra
1.
Even better, a similar calculation shows that if we take λ = 1/2, the resulting

estimator is equal to P̄Bayes(Xi | xi−1) defined relative to Jeffreys’ prior. Asymp-
totically, P̄Bayes with Jeffreys’ prior achieves the same code lengths as P̄nml (Sec-
tion 2.5.3). It follows that P̄plug-in with the slightly modified ML estimator is asymp-
totically indistinguishable from the optimal universal model P̄nml!
For more general models M, such simple modifications of the ML estimator
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usually do not correspond to a Bayesian predictive distribution; for example, if M
is not convex (closed under taking mixtures) then a point estimator (an element
of M) typically does not correspond to the Bayesian predictive distribution (a
mixture of elements of M). Nevertheless, modifying the ML estimator by adding
some virtual data y1, . . . , ym and replacing P (Xi | θ̂(xi−1)) by P (Xi | θ̂(xi−1, ym))
in the definition (2.28) may still lead to good universal models. This is of great
practical importance, since, using (2.29), − log P̄plug-in(xn) is often much easier to
compute than − log P̄Bayes(xn).

Summary We introduced the refined MDL principle for model selection in a re-
stricted setting. Refined MDL amounts to selecting the model under which the data
achieve the smallest stochastic complexity, which is the code length according to the
minimax optimal universal model. We gave an asymptotic expansion of stochastic
and parametric complexity, and interpreted these concepts in four different ways.

2.6 General Refined MDL: Gluing It All Together

In the previous section we introduced a ‘refined’ MDL principle based on minimax
regret. Unfortunately, this principle can be applied only in very restricted settings.
We now show how to extend refined MDL, leading to a general MDL principle,
applicable to a wide variety of model selection problems. In doing so we glue all our
previous insights (including ‘crude MDL’) together, thereby uncovering a single
general, underlying principle, formulated in Figure 2.4. Therefore, if one under-
stands the material in this section, then one understands the Minimum Description
Length principle.
First, Section 2.6.1, we show how to compare infinitely many models. Then,

Section 2.6.2, we show how to proceed for models M for which the parametric
complexity is undefined. Remarkably, a single, general idea resides behind our
solution of both problems, and this leads us to formulate, in Section 2.6.3, a single,
general refined MDL principle.

2.6.1 Model Selection with Infinitely Many Models

Suppose we want to compare more than two models for the same data. If the
number to be compared is finite, we can proceed as before and pick the model
M(k) with smallest − log P̄nml(xn | M(k)). If the number of models is infinite,
we have to be more careful. Say we compare models M(1),M(2), . . . for data xn.
We may be tempted to pick the model minimizing − log P̄nml(xn | M(k)) over all
k ∈ {1, 2, . . .}, but in some cases this gives unintended results. To illustrate, consider
the extreme case that every M(k) contains just one distribution. For example, let
M(1) = {P1},M(2) = {P2}, . . . where {P1, P2, . . .} is the set of all Markov chains
with rational-valued parameters. In that case, COMPn(M(k)) = 0 for all k, and
we would always select the ML Markov chain that assigns probability 1 to data xn.
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Typically this will be a chain of very high order, severely overfitting the data. This
cannot be right! A better idea is to pick the model minimizing

− log P̄nml(xn | M(k)) + L(k), (2.32)

where L is the code length function of some code for encoding model indices k.
We would typically choose the standard prior for the integers, L(k) = 2 log k + 1
(Example 2.4). By using (2.32) we avoid the overfitting problem mentioned above:
if M(1) = {P1},M(2) = {P2}, . . . where P1, P2, . . . is a list of all the rational-
parameter Markov chains, (2.32) would reduce to two-part code MDL (Section 2.3)
which is asymptotically consistent. On the other hand, if M(k) represents the
set of kth-order Markov chains, the term L(k) is typically negligible compared
to COMPn(M(k)), the complexity term associated with M(k) that is hidden in
− log P̄nml(M(k)): thus, the complexity ofM(k) comes from the fact that for large
k, M(k) contains many distinguishable distributions, not from the much smaller
term L(k) ≈ 2 log k.
To make our previous approach for a finite set of models compatible with (2.32),

we can reinterpret it as follows: we assign uniform code lengths (a uniform prior) to
the M(1), . . . ,M(M) under consideration, so that for k = 1, . . . ,M , L(k) = logM .
We then pick the model minimizing (2.32). Since L(k) is constant over k, it plays
no role in the minimization and can be dropped from the equation, so that our
procedure reduces to our original refined MDL model selection method. We shall
henceforth assume that we always encode the model index, either implicitly (if
the number of models is finite) or explicitly. The general principle behind this is
explained in Section 2.6.3.

2.6.2 The Infinity Problem

For some of the most common models, the parametric complexity COMP(M)
is undefined. A prime example is the Gaussian location model, which we discuss
below. As we will see, we can ‘repair’ the situation using the same general idea as
in the previous subsection.

Example 2.20 (Parametric Complexity of the Normal Distributions)
Let M be the family of normal distributions with fixed variance σ2 and varying
mean µ, identified by their densities,

P (x|µ) = 1√
2πσ

e−
(x−µ)2

2σ2 ,

extended to sequences x1, . . . , xn by taking product densities. As is well-known
[Casella and Berger 1990], the ML estimator µ̂(xn) is equal to the sample mean:
µ̂(xn) = n−1

∑n
i=1 xi. An easy calculation shows that

COMPn(M) =
∫
xn
P (xn | µ̂(xn))dxn =∞,
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where we abbreviated dx1 . . . dxn to dxn. Therefore, we cannot use basic MDL
model selection. It also turns out that I(µ) = σ−2 so that

∫
Θ

√|I(θ)|dθ =∫
µ∈R

√|I(µ)|dµ = ∞. Thus, the Bayesian universal model approach with Jeffreys’
prior cannot be applied either. Does this mean that our MDL model selection and
complexity definitions break down even in such a simple case? Luckily, it turns out
that they can be repaired, as we now show. Barron and co-workers [1998] and Foster
and Stine [2001] show that, for all intervals [a, b],∫

xn:µ̂(xn)∈[a,b]
P (xn | µ̂(xn))dxn =

b− a√
2πσ

· √n. (2.33)

Suppose for the moment that it is known that µ̂ lies in some set [−K,K] for
some fixed K. Let MK be the set of conditional distributions thus obtained:
MK = {P ′(· | µ) | µ ∈ R}, where P ′(xn | µ) is the density of xn according to
the normal distribution with mean µ, conditioned on |n−1∑xi| ≤ K. By (2.33),
the ‘conditional’ minimax regret distribution P̄nml(· | MK) is well-defined for all
K > 0. That is, for all xn with |µ̂(xn)| ≤ K,

P̄nml(xn | MK) =
P ′(xn | µ̂(xn))∫

xn : |µ̂(xn)|<K P
′(xn | µ̂(xn))dxn,

with regret (or ‘conditional’ complexity),

COMPn(MK) = log
∫
|µ̂(xn)|<K

P ′(xn | µ̂(xn))dxn = logK +
1
2
log

n

2π
− log σ + 1.

This suggests redefining the complexity of the full model M so that its regret
depends on the area in which µ̂ falls. The most straightforward way of achieving
this is to define a meta-universal model forM, combining the NML with a two-part
code: we encode data by first encoding some value for K. We then encode the actual
data xn using the code P̄nml(·|MK). The resulting code P̄meta is a universal code
for M with lengths

− log P̄meta(xn|M):=min
K

{− log P̄nml(xn | MK) + L(K)
}
. (2.34)

The idea is now to base MDL model selection on P̄meta(·|M) as in (2.34) rather than
on the (undefined) P̄nml(·|M). To make this work, we need to choose L in a clever
manner. A good choice is to encode K ′ = logK as an integer, using the standard
code for the integers. To see why, note that the regret of P̄meta now becomes

− log P̄meta(xn | M)− [− logP (xn | µ̂(xn))] =
min

K:logK∈{1,2,...}
{
logK +

1
2
log

n

2π
− log σ + 1 + 2 log	logK
 }+ 1 ≤

log |µ̂(xn)|+ 2 log log |µ̂(xn)|+ 1
2
log

n

2π
− log σ + 4 ≤

COMPn(M|µ̂|) + 2 logCOMPn(M|µ̂|) + 3. (2.35)
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If we had known a good boundK on |µ̂| a priori, we could have used the NML model
P̄nml(· | MK). With ‘maximal’ a priori knowledge, we would have used the model
P̄nml(· | M|µ̂|), leading to regret COMPn(M|µ̂|). The regret achieved by P̄meta
is almost as good as this ‘smallest possible regret-with-hindsight’ COMPn(M|µ̂|):
the difference is much smaller than, in fact logarithmic in, COMPn(M|µ̂|) itself, no
matter what xn we observe. This is the underlying reason why we choose to encode
K with log-precision: the basic idea in refined MDL was to minimize worst-case
regret, or additional code length compared to the code that achieves the minimal
code length with hindsight. Here, we use this basic idea on a metalevel: we design
a code such that the additional regret is minimized, compared to the code that
achieves the minimal regret with hindsight.

This meta–two-part coding idea was introduced by Rissanen [1996]. It can be
extended to a wide range of models with COMPn(M) =∞; for example, if the Xi

represent outcomes of a Poisson or geometric distribution, one can encode a bound
on µ just as in Example 2.20. IfM is the full Gaussian model with both µ and σ2

allowed to vary, one has to encode a bound on µ̂ and a bound on σ̂2. Essentially
the same holds for linear regression problems, Section 2.7.

Renormalized Maximum Likelihood Meta–two-part coding is just one pos-
sible solution to the problem of undefined COMPn(M). It is suboptimal, the
main reason being the use of two-part codes. Indeed, these two-part codes are not
complete (Section 2.1): they reserve several code words for the same data D =
(x1, . . . , xn) (one for each integer value of logK); therefore, there must exist more
efficient (one-part) codes P̄ ′

meta such that for all xn ∈ Xn, P̄ ′
meta(x

n) > P̄meta(xn);
in keeping with the idea that we should minimize description length, such alterna-
tive codes are preferable. This realization has led to a search for more efficient and
intrinsic solutions to the problem. Foster and Stine [2001] consider the possibility
of restricting the parameter values rather than the data, and develop a general
framework for comparing universal codes for models with undefined COMP(M).
Rissanen [2001] suggests the following elegant solution. He defines the renormalized
maximum likelihood (RNML) distribution P̄rnml. In our Gaussian example, this uni-
versal model would be defined as follows. Let K̂(xn) be the bound on µ̂(xn) that
maximizes P̄nml(xn | MK) for the actually given K. That is, K̂(xn) = |µ̂(xn)|.
Then P̄rnml is defined as, for all xn ∈ Xn,

P̄rnml(xn|M) =
P̄nml(xn|MK̂(xn))∫

xn∈Rn P̄nml(xn | MK̂(xn))dxn
. (2.36)

Model selection between a finite set of models now proceeds by selecting the model
maximizing the renormalized likelihood (2.36).

Region Indifference All the approaches considered thus far slightly prefer some
regions of the parameter space over others. In spite of its elegance, even the Rissanen
renormalization is slightly ‘arbitrary’ in this way: had we chosen the origin of the
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real line differently, the same sequence xn would have achieved a different code
length − log P̄rnml(xn | M). In recent work, Liang and Barron [2004,2005] consider
a novel and quite different approach for dealing with infinite COMPn(M) that
partially addresses this problem. They make use of the fact that, while Jeffreys’
prior is improper (

∫ √|I(θ)|dθ is infinite), using Bayes’ rule we can still compute
Jeffreys’ posterior based on the first few observations, and this posterior turns out
to be a proper probability measure after all. Liang and Barron use universal models
of a somewhat different type than P̄nml, so it remains to be investigated whether
their approach can be adapted to the form of MDL discussed here.

2.6.3 The General Picture

Section 2.6.1 illustrates that, in all applications of MDL, we first define a single
universal model that allows us to code all sequences with length equal to the given
sample size. If the set of models is finite, we use the uniform prior. We do this in
order to be as ‘honest’ as possible, treating all models under consideration on the
same footing. But if the set of models becomes infinite, there exists no uniform prior
anymore. Therefore, we must choose a nonuniform prior/non–fixed-length code to
encode the model index. In order to treat all models still ‘as equally as possible’,
we should use some code which is ‘close’ to uniform, in the sense that the code
length increases only very slowly with k. We choose the standard prior for the
integers (Example 2.4), but we could also have chosen different priors, for example,
a prior P (k) which is uniform on k = 1..M for some large M , and P (k) ∝ k−2 for
k > M . Whatever prior we choose, we are forced to encode a slight preference of
some models over others; see Section 2.9.1.
Section 2.6.2 applies the same idea, but implemented at a metalevel: we try to

associate with M(k) a code for encoding outcomes in Xn that achieves uniform
(= minimax) regret for every sequence xn. If this is not possible, we still try to
assign regret as ‘uniformly’ as we can, by carving up the parameter space in regions
with larger and larger minimax regret, and devising a universal code that achieves
regret not much larger than the minimax regret achievable within the smallest
region containing the ML estimator. Again, the codes we used encoded a slight
preference of some regions of the parameter space over others, but our aim was
to keep this preference as small as possible. The general idea is summarized in
Figure 2.4, which provides an (informal) definition of MDL, but only in a restricted
context. If we go beyond that context, these prescriptions cannot be used literally
— but extensions in the same spirit suggest themselves. Here is a first example of
such an extension:

Example 2.21 (MDL and Local Maxima in the Likelihood) In practice we
often work with models for which the ML estimator cannot be calculated efficiently;
or at least no algorithm for efficient calculation of the ML estimator is known.
Examples are finite and Gaussian mixtures and hidden Markov models. In such
cases one typically resorts to methods such as expectation-maximization (EM) or
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GENERAL ‘REFINED’ MDL PRINCIPLE for Model Selection
Suppose we plan to select between models M(1),M(2), . . . for data D =
(x1, . . . , xn). MDL tells us to design a universal code P̄ for Xn, in which the
index k of M(k) is encoded explicitly. The resulting code has two parts, the
two sub-codes being defined such that

1. All models M(k) are treated on the same footing, as far as possible: we
assign a uniform prior to these models, or, if that is not a possible, a prior
‘close to’ uniform.

2. All distributions within eachM(k) are treated on the same footing, as far as
possible: we use the minimax regret universal model P̄nml(xn | M(k)). If this
model is undefined or too hard to compute, we instead use a different universal
model that achieves regret ‘close to’ the minimax regret for each submodel of
M(k) in the sense of (2.35).

In the end, we encode data D using a hybrid two-part/one-part universal
model, explicitly encoding the models we want to select between and implicitly
encoding any distributions contained in those models.

Figure 2.4 The Refined MDL Principle.

gradient descent, which find a local maximum of the likelihood surface (function)
P (xn | θ), leading to a local maximum likelihood (LML) estimator θ̇(xn). Suppose
we need to select between a finite number of such models. We may be tempted to
pick the model M maximizing the normalized likelihood P̄nml(xn | M). However,
if we then plan to use the local estimator θ̇(xn) for predicting future data, this is
not the right thing to do. To see this, note that, if suboptimal estimators θ̇ are
to be used, the ability of model M to fit arbitrary data patterns may be severely
diminished! Rather than using P̄nml, we should redefine it to take into account the
fact that θ̇ is not the global ML estimator:

P̄ ′
nml(x

n):=
P (xn | θ̇(xn))∑

xn∈Xn P (xn | θ̇(xn))
,

leading to an adjusted parametric complexity,

COMP′
n(M):= log

∑
xn∈Xn

P (xn | θ̇(xn)), (2.37)

which, for every estimator θ̇ different from θ̂, must be strictly smaller than
COMPn(M).

Summary We have shown how to extend refined MDL beyond the restricted
settings of Section 2.5. This uncovered the general principle behind refined MDL for
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model selection, given in Figure 2.4. General as it may be, it only applies to model
selection. In the next section we briefly discuss extensions to other applications.

2.7 Beyond Parametric Model Selection

The general principle as given in Figure 2.4 only applies to model selection. It
can be extended in several directions. These range over many different tasks of
inductive inference — we mention prediction, transduction (as defined in [Vapnik
1998]), clustering [Kontkanen, Myllymäki, Buntine, Rissanen, and Tirri 2005], and
similarity detection [Li, Chen, Li, Ma, and Vitányi 2003]. In these areas there has
been less research and a ‘definite’ MDL approach has not yet been formulated.
MDL has been developed in some detail for some other inductive tasks: nonpara-

metric inference, parameter estimation, and regression and classification problems.
We give a very brief overview of these; see [Barron, Rissanen, and Yu 1998; Hansen
and Yu 2001] and, for the classification case, [Grünwald and Langford 2004].

Nonparametric Inference Sometimes the model class M is so large that it
cannot be finitely parameterized. For example, let X = [0, 1] be the unit interval
and let M be the i.i.d. model consisting of all distributions on X with densities f
such that − log f(x) is a continuous function on X .M is clearly ‘nonparametric’: it
cannot be meaningfully parameterized by a connected finite-dimensional parameter
set Θ(k) ⊆ R

k. We may still try to learn a distribution fromM in various ways, for
example by histogram density estimation [Rissanen, Speed, and Yu 1992] or kernel
density estimation [Rissanen 1989]. MDL is quite suitable for such applications, in
which we typically select a density f from a class M(n) ⊂ M, where M(n) grows
with n, and every P ∗ ∈ M can be arbitrarily well approximated by members of
M(n),M(n+1), . . . in the sense that limn→∞ infP∈M(n) D(P ∗‖P ) = 0 [Barron et al.
1998]. Here D is the Kullback-Leibler divergence [Cover and Thomas 1991] between
P ∗ and P .

MDL Parameter Estimation: Three Approaches The ‘crude’ MDL method
(Section 2.3) was a means of doing model selection and parameter estimation at
the same time. ‘Refined’ MDL only dealt with selection of models. If instead, or
at the same time, parameter estimates are needed, they may be obtained in three
different ways. Historically the first suggestion [Rissanen 1989; Hansen and Yu
2001] was to simply use the refined MDL principle to pick a parametric model
M(k), and then, within M(k), pick the ML estimator θ̂(k). After all, we associate
with M(k) the distribution P̄nml with code lengths ‘as close as possible’ to those
achieved by the ML estimator. This suggests that within M(k), we should prefer
the ML estimator. But upon closer inspection, this is not really the right thing to
do: Figure 2.4 suggests using a two-part code also to select θ withinM(k); namely,
we should discretize the parameter space in such a way that the resulting two-
part code achieves the minimax regret among all two-part codes; we then pick the
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(quantized) θ minimizing the two-part code length. Essentially this approach has
been worked out in detail by Barron and Cover [1991]. The resulting estimators may
be called two-part code MDL estimators. A third possibility is to define predictive
MDL estimators such as the Laplace and Jeffreys estimators of Example 2.19; once
again, these can be understood as an extension of Figure 2.4 [Barron et al. 1998].
These second and third possibilities are more sophisticated than the first: in contrast
to the ML estimates, the parameter estimates resulting from the second and third
approach can be directly justfied in terms of code length minimization; although
the ML estimator has been suggested in the early MDL literature, it cannot be
interpreted in terms of minimizing code length and therefore, in my opinion, should
not be called an MDL estimator. Not surprisingly, whereas the ML estimate is prone
to overfitting as soon as the complexity of the model is not much smaller than the
sample sizes, the two-part code and predictive MDL estimators give reasonable
results even for very small samples [Grünwald 1998, Chapter 6].
Finally, note that if the modelM is finite-dimensional parametric and n is large

compared to the parametric complexity of M, then both the two-part and the
predictive MDL estimators will become indistinguishable from the ML estimators.
For this reason, it has sometimes been claimed that MDL parameter estimation is
just ML parameter estimation. Since for small samples, the estimates can be quite
different, this statement is misleading.

Regression In regression problems we are interested in learning how the values
y1, . . . , yn of a regression variable Y depend on the values x1, . . . , xn of the regressor
variable X . We assume or hope that there exists some function h : X → Y so
that h(X) predicts the value Y reasonably well, and we want to learn such an h
from data. To this end, we assume a set of candidate predictors (functions) H. In
Example 1.2, we tookH to be the set of all polynomials. In the standard formulation
of this problem, we take h to express that

Yi = h(Xi) + Zi, (2.38)

where the Zi are i.i.d. Gaussian random variables with mean 0 and some variance
σ2, independent of Xi. That is, we assume Gaussian noise: (2.38) implies that the
conditional density of y1, . . . , yn, given x1, . . . , xn, is equal to the product of n
Gaussian densities:

P (yn | xn, σ, h) =
(

1√
2πσ

)n

exp
(
−
∑n

i=1(yi − h(xi))2
2σ2

)
(2.39)

With this choice, the log-likelihood becomes a linear function of the squared error:

− logP (yn | xn, σ, h) = 1
2σ2

n∑
i=1

(yi − h(xi))2 + n2 log 2πσ2 (2.40)

Let us now assume that H = ∪k≥1H(k) where for each k, H(k) is a set of functions
h : X → Y. For example, H(k) may be the set of kth-degree polynomials.
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When the Code length for xn Can Be Ignored
If all models under consideration represent conditional densities or probability
mass functions P (Y | X), then the code length for X1, . . . , Xn can be ignored
in model and parameter selection. Examples are applications of MDL in
classification and regression.

Figure 2.5 Ignoring code lengths.

With each model H(k) we can associate a set of densities (2.39), one for each
(h, σ2) with h ∈ H(k) and σ2 ∈ R

+. Let M(k) be the resulting set of conditional
distributions. Each P (· | h, σ2) ∈ M(k) is identified by the parameter vector
(α0, . . . , αk, σ

2) so that h(x):=
∑k

j=0 αjx
j . By Section 2.6.1, (2.8) MDL tells us

to select the model minimizing

− log P̄ (yn | M(k), xn) + L(k), (2.41)

where we may take L(k) = 2 log k + 1, and P̄ (· | M(k), ·) is now a conditional
universal model with small minimax regret. Equation (2.41) ignores the code length
of x1, . . . , xn. Intuitively, this is because we are only interested in learning how y
depends on x; therefore, we do not care how many bits are needed to encode x.
Formally, this may be understood as follows: we really are encoding the x-values
as well, but we do so using a fixed code that does not depend on the hypothesis h
under consideration. Thus, we are really trying to find the modelM(k) minimizing

− log P̄ (yn | M(k), xn) + L(k) + L′(xn),

where L′ represents some code for Xn. Since this code length does not involve k,
it can be dropped from the minimization; see Figure 2.5. We will not go into the
precise definition of P̄ (yn | M(k), xn). Ideally, it should be an NML distribution,
but just as in Example 2.20, this NML distribution is not well-defined. We can get
reasonable alternative universal models after all using any of the methods described
in Section 2.6.2; see [Barron et al. 1998] and [Rissanen 2000] for details.

‘Nonprobabilistic’ Regression and Classification In the approach we just
described, we modeled the noise as being normally distributed. Alternatively, it
has been tried to directly try to learn functions h ∈ H from the data, without
making any probabilistic assumptions about the noise [Rissanen 1989; Barron 1990;
Yamanishi 1998; Grünwald 1998; Grünwald 1999]. The idea is to learn a function
h that leads to good predictions of future data from the same source in the spirit
of Vapnik’s [1998] statistical learning theory. Here prediction quality is measured
by some fixed loss function; different loss functions lead to different instantiations
of the procedure. Such a version of MDL is meant to be more robust, leading to
inference of a ‘good’ h ∈ H irrespective of the details of the noise distribution.
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This loss-based approach has also been the method of choice in applying MDL
to classification problems. Here Y takes on values in a finite set, and the goal
is to match each feature X (e.g., a bit map of a handwritten digit) with its
corresponding label or class (e.g., a digit). While several versions of MDL for
classification have been proposed [Quinlan and Rivest 1989; Rissanen 1989; Kearns,
Mansour, Ng, and Ron 1997], most of these can be reduced to the same approach
based on a 0/1-valued loss function [Grünwald 1998]. In recent work [Grünwald and
Langford 2004] we show that this MDL approach to classification without making
assumptions about the noise may behave suboptimally: we exhibit situations where
no matter how large n, MDL keeps overfitting, selecting an overly complex model
with suboptimal predictive behavior. Modifications of MDL suggested by Barron
[1990] and Yamanishi [1998] do not suffer from this defect, but they do not admit
a natural coding interpretation any longer. All in all, current versions of MDL
that avoid probabilistic assumptions are still in their infancy, and more research is
needed to find out whether they can be modified to perform well in more general
and realistic settings.

Summary In previous sections, we have covered basic refined MDL (Section 2.5),
general refined MDL (Section 2.6), and several extensions of refined MDL (this
section). This concludes our technical description of refined MDL. It only remains to
place MDL in its proper context: What does it do compared with other methods of
inductive inference? And how well does it perform, compared with other methods?
The next two sections are devoted to these questions.

2.8 Relations to Other Approaches to Inductive Inference

How does MDL compare with other model selection and statistical inference
methods? In order to answer this question, we first have to be precise about what
we mean by ‘MDL’; this is done in Section 2.8.1. We then continue in Section 2.8.2
by summarizing MDL’s relation to Bayesian inference, Wallace’sminimum message
length (MML) principle, Dawid’s prequential model validation, cross-validation, and
an ‘idealized’ version of MDL based on Kolmogorov complexity. The literature
has also established connections between MDL and Jaynes’s [2003] maximum
entropy principle [Feder 1986; Li and Vitányi 1997; Grünwald 1998; Grünwald
2000; Grünwald and Dawid 2004] and Vapnik’s [1998] structural risk minimization
principle [Grünwald 1998], but there is no space here to discuss these. Relations
between MDL and Akaike’s AIC [Burnham and Anderson 2002] are subtle. They
are discussed by, for example, Speed and Yu [1993].

2.8.1 What is MDL?

‘MDL’ is used by different authors to mean somewhat different things. Some authors
use MDL as a broad umbrella term for all types of inductive inference based on



64 Minimum Description Length Tutorial

data compression. This would, for example, include the ‘idealized’ versions of MDL
based on Kolmogorov complexity and Wallaces’s MML principle, to be discussed
below. At the other extreme, for historical reasons, some authors use the MDL
criterion to describe a very specific (and often not very successful) model selection
criterion equivalent to the ‘Bayesian information criterion’ (BIC), discussed further
below.
Here we adopt the meaning of the term that is embraced in the survey [Barron

et al. 1998], written by arguably the three most important contributors to the field:
we use MDL for general inference based on universal models. These include, but
are not limited to approaches in the spirit of Figure 2.4. For example, some authors
have based their inferences on ‘expected’ rather than ‘individual sequence’ universal
models [Barron et al. 1998; Liang and Barron 2005]. Moreover, if we go beyond
model selection (Section 2.7), then the ideas of Figure 2.4 have to be modified to
some extent. In fact, one of the main strengths of ‘MDL’ in this broad sense is that it
can be applied to ever more exotic modeling situations, in which the models do not
resemble anything that is usually encountered in statistical practice. An example
is the model of context-free grammars, already suggested by Solomonoff [1964].
In this tutorial, we call applications of MDL that strictly fit into the scheme of
Figure 2.4 refined MDL for model/hypothesis selection; when we simply say “MDL,”
we mean ‘inductive inference based on universal models’. This form of inductive
inference goes hand in hand with Rissanen’s radical MDL philosophy, which views
learning as finding useful properties of the data, not necessarily related to the
existence of a ‘truth’ underlying the data. This view was outlined in Chapter 1,
Section 1.5. Although MDL practitioners and theorists are usually sympathetic to
it, the different interpretations of MDL listed in Section 2.5 make clear that MDL
applications can also be justified without adopting such a radical philosophy.

2.8.2 MDL and Bayesian Inference

Bayesian statistics [Lee 1997; Bernardo and Smith 1994] is one of the most well-
known, frequently and successfully applied paradigms of statistical inference. It
is often claimed that ‘MDL is really just a special case of Bayes.19’ Although
there are close similarities, this is simply not true. To see this quickly, consider
the basic quantity in refined MDL: the NML distribution P̄nml, Equation (2.18).
While P̄nml — although defined in a completely different manner — turns out to be
closely related to the Bayesian marginal likelihood, this is no longer the case for its
‘localized’ version (2.37). There is no mention of anything like this code/distribution
in any Bayesian textbook! Thus, it must be the case that Bayes and MDL are
somehow different.

MDL as a Maximum Probability Principle For a more detailed analysis, we
need to distinguish between the two central tenets of modern Bayesian statistics:
(1) Probability distributions are used to represent uncertainty and to serve as a
basis for making predictions, rather than standing for some imagined ‘true state of



2.8 Relations to Other Approaches to Inductive Inference 65

nature’. (2) All inference and decision making is done in terms of prior and posterior
distributions. MDL sticks with (1) (although here the ‘distributions’ are primarily
interpreted as ‘code length functions’), but not (2): MDL allows the use of arbitrary
universal models such as NML and prequential universal models; the Bayesian
universal model does not have a special status among these. In this sense, Bayes
offers the statistician less freedom in choice of implementation than MDL. In fact,
MDL may be reinterpreted as amaximum probability principle, where the maximum
is relative to some given model, in the worst case over all sequences (Rissanen [1987,
1989] uses the phrase ‘global maximum likelihood principle’). Thus, whenever the
Bayesian universal model is used in an MDL application, a prior should be used
that minimizes worst-case code length regret, or equivalently, maximizes worst-case
relative probability. There is no comparable principle for choosing priors in Bayesian
statistics, and in this respect, Bayes offers a lot more freedom than MDL.

Example 2.22 There is a conceptual problem with Bayes’ use of prior distributions:
in practice, we very often want to use models which we a priori know to be wrong; see
Example 1.5. If we use Bayes for such models, then we are forced to put a prior distribution
on a set of distributions which we know to be wrong — that is, we have degree-of-belief
1 in something we know not to be the case. From an MDL viewpoint, these priors are
interpreted as tools to achieve short code lengths rather than degrees-of-belief and there
is nothing strange about the situation, but from a Bayesian viewpoint, it seems awkward.
To be sure, Bayesian inference often gives good results even if the model M is known to
be wrong; the point is that (a) if one is a strict Bayesian, one would never apply Bayesian
inference to such misspecified M, and (b), the Bayesian theory offers no clear explanation
of why Bayesian inference might still give good results for such M. MDL provides both
code length and predictive-sequential interpretations of Bayesian inference, which help
explain why Bayesian inference may do something reasonable even if M is misspecified.
To be fair, we should add that there exist variations of the Bayesian philosophy (e.g., De
Finetti [1974]’s) which avoid the conceptual problem we just described.

MDL and BIC In the first paper on MDL, Rissanen [1978] used a two-part code
and showed that, asymptotically, and under regularity conditions, the two-part
code length of xn based on a k-parameter model M with an optimally discretized
parameter space is given by

− logP (xn | θ̂(xn)) + k
2
logn, (2.42)

thus ignoring O(1)-terms, which, as we have already seen, can be quite important.
In the same year Schwarz [1978] showed that, for large enough n, Bayesian model
selection between two exponential families amounts to selecting the model mini-
mizing (2.42), ignoring O(1)-terms as well. As a result of Schwarz’s paper, model
selection based on (2.42) became known as the BIC (Bayesian information crite-
rion). Not taking into account the functional form of the model M, it often does
not work very well in practice.
It has sometimes been claimed that MDL = BIC; for example, [Burnham and

Anderson 2002, p. 286] write, “Rissanen’s result is equivalent to BIC”. This is
wrong, even for the 1989 version of MDL that Burnham and Anderson refer to —
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as pointed out by Foster and Stine [2005], the BIC approximation only holds if the
number of parameters k is kept fixed and n goes to infinity. If we select between
nested families of models where the maximum number of parameters k considered
is either infinite or grows with n, then model selection based on both P̄nml and on
P̄Bayes tends to select quite different models than BIC — if k gets closer to n, the
contribution to COMPn(M) of each additional parameter becomes much smaller
than 0.5 logn [Foster and Stine 2005]. However, researchers who claim MDL = BIC
have a good excuse: in early work, Rissanen himself used the phrase ‘MDL criterion’
to refer to (2.42), and unfortunately, the phrase has stuck.

MDL and MML MDL shares some ideas with the minimum message length
(MML) principle which predates MDL by ten years. Key references are [Wallace
and Boulton 1968, 1975] and [Wallace and Freeman 1987]; a long list is in [Comley
and Dowe 2005]. Just as in MDL, MML chooses the hypothesis minimizing the
code length of the data. But the codes that are used are quite different from
those in MDL. First of all, in MML one always uses two-part codes, so that MML
automatically selects both a model family and parameter values. Second, while
the MDL codes such as P̄nml minimize worst-case relative code length (regret),
the two-part codes used by MML are designed to minimize expected absolute code
length. Here the expectation is taken over a subjective prior distribution defined on
the collection of models and parameters under consideration. While this approach
contradicts Rissanen’s philosophy, in practice it often leads to similar results.
Indeed, Wallace and his co-workers stress that their approach is fully (subjective)

Bayesian. Strictly speaking, a Bayesian should report his findings by citing the
full posterior distribution. But sometimes one is interested in a single model or
hypothesis for the data. A good example is the inference of phylogenetic trees in
biological applications: the full posterior would consist of a mixture of several of
such trees, which might all be quite different from each other. Such a mixture is
almost impossible to interpret — to get insight into the data we need a single tree. In
that case, Bayesians often use the MAP (Maximum A Posteriori) hypothesis which
maximizes the posterior, or the posterior mean parameter value. Both approaches
have some unpleasant properties. For example, the MAP approach is not invariant
under reparameterization. The posterior mean approach cannot be used if different
model families are to be compared with each other. The MML method provides a
theoretically sound way of proceeding in such cases.

2.8.3 MDL, Prequential Analysis, and Cross-Validation

In a series of papers, A.P. Dawid [1984, 1992, 1997] put forward a methodology
for probability and statistics based on sequential prediction which he called the
prequential approach. When applied to model selection problems, it is closely related
to MDL. Dawid proposes to construct, for each modelM(j) under consideration, a
‘probability forecasting system’ (a sequential prediction strategy) where the i+1st
outcome is predicted based on either the Bayesian posterior P̄Bayes(θ|xi) or on some
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Figure 2.6 Rissanen’s MDL, Wallace’s MML and Dawid’s Prequential Approach.

estimator θ̂(xi). Then the model is selected for which the associated sequential
prediction strategy minimizes the accumulated prediction error. Related ideas were
put forward by Hjorth [1982] under the name forward validation and Rissanen
[1984]. From Section 2.5.4 we see that this is just a form of MDL— strictly speaking,
every universal code can be thought of as a prediction strategy, but for the Bayesian
and the plug-in universal models (Sections 2.5.3, 2.5.4) the interpretation is much
more natural than for others.20 Dawid mostly talks about such ‘predictive’ universal
models. On the other hand, Dawid’s framework allows adjusting the prediction loss
to be measured in terms of arbitrary loss functions, not just the log loss. In this
sense, it is more general than MDL. Finally, the prequential idea goes beyond
statistics: there is also a ‘prequential approach’ to probability theory developed by
Dawid [Dawid and Vovk 1999] and Shafer and Vovk [2001].
Note that the prequential approach is similar in spirit to cross-validation. In this

sense MDL is related to cross-validation as well. The main differences are that in
MDL and the prequential approach, (1) all predictions are done sequentially (the
future is never used to predict the past), and (2) each outcome is predicted exactly
once.

2.8.4 Kolmogorov Complexity and Structure Function; Ideal MDL

Kolmogorov complexity [Li and Vitányi 1997] has played a large but mostly
inspirational role in Rissanen’s development of MDL. Over the last fifteen years,
several ‘idealized’ versions of MDL have been proposed, which are more directly
based on Kolmogorov complexity theory [Barron 1985; Barron and Cover 1991; Li
and Vitányi 1997; Vereshchagin and Vitányi 2002]. These are all based on two-part
codes, where hypotheses are described using a universal programming language
such as C or Pascal. For example, in one proposal [Barron and Cover 1991], given
data D one picks the distribution minimizing

K(P ) +
[− logP (D)

]
, (2.43)

where the minimum is taken over all computable probability distributions, and
K(P ) is the length of the shortest computer program that, when input (x, d),
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outputs P (x) to d bits precision. While such a procedure is mathematically well-
defined, it cannot be used in practice. The reason is that, in general, the P
minimizing (2.43) cannot be effectively computed. Kolmogorov himself used a
variation of (2.43) in which one adopts, among all P withK(P )−logP (D) ≈ K(D),
the P with smallest K(P ). Here K(D) is the Kolmogorov complexity of D, that
is, the length of the shortest computer program that prints D and then halts. This
approach is known as the Kolmogorov structure function or minimum sufficient
statistic approach [Vitányi 2005]. In this approach, the idea of separating data and
noise (Section 2.5.1) is taken as basic, and the hypothesis selection procedure is
defined in terms of it. The selected hypothesis may now be viewed as capturing
all structure inherent in the data — given the hypothesis, the data cannot be
distinguished from random noise. Therefore, it may be taken as a basis for lossy
data compression — rather than sending the whole sequence, one only sends the
hypothesis representing the ‘structure’ in the data. The receiver can then use this
hypothesis to generate ‘typical’ data for it — these data should then ‘look just the
same’ as the original data D. Rissanen views this separation idea as perhaps the
most fundamental aspect of ‘learning by compression’. Therefore, in recent work
he has tried to relate MDL (as defined here, based on lossless compression) to the
Kolmogorov structure function, thereby connecting it to lossy compression, and,
as he puts it, ‘opening up a new chapter in the MDL theory’ [Vereshchagin and
Vitányi 2002; Vitányi 2005; Rissanen and Tabus 2005].

Summary and Outlook We have shown that MDL is closely related to, yet
distinct from, several other methods for inductive inference. In the next section we
discuss how well it performs compared to such other methods.

2.9 Problems for MDL?

Some authors have criticized MDL either on conceptual grounds (the idea makes
no sense) [Webb 1996; Domingos 1999] or on practical grounds (sometimes it
does not work very well in practice) [Kearns et al., 1997; E. Pednault, personal
communication, June 2003]. Are these criticisms justified? Let us consider them in
turn.

2.9.1 Conceptual Problems: Occam’s Razor

The most often heard conceptual criticisms are invariably related to Occam’s razor.
We have already discussed in Chapter 1, Section 1.5 why we regard these criticisms
as being entirely mistaken. Based on our newly acquired technical knowledge of
MDL, let us discuss these criticisms a little bit further:

1. “Occam’s Razor (and MDL) Is Arbitrary” If we restrict ourselves
to refined MDL for comparing a finite number of models for which the NML
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distribution is well-defined, then there is nothing arbitrary about MDL — it is
exactly clear what codes we should use for our inferences. The NML distribution and
its close cousins, the Jeffreys’ prior marginal likelihood P̄Bayes, and the asymptotic
expansion (2.21), are all invariant to continuous one-to-one reparameterizations
of the model: parameterizing our model in a different way (choosing a different
‘description language’) does not change the inferred description lengths.
If we go beyond models for which the NML distribution is defined, or if we

compare an infinite set of models at the same time, then some ‘subjectivity’ is
introduced — while there are still tough restrictions on the codes that we are
allowed to use, all such codes prefer some hypotheses in the model to others. If one
does not have an a priori preference for any of the hypotheses, one may interpret
this as some arbitrariness being added to the procedure. But this ‘arbitrariness’ is
of an infinitely milder sort than the arbitrariness that can be introduced if we allow
completely arbitrary codes for the encoding of hypotheses as in crude two-part code
MDL, Section 2.3.

Things get more subtle if we are interested not in model selection (find the best order
Markov chain for the data) but in infinite-dimensional estimation (find the best Markov
chain parameters for the data, among the set B of all Markov chains of each order). In
the latter case, if we are to apply MDL, we somehow have to carve up B into subsets
M(0) ⊆ M(1) ⊆ . . . ⊆ B. Suppose that we have already chosen M(1) = B(1) as the set
of 1st-order Markov chains. We normally take M(0) = B(0) , the set of 0th-order Markov
chains (Bernoulli distributions). But we could also have defined M(0) as the set of all
1st-order Markov chains with P (Xi+1 = 1 | Xi = 1) = P (Xi+1 = 0 | Xi = 0). This
defines a one-dimensional subset of B(1) that is not equal to B(0). While there are several
good reasons21 for choosing B(0) rather than M(0), there may be no indication that B(0)

is somehow a priori more likely than M(0). While MDL tells us that we somehow have to
carve up the full set B, it does not give us precise guidelines on how to do this – different
carvings may be equally justified and lead to different inferences for small samples. In this
sense, there is indeed some form of arbitrariness in this type of MDL application. But
this is unavoidable: we stress that this type of arbitrariness is enforced by all combined
model/parameter selection methods - whether they be of the structural risk minimization
(SRM) type [Vapnik 1998], AIC type [Burnham and Anderson 2002], cross-validation, or
any other type. The only alternative is treating all hypotheses in the huge class B on the
same footing, which amounts to ML estimation and extreme overfitting.

2. “Occam’s Razor Is False” We often try to model real-world situations that
can be arbitrarily complex, so why should we favor simple models? We gave an
informal answer in Chapter 1, Section 1.6, where we claimed that even if the true
data-generating machinery is very complex, it may be a good strategy to prefer
simple models for small sample sizes.
We are now in a position to give one formalization of this informal claim: it is

simply the fact that MDL procedures, with their built-in preference for ‘simple’
models with small parametric complexity, are typically statistically consistent,
achieving good rates of convergence (page 14), whereas methods such as ML which
do not take model complexity into account are typically inconsistent whenever they
are applied to complex enough models such as the set of polynomials of each degree
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or the set of Markov chains of all orders. This has implications for the quality of
predictions: with complex enough models, no matter how many training data we
observe, if we use the ML distribution to predict future data from the same source,
the prediction error we make will not converge to the prediction error that could be
obtained if the true distribution were known; if we use anMDL submodel/parameter
estimate (Section 2.7), the prediction error will converge to this optimal achievable
error.
Of course, consistency is not the only desirable property of a learning method, and

it may be that in some particular settings, and under some particular performance
measures, some alternatives to MDL outperform MDL. Indeed this can happen –
see below. Yet it remains the case that all methods I know of that deal successfully
with models of arbitrary complexity have a built-in preference for selecting simpler
models at small sample sizes — methods such as Vapnik’s [1998] structural risk
minimization, penalized minimum error estimators [Barron 1990], and the Akaike’s
AIC [Burnham and Anderson 2002] all trade off complexity with error on the data,
the result invariably being that in this way, good convergence properties can be
obtained. While these approaches measure ‘complexity’ in a manner different from
MDL, and attach different relative weights to error on the data and complexity, the
fundamental idea of finding a tradeoff between ‘error’ and ‘complexity’ remains.

2.9.2 Practical Problems with MDL

We just described some perceived problems about MDL. Unfortunately, there are
also some real ones: MDL is not a perfect method. While in many cases the
methods described here perform very well,22 there are also cases where they perform
suboptimally compared with other state-of-the-art methods. Often this is due to
one of two reasons:

1. An asymptotic formula like (2.21) was used and the sample size was not large
enough to justify this [Navarro 2004].

2. P̄nml was undefined for the models under consideration, and this was solved by
cutting off the parameter ranges at ad hoc values [Lanterman 2005].

In these cases the problem probably lies with the use of invalid approximations
rather than with the MDL idea itself. More research is needed to find out when
the asymptotics and other approximations can be trusted, and what is the ‘best’
way to deal with undefined P̄nml. For the time being, we suggest that the use of
(2.21) be avoided whenever possible, and that the parameter ranges never be cut off
at arbitrary values — instead, if COMPn(M) becomes infinite, then some of the
methods described in Section 2.6.2 should be used. Among these, there is some –
disputed – evidence that Rissanen’s renormalization scheme (RNML, Section 2.6.2)
does not work very well, at least in the context of wavelet denoising [Rissanen
2000].23 Note that, whenever they are well-defined, P̄nml and Bayesian inference
with Jeffreys’ prior are the preferred methods, since they both achieve the minimax
regret. If they are either ill-defined or computationally prohibitive for the models



2.10 Conclusion 71

under consideration, one can use a prequential method or a sophisticated two-part
code such as that described by Barron and Cover [1991].

MDL and Misspecification However, there is a class of problems where MDL
is problematic in a more fundamental sense. Namely, if none of the distributions
under consideration represents the data-generating machinery very well, then both
MDL and Bayesian inference may sometimes do a bad job in finding the ‘best’
approximation within this class of not-so-good hypotheses. This has been observed
in practice24 [Kearns et al. 1997; Clarke 2002; E. Pednault, personal communication,
June 2003]. Grünwald and Langford [2004] show that MDL can behave quite
unreasonably for some classification problems in which the true distribution is not
inM. This is closely related to the problematic behavior of MDL for classification
tasks as mentioned in Section 2.7. All this is a bit ironic, since MDL was explicitly
designed not to depend on the untenable assumption that some P ∗ ∈M generates
the data. But empirically we find that while it generally works quite well if some
P ∗ ∈M generates the data, it may sometimes fail if this is not the case.

2.10 Conclusion

MDL is a versatile method for inductive inference: it can be interpreted in at
least four different ways, all of which indicate that it does something reasonable.
It is typically asymptotically consistent, achieving good rates of convergence. It
achieves all this without having been designed for consistency, being based on a
philosophy which makes no metaphysical assumptions about the existence of ‘true’
distributions. All this strongly suggests that it is a good method to use in practice.
Practical evidence shows that in many contexts it is, in other contexts its behavior
can be problematic. In my view, the main challenge for the future is to improve
MDL for such cases, by somehow extending and further refining MDL procedures
in a non–ad-hoc manner. I am confident that this can be done, and that MDL
will continue to play an important role in the development of statistical and, more
generally, inductive inference.

Further Reading MDL can be found on the web at www.mdl-research.org.
Good places to start further exploration of MDL are [Barron et al. 1998] and
[Hansen and Yu 2001]. Both papers provide excellent introductions, but they are
geared toward a more specialized audience of information theorists and statisticians,
respectively. Also worth reading is Rissanen’s [1989] monograph. While outdated
as an introduction to MDL methods, this famous ‘little green book’ still serves
as a great introduction to Rissanen’s radical but appealing philosophy, which is
described very eloquently.
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ments.

Notes
1. But see Section 2.8.4.
2. Working directly with distributions on infinite sequences is more elegant, but it requires

measure theory, which we want to avoid here.
3. Also known as instantaneous codes and called, perhaps more justifiably, ‘prefix-free’ codes in

[Li and Vitányi 1997].
4. For example, with noninteger code lengths the notion of ‘code’ becomes invariant to the size

of the alphabet in which we describe data.
5. As understood in elementary probability, that is, with respect to Lebesgue measure.
6. Even if one adopts a Bayesian stance and postulates that an agent can come up with a

(subjective) distribution for every conceivable domain, this problem remains: in practice, the
adopted distribution may be so complicated that we cannot design the optimal code corresponding
to it, and have to use some ad hoc-code instead.

7. Henceforth, we simply use ‘model’ to denote probabilistic models; we typically use H to denote
sets of hypotheses such as polynomials, and reserve M for probabilistic models.

8. The term ‘crude MDL’ is not standard. It is introduced here for pedagogical reasons, to make
clear the importance of having a single, unified principle for designing codes. It should be noted
that Rissanen’s and Barron’s early theoretical papers on MDL already contain such principles,
albeit in a slightly different form than in their recent papers. Early practical applications [Quinlan
and Rivest 1989; Grünwald 1996] often do use ad hoc two-part codes which really are ‘crude’ in
the sense defined here.

9. See the previous endnote.
10. But see [Grünwald 1998, Chapter 5] for more discussion.
11. See Section 1.5 of Chapter 1 for a discussion on the role of consistency in MDL.
12. See, for example [Barron and Cover 1991; Barron 1985]
13. Strictly speaking, the assumption that n is given in advance (i.e., both encoder and decoder
know n) contradicts the earlier requirement that the code to be used for encoding hypotheses is
not allowed to depend on n. Thus, strictly speaking, we should first encode some n explicitly,
using 2 log n + 1 bits (Example 2.4) and then pick the n (typically, but not necessarily equal to
the actual sample size) that allows for the shortest three-part code length of the data (first encode
n, then (k, θ), then the data). In practice this will not significantly alter the chosen hypothesis,
unless for some quite special data sequences.
14. As explained in Figure 2.2, we identify these codes with their length functions, which is the
only aspect we are interested in.
15. The reason is that, in the full Bernoulli model with parameter θ ∈ [0, 1], the maximum
likelihood estimator is given by n1/n, see Example 2.7. Since the likelihood log P (xn | θ) is a
continuous function of θ, this implies that if the frequency n1/n in xn is approximately (but
not precisely) j/10, then the ML estimator in the restricted model {0.1, . . . , 0.9} is still given by
θ̂ = j/10. Then log P (xn|θ) is maximized by θ̂ = j/10, so that the L ∈ L that minimizes code
length corresponds to θ = j/10.
16. What we call ‘universal model’ in this text is known in the literature as a ‘universal model
in the individual sequence sense’ – there also exist universal models in an ‘expected sense’, see
Section 2.8.1. These lead to slightly different versions of MDL.
17. To be fair, we should add that this naive version of GLRT is introduced here for educational
purposes only. It is not recommended by any serious statistician!
18. The standard definition of Fisher information [Kass and Voss 1997] is in terms of first
derivatives of the log-likelihood; for most parametric models of interest, the present definition
coincides with the standard one.
19. I have heard many people say this at many conferences. The reasons are probably historical:
while the underlying philosophy has always been different, until Rissanen introduced the use of
P̄nml, most actual implementations of MDL ‘looked’ quite Bayesian.
20. The reason is that the Bayesian and plug-in models can be interpreted as probabilistic sources.
The NML and the two-part code models are not probabilistic sources, since P̄ (n) and P̄ (n+1) are
not compatible in the sense of Section 2.1.
21. For example, B(0) is better interpretable.
22. We mention Hansen and Yu [2000,2001] reporting excellent behavior of MDL in regression
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contexts; and Allen, Madani, and Greiner [2003], Kontkanen, Myllymäki, Silander, and Tirri [1999]
and Modha and Masry [1998] reporting excellent behavior of predictive (prequential) coding
in Bayesian network model selection and regression. Also, ‘objective Bayesian’ model selection
methods are frequently and successfully used in practice [Kass and Wasserman 1996]. Since these
are based on noninformative priors such as Jeffreys’, they often coincide with a version of refined
MDL and thus indicate successful performance of MDL.
23. To be specific, this was communicated to the author by T. Roos, U. Gather and L. Davies,
and L. Russo, who all independently discovered this phenomenon. But later, T. Roos discovered
that the equations given in [Rissanen 2000] ignored a substantial part of the codelength for the
data, According to Roos, if the codelength is computed correctly, then the scheme works very
well. At the time of writing this tutorial, Roos and co-workers and Gather and co-workers were
preparing publications about the phenomenon.
24. But see Viswanathan., Wallace, Dowe, and Korb [1999] who point out that the problem of
[Kearns et al. 1997] disappears if a more reasonable coding scheme is used.
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The minimum description length (MDL) approach to parametric model selection
chooses a model that provides the shortest code length for data, while the Bayesian
approach selects the model that yields the highest likelihood for the data. In this
chapter I describe how the Bayesian approach yields essentially the same model
selection criterion as MDL provided one chooses a Jeffreys prior for the parameters.
Both MDL and Bayesian methods penalize complex models until a sufficient amount
of data has justified their selection. I show how these complexity penalties can be
understood in terms of the geometry of parametric model families seen as surfaces
embedded in the space of distributions. I arrive at this understanding by asking how
many different, or distinguishable, distributions are contained in a parametric model
family. By answering this question, I find that the Jeffreys prior of Bayesianmethods
measures the density of distinguishable distributions contained in a parametric
model family in a reparametrization-independent way. This leads to a picture where
the complexity of a model family is related to the fraction of its volume in the space
of distributions that lies close to the truth.

3.1 Introduction

Occam’s razor, the principle of economy of thought invented by the scholastic
philosopher William of Ockham (see, e.g., [Maurer 1982]), remains a fundamental
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heuristic guiding the thought of modern scientists. As a rule of thumb it states
that simple explanations of a given phenomenon are to be preferred over complex
ones. But why are simple explanations better? Simple explanations are certainly
easier for us to understand, but is there any fundamental sense in which simple
explanations are actually better at describing phenomena? Clearly, the answer to
this question hinges on what the meaning of simplicity is in this context. It also
has a bearing on what the physicist and mathematician Eugene Wigner called the
“inexplicable effectiveness of mathematics in the natural sciences” [Wigner 1960].
Namely, mathematical models derived to fit a small amount of restricted data often
correctly describe surprisingly general classes of phenomena.
In the modern context, Occam’s razor has found a technical statement in the

minimum description length (MDL) principle, which states that the best model of
a collection of data is the one that permits the shortest description of it. In the
context of statistical inference of parameteric families of models, one collects N
data points and uses a statistical model to encode them as compactly as possible.
Theorems from information theory then bound the length of the encoding in bits
to be at least

SC = − ln(X |Θ̂) + d
2
lnN +O(1), (3.1)

where X are the data, N is the number of data points, Θ̂ are the maximum
likelihood parameters, and d is the number of parameters of the model. Rissanen
has called this quantity the stochastic complexity of a parametric family of models
[Rissanen 1984, 1986]. The first term turns out to be O(N) as we discuss later, and
penalizes models which assign the data low likelihood; the O(lnN) term penalizes
models with many parameters. A model with lower stochastic complexity must
therefore be both accurate and parsimonious. The MDL principle asserts that the
best guide to the “truth” from which the data are drawn is given by the model which
minimizes the stochastic complexity for describing the N available data points.
This principle is consistent — if the truth lies in one of the model families under
consideration, the O(N) term in the stochastic complexity guarantees that it will
eventually be selected as giving the best description of the data (see, e.g., the classic
papers [Rissanen 1984, 1986; Clarke and Barron 1990; Barron and Cover 1991]).
However, at least intuitively, complexity of a parametric statistical model should

involve more than just the number of parameters. For example, a good model
should be robust in that it should not depend too sensitively on the choice of
parameters. The purpose of this chapter is to approach model selection through
a more intuitive route than coding theory. Given a collection of data drawn from
some unknown distribution we can compare the quality of two parametric models
by simply asking which one is more likely to have produced the data. While carrying
out this procedure in Sec. 3.2, the essential step is the use of Bayes’ formula to find
the likelihood of a model family given the data from the likelihood of the data given
the model. We then need to know the a priori likelihood that the truth is given
by a model with a particular set of parameters. One might think that an unbiased
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choice of prior likelihood is to declare all parameter choices to be equally likely.
However, we will see that this choice depends on the choice of paramterization and
is therefore not suitable [Jeffreys 1961; Lee 1989].
Sec. 3.3 will argue that we can arrive at an unbiased (or reparametrization-

invariant) choice of prior likelihood by demanding that all distributions, rather
than parameters, are equally likely a priori. We will find such a prior distribution by
devising a method to essentially count the different distributions that are indexed by
the parameters of a model family and by weighting all of these equally. The resulting
prior distribution on parameters will be the famous Jeffreys prior of Bayesian
inference [Jeffreys 1961]. We will see how this prior is the reparametrization-
invariant measure associated with a natural metric (the Fisher information matrix)
on the space of probability distributions.
Sec. 3.4 will employ the Jeffreys’ prior in a Bayesian formulation of parametric

model selection. When the number of data points is large we will be able to use
the techniques of “low temperature expansions” in statistical physics (see, e.g.,
[Ma 1985]) to evaluate the likelihood of a model given the data. Indeed, there
will be several attractive analogies between quantities appearing in the inference
problem and quantities like energy and temperature in physical systems, leading
to useful intuition. We will see that probability theory advises us to select models
that minimize the quantity

χ = − lnP(X |Θ̂)+d
2
ln
N

2π
+ln

∫
dθ
√
detJ(Θ)+

1
2
ln

(
det I(Θ̂)
det J(Θ̂)

)
+O(1/N), (3.2)

where X are the data, N is the number of data points, d is number of parameters,
θ̂ are the maximum likelihood parameters, and J and I are analogues of the Fisher
information matrix that will be explained further in the text. Notice that the O(N)
and O(lnN) terms coincide with stochastic complexity (3.1). The second and third
terms are completely independent of the data and have been called the “geometric
complexity” of the model in [Myung et al. 2000]. We will see that the third and
fourth terms, both of O(1), together essentially measure the fraction of the volume
of a model family, as measured in the Fisher information metric, that lies close
to the truth. Thus models that are “unnatural” or lack “robustness” in the sense
of mostly describing hypotheses far from the truth are penalized. In this way, the
Bayesian approach provides an intuitive understanding of the origin of complexity
of a model in terms of the geometry of the space of distributions.
The first of the O(1) terms in (3.2) appeared in Rissanen’s refinement of the MDL

principle [Rissanen 1996] based on a more accurate form of stochastic complexity.
As we will see, the second term is relevant when the true model does not lie within
the model family under consideration. An important purpose of this chapter is to
provide some intuition for the origin of the MDL principle in the geometry of the
space of distributions. As such, I will not strive for mathematical rigor, instead
taking the approach of a physicist that the various approximations that are used
will be valid under suitably general (but often unspecified!) circumstances. I will
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be extensively using material that appears in [Balasubramanian 1997].

3.2 The Bayesian Approach to Parametric Inference

Suppose we are given a collection of outcomes X = {x1 . . . xN}, xi ∈ X drawn inde-
pendently from a density t. Suppose also that we are given two parametric families
of distributions A and B and we wish to pick one of them as the model family
that we will use. The Bayesian approach to this problem consists of computing
the posterior conditional probabilities P(A|X) and P(B|X) and picking the family
with the higher probability. Let A be parametrized by a set of real parameters
Θ = {θ1, . . . θd}. Then Bayes Rule tells us that

P(A|X) =
P(A)
P(X)

∫
ddΘ w(Θ)P(X |Θ). (3.3)

In this expression P(A) is the prior probability of the model family, w(Θ) is a
prior density on the parameter space, and P(X) is the probability of the collection
of outcomes X . I denote the measure induced by the parametrization of the d-
dimensional parameter manifold as ddΘ in a notation familiar to physicists. (For
example, if x and y are real parameters, this integration measure is just dx dy.)
Since we are interested in comparing P(A|X) with P(B|X), the probability P(X)
is a common factor that we may omit, and for lack of any better choice we take the
prior probabilities of A and B to be equal and omit them. For the present we will
assume that the model families of interest to us have compact parameter spaces so
that integral over Θ occurs over a bounded domain. In applications the parameter
space is often unbounded, and understanding how to deal with this situation is a
vital practical issue. We return to this in Sec. 3.5. As the parameters range over
their different values, a given model family sweeps out a surface, or manifold, in
the space of probability distributions. This is illustrated in Fig. 3.1, which shows
the space of distributions, with two model families embedded in it, one with one
parameter, and the other with two. We will refer to the parameter manifold for,
say, model family A, by the notationMA.

3.2.1 The Importance of Reparametrization Invariance

For the present, after dropping P(A) and P(X), our goal is to evaluate the posterior
likelihood of a model:

PA|X =
∫
MA

ddΘ w(Θ)P(X |Θ) (3.4)

To evaluate this we must determine the prior probability of the parameters Θ
of the model family, or, equivalently, determine an appropriate measure dµ(Θ) =
ddΘw(Θ) for integration over the parameter space. What is the correct choice of
w(Θ) in the absence of adidtional prior information? Since dµ must be a probability
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A

B

t

Figure 3.1 The space of probability distributions with the true data-generating distri-
bution labeled as t. A and B label two parametric model families seen as surfaces embedded
in the space of distributions. A is a one-parameter (one-dimensional) family, while B has
two parameters.

measure, it must be that the integral over the parameter space is equal to 1:∫
MA

dµ(Θ) =
∫
MA

ddΘw(Θ) = 1. If we wish to be unbiased in our inference we
should now pick a w(Θ) that does not favor any part of the model space over
another. Frequently, it is supposed that the correct way to do this is to pick a
constant w(Θ) so that all the parameters are given equal weight a priori. The
requirement that the integral over the parameter space is 1 then gives

w(Θ) ddΘ =
ddΘ∫

MA
ddΘ

. (3.5)

The denominator is the volume of the parameter space as measured by the Lebesgue
measure on the parameter manifoldMA.
Although this choice of a uniform prior seems natural, it is in fact a biased choice

in the sense that uniform priors relative to different arbitrary parametrizations can
assign different probability masses to the same subset of parameters. To illustrate
this, suppose that a model has two parameters x and y. Then (3.5) becomes

ddΘw(Θ) =
dx dy∫

MA
dx dy

. (3.6)

We could have chosen to parametrize the same model in terms of r =
√
x2 + y2

and φ = arctan(y/x). In that case, given the pair (r, φ) the measure (3.5) which
weights all parameter choices equally gives

ddΘw(Θ) =
dr dφ∫

MA
dr dφ

. (3.7)

By contrast, if we change coordinates in the measure (3.6) from (x, y) to (r, φ), and
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include the Jacobian of the transformation, the measure becomes

ddΘw(Θ) =
r dr dφ∫
MA

dr dφ
. (3.8)

Notice that (3.8) and (3.7) are not the same thing. In other words, the prescription
(3.5) for giving equal weights to all parameters is itself parameter dependent and
thus an undesirable method of selecting a prior distribution.
Of course, once we have picked a particular prior distribution w(Θ), Bayesian in-

ference is reparameterization invariant, provided we remember to include the Jaco-
bian of coordinate transformations in the integration measure as we are instructed in
elementary calculus classes. The point here is that the apparently unbiased measure
(3.5) that gives equal weight to all parameters is not reparametrization-invariant
and is therefore unacceptable; if w(Θ) was uniform in the parameters, the prob-
ability of a model family given the observed data would depend on the arbitrary
parametrization. We need some other way of determining an unbiased distribution
of the parameter space of a model. The next section proposes that a good method
is to give equal prior weight to all the distributions contained in a model family
as opposed to all the parameters, which are only an arbitrary scheme for indexing
these distributions.

3.3 Counting Probability Distributions

We would like to determine a prior probability density of the parameters of a model
that implement the reasonable requirement that all distributions, rather than all
parameters, are equally likely. The basic obstacle to doing this is that the parameters
of a model can cover the space of distributions unevenly; some regions of parameter
space might index probability distributions more “densely” than others. If this
happens, the “denser” regions should be given more weight since they contain
more distinguishable probability distributions. So let us ask the question, ‘How
do we count the number of distinct distributions in the neighborhood of a point
on a parameter manifold?’ Essentially, this is a question about the embedding of
the parameter manifold within the space of distributions. Distinguishable choices
of parameters might be indexing indistinguishable distributions (in some suitable
sense) and we need to account for this to give equal weight to different distributions
rather than different parameters.
To answer the question, let Θp and Θq index two distributions in a parametric

family and let X = {x1 · · ·xN} be drawn independently from one of Θp or Θq. In
the context of model estimation, a suitable measure of distinguishability can be
derived by asking how well we can guess which of Θp or Θq produced X (Fig. 3.2).
Let αN be the probability that Θq is mistaken for Θp and let βN be the probability
that Θp is mistaken for Θq. Let βεN be the smallest possible βN given that αN < ε.
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q
p

s

Figure 3.2 Three distributions, p, q and s are labeled in this picture of a parametric
model family. The gray region indicates the neighborhood of p which contains distributions
that are sufficiently similar that it will be difficult to guess which one of them produced
a given sample of N data points. Thus, p and s will be indistinguishable, and given only
N data points they should not be counted as different distributions for the purposes of
statistical inference. By contrast, p and q should be treated as distinguishable distributions.

Then Stein’s Lemma tells us that limN→∞(−1/N) lnβε
N = D(Θp‖Θq) where

D(p‖q) =
∫
dx p(x) ln(p(x)/q(x)) (3.9)

is the relative entropy between the densities p and q [Cover and Thomas 1991]. As
shown in [Balasubramanian 1997, Appendix], the proof of Stein’s Lemma shows
that the minimum error βε

N exceeds a fixed β∗ in the region where

κ/N ≥ D(Θp‖Θq) ; κ ≡ − lnβ∗ + ln(1 − ε). (3.10)

(This assertion is not strictly true, but will do for our purposes. See [Balasubrama-
nian 1997, Appendix] for more details.) By taking β∗ close to 1 we can identify the
region around Θp where the distributions are not very distinguishable from the one
indexed by Θp. As N grows large for fixed κ, any Θq in this region is necessarily
close to Θp since D(Θp‖Θq) attains a minimum of zero when Θp = Θq. Therefore,
setting ∆Θ = Θq − Θp, Taylor expansion gives

D(Θp‖Θq) ≈ 1
2

∑
ij

Jij(Θp)∆Θi∆Θj +O(∆Θ3) =∆Θ · J(Θp) ·∆Θ +O(∆Θ3),

(3.11)
where

Jij = ∇φi∇φjD(Θp‖Θp +Φ)|Φ=0 (3.12)

is the Fisher information.1 The second equality in (3.11) expresses the expansion

1. We have assumed that the derivatives with respect to Θ commute with expectations
taken in the distribution Θp to identify the Fisher information with the matrix of second
derivatives of the relative entropy.
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in terms of a Fisher information matrix J and the vector of parameter deviations
∆Θ.

Summary The upshot of all of this is simple. For any given number of data
points N , there is a region around Θp in which the distributions are not very
distinguishable from the one indexed by Θp itself, in the sense that we would not
be able to reliably guess which of these distributions the N data points really came
from. As the number of data points grows, this region of indistinguishability is
described by the following ellipsoid in the parameter space:

κ

N
≥ D(Θp||Θq) ≈ 1

2

∑
ij

Jij(Θp)∆Θi∆Θj +O(∆Θ3) (3.13)

Here κ is given in terms of the probability of error in guessing the data-generating
distribution as in (3.10) (See Fig. 3.2).

3.3.1 A Uniform Prior on Distributions

We will now devise a measure that gives equal weight to the distributions indexed
by a model family as opposed to the parameters. The basic strategy is to begin
by giving equal weight to every ellipsoid of the form (3.13) containing essentially
indistinguishable distributions given N data points. By taking the limit N → ∞
we will arrive at a measure on the parameter manifold that effectively gives equal
weight to all those distributions that can be told apart or distinguished in a
statistical experiment (See Fig. 3.3).
To this end, define the volume of indistinguishability at levels ε, β∗, and N to be

the volume of the region around Θp where κ/N ≥ D(Θp‖Θq) so that the probability
of error in distinguishing Θq from Θp is high. We find to leading order:

Vε,β∗,N =
(
2πκ
N

)d/2 1
Γ(d/2 + 1)

1√
detJij(Θp)

(3.14)

If β∗ is very close to 1, the distributions inside Vε,β∗,N are not very distinguish-
able and the Bayesian prior should not treat them as separate distributions. We
wish to construct a measure on the parameter manifold that reflects this indistin-
guishability. We also assume a principle of “translation invariance” by supposing
that volumes of indistinguishability at given values of N , β∗, and ε should have the
same measure regardless of where in the space of distributions they are centered.
This amounts to an assumption that all distinguishable probability distributions
are a priori on an equal footing.
An integration measure reflecting these principles of indistinguishability and

translation invariance can be defined at each level β∗, ε, and N by covering the
parameter manifold economically with volumes of indistinguishability and placing
a delta function in the center of each element of the cover. This definition reflects
indistinguishability by ignoring variations on a scale smaller than the covering
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Figure 3.3 The figure shows a parameter manifold divided into four regions. In each
region, the Fisher information matrix is constant, leading to a fixed shape volume of
indistinguishability at any given value of N . To derive a measure on the parameter space,
we partition the parameter manifold into volumes of indistinguishability as shown. (These
will necessarily overlap a little.) Given only N data points we might as well consider each
of these volumes as containing only a single distribution since the distributions within
them cannot be told apart reliably. In effect, this converts the continuous parameter
manifold into a lattice. We can then derive a prior probability density on the parameters
by considering each of the discrete number of distributions representing the volumes of
indistinguishability as being equally likely. As N → ∞ the volumes of indistinguishability
shrink, and in the continuum limit we recover the Jeffreys prior as the measure on the
parameter manifold that gives equal weight all equally distinguishable distributions.

volumes and reflects translation invariance by giving each covering volume equal
weight in integrals over the parameter manifold. The measure can be normalized
by an integral over the entire parameter manifold to give a prior distribution.
The continuum limit of this discretized measure is obtained by taking the limits
β∗ → 1, ε→ 0 and N →∞. In this limit, the measure counts distributions that are
completely indistinguishable (β∗ = 1) even in the presence of an infinite amount of
data (N =∞) 2 (see Fig. 3.3.).
To see the effect of the above procedure, imagine a parameter manifold which can

be partitioned into k regions in each of which the Fisher information is constant.
Let Ji, Ui, and Vi be the Fisher information, parametric volume and volume of
indistintguishability in the ith region. Then the prior assigned to the ith volume
by the above procedure will be

Pi =
(Ui/Vi)∑k
j=1(Uj/Vj)

=
Ui

√
detJi∑k

j=1 Uj

√
detJj

. (3.15)

Since all the β∗, ε, and N dependences cancel we are now free to take the continuum

2. The α and β errors can be treated more symmetrically using the Chernoff bound instead
of Stein’s lemma, but we will not do that here.
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limit of Pi. This suggests that the prior density induced by the prescription
described in the previous paragraph is

w(Θ) =

√
detJ(Θ)∫

ddΘ
√
det J(Θ)

. (3.16)

By paying careful attention to technical difficulties involving sets of measure zero
and certain sphere packing problems, it can be rigorously shown that the normalized
continuum measure on a parameter manifold that reflects indistinguishability and
translation invariance is w(Θ) or Jeffreys’ prior [Balasubramanian 1996]. In essence,
the heuristic argument above and the derivation in [Balasubramanian 1996] show
how to “divide out” the volume of indistinguishable distributions on a parameter
manifold and hence give equal weight to equally distinguishable volumes of distribu-
tions. In this sense, Jeffreys’ prior is seen to be a uniform prior on the distributions
indexed by a parametric family. The density w(Θ) is the answer to the following
question: What is the fraction of the total number of distributions indexed by a
model family that is contained within an infinitesimal neighborhood of a parameter
value Θ?

Summary We sought a measure on the parameter space, or a prior probability
density, which gives equal weight to equally distinguishable probability distribu-
tions. We did this by determining a statistical notion of distinguishability that
told us that it was difficult, given only N data points, to tell apart the distribu-
tions indexed by the parameters lying within the ellipsoids (3.13). Our strategy
was therefore to discretize the parameter manifold into a grid of such (minimally
overlapping) ellipsoids, and then to give equal prior probability to each of the dis-
tinguishable distributions located at the grid points. As the number of data points
N grow large the grid points approach each other since it becomes easier to tell dis-
tributions apart when more data is available. In the limit we recover the continuum
measure (3.16) on the parameter space that has effectively “divided out” redundant
descriptions of the same distributions by parameters infinitesimally close to a given
one (see Fig. 3.3.). Once we have committed to this prior distribution, we can work
with any choice of parameters. Although (3.16) might look different given different
choices, we can be sure that (3.16) always gives a fixed region of parameter space
the same probability.

The Geometry of the Space of Probability Distributions In the discussion
above we derived the well-known Jeffreys prior (3.16) as a probablity density giving
equal weight to all distinguishable distributions indexed by a parameter manifold.
However, the form of the measure w(Θ) ∝ √

detJ(Θ) suggests another useful
interpretation. In Riemannian geometry, the infinitesimal distance ∆s between two
points separated by a small coordinate difference ∆xi is given by an equation:

∆s2 =
∑
ij

gij(x)∆xi ∆xj =∆x · g ·∆x. (3.17)
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This is the generalization to curved manifolds of the Pythagorean theorem and
gij is called the metric and is for our purposes simply a matrix that varies over
the surface. The second equality expresses ∆s2 in terms of a metric matrix g and
a vector of coordinate differences ∆x. The corresponding measure for integrating
over the curved surface is ddx

√
det g. Comparing this with (3.16) suggests strongly

that in the context of statistical inference, a parameter manifold is a curved surface
endowed naturally with a metric given by the Fisher information, that is, gij = Jij
on parameter surface. From this perspective the Jeffreys prior in (3.16) has the
following simple interpretation. First,

V (A) =
∫
ddΘ

√
det J(Θ) (3.18)

measures the volume of the parameter manifold in the distinguished Fisher infor-
mation metric Jij . We then get a uniform prior distribution on the parameters by
measuring the volume of a small region of parameters as ddΘ

√
detJ and dividing

by the total volume of the parameters so that the distribution integrates to 1.
We will not have occasion to exploit this tempting additional structure since all

our results will depend on the measure
√
detJ . However, it is a very interesting

question to consider whether the apparatus of classic differential geometry such as
measures of curvature, geodesics, and other quantities play a role in statistical infer-
ence. The reader may wish to consult the works of Amari and others on information
geometry (see, e.g., [Amari 1985; Amari et al. 1987]) in which Fisher information
is taken seriously as a metric describing the curved geometry of parameter spaces
seen as surfaces embedded in the space of all probability distributions.

3.4 Occam’s Razor, MDL, and Bayesian Methods

Putting everything together we get the following expression for the Bayesian
posterior probability of a parametric family in the absence of any prior knowledge
about the relative likelihood of the distributions indexed by the family.

PA|X =
∫
ddΘ

√
detJ P(X |Θ)∫

ddΘ
√
detJ

(3.19)

=

∫
ddΘ

√
detJ exp

[
−N

(
− ln P(X|Θ)

N

)]
∫
ddΘ

√
detJ

(3.20)

The second form of the expression is useful since the strong law of large numbers
says that (−1/N) lnP(X |Θ) = (−1/N)

∑N
i=1 ln P(xi|Θ) converges in the almost

sure sense to a finite quantity:

Et

[− lnP(xi|Θ)
N

]
=
∫
dx t(x) ln

(
t(x)

P(x|Θ)
)
−
∫
dx t(x) ln (t(x)) = D(t‖Θ)+ h(t),

(3.21)
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where h(t) is the entropy of the true distribution which generates the data and
D(t|Θ) is the relative entropy (3.9) between the true distribution and the one
indexed by Θ. This means that as N grows large the integrand in (3.20) will be
dominated by the parameter value that comes closest to the truth. Readers familiar
with statistical physics will recognize the structure of these equations. The basic
quantity of interest in statistical physics is the partition function

Z =
∫
ddxµ(x)e−β E(x)∫

ddxµ(x)
, (3.22)

where x labels the space of configurations of a physical system, µ(x) is a measure
on the configuration space, β ≡ 1/T is the inverse temperature of the system, and
E(x) is the energy of the configuration x [Ma 1985]. The analogy with the Bayesian
posterior probability (3.20) is now clear — for example, inference with a large
number N of data points is in analogy to statistical physics at a low temperature T .
There are classic techniques in statistical physics to compute Z in various limits that
might be useful in Bayesian statistical inference. In this chapter we are interested
in studying inference where N is large. We can then borrow the well-known method
of low-temperature expansions in statistical physics [Ma 1985] and apply it to the
problem of evaluating (3.20).

3.4.1 Asymptotic Expansion and MDL

We will now approximately evaluate (3.20) when the number of data points is large.
The method we use applies when (a) the maximum likelihood parameter Θ̂ which
globally maximizes P(X |Θ) lies in the interior of the parameter space, (b) local
maxima of P(X |Θ) are bounded away from the global maximum, and (c) both the
Fisher information Jij(Θ) and P(X |Θ) are sufficiently smooth functions of Θ in
a neighborhood of Θ̂. In this case, for sufficiently large N , the integral in (3.20)
is dominated by a neighborhood of the maximum-likelihood parameter Θ̂. We can
then approximate the integrand in the neighborhood of Θ̂ as follows:
First, collect the measure

√
detJ into the exponent as

PA|X =

∫
ddΘ exp

[
−N

(
− ln P(X|Θ)

N

)
+ (1/2)Tr ln J(Θ)

]
∫
ddΘ

√
detJ

. (3.23)

Next, we Taylor-expand the exponent around the maximum likelihood parameter
which satisfies ∇θµ ln P(X |Θ) = 0. So the Taylor expansion of the first term in
the exponent begins with ∇θµ . It is convenient to define a kind of empirical Fisher
information as Iµν = (−1/N)∇θµ∇θν ln P(X |Θ)|Θ̂ so that Iµν approaches a finite
limit as N →∞.
We can then evaluate (3.23) as follows. First define a shifted integration variable
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Φ = (Θ − Θ̂). Then, we can write

PA|X =
e−[ln P(X|Θ̂)− 1

2 Tr ln J(Θ̂)] ∫ ddΦe−((N/2)
P

µν Iµνφ
µφν+G(Φ))∫

ddΘ
√
detJij

(3.24)

=
e−[ln P(X|Θ̂)]

√
detJ(Θ̂)

∫
ddΦe−((N/2)

P
µν Iµνφ

µφν+G(Φ))∫
ddΘ

√
detJij

, (3.25)

where G(Φ) collects the cubic and higher order terms in the Taylor expansion
of lnP(X |Θ) and all terms in the Taylor expansion of Tr ln J around Θ̂. As the
number of data points N gets large the integrand is very sharply peaked around
Θ̂ and the terms collected in G(Φ) will only make subleading contributions to the
integral. Indeed, we can approxime the integral as a multivariate Gaussian with a
covariance matrix N Iµν(θ̂). (Some technical conditions are required as discussed
in, for example, [Clarke and Barron 1990].)
When N is large, the Gaussian is very narrow and therefore the integral can be

performed [Clarke and Barron 1990; Balasubramanian 1997] to give

− lnPA|X ≡ χX(A) = − ln P(X |θ̂) + ln
(
V (A)
Vc(A)

)
+O(1/N). (3.26)

We define [Myung et al. 2000]

Vc(A) =
(
2π
N

)d/2
√

det J(θ̂)

det I(θ̂)
. (3.27)

Vc(A) is essentially the volume of a small ellipsoid around θ̂ within which the
probability of the data P(X |Θ) is appreciable. Specifically, Vc(A) only differs by a
numerical factor from the volume of a region where P(X |Θ) ≥ λP(X |Θ̂) for any
λ close to 1. As such, it measures the volume of distinguishable distributions in
A that come close to the truth, as measured by predicting the data X with good
probability.
The ratio Vc(A)/V (A) penalizes models which occupy a small volume close to

the truth relative to the total volume of the model. The second term expands to

C = ln
(
V (A)
Vc(A)

)
=
d

2
ln
(
N

2π

)
+ ln

∫
dθ
√
detJ(θ) +

1
2
ln

(
det I(θ̂)
detJ(θ̂)

)
. (3.28)

In Bayesian model selection, C functions as a penalty for complexity.
Assembling everything, when selecting between two model families, A and B,

probability theory instructs to compute

χX = − ln P(X |θ̂) + d
2
ln
N

2π
+ ln

∫
dθ
√
detJ(θ) +

1
2
ln

(
det I(θ̂)
detJ(θ̂)

)
+O(1/N)

(3.29)
for each family given the data X . The observed data are more likely to have come
from the model family with a smaller χ. We will interpret this as a manifestation
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of Occam’s razor and the MDL principle and will explain how the various terms in
(3.29) arise from the geometry of the parameter space of the model family.

Interpretation: Occam’s Razor The first term in (3.29) is the maximum log-
likelihood of the data given a model and therefore measures how accurately the
model is able to describe the data. This term is O(N) since, as we discussed,
(1/N) ln(P(X |Θ̂) approaches a finite limit. This happens because probabilities mul-
tiply and this causes the probability of any given sample to decrease exponentially
with the sample size. In any case, for sufficiently large N this O(N) term always
dominates and therefore with enough data the most accurate model family is chosen
by Bayesian methods.
As we described, the remaining three terms arise in our analysis essentially as

a measurement of the fraction of the volume of a model’s parameter space that
lies close to truth. The first and second terms in C are independent of the true
distribution as well as the data, and therefore represent an intrinsic property of the
model family. The term proportional to d/2 arises because as the number of data
points increases the radius of the region near the maximum likelihood parameter
that gives a good description of the data shrinks in proportion to 1/N so that
the volume of this region shrinks as (1/N)d/2, as in (3.27). As discussed earlier,
the integral

∫
ddΘ

√
det J(Θ) measures, in a sense, the volume of distinguishable

distributions that the model can describe. Thus the third term in (3.29) penalizes
models that are less constrained, in the sense of describing a greater variety of
distributions. Finally, the fourth term in (3.29) penalizes models that are not
robust in the sense that they depend very sensitively of the choice of parameters.
The covariance matrix I determines how rapidly the integrand of PA|X falls off
around the maximum likelihood parameter. So, if I is large, we have a situation
as in Fig. 3.4a where the model gives a good description of the data only for very
restricted parameters. Conversely if I is small, there is large basin of parameters
that describes the data well. The ratio det I/ detJ appears because how narrow or
wide the the “good” region of a model family is should really be determined with
respect to the natural measure on the parameter manifold, which we have argued
to be the Fisher information matrix.
Note that if the truth actually lies within the model family, I → J as the amount

of data N increases, essentially because of the law of large numbers. Thus, up to
corrections that decrease with N , the ln(det I/ detJ) term vanishes in this case.
Interestingly, it is easy to show by explicit computation that the same thing happens
for exponential families (P(x|Bθ) = q(x)e−+θ·+f(x)/Z, where q and Bf are any suitable
functions and Z normalizes the distribution) since I is independent of the data
in this case [Grünwald 2005]. So up to terms suppressed by powers of N , the
“robustness term” in (3.29) does not affect comparisons of exponential families
between each other or with a model containing the truth. We interpret this by saying
that all exponential families, as well as all families that contain the truth are equally
robust, or insensitive to the choice of parameters. Nevertheless, the robustness term
can either be positive or negative for other parametric families relative to a given
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true distribution, and so it does play an important role in comparisons with and
between other kinds of model families.

t

B

A

t

a b

Figure 3.4 In box a, model B comes very close to the true distribution at one point,
but is mostly far away. Model A is close to truth for many choices of its parameters.
When the amount of data is small, MDL will tend to prefer A because this model is
more robust and not enough data have accumulated to identify a specific distribution in
B as coming close to the truth. As the number of data points increases, however, B will
eventually be preferred. Box b illustrates a situation where a single model family will have
two local maxima in the log-likelihood it assigns the data – it comes close to the truth in
two regions of the parameter space. When the number of data points is small, one region
(the more robust one) will dominate the Bayesian posterior, and as the number of data
points increases, the other region (the more accurate one) will dominate.

The MDL model selection criterion [Rissanen 1996] chooses the statistical model
that minimizes the sum of the first three terms in (3.29). Note that if the true
distribution lies within the considered model family, J(θ̂) approaches I(θ̂) as N
grows large, and consequently ln(V (f)/Vc(f)) becomes equal to the complexity
penalty in the MDL selection criterion. This shows that as the sample size grows, the
log of the Bayesian posterior probability of a model family (− lnP(f |y)) coincides
with MDL when the truth lies in the model family. Therefore, selecting the most
probable model is essentially equivalent to choosing the model that gives the MDL
of the data, and the Bayesian complexity C coincides with Rissanen’s modified
stochastic complexity [Rissanen 1996]. It would be very nice to give an adequate
interpretation of the final term in (3.29) in the context of the coding theory that
gives rise directly to the MDL criterion.
To summarize, we have arrived at an intuitive geometric interpretation of the

meaning of complexity in the MDL and Bayesian approaches to model selection:
“complexity” measures the ratio of the volume occupied by distinguishable distribu-
tions in a model that come close to the truth relative to the volume of the model
as a whole. The apparent complexity of a model’s functional form in a partic-
ular parametrization and even the number of parameters in a model are simply



96 MDL, Bayesian Inference, and the Geometry of the Space of Probability Distributions

components of this general understanding of how probability theory incorporates
complexity in statistical inference.

3.5 Some Challenges

This chapter is appearing in the proceedings of a workshop which described both
theoretical developments and practical applications of the MDL techniques (see,
e.g., [Myung et al. 2001]). The principal obstacle to the general application of the
results presented here is that we were obliged to assume a bounded parameter space
in order to make sense of the Jeffreys prior and consequently of the second term in
the complexity penalty (3.28) which involved an integral over the parameter space.
Actually the problem is not really that the parameter space can be unbounded, but
that the integral ∫

ddΘ
√
detJ (3.30)

can diverge. This can even happen with a bounded parameter space if the Fisher
information Jij becomes infinite sufficiently quickly in some region. In either case,
the situation is that there are “too many” candidate hypotheses included in the
model family. One simple way to deal with this situation is to bound the domain
of parameters in such a way that (3.30) is finite. In this case, we should consider
the added variables describing how the parameter space is bounded as parameters
of the model themselves and one might imagine doing a “meta-Bayesian analysis”
to determine them. Another promising approach is to declare that we are only
practically interested in those distributions which assign a probability greater than
some small ε to the observed data. This will naturally give a bounded domain of
parameters describing the data with a reasonable probability. Then we can repeat
the entire analysis of this paper for such bounded domains. I hope to report on this
approach in a future publication.
Another interesting issue that has been avoided both here and elsewhere in the

literature is what happens when there are multiple local likelihood maxima for a
given model family. This would arise in a situation such as the one depicted in
Fig. 3.4b where the model family approaches the two distributions in two locations.
In such a circumstance − lnPA|X will be a sum of multiple contributions like the
one in (3.26) each arising from a saddlepoint of the exponent in (3.23). This sort
of situation occurs often in statistical physics and will lead here to an analogue
the fascinating phenomenon of phase transitions — as the number of data points
increases, one saddlepoint or another will suddenly come to dominate the log-
likelihood of the model family, leading to potentially very different descriptions
of the data.
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We illustrate the concept of hypothesis testing using stochastic complexity, in the
modern sense of normalized maximum likelihood codes, via the simple example of
deciding whether a Poisson or a geometric model better matches the collected data.
The Poisson model is generally found to have more power in describing data than
the geometric model. Hence, the Poisson model is more harshly penalized by the
stochastic complexity criterion.
The integral of the square root of the Fisher information of both the Poisson and

geometric models is found to be infinite. Hence, the allowed parameter range must
be restricted somehow to make this integral finite. Some of the consequences of this
are explored.

4.1 Introduction

Since the seminal work of Wallace and Boulton [1968] and Rissanen [1978], many
researchers have developed increasingly sophisticated approaches to model selection
under the general terms minimum description length (MDL) andminimum message
length (MML). The differences between various approaches that have been proposed
over the years are at times subtle, at other times profound, and quite often
simultaneously subtle and profound [Lanterman 2001]. The most recent version
of MDL uses a concept of stochastic complexity based on normalized maximum
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likelihood (NML) codes [Barron, Rissanen, and Yu 1998].
The purpose of this chapter is twofold:

1. Newcomers who simply wish to apply these ideas to their own work often find the
writings by the founding fathers of MDL and MML dense and impenetrable. We feel
that the literature needs more concrete examples, explained on a nonintimidating
level. Also, much of the MDL-MML literature revolves around the omnipresent
Gaussian distribution; we would like to encourage more research on non-Gaussian
examples.
With these goals in mind, this entire chapter revolves around the simple hypothesis
test of deciding whether a set of N data points xN = (x1, x2, . . . xN ) ∈ N

n

was drawn from a Poisson or geometric distribution. The choice of the Poisson
distribution was motivated by the author’s long-term curiosity about applying
ideas from MDL to regularizing Poisson intensity estimates in emission tomography
[Snyder and Miller 1985; Politte and Snyder 1988; Snyder, Miller, Thomas, and
Politte 1987]. The geometric distribution was chosen simply because it is another
familiar discrete distribution. The MDL viewpoint does not require us to assume
that the data were actually drawn from one of the proposed models; it just tries to
find the model that best fits the data. Nevertheless, we will explore the resulting
procedures via Monte Carlo simulations where the data really are generated by one
of the two models.

2. In the 1996 paper that outlines the refined notion of stochastic complexity
[Rissanen 1996], Rissanen writes that it concludes “a decade long search.” However,
as we shall see in Section 4.4.2, the stochastic complexity, which is essentially a code
length, is actually infinite for many useful models! Some solutions to this quandary
have been proposed, which we will review in Section 4.4.2. However, none of these
solutions have the same elegance or sense of “conclusion” as the original notion of
the NML code and its related theorems. Hence, in our opinion, the search is not
quite over.
Both the Poisson and geometric distributions investigated here yield infinite
stochastic complexity in their raw form, and the choices we make in dealing with this
problem have a substantive impact on the results. We hope this chapter prompts
further research into developing new versions of the stochastic complexity criterion
that will handle these difficulties in a conceptually pleasing fashion.

4.1.1 The Poisson and Geometric Distributions

Poisson and geometric random variables are nonnegative and discrete-valued; hence,
our summaries of results in the literature will generally be written in terms of prob-
ability mass functions (indicated with capital letters such as P ) and summations.
These results will generally hold for continuous-valued data as well by simply re-
placing probability mass functions with densities and sums with integrals.
The Poisson probability mass function, parameterized by an intensity θ, is given
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by

PP (x : θ) =
e−θθx

x!
(4.1)

for x ∈ N, the set of natural numbers 0, 1, 2, · · · . The Poisson distribution has
mean θ. A particular realization x might represent the number of caffeine-craving
customers arriving at a coffee shop between 8:30 and 9:30 am.
The geometric probability mass function can be parameterized in a couple of

equivalent ways. We parameterize it by a “probability of tails” parameter θ, and
define the density as

PG(x : θ) = θx(1 − θ) (4.2)

for x ∈ N. Here, a particular realization x represents the number of tails that appear
in a series of coin flips before the first ‘heads’ appears.1 Our geometric distribution
has mean θ/(1− θ).
In later sections, we will be using different kinds of asymptotic expansions. Some

technical conditions need to hold for these expansions to be valid. Fortunately,
the Poisson and geometric distributions are both exponential families [Poor 1994],
which implies that the maximum likelihood (ML) estimators, log-likelihood ratios,
and Fisher information that we discuss later will be easy to compute. In addition,
provided that the range of the parameter space is restricted to a compact (i.e. closed
and bounded) subset of ", the asymptotic expansions we need are valid.

4.2 Review of Hypothesis Testing

4.2.1 Simple Hypothesis Testing

Suppose for a moment that the parameters describing the hypothesized Poisson
and geometric distributions, θP and θG respectively, are known exactly. Standard
statistical detection theory [Van Trees 1968; Poor 1994] would proceed by comput-
ing the ratio of the probability mass functions of the data (called the likelihood
ratio) and comparing it to a threshold τ :∏N

i=1 PP (xi : θP )∏N
i=1 PG(xi : θG)

>
< τ (4.3)

We choose the Poisson model if the likelihood ratio is greater than τ , and declare
the geometric model if the likelihood ratio is less than τ .

1. Some other versions make θ a probability of heads, and/or make x the total number of
flips including the first heads, in which case x ∈ {1, 2, · · · }. Our parameterization in terms
of a “failure” probability is a bit unusual, but it will make some of our later equations less
cumbersome.
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We can equivalently use a log-likelihood ratio test:

N∑
i=1

LP (xi : θP )−
N∑
i=1

LG(xi : θG)
>
< ln τ df= η, (4.4)

where the log-likelihoods are LP = lnPP and LG = lnPG. The log-likelihood
ratio sometimes has a more aesthetically pleasing form, and is often more stable
to compute numerically. Conveniently, LRT may refer to either a “likelihood ratio
test” or a “log-likelihood ratio test.”
There are several schools of thought in choosing η. One is the Neyman-Pearson

criterion, which chooses η to achieve a desired “probablity of false alarm” PFA;
one simply lives with the resulting “probablity of detection” PD (or vice versa).2

Radar systems are often designed with such criteria. Another approach takes a
Bayesian viewpoint, and assigns prior probabilities to the two hypotheses, as well
as subjective costs associated with wrong decisions.
Deciding upon the costs and prior probabilities in the Bayesian setting, or

the desired PFA (sometimes called the “significance level,” which often seems
to be pulled out of a magic hat) in the Neyman-Pearson setting, can often feel
rather arbitrary. If we start with the Bayesian viewpoint and consider equal prior
probabilities and equal costs, then τ = 1, or equivalently η = 0, and we choose
the hypothesis with higher probability. This intuitive approach is often called
“maximum likelihood detection.”
The log-likelihood for a set of N independent outcomes for the Poisson and

geometric distributions is given by

LP (θ) = −Nθ + ln(θ)
N∑
i=1

xi −
N∑
i=1

lnxi!

= −Nθ +N ln(θ)x̄ −
N∑
i=1

lnxi!, (4.5)

LG(θ) = ln(θ)
N∑
i=1

xi +N ln(1 − θ)

= N [x̄ ln(θ) + ln(1− θ)], (4.6)

where x̄ =
∑N

i=1 xi/N is the sample average.

2. The “probability of miss” is 1−PD. The terms “detection,” “false alarm,” and “miss”
are the legacy from detection theory’s military roots, although the terms are often used
more broadly. In the example in (4.3), a “false alarm” occurs when the LRT declares the
sample to be Poisson-distributed when it is really geometric-distibuted; a “miss” occurs
when the LRT declares the distribution of the sample to geometric when it is really Poisson.
Statisticians often prefer a more neutral nomenclature; what we call “false alarms” and
“misses” they call Type I and Type II errors, respectively. I can never seem to remember
which is Type I and which is Type II, and my own roots lie in military applications, which
explains my preference for “false alarms” and “misses.”
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4.2.2 Hypothesis Testing with Unknown Parameters

It is often unrealistic to assume that parameters such as θP and θG would be
known in advance. Such cases are often referred to as composite hypothesis testing
problems. If the parameters can be treated as realizations of a random variable, a
prior density on the parameters may be proposed, and the parameters integrated
out, yielding a simple hypothesis test. However, it may be unrealistic to assume
such a prior, and statisticians from the frequentist school often object to the prior
on philosophical grounds, whatever the prior might be.
If the parameter must be treated as nonrandom, in practice it is common to

estimate the parameters based on the data, and plug those estimates θ̂(xN ) into
(4.4) and use them as if they were the true parameter values, yielding a generalized
likelihood (or log-likelihood) ratio test:∏N

i=1 PP (xi : θ̂P (xN ))∏N
i=1 PG(xi : θ̂G(xN ))

>
< τ,

N∑
i=1

LP (xi : θ̂P (xN ))−
N∑
i=1

LG(xi : θ̂G(xN ))
>
< ln τ df= η

(4.7)
Maximum likelihood estimators are most often used. If these are difficult to com-
pute, other estimators, such as method-of-moments estimators, might be explored.
Luckily, the ML estimators of the Poisson and the geometric distributions are easily
computed. The first derivatives of the log-likelihoods for the two models are

∂

∂θ
LP (θ) = N

(
−1 + x̄

θP

)
, (4.8)

∂

∂θG
LG(θG) = N

[
x̄

θG
− 1

1− θG

]
. (4.9)

Equating (4.9) and (4.8) with zero yields the ML estimates:

θ̂P (xN ) = x̄, θ̂G(xN ) =
x̄

x̄+ 1
. (4.10)

4.3 Some Models Have an Unfair Advantage

Figure 4.1 shows the result of Monte Carlo experiments designed to compute
probabilities of correct decision. For each point on the graphs, 40,000 runs were
conducted to estimate the probability. The solid lines show results from the log-
likelihood ratio test (4.4) when the parameters are known exactly. The dashed lines
show results from the generalized log-likelihood ratio test (GLRT) (4.7), where the
parameters are unknown. Both the LRT and GLRT are compared to a threshold
of η = 0. Hence, in each case, we pick the model with the largest likelihood, which
seems reasonable.
To make the hypothesis testing problem difficult, we pick θG and θP so that the

mean of the data under each model is the same. Recall the mean of the Poisson
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distribution is just θP . If we are given a particular θP , we can make the mean of
the geometric distribution match by setting θG = θP /(θP +1). For convenience, we
will often use θP to indicate the desired mean of the data in our simulations, and
will assume that θG has been adjusted to match. We employ conventions like this
throughout the chapter.
In the graphs on the top row of Figure 4.1, the shapes on the lines indicate what

“true” model the data were generated from, either Poisson (“stars”) or geometric
(“squares”). The left graph shows the case where we fix the data mean at 5, and
change the number of outcomes N. The right graph shows the case where we fix
the number of outcomes at 6, and change the data mean.
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Figure 4.1 Probability of correct decision of the LRT, in which the parameters are
known (solid line), and the GLRT in which they are estimated. In the top row, the
symbols indicate whether the data are generated by the Poisson (“star”) or geometric
model (“square”) model. The lower row gives the average over the Poisson and geometric
cases. In the left column, the number of outcomes is varied along the horizontal axis, and
the data mean is fixed at 5. In the right column, the number of outcomes is fixed at 6,
and the data mean is varied instead.
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Notice something odd happens when we go from the LRT to the GLRT. The
probability of correctly identifying a geometric model went down. In the GLRT, we
do not know the exact parameters, and must estimate them, so we might expect
some loss of performance. However, the probability of correctly identifying a Poisson
model went up. This does not really compensate for the loss of performance when
the geometric model is true, though. As shown in the bottom row of Figure 4.1, if
we pool both the Poisson-true and geometric-true cases together and average the
“star” and “square” lines in the graphs on the top row, the total probability of
correct identification in the GLRT case is less than in the LRT case.
Recall that while the log-likelihood ratio test can be derived from many different

optimality criteria (such as the Neyman-Pearson criteria), the GLRT does not
enjoy as firm a theoretical footing. The GLRT is an intuitive and reasonable test,
and there are many asymptotic results concerning its behavior [Bahadur 1967;
Groeneboom and Oosterhoff 1977], but its behavior for small samples is difficult
to predict. In some cases, we have only an unknown parameter under one of the
hypotheses, and under the other hypothesis (usually the null hypothesis), all the
parameters are known. In these cases, we can modify the threshold η to achieve a
particular desired PFA, and make a plot of the resulting PD as a function of the
unknown parameters under the other hypothesis to get a feel for how the detector
operates. This approach may not always be satisfactory, as picking a particular PFA

may feel arbitrary. Also, in some cases (as in the Poisson vs. geometric problem
discussed in this chapter), we have unknown parameters under both hypotheses,
and there is no obvious procedure for picking the threshold. Hence, we are inclined
to seek a more theoretically grounded approach.
In searching for a new tactic, one might first wonder why a procedure that picks

the model with the greatest log-likelihood after plugging in parameter estimates
seems to favor the Poisson model over the geometric model. Our intuition tells us
the Poisson model is somehow more powerful than the geometric model, and that it
deserves to be penalized in some way to compensate for its extra power. In a sense,
the Poisson model can more readily describe a wider variety of distributions than
the geometric model. This notion is made precise in [Myung, Balasubramanian, and
Pitt 2000]. This extra power means that the Poisson model can sometimes fit data
from the geometric model better than the geometric model itself. (The opposite
can also happen, but is much less likely.) Characterizing the descriptive power of
models, and crafting new kinds of hypothesis tests based on these characterizations,
are among the goals of stochastic complexity described in the next section.

4.4 Stochastic Complexity

Let our sample be represented by the vector x, which contains a fixed number
of outcomes. A “good” model allows us to encode the data x efficiently. If we
have several different statistical models P1(x), P2(x), P3(x), and so on to choose
from, Shannon’s information theory [Cover and Thomas 1991; Hansen and Yu 2001]
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tells us we should choose the model k for which the code length3 − lnPk(x) is
the smallest, or equivalently, for which Pk(x) is the largest4. Shannon’s theorems
make sense when x takes values in a discrete set. Continuous data can be handled
via discretization. Choosing a small code length is entirely consistent with the
“maximum likelihood” hypothesis test described in Section 4.2.1.
At first glance, the presence of unknown parameters (possibly vectors, with

dimension varying from model to model) does not appear to be a problem. It
seems deceptively reasonable to just replace the unknown parameters with their
ML estimates, and simply choose from among the P1(x : θ̂1(x)), P2(x : θ̂2(x)),
P3(x : θ̂3(x)), and so on, but caution is required, as making the plugged-in
parameter a function of x means that Pk(x : θ̂k(x)) are not probability mass
functions (or densities, in the case of continuous data) anymore! Shannon’s theorems
want probability distributions. Hence, we normalize the Pk(x : θ̂k(x)) to get
something that sums up to 1, called the normalized maximum likelihood (NML)
density:

PNML(x) =
P (x : θ̂(x))∑

x̃∈X P (x̃ : θ̂(x̃))
, (4.11)

where we have suppressed explicit notation of the model k. We can then apply
Shannon’s theory and choose that model based on what gives us the shortest NML
code. This notion actually dates back to Shtarkov’s 1987 work on coding individual
sequences [Shtarkov 1987]. Its link to the minimum description length principle was
later recognized by Rissanen [1996]. Procedures based on this code boast a dizzying
arsenal of universal optimality properties [Rissanen 2001].
The negative logarithm of (4.11) is called the stochastic complexity:

SC = − lnP (x : θ) + PC, (4.12)

where the second term is called the parametric complexity:

PC = ln
∑
x̃∈X

P (x̃ : θ̂(x̃)) (4.13)

3. To stay consistent with the typical practice in statistics, we generally use natural
logarithms, and hence usually measure information and code lengths in terms of “nats.”
One can convert from nats to the more traditional base-2 logarithm “bits” of information
theory by dividing by ln 2.
4. In such a procedure, one should also technically encode which model k is chosen. One
can think of this as an initial sequence of bits telling a decoder which model to use; these
bits arrive before the information for x, encoded with that model, is sent. If the number
of possible models is finite, one can encode k using the same number of bits for each k,
in which case the addition of this prefix does not change the choice of model at all. If the
number of possible models is infinite, the situation is slightly trickier, but the number of
bits in the prefix code is typically negligible anyway. Hence, this chapter does not consider
this issue any further.
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The MDL principle says we should choose the model with the smallest stochastic
complexity. From a maximum likelihood viewpoint, we can think of the parametric
complexity as a penalty we must pay for not knowing the parameter exactly. In
older “two-part” versions of MDL [Rissanen 1978, 1983, 1986, 1987a], the ML
estimate is explicitly coded with a certain degree of precision that is optimal in some
predetermined sense, and the number of bits used to encode the ML estimate to a
certain precision can be thought of as a rough estimate of the parametric complexity.
The newer NML code abandons the notion of a separate stage of encoding the
parameter and the associated artificial notion of truncating it to some precision.
As shown in [Rissanen 1996, p. 42], NML substantially refines the estimate of the
stochastic complexity by removing a redundancy in the two-part code.
In all but a few special cases, computing parametric complexity according to

(4.13) is difficult. Under certain technical conditions, in the case of independent,
identically distributed data, Theorem 1 of [Rissanen 1996] shows that it can be
asymptotically approximated by

PC ≈ APC =
k

2
ln
N

2π
+ ln

∫
Θ

√
det I(θ)dθ, (4.14)

where k is the number of free parameters, N is the number of outcomes, and
I(θ) is the Fisher information matrix for one outcome. The element of the Fisher
information matrix at row r and column c for N outcomes is given by

Irc(θ) = −Eθ

[
∂2

∂θr∂θc
lnP (x : θ)

]
. (4.15)

If the data are independently and identically distributed (i.i.d.) according to θ,
then the Fisher information matrix for N outcomes is simply N times the Fisher
information matrix for one outcome. The subscript on the E indicates that the
expectation over x is being taken assuming a particular value of θ. [We have
made a slight abuse of notation; previously, subscripts on θ were used to index
different models k, but in (4.15) subscripts are used to index particular elements
in a parameter vector θ.] Although similar approximations are available in many
non-i.i.d. cases, we will stick with the i.i.d. case for simplicity [Takeuchi 2000]). In
Section 4.4.2, we will see that the denominator of (4.11) and the integral in (4.14)
are infinite for many useful models, and hence require special care.
If N is large, then the APC asymptotically approaches the simple formula

most often associated with MDL: (k/2) lnN . The process of choosing a model by
minimizing

− lnP (x : θ̂) + (k/2) lnN (4.16)

goes by several names, such as the Bayesian information criterion (BIC) and the
Schwarz [1978] information criterion (SIC). Notice that naively pulling out the
simple (k/2) lnN formula would not help us in our example, as both the Poisson
and geometric models have the same number of parameters. Thinking a bit further
outside the box, one could imagine a small sample-size case where a model with,
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say, two parameters may actually have less parametric complexity, and hence less
descriptive power, than a model with one parameter. In such cases blindly invoking
the (k/2) lnN term would be quite misleading [Grünwald 2005].

4.4.1 Fisher Information Computations

The second derivatives of the Poisson and geometric log-likelihoods are

∂2

∂θ2P
LP (θP ) = −N x̄

θ2P
, (4.17)

∂2

∂θ2G
LG(θG) = −N

[
x̄

θ2G
+

1
(1− θG)2

]
. (4.18)

The Fisher information associated with estimating θP and θG is given by

IP (θP ) = −EθP

[
∂2

∂θ2P
L(θP )

]
= N

E[x̄]
θ2P

=
N

θP
, (4.19)

IG(θG) = −EθG

[
∂2

∂θ2G
L(θG)

]
= N

θG
θ2G(1− θG)

+
N

(1− θG)2 =
N

(1− θG)2θG . (4.20)

The indefinite integrals of the square roots of the Fisher information for the
Poisson and geometric models needed for computing the approximate parametric
complexity (4.14) are∫ √

IP (θP )dθP =
∫ √

1
θP
dθP = 2

√
θP , (4.21)∫ √

IG(θG)dθG =
∫ √

1
(1− θG)2θG dθG =

∫
1

(1− θG)
√
θG
dθG

= ln
(
1 +

√
θG

1−√θG

)
. (4.22)

Note that (4.21) and (4.22) refer once again to the Fisher information for one
outcome.

4.4.2 Misbehaving Integrals

When computing stochastic complexity, we would like to integrate over the full
possible range of the parameters, here θP ∈ [0,∞) and θG ∈ [0, 1]. In some cases,
such as the independent finite-alphabet process of Example 1 of [Rissanen 1996],
we can do so without any trouble. However, in many other cases, the integral in
(4.14), when taken over the full parameter range, is not finite! This conundrum is
encountered in the exponential and Gaussian cases in Examples 2 and 3 of [Rissanen
1996], as well as the Poisson and geometric models considered here.
Finding a satisfying way of taming models with “infinite” stochastic complexity

is an active research topic. At least five approaches have appeared in the literature:

1. As suggested by Rissanen [1996, p. 328], we could simply restrict the parameter
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range to lie over a particular region where we suspect that the “true” value lives
that also allows the integral to be finite. Myung et al. [2000] take this tactic, writing:
“We will always cut off the ranges of parameters to ensure that V (f) [the authors’
term for the integral of the square root of the Fisher information] is finite. These
ranges should be considered as part of the functional form of the model.” Upon
contemplation, this approach does not seem at all satisfactory, since choosing the
parameter range a priori smacks of the sort of arbitrary choice that the MDL
philosophy seeks to avoid. To illustrate the conceptual difficulties with arbitrary
parameter space restriction, we consider this approach in Section 4.5.

2. Rissanen [1996, Section 5] suggests a more sophisticated approach, where we
consider an increasing sequence of subsets Θ(1) ⊂ Θ(2) ⊂ . . . ⊂ Θ. In computing
stochastic complexity using this scheme, for a given x, we pick the smallest k such
that θ̂(x) ∈ Θ(k). The integral in (4.14) is computed over Θ(k) instead of the
full Θ, and an additional l0(k) bits are added to “encode” the particular k.5 The
resulting complexity measure is dependent on the particular Θ(1),Θ(2), . . . sequence
we choose. The set sequence choice is somewhat arbitrary, so this approach feels
only slightly more pleasing than Approach 1.

3. In some cases, it may be possible to let the limits of the parameter range be
“hyperparameters,” and one can form another level of NML code by normalizing
over the hyperparameters. If this new normalization is not finite, the process can
be repeated. This rather elegant technique was proposed by Rissanen. In the case
of the additive Gaussian models, three iterations of this procedure are sufficient
[Rissanen 2000]. This is far more satisfactory than the application of Approach 2
to the Gaussian problem (using an increasing set sequence and l0) seen in Example
3 of [Rissanen 1996]. Such a tactic can be tried in other situations, but it is not
clear at present that it will always be successful. There may be cases where each
iteration yields a need for another set of hyperparameters and the procedure does
not terminate. This issue needs much further exploration.

4. Liang and Barron [2004,2005] consider location and scale parameters in Gaussian
regression problems. They show that if one conditions on a fixed initial observa-
tion, say x1, many of the normalization difficulties illustrated in this chapter can be
avoided. Although Barron and Liang come at the problem from a Bayesian view-
point with uniform improper priors, their results can be closely related to the NML
approaches discussed in this chapter, making them ripe avenues for future research.

5. Finally, we mention the intriguing competitive complexity ratio approach devised
by Stine and Foster [2000]. Although their work was motivated by the trouble of
infinite parametric complexity that is the focus of this chapter, it may be misleading
to think of the competitive complexity ratio approach as a “patch” of NML like
Approaches 2 and 3 above. Instead, Stine and Foster pose a different problem.

5. We are using l
(k) to denote the “log-star” described by Rissanen [1983], which is
approximately log k + 2 log log k.
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They consider parametric complexity under the constraint of side information
restricting the range, as in Approach 1, which they call conditional parametric
complexity. However, they go a step further by considering a family of restricted
ranges, which allows them to formulate an unconditional parametric complexity.
Stine and Foster write, “One means to bound the parametric complexity in this
model is to incorporate bounds as part of the code itself [as in Approach 3]... Rather
than consider various means of incorporating information about the parameter
space Θ[a,b] directly into the code, we instead consider a competitive analysis of
how well a realizable code fares when compared to a code that knows features
of the true parameter space.” This approach is still not entirely free of some
arbitrary choices, as the competitive complexity ratio depends on the family of
potential side information chosen. As an example, in investigating the Gaussian
location problem, Stine and Foster compute different competitive complexity ratios
depending on whether the restricting sets (which contain the origin) are allowed
to be nonsymmetric or forced to be symmetric. These comments should not be
construed as criticisms; we feel Stine and Foster’s work is definitely a step in the
right direction.

We spent some time attempting to apply Approaches 3, 4, and 5 to the Poisson
and geometric distributions discussed here, but did not make much progress, and
hence leave such explorations as a direction for future work.
The integrals for our models have no problem at the lower limits of θG = 0

and θP = 0. However, the indefinite integrals evaluate to infinity at the upper
limit of θG = 1 and θP = ∞. Hence, we will restrict θG and θP to the ranges
0 ≤ θG ≤ θ(top)G < 1 and 0 ≤ θP ≤ θ(top)P < ∞. Of course, much may depend on
our choice of θ(top)G and θ(top)P . The approximate parametric complexities (4.14) for
both models are

APCP =
1
2
ln
N

2π
+ ln 2

√
θ
(top)
P =

1
2
ln
N

2π
+ ln 2 +

1
2
ln θ(top)P , (4.23)

APCG =
1
2
ln
N

2π
+ ln


ln


1 +

√
θ
(top)
G

1−
√
θ
(top)
G




 . (4.24)

4.4.3 Comparing Approximate and Exact Formulas

One may wonder how accurate an approximation (4.14) is of the true parametric
complexity (4.13). For N > 1, computing (4.13) for our Poisson and geometric
models is rather messy, so let us first consider the simple extreme case of N = 1.
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In the single-outcome case, we can write

PP (x : θ̂P (x)) =
e−θ̂P (x)θ̂P (x)x

x!
=
e−xxx

x!
, (4.25)

PG(x : θ̂G(x)) = [θ̂G(x)]x[1− θ̂G(x)]
=
(

x

x+ 1

)x (
1− x

x+ 1

)
=

xx

(x+ 1)x+1
. (4.26)

Recall that the integrals of the square roots of the Fisher information given in
the left hand sides of (4.21) and (4.22) are infinite when evaluated over the full
parameter ranges. As we might expect, when (4.25) and (4.26) are plugged into the
exact parametric complexity formula (4.13), the sums over x ∈ N are infinite too.
We sum over restricted sets

XP (θ
(top)
P ) = {x ∈ N : θ̂P (x) ≤ θ(top)P } = {x ∈ N : x ≤ θ(top)P }, (4.27)

XG(θ
(top)
G ) = {x ∈ N : θ̂G(x) ≤ θ(top)G } =

{
x ∈ N :

x

x+ 1
≤ θ(top)G

}

=

{
x ∈ N : x ≤ θ

(top)
G

1− θ(top)G

}
. (4.28)

To avoid numerical difficulties,6 we rearrange the sums of (4.25) over (4.27) and
(4.26) over (4.28) as

NMLP =

j
θ
(top)
P

k∑
x=0

e−xxx

x!
=

j
θ
(top)
P

k∑
x=0

exp[−x+ x ln(x)− ln γ(x+ 1)], (4.29)

NMLG =

$
θ
(top)
G

1−θ
(top)
G

%
∑
x=0

xx

(x+ 1)x+1

=

$
θ
(top)
G

1−θ
(top)
G

%
∑
x=0

exp[x ln(x) − (x+ 1) ln(x+ 1)]. (4.30)

The left panel of Figure 4.2 plots the exact parametric complexity (ln of (4.29))
against the approximate parametric complexity (4.23) for the Poisson model for
0 < θ(top)P ≤ 1000 with N = 1. The two lines follow one another rather closely. In
spite of the fact that the approximate stochastic complexity is based on asymptotic
arguments, it seems to do quite well even for N = 1. The right panel zooms in on
a portion of the plot for 0 < θ(top)P ≤ 30.
To see how the approximation improves as N increases for the Poisson model,

Figure 4.3 compares exact parametric complexity computed via a brute-force
summation for N = 2 (left panel) and N = 3 (right panel) against the approximate

6. We compute ln γ(x+ 1) using MATLAB’s built-in gammaln function.
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Figure 4.2 Approximate (dotted line) and exact (solid line) single-outcome parametric

complexity of the Poisson model for 0 < θ
(top)
P ≤ 1000 (left panel) and 0 < θ

(top)
P ≤ 30

(right panel).

parametric complexity for 0 < θ(top)P ≤ 30. Notice that the approximation improves
with increasing N .
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Figure 4.3 Approximate (dotted line) and exact (solid line) single-outcome parametric

complexity of the geometric model for 0 < θ
(top)
P ≤ 30 for N = 2 (left panel) and N = 3

(right panel).

For N = 1, the exact and approximate parametric complexity formulas only
seem to match for the geometric model for θ(top)G close to 1, as shown in Figure 4.4.
Also notice that for θ(top)G lower than around 0.7, the approximate formula gives a
negative answer, which is not sensible. However, as N increases, the approximation
rapidly becomes more reasonable. This can be seen in Figure 4.5, which shows
comparisons for the geometric model computed for N = 2 and N = 3 via a brute-
force summation.
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Figure 4.4 Approximate (dotted line) and exact (solid line) single-outcome parametric

complexity of the geometric model for 0.4 ≤ θ
(top)
G ≤ 0.999.
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Figure 4.5 Approximate (dotted line) and exact (solid line) single-outcome parametric

complexity of the geometric model for 0.4 ≤ θ
(top)
G ≤ 0.999 for N=2 (left panel) and

0.4 ≤ θ
(top)
G ≤ 0.99 for N = 3 (right panel). The range for the N = 3 case was shrunk a

bit on the right, from 0.999 to 0.99, so the computations would not take too long.

Notice the stairstep nature of the exact formula (solid line) in Figure 4.4 and the
right panel of Figure 4.2, which results from the “floor” operation in (4.29) and
(4.30).
Clearly, the choice of θ(top)P makes a big difference in the complexity of the Poisson

model, and may be a source of concern. Choosing θ(top)G seems less problematic, as
one can pick a θ(top)G very close to 1 and cover most interesting possible values of θG
without the parametric complexity going through the roof. For instance, for N = 1,
if we take θ(top)G = 1 − 10−6, we get SCG ≈ 1.8043 and ASCG ≈ 1.8025. Taking
θ
(top)
G = 1− 10−7 instead gives SCG ≈ 1.9348 and ASCG ≈ 1.9435.
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Figure 4.6 The left panel shows exact parametric complexity for the geometric (dotted
line) and Poisson (solid line) models for N = 1. The geometric model complexity is

computed with θ
(top)
G , as shown on the horizontal axis. The equivalent Poisson model

complexity is computed with θ
(top)
P = θ

(top)
G /(1−θ(top)

G ) to match the means of the Poisson
and geometric distributions at the top of their parameter ranges. The right panel is similar;
the only difference is that the θ

(top)
P is plotted on the horizontal axis, and the equivalent

geometric model complexity is computed with θ
(top)
G = θ

(top)
P /(1 + θ

(top)
P ).

By way of comparison, consider that θG = 1 − 10−7 corresponds to a geomet-
ric distribution with a mean of 107. Remember θP is the mean of the Poisson
distribution. If we compute the approximate parametric complexity for the Pois-
son model with θ(top)P = 107 and N = 1, we get ASCP = 7.8333. The Poisson
model has 7.8333 − 1.9435 = 5.8898 more nats of “descriptive power.” Venturing
down this path a little further, Figure 4.6 plots the exact parametric complex-
ity for the geometric model [ln of (4.29)] for a range of θ(top)G (dotted line) for
N = 1. In the left panel, for each θ(top)G along the horizontal axis, the exact para-
metric complexity for the Poisson model [ln of (4.30)] is also shown (solid line),
using θ(top)P = θ(top)G /(1− θ(top)G ), chosen so that the maximum allowed values of θG
and θP give matching means, which we will call the “top” mean.7 Notice that the
amount by which the Poisson parametric complexity exceeds the geometric stochas-
tic complexity increases with θG (or equivalently, increases with the “top” mean.)
We continue this convention in the next section. The right panel is similar, except
that θ(top)P is plotted on the horizontal axis, and a θ(top)G is chosen to match the
mean.

7. We choose the ranges this way to try to put the models on equal footing. The choice
of matching the “top” mean makes intuitive sense, but is admittedly somewhat arbitrary.
We could try matching specific quantiles, such as medians.
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4.5 Results of Including Stochastic Complexity

The left panels of Figure 4.7 show probabilities of correct decision as a function of
the sample size N for a true data mean of 5 under each model. The solid line shows
the result of the LRT assuming the correct parameters are known. The dashed
line gives the results of the GLRT. The dots, pluses, and crosses, show the result
for the minimum stochastic complexity criterion, using values for θ(top)P and θ(top)G

shown in Table 4.1. The right panels of the table show the difference in approximate
stochastic complexities, which is an estimate of how much extra descriptive power
the Poisson model enjoys over the geometric model.

Table 4.1 Values of θ
(top)
P and θ

(top)
G used in Figure 4.7.

symbol θ
(top)
P θ

(top)
G APCP −APCG

· 101.25 − 1 ≈ 16.7828 1− 10−1.25 ≈ 0.9438 0.6598 nats

+ 102.25 − 1 ≈ 55.2341 1− 10−2.25 ≈ 0.9944 1.3991 nats

× 103 − 1 = 999 1− 10−3 = 0.9990 2.0310 nats

Notice in the top left panel of Figure 4.7, corresponding to data generated under
the Poisson model, that choosing θ(top)P = 101.25−1 (corresponding to ‘dots’) seems
to pull the GLRT performance down to that provided by the original LRT. In
exchange, we get better performance when data are generated by the geometric
model, as shown in the middle left panel, where the dotted line lies above the
dashed line (although it is still not as good as that given by the LRT assuming
known parameters, which is shown by the solid line).
On the other hand, notice in the middle panel that if we set θ(top)P = 102.25 − 1

(corresponding to “pluses”), that performance of the GLRT is pulled up to that
given by the original LRT. The compromise, as seen in the top left panel, is that
the test on Poisson data now operates even worse that it did under the original
LRT.
Taking θ(top)P = 103−1 (corresponding to ‘crosses’) gives even worse performance

in the Poisson case (upper left panel), in exchange for performance in the geometric
case (middle left panel) that is even better than that given by the original LRT.
The lower left panel gives the average of the upper left and middle left panels.

The lines with the ‘dots’ and the ‘pluses’ (corresponding to θ(top)P = 101.25 − 1
and 101.75 − 1, respectively) happen to lie very close to one another. They give
better performance, in this average sense, than the GLRT, but as expected, they
do not do quite as well as the original LRT in which the true parameter values
are exactly known. Interestingly, taking θ(top)P = 103 − 1 does not improve average
performance over the raw GLRT; it appears such a choice excessively punishes the
Poisson model. One must be careful, however, of interpreting this lower left panel
too literally; the average is only a meaningful measure if the two models are equally
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Figure 4.7 The upper and middle panels correspond to data generated under the
Poisson and geometric models, respectively. The original LRT and raw GLRT results
are shown by the solid and dashed lines. The dots, pluses, and crosses show results from
a detector based on the approximate stochastic complexity criterion (see text for details).
The lower row gives the average of the first two rows. In the left column, the mean is
fixed at 5, and the number of outcomes is varied. In the right column, the sample mean
is varied, and the number of outcomes is kept fixed at 6.
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likely a priori, which is just the sort of Bayesian-sounding statement the stochastic
complexity agenda seeks to avoid.
The panels on the right of Figure 4.7 are analogous to the panels on the left,

except this time we keep the sample size fixed at N = 5, and change the true data
mean θP .
Notice that the performance for data generated by the geometric and Poisson

models is heavily influenced by our choice of the parameter region. To explore this
further, Figures 4.8 and 4.9 show the probability of correct detection where the
horizonal axis specifies the “top” mean θ(top)P . The rows are analogous to those in
Figure 4.7; the top two rows consider data generated by the Poisson (top row) and
geometric (middle row) models, and the bottom row is the average of the top two
rows. Figure 4.8 shows results for a sample size N = 3, and Figure 4.9 shows results
for a sample size N = 10. The left and right panels of each figure show the cases
for E[xi] = 5 and E[xi] = 10, respectively.

4.6 Toward a Solution to the Range Selection Problem

The previous section vividly illustrates that we cannot wish away the problem of
infinite stochastic complexity by a priori restricting ranges of integration. Choosing
the “top” value in the previous section wound up being equivalent to sliding the
threshold of a GLRT-style test.
We made several attempts to implement Approach 2 described in Section 4.4.2,

where a series of subsets of parameter ranges are considered, and the particular
subset chosen is encoded. We tried numerous choices of subsets, yet none seemed
satisfactory, as the resulting performance curves (analogous to Figure 4.7) exhibited
disturbing discontinuities associated with the juncture points of the subsets, and
generally seemed to perform worse than the original GLRT. The results along that
direction were discouraging (and Rissanen himself seems to have abandoned that
path in general), so we do not report them here.
Upon hearing about those results, Peter Grünwald suggested a “smoothed”

variation of that approach that appears promising. Imagine that we let the top end
of the parameter range under each model correspond to exactly the ML estimate
of the parameter under that model. In each case, note that the emprical mean
is a sufficient statistic for that ML estimate. We can now imagine encoding that
empirical mean using some arbitrarily precise scheme; the key is to suppose we use
the same scheme resulting in the same number of bits under each hypothesis, so the
contributions need not be considered. One could rightfully argue that we could have
just applied the same hand waving to the original ML parameter estimate itself,
and that all we have done here is to shuttle the hand waving to a deeper stage. In
spite of those objections, the pudding-manifest proof realized in the dotted lines of
Figure 4.10 has an intriguing flavor. Notice that the dotted line in the middle right
panel follows the solid line (corresponding to the known parameters). This behavior
contrasts with the various fixed-parameter-range performance curves shown in the
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Figure 4.8 Probability of correct decision for N = 3, estimated using 40,000 Monte
Carlo runs. The parameters θG and θP are chosen so that either E[xi] = 5 (left) or
E[xi] = 10 (right). The top two rows show the probability of correct decision where the
data are generated according to the Poisson model (top row) and the geometric model
(bottom row). The bottom row shows the average of the probabilities given in the top
two rows for a generic “probability of correct decision,” supposing that the Poisson and
geometric models are equally likely. The solid line shows the result of the LRT test,
assuming the true parameters are known. The dashed line shows the result of the GLRT,
in which ML estimates are substituted for true parameters. The dotted line shows the
result of the stochastic complexity criterion as a function of the “top” of the parameter
range.
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Figure 4.9 Probability of correct decision for N = 10, estimated using 40,000 Monte
Carlo runs. The parameters θG and θP are chosen so that either E[xi] = 5 (left) or
E[xi] = 10 (right). The top two rows show the probability of correct decision where the
data are generated according to the Poisson model (top row) and the geometric model
(bottom row). The bottom row shows the average of the probabilities given in the top
two rows for a generic “probability of correct decision,” supposing that the Poisson and
geometric models are equally likely. The solid line shows the result of the LRT, assuming
the true parameters are known. The dashed line shows the result of the GLRT, in which
ML estimates are substituted for true parameters. The dotted line shows the result of the
stochastic complexity criterion as a function of the “top” of the parameter range.
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middle panel on the right of Figure 4.7, where the crosses, pluses, and dots lie above
or below the curve depending on the target data mean selected for each particular
experiment. In a sense, the behavior seen in the corresponding panel in Figure 4.10
is more stable; the dotted curve lies slightly below the LRT curve throughout the
full set of data means shown. Similar observations could be made about the middle
panels on the left of Figures 4.7 and 4.10.
Out of curiosity, for one last experiment, we tried letting the top end of the

Poisson parameter range correspond to the maximum value in the data set instead
of the mean (with the geometric parameter chosen appropriately to match, as we
have done throughout the chapter). Using these ranges yields the lines with the
crosses shown in Figure 4.10. This procedure seems to punish the Poisson model
and favor the geometric model, perhaps overly so. Notice the crosses waver both
above and below the solid (GLRT) line; hence this procedure does not enjoy the
stability of behavior relative to the true parameter value discussed in the previous
paragraph.

4.7 Concluding Contemplations

We embarked on this chapter with the intention and hope of “solving” the problem
of infinite parametric complexity for at least one interesting non-Gaussian case.
Alas, after twenty-some pages, a completely satisfying solution for this simple case
of Poisson vs. geometric hypothesis testing (e.g., something as tasty as Rissanen’s
solution for the Gaussian regression, listed as Approach 3 in Section 4.4.2) has
eluded us. That approach, along with Approaches 4 and 5 mentioned in the same
section, would be good approaches to focus on in continuing this work.
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Figure 4.10 The upper and middle panels correspond to data generated under the
Poisson and geometric models, respectively. The original LRT and raw GLRT results are
shown by the solid and dashed lines. The dots and crosses show results obtained using the
approximate stochastic complexity expression with restricted ranges. The dots correspond
to taking the top value of the parameter range to be x̄, the empirical mean of the data,
under the Poisson hypothesis, and taking the top value to be the equivalent θ

(top)
G =

x̄/(x̄+1) under the geometric hypothesis. The crosses correspond to taking the top value
of the parameter range to be xMAX , the maximum value of the data, under the Poisson
hypothesis, and taking the top value to be the equivalent θ

(top)
G = xMAX/(xMAX + 1)

under the geometric hypothesis. The lower row gives the average of the first two rows. In
the left panels, the mean is fixed at 5, and the number of outcomes is varied. In the right
panels, the sample mean is varied, and the number of outcomes is kept fixed at 6. This
figure is analogous to Figure 4.7.
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Evaluating models that approximate complex data distributions is a core problem
in data understanding. In this pedagogical review, we describe how the minimum
description length (MDL) principle can be applied to evaluate the relative appro-
priateness of distinct models that defy conventional comparison methods, including
models that are obscurely equivalent under functional transformations and inequiv-
alent models with the same number of parameters. The MDL principle provides a
concrete approach to identifying models that fit the data, avoid overfitting the noise,
and embody no more functional complexity in the model itself than is necessary.
New results on the geometric complexity of several families of useful models are
derived, and illustrative examples are worked out in detail.

5.1 Introduction

The world of experimental science is replete with applications that require suitable
approximations in order to model complex data sets that contain excessive apparent
detail due to noise. Signal analysis, image analysis, shape detection, modeling data
from psychological observations, modeling data from physical observations, and so
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forth, are only a few of the examples that spring immediately to mind. As each
new research paper develops yet another clever technique or proposes yet another
functional class of models, one bothersome question remains: how can we distinguish
among different approaches? What criterion besides the author’s word do we have
to conclude that one model is better than another? In other words, how do we
distinguish a suitable approach from an optimal approach? Our purpose in this
chapter is to present a core collection of data models analyzed so that the minimum
description length (MDL) principle can be used, after a parameter choice has been
selected, as a possible means of comparing the appropriateness of distinct models .
We outline the practices of MDL for a general scientific audience, derive new results
for the geometric complexity of common classes of functional models, and provide
a selection of illustrations suitable for a variety of modeling and data reduction
problems.

The Idea in a Nutshell The conundrum that leads us to the ideas presented in
this chapter is simply this: suppose you do a least squares fit to a proposed model for
a data sample. You suspect that the 10th-order polynomial you used to fit the data
is in fact nonsense, even if it has really low variance, because you have good reason
to believe that a cubic polynomial process actually generated the data. You confirm
this by checking your 10th-order fit against another attempt at the measurement,
and it is ridiculously bad, even though the fit to the first sample was superb. If you
check the new data against a cubic fit to the old data, it will still be an appropriate
fit. How do you figure this out a priori when you cannot take a second sample? The
MDL method described here shows how this can be accomplished in well-behaved
situations. The essence of the entire argument is illustrated in figures 5.2, 5.3, and
5.4, which show explicitly that the “best” model using MDL, the lowest point on
the graph, is also typically the “right” model, the one used secretly to simulate the
noisy data; the lowest-variance models are almost always wrong.

General Background The minimum description length principle appears first in
the work of Rissanen [1983, 1986, 1989] where it arose in the information-theoretic
analysis of stochastic processes. Over the years, a number of refinements have ap-
peared, many also due to Rissanen and his collaborators (see, e.g., [Leclerc 1989;
Fua and Hanson 1991; Mehta, Rissanen, and Agrawal 1995; Rissanen 1996; Balasub-
ramanian 1997; Aggrawal, Gehrke, Gunopulos, and Raghavan 1998; Rissanen 1999;
Myung, Forster, and Browne 2000; Myung 2000; Myung, Balasubramanian, and
Pitt 2000; Myung, Pitt, Zhang, and Balasubramanian 2001; Hansen and Yu 2001;
Rissanen 2001a; Pitt, Myung, and Zhang 2002; Leclerc, Luong, and Fua 2003]).
The definitive formulation, answering many questions regarding comparison with
alternative approaches, is found in [Rissanen 2001b]. The underlying idea is sim-
ply to stretch information theory to its limits, and to evaluate all the parts of a
data description in the same universal language: the number of bits needed in the
description. Thus an excessively simple model would require few bits for its own
description, but many bits to describe the deviations of the data from the model,
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while an excessively complex model could describe the data flawlessly, but would re-
quire a huge self-description. Less obvious is the fact that two models with the same
number of parameters can differ substantially in the measure of the “descriptive
power” of their functional spaces, and the appropriateness of a particular model can
be distinguished on that basis as well. If this is done carefully, the theory is insen-
sitive to reparameterizations of the models, a potential source of endless confusion
and controversy. Also of interest to some classes of problems is the fact that both
the model for the data sample and the model for its error process enter into the
evaluation. Thus one intuitively expects the evaluation of all modeling problems to
involve a compromise including the model’s parameters, the form of its statistical
noise, and a description of the intrinsic complexity of the modeling function itself.
The best compromise is the most elegant description, the minimal overall amount
of required information, the concrete mathematical formulation of Occam’s razor.
At this time, there are still some open questions regarding the uniqueness of

the “geometric cost” that permits the calculation of the relative complexity of two
models, the handling of small, as opposed to nearly infinite, data samples, and an
annoying arbitrariness in the choice of model parameter volumes. However, prac-
tical calculations using formulas valid for asymptotically large data samples and
a functional metric based on the Fisher information matrix are straightforward
in practice and exhibit the most essential desired properties: the results are inde-
pendent of functional reparameterizations of the models, and favor models that
generalize to other samples from the same distribution, as opposed to deceptively
accurate models that are in fact overfitting the noise.

5.2 Computing Model Description Length

The fundamental description-length or “cost” formula that we will use, loosely
following [Myung et al. 2000; Myung et al. 2001; Pitt et al. 2002], takes this form:

D = F +G , (5.1)

which can be read as

“Description-length equals Fit plus Geometry.”

The first term quantifies the “goodness-of-fit” to the data and takes the general
form

F = − ln f(y|θ̂) . (5.2)

To compute this term, we must have some means of making a specific numerical
choice for the fitted values {θ̂} of the model parameters. We will restrict our
treatment here to models of the form

y = g(θ, x) with an error model , (5.3)
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describing the dependent (measured) variable y in terms of a set of model param-
eters {θ} and the independent variables x. Various error models such as additive
noise models and multiplicative noise models could be specified; normal-distributed
Gaussian additive noise is the most common choice.
The function f(y|θ) is a user-chosen statistical likelihood function corresponding

to the model of (5.3) with its error process, and the {θ̂} are model parameters
fixed by some (typically maximum likelihood) fitting procedure. F is thus an
information-theoretic measure corresponding to the number of bits of description
length attributable to inaccuracy: if f ≈ 0, the data are not well-described by {θ̂},
whereas if f ≈ 1, the description is ideal. (Note: we will use natural logarithms
denoted by “ln” throughout, although technically perhaps log2 should be used to
express all description lengths directly in bits.)
If we have a sample, {yn(x), n = 1, . . . , N}, then we evaluate f(y|θ̂) as the

product of the probabilities for each individual outcome yn at the fixed parameter
values θ̂ found from the maximum likelihood fit to the hypothesized model g(θ, x):

f(y|θ̂)→ f({yn}|θ̂) ≡
N∏

n=1

f(yn|θ̂). (5.4)

This makes explicit the intuition that F quantifies the cost of describing the devia-
tion of the set of N measured outcomes in the sample {yn(x)} from the maximum
likelihood fit. A critical feature of the approach is that the error distributionmust be
specified to completely define the model; MDL can in fact theoretically distinguish
between identical models with differing statistical error generation processes.
The second term is the “geometric term” (technically the parametric complexity

of the model),

G = +
K

2
ln
N

2π
+ ln

∫
Vol

dKθ
√
det I(θ) , (5.5)

where K is the number of parameters and {θk, k = 1, . . . ,K} is the parameter set
of the model having Vol as the domain of the entireK-dimensional parameter space
integration for the model being considered. I(θ) is the K ×K Fisher information
matrix averaged over the data samples, but with each y replaced by its expectation;
the computation of I(θ) is complex, and is discussed in detail just below. Note that
we have chosen to use uppercase K to denote the number of model parameters,
while many authors use lowercase k for this quantity; we reserve k for the running
index over the set of model parameters.
Intuitively, I(θ) has many properties of a metric tensor, and in fact dKθ

√
det I

has precisely the form of a reparameterization-invariant volume element dKx
√
g

familiar from Riemannian geometry and general relativity. This volume element
effectively allows us to count the number of distinct probability distributions the
model can generate (see the discussion in [Pitt et al. 2002] and related citations).
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The Fisher information matrix We now attend to the definition of the Fisher
information matrix and the rest of the machinery required to carry out explicit
computations of I(θ), as well as working out a standard example that will serve as
our model throughout the rest of the chapter.
First, we define the general notion of an expectation of a function h(y) with

respect to a statistical likelihood function as follows:

E(h(y)) =
∫
dy h(y) f(y|θ) (5.6)

Thus, any coefficient in a polynomial expansion of h(y) will be multiplied by the
expectation corresponding to the appropriate mth moment,

E(ym) =
∫
dy ym f(y|θ). (5.7)

To compute the Fisher information matrix, one begins by considering the expec-
tation of the second derivative of the chosen log-likelihood function for continuous
variables and parameters,

Lij(θ,x) = E
(

∂2

∂θi∂θj
[− ln f(y|θ,x)]

)
, (5.8)

where we explicitly include the possible dependence of f on the dependent variable
x through g(θ,x). When the expectation is computed, the dependent variable y is
integrated out; however, the values of the dependent variables x remain, and, in
particular, will be known for each outcome of a particular sample {yn}. This leads
to the definition of the Fisher information matrix, which is the average of Lij over
the actually obtained outcomes in the data sample; using (5.4) to expand ln f(y|θ)
as the sum of the logs of the individual components for the dependent variable yn
measured at the location xn in the space of independent variables, we obtain the
basic definition

Iij(θ) =
1
N

N∑
n=1

Lij(θ,xn)

=
1
N

N∑
n=1

E

(
∂2

∂θi∂θj
[− ln f(y|θ,xn)]

)
(5.9)

for the Fisher information matrix of a measured sample.

The Normal Distribution The easiest way to understand I(θ) is to choose a
specific error model and work out an example. The Gaussian describing the usual
normal distribution,

f(y|θ,x) = 1
σ
√
2π

exp
(
− 1
2σ2

(y − g(θ, x))2
)
, (5.10)

is by far the most common error distribution, and is easy to compute with. The
error is modeled by the Gaussian width σ, and the relevant expectations may be
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computed explicitly:

E(1|x) = 1

E(y|x) = g(θ, x)
E(y2|x) = σ2 + g(θ, x)2

· · · (5.11)

The first step toward calculating the Fisher information matrix for the normal
distribution is to differentiate (5.10) and apply the expectation formulas of (5.11)
to find

Lij(θ, x) = − 1
σ2
E(y − g(θ, x)) ∂i ∂j g(θ, x) + 1

σ2
∂ig(θ, x)∂jg(θ, x)

= 0 +
1
σ2
∂g(θ, x)
∂θi

∂g(θ, x)
∂θj

. (5.12)

We obtain the corresponding Fisher information matrix by computing the average
over outcomes,

Iij(θ) =
1
N

N∑
n=1

Lij(θ,xn) =
1
Nσ2

N∑
n=1

∂ign(θ)∂jgn(θ) , (5.13)

where we use the convenient abbreviation gn(θ) = g(θ1, . . . , θK ; xn). Note that the
{θ} are free variables, not the maximum likelihood values, since we must integrate
over their domains; however, the values {θ̂} may still be of importance, since they
can in principle determine the dominant contribution to the integral. In addition,
it is important to realize that det I will vanish unless the number N of linearly
independent measurements is at least equal to the dimension of the parameter space,
N ≥ K; the geometric term is undefined unless there are enough measurements to
determine a fit to the model parameters.
When computing the determinant in the integral of the geometric term for the

normal distribution, it is sometimes convenient to rearrange the terms in (5.13)
using

ln
∫
dKθ

√
det I(θ) = ln

∫
dKθ

√(
1
Nσ2

)K√
det |

∑
n

∂ign(θ)∂jgn(θ)|

= −K
2
lnNσ2 + ln

∫
dKθ

√
det |

∑
n

∂ign(θ)∂jgn(θ)| .

This permits us to cancel the factors of N and re-express the geometric term as

G =
K

2
ln
N

2π
− K

2
lnNσ2 + ln

∫
dKθ

√
det |

∑
n

∂ign(θ)∂jgn(θ)|

= −K lnσ
√
2π + ln

∫
dKθ

√
det |

∑
n

∂ign(θ)∂jgn(θ)| . (5.14)
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Figure 5.1 Top left: Data set generated from a constant plus noise (identical to the
N = K-parameter “perfect” piecewise fit). Top right: Single-parameter mean value fit.
Bottom left: Overfitting with an evenly spaced set of 8 piecewise constants. Bottom right:
Overfitting with 32 piecewise constants.

5.3 Piecewise Constant Models

Suppose that a particular data set is sampled at intervals corresponding to power-
of-two subdivisions of the domain. Then we can identify the “simplest” model –
the global mean, the most complex model, where each data point is itself a model
parameter, and a complete set (the binary tree) of power-of-two models between
these two extremes. We now treat each in turn.

Global Mean Model The simplest possible model is just a constant

y = µ

(plus noise) corresponding to the simulated data shown in figure 5.1(top left). A
least squares fit to the data gives the maximum likelihood solution

µ̂ =
1
N

N∑
n=1

yn,

as shown in figure 5.1(top right). µ̂ is expected to be very close to the value of µ
used to simulate the data, but will virtually never match it exactly. The cost of
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representing the deviations from this fit is given by

F = − ln f({yn}|µ̂)

= − ln
N∏

n=1

1
σ
√
2π

exp(−(yn − µ̂)2/2σ2)

= N lnσ
√
2π +

1
2σ2

N∑
n=1

(yn − µ̂)2

= N lnσ
√
2π +

N

2σ2
(variance) . (5.15)

Since K = 1 and the Fisher matrix is 1× 1, we have simply

I(µ) =
1
N

N∑
n=1

1
σ2

=
1
σ2
, ( Note:

(
∂µ

∂µ

)2

= 1 )

so the geometric term [from either (5.5) or (5.14)] becomes

G =
K

2
ln
N

2π
+ ln

1
σ

∫ max

min
dµ

=
1
2
ln
N

2π
+ ln

µmax − µmin

σ
. (5.16)

Data-Perfect Model On the other hand, the most complex model is effectively
no model at all, the model with one parameter for each measured value (K = N),

y =
N∑

n=1

ynδ(x, xn) ,

where δ(x, xn) is the Kronecker delta (unity for x = xn, zero otherwise). There is
nothing to fit: assuming the choice of {xn} is a regularly-spaced sequence, so {xn}
is not a choice of parameters, then we have N parameters {yn}; if the {xn} are
specified independently in the measurement, then we would have 2N parameters,
{(xn, yn)}. For simplicity, we treat the former case, so the model graph is the same
as the data plot in figure 5.1(top left), and

F = − ln f({yn}|{yn})

= N lnσ
√
2π +

1
2σ2

N∑
n=1

(yn − yn)2

= N lnσ
√
2π + 0 . (5.17)
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As promised, this has no cost corresponding to deviations of the data from the
model. The Fisher information matrix, however, is now N ×N , and [from (5.12)]

Lij =
1
σ2

(∑
n

∂(ynδ(x, xn))
∂yi

)(∑
n′

∂(yn′δ(x, xn′ ))
∂yj

)

=
1
σ2
δ(x, xi)δ(x, xj) (5.18)

Iij =
1
Nσ2

N∑
n=1

δ(xn, xi)δ(xn, xj) =
1
Nσ2

δ(i, j) . (5.19)

This is tricky because
∑N

n=1 δ(xn, xi)δ(xn, xj) equals 1 only if i equals j, so it equals
δ(i, j). Since K = N and δ(i, j) represents the N×N identity matrix, the geometric
contribution (assuming identical parameter domain sizes V ) is [from (5.5)]

G =
N

2
ln
N

2π
+ ln

∫
V

· · ·
∫
V︸ ︷︷ ︸

N

dNy

√
det

1
Nσ2

δ(i, j)

=
N

2
ln
N

2π
− N

2
lnN + ln

V N

σN

= +
N

2
ln

1
2π

+N ln
V

σ
. (5.20)

Binary-Tree Model Data are often approximated by a binary tree generated
by applying recursive two-element box filters. We can represent an entire family
of models in this fashion, each with 2M parameters, where M = 0 is the single
parameter (global mean) model treated first, and M = log2N (N = 2M ) is the
zero-error model. The models each take the form

y =
N∑

n=1

gn(M)δ(x, xn) .

The power-of-two subdivision is represented by requiring the gn(M)’s to be repeated
N/2M times, and defining the 2M independent parameters to be {zn(M), n =
1, . . . , 2M}. The best-fit values ẑ then are computed from the means over the
repeated occurrences (e.g., the box-filtered means at each level). To be explicit,
if {yn} is a sample, the M independent parameter sets giving the best fit at each
level are

M = log2N → ẑn = yn
M = log2(N/2) → ẑ1 = (ĝ1 = ĝ2) = (1/2)(y1 + y2),

ẑ2 = (ĝ3 = ĝ4) = (1/2)(y3 + y4), . . .

M = log2(N/4) → ẑ1 = (ĝ1 = ĝ2 = ĝ3 = ĝ4) =

(1/4)(y1 + y2 + y3 + y4), . . .

. . . . . . . . .

M = 0 → ẑ1 = (ĝ1 = . . . = ĝn) = µ̂
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In figure 5.1, we show a single data set generated by a distribution with constant
mean along with the fits for M = 0, M = 3, and M = 5, respectively, to illustrate
overfitting.
The goodness-of-fit term becomes

F (M) = − ln
N∏

n=1

f(yn|ẑ(M))

= N lnσ
√
2π +

1
2σ2

N∑
n=1

(yn − ẑm(n)(M))2, (5.21)

wherem(n) = 	n2M/N
, so the ẑm(M) are understood as the 2M independent con-
stants (not N independent values) giving the best-average fit to the measurements
at binary-tree level M .
The geometric term, which gives the measure of the functional space spanned by

the zm(M) considered as variable parameters, is based on the 2M × 2M matrix

Iij(M) =
1
Nσ2

N∑
n=1

[
∂

∂zi

(
N∑
l=1

zm(l)(M)δ(xn, xl)

)

∂

∂zj

(
N∑

l′=1

zm(l′)(M)δ(xn, xl′)

)]

=
1

σ22M
δ(i, j) , (5.22)

where we have used the fact that N/2M occurrences of zm(M) are replicated at the
level M . (Each of the two inner summations will produce N/2M terms that have
different indices for the same z, which we might write as [zi δ(xn, x(iN)/(2M )) + . . .]
and [zj δ(xn, x(jN)/(2M )) + . . .], respectively; when we differentiate, multiply, and
sum, we obtain N/2M copies of the δ(i, j) term in (5.19).)
Thus, with K = 2M and δ(i, j) representing the 2M × 2M identity matrix, we

have (assuming identical parameter domain sizes V ) [similar to (5.20)],

G(M) = +
2M

2
ln
N

2π
+ ln

∫
V

· · ·
∫
V︸ ︷︷ ︸

2M

d2
M

z

√
det

δ(i, j)
2Mσ2

= +
2M

2
ln
N

2π
+ lnV 2M +

1
2
ln
(

1
2Mσ2

)2M

=
2M

2
ln

N

2π (2M )
+ 2M ln

V

σ
, (5.23)
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and, for the Mth level binary-tree model, the total description length is

D(M) = F (M) +G(M)

= N lnσ
√
2π +

1
2σ2

N∑
n=1

(yn − ẑm(n)(M))2

+
2M

2
ln

N

2π (2M )
+ 2M ln

V

σ
. (5.24)

This form shows explicitly the transition from (5.16), with M = 0, to (5.20), with
2M = N .

Quadtrees, Octrees, etc. The binary tree model for piecewise constant 1D
data can be easily extended to higher dimensions. For D-dimensional data, the
corresponding model is a piecewise constant 2D-tree (D = 2 being a quadtree,
D = 3 being an octree, etc.). For simplicity, we assume ND data samples over all
D dimensions. We define the model as

A(x, y, . . .) =
ND∑
ij...

zm(ij...)(M)δ(x, xi)δ(y, yj) . . . .

Then the data-fitting term becomes

F (M,D) = − ln
ND∏
ij...

f(Aij...|ẑ(M)) (5.25)

= ND lnσ
√
2π +

1
2σ2

ND∑
ij...

(Aij... − ẑm(ij...))2 .

The number of parameters is K = (2M )D and the K ×K Fisher matrix is

Iij...,i′j′... =
1
σ2

(
1
2M

)D

δ(ij . . . , i′j′ . . .) ,

where i, j, . . . now range to 2M instead of N . The geometry term is

G(M,D) =
2MD

2
ln

N

2π (2MD)
+ 2MD ln

V

σ
, (5.26)

which generalizes (5.24) for D = 1. One could even apply this approach to the
independent modeling of each level of a signal’s resolution hierarchy to achieve
optimal compression.

Numerical Experiments The principal motivation for the MDL approach is
to distinguish between a good fit and overfitting to achieve what is referred to in
the statistics and pattern recognition literature as generalization. If the model does
not generalize, then additional data sets with the same statistics will not be well-
described, indicating the presence of an excessively complex model that conforms
to the random noise patterns of one isolated sample. We can test this by generating
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Figure 5.2 Comparison of the variance contribution F − const (heavy curve), the
geometric contribution G + const (light curve), and their sums D(M) (heavy dots) as a
function of level M for three different data distributions: (top) Original data generated by
a single mean, M = 0. (middle) Original data generated by two means, M = 1. (bottom)
Original data generated by four means, M = 2.

a 256-element sample normally distributed about a mean of zero with σ = 1, and
allowed parameter values [−3, 3] so that V = 6 (ambiguities can arise if V/σ is
too small). For M = 0, the fit to the single parameter is ẑ = µ̂ = (1/N)

∑
yn; for

M = 1, we can determine ẑ1 and ẑ2 to be the means for the left and right halves
of the data, and so on.
In figure 5.2(a), we compare the variance term (F (M)− const) (the heavy curve)

vs. (G(M) + const) (the light curve) as a function of M , and show the summed
description length D(M) as black dots. In figure 5.2(b), we repeat the process,
except that the data are distributed about a “true” M = 1 model, with means 0
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Figure 5.3 MDL cost as a function of binary-tree level M for the model for four data
set samplings and three different models. The heavy dots are the same points D(M) as in
figure 5.2 and denote the costs of the model used to determine the maximum likelihood
parameters used in evaluating curves for the remaining models. (a) Original data are
distributed about a single mean (M = 0); (b) two means (M = 1); (c) four means (M = 2).

and 1 for the left and right halves of the data. figure 5.2(c) shows the results for an
M = 2 model, with means (0, 1, 0, 1). We can now explicitly see the tradeoff between
the data fit and the model description: the minimum sum occurs as promised for
the true model.
Curiously, we see that the drastic drop in the data error for the “perfect” N -

parameter model gives it a slight statistical edge over its neighbors. However, this
is an illusory advantage: if we generate several additional data sets with the same
distributions and evaluate them against the set of fits {ẑ(M)} determined by the
original data sets, we see the results in figure 5.3. The overfitted models with
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excess parameters are extremely poor descriptions of the abstract data distribution.
The minimal models generalize perfectly, and the overfitted models are terrible
generalizations.
We conclude that choosing the model with the minimum description length avoids

both the traps of underfitting and overfitting, and suggests the selection of models
close to those generated by the actual data rather than being confused by models
with artificially low variance. In principle, models with different statistical distribu-
tions and parameter-space geometry can also be distinguished, though noncompact
parameter spaces require some externally imposed assumptions [Myung et al. 2000;
Pitt et al. 2002].

5.4 Continuous Linear Models

Polynomial Functions Polynomials form the simplest class of differentiable
models beyond the piecewise-constant models of the previous section, and can
be extended to include piecewise continuous splines in principle. If we choose K-
parameter polynomial models of the form

y =
K−1∑
k=0

akx
k (5.27)

and then carry out a least squares fit to get the maximum likelihood parameter
estimates âk, the data-fitting term for N outcomes {(xn, yn)} is

F (K) = N lnσ
√
2π +

1
2σ2

N∑
n=1

(
yn −

K−1∑
k=0

âk(xn)k
)2

, (5.28)

and the K ×K geometric term matrix with i, j = 0, . . . ,K − 1, is

Iij =
1
Nσ2

N∑
n=1

∂

∂ai

(
K−1∑
k=0

ak(xn)k
)
∂

∂aj

(
K−1∑
k′=0

ak′(xn)k
′
)

=
1
Nσ2

N∑
n=1

(xn)i(xn)j =
1
Nσ2

N∑
n=1

(xn)(i+j) . (5.29)

The geometric term becomes

G(K) = +
K

2
ln
N

2π
+ ln

∫
V

· · ·
∫
V︸ ︷︷ ︸

K

dKa

√√√√det

[
1
Nσ2

N∑
n=1

(xn)(i+j)

]

= −K
2
ln 2π +K ln

V

σ
+

1
2
ln det

[∑
n

(xn)(i+j)

]
, (5.30)

where we assumed the same domain size V for each parameter. The determinant
vanishes even for linearly independent outcomes unless N ≥ K, excluding under-
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Figure 5.4 The lowest MDL cost as a function of the number of fitted polynomial
parameters K for one data sample (heavy dots) selects the generating model, as well as
generalizing to four additional data samples (curves). (a) The simulated data are normally
distributed about a constant function; (b) linear function; (c) quadratic function; (d)
cubic function.

determined models. Note that, unlike the piecewise constant case, G(K) now has
an explicit data dependence.
In the specific case where there are sufficiently many outcomes so that the sum

in (5.30) approximates a Monte Carlo integration over some domain, say a ≤ x ≤ b,
we can explicitly compute the last term in (5.30), with ∆x ≈ (b− a)/N , as

1
2
ln det

N

b− a
[
bi+j+1 − ai+j+1

i+ j + 1

]
.

We remark on the close relationship of the resulting matrix to the notoriously ill-
conditioned Hilbert matrix, which is exact if a = 0 and b = 1.
An identical exercise to that in figure 5.3 can now be carried out. In figure 5.4,

we show the cost of fits up to K = 9 (8th power) for samples generated using
constant, linear, quadratic, and cubic models with normally distributed error. We
observed that the relative magnitudes of the standard deviation in the error model
and the scale of x can affect whether the correct polynomial order is unambiguously
selected. Here we used σ = 1, ak = 1, and 0 ≤ x ≤ 3 with 256 outcomes. We see
that the optimal K is that used to generate the data.
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Orthonormal Functions If we replace the power series by a set of normalized
orthogonal polynomials, we would write

y =
K−1∑
k=0

akhk(x) , (5.31)

where the orthogonality relation between hk and its conjugate hk, using integration
domain U , is by definition ∫

U

dxhk(x)hk′ (x) = δk,k′ , (5.32)

so that we may formally determine the expansion coefficients from the integrals

ak =
∫
U

dxhk(x)y(x) . (5.33)

Here we in principle have a choice of methods to determine the optimal coefficients
{âk}:
Maximum likelihood. The model (5.31) can be fit using least squares methods like

any other function. This method is probably preferred for sparse data distributions.

Projection. Provided the samples are appropriately distributed or can be selected
in such a way that the discretely sampled version of the projection (5.33) is a good
approximation to the analytic integral, we can take ∆x ≈ U/N , and write

âk ≈ U

N

N∑
n=1

hk(xn)yn . (5.34)

The polynomials themselves form our first example of this class of functions if
we normalize the Legendre polynomials appropriately, for example,

Q0(x) =

√
1
2
· 1

Q1(x) =

√
3
2
· x

Q2(x) =

√
5
2
·
(
3
2
x2 − 1

2

)
...

with integration range −1 ≤ x ≤ 1. Choosing the model sequence up to some
maximum K as

y = a0

√
1
2
+ a1

√
3
2
x+ a2

√
5
2

(
3
2
x2 − 1

2

)
+ · · · , (5.35)
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we can choose either the least squares fit or the projection to determine the model
coefficients; the projection can be computed using

â0 =
2
N

N∑
n=1

√
1
2
yn

â1 =
2
N

N∑
n=1

√
3
2
xnyn

â2 =
2
N

N∑
n=1

√
5
2

(
3
2
x2n −

1
2

)
yn

...

Given the model (5.35) and the coefficients {â}, we can compute f(y|â) and thus
F and G almost exactly as we did for the polynomial example leading to figure 5.4,
and we expect similar results if the samples are sufficiently well behaved.
Other examples of this class include the discrete sine-cosine series, (1/

√
π) cos jθ

and (1/
√
π) sin jθ for j �= 0, and (1/

√
2π) for j = 0, where, for example,∫

U=2π

dθ

(
1√
π
cos jθ

)(
1√
π
cos j′θ

)
= δj,j′ , (5.36)

and the spherical harmonic series with basis functions Ylm(θ, φ), detailed below.

Remark The calculation of the geometric term of the description length for
orthonormal functions has one notable peculiarity. If we assume a real basis, so
h = h (e.g., the cosine), the Fisher matrix can be reduced to

Iij =
1
Nσ2

N∑
n=1

hi(xn)hj(xn) . (5.37)

Remarkably, just as we saw for the projection, (5.33), this is essentially a Monte
Carlo approximation to the orthogonality integral, (5.32), if the samples are appro-
priately distributed. Therefore, as N → (large) (which is, indeed, the condition
for the validity of many of the MDL formulas we are using), with ∆x ≈ U/N , then

Iij ≈ 1
Nσ2

N

U
δi,j . (5.38)

If VK =
∏

k

∫
dak, then the geometric term is just

G =
K

2
ln

N

2πU
+ ln

VK
σK
. (5.39)

If we assume identical parameter domains, then we can also make the simplification
VK = (V )K .
Similar classes of functions such as wavelets would give results exactly analogous
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to our findings for orthogonal expansions:

Iij =
1
Nσ2

N∑
n=1

Wi(xn)Wj(xn)

≈ 1
Nσ2

N

U

∫
U

dxWi(x)Wj(x)

≈ 1
Nσ2

N

U
Hij , (5.40)

so

G =
K

2
ln

N

2πU
+ ln

VK
σK

+
1
2
ln detHij , (5.41)

for some appropriately defined integration domains and overlap functions Hij .

Explicit Example: Real Spherical Harmonics Suppose that we have a model
for a radially varying spherical data set that we wish to expand around a fixed
origin using an unknown optimal number L of spherical harmonics. Then we can
express this radial function for sampled values of the angular coordinates (θ, φ) on
an ordinary sphere as

y = r(θ, φ) =
L∑

l=0

+l∑
m=−l

(clmY c
lm(θ, φ) + slmY s

lm(θ, φ)) , (5.42)

where Y c
lm and Y s

lm are the cosine-like and sine-like real spherical harmonics (see,
e.g., the web page http://mathworld.wolfram.com/SphericalHarmonic.html, [Arfken
1985], or [Ritchie and Kemp 1999] for full details). Note that {clm, slm} are the
model parameters that we previously denoted by {θ}, while (θ, φ) now corre-
sponds to “physics convention” polar coordinates with (x = r cosφ sin θ, y =
r sinφ sin θ, z = r cos θ) in order to have the correct correspondence to the con-
ventions for Ylm(θ, φ): we take 0 ≤ φ < 2π, 0 ≤ θ ≤ π, so the integration volume
element dΩ = d cos θ dφ has total volume 4π. Our task is to determine the optimal
value L of the last useful term in the harmonic series for a body of data using MDL.
For each value of L in a set of attempted data descriptions with L = 0, 1, 2, 3, . . .,

we determine by some suitable means (e.g., least squares fit or projection) a
corresponding set of optimal model parameters {ĉlm, ŝlm} from the data. The
goodness-of-fit term in the MDL expression with normal statistics becomes

F = −
N∑

n=1

ln f (r(θn, φn)|{ĉlm, ŝlm})

= N lnσ
√
2π +

1
2σ2

N∑
n=1

(
r(θn, φn)−

∑
lm

(ĉlmY c
lm(θn, φn) + ŝlmY s

lm(θn, φn))

)2

, (5.43)
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and the geometric complexity term is

G =
K

2
ln
N

2π
+ ln

∫
d{clm}

∫
d{slm}

√
det I({clm, slm}) . (5.44)

We remark that for even functions, only the clm survive, and so K = (L+ 1)2; for
odd functions, the l = 0 term is absent, and so technically K = (L + 1)2 − 1; for
mixed functions, we would therefore expect K = 2(L+1)2− 1 parameters. We will
leave K unspecified to allow appropriate adjustments for particular data sets.
Expanding the Fisher information matrix, we can explicitly write the terms as

det Ilm,l′m′({clm, slm}) =

det
1
Nσ2

[ ∑N
n=1 Y

c
lm(θn, φn)Y c

l′m′(θn, φn)
∑N

n=1 Y
c
lm(θn, φn)Y s

l′m′(θn, φn)∑N
n=1 Y

s
lm(θn, φn)Y c

l′m′(θn, φn)
∑N

n=1 Y
s
lm(θn, φn)Y s

l′m′(θn, φn)

]

=
(

1
Nσ2

)K

det
N∑

n=1

[
Y c
nY

c
n Y c

nY
s
n

Y s
nY

c
n Y s

nY
s
n

]
. (5.45)

Thus we can write the geometric contribution as follows:

G =
K

2
ln
N

2π
− K

2
lnNσ2 + ln

∫
d{clm}

∫
d{slm}+ 1

2
ln det

N∑
n=1

[
Y c
nY

c
n Y c

nY
s
n

Y s
nY

c
n Y s

nY
s
n

]

If we denote the parameter integrals as, for example,
∫
dclm = Clm, we can finally

write

G = −K lnσ
√
2π +

∑
lm

lnClm +
∑
lm

lnSlm +
1
2
ln det

N∑
n=1

[
Y c
nY

c
n Y c

nY
s
n

Y s
nY

c
n Y s

nY
s
n

]
.(5.46)

If, as noted above, the sampled values should provide an approximation to the
orthogonality relation integral∫

dΩY c
lmY

c
l′m′ = [identity matrix]lm,l′m′ ,

then with ∆Ω ≈ 4π/N , we can obtain the approximate result

G = −K lnσ
√
2π +

∑
lm

lnClm +
∑
lm

lnSlm +
1
2
ln
(
N

4π

)K

= −K lnσ
√
2π +

∑
lm

lnClm +
∑
lm

lnSlm +
K

2
ln
N

4π
. (5.47)

Observations We can see that it is almost trivial to test to see whether or not
least squares fitting should be performed rather than numerical projection for or-
thogonal polynomials: for projection to be a valid approximation, the numerical
sum over the independent variables must give a (user-definable) sufficient approx-
imation to the orthogonality relation for the bare basis functions, independent of
any measured data or model selection.
We note also that if complex functions such as the classical spherical harmonics
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are used instead of the real cosine-like and sine-like harmonic combinations, one
finds experimentally that it is necessary to use complex conjugate pairs of Ylm’s in
the matrix Ilm,l′m′ to get positive definite numerical results.
If continuous Fourier expansions are used as models, the determination of quan-

tities such as the functional integrals over the coefficients required in the MDL
procedure appears to be an open question for future research.

5.5 Gaussian Models

Our examples so far have all been linear in the coefficients, so that the derivatives in
the Fisher matrix computation eliminate the parameter dependence, and nothing
particularly interesting happens in the integration. In this section, we treat a
new class, the Gaussian models, which are very important data models in their
own right, and exhibit new and nontrivial behavior in their parameter derivatives.
Unfortunately, it is also much more difficult to determine reliable least squares fits;
a single Gaussian’s parameters can be determined by a polynomial least squares
fit to the logarithm, but sums of Gaussians require more general methods such as
Levenberg-Marquardt optimization (see, e.g., [Bates and Watts 1988]).
We choose as our general model a sum of K/3 Gaussians, with K parameters in

total, of the following form:

y = g(x, θ) =
K/3∑
k=1

ak exp
(
− (x− bk)2

2c2k

)
(5.48)

This can easily be generalized to use a D-dimensional independent variable x by
extending bk to aD-dimensional vector bk. This increases the number of parameters
per Gaussian to 2 +D instead of 3.
The calculation of the description length follows the usual procedure: assume

that the Gaussian distribution itself has random errors described by a normal
distribution with standard deviation σ and carry out a least squares fit procedure
to get the maximum likelihood parameter estimates {âk, b̂k, ĉk}. (We assume the
total error model is given by a single σ, though we could choose different ones for
different values ofK if we wished.) The data-fitting term for N outcomes {(xn, yn)}
is

F (K) = N lnσ
√
2π

+
1

2σ2

N∑
n=1


yn − K/3∑

k=1

âk exp(− (xn − b̂k)2
2ĉ2k


2

. (5.49)
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The K ×K geometric term matrix is

Iij=
1
Nσ2

N∑
n=1



A1(xn)

B1(xn)

C1(xn)
...

⊗ A1(xn) B1(xn) C1(xn) . . .


 , (5.50)

where

Ak(x) =
∂g

∂ak
= e

−(x−bk)2

2 c2
k

Bk(x) =
∂g

∂bk
=
ak (x− bk)

c2k
e

−(x−bk)2

2 c2
k

Ck(x) =
∂g

∂ck
=
ak (x− bk)2

c3k
e

−(x−bk)2

2 c2
k .

We denote the allowed integration domains by amin ≤ a ≤ amax, bmin ≤ b ≤ bmax,
cmin ≤ c ≤ cmax, and note that, for each triple of parameters, there is an overall
factor of a4/c10 in the determinant of Iij ; thus the argument of the logarithm in
G(K) is an integral of the form

V (K) =
∫
dK/3a

∫
dK/3b

∫
dK/3c

√√√√K/3∏
k=1

a4k/c
10
k det [sum of exponentials ]

=
K/3∏
k=1

∫
dak a

2
k

∫
dbk

∫
dck c

−5
k

√
det [sum of exponentials ] .

5.6 Models with the Same Number of Parameters

For completeness, we summarize here the comparison of the Fechner and Stevens
models presented by Pitt et al. [2002]; these models each have only two parameters,
and the problem of whether one or the other is a better description of a given body
of psychophysics data had long been an unanswerable question. We shall see that,
while standard analysis overwhelmingly favors one model over the other, no matter
what the source of the data, MDL can clearly distinguish them.

Goodness-of-Fit for the Fechner and Stevens Models The Fechner model,

y = a ln(x+ b) ,

and the Stevens model,

y = axb,
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both have two parameters and can in principle describe the same data. Assuming
corresponding probability distributions

fF(y|a, b) = 1
σ
√
2π

exp− 1
2σ2

(y − a ln(x + b))2

fS(y|a, b) = 1
σ
√
2π

exp− 1
2σ2

(
y − axb)2 ,

the goodness-of-fit term for a body of data with maximum likelihood parameters
(â, b̂) is

FFechner GOF = − ln f({yn}|â, b̂)

= N lnσ
√
2π +

1
2σ2

N∑
n=1

(yn − â ln(xn + b̂))2

= N lnσ
√
2π +

N

2σ2
(variance) (5.51)

for the Fechner model, with an obvious analogous expression for the Stevens model.

Geometric Terms The geometric term is easily seen to take the general form

Lij(a, b, x) =
1
σ2

[
( ∂
∂ag(a, b, x))

2 ∂
∂ag(a, b, x) · ∂

∂bg(a, b, x)
∂
∂ag(a, b, x) · ∂

∂bg(a, b, x) ( ∂
∂bg(a, b, x))

2

]
.

For the Fechner model, with E(yn) = a ln(b+xn), the relevant matrix term becomes

LFechnerij (a, b, xn) =
1
σ2

[
(ln(b+ xn))

2
a ln(b+xn)

b+xn

a ln(b+xn)
b+xn

a2

(b+xn)2

]
, (5.52)

while for the Stevens model, with E(yn) = axbn, the matrix is

LStevensij (a, b, xn) =
1
σ2

[
x2bn ax2bn lnxn

ax2bn lnxn a2x2bn (lnxn)2

]
. (5.53)

For sample sizes two or greater, we average over the values of xn to find the
corresponding 2× 2 matrix

Iij(a, b) =
1
N

N∑
n=1

Lij(a, b, xn) . (5.54)

The geometric term for each model is determined from the integral over the K = 2–
dimensional parameter space in the expression

G = ln
N

2π
+ ln

∫
da

∫
db
√
det I(a, b) . (5.55)
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Thus we find for the Fechner model, y = a ln(x+ b),

GFechner = − ln 2πσ2 + ln
∫
a da

∫
F (b) db

F 2(b) =

(
N∑

n=1

(ln(xn + b))2
)(

N∑
n=1

(xn + b)−2
)
−
(

N∑
n=1

ln(xn + b)
(xn + b)

)2

, (5.56)

and for the Stevens model, y = axb,

GStevens = − ln 2πσ2 + ln
∫
a da

∫
S(b) db

S2(b) =

(
N∑

n=1

(xn)2b
)(

N∑
n=1

(xn)2b(lnxn)2
)
−
(

N∑
n=1

(xn)2b lnxn

)2

. (5.57)

Comparison and Analysis The comparison of these two two-parameter models
can now be seen to reduce to the comparison of the two integrals over b: we
may assume that, if the model choice is ambiguous, the two variance terms are
comparable, and that the overall contribution of the scaling coefficient a is also the
same. Hence the difference is

∆(Stevens − Fechner) = ln
∫
S(b) db− ln

∫
F (b) db . (5.58)

Pitt et al. [2002] observe that the integral over b from (0 → ∞) diverges for S(b),
requiring an ad hoc choice of finite integration domain, while the integral converges
for F (b), so no such choice is necessary. With a reasonable choice of integration
domain (0 ≤ b ≤ 3, to be precise), and random samples drawn from the Stevens
and Fechner distributions, respectively, the full MDL cost equation clearly prefers
the model that created the distribution, while the Stevens model is overwhelmingly
chosen over the Fechner model in all cases if only the goodness-of-fit is taken into
account.

5.7 Remarks and Future Work

The minimum description length criterion for model selection has the remarkable
property that it can be formulated in a way – for example, using the Fisher
information matrix as a metric – that does not depend in any essential way
on reparameterizations of the models; unlike many standard methods, the MDL
procedures presented here are not deceived by disguises, and so confusions that
can arise from subtle transformations are avoided. Furthermore, it is often possible
to distinguish a priori among competing models to select the model that was most
likely to have produced the original distribution, even when a much lower maximum
likelihood fitting error results from overfitting with a more complex model.
However, there are a number of overall problems to be addressed in practical

applications of the method. Among these, we note particularly the following:
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Parameter ranges. As we have seen in many examples, such as the Stevens model,
the parameter values must often be restricted to obtain finite integrals for the
geometric term. This technically invalidates the reparameterization invariance. This
problem is well-known and various attempts have been made to address it: Rissanen
[1996], for example, discusses the issue and suggests possible correction terms;
other solutions (I.J. Myung, personal communication) might be to approximate the
integral over the determinant using the value of the determinant at the maximum
likelihood point (though this again invalidates reparameterization invariance), or
to seek alternative metrics to replace the Fisher information matrix, optimally
selected according to some metacriteria that are consistent with the rest of the
MDL procedure. An elegant solution for regression problems has been found by
Liang and Barron (see Chapter 7 in this book); see also Lanterman (Chapter 4).

Sample sizes. The MDL formalism that is the basis for the equations we have
used is the result of a very sophisticated mathematical analysis, and is valid
only for asymptotically large sample sizes. The accuracy of the basic formulas is
therefore suspect for the frequently occurring case of small samples. Correction
terms are known, but just how to handle small data samples has not been completely
understood.

Model complexity computation. The mathematical foundation of the geometric
complexity terms we have used is deeply rooted in the mathematics of functional
forms, functional integrals, and functional measures (see, e.g., [Balasubramanian
1997]); while these methods are used extensively in relativistic quantum field theory
for simple subclasses of integrands, the general analysis is very poorly understood
and lies at the limits of current mathematical methods. There are very likely
many details, such as the treatment of unusual probability distributions and error
distributions, that remain to be properly analyzed.
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6 Algorithmic Statistics and Kolmogorov’s
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A nonprobabilistic foundation for model selection and prediction can be based on
Kolmogorov complexity (algorithmic information theory) and Kolmogorov’s struc-
ture functions (representing all stochastic properties of the data). A distinguishing
feature is the analysis of goodness-of-fit of an individual model for an individual
data string. Among other things it presents a new viewpoint on the foundations of
maximum likelihood and minimum description length. We provide a leasure intro-
duction to the central notions and results.

“To each constructive object corresponds a function Φx(k) of a natural number
k —the log of minimal cardinality of x-containing sets that allow definitions of
complexity at most k. If the element x itself allows a simple definition, then the
function Φ drops to 1 even for small k. Lacking such definition, the element is
“random” in a negative sense. But it is positively “probabilistically random” only
when function Φ having taken the value Φ0 at a relatively small k = k0, then
changes approximately as Φ(k) = Φ0 − (k − k0).” — [A.N. Kolmogorov 1974]

6.1 Introduction

Naively speaking, Statistics deals with gathering data, ordering and representing
data, and using the data to determine the process that causes the data. That this
viewpoint is a little too simplistic is immediately clear: suppose that the true cause
of a sequence of outcomes of coin flips is a ‘fair’ coin, where both sides come up with
equal probability. It is possible that the sequence consists of ‘heads’ only. Suppose
that our statistical inference method succeeds in identifying the true cause (fair
coin flips) from these data. Such a method is clearly at fault: from an all-heads
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sequence a good inference should conclude that the cause is a coin with a heavy
bias toward ‘heads’, irrespective of what the true cause is. That is, a good inference
method must assume that the data are “typical” for the cause—that is, we do not
aim at finding the “true” cause, but at finding a cause for which the data are as
“typical” as possible. Such a cause is called a model for the data. But what if the
data consist of a sequence of precise alternations “head–tail”? This is as unlikely
an outcome of a fair coin flip as the all-heads sequence. Yet, within the coin-type
models we have no alternative to choosing a fair coin. But we know very well that
the true cause must be different. For some data it may not even make sense to
ask for a “true cause.” This suggests that truth is not our goal; but within given
constraints on the model class we try to find the model for which the data are most
“typical” in an appropriate sense, the model that best “fits” the data. Considering
the available model class as a magnifying glass, finding the best-fitting model for
the data corresponds to finding the position of the magnifying glass that best brings
the object into focus. In the coin-flipping example, it is possible that the data have
no sharply focused model, but within the allowed resolution—ignoring the order of
the outcomes but only counting the number of ‘heads’—we find the best model.
Classically, the setting of statistical inference is as follows: We carry out a

probabilistic experiment of which the outcomes are governed by an unknown
probability distribution P . Suppose we obtain as outcome the data sample x. Given
x, we want to recover the distribution P . For certain reasons we can choose a
distribution from a set of acceptable distributions only (which may or may not
contain P ). Intuitively, our selection criteria are that (1) x should be a “typical”
outcome of the distribution selected, and (2) the selected distribution has a “simple”
description. We need to make the meaning of “typical” and “simple” rigorous and
balance the requirements (1) and (2). In probabilistic statistics one analyzes the
average-case performance of the selection process.For traditional problems, dealing
with frequencies over small sample spaces, this approach is appropriate. But for
current novel applications, average relations are often irrelevant, since the part of
the support of the probability density function that will ever be observed has about
zero measure. This is the case in, for example, complex video and sound analysis.
There arises the problem that for individual cases the selection performance may
be bad although the performance is good on average, or vice versa. There is also
the problem of what probability means, whether it is subjective, objective, or exists
at all. Kolmogorov’s proposal outlined strives for the firmer and less contentious
ground expressed in finite combinatorics and effective computation.
We embark on a systematic study of model selection where the performance is

related to the individual data sample and the individual model selected. It turns
out to be more straightforward to investigate models that are finite sets first, and
then generalize the results to models that are probability distributions. To simplify
matters, and because all discrete data can be binary-coded, we consider only data
samples that are finite binary strings. Classic statistics has difficulty in expressing
the notion of an individual “best” model for an individual data sample. But the
lucky confluence of information theory, theory of algorithms, and probability leads



6.2 Algorithmic Statistics 153

to the notion of Kolmogorov complexity—the notion of information content in an
individual object, and it allows us to express and analyze the novel notion of the
information in one individual object (e.g., a model) about another individual object
(e.g., the data). Development of this theory allows us to precisely formulate and
quantify how well a particular model fits a particular piece of data, a matter which
formerly was judged impossible.

6.2 Algorithmic Statistics

In 1965 A.N. Kolmogorov combined the theory of computation and a combinato-
rial approach to information theory into a proposal for an objective and absolute
definition of the information contained by an individual finite object, commonly rep-
resented by a finite binary string. This is to be contrasted with the average notion
of the entropy of a random source as proposed by C. Shannon [1948]. The theory
of “Kolmogorov complexity” has turned out to be ubiquitously applicable [Li and
Vitányi 1997]. Continuing this train of thought, as perhaps the last mathematical
innovation of an extraordinary scientific career, Kolmogorov [1974] proposed a re-
finement, which, in J. Rissanen’s phrasing, “permits extraction of a desired amount
of properties from the data, leaving the remainder as something like noise. The
properties are modeled by a finite set that includes the data string, which amounts
to modeling data by uniform distribution, and the amount of properties is measured
by the Kolmogorov complexity of the description of the finite set involved.” This
proposal can be viewed as one to found statistical theory on finite combinatorial
principles independent of probabilistic assumptions, as the relation between the
individual data and its explanation (model), expressed by Kolmogorov’s structure
function. While these notions have been studied intermittently over the years, and
have been described in articles and in Cover and Thomas’s influential textbook
[Cover and Thomas 1991], as well as our own [Li and Vitányi 1997], they have
been previously but poorly understood. Recently, however, the situation has been
changed through a sequence of results concerning the “algorithmic” sufficient statis-
tic, and its relation with the corresponding probabilistic notion in [Gács, Tromp,
and Vitányi 2001], and a comprehensive body of results concerning Kolmogorov’s
so-called ‘structure function’ in [Vereshchagin and Vitányi 2002]. The purpose of
this chapter is to briefly outline the basic notions involved and the significance of
the main results obtained.

Basic Notions of the Theory We want to describe every individual finite binary
sequence x in two parts, one part being the model description (properties, the
meaning of the data) and one part being the data-to-model code (the remaining
random “noise”). It is convenient to consider models that are finite sets of finite
binary strings, and a contemplated model for x contains x as one of its elements. It
turns out that the results are true for more sophisticated models like computable
probability density functions. An example of the data-to-model code of x with
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respect to the model S is the index of x in the lexicographic enumeration of the
elements of S. The description of the model, typically a program that generates the
model, is called a “statistic.” The following properties of how a model S relates to
sequence x are crucial:

Typicality: Is x a typical or random element of S?

Optimality: We call S optimal for x if the two-part description of x based on
model S is minimal (among all potential two-part descriptions).

A shortest description (or program) for an optimal set S is called an ‘algorithmic
statistic’ for x. The developments in the chapter are based on imposing a constraint
on the number of bits allowed to describe the model (the amount of desired
properties). Let α indicate the maximum number of bits allowed to describe
the model. For fixed α, we consider selection of a model for x in three ways,
characterized by three different functions:

1. Selection based on the minimum randomness deficiency function (what we shall
argue is the model fitness estimator) βx(α);

2. selection based on using Kolmogorov’s structure function (what we shall argue
is the maximum likelihood (ML) estimator) hx(α); and

3. selection based on the shortest two-part code length (what we shall argue is the
minimum description length MDL estimator) λx(α).

Method 1 is based on the notion of ‘typicality’ and basically selects the model
S for which the data x look most typical. In a precise mathematical sense, stated
below in terms of Kolmogorov complexity, this implies that S is a model of ‘best
fit’ for x. So method 1 gives us the proper model for x. Unfortunately, it turns out
that method 1 is too difficult to apply. But we can obtain our goal in a round-
about manner: Method 2 selects a model S—containing data x—that minimizes
the data-to-model code length that maximally can occur for a string in S. It is
useful to explain the notion of data-to-model code length by example. For data
string x = 00 . . .0 of length n and the large-cardinality but small-complexity model
{0, 1}n, the data-to-model code length is at about n bits since there are elements in
S that require n bits to be singled out. Using the small-cardinality but potentially
high-complexity model {x}, the data-to-model code length is O(1). This data-
to-model code length may be very different from the shortest way to describe x
in a model like {0, 1}n, which is O(1) bits, since x is the lexicographically first
element in {0, 1}n. Method 3 selects the model S such that the total two-part
description length, consisting of one part describing S containing x, and the second
part describing the maximal data-to-model code of a string in S, is minimized. We
will establish, in a mathematically rigorous manner, that the minimax procedure in
methods 2 and 3 result in correct selection according to the criterion of method 1.
The methods are not equivalent: selection according to method 1 does not imply a
correct choice according to the criteria of either method 2 or method 3; and method
3 doesn’t imply a correct choice according to the criterion of method 2.
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Outline of the Results Kolmogorov’s structure function, its variations and
its relation to model selection, have obtained some notoriety, but no previous
comprehension. Before, it has always been questioned why Kolmogorov chose to
focus on the mysterious function hx, rather than on a more evident function denoted
as βx. The main result, in [Vereshchagin and Vitányi 2002], with the beauty of truth,
justifies Kolmogorov’s intuition. One way to phrase it is this: The structure function
determines all stochastic properties of the data in the sense of determining the
best-fitting model at every model-complexity level. One easily stated consequence
is: For all data x, both method 2 (which below is interpreted as the maximum
likelihood estimator) and method 3 (which can be viewed as a minimum description
length estimator) select a model that satisfies the best-fit criterion of method 1 (the
best-explanation estimator) in every case (and not only with high probability). In
particular, when the “true” model that generated the data is not in the model
class considered, then the ML or MDL estimator still give a model that “best
fits” the data, among all the models in the contemplated class. This notion of
“best explanation” and “best fit” is understood in the sense that the data are
“most typical” for the selected model in a rigorous mathematical sense that is
discussed below. A practical consequence is as follows: while the best fit [a model
that witnesses βx(α)] cannot be computationally monotonically approximated up to
any significant precision, we can monotonically minimize the two-part code [find a
model witnessing λx(α)], or the one-part code [find a model witnessing hx(α)] and
thus monotonically approximate implicitly the best-fitting model, [Vereshchagin
and Vitányi 2002]. But this should be sufficient: we want the best model rather
than a number that measures its goodness. We show that—within the obvious
constraints—every graph is realized by the structure function of some data. This
means that there are data of each conceivable combination of stochastic properties.
All these results are not completely precise: they hold up to a logarithmic additive
error. They usher in an era of statistical inference that is always (almost) best
rather than expected.

Reach of Results In Kolmogorov’s initial proposal, as in this work, models are
finite sets of finite binary strings, and the data are one of the strings (all discrete
data can be binary-encoded). The restriction to finite set models is just a matter of
convenience: the main results generalize to the case where the models are arbitrary
computable probability density functions and, in fact, other model classes. Since
our results hold only within additive logarithmic precision, and the equivalences
of the relevant notions and results between the model classes hold up to the same
precision, the results hold equally for the more general model classes.
The generality of the results is at the same time a restriction. In classic statistics

one is commonly interested in model classes that are partially poorer and partially
richer than the ones we consider. For example, the class of Bernoulli processes,
or k-state Markov chains, is poorer than the class of computable probability
density functions of moderate maximal Kolmogorov complexity α, in that the latter
may contain functions that require far more complex computations than the rigid
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syntax of the former classes allows. Indeed, the class of computable probability
density functions of even moderate complexity allows implementation of a function
mimicking a universal Turing machine computation. On the other hand, even
the lowly Bernoulli process can be equipped with a noncomputable real bias in
(0, 1), and hence the generated probability density function over n trials is not a
computable function. This incomparability between the algorithmic model classes
studied here, and the statistical model classes studied traditionally, means that the
current results cannot be directly transplanted to the traditional setting. Indeed,
they should be regarded as pristine truths that hold in a Platonic world that can be
used as a guideline to develop analogues in model classes that are of more traditional
concern, as in [Rissanen 2002]. See also Remark 6.9 below.

6.3 Preliminaries

Let x, y, z ∈ N , where N denotes the natural numbers and we identify N and
{0, 1}∗ according to the correspondence

(0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . .

Here ε denotes the empty word. The length |x| of x is the number of bits in the
binary string x, not to be confused with the cardinality |S| of a finite set S. For
example, |010| = 3 and |ε| = 0, while |{0, 1}n| = 2n and |∅| = 0. The emphasis is
on binary sequences only for convenience; observations in any alphabet can be so
encoded in a way that is ‘theory neutral’.
A binary string y is a proper prefix of a binary string x if we can write x = yz

for z �= ε. A set {x, y, . . .} ⊆ {0, 1}∗ is prefix-free if for any pair of distinct elements
in the set neither is a proper prefix of the other. A prefix-free set is also called
a prefix code. There is a special type of prefix code, the self-delimiting code, that
has the added property of being effective in the sense that there is an algorithm
that, starting at the beginning of the code word, scanning from left to right, can
determine where the code word ends. A simple example of this is the code that
encodes the source word x = x1x2 . . . xn by the code word

x̄ = 1n0x.

Using this code we define the standard self-delimiting code for x to be x′ = |x|x.
It is easy to check that |x̄| = 2n+ 1 and |x′| = n+ 2 logn+ 1. We can extend this
code to pairs of strings: Let 〈·〉 be a standard invertible effective one-one encoding
from N ×N to a subset of N . For example, we can set 〈x, y〉 = x′y or 〈x, y〉 = x̄y.
We can iterate this process to define 〈x, 〈y, z〉〉, and so on.

Kolmogorov Complexity For precise definitions, notation, and results, see [Li
and Vitányi 1997]. Informally, the Kolmogorov complexity, or algorithmic entropy,
K(x) of a string x is the length (number of bits) of a shortest binary program
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(string) to compute x on a fixed reference universal computer (such as a particu-
lar universal Turing machine). Intuitively, K(x) represents the minimal amount of
information required to generate x by any effective process. The conditional Kol-
mogorov complexity K(x|y) of x relative to y is defined similarly as the length of
a shortest program to compute x, if y is furnished as an auxiliary input to the
computation. For technical reasons we use a variant of complexity, so-called prefix
complexity, which is associated with Turing machines for which the set of programs
resulting in a halting computation is prefix-free. We realize prefix complexity by
considering a special type of Turing machine with a one-way input tape, a sepa-
rate work tape, and a one-way output tape. Such Turing machines are called prefix
Turing machines. If a machine T halts with output x after having scanned all of p
on the input tape, but not further, then T (p) = x and we call p a program for T .
It is easy to see that {p : T (p) = x, x ∈ {0, 1}∗} is a prefix code. In fact, because
the algorithm (in this case a Turing machine T ) determines the end of the code
word for the source word x (i.e., the program p such that T (p) = x), this code is in
fact self-delimiting. Let T1, T2, . . . be a standard enumeration of all prefix Turing
machines with a binary input tape, for example the lexicographic length-increasing
ordered syntactic prefix Turing machine descriptions, [Li and Vitányi 1997], and
let φ1, φ2, . . . be the enumeration of corresponding functions that are computed by
the respective Turing machines (Ti computes φi). These functions are the partial
recursive functions or computable functions (of effectively prefix-free encoded ar-
guments). The Kolmogorov complexity of x is the length of the shortest binary
program from which x is computed.

Definition 6.1 The prefix Kolmogorov complexity of x is

K(x) = min
p,i
{|̄i|+ |p| : Ti(p) = x}, (6.1)

where the minimum is taken over p ∈ {0, 1}∗ and i ∈ {1, 2, . . .}. For the development
of the theory we actually require the Turing machines to use auxiliary (also
called conditional) information, by equipping the machine with a special read-
only auxiliary tape containing this information at the outset. Then, the conditional
version K(x | y) of the prefix Kolmogorov complexity of x given y (as auxiliary
information) is defined similarly as before, and the unconditional version is set to
K(x) = K(x | ε).

One of the main achievements of the theory of computation is that the enumer-
ation T1, T2, . . . contains a machine, say U = Tu, that is computationally universal
in that it can simulate the computation of every machine in the enumeration when
provided with its index. Expressing an index i by the shortest self-delimiting code
i∗ (if there is more then one such code, then the notation is disambiguated in
a standard manner that need not concern us here) for i usable by U , we have
U(〈y, i∗p) = Ti(〈y, p〉) for all i, p, y. We fix one such machine and designate it as
the reference universal prefix Turing machine. Using this universal machine it is
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easy to show [Vereshchagin and Vitányi 2002]

K(x | y) =min
q
{|q| : U(〈y, q〉) = x}+ O(1) (6.2)

K(x) =min
q
{|q| : U(q) = x}+O(1).

Remark 6.2 A prominent property of the prefix-freeness of the set of programs
for the reference prefix Turing machine U is that we can interpret 2−K(x) as a
probability distribution. By the fundamental Kraft’s inequality — see, for example,
[Cover and Thomas 1991; Li and Vitányi 1997], we know that if l1, l2, . . . are the
code word lengths of a prefix code, then

∑
x 2

−lx ≤ 1. Hence,∑
x

2−K(x) ≤ 1. (6.3)

This leads to the notion of universal distribution—a rigorous form of Occam’s
razor—which implicitly plays an important part in the present exposition. The
functions K(·) and K(· | ·), though defined in terms of a particular machine model,
are machine independent up to an additive constant and acquire an asymptotically
universal and absolute character through Church’s thesis, from the ability of
universal machines to simulate one another and execute any effective process. The
Kolmogorov complexity of an individual object was introduced by Kolmogorov
[1965] as an absolute and objective quantification of the amount of information
in it. The information theory of Shannon [1948], on the other hand, deals with
average information to communicate objects produced by a random source. Since
the former theory is much more precise, it is surprising that analogues of theorems
in information theory hold for Kolmogorov complexity, be it in somewhat weaker
form, see [Li and Vitányi 1997].

Precision It is customary in this area to use “additive constant c” or equivalently
“additive O(1) term” to mean a constant, accounting for the length of a fixed binary
program, independent of every variable or parameter in the expression in which it
occurs. In this chapter we use the prefix complexity variant of Kolmogorov complex-
ity for convenience. Actually some results are easier to prove for plain complexity.
Most results presented here are precise up to an additive logarithmic term, which
means that they are valid for plain complexity as well—prefix complexity exceeds
plain complexity by at most a logarithmic additve term. Thus, our use of prefix
complexity is important for “fine details” only.

Meaningful Information The information contained in an individual finite ob-
ject (like a finite binary string) is measured by its Kolmogorov complexity—the
length of the shortest binary program that computes the object. Such a shortest
program contains no redundancy: every bit is information; but is it meaningful
information? If we flip a fair coin to obtain a finite binary string, then with over-
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whelming probability that string constitutes its own shortest program. However,
also with overwhelming probability, all the bits in the string are meaningless in-
formation, random noise. On the other hand, let an object x be a sequence of
observations of heavenly bodies. Then x can be described by the binary string pd,
where p is the description of the laws of gravity, and d the observational parame-
ter setting: we can divide the information in x into meaningful information p and
accidental information d. The main task for statistical inference and learning the-
ory is to distil the meaningful information present in the data. The question arises
whether it is possible to separate meaningful information from accidental informa-
tion, and if so, how. The essence of the solution to this problem is revealed when
we rewrite (6.1) via (6.2) as follows:

K(x) = min
p,i
{|̄i|+ |p| : Ti(p) = x} (6.4)

= min
p,i
{2|i|+ |p|+ 1 : Ti(p) = x},

= min
p,i
{K(i) + |p| : Ti(p) = x}+O(1),

where the minimum is taken over p ∈ {0, 1}∗ and i ∈ {1, 2, . . .}. In the last step we
use first the equality according to (6.2), then that the fixed reference universal prefix
Turing machine U = Tu with |u| = O(1), and finally that U(i∗p) = Ti(p) for all i
and p. Here i∗ denotes the shortest self-delimiting program for i; therefore |i∗| =
K(i). The expression (6.4) emphasizes the two-part code nature of Kolmogorov
complexity. In the example

x = 10101010101010101010101010

we can encode x by a small Turing machine printing a specified number of copies
of the pattern “01” which computes x from the program “13.” This way, K(x) is
viewed as the shortest length of a two-part code for x, one part describing a Turing
machine T , or model, for the regular aspects of x, and the second part describing
the irregular aspects of x in the form of a program p to be interpreted by T . The
regular, or “valuable,” information in x is constituted by the bits in the “model”
while the random or “useless” information of x constitutes the remainder. This
leaves open the crucial question: How to choose T and p that together describe x?
In general, many combinations of T and p are possible, but we want to find a T
that describes the meaningful aspects of x.

Data and Model We consider only finite binary data strings x. Our model class
consists of Turing machines T that enumerate a finite set, say S, such that on input
p ≤ |S| we have T (p) = x with x the pth element of T ’s enumeration of S, and T (p)
is a special undefined value if p > |S|. The “best-fitting” model for x is a Turing
machine T that reaches the minimum description length in (6.4). Such a machine
T embodies the amount of useful information contained in x, and we have divided
a shortest program x∗ for x into parts x∗ = T ∗p such that T ∗ is a shortest self-
delimiting program for T . Now suppose we consider only low-complexity finite-set
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models, and under these constraints the shortest two-part description happens to
be longer than the shortest one-part description. For example, this can happen if
the data are generated by a model that is too complex to be in the contemplated
model class. Does the model minimizing the two-part description still capture all
(or as much as possible) meaningful information? Such considerations require study
of the relation between the complexity limit on the contemplated model classes, the
shortest two-part code length, and the amount of meaningful information captured.

6.4 Algorithmic Sufficient Statistic

In the following we will distinguish between “models” that are finite sets, and the
“shortest programs” to compute those models that are finite strings. Such a shortest
program is in the proper sense a statistic of the data sample as defined before. In
a way this distinction between “model” and “statistic” is artificial, but for now we
prefer clarity and unambiguousness in the discussion.
We first need a definition. Denote the complexity of the finite set S by K(S)—the

length (number of bits) in the shortest binary program p from which the reference
universal prefix machine U computes a listing of the elements of S and then halts.
That is, if S = {x1, . . . , xn}, then U(p) = 〈x1, 〈x2, . . . , 〈xn−1, xn〉 . . .〉〉. Another
concept we need isK(x|S), the length of the shortest binary program that computes
x from a listing of all the elements of S. We are now about to formulate the central
notions ‘x is typical for S’ and ‘S is optimal for x’.

6.4.1 Typical Elements

Consider a string x of length n and prefix complexity K(x) = k. We identify
the structure or regularity in x that is to be summarized with a set S of which
x is a random or typical member: given S containing x, the element x cannot
be described significantly shorter than by its maximal length index in S, that is,
K(x | S) ≥ log |S|+O(1). Formally,

Definition 6.3 Let β ≥ 0 be an agreed-upon, fixed, constant. A finite binary string
x is a typical or random element of a set S of finite binary strings, if x ∈ S and

K(x | S) ≥ log |S| − β. (6.5)

We will not indicate the dependence on β explicitly, but the constants in all our
inequalities (O(1)) will be allowed to be functions of this β.

This definition requires a finite S. In fact, since K(x | S) ≤ K(x) + O(1), it
limits the size of S to O(2k). Note that the notion of typicality is not absolute but
depends on fixing the constant implicit in the O-notation.
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Example 6.4 Consider the set S of binary strings of length n whose every odd
position is 0. Let x be an element of this set in which the subsequence of bits in
even positions is an incompressible string. Then x is a typical element of S (or
by some abuse of language we can say S is typical for x). But x is also a typical
element of the set {x}.

6.4.2 Optimal Sets

Let x be a binary data string of length n. For every finite set S ( x, we have
K(x) ≤ K(S) + log |S|+ O(1), since we can describe x by giving S and the index
of x in a standard enumeration of S. Clearly this can be implemented by a Turing
machine computing the finite set S and a program p giving the index of x in S.
The size of a set containing x measures intuitively the number of properties of x
that are represented: The largest set is {0, 1}n and represents only one property of
x, namely, being of length n. It clearly “underfits” as explanation or model for x.
The smallest set containing x is the singleton set {x} and represents all conceivable
properties of x. It clearly “overfits” as explanation or model for x.
There are two natural measures of suitability of such a set as a model for x. We

might prefer either the simplest set, or the smallest set, as corresponding to the most
likely structure ‘explaining’ x. Both the largest set {0, 1}n [having low complexity
of about K(n)] and the singleton set {x} [having high complexity of about K(x)],
while certainly statistics for x, would indeed be considered poor explanations. We
would like to balance simplicity of model vs. size of model. Both measures relate
to the optimality of a two-stage description of x using a finite set S that contains
it. Elaborating on the two-part code,

K(x) ≤ K(x, S) ≤ K(S) +K(x | S) +O(1) (6.6)

≤ K(S) + log |S|+O(1),

where only the final substitution of K(x | S) by log |S| + O(1) uses the fact that
x is an element of S. The closer the right-hand side of (6.6) gets to the left-hand
side, the better the description of x is. This implies a tradeoff between meaningful
model information, K(S), and meaningless “noise” log |S|. A set S (containing x)
for which (6.6) holds with equality,

K(x) = K(S) + log |S|+O(1), (6.7)

is called optimal. A data string x can be typical for a set S without that set
S being optimal for x. This is the case precisely when x is typical for S (i.e.,
K(x|S) = logS +O(1)) while K(x, S) > K(x).

6.4.3 Sufficient Statistic

A statistic of the data x = x1 . . . xn is a function f(x). Essentially, every function
will do. For example, f1(x) = n, f2(x) =

∑n
i=1 xi, f3(x) = n − f2(x), and
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f4(x) = f2(x)/n, are statistics. A “sufficient” statistic of the data contains all
information in the data about the model. In introducing the notion of sufficiency
in classic statistics, Fisher [1922] stated: “The statistic chosen should summarize
the whole of the relevant information supplied by the sample. This may be called
the Criterion of Sufficiency . . . In the case of the normal curve of distribution it is
evident that the second moment is a sufficient statistic for estimating the standard
deviation.” For example, in the Bernoulli model (repeated coin flips with outcomes
0 and 1 according to fixed bias), the statistic f4 is sufficient. It gives the mean of the
outcomes and estimates the bias of the Bernoulli process, which is the only relevant
model information. For the classic (probabilistic) theory see, for example, [Cover
and Thomas 1991]. In [Gács et al. 2001] an algorithmic theory of sufficient statistic
(relating individual data to individual model) was developed and its relation to the
probabilistic version established. The algorithmic basics are as follows: Intuitively,
a model expresses the essence of the data if the two-part code describing the data
consisting of the model and the data-to-model code is as concise as the best one-part
description.
Mindful of our distinction between a finite set S and a program that describes

S in a required representation format, we call a shortest program for an optimal
set with respect to x an algorithmic sufficient statistic for x. Furthermore, among
optimal sets, there is a direct tradeoff between complexity and log size, which
together sum to K(x) + O(1). Equality (6.7) is the algorithmic equivalent dealing
with the relation between the individual sufficient statistic and the individual data
sample, in contrast to the probabilistic notion in, for example, [Cover and Thomas
1991].

Example 6.5 It can be shown that the set S of Example 6.4 is also optimal, and
so is {x}. Sets for which x is typical form a much wider class than optimal sets for
x: the set {x, y} is still typical for x but with most y it will be too complex to be
optimal for x.
For a perhaps less artificial example, consider complexities conditional on the

length n of strings. Let y be a random string of length n, let Sy be the set of strings
of length n which have 0s exactly where y has, and let x be a random element of
Sy. Then x has about 25% 1s, so its complexity is much less than n. The set Sy
has x as a typical element, but is too complex to be optimal, since its complexity
(even conditional on n) is still n.

An algorithmic sufficient statistic is a sharper individual notion than a probabilistic
sufficient statistic. An optimal set S associated with x (the shortest program
computing S is the corresponding sufficient statistic associated with x) is chosen
such that x is maximally random with respect to it. That is, the information in
x is divided in a relevant structure expressed by the set S, and the remaining
randomness with respect to that structure, expressed by x’s index in S of log |S|
bits. The shortest program for S is itself alone an algorithmic definition of structure,
without a probabilistic interpretation.
Optimal sets with the shortest program (or rather that shortest program) is the
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algorithmic minimal sufficient statistic of x. Formally, this is the shortest program
that computes a finite set S such that (6.7) holds.

Example 6.6 (Sufficient Statistic) Let us look at a coin toss example. Let k be
a number in the range 0, 1, . . . , n of complexity logn+O(1) given n and let x be a
string of length n having k 1s of complexity K(x | n, k) ≥ log

(
n
k

)
given n, k. This

x can be viewed as a typical result of tossing a coin with a bias about p = k/n.
A two-part description of x is given by the number k of 1s in x first, followed by
the index j ≤ log |S| of x in the set S of strings of length n with k 1s. This set is
optimal, since K(x | n) = K(x, k | n) = K(k | n) +K(x | k, n) = K(S) + log |S|.

Example 6.7 (Hierarchy of Sufficient Statistics) In a picture such as the
‘Mona Lisa’, to borrow an example from [Cover and Thomas 1991], we can be
interested in the image depicted, but also in the underlying color pattern or pattern
of brush strokes. Each of these aspects suggest that there is a particular “model
level” at which there is a sufficient statistic for that aspect. An expert trying to
attribute a painting may aim at finding sufficient statistics for many such aspects.
This is the intuition we try to capture. Let us now try to obtain a formal version
of a situation with many sufficient statistics.
All the information in an object, like a picture, is described by a binary string

x of length, say, n = ml. Chop x into l substrings xi (1 ≤ i ≤ l) of equal length
m each. Let ki denote the number of 1s in xi. Each such substring metaphorically
represents a patch of, say, color. The intended color, say cobalt blue, is indicated
by the number of 1s in the substring. The actual color depicted may be typical
cobalt blue or less typical cobalt blue. The smaller the randomness deficiency of
substring xi in the set of all strings of length m containing precisely ki 1s, the more
typical xi is, the better it achieves a typical cobalt blue color. The metaphorical
“image” depicted by x is π(x), defined as the string k1k2 . . . kl over the alphabet
{0, 1, . . . ,m}, the set of colors available. We can now consider several statistics for
x.
Let X ⊆ {0, 1, . . . ,m}l (the set of possible realizations of the target image), and

let Yi for i = 0, 1, . . . ,m be the set of binary strings of length m with i 1s (the set
of realizations of target color i). Consider the set

S = {y : π(y) ∈ X, yi ∈ Yki for all i = 1, . . . , l}

One possible application of these ideas is to gauge how good the picture is with
respect to the given summarizing set S. Assume that x ∈ S. The set S is then a
statistic for x that captures both the colors of the patches and the image, that is,
the total picture. If the randomness deficiency δ(x | S) is small, then S is a sufficient
statistic of x. This means that x perfectly expresses the meaning aimed for by the
image and the true color aimed for in every one of the color patches.
Another possible application of the theory is to find a good summarization of the

meaningful information in a given picture. Let x be a string, and let S ( x be the
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set above that has all the randomness deficiencies equal zero. Clearly, S summarizes
the relevant information in x since it captures both image and coloring, that is, the
total picture. But we can distinguish more sufficient statistics. The set

S1 = {y : π(y) ∈ X}

is a statistic that captures only the image. It can be sufficient only if all colors used
in the picture x are typical (have small randomness deficiency). The set

S2 = {y : yi ∈ Yki for all i = 1, . . . , l}

is a statistic that captures the color information in the picture. It can be sufficient
only if the image is typical. Finally, the set

Ai = {y : yi ∈ Yki}

is a statistic that captures only the color of patch yi in the picture. It can be
sufficient only if K(i) ≈ 0 and all the other color applications and the image are
typical.

6.5 Structure Functions

We will prove that there is a close relation between functions describing three,
a priori seemingly unrelated, aspects of modeling individual data, depicted in
Figure 6.1.

6.5.1 Model Fitness

For every finite set S ⊆ {0, 1}∗ containing x we have

K(x|S) ≤ log |S|+O(1). (6.8)

Indeed, consider the self-delimiting code of x consisting of its 	log |S|
 bit long index
of x in the lexicographic ordering of S. This code is called data-to-model code. The
lack of typicality of x with respect to S is the amount by which K(x|S) falls short
of the length of the data-to-model code. The randomness deficiency of x in S is
defined by

δ(x|S) = log |S| −K(x|S), (6.9)

for x ∈ S, and ∞ otherwise. The minimal randomness deficiency function is

βx(α) = min
S
{δ(x|S) : S ( x, K(S) ≤ α}, (6.10)

where we set min ∅ = ∞. If δ(x|S) is small, then x may be considered as a typical
member of S. This means that S is a “best” model for x—a most likely explanation.
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There are no simple special properties that single it out from the majority of
elements in S. We therefore like to call βx(α) the best-fit estimator. This is not just
terminology: if δ(x|S) is small, then x satisfies all properties of low Kolmogorov
complexity that hold with high probability for the elements of S. To be precise
[Vereshchagin and Vitányi 2002]: Consider strings of length n and let S be a subset
of such strings. We view a property of elements in S as a function fP : S → {0, 1}.
If fP (x) = 1, then x has the property represented by fP and if fP (x) = 0, then x
does not have the property.
1. If fP is a property satisfied by all x with δ(x|S) ≤ δ(n), then fP holds with

probability at least 1− 1/2δ(n) for the elements of S.
2. Let fP be any property that holds with probability at least 1 − 1/2δ(n) for

the elements of S. Then, every such fP holds simultaneously for every x ∈ S with
δ(x|S) ≤ δ(n)−K(fP |S)−O(1).

Example 6.8 (Lossy Compression) The function βx(α) is relevant to lossy
compression (used, e.g., to compress images). Assume we need to compress x to
α bits where α) K(x). Of course this implies some loss of information present in
x. One way to select redundant information to discard is as follows: Find a set S ( x
with K(S) ≤ α and with small δ(x|S), and consider a compressed version S′ of S.
To reconstruct an x′, a decompresser uncompresses S′ to S and selects at random
an element x′ of S. Since with high probability the randomness deficiency of x′ in
S is small, x′ serves the purpose of the message x as well as does x itself. Let us
look at an example. To transmit a picture of “rain” through a channel with limited
capacity α, one can transmit the indication that this is a picture of the rain and the
particular drops may be chosen by the receiver at random. In this interpretation,
βx(α) indicates how “random” or “typical” x is with respect to the best model
at complexity level α—and hence how “indistinguishable” from the original x the
randomly reconstructed x′ can be expected to be.

6.5.2 Maximum Likelihood

Kolmogorov at a conference in Tallinn, Estonia, 1974 (no written version) and in a
talk at a meeting at the Moscow Mathematical Society in the same year, of which
the abstract [Kolmogorov 1974] is reproduced at the beginning of this chapter (the
only writing by Kolmogorov about this circle of ideas), proposed the following
function: The Kolmogorov structure function hx of given data x is defined by

hx(α) = min
S
{log |S| : S ( x, K(S) ≤ α}, (6.11)

where S ( x is a contemplated model for x, and α is a non-negative integer
value bounding the complexity of the contemplated S’s. Clearly, the Kolmogorov
structure function is nonincreasing and reaches log |{x}| = 0 for α = K(x) + c1
where c1 is the number of bits required to change x into {x}. For every S ( x we
have (6.6), and hence K(x) ≤ α + hx(α) + O(1); that is, the function hx(α) never
decreases more than a fixed independent constant below the diagonal sufficiency
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Figure 6.1 Structure functions hx(i), βx(α), λx(α), and minimal sufficient statistic.

line L defined by L(α) + α = K(x), which is a lower bound on hx(α) and is
approached to within a constant distance by the graph of hx for certain α’s (e.g.,
for α = K(x) + c1). For these α’s we thus have α + hx(α) = K(x) + O(1); a
model corresponding to such an α (witness for hx(α)) is a sufficient statistic, and
it is minimal for the least such α (see above and [Cover and Thomas 1991; Gács,
Tromp, and Vitányi 2001]).
Following Kolmogorov we analyzed a canonical setting where the models are finite

sets. As Kolmogorov himself pointed out, this is no real restriction: the finite sets
model class is equivalent, up to a logarithmic additive term, to the model class of
probability density functions, as studied in [Shen 1983; Gács, Tromp, and Vitányi
2001]. The model class of computable probability density functions consists of the set
of functions P : {0, 1}∗ → [0, 1] with

∑
P (x) = 1. “Computable” means here that

there is a Turing machine TP that, given x and a positive rational ε, computes P (x)
with precision ε. The (prefix) complexity K(P ) of a computable (possibly partial)
function P is defined by K(P ) = mini{K(i) : Turing machine Ti computes P}.
A string x is typical for a distribution P if the randomness deficiency δ(x | P ) =
− logP (x) −K(x | P ) is small. The conditional complexity K(x | P ) is defined as
follows. Say that a function A approximates P if |A(y, ε) − P (y)| < ε for every y
and every positive rational ε. Then K(x | P ) is the minimum length of a program
that given every function A approximating P as an oracle prints x. Similarly, P
is c-optimal for x if K(P ) − logP (x) ≤ K(x) + c. Thus, instead of the data-to-
model code length log |S| for finite set models, we consider the data-to-model code
length − logP (x) (the Shannon-Fano code). The value − logP (x) measures also
how likely x is under the hypothesis P and the mapping x *→ Pmin where Pmin
minimizes − logP (x) over P with K(P ) ≤ α is a maximum likelihood estimator,
(figure 6.2). Our results thus imply that that maximum likelihood estimator always
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Figure 6.2 Structure function hx(i) = minP {− logP (x) : P (x) > 0, K(P ) ≤ i}
with P a computable probability density function, with values according to the left
vertical coordinate, and the maximum likelihood estimator 2−hx(i) = max{P (x) : P (x) >
0, K(P ) ≤ i}, with values according to the right-hand side vertical coordinate.

returns a hypothesis with minimum randomness deficiency.
It is easy to show that for every data string x and a contemplated finite set model

for it, there is an almost equivalent computable probability density function model.
Conversely, for every data string x and a contemplated computable probability
density function model for it, there is a finite set model for x that has no worse
complexity, randomness deficiency, and worst-case data-to-model code for x, up to
additive logarithmic precision (see [Vereshchagin and Vitányi 2002]).

6.5.3 Minimum Description Length

The length of the minimal two-part code for x consisting of the model cost K(S)
and the length of the index of x in S, the complexity of S upper bounded by α, is
given by the MDL function or MDL estimator :

λx(α) = min
S
{Λ(S) : S ( x, K(S) ≤ α}, (6.12)

where Λ(S) = log |S| + K(S) ≥ K(x) − O(1) is the total length of two-part
code of x with help of model S. Clearly, λx(α) ≤ hx(α) + α + O(1), but a
priori it is still possible that hx(α′) + α′ < hx(α) + α for α′ < α. In that case
λx(α) ≤ hx(α′) + α′ < hx(α) + α. However, in [Vereshchagin and Vitányi 2002] it
is shown that λx(α) = hx(α)+α+O(log n) for all x of length n. Even so, this does
not mean that a set S that witnesses λx(α) in the sense that x ∈ S, K(S) ≤ α, and
K(S)+ log |S| = λx(α), also witnesses hx(α). It can be the case that K(S) ≤ α− r
and log |S| = hx(α) + r for arbitrarily large r ≤ n.
This function λx(α) is the celebrated two-part MDL code length with the model

code length restricted to at most α.
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6.6 Overview of Results

The most fundamental result in [Vereshchagin and Vitányi 2002] is the equality

βx(α) = hx(α) + α−K(x) = λx(α)−K(x), (6.13)

which holds within logarithmic additive terms in argument and value. Additionally,
every set S that witnesses the value hx(α) (or λx(α)), also witnesses the value
βx(α) (but not vice versa). It is easy to see that hx(α) and λx(α) are upper
semicomputable (Definition 6.12 below); but we have shown [Vereshchagin and
Vitányi 2002] that βx(α) is neither upper nor lower semicomputable (not even
within a great tolerance). A priori there is no reason to suppose that a set that
witnesses hx(α) (or λx(α)) also witnesses βx(α), for every α. But the fact that they
do, vindicates Kolmogorov’s original proposal and establishes hx’s preeminence over
βx.

Remark 6.9 What we call ‘maximum likelihood’ in the form of hx is really
‘maximum likelihood under a complexity constraint α on the models’ as in hx(α). In
statistics, it is a well-known fact that maximum likelihood often fails (dramatically
overfits) when the models under consideration are of unrestricted complexity (e.g.,
with polynomial regression with Gaussian noise, or with Markov chain model
learning, maximum likelihood will always select a model with n parameters, where n
is the size of the sample—and thus typically, maximum likelihood will dramatically
overfit, whereas, for example, MDL typically performs well). The equivalent, in
our setting, is that allowing models of unconstrained complexity for data x, say
complexity K(x), will result in the ML estimator hx(K(x) + O(1)) = 0—the
witness model being the trivial, maximally overfitting, set {x}. In the MDL case,
on the other hand, there may be a long constant interval with the MDL estimator
λx(α) = K(x) (α ∈ [α1,K(x)]) where the length of the two-part code does not
decrease anymore. Selecting the least complexity model witnessing this function
value we obtain the, very significant, algorithmic minimal sufficient statistic. In
this sense, MDL augmented with a bias for the least complex explanation, which we
may call the ‘Occam’s razor MDL’, is superior to maximum likelihood and resilient
to overfitting. If we do not apply bias in the direction of simple explanations,
then MDL may be just as prone to overfitting as is ML. For example, if x is a
typical random element of {0, 1}n, then λx(α) = K(x)+O(1) for the entire interval
K(n) + O(1) ≤ α ≤ K(x) + O(1) ≈ n. Choosing the model on the left side,
of simplest complexity, of complexity K(n) gives us the best fit with the correct
model {0, 1}n. But choosing a model on the right side, of high complexity, gives
us a model {x} of complexity K(x) + O(1) that completely overfits the data by
modeling all random noise in x (which in fact in this example almost completely
consists of random noise).
Thus, it should be emphasized that ’ML = MDL’ really only holds if complexities

are constrained to a value α (that remains fixed as the sample size grows—note that
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in the Markov chain example above, the complexity grows linearly with the sample
size); it certainly does not hold in an unrestricted sense (not even in the algorithmic
setting).

Remark 6.10 In a sense, hx is more strict than λx: a set that witnesses hx(α) also
witnesses λx(α) but not necessarily vice versa. However, at those complexities α
where λx(α) drops (a little bit of added complexity in the model allows a shorter
description), the witness set of λx is also a witness set of hx. But if λx stays
constant in an interval [α1, α2], then we can tradeoff complexity of a witness set
vs. its cardinality, keeping the description length constant. This is of course not
possible with hx where the cardinality of the witness set at complexity α is fixed
at hx(α).

The main result can be taken as a foundation and justification of common
statistical principles in model selection such as maximum likelihood or MDL. The
structure functions λx, hx, and βx can assume all possible shapes over their full
domain of definition (up to additive logarithmic precision in both argument and
value); see [Vereshchagin and Vitányi 2002]. [This establishes the significance of
(6.13), since it shows that λx(α) + K(x) is common for x, α pairs—in which case
the more or less easy fact that βx(α) = 0 for λx(α) = K(x) is not applicable, and it
is a priori unlikely that (6.13) holds: Why should minimizing a set containing x also
minimize its randomness deficiency? Surprisingly, it does!] We have exhibited a—to
our knowledge first—natural example, βx, of a function that is not semicomputable
but computable with an oracle for the halting problem.

Example 6.11 (“Positive” and “Negative” Individual Randomness) In
[Gács et al. 2001] we showed the existence of strings for which essentially the
singleton set consisting of the string itself is a minimal sufficient statistic. While a
sufficient statistic of an object yields a two-part code that is as short as the shortest
one-part code, restricting the complexity of the allowed statistic may yield two-part
codes that are considerably longer than the best one-part code (so the statistic is
insufficient). In fact, for every object there is a complexity bound below which this
happens—but if that bound is small (logarithmic) we call the object “stochastic”
since it has a simple satisfactory explanation (sufficient statistic). Thus, Kolmogorov
[1974] (see abstract) makes the important distinction of an object being random
in the “negative” sense by having this bound high (they have high complexity and
are not typical elements of a low-complexity model), and an object being random
in the “positive, probabilistic” sense by both having this bound small and itself
having complexity considerably exceeding this bound [like a string x of length
n with K(x) ≥ n, being typical for the set {0, 1}n, or the uniform probability
distribution over that set, while this set or probability distribution has complexity
K(n) +O(1) = O(log n)]. We depict the distinction in Figure 6.3. In simple terms:
a data string of high Kolmogorov complexity is positively random if the simplest
satisfactory explanation (sufficient statistic) has low complexity, and it therefore is
the typical outcome of a simple random process. Another data string of the same
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K(x)=K(y)

y

minimal sufficient statistic   y

minimal sufficient statistic   x α

log |S|

K(x)=K(y)

x

|x|=|y|

h (α)

h (α)

Figure 6.3 Data string x is “positive random” or “stochastic” and data string y is
“negative random” or “nonstochastic”.

length and the same complexity is negatively random if the simplest satisfactory
explanation (sufficient statistic) has high complexity: it can only be the typical
outcome of a complex random process.
In [Vereshchagin and Vitányi 2002] it is shown that for every length n and every

complexity k ≤ n + K(n) + O(1) (the maximal complexity of x of length n) and
every α ∈ [0, k], there are x’s of length n and complexity k such that the minimal
randomness deficiency βx(i) ≥ n − k ± O(log n) for every i ≤ α ± O(log n) and
βx(i)±O(log n) for every i > α±O(log n). Therefore, the set of n-length strings of
every complexity k can be partitioned in subsets of strings that have a Kolmogorov
minimal sufficient statistic of complexity Θ(i logn) for i = 1, . . . , k/Θ(logn). For
instance, there are n-length nonstochastic strings of almost maximal complexity
n − √n having significant

√
n ± O(log n) randomness deficiency with respect to

{0, 1}n or, in fact, every other finite set of complexity less than n−O(log n)!

6.7 Relation to MDL

1. Consider the following algorithm based on the MDL principle. Given x, the data
to explain, and α, the maximum allowed complexity of explanation, we search for
programs p of length at most α that print a finite set S ( x. Such pairs (p, S) are
possible explanations. The best explanation is defined to be the (p, S) for which
δ(x|S) is minimal. Since the function δ(x|S) is not computable, we cannot find the
best explanation in a finite amount of time. Another reason for this is that the
programs use unknown computation time and thus we can never be certain that
we have found all possible explanations.
Compare this indirect method with the direct one: after step t of dovetailing

select (p, S) for which log |S| −Kt(x|S) is minimum among all programs p that up
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to this time have printed a set S containing x, where Kt(x|S) is the approximation
of Kt(x|S) obtained after t steps of dovetailing, that is, Kt(x|S) = min{|q| :
U on input 〈q, S〉 prints x in at most t steps}. Let (qt, Bt) stand for that model.
This time the same hypothesis can be declared best twice. However, from some
moment onward the explanation (qt, Bt) which is declared best does not change
anymore.
Why do we prefer the indirect method to the direct one? The explanation

is that in practice we deal often with t that are much less than the time of
stabilization of both Lt and Bt. For small t, the model Lt is better than Bt

in the following respect: Lt has some guarantee of goodness, as we know that
δ(x|Lt)+K(x) ≤ |pt|+log |Lt|+O(1). That is, we know that the sum of deficiency
of x in Lt and K(x) is less than some known value. In contrast, the model Bt has no
guarantee of goodness at all: we do not know any upper bound neither for δ(x|Bt),
nor for δ(x|Bt) +K(x).
Our result in [Vereshchagin and Vitányi 2002] implies that the indirect method

of MDL gives not only some guarantee of goodness but also that, in the limit, that
guarantee approaches the value it upper-bounds, that is, approaches δ(x|Lt)+K(x),
and δ(x|Lt) itself is not much greater than δ(x|Bt) (except for some values of α
called “critical” in [Vereshchagin and Vitányi 2002].) That is, in the limit, the
method of MDL will yield an explanation that is only a little worse than the best
explanation.
2. If S ( x is a smallest set such that K(S) ≤ α, then S can be converted into

a best strategy of complexity at most α, to predict the successive bits of x given
the preceding 1s, see the “snooping curve” example in [Vereshchagin and Vitányi
2002]. Interpreting “to explain” as “to be able to predict well,” MDL in the sense
of sets witnessing λx(α) gives indeed a good explanation at every complexity level
α.
3. In statistical applications of MDL [Rissanen 1983], minimum message length

(MML) [Wallace and Freeman 1987], and related methods, one selects the model
in a given model class that minimizes the sum of the model code length and
the data-to-model code length; in modern versions one chooses the model that
minimizes the data-to-model code length (ignoring the model code length). In
[Vereshchagin and Vitányi 2002] we have shown that these methods are almost
equivalent in the case when the model class consists of all the models with certain
model-complexity constraints. In contrast, ultimate compression of the two-part
code, proposed in [Vitányi and Li 2000], may be achieved by a model for which
the data are not typical, even when the model class consists of all the models
with certain model-complexity constraints. By ultimate compression of the two-
part code we mean minimizing K(A) + K(x|A) over all models in the model
class. For instance, let x be a string of length n and complexity about n/2
for which βx(O(log(n)) = n/4 + O(log(n)). Such a string exists by the results
in [Vereshchagin and Vitányi 2002]. Moreover, let the model class consist of all
finite sets containing x of complexity at most α = O(log n). Then for the model
A0 = {0, 1}n we have K(A0) = O(log n) and K(x|A0) = n/2 + O(log n); thus the



172 Algorithmic Statistics and Kolmogorov’s Structure Functions

sum K(A0)+K(x|A0) = n/2+O(logn) is minimal up to a term O(log n). However,
the randomness difficiency of x in A0 is about n/2, which is much bigger than the
minimum βx(O(log(n)) ≈ n/4. For the model A1 witnessing βx(O(log(n)) ≈ n/4 we
also have K(A1) = O(log n) and K(x|A1) = n/2+O(logn). However, it has smaller
cardinality, log |A1| = 3n/4 +O(log n), and hence smaller randomness deficiency.
The same happens also for other model classes. Consider, for instance, as the

model class, the Bernoulli processes with rational bias p for outcome “1” (0 ≤ p ≤ 1)
to generate binary strings of length n. Suppose we look for the model minimizing
the code length of the model plus data given the model: K(p|n) + K(x|p, n). Let
the data be x = 00 . . . 0. Then the model corresponding to probability p = 1

2

compresses the data code to K(x | n, p) = O(1) bits and K(p|n) = O(1). But
we find about the same code length if we take p′ = 0. Thus we have no basis to
distinguish between the two, while obviously the second possibility is preferable.
This shows that ultimate compression of the two-part code, here resulting in
K(p|n)+K(x|n, p), may yield a model P for which the data have large randomness
deficiency (− logP (x)−K(x | n, p) = n for p = 1

2 ) and hence are atypical.
However, in the structure functions hx(α) and λx(α) the data-to-model code

for the model p = 1
2 is − logP (x) = − log(12 )

n = n bits, while p = 0 results in
− log 1n = 0 bits. Choosing the shortest data-to-model code results in the minimal
randomness deficiency, as in (the generalization to probability distributions of) our
main theorem in [Vereshchagin and Vitányi 2002].
4. Another question arising in MDL or ML estimation is its performance if

the “true” model is not part of the contemplated model class. Given certain
data, why would we assume they are generated by probabilistic or deterministic
processes? They have arisen by natural processes most likely not conforming to
mathematical idealization. Even if we can assume the data arose from a process
that can be mathematically formulated, such situations arise if we restrict modeling
of data arising from a “complex” source (a conventional analogue being data arising
from 2k-parameter sources) by “simple” models (a conventional analogue being k-
parameter models). Again, our main result in [Vereshchagin and Vitányi 2002]
shows that, within the class of models of maximal complexity α, under these
constraints we still select a simple model for which the data are maximally typical.
This is particularly significant for data x if the allowed complexity α is significantly
below the complexity of the Kolmogorov minimal sufficient statistic, that is, if
hx(α) + α + K(x) + c. This situation is potentially common, for example, if we
have a small data sample generated by a complex process. For a data sample that is
very large relative to the complexity of the process generating it, this will typically
not be the case and the structure function will drop to the sufficiency line early on.

Relation to Maximum Likelihood Estimation The algorithm based on the
ML principle is similar to the algorithm of the previous example. The only difference
is that the currently best (p, S) is the one for which log |S| is minimal. In this
case the limit hypothesis S̃ will witness hx(α) and we obtain the same corollary:
δ(x|S) ≤ βx(α−O(log n)) +O(log n).



6.8 Computability Questions 173

6.8 Computability Questions

How difficult is it to compute the functions hx, λx, βx, and the minimal sufficient
statistic? To express the properties appropriately we require the notion of functions
that are not computable, but which can be approximated monotonically by a
computable function.

Definition 6.12 A function f : N → R is upper semicomputable if there is a
Turing machine T computing a total function φ such that φ(x, t + 1) ≤ φ(x, t)
and limt→∞ φ(x, t) = f(x). This means that f can be computably approximated
from above. If −f is upper semicomputable, then f is lower semicomputable. A
function is called semicomputable if it is either upper semicomputable or lower
semicomputable. If f is both upper semicomputable and lower semicomputable,
then we call f computable (or recursive if the domain is integer or rational).

Semicomputability gives no speed-of-convergence guaranties: even though the limit
value is monotonically approximated we know at no stage in the process how close
we are to the limit value. The functions hx(α), λx(α), βx(α) have finite domain
for given x and hence can be given as a table—so formally speaking they are
computable. But this evades the issue: there is no algorithm that computes these
functions for given x and α. Considering them as two-argument functions we show
the following (we actually quantify these statements):

The functions hx(α) and λx(α) are upper semicomputable but they are not
computable up to any reasonable precision.

Moreover, there is no algorithm that given x∗ and α finds hx(α) or λx(α).

The function βx(α) is not upper or lower semicomputable, not even to any
reasonable precision, but we can compute it given an oracle for the halting problem.

There is no algorithm that given x and K(x) finds a minimal sufficient statistic
for x up to any reasonable precision.

The precise forms of these quite strong noncomputability and nonapproximability
results are given in [Vereshchagin and Vitányi 2002].
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The problems of predictive density estimation with Kullback-Leibler loss, optimal
universal data compression for minimum description length (MDL) model selection,
and the choice of priors for Bayes factors in model selection are interrelated.
Research in recent years has identified procedures which are minimax for risk in
predictive density estimation and for redundancy in universal data compression.
Here, after reviewing some of the general story, we focus on the case of location
families. The exact minimax procedures use an improper uniform prior on the
location parameter. We illustrate use of the minimax optimal procedures with data
previously used in a study of robustness of location estimates. Plus we discuss
applications of minimax MDL criteria to variable selection problems in regression.

7.1 Introduction

Suppose we are about to transmit a data string y = (y1, . . . , yn) and we assume
that the underlying data-generating process is some distribution from a parametric
family with probability density function p(y | θ) depending on a d-dimensional
parameter vector θ taking values in Θ ⊂ R

d. If the parameter θ were known to us,
by Shannon coding theory, the ideal code length would be equal to log 1/p(y | θ)
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where for now we ignore the requirement of integer code length and finite precision
representation of the numbers. Such a code length is optimal in the following two
senses: first, it is the shortest code on average, giving entropy as the shortest
expected code length; second, it is competitively optimal [Barron, Rissanen and
Yu 1998; Cover and Thomas 1991]. Without the knowledge of θ, we in fact code
the data with some other distribution, say q(y) with code length log 1/q(y). The
corresponding excess average code length (expected redundancy) is given by the
Kullback-Leibler divergence:

Ey|θ log
p(y | θ)
q(y)

(7.1)

A minimax optimal coding strategy is one that achieves the minimax expected
redundancy equal to

min
q

max
θ

Ey|θ log
p(y | θ)
q(y)

. (7.2)

By a result from decision theory [Ferguson 1967; Davisson and Leon-Garcia 1980;
Gallager 1979; Haussler 1997], the minimax code length (7.2) agrees with the
maximin value

max
w

min
q

∫
w(θ) Ey|θ log

p(y | θ)
q(y)

dθ = max
w

∫
w(θ) Ey|θ log

p(y | θ)
pw(y)

dθ,

where w is a prior distribution on Θ and pw is the corresponding Bayes mixture
(marginal) density pw(y) =

∫
w(θ)p(y | θ)dθ which minimizes the Bayes average

redundancyRw(q) =
∫
w(θ)Ey|θ log p(y | θ)/q(y)dθ. Thus the mixture density pw(y)

provides the optimal code length log 1/pw(y) for model selection by description
length criteria. Likewise, the mixture density pw(y) is also the key ingredient in
Bayes factors for model selection.
Previous work has shown that the mixture code pwJ with Jeffreys’ prior wJ

(proportional to the root of the determinant of the Fisher information matrix) is
asymptotically minimax when the square root of the determinant of the information
matrix is integrable [Clarke and Barron 1990; Clarke and Barron 1994; Rissanen
1996]. However, for some cases, including location families, the Jeffreys’ prior is
improper (the root determinant of the information matrix is not integrable) and
the minimax redundancy is infinite.
We may express both q(y) and p(y | θ) in the predictive form. For example, the

joint density q(y) = q(y1, . . . , yn) is given by

q(y) =
n−1∏
m=0

q(ym+1 | ym), ym = (y1, . . . , ym).

Then we have the following identity
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Ey|θ log
p(y | θ)
q(y)

= Ey|θ log
∏

m p(ym+1 | ym, θ)∏
m q(ym+1 | ym)

=
∑
m

Ey|θ log
p(ym+1 | ym, θ)
q(ym+1 | ym)

. (7.3)

Each term on the right side of (7.3) is the Kullback-Leibler risk of the predictive
density estimator for the (m + 1)th observation based on the previous m observa-
tions, q(· | ym). That is, the expected redundancy (7.1) is precisely the accumulated
Kullback-Leibler risk of the sequence of predictive density estimators. The connec-
tion between optimal coding and statistical estimation is not a surprise because we
know that codes correspond to probability distributions by the fundamental Kraft
inequality [Cover and Thomas 1991].
For each m, a minimax strategy can be constructed by specifying the predictive

distribution {q∗m(· | ym)} which is the solution of

min
q

max
θ

Eym+1|θ log
p(ym+1 | ym, θ)
q(ym+1 | ym)

. (7.4)

Here we summarize some of our recent results reported in [Liang and Barron 2002]
in which we studied certain transformation families, including location families,
scale families and combined location and scale families. There we showed that
when conditioning on sufficiently many initial observations (m ≥ d), the minimax
redundancy is finite and is achieved by a particular generalized Bayes rule. For ex-
ample, for location families, the minimax procedure is generalized Bayes using the
uniform (Lebesgue) prior. Though the priors are improper, the posterior based on
enough initial observations are proper (i.e.,

∫
p(ym | θ)w(θ)dθ is finite for each ym).

The product of those sequential minimax estimators, q∗m(ym+1 | ym)q∗m+1(ym+2 |
ym+1) · · · q∗n−1(yn | yn−1), specifies a valid predictive density for (ym+1, . . . , yn)
conditioning on the previous m observations. In general, this product is not the
minimax solution of the total expected redundancy for the future (n−m) observa-
tions,

min
q

max
θ

Eyn|θ log
p(ym+1, . . . , yn | ym, θ)
q(ym+1, . . . , yn | ym)

, (7.5)

because the values of θ which maximize the risk in (7.4) may differ at various m.
Thus the sum of individual minimax risks is an upper bound on the minimax total
risk in (7.5). Nevertheless, for location and scale problems, we exhibit a constant risk
minimax procedure, so it simultaneously provides a minimax solution for both the
individual risk and the total risk (7.5), and in such cases the sum of the individual
minimax risks is equal to the minimax total.
When we report predictive density estimates, as we do in section 7.3, it is

convenient to do so through the value of the log reciprocal, log2 1/q∗(ym+1 | ym),
not only because they add up nicely to give the total code length but also because
informally it will show, for unusual values of yi, a degree to which that value is
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surprising and thereby forces a longer description.
The minimum description length (MDL), as a criterion in model selection, was

introduced by Rissanen [1978] (see review papers by Barron, Rissanen and Yu
[1998], and by Hansen and Yu [2001]). The idea of MDL is to first represent
each model by a universal distribution and then choose the one with the shortest
description length for the observed data. In this framework, a good model is the one
that captures most features of the data and hence can describe the data in a short
code. Our results on exact minimaxity of predictive density estimation provide a
means to construct the underlying universal coding scheme for MDL, with the code
length achieving the minimax redundancy.
As in other papers in this collection, and in the above-mentioned review papers,

there has been a trend in recent years to compare universal procedures not to
the code length log 1/p(y|θ) that would have been the best for a hypothetical
distribution governing the data [as in the traditional definition of redundancy
as given in (7.1)], but rather to study the regret log 1/q(y) − log 1/p(y|θ̂(y)) in
which the universal code length log 1/q(y) is compared to the shortest code length
with hindsight minθ log 1/p(y|θ), corresponding to the maximum likelihood estimate
θ̂(y). For any strategy q, if one takes the expected value of this regret it differs from
the expected redundancy by an amount Ey|θ log p(y|θ̂(y))/p(y|θ). Now, in general,
this difference could depend on θ. However, for location and scale families we find
that this difference between expected regret and expected redundancy is a constant
(independent of θ, as well as independent of q), and the same conclusion of constancy
of the expected difference holds in our setting in which one conditions on an initial
set of observations. Thus our procedures for location and scale families, which are
exactly minimax for expected redundancy (Kullback-Leibler risk) are also exactly
minimax for expected regret.
The editors have asked that we also comment further about the nature of asymp-

totic expressions for regret and Kullback-Leibler risk, and how, if at all, our exact
minimax procedures relate to those asymptotics. For independent and identically
distributed (i.i.d.) sampling from smooth parametric families, as we have said, the
Bayes procedures with Jeffreys’ prior provide asymptotically minimax expected re-
gret and expected redundancy, provided the square root of the determinant of the
Fisher information I(θ) is integrable [Clarke and Barron 1990; Clarke and Bar-
ron 1994; Rissanen 1996; Barron, Rissanen and Yu 1998]. In that case, with no
need to condition on initial data, the total code length has expected regret that is
asymptotically of the form (d/2) log(n/2π) + log

∫ |I(θ)|1/2 + o(1), where d is the
parameter dimension and o(1) tends to zero as the sample size n tends to infinity as
shown in [Clarke and Barron 1990; Clarke and Barron 1994]. The same asymptotics
hold also for the minimax individual sequence regret, as reviewed in [Barron et al.
1998], though as mentioned there it requires substantial modification of Jeffreys’
prior when outside exponential families.
Continuing with our focus on expected regret or expected redundancy (Kullback-

Leibler risk) incorporating conditioning on a initial sample of size m, we see that if
m as well as n is large, then taking the difference in the risk expressions at the final



7.2 Exact Minimax Coding Strategy 181

size n and the initial size m, many of the terms cancel away, leaving a conditional
redundancy of (d/2) logn/m + o(1) where o(1) tends to zero as m and n > m

tends to infinity. However, unlike the total redundancy, such asymptotic differences
do not reveal much role for the choice of procedure, as the results of [Clarke and
Barron 1990, 1994] show that (d/2) logn/m + o(1) is the asymptotic conditional
redundancy of Bayes procedures for all choices of smooth prior. A considerably
more refined asymptotic analysis is in [Hartigan 1998] where he shows that the
Kullback-Leibler risk for one-step ahead predictive density estimation with a sample
of size k has asymptotic expression (d/2)(1/k)+c(θ, w)/k2+o(1/k)2, where c(θ, w)
depends in a somewhat complicated way on the parameter value and the derivative
of the log of the prior density w(θ) as well as the form of the parametric family.
Summing Hartigan’s risk expression for k fromm to n permits a refined conditional
redundancy expression of the form (d/2) logn/m + 2c(θ, w)/m + o(1/m) that is
sensitive to the choice of procedure (through the choice of the prior w). Thus the
asymptotics of expected conditional redundancy, as well as the Kullback-Leibler
risk, motivate Hartigan’s study of the minimax properties of c(θ, w) initiated in
[Hartigan 1998] (one may see also [Aslan 2002; Emerson 2002]). For each family
one has a differential inequality to solve to determine if a suggested level C is
indeed a minimax bound (i.e., one addresses whether there is a prior w such that
c(θ, w) ≤ C for all θ). It is reassuring that the priors shown in our work to be exact
minimax for finite sample sizes in the special cases of location and scale families do
fit in Hartigan’s theory as asymptotically minimax.
The remainder of the chapter is arranged as follows: in section 7.2 we summarize

ideas from [Liang and Barron 2002] showing the minimaxity for the case of location
families. In section 7.3, we show how to use our result to calculate the MDL criterion
value to do model selection on some real data sets, which were used before in a
study of robustness by Stigler [1977]. The application of variable selection in a
linear regression model is discussed in section 7.4 and some additional discussion is
given in section 7.5.

7.2 Exact Minimax Coding Strategy

In this section, we summarize the derivation of the minimax procedure q∗ for
location families. It is the simplest case among the transformation families covered
by us in [Liang and Barron 2002].
Suppose the observations ym+1 = (y1, . . . , ym+1) are from a location family, that

is,

yi = zi + θ,

for i = 1, . . . ,m + 1, where θ ∈ R
d is an unknown location parameter and

zm+1 = (z1, . . . , zm+1) has a known distribution with a joint density denoted by
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p0. Then the density for ym+1 is given by

p(ym+1 | θ) = p0(ym+1 − θ),

where ym+1 − θ is a shorthand notation for (y1 − θ, . . . , ym+1 − θ). From now on,
we will use p0 and p as generic expressions for their corresponding marginal and
conditional densities. For example, p0(zm+1) denotes the marginal density for zm+1

and p0(zm+1 | zm) denotes the conditional density for zm+1 given z1 through zm.
Without any knowledge of θ, the predictive distribution we use for coding ym+1

is denoted by q(· | ym). The expected redundancy ( or the risk for predictive density
estimation) is equal to

Eym+1|θ log
p0(ym+1 − θ)
q(ym+1 | ym)

. (7.6)

Let us first focus on the class of location-invariant predictive density estimators. For
any number a ∈ R

d, a location-invariant estimator q satisfies the following equality:

q(ym+1 | ym) = q(ym+1 − a | ym − a) (7.7)

Supposing our estimator q is location invariant, we can apply the invariance
property (7.7) with a = y1 to (7.6) and obtain

Eym+1|θ log
p0(ym+1 − θ)

q(ym+1 − y1 | 0, y2 − y1, . . . , ym − y1)
= E log

p0(ym+1 − θ)
q(um | 0, u1, . . . , um−1)

, (7.8)

where ui = yi+1 − y1, for i = 1, . . . ,m. Notice that ui is also equal to zi+1 − z1
which has a density not depending on the unknown parameter θ. Let pu(um | um−1)
denote the density for um given um−1 derived from p0. We have the quantity (7.8)
equal to

E log
p0(ym+1 − θ)
p(um | um−1)

+ Eum−1

[
Eum log

pu(um | um−1)
q(um | 0, um−1)

]
.

Notice that the second term in the above quantity is an expected Kullback-Leibler
divergence which is always bigger than or equal to zero and is equal to zero if and
only if

q(um | 0, um−1) = pu(um | um−1). (7.9)

Re-expressing in terms of the yi’s and applying the invariance property of q, we
have that(7.9) is equivalent to

q(ym+1 | ym) = pu(ym+1 − y1 | y2 − y1, . . . , ym − y1).

So the best invariant estimator q∗ is the one equal to the right side of the above
equality. This analysis for the best invariant density estimator with Kullback-Leibler
loss is analogous to that originally given by Pitman [1939] (cf. [Ferguson 1967, pp.
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186–187]) for finding the best invariant estimator of θ with squared error loss.
To get a final expression for q∗, we calculate pu(um | um−1) = p(um)/p(um−1) and

replace ui by yi+1−y1. Since ui = zi+1−z1, the joint density for (z1, u1, . . . , um−1)
is equal to p0(z1, u1 + z1, . . . , um−1 + z1). Integrating out z1, we obtain the joint
density pu(um−1) which, when re-expressed in terms of yi’s, is∫

p0(y1 − θ, y2 − θ, . . . , ym − θ)dθ =
∫
p(ym | θ)dθ.

So the best invariant estimator q∗ is equal to

q∗(ym+1 | ym) =
∫
p(ym+1 | θ)dθ∫
p(ym | θ)dθ , (7.10)

which can be interpreted as the generalized Bayes procedure with the uniform
(improper) prior w(θ) constant on R

d (Lebesgue measure) for location families.
To show that the best invariant estimator q∗ is minimax among all the estimators,

we use a result from decision theory (see [Ferguson 1967]) that constant risk plus
extended Bayes implies minimax. The constant risk is a consequence of the location
invariance property of q∗.
For a procedure q to be an extended Bayes means that there exists a sequence of

Bayes procedures {pwk
} with proper priors wk such that their Bayes risk differences

Rwk
(q)−Rwk

(pwk
) go to zero, as k →∞. Recall that the Bayes procedure pwk

is

pwk
(ym+1 | ym) =

∫
Θ
p(ym+1 | θ)wk(θ)dθ∫
Θ p(y

m | θ)wk(θ)dθ
,

and the Bayes risk Rwk
(q) is

Rwk
(q) =

∫
wk(θ)Eym+1|θ log

p(ym+1 | ym, θ)
q(ym+1 | ym)

dθ.

The Bayes risk difference for q∗ is

Rwk
(q∗)−Rwk

(pwk
) = E

wk

ym+1 log
pwk

(ym+1 | ym)
q∗(ym+1 | ym)

,

where E
wk

ym+1 means the expectation is taken with respect to the Bayes mixture
pwk

(ym+1).
By the chain rule of information theory, the Bayes risk difference is bounded

by the total risk difference conditioning on only one observation, without loss of
generality, say y1, and this total risk difference is

E
wk

ym+1 log
pwk

(y2, . . . , ym+1 | y1)
q∗(y2, . . . , ym+1 | y1)

= E
wk

ym+1 [− log

∫
p(ym+1 | θ)wk(θ) 1

wk(θ)
dθ∫

p(ym+1)wk(θ)dθ
] + E

wk
y1

[− log
∫
p(y1 | θ)wk(θ)dθ], (7.11)

where we use the fact that the density for y1 given θ, p(y1 | θ) = p0(y1 − θ), is also
a density for θ by the symmetry between y1 and θ, hence

∫
p(y1 | θ)dθ = 1.
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Invoking Jensen’s inequality (g(EX) ≤ Eg(X) for a convex function g) for both
terms in (7.11), we obtain the Bayes risk difference is less than or equal to∫

wk(θ) logwk(θ)dθ − E
wk
y1

∫
p0(y1 − θ) logwk(θ)dθ. (7.12)

By choosing the prior wk to be normal with mean zero and variance k and
changing variables, we finally express the bound (7.12) as C/k where C is a
constant, the second moment of the distribution of z1. So the Bayes risk difference
goes to zero when k goes to infinity, provided that the distribution p0 has finite
second moment. The paper by Liang and Barron [2002] goes further to show the
extended Bayes property under a weaker logarithmic moment condition and for
other transformation families.
Note that for location families, when conditioning on any one observation, say

the ith, the minimax predictive density for the rest of the observations is∫
p(yn | θ)dθ∫
p(yi | θ)dθ ,

which reduces to
∫
p(yn | θ)dθ since the denominator is equal to 1 for location

families. Thus we obtain the same value no matter which single observation one
conditions on.
Similar analysis in [Liang and Barron 2002] shows that in combined location

and scale families, a minimax predictive density estimator is the generalized Bayes
estimator using a uniform prior for location and log-scale, made proper by con-
ditioning on the first two observations. Location and scale families of random
variables take the form yi = σzi + θ with probability densities of the form
p(yi | θ, σ) = 1

σp0(
yi−θ
σ ). In an independent sampling model the likelihood takes

the form p(yn|θ, σ) =
∏n

i=1 p(yi|θ, σ). Conditioning on the first two observations
the minimax density for (prediction or coding of) the rest of the observations
is
∫ ∫

p(yn|θ, σ)dθdσ/σ divided by the corresponding value for two observations∫ ∫
p(y1, y2|θ, σ)dθdσ/σ. This joint predictive density for y3, . . . , yn factors into

predictive densities for each ym+1 given ym as before. Each of these predictive
densities takes the form

∫ ∫
p(ym+1|θ, σ)w(θ, σ|ym)dθdσ where w(θ, σ|ym) is the

posterior distribution corresponding to our optimal prior.
We illustrate the use of this posterior for minimax predictive density estimation,

location estimation, and model selection, in the next section.

7.3 Model Selection in Robust Estimation

We often encounter the problem of estimating the location parameter for some
data. The sample mean is a good estimator when the data satisfy the normality
assumption, but it can be a very bad one when the data are actually from a heavy-
tailed distribution like the Cauchy. The predictive densities are used in formulation
of optimal criteria for selection among various shapes of the density to use in the
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location problem.
Various robust estimators for the location parameter, such as the sample median,

have been proposed and compared [Andrews et al. 1997; Huber 1981; Stigler
1977]. The mean, as a location estimator, works well for data from normal-like
distribution because the sample mean is the maximum likelihood estimator (MLE)
of the location. Some other robust estimates also correspond to the MLE of
certain distributions. We use the mean of the minimax predictive density estimator,∫
ỹq∗(ỹ | ym)dỹ, which arose importantly in the work of Pitman [1939]. It is the

mean of the posterior density of θ using the uniform prior (when z has mean
0), which Pitman showed to be the minimax estimator of location with squared
error loss. It is a nice confluence of decision-theoretic properties that the minimax
estimator of location is the mean of the minimax predictive density estimator.
Next we pick some data sets which have been used before in comparing perfor-

mances for different robust procedures and calculate the exact minimax MDL for
various models to see which one is preferred and to see whether our model selec-
tion result is consistent with the results from the robustness study. Here we focus
attention on five families of densities: normal, double exponential, Huber, uniform,
and Cauchy. The double exponential density is p(y | θ) = p0(y − θ) with

p0(y) =
1
2
e−|y|.

Its MLE is the sample median. The Huber’s density [Huber 1981, page 71] is
p(y | θ) = p0(y − θ) with

p0(y) =

{
Ce−y2/2, |y| ≤ k,
Ce−k|y|+k2/2, |y| > k,

where k = 1.5. Its MLE is known as the Huber P15 estimator, which is the solution
of

n∑
i=1

min(k,max(−k, yi − θ)) = 0.

For the uniform density with a parameterized center and range, the MLE estimate
of location is the midrange of the sample. These maximum likelihood estimates are
not the focus of our attention, but because of the tradition of their use we will
compare our minimax procedures to plug-in MLE estimates.
The data sets we use in this paper are from Stigler’s study for robust location

estimators [Stigler 1977]. They are all taken from famous experiments such as
eighteenth-century attempts to determine the distance from the earth to the sun and
the density of the earth, and nineteenth-century attempts to determine the speed of
light. Though the focus in Stigler is on location estimation, one still needs to decide
what scale to use for the various families of densities in constructing one’s estimates.
A rough cut would be to plug in maximum likelihood values. Here we advocate
minimax predictive densities, description lengths, and parameter estimates for the
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combined location and scale families. As we have said the corresponding minimax
predictive density is generalized Bayes using a uniform prior on the location and
log-scale parameters. A side benefit of these exact minimax rules is that the tail of
the predictive distribution tends to be heavier than with plug-in rules, so that the
minimax procedure is more robust. Indeed, in [Liang and Barron 2002] we showed
that for the normal, the minimax predictive rule is in the heavier-tailed T family
of distribution. Even for the uniform density, which has no tails (and is terrible for
plug-in rules as we shall see), the minimax estimator has infinite tails of polynomial
decay.
For the 20 data sets we calculated our estimates for various families: normal,

Huber, double exponential, Cauchy, and uniform. We find that generally the
minimax estimators for the normal, Huber, and double exponential work well.
Indeed, despite the presence of a few outliers, with the minimax procedures the
normal family is competitive to a greater degree than one might have thought, so
there is not as much need to resort to Huber’s density or the two-sided exponential
to achieve some robustness. Even the uniform does better than one might have
thought. As for the Cauchy, we find that it is not supported by the data. In that
aspect we agree with the conclusion of Stigler who said, “... the data sets considered
tend to have slightly heavier tails than the normal, but that a view of the world
through Cauchy-colored glasses may be overly-pessimistic.”
Table 7.1 shows more detailed results on model selection for one of Stigler’s data

sets (table 4, data set 5) with n = 21 observations, which are from Short’s 1763
determinations of the parallax of the sun. We focus the reader’s attention first on the
columns headed “minimax”. Each entry denotes the log reciprocal of the minimax
predictive density, log2[1/q

∗(yi | yi−1)], for the ith observation conditioning on the
previous (i− 1) observations, using the indicated family of density. Since combined
location and scale families are considered here, we have to condition on at least
two observations, that is, i = 3, 4, . . . , 21. The totals used for model selection are
log2[1/q

∗(y3, . . . , yn | y1, y2)], which have interpretations both for minimax code
length (MDL) and for Bayes factors. Plug-in type estimators, p(yi | θ̂i−1, σ̂i−1),
have also been used, where θ̂i−1 and σ̂i−1 are the MLE based on the previous i− 1
observations. The product of the plug-in rules arose in the prequential approach
to statistical inference studied by Dawid [1984, 1991] and in the MDL criteria in
Rissanen [1984, 1989]. For comparison purposes, we include them in Table 7.1 too.
For this data set, the description lengths based on minimax predictive densities
are much shorter than those based on MLE plug-in densities. The two outliers,
10.04 and 10.48, apparently have larger contributions to the totals than the other
observations. Surprisingly, the description length for the 5th observation, 9.71, is
pretty long, especially for the coding strategies using plug-in densities. This is
because, without knowing the true parameters, 9.71 does look like an outlier among
the first 5 observations, even though it is not among all the 21 observations. We
can see that all the minimax predictive densities handled this situation much better
than plug-in densities, because they have already taken the unknown location and
scale into consideration by averaging. The extreme case is uniform: using MLE
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plug-in densities, we will have infinity description length once the new observation
is outside the range of the previous ones. Note that, for the minimax procedure,
the total description length log2[1/q∗(y3, . . . , yn | y1, y2)] does not depend on the
order of which the n − 2 observations y3, . . . , yn are presented, while for plug-in
procedure, it does. We randomly permuted the 21 observations 1000 times and
calculated the corresponding description length based on plug-in and minimax for
normal and double exponential. We found that the description lengths based on
minimax procedures are much less variant than those based on plug-in procedures.
Further remarks on some practicalities of data compression and prediction may

be helpful. The data were, of course, not given as infinite precisions real numbers,
but rather they were given to the nearest hundredth. These correspond naturally
to intervals of width 1/100 for each observation. The probabilities of these intervals
would be the integrals of the densities. Since the densities here do not change
perceptibly over these small intervals, the probability is the computed density
value times the interval width. Correspondingly, one can report log-reciprocal
probabilities from Table 7.1 simply by adding log2 100 to the entries for each
observation. These sum to give the total log2[1/Prob(y3, . . . , yn|y1, y2)], which,
when rounded up to an integer, is the length in bits of the Shannon code for
y3, . . . , yn given the value of y1, y2.
For model selection, one may inspect which of the five minimax predictive

distributions provides the shortest l(yn) = log2 1/q∗(y3, . . . , yn|y1, y2). Then to
convert this to a code length, one adds (n−1) log2 100 to convert it to log reciprocal
probabilities as required for the Shannon code, and one adds two or three extra bits
to communicate which of the five models is used in the final description.
We recommend, before committing to a model selection, that one consider

instead the use of model averaging for data compression and prediction. Indeed
as we now briefly demonstrate, model averaging provides a shorter code length. To
explain, let π(·) be a distribution on the model index M , and let log 1/Prob(y |
M) + log 1/π(M) be the total code length for the data using a selected model
M = M̂ , where the term log 1/π(M) is to describe which model is used. On the
other hand, if we encode the data with respect to the mixture distribution, it
yields code length log 1/

∑
M Prob(y | M)π(M) which is always shorter, because

the sum is always greater than any of its terms. The relative contribution of
an individual term to the sum is given by its posterior weight π(M | y) =
π(M)Prob(y|M)/

∑
M ′ π(M ′)Prob(y|M ′). When this weight for a selected model

M̂ is nearly 1, the mixture code and the model selection–based code have essentially
the same length. Otherwise it is advantageous to code with the mixture.
For the example problem, we have five models M = 1, 2, . . . , 5, we use π(M) =

1/5, and the total code lengths are all computed conditional on two observations.
For the given data, none of these five individual models stands out as giving much
higher probability (shorter code length) than the others as seen in the row labeled
“Totals”. Therefore, coding with respect to the mixture will be better than with
model selection.
The corresponding approach for prediction in statistics is called Bayesian model
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averaging (BMA) [Hoeting, Madigan, Raftery and Volinsky 1999]. The model
averaging can be implemented in one path through the data via a Bayesian update.
At observation i + 1, the partial product q∗(y3, . . . , yi | y1, y2,M) is updated for
each of the models. It is used to give posterior weights π(M | yi) for each model in
the predictive density:

qave(yi+1 | yi) =
∑
M

π(M | yi)q∗(yi+1 | yi,M)

The final predictive density estimator is qave(y | yn) and the corresponding final
location estimator is then θ̂ave =

∑
M θ̂Mπ(M | yn), where θ̂M is the minimax

location estimator (Pitman estimator) associated with the predictive density q∗(y |
yn,M) for the component M . In our case, the weights π(M | yn) are proportional
to 2−l(yn|M) where the values for l(yn | M) are given in the row of totals in table
7.1. For these data the final location estimate is θ̂ave = 8.80.
The posterior mean parameter estimates we computed here for each model are,

as we said, Pitman’s estimators, which are minimax in each family for the squared
error loss. One may also consider parameter estimators that are minimax for the loss
function one obtains by restricting the Kullback-Leibler divergence to members of a
given family. For location and scale parameters the minimax estimates in this case
turn out to be, for each sample ym, the choice of parameter value δ that provides a
member of the family closest in Kullback-Leibler divergence (KL) to the minimax
predictive density q∗(·|ym). For example, for location estimation with the two-sided
exponential the minimax estimator is the median of this predictive density (rather
than the median of the sample). For the normal, of course, the restriction of KL
to the location family reproduces the squared error so the minimax procedure with
this loss remains the posterior mean of predictive density.

7.4 Variable Selection in Linear Regression

Consider a linear regression model where we have observations yi and the corre-
sponding possible explanatory variables (also called covariates, predictors, or re-
gressors) xi1, . . . , xid. We use γ to index the possible subsets of the d variables, and
xiγ to denote the column vector of the covariates in γ. Given a subset of variables
γ, the observations are modeled by

yi = xtiγθγ + εi,

where θγ is a vector of unknown parameters with dimension equal to dγ , the
size of the subset γ. We all know that the more variables one includes in the
regression model, the better will be the fit to the data, at the possible expense
of generalizability to new cases. Such a phenomenon is called “overfitting”. To
avoid it, statisticians look for a subset of variables to achieve a tradeoff between
fitting errors and model complexity.



190 Exact Minimax Predictive Density Estimation and MDL

If we assume the error εi has a density function p0, then the density for yi is
given by

p(y | θ, γ) = p0(y − xtiγθγ).

Such a distribution family is a generalized location family. Similar analysis to what
we did for location families can be applied and it reveals, as shown in [Liang and
Barron 2002], that the exact minimax predictive density estimator q∗ is the Bayes
estimator with uniform prior over the parameter space R

dγ , conditioning onm ≥ dγ
observations.
In ordinary regression models, we often assume that the random error εi’s are

normal(0, σ2). Consider first the case that σ2 is known. The corresponding minimax
MDL criterion for variable selection chooses the subset of variables, γ, such that
one minimizes

MDLγ =
1

2σ2
[RSSN (γ)− RSSm(γ)] +

1
2
log

|(SN (γ)|
|Sm(γ)| ,

where Sm(γ) =
∑m

i=1 xiγx
t
iγ and RSSm(γ) = ‖y − xtγ θ̂γ,m‖2, respectively, are the

information matrix and the residual sum of squares using m observations. Similarly
for SN (γ) and RSSN (γ). Here | · | denotes the determinant. For model selection,
we evaluate the criterion for various choices of explanatory variables xγ (provided
dγ ≤ m), and pick the one that minimizes this optimal description length criterion.
When σ2 is unknown, we found in [Liang and Barron 2002] that the minimax

procedure q∗ is a generalized Bayes procedure with a uniform prior on the location
and log-scale parameters and the corresponding MDL criterion is given by

N − dγ
2

log RSSN (γ)− m− dγ
2

log RSSm(γ) +
1
2
log

|SN (γ)|
|Sm(γ)| − log

Γ(N−dγ
2 )

Γ(m−dγ
2 )

.

7.5 Some Additional Discussion

The priors we showed to provide the exact minimax MDL criterion (uniform on
location and log-scale parameters) were suggested earlier by researchers from other
perspectives. For example, it is related to the intrinsic Bayes factor (IBF) introduced
by Berger and Pericchi [1996] for the Bayesian model selection. Again, the prior
is improper. So they condition on a training sample. The minimal size of the
conditioning data for our minimax MDL result agrees with the minimal size of
training sample in the IBF, which is the smallest number among those which provide
proper predictive densities. Our work provides decision-theoretic optimality (for
Kullback risk) of the given choice of priors for IBF and MDL.
The concept of conditioning arises very naturally in time series analysis and in

the framework of prediction without refitting (see Speed and Yu [1993]) where it is of
interest to do prediction for some future data based on an initial data set. But when
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the data does not come with natural order, it is not clear how to implement the exact
MDL because of its dependency on the initial data set. An approach considered by
Rissanen [1989] is to average over all possible subsets of observations of size as
the conditioning observations. However, as he points out, the exact description
length interpretation is then lost. A similar problem is encountered in defining
intrinsic Bayes factors by Berger and Pericchi [1996]. To remove the dependence
and increase the stability for the training sample, Berger and Pericchi proposed
different averages (such as arithmetic, geometric, and median) over all possible
training samples. Such an approach can be carried over to the exact MDL, but the
description length interpretation may be lost.
The initial observations are used to convert the improper prior to a proper

posterior. Therefore one way to avoid conditioning is to find a minimax Bayes
procedure which is based on a proper prior. Our recent result [Liang 2002] has
shown that there exists a proper Bayes minimax predictive density estimator with
smaller risk than q∗ everywhere provided that the dimension is bigger than 4, for
normal location families.
Under current investigation is the extent to which the proper Bayes minimax

density estimation solution extends to the regression setting. One special case is
when the initial design matrix Sm and the total design matrix SN are proportional
to each other. Then a proper prior can be used to assign a description length for the
whole data with the property that after the description of the first m observations,
the description of the rest is minimax optimal (as well as proper Bayes). Moreover,
compared to the minimax code with uniform prior, it provides everywhere smaller
(conditional) description length. It is under current investigation whether this result
can be extended to more general design matrices.
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We consider the contribution of parameters to the stochastic complexity. The
stochastic complexity of a class of models is the length of a universal, one-part code
representing this class. It combines the length of the maximum likelihood code with
the parametric complexity, a normalization that acts as a penalty against overfit-
ting. For models with few parameters relative to sample size, k ) n, the parametric
complexity is approximately k

2 logn. The accuracy of this approximation, however,
deteriorates as k grows relative to n, as occurs in denoising, data mining, and ma-
chine learning. For these tasks, the contribution of parameters depends upon the
complexity of the model class. Adding a parameter to a model class that already
has many produces a different effect than adding one to a model class that has
few. In denoising, for example, we show that the parametric complexity leads to
an adaptive model selection criterion. We also address the calculation of the para-
metric complexity when the underlying integration is unbounded over the natural
parameter space, as in Gaussian models.
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8.1 Introduction, Terminology, and Notation

Parametric probability distributions pθ provide a rich set of models for data
compression, coding, and prediction. The parameters that distinguish these models
often have clear physical ties to the underlying data, and so provide a comforting
sense of reality and interpretation. The parameters can be linked to arrival rates,
averages of underlying stochastic processes, or effects of exogenous influences that
one seeks to control. When linked to a data-generating mechanism, both the number
and values of the parameters θ take on substantive meaning that guides the choice of
values for these tuning constants. When stripped of this connection and expanded in
number, however, the choice of the best parameterization for pθ becomes an alluring
impediment. Modern computing makes it all too easy to expand the dimension of
θ by adding superfluous parameters that promise much but deliver little. Indeed,
overparameterized models that have been optimized to obtain the closest fit to data
not only obscure any ties to an underlying data-generating mechanism but also
predict poorly. Complex models found by automatic searches through massive data
warehouses – data mining – nonetheless rule the day in modeling many phenomena.
To choose one of these requires an automated criterion, and stochastic complexity
stands out with appeal from many perspectives.
The routine use of stochastic complexity as a criterion to choose among complex

models faces serious hurdles, however. These challenges arise in determining how
to penalize for overparameterized models. Stochastic complexity appeared about
20 years ago [Rissanen 1986] and was found to possess a variety of optimality
properties that spurred its use in hard problems. This optimality, though, lay in
identifying parameters in models whose dimension remains fixed while the number
of data records, n, expands. In data mining, the complexity of a model – reflected
in the number of parameters – grows with the amount of data. The larger the data
warehouse, the larger and more complex the variety of models one considers. If
the dimension of θ grows with n, the standard asymptotic heuristics for stochastic
complexity no longer obtain. For example, the familiar assessment of 1

2 logn per
parameter no longer holds. Also, to make the procedure workable (in particular, to
bound a key normalization), various artificial constraints have to be placed on the
underlying probability models. These constraints can be provided in various forms
with subtle implications for the choice of an optimal model.
We adopt the following notation and terminology that emphasize the connection

between prefix codes and stochastic complexity. The response of interest is a
sequence of n values y = (y1, . . . , yn), with each yi a point in some data space
D so that y ∈ Dn = D × D × · · · × D. Our examples set D to {0, 1} for binary
data and to the real line R in the Gaussian case. We assume that the space of
possible outcomes D is known. Rephrased as a problem in coding, the objective
of model selection is to represent y using the shortest possible uniquely decodable
prefix code. Here, “shortest possible” typically has one of two meanings. In a worst-
case analysis, the chosen code for y is the solution of a minimax problem. Let A
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denote a prefix-coding algorithm. For any y ∈ Dn, the codebook associated with A
represents y using J(A(y)) bits; an inverse lookup gives the decoding. A worst-case
analysis seeks a code whose length attains the minimax rate

min
A

max
y∈Dn

J(A(y)) . (8.1)

Alternatively, one can define the best code as that with the shortest length with
respect to some expectation [Barron, Rissanen, and Yu 1998].
The “models” that we study here are parametric probability distributions for

the data, and so we will identify a specific codebook by its associated distribu-
tion. Because of the Kraft inequality, we can associate any prefix code with a
(sub)probability distribution over Dn. Given a choice of parameters θ in some
space Θ, pθ identifies the codebook for y implied by, say, arithmetic coding of y
using the probability pθ(y). Implicit in our notation is that one knows the form of
the mapping that takes θ into a probability. For example, pµ,σ2 could denote the
normal distribution with mean µ and variance σ2. One often collects a family of
these models into classes, and here we use the term “library” for a collection of
codebooks indexed by θ ∈ Θ,

L(Θ) = {pθ : θ ∈ Θ} . (8.2)

Continuing with the Gaussian illustration, if Θ = R × R
+, then we have the

independently and identically distributed (i.i.d.) Gaussian library

G(Θ) = {pµ,σ2 : pµ,σ2(y) =
e−

P
(yi−µ)2/2

(2πσ2)n/2
, µ ∈ R, σ2 > 0} . (8.3)

Calligraphic letters denote libraries; we use L to denote a generic library and use B
and G for specific libraries. Notice that although any codebook pθ identifies a prefix
code for y, a library L(Θ) does not. We cannot encode y using L(Θ) alone; either
we must identify a specific pθ ∈ L(Θ) or unify the library into a single codebook.
The following section defines stochastic complexity as the length of a prefix code

for y obtained by an “encyclopedia,” a special codebook that represents a library.
We introduce a special name for this codebook to distinguish it from the codebooks
implied by parametric models pθ that make up a library. With the terminology
complete, Section 8.2 concludes with a guide to the rest of this chapter.

8.2 MDL and Stochastic Complexity

The minimum description length (MDL) criterion seeks the best library (model
class) for encoding a particular sequence y. The task is not to find the best
individual codebook per se, but rather to identify a library. Since we assume
that the mapping of parameters to codebooks pθ has known form (given θ), the
problem becomes one of choosing the parameter space Θ rather than the form of
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pθ. For example, we consider the problem of picking from regression models that
are distinguished by the number of predictors rather than the comparison of linear
regression to, say, other classes of generalized linear models.
To implement MDL thus requires a measure of how well a library can represent

y. Intuitively, one can proceed by first finding the maximum likelihood codebook
in L(Θ), say pθ̂(y). Since this codebook is indexed in a manner than depends upon
y, however, we cannot simply encode the data using the codebook pθ̂(y) alone
because the receiver would not know which of the codebooks in L(Θ) to use for
the decoding. Two-part codes provide an obvious solution: identify the codebook
in L(Θ) by prefixing the code obtained by pθ̂(y) with another code identifying θ̂(y).
Through some clever arguments reviewed in [Rissanen 1989], Rissanen shows that
one achieves a shorter overall code by coarsely identifying θ̂(y). The use of two-part
codes, however, introduces two problems. First, it is often neither easy nor obvious
to decide how to round θ̂(y); the discrete “spiral” codes given in [Rissanen 1983]
illustrate some of the difficulties. Second, two-part codes are not “Kraft-tight”; the
resulting implicit probability on Dn sums to less than 1.
Stochastic complexity addresses both problems. First, it provides a direct con-

struction that removes the subjective choice of how to encode θ̂(y). Second, stochas-
tic complexity encodes y with an efficient, one-part code. The underlying construc-
tion is rather natural: normalize the maximum likelihood code pθ̂(y) so that it
becomes a probability. Since the data itself determine the maximum likelihood es-
timator (MLE), pθ̂(y) is not a subprobability,∫

Dn

pθ̂(y)(y)dy > 1 ,

(assuming a continuous model) and hence cannot define a prefix code for y. The
code length exceeds log 1/pθ̂(y) in order to identify which codebook in L(Θ) was
used to represent the data. Rather than tack on a code that identifies θ̂(y), one
can instead convert the library back into a codebook. We distinguish these unified
libraries from the parametric codebooks pθ by calling them encyclopedias. The
length of the code for y given by an encyclopedia is obtained by normalizing pθ̂(y)
to generate a probability over Dn. This normalization requires us to divide by
precisely the same integral that shows that pθ̂(y) is not a probability,

C (L,Θ, Dn) =
∫
Dn

pθ̂(y)(y)dy , where θ̂(y) = argmax
θ∈Θ

pθ(y) . (8.4)

Though this notation is cumbersome, we need these arguments to distinguish dif-
ferent forms of this normalization. The one-part code obtained from the resulting
encyclopedia encodes y using the normalized maximum likelihood (NML) proba-
bility, denoted

gL(Θ)(y) =
pθ̂(y)(y)

C (L,Θ, Dn)
. (8.5)

The NML encyclopedia possesses many advantages. Not only can gL(Θ) be com-
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puted routinely without the need to round the MLE, the resulting Kraft-tight code
obtains the minimax rate (8.1) [Shtarkov 1987].
The stochastic complexity of the library L(Θ) for representing y is defined to be

the length of the code provided by the resulting NML encyclopedia gL(Θ),

L(y;L,Θ, Dn) = logC(L,Θ, Dn) + log
1

pθ̂(y)(y)
, θ̂(y) ∈ Θ . (8.6)

The MDL criterion then picks the library that minimizes the stochastic complexity.
The log of the normalizing constant, logC(L,Θ, Dn), is known as the parametric
complexity of the library. It compensates for overfitting an excessive number of
parameters; thus it acts like a penalty term.
The use of stochastic complexity can often be simplified by using a particularly

simple asymptotic approximation for the parametric complexity. The underlying
asymptotic analysis fixes the dimension of the parameter space Θ and lets the length
n tend to infinity. Under suitable regularity conditions, it follows that [Rissanen
1996]

logC(L,Θ, Dn) =
dim(Θ)

2
log

n

2π
+ log

∫
Θ

|I(θ)|1/2dθ + o(1), (8.7)

where I(θ) is the asymptotic Fisher information matrix with elements

Iij(θ) = lim
n→∞−

1
n

∂2 log pθ(y)
∂θi∂θj

. (8.8)

The leading summand of (8.7) suggests that, in regular problems, the addition of
each parameter increases the stochastic complexity by about 1

2 logn. This interpre-
tation motivates the common association of MDL with the Bayesian information
criterion (BIC) whose penalty also grows logarithmically in n.
This approximation is both appealing and effective when used in the context

of comparing a sequence of nested models of small dimension. For example, it
works well in choosing among low-order polynomials or autoregressions (although
comparisons tend to favor other criteria if prediction is the objective). For choosing
among models of large dimension, such as those we use to predict credit risk
[Foster and Stine 2002], however, the classic formulation of MDL (i.e., penalizing
by the number of parameters times 1

2 logn) no longer applies. For parameter-rich,
data-mining models, this approximation no longer offers a useful measure of the
complexity of the class.
The next three sections investigate the role of parameters in stochastic complex-

ity, with an emphasis on models with many parameters. In Section 8.3, we consider
the role of parameters in the Bernoulli library, a library that can be converted into
an encyclopedia. We show that the contribution of a parameter depends on the com-
plexity of the model itself; adding a parameter to a model with many adds less than
adding one to a model with few. In Sections 8.4 and 8.5, we consider the parametric
complexity of encyclopedias for Gaussian libraries. Section 8.4 considers methods
for bounding the parametric complexity of a low-dimension Gaussian library, and
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Section 8.5 considers high-dimensional models associated with denoising.

8.3 Parameters and the Bernoulli Library

We begin our discussion of stochastic complexity by choosing a context in which
it all works. For this section, the data are binary with D = {0, 1}. Codebooks for
y ∈ {0, 1}n in the usual library B define probabilities of the form

pθ(y) = θ
P

yi (1− θ)n−
P

yi , (8.9)

with the parameter space Θ = [0, 1]. Given a binary sequence y, the library B([0, 1])
of i.i.d. codebooks fixes θ for all i; larger parameter spaces allow this probability to
vary over observations. In either case, we can compute the parametric complexity
explicitly and see how the dimension of Θ affects the stochastic complexity.
The existence of a sufficient statistic simplifies this calculation. Under the as-

sumed model class, the data are modeled as a realization of a sequence of indepen-
dent Bernoulli random variables. Let Sn =

∑
i Yi denote the sum of these hypo-

thetical random variables, and let θ̂ = Sn/n denote the MLE for θ. The sufficiency
of Sn for θ allows us to factor the distribution of Y = (Y1, . . . , Yn) into the product
of the distribution of Sn and that of Y conditional on Sn (which is thus free of θ).
Using these sufficiency arguments, the normalizing constant is

C(B, [0, 1], {0, 1}n) =
∑
y

pθ̂(y)(y)

=
n∑

s=0

pθ̂(y)(Sn = s)
∑

y:θ̂(y)=s/n

p(y
∣∣ Sn = s)

=
n∑

s=0

pθ̂(y)(Sn = s)

=
n∑

s=0

(
n

s

)
(s/n)s(1 − s/n)n−s , (8.10)

where p without a subscript denotes a probability distribution that is free of
parameters. If we use Stirling’s formula to approximate the factorials in (8.10),
we obtain (

n

s

)
(s/n)s(1 − s/n)n−s ≈

√
n√

2πs(n− s) .

This approximation is quite accurate except near the boundaries of the parameter
space. (The approximation has singularities for s = 0, n, but the actual summands
are 1. A Poisson approximation is more accurate at the extremes than this,
essentially, normal approximation.) Integrating the approximation gives

C(B([0, 1]), [0, 1], {0, 1}n) =
√
n√
2π

∫ n

0

1√
s(n− s)ds+O(1) =

√
n π

2
+O(1) . (8.11)
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The error in this approximation is about 2/3.
The stochastic complexity (8.6) of the i.i.d. library B([0, 1]) for y is thus the sum

of the code length for y plus the parametric complexity,

L(y;B, [0, 1], {0, 1}n) = 1
2 log

nπ
2 + log 1/pθ̂(y)(y) +O(1/

√
n) .

The parametric complexity agrees with the asymptotic approximation (8.7). The
one parameter θ contributes about 1

2 logn the stochastic complexity.
The stochastic complexity of B(Θ) is invariant of one-to-one transformations of

Θ, even if such a transformation makes Θ unbounded. For example, if we write pθ
in the canonical form of an exponential family, then

pθ(y) = ey log θ/(1−θ)+log 1−θ, y = 0, 1,

or

pη(y) = ey η+ψ(η), y = 0, 1,

with η = log θ/(1 − θ), the log of the odds ratio. Expressed in this form, the
parameter space becomes R. The stochastic complexity remains the same, though,
since transforming the parameter space does not change the likelihood obtained by
the various codebooks. The MLE for η is η̂ = log θ̂/(1− θ̂) and∑

y

pη̂(y)(y) =
∑
y

pθ̂(y)(y) .

The contribution of a parameter does change, however, if we expand Θ to dimen-
sions on the order of the number of observations. While artificial, perhaps, in this
context, the use of stochastic complexity in data mining requires one to assess and
compare models of large dimension. With a richer class of models, we no longer
obtain an appealing separation of parameters from data. In such problems, the
asymptotic approximation (8.7) fails because the dimension of Θ grows with n. An
alternative, local asymptotic analysis leads to a rather different characterization of
the amount to penalize for each parameter, one for which the penalty is proportional
to the number of parameters rather than logn [Foster and Stine 1999].
Consider the “saturated” Bernoulli library B with the parameter space extended

to Θ = [0, 1] × [0, 1] × · · · × [0, 1] = [0, 1]n, allowing one parameter for each
observation. The MLE for θn = (θ1, . . . , θn) is θ̂n(y) = y. As a result, the length of
the maximum likelihood code for y collapses to zero,

log
1

pθ̂n(y)(y)
= log 1 = 0 .

The parametric complexity of B([0, 1]n) now comprises all of the stochastic com-
plexity of the encyclopedia, with all of the information from the data concentrated
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in the parameters,

logC(B, [0, 1]n, {0, 1}n) = log
∑
y

pθ̂n(y)(y) = log 2n = n .

Each parameter contributes just 1 bit, not 1
2 logn, to the complexity of B([0, 1]n).

Parameters in libraries for which the dimension of Θ is O(n) evidently add less to
the complexity than those in models of small, fixed dimension.
The concentration of the stochastic complexity into the parametric complexity

leads to a dilemma when one then tries to use stochastic complexity to choose
among model classes. The stochastic complexity of the saturated library B([0, 1]n)
is n, agreeing with the expected stochastic complexity of the very different, “null”
library B({ 12}) which fixes θi = 1

2 for all i. On average, stochastic complexity
cannot distinguish the saturated library that varies θ to match each observation
from a dogmatic “null” library that treats the data as i.i.d. noise. Models that
treat the data as pure signal have the same stochastic complexity (on average) as
those which treat the data as pure noise. Rissanen [2000] encounters such ambiguity
between “signal” and “noise” when using MDL in the denoising problem where the
dimension of the class of models is on the order of n.

8.4 Complexity of the Gaussian Library

The parametric complexity of many libraries is unbounded, and as a result one must
deviate from the clean definition of stochastic complexity that we have illustrated
so far. Perhaps the most important cases of this phenomenon are the Gaussian
libraries G(Θ) introduced in (8.3). The codebooks in a Gaussian library model y
as though it were a realization of random variables Yi

i.i.d.∼ N(µ, σ2). A Gaussian
library cannot be converted into an encyclopedia like those representing a Bernoulli
library B. The asymptotic approximation to the parametric complexity (8.7) reveals
the problem: the Fisher information (8.8) for µ is constant but the natural range
for this parameter is R. To see the problem more clearly, though, we will avoid this
approximation and work directly from the definition.
Assume for the moment that σ2 = 1 is known and focus on the one-parameter

library with unknown mean,

G(R) = {pµ : pµ(y) =
e−

P
(yi−µ)2/2

(2π)n/2
, µ ∈ R} .

Following [Barron et al. 1998], the parametric complexity is most easily found by
once again using the sufficiency of the sample average Y =

∑
Yi/n for µ. Modeled

as a sample of normals, the distribution of y factors into

pµ(y) = pµ(y) p(y|y)

where p(y|y) is the conditional distribution of y given Y , and thus is free of µ. The
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distribution of the sufficient statistic is N(µ, σ2/n),

pµ(y) =
( n

2πσ2
)1/2

e−
n
2σ2 (y−µ)2 .

When we set µ = y in the NML distribution, this density reduces to a constant,

py(y) =
( n

2πσ2
)1/2

. (8.12)

Since the parametric complexity logC(G,R,Rn) (with both Θ and D set to the real
line) is unbounded, we cannot use stochastic complexity as defined as a criterion
for model selection.
One approach to this dilemma is to bound the parametric complexity by con-

straining Θ. For example, the parametric complexity is finite if we constrain Θ to
the ball of radius R > 0 around the origin, ΘR = {µ : −R ≤ µ ≤ R}. It is important
to note that R is a constant chosen prior to looking at the data. This constraint
has no effect on the range of data; it only limits the values allowed for µ and its
MLE,

µ̂R(y) =



−R, y < −R ,
y, −R ≤ y ≤ R ,
R, R < y .

The parametric complexity of G(ΘR) is then 1 plus a multiple of the radius of the
parameter space,

C(G,ΘR,R
n) =

∫
Rn

pµ̂R(y)(y)p(y|y)dy

= 2
∫ ∞

R

( n

2πσ2
)1/2

e−(y−R)2/2 dy +
∫ R

−R

( n

2πσ2
)1/2

dy

= 1 +
2
√
nR√

2πσ2
. (8.13)

The addition of 1 in (8.13) arises from integrating over those y for which the MLE
lies on the boundary of ΘR. The associated stochastic complexity for an arbitrary
y ∈ R

n is then

LG(ΘR)(y) = logC(G,ΘR,R
n) + log 1/pµ̂R(y)(y)

= log(1 +
2
√
nR√

2πσ2
) + log 1/py(y) +K(py‖pµ̂R) .

The last termK(py‖pµ̂) is the Kullback-Leibler divergence between the distribution
pµ̂, which uses the constrained MLE, and py, which uses the unconstrained sample
average,

K(p‖q) =
∫
Dn

p(y) log
p(y)
q(y)

dy .

This approach allows us to use stochastic complexity as before, with a single ency-
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clopedia representing a library. The sender and receiver can agree to a particular
choice of R prior to encoding y. Stine and Foster [2000] label (8.13) the uncondi-
tional parametric complexity.
This unconditional approach introduces a problem, however, into the use of

stochastic complexity as the criterion for MDL. One must decide prior to observing
y how to constrain Θ. Restricting µ to lie in ΘR may seem natural, but certainly
other choices are possible. [Stine and Foster 2000] propose a competitive analysis to
pick optimal constraints, but here we consider an alternative method that bounds
the parametric complexity in a rather different manner. This alternative constrains
the data rather than the parameter space.
The most common method for bounding the parametric complexity constrains

the data space Dn rather than Θ. Let Dn
R denote the subset of R

n for which the
average of y lies inside ΘR,

Dn
R = {y : y ∈ R

n,−R ≤ y ≤ R} . (8.14)

Under this constraint, the normalizing constant becomes

C(G,R, Dn
R) =

∫
Dn
R

py(y) dy =
2
√
nR√

2πσ2
, (8.15)

which is one less than the constant obtained by constraining the parameter space.
Notice that restricting y to Dn

R implies a constraint on Θ as well,

C(G,R, Dn
R) = C(G,ΘR, D

n
R) .

To distinguish such implicit constraints on Θ from those set externally, our notation
omits the implicit constraints on Θ when induced by those placed on y.
When constraining y, one must ensure that y lies in Dn

R or else the library
lacks a codebook for the data. Thus, in applications, one replaces the a priori
bound R by a data-dependent constraint, say R(y). R(y) is usually chosen so
that the unconstrained MLE lies in the implicit parameter space, y ∈ ΘR(y). This
measure of complexity, however, ignores the fact that the receiver needs to know y.
A feature of y has “leaked out” of the normalization process and must be encoded
separately. Constraining Θ directly produces a “one-volume” encyclopedia that
generates a prefix code for y. Constraining the data space Dn leads to a “multi-
volume” encyclopedia that cannot generate a prefix code — the receiver does not
know which of the volumes to use to decode the message. Consequently, one must
add to the stochastic complexity the length of a prefix that identifies R(y),

L(y;G,R, Dn
R(y)) = J(R(y)) + log

(
2
√
nR(y)√
2πσ2

)
+ log 1/py(y) .

The length of the code for R(y) lies outside the framework of the underlying NML
model, and thus this approach sacrifices its minimax optimality. In a one-parameter
model, the addition of a code for R(y) has little effect on the selection of a model
by MDL, especially when formulated along the lines of, say, R(y) = 22k(y) for some
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integer k(y) as in [Rissanen 2000]. The next section shows, however, that the impact
of “leaking information” outside the NML normalization grows as one adds more
parameters.
Before moving to models of large dimension, the presence of data-dependent

bounds introduces other problems as well. In particular, the form of the data-
driven constraints can determine whether a library has infinite or finite complexity.
We illustrate this aspect of data-driven constraints by introducing an unknown
variance σ2. To avoid singularities in the likelihood, it is natural to bound σ2 away
from zero, say 0 < σ20 ≤ σ2.
With σ2 estimated from y, the parametric complexity depends upon how one

constrains y. If y is constrained so that y ∈ ΘR, the parametric complexity is infinite
unless we introduce an upper bound for σ2. Barron et al. [1998] and Hansen and
Yu [2001] employ this type of constraint. If instead y is constrained by restricting y
to a region defined on a standardized scale, say y ∈ Θzσ/

√
n as in [Rissanen 1999],

then the parametric complexity is finite, without the need for an upper bound on
σ2. This effect of the “shape” of the constraints does not appear if we constrain the
parameter space rather than the data.
We begin again with the factorization of the likelihood pµ,σ2(y) implied by

sufficiency. The statistics Y and S2 =
∑

(Yi − Y )2/n are independent and jointly
sufficient for µ and σ2. The Gaussian likelihood thus factors into a product of three
terms,

pµ,σ2(y) = p(y|y, s2) pµ,σ2 (y) pσ2(s2) ,

where pσ2(s2) denotes the chi-squared density of S2,

pσ2(s2) =

(
ns2

σ2

)α−1
e−ns2/2σ2

Γ(α)2α
n

σ2

=
cn
σ2

(
s2

σ2

)α−1
e−ns2/2σ2

, (8.16)

where the constants cn and α are

cn =
nα

Γ(α)2α
, α =

n− 1
2

. (8.17)

The conditional density of the data p(Y |Y , S2) given Y and S2 is free of µ and σ2.
Now let D̂n denote a subset of R

n for which the MLE lies within Θ̂. Given this
constraint, the parametric complexity is the log of the following integral:

C(G,Θ, D̂n) =
∫
Θ̂

∫
D̂n

p(y|y, s2)py,s2(y) ps2(s2)dy dy ds2

= kn
∫
Θ̂

(
1
s2

)3/2

dy ds2 , (8.18)
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where kn collects constants from the chi-squared and normal densities,

kn = cn

√
ne−n/2

√
2π

=
nα+1/2e−n/2

√
2π Γ(α) 2α

. (8.19)

To see how the form of the constraints affects the parametric complexity, we just
plug them into the integral (8.18) and evaluate. With y constrained so that y ∈ ΘR

and s2 ≥ σ20 , the integral splits as∫
py,s2(y)(y)dy = kn

∫ R

−R

dy

∫ ∞

σ2
0

(
1
s2

)3/2

ds2 = kn
2R
σ20

.

The conditional parametric complexity is finite. On the other hand, with y con-
strained so that y lies within a standardized range (e.g., we plan to encode data
whose mean lies within 20 standard errors of zero), the parametric complexity is
infinite,∫

py,s2(y)(y)dy = kn
∫ ∞

σ2
0

∫ zs/
√
n

−zs/
√
n

(
1
s2

)3/2

dy ds2 = 2knz
∫ ∞

σ2
0

1
s2
ds2 .

One can bound the complexity in this case by adding a further constraint to the
data that restricts y to those sequences for which, say, s2 ≤ σ21 .
Bounding the parametric complexity by constraining y thus gives two rather

different measures of the complexity of these Gaussian libraries. Consider the effect
of restricting y to those sequences for which s2 ≤ σ21 . If y is also constrained so that
y is bounded on the standardized scale, the parametric complexity is a multiple of
log

(
σ21/σ

2
0

)
. If y is bounded directly, the parametric complexity is a multiple of

1/σ20 − 1/σ21. One tends to infinity with σ21 , whereas the other remains finite.
Unconditional bounds, in contrast, give the same answer whether µ is restricted

directly or on a standardized scale. In either case, the parametric complexity is
unbounded. Denote the constrained parameter space by

Θσ2
1

R = {(µ, σ2) : −R ≤ µ ≤ R, σ20 ≤ σ2 ≤ σ21} .

Let θ̂ denote the MLE for this space. These constraints are “rectangular” in the
sense that

θ̂ = (µ̂, σ̂2) =
(
min(max(−R, y), R),min(max(σ20 , s

2), σ21)
)
.

If (y, s2) lies outside of Θσ2
1

R , then one obtains the MLE by projecting this point
perpendicularly onto the boundary of Θσ2

1
R . When (y, s2) violates both constraints,

the projected point is a “corner” of Θσ2
1

R [e.g., one corner is (R, σ21)]. For these
rectangular bounds, the normalizing constant is

C(G,Θσ2
1

R ,R
n) =

∫
Rn

pµ̂,σ̂2(y) dy

≥
∫
y:σ2

0≤s2≤σ2
1

pµ̂,s2(y) dy
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=
∫ σ2

1

σ2
0

ps2(s2)
(
1 +

2
√
nR√

2πs2

)
ds2

= cne−n/2

∫ σ2
1

σ2
0

1
s2
ds2 + 2knR

(
1
σ20
− 1
σ21

)
= cne−n/2

(
log
σ21
σ20

)
+ 2knR

(
1
σ20
− 1
σ21

)
.

Notice that C(G,Θσ2
1

R ,R
n) has both the log of the ratio of the bounds for σ2 as well

as the difference of the ratios. Thus, C(G,Θσ2
1

R ,R
n) tends to infinity with σ21 .

A similar calculation shows that the normalizing constant also tends to infinity
when the constraints for µ are specified on the standardized scale. If we restrict
µ to Θzσ/

√
n, the projections of (y, s2) onto the parameter space are no longer

rectangular. Nonetheless, we can show that the normalization again tends to infinity.
Regardless of the location of y, the probability at the MLE is at least as large as
that at a restricted location, pµ̂,σ̂2 ≥ p0,σ̂2 . Consequently, the normalizing constant
is bounded below as follows:

C(G,Θσ2
1

zσ/
√
n
,Rn) =

∫
Rn

pµ̂,σ̂2(y) dy

≥
∫

Rn

p0,σ̂2(y) dy

≥
∫
y:σ2

0≤s2≤σ2
1

p0,s2(y) dy

=
∫ σ2

1

σ2
0

ps2(s2)ds2

= cne−n/2 log
σ21
σ20
.

Again, the normalizing constant tends to infinity as σ21 grows.

8.5 Complexity of Libraries with High Dimension

We consider the use of MDL in the so-called denoising problem. In denoising, the
response y is modeled as a weighted average of selected orthogonal signal vectors
{Wn

j }nj=1 plus Gaussian noise,

Y =
∑
j∈γ

βjW
n
j + σεn , εi

i.i.d.∼ N(0, 1) . (8.20)

The range of the summation is a set of indices γ ⊂ {1, . . . , n} that indicates which of
the signal vectors have nonzero coefficients. If j ∈ γ, then Wn

j affects y; otherwise,
the inclusion of Wn

j only adds noise to a fitted reconstruction. The signal vectors
might be wavelets, sines and cosines, or any other orthogonal basis for R

n. The
problem in denoising is to identify γ; ideally, the reconstruction requires only a
small subset of the signal vectors when the basis is well-chosen. Thus, denoising
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amounts to variable selection in an orthogonal regression in which one has just as
many possible predictors as observations.
Because the signal vectors are orthogonal, these models have a convenient canon-

ical form. We can rotate any family of signal vectors into the standard basis for R
n

in which Wn
j = enj = (0, . . . , 1j, 0, . . . , 0). When (8.20) is re-expressed in this way,

the underlying probability model becomes the multivariate normal location model,
Y = µn + σ ε for µn ∈ R

n. The libraries used in denoising thus generalize the i.i.d
library (8.3) by greatly expanding the parameter space

G(Θ) = {pµn : pµn(y) =
e−

P
(yi−µi)

2/2

(2π)n/2
, µn ∈ Θ} . (8.21)

Each codebook in G(Θ) describes y as a collection of independent, normal random
variables, Yi ∼ N(µi, 1), i = 1, . . . , n. The trick is to figure out which µi �= 0. We
include the saturated library that allows one parameter per observation and duck
some of the boundary problems described in the prior section by fixing σ2 = 1.
Obviously, one would need to estimate σ2 in an application. In wavelet denoising
[Donoho and Johnstone 1994], σ2 can be estimated quite well from the coefficients
of the n/2 most localized basis elements.
Our interest lies in using stochastic complexity as the criterion for picking the

best dimension for the parameter space. As a first step, consider libraries that are
identified by a given set γ of nonzero means. Let Θγ = {µn : µn ∈ R

n, µi = 0, i �∈ γ}
denote a q = |γ| dimension subspace of R

n. If γc denotes the complement of γ
relative to {1, 2, . . . , n}, then G(Θγ) contains codebooks for the following models:

G(Θγ) = {pµn : pµn(y) =
e−(

P
γ(yi−µi)

2+
P

γc y2
i )/2

(2π)n/2
} (8.22)

Given γ, we can introduce constraints like those considered in the prior section
to obtain the parametric complexity. It remains to identify γ. If we think of
representing γ using a vector of Boolean indicators, then the ideas of Section 8.2
become relevant. The stochastic complexity of B([0, 1]) for an observed sequence of
n i.i.d. Boolean random variables is approximately 1

2 logn+log
(
n
q

)
. If we presume γ,

then the resulting stochastic complexity omits the cost of identifying the coordinates
of the nonzero parameters.
Rissanen [2000] handles this task by presuming all 2n models are equally likely

and adds an n-bit code for γ to the complexity of G(Θγ) for all γ. Because this
addition adds the same amount to the stochastic complexity for every parameter
space, it has no effect on the selection of the best library. This approach does,
however, imply a strong bias toward models with about n/2 nonzero parameters,
as though γi

i.i.d.∼ Bernoulli(12 ). If instead we incorporate more of γ into the NML
normalization, we discover that stochastic complexity adapts to the number of
nonzero parameters.
One way to retain more of the complexity with the NML normalization is to

presume one has an a priori ordering of the basis elements, for example [Barron
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et al. 1998]. This approach is adopted, for example, when MDL is used to pick
the order of a nested sequence of polynomial regressions. Typically, one does not
compare all possible polynomials, but rather only compares an increasing sequence
of nested models: a linear model to a quadratic model, a quadratic to a cubic, and
so forth. For the canonical denoising problem, this knowledge is equivalent to being
given an ordering of the parameters, say,

µ2(1) ≤ µ2(2) ≤ · · · ≤ µ2(n) .

While natural for polynomial regression, such knowledge seems unlikely in denois-
ing.
To retain the coordinate identification within an encyclopedia, we aggregate

indexed libraries G(Θγ) into larger collections. Again, let q = |γ| denote the number
of nonzero parameters and let

Θq = ∪|γ|=qΘγ

denote the union of q-dimensional subspaces of R
n. Our goal is to select the best

of aggregated library G(Θq). Said differently, our representative encyclopedia has a
volume for each q = 1, . . . , n. The use of such an encyclopedia for coding requires
only q, not γ itself, to be specified externally. Because any reasonable code for
positive integers assigns roughly equal-length codes to q = 15 and q = 16, say, the
leakage of q outside of the encyclopedia has minimal effect on the use of stochastic
complexity in MDL. We can encode q in O(log n) bits, whereas γ requires O(n)
bits.
Like other Gaussian libraries, the parametric complexity of G(Θq) is unbounded

without constraints. To specify these, let

y2(1) < y
2
(2) < · · · < y2(n)

denote the data ordered in increasing magnitude. The MLE µ̂nq ∈ Θq matches the
largest q elements y(n−q+1), . . . , y(n) and sets the others to zero, implying

pµ̂nq (y) =
e−(y

2
(1)+···+y2

(n−q))/2

(2π)n/2
.

In order to bound the parametric complexity, we constrain y. For x ∈ R
n, let

‖x‖2 =∑
i x

2
i denote the Euclidean norm. Following [Rissanen 2000], we constrain

the data to those y for which the MLE lies in a ball of radius
√
qR around the

origin,

Dn
q,R = {y : ‖µ̂nq (y)‖ ≤

√
q R} .

As with one-dimensional Gaussian models, a prefix code must include a code for R
as well as q to identify the appropriate encyclopedia. (For denoising, q R2 constrains
the “regression sum of squares” that appears in the numerator of the standard F -
test of a least squares regression. In particular, R2 is not the R-squared statistic
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often seen in regression output.)
The parametric complexity of the library G(Θq) is the log of the integral of

the maximum likelihood density over the restricted range Dn
q,R. We estimate this

complexity by partitioning the normalizing integral into disjoint subsets for which
the same coordinates form µ̂nq . The subset of nonzero parameters γ is fixed over
each of these subsets, and the integrals over these subsets are identical. Since there
are

(
n
q

)
partitions of the indices that fix γ, the parametric complexity is

(
n
q

)
times

the integral for the convenient subset in which the maximum of the n− q smaller
elements, mq(y) = max(y21 , . . . , y2n−q), is smaller than the minimum of the q larger
elements,Mq(y) = min(y2n−q+1, . . . , y

2
n). Note thatmq(y) < Mq(y). We then obtain

C
(G,Θq, D

n
q,R

)
=
∫
Dn
q,R

pµ̂nq (y) dy

=
(
n

q

)∫
‖yn−q+1,...,yn‖2<qR2

Fn−q(Mq(y))
(2π)q

dyn−q+1 · · · dyn , (8.23)

where Fk(x) is the integral

Fk(x) =
∫
y2
1,...,y

2
k<x

e−(y
2
1+···+y2

k)/2

(2π)k/2
dy1 · · · dyk . (8.24)

This integral resembles the cumulative distribution of a chi-squared random vari-
able, but the range of integration is “rectangular” rather than spherical.
The presence of a partition between the largest q elements of y and the remaining

n− q elements in this integration makes it difficult to compute the exact stochastic
complexity, but we can still get useful upper and lower bounds. The upper bound
is easier to find, so we start there. If we expand the range of integration in Fn−q(x)
to all of R

n−q, the integral is just that of a q-dimensional normal density and so
Fn−q(x) ≤ 1. Thus, for this bound the inner integral expressed as Fn−q in (8.23)
is just 1, and the constraints together with the binomial coefficient give an upper
bound for the normalizing constant,

C
(G,Θq, D

n
q,R

) ≤ (
n

q

)∫
‖yn−q+1,...,yn‖2<qR2

dyn−q+1 · · · dyn

=
(
n

q

)
Vq(
√
qR) , (8.25)

where Vk(r) denotes the volume of the ball of radius r in R
k,

Vk(r) =
rkπk/2

(k2 )!
.

The lower bound results from further constraining the range of integration in (8.23).
Rather than integrate over all boundaries between the smaller n− q terms and the
larger q, we integrate over a single boundary at 2 log(n−q), mq(y) ≤ 2 log(n−q) ≤
Mq(y). The choice of 2 log(n − q) as the point of separation follows from the
observation that 2 log(n−q) is an almost sure bound for the largest squared normal
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in a sample of n− q. If Z1, . . . , Zn
i.i.d.∼ N(0, 1) and we set

P (max(Z2
1 , . . . , Z

2
n) < 2 logn) = ωn ,

then limn→∞ ωn = 1 [Leadbetter, Lindgren, and Rootzen 1983]. It follows that

C
(G,Θq, D

n
q,R

) ≥ (
n

q

)∫
2 log(n−q)≤‖yn−q+1,...,yn‖2<qR2

dyn−q+1 · · · dyn

=
(
n

q

)
Aq(

√
2 log(n− q),√qR) , (8.26)

where Vq(r1, r2) with two arguments denotes the volume of the annulus of inner
radius r1 and outer radius r2 in R

q,

Vq(r1, r2) = Vq(r2)− Vq(r1) .

Combining (8.25) with (8.26), the parametric complexity of the model class with q
nonzero parameters is bounded between(

n

q

)
Vq(

√
2 logn,

√
qR) ≤ C (Gq,Θq, D

n
q,R

) ≤ (
n

q

)
Vq(
√
qR) . (8.27)

A further approximation to these bounds provides insight into the contribution of
parameters to the stochastic complexity of high-dimensional models. In practice, a
data-driven constraint, say R(y), replaces R to ensure the encyclopedia can encode
y. For q of moderate size, the volume of the annulus in the lower bound of (8.27)
is small in comparison to that of the ball itself; heuristically, most of the volume of
a sphere in R

q lies near the surface of the sphere. Following this line of reasoning
and approximating the logs of factorials as log k! ≈ k log k (omitting constants
unaffected by q), we obtain an expression for the parametric complexity that is
easy to interpret,

logC
(
G,Θq, D

n
q,R(y)

)
≈ log

(
n

q

)
+ q logR(y)

≈ q log n
q
+ q logR(y) , (8.28)

which is reasonable for q ) n.
Consider two situations, one with q large, nonzero µi and the other with q

smaller, nonzero parameters. For the “strong-signal” case, assume that the nonzero
parameters in µn are all much larger than the almost sure bound

√
2 logn. In

particular, assume that these µi = O(
√
n),

Strong signal: µ2i ≈ c n , i ∈ γ, ⇒ R2 = c n .

For the “weak-signal” case, we assume the effects are all near the noise threshold,

Weak signal: µ2i ≈ 2 logn , i ∈ γ, ⇒ R2 = c logn .

For coding data with strong signal, the approximation (8.28) to the parametric
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complexity resembles the approximation obtained by the standard asymptotic
analysis of models with small, fixed dimension. In particular, q

2 logn dominates
the approximation (8.28) if R2 = O(n). This similarity is natural. Given a fixed,
parametric model with finitely many parameters, the standard analysis lets n→∞
while holding the model fixed. Thus, the estimation problem becomes much like our
strong-signal case: with increasing samples, the standard errors of estimates of the
fixed set of parameters fall at the rate of 1/

√
n, and the underlying “true model”

becomes evident. The term q logR dominates the approximation (8.28), implying
a penalty of 1

2 logn as the model grows from dimension q to q + 1, just as in (8.7).
The penalty for adding a parameter is rather different when faced with weak

signals. In such cases, the approximation (8.28) suggests a penalty that resembles
those obtained from adaptive thresholding and empirical Bayes.With R = O(log n),
q logn/q dominates the approximate parametric complexity (8.28). This type of
penalty appears in various forms of so-called adaptive model selection. For choosing
q out of p possible parameters, one can motivate an adaptive model selection
criterion that contains a penalty of the form q log p/q from information theory
[Foster and Stine 1996], multiple comparisons [Abramovich, Benjamini, Donoho,
and Johnstone 2000], and empirical Bayes [George and Foster 2000].

8.6 Discussion

So, what is the asymptotic contribution of parameters to the stochastic complexity
of a model? Unfortunately, the answer appears to be that “it depends.” Ideally, the
parametric complexity is a fixed measure of the “complexity” of a class of models,
or library. Because the idealized parametric complexity is invariant of y, it offers
a clear assessment of how the fit (namely, the maximum of the log-likelihood) of a
model can overstate the ability of such models to represent data. In models with rich
parameterizations, the parametric complexity sometimes increases at the familiar
rate of 1

2 logn per parameter (one-parameter Bernoulli, high-signal denoising), but
at other times grows dramatically slower. The cost per parameter is only 1 in
the saturated Bernoulli model and about logn/q in low-signal denoising. The latter
problem, finding the subtle, yet useful parameters from a large collection of possible
effects seems, to us, most interesting and worthy of further study.
Adaptive criteria that vary the penalty for adding a parameter have demonstrated

success in applications. For example, we have built predictive models for credit
risk that consider on the order of 100,000 features as predictors [Foster and Stine
2002]. The model was identified using a variation on the adaptive rule suggested
in the weak-signal denoising problem. Such applications of adaptive rules require
other important considerations that we have not addressed here. In particular,
modeling with an adaptive rule requires careful estimation of the standard error of
parameters. In modeling credit risk, the introduction of several spurious predictors
leads to bias in the estimate of the effects of subsequent predictors and a cascade
of overfitting.
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Rissanen has introduced stochastic complexity to define the amount of information
in a given data sequence relative to a given hypothesis class of probability densities,
where the information is measured in terms of a logarithmic loss associated with
universal data compression. We introduce the notion of extended stochastic com-
plexity (ESC) and demonstrate its effectiveness in design and analysis of learning
algorithms in online prediction and batch-learning scenarios. ESC can be thought
of as an extension of Rissanen’s stochastic complexity to the decision-theoretic set-
ting where a general real-valued function is used as a hypothesis and a general loss
function is used as a distortion measure.
As an application of ESC to online prediction, we show that a sequential real-

ization of ESC produces an online prediction algorithm called Vovk’s aggregating
strategy, which can be thought of as an extension of the Bayes algorithm. We intro-
duce the notion of the minimax relative cumulative loss as the performance measure
of online prediction and show that ESC can be a minimax solution to the minimax
relative cumulative loss, which is attained by the aggregating strategy.
As an application of ESC to batch-learning, we show that a batch-approximation

of ESC induces a batch-learning algorithm called the minimum L-complexity
algorithm (MLC), which is an extension of the minimum description length (MDL)
principle. We derive upper bounds on the statistical risk for MLC, which are least to
date. Through ESC we give a unifying view of the most effective learning algorithms
that have recently been explored in machine learning theory.
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9.1 Introduction

Rissanen [1986, 1987, 1989, 1996] introduced the notion of stochastic complex-
ity (SC) to define the amount of information included in a data sequence rela-
tive to a given class of probability mass functions or probability densities. Now let
Hk = {pθ(·) : θ ∈ Θk ⊂ Rk} be a class of probability densities or probability mass
functions, which we call a hypothesis class, where each pθ, which we call a hypoth-
esis, is specified by a k-dimensional real-valued parameter θ over the parameter
space Θk. Let π(θ) be a prior density of θ over Θk. The SC of a data sequence
Dm = D1 · · ·Dm relative to Hk is defined as

− ln
∫
dθπ(θ)pθ(Dm),

which can be interpreted as the shortest code length of Dm with respect to the
hypothesis class Hk.1 This quantity is a generalization of Shannon’s informa-
tion [Shannon 1948], which is defined as the negative logarithm of the probability
value of the data sequence relative to a hypothesis, in the sense that SC is defined
relative to a class of hypotheses, while Shannon’s information is defined relative to
a single hypothesis.
Rissanen has proved in [Rissanen 1986, 1987,1989, pp. 58–97] that SC plays an

essential role in contexts of statistical inference specifically in the following two
senses:
1. A tight lower bound on the total predictive code length: Consider the online

stochastic prediction process (see e.g., [Rissanen 1983, 1984; Dawid 1991; Yamanishi
1995], defined as follows: An example is sequentially given; D1, D2, · · · , Dt, · · · ,
and at each time t a learner is to predict a probability density (or a probability
mass function) p̂t(D) of the occurrence of Dt before seeing it, based on the
past sequence D1 · · ·Dt−1. After prediction, the learner receives a correct value
Dt, and the distortion of the prediction is measured in terms of the logarithmic
loss defined by − ln p̂t(Dt), which is equivalent to the predictive code length for
Dt (see [Rissanen 1983, 1984,1986]).The cumulative prediction loss over the course
of predictions can be considered as the total predictive code length. It has turned
out in [Rissanen 1986, 1987, 1989, pp. 67–73], that the SC of a data sequence relative
to a given hypothesis class is the asymptotically greatest lower bound on the total
predictive code length, for most sequences and most θ ∈ Θk. Therefore, the process
of sequentially approximating SC may induce an online prediction algorithm for
which the cumulative logarithmic loss is asymptotically minimal. Such algorithms
that sequentially approximate SC include the Bayes algorithm (see e.g., [Clarke

1. In [Rissanen 1987, 1989, pp. 58-67, 1996], Rissanen defined the SC in several different
manners, although all of them are unified as a concept of the shortest code length of a
data sequence with the help of a given class of probability densities. Here we adopt the
definition of SC in [Rissanen 1987, 1989, p. 59].



9.1 Introduction 217

and Barron 1990]) and the online maximum likelihood prediction algorithm (see
[Yamanishi 1995, 1997]).
2. A basis for the MDL principle: A model selection criterion to approximate

SC in a nonpredictive way induces the minimum description length (MDL) prin-
ciple (see [Rissanen 1978]), which asserts that the best hypothesis which explains
the generation of the data is that which can best compress the data as well as the
hypothesis itself. That is, the MDL principle can be thought of as the process of
batch-approximation of SC using the two step coding (the first step is to encode
the hypothesis, and the second step is to encode the data sequence relative to the
hypothesis). It is known from [Barron and Cover 1991; Yamanishi 1992a] that the
MDL principle produces an estimator which almost surely converges to the true
density with the highest rate in some parametric settings.
In addition to the above two respects, the effectiveness of SC in the universal

hypothesis testing scenario has been reported in [Rissanen 1987, 1989, pp. 107–121]
and [Yamanishi 1992b].
Notice that SC is defined in the scenario in which a hypothesis takes a form of

a probability density and the distortion of prediction is measured in terms of the
logarithmic loss. This setting is quite natural for almost statistical and information-
theoretic formulations such as Shannon’s information theory because it gives a
clear coding-theoretic interpretation of the logarithmic loss. However, we may often
be interested in the decision-theoretic setting (see e.g., [Berger 1985]) in which
a hypothesis is a general real-valued function and the distortion of prediction is
measured in terms of a general loss function other than the logarithmic loss. Such
a situation may occur in real problems, including pattern recognition, function
estimation, curve fitting, game theory, and so on. It would be natural to expect that
a notion analogous to SC may exist in a more general decision-theoretic setting and
would play an essential role there.
The primary contribution of this chapter is, according to [Yamanishi 1998a], to

extend SC into the general decision-theoretic scenario as above and to demonstrate
the effectiveness of the extended notion in design and analysis of learning algorithms
in online prediction and batch-learning scenarios. We name this extended notion
the extended stochastic complexity [Yamanishi 1998a], which we denote as ESC.
By showing that the most effective learning algorithms can be derived from the
processes of approximating ESC, we give a unifying view of designing decision-
theoretic learning algorithms.
Let Hk = {fθ(x) : θ ∈ Θk ⊂ Rk} be a k-dimensional parametric class of real-

valued functions and π(θ) be a prior density function over the parameter space
Θk. Let L be a given loss function where L(y, fθ(x)) denotes the loss value for
predicting y with fθ(x). For a given positive number λ > 0, ESC of a data sequence
Dm = D1 · · ·Dm (Dt = (xt, yt), t = 1, · · · ,m) relative to Hk is formally defined as

− 1
λ
ln
∫
dθπ(θ) exp

(
−λ

m∑
t=1

L(yt, fθ(xt))

)
.
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For the online prediction problem, we show in Section 9.3 that the process of
a sequential realization of ESC induces Vovk’s aggregating strategy [Vovk 1990],
which has been explored extensively in computational learning theory. The Bayes
algorithm (see e.g., [Clarke and Barron 1990]) can be reduced to the special case
of the aggregating strategy. Kivinen and Warmuth [1994] and Haussler, Kivinen,
and Warmuth [1995] investigated the performance of the aggregating strategy only
when the hypothesis class is finite. We rather investigate it in the case where the
hypothesis class is continuous (see also the work by Freund [1996]). We further
define the notion of relative cumulative loss (RCL) by the difference between the
cumulative loss for any online prediction algorithm and that for the best assignment
in a given hypothesis class. Then we show that the worst-case relative cumulative
loss for the aggregating strategy is upper-bounded by (k lnm)/2λ∗ + C where λ∗

is a constant depending on the loss function, C depends on the hypothesis class,
and m is the sample size. Then we show that under certain conditions ESC is a
minimax solution to RCL within error o(lnm).
For the batch-learning problem, we consider a hypothesis selection criterion

to approximate ESC in a nonpredictive way. The criterion chooses from a given
sequence of examples a hypothesis such that the weighted sum of the empirical loss
for the hypothesis and the description length for the hypothesis is minimized. We
call a learning algorithm based on this hypothesis-selection criterion the minimum
L-complexity algorithm (MLC) [Yamanishi 1998a] for the loss function L. MLC can
be thought of as an extension of the MDL learning algorithm (see [Rissanen 1989,
pp. 79–93, pp. 155–167],[Barron and Cover 1991],[Yamanishi 1992a]), and is closely
related to Barron’s complexity regularization algorithm [Barron 1991], which we
denote as CR. Actually, in the case where the hypothesis is a probability density
and the distortion measure is the logarithmic loss function, MLC is equivalent to
the MDL learning algorithm. For the quadratic loss function, MLC is equivalent to
CR, but, for general bounded loss functions, MLC is given in a more general form
than CR in order to give a unifying strategy regardless of the loss functions used.
We analyze how well MLC works in terms of its statistical risk. We prove that for
general bounded loss functions, under certain conditions for the target distribution,
MLC has the same upper bounds on the statistical risk as those obtained for CR
in [Barron 1991], which are least to date.
The rest of this chapter is organized as follows: Section 9.2 gives a brief review

of the notions of stochastic complexity and minimax regret. Section 9.3 gives a
formal definition of ESC and shows its applications to designing an online prediction
algorithm and its analysis. Section 9.4 shows an application of ESC to designing a
batch-learning algorithm and its analysis. Section 9.5 makes concluding remarks.

9.2 Stochastic Complexity and Minimax Regret

We start by giving a formal setting of sequential stochastic prediction. Let Y be an
alphabet, which can be either discrete or continuous. We first consider the simplest
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case where Y is finite. Observe a sequence y1, y2, · · · where each yt(t = 1, 2, · · · )
takes a value in Y. A stochastic prediction algorithm A performs as follows: At
each round t = 1, 2, ..., A assigns a probability mass function over Y based on the
past sequence yt−1 = y1 · · · yt−1. The probability mass function can be written as
a conditional probability P (·|yt−1). After the assignment, A receives an outcome
yt and suffers a logarithmic loss defined by − lnP (yt|yt−1). This process goes on
sequentially. Note that A is specified by a sequence of conditional probabilities:
{P (·|yt−1) : t = 1, 2, ..}. After observing a sequence ym = y1 · · · ym of length m, A
suffers a cumulative logarithmic loss

∑m
t=1

(− lnP (yt|yt−1)
)
where P (·|y0) = P0(·)

is given. Note that the logarithmic loss − lnP (yt|yt−1) can be interpreted as the
Shannon code length for yt given yt−1, hence the cumulative logarithmic loss can
be interpreted as the total code length for ym when they are sequentially encoded.
The goal of stochastic prediction is to make the cumulative loss as small as

possible. We introduce a reference set of prediction algorithms, which we call a
hypothesis class, then evaluate the cumulative loss for any algorithm relative to it.
For sample size m, we define the worst-case regret for A relative to a hypothesis
class H by

Rm(A : H) def= sup
ym

(
m∑
t=1

(− lnP (yt|yt−1)
)− inf

f∈H

m∑
t=1

(− ln f(yt|yt−1)
))
,

which means the worst-case difference between the cumulative logarithmic loss for
A and the minimum cumulative logarithmic loss over H. Further, we define the
minimax regret for sample size m by

Rm(H) = inf
A
Rm(A : H),

where the infimum is taken over all stochastic prediction algorithms. In the analysis
of the minimax regret we require no statistical assumption for the data-generation
mechanism, but rather consider the worst case with respect to sequences.
Notice here that for any m, a stochastic prediction algorithm specifies a joint

probability mass function by

P (ym) =
m∏
t=1

P (yt|yt−1). (9.1)

Thus the minimax regret is rewritten as

Rm(H) = inf
P

sup
ym

ln
supf∈H f(ym)

P (ym)
.

Shtarkov [1987] showed that the minimax regret is attained by the joint probability
mass function under the normalized maximum likelihood, defined as follows:

P (ym) =
supf∈H f(ym)∑
ym supf∈H f(ym)

,
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and then the minimax regret amounts to be

Rm(H) = ln
∑
ym

sup
f∈H

f(ym). (9.2)

The quantity (9.2) is also called the parametric complexity [Rissanen 1996].
Specifically consider the case where the joint distribution is given by a product

of probability mass function belonging to a parametric hypothesis class given by
Hk = {Pθ(·) : θ ∈ Θk} where Θk is a k-dimensional compact set in Rk. Let θ̂ be the
maximum likelihood estimator (MLE) of θ from ym (i.e., θ̂ = argmaxθ∈Θ Pθ(ym)
where Pθ(ym) =

∏m
t=1 Pθ(yt | yt−1)). Rissanen [1996] proved that under the

condition that the central limit theorem holds for MLE uniformly over Θk, Rm(Hk)
is asymptotically expanded as follows:

Rm(Hk) =
k

2
ln
m

2π
+ ln

∫ √
|I(θ)|dθ + o(1), (9.3)

where I(θ) def= (limm→∞(1/m)Eθ[−∂2 lnPθ(ym)/∂θi∂θj ])i,j denotes the Fisher in-
formation matrix and o(1) goes to zero uniformly with respect to ym as m goes
to infinity. Note that the regularity condition required for (9.3) to be satisfied is
weakened in recent work (see e.g., [Takeuchi and Barron 1998]).
For a given sequence ym andHk, the negative log-likelihood for ym under the joint

probability mass function that attains the minimax regret is called the stochastic
complexity of ym (relative to Hk) [Rissanen 1987, 1989,1996],which we denote as
SC(ym). That is, an asymptotic expansion of SC is given by

SC(ym) = − lnPθ̂(y
m) +

k

2
ln
m

2π
+ ln

∫ √
|I(θ)|dθ + o(1). (9.4)

Choose A as the Bayesian prediction strategy such that

P (·|yt−1) =
∫
P (θ|yt−1)Pθ(·)dθ

for each t where π(θ) is a prior density of θ and

P (θ|yt−1) = π(θ)
t−1∏
j=1

Pθ(yj | yj−1)/
∫
π(θ)

t−1∏
j=1

Pθ(yj | yj−1)dθ

is a posterior density of θ.
Then it is easily checked that its cumulative logarithmic loss for ym amounts to

be

L(ym) = − ln
∫
π(θ)

m∏
t=1

Pθ(yt)dθ. (9.5)

If we choose an appropriate prior such as Jeffreys’ prior [Clarke and Barron 1994],

π(θ) =
√
|I(θ)|/

∫ √
|I(θ)|dθ,
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or its modified variants, then (9.5) asymptotically coincides with (9.4) (see
[Takeuchi and Barron 1998]). We call (9.5) the stochastic complexity of the mixture
form. In the following sections, we present an extension of the SC as a solution to
the minimax regret formulation to nonlogarithmic loss cases.

9.3 ESC and Minimax RCL

9.3.1 Minimax Relative Cumulative Loss

In this subsection we extend the notion of SC to a general decision-theoretic
scenario.
For a positive integer n, let X be a subset of Rn, which we call the domain.

Let Y = {0, 1} or Y = [0, 1], which we call the range. Let Z = [0, 1] or Z be
a set of probability mass functions over Y. We call Z the decision space. We set
D = X × Y. We write an element in D as D = (x, y). Let L : Y × Z → R+ ∪ {0}
be a loss function.
A sequential prediction algorithm A performs as follows: At each round t =

1, 2, · · · , A receives xt ∈ X then outputs a predicted result zt ∈ Z on the basis
of Dt−1 = D1 · · ·Dt−1 where Di = (xi, yi) (i = 1, · · · , t− 1). Then A receives the
correct outcome yt ∈ Y and suffers a loss L(yt, zt). Hence A defines a sequence
of maps: {ft : t = 1, 2, · · · } where ft(xt) = zt. A hypothesis class H is a set of
sequential prediction algorithms.
Below we define the measure of performance of sequential prediction.

Definition 9.1 For sample size m, for a hypothesis class H, let Dm(H) be a subset
of Dm depending on H. For any sequential prediction algorithm A, we define the
worst-case relative cumulative loss (RCL) for A by

Rm(A : H) def= sup
Dm∈Dm(H)

(
m∑
t=1

L(yt, zt)−min
f∈H

m∑
t=1

L(yt, ft(xt))

)
,

where zt denotes the output of A at the tth round. We define the minimax RCL by

Rm(H) = inf
A
Rm(A : H), (9.6)

where the infimum is taken over all sequential prediction algorithms.

Consider the special case where X = ∅,Y = {0, 1},Z =the set of probability mass
functions over Y, and the loss function is the logarithmic loss: L(y, P ) = − lnP (y).
We can easily check that in this case the minimax RCL (9.6) is equivalent with the
minimax regret (9.3).
Hereafter, we consider only the case where Z = [0, 1], that is, the prediction is
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made deterministically. Below we give examples of loss functions for this case.

L(y, z) = (y − z)2 (square loss), (9.7)

L(y, z) = |y − z|α (alpha loss, α > 0), (9.8)

L(y, z) = y ln
y

z
+ (1− y) ln 1− y

1− z (entropic loss), (9.9)

L(y, z) =
1
2

((√
y −√z)2 + (√

1− y −√1− z
)2)

(Hellinger loss), (9.10)

L(y, z) =
1
2
(−(2y − 1)(2z − 1) + ln(e2z−1 + e−2z+1) +B) (logistic loss), (9.11)

where B = ln(1 + e−2). The square loss is most suitable for classical regression
problems and curve-fitting problems. The alpha loss with α �= 2, logistic loss,
and entropic loss may be used for measuring distortion in the problems of pattern
recognition and sequential decision making.

9.3.2 Extended Stochastic Complexity

According to [Yamanishi 1998a], we formally extend the notion of stochastic
complexity of the mixture form to introduce extended stochastic complexity.

Definition 9.2 Let µ be a probability measure on a hypothesis class H. For a given
loss function L, for λ > 0, for a sequence Dm ∈ Dm, we define the extended
stochastic complexity (ESC) of Dm relative to H by

I(Dm : H) def= − 1
λ
ln
∫
e−λ

Pm
t=1 L(yy,ft(xt))µ(df). (9.12)

We may assume that the hypothesis class can be written in a parametric form as
H = Hk or thatH = ∪kHk whereHk = {fθ : θ ∈ Θk ⊂ Rk} (k = 1, 2, · · · ), in which
fθ ∈ Hk is specified by a k-dimensional parameter vector θ = (θ1, · · · , θk), and Θk

is a k-dimensional compact set of real-valued parameter vectors. The range of k can
be either finite or infinite. We denote a prior probability mass function on the set
{1, 2, · · · } as π(k) and a prior density function over Θk as π(θ) = πk(θ). Hereafter,
for D = (x, y) ∈ D, for f ∈ H, we denote the loss L(y, f(x)) or L(y, f(·|x)) as
L(D : f) for the sake of notational simplicity. Then (9.12) can be written as follows:

I(Dm : Hk)
def= − 1

λ
ln
∫
dθπ(θ) exp

(
−λ

m∑
t=1

L(Dt : fθ)

)
(9.13)

(Note: The integrability of π(θ) exp(−λ∑m
t=1 L(Dt : fθ)) with respect to θ for all

Dm is assumed.)
In the case where the hypothesis class is a class of conditional probability mass

functions and the distortion measure is the logarithmic loss function, letting λ = 1,
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ESC is written as

I(Dm : Hk) = − ln
∫
dθπ(θ)

m∏
t=1

fθ(yt|xt), (9.14)

which coincides with Rissanen’s stochastic complexity (SC, see [Rissanen 1986, 1987,
1989, pp. 58–67], of the mixture form for the case where each yt (t = 1, 2, · · · ) is
independently generated.
Let H = ∪kHk. Then each hypothesis is specified by k as well as θ, where θ and

k make a hierarchical structure. Then ESC as in (9.13) is changed to the following
form:

I(Dm : H) def= − 1
λ
ln
∑
k

π(k)
∫
dθπk(θ) exp

(
−λ

m∑
t=1

L(Dt : fθ)

)
(9.15)

9.3.3 The Aggregating Strategy

In this subsection we introduce an online prediction algorithm called the aggregating
strategy on the basis of the sequential decomposition property of ESC.
For a loss function L, we define L0(z) and L1(z) by L0(z)

def= L(0, z) and
L1(z)

def= L(1, z), respectively. We make the following assumption for L.

Assumption 9.3 The loss function L satisfies:
1. L0(z) and L1(z) are twice continuously differentiable with respect to z. L0(0) =
L1(1) = 0. For any 0 < z < 1, L′

0(z) > 0 and L′
1(z) < 0.

2. Define λ∗ by

λ∗ def=
(

sup
0<z<1

L′
0(z)L

′
1(z)

2 − L′
1(z)L

′
0(z)

2

L′
0(z)L

′′
1(z)− L′

1(z)L
′′
0(z)

)−1
. (9.16)

Then 0 < λ∗ <∞.
3. Let G(y, z, w) = λ∗(L(y, z)−L(y, w)). For any y, z, w ∈ [0, 1], ∂2G(y, z, w)/∂y2+
(∂G(y, z, w)/∂y)2 ≥ 0.

Under Assumption 9.3, according to [Kivinen and Warmuth 1994; Haussler et al.
1995], we define the generalized inverse function of L0 by L−1

0 (L0(z)) = z for
0 ≤ z ≤ 1 and L−1

0 (z) ≥ 1 for z ≥ L0(1). Similarly we define the generalized inverse
function of L1 by L−1

1 (L1(z)) = z for 0 ≤ z ≤ 1 and L−1
1 (z) ≤ 0 for z ≥ L1(0).

Example 9.4 For the entropic loss function as in (9.9), we see that L0(z) =
− ln(1− z) and L1(z) = − ln z. Then we have L−1

0 (z) = 1− e−z and L−1
1 (z) = e−z.

A simple calculation yields λ∗ = 1. We see that Assumption 9.3 holds for L.

Example 9.5 For the quadratic loss function as in (9.7), we see that L0(z) = z2

and L1(z) = (1− z)2. Then we have L−1
0 (z) =

√
z and L−1

1 (z) = 1−√z. A simple
calculation yields λ∗ = 2. We see that Assumption 9.3 holds for L.
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Example 9.6 For the Hellinger loss function as in (9.10), we see that L0(z) =
1 − √1− z and L1(z) = 1 − √z. Then we have L−1

0 (z) = 2z − z2 (0 ≤ z ≤
1), L−1

0 (z) = 1 (z ≥ 1) and L−1
1 (z) = (1 − z)2(0 ≤ z ≤ 1), L−1

1 (z) = 0 (z ≤ 0).
A simple calculation shows λ∗ =

√
2. We see that the conditions 1 and 2 in

Assumption 9.3 hold, but the condition 3 does not hold.

Example 9.7 For the logistic loss function as in (9.27), we see that L0(z) =
(1/2) ln((e2(2z−1) + 1)/(1 + e−2)) and L1(z) = (1/2) ln((1 + e−2(2z−1))/(1 + e−2)).
Then we have L−1

0 (z) = 1/2 + (1/4) ln((1 + e−2)e2z − 1) and L−1
1 (z) = 1/2 −

(1/4) ln((1 + e−2)e2z − 1). A simple calculation yields λ∗ = 2. We see that
Assumption 9.3 holds for L.

We start with the following lemma on the sequential decomposition property of
ESC to motivate the aggregating strategy.

Lemma 9.8 For any Dm, the ESC of Dm relative to Hk can be written as follows:

I(Dm : Hk) =
m∑
t=1

L(yt | Dt−1, xt), (9.17)

where

L(yt | Dt−1, xt)
def= − 1

λ
ln
∫
dθπ(θ | Dt−1) exp (−λL(Dt : fθ)) , (9.18)

π(θ | Dt−1) def=
π(θ) exp

(
−λ∑t−1

j=1 L(Dj : fθ)
)

∫
dθπ(θ) exp

(
−λ∑t−1

j=1 L(Dj : fθ)
) . (9.19)

Here we let π(θ|D0) = π(θ) and L(D0 : fθ) = 0.

Proof Observe first that plugging π(θ | Dt−1) into L(yt | Dt−1, xt) yields

L(yt | Dt−1, xt) = − 1
λ
ln

∫
dθπ(θ) exp

(
−λ∑t

j=1 L(Dj : fθ)
)

∫
dθπ(θ) exp

(
−λ∑t−1

j=1 L(Dj : fθ)
)

= I(Dt : Hk)− I(Dt−1 : Hk).

Summing L(yt | Dt−1, xt) with respect to t gives

m∑
t=1

L(yt | Dt−1, xt) = I(Dm : Hk)− I(D0 : Hk) = I(Dm : Hk),

where we have used the fact that I(D0 : Hk) = 0. ✷

A variant of Kivinen and Warmuth’s version of the aggregating strategy for the
case of Y = [0, 1], which we denote by AGG, is described as follows:
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Algorithm AGG
Let Hk, L, π, and λ > 0 be given.
At each time t, on receiving xt, compute ∆t(0)

def= L(0|Dt−1, xt) and ∆t(1)
def=

L(1|Dt−1, xt) where the notation of L(y|Dt−1, xt) (y = 0, 1) follows (9.18). Then
predict yt with any value ŷt satisfying

L−1
1 (∆t(1)) ≤ ŷt ≤ L−1

0 (∆t(0)). (9.20)

If no such ŷt exists, the algorithm fails. We write ŷt = AGGt(xt).
After prediction, the correct outcome yt is received.

Note that if L−1
1 (∆t(1)) ≤ L−1

0 (∆t(0)) holds, then ŷt satisfying (9.20) is given
by, for example,

ŷt =
1
2
(
L−1
1 (∆t(1)) + L−1

0 (∆t(0))
)
.

We say that L is λ-realizable when AGG never fails for λ. Haussler and co-
workers [1995] proved that in the case of Y = {0, 1}, under the conditions 1 and 2
in Assumption 9.3, L is λ-realizable if and only if λ ≤ λ∗ for λ∗ as in (9.16).
Kivinen and Warmuth [1994] proved that if L satisfies condition 3 in Assump-

tion 9.3, then for ŷt = AGGt(xt) satisfying (9.20), for all yt ∈ [0, 1], the following
inequality holds:

L(Dt : AGGt) ≤ L(yt|Dt−1, xt). (9.21)

Summing both sides of (9.21) with respect to t leads to an upper bound on the
cumulative loss for AGG using Hk:

m∑
t=1

L(Dt : AGGt) ≤
m∑
t=1

L(yt|Dt−1, xt) = I(Dm : Hk).

Here we have used Lemma 9.8 to derive the last equation. This leads to the following
theorem.

Theorem 9.9 Under Assumption 9.3, for any Dm, for any λ ≥ λ∗, the cumulative
loss for AGG is upper-bounded by I(Dm : H).

Theorem 9.9 implies that the cumulative loss for the aggregating strategy is
upper-bounded by the ESC for any sequence.
In the special case of online stochastic prediction where the logarithmic loss

function is used as a distortion measure, letting λ = 1, (9.18) and (9.19) are written
as follows:

L(yt | Dt−1, xt) = − ln
∫
dθπ(θ | Dt−1)fθ(yt|xt), (9.22)
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π(θ | Dt−1) =
π(θ)

∏t−1
j=1 fθ(yj |xj)∫

dθπ(θ)
∏t−1

j=1 fθ(yj |xj)
(9.23)

Equation (9.23) is the Bayes posterior density of θ, and (9.22) is the code length
of the Bayes code based on the mixture density: f̄(y|xt) def=

∫
dθπ(θ | Dt−1)fθ(y|xt).

Hence the prediction for which the loss at time t is L(yt | Dt−1, xt) is realized by
an algorithm that outputs a density f̄(y|xt) at each time t. This algorithm is called
the Bayes algorithm (see, e.g., [Clarke and Barron 1990]).

9.3.4 Asymptotic Bounds on Minimax RLC

This subsection makes a connection between minimax RCL and ESC through the
analysis of the aggregating strategy. We make the following assumption for L,Hk,
and π.

Assumption 9.10 The following conditions hold for L,Hk, and π:
1. The parametrization of the class Hk = {fθ : θ ∈ Θk} is one-to-one, that is, if
θ1 �= θ2, then the corresponding fθ1 and fθ2 are distinct.
2. For any D, L(D : fθ) is twice continuously differentiable with respect to θ.
3. For a given Dm and θ ∈ Θk, define a matrix Ĵ(θ) for which the (i, j)th component
is given by

Ĵi,j(θ)
def=

1
m

(
∂2
∑m

t=1 L(Dt : fθ)
∂θi∂θj

∣∣∣∣
θ

)
.

Let Dm(Θk) ⊂ Dm be a set of all Dm satisfying that for Dm, there exists
θ̂ ∈ Θk such that the minimum of

∑m
t=1 L(Dt : fθ) over Θk is attained by

θ̂, and ∂
∑m

t=1 L(Dt : fθ)/∂θ|θ=θ̂ = 0. Then for d = dm such that dm > k,

limm→∞ dm = ∞ and limm→∞(dm/m) = 0, Ĵ(θ) is continuous with respect to
θ in |θ̂ − θ| ≤√

dm/m uniformly over all data sequences Dm ∈ Dm(Θk) where the
norm | · | denotes the Euclidean norm.
4. Let µ(Dm : θ) be the largest eigenvalue of Ĵ(θ). For dm as in condition 3, there
exists a constant 0 < µ <∞ such that for all m,

sup
Dm

sup
θ:|θ−θ̂|<(dm/m)1/2

µ(Dm : θ) ≤ µ.

5. Let Nm
def= {θ ∈ Θk : |θ−θ̂| ≤√

dm/m} and N ′
m

def= {θ ∈ Rk : |θ−θ̂| ≤√
dm/m}.

Then for some 0 < r < 1, for all sufficiently large m, vol(Nm) ≥ r×vol(N ′
m) where

vol(S) is Lebesgue volume of S.
6. For some c > 0, for any θ ∈ Θ, π(θ) ≥ c.

The following lemma gives an upper bound on ESC for the worst case. It shows
that the ESC is within error (k/2λ) lnm of the least cumulative loss. It is proven
using the technique of Laplace method.
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Lemma 9.11 [Yamanishi 1998a] Under Assumption 9.10 for Hk, L, and π, for
any λ > 0,

I(Dm : Hk) ≤
m∑
t=1

L(Dt : fθ̂) +
k

2λ
ln
mλµ

2π
+

1
λ
ln(1/rc) + o(1), (9.24)

where o(1) goes to zero uniformly in Dm ∈ Dm(Θk) as m goes to infinity. The
notation of θ̂, µ, r, and c follows Assumption 9.10.

(See Appendix for the proof.)

Combining Theorem 9.9 with Lemma 9.11 leads to the following asymptotic
upper bound on the minimax RCL.

Theorem 9.12 Under Assumptions 9.3 and 9.10,

Rm(Hk) ≤ k

2λ∗
ln
mλ∗µ
2π

+
1
λ∗

ln
1
rc

+ o(1), (9.25)

where Dm(H) as in (9.6) is set to Dm(Θk) as in Assumption 9.10.

Theorem 9.12 shows that the minimax RCL is within error O(1) of (k/2λ∗) lnm.
In order to investigate how tight (9.25) is, we derive an asymptotic lower bound

on the minimax RCL.

Theorem 9.13 [Yamanishi 1998b; Vovk 1998]. When L is the entropic loss or the
square loss, for some regularity condition for H,

Rm(Hk) ≥
(
k

2λ∗
− o(1)

)
lnm. (9.26)

Furthermore, if a hypothesis class is restricted to be a finite subset of Hk, then for
any loss function L satisfying Assumption 9.3, for some regularity condition for Hk

and L, (9.26) holds.

(See Appendix for the proof.)

We see from Theorems 9.12 and 9.13 that the ESC can be thought of as a minimax
solution to RCL within error of o(lnm). It is formally summarized as follows:

Corollary 9.14 Let

Im(Hk)
def= sup

Dm∈Dm(Θ)

(
I(Dm : Hk)−min

θ

m∑
t=1

L(yt, fθ(xt)

)
.

Then under the conditions as in Theorems 9.12 and 9.13,

lim
m→∞

|Im(Hk)−Rm(Hk)|
lnm

= 0.
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Corollary 9.14 implies that the relation between ESC and the minimax RCL is an
analogue of that between SC and the minimax regret. This gives a rationale that
ESC is a natural extension of SC.

Example 9.15 Let Θk = {θ = (θ1, · · · , θk) ∈ [0, 1]k : θ21 + · · · + θ2k ≤ 1}. Let a
hypothesis class be Hk = {fθ(x) = θTx : X ∈ X , θ ∈ Θk}. Let the distortion
measure be the quadratic loss function as in (9.7). Then Assumption 9.10 holds,
and we can set µ = 2k and r = 1/2k. (Note that the estimate of r would be
further improved.) If we set π to be the uniform density over Θk, we can set
c = 2kΓ(1 + k/2)/πk/2 where Γ denotes the gamma function.
For given Dm, let

θ̂ = (Ĵ)−1
1
m

m∑
t=1

ytxt

where Ĵ is a matrix for which the (i, j)th component is given by (1/m)
∑m

t=1 x
(i)
t x

(j)
t .

Let Dm(Θk) = {Dm ∈ Dm : Ĵ is regular and θ̂ ∈ Θk}. Then for all Dm ∈ Dm(Θk),
the worst-case RCL for AGG with respect to Dm is upper-bounded by

k

4
ln

2mk
π

+
1
2
ln

πk/2

Γ(1 + k/2)
+ o(1).

Example 9.16 Let X = {1} and Y = Z = [0, 1]. Let a hypothesis class be
H = {fθ(x) = θx = θ : θ ∈ Θ} where Θ = [0, 1]. Let the distortion measure
be the logistic loss function, for which the form rescaled for Y = Z = [0, 1] is given
by

L(y, z) =
1
2
(−(2y − 1)(2z − 1) + ln

(
e2z−1 + e−2z+1

)− B) ,
where B = ln(1 + e−2). Then it is easy to check that Assumption 9.10 holds, and
that we can set µ = 2 and r = 1/2. If we set π to be the uniform density over Θ,
we can set c = 1.
For given Dm, let

θ̂ = 1/2 + (1/4) ln

((
1 + (1/m)

m∑
t=1

(2yt − 1)

)
/

(
1− (1/m)

m∑
t=1

(2yt − 1)

))
.

Let Dm(Θ) = {Dm ∈ Dm : θ̂ ∈ Θ}. Then for all Dm ∈ Dm(Θ), the worst-case
RCL for AGG with respect to Dm is upper-bounded by

1
4
ln

2m
π

+
1
2
ln 2 + o(1).

Example 9.17 Let X = {1},Y = {0, 1}, and Z = [0, 1]. Let a hypothesis class be
H = {fθ(x) = θx = θ : θ ∈ Θ} where Θ = [ε, 1 − ε] for 0 < ε < 1/2. Let the
distortion measure be the Hellinger loss function as in (9.10) for (y, z) ∈ Y × Z.
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Then we can confirm that Assumption 9.10 holds and we can set µ = (1/2)F (ε)
and r = 1/2, where F (ε) = 1/ε3/2 + 1/(1 − ε)3/2. If we set π to be the uniform
density over Θ, then c = 1/(1− 2ε).
For given Dm, let

θ̂ =

(
m∑
t=1

√
yt

)2

/


( m∑

t=1

√
yt

)2

+

(
m∑
t=1

√
1− yt

)2

 .

Let Dm(Θ) = {Dm ∈ Dm : θ̂ ∈ Θ}. Then for all Dm ∈ Dm(Θ), the worst-case
RCL for AGG with respect to Dm is upper-bounded by

1
2
√
2
ln
√
2mF (ε)
4π

+
1√
2
ln 2(1− 2ε) + o(1).

Example 9.18 Let X be a bounded subset of Rn for a given positive integer n.
Let Y = {0, 1} and let Z be a set of all probability mass functions over {0, 1}.
Let S = {Si} be a set of subsets of X such that ∪iSi = X , Si ∩ Sj = ∅(i �= j),
and |S| = k. Let Θk = [0, 1]k. Let a hypothesis class Hk be a set of conditional
probability mass functions defined by Hk = {fθ(1|x) = 1 − fθ(0|x) = θi if X ∈
Si (i = 1, · · · , k) : θ = (θ1, · · · , θk) ∈ Θk, S = {Si}}. That is, the hypothesis fθ
defines a rule that y = 1 occurs with probability θi and y = 0 occurs with probability
1 − θi for x that fell into the region Si (i = 1, · · · , k). These types of conditional
probability mass functions are called stochastic rules with finite partitioning (see
[Yamanishi 1992a]). Let the distortion measure be the quadratic loss function:
L(y, f(·|x)) = (1 − f(y|x))2 for y ∈ Y and f(·|X) ∈ Z. Then by Assumption 9.10
Dm(Θk) = Dm. We can set µ = 2 and r = 1/2k. If we set π to be the uniform
density over Θk, we can set c = 1.
Consider H as a class of real-valued functions through fθ(x) = fθ(1|x). For all

Dm ∈ Dm, the worst-case RCL for AGG with respect to Dm is upper-bounded by

k

4
ln

2m
π

+
k

2
ln 2 + o(1),

where mi is the number of examples for which x fell into Si (i = 1, · · · , k) and m1i

is the number of examples for which y = 1 and x fell into Si (i = 1, · · · , k).

9.4 Applications of ESC to Batch-Learning

9.4.1 Batch-Learning Model

In this subsection we consider an application of ESC to the design and analysis
of a batch-learning algorithm. In general, a batch-learning algorithm (see, e.g.,
[Haussler 1992]) is an algorithm that takes as input a sequence of examples:
Dm = D1 · · ·Dm ∈ D∗ (Dt = (xt, yt), t = 1, · · · ,m) and a hypothesis class H,
and then outputs a single hypothesis belonging to H.
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Let F be a set of all functions from X to Z in the case where Z ⊂ R, or
let F be a set of all conditional probability densities (probability mass functions)
over Y for given x ∈ X in the case where Z is a set of conditional probability
densities (probability mass functions) over Y for given x ∈ X . Suppose that each
D is independently drawn according to the target distribution P over D. For a
hypothesis f ∈ H, we define a generalization loss of f with respect to P by

∆P (f)
def= EP [L(D : f)]− inf

h∈F
EP [L(D : h)],

where EP denotes the expectation taken for the generation of D = (x, y) with
respect to P. For sample size m, we also define a statistical risk for a batch-learning
algorithm A as the expected value of the generalization loss:

E
[
∆P (f̂)

]
,

where f̂ is an output of A, which is a random variable depending on the input
sequence Dm, and the expectation E is taken for the generation of Dm with respect
to P (Dm). Our goal is to design a batch-learning algorithm for which the statistical
risk is as small as possible.

9.4.2 The Minimum L-Complexity Algorithm

Next we consider a batch-approximation of ESC by a single hypothesis to motivate a
batch-learning algorithm. We now approximate the integral in (9.13) by quantizing
Θk. For a k-dimensional parametric hypothesis class Hk = {fθ : θ ∈ Θk ⊂ Rk}, let
Θ(m)

k be a finite subset of Θk depending on sample size m. We define H(m)
k (⊂ Hk)

by H(m)
k

def= {fθ : θ ∈ Θ(m)
k }.We refer Θ(m)

k to as a quantization of Θk. Similarly, we
refer H(m)

k to as a quantization of Hk. We call a map τm : Θk → Θ(m)
k a truncation.

Similarly, we also call a map Hk → H(m)
k defined by fθ ∈ Hk → fτm(θ) ∈ H(m)

k a
truncation. For θ ∈ Θ(m)

k , let S(θ) def= {θ′ ∈ Θk : τm(θ′) = θ}, which is a set of
real-valued points which are truncated to θ by τm.
Choosing τm so that for each θ ∈ Θ(m)

k , the Lebesgue measure of S(θ) goes to
zero as m increases to infinity, we may consider an approximation of ESC by the
quantity J(Dm : Hk) defined as follows:

J(Dm : Hk)
def= − 1

λ
ln

∑
θ∈Θ(m)

k

W (θ) exp

(
−λ

m∑
t=1

L(Dt : fθ)

)
,

where W (θ) def=
∫
θ′∈S(θ)

π(θ′)dθ′ for a given prior density π(θ). The quantity
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J(Dm : Hk) can be upper-bounded as follows:

J(Dm : Hk) ≤ − 1
λ
ln max

θ∈Θ(m)
k

W (θ) exp

(
−λ

m∑
t=1

L(Dt : fθ)

)

= min
θ∈Θ(m)

k

{
m∑
t=1

L(Dt : fθ)− 1
λ
lnW (θ)

}
.

Notice here that W (θ) can be thought of as a probability mass of θ over Θ(m)
k

since
∑

θ∈Θ(m)
k

W (θ) = 1. Hence − lnW (θ) can be interpreted as the code length

for θ. This implies that letting Lm be any function: Θ(m)
k → R+ satisfying Kraft’s

inequality:
∑

θ∈Θ(m)
k

e−Lm(θ) ≤ 1, we can upper-bound J(Dm : Hk) by

min
θ∈Θ(m)

k

{
m∑
t=1

L(Dt : fθ) +
1
λ
Lm(θ)

}
. (9.27)

This argument can be easily extended to a batch-approximation of ESC relative
to a union set H = ∪kHk with respect to k. That is, ESC of the form of (9.15) can
be approximated by

min
k

min
θ∈Θ(m)

k

{
m∑
t=1

L(Dt : fθ) +
1
λ
Lm(θ, k)

}
, (9.28)

where Lm(·, ·) is a function: ∪kΘ
(m)
k × {1, 2, · · · } → R+ satisfying

∑
k

∑
θ∈Θ(m)

k

e−Lm(θ,k) ≤ 1.
From the above discussion we see that the best batch-approximation of ESC can

be realized by a single hypothesis that minimizes the weighted sum of the empirical
loss for the hypothesis with respect to Dm and the code length for the hypothesis.
This fact motivates a batch-learning algorithm that produces from a data sequence
Dm a hypothesis that attains the minimum of (9.28). For a loss function L, we name
this algorithm the minimum L-complexity algorithm [Yamanishi 1998a], which we
denote by MLC.
In order to define MLC, we have to fix a method of quantization for Θk. A

question arises as to how finely we should quantize a continuous parameter space
to approximate ESC best. The optimal quantization scale can be obtained similarly
with the argument in [Rissanen 1989, pp. 55–56] as follows: Let δ = (δ1, · · · , δm)
be the maximal quantization scale around the truncated value τm(θ̂) of θ̂ where
θ̂ = argminθ∈Θk

∑m
t=1 L(Dt : fθ) with ∂

∑m
t=1 L(Dt : fθ)/∂θ|θ=θ̂ = 0. Applying

Taylor’s expansion of L(Dt : fθ̂+δ) around θ̂ up to the second order, we have

m∑
t=1

L(Dt : fθ̂+δ) =
m∑
t=1

L(Dt : fθ̂) +
m

2
δTΣδ +mo(δ2),

where Σ = ((1/m)(∂2
∑m

t=1 L(Dt : fθ)/(∂θi∂θj)|θ=θ̂). Since the code length for δ is
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given by −∑i ln δi +O(1), the minimization of a type of (9.27) requires that

m∑
t=1

L(Dt : fθ̂) +
m

2
δTΣδ − 1

λ

∑
i

ln δi

be minimized with respect to δ. Supposing that Σ is positive definite, it can be ver-
ified that the minimum is attained by δ such that

∏k
i=1 δi = Θ

(
1/(λm)k/2|Σ|1/2) .

This quantization scale δ also ensures that the minimum loss over Θ(m)
k is within

O(k2) of that over Θk. This nature for the fineness of quantization may be formal-
ized as follows:

Assumption 9.19 There exists a quantization of Hk such that for some 0 < B <
∞, for all m, for all Dm = D1 · · ·Dm ∈ D∗, the following inequality holds:

min
θ∈Θ(m)

k

m∑
t=1

L(Dt : fθ) ≤ inf
θ∈Θk

m∑
t=1

L(Dt : fθ) +Bk2, (9.29)

where Θ(m)
k is a quantization of Θk for sample size m.

We are now ready to give a formal definition of MLC.

Algorithm MLC
Let H = ∪kHk and L be given. For each k, for each m, fix a quantization H(m)

k of
Hk and let H(m) = ∪kH(m)

k . For each m, fix Lm : H(m) → R+ satisfying∑
f∈H(m)

e−Lm(f) ≤ 1, (9.30)

and λ, which may depend on m.
Input: Dm ∈ D∗

Output: f̂ ∈ H(m) such that

f̂ = arg min
f∈H(m)

{
m∑
t=1

L(Dt : f) +
1
λ
Lm(f)

}
. (9.31)

In the case where the hypothesis class is a class of probability densities and
the distortion measure is the logarithmic loss function, MLC coincides with the
statistical model selection criterion called the minimum description length (MDL)
principle (see [Rissanen 1978, 1984, 1986, 1987, 1989, pp. 79–92]).
MLC is closely related to Barron’s complexity regularization algorithm ([Barron

1991]), which we denote by CR. Barron showed that CR takes the same form as
(9.31) with respect to the quadratic loss function and the logarithmic loss function.
For other bounded loss functions, however, Barron took CR to have the following
different form of

f̂ = arg min
f∈H(m)

{
m∑
t=1

L(Dt : f) +
1
λ
(mLm(f))1/2

}
, (9.32)
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where λ is a positive constant. This form was taken to ensure bounds on the
statistical risk of f̂ by the method of analysis in [Barron 1991], and no longer
has interpretation as an approximation of ESC. Unlike CR of the form of (9.32),
MLC offers a unifying strategy that always takes the form of (9.31) regardless of a
loss function and λ.

9.4.3 Analysis of MLC

We analyze MLC by giving upper bounds on its statistical risk.

Theorem 9.20 [Yamanishi 1998a] Suppose that for some 0 < C < ∞, for all D,
for all f ∈ H, 0 ≤ L(D : f) ≤ C. Let h(λ) def= (eλC − 1)/C. Assume that for the
sequence Dm = D1, · · · , Dm ∈ D∗, each Dt is independently drawn according to
the unknown target distribution P. Let H(m) be a quantization of H. Then for any
λ > 0, the statistical risk for MLC using H = ∪kHk is upper-bounded as follows:

E
[
∆P (f̂)

]
< inf

f∈H(m)

{
C2h(λ) + ∆P (f) +

(Lm(f) + 1)
mh(λ)

}
(9.33)

(See Appendix for the proof.)

Note that bound (9.33) is general in the sense that it holds for all λ > 0, while
Barron’s CR of the form (9.32) has an upper bound on its statistical risk:

inf
f∈H(m)

{
∆P (f) + const

(
Lm(f)
m

)1/2
}
, (9.34)

under some constraints of λ. As will be seen in Corollary 9.21, however, MLC
also leads to the square-root regularization term (with respect to m) after making
necessary adjustments to λ to obtain the least upper bound on its statistical risk.
In the end, MLC has the same performance as CR, while MLC has generality and
allowance of the criterion to take the form of (9.31) rather than (9.32).
Let F be a set of all functions from X to Z or a set of conditional probability

densities or conditional probability mass functions over Y for given X ∈ X . Assume
that for a given target distribution P, there exists a function f∗ that attains the
minimum of EP [L(D : f)] over all f in F . Letting Hk ⊂ F be a k-dimensional
parametric class, the parametric case is the case where f∗ is in Hk for some finite
k. The nonparametric case is the case where f∗ is not in Hk for any k <∞. Below,
as a corollary of Theorem 9.20, we give upper bounds on the statistical risk for
MLC both for the parametric and nonparametric cases.

Corollary 9.21 [Yamanishi 1998a] Suppose that for each k, Hk and L satisfy As-
sumption 9.19 and that for the quantization of Hk satisfying (9.29), any quanti-
zation scale δ = (δ1, · · · , δk) satisfies

∏k
i=1 δi = Θ(1/(λm)k/2). Suppose also that

Lm(f) takes a constant value over H(m)
k .
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Parametric case: Assume that for the target distribution P, for some k∗ <∞, f∗
is in Hk∗ and is written as fθ∗ . Then letting λ = (1/C) ln(1 + C((lnm)/m)1/2) =
O(((lnm)/m)1/2), we have the following upper bound on the statistical risk for
MLC:

E[∆P (f̂)] = O

((
lnm
m

)1/2
)

(9.35)

Nonparametric case: Assume that for the target distribution P, for some α > 0,
for each k, the optimal hypothesis f∗ can be approximated by a k-dimensional sub-
class Hk of H with error: inff∈Hk

∆P (f) = O(1/kα). Then letting λ = (1/C) ln(1+
C((lnm)/m)1/2), we have the following upper bound on the statistical risk for MLC:

E[∆P (f̂)] = O

((
lnm
m

)α/(2(α+1))
)

(9.36)

In the special case where α is known to MLC in advance, letting λ = (1/C) ln(1 +
C((lnm)/m)α/(2α+1)), we have the following upper bound on the statistical risk for
MLC:

E[∆P (f̂)] = O

((
lnm
m

)α/(2α+1)
)

(9.37)

(See Appendix for the proof.)

For the parametric case, the convergence rate bound (9.35) coincides with that
obtained for Barron’s CR with respect to m (see [Barron 1991]). This bound is
fastest to date. For the nonparametric case, (9.37) is slightly better than (9.36) and
coincides with that obtained for CR in [Barron 1991], which is fastest to date.

9.5 Concluding Remarks

We have introduced ESC as an extension of stochastic complexity to the decision-
theoretic setting where a general real-valued function is used as a hypothesis and a
general loss function is used as a distortion measure. Through ESC we have given
a unifying view of the design and analysis of the learning algorithms which have
turned out to be most effective in batch-learning and online prediction scenarios.
For the online prediction scenario, a sequential realization of ESC induces the

the aggregating strategy. This corresponds to the fact that a sequential realization
of SC induces the Bayes algorithm for the specific case where the hypothesis class
is a class of probability densities and the distortion measure is the logarithmic loss.
We have derived an upper bound on the worst-case relative cumulative loss for the
aggregating strategy and showed that under certain conditions ESC is a minimax
solution to the relative cumulative loss.
For the batch-learning scenario, a batch-approximation of ESC using a single
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hypothesis induces the learning algorithm MLC, which is a formal extension of the
MDL learning algorithm.
We have derived upper bounds on the statistical risk for MLC with respect to

general bounded loss functions. It has turned out that MLC has the least upper
bounds (to date) on the statistical risk by tuning λ optimally. It remains for future
study to derive a tight lower bound on the statistical risk for MLC to compare it
with our upper bounds.
Through this chapter we have built a theory with respect to bounded loss

functions. However, it is not necessarily applied to unbounded loss functions.
Rissanen [2003] has recently developed a theory of stochastic complexity with
respect to unbounded nonlogarithmic loss functions to derive a general form of
tight lower bounds for nonlogarithmic loss functions. Combining our theory with
Rissanen’s would lead to a significant generalization of stochastic complexity.

9.6 Appendix: Proofs

9.6.1 Proof of Lemma 9.11

The key technique for proving Lemma 9.11 is Laplace’s method, which is a method
for approximating an integral by that over a small neighborhood of the parameter
value which attains the maximum of the quantity to be integrated (see e.g., [De
Bruijn 1958],[Clarke and Barron 1990]). We first prove (9.24) based on the proof
of Theorem 2.3 in [Clarke and Barron 1990], which effectively makes use of the
Laplace method to approximate the Bayesian marginal density.
Let d = dm satisfy that dm > k, limm→∞(dm/m) = 0 and limm→∞ dm =

∞ and let δm =
√
dm/m. For a given sequence Dm in Dm(Θk), let θ̂ =

argminθ∈Θk

∑m
t=1 L(Dt : fθ) and Nδm

def= {θ ∈ Θk : |θ − θ̂| ≤ δm} where | · |
is the Euclidean norm. Observe first that for θ ∈ Nδm , a Taylor’s expansion of
L(Dm : fθ) around θ̂ up to the second order is evaluated as follows: Let ξ be a pa-
rameter value such that |ξ− θ̂| ≤ |θ− θ̂|. Under Assumption 9.10, by the continuity
of the second derivatives and the uniform continuity of Ĵ(θ), and the condition that
the largest eigenvalue of Ĵ(θ) is uniformly upper-bounded by µ in a neighborhood
of θ̂, for sufficiently large m, for all Dm ∈ Dm(Θk), the following inequality holds:

L(Dm : fθ) = L(Dm : fθ̂) +
m

2
(θ − θ̂)T Ĵ(ξ)(θ − θ̂)

≤ L(Dm : fθ̂) +
mµ

2

k∑
i=1

(θi − θ̂i)2. (9.38)
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We can upper-bound I(Dm : Hk) using (9.38) as follows:

I(Dm : Hk)

= − 1
λ
ln
∫
π(θ) exp (−λL(Dm : fθ)) dθ

≤ − 1
λ
ln
∫
Nδm

π(θ) exp (−λL(Dm : fθ)) dθ

≤ − 1
λ
ln
∫
Nδm

π(θ) exp

(
−λL(Dm : fθ̂)− (λµm/2)

k∑
i=1

(θi − θ̂i)2
)
dθ

≤ L(Dm : fθ̂)−
1
λ
lnπ(θ) +

1
λ
ln
∫
Nδm

exp

(
−(λµm/2)

k∑
i=1

(θi − θ̂i)2
)
dθ,

where θ is the parameter value such that π(θ) is at minimum in Nδm . Note that π(θ)
is uniformly lower-bounded by c over Θk and thus −(1/λ) lnπ(θ) ≤ −(1/λ) ln c.
In order to evaluate the quantity

∫
Nδm

exp
(
−(λµm/2)∑k

i=1(θi − θ̂i)2
)
dθ, define

N ′
δm

def= {θ ∈ Rk : |θ − θ̂| ≤ δm}. Under condition 11, we see∫
Nδm

exp

(
−(λµm/2)

k∑
i=1

(θi − θ̂i)2
)
dθ

≥ r
∫
N ′
δm

exp

(
−(λµm/2)

k∑
i=1

(θi − θ̂i)2
)
dθ

≥ r
(
1− k

dm

)(
2π
m

)k/2 (√
(λµ)k

)−1
.

Hence we obtain

I(Dm : Hk) ≤ L(Dm : fθ̂) +
k

2λ
ln
mλµ

2π
+

1
λ
ln(1/c)− 1

λ
ln r

(
1− k

dm

)
.

Letting dm go to infinity, we have

I(Dm : Hk) ≤ L(Dm : fθ̂) +
k

2λ
ln
mλµ

2π
+

1
λ
ln(1/rc) + o(1),

where the o(1) term tends to zero uniformly over Dm(Θk) as m goes to infinity,
and µ does not depend on Dm. This completes the proof of (9.24). ✷

9.6.2 Proof of Theorem 9.13

Let Pm be the set of all probability distributions over Dm such that P (Dm(Θk)) =
1. Observe that for any probability distribution P ∗ ∈ Pm,

inf
A

sup
Dm∈Dm(Θ)

R(A : Dm) ≥ sup
P∈Pm

inf
A
EP [R(A : Dm)]

≥ inf
A
EP∗

[∑
L(yt.ŷt)

]
− EP∗

[
min
θ∈Θ

L(yt, fθ(xt))
]
,(9.39)



9.6 Appendix: Proofs 237

where EP denotes the expectation taken for the generation of Dm with respect to
P . Hence the proof can be reduced to bounding the both terms of (9.39) by choosing
a specific distribution for P ∗. We choose the mixture density for P ∗ as indicated
below. Similar proof techniques are partly used in [Vovk 1998]. We attempt to unify
them by offering a method applied commonly to the entropic loss and the square
loss.
First we prove (9.26) for the entropic loss in the case of k = 1. Let x∗ ∈ X be

such that for all ym = y1 · · · ym ∈ Ym, θ̂ = argminθ

∑
t=1 L(yt, fθ(x∗)) satisfies

∂
∑

t=1 L(yt, fθ(x∗))|θ=θ̂ = 0, and θ̂ is uniquely determined. There exists such
x∗ under Assumption 9.10. Define the probability distribution P ∗ so that it is
decomposed as P ∗(Dm) = P ∗

X (x
m)P ∗

Y(y
m) (i.e., xm and ym are independent.) Here

P ∗
X (x

m) =

{
1 xm = x∗ · · ·x∗
0 otherwise,

and

P ∗
Y(y

m) =
∫
π(θ)

m∏
i=1

P (yi|θ)dθ,

where

P (y|θ) =
{
fθ(x∗) y = 1

1− fθ(x∗) y = 0

and π is a given prior density over Θ. Then the conditional probability distribution
of yt ∈ {0, 1} for given yt−1 = y1 · · · yt−1 is given by

P (y|yt−1) = P ∗(yt−1yt)/P ∗(yt−1)

=
∫
P (yt|θ)P (θ|yt−1)dθ,

where

P (θ|yt−1) = π(θ)
∏t−1

i=1 P (yi|θ)∫
π(θ)

∏t−1
i=1 P (yi|θ)dθ

.

Observe that for the entropic loss L, for P ∗ as above,

inf
A
EP∗

[
m∑
t=1

L(yt, ŷt)

]
= EP∗

[
−

m∑
t=1

lnP (yt|yt−1)
]
.

Notice here that by choosing Jeffreys’ prior as in Section 9.2 for π,

P (1|yt−1) =

t−1∑

j=1

yj + 1


 /t. (9.40)
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Then we see that for all ym,

−
m∑
t=1

lnP (yt|yt−1) ≥ −
m∑
t=1

lnP (yt|θ̂) + 1
2
(1− o(1)) lnm, (9.41)

where θ̂ = argminθ∈Θ (−∑m
t=1 lnP

∗(yt|θ)) .
Hence we have

inf
A
EP∗

[
m∑
t=1

L(yt, ŷt)

]
− EP∗

[
min
θ∈Θ

L(yt, fθ(xt))
]
≥ 1

2
(1− o(1)) lnm.

Plugging this into (9.39) yields (9.26) with k = 1 and λ∗ = 1. This result can be
straightforwardly extended into the case where θ is multidimensional.
Next we prove (9.26) for the square loss in the case of k = 1. We use the same

notation for P ∗, P (y|θ) and P (yt|yt−1) as the entropic loss case. The idea of the
proof is basically the same as that for the entropic loss. Then we see

EP∗

[
min
θ∈Θ

L(yt, fθ(xt))
]
= EP∗


 m∑

t=1

y2t −
1
m

(
m∑
t=1

yt

)2

 . (9.42)

Here we take an expectation of each yt with respect to P (y|θ), then take an
expectation of the sum with respect to π(θ) to see that (9.42) is given as follows:

EP∗


 m∑

t=1

y2t −
1
m

(
m∑
t=1

yt

)2

 = m

∫
π(θ)P (1|θ)P (0|θ)dθ +O(1) (9.43)

On the other hand, we have

inf
A
EP∗

[
m∑
t=1

L(yt, ŷt)

]
= EP∗

[
m∑
t=1

(yt − P (1|yt−1))2
]
.

Here we can plug an approximation

P (1|yt−1) ≈
t−1∑
j=1

yj/(t− 1)

into (9.44) and take an expectation of each yt with respect to P (y|θ) and then take
an expectation of the sum with respect to π(θ) to see that the expectation of (9.42)
with respect to P ∗ is given as follows:

EP∗

[
m∑
t=1

(yt − P (1|yt−1))2
]
= (m+ lnm)

∫
π(θ)P (1|θ)P (0|θ)dθ +O(1) (9.44)

Let π(θ) be the prior density over Θ that puts a large probability mass on the
neighborhood of θ such that P (1|θ) = 1/2. Then (9.44) is lower-bounded by

m

∫
π(θ)P (1|θ)P (0|θ)dθ + (1/4− o(1)) lnm.
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Plugging this bound and (9.43) into (9.39) yields (9.26) with k = 1 and λ∗ = 2.
This result can be straightforwardly extended into the case where θ is multi-
dimensional. See [Yamanishi 1998b] for further generalization with respect to
general loss functions ✷

9.6.3 Proof of Theorem 9.20

We abbreviate
∑m

t=1 L(Dt : f) as L(Dm : f). Choose f̄ ∈ H(m) arbitrarily. Let f̂
be an output of MLC.
First note that if ∆P (f̂) > ε, then the hypothesis that attains the minimum of the

quantity: λL(Dm : f)+Lm(f) overH(m) lies in the range {f ∈ H(m) : ∆P (f) > ε}.
Thus Prob[∆P (f̂) > ε] is upper-bounded as follows:

Prob
[
∆P (f̂) > ε

]
≤ Prob

[
min

f∈H(m):∆P (f)>ε
{λL(Dm : f) + Lm(f)} ≤ λL(Dm : f̄) + Lm(f̄)

]

= Prob

[
max

f∈H(m):∆P (f)>ε
e−λL(Dm:f)−Lm(f) ≥ e−λL(Dm:f̄)−Lm(f̄)

]

≤
∑

f∈H(m):∆P (f)>ε

Prob
[
e−λL(Dm:f)−Lm(f) ≥ e−λL(Dm:f̄)−Lm(f̄)

]
(9.45)

Next we evaluate the probability (9.45). Let E be the set of Dm satisfying the
event that e−λL(Dm:f)−Lm(f) ≥ e−λL(Dm:f̄)−Lm(f̄). For all f ∈ H(m), we have

Prob
[
e−λL(Dm:f)−Lm(f) ≥ e−λL(Dm:f̄)−Lm(f̄)

]
=
∫
Dm∈E

dP (Dm)

≤
∫
Dm∈E

dP (Dm)
e−λL(Dm:f)−Lm(f)

e−λL(Dm:f̄)−Lm(f̄)

≤ e−Lm(f)+Lm(f̄)

∫
dP (Dm)e−λL(Dm:f)+λL(Dm:f̄)

= e−Lm(f)+Lm(f̄)

(∫
dP (D)e−λ(L(D:f)−L(D:f̄))

)m

. (9.46)

Here we have used the independence assumption for D to derive the last equation.
We use the following key lemma to further evaluate (9.46).

Lemma 9.22 For f satisfying ∆P (f) > ε,∫
dP (D)e−λ(L(D:f)−L(D:f̄)) < exp

[
−h(λ) (ε− (C2h(λ) + ∆P (f̄)

))]
, (9.47)

where h(λ) = (eλC − 1)/C.

By plugging (9.47) into (9.46), and then the resulting inequality into (9.45), we
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can upper-bound Prob[∆P (f̂) > ε] as follows:

Prob[∆P (f̂) > ε] < eLm(f̄)e−mh(λ)(ε−(C2h(λ)+∆P (f̄)))
∑

f∈H(m):∆P (f)>ε

e−Lm(f)

≤ exp

[
−mh(λ)

(
ε−

(
C2h(λ) + ∆P (f̄) +

Lm(f̄)
mh(λ)

))]
, (9.48)

where the last inequality follows from the fact:
∑

f∈H(m):∆P (f)>ε e
−Lm(f) ≤∑

f∈H(m) e−Lm(f) ≤ 1 by (9.30). Letting ε′ = ε−(C2h(λ)+∆P (f̄)+Lm(f̄)/mh(λ)),
(9.48) is written as

Prob

[
∆P (f̂)−

(
C2h(λ) + ∆P (f̄) +

Lm(f̄)
mh(λ)

)
> ε′

]
< e−mh(λ)ε′ .

Hence the statistical risk for MLC is upper-bounded as follows:

E[∆P (f̂)] < C2h(λ) + ∆P (f̄) +
Lm(f̄)
mh(λ)

+
∫ ∞

0

e−mh(λ)ε′dε′

= C2h(λ) + ∆P (f̄) +
Lm(f̄) + 1
mh(λ)

(9.49)

Since (9.49) holds for all f̄ ∈ H(m), we obtain (9.33) by minimizing the left-hand
side of (9.49) with respect to f̄ over H(m).This completes the proof of (9.33). ✷

Proof (of Lemma 9.22): We start with the following two formulas:

Sublemma 9.23 For 0 < C <∞, for λ > 0,

e−λx ≤ 1− 1− e−λC

C
x (0 ≤ x ≤ C), (9.50)

e−λx ≤ 1− e
λC − 1
C

x (−C ≤ x ≤ 0). (9.51)

Let V (D : f, f̄) def= L(D : f) − L(D : f̄) and ∆(f ‖ f̄) def= EP [V (D : f, f̄)].
Then −C ≤ V (D : f, f̄) ≤ C. Thus making use of (9.50) and (9.51), we obtain the
following upper bound on

∫
dP (D)e−λ(L(D:f)−L(D:f̄)) :∫

dP (D)e−λ(L(D:f)−L(D:f̄))

=
∫
D:V (D:f,f̄)≥0

dP (D)e−λV (D:f,f̄) +
∫
D:V (D:f,f̄)<0

dP (D)e−λV (D:f,f̄)

≤
∫
D:V (D:f,f̄)≥0

dP (D)
(
1− 1− e−λC

C
V (D : f, f̄)

)

+
∫
D:V (D:f,f̄)<0

dP (D)
(
1− e

λC − 1
C

V (D : f, f̄)
)

(9.52)

Let C1
def= (1 − e−λC)/C, C2

def= (eλC − 1)/C, and h(f, f̄) def=
∫
D:V (D:f,f̄)≥0 dP (D)
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V (D : f, f̄)(≤ C). Then (9.52) can be further upper-bounded as follows:∫
D

dP (D)e−λ(L(D:f)−L(D:f̄))

≤ 1− C1
∫
D:V (D:f,f̄)≥0

dP (D)V (D : f, f̄)− C2
∫
D:V (D:f,f̄)<0

dP (D)V (D : f, f̄)

= 1− C2∆(f ‖ f̄) + (C2 − C1)h(f, f̄)
≤ 1− C2∆(f ‖ f̄) + (C2 − C1)C
= 1− C2∆P (f) + C2∆P (f̄) + (C2 − C1)C, (9.53)

where (9.53) follows from the relation: ∆(f ‖ f̄) = ∆P (f) − ∆P (f̄). Further note
that (C2 − C1)C = (eλC − 1)2/eλC > 0 and (C2 − C1)C = C2C2

2/e
λC ≤ C2C2

2 .

Thus we have the following inequality for any f such that ∆P (f) > ε:∫
dP (D)e−λ(L(D:f)−L(D:f̄))

< 1− C2ε+ C2C2
2 + C2∆P (f̄)

≤ exp
[−C2 (ε− (C2C2 +∆P (f̄)

))]
, (9.54)

where (9.54) follows from the fact that for any A > 0, 1 − Ax ≤ e−Ax. Rewriting
C2 in (9.54) as h(λ) yields (9.47). This completes the proof of Lemma 9.22. ✷

9.6.4 Proof of Corollary 9.21

First consider the parametric case where f∗ is written as fθ∗ ∈ Hk∗ for some
k∗. For each k, let H(m)

k be a quantization of Hk with quantization scale δ such
that

∏k
i=1 δi = Θ(1/(λm)k/2) for sample size m. Let f̄∗ be the truncation of

f∗ ∈ Hk∗ . Then we see that Lm(f̄∗) = O(k∗ ln(mλ)) = O(k∗ lnm). If we set
λ = (1/C) ln(1 + C((lnm)/m)1/2), then we have h(λ) = O(((lnm)/m)1/2). Under
Assumption 9.19 we can use the fact that ∆P (f∗) = 0 to upper-bound the statistical
risk as follows:

E
[
∆P (f̂)

]
< C2h(λ) + ∆P (f∗) +

(Lm(f̄∗) + λB(k∗)2 + 1)
mh(λ)

= O

((
lnm
m

)1/2
)
,

which yields (9.35).
Next consider the nonparametric case where inff∈Hk

∆P (f) = O(1/kα). We
obtain the following bound on the statistical risk for MLC:

E
[
∆P (f̂)

]
< min

k
inf

fθ∈H(m)
k

{
C2h(λ) + ∆P (fθ) +

(Lm(f̄θ) + λBk2 + 1)
mh(λ)

}

= O

(
min
k

((
lnm
m

)1/2

+
1
kα

+ k
(
lnm
m

)1/2
))

= O

((
lnm
m

)α/2(α+1)
)
, (9.55)
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which yields (9.36). The minimum in (9.55) is attained by k = O((m/ lnm)1/2(α+1)).
Bound (9.37) can be obtained similarly with (9.36). ✷
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This chapter describes an extension of the minimum description length (MDL)
theory inspired by Kolmogorov’s structure function in the algorithmic theory
of complexity. As in the MDL theory the models for the data are parametric
distributions instead of programs in the algorithmic theory, and the results will
be directly applicable to modeling problems. While the MDL principle gives the
best code length by jointly describing the model and the remaining ’noise’, we now
get a similar decomposition when the code length of the model is restricted by a
parameter. This gives a rate-distortion type of curve, which not only applies to
modeling but also suggests a rate-distortion theory different from Shannon’s, which
we discuss in a preliminary manner.

10.1 Introduction

The Kolmogorov complexity of a data sequence in the algorithmic theory of
information is defined to be the length of a shortest program in a universal
programming language that generates the sequence. Although such a program takes
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advantage of all the regular features in the data that the language permits, it
does not separate these features from the in general noisy data nor makes plain
what they are. Clearly, what we mean by a ‘model’ of data is precisely the regular
features. In an unpublished work (see [Vereshchagin and Vitányi 2001] and [Cover
and Thomas 1991]), Kolmogorov introduced an extension of the complexity which
not only isolates the regular features but also provides a yardstick for the amount
of noise that a desired amount of features leaves unexplained.
The minimum description length (MDL) theory was patterned after the algorith-

mic theory but with a far less powerful language in which to represent the regular
features in data, namely, a class of probability models. Because the models must
be capable of being fitted to data they must be finitely describable and hence in
the end parametric. The role of Kolmogorov complexity is played by the stochastic
complexity [Rissanen 1996], which does make plain the structure of the optimal
model and its number of parameters but not the necessary quantization of the real
valued parameters.
In this chapter we apply Kolmogorov’s ideas of the extended complexity to

probability models, and we obtain a new chapter in the MDL theory. An interesting
outcome of this work is a new theory of rate distortion, which we discuss in a
preliminary way.

10.2 Kolmogorov Structure Function

Our work is based on Kolmogorov’s unpublished ideas, which we learned from a
recent paper by Vereshchagin and Vitányi [2001]. The ideas are perhaps easiest
understood in the original framework of the algorithmic information theory, which
we summarize.
TheKolmogorov complexity of a string x = xn = x1, . . . , xn, relative to a universal

computer U , is defined as

K(x) = min
p(x)

|p(x)|,

where |p(x)| is the length of a self-delimiting program in the language that generates
the string [Solomonoff 1964; Kolmogorov 1965], see also Chapter 6 by Paul Vitányi
in this book. Such a program is a code word of the string, which can be decoded
by running the program. Since no program is a prefix of another, the set of them
defines a prefix code.
Kolmogorov defined a model of the string x to be a finite set S that includes the

string. This corresponds to intuition in that all strings in the set share a common
model. The Kolmogorov complexity K(x) is the shortest code length of the string
without any separation of its properties from the ‘noise’, as it were, which most
strings we are interested in have. It is clear that the measure of the amount of
the properties of the string extracted by the set S is K(S). But how to measure
the remaining amount of noise? One might think that it could be done by the
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conditional complexity or code length K(x|S), but this is not right, becauseK(x|S)
would take advantage of other possible properties in the string not captured by
S. Also, one could not obtain the idea of Kolmogorov sufficient statistic; see, for
instance, [Cover and Thomas 1991]. To ensure that no further properties are used,
Kolmogorov took the code length log |S| to measure the amount of the remaining
‘noise’, and he defined the following structure function,

hx(α) = min
S�x

{log |S| : K(S) ≤ α}, (10.1)

of the parameter α. The minimizing set Sα extracts all properties from x on the level
α; that is, with ‘model cost’ (= code length needed to describe S) not exceeding
α. Notice, too, that log |S|=̇maxy∈S K(y|S), where by =̇ (≥̇) we mean equality
(inequality) up to a constant not depending on the length of y, as it’s usually done
in the algorithmic theory of information.
Clearly, hx(α) is a decreasing function of α. The amount K(x)− α, defining the

so-called sufficiency line, is a lower bound for the structure function, and there is
a special value ᾱ defined as

ᾱ = min{α : hx(α) + α=̇K(x)}. (10.2)

The two-part code length

hx(ᾱ) + ᾱ

represents the Kolmogorov minimal sufficient statistics decomposition, in which Sᾱ
represents all learnable properties of x that can be captured by finite sets leaving
hx(ᾱ) as the code length for noninformative ‘noise’.

10.3 Probability Model Classes

Because the Kolmogorov complexity is noncomputable we want to apply the pre-
ceding notions, suitably modified, to the classes of parametric density or probability
functions as models:

Mγ = {f(xn; θ, γ) : θ ∈ Ωγ ⊆ Rk}, M =
⋃
Mγ ,

where γ is a structure index such as the indices of some of the rows of a regressor
matrix and θ = θ1, . . . , θk, k depending on γ. For much of the discussion the
structure index will be constant, and to simplify notations we write f(xn; θ) for
f(xn; θ, γ). We mention that in the MDL theory the traditional ‘nonparametric’
models are not accepted. The reason is that unlike the parametric models they
cannot be fitted to data, and in this theory there is no need for ‘true’ or imagined
data generating distributions modeled by nonparametric distributions. In fact, we
make no assumption about the data that they be samples from any distribution.
In order to define the structure function for the probability models we need
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to replace K(x) by the stochastic complexity as the negative logarithm of the
normalized maximum likelihood (NML) density function and the model cost K(S)
by the shortest code length L(θd, k) for quantized parameters θd and their number
k. Further, we replace the set S by the set of ‘typical’ strings f(·; θd).

10.3.1 Stochastic Complexity

Consider the normalized maximum likelihood (NML) density function

f̂(xn;Mγ) =
f(xn; θ̂(xn))

Cn
(10.3)

Cn =
∫
θ̂(yn)∈Ω◦

f(yn; θ̂(yn))dyn (10.4)

=
∫
θ̂∈Ω◦

g(θ̂; θ̂)dθ̂,

where Ω◦ is the interior of Ω = Ωγ , assumed to be compact, and g(θ̂; θ) is the
density function on statistic θ̂(xn) induced by f(yn; θ).
The NML density function, which clearly is universal in the model class consid-

ered, solves two minimax problems. The first, due to Shtarkov [1987], is as follows:

min
q

max
yn

log
f(yn; θ̂(yn))
q(yn)

It also solves the second minimax problem [Rissanen 2001],

min
q

max
g
Eg log

f(Xn; θ̂(Xn))
q(Xn)

= min
q

max
g
Eg[log 1/q(Xn)− log 1/f(Xn; θ̂(Xn))],

where q and g range over any set of distributions that include f̂(xn;Mγ)

Proof The second minimax problem is equivalent with

min
q

max
g
D(g‖q)−D(f̂‖g) + logCn ≥ max

g
min
q
. . . = logCn,

where D(g‖q) denotes the Kullback-Leibler distance. The equality is reached for
q̂ = ĝ = f̂ .

It is seen that the second minimax problem and its solution generalize Shannon’s
noiseless coding theorem in that the minimax code defined by the NML density
function mimics the worst-case data-generating distribution, while in Shannon’s
theorem the optimal prefix code must mimic the data-generating distribution. Also,
Shannon’s theorem follows if we take the model class as a singleton set.
These properties of the NML density function can be strengthened such that

if we restrict the data-generating density function g to the model class, then the
minimax value cannot be beaten for any code except for g in a set whose volume
shrinks to zero as n→∞ [Rissanen 2001].
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Because of these results the definition of

− log p̂(xn;Mγ) = − log p(xn; θ̂(xn), γ) + logCn,γ (10.5)

as the stochastic complexity of xn, given Mγ , is well justified [Rissanen 1996]; we
also reintroduced the structure index γ.
Consider the generalization of the so-called Fisher information matrix,

J(θ) = lim
n→∞−n

−1{Eθ
∂2 log f(Xn; θ, γ)

∂θi∂θj
}, (10.6)

which we assume to be positive definite, bounded, and bounded away from the
origin of a coordinate system in Ω in which the parameters θ = θ1, . . . , θk are
defined. We also assume its elements to be continuous. Under the main condition
that the central limit theorem is satisfied by the model class in the sense that the
distribution of θ̂(xn) − θ converges to the normal distribution of mean zero and
covariance J−1(θ), we have the estimate [Rissanen 1996]

− log f̂(xn;Mγ) = − log f(xn; θ̂(xn), γ) +
k

2
log

n

2π
+ log

∫
Ω

|J(θ)|1/2dθ + o(1).
(10.7)

10.3.2 A Partition of Ω

We want to have a partition of the compact parameter space into curvilinear
hyperrectangles such that the Kullback-Leibler distance between the models fi =
f(yn; θi) and fj = f(yn; θj), defined by the centers of two adjacent rectangles
θi = θ(i) and θj = θ(j), is the same for any pair. We do not actually need to
construct it because we only need some properties of it. In practice such a partition
can be approximately obtained in various ways. To achieve this apply Taylor’s
expansion to the two adjacent models, which gives

D(fi‖fj) = n

2
(θj − θi)′J(θ̃)(θj − θi),

where θ̃ is a point between θi and θj . Next, consider the factorization of J(θ) as

J(θ) = P ′(θ)Λ(θ)P (θ),

where P (θ) is an orthogonal matrix of rows e′i(θ) defined by the unit length (column)
eigenvectors ei(θ) of J(θ), and Λ is a diagonal matrix defined by the eigenvalues
λi(θ) of J(θ).
The eigenvectors and eigenvalues define at any point in Ω a set of curves

u1(t), . . . , uk(t), like geodesics, parameterized by a scalar t, both positive and
negative, as the solution to the differential equations

dui(t)/dt = λ−1i (ui(t))ei(ui(t)),

with the initial conditions ui(0) = θ. The tangents of the curves at θ are orthogonal.
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We see that if J(θ) is a constant matrix the curves ui(t) = tλ−1i ei are just extensions
of the unit vectors ei and hence straight lines.
The edges of a k-dimensional curvilinear rectangle are defined by 2k corners, at

each of which k geodesics intersect. We want to control the edges and hence the
volume of these rectangles with a parameter d. Consider a hyperellipsoid centered
at θ̄,

δ′J(θ̄)δ =
k∑
i

λi(θ̄)(δ′ei(θ̄))2 = d/n, (10.8)

where δ = θ − θ̄. It encloses a rectangle of maximum volume,

V =
(
4d
nk

)k/2

|J(θ̄)|−1/2, (10.9)

whose edge lengths are

si(θ̄) =
(

4d
nkλi(θ̄)

)1/2

. (10.10)

We want the edges of the curvilinear rectangles to have lengths such that the
Euclidean distance between their endpoints is si to the precision required for the
desired maximum volume. For large n the volume of the curvilinear rectangle,
centered at θ̄, will be V in (10.9) to within an error not exceeding O(n−k).
Let the origin be a corner z1, from which k geodesics emanate. Create k edges

along these geodesics such that the Euclidean distance between their endpoint and
the origin is si(0), for i = 1, . . . , k. Denote the endpoints by z2, . . . , zk+1. There are
k surfaces of dimensionality k − 1 defined by the geodesics of type

u1(t), . . . , ui−1(t), 0, ui+1(t), . . . , uk(t)

starting at every point of the ith edge. These sides of the rectangle include the origin
and every k−1 collection of the corners z2, . . . , zk+1, and they define one half of the
2k sides of the rectangle. We then move to the next corner, where the edge lengths
not already assigned are set to their values (10.10). Complete the construction by
defining the remaining k sides in terms of the geodesics starting along the edges of
the previously constructed sides.
By a similar construct we create the next layers of curvilinear rectangles and we

get a partition Π = {Bi,n(d) : i = 1, . . . , Nd} of Ω by the curvilinear rectangles with
their centers θi, except at the boundary, which may cut a portion off the rectangles.
We need to define a center of the curvilinear rectangle so defined. We take it as

the center θ̄ of the ellipsoid (10.8) for which the sum of the Euclidean distance from
the corners to the ellipsoid is minimized. Call this center θ1 and the curvilinear
rectangle as the cell B1,n(d). It is clear that as n → ∞ the edges of the rectangle
converge to straight lines and the distances from the corners to the ellipsoid to zero.
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10.3.3 Code Length for Models

If the central limit theorem (CLT) holds for θ̂(yn) we have the convergence, (10.7),

Cn

(
2π
n

)k/2

→
∫
Ω

|J(θ)|1/2dθ.

Consider the canonical ‘prior’ density function for θ̂,

w(θ̂) =
g(θ̂; θ̂)∫

Ω g(θ; θ)dθ
, (10.11)

which in the limit becomes Jeffreys’ prior:

w(θ̂) =
|J(θ̂)|1/2∫

Ω
|J(θ)|1/2dθ

This defines a probability distribution for the centers θi, which tends to a uniform
one as n grows:

qd(θi) =
∫
Bi,n(d)(θi)

w(θ)dθ (10.12)

qd(θi)
w(θi)|Bi,n(d)| → 1 (10.13)

qd(θi)(
2d
πk

)k/2
C−1

n

→ 1 (10.14)

Here |Bi,n(d)| denotes the volume of Bi,n(d). With this approximation we get the
code length for the model, defined by the center θi,

Ld(θi) ∼= k

2
log
πk

2d
+ logCn. (10.15)

This also gives the number of rectangles partitioning Ω:

Cn

(
kπ

2d

)k/2

10.4 Structure Function

We consider the set Xi,n(d) of strings yn such that θ̂(yn) ∈ Bi,n(d) as the set of
typical strings of the model defined by θi. Just as log |S| is the code length of the
worst-case sequence in S, we need the code length of the worst-case sequence yn in
Xi,n(d), which is obtained by the Taylor series expansion as follows:

− log f(yn; θi, γ) = − log f(yn; θ̂(yn), γ) +
1
2
d, (10.16)
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where yn denotes a sequence for which

n(θ̂(yn)− θi)′Ĵ(θ̃i)(θ̂(yn)− θi) = d.

Here Ĵ(θ̂) is the empirical Fisher information matrix

Ĵ(θ̂) = −n−1{∂
2 log f(yn; θ̂, γ)
∂θ̂j∂θ̂k

}, (10.17)

and θ̃i is a point between θi and θ̂(yn). We also assume that for all data sequences
such that θ̂(yn) falls within Bi,n(d) the empirical Ĵ(θ̂(yn)) converges to Ĵ(θ̂) as
θ̂(yn)→ θ̂.
Suggested by this we define the structure function for the model class Mγ as

follows:

hxn(α) = min
d
{− log f(xn; θ̂(xn), γ) +

1
2
d : Ld(θi) ≤ α}, (10.18)

For the minimizing d the inequality will have to be satisfied with equality,

α =
k

2
log
πk

2d
+ logCn,γ ,

and with the asymptotic approximation (10.15) we get

dα =
πk

2
C2/k

n,γ e
−2α/k, (10.19)

and

hxn(α) = − log f(xn; θ̂(xn), γ) + dα/2. (10.20)

We may ask for the values of α for which the structure function is closest to the
sufficiency line defined by

− log f̂(xn;Mγ)− α,

which amounts to the minimization of the two-part code length

min
α
{hxn(α) + α}. (10.21)

With (10.20) and (10.19) we get the minimizing α as

ᾱ =
k

2
log
π

2
+ logCn,γ , (10.22)

and dᾱ = k. We then get the universal sufficient statistics decomposition of the
model class Mγ ,

hxn(ᾱ) + ᾱ = − log f(xn; θ̂(xn), γ) +
k

2
+
k

2
log
π

2
+ logCn,γ , (10.23)

in the spirit of Kolmogorov’s sufficient statistics. In particular, the two last terms
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correspond to the code length for the model K(S) in the algorithmic theory. These
terms also represent the optimal amount of information one can extract from the
string with the model class Mγ , leaving the first two terms, hxn(ᾱ), as the code
length of whatever remains in the data, the ‘noise’. This is something of a figure of
speech, because we have not split the data sequence xn into ‘noise’ and the model.
Such a separation turns out to be an intriguing problem, leading to a theory of
lossy data compression to be discussed below. The models for which the values of
α are larger than ᾱ also extract all the information from the data, but in so doing
they try to explain some of the noise, as it were. The interesting models correspond
to the range α ≤ ᾱ, for they incorporate a portion of the learnable properties for a
smaller ‘model cost’, the code lengh for the optimal model on that level, and they
leave a greater amount as unexplained noise. We mention that in [Balasubramanian
1997], Cn,γ was given the interpretation of the number of optimally distinguishable
models from data xn in a somewhat intricate sense. In a very real sense the number
of the centers θi of the cells Bi,n(d) can also be viewed as optimally distinguishable,
and the two numbers are seen to differ for large n only slightly.
We next turn to the model class M =

⋃
γMγ . To deal with that we need a

distribution for γ. We take this as 1/|Γ|, where Γ is the set of the relevant structures.
For many cases it is enough to take the code length for γ simply as logn, which is
what we do here. In general the choice of the distribution for γ can be an intricate
issue. The structure function is now

hxn(α) = min
d,γ
{− log f(xn; θ̂(xn), γ) +

1
2
d : Ld(θi) + logn ≤ α}. (10.24)

For each γ the minimizing value for d is

dα,γ =
πk

2
(nCn,γ)2/ke−2α/k,

and it is reached when the code length for the optimal model is α. To get an idea
of the behavior of dα,γ when γ = k we use the asymptotic formula (10.7) for Cn,γ ,
which gives

dα,γ =
k

4
n1+2/ke−2α/k(

∫
θ

|J(θ)|)2/k.

For a fixed α = O(log n) this is seen to be an increasing function of k, roughly as
O(k). The structure function then is given by

hxn(α) = min
γ<n

{− log f(xn; θ̂(xn), γ) +
1
2
dα,γ} = − log f(xn; θ̂(xn), γ̂) +

1
2
dα,γ̂ ,

(10.25)
where γ̄ with k̄ parameters is the minimizing value as a function of α. There is
generally a well-defined minimum.
The minimum of the two-part code length hxn(α) + α over α is

min
d,γ

[− log f(xn; θ̂(xn), γ) +
1
2
d+ Ld(θi) + logn]. (10.26)
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For each γ the minimizing value for d is d̂ = k, as before, and we are left with the
minimization

min
γ
{− log f̂(xn; γ) + logn+

k

2
log
πe

2
}.

Letting γ̂ denote the smallest of the minimizing structures and k̂ the number of
parameters in it, we get

hxn(α̂) = − log f(xn; θ̂(xn), γ̂) + k̂/2, (10.27)

where

α̂ =
k̂

2
log
π

2
+ log(nCn,γ̂). (10.28)

This gives the universal sufficient statistics decomposition of the model classM:

hxn(α̂) + α̂ = − log f(xn; θ̂(xn), γ̂) +
k̂

2
+ log(nCn,γ̂) +

k̂

2
log
π

2
(10.29)

As above, hxn(α) stays above the sufficiency line L(α) = − log f̂(xn; γ̂)+ dα,γ/2,
the distance between the two minimized at the point α̂.
There remains one more case to consider, namely, the case where we are interested

only in selecting the structure of the model rather than both the structure and the
values of the parameters. If we use the simple distribution 1/n for the structure as
in the previous case we get the structure function as

hxn(α) = min
γ<n

{− log f(xn; θ̂(xn), γ) : logCn,γ + logn ≤ α}. (10.30)

Of special interest is the value for α that minimizes hxn(α) + α, which amounts to
the MDL principle in the stochastic complexity form:

min
γ<n

{− log f(xn; θ̂(xn), γ) + logCn,γ} (10.31)

In conclusion, the theory of the structure functions defined gives strong support
to the MDL principle in any of its forms, because it permits a formalization of the
learnable information and its separation from uninformative noise, which is what
the purpose of all modeling should be. Curiously enough, it also explains the riddle
in traditional statistics of why one should accept the maximum likelihood estimates
of the parameter values but not of their number. In this theory, neither of these
estimates are acceptable. Rather, they are replaced by the MDL estimates.

10.5 Lossy Data Compression

The development above provides a different approach to lossy data compression
from Shannon’s rate-distortion theory. Let Xi,n(d) be the inverse image of Bi,n(d)
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under θ̂(zn). The idea is to construct the distorted sequences x̂n as a subset of
Xi,n(d) defining the codebook.

10.5.1 Regression Models

We first consider the simple case where the model class is rich enough that we can
take the codebook for each γ and d to consist of the single sequence, the mode

x̂n = max
yn
f(yn; θi, γ).

Then, clearly, the code length of x̂n equals Ld(θi)+logn, and the difference between
the distorted sequence and xn shrinks to zero when we let the number of parameters
k grow and d shrink. This happens in regression problems, where the regressor
matrix is of size n× n so that we have a transformation xn ↔ θn. With quadratic
errors the model class consists of Gaussian density functions,

f(xn|W ; θ, γ) =
1

(2πτ)n/2
e−(1/τ)

Pn
t=1(xt−x̄t)

2
, (10.32)

where W = {wi,t} is the regressor matrix and

x̄t =
∑
i∈γ

θiwi,t,

and γ is a set of indices of the rows ofW . When the least squares coefficients θ̂(xn)
are quantized to the centers of the cells Bi,n(d), the distorted sequence x̂n is indeed
given by the mode

x̂t =
∑
j∈γ

θijwj,t, (10.33)

where θi = θi1, . . . , θ
i
k is the center of the cell that includes θ̂(xn).

When the regressor matrix is orthonormal, as is the case with certain wavelets,
the optimal index set γ consists of the indices of the optimal number of the largest
squared coefficients in the wavelet transform [Rissanen 2000], and the code length
Ld(θi) + logn = α equals the code length for the distorted string. The amount
of distortion is determined by the pair (d, k), which also determines hxn(α), and
this as a function of α corresponds to the rate-distortion curve. An important
difference is that this curve is defined for each sequence rather than in the mean
distortion, and the whole technique gives a universal lossy compression, relative to
the given Gaussian class. For another approach to universal lossy data compression,
see [Zhang and Kontoyannis 2001].

10.5.2 Binary Sequences with Hamming Distance

We consider next the remaining cases where the model classes are not rich enough
to permit the construction of the distorted sequence entirely in the parameter space.
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To be specific we consider the case of binary strings, for which the natural distortion
measure is the Hamming distance. We shall deal with it as if the model class in
question were a Bernoulli class, but we may use it only to generate the distorted
strings.
For the class of Bernoulli models with the parameter θ for the probability of the

symbol 1 we take the parameter space as [0, 1], even though the Fisher information
J(θ) = 1/(θ(1 − θ)) is infinite at 0 and 1. This is because we will consider binary
strings xt of short length t ≤ 64, and no center of the partition Πt = {Bi,t} will be
too close to the endpoints of the interval. We will not use the parameter d, and we
take the lengths of the equivalence classes by (10.9) for the optimal value d = 1 as

|Bi,t| = 2√
t
(θi(1 − θi)1/2.

We also place the center of the largest equivalence class at θ = 1/2. Write the
centers as i1/t, i2/t, . . .. Instead of defining a distorted string for the center iν/t by
the mode of P (xt; iν/t) we map the center into the set of strings S(iν/t) of length
t with iν 1s. We describe first a fast and simple algorithm to give the codebook
Sm(iν/t) of size m, which may be compared with a lower bound to be defined.
In S(iν/t), sorted in an increasing lexical order, take the subset of m equally

spaced strings as the codebook Sm(iν/t). In other words, the ordinals of these
strings are s, 2s, . . . ,ms, where

s = 6
(
t

iν

)
/m7.

The ordinals, written in binary, serve as the code words C(x̂t), from which the
strings in the codebook can be decoded by the last-in first-out (LIFO) arithmetic
decoding process [Rissanen 1976; Rissanen 1979]. This is done recursively. Starting
with x̂ = i, x̂′, where the first symbol i = 0 or i = 1, as the case may be, decode
i = 1, if and only if

C(i, x̂′) ≥ A(i, x̂′) =
( |x̂′|
n1(x̂)

)
, (10.34)

which leaves the string x̂′ to be decoded ; we use the notation ni(x̂) for the number
of 1s in x̂ and |x̂| for its length. The process then continues by the recursions

C(x̂′) = C(0, x̂′) (10.35)

C(x̂′) = C(1, x̂′)−A(1, x̂′) (10.36)

A(x̂′) =
ni(x̂′) + 1
|x̂′|+ 1

A(i, x̂′). (10.37)

For a string xt let the maximum likelihood estimate θ̂(xt) =
∑

j xj/t fall in the
i′νth equivalence class. Take the distorted sequence x̂t as the first sequence in the
codebook Sm(iν/t) that is closest to xt in the Hamming distance.
One can encode x̂t with about L(x̂t) = logm + logNt bits, where Nt is the

number of equivalence classes in Πt. However, depending on the data sequence xn
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the distorted string x̂n as a concatenation of the segments x̂t may be encoded with
shorter code length, for instance by the Lempel-Ziv algorithm or by Algorithm
Context.
The distortion for string xt is defined as follows [Rissanen 1989; Grünwald 1998]:

Let

P (x|x̂) = 2
3
2−δ(x,x̂)

be a probability distribution for x̂ = 0 and x̂ = 1, defined by the Hamming distance.
Extend these by independence to sequences P (xt|x̂t). Then put

h′xt(α0) = min
x̂t∈Sm(iν/t)

{− logP (xt|x̂t) : n1(x
t)

t
∈ Biν ,t, L(x̂

t) ≤ tα0} (10.38)

= min
x̂t∈Sm(iν/t)

{
t∑

j=1

δ(xj , x̂j) + t log
3
2
:
n1(xt)
t

∈ Biν ,t, L(x̂
t) ≤ tα0}. (10.39)

Since Sm(iν/t) is not the optimal codebook of size m we use the notation h′xt(α)
for the resulting structure function; we also wrote α = tα0. In particular, if we wish
to model the data locally by a Bernoulli class, then L(x̂t) = logm + logNt. The
structure function for the entire sequence xn is given by

h′xn(α0) =
∑
t

min
x̂t∈Sm(iν/t)

{
t∑

j=1

δ(xj , x̂j) + t log
3
2
:
n1(xt)
t

∈ Biν ,t, L(x̂
n) ≤ nα0}.

(10.40)
Notice that this is a little different from the sum of the structure functions h′xt(α0)
of the segments xt, because L(x̂n) may be a bit shorter than the sum of the code
lengths for the segments.
We next describe the optimal codebook and the resulting rate distortion curve.

Consider the inverse image Xiν ,t = {zn : n1(zn)/t ∈ Biν ,t}, and its Voronoi
partition defined by the Hamming distance and a codebook Xm(iν , t) ⊂ Xiν ,t of
size m. Notice that the codebook now is not restricted to be a subset of S(iν/t).
That is, the equivalence classes are defined by

Diν ,t(x̂
t) = {zt : n1(z

t)
t

∈ Biν ,t, ẑ
t = x̂t, x̂t ∈ Xm(iν , t)}.

In words, Diν ,t(x̂t) is the set of all sequences zt which are closest to x̂t in the
codebook Xm(iν , t). Now introduce the following quantity:

hxt(α0, Xm(iν , t)) = min
x̂t∈Xm(iν ,t)

{log |Diν ,t(x̂
t)| : xt ∈ Diν ,t(x̂

t), logm+logNt ≤ tα0}

Notice that with this we measure the amount of distortion with the logarithm of
the size of the smallest set of the closest sequences to x̂t. In the extreme case where
the codebook includes all the sequences in Xiν ,t and x̂t = xt, the size of Diν ,t(x̂t)
is unity, and its logarithm is zero, as it should be. Similarly, if m = 1, both the
distortion and the size of Diν ,t(x̂t) are maximum. Define the optimal codebook
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X̂m(iν , t) as the solution of the minimax problem

min
Xm(iν ,t)

max
xt∈Xiν ,t

hxt(α0, Xm(iν , t)) =

min
Xm(iν ,t)

max
x̂t∈Xm(iν ,t)

{log |Diν ,t(x̂
t)| : logm+ logNt ≤ tα0}.

The structure function hxt(α0) is defined for the optimal codebook as
hxt(α0; X̂m(iν , t)), and it is seen to be the minimax value

hxt(α0) = min
Xm(iν ,t)

max
x̂t∈Xm(iν ,t)

{log |Diν ,t(x̂
t)| : logm+ logNt ≤ tα0}

≥ log
∑

i
t∈Biν ,t

(
t

i

)
− tα0 + logNt. (10.41)

We assumed here that L(x̂t) = logm+ logNt. The second inequality follows from
the fact that for all partitions into m blocks the maximum block size cannot be
smaller than the number of strings in Xiν ,t divided by m.

10.6 Experiments

We take for our experiments a DNA sequence, formed of four bases, A,C,G, and T,
which we represent as A = 00, T = 01, C = 10, G=11. For long DNA sequences,
C and G bases tend to have similar occurrence frequencies, and the same applies
to A and T. Hence the first bit in the basis representation discriminates between
the {A,T} and the {C,G} groups. The precise location of a 0 or 1 bit along the so
obtained binary string is not of interest as much as the local density of 0s and 1s as
well as the relative ratio of the densities of the two groups. Hence, this information
could well be obtained from a lossy compression of the sequence of 0s and 1s modeled
as a locally Bernoulli source. The DNA sequence, called HUMGHCSA, contains
66495 bases, and we construct a binary sequence of their first symbols giving a
binary sequence of the same length.
Since we do not have a priori knowledge about the precise value of the window

width, t, we experiment with three cases: t = 16, 32, and 64. With the partition
algorithm and the segment lengths given by (10.5.2) we obtain for t = 16 Nt = 5
classes, centered at iν ∈ {1, 4, 8, 12, 15}; Nt = 9 classes for t = 32, centered at
iν ∈ {1, 2, 6, 11, 16, 21, 26, 30, 31}; and Nt = 11 classes for t = 64, centered at
iν ∈ {2, 5, 10, 17, 24, 32, 40, 47, 54, 59, 62}.
In order to have similar values of α = log2m+ log2Nt, we select different values

for m = mt in the three cases of t, namely m4
16 ≈ m2

32 ≈ m64. This way, when
encoding a 64-bits-long string, we use log2m64 bits for the index in the codebook
Sm64 , and since we address four times the codebook Sm16 , each index having the
length log2m16 we need almost the same amount 4 log2m16 = log2m64 to encode
the same 64-bits-long string using windows of length 16. However, the values of α
will have to be adjusted for the three values of t, due to differences in Nt.
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The experiment was performed for six different values of mt such that we cover
the practical range of the α values, α/n between .13 and .31 (Figure 10.1). The
smallest nontrivial codebook was taken as m16 = 2, and the largest m64 = 1024.
We also consider an adaptive algorithm for choosing the best window width. The
extra cost in α will be log2 3 bits needed for the specification of the window width
t ∈ {16, 32, 64} that performed best (in distortion sense) over each segment of 64
symbols. Due to the extra cost no significant decrease in the distortion was obtained,
and the best window width was found to be t = 64, at all values of α.
To illustrate the visual similarity of the original and the lossy reconstructed

sequences, we display in Figure 10.2 a short subsequence from both. The symbol
1 is represented by a black line and 0 by a white line. It can be seen that the
local densities of the two symbol values are well preserved, which demonstrates the
validity of the very fast and simple distortion algorithm resulting from this method.
We find the structure function corresponding to the minmax solution hxn(α) for

the string xn by splitting it into subsequences xt, and we obtain the lower bound
curves represented in Figure 10.3 for t ∈ {16, 32, 64}.We observe that the curves are
parallel, and the higher the window width the closer the curves are to the sufficiency
line h(αNML) + αNML − α, which goes through the point (αNML, h(αNML). Here
αNML =

∑
t log2 Ct and h(αNML) =

∑
t−n1(xt) log2 n1(xt)− (t−n1(xt)) log2(t−

n1(xt)) for t = 64 correspond to the NML code.
For the small window width t = 16 it is also possible to count the cardinalities

of the Voronoi cells Diν ,t(x̂t) for the suboptimal, but practically implementable,
codebook Sm(iν/t), and we can evaluate hxt(α0;Sm(iν/t)). We show in Figure
10.4 the three curves, h′xt(α0), hxt(α0;Sm(iν/t)), and hxt(α0). The suboptimal
codebooks are seen to almost achieve the lower bound.
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Figure 10.1 The curve h′
xn(α) for a sequence x

n of n = 66495 bits, for different values
of the local window width t ∈ {16, 32, 64} or variable according to the least distortion.
Also shown is the line h(α) passing through the point (αNML, h(αNML)) marked by a
diamond, corresponding to the NML code for t = 64.
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Figure 10.2 The first 1000 samples of the original binary sequence (bottom) and the
lossy recovery of it (top) at a rate α/n = 0.21 bits per symbol.

Lossy

Original



10.6 Experiments 261

Figure 10.3 The lower bound hxn(α) for a sequence x
n of n = 66495 bits, for different

values of the local window width t ∈ {16, 32, 64}. Also shown is the line h(α) + α passing
through the point (αNML, h(αNML)) corresponding to the NML code for t = 64.
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Figure 10.4 The curves hxt(α0) (Plot 1), h
′
xt(α0) (Plot 2) and hxt(α0;Sm(iν/t)) (Plot

3) for a sequence xn of n = 66495 bits and t = 16. Also shown is the line h(α)+α passing
through the point (αNML, h(αNML)) marked by a diamond, corresponding to the NML
code for t = 64.
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This chapter describes the minimum message length (MML) principle, including
its relationship to the subsequent minimum description length (MDL) principle.
A brief discussion of the history and development of MML is given, including
‘strict MML’ (SMML) and some of its approximations. After addressing some
common misconceptions about MML, we present a novel application of MML
to the inference of generalized Bayesian networks, using decision trees to supply
conditional probability distributions. Unlike many Bayesian network applications,
the new generalized Bayesian networks presented in this chapter are capable of
modeling a combination of discrete and continuous attributes. This demonstrates
the power of information-theoretic approaches, such as MML, which are able to
function over both discrete probability distributions and continuous probability
densities. Furthermore, we give examples of asymmetric languages in which the
desired target attribute is best modeled implicitly rather than as an explicit output
attribute. Last, we provide some preliminary results and suggest several possible
directions for further research.
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11.1 Introduction

Minimum message length (MML) is an information-theoretic Bayesian principle of
inductive inference, machine learning, statistical inference, econometrics, and “data
mining” which was developed by Chris Wallace and David Boulton in a series of
six journal papers from 1968 to 1975, including several explicit articulations of the
MML principle (see, e.g., [Wallace and Boulton 1968, p. 185, sec. 2]; [Boulton and
Wallace 1970, p. 64, col. 1]; [Boulton and Wallace 1973, sec. 1, col. 1]; [Boulton and
Wallace 1975, sec. 1, col. 1]; [Wallace and Boulton 1975, sec. 3]). (David Boulton
then published his Ph.D. thesis [Boulton 1975] in this area.)
Given a data set, D, we wish to find the most probable hypothesis, H — that

is, that which maximizes P(H |D). By Bayes’ theorem, the posterior probability
of H is the product of the prior probability of H and the likelihood function of
D given H divided by the marginal probability of the observed data, D — that
is, P(H |D) = (1/P(D)) × P(H) × P(D|H), where the marginal probability P(D)
is given by P(D) =

∑
H P(H) · P(D|H) or P(D) =

∫
H
P(H) · P(D|H) dH . Recall

from elementary information theory that an event of probability pi can be optimally
encoded by a code word of length li = − log pi. Because P(D) is a function of D
independent of the hypothesis, H , maximising P(H |D) is equivalent to maximising
the product of the two probabilities P(H)×P(D|H), which is in turn equivalent to
minimising − log P(H)−logP(D|H), the length of a two-part message transmitting,
first, H and then D given H (see, e.g., [Wallace and Boulton 1968, p. 185, sec. 2];
[Boulton and Wallace 1970, p. 64, col. 1]; [Boulton and Wallace 1973, sec. 1, col.
1]; [Boulton and Wallace 1975, sec. 1, col. 1]; [Wallace and Boulton 1975, sec. 3]).
In the remainder of this chapter, we define strict MML (SMML) and then

deal with several issues pertaining to MML. These include dealing with some
common (unfortunate) misconceptions in the literature about MML, Kolmogorov
complexity, Bayesianism, statistical invariance, and statistical consistency. We also
present in Section 11.3.1 a conjecture [Dowe, Baxter, Oliver, and Wallace 1998, p.
93]; [Wallace and Dowe 1999a, p. 282]; [Wallace and Dowe 2000, p. 78] of David
Dowe’s relating some of these concepts. In Section 11.4, we mention the issue
of inference vs. prediction and the merits of logarithmic scoring in probabilistic
prediction. We tersely (due to space constraints) survey someMML literature, relate
it to our understanding of current minimum description length (MDL) writings and
raise the issue of MML as a universal principle of Bayesian inference. Given the
many (unfortunate) misconceptions some authors seem to have about the extensive
MML literature and its original concepts, and given the above-mentioned historical
precedence of MML over MDL, we have cited several instances where — at least
at the time of writing — MML is apparently state-of-the-art.
Subsequently and in Section 11.4.4, we then discuss comparatively new work

on the second author’s notion of inverse learning (or implicit learning) [Dowe
and Wallace 1998; Comley and Dowe 2003] and the first author’s refinements
thereof [Comley and Dowe 2003], including setting the asymmetric languages in
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a framework of generalized Bayesian networks and investigating search algorithms.
We believe that this is an advance of much substance and potential.

11.2 The Strict Minimum Message Length Principle

The strict minimum message length (strict MML, or SMML) principle was first
introduced in [Wallace and Boulton 1975], from which we largely borrow in this
section. The relationship of strict MML with algorithmic information theory is
given in [Wallace and Dowe 1999a], and various other descriptions and applications
of it are given in [Wallace and Freeman 1987; Wallace 1996; Wallace and Dowe
1999b; Farr and Wallace 2002; Fitzgibbon, Dowe, and Allison 2002a].
A point estimation problem is a quadruple {H,X, h, f} such that H is a param-

eter space (assumed to be endowed with a field of subsets), X is a set of possible
observations, and h is a given prior probability density function with respect to a
measure, dθ, on the parameter space H such that

∫
H h(θ) dθ = 1.

f is the known conditional probability function f : (X,H) → [0, 1] : f(x, θ) =
f(x|θ), where ∑i f(xi|θ) = 1 for all θ ∈ H .
A solution to a point estimation problem is a function m : X → H with

m(x) = θ. Recalling from Section 11.1, that r(x) =
∫
H
h(θ)f(x|θ) dθ is the

marginal probability of a datum, x, we note that
∑

x∈X r(x) = 1 and that the
posterior distribution, g(·|·), is given by g(θ|x) = h(θ) · f(x|θ)/∫

H
h(θ) · f(x|θ)dθ =

h(θ)f(x|θ)/r(x).
We assume that the set, X , of possible observations is countable. (We suspect the

even stronger result(s) that it is probably even recursively enumerable and perhaps
even recursive.) Given that X is countable, so, too, is H∗ = {m(x) : x ∈ X}, that
is, we can say H∗ = {θj : j ∈ N}. We can then define cj = {i : m(xi) = θj} for each
θj ∈ H∗, and C = {cj : θj ∈ H∗}. Given some fixed H∗ as just defined, we assign
finite prior probabilities qj =

∑
i∈cj

r(xi) =
∑

i:m(xi)=θj
r(xi) to the members θj of

H∗ and then, for each x ∈ X , we choose m(x) to be that θ ∈ H∗ which maximize
p(x|h) and in turn minimizes the expected length of the codebook (given this H∗).
This defines m∗ : x → H∗, which we can then take to be our solution to

{H,X, h, f}, provided that we have indeed selected the correct H∗.
For each cj we choose the point estimate θj to minimize −∑xi:i∈cj

r(xi) ·
log f(xi|θj). For each H∗ the average two-part message length is(

−
∑
j

(qj · log qj)
)
+
(
−
∑
j

∑
i∈cj

(
qj · r(xi)

qj
· log f(xi|θj)

))
.

In essence the larger the data groups the shorter the average length of the first part
of the message but the longer the average length of the second part. We choose the
cj to minimize the expected two-part message length of the codebook. Having thus
chosen the codebook given datum x, the SMML estimate is the θj representing the
code block including x.
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11.3 Invariance and Consistency of MML, and Some Common Misconceptions

11.3.1 Maximum a Posteriori (MAP) and MML

One common misconception among some authors is that the MML estimate is
supposedly the same as the posterior mode – or maximum a posteriori (MAP)
– estimate. To the contrary, when dealing with continuous distributions, MAP
maximizes the posterior density (not a probability) [Wallace and Boulton 1975,
p. 12]; [Wallace and Dowe 1999a, p. 279 sec. 6.1.1]; [Wallace and Dowe 1999c,
p. 346]; [Wallace and Dowe 2000, secs. 2 and 6.1] and is typically not invariant,
whereas MML maximizes the posterior probability and is invariant[Wallace and
Boulton 1975] [Wallace and Freeman 1987, p, 243]; [Wallace 1996, sec. 3.5 and
elsewhere]; [Dowe, Baxter, Oliver, and Wallace 1998, secs. 4.2 and 6]; [Wallace and
Dowe 1999a, secs. 6.1 and 9]; [Wallace and Dowe 1999c, secs. 1 and 2]; [Wallace and
Dowe 2000, p. 75, sec. 2 and p. 78–79]. A method of parameter estimation is said
to be (statistically) invariant if for all one-to-one transformations t, ˆt(θ) = t(θ̂),
that is, the point estimate in the transformed parameter space is equal to the
transformation of the original point estimate.
For further cases highlighting the difference between MML and MAP which

also show MML outperforming MAP, see, for example, [Dowe, Oliver, Baxter, and
Wallace 1995; Dowe, Oliver, and Wallace 1996], (for polar and cartesian coordinates
on the circle and sphere respectively), and [Wallace and Dowe 1999b, secs. 1.2 and
1.3].

MAP and MML when all attributes are discrete On some occasions, all
attributes are discrete – such as if we were interested only in the topology of a
decision tree and the attributes which were split on (and possibly also the most
likely class in each leaf [Quinlan and Rivest 1989]) without being interested in
the additional inference of the class probabilities [Wallace and Patrick 1993; Tan
and Dowe 2002; Comley and Dowe 2003; Tan and Dowe 2003] in each leaf. In
these cases, where all attributes are discrete, like MML, MAP will also maximize a
probability rather than merely a density. For many MML approximations, in these
cases, both MAP and MML will optimize the same objective function and obtain
the same answer. It is a subtle point, but even in these cases, MAP will generally be
different from the strict MML inference scheme [Wallace and Boulton 1975; Wallace
and Freeman 1987; Wallace and Dowe 1999a] of Sections 11.2 and 11.3.3 (which
partitions in data space) and to the ‘fairly strict MML’ scheme (which is similar to
strict MML but instead partitions in parameter space). The subtle point centers on
the fact that the construction of the strict (or fairly strict) codebook is done in such
a way as to minimize the expected message length [Wallace and Dowe 1999a, sec.
6.1]. Consider two distinct hypotheses available as MAP inferences which happen
to be very similar (e.g., in terms of Kullback-Leibler distance) and suppose – for the
sake of argument – that they have almost identical prior probability. If these are
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merged into one, the prior probability of the resultant hypothesis will have about
twice the prior probability – resulting in its being about 1 bit cheaper in the first
part of the message – than either of the unmerged alternatives. If the expected
additional cost to the second part of the message from the merging is more than
compensated for by the expected saving from the first part, then such a merging
would take place in the construction of the MML codebook. So, we recall from
Section 11.3.1 that MAP is different from MML when continuous-valued attributes
and probability densities are involved. But – as we have just explained – even in the
rare case when all attributes are discrete and only probabilities (and no densities)
are involved, then – although some approximations to MML would yield MAP – we
still find that MML is generally different from MAP. Whereas the MAP, maximum
likelihood (ML), and Akaike’s information criterion (AIC) estimates are statistically
inconsistent for a variety of parameter estimation problems (e.g., Neyman-Scott
[Dowe and Wallace 1997] and linear factor analysis [Wallace 1995; Wallace and
Freeman 1992]), the two-part structure of MML messages leads to MML’s general
statistical consistency results [Barron and Cover 1991; Wallace 1996]; [Wallace
and Freeman 1987, Sec. 2, p 241]. We note in passing Dowe’s related question
[Dowe, Baxter, Oliver, and Wallace 1998, p. 93]; [Wallace and Dowe 1999a, p. 282];
[Wallace and Dowe 2000, p. 78] as to whether only (strict) MML and possibly also
closely related Bayesian techniques (such as minimising the expected Kullback-
Leibler distance [Dowe, Baxter, Oliver, and Wallace 1998]) can generally be both
statistically invariant and statistically consistent.

11.3.2 “The” Universal Distribution and Terms “of Order One”

In its most general sense (of being akin to Kolmogorov complexity or algorithmic
information-theoretic complexity), MML uses the priors implicit in the particular
choice of universal Turing machine [Wallace and Dowe 1999a, sec. 7 and elsewhere].
We agree with other authors [Rissanen 1978, p. 465]; [Barron and Cover 1991,
sec. IV, pp. 1038–1039]; [Vitanyi and Li 1996][Li and Vitanyi 1997, secs 5.5 and
5.2]; [Vitanyi and Li 2000] about the relevance of algorithmic information theory
(or Kolmogorov complexity) to MDL and MML. However, a second common
misconception is either an implicit assumption that there is one unique universal
distribution, or at least something of a cavalier disregard for quantifying the
(translation) terms “of order one” and their relevance to inference and prediction.
We note that there are countably infinitely many distinct universal Turing machines
and corresponding universal (prior) distributions. As such, the relevance of the
Bayesian choice of prior or Turing machine or both should be properly understood
[Wallace and Dowe 1999a, secs. 2.4 and 7].

11.3.3 Strict MML Codebook, Expected Length and Actual Lengths

A third, related, common misconception concerns the construction of the MML
codebook in SMML. Given the likelihood function(s) and the Bayesian prior(s),
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without having seen any data, we construct the MML codebook as in Section
11.2 so as to minimize the expected length of the two-part message [Wallace and
Boulton 1975, secs. 3.1 - 3.3]; [Wallace and Freeman 1987, sec. 3]; [Wallace 1996];
[Wallace and Dowe 1999a, secs. 5 and 6.1]; [Wallace and Dowe 1999b, secs. 1.2
and 1.3]. This typically results in coding blocks which are partitions of the data
space. (One can only record countably different measurement values, and it is
reasonable to assume that any continuous-valued measurement is made to some
accuracy, ε. As such, its value can be encoded with a finite code length.) With the
MML codebook now thus chosen, given data D, we choose hypothesis, H , so as
to minimize the length of the two-part message. This should clarify that common
misconception about SMML and the MML codebook. The strict MML principle
has been applied to problems of binomial distributions [Wallace and Boulton 1975,
sec. 5]; [Wallace and Freeman 1987, sec. 3]; [Farr and Wallace 2002] and a restricted
cut-point segmentation problem [Fitzgibbon et al. 2002a] (which, like the Student
T distribution, would appear to have no sufficient statistics other than the data
themselves), but is generally computationally intractable. In practice, we consider
approximations to a partitioning of the parameter space, such as the invariant point
estimator of [Wallace and Freeman 1987, sec. 5, a usable estimator]; [Wallace and
Dowe 1999a, sec. 6.1.2, practical MML]; [Wallace and Dowe 1999c, p. 346, col. 2] –
and sometimes others, as discussed below.

Tractable Approximations to Strict MML The invariant point estimator of
[Wallace and Freeman 1987, sec. 5, a usable estimator]; [Wallace and Dowe 1999a,
sec. 6.1.2, practical MML]; [Wallace and Dowe 1999c, p. 346, col. 2] is based on
a quadratic approximation to the Taylor expansion of the log-likelihood function
and the assumption of the prior being approximately locally uniform. Despite the
many and vast successes (e.g. [Wallace and Dowe 1993; Dowe, Oliver, and Wallace
1996; Dowe and Wallace 1997; Oliver and Wallace 1991; Oliver 1993; Tan and
Dowe 2002; Tan and Dowe 2003; Wallace and Dowe 2000; Edgoose and Allison
1999; Wallace and Korb 1999; Baxter and Dowe 1996; Wallace 1997; Vahid 1999;
Viswanathan and Wallace 1999; Fitzgibbon, Dowe, and Allison 2002b; Comley
and Dowe 2003]) of the Wallace and Freeman [1987] approximation [Wallace and
Freeman 1987, sec. 5]; [Wallace and Dowe 1999a, sec. 6.1.2], it is an approximation,
and its underlying assumptions are sometimes strained [Wallace and Dowe 1999c,
p. 346, col. 2] (or at least appear to be [Grünwald, Kontkanen, Myllymaki, Silander,
and Tirri 1998]) – leading us to new approximations. These include Dowe’s invariant
MMLD approximation and Fitzgibbon’s modification(s) [Fitzgibbon et al. 2000a,b],
Wallace’s numerical thermodynamic entropy approximation [Wallace 1998], and
others (e.g., [Wallace and Freeman 1992; Wallace 1995]).
We note that the standard deviation σ of measurements of accuracy ε (as in

Section 11.2 and 11.3.3) is generally assumed ([Wallace and Dowe 1994, sec. 2.1];
[Comley and Dowe 2003, sec. 9]) to be bounded below by 0.3ε or ε/

√
12.



11.4 MML as a Universal Principle, Prediction and MDL 271

11.4 MML as a Universal Principle, Prediction and MDL

11.4.1 Brief History of Early MML Papers, 1968–1975

These first six MML papers [Wallace and Boulton 1968; Boulton and Wallace
1969, 1970, 1973, 1975; Wallace and Boulton 1975] from Section 11.1 and David
Boulton’s 1975 Ph.D. thesis [Boulton 1975] were variously concerned with univariate
or multivariate multinomial distributions [Boulton and Wallace 1969; Wallace and
Boulton 1975], multivariate Gaussian distributions, mixture modeling (or clustering
or cluster analysis or intrinsic classification or unsupervised learning) of such
distributions [Wallace and Boulton 1968; Boulton and Wallace 1970; Boulton
and Wallace 1975; Boulton 1975] and even hierarchical mixture modeling of such
distributions [Boulton and Wallace 1973]. We also see the introduction [Boulton
and Wallace 1970, p. 63] of the (term) nit, where 1 nit = log2 e bits. The nit has
also been referred to as a nat in subsequent MDL literature, and was known to Alan
M. Turing as a natural ban (see, e.g., [Hodges 1983, pp. 196–197] for ban, deciban,
and natural ban). These units can be used not only to measure message length and
description length but also to score probabilistic predictions.

11.4.2 Inference, Prediction, Probabilistic Prediction and Logarithmic
Scoring

Two equivalent motivations of MML are, as given in Section 11.1, (1) to maximize
the posterior probability (not a density – see Section 11.3.1) and, equivalently, (2)
to minimize the length of a two-part message.
The second interpretation (or motivation) of MML can also be thought of in

terms of Occam’s razor [Needham and Dowe 2001]. Both these interpretations can
be thought of as inference to the best (single) explanation. Prediction [Solomonoff
1964, 1996, 1999] is different from inductive inference (to the best explanation) in
that prediction entails a weighted Bayesian averaging of all theories, not just the
best theory [Solomonoff 1996; Dowe, Baxter, Oliver, and Wallace 1998]; [Wallace
and Dowe 1999a, sec. 8]; [Wallace and Dowe 1999c, sec. 4]. Thus, despite the many
successes described in this chapter, MML is not directly concerned with prediction.

Probabilistic Prediction and Logarithmic Scoring A prediction which gives
only a predicted class (e.g., class 2 is more probable than class 1) or mean (e.g.,
µ̂ = 5.2) conveys less information than one giving a probability distribution —
such as (p̂1 = 0.3, p̂2 = 0.7) or N(µ̂ = 5.2, σ̂2 = 2.12) — whereas a probabilistic
prediction, such as (0.3, 0.7), also gives us the predictively preferred class (class
2) as a byproduct. To paraphrase it more bluntly, the current literature could be
said to contain all too many methods endeavoring to tune their “right”/“wrong”
predictive accuracy with scant regard to any probabilistic predictions. A first
obvious shortcoming of such an approach will be its willingness to “find” (or “mine”)
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spurious patterns in data which is nothing more than 50% : 50% random noise.
One criterion of scoring functions for probabilistic predictions is that the optimal

expected long-term return should be gained by using the true probabilities, if
known. The logarithmic scoring function achieves this, and has been advocated
and used for binomial [Good 1952; Good 1968; Dowe, Farr, Hurst, and Lentin
1996]; [Vovk and Gammerman 1999, sec. 3], multinomial [Dowe and Krusel 1993];
[Tan and Dowe 2002, sec. 4]; [Tan and Dowe 2003, sec. 5.1], and other distributions
(e.g., Gaussian [Dowe et al. 1996]). Interestingly, Deakin has noted several cases
of scoring functions other than logarithmic achieving this criterion for multinomial
distributions [Deakin 2001]. Nonetheless, we prefer the logarithmic scoring function
for the added reason of its relation to log-likelihood, the sum of the logarithms of
the probabilities being the logarithm of the product of the probabilities, in turn
being the logarithm of the joint probability.
The predictive estimator which minimizes the expected (negative) log-likelihood

function is known as the minimum expected Kullback-Leibler distance (MEKLD)
estimator [Dowe et al. 1998]. Theoretical arguments [Solomonoff 1964; Dowe et al.
1998] and intuition suggest that the SMML estimator (recall Sections 11.2 and
11.3.3) will come very close to minimising the expected Kullback-Leibler distance.

11.4.3 MML, MDL, and Algorithmic Information Theory

The relation between MML [Wallace and Boulton 1968; Wallace and Freeman
1987; Wallace and Dowe 1999a] and MDL [Rissanen 1978, 1987, 1999b] has been
discussed in [Wallace and Freeman 1987; Rissanen 1987] and related articles in a
1987 special issue of the Journal of the Royal Statistical Society, in [Wallace and
Dowe 1999a,b,c; Rissanen 1999a,b,c] and other articles [Dawid 1999; Clarke 1999;
Shen 1999; Vovk and Gammerman 1999; Solomonoff 1999], in a 1999 special issue of
the Computer Journal, and elsewhere. For a discussion of the relationship between
strict MML (SMML) (see Sections 11.2 and 11.3.3) and the work of Solomonoff
[1964], Kolmogorov [1965], and Chaitin [1966], see [Wallace and Dowe 1999a].
We reiterate the sentiment [Wallace and Dowe 1999c] that, in our opinion,

MDL and MML agree on many, many points. We also acknowledge that from
the perspective of someone who knew relatively little about MDL and MML, the
disagreements between MDL and MML would appear to be both infrequent and
minor [Wallace and Dowe 1999c]. Having said that, we now venture to put forward
some concerns about some MDL coding schemes.

Efficiency and Reliability of Coding Schemes and of Results Recalling
Section 11.4.2, the predictive reliability of MDL and MML will depend very much
upon the coding schemes used. In [Quinlan and Rivest 1989; Wallace and Patrick
1993] and [Kearns, Mansour, Ng, and Ron 1997; Viswanathan, Wallace, Dowe, and
Korb 1999], we respectively see a decision tree inference problem and a problem
of segmenting a binary process in which the original coding schemes [Kearns et al.
1997; Quinlan and Rivest 1989] had their results improved upon by corresponding
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improvements in the relevant coding schemes [Viswanathan et al. 1999; Wallace and
Patrick 1993]. Reinterpreting the Occam’s razor measure of decision tree simplicity
from the node count in [Murphy and Pazzani 1994] to a message length measure in
[Needham and Dowe 2001] likewise gives improved results.
While the principle and spirit of the 1978 MDL coding scheme [Rissanen 1978]

live on, it is generally acknowledged in more recent MDL writings and elsewhere
(see, e.g., [Wallace and Dowe 1999a, p. 280, col. 2]) to have been substantially
improved upon.
In conclusion, we ask the reader wishing to use an MDL or MML coding scheme to

note that the reliability of the results will be highly dependent upon the reliability
of the coding scheme.

Further Comments on Some Other MDL Coding Schemes While MML
is openly and subjectively Bayesian and known to be so, many often either assert
that MDL is Bayesian or ask whether or not it is (see, e.g., [Vitanyi and Li 1996];
[Dawid 1999, p. 323, col. 2, sec. 4, sec. 5]; [Clarke 1999, sec. 2]; [Vitanyi and Li
2000]). Some would contend that a parameter space restriction [Rissanen 1999b, p.
262, col. 2] was also invoking a prior — namely, that the values of the parameters
cannot lie in the prohibited area (cf. [Dawid 1999, p. 325, col. 2]).
The Jeffreys ‘prior’ [Jeffreys 1946] uses the Fisher information as though it were

a Bayesian prior, thus depending upon the sensitivity of the measuring instruments
and observational protocol used to obtain the data [Lindley 1972; Bernardo and
Smith 1994]; [Dowe, Oliver, and Wallace 1996, p. 217]. This would appear to be
able to lead to situations where the prior beliefs one uses in modeling the data
depend upon the strength or location of the measuring instrument [Dowe, Oliver,
and Wallace 1996, p. 217]; [Wallace and Dowe 1999a, sec. 2.3.1] (see also [Wallace
and Freeman 1987, Sec. 1, p241]; [Wallace and Dowe 1999a, sec. 5, p. 277, col. 2] for
other concerns). The Jeffreys ‘prior’ has been used in comparatively recent MDL
work [Rissanen 1996a,b], raising some of the above concerns. The Jeffreys ‘prior’ also
does not always normalise (e.g., [Wallace and Dowe 1999b, secs. 2.3.2 – 2.3.4]). We
understand that Liang and Barron [2005] and Lanterman [2005] partially address
this problem. The notion of complete coding in MDL [Rissanen 1996a; Dom 1996];
[Grünwald, Kontkanen, Myllymaki, Silander, and Tirri 1998, sec. 4] would appear
to be in danger of contravening the convergence conditions of the two-part message
form from [Barron and Cover 1991].
Some other comments on some MDL coding schemes and suggested possible

remedies for some of the above concerns are given in [Wallace and Dowe 1999c, sec.
2] and [Wallace and Dowe 1999b, sec. 3].

11.4.4 MML as a Universal Principle

The second author founded and (in 1996) chaired the Information, Statistics and
Induction in Science (ISIS) conference (see, e.g., [Rissanen 1996b; Solomonoff 1996;
Wallace 1996; Vitanyi and Li 1996; Dowe and Korb 1996]) because of a belief in the
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universal relevance of MML to problems in induction and the philosophy of science.
Recalling Section 11.4.3, we suspect that the editors and perhaps also many of the
other authors in this book might well have similar beliefs.
The relevance of MML to inductive inference is clear, but let us summarize. MML

has been used for parameter estimation for a variety of distributions [Wallace and
Boulton 1968; Boulton and Wallace 1969; Wallace and Dowe 1993; Dowe, Oliver,
and Wallace 1996; Dowe and Wallace 1997; Wallace and Dowe 2000], and for
supervised learning [Wallace and Patrick 1993; Oliver and Wallace 1991; Oliver
1993; Vahid 1999; Tan and Dowe 2002; Tan and Dowe 2003] and unsupervised
learning (clustering or mixture modeling) [Wallace and Boulton 1968; Wallace
1986; Wallace and Dowe 1994; Wallace and Dowe 2000; Edgoose and Allison
1999], hierarchical clustering [Boulton and Wallace 1973], inference of probabilistic
finite state automata (PFSAs) or hidden Markov models (HMMs) [Wallace and
Georgeff 1983], Markov models of clustering [Edgoose and Allison 1999], linear
and polynomial regression [Baxter and Dowe 1996; Wallace 1997; Viswanathan
and Wallace 1999; Vahid 1999; Fitzgibbon et al. 2002b], segmentation problems
[Viswanathan et al. 1999; Fitzgibbon et al. 2002a], factor analysis [Wallace and
Freeman 1992; Wallace 1995], clustering with factor analysis [Edwards and Dowe
1998], and so on. It should be added that the success of MML in some of the
above problems is emphatic. We also recall the statistical invariance and statistical
consistency of MML from Section 11.3.
MML or closely related work has also been applied to genome analysis [Allison,

Wallace, and Yee 1990; Dowe, Oliver, Dix, Allison, and Wallace 1993; Dowe,
Allison, Dix, Hunter, Wallace, and Edgoose 1996; Edgoose, Allison, and Dowe
1996], psychology [Kissane, Bloch, Dowe, R.D. Snyder andP. Onghena, and Wallace
1996], causal networks [Wallace and Korb 1999], Bayesian networks (sec. 11.4.4 in
this book and [Comley and Dowe 2003]), Goodman’s “Grue” paradox [Solomonoff
1996], financial market (in)efficiency [Dowe and Korb 1996], and cognitive science
and IQ tests [Dowe and Hajek 1998; Hernandez-Orallo and Minaya-Collado 1998;
Dowe and Oppy 2001]; [Sanghi and Dowe 2003, sec. 5.2].
We now proceed throughout the remainder of this chapter to discuss compar-

atively new work on the second author’s notion of inverse learning (or implicit
learning) [Dowe and Wallace 1998; Comley and Dowe 2003] and the first author’s
refinements thereof [Comley and Dowe 2003], including setting the asymmetric lan-
guages in a framework of generalized Bayesian networks and investigating search
algorithms. sectionMML, Generalized Joint Distributions, and Implicit Learning

11.4.5 Generalized Bayesian Networks

We now describe an application of MML to the inference of generalized Bayesian
networks. This is an extension of the idea of ‘inverse learning’ or ‘implicit learning’
proposed by Dowe in [Dowe and Wallace 1998], and further developed by Comley in
[Comley and Dowe 2003]. In this domain we deal with multivariate data, where each
item X (also known as a thing, case, or record) has k attributes (also referred to as
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pr (X3 | X1, X2, X4)

pr (X2 | X1, X4)

pr (X4 | X1) pr (X4 | X1)

pr (X1)pr (X1)

pr (X2 | X1, X4)

pr (X3 | X2)

X1 X1

X2 X2

X4 X4

X3 X3

Figure 11.1 Examples of Bayesian network structures, illustrating the probability
distributions supplied in each node. On the left is a fully connected network, while
the network on the right is partially connected. Notice here that X3 is conditionally
independent of X1 and X4 given X2.

variables or fields), denoted here as X1, . . . , Xk. We wish to model the statistical
relationships between attributes when presented with a set of n such data. We may
want to do this to be able to predict one of the attributes when given values for
the others, or simply because we are interested in the interattribute correlations.
The graphical structure of Bayesian networks makes them an intuitive and

easily interpreted representation of the relationships between attributes. A Bayesian
network is a directed acyclic graph (DAG) with one node corresponding to each
attribute. Each node provides a conditional probability distribution of its associated
attribute given the attributes associated with its parent nodes. Figure 11.1 shows
example network structures for X = {X1, X2, X3, X4}. For a general introduction
to Bayesian network theory, see [Russell and Norvig 1995, chap. 15, sec. 5].
Bayesian networks model the joint distribution over all attributes, and ex-

press this as a product of the conditional distributions in each node. In the case
of a fully connected Bayesian network (see Figure 11.1), the joint distribution
P(X1&X2& . . .&Xk) is modeled as P(X1) · P(X2|X1) . . .P(Xk|X1, . . . , Xk−1). In
practice, however, Bayesian networks are rarely fully connected, and make use of
conditional independencies to simplify the representation of the joint distribution
(see Figure 11.1).
Although — in the abstract sense — the conditional probability distribution

of a node can take any form at all, many Bayesian network methods simply use
conditional probability tables, and are limited by the restriction that all attributes
must be discrete. Others [Scheines, Spirtes, Glymour, and Meek 1994; Wallace
and Korb 1999] model only continuous attributes, describing an attribute as a
linear combination of its parent attributes. Here we show how information-theoretic
approaches like MML can be used, together with decision tree models, to build a
general class of networks able to handle many kinds of attributes. We use decision
trees to model the attribute in each node, as they tend to be a compact and
powerful representation of conditional distributions, and are able to efficiently
express context-specific independence [Boutilier, Friedman, Goldszmidt, and Koller
1996]. It should be noted that any conditional model class could be used, so long
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as MML message lengths can be formulated for it. An MML coding scheme for
basic decision trees is given in [Wallace and Patrick 1993], which refines an earlier
coding scheme suggested in [Quinlan and Rivest 1989]. A variant of this scheme is
summarized in Section 11.4.7.

11.4.6 Development and Motivation of Implicit Learning

The idea of implicit learning (or inverse learning) by MML presented here builds
on material originally proposed by Dowe in [Dowe and Wallace 1998]. That work
involved only two attributes, or at most two groups of attributes. Comley [Comley
and Dowe 2003] later refined the implicit learning MML coding scheme (given in
Section 11.4.7) and generalized the idea to handle more than two attribute groups,
relating it to Bayesian networks.
Although the two-attribute case is a simple one, it provides informative examples

of the benefits of implicit learning. The idea is that we have a class of conditional
models that we are comfortable with and know how to use. We can use this to
accurately model one attribute X1 as a probabilistic function of the other attribute,
X2. But imagine it is actually X2 that we wish to predict, given X1. Using Bayes’
rule, and coupling our model of P(X1|X2) with a ‘prior’ model of P(X2), we can
form a model of the joint distribution P(X1&X2) = P(X2) · P(X1|X2). By taking
a cross-sectional ‘slice’ from this composite joint model, we can then extract the
conditional probability P(X2|X1).
For example, take the case where X1 and X2 are both continuous variables,

where X2 is generated from the Gaussian distribution N(10, 1) and X1 is in turn
generated from (X2)3 + N(0, 1). Suppose our model language is the class of uni-
variate polynomials of the form

X2 = a0 + a1X1 + a2(X1)2 + a3(X1)3 + · · · + ad(X1)d + N(0, σ2) for some de-
gree d

and we wish to predict X2 given X1. If such a technique were to model X2 as
an explicit probabilistic function of X1, it could not express — let alone discover
— the true conditional relationship X2 =

(
X1 + N(0, 1)

) 1
3 , as this is outside its

model language. However we can use the same model language to implicitly state
X2’s dependence on X1 using the joint distribution and Bayes’ rule as follows:

P(X2|X1) =
P(X1&X2)
P(X1)

(11.1)

=

(
P(X2) · P(X1|X2)

)∫
z∈X∗

2
P(z) · P(X1|z) , (11.2)

where P(X2) is given by X2 = 10 + N(0, 1), and P(X1|X2) is given by X1 =
(X2)3 +N(0, 1). The point here is that the given model language cannot explicitly
express P(X2|X1). It can, however, express both P(X2) and P(X1|X2), which can
be used together to define P(X2|X1) implicitly.
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Many other circumstances exist where our target attribute is not necessarily best
modeled as an explicit probabilistic function of the remaining attributes. Consider
two continuous attributes, X1 and X2, which come from a two-dimensional mixture
model [Wallace and Dowe 2000; McLachlan and Peel 2000].While one could attempt
to do a linear or polynomial regression of the target attribute, X1, as a function
of X2, one would do best to acknowledge the mixture model and then model X1

as a cross section (given X2) of the mixture distribution. (Indeed, in this example
X1 and X2 could equally well be groups of attributes [Dowe and Wallace 1998]).
The point is that with a restricted model language one cannot always accurately
estimate the desired conditional probability distribution, and it may be beneficial
to implicitly model the target attribute by estimating the joint distribution. The
generality of MML makes it an ideal tool for doing this. The consistency results
of MML [Barron and Cover 1991; Wallace 1996; Wallace and Dowe 1999a; Wallace
and Dowe 1999c], [Wallace and Freeman 1987, sec. 2, p. 241] suggest strongly that
— quite crucially — it will converge to the best possible representation of the joint
distribution.
The idea of implicit modeling was in fact first inspired by the problem of protein

secondary structure prediction based on a known amino acid sequence. Learning
a conditional model of the secondary structure sequence given the amino acid
sequence is difficult, but the secondary structure sequence is far from random and
can be easily modeled by itself. This model can be paired with a conditional model
of the amino acids given the secondary structures, forming a joint distribution from
which secondary structure can be predicted.

11.4.7 MML Coding of a General Bayesian Network

Recall from Section 11.1 the two-part format of the MML message - first stating
the hypothesis H , then data D in light of this hypothesis. These two parts reflect
a Bayesian approach where the cost of stating H is − log

(
P(H)

)
, P(H) being our

prior belief that H is the true hypothesis, and D is transmitted using some optimal
code based on the probabilities supplied by H . The H corresponding to the shortest
overall message is chosen, as it maximizes the joint probability P(H&D). Since D
is held constant and we are only choosing from competing Hs this also corresponds
to choosing the H with the highest posterior probability P(H |D). This subsection
details how one might construct such a message for the general Bayesian networks
proposed here.
The first part of the message, our hypothesis, must include the structure of

the network — that is, the (partial) node ordering and connectivity — and the
parameters required for the conditional probability distribution in each node. There
are many possible ways in which one could do this; we describe one below.
We start by asking how many possible network structures there are. For k

attributes there are k! different fully connected structures (or total node orderings).
But this does not take into account the number of partially connected networks.
A total ordering has

(
k
2

)
= (k2 − k)/2 directed arcs (each of which may or may
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not be present in a partially connected network). So there are 2(k
2−k)/2 possible

arc configurations for each of the k! total orderings, leaving us with k! 2(k
2−k)/2

possible network structures. We can assign each of these an equal prior probability
of
(
k! 2(k

2−k)/2
)−1.

Note now, though, that many of the partially connected structures will actu-
ally correspond to the same network (Figure 11.2). As we wish to choose between
distinct networks it is important to treat these equivalent network representations
as a single hypothesis. If we were to ignore this, the hypothesis’ prior probability
will be split among its equivalent representations, each of which would be inappro-
priately expensive. So from each group G of equivalent structures we choose one
representative and assign it the prior probability of cG

(
k! 2(k

2−k)/2
)−1 where cG is

the cardinality of group G. This means that network structures with many equiv-
alent representations are assigned a higher prior probability. Note that the coding
scheme was chosen primarily for its simplicity, rather than being motivated by any
belief that these structures are really more likely. For some applications it may be
worth using a less ‘biased’ scheme, even if this is computationally more difficult.
Let us now calculate len(S), the number of bits required to encode a network

structure S (remembering that we are yet to transmit the conditional probability
distribution parameters for each node).

len(S) = − log2
(
P(S)

)
(11.3)

= − log2

(
cG

k!2
k2−k

2

)
(11.4)

= log2(k!) + log2
(
2
k2−k

2

)
− log2(cG) (11.5)

= log2(k!) +
k2 − k

2
− log2(cG) (11.6)

Now that we have stated the node ordering and connectivity, we can transmit the
parameters for the conditional distribution in each node. Nodes can express their
conditional probability distributions using any of a wide variety of model classes —
for example, conditional probability tables, polynomial regressions, and so on; here
we use a rather general class of decision tree, described below.
The leaves of the tree may model either continuous-valued attributes using Gaus-

sian density functions, or discrete-valued attributes using multistate distributions.
Branch (test) nodes are capable of performing a binary split on a continuous-valued
attribute (using a cut point) or a multiway split on a discrete-valued attribute (one
subtree per possible value). Once a discrete-valued attribute has been tested in a
branch, no sub-tree may test this attribute again (as the outcome of such a test is
already known). However, a continuous attribute may still be tested by a branch
even if a parent branch has already tested it, as a different cut point can be used
to further partition the data. The coding scheme used for these trees is similar to
that presented in [Wallace and Patrick 1993].
We transmit the topology in a depth-first fashion as a string of code words —



11.4 MML as a Universal Principle, Prediction and MDL 279

Order: X1, X2, X3, X4

Order: X1, X3, X2, X4

X2

X2

X1

X1

X3 X3

X4

X4

Figure 11.2 Two equivalent partially connected networks with different total node
orderings.

each either ‘branch’ or ‘leaf’. The probability of the root node being a branch is
nA/(nA+1) where nA is the number of input attributes for the tree. The probability
of any other node being a branch is taken to be 1/a where a is the ‘arity’ of the
node’s parent. The probability of a leaf is obviously one minus the probability of
a branch. For a tree where all tests have a binary outcome, stating ‘branch’ or
‘leaf’ each cost one bit.1 After each ‘branch’ code word, we state which of the input
attributes is tested there. This costs log2(n′A) bits where n

′
A is the number of input

attributes that could be tested at that node. n′A is equal to nA at the root of the
tree, but decreases by one in any path when a discrete attribute is tested (as further
testing of the same discrete attribute is prohibited). If it is a continuous attribute
we are testing, we also need to encode the associated cutpoint c. For this we use
a scheme outlined in [Comley and Dowe 2003, sec. 3.1], and used prior to that in
the software associated with [Wallace and Patrick 1993] and [Kornienko, Dowe, and
Albrecht 2002, sec. 4.1].
Each ‘leaf’ code word is followed by the parameters for the model in that leaf —

either µ and σ for a Gaussian distribution, or P(v1), . . . ,P(vm−1) for an m-state
distribution (where the target attribute can take the values v1, . . . , vm). Wallace
and Boulton [1968] and Boulton and Wallace [1969] give well-behaved priors and
coding schemes for both of the Gaussian and multistate models respectively.
This completes the transmission ofH . We now transmit the data,D, one attribute

at a time according to the node ordering of the network specified in H . For

1. Except at the root of the tree where P(branch) = nA/(nA + 1)
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each attribute Xi, we can build an optimal code book based on the conditional
probability distribution in the relevant node. We use this code book in conjunction
with the attributes already sent to encode Xi. We thus achieve our two-part MML
message.
If our H is a complicated network with high connectivity and large decision trees

it will be expensive to transmit, but can achieve high compression of the training
data, allowing us to state D very efficiently. At the other extreme oversimplified
networks can be encoded cheaply, but may not fully exploit the correlations that
exist in the data, making the transmission of D expensive. Minimising our two-
part MML message corresponds to our intuitive wish to find a tradeoff between
unjustifiably complicated models that overfit the data, and overly simplistic models
that fail to recognize important patterns. The level of complexity we can accept in
our models increases with the size of our (training) data.

11.4.8 Symmetric (Invertible) Languages

It is interesting to note that some families of conditional distribution are symmetric
with respect to node ordering — that is, any probabilistic relationship P(Xi) =
f(Xj, Xk) can also be expressed as P(Xj) = g(Xi, Xk), or P(Xk) = h(Xi, Xj),
where f , g, and h are all in the family of conditional distributions. Put another
way, the inverse of any model in the language is also in the language.
For Bayesian networks using such distributions, the node ordering has no effect on

the family of joint distributions able to be expressed, provided that the connectivity
of the network remains the same. In other words, reversing the direction of one
or more arcs in a network will have no impact on the distributions it is able to
represent. The choice of node ordering for such a network is somewhat arbitrary
in the sense that it should not alter the joint distribution inferred.2 This is in
fact the case for the typical Bayesian network where all attributes are discrete and
modeled by conditional probability tables. Another example of a model language
able to be inverted without altering the joint distribution is that where all attributes
are continuous and modeled as a linear combination of their parents, plus some
Gaussian noise term. This is shown below:

Xi = a1P1 + a2P2 + · · ·+ apPp +N(µ, σ2),

where P1, . . . Pp are the p parent attributes of Xi.
Although one can still do implicit learning with such languages, if the aim is sim-

ply to extract the conditional distribution, say P(Xi|X \ {Xi}), from the inferred
network, then one will do just as well to simply learn this conditional distribu-
tion outright rather than go to the trouble of inferring an entire Bayesian network.
This idea is investigated by Ng and Jordan in [Ng and Jordan 2002], which is con-

2. In the case of causal networks the node ordering is often dictated by the user’s notion
of causality, or extra temporal information.
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cerned with generative-discriminative model pairs. That work concerns two equiva-
lent representations of a conditional probability distribution: one modeled explicitly
(discriminative), and the other modeled implicitly via a joint distribution (genera-
tive). Ng and Jordan compare the performance of the generative and discriminative
models, focusing on the efficiency of each and the asymptotic error rates. In this
chapter we are interested in asymmetric languages — that is, situations where we
are unable to express (or work with) the discriminative equivalent of a generative
model. Thus the discriminative and generative models compared here do not really
qualify as ‘pairs’ — the generative model is a more general case that can describe
distributions unavailable to the discriminative model.

11.4.9 Inferring the Node Order

As mentioned in Section 11.4.8, some networks use conditional distribution lan-
guages that are symmetric with regard to node order. Altering the node order of
such a network will not change the family of joint distributions able to be expressed.
If, however, we use asymmetric conditional models — for example, the class of

decision trees described in Section 11.4.7 — then the order of the nodes can have
a significant impact on the nature of the joint distribution.
Consider the simple case where we have only two attributes — a binary-valued

attributeXb and a continuous-valued attribute Xc. Using the decision tree language
just mentioned, there are two ways to build a joint distribution over (Xb&Xc) —
one using the ordering Xb, Xc and the other using the ordering Xc, Xb. These are
illustrated in Figure 11.3. When we construct our MML message (using the coding
scheme in Section 11.4.7), one of these networks will be cheaper than the other.
So, in the case of such an asymmetric model language, MML provides us with a
natural way of inferring node ordering. The node ordering in this example is not
to be interpreted causally. We are simply choosing the ordering which provides us
with the best family of joint distributions. For research pertaining to MML and
causal networks, see, for example, [Wallace and Korb 1999].

11.4.10 An Efficient Search for Network Structure

Section 11.4.9 explained that, when using asymmetric conditional models, node
ordering and connectivity can have a significant impact on the nature of the joint
distribution. We show here how we can use this to our advantage when searching
for the best network structure.
We begin by searching over the space of total node orderings. As mentioned

in Section 11.4.7, there are k! possible total orderings, where k is the number of
attributes. Clearly we would like to avoid learning all the corresponding networks.
First, we use the MML decision tree scheme discussed in Section 11.4.7 to build
k decision tree models, DT1, . . . , DTk, where DTi models Xi and treats the other
attributes as input. Note that just because Xj is an input attribute to DTi does
not necessarily mean that it is tested at any branches.
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pr(X | Xb = true)
pr(X | Xb = true)

pr(Xb | Xc)

pr(Xb = true) = 0.6

pr(Xb = true) = 0.8 pr(Xb = true) = 0.3

pr(Xc | Xb)

cut

y n

y n

Xc
Xc

pr(Xb) pr(Xc)

Xc < cut?

Xb = true?
Xc

Xb
Xc

Xb

Figure 11.3 Two networks, each representing a different joint distribution over Xb&Xc.
This figure shows the difference that node order can make to the nature of the joint
distribution when dealing with asymmetric Bayesian networks. Two networks are depicted
- one on the left with the ordering (Xb,Xc), and one on the right with the ordering
(Xc,Xb). To the right of each node we depict the conditional probability distributions it
contains. Below each network is a (rough) graph showing how, when Xb = true, P(X)
varies with Xc. NOTE: This figure is not drawn accurately or to scale — it is intended
only to give an idea of the behavior of our class of asymmetric networks.

We can now establish a list of independencies, and one- and two-way dependen-
cies. If DTi does not test Xj, and DTj does not test Xi then we can conclude
that Xi and Xj are independent (at least in the presence of the other attributes)
and there is not likely to be much benefit in directly connecting the corresponding
nodes.
If DTi does test Xj, but DTj does not test Xi, then we establish a one-way

dependency. This is particularly useful in formulating partial ordering constraints.
Here we assert that there is little use in placing a connection from Xi to Xj in the
network, as we are not able to express Xj’s dependency on Xi. There is, however,
some benefit in a connection directed from Xj to Xi, because we can see from
examining DTi that we can express some dependency of Xi on Xj . Given these
considerations, it makes sense to try to place Xi after Xj in the total node ordering.
If DTi tests Xj, and DTj also tests Xi, then we conclude that there is a two-

way dependency between Xi and Xj . This tells us that a connection between the
corresponding nodes will probably be useful, but does not tell us which way this
link should be directed, and hence does not shed any light on sensible total node
orderings.
We now build a list L of useful directed links. For each one-way dependency from

Xi to Xj, we add Xi → Xj to the list. For each two-way dependency between Xg

and Xh, we add both Xg → Xh and Xh → Xg to the list.
Now we give each possible fully connected network structure a score equal to the
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number of directed links in L that it exhibits. We keep only those structures with
an equal highest score. For each of these structures, we remove any links that do not
feature in L, creating a set of partially-connected structures, many of which will now
be equivalent. For each group of equivalent structures we record the cardinality, and
keep only one representative. We can now build a list of the conditional probability
distributions required. Many of these will be used in more than one network, and
there is no need to learn them more than once. For example, two networks may both
model Xj as a probabilistic function of the same set of parent attributes, P (Xj).
The corresponding decision tree need only be learned once.
After learning all decision trees required (using the MML approach outlined in

Section 11.4.7), we cost each network according to the scheme presented in Section
11.4.7. The cheapest network is chosen to represent our joint distribution.
While this method generally works well, it is not guaranteed to produce the opti-

mal network structure. The two paragraphs below outline two potential downfalls.

Falsely Detecting Dependencies Consider an attribute Xa depending on a
Boolean attribute Xb, and, if Xb is true, also depending on Xc. We conclude from
this that Xa depends on both Xb and Xc, and that the corresponding directed links
are worthwhile. Imagine now that we go with the ordering Xc, Xa, Xb. Suddenly
the link Xc → Xa is useless — we cannot detect any dependency of Xa on Xc

without the presence of Xb. It would be better to have removed this link, but it
is too late because the structure (and connectivity) is decided before the trees are
inferred, and it is only when we infer the trees that we discover DTa|c does not test
Xc.

Failing to Detect a Dependency If some attributes are highly correlated, they
may ‘overshadow’ each other. For example, Xa has a strong dependency on Xb, and
a weaker (but still important) dependency on Xc. The decision tree DTa tests Xb at
the root node, nicely partitioning the classes. Each leaf now decides not to bother
testing Xc, due to fragmentation of data, and the minimal extra purity gained.
So we conclude that Xa does not depend on Xc, but in fact this independence is
conditional on Xb being present. Imagine an ordering Xc, Xa, Xb where we would
decide to remove the link Xc → Xa. Now our encoding of Xa will not benefit from
any correlations.
Another cause of this error is that in the presence of many input attributes,

stating which attribute is to be tested at any branch becomes expensive. A ‘border-
line’ branch may be rejected on this basis whereas in the actual network (where
there are fewer input attributes) it will be cheaper to state that branch and it may
be accepted.

11.4.11 A Coding Scheme for ‘Supervised’ Networks

We present in this subsection an alternative to the MML costing scheme given in
Section 11.4.7. This alternative scheme can be used when we know, before inferring
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the network, which attribute it is that we wish to predict. This is often the case
in practical classification situations, where there is usually a particular attribute of
interest which is difficult to measure, that we want to predict based on the rest of
the (more easily) observed attributes. In this subsection we will refer to such an
attribute as the ‘target’ attribute, and label it as Xt.
This scheme focuses on learning an accurate conditional distribution of Xt given

X \ {Xt}, as opposed to learning an accurate joint distribution over all of X .
Wettig, Grünwald, Roos, Myllymäki, and Tirri [2003] refer to networks that result
from such schemes as ‘supervised’ networks, and to networks that have attempted
instead to optimize the joint distribution as ‘unsupervised’ networks. We adopt this
terminology, as it draws attention to the role of networks and their distributions in
classification tasks.
If we had a universal language for our conditional probability distributions

(CPDs), able to represent any conditional distribution at all, then we could do
no better than to optimize the joint distribution over X . In other words, if one is
able to perfectly model the joint distribution, then this will also yield (by taking the
appropriate ‘cross section’) the best conditional distribution for any attribute. In
practical situations, however, we cannot usually find such a perfect representation
of the joint distribution, and the best joint distribution able to be expressed may
not in fact correspond to the best conditional distribution for Xt.
For the asymmetric networks presented here, the structure, connectivity, and

parameters required to represent the best joint distribution may differ significantly
from those required to represent the best conditional distribution of Xt. We expect,
when the task is to predict or classify Xt that the supervised network will produce
better results.
Our proposed MML scheme for supervised networks differs only slightly from

that for unsupervised networks presented in Section 11.4.7. The major difference
is that the supervised scheme assumes that the values for X \ {Xt} are common
knowledge, and need not be included in the message. We transmit the network
structure and the decision tree parameters in exactly the same manner. In the
supervised scheme, though, we do not transmit the data values of X \ {Xt}. After
decoding the network the receiver may use it, together with the values for X \{Xt},
to derive a CPD pr(Xt|X \ {Xt}). It is by using this distribution that the values of
our target attribute, Xt, are transmitted.

11.4.12 An Example Network

Figure 11.4 shows a network and one of the CPDs learned from the well-known iris
data set.

Figure 11.5 summarizes the performance of various classifiers on the iris data set.
The classifiers are:
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Figure 11.4 On the left is a Bayesian network learned from the iris data set using the
MML approach presented in this chapter. On the right is the decision tree used to give a
probability density over petalLength, given values of the parent attributes — petalWidth,
class, and sepalLength.

MML-DT: This is a decision tree tool that infers models from the class of
decision trees described in Section 11.4.7. It uses an MML costing metric (see
Section 11.4.7) similar to that in [Wallace and Patrick 1993] and a look-ahead-0
greedy search algorithm. This method is equivalent to a supervised network where
all nontarget attributes are parents of the target attribute.

C5: C5 [Quinlan ] (and its forerunner, C4.5) are popular decision tree tools
used for classification. C5 does not use the MML principle and is widely used as a
performance benchmark in classification problems.

unsup-net: This is the algorithm presented in this chapter for learning unsuper-
vised asymmetric Bayesian networks.

sup-net: This is the modified algorithm (see Section 11.4.11) that learns super-
vised asymmetric Bayesian networks.

The results in Figure 11.5 are from a series of ten-fold cross-validation exper-
iments using the iris data set, available from [Blake and Merz 1998]. In all, 10
experiments were performed, for a total of 100 learning tasks for each method. In
each experiment, each method’s performance was averaged over the 10 test sets to
yield a score, s. The graph shows the best, worst, and average values of s for each
classifier. These results show the two MML asymmetric Bayesian network classi-
fiers performing favorably, on average achieving a lower classification error than the
decision trees. This is an example of a situation in which we do better by modeling
the target attribute, implicitly using a joint distribution – rather than building an
explicit conditional model like the two decision tree classifiers.

11.4.13 Issues for Further Research

The asymmetric Bayesian networks presented in this chapter have already produced
encouraging results [Comley and Dowe 2003], and raise several interesting areas
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Figure 11.5 Best, average and worst performance of four classification tools on the iris
data set.

for further research. We feel it would be beneficial to investigate other classes of
asymmetric models, for example a multivariate version of the polynomial regression
described in Section 11.4.6.
Another issue for future research relates to the estimation of Gaussian density

functions in the leaves of decision trees modeling continuous attributes. The prob-
ability distribution for a discrete attribute tested by such a decision tree is partly
determined by the ratio of these Gaussian distributions. When the estimated vari-
ance is small, this ratio can become very large and yield extreme probabilities for
certain values of the discrete (target) attribute. This issue is discussed in more de-
tail in [Comley and Dowe 2003]. In [Ng and Jordan 2002] the problem is avoided to
some degree by fixing the variance at a value estimated from the entire training set,
and allowing only the mean to vary as a function of the discrete target attribute.
This seemingly has the effect of avoiding small variance estimates, and producing
less dramatic ratios of Gaussian distributions.
Finally, we believe that the network structure coding scheme and search strategy

presented in this chapter could be further refined, and have begun work on a
promising variation based on incrementally adding directed links to an initially
unordered, empty network.

11.5 Summary

This chapter has described minimum message length (MML) — a statistically
invariant information-theoretic approach to Bayesian statistical inference dating
back to Wallace and Boulton Wallace and Boulton [1968] — and highlighted
some of the differences between MML and the subsequent minimum description
length (MDL) principle. Furthermore, in Section 11.3, we have addressed several
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common misconceptions regarding MML, and (in Section 11.3.1) we mentioned
Dowe’s question as to whether Bayesianism is inherently necessary to guarantee
statistical invariance and consistency.
This chapter has also presented an application of MML to a general class of

Bayesian network that uses decision trees as conditional probability distributions.
It can efficiently express context-specific independence, and is capable of modeling
a combination of discrete and continuous attributes. We have suggested that when
we know which attribute is to be predicted, it may be better to use a ‘supervised’
network rather than an ‘unsupervised’ one. We have proposed a modification to
our algorithm to allow for this.
The main contribution here, other than extending Bayesian networks to handle

continuous and discrete data, is the identification of ‘asymmetric’ networks, and
the proposal of an efficient scheme to search for node order and connectivity.

11.6 Acknowledgments

We thank Peter Grünwald and the other editors both for the opportunity to write
this chapter and for editorial feedback. David L. Dowe humbly thanks his dear
mother, family and friends for their support for this work and his every endeavor.

References

Allison, L., C. S. Wallace, and C. Yee (1990). When is a string like a string?
In Proceedings of the International Symposium on Artificial Intelligence and
Mathematics.

Barron, A.R., and T.M. Cover (1991). Minimum complexity density estimation.
IEEE Transactions on Information Theory, 37, 1034–1054.

Baxter, R.A., and D.L. Dowe (1996). Model selection in linear regression using the
MML criterion. Technical report 96/276, Department of Computer Science,
Monash University, Clayton, Victoria, Australia.

Bernardo, J., and A. Smith (1994). Bayesian Theory. New York: Wiley.

Blake, C., and C. Merz (1998). UCI repository of machine learning databases.
Department of Information and Computer Sciences, University of California,
Irvine. See also http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Boulton, D. (1975). The Information Criterion for Intrinsic Classification. Ph.D.
thesis, Department of Computer Science, Monash University, Clayton, Victo-
ria, Australia.

Boulton, D.M., and C.S. Wallace (1969). The information content of a multistate
distribution. Journal of Theoretical Biology, 23, 269–278.

Boulton, D.M., and C.S. Wallace (1970). A program for numerical classification.



288 Minimum Message Length and Generalized Bayesian Nets with Asymmetric Languages

Computer Journal, 13 (1), 63–69.

Boulton, D.M., and C.S. Wallace (1973). An information measure for hierarchic
classification. Computer Journal, 16 (3), 254–261.

Boulton, D.M. and C.S. Wallace (1975). An information measure for single-link
classification. Computer Journal, 18 (3), 236–238.

Boutilier, C., N. Friedman, M. Goldszmidt, and D. Koller (1996). Context-specific
independence in Bayesian networks. In Uncertainty in Artificial Intelligence:
Proceedings of the Twelfth Conference (UAI-1996), pp. 115–123. San Fran-
cisco, CA :Morgan Kaufmann.

Chaitin, G.J. (1966). On the length of programs for computing finite sequences.
Journal of the Association for Computing Machinery, 13, 547–569.

Clarke, B. (1999). Discussion of the papers by Rissanen, and by Wallace and
Dowe. Computer Journal, 42 (4), 338–339.

Comley, J.W. and D.L. Dowe (2003). General Bayesian networks and asymmetric
languages. In Proceedings of the Second Hawaiian International Conference
on Statistics and Related Fields.

Dawid, A.P. (1999). Discussion of the papers by Rissanen and by Wallace and
Dowe. Computer Journal, 42 (4), 323–326.

Deakin, M.A.B. (2001). The characterisation of scoring functions. Journal of the
Australian Mathematical Society, 71, 135–147.

Dom, B. E. (1996). MDL estimation for small sample sizes and its application to
linear regression. Technical report RJ 10030 (90526), IBM Almaden Research
Center, San Jose, CA.

Dowe, D.L., L. Allison, T. Dix, L. Hunter, C. Wallace, and T. Edgoose (1996).
Circular clustering of protein dihedral angles by minimum message length. In
Proceedings of the First Pacific Symposium on Biocomputing (PSB-1), Mauna
Lani, HI, U.S.A., pp. 242–255. Singapore: World Scientific.

Dowe, D.L., R.A. Baxter, J.J. Oliver, and C.S. Wallace (1998). Point estimation
using the Kullback-Leibler loss function and MML. In Proceedings of the
Second Pacific Asian Conference on Knowledge Discovery and Data Mining
(PAKDD’98), Melbourne, Australia, pp. 87–95. Berlin: Springer Verlag.

Dowe, D.L., G.E. Farr, A. Hurst, and K.L. Lentin (1996). Information-theoretic
football tipping. In N. de Mestre (Ed.), Third Australian Conference on Math-
ematics and Computers in Sport, Bond University, Queensland, Australia, pp.
233–241. See also http://www.csse.monash.edu.au/∼footy .

Dowe, D.L., and A.R. Hajek (1998). A non-behavioural, computational extension
to the Turing Test. In Proceedings of the International Conference on Compu-
tational Intelligence and Multimedia Applications (ICCIMA’98), Gippsland,
Australia, pp. 101–106.

Dowe, D.L., and K.B. Korb (1996). Conceptual difficulties with the efficient mar-
ket hypothesis: Towards a naturalized economics. In D. Dowe, K. Korb, and



References 289

J. Oliver (Eds.), Proceedigns of the Conference on Information, Statistics and
Induction in Science (ISIS’96), Melbourne, Australia, pp. 212–223. Singapore:
World Scientific.

Dowe, D.L. and N. Krusel (1993). A decision tree model of bushfire activity.
Technical report 93/190, Department of Computer Science, Monash Univer-
sity, Clayton, Victoria 3800, Australia.

Dowe, D.L., J.J. Oliver, R.A. Baxter, and C.S. Wallace (1995). Bayesian Estima-
tion of the von Mises concentration parameter. In Proceedings of the Fifteenth
International Workshop on Maximum Entropy and Bayesian Methods (Max-
Ent ’95), Santa Fe, NM. Boston: Kluwer.

Dowe, D.L., J.J. Oliver, T.I. Dix, L. Allison, and C.S. Wallace (1993). A decision
graph explanation of protein secondary structure prediction. In Proceedings
of the 26th Hawaii International Conference on System Sciences (HICSS-26),
Volume 1, Maui, HI, pp. 669–678. Los Alamitos, CA: IEEE Computer Society
Press.

Dowe, D.L., J.J. Oliver, and C.S. Wallace (1996). MML estimation of the pa-
rameters of the spherical Fisher distribution. In Proceedings of the Seventh
International Workshop on Algorithmic Learning Theory (ALT’96), Sydney,
Australia, pp. 213–227. Volume 1160 of Lecture Notes in Artificial Intelligence
(LNAI). Berlin: Springer Verlag.

Dowe, D.L., and G.R. Oppy (2001). Universal Bayesian inference? Behavioral and
Brain Sciences, 24 (4), 662–663.

Dowe, D.L. and C.S. Wallace (1997). Resolving the Neyman-Scott problem by
Minimum Message Length. In Computing Science and Statistics — Proceed-
ings of the 28th Symposium on the Interface, Sydney, Australia, pp. 614–618.

Dowe, D.L., and C.S. Wallace (1998). Kolmogorov complexity, minimum message
length and inverse learning. In Proceedings of the Fourteenth Australian
Statistical Conference (ASC-14), Gold Coast, Queensland, Australia, p. 144.

Edgoose, T., and L. Allison (1999). MMLMarkov classification of sequential data.
Statistics and Computing, 9 (4), 269–278.

Edgoose, T., L. Allison, and D.L. Dowe (1996). An MML classification of protein
structure that knows about angles and sequence. In Proceedings of Third
Pacific Symposium on Biocomputing (PSB-98), Mauna Lani, HI, pp. 585–
596. Singapore: World Scientific.

Edwards, R., and D. Dowe (1998). Single factor analysis in MML mixture mod-
eling. In Proceedings of the Second Pacific Asian Conference on Knowledge
Discovery and Data Mining (PAKDD’98), Melbourne, Australia, pp. 96–109.
Berlin: Springer Verlag.

Farr, G.E., and C.S. Wallace (2002). The complexity of strict minimum message
length inference. Computer Journal, 45, 285–292.

Fitzgibbon, L., D. Dowe, and L. Allison (2002a). Change-point estimation using



290 Minimum Message Length and Generalized Bayesian Nets with Asymmetric Languages

new minimum message length approximations. In Proceedings of the Seventh
Pacific Rim International Conference on Artificial Intelligence (PRICAI-
2002), pp. 244–254. Volume 2417 of Lecture Notes in Artificial Intelligence
(LNAI). Berlin: Springer-Verlag.

Fitzgibbon, L., D. Dowe, and L. Allison (2002b). Univariate polynomial inference
by Monte Carlo message length approximation. In Proceedings of the 19th
International Conference on Machine Learning (ICML-2002), pp. 147–154.
San Francisco: Morgan Kaufmann.

Good, I.J. (1952). Rational decisions. Journal of the Royal Statistical Society,
Series B, 14, 107–114.

Good, I. J. (1968). Corroboration, explanation, evolving probability, simplicity,
and a sharpened razor. British Journal of Philosophy of Science, 19, 123–143.

Grünwald, P., P. Kontkanen, P. Myllymaki, T. Silander, and H. Tirri (1998).
Minimum encoding approaches for predictive modeling. In Proceedings of the
Fourteenth International Conference on Uncertainty in Artificial Intelligence
(UAI98), pp. 183–192.

Hernandez-Orallo, J., and N. Minaya-Collado (1998). A formal definition of
intelligence based on an intensional variant of algorithmic complexity. In
Proceedings of the International Symposium on Engineering of Intelligent
Systems (EIS’98), pp. 244–254.

Hodges, A. (1983). Alan Turing : The Enigma. New York: Simon & Schuster.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation
problems. Proceedings of the Royal Society of London A, 186, 453–454.

Kearns, M., Y. Mansour, A.Y. Ng, and D. Ron (1997). An experimental and the-
oretical comparison of model selection methods. Machine Learning Journal,
27, 7–50.

Kissane, D., S. Bloch, D. Dowe, D.M.R.D. Snyder, P. Onghena, and C. Wallace
(1996). The Melbourne family grief study, I: Perceptions of family functioning
in bereavement. American Journal of Psychiatry, 153, 650–658.

Kolmogorov, A.N. (1965). Three approaches to the quantitative definition of
information. Problems of Information Transmission, 1, 4–7.

Kornienko, L., D.L. Dowe, and D.W. Albrecht (2002). Message length formulation
of support vector machines for binary classification - a preliminary scheme. In
Proceedings of the 15th Australian Joint Conference on Artificial Intelligence,
Canberra, Australia, 2-6 December 2002, pp. 119–130. Volume 2557 of Lecture
Notes in Artificial Intelligence (LNAI). Berlin: Springer Verlag, 2002.

Lanterman, A.D. (2005). Hypothesis testing for Poisson versus geometric distri-
butions using stochastic complexity. In P.D. Grünwald, I.J. Myung, and M.A.
Pitt (Eds.), Advances in Minimum Description Length: Theory and Applica-
tions. Cambridge MA: MIT Press, 2005.

Li, M. and P. Vitanyi (1997). An Introduction to Kolmogorov Complexity and its



References 291

Applications (2nd ed.). Springer-Verlag.

Liang, F. and Barron, A. (2005). Exact minimax predictive density estimation
and MDL. In P. D. Grünwald, I. J. Myung, and M. A. Pitt (Eds.), Advances
in Minimum Description Length: Theory and Applications. MIT Press, 2004.

Lindley, D. (1972). Bayesian statistics, a review. SIAM , 71.

McLachlan, G., and D. Peel (2000). Finite mixture models. Wiley Series in
Probability and Statistics. New York: Wiley.

Murphy, P., and M. Pazzani (1994). Exploring the decision forest: An empirical
investigation of Occam’s razor in decision tree induction. Journal of Artificial
Intelligence, 1, 257–275.

Needham, S.L. and D.L. Dowe (2001). Message length as an effective Ockham’s
razor in decision tree induction. In Proceedings of the Eighth International
Workshop on Artificial Intelligence and Statistics (AISTATS 2001), Key
West, FL, pp. 253–260.

Ng, A.Y. and M.I. Jordan (2002). On discriminative vs. generative classifiers:
A comparison of logistic regression and naive Bayes. In T.G. Dietterich,
S. Becker, and Z. Ghahramani (Eds.), Advances in Neural Information Pro-
cessing Systems 14. Cambridge, MA: MIT Press.

Oliver, J.J. (1993). Decision graphs - an extension of decision trees. In Proceedings
of the Fourth International Workshop on Artificial Intelligence and Statistics,
pp. 343–350. Extended version available as technical report 173, Department
of Computer Science, Monash University, Clayton, Victoria, Australia.

Oliver, J.J. and C.S. Wallace (1991). Inferring decision graphs. In Proceedings of
Workshop 8 — Evaluating and Changing Representation in Machine Learning
IJCAI-91.

Quinlan, J.R. C5.0. Available at http://www.rulequest.com.

Quinlan, J.R. and R.L. Rivest (1989). Inferring decision trees using the Minimum
Description Length Principle. Information and Computation, 80 (3), 227–248.

Rissanen, J.J. (1978). Modeling by shortest data description. Automatica, 14,
465–471.

Rissanen, J.J. (1987). Stochastic complexity. Journal of the Royal Statistical
Society (Series B), 49, 260–269.

Rissanen, J.J. (1996a). Fisher information and stochastic complexity. IEEE
Transactions on Information Theory, 42 (1), 40–47.

Rissanen, J. J. (1996b). A universal regression model. In D. Dowe, K. Korb, and
J. Oliver (Eds.), Proceedings of the Conference on Information, Statistics and
Induction in Science (ISIS’96), Melbourne, Australia, p. 4. Singapore: World
Scientific.

Rissanen, J.J. (1999a). Discussion of paper “Minimum message length and Kol-
mogorov complexity” by C. S. Wallace and D. L. Dowe. Computer Journal,



292 Minimum Message Length and Generalized Bayesian Nets with Asymmetric Languages

42, 327–329.

Rissanen, J.J. (1999b). Hypothesis selection and testing by the MDL principle.
Computer Journal 42, 223–239.

Rissanen, J.J. (1999c). Rejoinder. Computer Journal, 42, 343–344.

Russell, S., and P. Norvig (1995). Artificial Intelligence: a Modern Approach.
Prentice Hall.

Sanghi, P. and D.L. Dowe (2003). A computer program capable of passing
I.Q. tests. In Proceedings of the Joint International Conference on Cognitive
Science, UNSW, Sydney, Australia.

Scheines, R., P. Spirtes, C. Glymour, and C. Meek (1994). Tetrad II: User’s
Manual. Hillsdale, NJ: Lawrence Erlbaum.

Shen, A. (1999). Discussion on Kolmogorov complexity and statistical analysis.
Computer Journal, 42 (4), 340–342.

Solomonoff, R.J. (1964). A formal theory of inductive inference. Information and
Control 7, 1–22,224–254.

Solomonoff, R.J. (1996). Does algorithmic probability solve the problem of induc-
tion? In D. Dowe, K. Korb, and J. Oliver (Eds.), Proceedings of the Conference
on Information, Statistics and Induction in Science (ISIS’96), Melbourne,
Australia, pp. 7–8. Singapore: World Scientific.

Solomonoff, R.J. (1999). Two kinds of probabilistic induction. Computer Journal,
42 (4), 256–259.

Tan, P.J. and D.L. Dowe (2002). MML inference of decision graphs with multi-way
joins. In Proceedings of the Fifteenth Australian Joint Conference on Artificial
Intelligence, Canberra, Australia, pp. 131–142. Volume 2557 of Lecture Notes
in Artificial Intelligence (LNAI). Berlin: Springer-Verlag.

Tan, P.J., and D.L. Dowe (2003, December). MML inference of decision graphs
with multi-way joins and dynamic attributes In Proceedings of the Sixteenth
Australian Joint Conference on Artificial Intelligence (AI’03), Perth, Aus-
tralia.

Vahid, F. (1999). Partial pooling: A possible answer to “To pool or not to pool”.
In R. Engle and H. White (Eds.), Festschrift in Honor of Clive Granger, pp.
410–428. Chapter 17. Oxford, UK: Oxford University Press.

Viswanathan, M., and C.S. Wallace (1999). A note on the comparison of polyno-
mial selection methods. In Proceedings of Uncertainty 99: the Seventh Inter-
national Workshop on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, pp. 169–177. San Francisco: Morgan Kaufmann.

Viswanathan, M., C.S. Wallace, D.L. Dowe, and K.B. Korb (1999). Finding cut-
points in noisy binary sequences - a revised empirical evaluation. In Pro-
ceedings of the Twelfth Australian Joint Conference on Artificial Intelligence.
Volume 1747 of Lecture Notes in Artificial Intelligence (LNAI), Sydney, Aus-
tralia, pp. 405–416.



References 293
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Model selection in regression is a popular subject, with applications in many
different fields. Minimum description length (MDL) criteria for regression have
received much attention in statistics and recently “gMDL” was shown to bridge
AIC and BIC [Hansen and Yu 2001]. However, traditionally only the code length of
the response variable has been considered in the MDL model selection literature.
The microarray technology allows for the simultaneous monitoring of thousands

of genes for each sample. The emergence of this technology is changing the game
of regression modeling because of the existence of thousands of covariates or gene
expressions while the sample size is usually less than a hundred. Certain prepro-
cessing or organization of the gene expression vector is necessary and often carried
out by clustering analysis. That is, the high-dimensional gene expression data can
be used to study similarities of gene expression profiles across different samples to
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form a gene clustering. The clusters may be indicative of genetic pathways. Parallel
to gene clustering is the important application of sample classification based on all
or selected gene expressions. The gene clustering and sample classification are often
undertaken separately, or in a directional manner (one as an aid for the other).
However, such separation of these two tasks may occlude informative structure in
the data.
In this chapter, we review an algorithm developed by Jörnsten and Yu [2003] for

the simultaneous clustering of genes and subset selection of gene clusters for sample
classification. The clustering and selection criterion is based on the MDL principle
and developed first for linear regression models, and then applied to classification
problems through optimal scoring. For the first time, an MDL code length is given
for both explanatory variables (genes) and response variables (sample class labels).
The final output of the algorithm is a sparse and interpretable classification rule
based on cluster centroids or the closest genes to the centroids. One gene expression
data set and two simulation studies are used to show the effectiveness of this
algorithm.
Gene expression data have recently received attention in the MDL literature.

Tabus, Rissanen, and Astola [2003] focus on the classification problem, comparing
different subsets of genes based on their ability to predict the class labels. Here,
the full matrix of gene expression data is assumed known by both encoder and
decoder, bypassing the need to model the structure of the explanatory variables.
Discrete regression models are built from subsets of coarsely quantized expression
values and evaluated using the normalized maximum likelihood (NML) code length.
The quantization step simplifies the NML computation, a reduction that is similar
in spirit to the exact (permutation) tests for logistic regression that appeared
in the late 1980s [Hirji, Mehta, and Patel 1987]. Li and Zha [2002] also form
predictive models of class labels, but begin by clustering the expression data.
Their approach builds on the discriminant vector quantization (DVQ) encoding
method and is loosely inspired by the MDL framework. Unlike Tabus et al. [2003],
DVQ operates on both the space of explanatory variables and the class labels
simultaneously. Coding is based on a normal mixture model, and a variant of
the classical expectation-maximization (EM) algorithm is proposed for training
(an algorithm that is similar to the so-called ‘classification’ EM). Beginning with
Jornsten [2001], we have argued that simultaneous clustering and classification
offers better insights into the nature of gene expression data. The DVQ method
of Li and Zha [2002] is one embodiment of this idea. In this chapter, we illustrate
our approach to the problem.

12.1 Introduction

Microarray technology has had a profound impact on statistical research today.
Traditional methods for testing, classification, and feature selection do not always
fit the bill for this application. Consequently, many new methodologies have been
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developed with microarray data as the motivational source. In this section we
present an introduction to the technology itself. We describe how gene expression
data are obtained from microarray images. We also give a brief outline of the most
important tasks involved in the analysis of gene expression data.
With the conclusion of the Human Genome Project and other sequencing

projects, the next step is to assign biological function to identified DNA sequences.
This is referred to as functional genomics. Determining the role of each gene in an
organism is a challenging task. Approaches that have gained much popularity are
the complementary DNA (cDNA) and oligonucleotide microarray technologies. The
microarray technology allows for the simultaneous measurements of the expressions
of thousands of genes, or an entire genome. Through these genome-wide snapshots
of an organism, microarray technology has become an important tool for devel-
oping understanding of gene function, regulation, and interaction. Microarrays are
also used extensively in clinical research. The goal is to identify disease genes and
to develop treatments and diagnostic tools. In this section, we review the image-
processing issues with the cDNA microarray technology (cf. [Yang et al. 2000] and
[Yang et al. 2001]). Interested readers are referred to http:www.affymetrics.com and
http:www.rii.com for the alternative Affymetrics genechip and inkjet microarray
technologies, and image-processing issues for affymetrics genechips are addressed
in [Irizarry et al. 2003].

12.1.1 cDNA Microarray Images

We first review some basic genetic concepts. A gene is a segment of DNA that
codes for a specific protein. DNA (deoxyribonucleic acid) is a double-stranded
macromolecule, each strand a polymer of nucleotides. There are four different
nucleotides: adenine (A), guanine (G), cytosine (C), and thymine (T). The two
strands are linked together by hydrogen bonds between base pairs: A to T, and G
to C. This complementary binding property of DNA is how information is stored
and transmitted in the cell. Proteins are polymers of amino acids. There are twenty
different amino acids, each encoded for by one or more triplets of the bases A, T,
G, or C.
The cDNA microarray image technology is a tool geared at measuring the

“activity” of a gene, that is, the protein production. The expression of a gene
is a two-stage process. The first stage is transcription where the DNA segment
is transcribed into a messenger RNA (mRNA) complementary copy of the DNA
sequence. The second stage is translation, where mRNA is used as a blueprint for
the protein.
Microarray experiments measure the level of activity of a gene at the first

stage. The abundance of a specific mRNA in a cell is related to the amount
of the corresponding protein being produced. In a cell at any given time, many
genes will be active and many different mRNA will be present. We measure the
abundance of different mRNA in a sample, relative to another sample. DNA probes
(each corresponding to a gene, or DNA segment) are placed, or “spotted”, onto a
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microscopic glass slide by a robotic arrayer. A reference sample of mRNA is labeled
with a green fluorescent dye (Cy3). The sample of interest is labeled with a red dye
(Cy5). The two mRNA samples are mixed and allowed to hybridize (binding of
mRNA to probe DNA) onto the array. For each probe only the complementary
mRNA strands will bind. The relative mRNA abundance (for each probe) is
measured through the competitive hybridization of the two samples. A laser scan
of the array produces two fluorescent intensity images, one corresponding to the
excitation frequency of the green dye, the other corresponding to the excitation
frequency of the red dye. The image intensity ratio of pixels for each probe, or
spot, is proportional to the relative abundance of mRNA in the two samples. The
raw microarray image data thus consist of two high-precision (16 bpp) scans. A
small image subset, with 4 × 4 probes, is shown in figure 12.1. Comparing probe
intensities between the two scans we see that the top left corner probe is more
“active” (higher intensity) in the red (sample of interest) scan, whereas the bottom
left corner probe is about equally expressed in both samples. In figure 12.2 a larger
image example is shown. This image corresponds to a 4 × 4 print-tip grid. Each
grid contains 19 × 21 probes, different probes for each grid with the exception of
a few housekeeping probes. We show the sum of the red and green scan intensity
images in figure 12.2. The image is highly structured, with high-intensity spots
(corresponding to the probes) located on the grid. The spots are submerged in a
noisy and non-stationary background (spatial systematic variation , see paragraph
on Normalization below). The spots have a roughly circular shape, though some
show significant deviation from this shape due to the experimental variation of the
spotting procedure.
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Figure 12.1 (a) Subset of green scan. (b) Subset of red scan.

Genetic Information Extraction The relative mRNA abundance, that is, the
differential gene expression between the two samples, is measured. We cannot
get absolute measurements due to the difficulty of depositing exact amounts of
DNA probes on the glass slides. In order to accurately estimate differential gene
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Figure 12.2 Microarray image: 4× 4 grid setup, 19× 21 spots per grid.

expression we have to identify the high-intensity regions in the images corresponding
to each probe, and where hybridization has occurred. Moreover, we have to estimate,
and correct for, the local background intensity or noise level due to nonspecific
hybridization. Various methods for image segmentation, and background correction
are used in the processing of microarray images.

Segmentation Segmentation is done on the sum of the two images such that the
same segmentation is used on both scans. Automatic registration of the image is
used to determine the approximate centers, or the grid location, of the spots [Yang
et al. 2000]. The spots are somewhat circular, and of roughly equal size. Thus, the
most simplistic approach to identify the regions where hybridization has occurred is
through a fixed circle segmentation (see [Eisen 1998]). A circle, with a radius chosen
from the estimated grid structure, is used to define the spot regions. The apex of
the circle can be adjusted locally to maximize the summed signal intensity within
the circle, or spot mask. However, spot sizes and shapes often vary across the array.
Differing spot sizes can result from tilted array during scanning, variations in print-
tip pressure when spotting, or the quantity of probe DNA material deposited. An
adaptive circle segmentation (see [Genepix 4000A, User’s Guide, 1999]), allowing
for differences in spot radii, can significantly improve the identification of spots.
Adaptive shape segmentation techniques, such as histogram methods, mixture



300 Simultaneous Clustering and Subset Selection via MDL

modeling, or seeded region growing [Yang et al. 2000], allow for noncircular spots.

Background Correction Obtaining estimates of the local background intensity
level can be a difficult task. When the arrays are noisy, and the spots are positioned
close together, the background estimates will often be highly variable. One approach
is to sample the local background near the identified spots [Eisen 1998]. Another
method is to sample the background in the “valley-between-peaks”, that is, the
regions that are the most distant from the center of gravity of all surrounding
spots [Genepix 4000A User’s Guide, 1999]. These methods work well if the spots
are clearly separated. A more robust background estimation scheme is presented in
[Yang et al. 2000], and relies on image filtering operations (erosion and dilation).

Summary Statistics An example of spot, or gene, summary statistics is the
ratio of background-corrected mean intensities. Pixels in each image are summed
within each identified spot. We denote by Ri the red (fluor tag) scan pixels, and by
Gi the green scan pixels. The differential expression level, R/G, is then calculated
as the ratio of the mean spot intensities:

R

G
=

1
S

∑
Ri∈spotRi −BgR

1
S

∑
Gi∈spotGi −BgG

,

where Bg refers to the estimates of the local background, and S is the number
of spot pixels. The quantity studied in downstream statistical analyses, such as
clustering and classification, is the vector M = log2

R
G of log-ratios of estimated

differential gene expressions. A log transform is applied to compress the scale, and
even out the possibly skewed distribution of differential gene expressions. Other
quantities of interest are measures of quality, such as spot variances, spot shapes,
and product intensities A = log2

√
RG. The product intensities, A, are indicative

of how reliable the measurements of the gene expression are.

Normalization Normalization is necessary prior to downstream analysis. The
fluorescent dyes used to label the two samples have different labeling efficiencies,
and there is a dye bias in scanning efficiency. Furthermore, there are spatial
systematic errors across the array (see figure 12.2). It is common to use the genes
that show little differential variation between samples for normalization. In some
experiments, most genes are not differentially expressed, and all spots can be used
for normalization. In other experiments, a set of housekeeping genes are used. M
and A are simply a coordinate transformation of the background corrected spot
intensities R and G. Dye-bias normalization is usually conducted on M , with
respect to A. Normalization is an important, and far from resolved issue. A global
normalization method (see, e.g., [Chen, Dougherty and Bittner 1997], [Genepix
4000A User’s Guide, 1999]) estimates a constant factor c for each array from the
arithmetic mean of the vectorM . The normalized values M̃ are computed asM−c.
An example of a local and nonlinear normalization scheme is that of Yang et al.
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[2001]. For each spatial subarea of the array (one of the 4×4 subgrids of Fig. 12.2),
we estimate a locally linear fit of M on A. The residual vector M̃ is computed,
and used as the spatial and dye-bias–corrected differential gene expressions in
subsequent analysis.

12.2 Statistical Problems in Gene Expression

A typical microarray experiment consists of at most a hundred samples of interest,
with expressions measured for thousands of genes. From the processed image data
a data matrix of dimension n × p is extracted, where n is the number of samples
and p the number of genes. The expression of a gene j across the n samples is
referred to as the gene profile, whereas the expression of genes within a sample i
is called a sample profile or observation. The samples of interest can correspond
to, for example, samples of healthy tissue at different time points, or samples of
cancerous tissues.

Clustering The analysis of high-dimensional and noisy gene expression data
poses many challenges. The gene expression data can be used to study similarities
of gene expression profiles across different samples to form a gene clustering. The
clusters may be indicative of genetic pathways. Development of robust clustering
techniques and validation tools is central to this problem. Parallel to gene clustering
is the important application of sample classification based on all or selected gene
expressions. Sample classification can have significant diagnostic value for diseases
such as cancer. Feature selection, the selection of informative genes with respect to
sample classes, has also received much attention. Since gene expression data tend
to be sparse (n) p), feature selection is a difficult task.
In current research, there is a particular focus on the problems of gene clustering,

and also sample clustering. Hierarchical clustering methods are often the preferred
tools. Examples of other gene clustering methods that have appeared in the
literature are k-means, partitioning around mediods (PAM), as well as novel SVD-
based methods such as gene-shaving (Hastie et al. [2000b]).

Classification For sample classification, we build predictive models for the sam-
ple classes based on all or selected gene expressions. Many classification methods
have been applied to gene expression data: some traditional methods such as dis-
criminant analysis (DA), nearest neighbors (NN), classification and regression trees
(CART), and some novel and more complex methods such as support vector ma-
chines (SVMs), boosting and bagging CART, and neural nets. On most data sets,
the simple and complex methods perform almost equally well, or poorly. In fact, a
recent study by Dudoit, Fridlyand and Speed [2000] indicates that simple NN, or
diagonal linear DA (DLDA) often results in the best test error rate performance.
Gene expression data sets consist of few samples on which to build and validate
models. It is possible that the use of more complex classifiers will be justified and
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necessary as the number and size of data sets grow.

Feature Selection Many classifiers show improved performance with variable
or feature selection. In addition, parsimonious or sparse classification models are
often easier to interpret. This motivates gene or variable subset selection. There is
a vast literature on selection of individual genes for sample classification. Different
approaches based on T-tests, between-to-within sum of squares, mutual informa-
tion, graph theory, and surprise scores all focus on the selection of genes one by
one ([Dudoit, Fridlyand and Speed 2000; Golub et al. 1999; Ben-Dor, Friedman
and Yakhini 2001; Xing and Karp 2001], and many more). Selecting genes that
act as good classifiers of, for example, tumor types is not a trivial task. The gene
expressions are often highly correlated, which makes the model selection problem
very unstable. Furthermore, the sample size n in gene expression data is usually
very small compared with the huge number of genes studied.
Gene clustering and sample classification with gene selection are in most cases

treated as separate problems, or in a directional manner (one as an aid for the
other). As an example of the first, Li and Hong [2001] cluster genes and use cluster
centroids with “soft-max” sample classification. However, there is no selection of
centroids; all of them are used for classification. An example of the latter, the
supervised gene-shaving of Hastie et al. [2000b] uses the sample class information
for improved gene clustering. Another example of a directional approach is the
supervised harvesting of expression trees of Hastie et al. [2000a]. In supervised tree
harvesting, an initial clustering is followed by the selection of cluster centroids for
classification, but the clustering remains fixed.

12.3 Model Selection in Linear Regression with Correlated Predictors

When the predictor variables are correlated, as with gene expression data, model
selection in linear regression is a difficult task. The instability of such model selection
problems is well-known (see e.g. [Breiman 1996]). Small perturbations of the data
may lead to big changes in the selected models. The predictive performance of
selected models may be similar, however. We consider the case when the number
of predictors p is very large, compared to the sample size n, as in the case of gene
expression data analysis. If the predictors are highly correlated, we approach the
model selection by first clustering the predictors, then selecting cluster centroids for
prediction of the response variable. If a predictor cluster model gives a reasonable
description of the data distribution, the cluster centroids are less correlated than
the individual predictors. This may reduce the instability in the model selection.
When p + n, and the predictors are highly correlated, using cluster centroids
as new predictor variables is reminiscent of model averaging, and the predictive
performance may be significantly improved over the individually selected models.
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12.3.1 MDL or MML clustering

The commonly used minimum description length (MDL) approach to clustering is
a two-stage coding scheme and appeared under minimum message length (MML)
in [Wallace and Boulton 1968]. We first describe the cluster models, the number of
clusters, the relative abundance of each cluster, and a cluster membership map. At
the second stage, we encode for each datum its deviance from the cluster model.
The cluster model includes a “centroid” for each cluster (e.g. mean or median), and
an independent additive mean zero Gaussian error distribution, with an associated
cluster standard deviation. Priors are assigned to all parameters of the cluster
model. The number K of clusters is assumed uniformly distributed on [1,M ], where
M is a known fixed upper bound, that is, K ∼ 1

M . Given K, the cluster data model
is a Gaussian mixture model with parameters θ = (µ, σ, p)(k), k = 1, · · · ,K, i.e.

f(x) =
K∑

k=1

pk × φk(x), φk(x) = 1√
2πσ2k

exp(− 1
2σ2k

(x− µk)2).

Each cluster assignment is assumed equally likely, that is, we use a uniform prior
h(p) = (K − 1)!. The cluster means µk are assumed to be uniformly distributed
on [−σ, σ], where σ2 is the population variance. The cluster standard deviations σk
are assumed uniformly distributed on [0, σ]. Taking the priors to be independent,
the total prior equals

h(µ, σ, p) =
(K − 1)!
2Kσ2K

.

The parameter estimates are obtained via the expectation-maximization (EM)
algorithm. The first stage of coding is to convey the cluster model description
to the decoder by transmitting the estimates θ̂ = (µ̂, σ̂, p̂)(k). The prior distribution
is used to define the code for the parameters. The MML code length can then be
approximated as [Wallace and Boulton 1994]

MML = − logh(θ) + log
√
det I(θ) + L(xn|θ).

We recognize this as the SIC-type approximation of the MDL mixture code length
[Rissanen 1989]. In the Gaussian mixture model, with independent priors we have
log

√
det I(θ) =

∑K
k=1

√
2nk
σ2
k

, where nk are the number of observations in cluster k.
At the second stage, we encode the deviance of data string xn, from the cluster

model. Each residual ri =
∑K

k=1 1{i ∈ b(k)} (xi − µk) is computed, where b(k)
denotes the cluster membership map of cluster k. The ri are encoded with a
Gaussian coding scheme, with parameters (0, σ̂2k). If b(k) is empty, has a single
member, or σ̂2k = 0, no additional code is needed for ri, i.e.

L(xn|θ̂) =
n∑

i=1

K∑
k=1

−1{i ∈ b(k), |b(k)| > 1} logφ(ri|0, σ̂2k),
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and the total cluster MML code length is given by

MML = K log(2σ2)− log(K − 1)! +
K∑

k=1

√
2nk
σ2k

+ (12.1)

−
n∑

i=1

K∑
k=1

1{i ∈ b(k), |b(k)| > 1} log φ(ri|0, σ̂2k).

The extension to D-dimensional data is straightforward. Computation of the code
length for the Gaussian mixture model is relatively simple since we assumed
independence between all model components. Some current work has been directed
toward allowing cluster dependence structure, and mixture model assumptions
other than Gaussian (Baxter and Oliver [1995]).

12.3.2 Simultaneous Clustering and Regression Model Selection

MDLmodel selection in regression traditionally assumes that the predictor variables
are known at the decoder. For the purpose of simultaneous clustering of the
predictor variables and subset selection of cluster centroids for prediction of the
response variable, we now assume that the predictors are not known. In this case,
the predictor variables have to be transmitted to the decoder, prior to transmitting
the response variable. If the predictor variables are highly correlated, and their
distribution can be approximated by a Gaussian mixture model, the MDL or MML
clustering code length (12.1) can be applied. By minimizing the MDL clustering
code length, we form K clusters of predictor variables, and find the corresponding
optimal cluster assignments, and cluster centroids. Given the clustering structure
of the predictor variables, how can we efficiently encode the response variable? If
the predictors are correlated, there will be many competing models that perform
almost equally well for prediction or, equivalently, coding. A common strategy is to
use a weighted prediction scheme for y. Below, we see that using cluster centroids
as new predictors in a regression model setup is equivalent to a weighting scheme.
We have n observations, (y,X) = (yi|xi,1, · · · , xi,p), i = 1, · · · , n. Given the

MDL clustering of the predictor variables, we can view xm,m = 1, · · · , p as noisy
observations from a cluster model, with K clusters. If xm belongs to cluster k, then
observation

xi,m = µk + δi,k, (12.2)

where µk is the k-th cluster centroid, and δ·,k are independently an identically
distributed (i.i.d.) N(0, σ2k). The response variable generating model is given by

yi =
∑
γm=1

xi,mκm + ε(m)
i , (12.3)

where ε(m) are distributed i.i.d. N(0, σ2y,(m)). If we plug (12.2) into (12.3), we find
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that the model for y equals

yi =
∑
γk=1

µkβk + εi, (12.4)

with ε i.i.d. N(0, σ2y) for some σ2y , and where βk is a linear combination of the κm
of the “active” predictors xm in cluster k.
The coding of (y,X), or, equivalently, the model selection problem is a simulta-

neous selection of a cluster model for the predictors X , and the selection of cluster
centroids in the regression model for yn, as stated in (12.4). We use a two-part code
length to describe the data (y,X). The first description length component DL(X)
deals with the cluster structure of the predictor variables, collected in design ma-
trix X . We use the MDL or MML clustering code length for DL(X). The second
component describes the response variable, given the estimated structure of the
predictors. We call this component DL(y|X∗), where X∗ is a n ×K matrix with
entries

(X∗)ik = µik =
1

|b(k)|
p∑

j=1

1{xij ∈ b(k)}xij ,

that is, the estimated sample cluster centroids. Here, b(k) is the set of predictor
variables in cluster k. For DL(y|X∗), we use the gMDL mixture code length of
Hansen and Yu [2001]. gMDL has a data-dependent penalty on the model dimension
and adaptively behaves like AIC or BIC depending on which one is more desirable:

DL(y|X∗) =




n
2 logRSS + k

2 log
(
( R2

1−R2 )

(
k/n

1−k/n )

)
+ n

2 log(
1

1−k/n ) + logn if R2 ≥ k/n

n
2 log(y

T y) + 1
2 logn otherwise,

where RSS = ||y−X∗(X∗X)−1(X∗)T y||2. The code lengths DL(X) and DL(y|X∗)
may have very different magnitudes, if, for example, p+ n. DL(X) is a code length
of n× p “observations” in the design matrix X . In contrast, only n observations y
contribute to DL(y|X∗). We want the two code lengths to have the same relative
importance if we increase the sample size, or include more predictors in the selection.
It is therefore more natural to consider the coding rates, and select the model that
minimizes the following expression:

DL(y,X) =
DL(X)
np

+
DL(y|X∗)

n
(12.5)

Minimizing (12.5) is not equivalent to a two-stage approach, where we first form
the optimal cluster model by minimizing DL(X), and then select cluster centroids
for the regression model by minimizing DL(y|X∗). The clustering is affected by the
subsequent regression model selection, and vice versa.
If the observations X are i.i.d. samples from a one-dimensional cluster model, we

need not cluster Xn×p, that is, cluster p observations in n dimensions. Instead we
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compute the 1× p dimensional matrix X̄, with elements

(X̄)j =
1
n

n∑
i=1

xij , j = 1, · · · , p,

and cluster this one-dimensional data string. We thus encode X̄ with an MDL
cluster code length. After decoding, (X̄)j is available at the decoder. If X consists
of n samples from the one-dimensional cluster model, the residuals

rij = xij − x·j
are obviously independent of the clustering, and can be transmitted at a fixed cost.
Clustering X̄ rather than X may prove vital when n is large, since clustering high-
dimensional data is in general difficult. The combined code length for data (y,X)
is now given by

DL(y,X) =
DL(X̄)
p

+
DL(y|X∗)

n
+ constant,

where the constant refers to the code length for X |X̄.
If X are not i.i.d. observations from a one-dimensional cluster model, the code

length for X |X̄ is not independent of the clustering. Moreover, since we intend to
use the generated cluster centroids for prediction, we need to be careful in selecting
the dimension in which to cluster X . It is possible that the vector X̄ produces a
clustering of predictor variables that eliminates all possibility of prediction. If some
of the observations are replicates, it is natural to form a reduced dimension matrix
X̄n′×p prior to clustering, where we take averages of xij over the replicates, and
n′ is the number of distinct observations. If the response variables are continuous,
and there are no replications in the data set, we can reduce X to a matrix X̄, with
dimension n′×p, by computing predictor variable averages for samples with similar
y values. This corresponds to quantizing y to n′ levels.
Let us assume we have formed a reduced dimension matrix X̄ with dimension

d×p, where d is a value in [1, n] chosen in some appropriate fashion. The combined
code length for data (y,X) is then given by

DL(y,X) =
DL(X̄)
dp

+
DL(y|X∗)

n
. (12.6)

In practice, we apply the k-means algorithm to estimate the K-partitioning of X̄,
rather than the EM algorithm as was done in Section 12.3.1. Since we want the
two components, DL(X̄) and DL(y|X∗), to “feed back” on each other, we do not
run the k-means algorithm to convergence, given K. Instead, we choose K random
seeds from X̄ and apply k-means for a fixed number of iterations L(K). An ordering
map for the predictor variables is sent to the decoder with a fixed code length. We
then send a list of the integers pk, which denote the number of members for each
cluster k, k = 1, · · · ,K. We allow no cluster to be empty. The string (p1, · · · , pK)
can thus be sent with a code based on a multinomial distribution, where we assign
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p−K “observations” to K “bins” [Rissanen 1989]. This code length is given by

DL(n1, · · · , nK) = log
p!

(p−K)!(K − 1)!
.

Using a similar coding strategy for the cluster model parameters (µk, σ2k) as in
Section 12.3.1, we end up with the following clustering code length for X̄d×p:

DL(X̄d×p) = log
p!

(p−K)!(K − 1)!
+K

d∑
s=1

log(2σ2(d)) +
d∑

s=1

K∑
k=1

√
2pk
σ2s,k

(12.7)

−
d∑

s=1

p∑
j=1

K∑
k=1

logφ((x̄sj − µik)|σ2sk) 1{j ⊂ b(k)}+ constant,

where the constant refers to the code length for X |X̄, and the order map for X .
σ2(s) is the total variance in dimension s, and σ2sk is the variance for the kth cluster
in dimension s. Given the K partitioning of X , we form the cluster centroids X∗

n×K

as defined above. We apply the gMDL selection criterion to select a subset k of
the K cluster centroids in the regression model for y. We present the algorithm
for simultaneous predictor variable clustering and subset selection for prediction
below. Here, B(Kq) refers to an iteration factor, that is, the number of models with
a Kq partitioning of X that are sampled.

Algorithm 12.3.1

1. Compute X̄ with dimension d × p. If we assume X is a random sample from a
d-dimensional cluster model, X̄sj is the average of xij over i, in dimension s.

2. Select an initial number of predictor variable clusters, Kq, q = 0.

3. Compute DL(X̄|Kq) (12.7), where a randomly selected Kq partition is used as
seed for k-means.

4. Compute the matrix of observed cluster centroids, X∗(Kq) with dimension
n×Kq.
Select k∗q cluster centroids that minimize the code length DL(y|X∗(Kq)), where
DL(y|X∗(Kq)) is the gMDL criterion.

5. Iterate steps 3 and 4 B(Kq) times, and choose the Kq model with the smallest
combined code length DL(X̄|Kq)

dp + DL(y|X∗(Kq))
n .

6. Go to step 3, set Kq = Kq + 1, and q = q + 1. If q = qstop, then stop. Select
the q0 that minimizes DL(X̄|Kq)

dp + DL(y|X∗(Kq))
n . The final model for (y,X) is thus

a Kq0 clustering of X , and selected kq0 cluster centroids for the prediction of y.

In practice, we need to select the number of k-means iteration steps L(Kq) for each
Kq, and the number of iterations B(Kq) in step 5 of the algorithm. The selection
of L(Kq) is not so crucial. Convergence to a local optimum is often achieved in
fewer than 10 iterations. The choice of B(Kq) is obviously a more delicate matter.
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Even with a modest number of predictors p, the number of possible partitions
is enormous, and we cannot perform an exhaustive search of the model space.
Algorithm 12.3.1 is a “poor man’s” version of a Markov chain Monte Carlo (MCMC)
sampling scheme, where we use values for B(Kq) that reflect the number of possible
Kq partition, that is, we pick B(Kq) to be an increasing function in |Kq − p/2|.

12.4 Simultaneous Clustering and Gene Selection

12.4.1 Optimal Scoring and MDL in Classification

The microarray problem is a classification problem, but model selection criteria
in classification that are based on 0-1 loss are often intractable. It is therefore
common to use an L2 loss approximation for selection. Here, we thus take the
route of turning classification into regression via optimal scoring. We then appeal
to the existing MDL methodology in regression discussed earlier to construct an
MDL model selection criterion for classification. We restrict our attention to linear
discriminant analysis (LDA). Let X be the matrix of predictor (gene) vectors. In
LDA we find discriminant functions µ such that the linear combinations of feature
vectors (projections onto the space spanned by the discriminant functions) Xµ
have maximal Between-to-Within-class sum of squares. LDA is thus an eigenvalue
problem. Classification of a new observation is done in the subspace spanned by µ
by assigning an observation to the closest class mean (Euclidean distance) in the
subspace. Hastie, Tibshirani, and Buja [1994] discuss the familiar equivalence of
LDA and regression via optimal scoring. The point of optimal scoring is to turn a
categorical problem into a quantitative one. We find the discriminant functions µ
via linear regression. Instead of solving the eigenvalue problem, we form a multiple
response regression problem, that is, we form an n×C dummy matrix Y , and regress
it on X . The jth column of Y has ith row entry “1” if sample i belongs to class
j ∈ {1, · · · , C}, and “0” otherwise. The simultaneous estimation of the optimal
scores, and the regression coefficients can be stated as minθ,B ||Y θ − XB||2, with
constraint θTDpθ = I, where Dp is a diagonal matrix of class proportions. Given
θ, the minimizing B are the least squares coefficients such that

min
θ,B

||Y θ −XB||2 = min
θ
Tr{(θ∗)T θ∗ − θT (Y T Ŷ )θ}. (12.8)

From this follows that a third alternative to finding µ is to minimize ||θ∗−XB∗||2,
that is, regress the orthogonal optimal scores θ∗ = Y θ on X. The regression
coefficient estimates B∗ are proportional to the discriminant functions µ such that
the lth discriminant function

µl =
1√

R2
l (1−R2

l )
B∗

l , R
2
l = 1− RSSl(θ∗l , X)

((θ∗l )T θ
∗
l )

, (12.9)

where R2
l is the multiple r-squared of the lth column of θ∗ regressed on X . The

model selection (selecting columns of X) aspect of discriminant analysis is more
complex. If the selection criterion is a function of the individual RSSl, the selection
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can be affected by the choice of initial optimal scores θ∗, themselves functions of X .
It is then recommended to iterate between selection and updating of the optimal
scores using the selected columns of X .
We construct an MDL model selection criterion for classification by applying an

extension of gMDL to multiresponse regression of the orthogonal optimal scores.
Since the scores are orthogonal, the closest Gaussian approximation consists of
independent response models. For a C class problem, there are C − 1 nontrivial
optimal scores θ∗. We write

gMDLC =
C−1∑
l=1

gMDL(θ∗l |X), (12.10)

where

gMDL(θ∗l |X) =




n
2(C−1) log(

∑C−1
l RSSl) + k

2 log
( (

R2
l

1−R2
l

)

( k/n
1−k/n

)

)
+

+n
2 log(

1
1−k/n ) + log(n) if R2

l ≥ k/n
n
2 log((θ

∗
l )

T θ∗l ) +
1
2 logn otherwise.

The shrinkage estimates of the discriminant functions equal

µ̂(l) =
β̂
(l)
LS√

R2
l (1−R2

l )
1
{
R2

l ≥ k/n
}
, (12.11)

where β̂ are the optimal score regression coefficients. For some l, the estimates µ̂(l)

may equal zero, and those discriminant functions are thus dropped from the model.
Reducing the dimension in which we classify often improves the class predictive
performance of the selected models [Hastie et al. 1994].
To compute gMDLC , implicitly we have to estimate (C−1)+Cc hyperparameters,

where Cc is the number of R2
l that exceed k/n. When the sample size is small we

may prefer to use a simplified criterion, gMDLeC , instead. gMDLeC is derived under
an equal-variance model for the multivariate regression problem, and independent
priors on the regression coefficients of each model. The number of hyperparameters
in this setup is 1 + Cc. The simplified selection criterion is given by

gMDLeC =




n(C−1)
2 log(RSStot) + k

2

∑C−1
l=1 log

( (
R2
l

1−R2
l

)

( k/n
1−k/n

)

)
+

+n(C−1)
2 log( 1

1−k/n ) + (C − 1) log(n), if R2
l ≥ k/n

n
2 log(Tr{(θ∗)T θ∗}) + (c−1)

2 logn, otherwise.

Here RSStot =
∑C−1

l=1 RSSl. The derivation of gMDLC and gMDLeC requires a
lengthy discussion of the choice and form of model priors, and is omitted here to
conserve space. The details can be found in [Jornsten 2001].
The optimal scoring turned the categorical problem into a quantitative one, but

the response variables are nevertheless discrete. A Gaussian coding scheme may
not be the most effective. The hope is that the coding redundancy induced by the
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approximation is independent of the model size and complexity. Then, a relative
comparison of the gMDLC code lengths between models is still valid. In practice,
we find that the Gaussian-based selection criterion performs well on simulated and
real data (see Section 12.4.2 and [Jornsten 2001]).

12.4.2 Simultaneous Clustering and Classification

As discussed earlier, when the predictor variables (genes) are correlated and their
number is very large compared with the sample size, model selection in regression
is unstable: at one level the total number of variables selected changes quite a bit
when different data sets are used; at the other level different predictors (genes)
are selected when different data sets are used. A similar phenomenon occurs in
classification. Using the regression model through optimal scoring, we approach
model selection in classification by clustering the predictors (genes), and selecting
gene cluster centroids for response-variable prediction. If a predictor (gene) cluster
model describes the data well, the cluster centroids are less correlated than the
individual predictors, which reduces the instability of model selection at both levels.
Specifically, we achieve simultaneous predictor clustering and cluster selection for
classification by using a variant of Algorithm 12.3.1. As discussed in section 12.3
for regression, we reduce the dimension of the design matrix X (n × p) prior to
clustering. For supervised gene clustering, we have outcome variables y that are
categorical. If the within-class variation is sufficiently small, instead of clustering
X , we cluster the reduced dimension matrix X̄ with dimension C × p,

(X̄)cj =
1
nc

n∑
i=1

xij1{yi = c}, c = 1, · · · , C, j = 1, · · · , p,

where C is the number of distinct class labels, and nc is the number of observations
from class c. The MDL code length for the gene clustering, with K clusters is thus
given by

DL(X̄|K) = K
C∑

c=1

log(2σ2c )− log(K − 1)! +
C∑

c=1

K∑
k=1

√
2|b(k)|
σ2c,k

+ (12.12)

+
p∑

j=1

C∑
c=1

K∑
k=1

−1{j ∈ b(k), |b(k)| > 1} logφ((x̄cj − µc,k)|σ2c,k),

where b(k) denotes the set of genes j in cluster k. Here, σ2c is the population variance
for X̄ within sample class c, σ2c,k is the variance within class c for gene cluster k,
and µc,k is the kth cluster mean within sample class c.
In classification problems with C > 2 we have multiple responses. The response

description length of Algorithm 12.3.1 DL(y|X∗) is therefore replaced by gMDLC

or gMDLeC . In addition, when we combine the code lengths we also take into
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account that the response is multivariate. There are (C−1) optimal score regression
problems for a C class problem. The coding rate we minimize with respect to the
number of cluster K and active cluster k is thus

DL(X̄|K)
Cp

+
gMDL(e)C(k)
(C − 1)n

.

12.5 Experimental Results

12.5.1 Application to a Gene Expression Data Set

We apply our algorithm for simultaneous clustering and subset selection for clas-
sification to a publicly available gene expression data set. We perform threefold
cross-validation 150 times (i.e., randomly select two thirds of the data as training
150 times) to estimate the test error rate of the selected models, and to investigate
the sparseness of the classification model and instability of model selection. We
also run our algorithm on the full data set, and discuss the selected model and
gene clusters. For each training data set, an initial gene selection removes genes
that have near-constant variation across samples. There is a sharp drop-off in the
between-to-within-class (B/W) sum of squares after ten to fifteen genes. We select
the T=200 largest B/W genes as a starting point, and use the S=10 largest B/W
genes to compute the initial optimal scores. We run the algorithm with the number
of clusters ranging from Kq=1 to 20. For each Kq, we iterate B(Kq) times, where
B(Kq)=50 for Kq ≤10, B(Kq)=100 for Kq=11 to 20. The B(Kq) were selected as a
reasonable tradeoff between sufficient sampling of the model space, and computing
time. We allow for up to 20 clusters or individual genes to be selected in the optimal
scoring regression model, and perform exhaustive search over all possible subsets.
Model selection can be affected by the choice of initial optimal scores (the S

genes). To avoid the computationally intensive exercise of iterating the algorithm,
we try to pick a reasonable initial S such that iteration is not necessary. We iterated
our algorithm with different values for S, and found that S=10 produces the same
model in one run of the algorithm as with multiple runs. It is important to realize
that the S initial genes do not drive the selection, however. These S genes are not
necessarily selected in the final model, nor do they necessarily fall into different
gene clusters.
The simultaneous clustering and subset selection algorithm generates “active”

and “inactive” clusters. Active clusters are those that are selected in the classi-
fication model. For convenience, in this subsection we will refer to our algorithm
as SimClust (simultaneous clustering and subset selection). Separate clustering fol-
lowed by subset selection is referred to as SepClust, individual gene selection as
IndSelect. Moreover, we also include a method where we replace the mathemat-
ical cluster centroids with the genes closest to the centroid of each cluster. We
refer to this method as CenterClust. This makes the selected models more easily
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interpretable.
In [Dudoit, Fridlyand and Speed 2000], a comparative study of classifiers was

conducted. The simple nearest neighbor (NN) and diagonal linear discriminant
(DLDA) methods were found to give the best test error rate results on several
gene expression data sets (including NCI60). Hence we include NN and DLDA in
our cross-validation study. DLDA uses all T genes. NN is based on the k nearest
neighbors, where k is selected by leave-one-out cross-validation on the training set.
We also implement the supervised gene-shaving (GS) of Hastie et al. [2000b]. This
method resembles our approach, if the clustering is done separately from the subset
selection. We follow Hastie et al. and generate 8 gene-shaving clusters, with sizes
chosen by the gap-statistic. Since the gene-shaving clusters are (almost) orthogonal,
a simple LDA classifier is used in conjunction with supervised gene-shaving.

NCI60 data The National Cancer Institute’s anticancer drug screen data
(NCI60) of Ross et al. [2000] consists of n=61 samples from human cancer cell
lines. Gene expression levels were measured for p=9703 genes. The samples were
grouped into 8 classes according to tumor site: 9 breast, 5 central nervous system
(CNS), 7 colon, 8 leukemia, 8 melanoma, 9 non–small-lung carcinoma (NSCLS), 6
ovarian, and 9 renal. Genes that had more than 2 missing values were screened out.
The remaining missing values were imputed by the mean value of 5 nearest neigh-
bor genes. The retained data matrix is thus of dimension 61 × 5244. We run our
algorithm on the full data set, with T=200 and S=10 and gMDLC as the selection
criterion. The SimClust selected model consists of 8 gene clusters, 6 of which are
“active”. The active clusters contain 143 genes. The training error rate is 11.1%.
With SepClust we get 5 gene clusters, 4 of which are active. The cluster sizes range
from 12 to 78, and the active gene clusters contain 195 genes. The training error is
19.7%. DLDA and GS have training error 11.1%, and NN has training error 14.8%.
In NN 2 nearest neighbors were selected. The GS clusters range in size from 2 to 8,
containing 40 genes. In table 12.1 the average (over cross-validation training sets)
selected models are shown. The models selected by SimClust are on average larger
than the ones selected by SepClust, but smaller than the ones selected by IndSelect.
SimClust active gene clusters tend to be more homogeneous within a sample class
than SepClust gene clusters [Jornsten and Yu 2003]. The SimClust models exhibit
the smallest variability (0.4 compared to 0.9 for SepClust and 2.0 for IndSelect).
Moreover, the centroids of clusters in the cross-validation study are well correlated
with the centroids selected on the full data set, with mean correlation .79 and stan-
dard deviation .06. The center genes of selected clusters are not as highly correlated
with the center genes selected using the full data set. The mean correlation is .67
with standard deviation .07. For this data set, the individually selected genes on
cross-validation data sets are not very strongly correlated with the genes selected
using the full data set. The correlation is .42, with standard deviation .1.
In table 12.2 the cross-validation test error rates are shown, comparing SimClust,

SepClust, and IndSelect, to NN, GS, and DLDA. The SimClust test error rates are
comparable to NN and DLDA, with the added benefit of gene cluster information.
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SepClust, CenterClust, and GS perform worse, and IndSelect performs very poorly
on this data set.

NCI60 k K r

SimClust 6.9(.4) 9.4(.6) .79(.06)

SepClust 3.9(.9) 4.8(.8)

CenterClust 6.9(.4) 9.4(.6) .67(.07)

IndSelect 9.3(2.0) NA .42(.10))

NN 2.2(.6) NA

Table 12.1 NCI60: Selected models on 150 cross-validation data sets. Average and
(standard deviation) of model sizes. k is the number of selected genes, centers, or centroids.
K is the the number of gene clusters. r is the mean correlation and (standard deviation)
of selected genes, centers, and centroids with their counterpart on the full data set.

NCI60 mean(SD) five-number summary

Simclust 33.7(8.2) (14.3,28.6,33.3,38.1,61.9)

SepClust 43.4(9.2) (15.0,38.1,42.9,52.4,71.4)

CenterClust 46.0(11.3) (33.3,38.1,42.9,52.2,66.7)

IndSelect 56.5(10.5) (33.3,47.6,57.1,66.7,76.2)

NN 32.9(7.1) (14.3,28.6,33.3,38.1,58.4)

GS 45.6(11.9) (19.0,38.1,47.6,52.4,71.4)

DLDA200 31.2(8.3) (14.3,23.4,28.6,38.1,47.6)

Table 12.2 NCI60: Mean and standard deviation of cross-validation test error rates
(%). Five number summaries (min, lower quartile, median, upper quartile, max) of cross-
validation test error rates.

The cross-validation test error results are similar if we replace gMDLC with
gMDLeC in the SimClust algorithm, and they are omitted to conserve space. In
general, selected models with gMDLeC are somewhat larger. On the full NCI60
data set the gMDLeC -selected model consists of 10 clusters, 7 of which are active
and contain 129 genes.

12.5.2 Simulation Studies

We perform two simulation studies where we know the truth to further assess
SimClust. As comparisons, we include AIC, BIC, and AICC in the sense that in
Algorithm 12.3.1, we use them pragmatically in place of DL(y|X∗) even though
AIC and AICC are not code lengths. We generate artificial data from the estimated
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model for the NCI60 data set. We also generate artificial data from a sparse model,
and from a model with many weak effects. The noise level is quite high in all the
simulations to reflect the nature of true gene expression data. We examine how
well SimClust can adapt to these different situations, and how close the estimated
model is to the true generative model. We compare the gMDLC selection criteria
to AIC, BIC, and AICC . gMDL performs well in all the simulations because it is
able to adapt to the sparse and nonsparse setups, whereas BIC and AICc cannot.
The AIC, BIC, and AICC criteria for the independent optimal score models are

AIC =
C−1∑
l=1

n

2
logRSS(θ∗l , X

∗) + (C − 1)k∗,

BIC =
C−1∑
l=1

n

2
logRSS(θ∗l , X

∗) +
(C − 1)k∗

2
log n,

AICc =
C−1∑
l=1

n

2
logRSS(θ∗l , X

∗) + (C − 1)
n

2
1 + k∗/n

1− (k∗ + 2)/n
.

When we assume equal variance (gMDLeC) the criteria are given by

AIC2 =
n(C − 1)

2
logRSStot + (C − 1)k∗,

BIC2 =
n(C − 1)

2
logRSStot + (C − 1)k∗ logn,

AICc2 =
n(C − 1)

2
logRSStot +

n(C − 1)
2

1 + k∗/n
1− (k∗(C − 1) + 2)/(n(C − 1))

,

where RSStot =
∑C−1

l=1 RSS(θ
∗
l , X

∗). The AIC2 criterion corresponds to the
generalized cross-validation (GCV) criterion used by Hastie, Tibshirani, and Buja
[1994] for model selection in classification.

Simulating from the Estimated Model We simulate 50 data sets from the
estimated model (selected via gMDLeC) with 10 clusters, 7 of which are “active”,
that is, selected for classification. We use the class labels yi, i = 1, · · · , 61, of the
NCI60 data, and construct the X matrix of gene expression as follows. We compute

X̄C =
1
nc

n∑
i=1

1{yi = c}xij , X̄ =
1
n

n∑
i=1

xij ,

where nc is the number of samples with class label c. We compute the covariance
matrix of X̄C and X̄ , called ΣC and Σ respectively. For active cluster k, we generate
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Σ gMDLC AIC BIC AICc

k̂∗ 7.04 10.32 5.25 7.78

K̂ 8.29 12.57 8.24 9.21

Σ gMDLeC AIC2 BIC2 AICc2

k̂∗ 7.25 10.86 5.04 8.54

K̂ 8.24 12.36 7.86 8.86

Σ/2 gMDLC AIC BIC AICc

k̂∗ 6.94 9.76 6.72 7.80

K̂ 9.22 11.52 9.60 9.24

Σ/2 gMDLeC AIC2 BIC2 AICc2

k̂∗ 7.02 9.20 6.92 8.12

K̂ 10.24 12.64 10.52 10.96

Table 12.3 Simulation study. 50 simulations from the estimated gene cluster and subset
model, k∗ = 7,K = 10. In the top two panels the NCI60 data covariance structure was
used in the simulation. In the lower two panels we decrease the cluster model variance by
a factor of 2.

nc samples,

Xc(k) ∼ N(X̄c(k),Σc(k)), c = 1, · · · , C,

where Xc(k) has dimension nc × b(k), and b(k) is the number of genes in the
estimated model for cluster k. For inactive clusters k′, we generate data from

X(k′) ∼ N(X̄(k′),Σ(k′)),

where X(k′) has dimension n × b(k′). We also generate a test set with m = 2500
samples, where the m class labels have been chosen such that the relative class
abundances are the same as in the NCI60 data set.
We run the simultaneous predictor clustering and classification model selection

algorithm on the simulated data sets. The results are shown in table 12.3. In the
top two panels the NCI60 data covariance structure was used in the simulation.
We apply both gMDLC and gMDLeC and similarly both the unequal and equal
variance versions of AIC, BIC, and AICc. The results show comparable results for
the unequal variance criteria and the equal variance criteria (gMDL or not). So
in the text below, we do not make a distinction between the two versions. The
gMDL criterion is best at selecting the true number of active clusters k∗ in both
the unequal and equal variance cases, but underfits the number of clusters K in
the data by combining inactive clusters. The latter is also true of BIC. This is an
example of how the classification can have a “bad” feedback on the clustering. AIC
overfits both in terms of number of clusters and number of active clusters. AICc is
best at selecting the number of clusters but overfits in terms of active clusters. The
test error rate performance is comparable for all criteria (figure 12.3). In the lower
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Figure 12.3 Number of clusters, selected clusters (gMDLeC , equal variance model), and
test error rates on simulated data with n = 61, p = 200, generated from the estimated
model. (a) The number of clusters (cmp K = 10); (b) number of selected clusters (cmp
k∗ = 7); and (c) test error rate.

two panels we decrease the cluster model variance by a factor of 2. Now, gMDL and
BIC are the best. BIC performance is much improved compared with the higher
variance simulation. AIC and AICc both overfit.
In the simulation study using the estimated model, clusters (2, 4, 7, 10) are almost

always correctly estimated. These smaller active clusters are all good classifiers
on the original NCI60 data. The large (1, 6, 8) and inactive (3, 5, 9) clusters are
estimated with less certainty.

Sparse and Nonsparse Models We simulate 50 data sets from models with

(a) K = 10 clusters, k∗ = 9 active clusters;

(b) K = 14 clusters, k∗ = 4 active clusters.
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in the same fashion as above. The models used for simulations were the most and
least sparse models selected (via gMDLeC) in the 150 random splits of the cross-
validation study.

gMDLeC AIC2 BIC2 AICc2 gMDLeC AIC2 BIC2 AICc2

gMDLeC AIC2 BIC2 AICc2 gMDLeC AIC2 BIC2 AICc2
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Figure 12.4 Simulated data with n = 61, p = 200. (a-b): K = 10 clusters, k∗ = 9 active
clusters. (c-d): K = 14 clusters, k∗ = 4.

From the estimated model above we did not see a significant difference between
versions of criteria for the unequal and equal cases. Hence we only use the equal
variance model selection criteria here. As can be seen from figure 12.4, gMDLeC is
able to adapt to the sparse, and nonsparse models (see also [Hansen and Yu 2001]).
On the nonsparse model [figure 12.4(a) and (b)], AICc2 overfits both in terms of the
number of clusters and number of active clusters. AICc2, BIC2, and gMDLeC also
select too few clusters. BIC2 underfits in terms of active clusters, whereas gMDLeC

and AICc2 come closer to the true number of active clusters. gMDLeC gives the
best test error rate, closely followed by AICc2 [figure 12.5(a)].



318 Simultaneous Clustering and Subset Selection via MDL

gMDLeC AIC2 BIC2 AICc2 gMDLeC AIC2 BIC2 AICc2

10

15

20

25

30

35

40

10

15

20

25

30

35

(a) (b)

Figure 12.5 Simulated data with n = 61, p = 200. Test error rates. (a) K = 10 clusters,
k∗ = 9 active clusters. (b) K = 14 clusters, k∗ = 4. Sparse model.

On the sparse model [see figure 12.4(c) and (d), figure 12.5(b)] all four criteria
underfit in terms of number of clusters. The noise level in the simulation is high, so
noisy inactive clusters tend to be combined. However, in terms of active clusters,
gMDLeC and BIC2 perform much better than AIC2 and AICc2. For this model
BIC2 gives the best test error rates, closely followed by gMDLeC .
In conclusion, gMDL shows comparable performance to AICc on the nonsparse

model and comparable to BIC on the sparse model. For gene expression data, with-
out prescreening of the genes, the models may be more sparse, and the ability of
gMDL to adapt to the situation at hand may prove important.

Concluding Remarks

We reviewed a new MDL model selection criterion for the simultaneous clustering
of explanatory variables and subset selection in linear regression by coding the
explanatory variables together with the response variable. Through optimal scoring,
this criterion is applied to the problem of simultaneous gene clustering and subset
selection based on microarray sample classification data. This method gives sparse
and interpretable classification models with competitive test error rate results,
compared to some of the best methods reported in the literature, on the NCI60
gene expression data set. Similar results were also obtained on several other gene
expression data sets [Jornsten and Yu 2003]. In addition, we show the model
selection instability is reduced by selecting gene clusters, compared with individual
gene selection. The simultaneous clustering and subset selection algorithm generates
largely homogeneous gene clusters, and separates “active” clusters that are class
predictive from “inactive” clusters that exhibit cross-sample variation but are
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not necessarily good class predictors. Moreover, we demonstrated on simulated
data that gMDL in combination with the MDL/MML clustering code is able to
adapt to situations with sparse or nonsparse data generative models. Finally, it
is worth noting that even though we use linear discriminant analysis with our
gene clustering method, any postprocessing classifier can be applied to the selected
models [Jornsten 2001].
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We regard clustering as a data assignment problem where the goal is to partition
the data into several nonhierarchical groups of items. For solving this problem,
we suggest an information-theoretic framework based on the minimum description
length (MDL) principle. Intuitively, the idea is that we group together those data
items that can be compressed well together, so that the total code length over all
the data groups is optimized. One can argue that as efficient compression is possible
only when one has discovered underlying regularities that are common to all the
members of a group, this approach produces an implicitly defined similarity metric
between the data items. Formally the global code length criterion to be optimized is
defined by using the intuitively appealing universal normalized maximum likelihood
code which has been shown to produce an optimal compression rate in an explicitly
defined manner. The number of groups can be assumed to be unknown, and the
problem of deciding the optimal number is formalized as part of the same theoretical
framework. In the empirical part of the paper we present results that demonstrate
the validity of the suggested clustering framework.

13.1 Introduction

Clustering is one of the central concepts in the field of unsupervised data analysis.
Unfortunately it is also a very controversial issue, and the very meaning of the
concept “clustering” may vary a great deal between different scientific disciplines
(see, e.g., [Jain, Murty, and Flynn 1999] and the references therein). However, a
common goal in all cases is that the objective is to find a structural representation
of data by grouping (in some sense) similar data items together. In this chapter
we want to distinguish the actual process of grouping the data items from the
more fundamental issue of defining a criterion for deciding which data items belong
together, and which do not.
In the following we regard clustering as a partitional data assignment or data

labeling problem, where the goal is to partition the data into mutually exclusive
clusters so that similar (in a sense that needs to be defined) data vectors are grouped
together. The number of clusters is unknown, and determining the optimal number
is part of the clustering problem. The data are assumed to be in a vector form so
that each data item is a vector consisting of a fixed number of attribute values.
Traditionally, this problem has been approached by first fixing a distance metric,

and then by defining a global goodness measure based on this distance metric —
the global measure may, for example, punish a clustering for pairwise intra-cluster
distances between data vectors, and reward it for pairwise inter-cluster distances.
However, although this approach is intuitively quite appealing, from the theoretical
point of view it introduces many problems.
The main problem concerns the distance metric used: the task of formally

describing the desirable properties of a suitable similarity metric for clustering has
turned out to be a most difficult task. Commonly used distance metrics include the
Euclidean distance and other instances from the Minkowski metric family. However,
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although these types of metrics may produce reasonable results in cases where the
the underlying clusters are compact and isolated, and the domain attributes are all
continuous and have a similar scale, the approach faces problems in more realistic
situations [Mao and Jain 1996].
As discussed in [Kontkanen, Lahtinen, Myllymäki, Silander, and Tirri 2000],

noncontinuous attributes pose another severe problem. An obvious way to try to
overcome this problem is to develop data preprocessing techniques that essentially
try to map the problem in the above setting by different normalization and scaling
methods. Yet another alternative is to resort to even more exotic distance metrics,
like the Mahalanobis distance. However, deciding between alternative distance
metrics is extremely difficult, since although the concept of a distance metric is
intuitively quite understandable, the properties of different distance metrics are far
from it [Aggarwal, Hinneburg, and Keim 2001].
A completely different approach to clustering is offered by the model-based ap-

proach, where for each cluster a data-generating function (a probability distribu-
tion) is assumed, and the clustering problem is defined as the task to identify these
distributions (see, e.g., [Smyth 1999; Fraley and Raftery 1998; Cheeseman, Kelly,
Self, Stutz, Taylor, and Freeman 1988]). In other words, the data are assumed to be
generated by a finite mixture model [Everitt and Hand 1981; Titterington, Smith,
and Makov 1985; McLachlan 1988]. In this framework the optimality of a clustering
can be defined as a function of the fit of data with the finite mixture model, not as
a function of the distances between the data vectors.
However, the difference between the distance-based and model-based approaches

to clustering is not as fundamental as one might think at first glance. Namely, it
is well-known that if one, for example, uses the squared Mahalanobis distance in
clustering, then this implicitly defines a model-based approach based on Gaussian
distributions. A general framework for mapping arbitrary distance functions (or loss
functions) to probability distributions is presented in [Grünwald 1998]. The reverse
holds, of course, as well: any explicitly defined probabilistic model can be seen
to implicitly generate a distance measure. Consequently, we have two choices: we
can either explicitly define a distance metric, which produces an implicitly defined
probability distribution, or we can explicitly define a probabilistic model, which
implicitly defines a distance metric. We favor the latter alternative for the reasons
discussed below.
One of the main advantages of the model-based approach is that the explicit

assumptions made correspond to concepts such as independence, linearity, uni-
modality and so on, that are intuitively quite understandable. Consequently, we can
argue that constructing a sensible model is easier than constructing a meaningful
distance metric. Another important issue is that the modern statistical machine-
learning community has developed several techniques for automated selection of
model complexity. This means that by explicitly defining the model assumptions,
one can address the problem of deciding the optimal number of clusters together
with the problem of assigning the data vectors to the clusters.
Nevertheless, although the modeling approach has many advantages, it also
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introduces some problems. First of all, the finite mixture model implicitly assumes
the existence of a hidden clustering variable, the values of which are unknown by
definition. Evaluating probabilistic models in this type of an incomplete data case
is difficult, and one needs to resort to approximations of theoretically derived model
selection criteria. Furthermore, it can also be argued that if the fundamental goal
is to find a data partitioning, then it is somewhat counterintuitive to define the
objective of clustering primarily as a model search problem, since clustering is a
property of the data, not of the model. Moreover, if one is really interested in the
model, and not a partition, then why restrict oneself to a simple finite mixture
model? Bayesian or probabilistic networks, for instance, offer a rich family of
models that extend the simple mixture model [Lauritzen 1996; Heckerman, Geiger,
and Chickering 1995; Cowell, Dawid, Lauritzen, and Spiegelhalter 1999]. A typical
survey of users of the Autoclass system [Cheeseman et al. 1988] shows that they
start out using clustering, start noticing certain regularities, and then switch over
to some custom system. When the actual goal is broader knowledge discovery,
model-based clustering is often too simple an approach.
The model-based approach, of course, implicitly leads to clustering, as the

mixture components can be used to compute the probability of any data vector
originating from that source. Hence, a mixture model can be used to produce a
“soft” clustering where each data vector is assigned to different clusters with some
probability. Nevertheless, for our purposes it is more useful to consider “hard” data
assignments, where each data vector belongs to exactly one cluster only. In this
case we can compute, in practice, some theoretically interesting model selection
criteria, as we shall see later. In addition, it can be argued that this type of hard
assignments match more naturally to the human intuition on clustering, where the
goodness of a clustering depends on how the data are globally balanced among the
different clusterings [Kearns, Mansour, and Ng 1997].
In this chapter we propose a model selection criterion for clustering based on the

idea that a good clustering is such that one can encode the clustering together
with the data so that the resulting code length is minimized. In the Bayesian
modeling framework this means regarding clustering as a missing data problem,
and choosing the clustering (assignment of missing data) maximizing the joint
probability. As code lengths and probabilities are inherently linked to each other
(see, e.g., [Cover and Thomas 1991]), these two perspectives are just two sides of the
same coin. But in order to formalize this clustering criterion, we need to explicitly
define what we mean by minimal code length/maximal probability. In the Bayesian
setting optimality is usually defined with respect to some prior distribution, with
the additional assumption that the data actually come from one of the models under
consideration.
The main problem with the Bayesian model-based approach for clustering stems

from the fact that it implicitly assumes the existence of a latent “clustering
variable,” the values of which are the missing values that we want to find in
clustering. We claim that determining an informative prior for this latent variable
is problematic, as the variable is by definition “hidden”! For example, think of a
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data set of web log data collected at some website. A priori, we have absolutely
no idea of how many underlying clusters of users there exist in the data, or what
are the relative sizes of these clusters. What is more, we have also very little prior
information about the class-conditional distributions within each cluster: we can of
course compute, for example, the population mean of, say, the age of the users, but
does that constitute a good prior for the age within different clusters? We argue
that it does not, as what we are intuitively looking for in clustering is discriminative
clusters that differ not only from each other but also from the population as a whole.
The above argument leads to the following conclusion: the Bayesian approach

to clustering calls for noninformative (objective) priors that do not introduce any
involuntary bias in the process. Formally this can be addressed as a problem for
defining so-called reference priors [Bernardo 1997]. However, current methods for
determining this type of priors have technical difficulties at the boundaries of the
parameter space of the probabilistic model used [Bernardo 1997]. To overcome this
problem, we suggest an information-theoretic framework for clustering, based on the
minimum description length (MDL) principle [Rissanen 1978, 1987, 1996], which
leads to an objective criterion in the sense that it is not dependent on any prior
distribution; it only uses the data at hand. Moreover, it also has an interpretation
as a Bayesian method with respect to a worst-case prior, and is thus a finite sample
variant of the reference prior. It should also be noted that the suggested optimality
criterion based on the MDL approach does not assume that the data actually come
from the probabilistic model class used for formalizing the MDL principle — this
is of course a sensible property in all realistic situations.
In summary, our approach is essentially model-based, as it requires an explicit

probabilistic model to be defined, no explicit distance metric is assumed. This is
in sharp contrast to the information-theoretic approaches suggested in [Gokcay
and Principe 2002; Slonim, Friedman, and Tishby 2002], which are essentially
distance-based clustering frameworks, where the distance metric is derived from
information-theoretic arguments. As discussed above, with respect to the standard
model-based Bayesian approach, our approach differs in that the objectivity is
approached without having to define an explicit prior for the model parameters.
The clustering criterion suggested here is based on the MDL principle which,

intuitively speaking, aims at finding the shortest possible encoding for the data.
For formalizing this intuitive goal, we adopt the modern normalized maximum
likelihood (NML) coding approach [Shtarkov 1987], which can be shown to lead
to a criterion with very desirable theoretical properties (see, e.g., [Rissanen 1996;
Barron, Rissanen, and Yu 1998; Grünwald 1998; Rissanen 1999; Xie and Barron
2000; Rissanen 2001] and the references therein). It is important to realize that
approaches based on either earlier formalizations of MDL, or on the alternative
minimum message length (MML) encoding framework [Wallace and Boulton 1968;
Wallace and Freeman 1987], or on more heuristic encoding schemes (see, e.g.,
[Rissanen and Ristad 1994; Dom 2001; Plumbley 2002; Ludl and Widmer 2002]) do
not possess these theoretical properties!
The work reported in [Dom 1995] is closely related to our work as it addresses
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the problem of segmenting binary strings, which essentially is clustering (albeit in
a very restricted domain). The crucial difference is that in [Dom 1995] the NML
criterion is used for encoding first the data in each cluster, and the clustering itself
(i.e., the cluster labels for each data item) is then encoded independently, while in
the clustering approach suggested in Section 13.2 all the data (both the data in
the clusters plus the cluster indices) is encoded together. Another major difference
is that the work in [Dom 1995] concerns binary strings, that is, ordered sequences
of data, while we study unordered sets of data. Finally, the computational method
used in [Dom 1995] for computing the NML is computationally feasible only in the
simple binary case — in Section 13.4 we present a recursive formula that allows us
the compute the NML exactly also in more complex, multidimensional cases.
This chapter is structured as follows. In Section 13.2 we introduce the notation

and formalize clustering as a data assignment problem. The general motivation for
the suggested information-theoretic clustering criterion is also discussed. In Sec-
tion 13.3 the theoretical properties of the suggested criterion are discussed in detail.
Section 13.4 focuses on computational issues: we show how the suggested MDL clus-
tering criterion can be computed efficiently for a certain interesting probabilistic
model class. The clustering criterion has also been validated empirically: illustrative
examples of the results are presented and discussed in Section 13.5. Section 13.6
summarizes the main results of our work.

13.2 The Clustering Problem

13.2.1 Clustering as Data Partitioning

Let us consider a data set xn = {x1, . . . ,xn} consisting of n outcomes (vectors),
where each outcome xj is an element of the set X . The set X consists of all the
vectors of the form (a1, . . . , am), where each variable (or attribute) ai takes on
values on some set that can be either a continuum of real numbers, or a finite set
of discrete values. A clustering of the data set xn is here defined as a partitioning
of the data into mutually exclusive subsets, the union of which forms the data set.
The number of subsets is a priori unknown. The clustering problem is the task to
determine the number of subsets, and to decide to which cluster each data vector
belongs.
Formally, we can notate a clustering by using a clustering vector yn = (y1, . . . , yn),

where yi denotes the index of the cluster to which the data vector xi is assigned.
The number of clusters K is implicitly defined in the clustering vector, as it can
be determined by counting the number of different values appearing in yn. It is
reasonable to assume that K is bounded by the size of our data set, so we can
define the clustering space Ω as the set containing all the clusterings yn with the
number of clusters being less than n. Hence the clustering problem is now to find
from all the yn ∈ Ω the optimal clustering yn.
For solving the clustering problem we obviously need a global optimization
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criterion that can be used for comparing clusterings with different numbers of
clusters. On the other hand, as the clustering space Ω is obviously exponential
in size, in practice we need to resort to combinatorial search algorithms in our
attempt to solve the clustering problem. We return to this issue in Section 13.5.
In the following we focus on the more fundamental issue: what constitutes a good
optimality criterion for choosing among different clusterings? To formalize this, we
first need to explicate the type of probabilistic models we consider.

13.2.2 Model Class

Consider a set Θ ∈ R
d. A class of parametric distributions indexed by the elements

of Θ is called a model class. That is, a model class M is defined as the set

M = {P (·|θ) : θ ∈ Θ}. (13.1)

In the following, we use the simple finite mixture as the model class. In this case,
the probability of a single data vector is given by

P (x | θ,MK) =
K∑

k=1

P (x | y = k, θ,MK)P (y = k | θ,MK), (13.2)

so that a parametric model θ is a weighted mixture of K component models
θ1, . . . , θK , each determining the local parameters P (x | y = k, θ,MK) and
P (y = k | θ,MK). Furthermore, as is usually done in mixture modeling, we assume
that the variables (a1, . . . , am) are locally (conditionally) independent:

P (x | y = k, θ,MK) =
m∏
i=1

P (ai | y = k, θ,MK) (13.3)

The above assumes that the parameter K is fixed. As discussed above, the number
of clusters can be assumed to be bounded by the size of the available data set, so
in the following we consider the union of model classes M1, . . . ,Mn.
The finite mixture model class is used as an illustrative example in this chapter,

but it should be noted that the general clustering framework applies, of course, to
other model classes as well. The benefit of the above simple mixture model class is
that while it allows arbitrary complex global dependencies with increasing number
of components K, from the data mining or data exploration point of view this
model class is very appealing, as this type of local independence model is very easy
to understand and explain.
For the remainder of this chapter, we make also the following restricting assump-

tion: we assume that the data are discrete, not continuous, and that the possibly
originally continuous variables have been discretized (how the discretization should
be done is a difficult problem and forms a research area that is outside the scope of
this chapter). One reason for focusing on discrete data is that in this case we can
model the domain variables by multinomial distributions without having to make
restricting assumptions about unimodality, normality, and so on, which is the situ-
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ation we face in the continuous case. Besides, discrete data are typical of domains
such as questionnaire or web log data analysis, and the demand for this type of
analysis is increasing rapidly. Moreover, as we shall see in Section 13.4, by using
certain computational tricks, in the multinomial case we can compute the theo-
retically derived objective function presented in the next section exactly, without
resorting to approximations. On the other hand, although we restrict ourselves to
discrete data in this chapter, the information-theoretic framework presented can be
easily extended to cases with continuous variables, or to cases with both continuous
and discrete variables, but this is left as a task for future work.

13.2.3 Clustering Criterion

Our optimality criterion for clustering is based on information-theoretical argu-
ments, in particular on the MDL principle [Rissanen 1978, 1987, 1996]. This also
has a perspective from the Bayesian point of view, as discussed in more detail in
Section 13.3. In the following we try to motivate our approach on a more general
level.
Intuitively, the MDL principle aims at finding the shortest possible encoding for

the data; in other words the goal is to find the most compressed representation of
the data. Compression is possible by exploiting underlying regularities found in the
data — the more regularities found, the higher the compression rate. Consequently,
the MDL optimal encoding has found all the available regularities in the data; if
there would be an “unused” regularity, this could be used for compressing the data
even further.
What does this mean in the clustering framework? We suggest the following

criterion for clustering: the data vectors should be partitioned so that the vectors
belonging to the same cluster can be compressed well together. This means that those
data vectors that obey the same set of underlying regularities are grouped together.
In other words, the MDL clustering approach defines an implicit multilateral
distance metric between the data vectors.
How to formalize the above intuitively motivated MDL approach for clustering?

Let us start by noting the well-known fact about the fundamental relationship
between codes and probability distributions: for every probability distribution P,
there exists a code with a code length − logP (x) for all the data vectors x, and for
each code there is probability distribution P such that − logP (x) yields the code
length for data vector x (see [Cover and Thomas 1991]). This means that we can
compress a cluster efficiently if our model class yields a high probability for that set
of data. Globally this means that we can compress the full data set xn efficiently
if P (xn | M) is high. Consequently, in the finite mixture framework discussed in
Section 13.2.2, we can define the following optimization problem: find the model
class MK ∈M so that P (xn |MK) is maximized.
As discussed in the Introduction, the above model-based approach to clustering

poses several problems. One problem is that this type of an incomplete data
probability is in this case difficult to compute in practice as the finite mixture
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formulation (13.3) implicitly assumes the existence of a latent clustering variable y.
What is even more disturbing is the fact that actual clustering yn has disappeared
from the formulation altogether, so the above optimization task does not solve the
clustering problem as defined in Section 13.2.1. For these reasons, we suggest the
following general optimality criterion for finding the optimal clustering ŷn:

ŷn = argmax
yn
P (xn, yn |M), (13.4)

where M is a probabilistic model class.
It is important to notice here that in this suggested framework, optimality with

respect to clustering is defined as a relative measure that depends on the chosen
model class M . We see no alternative to this: any formal optimality criterion is
necessarily based on some background assumptions. We consider it very sensible
that in this framework the assumptions must be made explicit in the definition of
the probabilistic model class M . In addition to this, although in this approach we
end up with an optimal data partitioning ŷn, which was our goal, we can in this
framework also compare different model classes with respect to the question of how
well they compress and partition the data.
From the coding point of view, definition (13.4) means the following: If one uses

separate codes for encoding the data in different clusters, then in order to be able to
decode the data, one needs to send with each vector the index of the corresponding
code to be used. This means that we need to encode not only the data xn but also
the clustering yn, which is exactly what is done in (13.4).
Definition (13.4) is incomplete in the sense that it does not determine how the

joint data probability should be computed with the help of the model classM . In the
Bayesian framework this would be done by integrating over some prior distribution
over the individual parameter instantiations on M :

P (xn, yn |M) =
∫
P (xn, yn | θ,M)P (θ |M)dθ (13.5)

As discussed in the Introduction, in the clustering framework very little can be
known about the model parameters a priori, which calls for objective (noninfor-
mative) priors. Typical suggestions are the uniform prior, and the Jeffreys prior.
In our discrete data setting, the basic building block of the probability in (13.4)
is the multinomial distribution. As the values of the clustering variable are in
our approach based on (13.4) known, not hidden, it follows that instead of a sum
as in (13.2), the joint likelihood of a data vector x, y reduces to a product of
multinomials. This means that the (conjugate) prior P (θ) is a product of Dirichlet
distributions. In the case of the uniform prior, all the individual Dirichlet distribu-
tions have all the hyperparameters set to 1. As shown in [Kontkanen, Myllymäki,
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Silander, Tirri, and Grünwald 2000], the Jeffreys prior is in this case given by

θ ∼ Di

(
1
2

(
m∑
i=1

(ni − 1) + 1

)
, . . . ,

1
2

(
m∑
i=1

(ni − 1) + 1

))

×
m∏
i=1

K∏
k=1

Di
(
1
2
, . . . ,

1
2

)
, (13.6)

where ni denotes the number of values of variable ai, K is the number of clusters,
and m is the number of variables (not counting the clustering variable y). Yet
another possibility is to use the prior suggested in [Buntine 1991], which is given
by

θ ∼ Di
( r
K
, . . . ,

r

K

) m∏
i=1

K∏
k=1

Di
(
r

Kni
, . . . ,

r

Kni

)
. (13.7)

Properties of this prior are discussed in [Heckerman et al. 1995]. Parameter r is
the so-called equivalent sample size (ESS) parameter that needs to be determined.
Unfortunately, as can be seen in Section 13.5, the value of the equivalent sample
size parameter affects the behavior of the resulting clustering criterion a great deal,
and we are aware of no disciplined way of automatically determining the optimal
value.
In the next section we discuss an information-theoretic framework where the joint

probability of the data and the clustering can be determined in an objective manner
without an explicit definition of a prior distribution for the model parameters.
Section 13.4 [see (13.24)] shows how this framework can be applied for computing
the clustering criterion (13.4). In Section 13.5 this information-theoretic approach
to clustering is studied empirically and compared to the Bayesian alternatives.

13.3 Stochastic Complexity and the Minimum Description Length Principle

The information-theoretic minimum description length (MDL) principle developed
by Rissanen [1978, 1987, 1989, 1996] offers a well-founded theoretical framework
for statistical modeling. Intuitively, the main idea of this principle is to represent a
set of models (model class) by a single model imitating the behavior of any model
in the class. Such representative models are called universal. The universal model
itself does not have to belong to the model class, as is often the case.
The MDL principle is one of the minimum encoding approaches to statistical

modeling. The fundamental goal of the minimum encoding approaches is compres-
sion of data. That is, given some sample data, the task is to find a description
or code of it such that this description uses the least number of symbols, less than
other codes and less than it takes to describe the data literally. Intuitively speaking,
in principle this approach can be argued to produce the best possible model of the
problem domain, since in order to be able to produce the most efficient coding of
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data, one must capture all the regularities present in the domain.
The MDL principle has gone through several evolutionary steps during the last

two decades. For example, the early realization of the MDL principle (the two-
part code MDL [Rissanen 1978]) takes the same form as the Bayesian information
criterion (BIC) [Schwarz 1978], which has led some people to incorrectly believe
that these two approaches are equivalent. The latest instantiation of MDL discussed
here is not directly related to BIC, but to the formalization described in [Rissanen
1996]. The difference between the results obtained with the “modern” MDL and
BIC can be in practice quite dramatic, as demonstrated in [Kontkanen, Buntine,
Myllymäki, Rissanen, and Tirri 2003].
Unlike some other approaches, for example, Bayesianism, the MDL principle does

not assume that the model class is correct (technically speaking, in the Bayesian
framework one needs to define a prior distribution over the model classM , yielding
a zero probability to models θ outside this set). It even says that there is no such
thing as a true model or model class, as acknowledged by many practitioners.
This becomes apparent in Section 13.3.3: the MDL principle can be formalized
as a solution to an optimization problem, where the optimization is done over all
imaginable distributions, not just over the parametric model classM . Consequently,
the model class M is used only as a technical device for constructing an efficient
code, and no prior distribution over the set M is assumed.

13.3.1 Stochastic Complexity as Normalized Maximum Likelihood

The most important notion of MDL is the stochastic complexity (SC). Intuitively,
stochastic complexity is defined as the shortest description length of given data
relative to a model class. In the following we give the definition of SC, before giving
its theoretical justification in Section 13.3.2.
Let θ̂(xn) denote the maximum likelihood estimate of data xn, that is,

θ̂(xn) = argmax
θ∈Θ

{P (xn|θ,M)}. (13.8)

The SC is then defined in terms of the likelihood evaluated at its maximum
P (xn | θ,M)|θ=θ̂(xn) as

SC(xn |M) = − log
P (xn | θ,M)|θ=θ̂(xn)

Rn
M

= − log P (xn | θ,M)|θ=θ̂(xn) + logRn
M , (13.9)

where Rn
M is given by

Rn
M =

∑
xn

P (xn | θ,M)|θ=θ̂(xn), (13.10)

and the sum goes over all the possible data matrices of length n. The term logRn
M is

called the regret and since it depends on the length of data, not the data itself, it can
be considered as a normalization term, and the distribution in (13.9) is called the
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normalized maximum likelihood (NML) distribution proposed for finite alphabets
in [Shtarkov 1987]. The definition (13.9) is intuitively very appealing: every data
matrix is modeled using its own maximum likelihood (i.e., best fit) model, and
then a penalty for the complexity of the model class M is added to normalize the
distribution.

13.3.2 Normalized Maximum Likelihood as a Two-Part Code

A two-part code is such that one first encodes the model to be used for coding,
and then the data with the help of the model. Consequently, the total code length
consists of a sum of two terms, both of which are lengths of codes produced by
proper codes. In its definitional form in (13.9), NML is not a two-part code because
the (minus) log regret term is subtracted from the first term.
To make this a two-part code, we use the following interpretation: The statistical

event xn can be broken down into two parts: the first part is the event θ̂(xn) which
means we are supplied with the data maximum likelihood but not the data itself;
the second part is the event xn | θ̂(xn) which then supplies us with the full data. For
a simple one-dimensional Gaussian model, this means receiving the sample mean
first, and then receiving the full set of data points. For distributions with sufficient
statistics, the first part θ̂(xn) is generally all that is interesting in the data anyway!
The stochastic complexity (13.9) can now be manipulated as follows:

SC(xn |M) = − log
P (xn, θ̂(xn) | θ,M)

∣∣∣
θ=θ̂(xn)

Rn
M

= − logP (θ̂(xn)|n,M)− log P (xn | θ̂(xn), θ,M)
∣∣∣
θ=θ̂(xn)

, (13.11)

where

P (θ̂(xn)|n,M) =
P (θ̂(xn) | θ,M)

∣∣∣
θ=θ̂(xn)∑

θ̂ P (θ̂(x
n) = θ̂ | θ,M)

∣∣∣
θ=θ̂(xn)

. (13.12)

The normalizing term of P (θ̂(xn)|n,M) is just the regret (13.10) with the summa-
tion rearranged.
The NML version of stochastic complexity is now a two-part code. The first part

encodes the maximum likelihood value θ̂(xn) according to the prior

P (θ̂(xn)|n,M) ∝ max
θ
P (θ̂(xn) | θ,M) . (13.13)

Thus the parameter space Θ has been discretized to values achieving a maximum
likelihood for some sample of size n, and the prior distributed so each has its
highest possible likelihood. This construction is given in Figure 13.1 for the binomial
model with sample size n = 10. Each dashed curve gives a likelihood for a different
number of, say, 1s, in the data, yielding 11 curves in all. The stochastic complexity
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Figure 13.1 Likelihood curves for K=2, n=10.

is then computed for θ̂ = 0, 1/10, 2/10, . . . , 9/10, 1, which before scaling by regret
yields the solid curve. NML at the discretized points θ̂ for different sample sizes
n = 2, 4, . . . , 128 is given in Figure 13.2. Notice since this is a discrete distribution,
the probability at the points sums to 1, and thus the values decrease on average as
1/(n+ 1).
The second part of the two-part code encodes the remainder of the data given

the maximum likelihood value θ̂(xn) already encoded. Thus this is no longer a
standard sequential code for independent data. In the one-dimensional Gaussian
case, for instance, it means the sample mean is supplied up front and then the
remainder of the data follows with a dependence induced by the known mean.
The ingenious nature of the NML construction now becomes apparent: One is in

effect using a two-part code to encode the data, yet no data bits have been wasted
in defining the parameters θ since these also form part of the data description
itself. This two-part code appears to be a complex code length to construct
in pieces. However, one computes this two-part code length without having to
explicitly compute the code lengths for the two parts. Rather, the regret is computed
once and for all for the model class and the regular sequential code for data
(− logP (xn | θ,M)) is the basis for the computation.
One is tempted to continue this construction to interpret P (θ̂|n,M) based on

some reduction to a prior P (θ|M) over the full parameter space Θ, not just the
maximum likelihood values for samples of size n. But this is apparently not possible
in the general case. Moreover, in many cases no unique such prior exists. For typical
exponential family distributions, for instance, the dimensionality of P (θ̂|n,M) is
less than P (θ|M) and no unique prior will exist except in a limiting sense when
n→∞. We discuss this situation next.
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13.3.3 Normalized Maximum Likelihood as an Optimization Problem

There have been a number of different alternatives to NML proposed in the
literature over the years. We compare some of these here. They provide us with
theoretical counterparts to our experimental results.
There are different standards one might use when comparing code lengths on

data.

Best case: The optimal possible value for encoding the data xn according to model
M is log 1/P (xn|θ̂(xn),M), which is unrealizable because θ̂ needs to be known.

Average of best case: Assuming a particular θ for model M holds, the average of
the best case is EP (xn|θ,M) log 1/P (xn|θ̂(xn),M).

Barron et al. [1998] summarize various optimization problems with respect to these.
First, one needs the code length that will actually be used, Q(xn), which is the
length we are optimizing.
NML is sometimes derived as the following: find a Q(·) minimizing the worst-case

(for xn) increase over the best-case code-length for xn:

min
Q(·)

max
xn

log
P (xn | θ̂(xn),M)

Q(xn)
(13.14)

Stochastic complexity SC(xn) is the minimizing distribution here [Shtarkov 1987].
Notice this requires no notion of truth, only a model family used in building a code.
A related definition is based on the average best-case code length for θ: Find

a Q(·) minimizing the worst-case (for θ) increase over the average best-case code
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length for θ,

min
Q(·)

max
θ
EP (xn|θ,M) log

P (xn|θ̂(xn),M)
Q(xn)

= min
Q(·)

max
P (θ|M)

EP (θ|M)EP (xn|θ,M) log
P (xn|θ̂(xn),M)

Q(xn)

= max
P (θ|M)

EP (θ|M)EP (xn|θ,M) log
P (xn|θ̂(xn),M)
P (xn|M)

= logRn
M − min

P (θ|M)
KL (P (xn|M)‖SC(xn|M)) . (13.15)

The first step is justified changing a maximum maxθ into maxP (θ|M)EP (θ|M); the
second step is justified using minimax and maximin equivalences [Barron et al.
1998] since

P (xn|M) = argmin
Q(xn)

EP (xn,θ|M) log
P (xn|θ̂(xn),M)

Q(xn)
, (13.16)

and the third step comes from the definition of SC(xn|M).
This optimization then yields the remarkable conclusions for the average best

case:

Finding a Q(xn) minimizing the worst case over θ is equivalent to finding a prior
P (θ|M) maximizing the average over θ, although the prior found may not be unique.
One could call this a “worst-case Bayesian” analysis that is similar to the so-called
reference prior analysis of Bernardo [1997]: a maxP (θ|M) term has been added to a
standard formula to minimize a posterior expected cost. However, it applies to the
finite sample case, and thus is surely more realistic in practice.

The minimizing Q(xn) must be a valid marginal P (xn|M) for some joint
P (θ|M)P (xn|θ,M). Otherwise it is the closest in Kullback-Leibler divergence to
the NML distribution. If for some prior P (θ|M) the induced marginal P (xn|M) ap-
proaches the NML, then that prior must approach the optimal. Thus NML provides
the gold standard for this average case.

In particular, for exponential family distributions the likelihood for the sufficient
statistics of the data and the likelihood for their maximum likelihood value θ̂(xn)
are closely related. When the Fisher information is of full rank, a prior P (θ|M)
with point mass on the set { θ : ∃xn such that θ = θ̂(xn) } can sometimes be found
to make the marginal P (xn|M) equal to the NML distribution. We claim this holds
for the multinomial case. The minimizing Q(xn) will thus be the NML in many
cases.

Under certain regularity conditions, the optimizing prior approaches the Jeffreys
prior when n→∞. Boundaries cause problems here because they mean part of the
parameter space is of a lower dimension. For finite n in the case of the multinomial
model when the boundaries are included, Xie and Barron [2000] argue for a mixture
of Jeffreys priors corresponding to different dimensions being fixed. For the binomial
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Figure 13.3 Jeffreys prior vs. NML as P (θ̂|n = 16,M) for binomial.

case, this corresponds roughly to mixing a Jeffreys prior with point mass at the
two endpoints (θ = 0, 1). NML vs. the Jeffreys prior for the binomial is given in
Figure 13.3 for the case when n = 16.
For the multinomial for different dimension K and sample size n, NML corre-

sponds closely to Jeffreys prior off the boundaries. The boundaries have signifi-
cant additional mass. An approximate proportion for Jeffreys prior in the NML
distribution is given in Figure 13.4 for the multinomial model with sample sizes
n = 10, . . . , 1000 and K = 2, . . . , 9. This records the ratio of NML over the Jeffreys
prior at a data point with near-equal counts (i.e., off the boundaries). It can be
seen that the proportion very slowly rises to 1.0 and for the section here at least is
sublinear in convergence. Xie and Barron use O(1/n1/8) for their convergence rate
to the Jeffreys prior for the general multinomial. This indicates just how dangerous
it is to use the Jeffreys prior as a substitute for the NML distribution in practice.

13.4 Computing the Stochastic Complexity for Multinomial Data

13.4.1 One-dimensional Case

In the following we instantiate the NML for the one-dimensional multinomial
case. Extension to the multidimensional model class discussed in Section 13.2.2
is relatively straightforward and is given in Section 13.4.2.
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Figure 13.4 Proportion of Jeffreys prior in NML for the multinomial model.

13.4.1.1 Multinomial Maximum Likelihood

Let us assume that we have a multinomial variableX withK values. The parameter
set Θ is then a simplex

Θ = {(θ1, . . . , θK) : θk ≥ 0, θ1 + · · ·+ θK = 1}, (13.17)

where θk = P (X = k). Under the usual assumption of independently and identically
distributed (i.i.d.) data, the likelihood of a data set xn is given by

P (xn|θ) =
K∏

k=1

θhkk , (13.18)

where hk is the frequency of value k in xn. Numbers (h1, . . . , hK) are called the
sufficient statistics of data xn. The word “statistics” in this expression means a
function of the data and “sufficient” refers to the fact that the likelihood depends
on the data only through them.
To instantiate the stochastic complexity (13.9) to the single multinomial case, we

need the maximum likelihood estimates of the parameters θk, that is,

θ̂(xn) = (θ̂1, . . . , θ̂K) = (
h1
n
, . . . ,

hK
n

). (13.19)

Thus, the likelihood evaluated at the maximum likelihood point is given by

P (xn | θ̂(xn)) =
K∏

k=1

(
hk
n

)hk

. (13.20)
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13.4.1.2 Multinomial Regret

Since the maximum likelihood (13.20) only depends on the sufficient statistics hk,
the regret can be written as

Rn
K =

∑
h1+···+hK=n

n!
h1! · · ·hK !

K∏
k=1

(
hk
n

)hk

, (13.21)

where the summing goes over all the compositions of n into K parts, that is, over
all the possible ways to choose non-negative integers h1, . . . , hK so that they sum
up to n.
The time complexity of (13.21) is O (nK−1), which is easy to see. For example,

take case K = 3. The regret can be computed in O (n2) time, since we have

Rn
K =

∑
h1+h2+h3=n

n!
h1!h2!h3!

(
h1
n

)h1 (h2
n

)h2 (h3
n

)h3

=
n∑

h1=0

n−h1∑
h2=0

n!
h1!h2!(n− h1 − h2)! ·

(
h1
n

)h1 (h2
n

)h2 (n− h1 − h2
n

)n−h1−h2

.

(13.22)

Note that a slightly more efficient way to compute the regret would be to sum
over partitions of n instead of compositions. A (restricted) partition of integer n
into K parts is a set of K non-negative integers whose sum is n. For example,
compositions h1 = 3, h2 = 2, h3 = 5 and h1 = 2, h2 = 5, h3 = 3 (with n = 10)
correspond to the same partition {5, 3, 2}. Since the maximum likelihood term
in (13.21) is clearly different for every partition (but not for every composition),
it would be more efficient to sum over the partitions. However, the number of
partitions is still O (nK−1), so this more complex summing method would not lead
to any improvement of the time complexity. Therefore, in order to compute the
stochastic complexity in practice, one needs to find better methods. This issue is
addressed below.

13.4.1.3 Recursive Formula

A practical method for regret computation is derived via a clever recursion trick.
The idea is to find a dependence of Rn

K and regret terms corresponding to a smaller
number of values. It turns out that the double recursive formula (13.23) derived
below offers a solution to this problem. In this formula, Rn

K is represented as a
function of Rn

K∗ and Rn
K−K∗ , where K∗ can be any integer in {1, . . . ,K − 1}. We
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have

Rn
K =

∑
h1+···+hK=n

n!
h1! · · ·hK !

K∏
k=1

(
hk
n

)hk

=
∑

h1+···+hK=n

n!
nn

K∏
k=1

hhkk
hk!

=
∑

h1+···+hK∗=r1
hK∗+1+···+hK=r2

r1+r2=n

n!
nn
rr11
r1!
rr22
r2!

(
r1!
rr11

K∗∏
k=1

hhkk
hk!

· r2!
rr22

K∏
k=K∗+1

hhkk
hk!

)

=
∑

h1+···+hK∗=r1
hK∗+1+···+hK=r2

r1+r2=n

n!
nn
rr11
r1!
rr22
r2!

(
r1!

h1! · · ·hK∗ !

K∗∏
k=1

(
hk
r1

)hk

· r2!
hK∗+1! · · ·hK !

K∏
k=K∗+1

(
hk
r2

)hk )

=
∑

r1+r2=n

n!
r1!r2!

(r1
n

)r1 (r2
n

)r2 · Rr1
K∗ · Rr2

K−K∗ . (13.23)

This formula can be used in efficient regret computation by applying a combinatoric
doubling trick. The procedure goes as follows:

1. Calculate the table of Rj
2 for j = 1, . . . , n using the composition summing

method (13.21). This can be done in time O (n2).
2. Calculate tables of Rj

2m for m = 2, . . . , 6log2K7 and j = 1, . . . , n using the
table Rj

2 and recursion formula (13.23). This can be done in time O (n2 logK).
3. Build up Rn

K from the tables. This process also takes time O (n2 logK).
The time complexity of the whole recursive procedure given above is O (n2 logK).
As an example of this method, say we want to calculate Rn

26. The process is
illustrated in Figure 13.5. First we form the tables Rj

2m for m = 1, 2, 3, 4 and
n = 1, . . . , N . Equation (13.23) is then applied to get the tables of Rj

10 from Rj
2

and Rj
8 for j = 1, . . . , n. Finally, Rn

26 can be computed from the tables of Rj
16

and Rj
10.
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13.4.2 Multidimensional Generalization

In this subsection, we show how to compute NML for the multidimensional cluster-
ing model class (denoted here by MT ) discussed in Section 13.2.2. Using (13.21),
we have

SC(xn, yn|MT ) = − log

(
K∏

k=1

(
hk
n

)hk m∏
i=1

K∏
k=1

ni∏
v=1

(
fikv
hk

)fikv
)
· 1
Rn

MT ,K

,

(13.24)

where hk is the number of times y has value k in xn, fikv is the number of times
ai has value v when y = k, and Rn

MT ,K is the regret

Rn
MT ,K =

∑
h1+···+hK=n

∑
f111+···+f11n1=h1

· · ·
∑

f1K1+···+f1Kn1=hK

· · ·

∑
fm11+···+fm1nm=h1

· · ·
∑

fmK1+···+fmKnm=hK

n!
h1! · · ·hK !

K∏
k=1

(
hk
n

)hk

·
m∏
i=1

K∏
k=1

hk!
fik1! · · · fikni !

ni∏
v=1

(
fikv
hk

)fikv

. (13.25)

Note that we can move all the terms under their respective summation signs, which
gives

Rn
MT ,K =

∑
h1+···+hK=n

n!
h1! · · ·hK !

K∏
k=1

(
hk
n

)hk

·
m∏
i=1

K∏
k=1

∑
fik1+···+fikni=hk

hk!
fik1! · · · fikni !

·
ni∏
v=1

(
fikv
hk

)fikv

=
∑

h1+···+hK=n

n!
h1! · · ·hK !

K∏
k=1

(
hk
n

)hk m∏
i=1

K∏
k=1

Rhk
ni , (13.26)

which depends only linearly on the number of variables m, making it possible to
compute (13.24) for cases with lots of variables provided that the number of value
counts are reasonably small.
Unfortunately, (13.26) is still exponential with respect to the number of val-

ues K,n1, . . . , nm. The situation is especially bad if the number of clustersK is big,
which often is the case. It turns out, however, that the recursive equation (13.23) can
also be generalized to the multidimensional case. Proceeding similarly as in (13.23),
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we can write

Rn
MT ,K =

∑
h1+···+hK=n
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]
, (13.27)

from which we get the result

Rn
MT ,K =

∑
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r1+r2=n

[
n!
r1!r2!
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n

)r1 (r2
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·
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K∏
k=K∗+1

(
hk
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)hk m∏
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Rhk
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=
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r1+r2=n

n!
r1!r2!

(r1
n

)r1 (r2
n

)r2 ·Rr1
MT ,K∗ · Rr2

MT ,K−K∗ . (13.28)

That is, we can calculate multidimensional regrets using exactly similar procedures
as described in Section 13.4.1.3.
In clustering applications it is typical that the number of clusters K is unknown.

Therefore, in order to apply NML for clustering, one needs to evaluate multidi-
mensional regrets with varying number of clusters. It follows that the easiest way
to use the recursive equation (13.28) is to start with the trivial case K = 1, and
then always choose K∗ = 1. The resulting procedure is very simple and as effec-
tive as any other, provided that one wants to calculate regrets for the full range
K = 1, . . . ,Kmax. On the other hand, if there is only need to evaluate NML for
some fixed K (as is the case if the number of clusters is known), then one should
use similar procedures as described in Section 13.4.1.3.
In practice, the recursive NML computation for the clustering case goes as

follows. The goal is to calculate a (n×Kmax) table of multidimensional regrets. The
procedure starts with the calculation of another array consisting of one-dimensional
regrets, since these are needed in (13.28). The size of this array is (n × Vmax),
where Vmax is the maximum of the number of values for the variables (a1, . . . , am).
This array is calculated using (13.23). The time complexity of this step is clearly
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O (Vmax ·N2
)
.

The next step is to determine the starting point for the calculation of the array
of multidimensional regrets. When K = 1, (13.26) clearly reduces to

Rn
MT ,1 =

m∏
i=1

Rn
ni . (13.29)

Another trivial case is n = 0, which gives

R0
MT ,K = 1, (13.30)

for all K. After that, the calculation proceeds by always increasing n by 1, and for
each fixed n, increasing K by 1 up to the maximum number of clusters wanted.
The interesting thing is that although the multidimensional regret (13.26) is

rather complicated, the described procedure never uses it directly. The only things
needed are the trivial starting cases K = 1 and n = 0, and the recursive
equation (13.28). It follows that the calculation of multidimensional regrets is
computationally as effective as in the single-dimensional case, which is a rather
surprising but important fact.

13.5 Empirical Results

13.5.1 Clustering Scoring Methods

We have presented a framework for data clustering where the validity of a clus-
tering yn is determined according to the complete data joint probability in (13.4).
Consequently, we obtain different clustering criteria or scoring methods by using
different ways of computing this probability. The following clustering methods were
empirically validated:

NML: The NML criterion given by (13.9).

UNI: The Bayesian criterion given by the marginal likelihood (13.5) over the
uniform prior distribution.

JEF: The Bayesian criterion given by the marginal likelihood (13.5) over the
Jeffreys prior distribution (13.6).

ESS(r): The Bayesian criterion given by the marginal likelihood (13.5) over the
prior distribution (13.7). The parameter r is the equivalent sample size required
for determining this prior.

The above means that ESS(r) is actually a continuum of methods, as the equivalent
sample size can be any positive real number. The following alternatives were tested:
ESS(0.01), ESS(0.1), ESS(1.0), ESS(10.0), and ESS(100.0).
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13.5.2 Empirical Setup

In the following we wish to study empirically how the NML clustering criterion
compares with respect to the Bayesian scores UNI, JEF, and ESS(r). The problem
is now to find an empirical setup where these different criteria can be compared
objectively. However, this turns out to be a most difficult task. Namely, at first
sight it seems that an objective empirical scenario can be obtained by the following
setup:

1. Choose randomly K probability distributions P (x | Θ1), . . . , P (x | ΘK).

2. i:=1.

3. Generate data xn by repeating the following procedure n times:

(a) Choose a random number zi between 1 and K.

(b) Draw randomly a data vector xi from distribution P (x | Θzi).

(c) i:=i+1.

4. Cluster the generated data xn to get a clustering yn.

5. Validate the clustering by comparing yn and the “ground truth” zn.

We claim that the above procedure has several major weaknesses. One issue is that
the setup obviously requires a search procedure in step 4, as the clustering space
is obviously exponential in size. However, any heuristic search algorithm chosen for
this purpose may introduce a bias favoring some of the criteria.
More importantly, one can argue that the “original” clustering zn is not necessar-

ily the goal one should aim at: Consider a case where the data was generated by a
10-component mixture model, where two of the components are highly overlapping,
representing almost the same probability distribution. We claim that in this case a
sensible clustering method should produce a clustering with 9 clusters, not 10! On
the other hand, consider a case where all the 10 component distributions are not
overlapping, but only one sample has been drawn from each of the 10 components.
We argue that in this case a sensible clustering criterion should suggest a relatively
small number of clusters, say 1 or 2, instead of the “correct” number 10, since with
small sample sizes the variation in the data could not possibly justify the use of so
many clusters (meaning a high number of parameters).
This means that the above scenario with artificial data makes only sense if the

mixture components are nonoverlapping, and the amount of data is substantial.
Obviously it can now be argued that this unrealistic situation hardly resembles
real-world clustering problems, so that the results obtained in this way would not
be very relevant. What is more, if the data are generated by a finite mixture of
distributions, which means that the local independence assumptions we made in
Section 13.2.2 do indeed hold, then this setup favors the Bayesian approach, as in
this unrealistic case the marginal likelihood criterion is also minimax optimal. A
more realistic setup would of course be such that the assumptions made would not
hold, and the data would not come from any of the models in our model class.
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The above scenario can be modified to a more realistic setting by changing the
data-generating mechanism so that the assumptions made do not hold anymore.
One way to achieve this goal in our local independence model case would be to add
dependencies between the variables. However, this should be done in such a manner
that the dependencies introduced are sensible in the sense that such dependencies
exist in realistic domains. This is, of course, a most difficult task. For this reason,
in the set of experiments reported here we used real-world data that were gathered
in a controlled manner so that the above testing procedure could be used, although
reality was used as a data-generating mechanism instead of a manually constructed
mixture model. Before describing the data, let us have a look at the actual clustering
procedure used in the experiments.

13.5.3 The Search Algorithm

For the actual clustering algorithm, we studied several alternatives. The best results
were obtained with a simple stochastic greedy algorithm, where the number of
clusters K was first fixed, and then the following procedure was repeated several
times:

1. Choose a random initial data assignment.

2. Choose a random data vector.

3. Move the chosen data vector to the cluster optimizing locally the clustering score.

4. If converged, stop. Otherwise, go to step 2.

This procedure was repeated with all the possible values for K, and with all the
clustering scoring methods listed in Section 13.5.1. At the end, all the clusterings
of different size, produced by all the runs with all the clustering methods, were
put together into a large pool of candidate clusterings. Finally, all the candidate
clusterings were evaluated by using all the clustering criteria. The purpose of
this procedure was to prevent the effect of chance between individual runs of the
stochastic search algorithm with different criteria. It should be noted, however, that
in our experiments almost all the best clusterings were found using NML as the
clustering score. We believe that this tells us something important about the shape
of the search space with different clustering criteria, and this interesting issue will
be studied in our future research.

13.5.4 The Data

In this set of experiments, the data consisted of measured signal strength values of
radio signals originating from eight WLAN access points (transmitters) located in
different parts of our laboratory. As the measured signal strength depends strongly
on the distance to the transmitting access point, the distribution of the data
collected at some fixed point depends on the relative distances of this point and the
locations of the eight access points. This means that the measurement distributions
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at two locations far from each other are very likely to be very different. Furthermore,
as the access points are not affecting each other, the eight measured signals are at
any fixed point more or less independent of each other.
Consequently, the data collected in the above manner are in principle similar

to artificial data generated by a finite mixture model. Nevertheless, in real-world
environments there is always some inherent noise caused by factors such as mea-
surement errors, position and angle of reflecting or damping surfaces, air humidity,
presence or absence of people, and so on. This means that these types of data
resemble artificial data in the sense that the overlap between the component dis-
tributions can be controlled by choosing the locations where the measurements are
made, but at the same time the data contain a realistic type of noise that was not
artificially generated.

13.5.5 The Results

For this set of experiments, data were gathered at different locations situated as far
from each other as possible. This means that the data-generating mechanisms were
rather different, and partitioning the unlabeled data into clusters corresponding
to the measurement locations was relatively easy with all the clustering methods
used, if a sufficient amount of data was available. However, as we in this setup were
able to control the amount of data available, we could study the small sample size
behavior of the different clustering scores. A typical example of the behavior of
different clustering criteria can be seen in Figures 13.6 and 13.7.
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Figure 13.6 An example of the behavior of different clustering scores in the task of
finding a four-cluster data partitioning, as a function of sample size per cluster.
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Figure 13.7 An example of the behavior of different ESS clustering scores in the task
of finding a four-cluster data partitioning, as a function of sample size per cluster.

In Figure 13.6 we see a typical example of how the NML, UNI, and JEF clustering
criteria behave as a function of the sample size. In this case, the correct number
of clusters was four (data were gathered at four different positions), and the x-
axis gives the number of data vectors collected at each of the 4 locations. The
y-axis gives the number of clusters in the best clustering found with each of the
three clustering criteria, where the pool of candidate clusterings was generated
as described in Section 13.5.3. In this simple case, whenever the best clustering
contained 4 clusters, the actual clustering yn was perfectly consistent with the way
the data were collected, that is, the clustering suggested was “correct.” Obviously,
whenever the suggested number of clusters was other than 4, the correct clustering
was not found. The values on the y-axis are averages over several repeats of the
sequential procedure consisting of data gathering, construction of the clustering
candidate pool, and validation of the clustering candidates with different clustering
criteria.
From Figure 13.6 we can see that with very small sample sizes (fewer than 10

samples from each cluster), NML tends to suggest fewer clusters than there actually
are. However, as discussed above, this is sensible behavior as very small data sets
do not justify very complex models. After a sample size of 10, the NML always finds
the correct number of clusters (and, as explained above, also the correct clustering).
The behaviors of the UNI and JEF scores are very similar, but they need more data
to find the correct clustering.
The behavior of the ESS scores is rather interesting, as we can see in Figure 13.7.

In this particular case, a relatively small equivalent sample size seems to work well:
ESS(1) converges rather quickly (after seeing 20 samples per cluster) to the right
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level. However, the behavior is somewhat counter-intuitive with very small sample
sizes as the suggested number of clusters is first close to 4, then goes down as the
sample size increases to 15, after which it goes up again. A similar, but even more
disturbing pattern is produced by the ESS scores with small equivalent sample size:
with very small samples (fewer than 10 samples per cluster), they tend to suggest
clusterings with a number of clusters that is much too high. This, of course, would
lead to poor results in practice.
The ESS scores with a high equivalent sample size increase the suggested number

of clusters with increasing data size up to a point, after which they start to converge
to the right level. As a matter of fact, after a sufficient number of samples from
each cluster, all the clustering criteria typically suggest a clustering identical, or
very close, to the correct clustering. Consequently, this example shows that the
interesting differences between the different clustering methods cannot be seen in
low-dimensional cases if a large amount of data are available. Real-world problems
are typically very high-dimensional, which means that the amount of data available
is always relatively low, which suggests that the small sample size behavior of the
clustering criteria observed here is of practical importance.

13.6 Conclusion

We suggested a framework for data clustering based on the idea that a good
clustering is such that it allows efficient compression when the data are encoded
together with the cluster labels. This intuitive principle was formalized as a search
problem, where the goal is to find the clustering leading to maximal joint probability
of the observed data plus the chosen cluster labels, given a parametric probabilistic
model class.
The nature of the clustering problem calls for objective approaches for computing

the required probabilities, as the presence of the latent clustering variable prevents
the use of subjective prior information. In the theoretical part of the chapter, we
compared objective Bayesian approaches to the solution offered by the information-
theoretic MDL principle, and observed some interesting connections between the
NML approach and the Bayesian reference prior approach.
To make things more concrete, we instantiated the general data clustering

approach for the case with discrete variables and a local independence assumption
between the variables, and presented a recursive formula for efficient computation
of the NML code length in this case. The result is of practical importance as
the amount of discrete data is increasing rapidly (in the form of webpages, web
log data, questionnaires, etc.). Although the approach can be easily extended to
more complex cases than the one studied in this chapter, we argue that the local
independence model is important as the resulting clusters are in this case easy to
analyze. It can also be said that the local independence model assumed here is
complex enough, as one can obviously model arbitrarily complex distributions by
adding more and more clusters.
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In the empirical part of the chapter we studied the behavior of the NML clustering
criterion with respect to the Bayesian alternatives. Although all the methods
produced reasonable results in simple low-dimensional cases if a sufficient amount
of data was available, the NML approach was clearly superior in more difficult
cases with an insufficient amount of data. We believe that this means that NML
works better in practical situations where the amount of data available is always
vanishingly small with respect to the multidimensional space determined by the
domain variables.
The difference between the NML and Bayesian approaches was especially clear

when compared to the “parameter-free” approaches with either the uniform or
Jeffreys prior. The equivalent sample size prior produced good results if one
was allowed to manually choose the ESS parameter, but this, of course, does
not constitute a proper model selection procedure, as no general guidelines for
automatically selecting this parameter can be found.
In this chapter the clustering framework was restricted to flat, nonoverlapping

and nonhierarchical clusterings. The approach could be obviously extended to more
complex clustering problems by introducing several clustering variables, and by
assuming a hierarchical structure between them, but this path was left to be
explored in our future research.
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Clustering is one of the most basic and useful methods of data analysis. This
chapter describes a number of powerful clustering models, developed in psychology,
for representing objects using data that measure the similarities between pairs
of objects. These models place few restrictions on how objects are assigned to
clusters, and allow for very general measures of the similarities between objects
and clusters. Geometric complexity criteria (GCC) are derived for these models,
and are used to fit the models to similarity data in a way that balances goodness-
of-fit with complexity. Complexity analyses, based on the GCC, are presented for
the two most widely used psychological clustering models: “additive clustering” and
“additive trees.”
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14.1 Introduction

Clustering is one of the most basic and useful methods of data analysis. It involves
treating groups of objects as if they were the same, and describing how the
groups relate to one another. Clustering summarizes and organizes data, provides
a framework for understanding and interpreting the relationships between objects,
and proposes a simple description of these relationships that has the potential to
generalize to new or different situations. For these reasons, many different clustering
models have been developed and used in fields ranging from computer science and
statistics to marketing and psychology (see [Arabie, Hubert, and De Soete 1996;
Everitt 1993; Gordon 1999] for overviews).
Different clustering models can be characterized in terms of the different assump-

tions they make about the representational structure used to define clusters, and the
similarity measures that describe the relationships between objects and clusters.

14.1.1 Representational Assumptions

Representationally, it is possible for different types of constraints to be imposed on
how objects can be grouped into clusters. Three different assumptions are shown
in Figure 14.1:

(a) The partitioning approach forces each object to be assigned to exactly one
cluster. This approach can be interpreted as grouping the objects into equivalence
classes, and essentially just summarizes the objects, without specifying how the
clusters relate to each other. For example, if the objects A through H in Fig-
ure 14.1(a) correspond to people, the partitioning could be showing which of four
different companies employs each person. The representation does not allow a per-
son to work for more than one company, and does not convey information about
how the companies themselves are related to each other.

(b) The hierarchical approach allows for nested clusters. This can be interpreted
as defining a tree structure, where the objects correspond to terminal nodes. For
example, the hierarchical clustering in Figure 14.1(b) could be showing not just the
company employing each person but also the division they work for within that
company, and further subdivisions in the organizational structure. Each of these
subdivisions corresponds to a branch in the tree, and the overall topology of the
tree relates objects and clusters to one another.

(c) The overlapping approach imposes no representational restrictions, allowing any
cluster to include any object and any object to belong to any cluster. Overlapping
clustering models can be interpreted as assigning features to objects. For example,
in Figure 14.1(c), the five clusters could correspond to features like the company a
person works for, the division they work in, the football team they support, their
nationality, and so on. It is possible for two people in different companies to support
the same football team, or have the same nationality, or have any other pattern of
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Figure 14.1 Three different representational assumptions for clustering models, showing
(left) (a) partitioning, (b) hierarchical, and (c) overlapping structures, and their interpre-
tation (right) as (a) equivalence classes, (b) tree structures, and (c) feature assignments.
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shared features.

14.1.2 Similarity Assumptions

A clustering model also makes assumptions about how the similarity between ob-
jects is measured. One possibility, most compatible with partitioning representa-
tions, is to treat all objects in the same cluster as being equally similar to one
another, and entirely different from objects not in that cluster. In hierarchical and
overlapping representations, more detailed measures of similarity are possible. Be-
cause objects may belong to more than one cluster, various similarity measures
can be constructed by considering the clusters objects have in common, and those
that distinguish them, and combining these sources of similarity and dissimilarity
in different ways.

14.1.3 Psychological Clustering Models

In many fields that use clustering models, most applications have relied on a rela-
tively small range of the possible representational and similarity assumptions. Great
emphasis is given to partitioning approaches like k-means clustering, and various
tree-fitting approaches using hierarchical representations. Sometimes (although not
always) this emphasis comes at the expense of overlapping representations, which
have hierarchical and partitioning representations as special cases.
One field, perhaps surprisingly, that has a long tradition of using overlapping

clustering models is psychology. In cognitive psychology, a major use of clustering
models has been to develop accounts of human mental representations. This is
usually done by applying a clustering model to data that describe the empirically
observed similarities between objects, and then interpreting the derived clusters
as the cognitive features used by people to represent the object. At least as early
as Shepard and Arabie [1979, p. 91], it has been understood that “generally, the
discrete psychological properties of objects overlap in arbitrary ways,” and so
representations more general than partitions or hierarchies need to be used.
Psychological clustering models have also considered a variety of possible similar-

ity processes. In particular, they have drawn a useful distinction between common
and distinctive features [Tversky 1977]. Common features are those that make two
objects with the feature more similar, but do not affect the similarities of objects
that do not have the feature. For example, think of two people with an unusual
characteristic like blue hair. Having this feature in common makes these two people
much more similar to each other than they otherwise would be, but does not af-
fect the similarities between other people being considered who have ‘normal’ hair
colors. Distinctive features, on the other hand, are those that make objects both
having and not having the feature more similar to each other. For example, whether
a person is male or female is a distinctive feature. Knowing two people are male
makes them more similar to each other, knowing two people are female makes them
more similar to each other, and knowing one person is male while the other is fe-



14.1 Introduction 359

male makes them less similar to each other. Using common and distinctive features
allows clustering models to deal with two different kind of regularities: common
features capture the idea of ‘similarity within’, whereas distinctive features capture
the notion of ‘difference between’. In addition, psychological clustering models usu-
ally associate a weight with every cluster, which can be interpreted as measuring
its ‘importance’ or ‘salience’. By combining the weights of common and distinctive
features in various ways, a wide range of similarity assumptions is possible.
A consequence of considering clustering models with great flexibility in both

their representations and similarity measures, however, is that it becomes critical
to control for model complexity. As noted by Shepard and Arabie [1979, p. 98], an
overlapping clustering model that is also able to manipulate the similarity measures
it uses may be able to fit any similarity data perfectly. The possibility of developing
overly complicated clustering representations, of course, conflicts with the basic
goals of modeling: the achievement of interpretability, explanatory insight, and
the ability to generalize accurately beyond given information. In psychology, it is
particularly important to control the complexity of cluster representations when
they are used in models of cognitive processes like learning, categorization, and
decision making. Because the world is inherently dynamic, representations of the
environment that are too detailed will become inaccurate over time, and provide a
poor basis for decision making and action. Rather, to cope with change, cognitive
models need to have the robustness that comes from simplicitly. It is this need for
simple representations that makes psychological clustering models ideal candidates
for minimum description length (MDL) methods.

14.1.4 Overview

This chapter describes the application of modern MDL techniques to a number of
psychological clustering models. The next section provides a formal description of
the clustering models considered, the common and distinctive models of similarity,
and the form of the similarity data from which models are learned. Geometric com-
plexity criteria (GCC) [Balasubramanian 1997; Myung, Balasubramanian, and Pitt
2000] are then derived for the clustering models. As it turns out, these are equivalent
to Rissanen’s [1996] Fisher information approximation to the normalized maximum
likelihood. With the GCC measures in place, two established psychological cluster-
ing models, known as “additive clustering” and “additive trees,” are considered in
some detail. Illustrative examples are given, together with analysis and simulation
results that assess the complexity of these models. Finally, two new psychological
clustering models are described that raise different challenges in measuring and
understanding model complexity.
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14.2 Formal Description of Clustering Models

14.2.1 Similarity Data

Psychological clustering models are learned from similarity data, in the form of
an n × n similarity matrix S = [sij ], where sij is the similarity between the ith
and jth of n objects. Usually these data are normalized to lie in the interval
[0, 1], and often the assumption of symmetry is made so that sij = sji for all
i and j pairs. Similarities are usually based on empirical measures of human
performance, including ratings scales, identification tasks, sorting or grouping
procedures, and a range of other experimental methodologies. It is also possible to
generate psychological similarity data theoretically, using quantitative descriptions
of objects. There are, for example, many methods for measuring the semantic
similarity of text documents (see, e.g., [Damashek 1995; Griffiths and Steyvers
2002; Landauer and Dumais 1997; Lund and Burgess 1996]), based on the words
(or sequences of characters or words) they contain. The pairwise similarities between
all of the documents in a corpus could be used as the data for learning a clustering
representation.
However similarity data are generated, a standard assumption (e.g., [Lee 2001;

Tenenbaum 1996]) is that the similarity between the ith and jth objects comes
from a Gaussian distribution with mean sij , and that the Gaussian distribution for
each pair has common variance σ2. The variance quantifies the inherent precision
of the data, and can be estimated based on an understanding of the process by
which the data were generated. For example, most empirical methods of collecting
similarity data generate repeated measures for the similarity between each pair of
objects, by having more than one person do a task, or having the same person do
a task more than once. Given a set of similarity matrices Sk = [skij ] provided by
k = 1, 2, . . . ,K data sources, the variance of the arithmetically averaged similarity
matrix S = 1

K [
∑

k s
k
ij ] = [sij ] can be estimated as the average of the sample

variances for each of the pooled cells in the final matrix.

14.2.2 Cluster Structures

A clustering model that usesm clusters for n objects is described by a n×m matrix
F = [fik], where fik = 1 if the ith object is in the kth cluster, and fik = 0 if it
is not. When the clusters are interpreted as features, the vector fi = (fi1, . . . , fim)
gives the featural representation of the ith object. Each cluster has an associated
weight, wk for the kth cluster, which is a positive number. Generally, the cluster
structure F is treated as the model, and the cluster weights w = (w1, . . . , wm) are
treated as model parameters.
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Figure 14.2 An example of an additive clustering representation and its associated
similarity matrix.

14.2.3 Common Features Similarity

The common features similarity model assumes that two objects become more
similar as they share more features in common, and that the extent to which
similarity increases is determined by the weight of each common feature. This
means that the modeled similarity between the ith and jth objects, denoted as
ŝij , is simply the sum of the weights of the common features:

ŝij = c+
∑
k

wkfikfjk (14.1)

The “additive constant” c in (14.1) increases the similarity of each pair of objects
by the same amount, and so measures the degree to which all of the objects are
similar to each other. It can be interpreted as the saliency weight of a ‘universal’
cluster containing all objects.
Combining overlapping clusters with common features similarity corresponds to

what is known as the “additive clustering” model in psychology [Arabie and Carroll
1980; Chaturvedi and Carroll 1994; Lee 2002a; Mirkin 1987, 1996; Ruml 2001;
Shepard 1980; Shepard and Arabie 1979; Tenenbaum 1996]. A simple example of
an additive clustering model, and the similarity matrix on which it is based, is
shown in Figure 14.2. Notice that the sums of the weights of the clusters shared by
each pair of objects correspond to their similarity in the matrix.

14.2.4 Distinctive Features Similarity

The distinctive features similarity model assumes that two stimuli become more
dissimilar to the extent that one stimulus has a feature that the other does not. As
with the common features approach, the extent to which similarity is decreased by
a distinctive feature is determined by the weight of that feature. This model can
be expressed as

ŝij = c−
∑
k

wk |fik − fjk| . (14.2)
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Figure 14.3 An example of an additive tree representation and its associated dissimi-
larity matrix.

For hierarchical representations, distinctive features similarity corresponds to
what is known as the “additive tree” model in psychology [Corter 1996; Johnson and
Tversky 1984; Sattath and Tversky 1977; Shepard 1980; Tversky and Hutchinson
1986]. These models are usually applied to dissimilarity data, generated by reversing
the scale of similarity measures. A simple example of an additive tree model, and
the dissimilarity matrix on which it is based, is shown in Figure 14.3. The model
has an additive constant of 30 and seven clusters: one for each of the objects A to
E, with weights 5, 10, 4, 2, and 10 respectively; one for the pair of objects A and
B, with weight 5; and one for the pair of objects C and D, with weight 6. Each
of these clusters corresponds to a node in the tree, and represents a feature that
distinguishes between all of the objects that lie under the different branches coming
from that node. Accordingly, the weights of the clusters can be interpreted as the
length of the edges between nodes. This means that, in Figure 14.3, the length of
the unique path between each pair of objects corresponds to their dissimilarity in
the matrix.
For overlapping representations, distinctive features similarity corresponds to

a discrete version of what is known as the “multidimensional scaling” model in
psychology. Multidimensional scaling models (see, e.g., [Cox and Cox 1994; Shepard
1962; Kruskal 1964]) represent objects as points in a multidimensional space, so
that the distance between the points corresponds to the dissimilarity between the
objects. Discrete multidimensional scaling [Clouse and Cottrell 1996; Lee 1998;
Rohde 2002] restricts the points to binary values, and so most of the distance metrics
commonly used in the continuous version (i.e., Minkowskian metrics) reduce to the
distinctive features model.

14.3 Geometric Complexity of Clustering Models

Traditionally, the complexity of clustering models in psychology has been dealt
with in incomplete or heuristic ways. Most often (see, e.g., [Arabie and Carroll 1980;
Chaturvedi and Carroll 1994; DeSarbo 1982; Shepard and Arabie 1979; Tenenbaum
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1996]), the approach has been to find cluster structures that maximize a goodness-
of-fit measure using a fixed number of clusters. More recently [Lee 2001, 2002b], the
Bayesian information criterion [Schwarz 1978] has been applied, so that the number
of clusters does not need to be predetermined, but the appropriate number can be
found according to the goodness-of-fit achieved and the precision of the data. Both
of these approaches, however, have the weakness of equating model complexity with
only the number of clusters.
In general, both the representational and similarity assumptions made by a clus-

tering model contribute to its complexity. Moving from partitions to hierarchies to
overlapping clusters leads to progressively more complicated models, able to explain
a progressively larger range of data. Controlling for this complexity requires more
than counting the number of clusters, and needs to be sensitive to measures like the
number of objects in the clusters, and the patterns of overlap or nesting between
clusters. Different similarity assumptions control how the weight parameters inter-
act, and so also affect model complexity. In addition, the complexities associated
with representational and similarity assumptions will generally not be independent
of one another, but will interact to create the overall complexity of the clustering
model. For these reasons, it is important that psychological clustering models be
evaluated against data using criteria that are sensitive to the full range of influences
on model complexity.
The goal of psychological clustering is to find the best representation of empirical

similarity data. The defining part of a representation is the cluster structure
F, which encodes fixed assumptions about the representational regularities in a
stimulus environment. Unlike these core assumptions, the saliency weights w and
constant c are parameters of a particular representation, which are allowed to vary
freely so that the representational model can be tuned to the data. In general,
finding the best parameter values for a given set of clusters is straightforward. The
difficulty is finding the best set of clusters. This involves the theoretical challenge of
developing criteria for comparing different cluster representations, and the practical
challenge of developing combinatorial optimization algorithms for finding the best
cluster representations using these criteria .
This chapter relies on the geometric complexity criterion GCC ([Myung, Bala-

subramanian, and Pitt 2000]); see also [Pitt, Myung, and Zhang 2002]) for model
evaluation. In the GCC, goodness-of-fit is measured by the maximum log-likelihood
of the model, ln p (D | θ∗), where p (·) is the likelihood function, D is a data sample
of size N , and θ is a vector of the k model parameters which take their maximum
likelihood values at θ∗. The complexity of the model is measured in terms of the
number of distinguishable data distributions that the model indexes through para-
metric variation. The geometric approach developed by Myung, Balasubramanian,
and Pitt [2000] leads to the following four-term expression:

GCC = − ln p (D | θ∗) + k
2
ln
(
N

2π

)
+ ln

∫
dθ
√
det I (θ) +

1
2
ln
(
detJ (θ∗)
det I (θ∗)

)
,
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where

Iij (θ) = −Eθ

[
∂2 ln p (D | θ)
∂θi∂θj

]
is the Fisher information matrix of the model parameters, and

Jij (θ∗) = −
[
∂2 ln p (D | θ)
∂θi∂θj

]
θ=θ∗

is the covariance matrix of the model parameters at their maximum likelihood
values.
Under the assumption that the similarities follow Gaussian distributions, with

common variance estimated by σ̂2, the probability of similarity data S arising for
a particular featural representation F, using a particular weight parameterization
w, is given by

p (S | F,w) =
∏
i<j

1(
σ̂
√
2π
) exp

(
− (sij − ŝij)2

2σ̂2

)

=
1(

σ̂
√
2π
)n(n−1)/2 exp


− 1

2σ̂2
∑
i<j

(sij − ŝij)2

 ,

and so the log-likelihood is the sum of squared difference between the empirical
data and model predictions, as scaled by the estimated precision of the data. The
first term of the GCC, which measures data-fit, is simply the maximum of this
log-likelihood, corresponding to the maximum likelihood–modeled similarities ŝ∗ij ,
as follows:

− ln p (S | F,w∗) =
1

2σ̂2
∑
i<j

(sij − ŝ∗ij)2 + constant (14.3)

The second term of the GCC for a model with m clusters is found by noting
that it uses m+1 parameters (including the additive constant), and that an n× n
similarity matrix contains n (n− 1) /2 observations, giving

m+ 1
2

ln
(
n(n− 1)

4π

)
. (14.4)

For the common and distinctive similarity models given in (14.1) and (14.2), the
calculation of the second-order partial derivatives

∂2 ln p (S | F,w)
∂wx∂wy

is straightforward, and allows the Fisher information matrix I (w) and the covari-
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ance matrix J (w) to be specified. As it turns out, these two matrices are identical
for all of the clustering models considered here, and so the fourth term of the GCC
vanishes. This makes the GCC identical to Rissanen’s [1996] asymptotic approxi-
mation to the normalized maximum likelihood (see [Grünwald 2005]).
In fact, the two matrices I (w) and J (w) assume a constant value that is

independent of the weight parameters, and is determined entirely by F, which also
simplifies the third term of the GCC. This constant value is conveniently written
as the determinant of an (m+1)× (m+1) “complexity matrix”,G = [gxy], defined
as

gxy =
∑
i<j

eijxeijy ,

where

eijk =

{
fikfjk for common features,

|fik − fjk| for distinctive features.

Using the complexity matrix, and assuming that, since the similarity values are
normalized, the weight parameters range over the interval [0, 1], the third term of
the GCC is given by

ln
∫
dw

√
det I (w) = ln

∫ 1

0

∫ 1

0

. . .

∫ 1

0

√
det

(
1
σ̂2
G
)
.dw1.dw2 . . . dwm+1

=
1
2
ln detG− m+ 1

2
ln σ̂2. (14.5)

Putting together the results in (14.3), (14.4), and (14.5), the GCC for the
clustering models is given as

GCC =
1

2σ̂2
∑
i<j

(sij − ŝ∗ij)2 +
m+ 1

2
ln
(
n(n− 1)
4πσ̂2

)
+

1
2
ln detG+ constant.

Strictly speaking, the GCC requires that a number of regularity conditions be
met. However, Takeuchi [2000] shows that the asymptotic GCC approximation of
the normalized maximum likelihood holds under a wide variety of conditions, and
for a wide variety of models. While we have not checked all of the conditions,
the most important ones (including positive definiteness of the Fisher information
matrix) certainly hold.
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14.4 Established Psychological Clustering Models

Additive clustering and additive trees are by far the most commonly used clustering
models in psychology. In this section, illustrative examples of these models are
provided demonstrating them being fit to similarity data using the GCC, together
with analysis and simulation results based on their complexity matrices.

14.4.1 Additive Clustering

Illustrative Example Lee and Navarro [2002] considered the similarities be-
tween nine colored shapes that combined the colors red, green, and blue with the
shapes circle, square, and triangle. Twenty subjects rated the similarity of all 36
possible object pairs, presented in a random order, on a five-point scale. The final
similarity matrix was arithmetically averaged across subjects, and made symmetric
by transpose averaging.
Figure 14.4 shows the additive clustering representation of these data correspond-

ing to the minimum GCC value, as found using a stochastic hill-climbing optimiza-
tion algorithm [Lee 2002a]. This model explains 99.3% of the variance in the data,
and each of the clusters is readily interpreted as a color or shape. Interestingly,
the weights of the clusters suggest that people assigned relatively greater emphasis
to common color than common shape when judging similarity. The representation
also highlights the need for overlapping clusters, so that the orthogonal color and
shape characteristics of the objects can both be accommodated.

R R R

G G G

B B B

.602

.590

.577

.473 .510 .473

Figure 14.4 Overlapping common features representation, including cluster weights, of
the colored shapes.
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Interpretation of Complexity Matrix The complexity matrix for additive
clustering models is

G =




∑
i<j fi1fj1

∑
i<j fi1fj1fi2fj2 · · · ∑

i<j fi1fj1fimfjm∑
i<j fi2fj2fi1fj1

∑
i<j fi2fj2 · · · ∑

i<j fi2fj2fimfjm
...

...
. . .

...∑
i<j fimfjmfi1fj1

∑
i<j fimfjmfi2fj2 · · · ∑

i<j fimfjm


 .

The diagonal elements,
∑

i<j fikfjk, count the number of object pairs in the kth
cluster, and so measure cluster size. The off-diagonal elements,

∑
i<j fixfjxfiyfjy,

count the number of object pairs that are in both the xth and yth clusters, and so
measure the overlap between clusters.
To make these ideas concrete, observe that the complexity matrix for the repre-

sentation of the colored shapes in Figure 14.4 is

G =




3 0 0 0 0 0

0 3 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3



.

Because each cluster has three objects, and hence three pairs of objects, all of the
diagonal elements are three. Because each pair of clusters either has no overlap or
has one object in common, no pair of clusters shares a pair of objects, and so all of
the off-diagonal elements are zero.

Partitions It is possible to show that, in general, G will be positive definite [Lee
2001, pp. 142-143]. This allows Hadamard’s inequality (see, e.g., [Bellman 1970,
pp. 129–130]) to be applied, so that the determinant is less than or equal to the
product of the main diagonal,

detG ≤
∏
k

gkk =
∏
k

∑
i<j

fikfjk,

with equality occurring when all off-diagonal elements are zero. This suggests
that partitions, which have diagonal complexity matrices, are complicated cluster
structures. There are, however, two important caveats to be placed on the generality
of this result [Navarro 2003]. First, while being a partition is sufficient for a diagonal
complexity matrix, it is not necessary. Since the counts in G are of object pairs,
clusters that have only one object in common also produce zero off-diagonal entries.
The complexity matrix for the colored shapes in Figure 14.4 is a good example of
this. Second, Hadamard’s inequality requires that the product of the main diagonal
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elements remain constant, and so can only be used to compare cluster structures
where the number of object pairs, and hence the number of objects, in each cluster
is the same.
For partitions, or other cluster structures with diagonal complexity matrices, the

determinant is simply the product of the diagonal elements, and so the number
of objects in clusters determines model complexity. In particular, complexity is
decreased by removing an object from a cluster, or by moving an object from a
smaller cluster to a larger cluster.
Both of these results still hold when the universal cluster corresponding to

the additive constant is included. This can be demonstrated by considering the
complexity matrix G+ obtained when incorporating the universal cluster, which is

G+ =

[
G y

yT z

]
,

where z = n (n− 1) /2 is the total number of object pairs, and y is a vector of the
diagonal elements in G. A standard result (see, e.g., [Magnus and Neudecker 1988,
p. 23]) is that the determinant of this augmented complexity matrix can be written
as

detG+ = detG(z − yTG−1y),

and it turns out [Lee 2001, pp. 144–145] that removing objects from clusters, or
moving them from smaller to larger clusters, continues to increase complexity.
Interestingly, the reduction in complexity achieved by making clusters different

sizes has a natural interpretation in terms of Shannon’s [1948] noiseless coding
theorem. This theorem shows that the minimum average message length needed to
convey a structure is approximately given by the entropy of that structure [Li and
Vitányi 1993, p. 71]. From this perspective, a partition where each cluster has the
same number of objects is more complicated because each cluster is equally likely,
maximizing the entropy of the representation and its message length.

Nested Clusters A two-cluster model has complexity matrix

G =

[
a b

b c

]
,

where a ≥ c and b ≤ c. Since detG = ac − b2 is minimized when b = c, the
simplest possible two-cluster model is a strictly nested one. Lee [2001] follows this
observation with an intuitive argument that, given a strictly nested cluster structure
with i clusters, the increase in complexity from adding the (i + 1)th cluster is
minimized by making it also strictly nested. Together, these two arguments lead to
the induction that strictly nested cluster structures are maximally simple additive
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clustering models.
Given a strictly nested cluster structure, the elementary row operation

2
66666664

1 0 0 · · · 0

−1 1 0 · · · 0

−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1

3
77777775

2
66666664

a b c · · · x

b b c · · · x

c c c · · · x
...

...
...

. . .
...

x x x · · · x

3
77777775
=

2
66666664

a b c · · · x

b− a 0 0 · · · 0

c− a c− b 0 · · · 0
...

...
...

. . .
...

x− a x− b x− c · · · 0

3
77777775

shows that detG = (−1)m+1(b − a)(c − b) . . . x. Since a strictly nested model is
restricted to having a > b > c > . . . > x, this means that the complexity of nested
representation is minimized by having each successive cluster encompass one fewer
object pairs than its predecessor.

General Cluster Structures For general cluster structures, Hadamard’s in-
equality suggests two ways of reducing model complexity. The first is to minimize
the number of objects in clusters, since this minimizes the diagonal elements whose
product determines the upper bound on complexity. The second is to introduce
overlap between the clusters, since this creates nonzero off-diagonal elements. In
general, these two strategies conflict with one another, since increasing the overlap
between clusters is often best achieved by increasing their size, and reducing cluster
size will often come at the expense of reducing overlap.
Navarro [2002] reported the results of a simulation study designed to explore how

cluster size and overlap interact to determine complexity. This study used a sample
of 105 randomly generated cluster structures with ten objects and six clusters, and
measured their complexity, average cluster size, and average overlap. The size of a
cluster containing a objects out of the total n = 10 was measured as the proportion
of object pairs that were included, a (a− 1) / (n (n− 1)). Similarly, the overlap
between two clusters containing a ≥ b objects, of which c were included in both,
was measured as c (c− 1) / (b (b− 1)). Figure 14.5 shows the relationship between
size, overlap, and complexity for a representative subsample of 103 of the cluster
structures. Figure 14.6 shows the relationship between overlap and complexity for
the 823 cluster structures with a constant average cluster size of approximately
41.6%. The basic results are that increasing size increases complexity, increasing
cluster overlap decreases complexity, but that the increase due to size outweighs
the decrease due to overlap.

14.4.2 Additive Trees

Illustrative Example Johnson and Tversky [1984, table A1, lower triangular
half] collected similarity data for 18 different ‘risks’, obtained by pooling the ratings
made by subjects for each pair on a nine-point scale. Figure 14.7 shows the additive
tree representation of these data, found using a stochastic search algorithm to
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Figure 14.5 The complexity of a sample of 103 cluster structures with ten objects and
six clusters, shown by crosses as a function of average size and overlap. The projection of
each pair of measures is also shown.
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Figure 14.6 The complexity of a sample of 823 cluster structures with constant average
size and variable overlap.
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Figure 14.7 Additive tree representation of the risk similarity data

minimize the GCC. The internal nodes correspond to clusters of risks that can
be interpreted as (clockwise from top) ‘natural disasters’, ‘technological disasters’,
‘violent acts’, ‘illnesses,’ and ‘accidents’.
It is interesting to compare this representation, which explains about 70% of the

variance in the data, with previous additive tree analyses of the same data [Johnson
and Tversky 1984; Corter 1996]. These previous analyses did not explicitly consider
model complexity, but instead fitted ‘full’ trees with (n− 3) = 15 internal nodes,
explaining about 75% of the variance. Interpretation of these more complicated
trees, however, is only offered for nodes near the top of tree, and basically corre-
sponds to those concepts shown in Figure 14.7. This lack of extra interpretability
suggests that the superior goodness-of-fit achieved by the more complicated trees
does not come from finding additional meaningful regularities in the data.

Interpretation of Complexity Matrix The complexity matrix for additive
tree models is

G =




∑
i<j eij1

∑
i<j eij1eij2 · · · ∑

i<j eij1eijm∑
i<j eij2eij1

∑
i<j eij2 · · · ∑

i<j eij2eijm
...

...
. . .

...∑
i<j eijmeij1

∑
i<j eijmeij2 · · · ∑

i<j eijm


 .



372 Minimum Description Length and Psychological Clustering Models

where eijk = 1 if the kth edge is on the unique path between objects i and j,
and eijk = 0 if it is not. The diagonal elements count the number paths connecting
objects that include each edge. The off-diagonal elements count the number of paths
connecting objects that use each possible pairing of edges.

Extending Star Trees Additive trees with a single internal (nonterminal) node
are called star trees, and have complexity matrix

Gstar =




n− 1 1 1 · · · 1

1 n− 1 1 · · · 1

1 1 n− 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · n− 1



.

If a star tree is extended to have two internal nodes, its complexity matrix becomes

G =

[
Gstar y

yT z

]
,

where z counts the number of paths that pass through the edge between the internal
nodes, and y = (y1, y2, . . . , yn)

T is a column vector where yi counts the number
of paths that pass through both the internal edge and the edge from the terminal
node representing the ith object. The determinant of this complexity matrix can
be written as

detG = detGstar(z − yTG−1
stary),

where

G−1
star =

1
2(n− 1)(n− 2)




2n− 3 −1 −1 · · · −1
−1 2n− 3 −1 · · · −1
−1 −1 2n− 3 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · 2n− 3



.

In the simplest interesting case, the additional internal node is added to a star
tree representing six objects. There are two possibilities, shown in Figure 14.8.
The tree on the left divides the objects into two clusters of three. Here z = 9,
yT = (3, 3, 3, 3, 3, 3), and so detG = 3.6. The tree on the right divides the objects
into a cluster of four and a cluster of two. Here z = 8, yT = (2, 2, 2, 2, 4, 4), and so
detG = 2.2. The tree on the left, with an equal number of objects in each cluster,
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Figure 14.8 The two possible ways of adding a second internal node to a star tree
representing six objects.

is more complicated.
More generally, adding an internal node to a star tree representing n objects

creates one cluster with r objects, and another cluster with the remaining (n− r).
Here z = r (n− r), the first r elements of yT are (n− r) and the remaining (n− r)
elements are r. This results in

detG = r (n− r)
(
1 +

2r (n− r)
(n− 1) (n− 2)

− n

n− 2

)
,

which increases monotonically with r (n− r). This generalizes the six-object result,
showing that dividing any number of objects evenly between the two clusters leads
to the greatest complexity.

General Tree Structures The complexity matrix of an additive tree with m
clusters can be represented as the result of adding (m− 1) clusters to a star tree,
so that

G =

[
Gstar Y

YT Z

]
.

The (m − 1) × (m − 1) matrix Z has both rows and columns corresponding to
edges between internal nodes, counting the number of paths between objects that
include each possible pairing of these edges. The n × (m − 1) matrix Y has rows
corresponding to edges connecting terminal nodes, columns corresponding to edges
between internal nodes, and elements counting the number of paths between objects
that include each possible combination of these internal and terminal edges. This
decomposition allows the determinant to be given as
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Figure 14.9 The relationship between complexity and mean edges per path for all
possible additive trees with ten internal nodes, where each has three terminal nodes.

detG = detGstar det
(
Z−YTG−1

starY
)
,

which depends only on Y and Z for a fixed number of objects.
To explore the relationship between the topology of additive trees and their

complexity, Navarro [2002] generated all possible trees with between five and ten
internal nodes, under the restriction that all internal nodes were connected to two,
three, or four terminal nodes. For a given number of internal nodes, complexity
was observed to increase roughly linearly with the average number of edges in the
paths connecting objects, regardless of the number of terminal nodes. Figure 14.9
shows the relationship for trees of ten internal nodes with three terminal nodes each.
Figure 14.10 shows the most and least complicated of these trees. The basic result
is that broad trees, which have longer average path lengths, are more complicated
than deep trees, which have shorter average path lengths.

14.5 New Psychological Clustering Models

This section presents two new psychological clustering models that extend the
representational possibilities of additive clustering and additive trees. The first
model uses a similarity measure that considers both common and distinctive
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a

b

Figure 14.10 The (a) most complicated and (b) least complicated additive trees with
ten internal nodes, where each has three terminal nodes.

features, while the second moves beyond clustering to incorporate continuous
dimensions in its representations. Both models are demonstrated by applying them
to similarity data under complexity constraints, but analyses of the complexity of
these models have not been made. The study of the complexity of these models is
an important area for future research.

14.5.1 Overlapping Common and Distinctive Features

Tversky [1977] proposed two similarity models combining common and distinctive
features, known as the contrast model and the ratio model. Under the contrast
model, similarity is measured as an additive mixture of common and distinctive
features. Under the ratio model, similarity is measured as the proportion of common
to distinctive features. The ratio model has a natural interpretation in terms of a
Bayesian theory of generalization [Tenenbaum and Griffiths 2001], but the contrast
model is more difficult to interpret, because it treats each cluster as being part
common feature and part distinctive feature. To overcome this difficulty, Navarro
and Lee [2002] proposed a modified version of the contrast model that designates
each cluster as being either a completely common or completely distinctive feature,
but allows both types of cluster in the same model.
Under this “modified contrast model” approach, similarity is measured as

ŝij = c+
∑

k∈CF

wkfikfjk −
∑

k∈DF

wk |fik − fjk| , (14.6)
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where k ∈ CF means that the sum is taken over the common features, and k ∈ DF
means that the sum is taken over the distinctive features. The complexity matrix
G and GCC for this similarity model can be derived in exactly the same way as the
purely common and distinctive cases, by making the appropriate choice in (14.6)
for each cluster.

Illustrative Example Rosenberg and Kim [1975] collected data, later published
by Arabie, Carroll, and DeSarbo [1987, pp. 62–63], measuring the similarities
between 15 common kinship terms, such as ‘father’, ‘daughter’, and ‘grandmother’.
The similarities were based on a sorting task undertaken by six groups of 85
subjects, where each kinship term was placed into one of a number of groups,
under various instructions to the subjects. A slightly modified version of this data
set that excludes the term ‘cousin’ is considered, because it is interesting to examine
how the model deals with the concept of gender, and ‘cousin’ is the only ambiguous
term in this regard.
Table 14.1 describes the overlapping common and distinctive features clustering

found by applying stochastic hill-climbing optimization to minimize the GCC.
The clusters correspond to easily interpreted common and distinctive features.
It has four distinctive features, dividing males from females, once-removed terms
(aunt, nephew, niece, uncle) from those not once-removed, extreme generations
(granddaughter, grandfather, grandmother, grandson) from middle generations,
and the nuclear family (brother, daughter, father, mother, sister, son) from the
extended family. It also has six common features, which correspond to meaningful
subsets within the broad distinctions, such as parents, siblings, grandparents, and
grandchildren. These concepts are common features since, for example, a brother
and sister have the similarity of being siblings, but this does not make those who
are not siblings, like an aunt and a grandson, more similar.
The kinship data provide a good example of the need to consider both common

and distinctive features in the same clustering model. Common features models,
such as additive clustering, are inefficient in representing concepts like ‘gender’,
because they need to include separate equally weighted clusters for ‘male’ and
‘female’. Distinctive feature models, on the other hand, generally cannot represent
concepts like ‘siblings’, where the objects outside the cluster do not belong together.

Complexity Issues The modified contrast model uses both the common and
distinctive similarity measures in (14.1) and (14.2) to model similarity. This means
that, in a way unlike additive clustering or additive tree models, the weight
parameters of the model have different ‘functional forms’ [Myung and Pitt 1997] of
interaction, depending on whether they are associated with a common or distinctive
feature. An interesting model complexity issue raised by combining common and
distinctive features, therefore, relates to the relative complexity of the two different
similarity models. Some preliminary evidence [Navarro 2002, pp. 122–124], based
on simulation studies, suggests that common features increase the complexity of
a model more than distinctive features. Analysis of the complexity matrix for
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Table 14.1 Overlapping common and distinctive features representation of the kinship
terms.

Type Objects in Cluster Weight Interpretation

DF Brother, father, grandfather,
grandson, nephew, son, uncle 0.452 Gender

CF Aunt, uncle 0.298 Adult extended family

CF Nephew, niece 0.294 Child extended family

CF Brother, sister 0.291 Siblings

CF Grandfather, grandmother 0.281 Grandparents

CF Father, mother 0.276 Parents

CF Granddaughter, grandson 0.274 Grandchildren

DF Aunt, nephew, niece, uncle 0.230 Once-removed

DF Granddaughter, grandfather,
grandmother, grandson 0.190 Extreme generation

DF Brother, daughter, father, mother,
sister, son 0.187 Nuclear family

Universal cluster 0.660

the modified contrast model provides an opportunity to understand the basis and
generality of this finding, and is a worthwhile area for further research.

14.5.2 Combining Features with Dimensions

Whatever representational assumptions are made, and whatever similarity measure
is used, clustering models are inefficient when dealing with the inherently continu-
ous aspects of the variation between objects. Most psychological modeling in these
cases uses the “multidimensional scaling” model described earlier, where objects
are represented by values along one or more continuous dimensions, so that they
correspond to points in a multidimensional space. The dissimilarity between objects
is then measured by the distance between their points. While dimensional repre-
sentation naturally captures continuous variation, it is constrained by the metric
axioms, such as the triangle inequality, that are violated by some empirical data.
It has been argued (see, e.g., [Carroll 1976; Tenenbaum 1996; Tversky 1977])

that spatial representations are most appropriate for low-level perceptual stimuli,
whereas cluster representations are better suited to high-level conceptual domains.
In general, though, stimuli convey both perceptual and conceptual information,
and so both dimensional and clustering representations need to be combined. As
Carroll [1976, p. 462] concludes: “Since what is going on inside the head is likely
to be complex, and is equally likely to have both discrete and continuous aspects,
I believe the models we pursue must also be complex, and have both discrete and
continuous components.”
In this spirit, Navarro and Lee [2003] developed a representational model that

combines continuous dimensions with discrete features. Objects take values on a
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Figure 14.11 Representations of the numbers similarity data using the (a) dimensional
and (b) clustering models.

number of dimensions, as well as potentially belonging to a number of clusters.
If there are v dimensions and m features, this means the ith object is defined by
a point pi, a vector fi, and the cluster weights w = (w1, . . . , wm). The similarity
between the ith and jth objects is then modeled as the sum of the similarity arising
from their common features, minus the dissimilarity arising from their dimensional
differences under the Minkowskian r-metric, so that

ŝij =

(
m∑

k=1

wkfikfjk

)
−
(

v∑
k=1

|pik − pjk|r
) 1

r

+ c.

Illustrative Example Shepard, Kilpatric, and Cunningham [1975] collected
data measuring the “abstract conceptual similarity” of the numbers 0 through 9.
Figure 14.11(a) displays a two-dimensional representation of the numbers, using the
city-block metric, found by multidimensional scaling. This representation explains
only 78.6% of the variance, and fails to capture important regularities in the raw
data, such as the fact that the number 7 is more similar to 8 than it is to 9, and
that 3 is much more similar to 0 than it is to 8. Figure 14.11(b) shows an eight-
cluster representation of the numbers using the same data, found by Tenenbaum
[1996] using additive clustering. This representation explains 90.9% of the variance,
with clusters corresponding to arithmetic concepts (e.g., {2, 4, 8} and {3, 6, 9})
and to numerical magnitude (e.g., {1, 2, 3, 4} and {6, 7, 8, 9}). While the clusters
are appropriate for representing the arithmetic concepts, a ‘magnitude’ dimension
seems to offer a more efficient and meaningful representation of this regularity than
the five clusters used in Figure 14.11(b).
Navarro and Lee [2003] fitted combined models with between one and three

dimensions and one and eight clusters to the similarity data. Because analytic
results for the complexity of the combined model are not available, the Bayesian
approach of selecting the most likely model given the data was used (e.g., [Kass
and Raftery 1995]), based on an approximation to the log posterior found by
importance sampling [Oh and Berger 1993]. The best representation under this
measure contains one dimension and four clusters, explains 90.0% of the variance,
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Figure 14.12 Representation of the numbers similarity data using the combined model
with one dimension (left) and four clusters (right).

and is shown in Figure 14.12. The one dimension almost orders the numbers
according to their magnitude, with the violations being very small. The four clusters
all capture meaningful arithmetic concepts, corresponding to “powers of two,”
“multiples of three”, “multiples of two” (or “even numbers”), and “powers of three.”

Complexity Issues The combined model also raises interesting complexity issues
related to the functional form of parameter interaction. The coordinate locations
of the points interact according to the Minkowskian distance metric that is used
to model similarity. In psychological applications of multidimensional scaling, par-
ticular emphasis has been placed on the r = 1 (city-block) and r = 2 (Euclidean)
cases because of their relationship, respectively, to so-called ‘separable’ and ‘inte-
gral’ dimensions [Garner 1974]. Pairs of separable dimensions are those, like shape
and size, that can be attended to separately. Integral dimensions, in contrast, are
those rarer cases like hue and saturation that are not easily separated. Metrics with
r < 1 have also been given a psychological justification [Gati and Tversky 1982;
Shepard 1991] in terms of modeling dimensions that ‘compete’ for attention. Little
is known about the relative complexities of these different metrics, although there
is some simulation study evidence [Lee and Pope 2003] that the city-block metric
is complicated, because it allows multidimensional scaling models to achieve high
levels of goodness-of-fit, even for data generated using another metric. There is a
need, however, for much more detailed analysis of the complexity of the combined
model.

14.6 Conclusion

Clustering aims to find meaningful and predictive representations of data, and so is a
fundamental tool for data analysis. One of the strengths of clustering models is that
they potentially allow for great representational flexibility, and can accommodate
sophisticated measures for assessing the relationships between objects. The price
of these freedoms, however, is the need to control their complexity, so that they
capture the regularities underlying data that are important for explanation and
prediction.
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This chapter has attempted to meet the challenge by treating clustering models as
statistical models, and using the geometric complexity criterion for the statistical
inference of model selection. Theoretically, this statistical approach offers inter-
pretable measures of the complexity of clustering models. The results for additive
clustering and additive tree models are good examples of this. Practically, the sta-
tistical approach offers a useful way of generating models from data. It compares
favorably with the collections of heuristics that must otherwise be used to deter-
mine basic properties of a model, such as how many clusters it uses. The illustrative
applications of the additive clustering and additive tree models are good examples
of the sorts of representations that can be learned from data under complexity
constraints. Finally, this chapter has also attempted to demonstrate the potential
for new clustering models, and the new complexity issues they raise. Clustering
models, like all good scientific models, should be developed and extended boldly,
seeking general and powerful accounts of data, but also need to be evaluated and
differentiated carefully, taking account of all of the complexities bound up in their
generality and power.
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Perception involves inferring the structure of the environment fromsensory data.
As in any process of inductive inference, there are infinitely many hypotheses
about environmental structure that are compatible with sensory data. Can the
perceptual system use the minimum description length (MDL) principle, which
prefers hypotheses that provide a short explanation of the data, to choose between
these competing explanations? This viewpoint has a long history in psychology,
which can be traced back to Ernst Mach and to Gestalt psychology. This chapter
considers how the MDL approach relates to apparently rival principles of perception,
what types of empirical data the approach can and cannot explain, and how an MDL
approach to perception might be augmented to provide an empirically adequate
framework for understanding perceptual inference.

15.1 What is the Simplicity Principle?

Since Helmholtz [1925], many perceptual theorists have viewed the problem of
understanding sensory input as a matter of inference (e.g., see [Gregory 1970; Marr
1982; Rock 1981]). That is, they have viewed the problem of perception as an
abstract inferential problem of finding the “best” explanation of the sensory input.
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The very viability of this highly abstract approach may seem in doubt: Can we really
abstract away from the wealth of experimental results concerning the functioning
of the perceptual system, and the detailed knowledge that is being acquired about
the neurophysiology of the perceptual processing systems? The assumption in this
chapter is that viewing perception as inference, and attempting to understand
what kind of inference principles the perceptual system may use, is that it may
provide a theoretical framework in which to organize and understand experimental
and neuroscientific findings. Unless we understand, on an abstract level, what the
perceptual system is doing, we have little hope of making sense of the psychophysical
and neural data concerning how the perceptual system functions.
So, taking this abstract point of view, the task of the perceptual system is to

find the “best” explanation of sensory input, in terms of the objects, surfaces, and
lighting that may have given rise to that input. But what does it mean to be the
best explanation? Clearly it is not just that the explanation fits the sensory input—
because in perceptual problems there are invariably vast numbers of interpretations
that fit the sensory data. Something other than mere “data fit” must differentiate
the one (or, for rare ambiguous inputs, more than one) plausible interpretation from
the plethora of implausible interpretations.
The minimum description length (MDL) principle discussed in this book pro-

vides an attractive framework for addressing the choice of interpretations. If the
perceptual system follows the MDL principle, it should prefer interpretations that
can be used to provide short descriptions of sensory data. From a purely abstract
standpoint, an MDL approach to perception has a number of attractions:

The MDL principle is widely and successfully used in statistics and machine
learning, to tackle practical tasks where structure must be found in data (see,
e.g., [Gao, Li, and Vitányi 2000; Quinlan and Rivest 1989; Kontkanen, Myllymäki,
Buntine, Rissanen, and Tirri 2005]).

“Ideal MDL” [Vitányi and Li 2000] can be justified on theoretical grounds as
choosing explanations of data that give reliable predictions, given quite general
assumptions.

MDL is very closely related to Bayesian inference methods [Chater 1996; Vitányi
and Li 2000] which are widely used in computational theories of perception [Knill
and Richards 1996]

MDL-based methods have been applied successfully in computational models of
perception [Mumford 1996; Bienenstock, Geman, and Potter 1998]

These considerations suggest that the perceptual system would do well to use the
MDL principle to analyze perceptual input. The question addressed here is: Does
it? Or, more precisely, to what extent, and in what ways, does the MDL principle
provide a productive framework for theorizing about perception?
This chapter has the following structure. The first section, The power of sim-

plicity: MDL-style theories of perception, briefly outlines the MDL-type viewpoint
on perception. We also describe the kinds of perceptual phenomena that this ap-
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proach has been viewed as explaining. The second section, Simplicity is not enough:
Empirical challenges for MDL theories of perception, we describe various classes
of empirical phenomena that appear to pose difficulties for an MDL approaches
to perception. The third section, Where next? Prospects for an MDL approach
to perception, considers how these challenges might be addressed within an MDL
framework.

15.2 The Power of Simplicity: MDL-Style Theories of Perception

The physicist and philosopher Ernst Mach [1959] proposed that the goal of per-
ception, and for that matter the goal of science, is to provide the most economical
explanation of sensory data. Thus, for example, the postulation of rigid, opaque
objects may provide an economical explanation of the flow of sensory input as an
observer moves through the environment. As the observer moves, the sensory input
does not change in a random way—rather it unfolds predictably, given the princi-
ples of geometry and optics. The postulation of a specific three-dimensional (3D)
environment provides a concise summary of these perceptual inputs. Indeed, this
3D structure also simultaneously explains other features of sensory inputs, most
notably the patterns of relative disparity between the two eyes of the locations
of the same objects. Common sense suggests that the world has a 3D structure,
and that this gives rise to these and many other“depth cues” in the sensory input.
Mach’s perspective inverts this logic : the reason that we perceive a 3D world of
depth at all is that this interpretation provides such an economical summary of
many aspects of sensory input.
A very different example is that ofcolor. The spectrum of light that is reflected

from a surface depends on the reflectance function of the surface and the spectrum
of the incident light. So the spectral properties of light bouncing off a particular
green apple will differ enormously depending on the illuminant: whether the apple
is in sunlight, shade, or artificial light. Yet its perceived color under these widely
varying circumstances is roughly constant [Shepard 1992]. Crudely, perceived color
captures aspects of the surface reflectance function of the individual surfaces and
objects in the scene and this is independent of the illuminant. According to the
principle of economy, the invariance of color is justified because it serves to provide
an economical description of the spectra across a whole scene. The spectrum of the
illuminant, combined with illuminant-invariant reflectance functions for different
kinds of object or surface in the scene, provides a brief explanation of the apparently
chaotic spectral variation across different parts of a scene, and over changes in
illumination.
A third class of examples are the“laws of form” studied by the Gestalt psychol-

ogists (e.g., Koffka [1935]). Consider, for example, the law of common fate—that
a collection of items that move coherently are seen as parts of a single object or
surface. This provides an economical explanation of the movements of all the items
involved—because rather than having to describe the movement of each item sepa-
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rately, the motion of the whole group is specified at once. In the same way, grouping
by proximity, and by similarity, provides an economical way of encoding the shape,
color, or other properties of many items simultaneously.
To state the same point more generally, one goal of perception is to find pat-

terns in sensory input, and the MDL principle provides an elegant way of deciding
between alternative patterns—by favoring patterns that support economical de-
scriptions of sensory input.
In informal terms, the MDL approach to perception was proposed, as we have

noted, by Mach. Mach’s viewpoint was an example of positivism—roughly, the idea
that the goal of science is to capture regularities in sensory experience, with the goal
of making predictions about future sensory experience. A common sense version of
this viewpoint is to claim that by finding the simplest explanation of past sensory
experience, the perceiver or scientist is also likely to gain insight into how the real
world works: what objects it contains, the nature of their causal powers, and so
on. Mach took the more radical view that such apparent insight is illusory. Indeed,
for Mach, that the idea that the goal of perception or science might be to find out
about the nature of the world is conceptually incoherent. Unusually, for a leading
physicist working well into the first part of the twentieth century, he did not believe
in the reality of theoretical postulates of physics, such as atoms-these were merely
convenient fictions for calculating relations between sensory experiences.
Mach’s type of antirealist viewpoint, emphasizing the epistemological primacy

of sensation, has not become philosophically unpopular, partly because it seems
impossible to reconstruct a world of everyday objects, or scientific theoretical
terms, from the language of sensation; and partly because the psychological notion
of sensation has come to seem epistemologically problematic as an indubitable
foundation for knowledge, given that psychological research has revealed how poorly
people can access their own phenomenal experience [Dennett 1991; Laming 1997;
O’Regan and Noe 2001]. This does not imply that Mach’s view of the goal of
perception and science, as providing economical descriptions of sensory experience,
is misguided. The last twenty years has seen a substantial revival of interest in
Bayesian models in the philosophy of science [Earman 1992; Horwich 1982; Howson
and Urbach 1993]; and we shall see in the next section that the simplicity principle
and Bayesian inference are closely related. Moreover, there may be advantages to
adopting a simplicity-based view of scientific inference, over and above the strengths
of the general Bayesian framework [Chater and Vitányi 2003]. Overall, I suggest that
to the extent that there is an analogy between scientific inference and perception,
as Mach assumed, this analogy may strengthen, rather than undermine, the case
for a simplicity principle in perception.
After Mach’s discussion, the case for a simplicity principle in perception was

developed further by the Gestalt psychologists, in particular in relation to their
formulation of laws of form, mentioned briefly above. More formal attempts to
understand perception in terms of economy of representation were put forward
with the development of information theory, and the developmental of formal
theories of visual representation. For example, some theorists attempted to test
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directly the assumption that the perceptual system prefers short codes, where these
are measured by optimal code lengths, given assumptions about the probability
distributions over sensory inputs [Attneave 1959; Attneave and Frost 1969; Garner
1962; Garner 1974; Hochberg and McAlister 1953]. The theoretical starting point
of this approach is communication theory [Shannon 1948]. This theory specifies,
among other things, the code lengths that produce the briefest expected code
length required to encode the output of a probability distribution. But measuring
complexity relative to a probability distribution is problematic—because it ignores
the instrinsic complexity of the objects being perceived. For example, suppose that
in an experimental context, a participant may be presented either with a black
square on a white background or a high-definition forest scene. If these have the
same probability (of one half), then from an information-theoretic standpoint they
have the same complexity. But this does not capture the very different perceived
complexity of the two stimuli (see [Miller 1967] for more general reflections on
difficulties with applying standard information theory to cognition). Moreover,
outside the laboratory, we face the problem that the probability distribution over
natural images is unknown—indeed, to define it would require knowledge of the
full range of regularities that govern the visual world. Hence it is unclear that
the information-theoretic approach is applicable, even in principle—because it
bases codes on probabilities, and probabilities seem either irrelevant (as in our
experimental example) or unknown.
An attractive alternative approach is to take coding, rather than probability, as

the basic notion. This is the idea behind an MDL approach to perception explored in
this chapter. This approach immediately deals with the case of equiprobable stimuli:
the black square can be coded briefly; the forest scene will require a code of enor-
mous complexity. The primacy of coding, rather than probability, also underpins a
psychological research tradition that developed in parallel to the mathematical for-
mulation of MDL: structural information theory [Buffart, Leeuwenberg, and Restle
1981; Restle 1970; Restle 1979; Van der Helm and Leeuwenberg 1996; Van der Helm
2000]. The aim of structural information theory is to develop a theory of represen-
tation for simple visual inputs, according to which the visual system systematically
prefers interpretations that correspond to short descriptions. This approach has
been concerned with a particular, and deliberately quite limited, set of coding lan-
guages and visual stimuli, so that concrete predictions can be made. In this chapter,
I am concerned instead with the general claim that the perceptual system chooses
the simplest representation, without commitment to a particular coding language
for perceptual input. The key idea, then, is that we consider the possibility that
the perceptual system aims to find the shortest representation, given some coding
system for perceptual input.

15.2.1 Simplicity and Bayesian Inference

In the literature on perceptual organization [Pomerantz and Kubovy 1986], the
simplicity principle is typically contrasted with the likelihood principle, that the
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perceptual system should choose the organization that corresponds to the envi-
ronmental structure that has the highest probability, given the data. This type of
viewpoint was proposed by Helmholtz [1925], and has been developed in paral-
lel with the simplicity-based approach, being advocated by vision scientists [Knill
and Richards 1996], as well as researchers on computational theories of human
and machine vision [Geman and Geman 1984; Hinton, Ghahramani and Teh 2000;
Mumford 1996].
Recent formulations of the likelihood approach use a Bayesian framework. They

take the goal of perception to be to choose the perceptual hypothesis or explanation,
H , which maximizes P (H |D) for perceptual data, D. Using an elementary rule of
probability theory, Bayes’ theorem, this is equivalent to choosing the H which
maximizes P (D|H)P (H). This means that hypotheses about the organization of
the stimulus are favored to the extent that they predict the data well (i.e., P (D|H)
is high), and that also have high prior probability (P (D) is high).
The hypothesis, H , that maximizes this term is, of course, the same H that

maximizes the logarithm of this term; and this is also the H that minimizes the
negative of the logarithm of this term, which can be written

− log2 P (H)− log2 P (D|H).

Now by Shannon’s coding theorem from information theory [Cover and Thomas
1991], we know that an optimal (binary) code length for a probability, p, is log2 p.
Hence we can interpret the above terms as code lengths:

codelength(H) + codelength(D|H)

Putting all this together, we can conclude that the hypothesis, H , that maximizes
likelihood can also be viewed as minimizing the code length that the hypothesis
provides for the data, where that hypothesis is expressed as a two-part code. That
is, the hypothesis that satisfies the likelihood principle also satisfies the simplicity
principle, where simplicity is interpreted in terms of code length. This heuristic
argument suggests that the simplicity and likelihood principles can be viewed as
equivalent [Chater 1996; Mumford 1996]. Indeed, applying theoretical results on
the relationship between a version of “ideal” MDL and Bayesian inference [Vitányi
and Li 2000], it is possible to prove a “mimicry” theorem [Chater, Vitányi, Olivers,
and Watson 2005]. It turns out that, for any “computable” coding language (where
this is quite a mild restriction) there is a “dual” probability distribution. This
dual probability distribution has the property that, for any data whatever, the
hypothesis which assigns that data the shortest length using that specific coding
language is also the hypothesis with the highest probability, in the dual probability
distribution. Again subject to mild restrictions, the converse result holds. This
mimicry theorem implies that any specific version of the simplicity principle can
always be reconceptualized as a specific version of the likelihood principle, and
vice versa. From this perspective, it is not surprising that the century-long debate
between the simplicity and likelihood principles has not been resolved successfully
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by empirical evidence—because any evidence that can be explained by an account
using one principle can be recast by an account using the other. 1.
The close relationship between Bayesian and MDL viewpoints in perception is

particularly interesting, given the large amount of theoretical [Knill and Richards
1996], computational [Geman and Geman 1984], neuroscientific [Blakemore 1990;
Rieke, Warland, de Ruyter van Steveninck, and Bialek 1997], and psychological
[Weiss 1997] work that takes seriously the possibility that perception operates
by Bayesian inference. Below, we shall see relations between issues that face the
MDL approach to perception with related issues that have been considered in the
probabilistic framework.

15.3 Simplicity is Not Enough: Empirical Challenges for MDL Theories of
Perception

We have considered the prima facie attractions of an MDL approach to perception.
But to understand both the principle and the challenges that it faces as a theoretical
framework for perceptual theory requires facing some of the areas in which the
approach does not presently seem to be adequate. In this section, we consider three
challenges in turn: the principle of least commitment, causality and independence,
and representation and process constraints.

15.3.1 The Principle of Least Commitment

In perceiving a stimulus, the visual system delivers a range of representations that
abstract away, to varying degrees, from the details of the specific stimulus that is
presented. For example, suppose that we see a somewhat noisy picture of a black
square on a white background (Figure 15.1a). The perceptual system presumably
represents this as a black square; and, indeed, more abstractly, as a square (Figure
15.1b). Accordingly, it will be classified as highly similar to other noisy, or less
noisy, stimuli depicting squares (e.g., Figure 15.1c). Moreover, the orientation and
size of the square may be separately abstracted (or perhaps thrown away) —
although if the square were aligned such that its adjacent corners, rather than

1. There are still some possible controversies surrounding the traditional debate between
simplicity and likelihood, however [Van der Helm 2000; Chater et al. 2005]. At an
algorithmic level, one or other framework might appear more natural—for example, if
it turns out that the brain carries out empirical sampling from probability distributions,
for example, using Markov chain Monte Carlo, Gibbs sampling, or related methods, as
is embodied in many neural network models, then arguably a probabilistic formulation
might seem more natural. Moreover, in statistics, the relationship between MDL-type
techniques and Bayesian methods is much debated. Some theorists treat these methods as
identical [Wallace and Freeman 1987]; others treat MDL as fundamentally different from,
and logically prior to, the Bayesian approach [Rissanen 1986, 1989].
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its sides, are aligned with the perceptually salient frame of reference, then it may
not be categorized as a square at all, but as a diamond (Figure 15.1d). On the
other hand, of course, one could imagine instead that the perceptual system might
use much less abstract codes—specifically, it might have a shape template for the
precise, although stupendously arbitrary, details of that particular square. And then
specifying a particular perceptual input, such as Figure 15.1a, might be merely a
matter of specifying a size, rotation, translational location, and luminance,2 for
this extraordinarily precise template. Going to the opposite extreme, one could
imagine that the perceptual system might choose instead an overgeneral model of
its perceptual image. For example, it might use a “null” model that would assign
equal probability to all possible gray-level image configurations, whether they depict
black squares, faces, or pure random noise.

a b c d 

Figure 15.1 Levels of abstraction in processing a simple perceptual stimulus. (a) shows
a noisy black square, which the perceptual system may, among other things, represent
simple as a square (b), abstracting away from color, irregularities, and so on. (c) shows
various other noisy or imperfect squares that may be classified with (a), at this level of
abstraction. On the other hand, a change of orientation in relation to the natural frame of
reference may lead an apparently very similar figure to be classified, instead, as a diamond
(d).

From the point of view of understanding perceptual representations from the
point of view of MDL, it is important that we have some way of explaining why
“sensible” perceptual representations are to be preferred over these inappropriate
types of overspecific or overgeneral representation.
Overgeneral models can straightforwardly be eliminated by MDL—because they

do not embody all the constraints that the stimulus actually conforms with, they
require excessive code length. To take a trivial example, if an image consists of
uniform black, then it will have a near-zero description length in terms of a sensible
model that expresses this uniformity. But in terms of the null model that we
mentioned above, each “pixel” must be encoded separately, so the resulting bit-
string will be enormously large (and no shorter than the code for a white noise,
which would be perceived, of course, very differently).

2. We ignore color here to avoid complications.
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Overspecific models, by contrast, are more problematic. Suppose that we have
some particular set of data (in this case, visual input). Consider the ultimately
overspecific model that predicts precisely that these, and no other, possible data
can occur. This model provides a maximally efficient representation of the data—no
information at all is required to encode the data, given the model. But this is only
achieved by putting all the complexity into the specification of the model itself. But
doing this does not increase the overall complexity of the encoding of the data—
because, after all, encoding this hyperspecific model just is a matter of encoding
the data, and hence the minimal code for specifying the model will be a minimal
code for the data. More generally, there will typically be many overspecific models
that attain minimal code length, by including essentially arbitrary features of the
data as part of the model itself, and yet still function as minimal codes for the
data. Intuitively, this family of models is such that the data are typical, and hence
uncompressible, given these models. This constraint holds because if the data are
not typical, then the data contain patterns that the model does not describe, and
hence the models provide an inefficient representation of the data. That is, these
models must extract all the structure from the data—but the problem of overgeneral
models is that models can also encode additional, essentially arbitrary, information
about the data.3

In statistical theory, a statistic that captures all the structure in the data is
called a sufficient statistic. Following a suggestion of Kolmogorov, there has been
recent interest in a generalization of this idea, which views models as Kolmogorov
sufficient statistics (KSSs), a notion that can be formally captured [Cover and
Thomas 1991; Gács, Tromp, and Vitányi 2001]. There is frequently a number of
KSSs for any given data.4 Intuition suggests that the KSS of most interest is that
which makes the most modest claims about the data (i.e., where the model has
the shortest code length, such that the data remain typical with respect to that
model). This is the Kolmogorovminimal sufficient statistic (KMSS). Perhaps, then,
an interesting idealization of perception is as searching not merely for short codes
for visual input, but for the KMSS for that input. Thus we have an interesting
principle of least commitment for perceptual theory5: to derive only that structure
from the stimulus that is necessary to explain the data, and no more.
Consider, for example, Figure 15.2. The figure in (a) is perceived as a wire-frame

cube with rigid joints. On the other hand, the joints of the figure in (b), which

3. In practical MDL, the focus is often on the code length associated with specifying the
parameters in a model to an appropriate level of precision from which to predict the data,
rather than on the code lengths of the type of model itself. If used without caution, this
approach will favor overspecific models. In practice, this is rarely a problem, as overspecific
models, unless chosen post hoc, will almost always be overspecific in the wrong ways, and
hence encode the data poorly.
4. A recent important result by Vereshchagin and Vitanyi [2002] shows, remarkably, that
the number of KSSs for any data has some, presumably very large, finite bound.
5. This term is used in a different, but perhaps related, context by Marr [1982].
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a b 

Figure 15.2 Illustration of the principle of least commitment. In (a) the highly regular
2D projection can be explained on the assumption that we are viewing a rigid cube. If the
structure is nonrigid (e.g., a frame of rigid rods, attached by loose, flexible joints), then
it is a causally inexplicable co-incidence that the rods happen to align to produce a 2D
projection consistent with the projection of a rigid cube. The perceptual system disfavors
interpretations that involve such causally inexplicable coincidences. In (b), by contrast, a
nonrigid interpretation is quite natural (although joints can also be interpreted as rigid).

a b c 

Figure 15.3 Simplicity and rigidity constraints. In (a), the alignment between the two
straight lines is interpreted by the perceptual system as significant. That is, the lines are
viewed as part of a single rod, occluded by the ellipse. Thus, for example, it seems natural
to presume that if one rod were moved by force, the other would also move. That is,
the lines are not perceived as merely aligned, but causally connected. This connection
is weaker in (b), where the rods are still nonaccidentally related, by symmetry; and is
weakened still further in (c) where there is no simple spatial relationship between the two
rods.

is perceived as irregular, are perceived as potentially flexible. In the former case,
the rigidity assumption is necessary, because if joints are flexible (and hence the
whole figure is “collapsible,” then it is pure coincidence that the shape happens
to be aligned as a cube. The cube alignment is hence not typical with respect
to a nonrigid model, which can be rejected. By contrast, in the latter case, the
commitment to rigid joints is unnecessary, and hence, by the principle of least
commitment we have described, it is not made. Similarly, Figure 15.3 shows how
the strength of the interpretation of attachment between two linear bars depends on
their alignment. However misaligned they are, they could be attached (any kind of
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shape linking them could be present, but occluded by the oval). But the perception
of attachment is only present to the degree that this provides a short encoding of
the data; if the bars were specified independently, their alignment would be mere
coincidence.6

We have considered how wildly overgeneral and overspecific models may be
eliminated. But this still leaves a huge space of intermediate models. Ultimately, one
might hope that from studying the properties of natural images to which the visual
system is exposed might provide predictions concerning the nature of the hierarchy
of representational levels that are revealed by neuroscientific and psychological
research (although, of course, it is unlikely that MDL-type constraints are the only
constraints on the perceptual system—one would expect, for example, that the
nature of the specific biological hardware will favor some kinds of representation
over others [Chater and Oaksford 1990]).
We have also considered only the case where the perceiver has access to a sin-

gle perceptual input (although this input might be of arbitrary size and temporal
duration). But frequently, we do not want to treat the perceptual input in this unan-
alyzed way—instead, it frequently seems appropriate to view the input as consisting
of several independent perceptual inputs, which must be encoded separately— for
example, several different views of the same object, from different vantage points;
or views of several different objects from the same category (e.g., views of various
different dogs). To the extent that we can analyze the perceptual input in this way,
we can further resolve the problem of overgeneral models. This is because an over-
general model fails to explain why multiple, discrete chunks of data all fall within
a smaller category. That is, the overgeneral category animal may be eliminated as
a hypothesis explaining what one is likely to see when visiting a dog show, because
it fails to explain why all the animals encountered have so much more in common
than would be expected of a typical selection of animals—and this leads to exces-
sively long codes for the representation of the specific animals seen. By contrast, the
category dog captures these regularities neatly. But we can also readily deal with
overspecific models—because multiple data points (multiple examples of dogs) will
have a low probability of fitting an overspecific category. If the first dog I encounter
when visiting the dog show is a dachshund, I may impute an overspecific hypothe-
sis. But once I see other dogs, it is highly likely that I will see non-dachshunds and
hence that this overspecific hypothesis can be eliminated. More generally, similar
considerations may help explain how the interpretation of a particular item can
be modified by the presence of other items. For example, an apparently arbitrary
orientation of a square will suddenly seem significant in the presence of other items
with this same orientation; an apparently arbitrary pattern of markings may sud-
denly become salient if this is repeated (just as an artist’s scrawled signature may
become salient, upon seeing it in several paintings). That is, some of the ambiguity

6. Strictly, this point relates to our next topic—that MDL can only exploit causally
explicable regularities.
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in determining how to interpret a specific object may be resolved by comparing
it with other objects. If, as some theorists suggest, specific instances or exemplar
information about past perceptual inputs are stored in memory [Hintzman 1986;
Nosofsky 1991], there may be considerable scope for effects of this kind.
This point raises an interesting theoretical question concerning the granularity

at which we consider sensory input in analyzing perception. At one extreme, the
entire history of sensory stimulation might be treated as a single input, to be
compressed; at the other extreme, very spatially and temporally local chunks of
sensory information may be considered separately. This question of granularity
remains an interesting issue for future research (see also Hochberg [1982] for related
discussion). The possibility of breaking sensory input into discrete chunks, which
must be encoded separately, also raises the possibility of applying the simplicity
principle in perception to categorization—the considerations that we have just
described form the basis for a theory of how categories might be learned from
samples of their instances, using a simplicity principle. I do not develop these
ideas here, but note that simplicity-based ideas have been pursued in building
psychological models of both supervised [Feldman 2000] and unsupervised [Pothos
and Chater 2002] categorization.
In this subsection, I have argued that merely finding short descriptions of sensory

input is not enough. The perceptual system must also be able to separate genuine
structure from mere “noise.” At a technical level, the Kolmogorov sufficient statistic
appears to be a valuable tool for understanding how this separation might occur;
and indeed, the hierarchy of Kolmogorov sufficient statistics for sensory input might
even relate to the hierarchy of representational levels computed by the perceptual
system.

15.3.2 Causality and Independence

Consider the three projections of a cube, shown in Figure 15.4. The rightmost
projection (c) is readily interpreted as a cube. The leftmost projection (a) is most
naturally perceived as a ‘pinwheel’—although it is the projection of a cube viewed
precisely along an axis through diagonally opposite vertices. The middle figure, (b),
is viewed from a slightly skewed version of this viewing angle—but so that one pair
of axes is still aligned. This is slightly easier to interpret as a cube than (a), but is
most naturally interpreted in two dimensions as two connected diamonds.

A traditional puzzle in the interpretation of 2D line drawings is that each line
drawing could be generated by an infinite number of 3D structures. How does the
perceptual system decide on a particular interpretation out of this infinite array
of options? We assume that MDL can answer this puzzle: the preference for a
cube interpretation, in, say, Figure 15.4, arises because the cube is simpler than
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a b c 

Figure 15.4 Viewpoint dependence and the perception of projections of a cube. This
figure shows three projections of a wire-framed cube. The first (a) is seen from a viewpoint
according to which two diagonally opposite vertices are in the same line of sight. This is
a highly coincidental viewpoint, and the perceptual system disfavors such coincidences.
Instead, (a) is perceived as a flat pinwheel. (b) is also projection of a cube from a
coincidental viewpoint: two adjacent sides of the cube lie on the same line of sight. (b)
is also not readily viewed as a cube, but as a flat structure composed of two diamonds,
joined by horizontal lines. A slight misalignment between adjacent sides (c) reduces the
coincidence; and also eliminates any simple alternative description in terms of a 2D
pattern. Thus, (c) is readily viewed as a projection of a cube.

alternative, less symmetric, polyhedra.7 But Figure 15.4 illustrates a more difficult
problem—that some 2D projections of a cube are more readily interpreted, not as
projections of a cube, but as 2D patterns.
This is prima facie puzzling for the MDL approach, because a cube seems to

be a rather efficient way of specifying, say, the pinwheel pattern. We need merely
specify that the cube is viewed so that two adjacent corners are precisely aligned
with the axis of view to obtain the appropriate figure.8 Though this presumably
corresponds to a short code, it relies on a striking coincidence—in this case,
concerning the precise alignment of the cube in relation to the viewer. There is
a large class of cases of this kind, and theorists in computer vision and perception
have proposed that the perceptual system dislikes interpretations that depend
on coincidences of viewing angle. Constraints of this kind are known as generic
viewpoint constraints [Biederman 1985; Binford 1981; Hoffman 1998; Koenderink
and van Doorn 1979]. But from an MDL viewpoint, constraints that are viewer-
dependent can, nonetheless, lead to short descriptions, and therefore it does not
seem that the MDL approach alone can readily capture the perceptual system’s
tendency to avoid interpretations that rely on precisely specifying a viewpoint.

7. Symmetric figures have shorter codes because they have fewer degrees of freedom.
8. Aside from the obvious further parameters concerning size, orientation, location, type
of lines used; but these must be specified, whatever underlying model is used for the
geometric structure of the stimulus.
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a b 

Figure 15.5 Co-incidences and the interpretation of shadows. This figure illustrates how
the interpretation of a light bar as the shadow of a darker tower (a) is over-ridden when
there is a patterned “path with paving slabs” that precisely coincides with this light bar
(b). Intuitively, the perceptual system is biased against co-incidences; if the light bar is
a shadow, then it is a striking co-incidence that it happens to line up precisely with the
black outlines of the path. Therefore, in (b), the shadow interpretation is disfavored.

Figure 15.6 Coincidence and transparency. In the left box, the simplest interpretation
is that a transparent “spectacle-shaped” object (consisting of patches C and D) lies
over a pair of squares, one light gray and one black (A and B). In the right box,
this transparency interpretation is impeded, because it involves a coincidental alignment
between the overlaid transparent pattern and the squares, so that the indented points in
the spectacle-shaped object are precisely aligned with the line between the two squares.
There seems to be no causal explanation for this coincidence. Hence, the perceptual system
prefers an interpretation in which A, B, C, and D are simply different colored regions, in
the same plane.

The perceptual system also appears to be averse to other kinds of co-incidences.
For example, Figure 15.5 illustrates how the interpretation of a light bar as the
shadow of a tower (Figure 15.5a) is overridden when a patterned “path” coincides
precisely with this light bar (Figure 15.5b). Intuitively, the perceptual system is, as
before, biased against co-incidences; if the light bar is a shadow, then it is a striking
co-incidence that it happens to line up precisely with the path. Thus, instead, the
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light bar in Figure 15.5b is perceived merely as a path of gray paving slabs, rather
than as a shadow. Figure 15.6 shows a further example, using transparency. When
the axis of symmetry of the “spectacles-shaped” object (taken from Hoffman [1998])
is precisely aligned with the division between the two background squares, then the
transparency interpretation, that is otherwise so strong, disappears. The reason is
that, on the transparency interpretation, there are two overlaid surfaces; and there
is no apparent causal constraint that would align the patterns on these surfaces.
From a causal point of view, this is mere coincidence. Notice that this kind of case
is not a matter of viewpoint, and hence not a case to which the generic viewpoint
constraint can directly apply. The point here is that the alignment of different parts
of the figure is not arbitrary, or “generic,” with respect to the causal constraints
that appear to be operative.
These cases can all be viewed as indicating that the perceptual system disfavors

interpretations according to which there are unexplained, or “coincidental” regu-
larities in the input. That is, perception disfavors interpretation in which there is
no causal explanation of why, for example, a figure has a particular alignment with
the viewer, why shadows happen to line up, or why a spectacle-shaped transparent
surface happens to line up precisely with the square-pattern of the surface upon
which it is overlaid.
This indicates that we need to add constraints on the kinds of regularities that

an MDL model can exploit— that these regularities must be causally natural. After
all, the perceptual input is typically the end result of an enormously complex set
of causes. The structure of the input is, of course, a product of the laws that
govern this causal story; and the goal of the perceptual system is, to some extent
at least, to uncover this causal story from the perceptual input. Thus, we have the
constraint that the codes derived by an MDL analysis should not be merely short
but must correspond to causally viable explanations of the data; codes that rely
on short descriptions that are pure ‘co-incidence’ from a causal point of view (e.g.,
unexplained alignments) should be rejected.
The addition of this constraint may seem disappointing from the perspective of

Mach’s positivist program, in perception and in science. For Mach, the apparently
somewhat opaque and metaphysical notion of causality should be avoided by science
(and hence, presumably, by the cognitive system). Instead, the goal of science
is to find the most economical descriptions of the available data. A positivist
viewpoint can, perhaps, reconceptualize the current suggestion, without the concept
of causality. If we focus not just on a single visual stimulus but over the entire history
of stimuli which the perceptual system receives, cases in which co-incidences with no
causal explanation will, of necessity, be rare, and hence, these regularities should be
assigned long codes, and be disfavored by the MDL principle. Regularities that arise
systematically and consistently must, presumably, arise from causal regularities in
the perceptual input. These will be frequent, and hence will have short codes, and be
preferred by MDL. Despite the possibility of this kind of hard-line MDL approach,
in which causal constraints in interpreting any given input are derived from an
MDL analysis over the history of perceptual input, it is also entirely possible,
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of course, that information about causal constraints might be derived from other
sources. Thus, causal constraints may be innate [Sperber, Premack, and Premack
1995] or derived from active perceptual-motor experimentation (e.g., moving the
head, adjusting a light source, or sliding a transparent sheet, which may disturb
co-incidental regularities). Wherever causal constraints are derived from, however,
it seems crucially important to incorporate them into a properly constrained MDL
account of perception.
We have argued, in this subsection, that there appear to be substantial causal

constraints on perceptual interpretations, and these constraints do not immediately
arise by favoring the simplest explanation of the perceptual input. It is worth
noting, too, that causal constraints are not merely important in predicting which
interpretations the perceptual system favors. Rather, extracting a causal model of
the external world is a critical goal of perception. This is because the ultimate utility
of perception resides, of course, in its ability to drive action; and the effectiveness of
action in bringing about the perceiver’s objectives will critically depend on correctly
perceiving which regularities in the external world are co-incidental and which are
causal. Unless the perceiver can distinguish causal structure from perceptual input,
it is as likely to attempt to lift a saucer by picking up the cup, as it is to attempt to
lift a cup by picking up the saucer. How far the simplicity principle could support the
learning of causal structure merely by finding the shortest description in observed
data is an open question.

15.3.3 Representation and Process Constraints

A strong interpretation of an MDL approach to perception would be that the cog-
nitive system chooses the shortest possible description of the perceptual stimulus.
But this strong interpretation cannot be right, at least in general, because the
search problem of finding shortest descriptions is typically intractable.9 For some
restricted codes, such as structural information theory, the search problem can be
made tractable [Van der Helm and Leeuwenberg 1991]. But in most cases this is
not possible. Difficult search problems arise even in the optimization calculations
associated with very simple models of pixel-level correlational structure in images
[Weiss 1997]; and in training Bayesian or neural networks to find structure in im-
ages [Hinton et al. 2000]. So an MDL approach to perception must make a more
modest claim: that the perceptual system chooses the shortest code for perceptual
data that it can find. Thus, the claim is that simplicity is used to choose between
perceptual interpretations that are considered by the perceptual system.
Note that the space of interpretations that the perceptual system considers will

be highly constrained. There will be an enormous variety of regularities that, when

9. Where the class of code is universal, for example, has equivalence in power to a universal
programming language, then finding the shortest code is, in general, uncomputable[Li and
Vitányi 1997].
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encoded in an image and presented to the perceptual system, will be treated as
mere random noise. To choose any of a myriad of possible examples, an “outsize”
checkerboard whose black and white squares provide a binary encoding of, say,
the initial 10,000 digits of π will have a short code, but will be perceptually
indistinguishable from a random checkerboard.
Indeed, a critical question for an MDL model of perception is to draw on exist-

ing results from psychology and neuroscience to create realistic hypotheses about
which regularities the coding language for perceptual stimuli can capture. Defining
a representation or coding language makes, from this point of view, a rich set of
hypotheses about the relative strengths of different perceptual interpretations; of
the hypotheses considered, the shortest should be favored (subject to the caveats
concerning causality and least commitment that we have described in the last two
subsections). A second critical question is to define search processes over represen-
tations, to provide a mechanism for explaining how perception finds interpretations
with short description length.10

a b

Figure 15.7 How representational format impacts the detection of simple patterns. This
figure, loosely patterned on stimuli by Bayliss and Driver [1994, 1995], illustrates how a
regularity that allows a stimulus to be encoded briefly may be more or less noticeable,
depending on the representational format applied by the perceptual system. In both (a)
and (b), there is an identity between the irregular boundaries. But in (a) the boundary
is difficult to perceive because the figure/ground relation is reversed (the black shape
is the figure, the white forms the background). Hoffman & Richards (1984) point out
that boundaries are encoded in terms of convex protrusions of the figure into the ground.
Therefore the codes that will be generated for the two irregular boundaries in (a) are very
different, because what is coded as a protrusion in one boundary will be viewed as an
indentation in the other (and hence will not be coded at all). By contrast, the identity of
the boundaries in (b) is readily perceived.

10. Structural information theory is one approach to this problem, though not one we
examine here.
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To illustrate, consider Figure 15.7, based on stimuli used by Bayliss and Driver
[1994, 1995]. Note how the identity between “boundaries” is easily perceived when
they have the same figure/ground pattern—but is hard to perceive when they do
not. Bayliss and Driver [1994, 1995] explain this difference by adverting to the claim
of Hoffman and Richards [1984] that the edges of a figure are parsed in terms of
protrusions of the figure into the ground; indentations of the figure are not encoded
directly at all. This means that a boundary will be interpreted very differently
depending which side of the boundary is viewed as the figure—because this will flip
protrusions to indentations and vice versa. Hence, if the same boundary is present
in a stimulus, but with a different figure/ground interpretation, then the codes for
each will be very different, and the match between them cannot be exploited.

Figure 15.8 Representation, figure/ground, and symmetry. Considering each half of
the figure separately, there is potential ambiguity concerning whether the black or white
stripes are figure or ground. Note that the interpretation according to which the foreground
stripes have a constant width is favored. Thus, we perceive white stripes in the left half
of the figure, and black stripes in the right half of the figure. This makes sense, from
the standpoint of the simplicity principle, only with the auxiliary assumption that the
identity between the two parallel contours can only be captured if these contours are
assigned to the same object (i.e., the same stripe). On this assumption, the identity
between contours assigned to different stripes (in other words, between contours that
are perceived as bounding a background region) cannot be captured. According to this
line of reasoning, failing to capture this regularity causes the code length, with this
representation, to be unnecessarily long, and hence this interpretation is disfavored by
the perceptual system. Note, finally, that the symmetry in the stimulus is rather difficult
to perceive. This is because perceiving this symmetry requires simultaneously representing
the different figure/ground representations (white stripes on black in the left half; black
stripes on white in the right half). Thus, representational and processing constraints play
a substantial role in explaining which regularities the perceptual system can use to provide
a short code for the stimulus.

A related example is shown in Figure 15.8. Note, first, that in the left-hand part
of the figure we see white stripes against a black background, and the reverse
pattern on the right-hand part of the image. A natural explanation for these
figure/ground preferences is that the perceptual system prefers to postulate simpler,
rather than more complex, objects. The fore-grounded stripes are simpler than the
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back-grounded stripes because they have parallel edges. Note, of course, that a
pure MDL account would not give this preference for stripes with parallel edges—
because, with the reverse segmentation, all that is required is shared contours
between adjacent stripes (the left contour of one object would be shared with the
right contour of an adjacent object, and so on). But the perceptual code presumably
cannot capture this regularity, with the implication that this coding is not favored.
Finally, note that the symmetry between the two halves of the pattern is rather
difficult to exploit. One explanation for this is that symmetry can only be detected
a fter segmentation of both halves of the stimulus has occurred; and simultaneously
segmenting both halves of the image presents a difficult processing challenge (e.g.,
because the segmentations are somewhat rivalrous).
The upshot of examples such as these is that a simplicity approach to perception

cannot be considered purely in the abstract, in the absence of constraints concern-
ing the representations used by the perceptual system and the cognitive processes
that can operate over them. The perceptual system may, if the simplicity principle
is correct, aim to find the shortest code for sensory input that it can. But the per-
ceptual system’s measure of code length will be influenced by the representational
units that it has available, and by the processes that allow (or do not allow) partic-
ular regularities to be exploited using those units. Moreover, the perceptual system
is limited in which short codes it is able to find—some codes might be highly pre-
ferred if they could be found, but they may not typically be found (or may only be
found after unusually prolonged viewing, as is frequently the experience of viewers
of autostereograms). Now, it seems reasonable to suggest that the specific repre-
sentations and processes that the perceptual system has evolved will be well suited
to the natural environment. And, more speculatively, one might propose that, in
the present framework, this might mean that the perceptual system may have rep-
resentations and processes that are particularly well suited to finding short codes
for regularities that occur in the natural environment. Accordingly, we should not,
perhaps, be surprised that binary expansions of π are not readily detected by the
perceptual system, because presumably there are no natural processes that gener-
ate this pattern; and the tendency to specify shapes in terms of convex protrusions
may be adapted to the geometry of real objects [Hoffman and Richards 1984]. In-
deed, it seems natural to view processes of adaptation as a process of learning over
phylogenetic time; this process of learning gradually reduces the code length with
which the perceptual system can represent the natural world—because perceptual
systems that provide excessively long codes are less well suited to representing real
perceptual input, and tend to be eliminated by natural selection. Equivalently, in
a Bayesian framework, it seems natural to view one role of natural selection being
to select perceptual systems with priors that are as aligned as closely as possible
with the actual probability distributions in the natural world.
Overall, the MDL approach to perception must integrate with existing experimen-

tal and neuroscientific knowledge of perception. The value of the MDL approach
will ultimately depend on whether this integration is smooth and productive, or
forced and unhelpful.
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15.4 Where Next? Prospects for an MDL Approach to Perception

We mentioned at the outset that one justification for an MDL approach to percep-
tion is that perception is a kind of inductive inference, and MDL is a normatively
attractive theory of how such inference should be conducted. But this argument
is only enough, in reality, to establish that MDL should be given some initial cre-
dence. We discussed, too, a number of areas (stereovision, color perception, and
laws of form) where some kind of MDL framework can be applied. But whether
this framework proves to be scientifically productive depends on how far it can
be integrated with the psychology and neurobiology of vision, to provide specific
theoretical insights, and empirical predictions.
It is also possible that technical developments in MDL-type approaches to induc-

tive inference might be usefully applicable to understanding aspects of perception.
One intriguing idea, suggested by Paul Vitányi (personal communication, Decem-

ber 2001) is that not merely the Kolmogorov minimal sufficient statistic, but the
other nonminimal sufficient statistics might map onto perceptual representations.
Perhaps, to some approximation, we might understand the sequence of levels of
representation in the perceptual system as corresponding to different Kolmogorov
Sufficient Statistics. For example, suppose that we take seriously the idea that very
early visual processing filters the input to remove redundancy due to highly lo-
cal statistical properties of images (e.g., that, in most image locations, luminance
changes smoothly, although in a few locations it changes abruptly) [Barlow 1961].
This early filtering might correspond to a (rather long) Kolmogorov sufficient statis-
tic for the image; it throws away mere noise from the image. A slightly more abstract
level of representation (e.g., representing edges, blobs, bars) might correspond to
another KSS. It throws aways further “noise” of no intrinsic perceptual interest.
The Kolmogorovminimal sufficient statistic represents the limit of this process—the
most abstract representation that does not throw away anything other than noise.
This viewpoint is not intended, of course, to be any more than an idealization of
how perceptual representations might be arranged (e.g., the calculations involved
in finding minimal codes are provably intractable [Li and Vitányi 1997] and hence
cannot, presumably, be computed by the brain). And it is likely that perception
throws away a good deal of information— that is, it is much more selective than
this analysis allows. Nonetheless, it may be interesting to pursue ideas of this type,
in relation to understanding the general function of multiple levels of perceptual
representation.
Another interesting line of thought concerns the degree to which we can explain

why the output of perception presents the world to us as “modular,” that is, of
consisting of discrete objects and processes. Let us suppose that, at least at the
macroscopic level relevant to much of perception, the regularities in the world
are naturally “parsed” into discrete chunks (e.g., objects correspond to bundles
of regularities: parts of the same object tend to be made of the same thing, to
be attached to each other, to move coherently, to be at roughly the same depth,
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etc.); and the causal interactions between objects are usually also fairly local (e.g.,
between a cup, the water pouring from it, and its shadow on the table). To what
extent can these sorts of modular structure be uncovered from purely minimizing
description length? Current theory does not appear to give clear answers here.
Plausibly, if a highly modular process has given rise to perceptual input, one might
suppose that a code that replays that modular causal history to reconstruct the
data might provide a brief encoding (although if the data sample is insufficiently
rich, this may not be true). But there will also be codes of about the same length
in which that modular structure is not apparent (just as the careful modular
structure of a computer program may be lost from view when it is compiled into
a different language). And there might also be short codes with a different, and
perhaps contradictory, modular structure. Can MDL-related ideas help to explain
how modular causal structures can be inferred reliably from data alone? This seems
an important question for future theoretical research—not only, indeed, in helping
to understand perception, but in any domain in which MDL may be applied. We
want MDL not merely to give us short codes; we want those codes to be interpretable
as descriptions that correspond to a local, causal description of the structure of the
system that gives rise to the data.
Most crucial for the practical usefulness of the MDL approach to perception is,

of course, the degree to which it can be integrated with existing and future research
on the psychology and neuroscience of perception. To what extent can neural codes
be viewed as compressing sensory input (Barlow [1974], but see also Olshausen
and Field [1996])? How far can interpretations of perceptual stimuli be viewed as a
choice of the briefest code that can reasonably be entertained, given what is known
of the perceptual representations? And, at a theoretical level, to what extent does
an MDL framework for perception have advantages over alternative theoretical
approaches [Leeuwenberg and Boselie 1998]? The normative appeal and descriptive
elegance of an MDL framework, even over the relatively limited territory that we
have discussed here, seems sufficient justification for continuing to pursue Mach’s
dream that perception is driven by a search for economy, that perception is a search
for minimal description length.
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The question of how one should decide between competing explanations of data is at
the heart of the scientific enterprise. In the field of cognitive science, mathematical
models are increasingly being advanced as explanations of cognitive behavior. In
the application of the minimum description length (MDL) principle to the selection
of these models, one of the major obstacles is to calculate Fisher information. In
this study we provide a general formula to calculate Fisher information for models
of cognition that assume multinomial or normal distributions. We also illustrate
the usage of the formula for models of categorization, information integration,
retention, and psychophysics. Further, we compute and compare the complexity
penalty terms of two recent versions of MDL [Rissanen 1996, 2001] for a multinomial
model. Finally, the adequacy of MDL is demonstrated in the selection of retention
models.

16.1 Introduction

The study of cognition is concerned with describing the mental processes that un-
derlie behavior and developing theories that explain their operation. Often the
theories are specified using verbal language, which leads to an unavoidable limita-
tion: lack of precision. Mathematical modeling represents an alternative approach
to overcoming this limitation by inferring structural and functional properties of a
cognitive process from experimental data in explicit mathematical expressions.
Formally, a mathematical model or model class1 is defined as a parametric family

of probability density functions, fX|Θ(x|θ), as a Riemannian manifold in the space
of distributions [Kass and Vos 1997], with x ∈ X and θ ∈ Ω. X and Ω are the
sample space and parameter space respectively. The sample space or parameter
space could be a Euclidean space with arbitrary dimension. Thus the dimension of
the parameter here corresponds to what is commonly referred to as the number of
parameters of the model.
In modeling cognition, we wish to identify the model, from a set of candidate

models, that generated the observed data. This is an ill-posed problem because
information in the finite data sample is rarely sufficient to point to a single model.
Rather, multiple models may provide equally good descriptions of the data. In
statistics, this “ill-posedness” of model selection is overcome by reformulating the
inference problem as one of making a best guess as to which model provides the clos-
est approximation, in some defined sense, to the true but unknown model that gen-
erated the data. The particular measure of such an approximation, which is widely
recognized among modelers in statistics and computer science, is generalizability.
Generalizability, or predictive accuracy, refers to a model’s ability to accurately

1. Strictly speaking, ‘model’ and ‘model class’ are not interchangeable. A model class
consists of a collection of models in which each model represents a single probability
distribution. In this chapter, however, we often use these terms interchangeably when the
context makes it clear what we are referring to.
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predict future, as yet unseen, data samples from the same process that generated
the currently observed sample.
A formal definition of generalizability can be given in terms of a discrepancy

function that measures the degree of approximation or similarity between two
probability distributions. A discrepancy function D(f, g) between two distributions,
f and g, is some well-behaved function (e.g., Kullback-Leibler information diver-
gence [Kullback and Leibler 1951]) that satisfies D(f, g) > D(f, f) = 0 for f �= g.
Generalizability could be defined as

EfT [D(fT , fM )] �
∫
X
D(fT (x), fM (θ̂(x)))fT (x)dx, (16.1)

where fT and fM denote the probability distributions of the true and guessing
models and θ̂(x) is the maximum likelihood (ML) estimate of the parameter.
According to the above equation, generalizability is a mean discrepancy between
the true model and the best-fitting member of the model class of interest, averaged
across all possible data that could be observed under the true model. The basic
tenet of model selection is that among a set of competing model classes, one should
select the one that optimizes generalizability [i.e., minimizes the quantity in (16.1)].
However, generalizability is not directly observable and instead, one must estimate
the measure from a data sample by considering the characteristics of the model
class under investigation.
Several generalizability estimates have been proposed. They include Bayesian

information criterion (BIC) [Schwarz 1978] and cross-validation (CV) [Stone 1974].
In BIC, generalizability is estimated by trading off a model’s goodness-of-fit with
model complexity. Goodness-of-fit refers to how well a model fits the particular
data set, whereas model complexity or flexibility refers to a model’s ability to fit
arbitrary patterns of data. The BIC criterion, which is derived as an asymptotic
approximation of a quantity related to the Bayes factor [Kass and Raftery 1995],
is defined as

BIC � − log fX|Θ(x|θ̂) + k2 log(n),

where log(·) is the natural logarithm function of base e, k is the dimension of
the parameter, and n is the sample size. The first term represents a goodness-of-
fit measure and the second term represents a complexity measure. From the BIC
viewpoint, the number of parameters (k) and the sample size (n) are the only
relevant facets of complexity. BIC, however, ignores another important facet of
model complexity, namely, the functional form of the model equation [Myung and
Pitt 1997]. Functional form refers to the way in which the model’s parameters are
combined to define the model equation. For example, two models, x = at + b and
x = atb, have the same number of parameters but differ in functional form.
CV is an easy-to-use, sampling-based method of estimating a model’s general-

izability. In CV, the data are split into two samples, the calibration sample and
the validation sample. The model of interest is fitted to the calibration sample and
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the best-fit parameter values are obtained. With these values fixed, the model is
fitted again, this time to the validation sample. The resulting fit defines the model’s
generalizability estimate. Note that this estimation is done without an explicit con-
sideration of complexity. Unlike BIC, CV takes into account functional form as well
as the number of parameters, but given the implicit nature of CV, it is not clear
how this is achieved.
The principle of minimum description length (MDL) [Barron, Rissanen, and Yu

1998; Grünwald 2005; Hansen and Yu 2001; Rissanen 1989, 1996, 2001], which was
developed within the domain of algorithmic coding theory in computer science [Li
and Vitányi 1997], represents a new conceptualization of the model selection prob-
lem. In MDL, both models and data are viewed as codes that can be compressed,
and the goal of model selection is to choose the model class that permits the great-
est compression of data in its description.2 The shortest code length obtainable
with the help of a given model class is called the stochastic complexity of the model
class. In this chapter we focus on two implementations of stochastic complexity: a
Fisher information approximated normalized maximum likelihood (FIA) [Rissanen
1996] and normalized maximum Likelihood (NML) [Rissanen 1996, 2001]. Each,
as an analytic realization of Occam’s razor, combines measures of goodness-of-fit
and model complexity in a way that remedies the shortcomings of BIC and CV:
complexity is explicitly defined and functional form is included in the definition.
The purpose of this chapter is threefold. The first is to address an issue that we

have had to deal with in applying MDL to the selection of mathematical models
of cognition [Lee 2002; Pitt, Myung, and Zhang 2002]. Calculation of the Fisher
information can sometimes be sufficiently difficult to be a deterrent to using the
measure. We walk the reader through the application of a straightforward and
efficient formula for computing Fisher information for two broad classes of models
in the field, those that have multinomial or independent normal distributions. Next
we compare the relative performance of FIA and NML for one type of model in
cognition. Finally, we present an example application of the MDL criteria in the
selection of retention (i.e., memory) models in cognitive science. We begin by briefly
reviewing the two MDL criteria, FIA and NML.

16.2 Recent Formulations of MDL

It is well established in statistics that choosing among a set of competing models
based solely on goodness-of-fit can result in the selection of an unnecessarily
complex model that overfits the data [Pitt and Myung 2002]. The problem of
overfitting is mitigated by choosing models using a generalizability measure that
strikes the right balance between goodness-of-fit and model complexity. This is what

2. The code here refers to the probability distribution p of a random quantity. The code
length is justified as log(1/p) from Shannon’s information theory.
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both the FIA and NML criteria achieve. These two criteria are related to each other
in that the former is obtained as an asymptotic approximation of the latter.

16.2.1 FIA Criterion

By considering Fisher information, Rissanen proposed the following model selection
criterion [Rissanen 1996]:

FIA � − log fX|Θ(x|θ̂) + CFIA
with

CFIA � k

2
log

n

2π
+ log

∫
Ω

√
|I(θ)|dθ, (16.2)

where Ω is the parameter space on which the model class is defined and I(θ) is the
Fisher information of sample size one given by, e.g., [Schervish 1995],

Ii,j(θ) = −Eθ

[
∂2

∂θi∂θj
log fX|Θ(x|θ)

]
,

where Eθ denotes the expectation over data space under the model class fX|Θ(x|θ)
given a θ value. In terms of coding theory, the value of FIA represents the length
in “ebits” of the shortest description of the data the model class can provide.
According to the MDL principle the model class that minimizes FIA extracts the
most regularity in the data and therefore is to be preferred.
Inspection of CFIA in (16.2) reveals four discernible facets of model complexity:

the number of parameters k, sample size n, parameter range Ω, and the functional
form of the model equation as implied in I(θ). Their contributions to model
complexity can be summarized in terms of three observations. First, CFIA consists
of two additive terms. The first term captures the number of parameters and the
second term captures the functional form through the Fisher information matrix
I(θ). Notice the sample size, n, appears only in the first term; this implies that
as the sample size becomes large, the relative contribution of the second term to
that of the first becomes negligible, essentially reducing CFIA to the complexity
penalty of BIC. Second, because the first term is a logarithmic function of sample
size but a linear function of the number of parameters, the impact of sample size on
model complexity is less dramatic than that of the number of parameters. Finally,
the calculation of the second term depends on the parameter range on which the
integration of a non-negative quantity in the parameter space is required. As such,
the greater the ranges of the parameters, the larger the value of the integral, and
therefore the more complex the model.
Regarding the calculation of the second term of CFIA, there are at least two

nontrivial challenges to overcome: integration over multidimensional parameter
space and calculation of the Fisher information matrix. It is in general not possible
to obtain a closed-form solution of the integral. Instead, the solution must be
sought using a numerical integration method such as Markov chain Monte Carlo
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[Gilks, Richardson, and Spiegelhalter 1996]. Second, with partial derivatives and
expectation in the definition of Fisher information, direct element-by-element hand
calculation of the Fisher information matrix can be a daunting task. This is because
the number of elements in the Fisher information matrix is the square of the
dimension of the parameter. For example, with a 100-dimensional parameter, we
need to find 10,000 elements of the Fisher information matrix, which would be
quite a chore. Efficient computation of Fisher information is a significant hurdle
in the application of MDL to cognitive modeling [Pitt et al. 2002]. This chapter
presents a method to overcome it. In section 16.3, we provide a simple algebraic
formula for the Fisher information matrix that does not require the cumbersome
element-by-element calculations and expectations.

16.2.2 NML Criterion

FIA represents important progress in understanding and formalizing model selec-
tion. It was, however, derived as a second-order limiting solution to the problem
of finding the ideal code length [Rissanen 1996], with the higher-order terms be-
ing left off. Rissanen further refined the solution by reformulating the ideal code
length problem as a minimax problem in information theory [Rissanen 2001].3 The
basic idea of this new approach is to identify a single probability distribution that
is “universally” representative of an entire model class of probability distributions
in the sense that the desired distribution mimics the behavior of any member of
that class [Barron et al. 1998]. Specifically, the resulting solution to the minimax
problem represents the optimal probability distribution that can encode data with
the minimum mean code length subject to the restrictions of the model class of
interest.
The minimax problem is defined as finding a probability distribution or code p∗

such that

p∗ � arginf
p

sup
q

Eq

[
log
fX|Θ(x|θ̂)
p(x)

]
,

where p and q range over the set of all distributions satisfying certain regularity
conditions [Rissanen 2001], q is the data-generating distribution (i.e., true model),
Eq[·] is the expectation with respect to the distribution q, and θ̂ is the ML estimate
of the parameter. Given a model class of probability distributions fX|Θ(x|θ), the
minimax problem is to identify one probability distribution p∗ that minimizes the
mean difference in code length between the desired distribution and the best-fitting
member of the model class where the mean is taken with respect to the worst-
case scenario. The data-generating distribution q does not have to be a member of
the model class. In other words, the model class need not be correctly specified.

3. Although formal proofs of the NML criterion were presented in [Rissanen 2001], its
preliminary ideas were already discussed in [Rissanen 1996].
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Figure 16.1 The minimax problem in a model manifold.

Similarly, the desired probability distribution, as a solution to the minimax problem,
does not have to be a member of the model class. The intuitive account of the
minimax problem is illustrated schematically in Figure 16.1.
The solution to the minimax problem [Shtarkov 1987] is given by

p∗ =
fX|Θ(x|θ̂)
Cf

,

where

Cf �
∫
θ̂(x)∈Ω

fX|Θ(x|θ̂(x))dx.

Note that p∗ is the maximum likelihood of the current data sample divided by the
sum of maximum likelihoods over all possible data samples. As such, p∗ is called the
normalized maximum likelihood (NML) distribution, which generalizes the notion
of ML. Recall that ML is employed to identify the parameter values that optimize
the likelihood function (i.e., goodness-of-fit) within a given model class. Likewise,
NML is employed to identify the model class, among a set of competing model
classes, that optimizes generalizability.
Cf , the normalizing constant of the NML distribution, represents a complexity

measure of the model class. It denotes the sum of all best fits the model class
can provide collectively. Complexity is positively related to this value. The larger
the sum of the model class, the more complex the model is. As such, this quantity
formalizes the intuitive notion of complexity often referred to as a model’s ability to
fit diverse patterns of data [Myung and Pitt 1997] or as the “number” of different
data patterns the model can fit well (i.e., flexibility) [Myung, Balasubramanian,
and Pitt 2000]. It turns out that the logarithm of Cf is equal to the minmax value
of the mean code length difference obtained when the NML distribution happens
to be the data-generating distribution [Rissanen 2001]. In other words, another
interpretation of Cf is that it is the minimized worst prediction error the model
class makes for the data generated from the NML distribution.
The desired selection criterion, NML, is defined as the code length of the NML
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distribution p∗ (i.e., − log (p∗)),

NML � − log fX|Θ(x|θ̂) + CNML,

where

CNML � log
∫
θ̂(x)∈Ω

fX|Θ(x|θ̂(x))dx. (16.3)

As presented above, the difference between FIA and NML is in their complexity
measure, CFIA and CNML. Since CFIA can be obtained from a Taylor series expan-
sion of CNML under the assumption of large sample sizes, CNML captures the full
scope of model complexity, thereby being a more complete quantification of model
complexity. Like CFIA, CNML is also nontrivial to compute. They both require eval-
uation of an integral, though different kinds: integration over the parameter space
in CFIA and integration over the data (sample) space in CNML. In the next section,
we provide an easy-to-use formula to calculate the Fisher information matrix when
computing CFIA. Calculation of CNML is more challenging, and requires two steps
of heavy-duty computation: step 1, maximization of the likelihood function, given a
data sample, over the parameter space on which the model class is defined; and step
2, integration of the maximized likelihood over the entire data space. In practice,
the first step of parameter estimation is mostly done numerically, which is tricky
because of the local maxima problem. The second step is even harder as sample
space is usually of much higher dimension than parameter space. Another goal of
our investigation is to compare these two complexity measures for specific models
of cognition to examine the similarity of their answers (see Section 16.4).

16.3 Fisher Information

As discussed in Section 16.2.1, a major challenge of applying FIA is to compute the
Fisher information matrix I(θ), especially when the dimension of the parameter
space is large. Although the standard formula for the Fisher information matrix
has been known in the literature, it is often presented implicitly without the detail
of its derivation. In this section, we show its derivation in detail and provide
a unified, easy-to-use formula to compute it for a model having an arbitrary
dimensional parameter defined in terms of multinomial or independent normal
distributions—the two most commonly assumed distributions in cognitive modeling.
The resulting formula, which is obtained under simplifying assumptions, greatly
eases the computation of the Fisher information by eliminating the need for both
numerical expectation and second-order differentiation of the likelihood function.
We also demonstrate the application of this formula in four areas of cognitive
modeling: categorization, information integration, retention, and psychophysics.
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16.3.1 Models with Multinomial Distribution

We begin by defining the notation. Consider the model fX|Θ(x|θ) with a multino-
mial distribution. The parameter θ=[θ1, . . . , θK ]T , and X |Θ=[X1|Θ, . . . , XN |Θ]T .
It is assumed that {Xn|Θ} is independent and each follows a multinomial distribu-
tion with C categories and sample size n′: Xn|Θ∼MultC(n′, pn,1(θ), . . . , pn,C(θ)).
K is the parameter dimension number, N is the random vector dimension number,
and C is the number of categories. Different selection of {pn,c(θ)} yields different
models. So

fXn|Θ(xn|θ) =
(

n′

xn,1, . . . , xn,C

)
C∏

c=1

pn,c(θ)xn,c

with respect to a counting measure on {(xn,1, . . . , xn,C) :
∑C

c=1 xn,c = n
′, xn,c ∈

{0, . . . , n′}}. Since {Xn|Θ} is independent,

fX|Θ(x|θ) =
N∏

n=1

(
n′

xn,1, . . . , xn,C

)
C∏

c=1

pn,c(θ)xn,c

log fX|Θ(x|θ) =
N∑

n=1

(
log

(
n′

xn,1, . . . , xn,C

)
+

C∑
c=1

xn,c log pn,c(θ)

)
.

The first and second derivatives of the log-likelihood function are then calculated
as

∂ log fX|Θ(x|θ)
∂θi

=
N∑

n=1

C∑
c=1

xn,c
pn,c(θ)

∂pn,c(θ)
∂θi

∂2 log fX|Θ(x|θ)
∂θi∂θj

=
N∑

n=1

C∑
c=1

−xn,c
p2n,c(θ)

∂pn,c(θ)
∂θi

∂pn,c(θ)
∂θj

+
xn,c
pn,c(θ)

∂2pn,c(θ)
∂θi∂θj

.

With the regularity conditions [Schervish 1995, p. 111] held for the model
fX|Θ(x|θ) in question, we write one element of Fisher information matrix of sample
size one as

Ii,j(θ) = −Eθ

[
∂2

∂θi∂θj
log fX|Θ(x|θ)

]

=
N∑

n=1

C∑
c=1

1
pn,c(θ)

∂pn,c(θ)
∂θi

∂pn,c(θ)
∂θj

− ∂
2pn,c(θ)
∂θi∂θj

=
N∑

n=1

C∑
c=1

1
pn,c(θ)

∂pn,c(θ)
∂θi

∂pn,c(θ)
∂θj

=
NC∑
l=1

1
pl(θ)

∂pl(θ)
∂θi

∂pl(θ)
∂θj

,

where pl(θ) � pn,c(θ) and l = (n − 1)C + c. Rewriting the above result in matrix
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form yields

I(θ) = PTΛ−1P (16.4)

with

P � ∂ (p1(θ), . . . , pNC(θ))
∂ (θ1, . . . , θK)

Λ � diag(p1(θ), . . . , pNC(θ)),

where ∂(p1(θ),...,pNC(θ))
∂(θ1,...,θK) = [Pi,j ] is the NC × K Jacobian matrix with Pi,j =

∂pi(θ)
∂θj

and Λ is the diagonal matrix with p1(θ), . . . , pNC(θ) as the diagonal elements. With
(16.4), to calculate I(θ), we need to evaluate only two sets of functions: {pl(θ)},
which are nothing but the model equations; and the first derivatives {∂pl(θ)

∂θk
}, which

can easily be determined in analytic form.
Interestingly enough, (16.4) looks strikingly similar to the well-known formula

for the reparameterization of Fisher information [Schervish 1995, p. 115]. There is,
however, an important difference between the two. Equation (16.4) tells us how to
calculate Fisher information for a given model in which the Jacobian matrix P is
in general nonsquare. On the other hand, the reparameterization formula reveals
how to relate Fisher information from one parameterization to another, once the
Fisher information has been obtained with a given parameterization. Since the two
parameterizations are related to each other though a one-to-one transformation,
the corresponding Jacobian matrix P is always square for reparameterization.
In the following, we demonstrate application of (16.4) for models of categoriza-

tion, information integration, and retention.

Categorization Categorization is the cognitive operation by which we identify an
object or thing as a member of a particular group, called a category. We categorize
a robin as a bird, a German shepherd as a dog, and both as mammals. Since no
two dogs are exactly alike, categorization helps us avoid being overwhelmed by
the sheer detail of the environment and the accompanying mental operation that
would otherwise be required to represent every incident we encounter as a unique
event [Glass and Holyoak 1986]. Without categorization, the world would appear to
us as an incidental collection of unrelated events. Further, categorization helps us
make inferences about an object that has been assigned to a category. For example,
having categorized a moving vehicle as a tank, we can infer that it is an all-terrain
vehicle, is armored, is armed with a cannon gun mounted inside a rotating turret,
and can damage the road.
In mathematical modeling of categorization, an object, often called a category

exemplar, is represented as a point in a multidimensional psychological space in
which the value of each coordinate represents the magnitude or presence/absence
of an attribute such as height, weight, color, whether it is an animal or not, and
so on. In a typical categorization experiment, participants are asked to categorize
a series of stimuli, presented on a computer screen, into one or more predefined
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categories. The stimuli are generated from a factorial manipulation of two or more
stimulus attributes. As a example, we illustrate the application of (16.4) for the
generalized context model (GCM) [Nosofsky 1986].
According to the GCM model, category decisions are made based on a similarity

comparison between the input stimulus and stored exemplars of a given category.
Specifically, this model requires no specific restrictions onK,N , and C in computing
complexity, and assumes that the probability of choosing category c in response to
input stimulus n is given by

pn,c =

∑
m∈Cc

snm∑
q

∑
p∈Cq

snp
,

where Cc is the set of all indices of the prototype stimuli in category c and

sij = exp

(
−s · (

K−1∑
t=1

wt|xit − xjt|r)1/r
)
.

In the above equation, sij is a similarity measure between multidimensional
stimuli i and j, s (> 0) is a sensitivity or scaling parameter, wt is a non-negative
attention weight given to attribute t satisfying

∑K−1
t=1 wt = 1, and xit is the tth

coordinate value of stimulus i. According to the above equation, similarity between
two stimuli is assumed to be an exponentially decreasing function of their distance,
which is measured by the Minkowski metric with metric parameter r (≥ 1). Note
that the parameter θ consists of θ = [θ1, . . . , θK ]T � [w1, . . . , wK−2, s, r]T .
The first derivatives of the model equation are computed as

∂pn,c
∂θk

=

( ∑
m∈Cc

∂snm
∂θk

)∑
q

∑
p∈Cq

snp


−

( ∑
m∈Cc

snm

)∑
q

∑
p∈Cq

∂snp
∂θk





∑

q

∑
p∈Cq

snp


2

with

∂sij
∂θk

=



sij ·−s

r ·T
1−r
r

ij ·(|xik − xjk|r − |xiK−1 − xjK−1|r) k=1,. . .,K−2
sij ·−T

1
r

ij k=K−1
sij ·log sij ·(−1r2 ·logTij+

PK−2
t=1 wt|xit−xjt|r log |xit−xjt|

r·Tij ) k=K

where Tij �
∑K−1

t=1 wt|xit − xjt|r.
Using l=(n − 1)C+c, we can easily obtain {pl(θ)} and {∂pl(θ)

∂θk
} from {pn,c(θ)}

and {∂pn,c(θ)
∂θk

} derived above. Plugging these into (16.4) yields the desired Fisher
information matrix.
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Information Integration Models of information integration are concerned with
how information from independent sources (e.g., sensory and contextual) are com-
bined during perceptual identification. For example, in phonemic identification we
might be interested in how an input stimulus is perceived as /ba/ or /da/ based
on the cues presented in one or two modalities (e.g., auditory only or auditory plus
visual). In a typical information integration experiment, participants are asked to
identify stimuli that are factorially manipulated along two or more stimulus dimen-
sions.
Information integration models represent a slightly more restricted case compared

to categorization models. As with categorization models, the stimulus is represented
as a vector in multidimensional space. K is the sum of all stimulus dimensions and
N is the product of all stimulus dimensions. To illustrate the application of (16.4),
consider models for a two-factor experiment (e.g., FLMP, LIM).4 For such models,
the response probability pij of classifying an input stimulus specified by stimulus
dimensions i and j as /ba/ vs. /da/ can be written as

pij = h(θi, λj), (16.5)

where θi and λj (i ∈ {1, . . . , I}, j ∈ {1, . . . , J}) are parameters representing the
strength of the corresponding feature dimensions. So we haveK=I+J ,N=I ·J , and
C=2. With the restriction on C, the above model assumes the binomial probability
distribution, which is a special case of multinomial distribution so (16.4) can still
be used. Now, we further simplify the desired Fisher information matrix by taking
into account C=2 and

∑C
c=1 pn,c=1 as follows:

Ii,j(θ) =
N∑

n=1

C∑
c=1

1
pn,c(θ)

∂pn,c(θ)
∂θi

∂pn,c(θ)
∂θj

=
N∑

n=1

1
pn(θ)(1 − pn(θ))

∂pn(θ)
∂θi

∂pn(θ)
∂θj

with pn(θ) � pn,1(θ) = pij(θ), n = (i − 1)J + j and θ = [θ1, θ2, . . . , θI+J ]T �
[θ1, θ2, . . . , θI , λ1, λ2, . . . , λJ ]T . So

I(θ) = BT∆−1B (16.6)

with

B � ∂ (p1(θ), . . . , pI·J(θ))
∂ (θ1, . . . , θI+J)

∆ � diag(p1(θ)(1 − p1(θ)), . . . , pI·J(θ)(1 − pI·J(θ))).

It is worth noting that the number of diagonal elements of ∆∈R
N×N is one half

of that of Λ in (16.4).

4. Fuzzy logical model of perception [Oden and Massaro 1978], linear integration model
[Anderson 1981].
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Applying the above results to the generic model equation (16.5), we note that
since n = (i−1)J+ j, i∈{1, . . . , I} and j∈{1, . . . , J}, we have i = 6(n−1)/J7+1,
j = n− J6(n− 1)/J7. So

pn(θ) = h(θ (n−1)/J!+1, θn−J (n−1)/J!)

∂pn(θ)
∂θk

=
∂h(θ (n−1)/J!+1, θn−J (n−1)/J!)

∂θk
,

where 6x7 � max{n∈Z : n ≤ x}.

Retention Retention refers to the mental ability to retain information about
learned events over time. In a typical experimental setup, participants are presented
with a list of items (e.g., words or nonsense syllables) to study, and afterward are
asked to recall or recognize them at varying time delays since study. Of course, the
longer the interval between the time of stimulus presentation and the time of later
recollection, the less likely the event will be remembered. Therefore, the probability
of retaining in memory an item after time t is a monotonically decreasing function
of t.
Models of retention are concerned with the specific form of the rate at which infor-

mation retention drops (i.e., forgetting occurs) [Rubin and Wenzel 1996; Wickens
1998]. For instance, the exponential model assumes that the retention probabil-
ity follows the form h(a, b, t) = ae−bt with the parameter θ = (a, b), whereas the
power model assumes h(a, b, t) = at−b. For such two-parameter models, we have
the parameter dimension K = 2 and the number of categories C = 2. It is then
straightforward to show in this case that

|I(θ)| =
N∑

n, l=1; n<l

(
∂pn(θ)
∂θ1

∂pl(θ)
∂θ2

− ∂pn(θ)
∂θ2

∂pl(θ)
∂θ1

)2

pn(θ)(1 − pn(θ))pl(θ)(1 − pl(θ)) , (16.7)

which reduces to the previous result in [Pitt et al. 2002, Appendix A] for K = 1,

|I(θ)| =
N∑

n=1

(
dpn(θ)
dθ

)2

pn(θ)(1 − pn(θ)) . (16.8)

Close inspection and comparison of (16.7) and (16.8) strongly suggest the follow-
ing form of Fisher information for the general case of K ≥ 1:

|I(θ)| =
N∑

n1<n2···<nK=1

∣∣∣∣∂(pn1(θ), pn2(θ), . . . , pnK (θ))
∂(θ1, θ2, . . . , θK)

∣∣∣∣2
K∏

k=1

pnk(θ)(1 − pnk(θ))
(16.9)

The above expression, though elegant, is a conjecture whose validity has yet to be
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proven (e.g., by induction). On the other hand, one might find it computationally
more efficient to use the original equation (16.6), rather than (16.9).

16.3.2 Models with Normal Distribution

For models with independent normal distribution, the form of the Fisher informa-
tion formula turns out to be similar to that of the multinomial distribution, as
shown in the following.
Look at a model fX|Θ(x|θ) with normal distribution. The parameter θ =

[θ1, θ2, . . . , θK ]T , X |Θ=[X1|Θ, X2|Θ, . . . , XN |Θ]T , and X |Θ∼NN(µ(θ), σ(θ)) with
µ ∈R

N and σ ∈R
N×N . Different choices of µ(θ) and σ(θ) correspond to defining

different models. Since X |Θ ∼ NN (µ(θ), σ(θ)), we have

fX|Θ(x|θ) = (2π)−
N
2 |σ(θ)|− 1

2 exp
(
−1
2
(x− µ(θ))T σ(θ)−1(x− µ(θ))

)
with respect to the Lebesgue measure on R

N . The general expression of Fisher
information is then obtained as

Ii,j(θ) =
1
2

(
∂2 log |σ(θ)|
∂θi∂θj

+
N∑

m,n=1

σm,n(θ)
∂2(σ(θ)−1)m,n

∂θi∂θj

)
+
∂µ(θ)
∂θi

T

σ(θ)−1
∂µ(θ)
∂θj

.

The above equation is derived without any supposition of independence. With
the assumption that {Xn|Θ} is independent (i.e., σ is diagonal with the diagonal
element not necessarily equal), the above result can be further simplified to

Ii,j(θ) =
∂µ(θ)
∂θi

T

σ(θ)−1
∂µ(θ)
∂θj

+
N∑

n=1

1
2σn,n(θ)2

∂σn,n(θ)
∂θi

∂σn,n(θ)
∂θj

.

The desired Fisher information matrix is then expressed in matrix form as

I(θ) = PTΛ−1P (16.10)

with

P � ∂ (µ1(θ), . . . , µN (θ), σ1,1(θ), . . . , σN,N(θ))
∂ (θ1, . . . , θK)

Λ � diag(σ1,1(θ), . . . , σN,N(θ), 2σ1,1(θ)2, . . . , 2σN,N(θ)2),

where P is the 2N ×K Jacobian matrix and Λ is a diagonal matrix. Therefore, we
have obtained a computation formula for Fisher information entirely in terms of
the mean vector µ and covariance matrix σ for normally distributed models. Note
the similarity between the result in (16.10) and that in (16.4).
To demonstrate the application of (16.10), consider Fechner’s logarithmic model

of psychophysics [Roberts 1979],

X = θ1 log(Y + θ2) + E



16.4 MDL Complexity Comparison 425

where X = [x1, . . . , xN ]T ∈ R
N is the data sample, Y = [y1, . . . , yN ]T ∈ R

N is a
vector of independent variables, θ=[θ1, θ2]T ∈R

2 is the parameter, and E∼N (0, c)
is random error with constant variance c ∈R. So we have X |Θ∼NN (µ(θ), σ(θ)),
µ(θ) = θ1 log(Y + θ2), and σ(θ) = cIN , where IN denotes the identity matrix and
is not to be confused with I(θ), the Fisher information matrix. Using (16.10), the
Fisher information matrix is obtained as

I(θ) = P TΛ−1P

=

[
log(Y + θ2) θ1

Y+θ2

0 0

]T

·
[
cIN 0

0 2c2IN

]−1
·
[

log(Y + θ2) θ1
Y+θ2

0 0

]

= 1
c




N∑
n=1

(log(yn + θ2))2
N∑

n=1

θ1
log(yn + θ2)
yn + θ2

N∑
n=1

θ1
log(yn + θ2)
yn + θ2

N∑
n=1

θ21
(yn + θ2)2


 ,

where 0 denotes the null matrix of appropriate dimensions. Comparison of the
above derivation with one obtained element by element in [Pitt et al. 2002] nicely
illustrates why this method of computing Fisher information is preferable.

16.4 MDL Complexity Comparison

As discussed in section 16.2, the two model selection criteria of FIA and NML
differ only in their complexity measure, CFIA and CNML. With the formula of
Fisher information derived in section 16.3, the computation of CFIA becomes routine
work. On the other hand, CNML is more challenging to calculate and an efficient
computation of this quantity has yet to be devised. In certain situations, however,
it turns out that one can obtain analytic-form solutions of CFIA and CNML. Taking
advantage of these instances, we compare and contrast the two to gain further
insight into how they are related to each other.
In demonstrating the relationship between CFIA and CNML, we consider a satu-

rated model with a multinomial distribution (for related work, see [Kontkanen, Bun-
tine, Myllymäki, Rissanen, and Tirri 2003]). The data under this model are assumed
to be a C-tuple random vector X |Θ∼MultC(n, θ1, . . . , θC) and θ=[θ1, . . . , θC−1]T

is the parameter.
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16.4.1 Complexity of CFIA

The complexity penalty term of FIA is again given by

CFIA � k

2
log

n

2π
+ log

∫
Ω

√
|I(θ)|dθ.

For the saturated multinomial model, the dimension of the parameter k=C−1 with
Ω={(θ1, θ2, . . . , θC−1) : θc≥0 ∀c, ∑C−1

c=1 θc≤1}. Using (16.4) of Fisher information
for multinomial distribution, we have

I(θ) = ∂ (θ1, . . . , θC)
∂ (θ1, . . . , θC−1)

T

· diag(θ−11 , . . . , θ−1C ) · ∂ (θ1, . . . , θC)
∂ (θ1, . . . , θC−1)

=
[
IC−1 −1(C−1)×1

]
·
[
A 0

0 θ−1C

]
·
[

IC−1
−11×(C−1)

]

= A+ 1(C−1)×(C−1) · θ−1C

where 1n×m is an n × m matrix with all elements equal to one, and A =
diag(θ−11 , . . . , θ−1C−1). The determinant of I(θ) is then calculated as

|I(θ)| =

∣∣∣∣∣∣∣∣∣∣∣

1
θ1

+ 1
θC

1
θC

· · · 1
θC

1
θC

1
θ2

+ 1
θC

· · · 1
θC

...
...

. . .
...

1
θC

1
θC

· · · 1
θC−1

+ 1
θC

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
θ1

0 · · · 0

0 1
θC

· · · 0
...

...
. . .

...

0 0 · · · 1
θC−2

−1
θC−1

−1
θC−1

...
−1

θC−1

1
θC

1
θC

· · · 1
θC

1
θC−1

+ 1
θC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |B| ·

∣∣∣ 1
θC−1

+ 1
θC
− 11×(C−2) · 1

θC
·B−1 · −1(C−2)×1 · 1

θC−1

∣∣∣
=

C∏
c=1

1
θc
,
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where B = diag(θ−11 , . . . , θ−1C−2). Using Dirichlet integration, we find that

∫
Ω

√
|I(θ)|dθ =

∫
Ω

C∏
c=1

θ−1/2c dθ

=
Γ(1/2)C

Γ(C/2)
,

where Γ(·) is the gamma function defined as Γ(x) �
∫∞
0
tx−1e−tdt for t > 0. Finally,

the desired complexity of the model is obtained as follows5:

CFIA =
C − 1
2

log
n

2π
+ log

(
π

C
2

Γ(C2 )

)
(16.11)

In (16.11), CFIA is no longer a linear function of the dimension of the parameter
(i.e., k=C− 1) due to the gamma function in the second term. This contrasts with
BIC, where complexity is measured as a linear function of the dimension of the
model parameter.

16.4.2 Complexity of CNML

The following is the complexity penalty of NML:

CNML � log
∫
θ̂(x)∈Ω

fX|Θ(x|θ̂(x))dx

To obtain the exact expression for CNML, we would need the analytic solution of
θ̂(x), which requires solving an optimization problem. The log-likelihood function
is given by

log fX|Θ(x|θ) = log
(

n

x1, . . . , xC

)
+

C∑
c=1

xc log θc.

The ML estimate that maximizes the above log-likelihood function is found to
be θ̂c = xc

n ∀c ∈ {1, 2, . . . , C}. Plugging this result into the earlier equation, we
obtain

CNML = log

( ∑
0≤xc≤n

x1+x2+...+xC=n

(
n

x1, . . . , xC

) C∏
c=1

(xc
n

)xc

)
. (16.12)

CNML can be calculated by considering all possible
(
n+C−1
C−1

)
data patterns in the

sample space for a fixed C and a sample size n. To do so, for each data pattern
we would need to compute the multinomial coefficient and the multiplication of

5. The same result is also described in [Rissanen 1996], and a more general one in
[Kontkanen et al. 2003].
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Figure 16.2 MDL complexity as a function of sample size.

C terms. There exists an elegant recursive algorithm based on combinatorics for
doing this [Kontkanen et al. 2003]. Even so, (16.12) would still be computationally
heavier than (16.11).

16.4.3 The Comparison

Shown in Figure 16.2 are plots of CFIA and CNML as a function of sample size n
for the number of categories C = 5 (i.e., parameter dimension K = 4). As can be
seen, the two curves follow each other closely, with CNML being slightly larger than
CFIA. Both curves resemble the shape of a logarithmic function of n.
In Figure 16.3, we plot the two complexity measures now as a function of C for

a fixed sample size n = 50. Again, CFIA and CNML are quite close and slightly
convex in shape. This nonlinearity is obviously due to the functional form effects
of model complexity. In contrast, the complexity measure of BIC, which ignores
these effects, is a straight line. Interestingly however, the BIC complexity function
provides a decent approximation of CFIA and CNML curves for C ≤ 4.
To summarize, the approximate complexity measure CFIA turns out to do a

surprisingly good job of capturing the full-solution complexity measure CNML, at
least for the saturated multinomial model we examined.

16.5 Example Application

This section presents a model recovery simulation to demonstrate the relative per-
formance of FIA and the other two selection criteria, BIC and CV. We chose three
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Figure 16.3 MDL complexity as a function of the number of categories.

retention models with binomial distribution [Rubin and Wenzel 1996; Wickens
1998] so Xk|[a, b]T ∼ Bin(n, h(a, b, tk)). The sample size n = 20, the independent
variable tk was selected to be tk=1, 2, 4, 8, 16, and the success probability h(a, b, t)
under each model was given by

h(a, b, t) =




1/(1 + ta) (M1)

1/(1 + a+ bt) (M2)

t−be−at (M3)

with the range of exponential parameter to be [0,10] and [0,100] otherwise.
The complexity measure CFIA of each model was computed using (16.7) and

was evaluated by simple Monte Carlo integration. Its value was 1.2361, 1.5479,
and 1.7675 for models M1, M2, and M3, respectively. Model M1 is the simplest
with one parameter, whereas models M2 and M3 have two parameters, with their
complexity difference of 0.2196 being due to the difference in functional form.
For each model, we first generated 1000 random parameter values sampled across
the entire parameter space according to Jeffreys’ prior [Robert 2001]. For each
parameter, we then generated 100 simulated data samples with binomial sampling
noise added. Finally, we fit all three models to each of 100,000 data samples
and obtained their best-fitting parameter values. The three selection methods
were compared on their ability to recover the data-generating model. Maximum
likelihood (ML), a goodness-of-fit measure, was included as a baseline.
The results are presented in Table 16.1, which consists of four 3× 3 submatrices,

each corresponding to the selection method specified on the left. Within each
submatrix, the value of each element indicates the percentage of samples in which
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Table 16.1 Model recovery rates of three retention models.

Data-Generating Model (CFIA)

Selection Method/

Fitted Model M1 (1.2361) M2 (1.5479) M3 (1.7675)

ML

M1 22% 11% 0%

M2 41% 88% 4%

M3 37% 1% 96%

BIC

M1 91% 55% 8%

M2 4% 44% 4%

M3 5% 1% 88%

CV

M1 52% 40% 7%

M2 28% 53% 19%

M3 20% 7% 74%

FIA

M1 83% 37% 7%

M2 11% 62% 6%

M3 6% 1% 87%

the particular model’s fit was preferred according to the selection method of interest.
Ideally, a selection criterion should be able to recover the true model 100 % of the
time, which would result in a diagonal matrix containing values of 100 %. Deviations
from this outcome indicate a bias in the selection method.
Let us first examine the recovery performance of ML. The result in the first

column of the 3 × 3 submatrix indicates that model M1 was correctly recovered
only 22% of the time; the rest of the time (78%) models M2 and M3 were selected
incorrectly. This is not surprising because the latter two models are more complex
than M1 (with one extra parameter). Hence such overfitting is expected. This bias
against M1 was mostly corrected when BIC was employed as a selection criterion, as
shown in the first column of the corresponding 3×3 submatrix. On the other hand,
the result in the second column for the data generated by M2 indicates that BIC had
trouble distinguishing between M1 and M2. CV performed similarly to BIC, though
its recovery rates (52%, 53%, 74%) are rather unimpressive. In contrast, FIA, with
its results shown in the bottom submatrix, performed the best in recovering the
data-generating model.6

6. A caveat here is that the above simulations are meant to be a demonstration, and
as such the results are not to be taken as representative behavior of the three selection
methods.
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16.6 Summary and Conclusion

Model selection can proceed most confidently when a well-justified and well-
performing measure of model complexity is available. CFIA and CNML of minimum
description length are two such measures. In this chapter we addressed issues
concerning the implementation of these measures in the context of models of
cognition. As a main contribution of the present study, we provided a general
formula in matrix form to calculate Fisher information. The formula is applicable
for virtually all models that assume the multinomial distribution or the independent
normal distribution—the two most common distributions in cognitive modeling.7

We also showed that CFIA represents a good approximation to CNML, at least for the
saturated multinomial probability model. This finding suggests that within many
research areas in cognitive science, modelers might use FIA instead of NML with
minimal worry about whether the outcome would change if NML were used instead.
Finally, we illustrated how MDL performs relative to its competitors in one content
area of cognitive modeling.

Acknowledgments

This research was supported by National Institutes of Health grant R01 MH57472.
We thank Peter Grünwald, Woojae Kim, Daniel Navarro, and an anonymous
reviewer for many helpful comments.

References

Anderson, N.H. (1981). Foundations of Information Integration Theory. New
York: Academic Press.

Barron, A., J. Rissanen, and B. Yu (1998). The minimum description length
principle in coding and modeling. IEEE Transactions on Information Theory,
44, 2743–2760.

Gilks, W.R., S. Richardson, and D.J. Spiegelhalter (1996). Markov Chain Monte
Carlo in Practice. London: Chapman & Hall.

Glass, A.L., and K.J. Holyoak (1986). Cognition, 2nd edition, Chap. 5. New York:
Random House.

Grünwald, P.D. (2005). Tutorial on MDL. In P.D. Grünwald, I.J. Myung, and
M.A. Pitt (Eds.), Advances in Minimum Description Length: Theory and

7. The reader is cautioned that the formula should not be used blindly. In some cases, it
might be more efficient to use a simpler formula. For example, instead of (16.4), sometimes
it may be easier to use (16.7) for binomial models with a two-dimensional parameter.



432 Minimum Description Length and Cognitive Modeling

Applications. Cambridge, MA: MIT Press.

Hansen, M.H., and B. Yu (2001). Model selection and the principle of minimum
description length. Journal of the American Statistical Association, 96, 746–
774.

Kass, R.E., and A.E. Raftery (1995). Bayes factors. Journal of the American
Statistical Association, 90, 773–795.

Kass, R.E., and P.W. Vos (1997). Geometrical Foundations of Asymptotic Infer-
ence. New York: Wiley.

Kontkanen, P., W. Buntine, P. Myllymäki, J. Rissanen, and H. Tirri (2003).
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