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Foreword

The problem of perception and cognition is in understanding how the
organism transforms, organizes, stores, and uses information arising from
the world in sense data or memory. With this definition of perception and
cognition in mind, this handbook is designed to bring together the essential
aspects of this very large, diverse, and scattered literature and to give a
précis of the state of knowledge in every area of perception and cognition.
The work is aimed at the psychologist and the cognitive scientist in particu-
lar, and at the natural scientist in general. Topics are covered in comprehen-
sive surveys in which fundamental facts and concepts are presented, and
important leads to journals and monographs of the specialized literature are
provided. Perception and cognition are considered in the widest sense.
Therefore, the work will treat a wide range of experimental and theoretical
work.

The Handbook of Perception and Cognition should serve as a basic source
and reference work for those in the arts or sciences, indeed for all who are
interested in human perception, action, and cognition.

Edward C. Carterette and Morton P. Friedman



This Page Intentionally Left Blank



The aim in editing this volume was to cover all the major areas of hearing
research with a series of coordinated and well-integrated chapters. Authors
were asked particularly to emphasize concepts and mechanisms and to at-
tempt wherever possible to explain not only what the empirical data show,
but also why they show a particular pattern.

The volume begins with “The Physical Description of Signals” by Wil-
liam Hartmann. Many students (and even some researchers) have difficulty
with the physical and mathematical concepts used in hearing research, and
this chapter lays the essential groundwork for acquiring these concepts.

Chapter 2, “Cochlear Structure and Function” by Graeme Yates, de-
scribes the great advances in knowledge that have occurred in the past 15
years, especially the concept of the cochlear amplifier, a physiologically
vulnerable mechanism that appears to be partly responsible for the high
sensitivity, wide dynamic range, and good frequency selectivity of the audi-
tory system.

Chapter 3, “Neural Signal Processing” by Alan Palmer, describes how
different aspects of auditory signals are represented, processed, and an-
alyzed at different stages of the auditory nervous system. The emphasis is
on the functional role of the response properties of the neurons, and the
organization is in terms of the type of stimulus being analyzed.

Chapter 4, “Loudness Perception and Intensity Coding” by Christopher
Plack and Robert Carlyon, reviews both empirical data and theories con-

xix



xx  Preface

cerning the way in which stimulus intensity is represented in the auditory
system. The experimental data are used to test and evaluate theories of
intensity coding.

Chapter 5, “Frequency Analysis and Masking” by Brian Moore, uses the
concepts of the auditory filter and the excitation pattern to characterize the
frequency selectivity of the auditory system. The chapter describes how the
shape of the auditory filter can be estimated in masking experiments and
summarizes how its shape varies with center frequency and level. The chap-
ter then discusses various aspects of perception that are influenced by fre-
quency selectivity.

Chapter 6, “Temporal Integration and Temporal Resolution” by David
Eddins and David Green, describes the empirical data within the framework
of a clear theoretical perspective. Many temporal phenomena are described,
analyzed, and interpreted.

Chapter 7, “Across-Channel Processes in Masking” by Joseph Hall, John
Grose, and Lee Mendoza, covers an area of research that has expanded
rapidly over the past ten years. It is concerned with situations in which the
“traditional” model of masking, based on the assumption that subjects
make use of the single auditory filter giving the highest signal-to-masker
ratio, clearly fails. Instead, performance appears to depend on the pattern of
outputs across different auditory filters.

Chapter 8, “Pitch Perception” by Adrian Houtsma, describes how pitch
theories have been developed and refined on the basis of experimental data.
It includes a comprehensive description of a variety of pitch phenomena and
describes both the clear tonal pitches evoked by sounds with discrete si-
nusoidal components and the less salient pitches that are sometimes evoked
by noise-like sounds.

Chapter 9, “Spatial Hearing and Related Phenomena” by Wesley
Grantham, gives a comprehensive description of the ability to localize
sounds in space and to detect shifts in the positions of sound sources. The
cues used for localization are described and compared in effectiveness. The
chapter also covers binaural unmasking effects and the “precedence effect”
that helps to reduce the influence of room echoes on localization.

Chapter 10, “Models of Binaural Interaction” by Richard Stern and Con-
stantine Trahiotis, gives a comprehensive overview of how models of bin-
aural processing have been developed and refined on the basis of experimen-
tal data. The chapter covers the perception of subjective position,
discrimination of changes in position, and binaural unmasking.

Chapter 11, “Auditory Grouping” by Christopher Darwin and Robert
Carlyon, describes an area of research that has expanded considerably over
the past decade. It is concerned with the ability of the auditory system to
analyze a complex mixture of sounds, arising from several sources, and to
derive percepts corresponding to the individual sound sources. The chapter



Preface  xxi

is particularly concerned with the information or “cues” used to achieve
this.

The final chapter, “Timbre Perception and Auditory Object Identifica-
tion” by Stephen Handel, relates the physical characteristics of sound
sources to their perceived qualities and describes the ability of the auditory
system to identify musical instruments, voices, and natural environmental
events on the basis of their acoustic properties.

There are many links between the phenomena and the theories described
in the different chapters. These links are pointed out in the extensive cross-
references between chapters. This will help the reader who wants to find
out as much as possible about a specific topic.

The contributors to this volume have done an excellent job, and I thank
them for their patience and cooperation. I also thank Ian Cannell for his
assistance with figures.

Brian C. J. Moore
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The Physical Description of Signals

William Morris Hartmann

I. INTRODUCTION

It is appropriate that the study of the perception of sound begins with a
physical description of the sound itself. Indeed, the study of the percep-
tion of sound is usually an attempt to discover the relationship between the
human response to a sound and a precise physical characterization of that
sound.

In the usual physical acoustical situation, there are three steps: the genera-
tion of the sound by a source, the propagation of the sound by a medium
from the source to a receiver, and the reception of sound. The generation of
sound always originates in mechanical vibration. The first section describes
the particular kind of vibration known as simple harmonic. Specializing the
study to this kind of motion is not as restrictive as it might first appear,
which becomes clear later when the Fourier transform is introduced. The
next section describes the propagation of sound in air. It too is specialized to
simple situations. Subsequent sections deal with mathematical aspects of
signals that are particularly useful in psychoacoustics, the Fourier trans-
form, spectral representations and autocorrelation, and the topic of modula-
tion. The chapter ends with a section on filtering of signals.

Hearing
Copyright © 1995 by Academic Press, Inc. All rights of reproduction in any form reserved.



2  William Morris Hartmann

II. SIMPLE HARMONIC MOTION

Few concepts in physics have had such wide application or so many varia-
tions as the simple harmonic oscillator. The study of simple harmonic
motion is a sensible starting point for the study of hearing as well.

The study of the harmonic oscillator begins by describing the motion of
a mass m that is free to move in one dimension, x, about some equilibrium
point, as shown in Figure 1. We might as well take the equilibrium point as
the origin of the coordinate system; therefore, equilibrium is at x = 0. When
the mass moves away from equilibrium by a displacement equal to x, there
is a force on the mass tending to move it back to equilibrium. The force (and
this is really important) is proportional to the displacement but in the oppo-
site direction. Hence, the force is F = —kx. Parameter k is called the spring
constant.

Newton’s law of motion relates the force on the mass to the acceleration
of the mass, d2x/df?, by the law

d2x _
and therefore, for the simple harmonic oscillator,
d?x _
m d_t2 = kx. (2)

Equation (2) is a differential equation for displacement x that is second order
in the derivative with respect to time ¢. It is linear in x, because x appears to
only the first power on both sides of the equation.

The solutions to this equation of motion describe the displacement as a
function of time, x(f). There are three solutions. One of them is x(f) = 0,
where the mass sits at its equilibrium point for all time and does not move.

The other two solutions are more interesting; they are the sine and cosine
functions. To show that x = sine and x = cosine are solutions, we recall that
the derivative of a sine function is a cosine and the derivative of a cosine
function is the negative of the sine function. Therefore, the second deriva-

0

—+—
%

k m

SOONNWNNNN

FIGURE 1 A mass and a spring make the simplest harmonic oscillator.
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tive of sin @yt is —wg sin wyt, and the second derivative of cos wyt is — o
cos wot. These are just what we need to solve Eq. (2), so long as the
parameter o, is related to the spring constant and mass by the equation

wg = k/m. ©)

Because both the sine and cosine functions individually are solutions, it
follows that the sum of the two is a solution. Further, we can multiply sine
and cosine functions by constants, calling them A and B. Finally, the general
solution to the simple harmonic oscillator differential equation is

x(f) = A cos(wgt) + B sin(wgt). 4

The solution x(f) is well known in acoustics as the sine wave and in
auditory science as the pure tone. The sine and cosine functions depend upon
an angle that increases linearly with time. As the angle, sometimes called the
instantaneous phase, grows, the equation traces out oscillations with angular
frequency w, radians per second.

The sine and cosine functions are periodic. Every time that the instan-
tancous phase wyt increases by 2w rad (or 360°) the function x(f) starts over
again to trace out another cycle. Every cycle is the same as any other cycle.

Because there are 2w rad in a complete cycle, the relationship between
angular frequency w, in rad/sec and frequency f; in cycles/s [or Hertz (Hz),
to use modern units] is

w0, = 2xf, (5)

For example, if f; is 1000 Hz then o, is 6283 rad/s.

The periodicity can also be represented by a repetition duration called the
period, symbolized T. The period of a sine is related to the frequency by the
simple reciprocal relation

T = 1/f, (6)

For example, if f; is 1000 Hz then T is 0.001 s or 1 ms.
Equation (4) is not the most convenient form for the solution. More
convenient for psychoacoustical purposes is the amplitude and phase form,

x(f) = C cos(wgt + b), 7

where C is the amplitude and ¢ is the phase.
The key to transforming from Eq. (4) to Eq. (7) is the trigonometric
identity

cos(y + &) = cos & cos ¥ — sin ¢ sin ¥, (8)

for any angles ¢ and .
We have only to associate ¢ with wyt to compare Egs. (4) and (8) and
arrive at the following correspondences:
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A=Ccosd 9

B = —Csin ¢. (10)
The amplitude C is given by

C = VA2 + B, 1)

and the phase is given by the equation

tan & = —B/A. (12)
The solution for phase angle ¢ is
¢ = arctan(—B/A) A<O0 (13)

¢ = arctan(—B/A) + = A=0.

An example of simple harmonic motion is shown in Figure 2. The ampli-
tude is C = 5. The frequency is 1000 Hz, and so the waveform repeats itself
three times during the 3 ms interval shown. For this waveform to be a
correct representation of a 1000 Hz sine wave, however, the duration must
be infinite. The initial phase of the cosine pattern is given by the angle —m/4
rad (—45°).

A. RMS Value

Figure 2 shows one other measure of the wave namely the rms (root mean
square) value. The rms value is computed by performing the named steps in
reverse order: first one squares the waveform instantaneous values (s), then
one finds the mean over a cycle (m), and finally one takes the square root (r).

 X(t)=5sin(2n 10001t +n/4) T

— T TAmpltude N\ /N 77

x(t)

[ UL
BWN=O—NWHLONO

| .
—70
time (ms)

FIGURE 2 A sine wave as a function of time. The long dashes show the rms value.
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Because operations of square and square root both occur, the rms value is on
the same scale as the amplitude. If the amplitude is in millimeters of dis-
placement then the rms value is also in millimeters of displacement. For a
sine waveform, the rms value is related to the amplitude by a simple scale
factor:

x., = C/V2 = 0.707C. (14)

This completes the description of the basic solution to the oscillator
equation consisting of the sine and cosine trigonometric functions and the
concepts of amplitude, frequency, period, and phase. It is important to
examine the physical situation that led to the original equation, Eq. (2), to
determine what it is and, particularly, what it is not. This is done in the
following section.

B. Other Oscillators

The situation of Eq. (2) is somewhat unrealistic in that it describes perpetual
motion. Once the system is set in motion it oscillates forever. There is no
dissipative element that would extract energy from the vibrations. Equation
(2) can be modified to include dissipation, the most convenient form being
viscous damping. Viscous damping is a resistive force proportional to the
velocity. It is not the same as ordinary friction, which is independent of
velocity, but it does resemble what is popularly known as wind resistance.
With viscous damping, the differential equation becomes

mﬁz—=—kx—r—‘§. (15)
The solution to this equation is a damped sine, a pure tone that decays
exponentially in time. If the damping is not too large, so that there are more
than ten cycles of oscillation, then the natural frequency of the system is still
given by Eq. (3) to a good approximation.

The oscillators described in Egs. (2) and (15) are free vibrators, un-
affected by anything in the outside world. The next step in the evolution of
vibration dynamics is to include influences from the outside. These are
represented as forces, so that Eq. (15) becomes

2
m %—g = —kx — r% + F_,.(¢). (16)
The amplitude of oscillation is no longer arbitrary. It is proportional to the
magnitude of the driving force F,,,. If the external force has a sinusoidal
time dependence we have a driven oscillator. This mechanical system and its
electrical analog, made with a capacitor and inductor (tuning), and a resistor
(damping), are the prototypical tuned system. The natural frequency of
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vibration is approximately given by Eq. (3). In the steady state this system
oscillates at the frequency of the external driver. It exhibits a resonance
behavior, where the displacement becomes particularly large, when the
frequency of the external driver agrees with the natural frequency of vibra-
tion of the system, wg. The sharpness of the tuning is described by a param-
eter Q, which is inversely proportional to the damping. Quantity Q will be
described further in the section on filtering.

A final restriction of all the preceding systems is that they are linear. That
means that the quantity x appears only to the first power in the equation of
motion. The fact of linearity is of enormous importance. Only because the
equations were linear could we begin with a solution to Eq. (2) like cos wyt,
multiply it by a constant A, and find that we still had a solution. Only
because the equations were linear could we take two solutions, cos wyt and
sin wgt, and add them to get a more general solution. None of these features
applies if the dynamical equation is nonlinear.

Simply to illustrate an example of a nonlinear dynamical equation, we
write down the equation for the Van der Poll oscillator:

2
m ZT;C = —kx + (r; — r,x2) % (17)
What makes this equation nonlinear is the factor of x2 that multiplies the
otherwise linear term dx/dt. Whenever the dynamical variable x appears to a
power higher than the first, whether differentiated or not, there is a non-
linearity. For example, a term like x2, or x dx/dt, or x d?x/df2, would make
the equation nonlinear.

The solutions to nonlinear equations are usually difficult to find, and
they are also rather specialized to particular circumstances. They may even
be chaotic. Nonlinear mechanics is an important part of auditory physiol-
ogy because the initial transduction in the cochlea is nonlinear. However, up
to the present the implications of nonlinearity for perception have been
handled phenomenologically with only sporadic attempts to relate results to
first-principles dynamical equations.

III. PROPAGATION OF SOUND

If the mechanical vibrations discussed in Section II have frequencies in the
audible range, they are heard as sound by a listener if they can propagate
from the vibrating source to the listener’s ear. The topic of sound propaga-
tion is a major part of the science of acoustics. The principles and applica-
tions are the subject of a vast literature, and the treatment in this section can
deal with only the simplest concepts.

Sound is propagated in the form of waves. Unlike light, sound waves
require a physical medium. Sound can be propagated through a gas or a
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liquid or (as in the case of bone-conduction audiometry) through a solid.
The most familiar medium is gaseous; namely, air.

We who live on the surface of the earth are at the bottom of the atmo-
sphere. Because of earth’s gravity, the weight of the atmosphere exerts a
pressure in all directions on everything down here, appropriately called
atmospheric pressure. Its value is 105 Newtons/m?2; that is, 105 Pascals (Pa),
equivalent to about 14.7 pounds per square inch.

Acoustical waves consist of variations in atmospheric pressure. Com-
pared to the static pressure itself, the variations caused by speech, music,
and the sounds of the environment are miniscule. A wave at the threshold of
hearing for human listeners has an rms pressure of 2 X 10~5 Pa, almost ten
orders of magnitude smaller than atmospheric pressure. A wave with an
rms pressure of 10 Pa (one ten-thousandth of atmospheric pressure) is pain-
ful and dangerous to hearing.

The speed of sound waves depends somewhat on the temperature of the
air. At room temperature (20°C) the speed is v = 344 meters per second
(m/s), corresponding to 1238 km/hr, 1129 ft/s, or 770 mi/hr. Therefore,
sound in air travels about a million times slower than light (¢ = 3 X 1010
m/s).

Accompanying the small pressure variation in a sound wave is a system-
atic variation in the average velocity of the air molecules, given the symbol 4
and measured in m/s. If the signal is propagating as a plane wave (more
about which later) then the rms velocity is related to the pressure by a
simple proportionality:

u=plz, (18)

where z is the specific acoustical impedance. This impedance is equal to the
product of the air density and the speed of sound:

z = pv. (19)

The density of air is p = 1.21 kg/m3, and with a speed of sound of v =
344 m/s, the specific impedance is 415 kg/m?2s or 415 rayls. It follows that a
plane wave at the threshold of hearing moves molecules with an rms veloc-
ity of u = 4.8 X 108 m/s. This is enormously slower than the rms velocity
of air molecules due to the kinetic energy of thermal motion at room
temperature, which is about 500 m/s. However, in the absence of a sound
wave, the molecular velocities are equally often positive and negative, and
they average to zero. As a result, a systematic oscillation with rms velocity
that is one ten-billionth of the thermal velocity is audible.

A. Energy, Power, and Intensity

A sound wave carries energy as it propagates. Energy is measured in units of
Joules (J), and the rate of transporting energy is known as power, measured
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in watts (W), 1 W =1 J/s. As a plane wave travels, the power is distributed
all along the surface of the wavefront so that the appropriate measure of the
strength of the wave is power per unit area of wavefront, also known as
intensity (I). Intensity, therefore, has units of W/m2.

The intensity of a plane wave is simply the product of the rms pressure
and velocity variations. Therefore, intensity is proportional to the square of
the pressure:

I=pu=p2/z. (20)

For example, if p is the nominal rms pressure at the threshold of hearing
then

_2x10-52 . ., 2
I 5 10-12 W/m2. (21)
This value of intensity is another measure of the nominal threshold of
hearing, I, = 10-12 W/m?2.

B. Radiation

The acoustical field of a sound source depends upon the geometry of the
source and upon the environment. The simplest source is the monopole
radiator, which is a symmetrically pulsating sphere. All other sources have
some preferred direction(s) for radiating.

The environment affects the sound field because sound waves are re-
flected from surfaces where there is a discontinuity in specific acoustical
impedance; for example, where air meets a solid or liquid or even air of a
different temperature. The reflected waves add to the direct wave from the
source and distort the shape of the radiation field. The simplest environ-
ment, called free field, is completely homogeneous, without surfaces, and
can be obtained by standing in an open field and then removing the ground.
A practical means of accomplishing this is bungee jumping. Free-field con-
ditions are approximated in an anechoic room where the six surfaces of the
room are made highly absorbing so that there are no reflections. From an
acoustical point of view, it does not matter whether the outgoing sound
waves are absorbed on the walls or whether there are no walls at all.

A monopole radiator expands and contracts, causing, respectively, over-
pressure and partial vacuum in the surrounding air. In the free-field envi-
ronment the peaks and troughs of pressure form concentric spheres as they
travel out from the source. The power in the field a distance r away from the
source is spread over the surface of a sphere with area 4mr2. It follows that
for a source radiating acoustical power P, the intensity is given by

I = Pl4mr2. 22)
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This equation expresses the “inverse square law” for the dependence of
sound intensity on distance. If the source is not spherically symmetric (not a
monopole) then, in free field, the intensity, measured in any direction with
respect to the source, is still inversely proportional to the square of the
distance; however, the constant of proportionality is not 1/4m but contains a
directionality factor.

The inverse square law is a result of the fact that the world is three
dimensional. In a two-dimensional world the sound power is spread over
the perimeter of a circle so that the sound intensity decreases only as the
inverse first power of the distance from the source. As a result, the in-
habitants of Flatland are able to communicate over long distances. In a
one-dimensional world the sound intensity does not decrease at all with
distance from the source. The ship’s first officer on the bridge can commu-
nicate with the engine room crew at the other end of the ship by means of
the speaking tube, which has no amplification but only confines the sound
waves to a one-dimensional channel.

C. Plane Waves

The pressure wavefronts that radiate from a monopole source are spherical
in shape. However, a receiver far away from the source does not notice this
curvature of the wavefront. The wavefront seems to be a flat surface, just as
the surface of the earth seems to be flat because we are so far away from the
center. The flat wavefront is known as a plane wave. A plane wave is charac-
terized only by its propagation direction. (It is called the z direction in the
following.) The pressure does not depend upon the other two directions of
space. It follows that the pressure is constant everywhere in any plane that is
perpendicular to the propagation direction, as shown by Figure 3.

The traveling plane wave is described by a cosine function (or sine) with
an instantaneous phase that depends upon both space and time,

x(t) = C cos(ot — kz + ), (23)

where k is known as the propagation constant. Because of the negative sign in
the instantaneous phase, we know that this wave is traveling in the positive
z direction. The propagation constant is related to the periodicity in space in
the same way that the angular frequency is related to the periodicity in time.
We recall that @ = 2w/ T and, therefore,

k= 2m/A, (24)

where \, the periodicity in space, is called the wavelength and is measured in
meters.
The wavelength and the period are related by the speed of sound,

A=vT, (25)
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FIGURE 3 Two snapshots taken of a traveling wave: (top) The solid line shows the
pressure as a function of spatial coordinate z seen in a snapshot taken at time ¢ = ¢,. The dashed
line is a second snapshot taken at a later time, t = t, (where t, — ¢, is about one-tenth of a
period). Evidently, the wave is propagating in the positive z direction. (bottom) An alternative
representation of the two snapshots illustrates the wavefront concept. Everywhere in plane P,
the pressure is at a maximum. Everywhere in planes P, and P, the pressure is also at a
maximum because all the planes are mutually separated by the wavelength A. The solid line
shows a snapshot taken at time ¢ = ¢;. The dashed line shows a snapshot taken at the later time,
t = t,, when the wave has moved along the z axis. The wavefronts, shown by planes, have
moved rigidly away from the source.

because when time has advanced by one period from time ¢, to t, + T, the
plane at P, will have advanced to the original position of plane P,, and the
plane P, will have advanced to the original position of plane P;. Equation
(25) is usually written in terms of frequency:

v = f\, (26)

which says that wavelength and frequency are reciprocally related. For ex-
ample, given that the speed of sound in air is 344 m/s, the wavelength of a
20 Hz tone is 17.2 m and the wavelength of a 20 kHz tone is 17.2 mm.

IV. MEASUREMENT OF ACOUSTICAL STRENGTH

The strength of an acoustical signal is measured electronically, beginning
with a transducer that converts the acoustical signal into an electrical signal.
The transducer is a pressure microphone, where the displacement of the
diaphragm is proportional to the pressure in the sound field. The displace-
ment generates a proportional electrical voltage that leads to the final read-
ing on the meter, which is an rms voltmeter. In the end, therefore, the
reading is a measure of rms sound pressure.

The sound pressure and sound intensity are universally quoted as “lev-
els,” which means that they are measured on a logarithmic scale. This scale
is foremost a ratio scale, whereby the intensity is compared to a reference.
The mathematical statement of this idea is
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The verbal translation is that the difference in levels, measured in decibels
(dB), between sounds 2 and 1 is given by the common (base 10) logarithm
of the ratio of the intensities. The factor of 10 is included to expand the
scale.

A review of the log function makes a few features of the level {decibel)
scale apparent. Because log(1) = 0, if sounds 1 and 2 have the same intensity
then the difference in their levels is 0. Because the logarithm of a number
less than 1 is negative, if I, < I; then L, — L, is negative. Because the log of
a negative number is not defined, it is not possible to transform a negative
intensity (whatever that might be) into decibels.

The function of the log scale is to transform ratios into differences. If I, is
twice I; then L, — L, = 3 dB, no matter what the actual value of I; might
be. That is because log(2) = 0.3. The log scale exhibits logarithmic ad-
ditivity: if I, is twice I; and I, is twice I,, then L, — Ly = 3dB,and L, — L,
=3dB, sothat Ly — L, = 6 dB.

A. Levels and Pressure

Because the intensity of sound is proportional to the square of the rms
pressure, it is easy to express level differences in terms of pressure ratios.
From Eq. (27) we have

L, = L, = 10 log[(p./p1)?], (28)

or
L, = L, = 20 log{(p,/p,)- (29)

Level differences may be derived for other physical quantities, too.

There is sometimes uncertainty about whether the correct prefactor in a
decibel calculation is 10 or 20. To resolve the uncertainty, we observe that
there are two kinds of quantities for which a decibel scale is appropriate,
energylike quantities and dynamical quantities. An energylike quantity or a
fluxlike quantity, used in the description of a signal, is real and never nega-
tive. Such quantities are acoustical energy, intensity or power, electrical
energy or power, optical luminance, or doses of ionizing radiation. When
converting ratios of such quantities to a decibel scale the appropriate prefac-
tor is 10.

Dynamical quantities may be positive or negative; usually they are posi-
tive and negative equally often. In some representations they may even be
complex. Examples of such quantities are mechanical displacement or ve-
locity, acoustical pressure, velocity or volume velocity, electrical voltage or
current, or electric and magnetic fields. Dynamical quantities have the prop-
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erty that their squares are energylike or fluxlike quantities. Therefore, when
putting these on a decibel scale, the appropriate prefactor is 20.

Other quantities are neither energylike nor dynamical, and for these
quantities a decibel scale is inappropriate. For example, frequency is neither
energylike or dynamical and it is inappropriate to measure frequency
in terms of decibels, even though the logarithm of frequency is a well-
motivated measure, by both psychoacoustic results and musical tradition.
The log of frequency is given other names such as octave number or semi-
tone number or cents.

B. Absolute dB

Although the decibel scale is a ratio scale in which a quantity is always
compared with another quantity, it is common for individual sound levels
to be expressed in decibels as though the measure were absolute. For exam-
ple, sound level meters read in dB SPL (sound pressure level). This practice
is possible because it has been agreed upon in advance that the reference
quantity shall be a convenient fixed value corresponding roughly to the
threshold of hearing, either an intensity of I, = 10~12 W/m?2 or a pressure of
Po = 2 X 1075 Pa. With these references, the sound pressure level for a signal
with intensity I or rms pressure variation p can be written as

L = 10 log(I/1,) (30)

and
L = 20 log(p/po)- (31

The left-hand sides of these equations are not differences. They are simply
levels, put on an absolute scale by convention.

There are absolute decibel units for signals in electrical form, too. The
unit dBv uses a reference signal with an rms voltage of 1 volt. The unit dBm
uses a reference signal with a power of 1 milliwatt. The former is dynami-
cal, the latter is energylike.

1. Example: Addition of Intensities

The logarithmic transformation from intensity or power to decibels leads to
some mathematical awkwardness. In the following, we give an example to
illustrate techniques for coping with this.

We suppose that two sine waves x; and x, are sounding simultaneously,
where x; has frequency 1000 Hz and level 70 dB SPL and x, has frequency
1720 Hz and level 67 dB SPL. Our task is to calculate the level of the
combination.

Because the air is a linear medium at these sound pressure levels and the
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frequencies are different, the intensities of the two waves simply add so that
the final intensity is I, = I} + L,. The only problem is that I, and I, are given
indB as L; and L,.

To find I, we first express I; and I, by inverting the dB formula,

I,/1, = 1070110 4 1067/10 (32)

Next, we extract from all the exponents a large common factor:
L/I, = (1 + 10-3/10)1(070/10, (33)
L/I, = 1.5 X 107. (34)

Then to find level L; we use the final formula Ly = 10 log(I,/1,), whence
L, =70+ 10 log(1.5) = 71.8 dB SPL. (35)

Thus, the addition of a 67 dB signal to a 70 dB signal has led to an overall
increase of 1.8 dB in the level.

V. THE SPECTRUM

The pure tone of Eq. (7) oscillates indefinitely, and it is not possible to draw
a figure to represent its infinite extent in time. One can, however, represent
this tone in a frequency-domain representation called the power spectrum,
which plots the power, normally expressed on a decibel scale, against fre-
quency. Figure 4(a) shows the power spectrum of the pure tone of Eq. (7).
The single line at frequency f, means that all the power is concentrated at the
single frequency.

20 log C
(a)
fo f (HZ)

L 70 67

(dB) (b)
1000 1720 f (Hz)

L
(dB) HHH](C)
300 900 1500 f (Hz)

FIGURE 4  (a) The spectrum of a pure tone. (b) The spectrum of a complex tone made by
adding two pure tones. () The spectrum of a complex periodic tone.
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Figure 4(b) shows the power spectrum for the sum of two sines, the
signal introduced at the end of the last section. Such a signal is a complex
tone because there is more than a single sine component. Figure 4(c) shows
the power spectrum of a complex periodic tone, with period of 1/300s. All
of its spectral components are harmonics of the fundamental frequency of
300 Hz.

The three spectra of Figure 4 are examples of line spectra. A noise signal,
by contrast has a continuous spectrum, where there is power at every value
of frequency. To deal with noise we need the concept of spectral density,
D(f), which gives intensity per unit frequency. Units of watts/(m?Hz) are
appropriate, for example. To find the total intensity one integrates the
spectral density,

I= f_w df D(S). (36)

Function D(f) might have any form [D( f) > 0]. In the simplest case it is
a rectangular function, with constant value D over a frequency range Af, as
shown in Figure 5(a). Then the integral is trivial, and one may write

1= D Af (37)

This equation is the basis for a logarithmic measure of spectral density called
the spectrum level. Dividing by I, and taking the logs of both sides, we find

10 log(I/I,) = 10 log(D/10-12) + 10 log Af, (38)
or
L = N, + 10 log Af, (39)

where L is the level in dB SPL, and Nj is the “spectrum level,”

D
No =10 1°g( T0-T2W/ (o F2) ) (40)

As an example, we consider Figure 5(b), where the spectrum level is 30
dB and the bandwidth is approximately 10 kHz. Such a sound would cause
a flat-weighted sound level meter to read 30 + 40 = 70 dB.

It should be noted that the correct unit for spectrum level N, is dB
because the spectrum level is the logarithm of a dimensionless ratio. Ten
times the log of a ratio has units of dB. The literature sometimes gives
spectrum level the units dB/Hz, which is completely understandable but
also completely illogical. One can get units of dB/Hz only by making a
mathematical error.

Except when a noise is digitally synthesized, actual noise bands are not
rectangular. A shape like the solid line in Figure 5(c) is more typical of noise
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FIGURE 5 (a) The spectrum of a noise that is white, within limits, as a function of
frequency. (b) The same noise, described by a constant spectral density as a function of log
frequency. (c) A noise passed by a bandpass filter.

bands passed by a filter. One can, however, still use the concept of a rect-
angular band by defining an “equivalent rectangular band,” as shown by the
dashed line in Figure 5(c). The equivalent rectangular band has the same
center frequency and the same maximum spectral density as the real band
under discussion. The width of the rectangular band, the “equivalent rect~
angular bandwidth,” or ERB, is adjusted so that the power in the rectangu-
lar band is equal to the power in the real band. In mathematical terms,

MfersDoes = | _4DP. (1)

Still another concept used in the characterization of spectral density is
that of effective noise voltage. The power in an electrical signal is propor-
tional to the square of the voltage, P ~ v2_.. In fact, by definition the rms
voltage is simply proportional to the square root of the average power.
Applying this idea to a density, we know that spectral density goes as D ~
v2/Af and has units of volts squared per Hertz. The square root of D
therefore has units of volts per root Hertz, v/ \/I-E, which is a common unit
of measure for the effective input noise of a device.

As a final word about spectral density, we note that dimensional argu-
ments can sometimes be misleading. Spectral density has units of power per
unit frequency. Because frequency has units of reciprocal time, spectral
density has units of power multiplied by time, which are the units of ener-
gy. There is, however, no way in which spectral density is equivalent to
energy; they both just have the same dimensions. [In fact, the mechanical
quantity called torque (force times lever arm) also has units of energy, but
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torque is not equivalent to energy either.] Confusion begins with models of
signal detection in noise, because the power in the signal multiplied by the
signal duration is a legitimate energy. Models of detectability end up with
detection performance given by a dimensionless quantity, and it is not really
surprising that this quantity often turns out to be the ratio of signal energy
to noise spectral density. There is no logical problem with this result. The
problem arises only when it is assumed that there is a fundamental signifi-
cance to the dimensionless ratio of signal energy to noise spectral density
outside the context of the particular signal detection model. In fact, the ratio
is still a comparison of apples and oranges; only the model makes this ratio a
sensible quantity.

VI. THE FOURIER TRANSFORM

The Fourier transformation of a signal x(f) transforms the functional depen-
dence from time to frequency. Because the auditory system is tuned accord-
ing to frequency, considerable insight into perception can often be gained
by working with a mathematical representation in the frequency domain.

The Fourier transform of function x{f) is X(w), where ® is a running
variable angular frequency. It is related to a frequency variable fmeasured in
Hz by © = 2xf.

The Fourier transform of x(f) is given by the Fourier integral,

X(w) = f dt e~iotx(t). (42)
The inverse Fourier transform is defined by the integral,
x(t) = L f i dw et X(w) (43)
27 J-w ’

which expresses the original function of time, x(f), as an integral over
angular frequency, or over frequency.

00

x(t) = f_m df 2 X (2w f). (44)

A. Real and Complex Functions

Several points should be noted about the equations for the Fourier transform
and its inverse. First, the Fourier transform is an integral over all values of
time, positive and negative. It is necessary to have a definition of the signal
for all time values before one can Fourier transform it. Second, the inverse
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Fourier transform is an integral over both positive and negative frequencies.
Negative frequencies play an important role, as will be evident soon.

The third point is that the Fourier transform X(w) is generally a complex
number, with real and imaginary parts. The factor e~ in Eq. (42) makes it
so. In practical calculations, it is often helpful to replace this factor by the
sum of real and imaginary functions, by using the Euler relation:

e~iof = cos wf — 1 sin wt. (45)

The inverse Fourier transform x(f) is also capable of being a complex
number according to Eq. (43). But a complex value for x(f) would contra-
dict the fact that the signal is a real function of time. We know that it is real:
We can display it on an oscilloscope, and we can hear it. What actually
happens is that the negative frequency components arrange themselves to
keep x(f) a real function. Function X{w) for negative values of v must be the
complex conjugate of X(w) for positive values of w. In symbols, this says
that

X(—w) = X¥w). (46)

where X* is the complex conjugate of X. (The conjugate of a complex
number X has a real part that is the same as the real part of X and an
imaginary part that is the negative of the imaginary part of X.) In other
words, starting with function X, evaluated at a particular o, changing the
sign of w leaves the real part of X unchanged while reversing the sign of the
imaginary part of X. For a specific example, we suppose that signal x
contains a component at a frequency of 100 Hz, and that X(2w100) = 3 + i4.
Then, because x is real, we must have X(—21100) = 3 — i4.

B. Transforms of Sine and Cosine

Because the sine and cosine functions represent pure tones with a single fre-
quency, we expect that their Fourier transforms will be particularly simple.
If the signal is a cosine with angular frequency w,

x(f) = C cos wyt, (47)
then
X(w) = wC[d(w + wy) + 3w — wy)], (48)

where function 8(w — ) is a function of o that has a spike when w equals
o, as described in the following.
For a sine function

x(f) = C sin wgt, (49)
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the Fourier transform is
X(w) = imC[3(w + wg) — 3w — wy)]. (50

The positive frequency component is given by 8(w — ), the negative by
8((!) + (l)o).

C. The Delta Function

The delta functions in Egs. (48) and (50) are spikes of infinitesimal width
and infinite height. A delta function has unit area

f_ dw 3w * wy) = 1. (51)

The most important feature of the delta function is its selection property:
For any function f(w),

f_w dw 3w — o) flw) = fluy), (52)

and similarly

f_w do 8(w + w)) flw) = f(—w). (43

The selection property means that 8(w — wy) is able to suppress any contri-
bution that function f{w) tries to make to the integral except for the contri-
bution at .

D. Amplitude and Phase Spectra

Suppose that x(f) is a pure tone given by the general formula
x(f) = C cos(wgt + ¢y). (54)

To find the Fourier transform, or spectrum, we begin by separating the time
and phase dependences with a trigonometric identity,

x(t) = C cos ¢y cos wyt — C sin ¢, sin gy, (55)

and then use the transforms of sine and cosine functions together with the
fact that the transformation is linear to find that

X(w) = wC(cos ¢y — 1 sin dp)d(w + wg)
+ wC(cos ¢, + i sin ¢y)d(w — wy). (56)
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Using Euler’s relation, eito = cos &y + i sin ¢, we find
X(w) = wC e~i®d(w + wgy) + wC ei®od(w — wy). (57)

To find the spectrum in terms of frequency fwe use the fact that 8(e) =
32nf) = (1/2%m)8(f). Then

X(f) = (C/2) e7d(f + f5) + (C/2) eiod(f — f)- (58)

Figure 6 shows the magnitude and phase angle of the components of this
tone, as a function of frequency.

E. The Power Spectra of the Pure Tone and the Spike

The purpose of the power spectrum is to give an indication of the amount
of power a signal has at each frequency. Because power is a real physical
quantity, the power spectrum must be real and nonnegative. The power
spectrum P( f) is obtained from the Fourier transform X( f) and its complex
conjugate:

P(f) = |X(NHF = X(HX*(N. (9)
The amplitude spectrum is the square root; namely, the absolute value itself,
IX(HL.

The power spectrum is a density, with units of power per Hertz. There
are logical difficulties with this definition for periodic signals, somewhat
beyond the scope of this chapter. The solution is that the power spectrum
can be found simply from the squared magnitudes in the components of the
spectrum. For the pure tone of Egs. (47) or (49), for example,

Cz2 C2
P(f) = 5 8(f+ f) + 5 8(f~ fo). (60)
c/2 c/2
IXI
—+
-fo 0 fo f
?o
—fq ?
| 0 fo f
_¢o

FIGURE 6 Spectral amplitudes and phases for a cosine tone with amplitude C and
phase &,.
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We now turn from the pure tone, which lasts forever, to the delta-
function spike, which is of infinitesimal duration. A single spike at time ¢y is
represented by

x(f) = A8t — tp), (61)

where A is the strength of the spike. The Fourier transform is
X(w) = J’ dt e tAJ(t — tp), (62)

By the selection property of the delta function, this is
X(w) = A e~iotn, (63)

Therefore, the Fourier transform is only a constant multiplied by a phase
factor.

The amplitude spectrum is the absolute value of the Fourier transform,
and the absolute value of a phase factor is simply unity,

|e=ion| = 1. (64)

Therefore the spike has a “flat” amplitude spectrum, equal to A indepen-
dent of frequency, and it has a flat power spectrum, with constant value A2,

The cases of pure tone and spike are opposites. The pure tone lasts
forever, but its spectrum is a delta function of frequency. The spike is a delta
function of time, but its spectrum is a constant along the entire frequency
axis.

F. The Lattice Function

The lattice is a periodic train of delta functions, a series of infinite spikes
separated by a common period. The lattice function of time is

)= 2 8t—mT), (65)

m=—o
where m is an integer index. The function is shown in Figure 7(a).

The Fourier transform of the lattice I(f) is

L(w) = D, e-imT, (66)
or

-]

L) = 0, > 8®) — noy). 67)

n=—
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FIGURE 7 (a) The lattice function of time. (b) Its Fourier transform is a lattice function of
frequency, with spacing proportional to the reciprocal of the period, w, = 2n/ T. The functions
continue to infinite time and infinite frequency, both' positive and negative.

Thus, the Fourier transform of a lattice function of time is another lattice
function, a lattice function of frequency, as shown in Figure 7(b). The
fundamental angular frequency is 0, related to the period by wy = 2w/ T.
The fundamental frequency is f,, f = 1/T. The lattice function will play a
role later in transforming all periodic functions, because all periodic func-
tions of time can be written in terms of the lattice function. The preceding
central result will therefore prove that all periodic functions of time have
Fourier transforms consisting of harmonics. Before showing that, we need
an important theorem, the convolution theorem.

G. The Convolution Theorem

The convolution theorem is a mathematical relationship of enormous pow-
er. It relates the Fourier transform of the product of two functions to an
integral known as the convolution (or folding) integral.

If function z is a product of x and y, that is,

z(1) = x(y(), (68)

then the Fourier transform of 2(f) is given by the convolution integral:
Z(w) = 5— f do'X(w )Y — o), (69)

where X(w) and Y(w) are Fourier transforms of x(f) and y(f), respectively.
The relationship is symmetrical. If W is the product of X and Y, that is,

W) = X(0)Y(w), (70)

then the inverse Fourier transform of W(w) is given by the convolution in
time,
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w(t) = f; dt’ x(t)y(t — t'). (71)

The convolution integral will be described in further detail in the section on
filters.

H. Complex Periodic Signals

A periodic signal is a signal that repeats itself indefinitely into the future and
also indefinitely back into the past. The periodic signal is clearly a mathe-
matical abstraction, but its spectral properties are often an excellent approx-
imation for the real-world signals that are periodic for only a finite time.

To create a periodic function x(f) we begin with a function s(f) that is a
single cycle. This means

s(t) = x(¢) -T/2<t<T/2 (72)
s() =0 otherwise

The complete function x(f) can be recovered from s(¢) by repeating s(f) by
convolving it with the lattice function,

x(t) = f_: dr’ s(e)i(e — t'). (73)

From the convolution theorem it is evident that the Fourier transform of the
periodic function is

X(w) = L(0)S(w), (74)

where S(w) is the Fourier transform of s(f). From Eq. (67) we find

-

X)) =0, O 3w — nwy)S©), (75)

which is equivalent to -

X(w) = @y g 3w — nwg)S(nw), (76)
or, for frequency in Hertz,

X(N)=h ”gm 8(f — nfo) S(mnfy). 77)

Equation (77) says that the only spectral components of a periodic signal
occur at frequencies that are integral multiples of the fundamental angular
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frequency wgy. The component with angular frequency nw, (frequency nfy) is
called the nth harmonic.

The sum in Eq. (77) goes over both positive and negative values of n.
However, S(~nwy) = S*(nw,), and therefore all the essential information
about the spectrum is available in the half of the series with n positive.

1. Example: The Rectangular Pulse and the Rectangular Pulse Train

As an example of the techniques that have been developed in this section we
find the Fourier transform of a rectangular pulse train. A rectangular pulse
train with duty factor p is a periodic signal with period T that is in a high
state for a fraction p (p < 1) out of every cycle and is in a low state for a
fraction 1 — p of the cycle. Such a wave is shown in Figure 8(c) for the
particular case where p = 1/3.

First, for the function of time, we begin with a lattice, I(f), that estab-
lishes the periodicity, as shown in Figure 8(a). We next construct the ele-~
ment to be built on each of the lattice points, namely the single-cycle s(f).
Function s(f) contains no information about the periodicity but does contain
the information that the pulse has the value 1 for a time T = p T and is zero
for all other time, as shown in Figure 8(b). The final pulse train, given in
Figure 8(¢), is the convolution of the lattice function in Figure 8(a) and the
single cycle in Figure 8(b).

For the Fourier transform of x(¢), the harmonic frequencies are given by
the Fourier transformed lattice L(w) shown in Figure 9(a). To find the
harmonic amplitudes we use the Fourier transform of s(f),

7/2
S(w) = f , dr(1) emior (78)

=T

(@)

-2T -T © T 2T 31T 4714

(b)

| —
-t/2 0 T1/2=T/6

00100

=2T -T 0 3T 4T ¢
FIGURE 8 (a) The lattice function showing the basic periodicity of the rectangular pulse
train. (b) The single pulse that is repeated to make the pulse train (a). (c) The pulse train is the
convolution of (a) and (b).
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FIGURE 9 (a) The lattice function obtained by Fourier transforming Figure 8(a). (b) The
spectral envelope obtained by Fourier transforming Figure 8(b). (c) The Fourier transform of
the pulse train is the product of (a) and (b).

X(f)
|

which can be solved to give

S(@) = 1 -———Si"u()‘:fz/z) , (79)
or
S(f) = % Si:}:ﬁ' (80)

Function S(f) is shown in Figure 9(b).

Finally the Fourier transform of the pulse train, x(f), is given by the
product of L(w) and S(®), and so we substitute into Eq. (77). Using the facts
that pT = 1, and ;T = 1, we find

X()=p Z 3(f — nfy) ST (81)

n=—o wpn

Function X( f) is shown in Figure 9(c). It consists of a series of harmonics,
with a spectral envelope given by the function S(w), calculated from a single
period of the wave. This kind of mathematical structure, a lattice function
for harmonics multiplied by an envelope function determined by a single
cycle applies to the Fourier transform of all periodic functions.

The power spectrum of the pulse train is given by squaring the strengths
of the delta functions, as they are determined by the spectral envelope
function. Therefore, the powers of the harmonics in the power spectrum are
proportional to |S(w)[2. They are never negative. For the spectrum of Eq.
(81), the power spectrum can be computed, combining terms with positive
and negative n and treating n = 0 separately,
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sin wpn
wpn

= 2
Py =800 + 3 B~ ) + 8+ o | (82)

n=1

It is common to write the amplitudes of the harmonics in terms of levels, so

that the level of the nth harmonic is given by

sin wpn
Tpn

. = 20 log( ) . (83)

An important attribute of the rectangular pulse train is that the harmonics
decrease in level relatively slowly as the harmonic number n increases. Their
amplitudes are given by the product of a rectified sine function and the
factor 1/n. As the harmonic number becomes large (np >> 1), the sine
function oscillates perpetually and the asymptotic behavior of the ampli-
tudes is proportional to 1/#, and so (from Eq. 83) decreases at —6 dB per
octave (L,, — L, = —6 dB). This 1/n dependence is the direct result of the
fact that x(f) has a discontinuity. It is not hard to generalize this result: If
function x(t) is continuous, but there is a discontinuity in the first derivative
(e.g., a triangle wave) then the spectral envelope is asymptotically propor-
tional to 1/n2, decreasing at a rate of 12 dB/octave. A discontinuity in the
second derivative of x(f) leads to a spectral envelope decreasing asymp-
totically as 18 dB/octave, and so forth.

Figure 9(c) shows that the third harmonic of the (p = 1/3) pulse train has
zero amplitude. This is true as well of the 6th, 9th, 12th, and so on. In
general, for a pulse train with duty factor p, the 1/pth harmonic is missing,
so is the 2/pth, 3/pth, and so on.

I. The Fourier Series

The Fourier series is a way of writing a periodic waveform x(f) as a sum of
sines and cosines. The general form of the Fourier series is

x(t) = DC + 2 A, cos(nwgyt) + 2 B, sin(nwt). (84)

n=1 n=1

The DC is a constant term, independent of ¢. It is the average value of x(f)
over a cycle. Coefficients A, and B, are time independent; all the time
dependence comes from the oscillating cosine and sine functions.

It may seems strange to represent functions such as the rectangular wave
by sums of oscillating functions. In fact, it does not seem possible at first
glance. However, Fourier’s theorem says that, subject to rather few restric-
tions, with enough terms (enough harmonics) added together any periodic
function can be represented by a Fourier series. More than that, Fourier’s
theorem says that, for a particular function x(f), the series is unique; only
one set of numbers {A,} and {B,} will give function x(t).
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It is a rather simple matter to find the Fourier series for a periodic func-
tion once one knows the Fourier transform X(w). One simply has to plug
X(w) [or X(f)] into Eq. (43) or (44). For example, for the rectangular pulse
train,

x(f) = p f dfez 2 (f~ nfy) Si‘;;',f", (85)
or
x(t) = p[l + 2 n§=:1 sir;;r:n cos(2mnfyt) ] (86)

The symmetry of the original rectangular pulse train about zero time has
resulted in a series with no sine terms (all the B,, are zero). There is a DC
term given by p, and coefficients A, are given by

sin wpn

A, =2p pn

(87)

J. Temporal-Spectral Trading

The spectral envelope in Figure 9(b) or 9(c) illustrates an important fact
about frequency and time representations of signals. The spectral envelope
is an especially broad function of frequency f when the duration of the
rectangle 7 is especially short. In fact, the spectral width and the duration are
reciprocally related. If, for example, we define the width of the spectral
envelope to be the frequency difference between the first zero crossings at
+1/7 and give this width the symbol Af, then the reciprocity between
frequency and time is simply

Afr = 2. (88)

As an example of temporal—spectral trading, we consider another wave-
form that employs the rectangle function; namely, the rectangularly gated
pure tone. It is described by the equation

x(f) = s(t) cos(wyt), (89)

and it looks like Figure 10(a).

Because the waveform x(f) is the product of s(f) and a cosine, the Fourier
transform X(w) is the convolution between the respective Fourier trans-
forms:

X(w) = %f_: do’'S(")[dw — o' — ay) + 8w — o' + wy)].  (90)



1 The Physical Description of Signals 27
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FIGURE 10 (a) A rectangularly gated sine tone with five cycles. (b) The Fourier trans-
form of (a).

Convolving function S(w) with the delta functions is easy to do. It has
the effect of translating S(w) so that it is centered on @, (or —,). The result
is

sinf{(w — wy)7/2] n sin[(w + wy)7/2]
(@ — @) (0 + @) ’

as shown for X(f) in Figure 10(b).

The effect of gating the pure tone with a brief rectangular envelope is to
take the sharp spectrum of the pure tone and broaden it so that it covers an
appreciable part of the audible frequency axis, a result known as spectral
splatter.

The reciprocal relation between time and frequency is sometimes called
the uncertainty principle, in analogy to the uncertainty principle of wave
mechanics. In that context, an appropriate interpretation of the temporal-
spectral trading is that one has a choice to make about the precise point in a
frequency—time space where a tone will fall. One can make the tone very
brief so that one knows almost precisely when the tone occurs, but in that
case one is somewhat uncertain about the frequency of the tone (the spec-
trum is broad). If one is willing to sacrifice a precise time for the tone and to
give it a long duration, then the frequency can be established with greater
accuracy.

The uncertainty principle is a fundamental limitation in the physics of
waves, and yet, interpreting its correct role in different situations is a contin-
uing challenge. The principle applies only to linear systems; nonlinear trans-
formations can render it invalid. For example, a reciprocal-reading period-
measuring device can measure frequency to arbitrary precision, given only a
single cycle of the waveform.

The uncertainty principle is one of the cornerstones of information theo-
ry. However, such devices as the reciprocal-reading frequency counter do

X(w) =

1)
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not necessarily violate information theory principles, because the measure-
ment process includes assumed knowledge of the waveform. The counter
would behave differently given a complex waveform that happened to have
two positive-going zero crossings per cycle.

Correct interpretation of the uncertainty principle as it applies to audition
is especially challenging. There are clearly demonstrable effects of spectral
splatter manifested as off-frequency listening in narrowband masking ex-
periments, but the uncertainty principle does not establish the limits of
frequency discrimination (or pitch perception) for brief tones. Human lis-
teners find it easy to beat the limits of the uncertainty principle by a factor of
5, and the dependence of frequency difference limens on duration follows
the inverse first-power law for only a restricted range of durations. (See
Chapter 8.)

The temporal-spectral trading has been illustrated here for a rectangular
temporal envelope, but the concept applies for an envelope of any shape. A
variety of envelopes has been considered by Ronken (1971). Different
shapes lead to different distributions for the spectral splatter, but for all
envelopes an uncertainty principle applies of the form

AfT = k, (92)

where Af is some sensible measure of the spectral width and 7 is some
measure of the signal duration. With Ronken’s definitions, constant k falls
in the range from 0.4 to 1.2.

VII. AMPLITUDE MODULATION
A pure tone is described by the formula
x(f) = C cos(wgt + o), (93)

where C is a positive real constant called the amplitude. The amplitude
determines the intensity of the tone and is the major element in establishing
the loudness of the tone.

One can imagine relaxing the requirement that the amplitude be strictly
constant and let it be a function of time C = C(f) so long as the time
dependence of C(f) is slow compared to w,. This is the idea of amplitude
modulation (AM). Typically one imagines that there are many cycles of the
function cos(wgt + ¢,) (called the carrier) in the time that it takes for C(f) to
change significantly. It is also typical to demand that C(f) remain positive so
that it remains a proper amplitude. It is further typical for the signal called
the carrier to have no DC component. (In Eq. (93), the carrier is simply a
cosine, and there is no DC component.)

The amplitude modulation of a cosine by another cosine serves as a useful
example of AM. We let the amplitude be
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C=C{t) =1+ mcos w,, (94)

where ®,, is the modulation angular frequency and m is the “modulation
depth,” occasionally called the modulation index. So long as m is not greater
than 1 (100% modulation) the amplitude remains positive.

The AM signal is, therefore,

x(0) = (1 + m cos w,f) cos(wgt + dg). (95)

Using a simple trigonometric function we can rewrite this as

x(t) = cos(wot + o) + 5 cosl(wp + w,,)¢ + o]

+ 5 cosl(wy — w,)t + dl. (96)

Eq. (96) makes it evident that there are three components in the spectrum of
the AM signal: one with the frequency of the carrier and two sidebands that
are displaced in frequency from the carrier by *w,,. Because the amplitude
of the carrier is unity, the amplitude of each sideband, relative to the carrier,
is m/2. The level of each sideband, relative to the carrier is given by

L = 20 log(m/2) 97)

The maximum value occurs for 100% modulation (m = 1), so that the
sideband levels are —6 dB with respect to the carrier.

A. Balanced Modulation

If the modulation is strong enough that C(f) is driven to negative values (for
example, if m > 1 for the cosine modulator) then one must use the idea of
balanced modulation. Balanced modulation results from the multiplication
of two signals, and both signals are allowed to be positive or negative.
Sideband levels are still given by Eq. (97), and there is no limit on how large
they may become.

In general, no distinction is made between carrier and modulator. If z is
the balanced modulation product of x and y, then

2(1) = x(@0)y(®. (98)

In the simplest possible case, x = cos w;t and y = cos w,t. From a
trigonometric identity for the product of two cosines, we find that the
spectrum of the balanced modulation signal has one component at the sum
frequency »; + , and another at the difference frequency, |o; — ®,|. There
is no component at the carrier frequency.

The balanced modulation product of two multicomponent signals x and
y has a spectrum that is easy to describe. There are components at frequen-
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cies given by the sum of each frequency in signal x with each frequency in
signal y. There are components at frequencies given by the difference be-
tween each frequency in signal x and each frequency in signal y. Thus each
component in the product has its origin in one component of x and one
component of y. The amplitude of a component in the product is equal to
one half of the product of the amplitudes of the original x and y compo-
nents. An exception occurs for DC terms (frequency equal to 0), where the
amplitude in the product is equal to the product of the amplitudes in the
originals.

VIII. FREQUENCY MODULATION

In frequency modulation (FM), as in amplitude modulation, there is a carri-
er signal that is normally assumed to be a high-frequency sine wave and
there is a lower frequency modulator. FM consists of modulating the fre-
quency of the carrier.

The first step in a mathematical treatment of FM is to be quite clear about
what is meant by frequency. We assert here that the frequency w(f) is the time
derivative of the instantaneous phase of a sine. If the signal is

x(f) = sin[O()], (99)

then the instantaneous phase is ©. (Here, and later, we set the amplitude
equal to 1 for convenience.) It follows that the phase is the integral of the
time-dependent frequency:

o) = f dt’ w(t'). (100)

In an FM signal, the instantaneous frequency consists of a constant carri-
er frequency, w,, plus a variation. If the variation is sinusoidal, with frequen-
cy ,,, then

o) = ©, + Aw cos{w,,t + ). (101)
Therefore, the phase is given by

o(t) = w,t + ? sin(w,,t + ). (102)

The quantity Aw/w,,, called the modulation index, is usually given the sym-
bol B,

I

B= (103)

°lE

Ed

Finally, substituting Eq. (103) into (102) and (102) into (99) we find the FM
signal, given by
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x(f) = sinfwt + B sin(w,¢ + ¢)]. (104)

The amplitude of the signal is constant, and therefore, unlike the case of
AM, the power in the signal is not affected by modulation.

A useful alternative form for Eq. (104) is obtained by using the trigono-
metric identity:

sin({ + ¢) = cos b sin Y + sin ¢ cos V. (105)
Then the signal becomes

x(f) = sin(w) cos[B sin(w,,t + $)]
+ cos(wt) sin[B sin(w,t + §)]. (106)

The next step in our treatment of FM is to calculate the spectrum. There
are two approaches, depending upon whether 8 is small or not. If B <<
/2, we have the case called narrowband FM (NBFM), and we can proceed
by using an expansion that is a Taylor’s series in B. If B is not small, we can
deal with the spectrum only by using Bessel functions.

A. Narrowband FM

If the modulation index B is small (B << m/2) then we can simplify Eq.
(106) by using the approximations that the cosine of a small angle is equal to
1 and the sine of a small angle is equal to the angle itself (expressed in
radians).

Therefore, in this approximation,

x(f) = sin(wt) + B sin(w,t + ¢) cos(wt). (107)

The product of sine and cosine can be expanded to obtain a sum of sine
functions, a form that makes the spectrum apparent:

x(£) = sin(w,t) + g sinf(w, + @)t + ¢] = 5 sinf(w, — w,)t = 6. (108)

The NBFM spectrum has a carrier and two sidebands separated from the
carrier by o,,. This spectrum bears a great resemblance to the spectrum of
an AM signal (see Eq. 96). In fact, the power spectrum of FM in the
narrowband approximation is identical to the power spectrum of the AM
signal, where B plays the role of m. Only in the matter of relative phase [the
minus sign in front of the lower sideband in Eq. (108)] do AM and NBFM
differ.

The signal in Eq. (108) can be more than just an approximation to a true
FM signal. Digital techniques are often used to create that signal exactly in
order to investigate the role that sideband phase plays in the perception of
modulation. In that case, parameter B can have any value and the signal is
known as quasi-FM (QFM).
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B. Wideband FM

If the modulation index B is not small, the NBFM approximation will fail
and we must calculate the FM spectrum exactly. To do this we begin with
Eq. (106) and observe that the signal is composed of two terms: sin(w.f)
cos[B sin(w,t + ¢)] and cos(w,f) sin[B sin{w,t + $)]. If we expand cos[B
sin{w,,t + ¢)] and sin|[B sin{w,t + )] in their Fourier series, then the two
terms in the signal will be changed into two series in which each term is a
product of two sines or cosines. By expanding these products into sums
using trigonometric formulas, we get the spectrum.

Here we perform the steps just outlined for the case ¢ = 0. The Fourier
series for both cos[B sin(w,,t + )] and sin[B sin(w,,t + )] have component
amplitudes that are Bessel functions, known as cylindrical Bessel functions or
Bessel functions of the first kind, J,(B):

cos(B sinw,t) = Jo{B) + 2[J.(B) cos 2wt
+ JB) cos 4wt + . .. ] (109)

and
sin(B sin w,t) = 2[J;(B) sin w,¢ + J3(B) sin 3wt + ... ]. (110)

By substituting Eqgs. (109) and (110) into (106) and then using trigono-
metric sum and difference formulas, we arrive at a form that shows all the
components:

x(6) = Jo(B) sin wt + J;(B)[sin(w, — w,)t — sin(w, + ,){]
+ L(B)[sin{w, — 2w,)t + sin(o, + 2w,)f] + J3(B)[sin(w,
= 3m,,)t — sin(w, + 3w, )] + . .. (111)

This is a time function consisting of a carrier, at ., and an infinite
number of sidebands. This is in contrast to the AM case, where there is only
the carrier and a single set of sidebands. The first sidebands are separated
from the carrier by a frequency separation of *w,,; the second sidebands by
a separation of *2w,, ..., and so forth. The Bessel functions give the
amplitudes. The carrier has amplitude J,(B), the first sidebands have ampli-
tude J;(B), the second sidebands amplitude J,(B), and so on. Functions J,,
Ji» and J, are shown in Figure 11.

It is evident that the amplitudes are not monotonic functions of the
modulation index B. For § = 3.8 the second sidebands are strong whereas
the first sidebands have virtually disappeared. There is an orderly behavior
for small B; for B << 1, the sideband amplitudes grow as p~.

It is also possible to generalize somewhat in the opposite case when B is
large; for instance, for very low modulation frequencies, f,,, where side-
bands are close together. Intuitively one feels that the bandwidth over which
the sidebands are strong ought to agree with the overall frequency excursion
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FIGURE 11  Bessel functions giving the amplitudes of the spectral components as a func-
tion of modulation index B for the carrier and two sets of sidebands; namely, n = 0 (solid line);
n = 1 (long-dashed line); and n = 2 (short-dashed line).

of the tone, 2Af In fact, that is what happens. For large values of n, the
sideband amplitudes, J,(B), remain small as B increases, until § becomes
approximately as large as n. Therefore, for B > 1 the number of significant
sidebands is approximately equal to B. Since the sidebands are all f,, Hz
apart and there is one set of sidebands on each side of the carrier, the
bandwidth, 2B, of the FM signal for B > 1 is approximately

2Bz2;3fm=2jATffm=2Af (112)

IX. FILTERS

A filter is a signal processing device with an input and an output. The filter
causes the spectrum of the output signal to be different from the spectrum
of the input signal. To quality for the category of “filter,” the device must
modify the spectrum of the input signal in a particular way; namely, by
multiplication.

A. Frequency Domain

If the spectrum of the input signal is X(®) then the spectrum of the output
signal, Y(w) is given by

Y(0) = H(®)X(o), (113)

where H(w) is a function that characterizes the filter, called the transfer
function.
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The simple multiplicative form of Eq. (113) is the only form that is
allowed. It shows that the filter is a linear processor. If the input is doubled,
then the output will also be doubled. If the input is the sum of two signals,
then the output is the sum of the two inputs, as they would be filtered
individually. In mathematical terms, if

X(w) = X (w) + X,(w), (114)
then
Y(w) = H(w)X(w) = H(®)[X;(w) + X;(w)], (115)
or
Y(w) = H(w)X;(w) + H(w)X(w). (116)

The simplicity of Eq. (113) makes it natural to think of a filter as a device
that operates in the frequency domain. Function H(w) changes the spectral
content of signals. For instance, if H is 0 at a particular frequency, then the
output will have no power at that frequency regardless of how much power
is put in. Accordingly, filters are classified by their frequency response. A
low-pass filter allows low frequencies to pass through while attenuating
high frequencies; a high-pass filter does the reverse. A bandpass filter passes
only frequencies in a band while rejecting components with frequencies
above and below the band; a band-reject (or notch) filter does the reverse.

Although Eq. (113) is simple, it is not trivial. Both the input spectrum
X(w) and the output spectrum Y(w) are complex functions with real and
imaginary parts. The transfer function is also complex. Therefore, the
product H(w)X(w) is actually the sum of four terms, two of them real and
two of them imaginary. A more convenient way to think about filtering is
to represent the transfer function in polar form:

H(w) = |H(w)|eit@. (117)

This form separates two aspects of the filtering function: the amplitudes of
the signals passed through the filter are multiplied by the real number
|H(w)|, and the phases of the signals are shifted by the filter phase shift ¢(w).
The functional dependence of |H| and ¢ on frequency represents the effect of
the filter on an input component with the corresponding frequency. We
illustrate that with a few examples.

1. Examples of Pure Tone Response and Complex Tone Response

The response of a filter to a pure tone with frequency of 1000 Hz might be

H(2w1000) = 1/V2 (118)
$(2w1000) = —45°. (119)



1 The Physical Description of Signals 35

This means that if we pass a 1000 Hz sine tone through the filter its ampli-
tude will be multiplied by the factor 1/ V2 and its phase will be shifted by
—45°,

The response at a different frequency will be different. At 2000 Hz the
filter transfer function might be

H(2w2000) = 1/V5 (120)
$(2m2000) = —63°, (121)

which means that, if the frequency of the input is changed to 2000 Hz, there
will be more attenuation (smaller factor |H|) and the phase will be shifted by
more; namely, by —63°.

Suppose now that the input is a complex signal with a fundamental
frequency of 1000 Hz and a second harmonic at 2000 Hz. We let both
components have amplitude 1 and cosine phase:

x(f) = cos(2w1000f) + cos(2w2000) 122)

The spectrum of this tone is given in Figure 12(a). The spectrum of the
output is given in Figure 12(b).
The output of the filter as a function of time is a complex tone described
by
27

1 1
x(t) = % cos (211'1000t - f) + % cos (21r2000t - % 63). (123)

Input and output signals, as functions of time, are shown in Figures 13(a)
and 13(b), respectively.
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FIGURE 12 (a) Input spectrum, magnitude, and phase for the sum of two cosines. (b)
Spectrum of the filtered output.
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FIGURE 13 (a) Time waveform for the wave of Figure 12(a). (b) Time waveform for the
filtered wave of Figure 12(b).

The solution to the complex tone problem has combined the solutions
for the pure tones. The fact that the pure tone response can be entirely taken
over in calculating the response to a complex tone is a direct result of the fact
that a filter is linear. No such simple treatment is possible if the device is
nonlinear.

This example illustrates several important general points about filters.

1. Whatever frequencies go into a filter also come out. The filter can-
not change frequencies nor can it introduce components with fre-
quencies not present in the input.

2. The act of filtering changes the shape of a complex time-dependent
signal so that the output looks different from the input. There are
two reasons for this. First, the relative amplitudes of the compo-
nents are changed. Second, the phases are changed.

B. The Impulse Response

Filters were introduced previously in a frequency-domain representation;
namely, by the transfer function. However, any operation described in the
frequency domain has a corresponding description in the time domain.
Because the operation in the frequency domain is multiplication, the opera-
tion in the time domain is convolution. Therefore,

y{(t) = fw dt’ h(t — t')ax(t") (124)

or, equivalently,

y(t) = J’_Z de’ h(t)x(t — t'). (125)
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Function h(f) is called the impulse response. It is the inverse Fourier transform
of H(w):

mo=%[@mwm@y (126)

Equations (124) and (125) give the output as a function of time in terms
of a convolution between the input and the impulse response. Either of
these equations can be derived from the other by a change in the definition
of the dummy variable ¢'.

The form in Eq. (124) particularly leads to insight into the way in which
the convolution integral works. The integral there expresses the output at
time ¢ in terms of the input, x(t'), at all other times, represented by the
moving variable ¢'. The degree to which the input at time ¢' affects the
output at time f is given by the response function A(t — ¢'). This kind of
reasoning leads to intuition about the response function itself: It seems likely
that what is most important in determining the output right now should be
the input right now. Therefore, we expect h(t — t') to be large when ¢ = ¢'.
Just as “time heals all wounds” we expect that input events in the distant
past should not affect the present value of the output. Therefore, h(t — )
should become small when ¢t — ' becomes large.

Common sense tells us that the output of a physical system cannot de-
pend upon the input at future times. Therefore, in Eq. (124), whenever ¢ is
greater than ¢, the contribution to the integral must be 0. The requirement
that the output cannot depend upon the input of the future is known as
causality, and it leads to a restriction on the form of the impulse response:

h() =0  t<O. 127)

As a result, it is possible to rewrite the integrals with new limits

y(t) = f_w dt' h(t — t")x(t'), (128)

or, equivalently,

y(t) = f: dt" h(t )x(t — t'). (129)

This restriction on h(t) leads to restrictions on H(w), which limits the
kind of filters that are physically realizable.

The function h(f) is called the impulse response because this function is
exactly what the output of the filter becomes if input to the filter is an ideal
impulse. If the input is a delta function, x(¢) = 3(f), then
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y(t) = f_w dt' h(t — ¢")8(t'). (130)

But by the sampling property of the delta function, this gives
() = k(). (131)

Therefore, the response, y(f), of the system to an impulse is just function

h(t) itself.

C. The One-Pole Low-Pass Filter

The one-pole low-pass filter is important as a concept in psychoacoustics
because it is often used to represent a perceptual operation that averages an
input over time. It is sometimes called a leaky integrator. To describe this
system we return to the mechanical oscillators introduced in Section II.

We suppose that there is an oscillatory force, F.,,, with a particular
frequency o. We know that the system will respond at this particular fre-
quency, and we use the concept of the filter transfer function to tell us the
amplitude and phase of the response. The particular response of interest is
the displacement of the mass, X(w). Figure 14(a) shows the low-pass filter.
It consists of a spring and a viscous damping dashpot. There is no mass. An
external force from the left drives the system.

A problem with the mechanical system defined here is that we have an
output displacement but an input force. To put the two on an equivalent
basis so that we can apply the concept of a transfer function, we define the
force by an equivalent displacement, using the mechanism of Figure 14(b).
It is the same as Figure 14(a), but there is no damping. The effective input
displacement X_,, is the displacement that the external force would achieve
with the spring alone as load; namely, X, = F.,/k.

To return to the low-pass filter of Figure 14(a), the equation of motion
for displacement x is Eq. (16) with the spring constant set equal to 0.
Fourier transforming and solving, we find the output in terms of the input:

X(0) = Xex(w)H(w) (132)

where

H(w) = (133)

1+ ioT

and 7 = m/r. This filter is called a one-pole filter because w appears only to the
first power in the denominator. Its magnitude and phase responses are
isolated by the polar form

[ 1 .
H(®) = VT 022 e, (134)



1 The Physical Description of Signals 39

: r (a) (b)
E oy

A\
=
m"'l

k k
/ r (C)
/‘ Fexf
k m
/

FIGURE 14  (a) The spring and dashpot make a one-pole low-pass filter for displacement.
(b) The effective input displacement is determined by driving the spring alone. (c) The spring,
mass, and dashpot make a two-pole filter for displacement.

where
d(w) = —tan"Y(wT). (135)

It is actually this filter, with time constant 7 = 1 ms, that appears in the
previous example (Egs. 118 and 120) and in Figures 12 and 13.

Filters can be described by their asymptotic magnitude response. At high
frequency the response of the one-pole low-pass filter is proportional to
1/w®, or —6 dB per octave.

D. The Two-Pole Low-Pass Filter

The two-pole filter is the simplest system that can exhibit sharp tuning. We
use it here to illustrate concepts of resonance, bandwidth, and the selectivity
measure Q.

The physical system is shown in Figure 14(c). The equation of motion
for the displacement is given by Eq. (16). Fourier transforming and solving,
we find the output in terms of the input:

X(w) = Xexi(w)H(w), (136)

where X.,, is the effective displacement, as earlier, and the transfer function
is

g

H(w) = 03 — 0 + ivwy/Q’

(137)

The parameters of the equation are determined by the physical quantities:
The resonance frequency w, is the natural frequency of vibration of the
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spring and mass system, given by wy, = Vk/m. The sharpness parameter Q
is inversely proportional to the damping, Q = wym/r.

At resonance, where the frequency of the external force equals the natural
frequency of the system, the response is limited only by the damping. If r
becomes small so that Q becomes large, then the response H grows indefi-
nitely. The larger is the Q, the sharper is the tuning.

The ratio of output power to input power is given by
g

03 — 0%)? + (wo,/Q)?*’

|H(w)|]? = G (138)
The power has its maximum value near resonance. The bandwidth of the
resonance region is normally defined as the difference between those fre-
quency values, above and below the resonance frequency, at which the
power response has fallen to one half of the response obtained at the reso-
nance frequency. From the power response function in Eq. (138), it is easy
to show that the Q parameter is simply the ratio of the center frequency to
the bandwidth. This bandwidth is sometimes called the full bandwidth at half
power or half-power bandwidth.

It is also possible to relate this bandwidth to an “equivalent rectangular
bandwidth,” or ERB. We imagine a rectangular power response function
whose maximum height is equal to the peak of the power response function
of a two-pole bandpass filter (for larger values of Q it does not matter much
whether the filter is bandpass or low pass). We then choose a width for this
rectangle so that its area is equal to the area under the two-pole power
response function. This width is the ERB. The result of this calculation is
that the ERB is equal to w/2 (= 1.57) times the full bandwidth at half
power. The equivalent rectangular bandwidth is a convenient construction
that will be used in chapters of this book that follow.
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CHAPTER?2

Cochlear Structure and Function

Graeme K. Yates

I. FUNCTION AND STRUCTURE OF THE COCHLEA
A. Transduction of Acoustic Stimuli

The cochlea is required to transduce minute, rapid fluctuations in the atmo-
spheric baseline pressure into a neural code on the auditory nerve. In doing
$0 it must make available to the brain as much as possible of the information
contained in those fluctuations. Sound is a mode of energy transfer by
longitudinal motion (i.e., in the direction of propagation) of air molecules,
and typical fluctuations occur on a time scale from tens of milliseconds
down to microseconds. The amplitudes are extremely small fractions of the
baseline pressure; the conventional physical reference level of 2 X 1073 Pa is
equivalent to the pressure change caused by driving a standard 10 ml sy-
ringe into its barrel by a mere 10~8 mm while a sound pressure level (SPL)
of 120 dB is equivalent to pushing such a barrel in by 0.1 mm. The lower
level is close to the noise level expected as a consequence of simple shot
noise across a receiving window the size of the tympanic membrane. The
larger value, although still extremely small, is some 10¢ times larger in
pressure and highlights the extreme range that is apparently of interest to
hearing animals. This combination of rapid change, the very small magni-

Hearing
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tude, and the wide range of pressures places special demands on the cochlea
that have been solved in an elegant and efficient way.

B. Hair Cells and Mechanical-to-Electrical Transduction

The basic mechanical sensory unit is the hair cell (Russell 1981). Hair cells
take a wide variety of forms in the acoustico-lateralis system but share a
common configuration in having two types of ciliary processes protruding
from the apical ends: a kinocilium and several stereocilia. The former is a
true ciium with a characteristic structure, while the latter are actually mi-
crovilli with rootlets projecting into their supporting base. Many hair cells
lack the kinocilium, showing only the vestigial basal body of the kino-
cilium, and it is not required for mechanical transduction. Apparently, the
stereocilia are responsible for the mechanical sensitivity in the cochlear hair
cells. Mechanically sensitive ion channels exist near the tips of the stereocilia
(Jaramillo & Hudspeth, 1991) and deflection of the stereocilia toward or
away from the basal body modulates the standing current through them,
resulting in a receptor current (Corey & Hudspeth, 1979). This current then
develops a receptor potential across the basal membrane of the hair cell,
which in turn modulates transmitter release from the afferent synapse. The
basal end of the cell receives afferent innervation with typically many af-
ferent terminals to each hair cell.

1. Speed Limitations

If mechanically induced opening and closing of the ion channels of the
stereocilia is to modulate the transmembrane potential by changing the
resting current through the hair cells, then the channels of any one hair cell
must collectively have an electrical impedance approximately equal to that
of the base of the cell. This expectation is confirmed by the measurements
of Sellick and Russell (1978), who showed that the resistance of guinea pig
inner hair cells (IHCs) was reduced by at most 50% when driven at very
high SPLs by low-frequency stimuli. Thus, the receptor current is deter-
mined by the state of the ion channels and by the basal properties of the cell,
and the receptor potential is determined by the electrical impedance of the
cell membrane. Typically, cell membranes have large shunt electrical capaci-
tances and so the receptor potentials are low-pass filtered representations of
the receptor current, restricted to rise times on the order of a millisecond or
so. Because the transmembrane potential determines the afferent synaptic
response, this means that a simple hair cell is incapable of encoding sounds
that vary on a time scale significantly faster than a millisecond.

Similarly, the afferent nerve cannot drive action potentials at a rate faster
than, at most, a thousand per second and in particular cannot rapidly modu-
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late its rate of action potential production. This is because it too is limited by
the electrical properties of its membranes.

2. Dynamic Range Limitations

A second problem for hearing imposed by the limitations of hair cells is
dynamic range, the range of sound intensities that is sufficient to stimulate
the receptor and yet not overload it. Typically, an afferent synapse of the
acoustico—lateralis system requires as much as 1 mV of receptor potential to
stimulate an increase in transmitter release above the spontaneous rate
(Sand, Ozawa, & Hagiwara, 1975), yet the receptor potential saturates at a
level of a few tens of millivolts, implying a dynamic range of at most 30:1,
or about 30 dB. The lower limit is determined by the threshold properties of
the synapse while the upper limit is determined in part by saturation of the
mechano—electrical transduction process itself, partly by the reduced electro
—chemical potential across the transduction channels caused by the change in
the internal potential of the cell and partly by saturation of the transmitter-
releasing mechanism of the synapse.

The afferent nerve similarly has a restriction on its dynamic range. The
maximum sustainable rate of action potentials is on the order of a few
hundred to a thousand per second while a reasonable minimum would be on
the order of ten or so per second. Rates slower then this could not pass
information quickly enough. Hence, the dynamic range of an afferent nerve
fiber would be around 10-100:1, or between 20 and 40 dB.

Both of these limitations, speed and dynamic range, would be a major
problem for hearing. Without some mechanism to overcome them a large
amount of acoustic information, valuable for survival, would be lost; and so
most animals have evolved specialized preprocessing mechanisms to defeat
these limitations.

C. Acoustic Preprocessing
1. Time-Domain Filtering of the Stimulus

The problem of coding a wideband acoustic signal when only very low-pass
channels (the hair-cell/afferent nerve channels) are available may be solved
by breaking the wideband signal up into many narrowband signals and
transmitting each signal separately on an independent narrowband channel.
Thus, if a suitable preprocessor could analyze the wideband acoustic signal
through a series of parallel, overlapping, narrowband filters it could then
pass on all the information in the original signal by transmitting the ampli-
tude and phase of each of its constituent filters. Because filters can change
their amplitudes and phases only slowly, at a rate inversely proportional to
their bandwidths, the information rate on each channel would now be quite



44  Graeme K. Yates

low, easily handled by the narrowband channels. In effect, the preprocessor
would convert a single, wideband signal into a number of narrowband
signals. All information contained in the original signal could be preserved
to be reconstructed at the receiving end of the channels.

This is precisely what the cochlea does. The acoustical signal received by
the middle ear is passed through to a partial Fourier analyzer, a parallel series
of narrowband filters. This converts the information contained in the rapid
temporal variations of the stimulus into a parallel set of information chan-
nels with a slow temporal variation. Apparently the cochlea preserves only
the amplitude information, at least for the higher frequencies, and discards
the phase of the stimulus.

2. Dynamic Range Compression

The range of sound intensities that the cochlea can handle could be increased
by some form of mechanical amplitude—compression before the stimulus is
applied to the stereocilia of the IHCs. That is, if appropriate mechanical
preprocessing could reduce the change in vibration of the basilar membrane
(BM) produced by a given change in the sound pressure, then the dynamic
range of the IHCs would be increased.

Again, this is precisely what is accomplished by the cochlea. The non-
linear transduction properties of the outer hair cells (OHCs), presumably
similar to those of the IHCs, are used as a template to compress the BM
motion over the useful range of hair cell transduction.

D. Structure of the Cochlea

Functionally, the mammalian cochlea consists of a transduction organ, the
organ of Corti, stimulated by a hydrodynamic surface wave propagating on
the BM. In most mammals it exists as a cavity in the petrous temporal bone
of the skull, a section through which is represented diagrammatically in Fig.
1A. Itis a long, tapered tubular structure, divided into three chambers. The
uppermost chamber of Fig. 1A is the scala vestibuli, which is in direct
mechanical communication with the stimulus-induced displacements of the
middle ear. It is filled with perilymph, similar to other extracellular fluids
and high in sodium, low in potassium. The middle chamber, scala media, is
mechanically probably a part of scala vestibuli but is chemically and electri-
cally quite distinct. It is filled with endolymph, similar to intracellular flu-
ids, being high in potassium and low in sodium. The membrane separating
the two upper chambers, Reissner’s membrane, appears to be very compliant
mechanically but provides chemical isolation between the compartments
and some electrical isolation for low frequencies. The lower chamber, scala
tympani, is terminated at the basal end by the round window, which functions
as the mechanical pressure release for the cochlea. Scala tympani is physi-
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FIGURE 1 (A) Section through the cochlea; (B) section through the organ of Corti.

cally contiguous with scala vestibuli, the two being joined at the apical end
by a small hole known as the helicotrema. Scalas media and tympani are
separated by the BM, which carries the organ of Corti.

Acoustical stimulation results in small fluctuations in the volume of scala
vestibuli, caused by movement of the stapes footplate into and out of this
chamber. This volume change causes both vertical displacement of the BM
and longitudinal displacement of perilymph, and interactions between these
two result in a surface wave disturbance propagating along the basilar mem-
brane from the basal (stimulating) end toward the apical end. Because of the
mechanical properties of the BM, the velocity of propagation is strongly
dispersive, i.e., dependent on both frequency and place along the cochlea,
so that different frequency components of the propagating wave are sepa-
rated as they travel.

The vertical vibration of the BM results in vibration of the organ of Corti
(Fig. 1B). This structure supports two types of receptor cells, the IHCs and
the OHCs. The IHCs are the true afferent receptor cells, responding to
mechanical displacements by modulating their standing current in sympa-
thy with the displacement. The modulation is not symmetrical, however,
resulting in a pronounced rectification of the current waveform, which is
then low-pass filtered by the cell basal membrane. The high-frequency
fluctuations are attenuated, leaving only an ac voltage representation of the
slower movements and a dc representation of the faster movements. The
OHC:s contribute to the cochlear amplifier, discussed later.

E. Active Processes within the Cochlea

Much of the processing within the cochlea is dominated by the so-called
cochlear amplifier, an hypothesized, nonlinear mechanism that acts simultane-
ously to assist the filtering process and to compress the vibration of the BM
over most of the input amplitude range. The idea is summarized in Fig. 2.
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FIGURE 2 Diagrammatic representation of the positive feedback loop within the cochlea,
the basis of the cochlear amplifier. If the loop is broken at any point the BM is driven by only
the input stimulus. The IHCs play no part on the amplification, being passive motion detec-
tors.

Acoustic power entering the cochlea induces a pressure difference across the
BM and a traveling wave motion that propagates from the basal end to-
wards the apex (A), Displacement of the BM causes deflection of the stereo-
cilia of the OHCs (B), which in turn modulates the current through the
OHCs (C). The next stage (D) is less well-understood, but some sort of
mechanical motion is induced in the OHCs and this produces a direct effect
on the BM in such a way as to assist the original displacement. This loop,
A-B-C-D-A, is the cochlear amplifier: stage C is known as the forward
transduction, or mechanical-to-electrical transduction, stage; and stage D is
known as the reverse transduction, or electrical-to-mechanical transduction,
stage. The ratio of the output of stage A to its input with the loop closed is
called the closed-loop gain, whereas the same ratio with the loop opened or
disconnected is called the open-loop gain.

1. MACROMECHANICS

The term macromechanics usually refers to the gross motion of the cochlear
partition, as measured by direct observation of the BM. It includes the
hydrodynamics of the wave motion but generally excludes details of the
motion of various components of the cochlear partition.

A. Experimental Observations
1. Von Békésy

Georg von Békésy described the first direct observations of the traveling
wave in his book Experiments in Hearing (1960). Using direct visual observa-
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tions of the BM in explanted guinea pig cochleas, he observed the motion to
be in the form of waves traveling from the basal end toward the apical end.
Waves of different stimulus frequency peaked in amplitude at a different
locations, characteristic of the stimulus frequency, and then attenuated to
zero amplitude. Lower frequencies traveled further to locations nearer the
apex than did higher frequencies.

Von Békésy also established the graded elastic properties of the BM by
probing it with fine, calibrated hairs, showing that it behaved as an elastic
membrane with very little coupling in the longitudinal direction (i.e., along
the length of the cochlea) and that it was more compliant at the apical end
than at the basal end. He also demonstrated that the traveling wave invaria-
bly traveled from the region of low compliance (the most rigid end) to the
region of high compliance, explaining why the traveling wave in mechani-
cal models always appeared to travel from base to apex regardless of the site
of the stapes.

Thus, his pioncering observations established concepts of the traveling
wave, the CF for different places along the cochlea, and the elastic gradient
along the BM.

2. Early Measurements

The traveling wave concept was confirmed by the early measurements of
Johnstone and his group using the Mossbauer technique (Johnstone &
Boyle, 1967, Johnstone et al., 1970; Johnstone & Yates, 1974), a technique
that uses a small radiactive source of gamma rays placed on the BM. The
radiactive counts registered by an appropriately placed counter tube vary
nonlinearly with instantaneous velocity of the BM; and by counting the
activity into histogram bins phase-locked to the stimulus, it is possible to
estimate the velocity waveform (Yates & Johnstone, 1979). Johnstone and
his coworkers confirmed the continuous phase accumulation with frequen-
cy at the site of measurement on the membrane and assumed, reasonably,
that this represented continuous accumulation of phase along the membrane
for a fixed frequency. Wilson and Johnstone (1975) used the capacitive
probe, a device that records displacement by detecting the change in electri-
cal capacitance between the membrane and the tip of a probe, to further
confirm these results. Failure by both groups to find the sharply tuned
response that had been observed in auditory nerve frequency-threshold
curves (FTCs, Evans, 1972) was taken to imply the presence of a “second
filter” between the BM and the afferent nerve (Evans & Wilson, 1975).
Rhode’s (1971) Mossbauer measurements on squirrel monkeys, however,
gave the first hints that a physiologically vulnerable sharp tuning might be
present in the mechanics, and more recent results have confirmed this. It is
now clear that the sharp tuning observed in neural FT'Cs is present, to some
degree at least, in the BM mechanics.



48 Graeme K. Yates

It is now generally believed that these early measurements were done on
physiologically compromised cochleas. With the development of the com-
pound action potential (CAP) technique it became possible to monitor the
physiological condition of the cochlea from a gross electrode placed outside
the cochlea (Johnstone et al., 1979). This guided improvements in tech-
nique, and damage to the cochlea, previously undetected, is now easily
recognized and avoided.

These early measurements all showed a tonotopically organized frequen-
cy response that was basically low pass, similar to, but somewhat sharper
than those of von Békésy. Comparison of the results from different authors
is somewhat complicated by the presentation of the results: some authors
plotted the BM frequency responses at a fixed SPL at the tympanic mem-
brane whereas others plotted it against stapes displacement. The SPL-
referenced results are more easily compared with neural FTCs but the
stapes-referenced data are more easily compared with theoretical results.
Typically, however, the tuning curves showed high-frequency slopes of the
order of 70-100 dB/octave and low-frequency slopes, for the stapes-
corrected data, of approximately 9 dB/octave.

3. Recent Measurements

More recent results all show tuning at least comparable with neural FTCs
(LePage & Johnstone, 1980; Sellick, Patuzzi, & Johnstone, 1982; Khanna &
Leonard, 1982; Robles, Ruggero, & Rich, 1986; Cooper & Rhode, 1992a, b)
although whether it is sufficient to explain fully the neural response is still a
subject of debate (Allen, 1980). Few comparisons exist in the literature
between the parameters of the measured tuning curves and those of neural
FTCs.

Sellick et al. (1982) compared five of their guinea pig BM curves with
two guinea pig FTCs, and although the data are somewhat sparse for the
BM, the comparisons suggest that the neural tuning might be somewhat
sharper. In their Fig. 11, for example, two of the four sets of data show
significantly broader BM tuning while the other two are comparable. In
their Fig. 10 they compare another FTC with their best BM tuning curve
plotted as either iso-displacement or iso-velocity SPL curves. The FTC
matches the iso-displacement curve best in shape and falls roughly between
the iso-displacement and iso-velocity curves in depth of the tuning curve
tip. Bandwidths are comparable. Comparison with their Fig. 3, which plots
CAP thresholds for each animal represented in Figs. 10 and 11, shows that the
match between the frequency threshold and the BM curves is better for those
animals that had the best CAP thresholds. Therefore, the conclusion might
be drawn that the FTCs and the BM displacement tuning would be identical if
BM responses could be measured in a guinea pig in perfect condition.
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Khanna and Leonard’s (1982) laser-measured iso-displacement curves did
not have tip-to-tail ratios equivalent to typical cat neural tuning curves, but
the overall shape of the displacement curve matched the equivalent FTCs
very well. Again this suggests that their preparations were somewhat com-
promised and cochleas in better condition might have yielded mechanical
displacement curves that matched the neural curve, a point Khanna and
Leonard make themselves. In particular, the slope of the low-frequency tail
is very similar to the neural curve and different from an iso-velocity curve.

Similarly, Robles et al. (1986), using the Mossbauer technique, compared
BM responses with neural FTCs and came to the conclusion that iso-
displacement curves gave a better match with neural data than did iso-
velocity curves.

The cat, however, may be a little different from other species in that the
neural FTCs sometimes appear to have higher thresholds than BM tuning
curves in the middle-frequency range, between one half and two octaves
below the tuning peak. This is well illustrated by Cooper and Rhode (1992a)
Fig. 21, where the cat neural tuning is compared directly with their BM
data. Cooper and Rhode warn of the possibility of sound pressure calibra-
tion errors, however, and conclude that it is quite possible the mismatch is
not real. A similar, though less pronounced, mismatch is evident in Khanna
and Leonard’s data, but again the differences are small (on the order of 10
dB) and may be due to differences in preparations used to measure the two

types of curves; for example, in the bulla opening necessary to gain access to
the BM.

B. The Traveling Wave

We now turn to a discussion of the mechanics of cochlear wave motion and
of the possible role of the cochlear amplifier in maintaining sharp tuning.
We attempt to understand the way in which the BM interacts with the fluids
(essentially water) in the cochlea and how its properties determine much of
the behavior of the traveling wave. We will then consider the various ways
in which the active process behind the cochlear amplifier might operate and
how it might couple energy into the traveling wave.

1. Hydrodynamics of Surface-Wave Motion

The cochlear traveling wave is a hydrodynamic surface wave, similar to
waves propagating on the ocean and completely different from the motion
that characterizes sound waves. Any disturbance of a liquid surface subject
to the pull of gravity will cause that surface to return to its equilibrium
position. If the return takes place at any reasonable speed the mass (inertia)
of the fluid will result in overshoot, displacing fluid and elevating the surface
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nearby. This self-regenerating process will continue until damped out by
viscous forces. The essential properties of the system that permit wave
propagation are the restoring force (gravity), which acts always to restore
the surface to its resting position, and the inertia of the water itself.

The velocity with which such a surface wave propagates depends on the
depth of the channel, relative to the wavelength (Elmore & Heald, 1969).
(1) If it is very deep, the wave will propagate at a velocity independent of the
depth but that decreases with decreasing wavelength. Thus, the wave veloc-
ity depends on the frequency of the waves; i.e., the motion is dispersive.
(2) For very shallow channels, however, the velocity of wave propagation
becomes independent of the wavelength but inversely proportional to the
depth.

For sufficiently low frequencies the BM traveling wave presents a similar
picture, with the role of gravity being taken by the elasticity of the cochlear
partition, but at higher frequencies the mass of the partition becomes signif-
icant. The elasticity of the BM is known to taper from base to apex, with
the basal end being the stiffer, but the mass is probably approximately
constant.

The surface mass provides the major difference between waves that travel
on the ocean surface and along the cochlear partition. The velocity of ocean
waves decreases with frequency, but no faster than 1/f so that there is no
upper limit to the frequency with which such waves might propagate (Fig.
3a). For a mass-loaded surface wave, however, there is a critical frequency,
the frequency at which the mass and elasticity resonate, above which no
wave propagation is possible (Fig. 3b). For frequencies above this critical
value, oscillatory motion of the surface simply decays exponentially with
distance (Yates, 1986). Hence, resonance in the cochlear partition deter-
mines the highest frequency at which wave motion is possible at any place
along the cochlea. Above this frequency the phase rotation must cease, to be
replaced by an in-phase vibration.

This behavior is seen directly in measurement of BM frequency re-
sponse, in the plateau region at the foot of the high-frequency cutoff. Here
the high-frequency slope is seen to break and the rapid accumulation of
phase ceases (Rhode, 1971; Johnstone & Yates, 1974; Wilson & Johnstone,
1975), indicating that the traveling wave has been replaced by an exponen-
tially decaying, in-phase motion. This frequency is determined uniquely by
the elastic and mass properties of the cochlear partition and is of particular
theoretical significance. Other parameters of cochlear tuning, such as the
frequency of maximum amplitude, are determined by a variety of factors
such as fluid viscosity, the presence of a cochlear amplifier and whether
perilymph is present on both sides of the partition, but the plateau frequen-
cy is quite invariant with these factors.
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FIGURE 3 (a) Dispersion in a surface water wave; wavelength decreases with frequency
but has a real value for all frequencies. (b) Dispersion in a mass-loaded surface wave; the
wavelength falls to zero at the frequency at which the mass and compliance of the surface
resonate.

2. Hydrodynamics of the Passive Traveling Wave

As emphasized earlier, the main mode of wave motion in the cochlea is a
surface wave, compressional sound (longitudinal) waves being unimpor-
tant. Pressure differences exist within the cochlea because of bulk fluid flow
(which implies acceleration) rather than fluid compression. When the stapes
is pushed into scala vestibuli, it displaces and does not compress the cochlear
fluid. To displace the fluid, however, it must either push fluid along scala
vestibuli or, alternatively, displace the BM. In fact, both occur. Accelerating
fluid along scala vestibuli implies a pressure gradient in the same direction; a
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pressure gradient implies a pressure difference across the BM; and a pressure
difference across the BM implies a displacement of the BM.

For sinusoidal displacements a steady state traveling wave develops with
small vibration amplitudes near to the stapes and larger amplitudes toward
the apex.

a. Wave amplitude and velocity

The power in a surface wave passing a given point on a surface is given by
the product of the energy density and the group velocity (Elmore & Heald,
1969). As the wave travels along the cochlea it encounters progressively
greater and greater membrane compliance and the wave velocity falls. The
amplitude of the wave grows to maintain power flux. As the wave ap-
proaches the point of membrane resonance the membrane impedance be-
gins to fall rapidly and the velocity falls even faster. In the complete absence
of damping the wave velocity would approach zero and the amplitude
would tend to infinity, but in fact resistance becomes important near to
resonance and damps the wave. The amplitude falls rapidly. The result is a
poorly tuned peak some one or two millimeters basal to the point of mem-
brane resonance, the plateau region. Some reflection may take place at the
point of resonance, resulting in small notches at the plateau region of the
tuning curve.

Pressure fluctuations at frequencies higher than the local resonance fre-
quency will not couple well into a traveling wave (Kirk and Yates, 1994).

3. Hydrodynamics of the Active Traveling Wave

The hydrodynamics of the traveling wave at low frequencies appears to be
unaffected by the présence of the cochlear amplifier. Measurements of BM
motion reveal little or no difference at low frequencies between cochleas
with and without a functioning cochlear amplifier, and most models of
cochlear macromechanics permit the active process to act only locally, close
to the characteristic place for a given frequency. Since the active process is
supposed only to overcome resistive damping, the magnitude of the forces
involved will be small relative to the compliance of the partition except
close to CF, so the effect of the active process might be expected to be
minimal. This suggests that little of the energy injected near the characteris-
tic place propagates basally.

Close to the characteristic place, however, the presence of the amplifier
has a profound effect. The amplitude rises dramatically, increasing the max-
imum in the vibration envelope and accompanied by moderate phase
changes. There is also a shift, toward the apex, of the place at which maxi-
mum amplitude is achieved (Rhode, 1971; Sellick et al., 1982). The ampli-
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tude increase does not appear to be accompanied by very large phase
changes.

The actual increase in amplitude at any one place may be as much as 60
dB or more, but because of the shift in CF place, this does not necessarily
imply that the active process boosts the overall power of the traveling wave
by 60 dB. The velocity of the traveling wave is slowing close to CF, imply-
ing an increase in amplitude for the same power flux, so for the same power
flux we would expect the maximum vibration amplitude to increase simply
because of the shift in CFE. That is, the amplitude at any one point may
increase by 60 dB without necessarily implying the same power increase
relative to a more basal location; it may simply be that the same power is
reaching a region where the wave velocity is slower and the amplitude is
consequently larger, i.e., the impedance is lower.

1. MICROMECHANICS

The term micromechanics has been coined to describe the mechanical motions
that take place within the organ of Corti in response to the BM displace-
ment and includes deflection of the stereocilia of the OHCs, the motion of
the tectorial membrane and the action of the hypothesized cochlear ampli-
fier. Direct observation of the micromechanics is presently impossible in
vivo, but attempts have been made to study at least the gross behavior of the
organ of Corti in various explant preparations. In this section we look at the
properties required of the reverse transduction process and the properties
observed for the putative motor behind it. We also consider the way in
which this process could couple its energy into the macromechanics.

A. OHC Mechanical Activity

Implicit in the proposal for an active cochlea is the existence of a “motor”
that may convert metabolic energy into vibratory mechanical motion of
sufficient power to influence the vibration of the cochlear partition. This
imposes certain physical restrictions on the process, which we now con-
sider.

1. What Is Required of the Active Process?

a. It must be fast

To influence the vibration pattern of the cochlear partition, the active pro-
cess must act on a cycle-by-cycle basis. That is, it must generate a pressure
difference across the BM on each cycle of the vibration. It might be permit-
ted to skip some cycles between operations but must at least act on the same
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phase of the vibration. In this latter case, however, it must generate a force
with a rise-time less than the cycle time of the oscillation. Tonic pressure or
motion cannot inject power into the vibration of the partition, in the same
way as a steady push on a child’s swing will not increase its swinging
amplitude.

It is not sufficient, however, simply to demonstrate that a candidate
active process is capable of generating some power at high audio frequencies:
it is further necessary that the force generated in response to stimulation of
the stereocilia must be substantially independent of frequency over the au-
dio range. For example, consider a candidate process that, when stimulated
by a given displacement of the BM, is shown to produce a force sufficient to
affect the membrane motion at low frequencies. If this force falls off at
higher frequencies, then at those higher frequencies the force may not be
great enough to be effective. In this case, some additional mechanism must
be imposed between the BM vibration and the active force-generating
mechanism to bring the high-frequency force back to an effective level
again. Thus, any hypothesized force-generating mechanism must include
mechanisms, if necessary, to maintain at least a flat frequency response. In
particular, any reverse transduction process that is driven by the voltage
developed across the basal membrane of the OHCs must somehow com-
pensate for the frequency dependence of the voltage.

b. It must oppose friction

In fact, the frequency response requirement is even stronger than stated
previously: the force generated by the active process must increase at a rate of
6 dB/octave if it is to cancel the cochlear forces due to friction that, for
sinusoidal motion of fixed amplitude, increase at this rate. And even this
may be insufficient, in fact, because it would appear that the gain of the
cochlear amplifier is greater at the base of the cochlea, i.c., at higher fre-
quencies, so the force generated must rise even faster than 6 dB/octave.

Furthermore, energy may be supplied to a system only if the point of
application of the force moves, because work done is equal to force times
distance moved. If the cochlear amplifier is to amplify by injecting energy
into the traveling wave, it must therefore generate a force that has at least
some component in phase with the velocity of the vibrations.

2. Possible Modes of Movement

The motor process has been associated with the OHCs for several reasons.
First, the OHCs have sparse afferent innervation but significant efferent
contacts, suggesting some sort of effector role for them. Second, damage to
and loss of the OHCs results in elevation of thresholds without complete
loss of hearing (Dallos and Harris, 1978), suggesting that they are not
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necessary for afferent activation but are directly responsible for maintenance
of thresholds. Third, reduction of the endocochlear potential, the driving
force for current through the hair cells and consequently the stimulus for the
reverse transduction, results in loss of cochlear sensitivity and reduction of
BM amplitude (Ruggero and Rich, 1991). Fourth, it has been shown that
when the transduction gates at the top of the stereocilia of the OHCs are
damaged by any one of a range of insults, there is a direct correlation
between the loss of cochlear microphonic and the elevation of threshold
(Patuzzi, Yates, & Johnstone, 1989a, b). Although circumstantial, taken
together these make a powerful argument that the source of power for the
active process resides within the OHCs.

Within the OHCs, two candidates have emerged for the role of the
motor process; only one has much direct supporting evidence, but neither is
entirely satisfactory. Basically, the two split between a speculative motor
process that might cause the stereocilia of the hair cells to move, or
“twitch,” and an electrically driven contractile process in the base of the hair
cell.

a. OHC body contraction

Initial suggestions that the active process might be localized to the OHCs
were supported by Brownell et al.’s (1986) demonstration that electrical
stimulation of isolated OHCs could cause them to expand or contract. Since
then considerable evidence has accumulated that the OHC contains a motor
associated with its outer wall that, when the cell is depolarized, causes it to
shorten in length while simultaneously increasing its diameter. Electrical
potential changes across the cell membrane are sensed by an electrical dipole
that shifts and causes an accompanying contraction of a submembranous
network (Zenner, 1986; Kachar et al., 1986; Ashmore, 1987; Santos-Sacchi
& Dilger, 1988; Santos-Sacchi, 1989; Arima et al., 1991; Forge, 1991; Dal-
los, Hallworth, & Evans, 1993; Pollice & Brownell, 1993). There is now
little doubt that a highly specialized system exists within the OHC, capable
of producing a fast contraction of the cell when it is stimulated by displace-
ment of its stereocilia.

Maximum contraction amplitudes of this mechanism are at least approx-
imately compatible with the vibration amplitude of the BM, being on the
order of 1-2 pm when the cell is fully depolarized, whereas sensitivities of
around 4-20 pm/V are typical (Ashmore, 1987; Santos-Sacchi, 1989; Git-
ter, Rudert, & Zenner, 1993). There is, however, more doubt about the
speed of the contraction. When driven by imposed sinusoidal voltages,
Ashmore (1987) found the amplitude of the contraction remained indepen-
dent of frequency only up to approximately 35 Hz, but fell off at a rate of
6 dB/octave above approximately 1 kHz. Santos-Sacchi (1992) essentially
confirmed Ashmore’s result, although he found no evidence of the small
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35 Hz corner. Both authors were confident of their voltage-clamping cir-
cuits and yet neither could push the corner frequency out further. It would
appear, therefore, that the motor is limited to corner frequencies of around
1 kHz, at least for isotonic contractions (both recorded from hair cells that
were physically constrained at only one end).

It might be argued that if viscosity, either internal or external, limits the
amplitude of contraction at higher frequencies, then an isometric contrac-
tion might be faster. That is, if the cell were to be coupled to the membrane
at a point of high mechanical impedance then a large force with little dis-
placement would provide energy for the partition and viscosity might not
be a problem. The advantage gained in such a way would be minimal,
however, because in the limiting case of infinite impedance, full force might
be developed over the full frequency range but no work could be done by
the cell (because it did not move) and therefore no energy could be coupled
into the partition. Working into lower impedances could increase the
amount of work coupled from the cell into the membrane but would reduce
the frequency range over which the contraction operates.

Aside from the question of whether the active motor located in the base
of the OHCs is mechanically fast enough to influence the BM motion at
high frequencies, there remains the problem of electrical stimulation. It is
now clear that the force develops in response to voltage changes across the
basal membrane of the cell (Ashmore, 1987) and the source of such voltage
changes can be only the modulated current generated by the stereocilia. It is
clear, however, that such currents will be low-pass filtered by the capaci-
tance of the membrane and so the force generated will similarly fall with
frequency; indeed such a fall-off has been directly observed (Russell, Cody,
& Richardson, 1986). The cochlear amplifier theory, however, demands
that the force should increase with frequency (see Fig. 4).

Several proposals have been made in an attempt to resolve this dilemma,
all involving some form of high-frequency current boosting. Neely and
Kim (1983, 1986) and Mammano and Nobili (1993) are typical. Both invoke
a resonance between the stiffness of the stereocilia and the mass of the
tectorial membrane to modify the displacement of the stereocilia under
stimulation. Such a resonance necessarily predicts that the displacement of
the stereocilia, and consequently the current through the OHCs, will rise at
a rate of +12 dB/octave at least up to a frequency somewhat below the local
CF, and such a current would result in a transmembrane voltage that rises
with frequency, as is required to overcome resistance. This would resolve
the problem but for the facts that (1) no such rise in current is observed in
the frequency response of the gross cochlear microphonic, which is believed
to reflect the current lowing through the OHCs, nor is there seen a 180°
phase shift, which would accompany such a rise; (2) as mentioned earlier,
the transmembrane voltage is directly observed to decrease with frequency
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FIGURE 4 Diagram illustrating the increase in BM frictional force with frequency at any
one place. Compare this with the typical low-pass filtering of receptor voltages by the basal
membrane of the OHCs and with the likely additional behavior of any active force-generating
mechanism within the cell.

(Russell et al., 1986); and (3) because the OHCs would be driven harder for
the same BM displacement, current saturation would severely limit the
dynamic range of the active gain at high frequencies. It is therefore unlikely
that such a mechanism is operating in the mammalian cochlea. Neely (1993)
took a different approach in his later model and simply increased the magni-
tude of the forces at all frequencies. Thus, although the magnitude of the
active force fell at high frequencies, it did so from such a large low-
frequency value that it was still effective at CF. Such an approach works
because the point impedance of the BM at low frequencies is much greater
than it is close to CF and the increased low-frequency feedback is ineffec-
tive. This model, however, also has some inconsistencies with observation:
it predicts the BM displacement, OHC current, and neural FTCs to be
different from one another, in contradiction with direct measurements
(Sellick, ef al., 1982; Robles et al., 1986).

b. Stereociliar movement

Another possibility for the active process is direct movement or tilting of
the stereocilia. To date little direct evidence for this process has been accu-
mulated and no mechanism has been demonstrated. There are, however,
some intriguing hints.

Lizards lack a well-developed BM, possessing only a short basilar papilla
to carry the sensory cells. Direct measurement has confirmed that little or
no frequency selectivity is present in the motion of the papilla, and yet
neural FTCs are quite similar to those of mammals, if a little less sensitive
(Manley, Yates, & Koppl, 1988). The morphology suggests little possibility



58 Graeme K. Yates

that contraction of the hair cells (there are not two distinct types in these
species) would influence the vibration of the papilla, and yet the Australian
bobtail lizard (Tiliqua rugosa) has all the signs of an active process found in
mammals: easily damaged sensitivity and tuning, reversible apoxia sensi-
tivity, and spontaneous emissions (see later for a description of emissions).
Furthermore, their tuning mechanism appears to involve a resonance be-
tween the stereocilia and their sallets, small tectorial structures orthogonal
to rows of hair cells and individual to a few hair cells, and for such a
mechanism cellular contraction would seem to be ineffective as a stimulus.
A much more direct mechanism would be motion of the stereocilia, which
would inject energy directly into the sallet—stereocilia resonant unit.

Movement of stereocilia in response to mechanical stimulation has been
directly observed in the turtle hair cell (Crawford & Fettiplace, 1985). When
a step force was applied to the stereocilia bundle of isolated turtle hair cells,
the bundle of many cells was seen to ring at a frequency between 31-171
Hz, close to the frequency of electrical resonance in the cells. The oscilla-
tions could be abolished by large depolarizing currents that reduced the
receptor currents, so it is unlikely that the ringing was purely mechanical.
Fettiplace and Crawford concluded that the movement of the stereocilia was
driven by the electrical response and that the turtle cochlear hair cells there-
fore contained an active force generating process.

There are at least two possible mechanisms by which direct motion of the
stereocilia might be produced by the hair cell.

i. Tilting of cuticular plate 1f the motor that exists in the cell body were
somehow coupled to the reticular plate or to the top surface of the hair cell
and its forces were asymmetric with respect to the cell axis or the top of the
hair cell was more rigid on one side than the other, then contraction of the
cell would be accompanied by a tilting of the top of the hair cell and a
concomitant tilting of the stereocilia. Such a mechanism would, however,
be subject to most of the criticisms of the hypothetical cell contraction
motor itself, such as poor frequency response and reduction of electrical
drive at high frequencies. It might, however, overcome the problem of
viscous drag reducing the contraction at high frequencies because the cell
itself would not have to contract. Viscous effects would be limited to a
simple tilting of the top of the cell. A tilting mechanism such as this has
been described (Zenner, Zimmermann, & Gitter, 1988) and an effect consis-
tent with it has been observed in explanted cochleas (Reuter & Zenner,
1990; Reuter et al., 1992).

ii. A motor in the stereocilia An alternative motor mechanism has been
proposed by Hudspeth and Gillespie (1994). The transduction channels at
the top of the stereocilia are thought to be connected to adjacent stereocilia
by “strings” that, when the stereocilia are displaced toward the basal pole,
pull on the channel gates to bias them open (Pickles, Comis, & Osborne,
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1984). Some mechanism must be provided to adjust the tension in the string
to maintain the operating point against changes due to environmental fac-
tors. Such a mechanism has been described and is thought to involve a
myosin motor sliding over an actin filament within the stereocilium (How-
ard & Hudspeth, 1987a, 1987b; Eatock, Corey, & Hudspeth, 1987; Craw-
ford, Evans, & Fettiplace, 1989; Assad et al., 1989, 1991; Shepherd et al.,
1990). When the stereocilia bundle is displaced and the gating channels are
biased open, calcium is thought to enter the stereocilia where it functions as
an internal messenger to control the motor (Eatock et al., 1987; Assad et al.,
1989). The gating channels are proposed to be attached to insertional
plaques that themselves form part of a myosin motor unit riding along one
of the actin filaments within the stereocilium. The myosin motor is as-
sumed to be working continuously to ascend the stereocilium while calcium
entry stimulates slipping of the motor. Thus a negative feedback is achieved
between myosin-driven tension in the string, which opens the channels, and
internal calcium concentrations, which increase when the gating channels
open, promoting slipping of the motor and reduction of tension. Hudspeth
and Gillespie propose that this adaptation motor could, under appropriate
circumstances, constitute a motor for reverse transduction.

Such a motor based on actin—myosin interaction would have many inter-
esting characteristics and solve some of the problems with other candidate
motors. Of particular interest is the fact that such a mechanism would
eliminate the problem of the phase relationship between BM displacement
and the active force necessary to do net work on the membrane. If the force
generated by the myosin molecules when slipping is less than that generated
when locked, the rest would be automatic. Consider the situation of a
stereocilium containing such a putative motor being rocked back and forth.
At the start of the forward stroke, toward the basal body of the kinocilium,
when the BM is displaced towards scala vestibuli, the myosin would be
locked to the actin filaments. As the tension in the tip links increases, it will
reach a point where the myosin starts to slip, the tension drops dramatically
(Fig. 5), and the myosin motor slips. Under these conditions the tension
generated by the motor would be relatively small. At the end of the forward
stroke the myosin will attach to the actin again and, on the return stroke, the
force will rise again and the motor will move to recover the distance lost to
slippage on the forward stroke.

Such a process has an analogy in the way a violin bow supplies energy to
a violin string. As the bow is pushed forward the string sticks to the bow
hair and is carried with it. At some point, however, the string starts to slip
and, because the slipping friction is much less than the sticking friction, it
slips easily back to its starting position. When it comes to rest it again sticks
to the bow and is carried forward again. In this way, the linear motion of the
bow is converted to oscillatory movement of the string. The timing of the
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FIGURE 5 Hypothetical “frictional” force between myosin adaptation motor and veloc-
ity of slip between myosin motor and actin filament. At low relative velocities the force is high
(sticking) but when slippage become greater, at higher relative velocities, the force drops
dramatically (slipping).

stick—slip cycle is, however, controlled not by the rising frictional force but
rather by the resonance characteristics of the string. The force that ulti-
mately causes the string to break free of the bow is due more to the wave
motion reflected from the nut or bridge of the violin than to the linear
displacement of the string. The stick—slip cycle cannot take place without
both components, the bow and the string, and it must have an oscillatory
motion imposed externally.

If the stick—slip mechanism were to be applicable to the actin—-myosin
motor of the adaptation plaque then this might explain why oscillatory
mechanical activity has not been observed in isolated hair cell stereocilia:
because it would not work for an isolated hair cell unless it were appro-
priately loaded with its tectorial membrane or an equivalent, or unless the
stereocilia were driven sinusoidally and the reaction measured. This situa-
tion is seen in insect asynchronous flight muscle. When isolated muscles are
tested isometrically, they demonstrate a length—tension relationship typical
of normal muscle fibres and show no sign of oscillatory motion. When a
small mass is substituted for the isometric transducer, however, rapid os-
cillations begin immediately, at a frequency determined by the mass of the
attachment and the stiffness of the muscle (Pringle, 1967). Such oscillations
have been recorded at frequencies up to 1 kHz.

B. Coupling Energy to the BM

Any candidate reverse transduction process must be mechanically config-
ured in such a way that it can couple its power source into the displacement
of the BM. Whatever the power source, if it cannot displace the BM it
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cannot function as the reverse transduction stage of the active process.
Thus, it must, when operating, produce an alternating torque about the
inner foot of the arch of Corti or ¢lse a pressure difference in the fluids either
side of the BM. Furthermore, at least some component of the force pro-
duced by the reverse transduction must phase-lead the BM displacement by
90° to assist the vibrations.

1. OHC Contraction

The OHC:s are supported at their upper poles by the reticular l]amina and at
their bottom ends by the supporting cells of the organ of Corti. Leaving
aside for the moment the question of whether there is a strong bond be-
tween the hair cells and their supporting cells, it is clear that contraction of
the basal part of the OHCs will produce a force pulling the BM and the
reticular lamina closer together. This is clearly an inefficient mechanism for
injecting mechanical energy into the motion of the BM because it will
produce an upward force on the membrane itself but a downward force on
the reticular lamina and, if the stereocilia are tightly inserted into the tec-
torial membrane, the tectorial membrane, too (Fig. 6, middle panel). It is
not clear what might be the net result on a hydraulically loaded cochlear
partition. The inertia of the upper end of the organ of Corti, i.e., the
reticular lamina and the tectorial membrane, might be large enough to
provide some momentum to the fluid that must be displaced if the BM is
pulled upward, but the center of mass of the organ itself might well be
pulled in the opposite direction.

2. OHC Stereociliar Twitching

If the reverse transduction mechanism is in fact a displacement of the stereo-
cilia, then the coupling problem is greatly reduced. If the displacement of
the BM can result, through the geometry of the organ of Corti, in a shear-
ing of the stereocilia then it follows that a torque tilting the stereocilia could
displace the BM. In fact, because of the mechanical displacement advantage
between displacement of the BM and shearing of the stereocilia (Rhode &
Geisler, 1967), there would be a mechanical force advantage in the reverse
mode. Typically, this will amplify the force between the stereocilia and the
BM by a small factor, at the cost of reducing the displacement of the BM by
a similar factor.

Such a motion has not been demonstrated directly and with present
techniques is unlikely to be. Even if independent motion of the stereocilia
could be demonstrated, it would be difficult to demonstrate directly that
this was responsible for the reverse transduction.
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FIGURE 6 Two possible modes by which OHC activity might be coupled into the
mechanics. The top panel is a diagram of the partition at rest. The other two panels show the
probable motion of the partition (middle panel) when the OHCs contract and (bottom panel)
when the stereocilia move.

C. Localization of the Cochlear Amplifier along the BM
1. Is the Active Process Localized?

Present models and theory of the active process call for a localization of the
active process to a region just basal of the characteristic place on the BM. It
has not yet been determined experimentally, however, just what the distri-
bution of the active process is, but several experiments have provided hints.
Robertson and Johnstone (1981) recorded sharply tuned frequency-
threshold tuning curves from basal-turn ganglion cells of the guinea pig in
which damage had been caused by acoustic trauma. Cells from the edge of
the affected region had normal FTCs and normal low-frequency suppres-
sion (see later, and also the chapter by Palmer in this volume), but high-
frequency suppression was greatly reduced. In a similar preparation Cody
(1992) showed that near-normal tuning curves could be recorded within
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0.5 mm of a lesioned area of the organ of Corti, suggesting that the active
process was important only out to 0.5 mm from the characteristic place.
Finally, Allen and Fahey (1992), using an ingenious distortion-tone experi-
ment, concluded that the active process, if it existed at all, was confined to
within 1 mm of the characteristic place.

Such experiments, however, do not necessarily demonstrate that the
active process is limited to acting within a prescribed region, because the
impedance of the BM might well prevent any mechanism that behaves as a
resistance, positive or negative, from having a significant effect far from the
characteristic place. That is, since the active process is thought to act as a
negative resistance and to be on the same order of magnitude as the positive
resistance caused by viscosity, it might well be that it has minimal effect
anywhere except close to the resonance place of the BM. Hence, the experi-
mental results do not necessarily preclude the possibility that the active
process acts along the entire cochlea basal to the characteristic place. It may
simply be ineffective except close to the characteristic place. This is not a
trivial point because any satisfactory explanation of the active process must
explain how it is spatially limited, and such spatial limiting must be frequen-
cy dependent because the region to which it is limited depends upon the
stimulus frequency.

The concept that the active process is localized appears to have started
with Kim et al. (1980). They incorporated a localized active process simply
because it was necessary to maintain numerical stability. Al models and
theories since then appear to have adopted the idea, but to date no convinc-
ing evidence that it is necessary appears to have emerged.

2. Mechanisms for Localization

The mechanisms postulated to localize the active process have relied mostly
on some form of resonance in the stereocilia or between the stereocilia and
tectorial membrane. Zwislocki and Kletsky (1979) proposed such a mecha-
nism as a “second filter” and Strelioft, Flock and Minser (1985) suggested
that the same mechanism could contribute to the frequency selectivity of the
cochlea. Kim et al. (1980) did not specify a mechanism for localization but
simply prescribed the active process to be limited in its extent. Later Neely
and Kim (1983) incorporated a resonance of the stereocilia of the OHCs and
later still (1986) adapted that to resonance between the stereocilia and the
tectorial membrane. Mammano and Nobili (1993) made similar assump-
tions but placed the resonance frequency well above the local CF.
Experimental support for these models appears in the lizards. Resonance
of free-standing stereocilia appears to be the basis for the frequency selec-
tivity in the alligator lizard (Frishkopf & De Rosier, 1983), which otherwise
has no substrate for a filtering mechanism. The bobtail lizard has a cochlea
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closer to the mammalian cochlea in that it has tectorial structures supported
on the stereocilia and the difference between the frequency selectivity of its
auditory nerve and its basilar papilla is suggestively similar to a simple high-
pass filter with resonance. Therefore, the case for micromechanical reso-
nance appears strong in the lizards, but could this be an example of species
difference?

All suggestions of resonance between the stereocilia and the tectorial
membrane pose two fundamental problems, both of which are a conse-
quence of the additional filtering imposed on the hair cells by such a system.
First, such a resonance would require the tails of the auditory nerve tuning
curves to be 12 dB/octave steeper than those of the BM mechanics; and for
the guinea pig and chinchilla at least, this does not seem to be the case. Some
argument has taken place over whether the neural tuning is closer to dis-
placement or velocity of the BM but there appears to be no possibility that
the difference could amount to a high-pass resonance system. Second, such
a resonance would require a 12 dB/octave increase in the cochlear micro-
phonic relative to BM, accompanied by a 180° phase lead. Various studies
have shown this definitely not to be the case (Russell & Sellick, 1983): the
phase in particular is easily shown to be as expected, with displacements
toward scala vestibuli producing an increase in current through the OHCs.
Thus, attractive as such models might be, tectorial resonance can be rejected
on solid experimental grounds.

IV. COCHLEAR NONLINEARITY

The final section of this review will examine the mechanical nonlinearities
within the cochlea. It has become widely accepted that an active process
implies nonlinearity and vice versa, but this is not so. The active process
happens to be nonlinear, but nothing inherent in the concept of a positive
feedback mechanism requires it to be so and nothing in the observed non-
linearities implies an active process. Indeed, the most well-known of the
nonlinearities, the cubic distortion product, may be independent of the
cochlear amplifier.

A. Sources of Nonlinearity

We consider now the various potential sources of distortion within the
cochlea and how that nonlinearity may manifest itself. It can be difficult to
identify distinct sources of nonlinearity within a closed feedback loop but
studies of isolated cells and cochleas wherein the feedback loop has been
opened by various techniques have given us a fair understanding of the roles
of each of the stages in generating nonlinear effects within the cochlea.
The generally accepted concept of the cochlear amplifier has significant
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implications for nonlinearity. Although negative feedback is well under-
stood to reduce nonlinearities and stabilize a system against small parameter
changes, it is less well understood that positive feedback has the opposite
implication. With positive feedback the closed-loop gain dependence on
loop parameters is actually enhanced so that, if the loop gain changes by
even a small amount, the closed loop gain may be strongly affected. Small
nonlinearities within the loop are magnified.

1. Forward Transduction

The first stage in transduction, the mechanical to electrical transduction, is
mediated by stretch-induced gating of ion channels at the tops of the stereo-
cilia. These ion channels appear to be gated on and off by mechanical
tension in the thin links seen connecting the extreme tips of some stereocilia
to the sides of adjacent, taller, stereocilia (Pickles et al., 1984). Because the
energy required to open a transduction gate is comparable with the thermal
energy thermodynamically associated with physiological temperatures, the
channels are not in a simple open or closed state but rather are rapidly
fluctuating between open and closed states with the mean vilue determined
by the tension. Furthermore, because the channels cannot be ynchronized,
channels in one stereocilium might be in the open state at the instant that
those of an adjacent stereocilium might be closed. Hence, it is appropriate to
talk to the mean state of the gates or the mean proportion of time that the
gate spends in the open state or, less accurately, of gates being partly
opened. The function describing the probability of being in the open state
versus the instantaneous displacement of the BM is, for OHCs at least, very
close to a two-state Boltzmann function, which is, in turn, the type of
function to be expected of a simple two-state system in thermodynamic
equilibrium (Corey & Hudspeth, 1983). At one extreme the gates will be
always closed and at the other always open, and there exists a smooth
transition between the two.

Inefficacy of the forward transduction channels is probably the most
commonly observed cause of threshold elevation in both experimental ani-
mals and in humans. Anything that alters the probability of a channel being
in one state or another—be that mechanical damage to the gating protein
itself, blockage of the channel by pharmacological agents, reduction in the
driving voltage across the hair cell, or interference from another stimulus of
high intensity—will reduce the gain of that stage of the feedback loop (C in
Fig. 2) and hence reduce the BM amplitude at the CF. Experimentally, the
ion channels appear to be susceptible to a wide range of insults from acous-
tic and mechanical trauma through to ototoxic agents. Reduction of the
endocochlear potential also reduces the current passing through the chan-
nels and elevates thresholds.
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2. Reverse Transduction

The relationship between transmembrane voltage and OHC contraction has
also been shown to approximate a Boltzmann function (Santos-Sacchi,
1992; Dallos et al., 1993). Again this is to be expected on the grounds that
the motor appears to be driven by a charge movement for which the energy
difference is comparable with the thermodynamic energy at physiological
temperatures (Dallos et al., 1993). The characteristic length for the Boltz-
mann function, the point at which saturation has reduced the force signifi-
cantly, is around 1 pm.

Because the forward, mechanical-to-electrical transduction is in series
with the reverse, electrical-to-mechanical, transduction, either would be
expected to contribute to the closed-loop nonlinearity, but the forward
transduction saturation is evident at much smaller BM displacements and
hence is expected to be the dominant nonlinearity in the cochlea over much
of its dynamic range (Patuzzi et al., 1989a, b; Santos-Sacchi, 1993).

3. Gating Forces

The Boltzmann transfer function associated with the mechanotransduction
gates in the stereocilia contributes to nonlinearity in the cochlea because of
its effect of reducing the active gain as it saturates. It has been shown
however, to manifest itself in a second way through a direct modulation of
the compliance of the stereocilia during deflection (Fig. 7). In effect, as the
stereocilia are displaced in the excitatory direction (toward the basal body,
away from the shorter stereocilia) the tip-links initially are stretched while
the gates remain closed; the only elastic component is the tip-link itself (A of
Fig. 7, left panel). Further displacement results in a gradual (in a statistical
sense) opening of the gates, and during this stage of incomplete opening
there are two elastic components in series: the tip-links and the gates them-
selves (A and B of Fig. 7, middle panel). Still further displacement results in
the gates being fully opened; they become rigid again and the tip-links again
become the only contributor to the elasticity (Fig. 7, right panel). In the
transition range, when the gates are only partially opened, the overall stiff-
ness is reduced.

This nonlinear compliance of the stereocilia has been demonstrated in
hair cells from the sacculus (Howard & Hudspeth, 1988) but its contribution
to BM nonlinearity has not yet been demonstrated explicitly. Its importance
in the overall cochlear mechanics will depend on the (as yet unknown)
extent to which stereociliar stiffness contributes to the overall BM stiffness.
If stereociliar stiffness has a significant influence on BM stiffness, then this
gating stiffness will manifest itself as a nonlinearity in cochlear mechanics. It
will, however, be independent of the cochlear amplifier in that its effect will
be the same regardless of the state of the cochlear amplifier and regardless of
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FIGURE 7 Simplified model for gating stiffness. A and B are two elastic links: A is the
external tip-link of the stereocilia, B is the internal spring biasing the ion-channel gate closed.
Tension is applied to link A. In this representation the compliance is a discontinuous function
of stretch but in the stereocilia gates it is a smooth transition, because of the Boltzmann
statistics of opening. The dashed line shows a more realistic shape for the gating stiffness.

frequency, for the same BM displacement. That is, its contribution to the
overall nonlinearity will depend upon the absolute BM displacement and be
independent of any amplification mechanisms that contribute to that dis-
placement.

B. Input—Output Functions

Saturation of the mechanical-to-electrical transduction stage in the positive
feedback loop also leads to compression of the dynamic range. It has been
shown (Yates, 1990) that a saturating nonlinearity will lead to highly com-
pressive input—output curves for the following reason. As stimulus intensity
is increased, the loop gain gradually reduces, mostly due to saturation of the
forward transduction (stage C of Fig. 2) so the overall gain falls dramat-
ically. That is, the overall gain becomes a decreasing function of input level
and the BM amplitude grows more slowly than the stimulus. Quantitative-
ly, if the overall closed-loop gain is « and large, then it will start to decrease
when the total gain around the loop is reduced by a factor of 1/a by
saturation of any stage.
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Such saturation effects are seen in the experimental data when BM input—
output functions are plotted (Sellick et al., 1982; Robles et al., 1986), and in
the rate-vs-intensity functions of high-threshold nerve fibers (Sachs & Ab-
bas, 1974; Winter, Robertson, & Yates, 1990; Yates et al., 1990).

C. Distortion in the Cochlea

Harmonic distortion might be expected of a system such as the cochlea,
because phase-related fluctuations in the feedback force must occur at inter-
vals directly related to multiples of the period of the stimulus. However,
whenever such harmonic distortion is generated at the characteristic place, it
will be above the local BM cutoff frequency and would be expected to have
no influence on the mechanics. Hence, harmonic distortion is not a feature
of the cochlea. Other types of distortion, particularly intermodulation dis~
tortion, would be expected, however, and this is discussed later.

D. Otoacoustic Emissions

When an acoustic stimulus is presented to a normally functioning ear a
variety of extra products may be demonstrated in the sound field of the ear
canal. Of these additional components, some are essentially nonlinear, oth-
ers are not, but the only way in which most can be identified is by taking
advantage of their nonlinear properties.

1. Cochlear Echoes

Kemp (1978) first demonstrated cochlear echoes when he presented short
transient stimuli to guinea pig ears while recording the sound field during
and after the stimulus. After the initial stimulus had subsided he was able to
record another wideband signal, delayed from the stimulus by approx-
imately 10 ms, which grew in amplitude more slowly than the stimulus.
This particular form of emission, the transiently evoked otoacoustic emis-
sion (TEOAE), is probably the least well understood of all the emissions,
and no good theory of its generation exists.

One explanation of the TEOAE is that it reflects a weighted, summed
response of all active generators along the cochlea and hence much of the
response for any one frequency component must be generated at the charac-
teristic place for that frequency. It is suggested that some of the energy
stimulated by the cochlear amplifier travels in the reverse direction back
along the cochlea to the stapes, where it reemerges into the ear canal sound
field. If so, the presence or absence of the particular frequency component in
the response would be expected to provide some information about the state
of the cochlear amplifier at that particular characteristic place.
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Even so, the behavior of the transient-evoked emission is not clearly
interpretable. There is evidence (Avan et al., 1991) that the low-frequency
components of the TEOAE are strongly influenced by the physiological
state of the basal region of the cochlea when it might be expected to be
influenced only by the more apical regions, near to its characteristic place.
There is also evidence that changes in the TEOAE may be evident before
changes in threshold are observed at corresponding frequencies. If this is so,
some revision of our ideas about the function of the cochlear amplifier
would be necessary because the present concept permits no room for such
an effect.

2. Single-Tone Emissions

If a single-frequency tone burst is presented to the ear, it is possible to
demonstrate the presence of a component at the same frequency generated
within the cochlea. Notwithstanding statements made in the introduction
to Section IV, this single-tone emission (STE) is demonstrable only by virtue
of its nonlinearity and, in particular, its suppression by a second tone. Brass
and Kemp (1991) recorded the sound field in front of the tympanic mem-
brane while they stimulated alternately with a probe tone alone and with
probe tone and suppressor. The suppressor suppressed the nonlinear com-
ponent from within the cochlea and with some arithmetic manipulation
they were able to reveal the nonlinear component by itself. It had a latency
of about 5-10 ms, appropriate for a response traveling from the stimulus
frequency characteristic place, and they interpreted this as leaked energy
from the cochlear amplifier.

If this interpretation is correct, then the STE should be analogous to the
TEOAE, with the stimulus traveling to the characteristic place for each
frequency involved and some energy from the cochlear amplifier traveling
from each characteristic place to the stapes. However, in the case of the STE
the possible interactions between frequency components are much simpler
to interpret because there are at most two of them. More study of the
relationship between the STE and the TEOAE is required, however, before
we can precisely interpret them.

3. Intermodulation Products

If two stimulus frequencies are simultaneously presented to an ear, it is
possible to measure in the external ear canal a third component at the cubic
intermodulation frequency, 2f,—f,. Again the general interpretation of this
emission product is that it is generated at the characteristic place of one of
the primary components (evidence suggests the f, characteristic place) due
to nonlinear modulation of its BM response at the f; frequency and in this
case the interpretation is fairly straightforward.



70  Graeme K. Yates

It has been suggested that there are two independent generators of the
2f;—f, cubic distortion tone (CDT), one active at low intensities and another
active at high. This interpretation is based on differences between the CDT
responses when driven by low- and high-intensity stimuli, but there is an
alternative explanation that also appears consistent with the observations:
that there is one generator only and that the amount of CDT depends, to
first order at least, only on the displacement amplitude of the BM and not
on how that amplitude is achieved.

For example, the low-level CDT grows approximately linearly with
stimulus intensity whereas the high-intensity product grows at a greater
rate, with a slope approaching 3. It has also been observed that the growth is
steep when the cochlea is damaged. One interpretation is that there are two
generators with different slopes, but another explanation is that there is one
generator but two stages of growth of the BM input—output function.
When any nonlinear transfer function is expanded as a polynomial, the
cubic term chiefly gives rise to the 2f,—f, distortion, which is the reason for
the name cubic distortion product. Further analysis indicates that the CDT
generated by a simple cubic polynomial transfer function should grow ap-
proximately as the cube of the input level so that we might expect the
cochlear CDT to grow as the cube of the stimulus intensity. But, experi-
mentally, this is found to be the case only for the high-level CDT or the
CDT from damaged cochleas; the low-level CDT grows more slowly. At
low intensities, however, the BM amplitude grows at a rate of between 0.2
and 0.3 dB/dB (Sellick et al., 1982; Robles et al., 1986; Sachs & Abbas, 1978;
Yates et al., 1990; Cooper & Yates, 1994), and if the CDT depends upon BM
displacement, then the CDT might be expected to grow as (0.2 to 0.3) X
3.0 or around 0.6 to 1, as is in fact the case.

4. Spontaneous Emissions

While not strictly a sign of nonlinearity, the presence of sounds sponta-
neously generated within the cochlea has been interpreted as evidence of an
active process within the cochlea, limited from growing indefinitely in
amplitude by an amplitude-limiting nonlinearity.

E. Two-Tone Suppression

Two-tone suppression, the reduction in response to one tone caused by the
simultaneous presentation of a second tone of suitable frequency and inten-
sity, is also to be expected from a positive feedback loop. The second tone,
if of appropriate frequency and amplitude, will drive the nonlinearity into
even greater saturation, thereby reducing the loop gain for the first (Geisler
et al., 1990), and hence it will reduce the amplitude of the first tone.
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V. SUMMARY

The cochlea uses filtering to transform an incoming wideband signal into a
set of parallel narrowband channels to match the channel capacity to the
neural system. Filtering is accomplished by mechanical means assisted by
mechanical positive feedback from the OHCs, with the IHCs taking the
role of passive displacement transducers. The active process within the
OHGC:s is still under debate with two significant candidates: (1) contraction
of the cell body under the control of the transmembrane receptor potential
and (2) motion of the stereocilia. Although the details of the active process
are unknown, much is known about how the cochlear amplifier operates at a
macroscopic level. Saturation of the forward transduction stage is probably
the most significant nonlinearity and may explain the dynamic range of the
cochlea as well as various forms of distortion detectable by psychoacoustic
and physical means.
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Neural Signal Processing

Alan R. Palmer

Following detection of a sound the auditory nervous system must decipher
“what is it?” and “where is it?” The first stage of processing to answer these
questions involves breaking down complex sounds into their components
by the cochlea (see Chapter 2). Thus, the processing of a complex sound can
be thought of as the processing of the frequencies and intensities of its
components. However, real sounds are characterized by spectro—temporal
variations, and the processing of individual frequency components is nei-
ther independent nor linear. We cannot, therefore, predict the responses to
complex sounds by simple summation of the responses to their frequency
components. This has prompted the use of stimuli with increasing com-
plexity such as two-tone complexes, frequency and amplitude modulated
stimuli, and vocalizations. “Where is it?” additionally involves computa-
tions based on differences in the timing and level of the signals at the two
ears. The account given here is highly selective and is limited to non-
specialized mammals.

I. SOUND FREQUENCY
A. Frequency Selectivity

The cochlea operates as a short-term Fourier analyzer separating complex
acoustic signals into their frequency components. The very sharply tuned

Hearing
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mechanical vibrations of the cochlear partition are transduced by the hair
cells, which exhibit similarly sharply tuned receptor potentials. These re-
ceptor potentials provide the driving force for the release of neurotransmit-
ter at the base of the hair cells, which in turn generates action potentials in
the fibers of the auditory nerve (see Chapter 2). Although the axons of outer
hair cells project to the cochlear nucleus, most, and probably all, responses
from auditory nerve fibers must have been recorded from the axons that
innervate the inner hair cells. The only proven recording from an outer hair
cell afferent showed no spontaneous activity and no activation by sounds at
a moderate level (Robertson, 1984).

The only response of auditory nerve fibers in mammals to a single tone is
excitation; that is, an increase in the rate of generation of action potentials
above the resting or spontaneous rate (Kiang, Watanabe, Thomas, & Clark,
1965). The range of frequencies capable of exciting a single fiber is restricted
in exactly the same way as the vibration pattern of the basilar membrane and
the receptor potentials of the hair cells (see Chapter 2). Thus one can mea-
sure a tuning curve of a fiber that represents the sound level of tones that
evoke the same just-detectable increase in the firing rate of the fiber; this is
often referred to as a frequency-threshold curve (FTC). The frequency at the
minimum of the FTC is termed the best or characteristic frequency (CF), and it
indicates the position along the cochlear partition of the hair cell that the
fiber innervates. The FTCs of the fibres innervating hair cells along the
length of the cochlea form an overlapping series of band-pass filters that
encompass the hearing range of the animal, as can be seen in Figure 1(a),
which shows FTCs of 127 fibres recorded from the auditory nerve of a
single cat.

Examination of the ten fibers in Figure 1(b) (selected from those in
Figure 1(a)) reveals a variation in the shape of the FT'C with CF. These
variations have been quantified using several parameters, such as the slope
of the FTC above and below the CF, the bandwidth of the FTC at 3 or 10 dB
above the minimum threshold, and the length of the sharply tuned tip
region (see Evans, 1975; Evans, Pratt, Spenner & Cooper, 1992). For the
fibers shown in Figure 1(a) all these variables covary with CF. The relative
sharpness of the fibers’ FT'C is shown as the variation in Q¢ 4g With CF in
Figure 1(c) (Q,0 48 = CF/bandwidth at 10 dB above the threshold at CF).
The sharper is the filter, the larger is the Q¢ 4. Thus, for auditory nerve
fibers, although the absolute bandwidth increases, the relative sharpness
increases also with CF up to about 15-20 kHz. It has been demonstrated in
several studies that the tuning present in the cochlea, as manifested in the
tuning of auditory nerve fibers, accounts well for psychophysical frequency
selectivity, as shown in Figure 2. In this figure, the bandwidth of auditory
nerve fibers is compared with two behavioral measures of frequency selec-
tivity from the same animal (the guinea pig, Evans <t al., 1992). See Chapter
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FIGURE 1 (A) Frequency threshold curves from 127 cochlear nerve fibers in a single cat
obtained by an automated threshold tracking procedure. The continuous line at the top shows
the maximum output levels of the sound system. (B) Ten of the curves extracted from the top
figure to illustrate the progressive changes in shape with characteristic frequency. (C) Qyo 4
measures of tuning for this population (the characteristic frequency divided by the bandwidth
at 10 dB above the threshold). (From Palmer & Evans, unpublished data.)
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FIGURE 2 Comparison of the equivalent rectangular bandwidths (ERBs) of physiologi-
cal (cochlear nerve fiber) tuning curves with behavioral filter functions obtained from the same
species. Each square represents the data from a single cochlear nerve fiber. The asterisks show
ERBs obtained behaviorally from the masked thresholds for detecting pure tones in the pres-
ence of a comb-filtered noise masker and the bracket symbols (+1 S.E.) show ERBs obtained
from masked thresholds in a bandstop noise masker. The dotted line is a regression line fitted
through the comb-filtered noise data. (Reprinted from Evans et al., 1992, p. 162, with permis-
sion from Pergamon Press, Ltd, Headington Hill Hall, Oxford OX3 OBW, UK.)

5 for further discussion of this point and a description of the behavioral
measures.

Although the most sensitive auditory nerve fibers have minimum thresh-
olds that match the behavioral audiogram of the animal (e.g., Liberman,
1978), the thresholds at the CF of the auditory nerve fibers innervating a
restricted region of the basilar membrane vary with the fibers’ spontaneous
discharge rate. When large numbers of fibers are recorded from a single
nerve, it is possible to distinguish three populations of auditory nerve fibers
that differ according to their spontaneous rate (16% of fibers have rates
below 0.5 spikes/s, 23% have rates between 0.5 and 18 spikes/s, and 61%
have rates exceeding 18 spikes/s; Liberman, 1978). The most sensitive fibers
are those with high spontaneous rates, followed by the medium (about 10
dB higher), with the highest thresholds found in the fibers with low sponta-
neous rates (about 30 dB higher). These values are typical of studies using
only acoustic search stimuli; a narrower threshold distribution is found if
signal detection theory is used to establish the threshold and a wider distri-
bution of thresholds at the CF (over an 80 dB range, see Figure 3) has been
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FIGURE 3 Thresholds of fibers from a single cat cochlear nerve as a function of charac-
teristic frequency. Fibers had high (circles), medium (crosses), or low (triangles) rates of
spontaneous discharge. The continuous line is the best threshold curve, which represents the
lowest CF thresholds seen in a large sample of fibers from 43 animals. (From Liberman &
Kiang, 1978, with permission.)

described when an electrical search stimulus was used (Liberman, 1978;
Liberman & Kiang, 1978). The significance of the minority group of very
high threshold auditory nerve fibers remains obscure.

B. Population Responses to Single Tones

It is clear from Figure 1 that there is increasing and substantial overlap in the
FTCs of auditory nerve fibers innervating disparate regions of the basilar
membrane as the sound level is increased. This implies that, although at
threshold a single tone will activate only a small group of fibers with CFs at
the tone frequency, at higher sound levels fibers with CFs away from the
tone frequency will be activated. That this is the case may be seen in Figure
4. At the highest sound levels, nearly the whole population is activated by a
1 kHz tone, whereas the very steep high-frequency slopes of the FTCs
ensure that an 8 kHz tone largely activates fibers with CFs above the tone
frequency. Such a spread in activity with level is a major factor causing
increased masking of high frequencies by lower frequencies at high sound
level (the upward spread of masking).
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FIGURE 4 Distribution of activity across the fiber array evoked by an 8 kHz tone (A) and
a 1 kHz tone (B) as a function of sound level (as indicated). Each data point represents the
increase in discharge rate above spontaneous activity for a single fiber, plotted as its characteris-
tic frequency; all fibers for each frequency were recorded from a single cat. Curves in B are
moving window averages of the activity of fibers with high (>15 spikes/s) spontaneous rates.
Note the reversed frequency axis. (Adapted from Irvine, 1986, with permission. Original data
were from Palmer & Evans, unpublished data, and Kim & Molnar, 1979, with permission from
Springer-Verlag.)

C. Cochleotopic Organization

A microelectrode passing through the cochlear nucleus (the first auditory
relay in the brainstem), in a dorso—ventral direction, first encounters neu-
rons with high CFs then progressively lower CFs (Rose, Galambos, &
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Hughes, 1959). Such orderly frequency mapping is termed tonotopic or,
more correctly, cochleotopic organization; every major nucleus between the
cochlea and the cortex has been found to be cochleotopically organized, as
illustrated diagrammatically in Figure 5. In the central nervous system large
areas of tissue may be most sensitive to the same frequency thus forming
iso-frequency laminae in the brainstem, midbrain, and thalamus and iso-
frequency bands in the cortex.

D. Frequency-Intensity Response Areas

Although a best frequency can generally be attributed to most auditory
neurons, this does not imply that their tuning resembles that of auditory
nerve fibers. The homogeneous excitatory response of auditory nerve fibers
to simple tones, which results in V-shaped tuning curves, no longer applies
for the majority of higher order neurons. Even at the first relay stage of the
cochlear nucleus there is evidence of convergence to produce wider and
more complicated tuning curves, and single tones often evoke inhibition of
the neural activity (Rose et al., 1959; Evans & Nelson, 1973). A more useful
representation for describing the responsiveness of central neurons is the
frequency—intensity response area or response map. This form of analysis
demonstrates the frequencies and intensities of single tones that produce
excitation or inhibition of the neuron’s output. In the cochlear nucleus such
response areas have been used to classify neuron responses according to the
strength and prevalence of inhibition evoked by single tones (Evans &
Nelson, 1973; see Young, 1984; Young, Shofner, White, Robert, & Voigt,
1988) as can be seen in Figure 6.

Sensitivity to a wider range of frequencies, and admixtures of excitation
and inhibition across frequency, are common throughout the central audi-
tory pathway, although simple, narrowly tuned, excitatory response areas
may be found in all nuclei including the cortex (see Calford, Webster, &
Semple, 1983). Above the level of the cochlear nucleus the picture is further
complicated by the sensitivity of the neurons to signals at either ear (see
Section V.). Careful mapping studies at the inferior colliculus and auditory
cortex within iso-frequency sheets have revealed that in addition to the
cochleotopic organization there is a topographic organization according to
sharpness of neural tuning and the symmetry of the lateral inhibitory side-
bands (e.g., Schreiner & Mendelson, 1990). Schreiner and Mendelson hy-
pothesize that a given spectral component will be simultaneously processed
by analyzers with a variety of bandwidths centered on that component. The
result would be equivalent to a “multiple-bandwidth spectral analyzer,”
which could be of particular value in the discrimination of natural sounds
that differ in spectral shape, tilt, or contrast.
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FIGURE 6 Relationship between the response area type, post-stimulus time histogram
type, and unit location within the cochlear nucleus complex. The percentages indicate the
proportions of the units sampled within the ventral and dorsal cochlear nucleus with particular
combinations of response area and post-stimulus time histogram. Areas of excitation in the
response maps are shown hatched and inhibitory areas are delimited by dashed lines. (From
Young et al., 1988, with permission.)

E. Time Course of Activation by Single Tones
1. Adaptation and Shapes of Post-Stimulus Time Histograms

When a single excitatory tone is presented, the discharge rate of an auditory
nerve fiber is maximal at the stimulus onset, gradually decreases, and reaches
a steady state after some tens of milliseconds (e.g., Kiang et al., 1965; see histo-
gram labeled Primarylike in Figure 6). Such adaptation is typical of most sen-
sory neurons and is observed in all fibers of the auditory nerve. It is thought
to originate in the synapse at the base of the hair cell. Adaptation does not,
however, seem to be simply due to the depletion of neurotransmitter, as small
step increases in intensity generate about the same increase in discharge
irrespective of the state of adaptation (depletion of the transmitter should
cause a decrease in the gain and therefore a multiplicative effect on step
intensity changes; Smith & Zwislocki, 1975). The time course of the decline
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from the high rate of discharge at the onset is not a simple exponential, but is
characterized by more than one time constant: one very rapid (<10 ms), one
of some tens of milliseconds, and possibly others even longer (Kiang et al.,
1965; Westerman & Smith, 1984; Yates, Robertson, & Johnstone, 1985).
Following the cessation of an excitatory tone there is a depression of the
excitability, which has been suggested to be the cause of various forward
masking phenomena (see Smith, 1979). Complete recovery after a stimulus
takes of tens of milliseconds for high spontaneous rate fibers, but may extend
to seconds for low spontaneous rate fibers (Relkin & Doucet, 1991).

In the cochlear nucleus the time course of the response to a single tone is
different for the principal cell types. Figure 6 illustrates the time courses
of the responses of neurons in the dorsal (DCN) and ventral (VCN) sub-
divisions of the cochlear nucleus and the way in which these responses relate
to the response areas of the neurons. The post-stimulus time histogram
(PSTH) classification scheme is not definitive, because the responses of
some units fall between categories, and others change from one pattern to
another with changes in stimulus conditions. Nevertheless, it does provide
a convenient segregation of the responses, which, taken together with
the response area, does in some cases correlate with the underlying cell
morphology. The different PSTHs are referred to by discriptive names as
shown in Figure 6. The separation of the peaks of chopper responses to
single tones is not related to the stimulus frequency, but reflects intrinsic
membrane properties coupled with a sustained input excitation derived
from multiple synaptic contacts (Oertel, Wu, & Hirsh, 1988). Primarylike
responses in the rostral pole of the VCN are the consequence of secure
synaptic activation of the cells by large synapses. Primarylike-with-a-notch
PSTHs (not shown in the Figure 6) are the likely consequence of multiple,
secure inputs from the auditory nerve that generate an onset spike with high
probability, thus revealing a refractory gap of <2 ms. The pauser and build-
up responses in the dorsal cochlear nucleus (DCN) result from the temporal
overlap of excitatory inputs from the auditory nerve and inhibitory inputs
from within the cochlear nucleus (see Young, 1984). The likely functions of
these response types are discussed later.

A similar range of PSTH types is found in the superior olive to monaural
stimulation, but with some additional transformations of the responses
(Guinan, Norris, & Guinan, 1972; Tsuchitani & Johnson, 1991). At higher
levels in the pathway a distinction is often drawn between neurons that
respond only at the stimulus onset and those that show sustained discharge
throughout the tone burst (primarylike, chopper, and pauser types). Both
types of response have been reported in all higher nuclei with the proportion
responding only at the onset becoming greater in more central nuclei (see
Irvine, 1986; Phillips, Reale, & Brugge, 1991).
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2. Fine Time Structure of the Responses to Single Tones (Phase Locking)

Cochleotopy implies a “place” coding of frequency, but the frequency of a
stimulus or of the components of a complex sound may also be signaled in
the timing of the impulses. Impulses are initiated in auditory nerve fibers
when the hair cell stereocilia are bent toward the longest stereocilium (see
Chapter 2). Thus, in response to low-frequency sounds the impulses in
auditory nerve fibers occur preferentially at a particular phase of the stimu-
lus waveform. This phenomenon, termed phase locking (Rose, Brugge, An-
derson, & Hind, 1967), has been demonstrated to occur in all vertebrate
classes (see Palmer & Russell, 1986, for a review). In the guinea pig, phase
locking begins to decline at 600 Hz and is no longer detectable at 3.5 kHz,
whereas in the cat phase locking persists at frequencies about an octave
higher: the decline begins at about 1 kHz and phase locking is not detected
above 5 kHz as shown in Figure 7 (Rose et al., 1967; Palmer & Russell, 1986;
Kiang et al., 1965; Johnson, 1980). Several reasons have been suggested for
the limit in the ability of auditory nerve fibers to phase lock to high-
frequency tones. One major contributory factor is the capacitance and resis-
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FIGURE 7  Phase locking as a function of frequency for the guinea pig (open squares) and
cat (crosses). The synchronization index is calculated by normalizing the vectorial sum of the
bins of a period histogram locked to the tone waveform, each bin being assigned a vector angle
based on its position within the cycle and an amplitude equal to the number of spikes in the bin.
(From Palmer & Russell, 1986. Reprinted with permission from Elsevier Science Publishers.)
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tance of the hair cell membrane; these act as a low-pass filter to attenuate the
sinusoidal components of the receptor potential that periodically activates
the nerve fiber synapse (Palmer & Russell, 1986). Phase locking appears as
an entrainment of spontaneous activity up to 20 dB below the threshold for
an increase in discharge rate, but this threshold difference disappears when
signal detection theory is used to determine both the mean rate and phase
locking thresholds. Phase locking persists with no indication of clipping at
levels above those producing saturation of the fiber discharge rate (Rose et
al., 1967; Johnson, 1980; Palmer & Russell, 1986).

Both the proportion of neurons exhibiting phase locking and the highest
frequency at which phase locking can be detected generally decline with
ascent toward the cortex. Several factors contribute to this decline in phase
locking (see Rouiller, De Ribaupierre, & De Ribaupierre, 1979) and even in
the cochlear nucleus, different cell groups vary in their phase locking capa-
bility. Thus, spherical bushy cells and some onset responding multipolar
cells phase lock as well as do auditory nerve fibers (Bourk, 1976; Winter &
Palmer, 1990; Blackburn & Sachs, 1989). Other multipolar cells (which
have chopper PSTHs) have a lower cut-off frequency for phase locking than
auditory nerve fibers; the decline starts at a few hundred Hertz and no phase
locking is detectable above 2 kHz (Bourk, 1976; Winter & Palmer, 1990).
Phase locking in the DCN occurs only to very low frequencies (e.g., Gold-
berg & Brownell, 1973). At the medial superior olive, a nucleus that con-
tains a majority of neurons with low CFs, the neurons do show phase
locking but probably not as well as the spherical bushy cells in the VCN
from which they derive their input (see Tsuchitani & Johnson, 1991). Only
18% of inferior colliculus cells show phase locking, and it is seldom seen to
frequencies above 600 Hz (Kuwada, Yin, Syka, Buunen, & Wickesberg,
1984). At the level of the medial geniculate body only 2% of neurons show
phase locking (Rouiller et al., 1979), and phase locking has not been report-
ed to occur in the primary auditory cortex to frequencies above about 100
Hz (Phillips et al., 1991). Clearly, any signal processing dependent on the
fine timing of the impulses must be accomplished early in the auditory
pathway.

F. Two-Tone Rate and Synchrony Suppression

The discharge evoked in an auditory nerve fiber by a tone may be reduced
or eliminated by the simultaneous presentation of a second tone situated
within prescribed areas of frequency and intensity either side of the FTC
(Kiang et al., 1965, Arthur, Pfeiffer, & Suga, 1971). The spectral depen-
dence of this rate suppression is illustrated in Figure 8(a) and its time course by
the PSTH in Figure 8(b). The suppressive areas defined by reduction of
discharge rate extend only to the edges of the FTC because, once within the
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FIGURE 8 (A) Two-tone suppression areas of a cochlear nerve fiber in the cat. The
shaded areas show the frequencies and intensities of a second tone that will reduce the mean
firing rate to a CF tone (at the level shown by the open triangle) by 20% or more. The
excitatory response area for single tones is bordered by the open circles (From Arthur et al.,
1971, with permission.) (B) The time course of two-tone suppression in a cochlear nerve fiber
of the cat shown as a peristimulus time histogram in which activity evoked by a continuous
excitatory tone is suppressed by a burst of a second tone. (From Kiang et al., 1965, with
permission.)
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FTC, the suppressor also excites the fiber: the high-frequency suppressive
area may extend down to very close to the fiber’s CF threshold, but the low-
frequency suppressive area is generally 15-40 dB higher. The time course of
the suppression shows a maximum at the suppressor tone onset with a
gradual recovery of the firing rate, followed by a large overshoot in the rate
when the suppressor is turned off (cf. the adaptation described previously).
The similarity of the latencies for the onset of the excitation and suppression
suggests that the involvement of an inhibitory synapse is unlikely, and since
the suppression survives sectioning of the olivocochlear bundle it is not an
effect of the descending system (Kiang et al., 1965; Arthur et al., 1971).
Recent evidence suggests that the source of this form of suppression is in the
interaction of the mechanical responses on the basilar membrane (see Chap-
ter 2). At low frequencies, it is possible to investigate the suppressive inter-
actions during complex sound stimulation by measuring the phase locking
to the constituents of the complex. In the case of two tone stimulation, the
number of discharges phase locked to one tone is reduced when the second
tone is also presented. Such “synchrony suppression” is not limited to the
regions causing rate suppression, but rather extends throughout the fiber
frequency—intensity response area with maximum synchrony suppression
occurring at or near CF (see Javel, 1981).

At levels above the auditory nerve, suppressive sidebands are a common
finding. However, in the presence of spontaneous activity these sidebands
are seen with single tones and reflect neurally mediated inhibition. When
stimulation consists of spectrally rich sounds, the sidebands must reflect not
only the suppressive effects taking place in the cochlea but also the neurally
mediated lateral inhibition, which is often the greater effect.

II. SOUND LEVEL
A. Rate versus Level Functions to CF Tones

Increasing the level of a single tone above threshold causes a monotonic
increase in the rate at which auditory nerve fibers discharge action poten-
tials. For fibers with high rates of spontaneous activity and low thresholds,
the discharge rate increases with level in a sigmoidal fashion, reaching a
maximum or saturated discharge rate (Kiang et al., 1965; Sachs & Abbas,
1974; Palmer & Evans, 1980). The dynamic range (i.e., the range of levels
from the threshold to the point of saturation) of the mean discharge rate
(measured over tens of milliseconds) for the majority of nerve fibers is
limited to about 40 dB (for fibers with spontaneous rates in excess of 15/s;
Evans & Palmer, 1980). However, many fibers with low rates of sponta-
neous discharge do not fully saturate over the ranges of level used in most
laboratories. Instead their discharge continues to increase with level at the
highest levels, although the slope of the rate-level function is greatly re-
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duced (Sachs & Abbas, 1974; Palmer & Evans, 1980). Examples of both
these types of rate versus level function from the cat are shown in Figure 9.
In the guinea pig there is a third type of function, for fibers with zero
spontaneous rates, which shows no evidence of saturation (Winter, Rob-
ertson, & Yates, 1990). The different shapes of rate-level functions are well
predicted by a sigmoid shaped saturating nonlinearity (the exact cause is
unknown, but may be a limitation in the neurotransmission at the hair—cell
synapse) following the nonlinear basilar membrane input-output function
(Sachs & Abbas, 1974; Yates, Winter, & Robertson, 1990). One conclusion
from these studies is that the parameter determining the shape of the rate—
level function is not the spontaneous rate per se, but the threshold of the
fiber relative to the basilar membrane input—output function.

B. The Dynamic Range Problem

The apparent disparity between the dynamic range measured physiologi-
cally for the majority of auditory nerve fibers and that measured psycho-
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FIGURE 9 Rate-level functions (at CF) for five cochlear nerve fibers from a single cat.
The fibers have CFs of 12.3—-13.5 kHz. The arrows indicate the mean rate thresholds. (From
Sachs and Abbas, 1974, with permission.)




90 Alan R. Palmer

physically has been extensively reviewed by a several authors (Evans, 1981;
R. L. Smith, 1988; Irvine, 1986). More recently, there have been several
theoretical studies of the ability of auditory nerve fibers to provide an ade-
quate basis for psychophysically measured intensity difference limens. In
these studies, optimal combination of the rate—level functions, from small
groups of fibers of similar CF and with plausible distributions of threshold,
has proven sufficient to account for human psychophysical performance,
when the statistics of the discharge are taken into account (Viemeister, 1988;
Delgutte, 1987; Winslow & Sachs, 1988). This issue is discussed more fully
in Chapter 4.

C. Wider Dynamic Range of the Onset Response

Smith and his colleagues have explored the time course over which the
saturating synaptic function limits the discharge rate. Noting that the recep-
tor potentials of inner hair cells had wider dynamic ranges than the majority
of auditory nerve fibers, they suggested that the transfer function of the hair
cell synapse could be responsible for the extra compression (see Smith,
1988). If the rate versus intensity function is plotted only for spikes occur-
ring over the first few millisecond of stimulation, the dynamic range of the
function is considerably wider than that of the steady-state rate (measured
over tens of milliseconds) and more closely resembles the input—output
function of the hair cell receptor potentials (R. L. Smith & Brachman, 1980;
Westerman & Smith, 1984). This wider dynamic range to transient stimuli

is evident when using amplitude-modulated stimuli or speech sounds (see
Sections III.A and IV.).

D. Rate versus Level Functions in the Central Auditory System

The rate-level function to a single tone is a vertical slice through the re-
sponse area. At the cochlear nucleus the response areas become complicated
with sideband or center band inhibition or both (type Ill and IV units,
Figure 6), and the rate—level function therefore reflects the level dependence
of this excitation and inhibition at any single frequency. Thus, although
many units in the cochlear nucleus show monotonic sigmoidally shaped
rate—level functions (primiarylike type I units and many type IlIs to CF
tones), others show more or less severe reductions in discharge rate as
increases in level evoke stronger inhibitory inputs (type IV, type Il and type
V, see Figure 6; Young, 1984; Young et al., 1988). Onset responding units in
the VCN are characterized by wide response areas and by rate-level func-
tions that show (in many cases) little indication of saturation and hence
exhibit wide dynamic ranges. It has been suggested that both the broad
tuning and the wide dynamic range of onset units result from integration of
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the inputs from auditory nerve fibers with different CFs (Godfrey, Kiang, &
Norris, 1975; Bourk, 1976; Rhode & Smith, 1986a).

Most nuclei above the cochlear nucleus receive input from both ears, and
the shape and dynamic range of rate-level functions of central neurons often
depends on the relative level and spectral content of the signals at the two
ears (see Section V.A.). It is nevertheless the case that, in nuclei throughout
the auditory pathway, for both monaural and binaural stimulation, rate—
level functions of all the types described previously have been reported:
monotonic sigmoid, strongly nonmonotonic, and nonsaturating wide dy-
namic ranges. At the inferior colliculus and cortex, the peak firing rate in
nonmonotonic rate—level functions occurs over a wide range of sound levels
in different units. Thus the “best” sound level for a cortical neuron may be
as low as 15 dB SPL or as high as 106 dB SPL (Ehret & Merzenich, 1988;
Brugge & Merzenich, 1973; Pfingst & O’Connor, 1981). A range of such
nonmonotonic functions from the cortex of an awake monkey performing a
behavioral task is shown in Figure 10. To date, with the exception of the bat
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anaesthetized monkey performing an auditory task. (From Pfingst and O’Connor, 1981, with
permission. )
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(Suga, 1988), there has been no indication of an orderly topographical dis-
tribution of best intensities in the cortex.

E. Effect of Background Noise on Rate—Level Functions

When rate-level functions of auditory nerve fibers to CF tones are measured
in the presence of broadband noise, they are found to be shifted to higher
sound levels (e.g., Costalupes, Young, & Gibson, 1984). As the noise back-
ground is progressively increased in level, the baseline discharge rate in-
creases, the saturated discharge decreases, and the operating range shifts to
higher level. All of these effects may be seen in Figure 11. The shift in the
threshold appears to be a result of competition between the noise and the
tone for capture of the fiber’s activity (Young & Barta, 1986; Rhode, Gei-
sler, & Kennedy, 1978). The shift in the level at which saturation occurs is
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FIGURE 11  Rate-level functions for two auditory nerve fibers in response to CF tones in
quiet (Q) and in the presence of various levels of continuous background noise. A and B show
the measured functions and C and D show the same functions normalized, by subtracting the
baseline rate and dividing by the saturation rate, to emphasize the shift along the ordinate
produced by the noise (at the spectrum levels indicated in dB re 20 pPa). (From Costalupes et
al., 1984, with permission.)
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due to suppressive effects in the cochlea (see Costalupes et al., 1984; Cos-
talupes, Rich, & Ruggero, 1987). The raised baseline is due to the activation
of the fiber by the noise signal, and the reduced saturation rate is due to the
adaptation caused by a continuous noise (Costalupes et al., 1984). The net
effect of all of these is a shift to higher levels of the rate—level function by 0.6
dB for each 1 dB increase in noise level and a compression of the rate-level
function. Because of the compression, at high sound levels increments in
level will be signaled by relatively small increases in discharge rate despite
the shift. Winslow and Sachs (1988) have shown that the compression of the
rate—level function in background noise can be reduced by stimulating the
olivocochlear bundle. Thus the reduced ability of auditory nerve fibers to
signal intensity increments in the presence of noise, resulting from the rate—
level function compression, may not be as profound in the awake behaving
animal (with active descending systems) as in the anaesthetized preparation.
Consistent with this suggestion are the recent data of May, Aleszczyk, and
Sachs (1991), who showed less reduction of the saturated discharge in the
ventral cochlear nucleus of the awake animal.

A shift to higher sound levels of rate—level functions measured in noise
has also been demonstrated in the cochlear nucleus (Gibson, Young, &
Costalupes, 1985). For most units in the VCN and DCN the shift was
similar to that found in the cochlear nerve. However, for some DCN units
(type IV) the shift was close to 1 dB for a 1 dB increase in noise level,
indicating an additional contribution from inhibitory sidebands. At both
inferior colliculus and cortex, although the rate intensity functions also shift
by 1 dB for each 1 dB increase in noise level, the compression of the rate—
level function is less extreme than in the nerve: the noise does not itself drive
the units so there is no increase in the baseline, and the reduction of the
saturated firing rate is smaller (Rees & Palmer, 1988; Phillips & Cynader,
1985). The shifts were found to be the same for monotonic and nonmono-
tonic rate—level functions at the cochlear nucleus and in the higher nuclei.

HI. MODULATION
A. Amplitude Modulation

Naturally occurring sounds are characterized by more-or-less rapid changes
in their amplitude and spectral content. Speech sounds, for example, exhibit
a range of fluctuation rates in the amplitude of their envelope, correspond-
ing to the different speech segments such as syllables, words, and sentences.
Steady-state harmonic sounds (such as voiced vowels) can also produce
amplitude modulation as a result of interaction between the harmonics
passing through a single cochlear nerve fiber filter (see Section IV). To
investigate sensitivity to dynamically varying sounds, investigators have
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more often employed simpler signals such as sinusoidally amplitude modu-
lated tones (whose spectrum consists of a carrier frequency and two side-
bands separated from the carrier by a frequency equal to the modulation
rate; see Chapter 1) and have described the ability of the neural discharge to
signal the modulation as a function of stimulus parameters such as modula-
tion frequency, depth of modulation, mean sound level, and carrier frequen-
cy. In general, auditory neurons throughout the auditory pathway are able
to signal amplitude modulations as a modulation of their discharge. How-
ever, the range of modulation frequencies over which they are able to do so
decreases from the periphery to the cortex (see Rees & Moller, 1983; Schre-
iner & Langner, 1988a). A useful summary of the neural sensitivity is given
by the modulation transfer function (MTF), which plots either the degree
of response modulation (assessed from period histograms) or the total
response as a function of the modulation rate. The degree of neural mod-
ulation is quantified as the ratio of the depth of stimulus modulation and
the depth of response modulation, and it is expressed as a gain in deci-
bels (0 dB indicates equal modulation depth in stimulus and response while
*6 dB indicates response modulations double or half that in the stimu-
lus, etc.).

1. Amplitude Modulation Sensitivity in Auditory Nerve Fibers

MTFs of auditory nerve fibers are low-pass functions (see for example
Figure 12(a)) irrespective of modulation depth. Slopes in the passband rarely
exceed 1 dB/octave, while the cutoff has an initial slope of about —12
dB/octave between the 3 and 10 dB points, beyond which the slope in-
creases considerably (Palmer, 1982; Frisina, Smith, & Chamberlain, 1990;
Kim, Sirianni, & Chang, 1990; Joris & Yin, 1992). Variation in the rate of
modulation has little effect on the mean discharge rate. The modulation of
the discharge is maximal at about 10 dB above the rate threshold and de-
clines as the fiber is driven into saturation, as can be seen in Figure 12(a)
(Frisina et al., 1990). The sound level at which the maximum modulation
occurs (for low modulation depths) is better predicted by the rate-level
function measured over a few milliseconds at tone onset (see Section IL.C)
than by that for steady-state tones (R. L. Smith & Brachman, 1980). The
cutoff frequency of the MTF is dependent upon the fiber CF, which proba-
bly reflects the attenuation of the signal sidebands by cochlear filtering, but
increases in fiber bandwidth beyond 4 kHz (in fibers with CFs above 10
kHz) are not accompanied by increases in MTF cutoff frequency, thus
implying some additional limitation on response modulation in these fibers
(Palmer, 1982; Joris & Yin, 1992). The maximum frequency at which the
MTFs are 3 dB down for auditory nerve fibers is on the order of 1500 Hz
(Palmer, 1982; Kim et al., 1990; Joris & Yin, 1992).
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2. Amplitude Modulation Sensitivity in the Cochlear Nucleus

The pioneering studies of Meller (e.g., 1972, 1977) established that the
MTFs of cochlear nucleus neurones in the rat are often bandpass functions
showing considerable amplification near the peak in the response modula-
tion relative to the signal modulation. These early studies did not specify the
exact location or response type of the units, but the findings have been
repeatedly confirmed in more recent studies. Frisina et al. (1990), for exam-
ple, have demonstrated that in the VCN the degree of enhancement of the
discharge modulation is different for units of different response classifica-
tions. Such differences are illustrated in Figures 12(b) and 12(c) for chopper
and onset units, respectively. Figure 12(c) shows the response to amplitude
modulation of tones at the CF of an onset unit as a function of both modula-
tion rate and sound level. Near threshold the MTF is low-pass in shape with
a passband gain of more than 10 dB (i.e., the discharge is about three times
more modulated than the stimulus). As the sound level is increased, the
MTF becomes bandpass in shape with little or no decrease in the gain at the
peak for levels up to 90 dB above threshold. For the chopper unit shown in
Figure 12(b), the MTF at low sound level is again low pass, becoming
bandpass at higher levels, but the modulation gain is severely reduced at the
higher levels, even at the peak of the MTF. The auditory nerve fiber re-
sponses shown in Figure 12(a) indicate a low-pass MTF at low stimulus
levels, with a passband gain that is low and further decreases as level in-
creases. Frisina et al. suggested that the ability to encode amplitude modula-
tion (measured by the amount of gain in the MTF) is best in onset units
followed by choppers, primarylike-with-a-notch, and finally primarylike
and auditory nerve fibers.

The peak of the MTF function is often referred to as the best modulation
frequency (BMF). In the study of Frisina et al. in VCN, the BMFs varied
over different ranges for the various unit types: 180-240 Hz for onset units,
120-380 Hz for primiarylike-with-a-notch, 80-520 Hz for choppers, and
80-700 Hz for primarylike units. Changes in the MTF shape, from low pass
at low sound levels to bandpass at high levels (with BMFs ranging from 50~
500 Hz), have also been reported for units in the DCN of unanaesthetized,
decerebrate cats (Kim et al., 1990).

3. Amplitude Modulation Sensitivity in the Inferior Colliculus

The MTFs of units in the inferior colliculus are also low-pass at low sound
levels, becoming bandpass at high sound levels, with BMFs generally lower
than those in the cochlear nucleus. In both rat and guinea pig the BMFs are
less than 200 Hz, but in the cat, although BMFs of the majority of units are
below 100 Hz, BMFs of 300-1000 Hz are also found (Rees & Meller, 1983;
Langner & Shcreiner, 1988; Rees & Palmer, 1989). At the cochlear nucleus
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the MTF computed from the synchronized responses shows tuning to mod-
ulation rate without any corresponding variation in the mean discharge rate.
In the inferior colliculus, the mean discharge rate of many units also varies
with the modulation rate. Thus MTFs determined from the synchronized
activity or the mean discharge rate are similar and thus a significant recoding
of the modulation information has occurred (Langner & Schreiner, 1988;
Rees & Palmer, 1989).

The most striking difference between the modulation sensitivity in the
inferior colliculus and that at reported at lower levels is in the topographical
distribution of the units with different BMFs (Schreiner & Langner, 1988b).
This topographical distribution is illustrated in Figure 13, in which is shown
the distribution of BMFs across the 3 and 12 kHz iso-frequency laminae.
The 3-D plots in Figure 13 show the BMF as a function of position in an iso-
frequency lamina and the 2-D plots are the contour representations derived
from these data. Such topographical distributions of best modulation fre-
quencies have only been found in the cat inferior colliculus, but it would be
surprising if such an organization were not ubiquitous across higher ani-
mals.
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FIGURE 13  Representation of the best modulation frequency within two iso-frequency
laminae of the central nucleus of the inferior colliculus: ¢, r, I, m indicate the caudal, rostral,
lateral, and medial directions. (top) 3 = 0.5 kHz lamina, {(bottom) 12 *+ 1 kHz. Increment for
iso-best-modulation frequency contours is 100 Hz. (From Schreiner & Langner, 1988b, with
permission.)
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4. Amplitude Modulation Sensitivity in the Auditory Cortex

The majority of neurons in the auditory cortex are unable to signal envelope
modulation at modulation rates of much more than 20 Hz and, although
there is no topographic organization with respect to the BMF, the several
divisions of the auditory cortex have different distributuons of BMFs (Whit-
field & Evans, 1965; for a review, see Schreiner & Langner, 1988a).

B. Frequency Modulation

Auditory nerve fibers respond to frequency-modulated tones (swept tones)
in ways that are generally predictable from their responses to stationary
tones (Britt & Starr, 1975; Sinex & Geisler, 1981), that is, in a manner
determined by their frequency selectivity, with modification by saturation
and adaptation effects. The fibers respond to the short-term frequency val-
ues, which fall within their response areas, not to the long-term spectral
characteristics. The direction of frequency change has little effect on the
responses other than a shift in the frequency evoking the maximum firing
rate in a manner consistent with adaptation by earlier components of the
sweep.

In many cases, the responses of cochlear nucleus neurons to frequency-
modulated tones are also consistent with their responses to stationary tones.
However, gross asymmetries have been reported in the responses of some
cochlear nucleus neurones to upward and downward frequency sweeps,
which were often related to asymmetry in the inhibitory regions of the
response area (Evans, 1975; Britt & Starr, 1975; Rhode & Smith, 1986a,
1986b). The responses in cochlear nucleus to frequency sweeps show a
tuning for the rate of frequency change, producing maximum responses to
frequency sweeps changing at 10-30 Hz/s (Moller, 1977). When a carrier at
the unit CF is sinusoidally frequency modulated by a small amount, analyses
can be applied to produce an MTF for frequency-modulated signals, which
in many cases appears qualitatively and quantitatively similar to that pro-
duced by amplitude modulation of a CF carrier (i.e., having BMFs in the
cochlear nucleus in the range 50-300 Hz; Moller, 1972). The tuning to the
rate of frequency modulation shows changes similar to the tuning for ampli-
tude modulation rate in the different nuclei of the auditory pathway. Thus
MTFs in the inferior colliculus are bandpass functions, but their BMFs are
lower than at the cochlear nucleus (below 80 Hz; Rees & Moller, 1983), and
cells in the primary auditory cortex are sensitive to still lower rates of
frequency modulation (below 15 Hz; Whitfield & Evans, 1965). The degree
and variety of asymmetries in the response to upward and downward fre-
quency transitions increases from inferior colliculus to cortex (Nelson,
Erulkar, & Bryan, 1966; Whitfield & Evans, 1965). Nevertheless, even at
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the cortex there are neurons whose responses to frequency-modulated sig-
nals are largely predictable from their responses to stationary tones. Some
cortical units show responses to frequency-modulated tones even though
they do not respond to steady tones, while others respond to frequency
sweeps that are entirely outside the unit’s response area determined with
steady tones. For many cells, only one direction of frequency sweep was
effective irrespective of the relationship of the sweep to the cells’ CF (Whit-
field & Evans, 1965). Phillips, Mendelson, Cynader, and Douglas (1985)
also found sensitivity to sweep direction in primary auditory cortex, but the
preferred sweep direction (for relatively narrow sweep excursions; 2 kHz)
was toward the CF, and some part of the sweep had to be within the pure
tone response area. They also reported profound directional sensitivity to
frequency sweeps covering a wide range and concluded that the mecha-
nisms responsible for the sensitivity to sweep direction were different for
wide and narrow sweeps.

IV. SPEECH AND VOCALIZATION
A. Representation of Speech Signals in the Auditory Nerve

Naturally occurring communication signals such as speech are characterized
by a high degree of complexity in terms of their spectral richness and their
variation as a function of time. As we have seen in Section I.C, the auditory
nervous system is organized cochleotopically, and it is appropriate with
spectrally rich sounds to consider the activity across homogeneous co-
chleotopic continua rather than dwell on the details of individual neuron
responses.

I begin here with the activity evoked in the fibers of the auditory nerve
by one of the simpler speech sounds, a steady-state voiced vowel. Vowels
are often relatively stable and periodic even in natural utterances and can be
made completely so in synthetic tokens, which have been widely used as
stimuli. Their spectrum consists of harmonics of the voice fundamental
frequency (FO: in the range of 80-400 Hz) some of which have greater
amplitude, producing peaks (formants) that correspond to the resonant
frequencies of the vocal tract (an example is shown for /e/ in Figure 14(a)).
The perceptual identification of such vowel sounds depends on the frequen-
cies of the formants. A major issue here is whether the pattern of gross
neural activity evoked at “places” within cochleotopically organized popu-
lations of neurons is sufficient to signal the vowel identity or whether the
fine timing (phase locking) of the discharges is also important. This issue
has been dealt with in detail elsewhere and is therefore recounted here only
briefly (see Sachs, 1984).

Presentation of a voiced vowel sound at moderate levels (i.e., levels insuf-
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FIGURE 14 Responses of a large population of auditory-nerve fibers to the vowel /e/.
(A) The spectral envelope of the vowel. (B) The distribution of mean discharge rates of the
high spontaneous rate fibers. The lines are a moving-window average of the mean rates of a
population of individual fibers in response to the vowel at the levels indicated. (C) The ALSR
(see text) function for the same population of fibers in response to the same vowel at the three
sound levels. (From Pickles, 1981, adapted from Sachs, Young, Schalk, & Bernardin, 1980,
with permission.)

ficient to cause saturation of the fiber discharge by any but the strongest
components, see Section II.A) evokes more discharges in fibers with CFs
near the formants than in those with CFs away from the formants, as can be
seen in Figure 14(b), which shows moving-window averages of the mean
discharge rate evoked by the vowel /e/ in a large population of fibers in a
single auditory nerve (the vast majority of these fibers are low-threshold,
high spontaneous rate fibers). At the lowest stimulus level the frequency
positions of the first two or three formants are clearly signaled by regions of
increased discharge. However, at the higher presentation levels the fibers
with CFs between the formants increase their discharge, while the fibers at
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the formant frequencies reach saturation, causing the formant-related peaks
to become obscured (an additional factor in this loss of definition is rate
suppression of fibers with CFs above the first formant by the energy at the
first formant; Sachs & Young, 1979). Since human vowel identification is
unchanged at the highest sound levels used for Figure 14(b), it is tempting to
conclude that the distribution of mean discharge rates is inadequate as an
internal representation of the vowel. This is too simplistic for a number of
important reasons. First, these plots of mean discharge rate include only the
fibers with high rates of spontaneous discharge (and hence low thresholds
and narrow dynamic ranges, see Sections I. A and II.A). If a similar plot is
made for fibers with low spontaneous discharge (fewer in number but
having higher thresholds and wider dynamic ranges) formant-related peaks
are still discernible at the highest levels used (see Young & Sachs, 1979).
Second, the mean rates shown here are for steady-state vowels; the wider
dynamic range at onset (see Section II.C) provides some extension to the
range over which the mean rates signal the formant frequencies (Sachs,
Young, & Miller, 1982). Third, the data have been collected in anaesthetized
animals and it is possible that the action of various feedback pathways (the
middle ear muscles and the efferents to the cochlea) may affect the fibers’
activity (see Section IL.E), preserving their ability to signal the formant
peaks in their discharge rate at high sound levels. Finally, even at the highest
levels, at which the formant structure is no longer evident, the mean rate
distribution is, nevertheless, different for different vowels, and discrimina-
tion could be made on the basis of the gross mean rate profile (Winslow,
1985). However, when mean discharge rates to vowels are measured in the
presence of background noise (at levels that do not prevent detection of
changes in the second formant frequency), neither the onset rates nor the
low-spontaneous-rate fibers seem capable of sustaining an adequate mean-
rate representation of the formant structure (Sachs, Voigt, & Young, 1983).
This result would seem to present a severe problem for any simple place
coding scheme.

The distribution of mean discharge rates takes no account of the temporal
patterning of the impulses. Since the spectra of voiced vowels are largely
restricted to the frequency range below 5 kHz, responses of individual nerve
fibers are phase locked to components of the vowel within their response
area (see Section L.E). It is a general finding that fibers with CFs near a
formant are phase locked to the harmonic nearest to the formant peak. The
periodicity of this harmonic dominates the temporal response of the fibers,
excluding phase locked responses to other weaker components (Young &
Sachs, 1979; Sinex & Geisler, 1983; Delgutte & Kiang, 1984a; Palmer, Win-
ter, & Darwin, 1986). Fibers with CFs remote from formant frequencies at
low (below the first formant) and middle (between the first and second
formants) frequencies are dominated either by the harmonic closest to the
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fiber CF or by modulation at the voice pitch, indicating a beating of the
harmonics of the voice pitch that fall within their response area. At CFs
above the second formant, the discharge is dominated either by an intense
harmonic near the second formant or again by the modulations at the voice
pitch caused by interactions of several harmonics.

A useful summary of the pattern of phase locking within the population
of auditory nerve fibers has been developed, which allows more direct
comparison with the stimulus spectrum and the mean rate distributions
(Young & Sachs, 1979; Delgutte, 1984). The first stage in these analyses is
the construction of histograms of the fiber responses to the vowel sounds,
which are Fourier transformed to provide measures of the phase locking to
individual harmonic components. These analyses revealed that phase lock-
ing to individual harmonics occurred at the appropriate “place,” that is, in
fibers with CFs close to the harmonic frequency, and that, as level increased,
phase locking to the intense harmonics near the formant peaks spreads from
their place to dominate fibers of other CFs and suppress the responses to the
weaker harmonics in those fibers. By forming an average of the phase
locking to each harmonic in turn, in fibers at the appropriate place for the
harmonic, Young and Sachs (1979) were able to compare the amount of
temporal response to the various harmonics of the signal. The “average
localized synchronized rate” (ALSR) function so derived for the vowel /€/ is
shown in Figure 14(c) for a series of sound levels. The similarity of the
functions in Figure 14(c) to the spectrum of this vowel is evident, as is the
fact that this form of representation (which combines phase locking, co-
chlear place, and discharge rate) is robust and retains well-defined peaks at
the formant-related frequencies at high stimulus levels. This internal repre-
sentation is unaffected by background noise (Sachs et al., 1983; Delgutte &
Kiang, 1984d), can also be computed for unvoiced vowels (Voigt, Sachs, &
Young, 1982), and preserves the details of the spectra of two simultaneously
presented vowels with different FOs (Palmer, 1990). It is salutary to remem-
ber, however, that, as yet, no evidence suggests that mechanisms in the
central nervous system can use (or transform) the information about the
vowel spectrum contained in the variation in phase locking across the popu-
lation of auditory nerve fibers.

The other major group of speech sounds is the consonants (which include
fricatives, e.g., s, sh; stops, e.g., p, d; and nasals, e.g., m, n), which are
diverse in spectro-temporal terms and often time varying. In general, the
major spectral components of nasal and voiced stop consonants are well
represented in the temporal patterning (phase locking) of populations of
auditory nerve fibers (Miller & Sachs, 1983; Sinex & Geisler, 1983; Delgutte
& Kiang, 1984c; Deng & Geisler, 1987). Additionally, the mean discharge
rates are able to signal the formant positions during transitions (Miller &
Sachs, 1983; Delgutte & Kiang, 1984c), at sound levels where the mean rate
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distributions to vowels do not have formant-related peaks. Since, first,
transitions in consonants are relatively brief and occur at the start of a
syllable, and second, they entail changes in frequency and therefore excite a
succession of different CF fibers, the place representation of consonants
over a wide dynamic range is presumably a result of the wider onset dynam-
ic range (see Section II.C). The voiceless fricative consonants are generally
distinguished by the frequency position of a single broad band of energy,
which results in a distinctive distribution of mean discharge rate across the
cochleotopically ordered array of the most sensitive auditory nerve fibers.
The frequency range in which the mean rates are highest corresponds with
the regions of maximal stimulus energy (Delgutte & Kiang, 1984b). One
reason why this scheme is successful, in this instance, is that the levels of
fricatives in running speech are low compared to those of vowels. Process-
ing schemes based on distribution of temporal patterns were less successful
for fricatives, because the energy in most fricatives is above the limit of
phase locking (Delgutte & Kiang, 1984b). Delgutte and Kiang (1984c) also
investigated the effect of the speech context in which the consonant-vowel
syllable /da/ is placed and found context dependent changes in both the
temporal and mean rate measures, with the major effects limited to those
frequency regions in which the context had considerable energy. While the
average rate profile was radically altered by the context, the major compo-
nents of the synchronized response were little affected.

A potential cue for the voice pitch is the modulation of the fiber discharge
at the FO, in fibers not dominated by a single, strong stimulus component.
However, this cue is not robust and is reduced or eliminated for the major-
ity of fibers by the presence of background noise (Miller & Sachs, 1984;
Delgutte & Kiang, 1984d; Palmer & Winter, 1992). A second cue arises
from the fact that the phase locking of auditory nerve fibers occurs only at
the frequencies of harmonics of the vowel FO. Thus, if the temporal re-
sponse of the population of auditory nerve fibers is computed at high reso-
lution, peaks are found at each of the harmonic frequencies, which are
resistant to noise and which can provide the basis for a spectral computation
of FO (see Chapter 8). This type of analysis can track the change in FO during
formant transitions and distinguish two simultaneously present FOs (Miller
& Sachs, 1983; Palmer, 1990). Profiles of mean discharge rate do not appear
to contain information related to the voice pitch (Miller & Sachs, 1983).

B. Representation of Speech Signals
in the Central Nervous System

Whether the mean discharge rate or the timing of the impulses constitute
the means by which auditory nerve fibers signal important speech elements,
the neurons of the cochlear nucleus must either faithfully transmit the infor-
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mation or perform some kind of transformation. Recent studies have mea-
sured the responses to speech sounds for the different unit response types in
the cochlear nucleus (Palmer et al., 1986; Blackburn & Sachs, 1990; Palmer,
Winter, & Stabler, 1993; Kim, Rhode, & Greenberg, 1986; Kim & Leonard,
1988; Palmer & Winter, 1992). Only the spherical bushy cells in the VCN
faithfully transmit the temporal activity and show population temporal re-
sponses (quantified by ALSR functions) similar to those in the nerve (Black-
burn & Sachs, 1990). A most intriguing finding is that the distribution of
mean discharge rates across a population of chopper units exhibits peaks at
the positions of the formants even for sound levels at which such peaks are
no longer visible in the responses of the high spontaneous rate auditory-
nerve fibers (Blackburn & Sachs, 1990). For vowels at low stimulus levels
the mean-rate profiles of choppers resemble the near-threshold profiles of
high spontaneous auditory nerve fibers, and at high sound levels they re-
semble the profiles of low spontaneous rate fibers. This led Sachs and his
colleagues to suggest that the choppers respond selectively to high sponta-
neous rate auditory nerve fibers at low sound levels and to low spontaneous
rate fibers at high sound levels.

While the discharge of all of the unit types in the cochlear nucleus in
response to speech sounds is modulated at the FO (Kim & Leonard, 1988),
the response of onset units is so precisely locked to the FO that Kim and his
colleagues (1986, 1988) have described it as “pitch-period following.” All
evidence points to the conclusion that this precise locking to the FO is
achieved by a coincidence detection mechanism following a very wide con-
vergence across frequency. The output of the onset units appears to be
consistent with the perceived pitch for a wide range of signals (Palmer &
Winter, 1992). Units in the dorsal cochlear nucleus do not phase lock well to
single sinusoids, and thus no temporal representation of the spectrum of
speech sounds is expected here. However, the disposition of strong inhibi-
tory sidebands and the asymmetry of responses to frequency sweeps (Sec-
tions I.D and III.B) could provide some basis for differential responses to
consonants in which the formant transitions sweep across the response areas
of the units. The only detailed study of the responses of identified dorsal
cochlear nucleus neurones to consonant—vowel syllables (/ba/, /da/, and
/ga/) failed to detect any specific sensitivity to the particular formant transi-
tions used, over and above a linear summation of the excitation and inhibi-
tion evoked by each of the formants separately (Palmer et al., 1993).

In nuclei more central than the cochlear nucleus, the use of speech stimuli
has been limited to date. At the level of the inferior colliculus the responses
to speech sounds are context dependent and consist of discharges locked to
the FO irrespective of the CF or response type (Watanabe & Sakai, 1978).
Multiunit activity in the cortex in response to speech signals suggests that
both low- and high-frequency units respond at the F0, but also that the dis-
tribution of activity reflects the energy at the formant frequencies with non-
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linear combination of the activity evoked by each formant separately (Stein-
schneider, Arezzo, & Vaughan, 1990). Detailed studies of the responses of
monkey cortical cells to conspecific vocalizations suggest that, rather than
responding to the spectra of the sounds, the cells follow the time structure
of individual stimulus components in a very context dependent manner.
The specificity of some cells for particular vocalizations may result from
ovetlap of the spectra of transient parts of the stimulus with the neuron’s
response area (for a review, see Phillips et al., 1991).

V. CUES FOR LOCALIZATION

The cues used for localizing a sound source derive from the fact that we have
two ears that possess pinnae and are separated over a significant distance by
an acoustically opaque medium. The result is that the sounds arriving at the
two ears are characterized by an interaural delay caused by the longer sound
path to one ear and a difference in level caused by the shadowing effect of
the head combined with spectral alterations within the pinnae. The pinna
effects and the head shadowing are minimal for low-frequency sounds for
which the wavelength is longer than the head (or pinna) width. For such
low-frequency tones the time difference is manifested as an interaural phase
difference (IPD). For tones of wavelength shorter than the head width, the
IPD presents an ambiguous cue, but interaural level differences (ILDs) may
be as much as 20 dB. For high-frequency tones, the interaural time delay can
be extracted from the time of arrival of the first wavefront or from the on-
going delay of the envelope of complex sounds. The psychophysical inves-
tigation of these localization cues is covered in detail in Chapter 9.

Anatomical and behavioral evidence suggests that the processing of inter-
aural time and level differences involves separate pathways (see Yin & Chan,
1988; and Irvine, 1986 for detailed reviews). These pathways begin with the
projections of different cell groups in the ventral cochlear nucleus to the
superior olivary complex, which is the first major site of convergence of
activity from the two ears. At levels above the superior olive, responses to
binaural stimulation reflect mainly these first binaural interactions (Yin &
Chan, 1990), but some further elaboration of responses and binaural con-
vergence may also occur (e.g., Semple & Aitkin, 1979). There is space here
only for a cursory treatment, but copious detailed reviews of the neural
coding of interaural cues for localization are available (Phillips & Brugge,
1985; Yin & Chan, 1988; Irvine, 1986, Caspary & Finlayson, 1991; Tsuchi-
tani & Johnson, 1991; Phillips et al., 1991).

A. Interaural Level Differences

The lateral superior olive (LSO), which is innervated mainly by high-
frequency neurons, is the brainstem nucleus in which most of the initial
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processing of interaural level differences takes place. The principal cells of
the LSO receive excitatory inputs from the ipsilateral VCN and inhibitory
inputs from the medial nucleus of the trapezoid body of the same side,
which in turn receives excitatory input from the contralateral VCN (see
Cant, 1991). The pathway from the contralateral VCN is characterized by
large synaptic endings that result in very secure short latency responses and
therefore near coincident arrival of the excitation from the ipsilateral VCN
and the indirect inhibition from the contralateral VCN. The majority of
LSO cells with CFs above 1 kHz receive IE binaural input (I = contralateral
inhibition, E = ipsilateral excitation). IE cells in the LSO are sensitive to the
balance of intensity at the ears (and hence the ILD) as can be seen from
Figure 15(a), in which the excitation resulting from an ipsilateral CF tone
is reduced by increasing levels of a contralateral CF tone (Boudreau &
Tsuchitani, 1968, 1970; Guinan et al., 1972). The form of this curve as a
function of ILD is a sigmoid, varying from the excitatory response to the
ipsilateral tone alone to complete inhibition by the contralateral tone.

The high-frequency part of the LSO projects to the contralateral inferior
colliculus (IC) and the sensitivity of cells in the IC (and above) to ILDs is
therefore the mirror image of that in LSO; that is, they generally have EIl
type responses (Rose, Gross, Geisler, & Hind, 1966; Semple & Aitkin, 1979;
Caird & Klinke, 1987; Yin, Kuwada, & Sajaku, 1984). The slope of the ILD
function and the ILD at which the inhibition takes effect vary across the
different cells in the IC even for stimulation with best frequency tones, as
can be seen in Figure 15(b). Similar sensitivities of EI cells to ILDs are found
in the primary auditory cortex (for a review, see Phillips et al., 1991).

At the level of the IC and cortex, sensitivity to ILDs of cells excited by
both ears has been reported (EE cells) and even of cells only responsive to
binaural stimuli. The form of this sensitivity is a sharply peaked non-
monotonic curve with a maximum at zero interaural level difference (see
Benevento, Coleman, & Loe, 1970; Semple & Aitkin, 1979).

B. Interaural Phase Differences

The initial processing of IPDs takes place in the principal cells of the medial
superior olive (MSO, a predominantly low-frequency sensitive nucleus),
which receive excitatory input from the large spherical bushy cells in the
rostral pole of the ventral cochlear nucleus of each side (see Cant, 1991).
Unfortunately, this nucleus is notoriously difficult to study electrophysio~
logically, and our knowledge of its action is therefore based on only a few
studies, each of which included only relatively small samples of MSO neu-
rons, and some of which did not equivocally identify the recording sites
within the MSO. Nevertheless, all the evidence we have to date suggests
that the MSO cells are performing a coincidence detection between the
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FIGURE 15 (A) The response of a principal cell in the lateral superior olive to variations
in the level of a contralateral CF tone. As the level of the contralateral tone is increased, the
response is progressively inhibited often becoming totally inhibited when the tones to the two
ears are of equal level. (From Caspary & Finlayson, 1991, with permission.) (B) Responses of
six neurons in the central nucleus of the inferior colliculus (CNIC) to variations in the level of a
contralateral CF tone. Notice the variation in the value of interaural level difference at which
the response switched from excitation to inhibition. (From Irvine, 1986, with permission.)

excitatory inputs from each ear (as originally proposed by Jeftress, 1948; see
Goldberg & Brown, 1969; Yin & Chan, 1988, 1990, and Chapter 10). The
principal cells of the MSO are insensitive to the interaural level difference or
the onset time delay. The responses of a cell in the MSO as a function of the
IPD of a CF tone are illustrated in Figure 16(a). (This is a more recent
demonstration of the classical results of Goldberg & Brown, 1969.) Notice
first that the discharge rate for monaural stimulation from either ear, indi-
cated by the arrows marked C for contralateral and I for ipsilateral in Figure
16(a), is only on the order of about 50 spikes/s. As the delay between the
tones at each ear is varied, the discharge rate is greatly facilitated (350
spikes/s: much more than the sum of the monaural responses) at some
delays and is inhibited at others (near zero spikes/s). The response cycles at
the frequency of the stimulus, indicating that it is sensitive to the relative
phase between the two ears. The period histograms shown in Figure 16(b)
indicate that the cell phase locks to 1000 Hz tones to either the ipsilateral
(top panel) or contralateral (bottom panel) ear alone. However, the phase of
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FIGURE 16 (A) The response of a neuron in the medial superior olive as a function of the
interaural time difference between two CF tones, one at each ear. Positive delays represent
delays of the ipsilateral stimulus. The stimulus consisted of a single presentation of a 5 s tone at
each of the interaural delays and at the frequency and level indicated. The arrows marked I and
C show the monaural response levels to ipsilateral and contralateral tones. (B) Period histo-
grams in response to monaural stimulation. The arrows and numbers indicate the interaural
phase giving the highest response for each histogram. (From Yin & Chan, 1988, with permis-
sion.)

the stimulus that evokes the maximum number of discharges is different for
each ear (the arrows indicate the phase angle at the maximum; 0.88 cycles
for the ipsilateral response and 0.01 cycles for the contralateral response).
The coincidence detector hypothesis predicts that the maximum output of
the MSO cell should occur when a delay is introduced, such that the phase
locked inputs from each ear reach this neuron simultaneously (i.e., at a delay
of the ipsilateral stimulus of 1.01 — 0.88 = 0.13 cycles). Good agreement
between phase delays at the maximum of the IPD curve and those predicted
from monaural phase locking have been found (Goldberg & Brown, 1969;
Yin & Chan, 1990). For the unit in Figure 16, for example, the measured
phase delay for maximum facilitation (0.09 cycles) compares well with the
predicted value (0.13 cycles).

Yin and Chan (1990) have reported the most complete (though still
limited in terms of the number of units) and detailed study to date of MSO
neurons. They were able to demonstrate that the form of binaural interac-
tion was indeed a coincidence detection between phase locked inputs from
the two ears. However, because of the difficulties in recording from MSO
and the fact that the MSO projects directly to the ipsilateral IC, where
similar responses as a function of IPD are found, much of our detailed
knowledge of the processing of interaural time differences is derived from
extensive studies at the level of the IC.

In a pioneering study, Rose et al. (1966) recorded the responses of IC
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neurons as a function of the IPD, using different frequencies of pure-tone
stimuli. They noted that cells responded equally to the different frequencies
only at a particular value of interaural delay, which reflected the fixed physi-
ological delay of the input from one ear with respect to the other and which
they termed the characteristic delay. The original findings of Rose et al. have
been confirmed and extended, and it has been shown that, in the anaesthe-
tized cat, the characteristic delay can occur on the slopes of the function
relating firing rate to interaural delay rather than only at a peak or trough.
For the majority of units the characteristic delay is within the normally
encountered range of interaural delays (Kuwada & Yin, 1983; Yin & Ku-
wada, 1983, 1984). Using a wide range of frequencies to test single cells in
the central nucleus of the IC, Yin, Chan, and Irvine (1986) were able to
demonstrate that linear summation of the delay functions to tones gave a
“composite curve” very similar to the delay function obtained in response to
wideband noise, particularly with respect to the position of the central peak,
which usually occurred at delays within the animals’ physiological range.
The positions of the peaks of both the noise delay function and the compos-
ite curve were relatively invariant with sound level, and Yin and Kuwada
have proposed that the peak of the delay curve for a wideband stimulus is
more likely to be a functionally relevant parameter than the characteristic
delay. Whatever is the most functionally relevant parameter of the IPD
function, it seems clear that different IPDs will result in different patterns of
activation across the population of IPD sensitive neurons. Further studies by
Yin and his colleagues {(both at MSO and IC), using noise signals at the two
ears with different degrees of correlation, have extended the concept of the
characteristic delay and are consistent with the suggestion that the sensi-
tivity of low-frequency cells to interaural time delays involves a process of
cross-correlation following peripheral filtering (Chan, Yin, & Musicant,
1987; Yin, Chan, & Carney, 1987; Yin & Chan, 1988, 1990).

Interaural time delay sensitivity at the level of the medial geniculate body
and primary auditory cortex seems to reflect processing at lower levels
without degradation (Aitkin & Webster, 1972; Rerale & Brugge, 1990).

The characteristic delays and the peaks of the wideband noise delay func-
tions for the cat fall within the animals’ physiological delay range, but
similar values for these parameters have been obtained for animal’s with
smaller heads, for which the delays exceed their physiological ranges (e.g.,
guinea pig, Palmer, Rees, & Caird, 1990). However, the greatest acuity for
localizing a sound source is on the midline, well away from the peak of the
delay functions of most mammals. Peak sensitivity, to small changes in
delay, occurs at the steepest part of the delay function, which in nearly all
animals is well within the physiological range and generally passes through
the midline (see Phillips & Brugge, 1985, for detailed discussion).

Masking of binaural signals by broadband noise at low frequencies de-
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pends strongly on the interaural phase relationship of the signal and masker
(i.e., the binaural masking level difference; see Chapters 9 and 10). Such
characteristics implicate IPD sensitive cells as part of the physiological mech-
anisms responsible for this masking, and recent physiological data provide
some direct evidence that this is the case (Caird, Palmer, & Rees, 1991).

C. Onset and Ongoing Time Differences

At the levels of the MSO, LSO, IC, and auditory cortex, it has been dem-
onstrated that high-frequency cells that are sensitive to ILDs are also sensi-
tive to onset time differences and the delays of the envelope of complex
sounds (Caird & Klinke, 1987; Yin et al., 1984; Benevento et al., 1970; Yin
& Chan, 1990). Presumably, these cells mediate our abilities to localize
high-frequency sounds on the basis of the time delay of their envelopes.

D. Pinna Spectral Effects

In recent years there have been detailed psychophysical and acoustical inves-
tigations of the role of the pinna in altering the spectrum of sounds reaching
the ears (see Chapters 9 and 10). The transfer function of the pinna intro-
duces sharp high-frequency notches into the spectra of wideband sounds
and the frequency of these notches depends on the position of the sound in
space (Rice, May, Spirou, & Young, 1992). Recently, Young and his col-
leagues (Spirou & Young, 1991; Young, Spirou, Rice, and Voigt, 1992) have
hypothesized a role for the type IV units of the DCN in detecting these
spectral notches. The response areas of type IV units are characterized by
strong inhibitory inputs (from type Il units) at frequencies just below their
CF (see Spirou & Young, 1991). This response area organization results in
large changes in the output of the type IV units with small changes in the
frequency position of sharp notches in wideband noise. It is further sug-
gested that the input to the DCN via the parallel fibers of the superficial
layer may allow somatosensory information about the orientation of the
pinna to be integrated with the localization cues within the DCN (Young et
al., 1992). Support for this role of the DCN is provided by a recent study in
which deficits in the ability to localize elevated sound sources were shown
by cats after section of the output pathway of the DCN (Sutherland, 1991).

E. Topographical Distribution of Interaural Sensitivities
and Spatial Hearing

At the brainstem level there is a fairly clear separation of the sensitivities to
ILDs and ITDs between the LSO and MSO, respectively. Furthermore, the
Jeffress (1948) model suggested that an orderly arrangement of the neural
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delay lines, of the sort implied by the ITD sensitivities, should result in a
spatial mapping of delay across the MSO (see Chapter 10). There is physi-
ological and anatomical evidence at the MSO that this is indeed the case
(Yin & Chan, 1990; Smith, Joris, & Yin, 1993). Neurons with composite-
curve peaks near zero delay lie in rostral MSO locations and those with
progressively longer ipsilateral delays in more caudal positions. Additional
evidence for this proposition comes from anatomical and evoked potential
studies in the nucleus laminaris, which is the avian homologue of the MSO
(Konishi, Takahasi, Wagner, Sullivan, & Carr, 1988). Details of the topo-
graphical distribution of IPD sensitivity across the IC are very limited, but
there have been reports of systematic changes along some electrode penetra-
tions within iso-frequency laminae (Yin, Chan, & Kuwada, 1983). There is
certainly segregation within the IC of responsiveness to different binaural
cues that mainly, but not entirely, reflects the cochleotopic organization
(Semple & Aitkin, 1979). At the level of the primary auditory cortex,
several studies have revealed bands alternating across the cortex, approx-
imately orthogonal to the cochleotopic axis, of cells of the EI and EE type.
Since these are within the high-frequency regions these bands represent the
alternative forms of ILD sensitivity (for a review see Phillips et al., 1991).

From the level of the brainstem right up to the cortex, the cells respond
to signals favoring the contralateral ear: each half of the brain appears to deal
only with localization cues for the contralateral hemifield. Furthermore,
Jenkins and Merzenich (1984) were able to demonstrate by a combination of
behavioral, physiological, and lesioning techniques that the representation
of a band of frequencies in the primary auditory cortex is necessary and
sufficient for the correct localization of sounds within that frequency band.

In 1978 Knudsen and Konishi demonstrated the existence in the barn owl
of a topographic representation or “map” of auditory space in which neu-
rons responded only when the sound was within a relatively small area of
three-dimensional space. This demonstration renewed interest in the use of
free-field stimuli to investigate the representation of sounds in space and
recent free—field studies in the cat have measured the spatial response areas
(i.e., the spatial limits over which a specified response criterion is exceeded)
of neurons in IC and auditory cortex to low level tones {Semple, Aitkin,
Calford, Pettigrew, & Phillips, 1983; Moore, Semple, Addison, & Aitkin,
1984; Middlebrooks & Pettigrew, 1981). These studies revealed three classes
of response: omnidirectional, hemifield, and units with well circumscribed
spatial response areas. The circumscribed response areas were all recorded
from high-frequency neurons and fell on the axis of the contralateral pinna.
The omnidirectional response areas corresponded to low-frequency neurons
and the hemifield areas to units with intermediate best frequencies. At these
low sound levels, the spatial response areas reflected almost entirely the
monaural effects of the pinna, which in the cat produces considerable ampli-
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fication of high-frequency sounds on the pinna axis, but has little effect on
low-frequencies. An alternative to the measurement of spatial response areas
is to determine the response magnitude of the cell as a function of spatial
position. This analysis revealed that about half of the low-frequency neu-
rons were selective for azimuth and many were sharply tuned for azimuthal
positions from 0-80° (Aitkin, Gates, & Phillips, 1984; Aitkin, Pettigrew,
Calford, Phillips, & Wise, 1985). These responses were generally those
expected from interaural time-sensitive neurons, given the limitations on
the values of interaural time imposed by the use of free-field stimuli. There
is evidence of a topographical distribution of azimuthal sensitivity with cells
responsive to peripheral azimuths located rostrally and medially in the IC
and cells responsive to midline azimuths located caudally and laterally
(Aitkin et al., 1985).

To date, there has been no demonstration in the central nucleus of the IC
or in the auditory cortex of a map of auditory space of the kind found in the
barn owl mesencephalicus lateralis dorsalis or optic tectum. However, there
have been demonstrations of such a topographic “auditory space map” in
the external nucleus of the IC of the guinea pig (Binns, Grant, Withington,
& Keating, 1991) and in the deep layers of the superior colliculus of the
guinea pig, cat, and ferret (see Middlebrooks, 1988). The basis for the map
in the deep layers of the superior colliculus is a topographical distribution of
sensitivity of the cells to binaural stimuli (see Irvine, 1986).

VI. SUMMARY AND CONCLUDING REMARKS

At the level of the cochlear nerve, clear differences exist in the responses of
nerve fibers distinguishable by their relative threshold and spontaneous rate.
Nevertheless, the activity of the ensemble of auditory nerve fibers is rela-
tively homogeneous and explicable in terms of the vibration patterns of the
basilar membrane, the nature of the receptor potentials of inner hair cells,
and the function of the synapse at the base of the hair cells. In contrast, the
responses of the different principal cell types of the cochlear nucleus are
characterized by their diversity. It seems reasonable to suppose that the
different principal projection neurones of the cochlear nucleus constitute
parallel output pathways for analysis of different aspects of the auditory
signal. We can propose several hypotheses for the functions of these output
pathways: (1) It seems reasonably clear that the bushy cell system in the
ventral cochlear nucleus directs activity to the superior olivary complex
where interaural time and level differences are analyzed in largely separate
but overlapping pathways. If, however, the spectra of complex sounds are
coded in terms of the distribution of phase locked activity, the spherical
bushy cell pathway is the only one capable of faithfully transmitting this
information to higher levels. (2) The stellate (chopper) cells of the ventral
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cochlear nucleus may encode the spectra of complex sounds, including
speech, as a place code by selectively responding to high and low threshold
auditory nerve fibers depending on the sound level. (3) Onset responding
cells in the cochlear nucleus often respond to complex sounds in a way that
is consistent with the pitchs heard. It seems premature at this time, how-
ever, to conclude that these cells really are involved in the analysis of the
pitch of complex sounds. They may have more of an alerting or arousal
function or may have other, as yet undefined, functions within wider net-
works of cells. (4) Finally, the principal cells of the dorsal cochlear nucleus
may process the spectral cues for localization generated by the pinnae.

In the more central nuclei of the auditory system, recent studies have
revealed topographical organizations of signal parameters such as frequen-
cy, binaural sensitivity, interaural time delay, width of tuning, sensitivity to
frequency sweeps, and sensitivity to modulation. We do not as yet know the
functional significance of this organization. Why, for example, is there a
map of modulation sensitivity in the inferior colliculus and not at higher
levels? If the lack of such organization is a real finding, then the need for this
organization must be met at the midbrain level.

Present evidence in most mammals would not seem to favor a radical
remapping of auditory information onto functional dimensions akin to that
demonstrated in animals such as the bat. However, Suga (1988) has cogently
argued that understanding the functional basis of the organization of central
nuclei will depend on the use of ethologically appropriate sounds. Thus,
although the use of speech sounds may be justifiable in studies of the duditory
periphery of animals, their use would reveal only the central organization of
animals for whom speech was important. Although this may prove to be
the case, the use of conspecific stimuli has as yet not radically changed our
view of auditory processing (Symmes, 1981). It may equally be that, in
animals that are not specialized for tasks such as biosonar, a more general
purpose organization has been retained, in which signal attributes are repre-
sented by the spatio—temporal patterns of activity across populations of
neurons still organized on a basically cochleotopic axis.
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CHAPTER 4

Loudness Perception
and Intensity Coding

Christopher J. Plack
Robert P. Carlyon

I. INTRODUCTION

It is almost a truism to say that all perceptually relevant sounds are charac-
terized by differences in intensity across time or frequency. Intensity per-
ception can be regarded, therefore, as one of the basic concerns of hearing
research, and one that has generated a great deal of interest. Despite many
decades of work in this area, the field is still progressing rapidly, and the last
ten years have seen significant developments in our understanding of a very
fundamental problem, how sound intensity is represented, or coded, in the
auditory system.

In this chapter we will constder first the factors that determine the subjec-
tive intensity or the loudness of sounds. We will discuss the techniques used
to measure loudness, and how loudness varies with intensity, frequency,
and spectral extent. We will then describe listeners’ ability to detect differ-
ences in intensity, and what discrimination experiments have told us about
the coding of intensity in the auditory system. These results will be dis-
cussed in terms of the various models that have been proposed to account
for intensity perception.

Hearing
Copyright © 1995 by Academic Press, Inc. All rights of reproduction in any form reserved.
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II. THE PERCEPTION OF LOUDNESS
A. Definition of Loudness

Loudness may be defined as that attribute of auditory sensation that corre-
sponds most closely to the physical measure of sound intensity, although, as
we shall see, this definition is not accurate in all circumstances. A looser
definition is that loudness is a psychological description of the magnitude of
an auditory sensation (Fletcher & Munson, 1933). Loudness is often re-
garded as a global attribute of a sound, so that we usually talk about the
overall loudness of a sound rather than describe separately the loudness in
individual frequency regions. An exception to this arises from the models of
loudness described in Section IL.D that calculate the “specific loudness” of a
sound in each frequency channel it excites to obtain an overall loudness
measure by summation.

Loudness is a subjective quantity, and any measurement technique used is
based on assumptions and open to interpretation. Our discussion of loud-
ness will be centered on the techniques that have been used to obtain a
reliable measure of auditory sensation.

B. Loudness Matching

Probably the least controversial measurement technique is that of loudness
matching, in which the listener is required to vary the intensity of one stimu-
lus so that it sounds as loud as a standard stimulus with a fixed intensity.
This procedure can reveal how the physical parameters of a sound, such as
its frequency and bandwidth, affect its loudness. It can also shed light on
how loudness is affected by factors intrinsic to the listener, such as the
existence of a sensory hearing loss in one ear. The main strength of this
technique is that it makes no major assumptions, beyond the reasonable one
that the listener can equate the loudness of sounds that differ on some other
dimension (e.g., frequency or bandwidth).

In the following subsections we will describe some of the experimental
results that have been obtained using the loudness matching procedure.

1. Equal Loudness Contours

Equal loudness contours are descriptions of the frequency dependence of the
loudness of pure tones (Fletcher & Munson, 1933). They can be measured
fairly easily by requiring listeners to match the intensity of a comparison
tone of variable frequency to the intensity of a standard tone at 1 kHz. An
equivalent technique often used is to present a series of levels of the compar-
ison tone and ask listeners to judge for each level whether the comparison is
“louder” or “softer” than the standard. The transition level from “louder”
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judgments to “softer” judgments can be taken as the point of subjective
equality.

The loudness level (in phons) of a tone at any frequency is taken as the
level (in dB SPL) of the 1 kHz tone to which it sounds equal in loudness.
This means that, for example, any tone that has the same loudness as a 40
dB, 1 kHz tone has, by definition, a loudness of 40 phons. An equal loud-
ness contour, then, is a line joining the levels of tones of different frequen-
cies that have the same loudness in phons.

Figure 1 shows equal loudness contours as measured by Robinson and
Dadson (1956). It can be seen that, although the equal loudness contours
tend to follow the absolute threshold curve at low loudness levels, at high
loudness levels the contours flatten somewhat; this is the result, principally,
of a steeper function relating loudness to intensity at low frequencies than at
medium frequencies. A familiar consequence of this is that recorded music
has, subjectively, a greater relative amount of bass at high intensities than at
low intensities. The finding that the loudness function is steeper at low than
at medium frequencies is explained by loudness models mainly in terms of
the increase in absolute threshold at low frequencies (see Section II.D).

It should be noted that there is currently some argument over whether
the equal loudness contours derived by Robinson and Dadson accurately
reflect subjective equality (Suzuki & Sone, 1994). It appears that the mea-
surements are not free from bias and can be affected, for example, by the
range of comparison levels used (Gabriel, Kollmeier, & Mellert, 1994).
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FIGURE 1 Equal loudness contours illustrating the variation in loudness with frequency.
Each curve represents one loudness level. (Redrawn from Robinson and Dadson, 1956.)
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2. Spectral Factors

Zwicker, Flottorp, and Stevens (1957) asked listeners to match the loudness
of a band of noise with that of a standard. The total intensity of the noise
was held constant. As the bandwidth of the noise was increased, its loudness
stayed roughly constant until the bandwidth was greater than a certain
value, termed the critical bandwidth for loudness summation, similar in magni-
tude to the critical bandwidth measure of frequency selectivity (Fletcher,
1940; see Chapter 5). Beyond this point the loudness increased with increas-
ing bandwidth. Cacace and Margolis (1985) have argued that, if the results
are plotted on an octave bandwidth scale, rather than the logarithmic fre-
quency bandwidth scale employed by Zwicker, then no sharp transition
corresponding to the critical bandwidth is apparent and loudness appears to
grow steadily with increasing bandwidth. These results can be accounted
for, qualitatively, simply in terms of the total firing rate of fibers in the
auditory nerve (Pickles, 1983). As the bandwidth is increased more fibers
are excited, and this more than compensates for the reduction in excitation
in each critical band. In Zwicker’s terms, if the loudness in each critical band
follows Stevens’s power law (a compressive function, see Section II.C), then
distributing the intensity of a sound across n critical bands, as opposed to
concentrating the intensity in one critical band, will result in an increase in
the total loudness, simply because kI0-3 < nk(I/n)0-3, when n > 1.

3. Duration Effects

Measurements of the variation of absolute threshold with duration indicate
that, over a certain range of durations, the threshold corresponds to a con-
stant energy rather than a constant power (Garner and Miller, 1947). In
other words, over this range of durations, the ear behaves as if it were a
perfect energy integrator, although there is some debate as to whether the
actual neural mechanisms involved include a “true” long time-constant inte-
gration device. This issue is discussed in detail in Chapter 6. Not sur-
prisingly, loudness is also related to stimulus duration, although, as one
might expect, there is considerable variability in the results. Using a proce-
dure in which listeners were required to match the loudness of tone bursts of
variable duration to that of a continuous reference tone, Boone (1973)
showed that loudness is also proportional to the total energy of the tone, so
that as the duration of a tone of constant power is increased, its loudness also
increases. Stephens (1974) replicated these results but showed in addition
that this relationship is highly susceptible to the experimental procedure and
the instructions given to the listener. In particular, at long durations it is
hard to make a judgment of the total loudness of the sound, rather than the
loudness at a particular instant or over a short time period. This inevitably
leads to a departure from the energy integration rule at long durations.
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4. Effects of Sensory Hearing Loss on Loudness: Recruitment

Sensorineural hearing impairment is characterized by elevated thresholds
for the detection of sounds in quiet. Despite this loss in sensitivity, a sound
at a high intensity might sound equally loud to a hearing impaired listener as
it does to a normally hearing listener. In other words, there is an abnormally
steep growth of loudness with intensity in the impaired ear. This phenome-
non, called recruitment, is illustrated in Figure 2. If the listener has an impair-
ment in one ear only, then recruitment can be measured simply by asking
the listener to match the loudness of a pure tone with variable intensity
presented to the impaired ear, with a pure tone of the same frequency and a
fixed intensity presented to the normal ear. Alternatively, the variable tone
can be presented to the normal ear and the fixed tone to the impaired ear. To
reduce bias effects, both these procedures can be used and the results aver-
aged. The two tones should be presented alternately to minimize the effects
of the abnormally fast loudness adaptation that sometimes occurs in im-
paired ears (Hood, 1950).

Evans (1975) has suggested that recruitment may be a result of the re-
duced frequency selectivity usually associated with hearing loss (Tyler,
1986). As the intensity of a pure tone is increased, excitation spreads across
the basilar membrane so that the number of nerve fibers excited also in-
creases. The broad auditory filters in impaired ears will give rise to a greater
spread of excitation with increasing intensity than occurs in normal ears. We
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FIGURE 2  Schematic of loudness growth in normal and impaired ears, illustrating re-
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have seen in Subsection II.B.2 how loudness increases with spectral extent.
Recruitment, therefore, may simply be a consequence of the broader excita-
tion patterns at high intensities in impaired ears: indeed, the phenomenon
was so named because it was assumed to be due to the impaired ear “recruit-
ing” an abnormally large number of off-frequency fibers as intensity was
raised. Moore, Glasberg, Hess, and Birchall (1985) tested this hypothesis by
measuring the loudness of pure tones presented between two flanking bands
of noise that were designed to mask the spread of excitation. Loudness
matches between the two ears of unilaterally impaired listeners showed that
the noise had very little effect on the loudness function in the impaired ears,
suggesting that recruitment is not due to abnormal spread of excitation. It
seems more probable that recruitment is directly related to damage to the
outer hair cells (OHCs) and consequently the loss of the active mechanism
in the cochlea (Moore, 1989). Animal models of hearing impairment using
ototoxic drugs suggest that damage to the OHCs is the main cause of
cochlear hearing loss (Liberman & Dodds, 1984). The OHCs seem to be
responsible for enhancing sensitivity to low intensity sounds (Kiang, Mox-
on, & Levine, 1970), but their response saturates at high intensites (Russell,
Cody, & Richardson, 1986), where the effect of the OHCs is probably
minimal. We can imagine, therefore, that the effect of OHC damage will be
to reduce the loudness of low intensity sounds while leaving the loudness of
high intensity sounds unaffected, leading to recruitment.

C. Loudness Scales

Although loudness matching techniques have proven successful in deter-
mining the factors that affect loudness, they provide no direct measure of
sensation. For example, although equal loudness contours (Figure 1) reveal
that loudness grows more steeply with intensity at low than at high frequen-
cies, they cannot provide an absolute measure of the slope of this function.
This is a much thornier issue, because perceptual parameters, unlike physi-
cal parameters such as frequency or bandwidth, are hidden away inside the
listener’s head.

Perhaps the most straightforward approach to this problem is that of
magnitude estimation, in which the listener is simply required to assign num-
bers to sounds of different intensities. An alternative to magnitude estima-
tion is the technique of magnitude production, in which, conversely, the lis-
tener is given a number and asked to adjust the intensity of a sound so that
its loudness matches that number. In a variant of this method, the listener is
presented with a standard sound and asked to adjust the intensity of a
second sound so that the ratio between the loudness of the two sounds
corresponds to a number given by the experimenter. Stevens (1957) used
these techniques to develop loudness scales, which describe the relationship
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between loudness and intensity. He introduced the sone as the unit of loud-
ness, where 1 sone was defined, arbitrarily, as the loudness of a 1 kHz pure
tone with a level of 40 dB SPL. He then used techniques such as magnitude
estimation to determine the loudness of other sounds. For example, a sound
judged by listeners to be twice as loud as the 1 kHz 40 dB tone would have a
loudness of 2 sones, a sound judged to be half as loud would have a loudness
of 0.5 sones, and so on. Using this technique, Stevens argued that the
loudness of pure tones is scaled, approximately, as a power function of
intensity with exponent 0.3. Specifically,

S = kI3, 1)

where S is loudness, I is intensity, and k is a constant dependent on the
listener and the units employed. Under this law, a 10 dB increase in intensity
corresponds to roughly a twofold increase in loudness. This relationship
holds above about 40 dB SL; for levels between absolute threshold (which
has a loudness of 0 sones) and 40 dB the function is steeper.

Magnitude production or magnitude estimation experiments have an
advantage over matching experiments in that they might provide a direct
link between perception and a physical parameter (intensity), but they both
make the important assumption that listeners can use numbers in a consis-
tent and linear way. There are several reasons why this assumption may not
always be correct, and listeners can display a number of biases that affect
loudness estimations. One example is the “centering” bias, in which lis-
teners center their range of numerical responses on the intensity range of the
stimuli. Another is the “contraction” bias, in which large differences be-
tween stimuli are underestimated and small differences are overestimated
(Poulton, 1979). Responses can also be affected by the instructions to the
listener: if the experimenter suggests a large range of numbers for responses
(“call it four if it’s four times as loud” rather than “call it two if it’s two times
as loud”) this will tend to produce a large range of responses from the
listener, artificially expanding the loudness scale. An additional problem has
been highlighted by Krueger (1989), who argued that numerical estimates
do not scale linearly with sensation, but that in fact S = N¢, where S is the
“real” sensation, N is the numerical estimate produced by listeners, and e is
an exponent with a value less than 1.

Despite these problems, magnitude estimation is still widely used to
measure loudness. One reason for this is that many of the problems, such as
the contraction bias and those associated with the instructions given to the
listener, can be minimized by the use of quite straightforward precautions.
These include the use of a variant of magnitude estimation in which no
explicit standard is presented and in which listeners are given free rein in
their generation of numbers (Stevens, 1971) and the rather more tedious
technique of requesting only a single judgment from each listener (Warren,



130  Christopher J. Plack and Robert P. Carlyon

1970). A second reason, which partially overcomes Krueger’s objection, is
that measures of magnitude estimation obey the principle of transitivity.
Hellmann and Meiselman (1990) asked normal and hearing-impaired lis-
teners to estimate the loudnesses of a set of tones of different intensities and
estimate the perceived lengths of a set of lines of different actual lengths.
They measured the slopes of the functions relating “assigned number” to
magnitude on each of these two dimensions. Using the techique of cross-
modality matching, they also presented listeners with a tone and asked them
to adjust the length of a line until its perceived length was “equal,” subjec-
tively, to the loudness of the tone. Despite its seemingly bizarre nature, this
task can be performed quite consistently, and more important, Hellmann
and Meiselman could accurately predict the slopes of the functions relating
assigned number to line length from the combination of the slopes obtained
in magnitude estimation for loudness and in cross-modality matching. This
is illustrated in Figure 3. What their results show is that, although there may
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FIGURE 3  Schematic representation of the principle of transitivity as it applies to magni-
tude estimation and cross-modality matching. The two upper plots show numerical magnitude
estimations as a function of sound intensity and line length, respectively. The lower plot shows
line length adjusted to match sound intensity. Only if physical magnitude is related to sensation
in the same way for the two modalities will the measures combine linearly, as illustrated.
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be some nonlinearity relating assigned number to sensation, the non-
linearity must be similar for the two modalities involved. In other words,
even though there may be a disparity between the data obtained with mag-
nitude estimation and “true” sensation, we can at least say that magnitude
estimates obtained in different modalities and with different groups of lis-
teners are consistent with each other and with other estimates of loudness
growth such as cross-modality matching.

D. Models of Loudness

Zwicker (1958; Zwicker & Scharf, 1965) developed a model of loudness
based on the excitation pattern. The model consists of a number of stages.
First, the input stimulus is passed through a fixed filter representing the
transfer characteristics of the outer and middle ear. Above 2 kHz the form of
the filter is given by the inverted absolute threshold curve. Below 2 kHz,
Zwicker assumed that the transfer function is flat. The rise in absolute
threshold with decreasing frequency is assumed to be caused by an internal
low-frequency noise. In the second stage, an excitation pattern for the stim-
ulus is calculated (see Chapter 5). Zwicker based his calculation of the
excitation pattern on masking patterns for narrowband noises. Excitation is
plotted as a function of frequency on a Bark scale (see Chapter 5). Finally,
excitation is converted into specific loudness (or loudness per critical band),
N'. Following Stevens, N’ is assumed to be related to excitation intensity,
E, by a power law. Basically,

N’ = CEs, )

where C and a are constants and a < 1. Zwicker and Fastl (1990) estimated
o to be 0.23. This relationship works for excitation levels well above abso-
lute threshold. To account for the steep growth of loudness near absolute
threshold the equation was modified as follows:

N' = C(Erarq)*[(0-5Esi6/ ETarg + 0.5)* — 1], ©)]

where Egg is the excitation produced by the stimulus and Erygq is the
excitation at absolute threshold. The overall loudness of the sound is defined
as the area under the specific loudness pattern. In other words, the total
loudness is the sum of the loudness across each critical band.

This model has been modified by Moore and Glasberg (1986, 1994).
They assumed that, below 1 kHz, the form of the initial filter is given by the
inverted equal loudness contour at 100 phon (see Figure 1). Above 1 kHz the
filter shape is given by the inverted absolute threshold curve. Excitation
patterns are calculated from auditory filter shapes they derived in earlier
work (Moore & Glasberg, 1983; see Chapter 5 for details). Excitation is
converted into specific loudness according to the following relationship:
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N' = C[(Esig)* — (Erurq)®) 4)

the symbols being the same as in Egs. (2) and (3). This is a simplified
version of Eq. (3). Notice that when Egig = Erprq the specific loudness is
0. Hence, near absolute threshold, a small change in excitation produces a
large proportional change in specific loudness. Equation (4) can account,
therefore, for the steep (proportional) growth of loudness with level near
absolute threshold. When Egg is much greater than Etygrq, specific loud-
ness (expressed as a logarithm) is almost unaffected by Eryyrq. In this way,
Eq. (4) can also account for the steep loudness function at low frequencies,
as seen in Figure 1, where the specific loudness has to increase from a value
of 0 at the (high) absolute threshold to a value at high levels similar to that
for higher frequencies.

In the model of Moore and Glasberg, the overall loudness of the sound is
calculated by integrating positive specific loudness values across the specific
loudness pattern, as before. In this case, however, the specific loudness
pattern is plotted on an “equivalent rectangular bandwidth” (ERB) frequen-
cy scale rather than on the Bark scale (see Chapter 5).

The modified model is quite successful at predicting the variation in
loudness with intensity, frequency, and bandwidth (Moore & Glasberg,
1994), supporting the view that loudness is intimately related to the fre-
quency selectivity of the peripheral auditory system, and not just to the
physical intensity of the sound per se.

E. Other Factors That Affect Loudness
1. Loudness Adaptation

It is a general property of sensory systems that the neural response to long
duration stimulation decays rapidly after stimulus onset to reach a steady
“equilibrium” firing rate some time after. It is surprising, therefore, that the
loudness of moderate- to high-intensity sounds does not appear to decay
over time. Using the technique of successive loudness estimation, it has
been shown that only sounds within 39 dB of the absolute threshold show
loudness adaptation (Scharf, 1983). High-frequency tones adapt more than
low-frequency tones and steady tones adapt more than modulated tones.
However, there is a considerable between-listener variability in the results,
with some listeners showing no adaptation at all. It is not clear that the
loudness estimation technique gives a reliable indication of the actual per-
cept in this instance, although techniques that do indicate considerable adap-
tation, such as simultaneous dichotic loudness balance, are more seriously
flawed (see Moore, 1989).
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2. Partial Masking

The experiments described so far have required listeners to judge the loud-
ness of a single “target” sound presented in isolation. However, this does
not always provide a good estimate of the loudness of targets presented in
the context of other sounds. If, for example, a sinusoidal target is presented
in noise, the noise generally reduces the perceived loudness of the target.
This phenomenon is termed partial masking. In the limiting case, of course,
where the noise renders the target undetectable, the loudness of the signal is
0. It has been observed that, just as loudness grows steeply when the inten-
sity of the target is increased just above the absolute threshold, loudness also
grows steeply when the intensity of the target is increased just above the
masked threshold (Zwicker, 1963; Stevens & Guirao, 1967). The modifica-
tion of Zwicker’s model by Moore and Glasberg (1994; see Section I1.D)
can account for this effect by assuming that specific loudness is additive:

Nror' = Ngig' + Nnorse's &)

where N’ is the specific loudness of the target, Nyoisg' is the specific
loudness of the noise and Nyor' is the specific loudness of the noise and the
target combined. Moore and Glasberg showed that, by making a few
simple assumptions, it is possible to derive Nrot', Nnyoise's and hence, by
subtraction, Ng;'. When the noise level is high relative to the signal level,
Nporsg' is almost identical to Nyor'; hence, Ngg' is low, the effect ob-
served in partial masking experiments.

3. Loudness Enhancement

In contrast to the reduction in loudness produced by sounds presented
simultaneously with the target, sounds presented before the target can some-
times produce an increase in loudness. This is the phenomenon of loudness
enhancement, which was first reported in the early 1970s by two groups of
researchers (Irwin & Zwislocki, 1971; Galambos, Bauer, Picton, Squires, &
Squires, 1972; Zwislocki, Ketkar, Cannon, & Nodar, 1974; Zwislocki &
Sokolich, 1974; Elmasian & Galambos, 1975; Elmasian, Galambos, & Bern-
heim, 1980). Typically, the listener is presented with two brief tone bursts
separated by an interval At, followed by a third, “comparison” burst, pre-
sented after a much longer silent interval. The task is to adjust the intensity of
the comparison burst so that its loudness is equal to that of the second burst.
When the first burst is, say, 20 dB more intense than the second, the results
show that the loudness of the second burst is enhanced by as much as 15 dB,
although the size of this effect decreases with increases in At, and the effect
disappears after a few hundred milliseconds. Interestingly, two lines of evi-
dence suggest that the phenomenon is not simply due to the loudnesses of the
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two tones being judged separately and then combined. First, the maximum
effect occurs when the enhancer and target tones have the same frequency
(Zwislocki & Sokolich, 1974), and, second, the effect is attenuated (but not
eliminated) when the two tones are presented to different ears (Galambos et
al., 1972; Elmasian & Galambos, 1975). Thus it seems that the sounds must
be perceptually similar in some way for the enhancement effect to occur.

III. PARAMETRIC STUDIES OF INTENSITY DISCRIMINATION
A. Measurement Techniques

Intensity discrimination refers to the ability of the auditory system to detect
differences in the intensity of sounds, and a large number of experiments
have attempted to measure the limits of this important aspect of auditory
function. Most of these experiments have used one of two techniques,
termed modulation detection and increment detection. In modulation detection,
listeners are required to detect the presence of slow amplitude modulation
(AM), threshold being taken as the smallest detectable depth of AM. In
increment detection, listeners are required to detect a change in the intensity
of a standard stimulus (the pedestal). The pedestal can be presented either
continuously or gated with the increment. In the latter case, the task is
usually to disciminate a stimulus containing the increment from one with
the pedestal alone (e.g., which of two stimuli sounds “louder”). Thresholds
measured using both the modulation detection and increment detection
techniques have been interpreted as reflecting the accuracy with which in-
tensity is encoded in the auditory nerve. In later sections, we will question
whether this interpretation is in fact valid, but we will first describe the basic
findings on which this discussion is based.

Several different definitions of the “just noticeable difference” (jnd) for
intensity have been employed in the past. At present the most common are
AL, equal to 10 log(1 + AI/I), and the Weber fraction, defined either as
‘AI/I, or as 10 log(AI/I), where I is the intensity of the pedestal and Al is the
intensity of the smallest detectable increment. Green and colleagues have
advocated the use of the pressure ratio expressed in dB [20 log(Ap/p)] for
their studies of “profile analysis” (see Green, 1988, for a discussion of this
and other measures). These units produce relative measures of the jnd, so
that, in an increment detection task, if the intensity of the increment is a
constant proportion of the intensity of the pedestal, then AL, the Weber
fraction, and the pressure ratio will also be constant.

B. Weber’s Law and the Near Miss

For wideband noise, the smallest detectable change in intensity, Al, is ap-
proximately proportional to the intensity of the stimulus, I. That is, Al/I,
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the Weber fraction, is a constant. This is an example of Weber’s Law. This
relationship holds for intensities from about 20 dB above the absolute
threshold to about 100 dB above the absolute threshold (Miller, 1947).
Within this range a plot of 10 log(AI) against 10 log(I) (i.e., both expressed
in dB) will give a straight line with a slope of 1. In contrast to the results for
wideband noise, for pure tones the Weber fraction decreases slightly at high
levels, so that a plot of 10 log(AI) against 10 log(I) gives a slope of approx-
imately 0.9. This is referred to as the near miss to Weber’s Law (McGill &
Goldberg, 1968) and is probably due to the spread of excitation along the
basilar membrane associated with an increase in the intensity of a pure tone
(see Subsection IV.B.1). Weber’s Law and the near miss are illustrated sche-
matically in Figure 4. Near absolute threshold the Weber fraction increases
dramatically, particularly at frequencies below 200 Hz (Ward & Davidson,
1993).

C. Frequency Effects

An exception to the near miss to Weber’s Law for pure tones occurs at high
frequencies. Florentine, Buus, and Mason (1987) have provided a compre-
hensive description of the variation in intensity discrimination with fre-
quency. Their results show that the Weber fraction for pure tone pedestals is
generally independent of frequency for frequencies from 250 Hz to 4 kHz
(measured at equal sensation level), but that, at higher frequencies, there is a
small maximum at medium pedestal intensities, as reported originally by
Carlyon and Moore (1984).
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FIGURE 4 A schematic illustration of Weber’s Law and the near miss. The curves are
plotted in terms of the smallest detectable change in intensity (Al, left panel), and the Weber
fraction (AI/I, right panel).
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D. Duration Effects

Henning (1970) reported that, up to a certain duration, the energy of the
smallest detectable increment (AE) on gated pure tone pedestals was con-
stant. Hence, the Weber fraction decreased by 3 dB with every doubling of
duration within this limit. Beyond the critical duration, the Weber fraction
was constant. The value of the critical duration decreased with increasing
pedestal frequency, from 100 ms at 250 Hz to 10 ms at 4 kHz. Florentine
(1986), on the other hand, reported critical durations ranging from 500 ms
at 250 Hz to over 2 s at 8 kHz. She suggested that the reason for the
discrepancy was the much smaller range of stimulus durations used by
Henning.

The rate of decrease of the Weber fraction with duration seems to be
inversely related to the bandwidth of the pedestal, so that intensity discrimi-
nation measured with wideband noise pedestals shows only a slight im-
provement with duration (Raab & Goldberg, 1975). Another factor affect-
ing the relationship between Weber fractions and duration may be the
intensity of the pedestal. Carlyon and Moore (1984) reported that the mid-
level deterioration in intensity discrimination at high frequencies was more
marked for short than for long stimuli, and so we might expect that, at high
frequencies, the variation in the Weber fraction with duration would be
most marked at intermediate intensities.

IV. MODELS OF PERIPHERAL INTENSITY CODING

The study of intensity coding is concerned with determining how the ear
tells the brain how intense a particular sound is, or, more specifically, how
the physical intensity of a sound is represented in terms of the activity, or
pattern of activity, of nerve fibers in the auditory system. Intensity coding is
inherently related to intensity discrimination. The ability to “hear” two
sounds of 120 dB and 130 dB, for example, does not imply that these two
intensities are represented differently in the auditory system; they may pro-
duce identical percepts. If a listener can detect a difference between the two
sounds, however, that difference must be represented at all stages in the
auditory pathway between the cochlea and the decision process. The fidelity
of the coding mechanism will determine the smallest difference that can be
detected. Intensity discrimination experiments are therefore the primary
psychophysical tools for testing models of intensity coding.

A successful model of intensity coding has to take account of the fre-
quency selectivity of the cochlea, so that intensity is encoded independently
for different frequency channels, even though this information may be com-
bined at some later stage. The firing rates of fibers in the auditory nerve are
generally monotonically related to physical intensity. A simplistic hypothe-
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sis, therefore, is that the intensity in any given frequency region is coded
purely by the firing rate of fibers tuned to that frequency region; the higher
the intensity, the higher the firing rate. Although this account may turn out
to be accurate in some circumstances, there are several complications that
will be discussed in the following sections.

A. The Dynamic Range Problem

As we have seen, the human auditory system can detect differences in the
intensity of sounds over a very wide dynamic range; as much as 120 dB in
normal hearing listeners (Viemeister & Bacon, 1988). This performance is
even more remarkable, however, when we consider the information present
in the auditory nerve, as measured in other mammals. The majority of
auditory nerve fibers, those with a relatively high spontaneous rate (SR),
have low thresholds but relatively small dynamic ranges, with most show-
ing a saturation in their firing rate above an intensity of around 60 dB SPL
when stimulated by a tone at their characteristic frequency (CF) (Palmer &
Evans, 1979; see also Chapter 3). That is to say, increases in stimulus inten-
sity beyond this point will not result in a change in the firing rate of the
majority of auditory nerve fibers. The fact that Weber’s Law continues to
hold even at high stimulus intensities has prompted a number of researchers
to examine ways in which intensity may be coded other than by the firing
rate of nerve fibers tuned to the pedestal frequency.

B. Coding by Spread of Excitation

One possible explanation for the apparent paradox is that, at least for nar-
rowband pedestals, information regarding the intensity of a sound is avail-
able from nerve fibers tuned to frequencies above and below the pedestal
frequency (Siebert, 1965). Although most fibers tuned to the pedestal fre-
quency will be saturated by an intense pedestal, fibers with CFs remote
from the pedestal frequency will receive less excitation and may not be
saturated. It has been suggested that these “off-frequency” fibers are respon-
sible for coding intensity at high levels (Zwicker, 1956).

1. Masking Spread of Excitation

This hypothesis has been tested in experiments that have used masking to
limit the information available from off-frequency fibers. High-pass noise,
low-pass noise, and notched noise centered on the frequency of the (pure
tone) pedestal, have been added to mask spread of excitation and to force
listeners to use nerve fibers with CFs close to the pedestal frequency (Viem-
eister, 1972; Moore & Raab, 1974). These maskers produced a slight in-
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crease in the Weber fraction at high intensities, removing the near miss, but
performance overall was relatively unimpaired by limiting spread of excita-
tion. Both low-pass noise and high-pass noise were effective in increasing
the Weber fraction at high intensities, and notched noise was more effective
still (Moore & Raab, 1974), suggesting that spread of excitation on both
sides of the excitation pattern is involved in the near miss.

This conclusion has been supported by attempts to model intensity dis-
crimination using excitation patterns. Zwicker (1956, 1970) described a
single-band model of intensity discrimination in which performance is as-
sumed to be determined by the output of the auditory filter in which the
change in excitation (in dB) is greatest. Because of the steeper growth of
excitation with increasing intensity on the high-frequency side of the excita-
tion pattern (see Chapter 5), for pure tone pedestals the optimum filter will
generally have a CF above the frequency of the pedestal. Florentine and
Buus (1981) proposed a multiband version of this model in which informa-
tion is optimally combined from all regions of the excitation pattern. Al-
though both models predict qualitatively the near miss and its removal by
masking with notched noise, the multiband model gives predictions that are
in closer quantitative agreement with the data (Florentine & Buus, 1981).

The results from masking experiments have been taken as evidence that,
although spread of excitation may aid intensity discrimination at high inten-
sities, producing the near miss, the auditory system can code intensity over
a large dynamic range on the basis of the information from a small range of
CFs. This is perhaps not surprising, as most complex sounds in the environ-
ment have relatively broad spectra and occur not in isolation but in the
presence of other sounds. Both of these factors will limit the usefulness of
information from spread of excitation in everyday situations, where lis-
teners would need to code intensity over a wide dynamic range. As we shall
see in the next subsection, however, the argument for a large dynamic range
at a single CF is not entirely watertight.

2. Role of Suppression and Adaptation

One way for the auditory system to maintain a large dynamic range despite
the limited dynamic range of the majority of auditory nerve fibers would be
to adjust the operating ranges of individual fibers according to the input
level, so that the intensity of the incoming stimulus always fell on the steep
part of their input—output functions. We are all familiar with this principle
of automatic gain control (AGC) in vision, where the phenomenon of adapta-
tion allows us to see in bright sunlight or in the darkest cinema. We are also
familiar with the fact that the recovery from this adaptation is fairly slow, as
anyone who has entered a cinema from bright sunlight will testify. How-
ever, in hearing we have to process sounds that vary dramatically in inten-
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sity over a very short time scale: we need the entire dynamic range of
hearing “on tap.” (For example, it may be advantageous to identify an
intense speech signal, “The psychopath is coming down the corridor!” and
then immediately listen for those quiet footsteps.) One way out of this
dilemma would be to have an AGC system with a short time constant, and
one process that could fulfill this role is suppression.

Suppression is a nonlinear process whereby intense excitation at one
region of the basilar membrane reduces the excitation in neighboring re-
gions. It has a very short time constant (Arthur, Pfeiffer, & Suga, 1971), so
that suppression occurs only when the suppressor and the suppressee are
presented simultaneously. Auditory nerve recordings have shown that a
notched noise has a strong suppressive effect on the response of nerve fibers
to a pure tone presented in the center of the notch, effectively shifting the
rate—intensity functions to higher intensities (Palmer & Evans, 1982; Cos-
talupes, Young, & Gibson, 1984). In effect, the excitation produced by the
pedestal is reduced by the notched noise, and this may increase the apparent
dynamic range of the system, accounting, qualitatively, for the results of the
experiments described in the previous subsection that used noise to mask
spread of excitation. In this way it is possible that the compressive process
on the basilar membrane that produces suppression acts as a form of auto-
matic gain control for wideband stimuli.

Making use of the fact that suppression only occurs between simul-
taneously presented stimuli, Plack and Viemeister (1993) attempted to mask
the spread of excitation while avoiding suppressive effects by using non-
simultaneous masking. They measured intensity discrimination for a brief
pure tone pedestal presented in the silent interval between two bursts of an
intense masking complex, consisting of a notched noise and two pure tones
with frequencies either side of the pedestal frequency. This complex masked
spread of excitation without suppressing the pedestal. Figure 5 shows that
intensity discrimination was largely unimpaired at high intensities under
these conditions, suggesting that suppression is not necessary for the main-
tenance of a large dynamic range in a limited frequency region. This conclu-
sion seems justified, even though the maskers used by Plack and Viemeister
were very intense and would have caused considerable adaptation in the
auditory nerve. Although adaptation is, theoretically, a possible additional
mechanism that could extend dynamic range, physiological evidence sug-
gests that it does not shift the rate—intensity functions of high-SR fibers to
higher intensities (see Chapter 3).

C. Coding by Neural Synchrony

Carlyon and Moore (1984) suggested that, in some circumstances, intensity
might be coded by the pattern of phase locking in auditory nerve fibers.



140  Christopher J. Plack and Robert P. Carlyon

— Masker
=== Pedestal
Sinusoid ~ T

i

L
Noise \/

:

08f, fe l2fe

|

1
T

Time ->
10
s} O Quiet
A Maosker
6-
4}
S o}
s
g r
e ~2F
_4.—
_G-
_8.7
-10E_1 1 1 1 | 1 1 1

30- 40 50 60 70 80 90 100
10 log (D)

FIGURE 5  Weber fractions for a 30 ms tone burst in quiet (circles) and when presented in
the silent interval between two bursts of a masking complex (triangles). The spectral and

temporal characteristics of the stimuli are illustrated schematically above the graph. (Data are
from Plack and Viemeister, 1993.)

Increasing the intensity of a pure tone in the presence of a noise can produce
an increase in the synchronization to the fine structure of the pure tone,
away from the fine structure of the noise, even though the overall firing rate
of the fiber does not change; in other words, the fiber is saturated (Javel,
1981). In particular, in the notched noise experiment of Moore and Raab
(1974), intensity differences at high intensities may have been detected by
virtue of an increase in the degree of synchrony in the firing of a neuron
tuned to the pedestal frequency. Carlyon and Moore (1984) tested this hy-
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pothesis by measuring intensity discrimination for 30 ms pure tone pedes-
tals presented in notched noise for pedestal frequencies of 0.5, 4, and 6.5
kHz. At 6.5 kHz phase locking to the fine structure of the pedestal would be
completely absent. Carlyon and Moore demonstrated that there was a large
increase in the Weber fraction at high frequencies, but only at medium
intensities; at both high and low intensities performance was still relatively
good. These results are illustrated in Figure 6. Thus, although neural syn-
chrony may play a role in intensity coding, there is sufficient intensity
information from other sources at low and high intensities. In other words,
neural synchrony is not solely responsible for the large dynamic range ob-
served in these experiments.

D. Models Based on Rate-Intensity Functions

The discussion in Subsections IV.B.1 and IV.B.2 has indicated that the
dynamic range in a single frequency channel is probably much greater than
that observed in the high-SR fibers. The dynamic range of hearing must
depend, therefore, on the minority of auditory nerve fibers with low SRs.
These fibers have higher thresholds than the high-SR fibers and have larger
dynamic ranges, many of which extend up to very high intensities (Sachs &
Abbas, 1974). A plausible hypothesis is that the high-SR fibers are responsi-
ble for conveying intensity information at low stimulus intensities (below
the thresholds of the low-SR fibers), and the low-SR fibers are responsible
for coding intensity at high stimulus intensities (above the saturation inten-
sities of the high-SR fibers). We will refer to this as the dual population model
of intensity coding.

10F
s} ©O 500 Hz
6 A 4000 Hz
D 6500 Hz
4 -
S o}
K]
g T
= -2t
4k
_6 -
..8 b
-0 3 1 -1 i 1 1 i
20 30 40 50 60 70 80 90
10 log ()

FIGURE 6 The Weber fraction as a function of intensity for 30 ms tone bursts presented
in notched noise at two frequencies. (Data are from Carlyon and Moore, 1984.)
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The main drawback of this model is that it has difficulty explaining why
the Weber fraction is roughly constant for a wide range of stimulus inten-
sities. On the basis of the dual population model it might be expected that
intensity resolution would be much more acute at low intensities than at
high intensities. This is both because of the far greater numbers of high-SR
fibers than low-SR fibers and the fact that the rate—intensity functions (plot-
ted as firing rate against intensity in dB) of low-SR fibers are shallower than
those for high-SR fibers. This means that a change in intensity at high
intensities will result in a smaller change in the firing rate of the low-SR
fibers than the same proportional change in intensity at low intensities
produces in the firing rate of the high-SR fibers. To illustrate this point we
will consider next a model of intensity coding based on the properties of
auditory nerve fibers.

Numerous attempts have been made to model intensity discrimination
using the rate—intensity functions of auditory nerve fibers (e.g., Winslow &
Sachs, 1988; Young & Barta, 1986; Delgutte, 1987; Viemeister, 1988). As an
example, we will consider Viemeister’s model here. The first stage of this
model calculates the sensitivity measure, d’, for a given change in intensity
based on the rate—intensity function and the variability in firing rate of a
single auditory nerve fiber. The shallower the rate—intensity function and
the larger the variability, the smaller the value of d', and the poorer the
sensitivity. The performance of a group of nerve fibers is then calculated
from an optimal combination of the information from the individual fibers.
The bottom panel of Figure 7 shows the predicted Weber fractions based on
the performance of 10 or 50 fibers with rate—intensity functions distributed
according to the curves in the top panel. These functions are based on the
physiological data of Liberman (1978) and Evans and Palmer (1980). It can
be seen that the predictions of the model do not obey Weber’s Law. Perfor-
mance at low-to-medium intensities is predicted to be far superior to that at
high intensities. Also plotted are psychophysical Weber fractions for a 6-14
kHz noiseband presented in a notched noise to mask spread of excitation
(Viemeister, 1983). The neural data lead to very poor predictions of human
performance. On the other hand, Figure 7 demonstrates that the informa-
tion from only ten nerve fibers is enough to achieve performance superior to
that of the human listener over a fairly wide dynamic range. With 50 fibers
(still a very small percentage of the total number that would be activated in
most situations), human performance is matched or bettered over a range of
almost 100 dB. These results suggest that sufficient information is available
in the firing rates of auditory-nerve fibers to encode intensity over a wide
range of intensities. Perhaps we should not be asking why human perfor-
mance is so good at high intensities, but rather, why it is not better at low
intensities. We will return to this issue in Section V.
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model. The solid lines show the predictions for CF tones using populations of 10 and 50 fibers.
The dashed line shows the predictions for broadband noise with a population of 50 fibers.

E. Intensity Discrimination under Nonsimultaneous Masking

A recent discovery by Zeng and colleagues (Zeng, Turner, & Relkin, 1991;
Zeng & Turner, 1992) has aroused considerable interest in the effects of
nonsimultaneous masking on intensity discrimination. They measured in-
tensity discrimination for 30 ms pure-tone pedestals presented 100 ms after
2 90 dB SPL narrowband noise. The Weber fraction was unaffected com-
pared to the value in quiet for low and high pedestal intensities, but was
increased by 5-10 dB at pedestal intensities between about 40 and 70 dB.
The continuous lines in the left panel of Figure 8 illustrate this phenomenon.
Zeng et al. argued that the “mid-level elevation” might be related to the phys-
iological finding that low-SR fibers take several hundred milliseconds to
recover their sensitivity after intense stimulation (Relkin & Doucet, 1991).
During this period, the thresholds of the low-SR fibers will be elevated. On
the basis of the dual population model, Zeng et al. suggested that intense
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FIGURE 8 The Weber fraction for a 30 ms tone burst in quiet (circles) and under forward
and backward masking (triangles). Also shown are the effects of adding notched noise to the
pedestal for each of these two conditions (dashed lines). Schematic illustrations of the temporal

characteristics of the stimuli are shown above each panel. (Data are from Plack and Viemeister,
1992b.)

stimulation creates a discontinuity in the coding of intensity between the
saturation level of the high-SR fibers and the elevated thresholds of the low-
SR fibers. A change in intensity between these two levels will not resultin a
change in the firing rate of either group of fibers, and hence intensity
discrimination will be poor. This might account for the mid-level elevation
under forward masking.

The hypothesis of Zeng et al. appeared very appealing and of significant
theoretical interest because, if true, then their experiment would provide the
first direct psychophysical evidence for the dual population model. Unfor-
tunately, subsequent experiments have cast doubt on these claims. Plack and
Viemeister (1992b) demonstrated that an even larger mid-level elevation
was observed in backward masking conditions, where the masker cannot
have affected the representation of the pedestal at the level of the auditory
nerve. Furthermore, they showed that the elevation observed in both for-
ward and backward masking could be reduced, or removed entirely, by
presenting notched noise with the pedestal. Both these findings are illus-
trated in Figure 8. Plack and Viemeister (1992a) argued that there is no
known physiological mechanism at the level of the auditory nerve that can
account for the effect of the notched noise and hence that the processes
responsible for the elevation, and its reduction by the notched noise, are
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probably located more centrally. Two theories being considered are that (1)
forward and backward maskers disrupt the memory trace for the pedestal
(Mori & Ward, 1992; Plack & Viemeister, 1992b; Carlyon & Beveridge,
1993) or that (2) the effect is related to variability in the loudness enhance-
ment produced by the masker (see Subsection II.E.3) (Carlyon & Bev-
eridge, 1993). In either case the notched noise may improve performance by
providing a within-interval reference for the intensity of the pedestal (Plack
& Viemeister, 1992b), a form of context coding. This will be discussed further
in Subsection V.B.1.

V. WHAT LIMITS INTENSITY DISCRIMINATION?

We have described the ways in which the intensity of sounds may be rep-
resented in the auditory periphery. We will now consider more generally
the factors that may limit our ability to detect changes in the intensity of
sounds, including processes central to the auditory nerve. This account will
incorporate a description of how intensity may be represented in memory
and how memory limitations affect performance on discrimination tasks.
Much of the discussion in this section is still speculative, although the
hypotheses proposed are open to experimental investigation and it is to be
hoped that the account will become clearer and more specific over the next
few years.

A. Peripheral and Central Limitations

It is clear from the neural model described in Section IV.D that the informa-
tion available in the auditory nerve is more than sufficient to account for
human psychophysical performance over a wide range of intensities. In fact,
when spread of excitation is taken into account, a model based on an opti-
mum combination of the activity of auditory nerve fibers produces far
superior performance to that of humans, even at high intensities (Delgutte,
1987). It seems likely from the results of masking experiments, however,
that spread of excitation is not necessary for the maintenance of a large
dynamic range. Indeed, these experiments suggest that intensity discrimina-
tion at single CF is characterised by Weber’s Law (except, perhaps, at high
frequencies), whereas the physiological models predict much smaller Weber
fractions at low and medium intensities than at high intensities.

The richness of the representation in the auditory nerve, and the failure of
models of intensity coding based on the properties of auditory nerve fibers
to account for Weber’s Law, implies that some process central to the audi-
tory nerve must not make optimal use of the neural information (Carlyon &
Moore, 1984). Presumably, this central limitation determines discrimination
performance in most circumstances and prevents human performance from



146  Christopher J. Plack and Robert P. Carlyon

being better at low and medium intensities than at high intensities. The
central limitation could be modeled as a constant internal “noise,” or vari-
ability, added to the decision processes. However, a single central noise
could not limit performance based on a single channel (e.g., for intensity
discrimination of a tone in notched noise) and, at the same time, allow for
any improvement from spread of excitation cues (the near miss to Weber’s
Law). A more plausible explanation is that there is an independent noise for
each frequency channel (Carlyon, 1984; Carlyon & Moore, 1984). This is
reasonable if the central noise arises from synaptic transmission throughout
the auditory pathway. If the noise is channel specific, then spread of excita-
tion would improve performance by increasing the number of independent
“looks” at the intensity change.

While it seems naive to assume that there is a single unitary central
limitation, it is also naive to assume that there is just one for each frequency
channel. For example, each synapse at every stage in the auditory pathway
will probably make some contribution to the total variability of the repre-
sentation of the stimulus. We should stress, therefore, that we use the term
central limitation to distinguish central processes from limitations at the level
of the auditory nerve, rather than to imply the existence of a single process.
In addition, we cannot exclude the possibility that a further source of limita-
tion occurs after information from the different channels has been combined
(Carlyon & Moore, 1984).

1. Effects of Restricting Peripheral Information

Experiments that have reduced or degraded the information in the physical
stimulus available to the auditory system have provided valuable clues as to
the nature of limitations in intensity coding. Carlyon and Moore (1984)
went to extreme lengths to remove potential cues for intensity discrimina-
tion. They used short tone-burst pedestals presented in notched noise (to
mask spread of excitation) at high frequencies (to remove phase locking
information) and with the onset and offset of the tone burst masked with
bursts of noise to prevent listeners using “transient” cues, such as the physi-
ological onset response. The result of these manipulations was not an over-
all degradation in performance at all pedestal intensities, as might be antici-
pated, but an increase in the Weber fraction at medium intensities only. There
would seem to be two broad explanations for this finding.

1. In the absence of information from spread of excitation and neural
synchrony, the coding in the auditory nerve is less accurate at medium
intensities. Under normal circumstances this is not evident because the
central limitation determines performance. When the information in the
stimulus is degraded sufficiently, however, the information in the auditory
nerve becomes the limiting factor and hence the coding deficiency at medi-
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um intensities is evident in the psychophysical data. A possible reason why
there might be such a deficiency is that the basilar membrane, while being
relatively linear at low and at high intensities, is compressive in the range
from 40 to 80 dB (see Chapter 2). In this region, therefore, the same propor-
tional change in intensity will not produce as large a change in basilar
membrane displacement as at low or high intensities (Klitzing & Kohl-
rausch, 1994). The main problem with this hypothesis is that none of the
physiological models demonstrates a coding deficiency at medium inten-
sities although all of the single channel versions show a deficiency at high
intensities. It might be expected, therefore, that degrading peripheral infor-
mation would degrade performance more at high intensities than at medium
intensities.

2. Some aspect of the central limitation itself is intensity dependent.
Reducing the peripheral information might have the effect of exposing this
dependency. A possible mechanism for this will be considered in Subsection
V.B.1.

B. Memory for Intensity

Most intensity discrimination experiments employ a two-alternative task in
which the listener is required to choose which of two observation intervals,
separated by an interstimulus interval (ISI), contains the more intense stimu-
lus. These three intervals constitute a frial. This task could be performed in
two different ways. First, the listener could directly compare the intensities
of the stimuli in the two observation intervals. This requires that the listener
store a representation of the intensity of the first stimulus in short-term
memory. Second, if the pedestal, or standard, has the same intensity across
a number of trials, then the listener may form a long-term representation of
this intensity that can be used to perform the task on a within-interval basis,
avoiding a direct comparison of the stimuli in the two observation intervals.
For example, the listener may select the stimulus that sounds more intense
than the representation of the standard in long-term memory.

The absence of a substantial effect of ISI in intensity discrimination tasks
employing a fixed standard supports the idea that listeners use long-term
memory. A short-term store would be expected to decay over time, pro-
ducing a large effect of ISI. As an extreme example, Pollack (1955) used an
ISI of 24 hours and found only a small deterioration in intensity discrimina-
tion performance. The long-term memory cue can be removed by ran-
domly varying, or roving, the intensity of the standard between trials, so
that listeners are forced to make a comparison between the two stimuli
within each trial. When this is done, performance consistently worsens with
increasing ISI (Berliner & Durlach, 1973; Green, Kidd, & Picardi, 1983).
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For a 100 ms, 1 kHz sinusoid, the Weber fraction increases from about —2
dB to 5 dB as the ISI is increased from 250 ms to 8 s. Presumably, this
reflects the decay of a short-term memory store. If this is the case, then this
memory limitation may be an important component of the central limita-
tion in some circumstances.

1. Trace Coding and Context Coding

Durlach and Braida (1969) described a model of intensity coding that in-
cludes two different modes of memory operation: the trace mode and the
context-coding mode. In the trace mode the direct sensations produced by
the stimuli are stored. These sensations have the tendency to decay over
time, leading to an increase in “memory noise” and accounting for the
effects of ISL. In the context-coding mode, on the other hand, intensity is
coded relative to a reference intensity or relative to internal “perceptual an-
chors” (Braida, Lim, Berliner, Durlach, Rabinowitz, & Purks, 1984); for
example, the absolute threshold or the discomfort threshold. The accuracy
of the coding is supposedly dependent on the “distance” on the sensation
axis between the sensation of the target stimulus and the sensation of the
anchor.

This hypothesis can account, qualitatively at least, for several of the
phenomena we have described earlier. First, we have seen that there are
several cases in which reducing or masking intensity information causes an
elevation in the Weber fraction at medium intensities only; for example, short
tone bursts at high frequencies in notched noise (Carlyon & Moore, 1984),
or tone bursts in nonsimultaneous masking conditions (Zeng et al., 1991;
Plack & Viemeister, 1992a; 1992b). If the effect of these manipulations is to
degrade the memory trace for the pedestal in some way, then discrimination
at low and high intensities may be affected less because the intensity of the
pedestal can be context coded with respect to the absolute or discomfort
thresholds. This creates a more robust memory trace that is less susceptible
to degradation. The context coding hypothesis may provide, therefore, a
mechanism whereby the central limitation may be intensity dependent, as
postulated in hypothesis 2 in Subsection V.A.1. In normal circumstances the
memory trace is rich enough to be relatively immune to the effects of
degradation. If the information in the memory trace is reduced, however,
then the system relies more and more on context coding, which is not
effective at medium intensities because of the distance from the internal
anchors at the extremes of sensation.

Second, Carlyon and Moore (1986a) showed that the mid-level elevation
in the Weber fraction for short pure tone pedestals at 6 kHz was eliminated if
the pedestal was continuous rather than gated with the increment. In the
former case, the increment can be context coded with respect to the pedestal
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intensity before and after the increment. Similarly, notched noise may re-
duce the mid-level elevation in nonsimultaneous masking by providing a
proximal context (Plack & Viemeister, 1992b); for example, the intensity of
the pedestal may be coded across frequency with respect to the intensity of
the notched noise. Recently, Plack, Carlyon, and Viemeister (1995) showed
that presenting a stable “proximal” tone burst shortly before or after the
pedestal in nonsimultaneous masking could also reduce the mid-level deteri-
oration in intensity discrimination.

It is fairly obvious that the auditory system needs to code intensity in a
relative way at some stage, simply because auditory objects (for example,
syllables) are defined by the relative intensity of features either simultane-
ously present (as in the pattern of spectral peaks and dips of a vowel sound)
or proximal in time (for example, the dip in intensity that characterizes a
stop consonant). Consistent with the relationship of relative intensity to
object identification, the context code is often regarded as a “categorical”
type of memory trace, so that, for example, in the discrimination of spectral
shape (Green et al., 1983; see Chapter 7), the listener may categorize each
stimulus as “bumped” or “flat” and use these distinctions as the basis for
discrimination. In a sense, the classic intensity discrimination task is an
extremely artificial one: Absolute intensity does not affect the identity of
auditory objects in most circumstances. It seems plausible, therefore, that
the auditory system should be good at “short-range” comparisons of inten-
sity rather than comparisons over several hundred milliseconds, even when
the greater short-term memory load in the latter case is taken into account.

VL. INTENSITY DISCRIMINATION AND LOUDNESS

A. The Relationship between Intensity Discrimination
and Loudness

Loudness is the subjective correlate of intensity, so we might expect to find
some relationship between the loudness of sounds and listeners’ ability to
detect differences in intensity between them. In particular, it might be
expected that the steeper the function relating loudness to intensity, the
smaller the intensity jnd. Fechner’s Law goes one step further to suggest that
the Weber fraction, AlI/I, is associated with a constant increment in loud-
ness, AS, so that

AS = kAI/I, (6)

where k is a constant. In fact, this relationship has been shown to be in-
correct and there appears to be no correlation between the Weber fraction
and the steepness of the loudness function (Zwislocki & Jordan, 1986).
This seemingly paradoxical finding can be understood by considering the
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factors influencing discriminability. Whereas the difference between the
loudness of two sounds may be determined by the difference in the mean
level of activity (e.g., firing rate) in nerve fibers that they each produce,
their discriminability will also be affected by the variability of that activity.
Zwislocki and Jordan suggested that this variability depends not only on the
magnitude of loudness, but also on the steepness of the loudness function.
In other words, a steeper loudness function may be associated with a greater
variability so that there is no reduction in the Weber fraction. Zwislocki and
Jordan suggested further that the Weber fraction is equal for stimuli that
produce equal loudness. While this relationship seems to hold in many
situations (Zwislocki & Jordan, 1986; Schlauch & Wier, 1987), Schlauch
(1994) has shown that a high-pass noise has a greater effect on the Weber
fraction for a 1 kHz tone than on the loudness function for the tone. This
suggests that loudness is less dependent on excitation spread than the Weber
fraction is.

B. Intensity Discrimination in Impaired Ears

It is not clear a priori what the consequences of sensorineural hearing impair-
ment should be with regard to intensity discrimination. The steep growth of
loudness with intensity (see Subsection II.B.4) suggests that impaired ears
might have superior intensity resolution compared to normal ears, since a
given change in intensity presumably produces a larger change in loudness in
impaired ears. On the other hand, although it is quite possible that impaired
ears show an abnormally large difference in, say, the mean auditory-nerve
firing rates elicited by two sounds, if the standard deviations of those firing
rates are also abnormally large, then the resulting Weber fractions may not be
less than those for normally hearing listeners.

Early studies using pure tone pedestals showed little difference between
impaired and normal ears (Hirsh, Palva, & Goodman, 1954). Recent results,
however, have indicated that listeners with increasing hearing loss above the
pedestal frequency have impaired intensity discrimination, particularly at
high intensities, whereas listeners with increasing hearing loss below the
pedestal frequency show relatively normal intensity discrimination func-
tions (Florentine, Reed, Rabinowitz, Braida, Durlach, & Buus, 1993). These
results suggest that the restricted frequency range associated with hearing
loss is of far more consequence with regard to intensity discrimination that
the shape of the loudness function. They also support the hypothesis that
information on the high frequency side of the excitation pattern is important
in intensity coding at high intensities. These conclusions are consistent with
the idea that intensity discrimination is limited by processes central to the
auditory nerve (see Section V.A).
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VII. DETECTION OF TONES IN NOISE

A task that is at least superficially similar to that used in many intensity
discrimination experiments is that of detecting a tone added to a band of
noise. In each case, the listener has to distinguish between two sounds, one
of which has a tone added to it: The only difference is that in intensity
discrimination the baseline sound is another sinusoid, whereas for the detec-
tion of tones in noise it is, of course, a noise. The psychophysical data
reveals at least two similarities between the two tasks. First, thresholds for
the detection of long-duration (>about 100 ms) tones in noise usually fol-
low Weber’s Law, a finding similar to that obtained for tone-on-tone inten-
sity discrimination when the spread of excitation is masked by notched
noise. Second, for brief tones added to synchronous bursts of noise, there is
a mid-level deterioration in performance at high frequencies, similar to that
seen for intensity discrimination (Carlyon & Moore, 1986b).

A. The Overshoot Effect

In contrast to the case where the masker is turned on and off synchronously
with the signal, Weber fractions for brief tones presented in continuous
noise are uniformly low, even at high frequencies and intermediate inten-
sities (compare the two columns of Figure 9(a)). Under these conditions,
then, thresholds are much lower with continuous than with synchronous
maskers, a finding that can be thought of as an extreme example of a
phenomenon first reported by Zwicker in 1965, termed the overshoot effect.
The term refers to the fact that the threshold for a brief tone presented
shortly after the onset of a burst of noise can be more than 10 dB higher than
when it is presented, say, 200 ms after the beginning of the noise (Figure
9(b)). Bacon and Smith (1991) have recently shown that the overshoot effect
is greatest at intermediate intensities.

As Figure 9 shows, differences in timing critically affect Weber functions
at medium intensities both for intensity discrimination and the detection of
tones in noise. One possible reason for this comes from an influential expla-
nation for the overshoot effect, derived by Smith and Zwislocki (1975) from
their measurements of adaptation in the auditory nerve. They showed that,
when a signal was presented At ms after the onset of a masker, the increase
in firing rate produced at the beginning of the signal was independent of At.
As the response to the masker decreased over time, this meant that, at
longer values of At, the same increment in firing rate was being detected
against a lower background rate: in effect, the “neural signal-to-masker
ratio” for a given signal intensity was higher at longer values of A¢, and this
could have reduced the intensity of the signal necessary for detection. Al-



152  Christopher J. Plack and Robert P. Carlyon

S S
S <]
8 3
o o
|, dB SPL |, dB SPL
a)
b)
- -
c)
- .
-— -

FIGURE 9 Schematic spectrograms of conditions producing a mid-level deterioration
(left column) or Weber’s Law (right column): (a) synchronous vs. continuous masker, (b) the
overshoot effect, (c) intensity discrimination with pedestal and notched noise synchronous
with increment, vs. continuous pedestal and noise.

though the explanation of Smith and Zwislocki was formulated before the
intensity and frequency dependence of the overshoot effect was fully deter-
mined, it is not too difficult to imagine how such a peripheral explanation
could be extended to account for the psychophysical results. For example, if
peripheral information were degraded enough to limit performance only at
intermediate intensities and at high frequencies, then the beneficial effects of
adaptation would affect thresholds only under those conditions.
Unfortunately, the hypothesis of Smith and Zwislocki cannot provide a
complete account of the overshoot effect. Some more recent experiments
performed by McFadden (1989) make the important point that, for a large
overshoot effect to occur, the masker must contain energy at frequencies
remote from the signal frequency and that this energy must be turned on
shortly before the signal (Figure 10) (Much of this information was actually
presented by Zwicker, 1965, but was largely neglected until McFadden’s
study.) As the adaptation in fibers maximally responsive to the signal is
produced mainly by masker energy close to, rather than remote from, the
signal frequency, the effect of off-frequency energy must be mediated by a
different, probably more central, mechanism. There are a number of ways
in which this could occur. For example, Bacon and Moore (1987) have
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suggested that the occurrence of a large number of onset responses in fibers
tuned away from the signal frequency might somehow prevent a central
detector from efficiently processing information in a single channel. How-
ever, it is hard to see why this “transient masking” should be greatest at
high frequencies and medium intensities.

The two explanations for the overshoot effect that we have discussed can,
individually, account for only part of the phenomenon. On the one hand,
adaptation could possibly account for the dependence of the effect on fre-
quency and intensity, but not for the role of off-frequency energy. On the
other, transient masking can explain the importance of off-frequency ener-
gy, but not the dependence of overshoot on masker level or signal frequen-
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FIGURE 10  Schematic spectrograms of some conditions used in (or relevant to) the study
by McFadden (1989). Parts (a) and (b) show the basic overshoot effect, characterized by a high
threshold at the shorter At. Part (c) shows that this high threshold does not occur with a
narrowband masker. Part (d) shows that it does not occur when there is a delay between the
onset of the off-frequency band and the signal. Part (¢) shows the high threshold does occur
when only the energy immediately surrounding the signal frequency is turned on before the
signal.
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cy. One way out of this dilemma has recently been proposed by Carlyon
and White (1992), who showed that, although having a wideband masker
was essential for a large overshoot in most conditions, this was not the case
at high frequencies and intermediate intensities. They suggested that there
are two components to the overshoot effect, one of which is mediated by
masker energy close to the signal frequency, might be due to adaptation,
and has a large effect only at high frequencies and intermediate intensities.
According to them, the other component raises thresholds at short values of
At for all combinations of signal frequency and masker intensity and is
mediated by masker energy remote from the signal frequency.

Finally, it is worth noting two important pieces of evidence indicating
that the overshoot effect is affected by the way sounds are encoded in the
auditory periphery: Bacon and Takahashi (1992) have shown that the mid-
level maximum in the overshoot is reduced in listeners with cochlear hear-
ing loss, and McFadden and Champlin (1990) have shown a reduction in
overshoot produced by the ingestion of aspirin, which is believed to affect
the action of an active mechanism in the cochlea.

B. Intensity-Independent Cues

In a tone-on-tone intensity discrimination task, the only difference between
the signal and standard tones is that the former contains more energy. This
cue is, of course, also available in a tone-in-noise task, but, despite the
similarities in the form of the Weber function for the two tasks, there is now
evidence that the detection of a tone in noise is not always strongly depen-
dent on there being a intensity difference between the noise alone and the
noise plus tone.

Richards (1992) asked listeners to detect a 200 ms tone added to a 40 Hz
wide band of noise in an experiment where the overall level of each stimulus
(noise or noise plus tone) was either varied randomly (roved) between the
two intervals to be compared or was not roved. The 30 dB rove meant that,
if listeners relied on intensity differences between the masker and the
masker plus signal, thresholds should have been much higher than in the
condition where the level was not roved: The signal would have had to be
much more intense for the masker plus signal interval to have consistently
more energy than the “masker alone” interval. Instead, thresholds increased
by only about 4 dB. Richards suggested that listeners could detect the signal
by virtue of it decreasing the “average envelope slope” of the masker; in
effect, the signal filled in the dips in the masker envelope, providing a cue
independent of overall masker intensity.

What do Richards’s data tell us about the mechanisms underlying the
different forms of the Weber functions described in previous sections? Rich-
ards and Nekrich (1993) have suggested that envelope cues are usable only
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for long-duration signals: When the signal duration is short relative to the
average period of the fluctuations in the masker’s envelope, then the cues
related to a change in this envelope are not available. In other words, a brief
signal might be perceived simply as a random fluctuation in the masker’s
envelope. As overshoot experiments necessarily use brief signals, it is likely
that the results from overshoot experiments are unaffected by envelope cues
and that the detection process is essentially the same as for intensity discrim-
ination experiments.

VIII. SUMMARY

The perception of sound intensity underlies all aspects of auditory function,
and many of the concepts we have considered here are relevant to the topics
discussed in subsequent chapters of this volume. In this chapter we have
examined several interrelated aspects of intensity perception. In the early
sections we described how the perceived magnitude, or loudness, of a sound
is related to its physical magnitude. There are severe methodological prob-
lems with trying to measure objectively an inherently subjective quantity,
although many of these can be overcome with careful choice of stimuli and
procedure. These procedures have been used to provide fairly reliable esti-
mates of the variation in loudness with intensity, frequency, and spectral
extent. Models that summate loudness over the entire excitation pattern
give an accurate account of the psychophysical data.

The way in which the large dynamic range of hearing is coded or repre-
sented in the auditory system is still a matter of speculation. It seems that,
although phase locking and spread of excitation may play a role in intensity
discrimination, there is sufficient information in the firing rates of auditory
nerve fibers tuned to the signal frequency to account for human perfor-
mance. Indeed, at moderate sound intensities the intensity information in
the auditory nerve is much richer than is needed to account for the psycho-
physical data. The fact that there is more information at moderate intensities
than is available above about 70 dB means that neural models are poor
predictors of Weber’s Law. This has lead to the idea that there is a central
limitation to intensity coding that determines Weber’s Law. The central
limitation may take the form of a channel-specific internal noise. Part of the
central limitation may result from our volatile memory for intensity that can
limit performance when comparisons are made over long time intervals or
perhaps when the memory trace is degraded by nonsimultaneous masking.
It is possible that the auditory system can form a more robust memory trace
by coding intensity relative to internal or external references. These relative
representations may be used in a stage in the identification of auditory
objects where the relative intensities of features within the sound are more
important than the absolute intensity of the sound. It is important to remind
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ourselves that sound intensity is not of great interest to the auditory system
in itself, but is vital for the higher function of extracting meaning from
sounds in the environment.

References

Arthur, R. M., Pfeiffer, R. R., & Suga, N. (1971). Properties of “two tone inhibition” in
primary auditory neurones. Journal of Physiology, 212, 593-609.

Bacon, S. P., & Moore, B. C. J. (1987). Transient masking and the temporal course of
simultaneous tone-on-tone masking. Journal of the Acoustical Society of America, 81, 257~
266.

Bacon, S. P., & Smith, M. A. (1991). Spectral, intensive, and temporal factors influencing
overshoot. Quarterly Journal of Experimental Psychology, 43A, 373-399.

Bacon, S. P., & Takahashi, G. A. (1992). Overshoot in normal-hearing and hearing-impaired
subjects. Journal of the Acoustical Society of America, 91, 2865-2871.

Berliner, J. E., & Durlach, N. 1. (1973). Intensity perception. IV. Resolution in roving-level
discrimination. Journal of the Acoustical Society of America, 53, 1270~1287.

Boone, M. M. (1973). Loudness measurements on pure tone and broad band impulsive
sounds. Acustica, 29, 198-204.

Braida, L. D., Lim, J. S., Berliner, J. E., Dutlach, N. L., Rabinowitz, W. M., & Purks, S. R.
(1984). Intensity perception. XIII. Perceptual anchor model of context coding. Journal of
the Acoustical Society of America, 76, 722-731.

Cacace, A. T., & Margolis, R. H. (1985). On the loudness of complex stimuli and its relation~
ship to cochlear excitation. Journal of the Acoustical Society of America, 78, 1568—1573.

Carlyon, R. P. (1984). Intensity discrimination in hearing. Ph.D. dissertation, University of
Cambridge, England.

Carlyon, R. P., & Beveridge, H. A. (1993). Effects of forward masking on intensity discrimi-
nation, frequency discrimination, and the detection of tones in noise. Journal of the Acousti-
cal Society of America, 93, 2886-2895.

Carlyon, R. P., & Moore, B. C. J. (1984). Intensity discrimination: A severe departure from
Weber’s law. Journal of the Acoustical Society of America, 76, 1369—1376.

Carlyon, R. P., & Moore, B. C. J. (1986a). Continuous versus gated pedestals and the severe
departure from Weber’s law. Journal of the Acoustical Society of America, 79, 453—460.
Carlyon, R. P., & Moore, B. C. . (1986b). Detection of tones in noise and the severe departure

from Weber’s Law. Journal of the Acoustical Society of America, 79, 461-464.

Carlyon, R. P., & White, L. J. (1992). Some experiments relating to the overshoot effect. In Y.
Cazals, L. Demany, & K. Horner (Eds.), Auditory physiology and perception (pp. 271-278).
Oxford: Pergamon.

Costalupes, J. A., Young, E. D., & Gibson, D. J. (1984). Effects of continuous noise back-
grounds on rate response of auditory nerve fibers in cat. Journal of Neurophysiology, 51,
1326-1344.

Delgutte, B. (1987). Peripheral auditory processing of speech information: Implications from a
physiological study of intensity discrimination. In M. E. H. Schouten (Ed.), The psycho-
physics of speech perception (pp. 333-353). Dordrecht: Nijhof.

Durlach, N. L., & Braida, L. D. (1969). Intensity perception. I. Preliminary theory of intensity
resolution. Journal of the Acoustical Society of America, 46, 372-383.

Elmasian, R., & Galambos, R. (1975). Loudness enhancement: monaural, binaural, and dichot-
ic. Journal of the Acoustical Society of America, 58, 229-234.

Elmasian, R., Galambos, R., & Bernheim, A. (1980). Loudness enhancement and decrement in
four paradigms. Journal of the Acoustical Society of America, 67, 601-607.



4 Loudness Perception and Intensity Coding 157

Evans, E. F. (1975). The sharpening of cochlear frequency selectivity in the normal and
abnormal cochlea. Audiology, 14, 419-442.

Evans, E. F., & Palmer, A. R. (1980). Relationship between the dynamic range of cochlear
nerve fibres and their spontaneous activity. Experimental Brain Research, 40, 115-118.

Fletcher, H. (1940). Auditory patterns. Reviews of Modern Physics, 12, 47-65.

Fletcher, H., & Munson, W. A. (1933). Loudness, its definition, measurement and calculation.
Journal of the Acoustical Society of America, 5, 82-108.

Florentine, M. (1986). Level discrimination of tones as a function of duration. Journal of the
Acoustical Society of America, 79, 792-798.

Florentine, M., & Buus, S. (1981). An excitation-pattern model for intensity discrimination.
Journal of the Acoustical Society of America, 70, 1646—1654.

Florentine, M., Buus, S., & Mason, C. R. (1987). Level discrimination as a function of level for
tones from 0.25 to 16 kHz. Journal of the Acoustical Society of America, 81, 1528-1541.

Florentine, M., Reed, C. M., Rabinowitz, W. M., Braida, L. D., Durlach, N. L., & Buus, S.
(1993). Intensity perception. XIV. Intensity discrimination in listeners with sensorineural
hearing loss. Journal of the Acoustical Society of America, 94, 2575-2586.

Gabriel, B., Kollmeier, B., & Mellert, V. (1994). Einfluss verschiedener Messmethoden auf
Kurven gleicher Pegellautstirke, in Fortschritte der Akustik, DAGA’94. Bad Honnef: DPG-
GmbH.

Galambos, R., Bauer, J., Picton, T., Squires, K., & Squires, N. (1972). Loudness enhancement
following contralateral stimulation. Journal of the Acoustical Society of America, 52, 1127—
1130.

Garner, W. R., & Miller, G. A. (1947). The masked threshold of pure tones as a function of
duration. jJournal of Experimental Psychology, 37, 293-303.

Green, D. M. (1988). Profile Analysis. New York: Oxford University Press.

Green, D. M., Kidd, G., & Picardi, M. C. (1983). Successive versus simultaneous comparison
in auditory intensity discrimination. Journal of the Acoustical Society of America, 73, 639—
643.

Hellman, R. H., & Meiselman, C. H. (1990). Loudness relations for individuals and groups in
normal and impaired hearing. Journal of the Acoustical Society of America, 88, 2596—2606.

Henning, G. B. (1970). Comparison of the effects of signal duration on frequency and ampli-
tude discrimination. In R. Plomp & G. F. Smoorenberg (Eds.), Frequency analysis and
periodicity detection in hearing. Leiden: A. W. Sijthoff.

Hirsh, 1., Palva, T., & Goodman, A. (1954). Difference limen and recruitment. Archives of
Otolaryngology, 60, 525-540.

Hood, J. D. (1950). Studies in auditory fatigue and adaptation. Acta Otolaryngology, Suppl. 92,
1-57.

Irwin, R. J., & Zwislocki, J. J. (1971). Loudness effects in pairs of tone bursts. Perception and
Psychophysics, 10, 189-192.

Javel, E. (1981). Suppression of auditory nerve responses. I. Temporal analysis, intensity
effects, and suppression contours. Journal of the Acoustical Society of America, 69, 1735—
1745.

Kiang, N. Y.-S., Moxon, E. C., & Levine, R. A. (1970). Auditory-nerve activity in cats with
normal and abnormal cochleas. In G. E. W. Wolstenhome & J. Knight (Eds.), Sen-
sorineural Hearing Loss (pp. 241-268). London: Churchill.

Klitzing, R. V., & Kohlrausch, A. (1994). Effect of masker level on overshoot in running- and
frozen-noise maskers. Journal of the Acoustical Society of America, 95, 2192-2201.

Krueger, L. E. (1989). Reconciling Fechner and Stevens: Toward a unified psychophysical law.
Behavioral and Brain Sciences, 12, 251-320.

Liberman, M. C. (1978). Auditory-nerve response from cats raised in a low-noise chamber.
Joumal of the Acoustical Society of America, 63, 442—455.



158  Christopher J. Plack and Robert P. Carlyon

Liberman, M. C., & Dodds, L. W. (1984). Single neuron labeling and chronic cochlear pathol-
ogy. II. Stereocilia damage and alterations of threshold tuning curves. Hearing Research,
16, 55-74.

McFadden, D. (1989). Spectral differences in the ability of temporal gaps to reset the mecha-
nisms underlying overshoot. Journal of the Acoustical Society of America, 85, 254-261.
McFadden, D., & Champlin, C. A. (1990). Reductions in overshoot during aspirin use. Journal

of the Acoustical Society of America, 87, 2634—2642.

McGill, W. J., & Goldberg, J. P. (1968). A study of the near-miss involving Weber’s Law and
pure-tone intensity discrimination. Perception and Psychophysics, 4, 105-109.

Miller, G. A. (1947). Sensitivity to changes in the intensity of white noise and its relation to
masking and loudness. Journal of the Acoustical Society of America, 19, 609-619.

Moore, B. C. J. (1989). An introduction to the psychology of hearing. New York: Academic Press.

Moore, B. C. ]., & Glasberg, B. R. (1983). Suggested formulae for calculating auditory-
filter bandwidths and excitation patterns. Journal of the Acoustical Society of America, 74,
750-753.

Moore, B. C. ]., & Glasberg, B. R. (1986). The role of frequency selectivity in the perception
of loudness, pitch and time. In B. C. ]J. Moore (Ed.), Frequency Selectivity in Hearing
(pp- 251-308). London: Academic Press.

Moore, B. C. J., & Glasberg, B. R. (in press). A revision of Zwicker’s loudness model.
Acustica.

Moore, B. C. ., Glasberg, B. R., Hess, R. F., & Birchall, ]. P. (1985). Effects of flanking noise
bands on the rate of growth of loudness of tones in normal and recruiting ears. Journal of
the Acoustical Society of America, 77, 1505-1513.

Moore, B. C. ., & Raab, D. H. (1974). Pure-tone intensity discrimination: Some experiments
relating to the “near miss” to Weber’s Law. Journal of the Acoustical Society of America, 55,
1049-1054.

Mori, S., & Ward, L. M. (1992). Intensity and frequency resolution: Masking of absolute
identification and fixed and roving discrimination. Journal of the Acoustical Society of Ameri-
ca, 91, 246-255.

Palmer, A. R., & Evans, E. F. (1979). On the peripheral coding of the level of individual
frequency components of complex sounds at high sound levels. In O. Creutzfeldt, H.
Scheich, & C. Schreiner (Eds.), Hearing mechanisms and speech (pp. 19-26). Berlin:
Springer-Verlag.

Palmer, A. R., & Evans, E. F. (1982). Intensity coding in the auditory periphery of the cat:
Responses of cochlear nerve and cochlear nucleus neurons to signals in the presence of
background noise. Hearing Research, 7, 305-323.

Pickles, J. O. (1983). Auditory-nerve correlates of loudness summation with stimulus band-
width, in normal and pathological cochleae. Hearing Research, 12, 239-250.

Plack, C. J., Carlyon, R. P., & Viemeister, N. F. (1995). Intensity discrimination under
forward and backward masking: Role of referential coding. Journal of the Acoustical Society
of America, 97, 1141-1149.

Plack, C. J., & Viemeister, N. F. (1992a). The effects of notched noise on intensity discrimina-
tion under forward masking. Journal of the Acoustical Society of America, 92, 1902-1910.

Plack, C. J., & Viemeister, N. F. (1992b). Intensity discrimination under backward masking.
Joumal of the Acoustical Society of America, 92, 3087-3101.

Plack, C. J., & Viemeister, N. F. (1993). Suppression and the dynamic range of hearing. Journal
of the Acoustical Society of America, 93, 976-982.

Pollack, 1. (1955). “Long-time” differential intensity sensitivity. Journal of the Acoustical Society
of America, 27, 380-381.

Poulton, E. C. (1979). Models for the biases in judging sensory magnitude. Psychological
Bulletin, 86, 777-803.



4 Loudness Perception and Intensity Coding 159

Raab, D. H., & Goldberg, I. A. (1975). Auditory intensity discrimination with bursts of
reproducible noise. Joumal of the Acoustical Society of America, 57, 437-447.

Relkin, E. M., & Doucet, . R. (1991). Recovery from prior stimulation. I. Relationship to
spontaneous firing rates of primary auditory neurons. Hearing Research, 55, 215-222.

Richards, V. M. (1992). The effects of level uncertainty on the detection of a tone added to
narrow bands of noise. In Y. Cazals, L. Demany, & K. Horner (Eds.), Auditory physiology
and perception (pp. 337-344). Oxford: Pergamon.

Richards, V. M., & Nekrich, R. D. (1993). The incorporation of level and level-invariant cues
for the detection of a tone added to noise. Journal of the Acoustical Society of America, 94,
2560-2574.

Robinson, D. W., & Dadson, R. S. (1956). A redetermination of the equal-loudness relations
for pure tones. British Journal of Applied Physics, 7, 166-181.

Russell, L. J., Cody, A. R., & Richardson, G. P. (1986). The responses of inner and outer hair
cells in the basal turn of the guinea-pig cochlea grown in vitro. Hearing Research, 22, 199~
216.

Sachs, M. B., & Abbas, P. J. (1974). Rate versus level functions for auditory-nerve fibres in
cats: Tone burst stimuli. Journal of the Acoustical Society of America, 56, 1835-1847.
Scharf, B. (1983). Loudness adaptation. In J. V. Tobias & E. D. Schubert (Eds.), Hearing

research and theory (Vol. 2, pp. 1-56). New York: Academic Press.

Schlauch, R. S. (1994). Intensity resolution and loudness in high-pass noise. Joumal of the
Acoustical Society of America, 95, 2171-2179.

Schlauch, R. S., & Wier, C. C. (1987). A method for relating loudness-matching and intensity-
discrimination data. Joumnal of Speech and Hearing Research, 30, 13-20.

Siebert, W. M. (1965). Some implications of the stochastic behavior of primary auditory
neurons. Kybernetik, 2, 205-215.

Smith, R. L., & Zwislocki, J. J. (1975). Short-term adaptation and incremental response of
single auditory-nerve fibers. Biological Cybernetics, 17, 169-182.

Stephens, S. D. G. (1974). Methodological factors influencing loudness of short duration
sounds. Journal of Sound and Vibration, 37, 235-246.

Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64, 153-181.

Stevens, S. S. (1971). Issues in psychophysical measurement. Psychological Bulletin, 78, 426—
450.

Stevens, S. S., & Guirao, M. (1967). Loudness functions under inhibition. Perception and
Psychophysics, 2, 459—-465.

Suzuki, Y., & Sone, T. (1994). Frequency characteristics of loudness perception: Principles and
applications. In A. Schick (Ed.), Contributions to psychological acoustics (pp. 193-221).
Oldenburg: Bibliotheks und Informationssystem der Universitat Oldenburg.

Tyler, R. S. (1986). Frequency resolution in hearing-impaired listeners. In B. C. J. Moore
(Ed.), Frequency selectivity in hearing (pp. 309-371). London: Academic Press.

Viemeister, N. F. (1972). Intensity discrimination of pulsed sinusoids: the effects of filtered
noise. Journal of the Acoustical Society of America, 51, 1256-1269.

Viemeister, N. F. (1983). Auditory intensity discrimination at high frequencies in the presence
of noise. Science, 221, 1206—1208.

Viemeister, N. F. (1988). Intensity coding and the dynamic range problem. Hearing Research,
34, 267-274.

Viemeister, N. F., & Bacon, S. P. (1988). Intensity discrimination, increment detection, and
magnitude estimation for 1-kHz tones. Journal of the Acoustical Society of America, 84, 172~
178.

Ward, L. M., & Davidson, K. P. (1993). Where the action is: Weber fractions as a function of
sound pressure at low frequencies. Journal of the Acoustical Society of America, 94, 2587—
2594.



160  Christopher J. Plack and Robert P. Carlyon

Warren, R. M. (1970). Elimination of biases in loudness judgements for tones. Journal of the
Acoustical Society of America, 48, 1397-1403.

Winslow, R. L., & Sachs, M. B. (1988). Single tone intensity discrimination based on auditory-
nerve rate responses in backgrounds of quiet, noise and stimulation of the olivocochlear
bundle. Hearing Research, 35, 165-190.

Young, E. D., & Barta, P. E. (1986). Rate responses of auditory-nerve fibers to tones in noise
near masked threshold. Joumal of the Acoustical Society of America, 79, 426-442.

Zeng, F.-G., & Turner, C. W. (1992). Intensity discrimination in forward masking. Journal of
the Acoustical Society of America, 92, 782-787.

Zeng, F.-G., Turner, C. W., & Relkin, E. M. (1991). Recovery from prior stimulation. II.
Effects upon intensity discrimination. Hearing Research, 55, 223-230.

Zwicker, E. (1956). Die Elementaren Grundlagen zur Bestimmung der Informationskapazitit
des Gehors. Acustica, 6, 365-381.

Zwicker, E. (1958). Uber psychologische und methodische Grundlagen der Lautheit. Acustica,
8, 237-258.

Zwicker, E. (1963). Uber die Lautheit von ungedrosselten und degrosselten Schallen. Acustica,
13, 194-211.

Zwicker, E. (1965). Temporal effects in simultaneous masking by white-noise bursts. Journal of
the Acoustical Society of America, 37, 653-663.

Zwicker, E. (1970). Masking and psychological excitation as consequences of the ear’s frequen-
cy analysis. In R. Plomp & G. F. Smoorenburg (Eds.), Frequency analysis and periodicity
detection in hearing (pp. 376-396). Leiden: A. W. Sijthoff.

Zwicker, E., & Fastl, H. (1990). Psychoacoustics—Facts and models. Berlin: Springer-Verlag.

Zwicker, E., Flottorp, G., & Stevens, S. S. (1957). Critical bandwidth in loudness summation.
Joumal of the Acoustical Society of America, 29, 548-557.

Zwislocki, ]. J., & Jordan, H. N. (1986). On the relations of intensity jnd’s to loudness and
neural noise. Joumnal of the Acoustical Society of America, 79, 772-780.

Zwislocki, J. J., Ketkar, 1., Cannon, M. W., & Nodar, R. H. (1974). Loudness enhancement
and summation in pairs or short sound bursts. Perception and Psychophysics, 16, 91-95.

Zwicker, E., & Scharf, B. (1965). A model of loudness summation. Psychological Review, 72,
3-26.

Zwislocki, J. J., & Sokolich, W. G. (1974). On loudness enhancement of a tone burst by a
preceding tone burst. Perception and Psychophysics, 16, 87-90.



CHAPTERS

Frequency Analysis and Masking

Brian C. J. Moore

I. INTRODUCTION

Frequency analysis refers to the ability of the auditory system to separate or
resolve (to a certain extent) the components in a complex sound. For exam-
ple, if two tuning forks, each tuned to a different frequency, are struck
simultaneously, two different tones can usually be heard, one corresponding
to each frequency. This ability is also known as frequency selectivity and
frequency resolution; these terms will be used interchangeably in this chapter.

It seems likely that frequency analysis depends to a large extent on the
filtering that takes place in the cochlea (see Chapters 2 and 3, this volume).
Thus, any complex sound, such as a note produced by a musical instrument
or a vowel sound produced by the human voice, undergoes such an analysis
at an early stage of auditory processing; the sinusoidal components of the
sound are separated, and coded independently in the auditory nerve, pro-
vided that their frequency separation is sufficiently large. Furthermore, this
stage of analysis cannot be bypassed; all sounds are subject to frequency
analysis within the cochlea. Hence, the percept of such sounds as a coherent
whole depends upon the representations of the individual components be-
ing “reassembled” at some later stage in the auditory system (see Chapters
8, 11 and 12).

Hearing
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Frequency analysis is most often demonstrated and quantified by studying
masking. Masking may be regarded as reflecting the limits of frequency analy-
sis. If a sound of a given frequency is masked by another sound with a differ-
ent frequency, then the auditory system has failed to resolve the two sounds.
Hence, by measuring when one sound is just masked by another, it is possible
to characterize the frequency analysis capabilities of the auditory system.

II. THE POWER SPECTRUM MODEL AND THE CONCEPT
OF THE CRITICAL BAND

Fletcher (1940) measured the threshold for detecting a sinusoidal signal as a
function of the bandwidth of a bandpass noise masker. The noise was
always centered at the signal frequency, and the noise power density was
held constant. Thus, the total noise power increased as the bandwidth in-
creased. This experiment has been repeated several times since then, with
similar results (Hamilton, 1957; Greenwood, 1961a; Spiegel, 1981; Schoo-
neveldt & Moore, 1989; Bernstein & Raab, 1990; Moore, Shailer, Hall, &
Schooneveldt, 1993). An example of the results, taken from Moore et al.
(1993), is given in Figure 1. The threshold of the signal increases at first as
the noise bandwidth increases, but then flattens off; further increases in
noise bandwidth do not change the signal threshold significantly.

To account for this pattern of results, Fletcher (1940) suggested that the
peripheral auditory system behaves as if it contained a bank of bandpass
filters, with overlapping passbands. These filters are now called the auditory
Nilters. Fletcher suggested that the signal was detected by attending to the
output of the auditory filter centered on the signal frequency. Increases in
noise bandwidth result in more noise passing through that filter, as long as
the noise bandwidth is less than the filter bandwidth. However, once the
noise bandwidth exceeds the filter bandwidth, further increases in noise
bandwidth will not increase the noise passing through the filter. Fletcher
called the bandwidth at which the signal threshold ceased to increase the
critical bandwidth (CB). It is usually assumed that this bandwidth is closely
related to the bandwidth of the auditory filter at the same center frequency.

Traditionally, the value of the CB has been estimated by fitting the data
with two straight lines, a horizontal line for large bandwidths where thresh-
olds are roughly constant, and a sloping line for smaller bandwidths. How-
ever, this approach has two problems. First, the data often show no distinct
“break point” at which the slope abruptly decreases to 0. Rather, the slope
gradually decreases as the bandwidth increases. Second, small errors of
measurement can lead to rather large errors in the estimated CB. Thus,
Fletcher’s band-widening experiment does not provide a precise way of
estimating the bandwidth of the auditory filter (Patterson & Moore, 1986).
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FIGURE 1 The threshold of a 2 kHz sinusoidal signal plotted as a function of the band-
width of a noise masker centered at 2 kHz. (From Moore et al., 1993.)

Nevertheless, the experiment is important for the concepts to which it gave
rise.

Fletcher’s experiment led to a model of masking known as the power-
spectrum model, which is based on the following assumptions:

1. The peripheral auditory system contains an array of linear overlap-
ping bandpass filters.

2. When trying to detect a signal in a noise background, the listener is
assumed to use just one filter with a center frequency close to that
of the signal. Usually, it is assumed that the filter used is the one
that has the highest signal-to-masker ratio at its output.

3. Only the components in the noise that pass through the filter have
any effect in masking the signal.

4. The threshold for detecting the signal is determined by the amount
of noise passing through the auditory filter; specifically, the thresh-
old is assumed to correspond to a certain signal-to-noise ratio, K,
at the output of the filter. The stimuli are represented by their
long-term power spectra, that is, the relative phases of the compo-
nents and the short-term fluctuations in the masker are ignored.

We now know that none of these assumptions is strictly correct: The filters
are not linear, but are level dependent (Moore & Glasberg, 1987b); listeners
can combine information from more than one filter to enhance signal detec-
tion (Spiegel, 1981; Buus, Schorer, Florentine, & Zwicker, 1986; see also
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Chapter 4); noise falling outside the passband of the auditory filter centered at
the signal frequency can affect the detection of that signal (Hall, Haggard, &
Fernandes, 1984; see also Chapter 7); and fluctuations in the masker can play a
strong role (Patterson & Henning, 1977; Kohlrausch, 1988; Moore, 1988).

These failures of the model do not mean that the basic concept of the
auditory filter is wrong. Indeed, the concept is widely accepted and has
proven to be very useful. Although the assumptions of the model do some-
times fail, it works well in many situations. Nevertheless, it should be
remembered that simplifying assumptions are often made in attempts to
characterize and model the auditory filter.

In analyzing the results of his experiment, Fletcher made a simplifying
assumption. He assumed that the shape of the auditory filter could be ap-
proximated as a simple rectangle, with a flat top and vertical edges. For such
a filter all components within the passband of the filter are passed equally,
and all components outside the passband are removed totally. The width of
the passband of this hypothetical filter would be equal to the CB described
previously. However, it should be emphasized that the auditory filter is not
rectangular and that the data rarely show a distinct break point correspond-
ing to the CB. It is surprising how, even today, many researchers talk about
the critical band as if the underlying filter were rectangular.

Fletcher pointed out that the value of the CB could be estimated indi-
rectly, by measuring the power of a sinusoidal signal (P,) required for the
signal to be detected in broadband white noise, given the assumptions of the
power-spectrum model. For a white noise with power density Ny, the total
noise power falling within the CB is N, X CB. According to assumption 4,

P,/(CB X Ny = K 6]
and
CB = P,/(K X Ng). 2)

By measuring P, and N, and by estimating K, the value of the CB can be
evaluated.

Fletcher estimated that K was equal to 1, indicating that the value of the
CB should be equal to P,/N,. The ratio P,/ N, is now usually known as the
critical ratio. Unfortunately, Fletcher’s estimate of K has turned out not to be
accurate. More ‘recent experiments show that K is typically about 0.4
(Scharf, 1970). Thus, at most frequencies the critical ratio is about 0.4 times
the value of the CB estimated by more direct methods, such as the band-
widening experiment. Also, K varies with center frequency, increasing
markedly at low frequencies, so the critical ratio does not give a correct
indication of how the CB varies with center frequency (Patterson & Moore,
1986; Moore, Peters, & Glasberg, 1990).

One other aspect of the data in Figure 1 should be noted. If the assump-
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tions of the power spectrum model were correct and if the auditory filter
were rectangular, then for subcritical bandwidths the signal threshold should
increase by 3 dB per doubling of bandwidth; each doubling of bandwidth
should lead to a doubling of the noise power passing through the filter,
which corresponds to a 3 dB increase in level. In fact, the rate of change is
markedly less than this. The exact slope of the function varies from study to
study, but it has often been found to be less than the theoretical 3 dB per
doubling of bandwidth (Bernstein & Raab, 1990). The deviation from the
theoretical value can probably be explained by two factors: the filter is not
actually rectangular, but has a rounded top and sloping edges; and for
narrow noise bandwidths, the slow fluctuations in the noise have a deleteri-
ous effect on detection (Bos & de Boer, 1966; Patterson & Henning, 1977).

Ill. ESTIMATING THE SHAPE OF THE AUDITORY FILTER

Most methods for estimating the shape of the auditory filter at a given
center frequency are based on the assumptions of the power-spectrum mod-
el of masking. If the masker is represented by its long-term power spec-
trum, N(f), and the weighting function or shape of the auditory filter is
W(f), then the power-spectrum model is expressed by

P, = KJ:) W(HN() df, 3

where P, is the power of the signal at threshold. By manipulating the
masker spectrum, N(f), and measuring the corresponding changes in P,, it
is possible to derive the filter shape, W().

The masker chosen to measure the auditory filter shape should be such
that the assumptions of the power-spectrum model are not strongly vio-
lated. A number of factors affect this choice. If the masker is composed of
one or more sinusoids, beats between the signal and masker (see Chapter 1)
may provide a cue to the presence of the signal. This makes sinusoids
unsuitable as maskers for estimating the auditory filter shape, since the
salience of beats changes as the masker frequency is altered; this violates the
assumption of the power-spectrum model that threshold corresponds to a
constant signal-to-masker ratio at the output of the auditory filter.

In general, noise maskers are more suitable than sinusoids for estimating
the auditory filter shape, because noises have inherent amplitude fluctua-
tions that make beats much less effective as a cue. However, for narrowband
noises, which have relatively slow fluctuations, temporal interactions be-
tween the signal and masker may still be audible. In addition, the slow
fluctuations may strongly influence the detectability of the signal in a way
that depends on the difference between the center frequency of the masker
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and the frequency of the signal (Buus, 1985; Moore & Glasberg, 1987a). For
these reasons, the assumptions of the power-spectrum model are best satis-
fied using reasonably broadband noise maskers.

A second important consideration in choosing a noise masker for mea-
suring auditory filter shapes is that the filter giving the highest signal-to-
masker ratio is not necessarily centered at the signal frequency. For exam-
ple, if the signal has a frequency of 1 kHz, and the masker spectrum consists
entirely of frequencies above 1 kHz, the highest signal-to-masker ratio
may occur for a filter centered below 1 kHz. The process of detecting the
signal through a filter that is not centered at the signal frequency is called off
frequency listening. In this context, the center frequency of the filter is “off
frequency.” Furthermore, if the masker spectrum is concentrated primarily
above or below the signal frequency, there may be a range of filter center
frequencies over which the signal-to-masker ratio is sufficiently high to give
useful information. Under these conditions, the observer may combine
information over several auditory filters, rather than listening through a
single filter as assumed by the power-spectrum model (Patterson & Moore,
1986; Moore, Glasberg, & Simpson, 1992; for a similar concept applied to
intensity discrimination, see Chapter 4).

A. Psychophysical Tuning Curves

The measurement of psychophysical tuning curves (PTCs) involves a pro-
cedure that is analogous in many ways to the determination of a neural
tuning curve (Chistovich, 1957; Small, 1959); see Chapter 3. The signal is
fixed in level, usually at a very low level, say, 10 dB SL. The masker can be
either a sinusoid or a narrow band of noise, but a noise is generally pre-
ferred, for the reasons given earlier.

For each of several masker center frequencies, the level of the masker
needed just to mask the signal is determined. Because the signal is at a low
level it is assumed that it will produce activity primarily in one auditory
filter. It is assumed further that, at threshold, the masker produces a con-
stant output from that filter, in order to mask the fixed signal. Thus the
PTC indicates the masker level required to produce a fixed output from the
auditory filter as a function of frequency. Normally, a filter characteristic is
determined by plotting the output from the filter for an input varying in
frequency and fixed in level. However, if the filter is linear, the same result
can be obtained by plotting the input required to give a fixed output. Thus,
if linearity is assumed, the shape of the auditory filter can be obtained
simply by inverting the PTC. Examples of some PTCs are given in Figure
2; the data are taken from Vogten (1974).

It has been assumed so far that only one auditory filter is involved in the
determination of a PTC. However, there is now good evidence that off-
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FIGURE 2 Psychophysical tuning curves determined in simultaneous masking, using
sinusoidal signals at 10 dB SL. For each curve, the solid diamond below it indicates the
frequency and the level of the signal. The masker was a sinusoid that had a fixed starting phase
relationship to the brief, 50 ms, signal. The masker level, L, required for threshold is plotted
as a function of masker frequency, f,, on a logarithmic scale. The dashed line shows the
absolute threshold for the signal. (From Vogten, 1974, by permission of the author.)

frequency listening can influence PTCs. When the masker frequency is
above the signal frequency, the highest signal-to-masker ratio occurs for a
filter centered below the signal frequency. Conversely, when the masker
frequency is below the signal frequency, the highest signal-to-masker ratio
occurs for a filter centered above the signal frequency. In both these cases,
the masker level required for threshold is higher than would be the case if
off-frequency listening did not occur. When the masker frequency equals
the signal frequency, the signal-to-masker ratio is similar for all auditory
filters that are excited and off-frequency listening is not advantageous. The
overall effect of off~frequency listening is that the PTC has a sharper tip than
would be obtained if only one auditory filter were involved (Johnson-
Davies & Patterson, 1979; O’Loughlin & Moore, 1981a, 1981b).

One way to limit off-frequency listening is to add to the masker a
fixed, low-level noise with a spectral notch centered at the signal frequency
(O’Loughlin & Moore, 1981a; Moore, Glasberg, & Roberts, 1984; Patterson
& Moore, 1986). Such a masker should make it disadvantageous to use an
auditory filter whose center frequency is shifted much from the signal fre-
quency. The effect of using such a noise, in addition to the variable narrow-
band masker, is illustrated in Figure 3. The main effect is to broaden the tip
of the PTC; the slopes of the skirts are relatively unaffected.

A final difficulty in using PTCs as a measure of frequency selectivity is
connected with the nonlinearity of the auditory filter. Evidence will be
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FIGURE 3 Comparison of PTCs where off-frequency listening is not restricted (trian-

gles) and where it is restricted using a low-level notched noise centered at the signal frequency
(squares). (Data from Moore et al., 1984.)

presented later indicating that the auditory filter is not strictly linear, but
changes its shape with level. The shape seems to depend more on the level at
the input to the filter than on the level at the output (although this is still a
matter of some debate, as will be discussed later in this chapter). However,
in determining a PTC, the input is varied while the output is held (roughly)
constant. Thus, effectively, the underlying filter shape changes as the
masker frequency is altered. This can give a misleading impression of the
shape of the auditory filter; in particular, it leads to an underestimation of
the slope of the lower skirt of the filter and an overestimation of the slope of
the upper skirt (Verschuure, 1981a, 1981b; Moore & O’Loughlin, 1986).

B. The Notched-Noise Method

To satisfy the assumptions of the power-spectrum model, it is necessary to
use a masker that limits the amount by which the center frequency of the
filter can be shifted (off-frequency listening) and that limits the range of
filter center frequencies over which the signal-to-masker ratio is sufficiently
high to be useful. This can be achieved using a noise masker with a spectral
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notch around the signal frequency. For such a masker, the highest signal-to-
masker ratio occurs for a filter that is centered reasonably close to the signal
frequency, and performance is not improved (or is improved very little) by
combining information over filters covering a range of center frequencies
(Patterson, 1976; Patterson & Moore, 1986, Moore et al., 1992). The filter
shape can then be estimated by measuring signal threshold as a function of
the width of the notch.

For moderate noise levels, the auditory filter is almost symmetrical on a
linear frequency scale (Patterson, 1974, 1976; Patterson & Nimmo-Smith,
1980; Moore & Glasberg, 1987b). Hence, the auditory filter shape can be
estimated using a notched-noise masker with the notch placed symmetri-
cally about the signal frequency. The method is illustrated in Figure 4. For a
masker with a notch width of 2Af, and a center frequency f,, Eq. (3) be-
comes

f—Af ®
kN [ W kN [ W) @

where N, is the power spectral density of the noise in its passbands. The
two integrals on the right-hand side of Eq. (4) represent the respective areas
in Figure 4 where the lower and upper noise bands overlap the filter. Be-
cause both the filter and the masker are symmetrical about the signal fre-
quency, these two areas are equal. Thus, the function relating P, to the
width of the notch provides a measure of the integral of the auditory filter.
Hence, the value of W() at a given deviation Af from the center frequency
is given by the slope of the threshold function at a notch width of 2Af.

A - Af A
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Q .
2 Noise Noise
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£
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FIGURE 4  Schematic illustration of the technique used by Patterson (1976) to determine
the shape of the auditory filter. The threshold of the sinusoidal signal is measured as a function
of the width of a spectral notch in the noise masker. The amount of noise passing through the
auditory filter centered at the signal frequency is proportional to the shaded areas.
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When the auditory filter is asymmetric, as it is at high masker levels (see
later), the filter shape can still be measured using a notched-noise masker if
some reasonable assumptions are made and if the range of measurements is
extended to include conditions where the notch is placed asymmetrically
about the signal frequency. It is necessary first to assume that the auditory
filter shape can be approximated by a simple mathematical expression with
a small number of free parameters. Patterson, Nimmo-Smith, Weber, and
Milroy (1982) suggested a family of such expressions, all having the form of
an exponential with a rounded top, called roex for brevity. The simplest of
these expressions was called the roex(p) filter shape. It is convenient to mea-
sure frequency in terms of the absolute value of the deviation from the
center frequency of the filter, f;, and to normalize this frequency variable by
dividing by the center frequency of the filter. The new frequency variable,

g1

g=If-flif ®)
The roex(p) filter shape is then given by
W(g) = (1 + pg) exp(-pg), (6)

where p is a parameter that determines both the bandwidth and the slope
of the skirts of the auditory filter. The higher the value of p, the more
sharply tuned is the filter. The equivalent rectangular bandwidth (ERB) is
equal to 4f./p (see Chapter 1 for a definition of the ERB). When the filter is
assumed to be asymmetric, then p is allowed to have different values on the
two sides of the filter: p; for the lower branch and p, for the upper branch.
The ERB in this case is 2f/p; + 2f./p,,.

Having assumed this general form for the auditory filter shape, the values
of p; and p,, for a particular experiment can be determined by rewriting Eq.
(4) in terms of the variable ¢ and substituting the preceding expression for
W; the value of p, is used for the first integral, and the value of p, for the
second. The equation can then be solved analytically; for full details see
Patterson et al. (1982) and Glasberg, Moore, and Nimmo-Smith (1984a).
Starting values of p; and p, are assumed, and the equation is used to predict
the threshold for each condition (for notches placed both symmetrically and
asymmetrically about the signal frequency). The center frequency of the
filter is allowed to shift for each condition so as to find the center frequency
giving the highest signal-to-masker ratio; this center frequency is assumed
in making the prediction for that condition. Standard least-squares minimi-
zation procedures are then used to find the values of p, and p, that minimize
the mean-squared deviation between the obtained and predicted values. The
minimization is done with the thresholds expressed in decibels. Full details
are given in Patterson and Nimmo-Smith (1980), Glasberg et al. (1984a),
Patterson and Moore (1986) and Glasberg and Moore (1990).
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The roex(p) filter shape is usually quite successful in predicting the data
from notched-noise experiments, except when the thresholds cover a wide
range of levels or when the masked thresholds approach the absolute thresh-
old. In such cases there is a decrease in the slope of the function relating
threshold to notch width, a decrease that is not predicted by the roex(p)
filter shape. This can be accommodated in two ways. The first involves
limiting the dynamic range of the filter, using a second parameter, r. This
gives the roex(p,r) filter shape of Patterson et al. (1982):

W(g) = (1 — n(1 + pg) exp(—pg) + r. ™)

As before, p can have different values for the upper and lower branches of
the filter. However, the data can generally be well predicted using the same
value of r for the two sides of the filter (Tyler, Hall, Glasberg, Moore, &
Patterson, 1984; Glasberg & Moore, 1986). The method of deriving filter
shapes using this expression is exactly analogous to that described earlier.

When the noise level used is relatively high and a large range of notch
widths is used, there may be systematic deviations of the data from values
predicted by the roex(p,r) model. In such cases, a better fit to the data can be
obtained using a model in which the slope of the filter is assumed to de-
crease once its attenuation exceeds a certain value. This is achieved using the
roex(p,w,t) model suggested by Patterson et al. (1982). The filter is assumed
to be the sum of two exponentials, both of which are rounded:

W(g) = (1 — w)(1 + pg) exp(—pg) + w(l + 1g) exp(—tg) 8

The parameter ¢ determines the slope of the filter at large deviations from
the center frequency, and the parameter w determines the point at which the
shallower “tail” takes over from the steeper central passband. In principle,
all three parameters, p, w, and ¢, could be different for the two sides of the
filter, giving six free parameters all together. In practice, it has been found
that the results can be well fitted by assuming that one side of the filter is a
“stretched” version of the other side (Patterson & Nimmo-Smith, 1980;
Glasberg, Moore, Patterson, & Nimmo-Smith, 1984b). In this case, w is
assumed to be the same for the two sides of the filter, and the ratio p/¢t is
assumed to be the same for the two sides of the filter. This reduces the
number of free parameters to four.

One limitation of the notched-noise method occurs when the auditory
filter is markedly asymmetric, as it is, for example, at high sound levels. In
such cases, the method does not define the sharper side of the filter very
well. As a rule of thumb, when the value of p for one side of the filter is
more than twice that for the other, the slope of the steeper side is very
poorly determined.

A second potential problem with the method is that components within
the upper band of noise may interact to produce combination products
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whose frequencies lie within the notch in the noise. Such combination
products are produced by nonlinear processes within the cochlea, and they
occur even when the input is at low to moderate sound levels (Greenwood,
1971; Smoorenburg, 1972a, 1972b). The effect of this is that the upper band
of noise may produce more masking than would be the case if no combina-
tion products were present. This can result in a derived filter shape with a
shallower upper skirt. However, the effect on the derived filter shape is
usually small (Moore, Glasberg, van der Heijden, Houtsma, & Kohlrausch,
1995).

C. The Rippled-Noise Method

Several researchers have estimated auditory filter shapes using rippled noise,
sometimes also called comb-filtered noise, as a masker. This is produced by
adding white noise to a copy of itself that has been delayed by T seconds.
The resulting spectrum has peaks spaced at 1/ T Hz, with minima in be-
tween. When the delayed version of the noise is added to the original in
phase, the first peak in the spectrum of the noise occurs at 0 Hz; this noise is
referred to as cosine+. When the polarity of the delayed noise is reversed, the
first peak is at 0.5/T Hz; this is referred to as cosine—. The sinusoidal signal
is usually fixed in frequency, and the values of T are chosen so that the
signal falls at either a maximum or minimum in the masker spectrum; the
signal threshold is measured for both cosine+ and cosine— noise for various
ripple densities (different values of T).

The auditory filter shape can be derived from the data either by approx-
imating the auditory filter as a Fourier series (Houtgast, 1977; Pick, 1980) or
by a method similar to that described for the notched-noise method (Glas-
berg et al., 1984a; Patterson & Moore, 1986). The filter shapes obtained in
this way are generally similar to those obtained using the notched-noise
method, although they tend to have a slightly broader and flatter top (Glas-
berg et al., 1984a). The method seems to be quite good for defining the
shape of the tip of the auditory filter, but it does not allow the auditory filter
shape to be measured over a wide dynamic range.

D. Allowing for the Transfer Function
of the Outer and Middle Ear

The transfer function of the outer and middle ear varies markedly with
frequency, particularly at very low and high frequencies. Clearly this can
have a significant influence on measures of frequency selectivity. For exam-
ple, if one of the bands of noise in a notched-noise experiment is very low or
high in center frequency, it will be strongly attenuated by the middle ear and
so will not do much masking. It is possible to conceive of the auditory filter
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shape as resulting from the overall response properties of the outer and
middle ear and the cochlea. However, it is theoretically more appealing to
conceive of the auditory filter as resulting from processes occurring after the
outer and middle ear. The effect of the outer and middle ear can be thought
of as a fixed frequency-dependent attenuation applied to all stimuli before
auditory filtering takes place.

If this is the case, then the frequency-dependent attenuation should be
taken into account in the fitting procedure for deriving filter shapes. Essen-
tially, the spectra of the stimuli at the input to the cochlea have to be
calculated by assuming a certain form for the frequency-dependent transfer.
The fitting procedure then has to work on the basis of these “corrected”
spectra. In practice, this means that the integral in Eq. (3) cannot be solved
analytically, but has to be evaluated numerically. Glasberg and Moore
(1990) have considered several possible types of “correction.” One is appro-
priate for stimuli presented in a free field (e.g., via a loudspeaker in an
anechoic chamber) or via earphones designed to have a free-field response,
such as the Sennheiser HD414 or the Etymotic Research ER4. Another is
appropriate for earphones designed to give a flat response at the eardrum,
such as the Etymotic Research ER2. In both cases, the “correction” may be
modified to take into account the specific properties of the transducers used.
Glasberg and Moore (1990) list a computer program for deriving auditory
filter shapes from notched-noise data that includes the option of using “cor-
rections” to allow for the transfer function of the outer and middle ear.

E. An Example of Measurement of the Auditory Filter Shape

Figure 5 shows an example of data obtained using the notched-noise meth-
od, and of the filter shape obtained. The data are for a normally hearing
subject and a signal frequency of 200 Hz. In the top panel, signal thresholds
are plotted as a function of the width of the spectral notch in the noise
masker. Asterisks indicate conditions where the spectral notch was placed
symmetrically about the signal frequency; the notch width, 4, is specified as
the deviation of each edge of the notch from the signal frequency, divided
by the signal frequency. The left-pointing arrows indicate conditions where
the lower edge of the notch was 0.2 units farther from the signal frequency
than the upper edge. The right-pointing arrows indicate conditions where
the upper edge of the notch was 0.2 units farther from the signal frequency
than the lower edge. Moving the lower edge of the notch father from the
signal frequency has a greater effect than moving the upper edge farther
from the signal frequency.

The lines in the top panel are the fitted values derived from the roex(p,r)
model, as described by Glasberg and Moore (1990). The model fits the data
well. The derived filter shape is shown in the bottom panel. The filter is
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FIGURE 5 The top panel shows thresholds for a 200 Hz signal as a function of the width
of a notch in a noise masker. The value on the abscissa is the deviation of the nearer edge of the
notch from the signal frequency, divided by the signal frequency, represented by the symbol A.
Asterisks (*) indicate conditions where the notch was placed symmetrically about the signal
frequency. Right-pointing arrows indicate conditions where the upper edge of the notch was
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somewhat asymmetric, with a shallower lower branch. The ERB is 48 Hz,
which is typical at this center frequency.

IV. SUMMARY OF THE CHARACTERISTICS
OF THE AUDITORY FILTER

A. Variation with Center Frequency

Moore and Glasberg (1983b) presented a summary of experiments measur-
ing auditory filter shapes using symmetric notched-noise maskers. All of
the data were obtained at moderate noise levels and were analyzed using the
roex(p,r) filter shape. Glasberg and Moore (1990) updated that summary,
including results that extend the frequency range of the measurements and
data from experiments using asymmetric notches. The ERBs of the filters
derived from the data available in 1983 are shown as asterisks in Figure 6.
The dashed line shows the equation fitted to the data in 1983. Other sym-
bols show ERBs estimated in more recent experiments, as indicated in the
figure.

The solid line in Figure 6 provides a good fit to the ERB values over the
whole frequency range tested. It is described by the following equation:

ERB = 24.7(4.37F + 1), ©)

where F is center frequency in kHz. This equation is 2 modification of one
originally suggested by Greenwood (1961b) to describe the variation of the
CB with center frequency. He based it on the assumption that each CB
corresponds to a constant distance along the basilar membrane. Although
the constants in Eq. (9) differ from those given by Greenwood, the form of
the equation is the same as his. Each ERB corresponds to a distance of about
0.89mm on the basilar membrane.

It should be noted that the function specified by Eq. (9) differs somewhat
from the “traditional” critical band function (Zwicker, 1961), which flattens
off below 500 Hz at a value of about 100 Hz. The traditional function was
obtained by combining data from a variety of experiments. However, the
data were sparse at low frequencies, and the form of the function was
strongly influenced by measures of the critical ratio. As described earlier,
the critical ratio does not provide a good estimate of the CB, particularly at
low frequencies. It seems clear that the CB does continue to decrease below
500 Hz.

0.2 units farther away from the signal frequency than the lower edge. Left-pointing arrows
indicate conditions where the lower edge of the notch was 0.2 farther away than the upper
edge. The fact that the left-pointing arrows are markedly below the right-pointing arrows
indicates that the filter is asymmetric. The bottom panel shows the auditory filter shape derived
from the data. (From Moore et al., 1990.)
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FIGURE 6 Estimates of the auditory filter bandwidth from a variety of experiments,
plotted as a function of center frequency. The dashed line represents the equation suggested by
Moore and Glasberg (1983b). The solid line represents the equation suggested by Glasberg and
Moore (1990). (Adapted from Glasberg & Moore, 1990.)

It is sometimes useful to plot experimental data and theoretical functions
on a frequency-related scale based on units of the CB or ERB of the audi-
tory filter. A traditional scale of this type is the Bark scale (Zwicker &
Terhardt, 1980) where the number of Barks is indicated by the symbol z. A
good approximation to the traditional Bark scale is

z = [26.8/(1 + 1.96/F)] — 0.53 (10)

(Traunmiiller, 1990). A scale based on the ERB of the auditory filter, de-
rived from Eq. (9), is

Number of ERBs, E = 21.4 log((4.37F + 1) (11

Auditory filter bandwidths for young, normally hearing subjects vary
relatively little across subjects; the standard deviation of the ERB is typically
about 10% of its mean value (Moore, 1987; Moore et al., 1990). However,
the variability tends to increase at very low frequencies (Moore et al., 1990)
and at very high frequencies (Patterson et al., 1982; Shailer, Moore, Glas-
berg, Watson, & Harris, 1990).
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B. Variation with Level

If the auditory filter were linear, then its shape would not vary with the level
of the noise used to measure it. Unfortunately, this is not the case. Moore
and Glasberg (1987b) presented a summary of measurements of the audi-
tory filter shape using maskers with notches placed asymmetrically about
the signal frequency. They concluded that the lower skirt of the filter be-
comes less sharp with increasing level, while the higher skirt becomes
slightly steeper. Glasberg and Moore (1990) reanalyzed the data from the
studies summarized in that paper, but using a modified fitting procedure
including “corrections” for the transfer function of the middle ear. They
also examined the data presented in Moore et al. (1990) and Shailer et al.
(1990). The reanalysis led to the following conclusions:

1. The auditory filter for a center frequency of 1 kHz is roughly sym-
metric on a linear frequency scale when the level of the noise is approx-
imately 51 dB/ERB. This corresponds to a noise spectrum level of about 30
dB. The auditory filters at other center frequencies are approximately sym-
metric when the effective input levels to the filters are equivalent to the level
of 51 dB/ERB at 1 kHz (after making allowance for changes in relative level
produced by passage of the sound through the outer and middle ear).

2. The low-frequency skirt of the auditory filter becomes less sharp with
increasing level. The variation can be described in terms of the parameter p;,.
Let X denote the effective input level in dB/ERB. Let p,xy denote the value
of p; at level X. Then,

Puxy = Pis1y — O~38(PI(51)/P1(51,1k))(X - 51), (12)

where pys,) is the value of p at that center frequency for an effective input
noise level of 51 dB/ERB and p;5,, 14, is the value of p; at 1 kHz for an input
level of 51 dB/ERB.

3. Changes in slope of the high-frequency skirt of the filter with level are
less consistent. At medium center frequencies (1-4 kHz) there is a trend for
the slope to increase with increasing level, but at low center frequencies
there is no clear trend with level, and the filters at high center frequencies
show a slight decrease in slope with increasing level.

These statements are based on the assumption that, although the auditory
filter is not linear, it may be considered as approximately linear at any given
noise level. Furthermore, the sharpness of the filter is assumed to depend on
the input level to the filter, not the output level. This issue is considered
further later. Figure 7 illustrates how the shape of the auditory filter varies
with input level for a center frequency of 1 kHz.
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FIGURE 7 The shape of the auditory filter centered at 1 kHz, plotted for input sound
levels ranging from 20 to 90 dB SPL/ERB. The level at the output of the filter is plotted as a
function of frequency. On the low-frequency side, the filter becomes progressively less sharply
tuned with increasing sound level. On the high-frequency side, the sharpness of tuning in-
creases slightly with increasing sound level. At moderate sound levels the filter is approx-
imately symmetric on the linear frequency scale used.

As mentioned earlier, the notched-noise method does not give a precise
estimate of the slope of the steeper side of the filter when the filter is
markedly asymmetric. This is a particular problem at high sound levels,
where the lower branch becomes very shallow. Thus, at high levels, there
may well be significant errors in the estimates of the sharpness of the high-
frequency side of the filter.

V. MASKING PATTERNS AND EXCITATION PATTERNS

In the experiments described so far, the frequency of the signal was held
constant, while the masker was varied. These experiments are most appro-
priate for estimating the shape of the auditory filter at a given center fre-
quency. However, many of the early experiments on masking did the oppo-
site; the signal frequency was varied while the masker was held constant.

Wegel and Lane (1924) reported the first systematic investigation of the
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masking of one pure tone by another. They determined the threshold of a
signal with adjustable frequency in the presence of a masker with fixed
frequency and intensity. The function relating masked threshold to the
signal frequency is known as a masking pattern, or sometimes as a masked
audiogram. The results of Wegel and Lane were complicated by the occur-
rence of beats when the signal and masker were close together in frequency.
To avoid this problem, later experimenters (Egan & Hake, 1950; Fastl,
1976a) have used a narrow band of noise as either the signal or the masker.

The masking patterns obtained in these experiments show steep slopes
on the low-frequency side, of between 80 and 240 dB/octave for pure tone
masking and 55-190 dB/octave for narrowband noise masking. The slopes
on the high-frequency side are less steep and depend on the level of the
masker. A typical set of results is shown in Figure 8. Notice that on the
high-frequency side the slopes of the curves tend to become shallower at
high levels. Thus, if the level of a low-frequency masker is increased by, say,
10 dB, the masked threshold of a high-frequency signal is elevated by more
than 10 dB; the amount of masking grows nonlinearly on the high~
frequency side. This has been called the upward spread of masking.

The masking patterns do not reflect the use of a single auditory filter.
Rather, for each signal frequency the listener uses a filter centered close to
the signal frequency. Thus the auditory filter is shifted as the signal frequen-
cy is altered. One way of interpreting the masking pattern is as a crude
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FIGURE 8 Masking patterns (masked audiograms) for a narrow band of noise centered at
410 Hz. Each curve shows the elevation in threshold of a sinusoidal signal as a function of
signal frequency. The overall noise level for each curve is indicated in the figure. (Data from
Egan & Hake, 1950.)
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indicator of the excitation pattern of the masker. The excitation pattern of a
sound is a representation of the activity or excitation evoked by that sound
as a function of characteristic frequency (Zwicker, 1970). In the case of a
masking pattern, one might assume that the signal is detected when the
excitation it produces is some constant proportion of the excitation pro-
duced by the masker in the frequency region of the signal. Thus the thresh-
old of the signal as a function of frequency is proportional to the masker’s
excitation level. The masking pattern should be parallel to the excitation
pattern of the masker, but shifted vertically by a small amount. In practice,
the situation is not so straightforward, since the shape of the masking
pattern is influenced by factors such as off-frequency listening and the detec-
tion of combination tones produced by the interaction of the signal and the
masker (Greenwood, 1971).

A. Relationship of the Auditory Filter to the Excitation Pattern

Moore and Glasberg (1983b) have described a way of deriving the shapes of
excitation patterns using the concept of the auditory filter. They suggested
that the excitation pattern of a given sound can be thought of as the output
of the auditory filters as a function of their center frequency. This idea is
illustrated in Figure 9. The upper portion of the figure shows auditory filter
shapes for five center frequencies. Each filter is symmetrical on the linear
frequency scale used, but the bandwidths of the filters increase with increas-
ing center frequency, as illustrated in Figure 6. The dashed line represents a
1 kHz sinusoidal signal whose excitation pattern is to be derived. The lower
panel shows the output from each filter in response to the 1 kHz signal,
plotted as a function of the center frequency of each filter; this is the desired
excitation pattern.

To see how this pattern is derived, consider the output from the filter
with the lowest center frequency. This has a relative output in response to
the 1 kHz tone of about —40 dB, as indicated by point a in the upper panel.
In the lower panel, this gives rise to the point 4 on the excitation pattern; the
point has an ordinate value of —40 dB and is positioned on the abscissa at a
frequency corresponding to the center frequency of the lowest filter illus-
trated. The relative outputs of the other filters are indicated, in order of
increasing center frequency, by points b to e, and each leads to a correspond-
ing point on the excitation pattern. The complete excitation pattern was
actually derived by calculating the filter outputs for filters spaced at 10 Hz
intervals. In deriving the excitation pattern, excitation levels were expressed
relative to the level at the tip of the pattern, which was arbitrarily labeled 0
dB. To calculate the excitation pattern for a 1 kHz tone with a level of, say,
60 dB, the level at the tip would be labeled 60 dB, and all other excitation
levels would correspondingly be increased by 60 dB.
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FIGURE 9 An illustration of how the excitation pattern of a 1 kHz sinusoid can be
derived by calculating the outputs of the auditory filters as a function of their center frequency.
The top half shows five auditory filters, centered at different frequencies, and the bottom half
shows the calculated excitation pattern. (From Moore & Glasberg, 1983b.)

Note that, although the auditory filters were assumed to be symmetric
on a linear frequency scale, the derived excitation pattern is asymmetric.
This happens because the bandwidth of the auditory filter increases with
increasing center frequency. As pointed out by Patterson (1974), the in-
crease in auditory filter bandwidth with frequency can also explain why
masking patterns are asymmetric when the auditory filter itself is roughly
symmetric.

B. Changes in Excitation Patterns with Level

One problem in calculating excitation patterns from filter shapes is how to
deal with the level dependence of the auditory filter. It seems clear that the
shape of the auditory filter does change with level, the major change being a
decrease in sharpness of the low-frequency side with increasing level. How-
ever, to determine the effect of this on excitation patterns, it is necessary to
decide exactly what aspect of level determines the filter shape.

As one approach to this problem, Moore and Glasberg (1987b) consid-
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ered whether the shape of the auditory filter depends primarily on the level
of the input to the filter or on the level of the output of the filter. This way
of posing the problem may well be over-simplistic, especially when the
input is a complex sound. However, the question may be a reasonable one
for a simple stimulus such as a sinusoid.

To examine this question, Moore and Glasberg (1987b) calculated excita~
tion patterns for sinusoids assuming that the shape of the auditory filter
depended either on the input level to the filter or the output level from the
filter. They assumed that the filter had the form of the roex(p) filter de-
scribed earlier. An example of the results is shown in Figure 10, for a 1 kHz
sinusoid at levels ranging from 20 to 90 dB SPL. For the left-hand panels the
output level of each filter was assumed to determine its shape. For the right-
hand panels the input level was assumed to determine the shape.

As described previously, the shapes of excitation patterns for narrowband
stimuli as a function of level can be determined approximately from their
masking patterns. The patterns shown in the right-hand panels of Figure 10
closely resemble masked audiograms at similar masker levels, whereas those
in the left-hand panels are very different in form and do not show the classic
“upward spread of masking.” Moore and Glasberg (1987b) concluded that
the critical variable determining the auditory filter shape is the input level to
the filter.

Rosen, Baker, and Kramer (1992) have taken the opposite viewpoint,
arguing that the sharpness and asymmetry of the auditory filter are deter-
mined by the level at the output of the auditory filter. Their argument is
based on an analysis of data from a notched-noise experiment conducted
using three fixed masker spectrum levels and three fixed signal levels, with a
signal frequency of 2000 Hz. Although their data can be fitted well on the
assumption that the shape of the auditory filter is determined by its output
level, this assumption leads to problems with other types of stimuli. One
such problem was noted earlier: excitation patterns for narrowband stimuli
calculated using this assumption have the “wrong” shape. In addition, the
equations given by Rosen et al. to define the variation of the filter parame-
ters (such as p; and p,) with level lead to substantial errors in predicting the
masking produced by sounds such as low-frequency narrow bands of noise.
Thus, even though their conclusion is consistent with the restricted data set
analyzed, it does not seem to be generally applicable.

At present, it appears that the data from a range of experiments are best
accounted for on the assumption that the shape of the auditory filter is
controlled by the level at its input, rather than the level at its output. Unfor-
tunately, the situation cannot be as simple as this. For sounds with complex
broadband spectra, it seems likely that only components that produce a
significant output from a given auditory filter have any influence in deter-
mining the shape of that filter. Moore and Glasberg (1987b) suggested that
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FIGURE 10  Excitation patterns calculated according to the procedure described in the
text for 1 kHz sinusoids ranging in level from 20 to 90 dB SPL in 10 dB steps. The frequency
scale is linear for the upper panels and logarithmic for the lower panels. The left panels show
excitation patterns calculated on the assumption that the level at the output of the auditory filter
is the variable determining its shape. The right panels show excitation patterns calculated
assuming that the level at the input to the filter determines its shape. (From Moore & Glasberg,
1987b.)

the shape of the auditory filter may be determined primarily by the input
level of the component that produces the greatest output from the filter.
When the input spectrum is continuous or contains closely spaced compo-
nents, they suggested that the power of the components should be summed
with a range of 1 ERB (around the frequencies of the components in ques-
tion) to determine the effective input level.

Further analysis of these ideas, by Brian Glasberg and myself (unpublished
results), reveals a significant problem. When the input is composed of a few
discrete sinusoidal components with different levels, excitation patterns cal-
culated in this way can show discontinuities. This happens because the
component producing the greatest output from the auditory filters changes as
the center frequency of the filters changes. At center frequencies, where a
change in the dominant component occurs, there is an abrupt jump in the
calculated sharpness of the filter, and this leads to a discontinuity in the
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excitation pattern. It seems very unlikely that such discontinuities would
occur in the auditory systemn.

The program tor calculating excitation patterns published by Glasberg
and Moore (1990) is based on a different set of assumptions, although these
assumptions were not explicitly stated in that paper. The assumptions are as
follows. Each component (or group of components if several lie within 1
ERB) gives rise to an excitation pattern whose spread is determined by the
level of the component (or group). Thus, the extent to which a given
auditory filter is excited by the component is determined by the input level
of the component. This idea is similar to that proposed by Zwicker
(Zwicker & Feldtkeller, 1967, Zwicker, 1970). The simplest way to calcu-
late the effective level at a given center frequency is to sum the powers of
components within +0.5 ERB of that frequency. Zwicker used a similar
approach and referred to the resulting quantity as psychoacoustical incitation.
This summed power determines the spread of excitation from that frequen-
cy. The assumption that component powers are summed within a rectangu-
lar ERB (around the frequencies of the components) is unrealistic, and it is
probably more satisfactory to perform the summation using a rounded-
exponential weighting function.

In cases where the stimulus is complex, with components spread over
several ERBs, it is assumed that excitation patterns arising from compo-
nents lying in different ERBs are summed in terms of linear power. Again,
Zwicker (Zwicker & Feldtkeller, 1967; Zwicker, 1970) made a similar as-
sumption, and the assumption is implicit in some models for calculating
loudness and for predicting intensity discrimination performance (see Chap-
ter 4).

There is a consequence of these assumptions that may, at first sight,
appear paradoxical. A given auditory filter may have several different sharp-
nesses (for example, several values of p;) simultaneously. The value of p; is
calculated separately for each group of components (summed within an
ERB around the frequencies of the components). However, this is not so
strange in terms of excitation patterns. The program by Glasberg and
Moore (1990) works by calculating excitation patterns from filter shapes,
but, for the auditory system, the excitation pattern may be “primary” in
some sense. If the spread of the excitation pattern produced by a given
component is determined by the level of that component, then the effective
shapes of the auditory filters excited by that component have to vary de-
pending on the level of the component. And if two components are present
simultaneously (separated by more than 1 ERB), each will give rise to an
excitation pattern whose spread is determined by the level of the respective
component.

Many of these problems arise from the fact that auditory filtering is
inherently nonlinear, but the models used are based on quasi-linear filtering.
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More appropriate models may lead to a better understanding of the factors
controlling the selectivity of the auditory filters.

VI. THE ADDITIVITY OF MASKING AND EXCESS MASKING

Many years ago, Green (1967) measured the masking of a gated sinusoidal
signal produced by a continuous sinusoidal masker of the same frequency
and, separately, by a broadband continuous noise. He adjusted the levels of
the two maskers so that they produced equal amounts of masking. He then
measured the amount of masking produced by combining the two equally
effective maskers. If the threshold of the signal were determined simply by
the power of the masker at the output of the auditory filter centered at the
signal frequency, the combined maskers should produce 3 dB more mask-
ing than either masker alone. In fact, the amount of extra masking produced
by the combined masker was usually markedly greater than the expected 3
dB. The amount of masking above 3 dB is sometimes referred to as excess
masking.

In the last two decades, many cases of excess masking have been reported;
the amount of masking produced by two maskers that are equally effective
when presented individually is often more than 3 dB greater than the masking
produced by each masker alone (Lutfi, 1983, 1985; Humes & Jesteadt, 1989).
Two general approaches have been taken to explain the excess masking.

In one approach, it is assumed that the detection cues used by the subject
differ for the two individual maskers (Bilger, 1959; Green, 1967, Moore,
1985). For example, if one masker is a continuous broadband noise, as in
Green’s (1967) experiment, the detection cue may be the additional energy
produced by the signal at the output of the auditory filter centered on the
signal frequency. If the other masker is a continuous sinusoid, the detection
cue may be a fluctuation in the envelope of the auditory filter output. This
cue is very effective, so when the two maskers produce equal amounts of
masking, the sinusoid produces a considerably greater output from the
auditory filter than the noise. When the two maskers are combined, the
noise introduces random fluctuations in amplitude that make it difficult to
use the fluctuation cue previously employed with the sinusoidal masker.
However, the energy cue previously used with the noise masker is also less
effective, because the sinusoidal masker considerably increases the energy at
the filter output. Hence, considerable excess masking occurs. According to
this type of explanation, excess masking occurs when the detection pro-
cesses or cues following the auditory filter are different for the two maskers
used and when each masker renders less effective the cue used with the other
masker.

A second type of explanation has been proposed by Lutfi (1983, 1985)
and Humes and Jesteadt (1989). These researchers have suggested that the
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effects of the two maskers are summed after each has undergone a compres-
sive nonlinear transformation. A model of this type was originally proposed
by Penner and Shiffrin (1980) to account for the excess masking obtained
with pairs of maskers that do not overlap in time (see Chapter 6, Section
VIII of this chapter, and Oxenham & Moore, 1994), but Lutfi and Humes
and Jesteadt have argued that a similar model can be applied to maskers that
do overlap in time.

In the model of Humes and Jesteadt (1989), the compressed internal
effect of each masker is given by the following transform:

i, = (10m/10)e — (104/10)e (13)

where i, reflects the internal effect of the masker, mt is the masked thresh-
old of the signal, q is the absolute threshold of the signal, and a is a parame-
ter that is adjusted to fit the data. The value of a reflects the amount of
compression: the smaller the value of a, the greater is the compression. The
effects of combined maskers are assumed to be summed after the individual
maskers have been subjected to the nonlinear compressive transform of Eq.
(13). An inverse transform is then applied to the sum to predict the signal
threshold for the combined maskers. If @ < 1, excess masking is predicted.
If @ = 1, there is no compression, and no excess masking is predicted.

The basic concept behind this type of model is that the excess masking
arises from a fundamental physiological property of the auditory system: it
is assumed that all stimuli are subject to a compressive nonlinearity in the
peripheral auditory system. The amount of excess masking should be deter-
mined by the characteristics of this compressive nonlinearity, and excess
masking should always occur.

Although the model proposed by Humes and Jesteadt can account for a
large body of experimental data, several problems can be identified with this
approach. First, it is assumed that the two maskers are compressed indepen-
dently. It is hard to see how this could happen for two maskers that are
presented simultaneously. Consider Green’s (1967) experiment described
carlier. Presumably, the masking produced by both the noise masker and the
sinusoidal masker depends on the extent to which those maskers produce an
output from the auditory filter centered at the signal frequency. If the two
maskers are presented simultaneously and excite the same auditory filter,
how can the effects of the two maskers be subjected to independent compres-
sive nonlinearities?

A second problem arises from the assumption that the amount of ex-
cess masking is determined by the characteristics of the compressive non-
linearity, and that this nonlinearity reflects a physiological property of the
peripheral auditory system. If this were the case, then the form of the
nonlinearity (the value of a) needed to fit the data should be similar regard-
less of the specific combination of maskers used. In fact, the required value
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of a varies markedly across different data sets (Humes & Jesteadt, 1989).
This is not consistent with the idea that the excess masking arises from a
fixed physiological property of the auditory system.

A third problem is raised by a study of Oxenham and Moore (1995) on
excess masking in subjects with cochlear hearing loss. It is known that the
compressive nonlinearity on the basilar membrane is reduced in such sub-
jects (see Chapter 2). Hence, if the model of Humes and Jesteadt (1989) were
correct, excess masking should be reduced. In an experiment similar to that
of Green (1967), Oxenham and Moore showed that excess masking in
simultaneous masking was similar for normally hearing subjects and sub-
jects with cochlear hearing loss. However, excess masking produced by
combined forward and backward masking was absent in subjects with
cochlear hearing loss, while it was marked in normally hearing subjects.
These results suggest that compressive nonlinearities in the peripheral audi-
tory system can account for excess masking in nonsimultaneous masking,
but not in simultaneous masking.

A fourth problem is that the model predicts that excess masking will
always occur. This is not the case. For example, Moore (1985) determined
masking functions (signal threshold versus masker level) separately for two
narrowband noise maskers, one centered at 1.4 kHz and the other at 1.6
kHz. The signal was always a 2 kHz sinusoid. The masking functions were
used to select pairs of maskers (i.e., the two bands of noise presented
together) that would be equally effective if presented individually. When the
two bands of noise had independent envelopes, excess masking occurred, as
predicted by the model of Humes and Jesteadt. However, when the two
bands of noise had the same envelope (i.e., the bands were comodulated; see
Chapter 7), no excess masking occurred; the combined maskers produced 3
dB more masking than each masker individually. This is not consistent with
the model of Humes and Jesteadt. Green (1967) and Bilger (1959) also
reported cases where no excess masking occurred. In my opinion, these
results are sufficient to demonstrate that the model cannot be correct.

Moore (1985) explained the pattern of his results in the following way.
When a single narrowband noise masker is used, subjects exploit the enve-
lope fluctuations in the masker to improve signal detection. They do this by
detecting the signal in minima of the masker envelope and by comparing
temporal patterns of modulation across different auditory filters (Buus,
1985; Moore & Glasberg, 1987a). When the signal is absent, the pattern of
modulation is similar at the outputs of all auditory filters. When the signal is
present, the pattern of modulation at the output of filters tuned close to the
signal frequency differs from that in the remaining filters. This across-filter
disparity provides a detection cue; see Chapter 7 for further discussion of
this topic. When two uncorrelated narrowband noise maskers are com-
bined, this cue is disrupted and excess masking occurs. When two narrow-
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band maskers with the same envelope are combined, the cue is preserved,
and the combined masking is correctly predicted by a linear power summa-
tion of the effects of the two maskers.

In summary, it seems that most cases of excess masking in simultaneous
masking can be explained by a detailed consideration of the detection cues
available to and used by the subjects for the individual maskers and for
the combined maskers. Alternative models, assuming that the effects of the
individual maskers are subject to a compressive nonlinearity before the
effects are combined, lead to a number of conceptual difficulties, and cannot
account for cases where excess masking does not occur.

Finally, a general problem in the study of excess masking should be
noted. It is very hard to formulate a set of rules defining whether a given
stimulus should be described as one masker or as two (or even more). For
example, should a band of noise extending from 500 to 1000 Hz be de-
scribed as a single masker or as two maskers, one extending from 500 to 750
Hz, and the other from 750 to 1000 Hz? In many cases, the definition of
what constitutes one masker or two maskers appears completely arbitrary.
This problem is discussed by Humes and Jesteadt (1989) and by Humes,
Lee, and Jesteadt (1992). The latter proposed that maskers that do not
overlap within the critical band centered on the signal frequency should be
treated as two separate maskers; in such cases they predicted that excess
masking should occur. On the other hand, they suggested that for simul-
tancous maskers with spectral overlap within the critical band centered on
the signal frequency there is effectively only one masker, and no excess
masking should occur. While this rule is consistent with the data presented
by Humes et al. (1992), it clearly does not always work. For example, Green
(1967) showed that excess masking could occur for spectrally overlapping
maskers; and Moore (1985) showed that linear additivity of masking could
occur for pairs of maskers that did not overlap spectrally either with each
other or with the signal.

VII. PHENOMENA REFLECTING THE INFLUENCE
OF AUDITORY FILTERING

Many aspects of auditory perception are affected by auditory filtering.
Some of these are considered in other chapters, especially Chapters 4 and 8.
This section describes just a few examples of these phenomena.

A. The Threshold of Complex Sounds

Gissler (1954) measured the threshold for detecting multicomponent com-
plexes consisting of evenly spaced sinusoids. The complexes were presented
both in quiet and in a special background noise, chosen to give the same
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masked threshold for each component in the signal. As the number of
components in a complex was increased, the threshold, specified in terms
of total energy, remained constant until the overall spacing of the tones
reached a certain bandwidth, the CB for threshold. Thereafter the threshold
increased by about 3 dB per doubling of bandwidth. The CB for a center
frequency of 1 kHz was estimated to be about 180 Hz. These results were
interpreted as indicating that the energies of the individual components in a
complex sound will sum, in the detection of that sound, provided the com-
ponents lie within a CB. When the components are distributed over more
than one CB, detection is based on the single band giving the highest
detectability.

Other data are not in complete agreement with those of Gissler. Indeed,
most subsequent experiments have failed to replicate Gissler’s results. For
example, Spiegel (1981) measured the threshold for a noise signal of variable
bandwidth centered at 1 kHz in a broadband background noise masker. The
threshold for the signal as a function of bandwidth did not show a break
point corresponding to the CB, but increased monotonically as the band-
width increased beyond 50 Hz. The slope beyond the CB was close to 1.5
dB per doubling of bandwidth. Higgins and Turner (1990) have suggested
that the discrepancy may be explained by the fact that Gissler widened the
bandwidth, keeping the upper edge of the complex fixed in frequency,
while Spiegel used stimuli with a fixed center frequency. However, other
results clearly show that the ear is capable of combining information over
bandwidths much greater than the CB (Buus et al., 1986; Langhans &
Kohlrausch, 1992). For example, Buus et al. (1986) showed that multiple
widely spaced sinusoidal components were more detectable than any of the
individual components.

These results should not be interpreted as evidence against the concept of
the auditory filter. They do indicate, however, that detection of complex
signals may not be based on the output of a single auditory filter. Rather,
information can be combined across filters to improve performance.

B. Sensitivity to the Relative Phase

An amplitude modulated (AM) sinewave with modulation index m and a
frequency modulated (FM) sinewave with modulation index  may each be
considered as composed of three sinusoidal components, corresponding to
the carrier frequency and two sidebands (an FM wave actually contains
many components but for small modulation indices only the first two side-
bands are important); see Chapter 1. When the modulation indices are
numerically equal (m = B) and the carrier frequencies and modulation fre-
quencies are the same, the components of an AM wave and an FM wave are
identical in frequency and amplitude, the only difference between them
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being in the relative phase of the components. If, then, the two types of
wave are perceived differently, the difference is likely to arise from a sensi-
tivity to the relative phase of the components.

Zwicker (1952), Schorer (1986), and Sek (1994) have measured one as-
pect of the perception of such stimuli, namely, the just-detectable amounts
of amplitude or frequency modulation, for various rates of modulation.
They found that, for high rates of modulation, where the frequency compo-
nents were widely spaced, the detectability of FM and AM was equal when
the components in each type of wave were of equal amplitude (m = B).
However, for low rates of modulation, when all three components fell
within a narrow frequency range, AM could be detected when the relative
levels of the sidebands were lower than for a wave with a just-detectable
amount of FM (m < B). This is illustrated in the upper panel of Figure 11.
Thus, for small frequency separations of the components, subjects appear to
be sensitive to the relative phases of the components, while for wide fre-
quency separations they are not.

If the threshold for detecting modulation is expressed in terms of the
modulation index, m or B, the ratio /m decreases as the modulation frequency
increases and approaches an asymptotic value of unity. This is illustrated in
the lower panel of Figure 11. The modulation frequency at which the ratio
first becomes unity is called the critical modulation frequency (CMF). Zwicker
(1952) and Schorer (1986) suggested that the CMF corresponded to half the
value of the CB; essentially, the CMF was assumed to be reached when the
overall stimulus bandwidth reached the CB. If this is correct, then the CMF
may be regarded as providing an estimate of the CB at the carrier frequency.

Further analysis suggests that this interpretation of the results may not be
completely correct. The CMF appears to correspond to the point where one
of the sidebands in the spectrum first becomes detectable; usually the lower
sideband is more detectable than the upper one (Hartmann & Hnath, 1982;
Moore & Sek, 1992). The threshold for detecting a sideband depends more
on the selectivity of auditory filters centered close to the frequency of the
sideband than on the selectivity of the auditory filter centered on the carrier
frequency. Furthermore, for low carrier frequencies, the upper sideband
may be more detectable than the lower sideband (Sek & Moore, 1994). The
change in the most detectable sideband with carrier frequency can account
for the finding that the ERB decreases more with decreasing center frequen-
cy than does the CMF. It also makes the CMF unsuitable as a direct measure
of the CB. Additionally, it should be noted that the detectability of a side-
band may be influenced by factors not connected with frequency selectivity,
such as the efficiency of the detection process following auditory filtering.
This efficiency may well vary with center frequency, just as it does for the
detection of tones in notched noise. Thus, like the critical ratio described
earlier, the CMF does not provide a direct measure of the CB.
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FIGURE 11  The upper panel shows thresholds for detecting sinusoidal amplitude mod-
ulation (squares) or frequency modulation (circles) of a 1 kHz carrier, plotted as a function of
modulation rate. The thresholds are expressed in terms of the modulation indices, m and B,
respectively (the indices are multiplied by 100 to give convenient numbers). The lower panel
shows the ratio B/m, plotted on a logarithmic scale as a function of modulation rate. (Data
from Sek, 1994, with permission of the author.)

It also appears to be incorrect to assume that changes in the relative phase
of the components in a complex sound are detectable only when those
components lie within a CB. In cases where all components are well above
threshold, subjects can detect phase changes between the components in
complex sounds in which the components are separated by considerably
more than a CB (Craig & Jeffress, 1962; Blauert & Laws, 1978; Patterson,
1987). The detection of these phase changes may depend partly on the
ability to compare the time patterns at the outputs of different auditory
filters; see Chapter 6 for further information on this topic.
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C. The Audibility of Partials in Complex Tones

According to Ohm’s (1843) Acoustical Law, the ear is able to hear pitches
corresponding to the individual sinusoidal components in a complex sound.
In other words, we can “hear out” the individual partials. For periodic
complex sounds, the most prominent pitch is usually the residue pitch or
virtual pitch associated with the sound as a whole, and we are not normally
aware of hearing pitches corresponding to individual partials; see Chapter 8.
Nevertheless, such pitches can be heard if attention is directed appropriately
(Helmholtz, 1863).

Plomp (1964) and Plomp and Mimpen (1968) used complex tones with
12 sinusoidal components to investigate the limits of this ability. The lis-
tener was presented with two comparison tones, one of which was of the
same frequency as a partial in the complex; the other lay halfway between
that frequency and the frequency of the adjacent higher or lower partial.
The listener was allowed to switch freely between the complex tone and the
comparison tones and was required to decide which of the two comparison
tones coincided with the partial in the complex tone. The score (varying
between 50 and 100%) was used as an index of how well the partial could be
heard out from the complex tone. For harmonic complex tones, only about
the first five to seven harmonics could be heard out.

Plomp and Mimpen (1968) suggested that a component can be heard out
only when its frequency separation from adjacent components exceeds the
CB. The spacing of the components in a harmonic complex is uniform on a
linear frequency scale, but, relative to the CB, the upper harmonics are
more closely spaced than the lower harmonics. Harmonics above about the
eighth are separated by less than a CB and cannot be heard out. Results for
two subjects using complex tones where the frequency ratios between com-
ponents were “compressed” relative to a harmonic complex gave basically
the same result; only the lower components could be heard out.

The concept that the CB was the main factor limiting the audibility of
partials in complex tones was questioned by Soderquist (1970). He used a
task similar to that of Plomp (1964), but compared the results for musicians
and nonmusicians. He found that musicians performed markedly better
than nonmusicians. A possible explanation for this is that musicians have
narrower CBs than nonmusicians. However, Fine and Moore (1993) esti-
mated auditory filter bandwidths in musicians and nonmusicians, using the
notched-noise method, and found that ERBs did not differ for the two
groups. An alternative possibility is that performance depends on some
factor or factors other than the CB.

Some aspects of the data of Plomp and Mimpen (1968) also suggest the
involvement of factors other than the CB. The frequency difference be-
tween adjacent harmonics required to hear them separately was somewhat
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greater than traditional CB values (Zwicker & Terhardt, 1980) above 1000
Hz and was distinctly smaller below 1000 Hz. Recent estimates of the ERB
of the auditory filter, described in Section IV. A, are smaller than traditional
CB values at low frequencies and more consistent with the data of Plomp
and Mimpen. Nevertheless, some discrepancy remains. The relative value
of the CB or the ERB (i.e., bandwidth divided by center frequency) in-
creases as the center frequency decreases below about 1000 Hz. As a conse-
quence, the number of resolvable harmonics in a harmonic complex tone
would be expected to decrease at low fundamental frequencies. In fact, the
data of Plomp and Mimpen show that the number of resolvable harmonics
increases as the fundamental frequency decreases below 250 Hz.

Moore and Ohgushi (1993) examined the ability of musically trained
subjects to hear out individual partials in complex tones with partials uni-
formly spaced on a scale related to the ERB of the auditory filter. ERB
spacings of 0.75, 1.0, 1.25, 1.5, and 2 were used, and the central component
always had a frequency of 1000 Hz. On each trial, subjects heard a pure tone
(the “probe”) followed by a complex tone. The probe was close in frequen-
¢y to one of the partials in the complex, but was mistuned downward by
4.5% on half the trials (at random) and mistuned upward by 4.5% on the
other half. The task of the subject was to indicate whether the probe was
higher or lower in frequency than the nearest partial in the complex. The
partial that was “probed” varied randomly from trial to trial. If auditory
filtering were the only factor affecting performance on this task, then scores
for a given ERB spacing should be similar for each component in the
complex sound.

Scores for the highest and lowest components in the complexes were
generally high for all components spacings, although they worsened some-
what for ERB spacings of 0.75 and 1.0. Scores for the inner components
were close to chance level at 0.75 ERB spacing, and improved progressively
as the ERB spacing was increased from 1 to 2 ERBs. For ERB spacings of
1.25 or less, the scores did not change smoothly with component frequency;
marked irregularities were observed, as well as systematic errors. Moore
and Ohgushi suggested that these resulted from irregularities in the trans-
mission of sound through the middle ear; such irregularities could change the
relative levels of the components, making some components more promi-
nent than others and therefore easier to hear out.

Performance for the inner components tended to be worse for compo-
nent frequencies above 1000 Hz than below 1000 Hz. This is consistent with
the pattern of results found by Plomp and Mimpen (1968) and indicates that
some factor other than auditory filtering influences the audibility of partials
in complex tones.

Moore and Ohgushi suggested that the pitches of individual components
may be partly coded in the time patterns of neural activity (phase locking)
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in the auditory nerve, as has also been suggested by previous researchers
(Ohgushi, 1978, 1983; Srulovicz & Goldstein, 1983; Moore, Glasberg, &
Shailer, 1984; Moore, 1989; Hartmann, McAdams, & Smith, 1990; Moore
& Glasberg, 1990; see Chapter 3). Phase locking is more precise below 1000
Hz than above 1000 Hz. This can explain why, for partials uniformly spaced
on an ERB scale, the identification of partials was better for components
with frequencies below 1000 Hz than above 1000 Hz.

The influence of phase locking can also explain the superior identification
of the lowest and highest components in the complex tones. Generally,
neurons with characteristic frequencies (CFs) close to the frequency of a
given partial will phase lock to that partial, provided the frequency separa-
tion of partials is sufficient and the frequency of the partial is not too
high. For an inner partial in a complex tone, the pattern of phase locking
in neurons with CFs close to the frequency of the partial will be disturbed
by the partials on either side, making it more difficult to extract the pitch
of that partial, especially when the components are closely spaced. In con-
trast, neurons tuned just below the lower edge frequency or just above the
higher edge frequency will show a pattern of phase locking that is less dis-
turbed by the other components. A similar explanation can be offered for
Plomp’s (1964) finding that the partials in a two-tone complex could be
heard out for smaller frequency separations than were found for multitone
complexes.

In summary, it seems clear that auditory filtering plays a strong role in
limiting the ability to hear out partials in complex tones. However, it is
probably not the only factor involved. Specifically, the pitches of individual
partials may partly be coded in the patterns of phase locking of neurons in

the auditory nerve. This coding is more accurate at low frequencies than at
high.

VII. NONSIMULTANEOUS MASKING

Simultaneous masking describes situations where the masker is present for the
whole time that the signal occurs. Masking can also occur when a brief
signal is presented just before or after the masker; this is called nonsimultane-
ous masking. Two basic types of nonsimultaneous masking can be distin-
guished: (1) backward masking, in which the signal precedes the masker (also
known as prestimulatory masking); and (2) forward masking, in which the signal
follows the masker (also known as poststimulatory masking).

Although many studies of backward masking have been published, the
phenomenon is poorly understood. The amount of backward masking ob-
tained depends strongly on how much practice the subjects have received,
and practiced subjects often show little or no backward masking (Miyazaki
& Sasaki, 1984; Oxenham & Moore, 1994, 1995). The larger masking ef-
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fects found for unpracticed subjects may reflect some sort of “confusion” of
the signal with the masker. In contrast, forward masking can be substantial
even in highly practiced subjects. The main properties of forward masking
are as follows:

1. Forward masking is greater the nearer in time to the masker that the
signal occurs. This is illustrated in the left panel of Figure 12. When the
delay D of the signal after the end of the masker is plotted on a logarithmic
scale, the data fall roughly on a straight line. In other words, the amount of
forward masking, in dB, is a linear function of log(D).

2. The rate of recovery from forward masking is greater for higher
masker levels. Thus, regardless of the initial amount of forward masking,
the masking decays to 0 after 100-200 ms.

3. Increments in masker level do not produce equal increments in
amount of forward masking. For example, if the masker level is increased
by 10 dB, the masked threshold may increase by only 3 dB. This contrasts
with simultaneous masking, where, at least for wideband maskers, the
threshold usually corresponds to a constant signal-to-masker ratio. This
effect can be quantified by plotting the signal threshold as a function of
masker level. The resulting function is called a growth of masking function.
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FIGURE 12  The left panel shows the amount of forward masking of a brief 2 kHz signal,
plotted as a function of the time delay of the signal after the end of the noise masker. Each curve
shows results for a different noise spectrum level (10-50 dB). The results for each spectrum
level fall on a straight line when the signal delay is plotted on a logarithmic scale, as here. The
right panel shows the same thresholds plotted as a function of masker spectrum level. Each
curve shows results for a different signal delay time (17.5, 27.5, or 37.5 ms). Note that the
slopes of these growth of masking functions decrease with increasing signal delay. (Adapted
from Moore and Glasberg, 1983a.)
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Several such functions are shown in the right panel of Figure 12. In simul-
taneous masking such functions would have slopes close to 1. In forward
masking the slopes are less than 1, and the slopes decrease as the value of D
increases.

4. The amount of forward masking increases with increasing masker
duration for durations up to at least 20 ms. The results for greater masker
durations vary somewhat across studies. Some studies show an effect of
masker duration for durations up to 200 ms (Kidd & Feth, 1982), while
others show little effect for durations beyond 50 ms (Fastl, 1976b).

The mechanisms underlying forward masking are not clear. It could be
explained in terms of a reduction in sensitivity of recently stimulated neu-
rons or in terms of a persistence in the pattern of neural activity evoked by
the masker. Both points of view can be found in the literature. In addition,
the response of the basilar membrane to the masker takes a certain time to
decay, and for small intervals between the signal and the masker this may
result in forward masking (Duifhuis, 1973); see Chapter 6 for further discus-
sion of these issues.

IX. EVIDENCE FOR LATERAL SUPPRESSION
FROM NONSIMULTANEOUS MASKING

Measurements of basilar membrane motion (Ruggero, 1992), or in single
neurons (Arthur, Pfeiffer, & Suga, 1971), show that the response to a tone
of a given frequency can sometimes be suppressed by a tone with a different
frequency, a phenomenon known as two-tone suppression; see Chapters 2 and
3. For other complex signals, similar phenomena occur and are given the
general name lateral suppression or suppression. This can be characterized in
the following way. Strong activity at a given characteristic frequency can
suppress weaker activity at adjacent CFs. In this way, peaks in the excitation
pattern are enhanced relative to adjacent dips. The question now arises as to
why the effects of suppression are not usually seen in experiments on simul-
taneous masking.

Houtgast (1972) has argued that simultaneous masking is not an appro-
priate tool for detecting the effects of suppression. In simultaneous mask-
ing, the masking stimulus and the signal are processed simultaneously in the
same channel (the same auditory filter). Thus any suppression in that chan-
nel will affect the neural activity caused by both the signal and the masker.
In other words, the signal-to-masker ratio in a given frequency region will
be unaffected by suppression, and thus the threshold of the signal will
remain unaltered.

Houtgast suggested that this difficulty could be overcome by presenting
the masker and the signal successively, for example, by using forward
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masking. If suppression does occur, then its effects will be seen in forward
masking provided (1) in the chain of levels of neural processing, the level at
which the suppression occurs is not later than the level at which most of the
forward masking effect arises; and (2) the suppression built up by the
masker has decayed by the time that the signal is presented (otherwise
the problems described for simultaneous masking will be encountered).
Following the pioneering work of Houtgast (1972, 1973, 1974), many
workers have reported that there are systematic differences between the
results obtained using simultaneous and nonsimultaneous masking tech-
niques. An extensive review is provided by Moore and O’Loughlin (1986).
One major difference is that nonsimultaneous masking reveals effects that
can be directly attributed to suppression. A good demonstration of this
involves a psychophysical analog of neural two-tone suppression. Houtgast
(1973, 1974) measured the threshold for a 1 kHz signal and a 1 kHz non-
simultaneous masker. He then added a second tone to the masker and
measured the threshold again. He found that sometimes the addition of this
second tone produced a reduction in the threshold, and he attributed this to
a suppression of the 1 kHz component in the masker by the second compo-
nent. If the 1 kHz component is suppressed, then there will be less activity
in the frequency region around 1 kHz, producing a drop in the threshold for
detecting the signal. The second tone was most effective as a “suppressor”
when it was somewhat more intense than the 1 kHz component and above it
in frequency. Similar results have been obtained by Shannon (1976).
Under some circumstances, the reduction in threshold (unmasking) pro-
duced by adding one or more extra components to a masker can be partly
explained in terms of additional cues provided by the added components,
rather than in terms of suppression. Specifically, in forward masking the
added components may reduce “confusion” of the signal with the masker by
indicating exactly when the masker ends and the signal begins (Moore, 1980,
1981; Moore & Glasberg, 1982a, 1985; Neff, 1985; Moore & O’Loughlin,
1986). This may have led some researchers to overestimate the magnitude of
suppression as indicated in nonsimultaneous masking experiments. How-
ever, it seems clear that not all unmasking can be explained in this way.

X. THE ENHANCEMENT OF FREQUENCY SELECTIVITY
REVEALED IN NONSIMULTANEOUS MASKING

A second major difference between simultaneous and nonsimultaneous
masking is that the frequency selectivity revealed in nonsimultaneous mask-
ing is greater than that revealed in simultaneous masking. A well-studied
example of this is the psychophysical tuning curve. PTCs determined in
forward masking are typically sharper than those obtained in simultaneous
masking (Moore, 1978). An example is given in Figure 13. The difference is
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FIGURE 13  Comparison of psychophysical tuning curves determined in simultaneous
masking (triangles) and forward masking (squares). The masker frequency is plotted as devia-
tion from the center frequency divided by the center frequency (Af/f). The center frequency is
indicated in kHz in each panel. A low-level notched noise was gated with the masker to provide
a consistent detection cue in forward masking and to restrict off-frequency listening. (From
Moore et al., 1984.)

particularly marked on the high-frequency side of the tuning curve. Ac-
cording to Houtgast (1974) this difference arises because the internal repre-
sentation of the masker (its excitation pattern) is sharpened by a suppression
process, with the greatest sharpening occurring on the low-frequency side.
In simultaneous masking, the effects of suppression are not seen, because
any reduction of the masker activity in the frequency region of the signal is
accompanied by a similar reduction in signal-evoked activity. In other
words, the signal-to-masker ratio in the frequency region of the signal is
unaffected by the suppression. In forward masking, on the other hand, the
suppression does not affect the signal. For maskers with frequencies above
that of the signal, the effect of suppression is to sharpen the excitation
pattern of the masker, resulting in an increase of the masker level required to
mask the signal. Thus the suppression is revealed as an increase in the slopes
of the PTC.

An alternative explanation is that, in simultaneous masking, the low-
level signal may be suppressed by the masker, so that it falls below absolute
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threshold. The neural data indicate that tones falling outside of the region
bounded by the neural tuning curve can produce suppression. Thus, the
PTC in simultaneous masking might map out the boundaries of the more
broadly tuned suppression region (Delgutte, 1988).

It remains unclear which of these two explanations is correct. Moore and
Glasberg (1982b) concluded on the basis of a psychophysical experiment
that the first explanation was correct, and a physiological experiment by
Pickles (1984) supported this view. However, Delgutte (1990) has presented
physiological evidence suggesting that simultaneous masking by intense
low-frequency tones (upward spread of masking) is due largely to suppres-
sion rather than spread of excitation.

Several other methods of estimating frequency selectivity have indicated
sharper tuning in nonsimultaneous masking than in simultaneous masking.
For example, auditory filter shapes estimated in forward masking using a
notched-noise masker, have smaller bandwidths and greater slopes than
those estimated in simultaneous masking (Moore & Glasberg, 1981; Moore,
Poon, Bacon, & Glasberg, 1987). This encourages the belief that a general
consequence of suppression is an enhancement of frequency selectivity.

XI. SUMMARY

The peripheral auditory system contains a bank of bandpass filters, the
auditory filters, with center frequencies spanning the audible range. The
basilar membrane appears to provide the initial basis of the filtering process.
The auditory filter can be thought of as a weighting function that character-
izes frequency selectivity at a particular center frequency. The shape of the
auditory filter at a given center frequency can be estimated using the notched-
noise masking technique and the assumptions of the power-spectrum model.
Its bandwidth for frequencies above 1 kHz is about 10-17% of the center
frequency. At moderate sound levels the auditory filter is roughly symmetric
ona linear frequency scale. At high sound levels the low-frequency side of the
filter becomes less steep than the high-frequency side. The shape of the
auditory filter appears to depend mainly on the level at the input to the filter.

When two maskers are combined, the resulting masking is sometimes
greater than predicted from linear summation of the individual effects of the
maskers. One explanation for this excess masking is that the individual
maskers are subject to a compressive nonlinearity before their effects are
combined. However, a more plausible explanation can be given in terms of
the detection cues used with the individual maskers and the combined
maskers.

The excitation pattern of a given sound represents the distribution of
activity evoked by that sound as a function of the characteristic frequency of
the neurons stimulated. In psychophysical terms, the excitation pattern can
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be defined as the output of each auditory filter as a function of its center
frequency. The shapes of excitation patterns for sinusoids or narrowband
noises are similar to the masking patterns of narrowband noises.

The critical bandwidth is related to the bandwidth of the auditory filter.
It is revealed in experiments on masking, loudness, absolute threshold,
phase sensitivity, and the audibility of partials in complex tones. However,
factors other than auditory filtering play a role in many of these experi-
ments, so that they often do not provide a “direct” measure of the band-
width of the auditory filter.

Houtgast and others have shown that nonsimultaneous masking reveals
suppression effects similar to the suppression observed in primary auditory
neurons. This suppression is not revealed in simultaneous masking, possi-
bly because suppression at a given CF does not affect the signal-to-masker
ratio at that CF. One result of suppression is an enhancement in frequency
selectivity.
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Temporal Integration and
Temporal Resolution

David A. Eddins
David M. Green

I. INTRODUCTION

In trying to construct a mechanistic theory of how the auditory system
functions, theorists are forced to speculate about certain dynamic features
and to assume certain temporal parameters. Were the system a very simple
one, then different experiments should provide similar estimates of these
temporal parameters. Such has not been the case. “Time constants” esti-
mated from different experimental tasks range over three orders of magni-
tude, from 250 ps to 200,000 ps. This range far exceeds experimental error
and clearly indicates that something is amiss.

Theorists disagree on how the predicament should be resolved. One
approach is to reject the theories as ad hoc (de Boer, 1985). De Boer de-
scribes our present theories as designed to explain a limited set of data. The
inconsistency of estimates reflects the parochial nature of the approach.
When a better “super theory” is achieved, the discrepancies will be resolved.

A different approach is the one taken in this chapter. It denies that the
auditory system is a simple one and therefore expects different temporal
estimates in different experimental tasks. Different modes of processing the
auditory information are required by the different experimental tasks. The
system can be slow, and will appear so, when integration of information

Hearing
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over a long period of time may be beneficial in detecting a weak signal in
noise. The system can also be fast, and will appear so, when trying to avoid
the effects of forward and backward masking. The problem with this view
is that it has the potential to be completely arbitrary, invoking different
processing modes for each experimental situation or result. The princple
that prevents such capriciousness is the assumption that the auditory system
is configured to optimize the detection of a signal. Thus, it is claimed that
the time constant used in any experimental task is the one that maximizes
the objective in that task.

In terms of the physiology of the process, such a premise amounts to the
assumption that different parts of the nervous system process auditory in-
formation in different ways. In any particular psychophysical task, the
physiological information is selected to maximize the performance in that
task. The different time constants are associated with different neural sub-
strates. Visual theorists would not assume that the eyes are always fixed
straight ahead, nor should auditory theorists assume that only one auditory
process is used to transform the incoming waveform.

In keeping with this approach, we organized this chapter by dividing
auditory temporal processing into two broad topics; namely, temporal inte-
gration and temporal resolution. Temporal integration is the process de-
scribed in time—intensity trades, where we study how increasing the dura-
tion of a signal makes it easier to detect. Historically, this is the oldest area
of study in the field of auditory temporal phenomena. In this review, we
will cover the older approaches and some recent theorizing. The major
preoccupation of current research has been on the opposite side of the
temporal dimension; namely, temporal acuity. Acuity represents the fastest
auditory processing that can occur within a given experimental task. Often
such speed is required to avoid the dual effects of forward and backward
masking. In effect, temporal acuity investigates the limits of auditor inertia.
The topic of temporal acuity has produced a number of subfields that inves-
tigate the central topic in their own particular manners. These subfields
include gap and modulation detection. Both have produced a substantial
body of empirical data and some attempts to construct theories that bridge
the different subfields. The chapter concludes with a brief summary of the
empirical results from the various areas.

II. TEMPORAL INTEGRATION
A. Classical Theory

When investigators first studied the ability of observers to detect weak
auditory signals in quiet the signals were continuous and the intensity or
level of the signal was adjusted until it was just detectable. As electronic
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technology developed, investigators could present the signal for controlled
durations, and it was obvious that shorter duration signals required more
intensity than longer duration signals to be just detectable. We describe the
signal duration and signal intensity needed to achieve a just-detectable signal
as the time—intensity trade. Before reviewing the empirical evidence on this
topic, which has been explored in a number of different experimental set-
tings, let us begin with a consideration of theory. Why are short signals
harder to hear than longer signals? Although the empirical relation is both
obvious and evident, what are the theoretical reasons for this relation?

The usual reason given for the time—intensity trade is some kind of
accumulation or integration process. The simplest and most general way to
express this idea is with the convolution integral. Suppose x(f) was the input
to some accumulator or integration process. For the present, consider x(f) to
be any real-valued waveform. If we weight that input by a function h(t) and
add up the weighted values, we obtain the output, y(f), according to the
following formula:

y(t) = f_w h{t — T)x(7) dr (1a)

Note that the argument for the weighting function h runs backward in
time—it looks over the recent past of x—and weights the past value of x(T)
by h(t — 7). Although the integral runs over all past time {— to #}, usually
h(f) is essentially O for large values of the argument, and thus only those
events close to the present time and within the nonzero portion of h(f)
materially affect the output y(f). An equivalent form for the convolution
integral is obtained by substituting z = ¢ — 7; in that case, the equation
becomes

y(t) = J; x(t — 2)h(z) dz (1b)

This is a form often seen in textbooks. It weights the past of x by the
function h and integrates over all (past) time. To fix our understanding of
this idea, let us consider the simplest form for h(f),

_1 0<e<n
h(r) = 0 elsewhere

2

This weighting function when used in Eq. (1a) and (1b) simply adds up,
with equal weight, all of x(f) occurring within 7 of the present. Note that
h(f) is assumed to be 0 for negative arguments. This prevents an output
from occurring before an input occurs (recall that k is time reversed in the
convolution integral). We call filters that work this way causal filters. With-
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out this assumption, h(f) would produce outputs before the input occurs, a
feature not usually considered desirable in scientific analysis.

Clearly, such a system will produce a time—-intensity trade. Suppose the
input is a fixed quantity, call it S, that is monotonic with the intensity of
the signal I and lasts for the duration of the signal D. If we integrate or add
the quantity S for a period of time 7, then we will produce an amount St.
Assume the detection threshold occurs when y(f) = C. If D < 1, the output
of this process is SD. To achieve a threshold quantity, the product SD must
equal C so that S~1 ~ D. Because S is monotonic with signal intensity, we
find as D decreases I must be increased to achieve a threshold quantity. The
simplest assumption is that S is proportional to I, S ~ I, in which case I-1 ~
D, and the threshold for the signal should decrease 10 dB per decade change
in duration. The solid curve with negative slope in Figure 1 shows the
expected results for a fixed integrator, with t = 0.5 s. If D > 1, the output is
St for any duration signal, and then S is independent of signal duration D—
yielding the line of zero slope for the longer durations in Figure 1. The other
curves in Figure 1 will be discussed shortly. This is the basic idea of an
integration process and why it produces a time—intensity trade.

It is essentially the idea introduced by Munson (1947), Plomp and Bou-
man (1959), and Zwislocki (1960) in their seminal papers. They all used an
exponential function for h(t):
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FIGURE 1 Time-intensity trades for several integration models. The fixed integrator has
a time window of 0.5 s. The matched integrator has a window matched to the signal duration
with a maximum value of 0.5 s. The exponential integrator with a time constant of 0.2 s is
shown for comparison [see Eq. (3)]. In all cases, it is assumed that a quantity proportional to
waveform power is integrated.
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e—tlv t>0

h(r) = 0 elsewhere @)

This integrator weights past time by an amount e=#7, so that events more
than 37 in the past are greatly attenuated and have little impact on the
present output. The time—intensity trade for an exponential integrator is
also shown in Figure 1; the time constant is 0.2 s. As can be seen, over most
time the expected trade is 10 dB per decade, as it was with the fixed integra-
tor. We now pause in our discussion of theory to briefly review the available
empirical data concerning time—intensity trading ratios.

B. Time-Intensity Trades
1. Sinusoids in Quiet

The most recent results on temporal integration of sinusoidal signals at
absolute threshold are found in a study by Florentine, Fastl, and Buus
(1988). They present new data using six normal-hearing listeners, as well as
a thorough review of previous data. They studied four frequencies, 250,
1000, 4000, and 14,000 Hz, and varied the duration of the signals from
about 5 cycles to 500 ms. The subjects listened for the signals in quiet using
a two-interval, forced-choice adaptive task. The data are approximated
nicely by a straight line in a plot of signal thresholds in decibels versus the
logarithm of signal duration. The slope of the line is about —3/4 for the
three lower frequencies and perhaps slightly smaller at the highest frequen-
cy. They also plotted the results obtained by previous investigators of this
problem including Fastl (1977), Olsen and Carhart (1966), Hughes (1946),
Watson and Gengel (1969), and Zwicker and Wright (1963). Data from the
earlier studies have been fitted by a variety of different functions. Florentine
et al. (1988; see their Fig. 2) demonstrate that all the data show essentially
the same time-intensity trade; namely, signal intensity decreases as a power
function of signal duration with an exponent of about —3/4. The only area
of minor discrepancy concerns the slope of the time-intensity trade for
higher frequency signals. Zwicker and Wright (1963), in particular, found a
shallower slope for the higher frequencies.

2. Sinusoids in Noise

Plomp and Bouman’s (1959) study remains the most comprehensive on
how signal duration influences the detectability of a sinusoidal signal par-
tially masked by noise. They used six signal frequencies, ranging from 250
to 8000 Hz, and varied the signal duration between about 5 cycles and 5000
ms. Their data are well approximated by accumulations produced by a
simple exponential integrator with a time constant of about 200-300 ms.
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Thus, for durations less than about 300 ms, the time—intensity trade is
nearly a straight line with unit slope when the threshold in decibels is
plotted against the logarithm of duration (see Figure 1). The threshold is in-
dependent of duration (zero slope) for the longer durations. Any departure
from this simple summary occurs at the very shortest duration, where the
thresholds may rise more than this model predicts. This function also pro-
vides a reasonably good summary of most of the previous studies in the area
including Blodgett, Jeffress, and Taylor (1958), Garner and Miller (1947),
Garner (1947), Green, Birdsall, and Tanner (1957), Hamilton (1957), Simon
(1963), and Zwicker and Wright (1963).

3. Noise in Quiet

We could find only two studies on the issue of how the duration of a noise
burst affects its detectability when presented in quiet. Penner (1978) shows
data for three subjects at durations from 0.1 to 1000 ms. The data fall along a
straight line when plotting thresholds in decibels against the logarithm of
duration with a slope of about —0.73. In an earlier study, Garner (1947)
found the slope to be about —0.8. Thus, it appears that a noise in quiet
produces a time—intensity trade that is similar to that produced by a si-
nusoid in quiet.

4. Noise in Noise

There are more data on the time—intensity trade for a signal which itself is a
noise burst added to a masking noise. Green (1960) presents a theoretical
account of the detection of such signals using a simple energy model. He
shows that such a model predicts a square-root trade between threshold
signal power and signal duration (slope of —0.5). He presents data at five
durations ranging from 3 to 300 ms that fall almost exactly along the theo-
retical line. Campbell (1963) measured the detectability of noise bursts for
durations ranging from 1 to 1000 ms. He found the threshold decreased
with the expected slope of 5 dB per decade for durations from 1 to about 100
ms. The threshold continued to decrease to 1000 ms, but the rate of im-
provement was much slower. Raab, Osman, and Rich (1963) also presented
data showing that the threshold of a noise burst decreases 5 dB per decade
change in duration from 5 to about 200 ms. They measured at four different
sound pressure levels (20 to 75 SPL), Penner (1978) studied durations over a
wider range (from 0.1 to 1000 ms) and showed that the time—intensity trade
is essentially the same as for a noise burst in quiet—a slope of —0.69 when
plotted on log-log coordinates. Penner’s data for the longer durations (3 to
1000 ms) fall very close to the slope of —0.5. The reason for the discrepancy
at the very short durations is not known.
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5. Increment in a Pulsed Sinusoid

Our last time—intensity trade concerns how the duration of the sound affects
the just-detectable increment in a sinusoidal signal. This was first studied by
Henning (1970) and has recently been the subject of a more extensive series
of measurements by Florentine (1986). She measured the difference limen
(AL = 20 log[(Ap + p)/p]), where p is the pressure of the standard and Ap is
the increment in pressure created by adding the signal to the standard. She
used three different frequencies, 250, 500, and 8000 Hz, at three different
levels, 40, 65, and 85 SPL, with durations ranging from 2 to 2000 ms. The
time—intensity trade is nicely summarized by a straight line with slope of
about —1/4 (—0.27 £ 0.06) if AL is plotted against the logarithm of the
signal duration. An odd feature of the data is that AL does not appear to
reach a clear asymptotic value even for the longest duration. The consistent
decline of AL with duration up to the longest duration is especially apparent
for the higher frequencies and the higher levels for the standard. The rela-
tively shallow slope for the time-intensity trade is also inconsistent with
simple statistical integration models, which will be discussed shortly. They
predict that the slope should be equal to —0.5.

We now return to a more detailed consideration of theory, including the
more modern theory.

C. The Presence of Noise

Although the preceding analysis provides a good summary of the situation
when integrating a noiseless signal, the presence of noise complicates the
analysis of the temporal integration process. Many of the problems are not
explicitly discussed in any of the current models, and our analysis will focus
on these problems in the following discussion. Noise not only produces an
added burden of complexity because one must discriminate noise from
signal plus noise, it also raises questions about the precise way in which the
integrator is used. Two important issues are whether or not the integrator is
matched to the signal duration and when to turn the accumulation process
on or off.

To understand the theoretical problems produced by noise, consider the
time traces shown in Figure 2 for a simple exponential integrator. The time
traces show what happens when we actually simulate such an accumulation
process. The bottom line in Figure 2 shows the weighting function A(f); in
this example, it is exponential with a time constant of about 100 ms. The
next time line shows the signal s(f), two sinusoidal bursts each 80 ms in
duration but differing in intensity. The middle time line is the noise n(f).
Above the time line for the noise is the square of the signal plus noise. This
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FIGURE 2 A simulation of an exponential integrator with a sinusoidal signal and noise
present at its input. The time traces from bottom to top are the impulse response of the
integrator h(f), the sinusoidal signal, the noise waveform, the square of the signal plus noise,

the output of the convolution integral, Eq. (1).

quantity is always positive and can therefore be accumulated to determine if
the signal produces a greater amount of this quantity. The output of the
convolution integral, Eq. (1), is the top time line in the figure—marked
convolution output. The maximum value for the output occurs near the end of
the largest signal burst. Other local maxima occur; some caused by noise
alone. The example illustrates the advantage of knowing when the signal
might occur.

If we know the exact time the signal might occur, a statistic useful in
deciding about the presence of a signal is the output of the integrator at the
time the signal terminates. Because noise is a random process, the integrated
quantity, in this example the squared values of the waveform, is also a
random variable. There will be a distribution of convolution outputs having
different means, depending on whether or not the signal is present in the
noise. The quality of such discriminations is determined by the difference in
the means of the two distributions compared to the variability. Figure 3
illustrates this situation and defines the detection index d’ as the difference in
means divided by the standard deviation of the noise process. For the pur-
pose of this discussion, we assume that the variance of the integrated ran-
dom variable (the square of the waveform) is proportional to the mean. This
is characteristic of a number of statistical processes such as the chi-squared
distribution or the Poisson. We also assume the noise has bandwidth W
(cycles per second), so that a noise waveform lasting T seconds has 2WT
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FIGURE 3  Probability density functions of the output of the convolution integral given
noise alone and signal plus noise. The detectability index d’ is the separation of the two means
divided by the standard deviation of each distribution.

degrees of freedom (see Green & Swets, 1966). This assumption will sim-
plify the ensuing discussion.

Another issue of importance in analyzing an integrator in the presence of
noise is whether the period of integration is matched to the signal duration
or whether it is a fixed quantity. Let us analyze both assumptions. To begin,
assume the signal duration is less than the maximum integration time; that
is, D <.

For D < 7. In Case I, integration time is fixed and independent of signal
duration. Mean (noise) = WsN, mean (signal plus noise) = WDS + W1N,
and o = (W7)12N:

d' = WDS | N(Wr)1/2 )

In Case II, integration time is matched to the signal duration T = D. Mean
{(noise) = WDN, mean (signal plus noise) = WD(S + N), and o = (WD)¥/2N:

d' = (WD)12 S/IN G)

For D > «. If D > 1, then there is no difference between the two models. In
either case, it is easy to verify that

d' = (W12 /N 6)

so that detection is independent of signal duration D for either the matched
or fixed integration time model.
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To obtain the time—intensity trades for these models, we set d' = 1 and
assume some relationship between signal intensity I and the quantity S of
the model. Figure 1 shows the results, assuming S is proportional to I, for
both the matched and fixed integrator. The matched integrator shows less
dependence on signal duration than the fixed integrator, the threshold de-
creasing 5 dB per decade change in duration compared with the 10 dB per
decade change for the fixed integrator. Note also that the fixed integrator
shows exactly the same variation with signal duration as the older, classical
model that ignored the effects of noise.

Before leaving our theoretical discussion of temporal integrators, we
mention one more integration model, the statistical integrator. Suppose we
observe some temporal process and calculate m quantities similar to d'.
We then combine these m observations into a final statistic that is used to
decide whether or not the signal is present. If the observations are indepen-
dent and the individual values of d' are all equal, it is easy to show that the
quality of the final statistic, call it d;,, is equal to (m)¥/2d’. This has been
called the independent looks model. In the context of the present discussion,
because the number of looks is proportional to the signal duration D, it will
also predict that d' will increase proportionally to D'/2.

The preceding discussion contains all the elements of a complete analysis
of the problem of detecting signals in noise. Existing models generally
ignore one or more of these elements. Often only the means of the distribu-
tions of noise and signal plus noise are derived; the variability is ignored. A
fixed integration time is also usually assumed, thereby ignoring the issue of
whether the integration time is matched to the signal. For the most part, it is
assumed that the decision statistic (the quantity used to decide whether
signal or noise alone was present) is the integrator value achieved at the time
the signal terminates. This is because, on average, the integrator output will
be at a maximum at that time.

D. Recent Theories

There has been comparatively little theory about the time—intensity trade
since the seminal papers of the 1940s and 1950s. Zwislocki (1969) has writ-
ten an extensive theoretical treatment of the temporal summation of loud-
ness. The basis of his theory is derived from neurophysiological recordings,
but it provides an adequate description of much psychoacoustic data. The
theory assumes a linear integration process with an exponential window h,
having a time constant of about 200 ms. Nonlinear processes also modify
this mechanism, so that the integrator appears to be somewhat faster (T =
100 ms) at higher sound pressure levels. The basic problem with this and
other classical theories is that they all predict a time—intensity trade of about
—10 dB per decade of duration, as shown in Figure 1. As we have seen in
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reviewing the empirical evidence, the time-intensity trade is often some-
what smaller than this value, —6 to —8 dB per decade being more typical
values for some tasks. How can we account for the smaller trading ratios?

One simple approach is to assume a nonlinear relation between stimulus
intensity I and the quantity accumulated by the integrator, which we call S.
Such an assumption seems entirely plausible. Suppose the apparent magni-
tude or loudness of the stimulus is integrated rather than the stimulus inten-
sity. Loudness is thought to grow as a compressive power function of
stimulus intensity with an exponent of about 0.3 when expressed relative to
stimulus intensity (loudness = intensity®-3, Stevens, 1975; see Chapter 4).
The problem is that we find a quite different exponent when we use a
compressive power function to account for the time—intensity data. To
predict a time—intensity trade of —6 dB per decade, we must assume S = [P,
where B = 0.6, rather than the generally accepted value of 0.3. One inge-
nious way around this dilemma is suggested by Penner (1978). She assumes
a nonlinear mapping of intensity to some internal quantity, but also sug-
gests constructing a weighting function h(f) to produce the desired time—
intensity trade. The h(f) derived from these assumptions is

SpaPtab—1 t =1
h(t) = S, 0<t<t (7)
0 t <0

So is a constant, and a convenient choice is 1/aB. There are then actually
three free parameters in this model, 4, B, and the choice of units for time ¢.
The time-intensity trade suggested by this model is (—10-a dB per decade)
and is independent of the value of B. In her article, Penner shows that a value
of a = 0.7 gives a good fit to some time—intensity data, and she can still
assume the generally accepted value for 3; namely, § = 0.3. With these
parameters, Penner claims that a much smaller apparent time constant re-
sults if one compares the k(f) of Eq. (7) with, for example, an exponential
time constant, as in Eq. (3). If viewed in the time domain, there certainly is
some resemblance her h(f) with @ = 0.7 and an exponential window with a
time constant of only 5 ms. A major difference is that the exponential
window (Eq. 3) is essentially O after 15 ms, whereas Penner’s h(f) has not
diminished to 5% of its peak value response in 54 ms. Such comparisons of
different values of h(f) should be viewed with caution.

Another way to compare temporal windows is in the frequency domain.
Because the accumulation process is a linear operator, we can also view it as
a process that differentially weights different input frequencies. This is
achieved by taking the magnitude of the Fourier transform of A(f). When
this transformation is performed, the 3 dB point of the frequency response
of the filter corresponding to h(f) is often cited as a parameter to indicate the
speed of the system. A large frequency corresponding to the 3 dB value is
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indicative of a fast system. For the 5 ms exponential window, the 3 dB point
is simply 1/(2mt) = 32 Hz. For Penner’s h(f), the frequency response is hard
to derive analytically, but the 3 dB frequency response of that window can
be calculated from the Fourier transform of a discrete approximation to Eq.
(7). With the constant a = 0.742, the 3 dB point is about 0.36 Hz. Such a 3
dB point is produced by an exponential window with a time constant of 435
ms. Thus, if compared in the time domain, Penner’s h(f) is fast, but if
compared in the frequency domain, it is very slow. The only safe conclusion
is that the exponential window and Penner’s h(f) are very different.

III. TEMPORAL ACUITY
A. Introduction

There are several ways to pose the question considered in this section. The
simplest is to ask, How fast is the ear? How much time does the ear take to
process auditory information? To answer this question experimentally, one
varies the delay between two auditory events to determine the minimal time
delay that can be discriminated. In essence, the focus is the converse of the
issue studied in temporal integration. There we wanted to know the dura-
tion over which the ear could integrate or collect information. Here we
want to know the minimum time interval within which different acoustic
events can be distinguished. The question appears simple, but a variety of
potentially confounding cues are often produced by changing the starting
time or duration of acoustic events. Some are of interest as temporal param-
eters; some are not. We will consider five different approaches to these
temporal issues, describe the procedures used in the experiments, and sum-
marize the results.

B. Temporal Order

Historically, the earliest studies of temporal acuity involved the perception
of temporal order. Hirsh (1959) used two tones of different frequency but of
nearly equal (500 ms) duration. He started one tone slightly before the other
in time, and asked the listener which tone started first? Because chance is
50% correct in this task, he determined the difference in starting time, At,
that would produce 75% correct responses as his threshold for temporal
order. The threshold was about 20-30 ms for a variety of different pairs of
sounds. Surprisingly, the threshold did not seem to change as he varied the
frequency difference between the two tones or even if he used a noise burst
and a tone as his stimulus pair.

In a later study, Hirsh and Sherrick (1961) showed that this 20-30 ms
value was needed to discriminate reliably which of two lights came on first.
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Indeed, the threshold value, At, was about the same when discriminating
whether a light flash preceded a tone burst or the reverse. Another type of
temporal order judgment was studied by Warren, Obusek, Farmer, and
Warren (1969), who asked subjects to indicate the temporal sequence of
four distinct sounds that were played repetitively (. . . abcdabedabed . . . ).
They found, for nonmusical or nonspeech sounds, rates of repetition as low
as 5/s were needed to correctly distinguish the order of the sequences (200
ms/element). It appears that these repeating sequences produce problems
for the listener in coding the auditory events, rather than taxing the inertial
aspects of the auditory system. Listeners can discriminate among the differ-
ent sequences, but have difficulty in mapping the perceived sequence to the
required output code. Nickerson and Freeman (1974) reviewed the area in
some detail. They showed that one subject, after receiving extensive train-
ing, could reliably report the order of a four-tone sequence at rates as high as
500/s (2 ms/element).

With Hirsh’s temporal order experiment, it was also found that extensive
practice produced better discrimination performance. Also, it is important
to use a relatively long duration for the sounds of the pair of stimuli to be
discriminated. If brief sounds are used, for example, 10 ms, then more
subtle changes in timbre become evident as the delay between the starting
times is varied, and very small thresholds for temporal order can be ob-
tained. These changes in timbre can probably be best understood by consid-
ering the long-term power spectra of the stimulus pairs.

The most dramatic demonstration of a spectral artifact producing ex-
tremely good temporal discrimination scores comes from an experiment by
Leshowitz (1971). He asked what was the smallest temporal gap one could
detect between two very brief pulses? Each pulse was produced by a 10 ps
rectangular wave applied to the earphone. The listeners heard two sounds in
succession. In the standard sound, the two pulses followed each other with
no gap, At = 0; in the other sound, a gap of Af was introduced between the
two pulses. Leshowitz’s listeners could reliably discriminate gaps in the 5—
10 ps range. He argued that the basis for this discrimination were slight (1-
3 dB) differences in the high frequencies of the audio spectrum (>10,000
Hz). The introduction of a high-pass noise destroyed the ability to make
these discriminations, although the clicks were still clearly audible. As Les-
howitz suggests, this procedure has little to do with temporal acuity; rather,
it studied the ear’s ability to detect changes in power spectra of very short
pulses, especially changes in the high-frequency part of those spectra.

C. Phase Detection

Leshowitz’s results underscore the need for experimenters to hold the long-
term power spectrum of the stimuli constant when designing stimuli to
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probe the limits of temporal discrimination. To rephrase this injunction,
what we need to do is produce stimulus pairs that have the same overall
power spectrum. If the listener can discriminate between such pairs of stim-
uli, then the discrimination cannot be on the basis of amplitude or intensity
differences that occur at some frequency in the spectrum. The ability to
discriminate such pairs must depend on the order of temporal events within
the brief interval. A technical way to describe this requirement is to say that
the stimulus pairs can differ only in their phase spectra.

The simplest sounds to satisfy this constraint are a pair of clicks, one click
slightly larger in amplitude than the other. The discrimination task is to
determine the order of the clicks within the pair, large small or small large.
We construct this stimulus pair by playing the waveform either forward
or backward in time, that is, either f(f) or f(—¢). It is easy to show that
the power spectra of such waveforms are identical (see Appendix). When
viewed from the frequency domain, the only difference between f(#) and
f(—¥) is in the phase spectrum.

Obviously, if we separate the clicks by tens of milliseconds, the task is
very easy. As the total duration of the sound decreases, however, the dis-
crimination becomes increasingly difficult. When the time taken for the two
clicks is less than about 2 ms, the ability to discriminate the temporal order
fails (Ronken, 1970). We do not claim that the listeners calculate the phase
spectrum and discriminate on the basis of such calculations. Rather the
short-term power spectrum is the most likely basis for the discrimination.
Consider another stimulus pair consisting of a 1000-Hz and a 2000-Hz
sinusoid, as used by Wier and Green (1975). One stimulus consisted of a
single cycle of the 1000 Hz sinusoid followed by two cycles of the 2000 Hz
sinusoid, f(f). The other stimulus was that waveform reversed in time,
f(—1). The basis for such discriminations is pitch; the forward stimuli of
1000-2000 Hz sounded higher in pitch than the backward version of 2000-
1000 Hz. The listeners in that experiment could easily discriminate (90%
correct) whether a stimulus whose total duration was 2 ms was played
forward or backward in time. Thus, the inertial properties of the auditory
system were fast enough, so that the listeners could discriminate whether
the energy bursts were high—low or low—high. When discrimination of
temporal direction cannot be made, then the inertial properties of the audi-
tory system are causing different temporal events to be combined, and
temporal order information is lost.

While reversing the waveform in time is a simple way to hold the power
spectrum of the stimulus constant, a more sophisticated approach can also
be used. Huffman (1962) provided a general algorithm for generating a class
of waveforms. All members of the class are zero except for an interval of
time T seconds long. All members of the class have the same energy spec-
trum; that is, the spectra are the same when calculated over the entire
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interval T. Members of the class differ only in their phase spectrum. As used
in psychoacoustic experiments, T is small and the Huffman sequence
sounds like a brief transient or click. One sequence may have energy delayed
at some frequency region while another sequence delays energy at a differ-
ent frequency region. In this way, pairs of Huffman sequences can be dis-
criminated if the analysis process is faster than 7, the total duration of the
sequence. If a listener can discriminate between a pair of stimuli selected
from the class, we infer that the auditory system can somehow order events
within the total duration of the waveform T. Experiments using these
waveforms were first pursued by Patterson and Green (1970). Additional
results were reported by Green (1973). A simple summary of these results is
that discrimination of such waveforms fails when the duration is less than
about 2 ms (Green, 1971).

Some recent work by Henning and Gaskell (1981) has challenged the
2 ms limit. They used clicks of different amplitude, much like those of
Ronken (1970). They showed that discrimination was possible, after very
extensive practice, at total durations of 200 ps! The only obvious stimulus
differences in the two experiments are the durations of the clicks. Ronken’s
clicks were 250 ws in duration, whereas Henning and Gaskell’s clicks were
20 ps. We do not know whether this difference in the stimuli or the degree
of training explains the difference between Henning and Gaskell’s results
and the results of many previous experiments.

D. Temporal Gap Detection

The detection of a gap in an otherwise continuous sound has been a much
used paradigm in the study of temporal acuity. Before describing that ex-
perimental procedure, let us review the basic ideas behind this approach as
outlined in Plomp’s (1964) classic study. He was interested in measuring the
decay of auditory sensation. To measure this decay, he measured the mini-
mum silent interval At between two broadband noise pulses. This procedure
is shown schematically in Figure 4. According to Plomp, the sensation of
the first pulse will continue for some time after the cessation of the pulse, as
shown in the lower portion of the figure. To detect the silent interval, the
sensation introduced by the second pulse must cause an increase in sensation
by an amount AS.

Plomp used a two-interval, forced-choice (2IFC) paradigm in which the
signal interval consisted of two noise pulses separated by At, and the stan-
dard interval consisted of two noise pulses without a separation. The task of
the subject was to identify which interval contained the silent interval At.
The level of the second pulse and the just-detectable silent interval are
shown for one listener in Figure 5. The parameter of the curve is the level of
the first pulse. The value of the just-detectable silent interval increases as the
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FIGURE 4 Schematic diagram of the stimulus level (upper portion) and the sensation
level evoked by that stimulus (lower portion) as a function of time, as proposed by Plomp for
the decay of auditory sensation. (Plomp, 1964.)
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FIGURE 5 The minimum detectable silent interval is plotted along the abscissa. The
sensation level of the second pulse that gives rise to that threshold silent interval is plotted along
the ordinate. The sensation level of the first pulse is indicated in the figure. The data are for one
subject. (Plomp, 1964.)



6 Temporal Integration and Temporal Resolution 223

sensation level of the second pulse decreases, reaching its largest value of
about 200 ms when the second pulse has 0 sensation level. This is true for all
three levels of the first pulse. Note that time is expressed in logarithmic units.
The data show a linear relation between the sensation level of the second
pulse, in dB, and the logarithm of time. This is quite different from the
results we would expect on the basis of simple exponential decay. If the
decay were exponential, there would be a linear relation between the sensa-
tion level of the second pulse, and time would be expressed in linear units.
Plomp’s results violate the expectations of a simple exponential decay and
suggest the operation of a strongly nonlinear system.

A simple adaptation of these ideas has become one of the more popular
methods for estimating temporal acuity. When the levels of the first and
second noise pulses are made equal, we simply measure the minimum
temporal gap that can be detected—what we commonly call temporal-gap
detection. This procedure has been used with a variety of different sounds.
Let us now review some empirical data.

1. Broadband Noise

Plomp (1964) measured a gap-detection threshold of about 3 ms for noise
pulses of equal level, provided that the sensation level of the noise exceeded
about 30 dB. Gap-detection thresholds increased for sensation levels below
30 dB. Numerous studies have since confirmed these results (Penner, 1977;
Irwin, Hinchcliff, & Kemp, 1981; Fitzgibbons, 1983; Florentine & Buus,
1983; Shailer & Moore, 1983; Forrest & Green, 1987; Formby & Muir, 1988;
Green & Forrest, 1989).

Remarkably, gap detection thresholds are relatively insensitive to the
manipulation of many stimulus parameters. We will briefly mention how
several parameters influence gap-detection thresholds for broadband noise.
The independence of gap threshold and stimulus level (above 30 dB SL) is
consistent with the fact that gap-detection thresholds increase only slightly
when the overall stimulus level is randomized on each stimulus presentation
over a range of 25 dB about a median stimulus level (Forrest & Green, 1987,
Formby & Muir, 1989).

Another potential influence on gap detection is the total noise duration.
Forrest and Green (1987) reported that changes in the total stimulus dura-
tion from 5 to 400 ms had little effect on gap-detection thresholds, which
ranged from 1.6 to 2.6 ms with a minimum threshold at a duration of about
50 ms. They held the overall duration constant, and randomized the inten-
sity level from interval to interval so that a difference in overall loudness
would not be a potential artifact. Formby and Muir (1989) held intensity
level constant as well as the duration of the noise that marked the gap. Thus,
the total stimulus interval increased in time by an amount equal to the
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duration of the gap. They found that total stimulus duration was used as a
potential cue to the presence of a gap, at least for long gap durations. Penner
(1977) also reported nearly equal gap thresholds for durations from 20 to
400 ms. Below 20 ms, however, she reported improved gap-detection
thresholds. In that study, the signal interval was increased in duration by the
length of the gap so the results probably indicate that the listeners were
detecting changes in the overall duration of the sound.

Forrest and Green (1987) showed that gap detection is largely indepen-
dent of the temporal position of the gap within the noise. They also report-
ed that the psychometric function for gap detection is nearly linear when d’
is plotted against gap duration. The range of the psychometric function for
a completely silent interval is about 2 ms and is shallower for partially filled
gaps.

We conclude that gap-detection thresholds are relatively insensitive to
changes in level (above 30 dB SL), total duration, and temporal position.

2. Narrowband Noise

A natural question to ask is whether the temporal parameters are different
for different frequency channels. This question is especially appropriate for
a tonotopic system such as the human auditory system. To investigate
auditory temporal acuity at specific frequency locations, gap detection has
been measured with narrowband noise and sinusoids. With narrowband
signals, changes in the power spectrum produced by the introduction of a
silent interval create a potential artifact. Are the listeners hearing the tempo-
ral gap or the change in the power spectrum?

Two methods have been used to avoid detection based on the spectral
rather than the temporal cues. First, gap-detection thresholds may be mea-
sured in the presence of broadband maskers having a spectral notch located
at the center frequency of the stimulus band (e.g., Fitzgibbons & Wight-
man, 1982). Alternatively, we can take a broadband noise, introduce the
silent interval, and then filter the resulting waveform (e.g., Grose, Eddins,
& Hall, 1989). Gap-detection thresholds are nearly the same using either the
notch-noise masking technique or the technique of filtering after the tempo-
ral gap (Eddins, Hall, & Grose, 1992).

As with broadband stimuli, gap-detection thresholds in narrowband
noise decrease with increasing stimulus level to about 30 dB sensation level
and remain nearly constant for higher levels (Shailer & Moore, 1983; Buus
& Florentine, 1985; Fitzgibbons & Gordon-Salant, 1987).

A clear principle is that the larger is the bandwidth of the noise, the easier
it is to hear the gap. Figure 6 shows the results of seven investigations that
varied bandwidth over a significant range. These results are also consistent
with a number of other studies where bandwidth was a parameter (Fitzgib-
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bons, 1983, 1984; Florentine & Buus, 1983; Shailer & Moore, 1983, 1985;
Buus & Florentine, 1985; De Filippo & Snell, 1986; Formby & Muir, 1988;
Glasberg, Moore, & Bacon, 1987; Moore & Glasberg, 1988). In the lower
portion of the figure, the data are normalized so that the predicted threshold
at 1000 Hz is about 10 ms. The slope of the best fitting line, in the least-
squares sense, is —0.55. That is, gap threshold varies roughly as the recipro-
cal of the square root of bandwidth.

Having demonstrated the importance of stimulus bandwidth for gap
detection, the question remains whether stimulus center frequency influ-
ences gap detection. Most of the points plotted in Figure 6, even those
within a single study, were measured at different center frequencies, which
we have ignored in plotting the figure. The first systematic study of band-
width at different frequency regions was conducted by Eddins et al. (1992).
Figure 7 shows their data. Bands of noise having three different upper-
frequency cutofts, 600, 2200, and 4400 Hz, were used. For each frequency
region, the bandwidth of the noise was varied, as indicated in the figure.
Gap-detection thresholds did not differ across the three cutoff frequencies.
The same effects of bandwidth were seen at each frequency region; the
thresholds vary as the reciprocal of the square root of bandwidth.
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FIGURE 7 Gap detection thresholds as a function of noise bandwidth. The insert indi-
cates increasing noise bandwidth for a constant upper-cutoff frequency, which was either 600,
2200, or 4400 Hz, as indicated by the symbols. (The data are taken from Eddins, Hall, and
Grose, 1992.)
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3. Sinusoids

Gap-detection thresholds for sinusoidal stimuli have also been measured.
Potential spectral artifacts are, however, an even greater concern with si-
nusoidal stimuli because the spectrum is nonvarying, and any change in the
spectral pattern of the stimulus is certain evidence that the gap is present.
Shailer and Moore (1987), using a notched-noise masker to limit audibility
of the spectrum to a narrow range, measured psychometric functions for
gap detection for sinusoidal signals at frequencies of 200, 400, 1000, and
2000 Hz. Resulting gap thresholds were about 5 ms (75% correct) for their
“preserved phase” condition, in which the signal phase after the gap was the
same as if no interruption were present. In that case, the thresholds were
largely independent of frequency region. The range of the psychometric
function was roughly 3 to 5 ms. Moore and Glasberg (1988) measured gap
detection for sinusoids of 500, 1000, and 2000 Hz using an adaptive tech-
nique. The obtained gap thresholds were about 4 ms and showed no consis-
tent change with center frequency. The thresholds reported by Moore and
Glasberg were slightly better than those of Shailer and Moore, probably the
result of a greater signal-to-masker ratio (30 dB versus 15 dB).

Green and Forrest (1989) measured gap detection for multitonal com-
plexes consisting of 21 components spaced at equal intervals in logarithmic
frequency. Because of the spacing among the components, the sensation
level of any single component was only about 9 dB; thus, spectral artifacts
were probably inaudible. For this sensation level, gaps were easiest to hear
at the higher component frequencies, 5-10 ms above 2000 Hz as opposed to
40 ms at 235 Hz. When the sensation level was raised to 20 dB, roughly
comparable to the sensation levels of Shailer and Moore (1987), the results
were similar to those found for single tones in a notched noise and were
nearly independent of component frequency.

4. Theory

The dependence of the gap-detection threshold on stimulus bandwidth is
consistent with any account that considers the fluctuations in the noise. The
mean-to-sigma ratio of the noise power is proportional to the square root of
the noise bandwidth. As the noise bandwidth increases, therefore, the rela-
tive fluctuations of the noise power decrease and the change in power pro-
duced by the gap becomes easier to detect. The exact way this will affect
detection depends on the specific model. For an energy-detection model
(Green & Swets, 1966), the detection index is
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where W represents the bandwidth of the stimulus, T represents the dura-
tion of the gap, N is noise power, and S is the difference in power between the
noise power, N, and the noise power in the gap. Note that the energy
detector model predicts performance independent of center frequency, be-
cause the bandwidth W of that model is the bandwidth of the noise process,
not the receiver (Green, 1960). Gap detection can be viewed as detecting a
decrement in the noise, and thus, for constant d’, the slope of the gap
detection-noise bandwidth function should be about —0.5, which is reason-
ably close to the empirical slope of —0.55.

The empirical results deserve some comment. It is widely accepted that
the width of the auditory filter increases with increasing frequency (see
Chapter 5). Therefore, we might expect better temporal acuity at the higher
frequencies. The majority of available data suggest that gap-detection
thresholds are independent of center frequency. This is true whether the
stimulus bandwidth is narrower or wider than the auditory filter. Several
authors have suggested that information from the output of several auditory
filters may be combined at a more central location, thus overcoming the
limiting effects of peripheral filtering (Green, 1960; De Boer, 1966; Schac-
know & Raab, 1976; Viemeister, 1979; Shailer & Moore, 1983, 1985; Bacon
& Viemeister, 1985; Formby & Muir, 1988; Grose et al., 1989; Eddins et al.,
1992). We will see later that at least two models for the detection of
amplitude-modulated noise also assume that the bandwidth of the initial
filtering stage is much wider than any single critical bandwidth.

A second explanation for the improvement in gap threshold with increas-
ing bandwidth argues that an increase of the stimulus bandwidth increases
the number of across-channel comparisons. If the presence of a temporal
gap were signaled by several independent channels, then the gap-detection
threshold would decrease. Green and Forrest (1989) showed that gaps were
easier to hear when multiple components in their 21-component complex
were gated off and on synchronously. When multiple silent intervals were
nonsynchronously placed on different frequency components, gap thresh-
olds were typically intermediate between those for single and multiple (syn-
chronous) components. The improvement in detectability falls well below
the square root of # rule.

Grose et al. (1989) measured gap detection for three conditions chosen to
separate the effects of bandwidth and synchronous comparisons across fre-
quency. In their baseline conditions, gap detection was measured for a noise
having a bandwidth of 1600 Hz (600-2200 Hz) and a 20 Hz low-pass noise
multiplied by a 2180 Hz sinusoid, yielding a 40 Hz noise band centered on
2180 Hz, the components above 2180 Hz mirroring those below 2180 Hz.
According to a square-root-of-bandwidth argument, the gap thresholds
should be different by a factor of about 9 (the ratio of the number of
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independent components in each noise process is 1600/20, hence, (80)1/2 =
9). The thresholds were 8 ms for the wideband noise and 76 ms for the
narrowband noise (a factor 0f 9.5). The critical measurement was the thresh~
old for the wideband noise amplitude modulated by the narrow, 20 Hz, noise.
Gap thresholds were intermediate for this condition, about 31 ms.

The fluctuations in the envelope for this wideband multiplied noise are
dominated by the much narrower 20 Hz noise. On the basis of noise fluctua-
tion, then, we would expect little difference between the threshold for the
20 Hz multiplied noise (76 ms) and the 1600 Hz noise with a 20 Hz envelope
(31 ms). If, however, we assume the listeners compared fluctuations over
different frequency channels, then thresholds should reflect the increase in
the number of channels that are stimulated. Roughly, ten critical bands are
stimulated by the 1600 Hz noise band, compared with one critical band for
the 20 Hz multiplied noise centered at 2180 Hz. Using the square root of the
number of multiple looks, we would expect a difference in threshold of
[(10/1)1/2 = 3.2]. The obtained thresholds differ by a factor of 2.5. As was
true in the study of Green and Forrest (1989), the improvement falls short of
the square root of n rule.

Clearly, an increase in noise fluctuations, whether created by modulation
or by changing the noise bandwidth, has a detrimental effect on gap de-
tection; the amount of threshold increase is proportional to the square root
of the change in bandwidth. Synchronous comparisons of temporal gaps
across frequency also improve gap detection. It appears that fluctuation is
somewhat more important than cross-channel synchrony in gap detection.

A quite different attempt to summarize much of the data associated with
temporal acuity is the temporal weighting function (Moore, Glasberg, Plack,
& Biswas, 1988; Plack & Moore, 1990). This approach is empirical in origin
and modeled after the measurement of auditory filter shape pioneered by
Patterson (1974). It is not a process model in the sense of describing how the
signal is detected. Rather, the idea is to characterize how masking is related
to the temporal proximity of the signal and noise. To estimate the temporal
weighting function, a brief sinusoidal signal was placed between two suc-
cessive noise bursts. They then determined how the detectability of the
signal depended on the temporal relationships of the signal and the two
noise bursts. These experimental manipulations provide an assessment of
the relative importance of the temporal sections of the noise bursts that
preceed and succeed the signal. The approach is similar in spirit to the
determination of the auditory filter shape using notched noise, except the
manipulations are carried out in the time domain rather than the frequency
domain (see Chapter 5). The resulting empirical function is a weighting
function w(f). This function bears some resemblance to h(f) of the convolu-
tion integral, Eq. (1). The difference is that w(f) weights the average power of
the noise, not the instantaneous square of the noise waveform. The empiri-
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cally determined weighting function [10 log w(f)] is shown in Figure 8 for a
5 ms, 2000 Hz signal at two different noise levels. Robinson and Pollack
(1973) and Penner and her colleagues (Penner, Robinson, & Green, 1972;
Penner and Cudahy, 1973) attempted to determine such a weighting func-
tion, but their efforts were not as comprehensive as those described by
Moore et al. (1988).

Several points are worth noting about this approach. Clearly, the weight-
ing function w(t) should not be considered the A(t) of the convolution inte-
gral. It is not a temporal filter, because if the weighting function is inter-
preted as an impulse response it has finite values for negative times—it
would be both predictive and noncausal. The authors have argued that the
noncausal property of the weighting function could be avoided by moving
the 0 point on the time axis to some positive value, for example to 50 ms in
Figure 8. In effect, this would amount to assuming a 50 ms delay in the
nervous system before w(t) is applied. The exact amount of this delay cannot
be determined from the data, so that any value is arbitrary and the authors
of the theory have presented the weighting function centered at zero delay.
The negative values of Figure 8 arise because a noise occurring after a brief
signal causes masking—we call the phenomenon backward masking, but it is
little understood. In our opinion, the weighting function w(t) should be
considered a parsimonious summary of a large number of different experi-
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ments. A considerable amount of data can be successfully predicted with
only four free parameters. Three of the parameters are related to the shape
of the weighting function. The fourth parameter reflects the asymmetry
between forward and backward masking—the shape of the weighting func-
tion is very different for positive and negative times. The same weighting
function works for two different frequency regions, 500 and 2000 Hz. Fur-
thermore, the shape of the function is not greatly altered with overall
changes in noise level, as Figure 8 demonstrates.

An implicit assumption of this approach is that the threshold of the signal
is determined by the additive effects of noise in the temporal vicinity of the
signal. Although the assumption is not specifically tested in the Moore et al.
paper, the success of this approach suggests that forward and backward
masking may be treated as combining according to simple power addition.

Direct empirical measurements of masker additivity strongly suggest
that the opposite is true. Penner (1980) measured the audibility of a click
surrounded by two noise bursts. The additional masking produced by the
combination of two equally effective maskers was 8 dB rather than the
expected 3 dB. The earlier work by Robinson and Pollack (1973) showed
additional masking values as large as 10 dB beyond power addition, depend-
ing on the position of the forward and backward masker. Penner and Schif-
frin (1980) developed a model of temporal summation and intensity coding.
Compression of the stimulus intensity is a central part of this theory, there-
by accounting for the highly nonlinear way in which two different maskers
combine (see Chapter 5 for an explanation of the effects of compression on
the additivity of masking). Jesteadt and Wilke (1982) and Jesteadt, Weber,
and Wilke (1982) have also demonstrated nonlinear effects in the combina-
tion of two forward and simultaneous maskers. Lutfi (1983) and Humes and
Jesteadt (1989) have also assumed power-law compression of stimulus in-
tensity to account for the highly nonlinear way in which different maskers
combine. Lutfi (1990) has recently proposed an informational masking ac-
count of why simple power summation often fails to account for masking
produced by the combination of two maskers.

Moore et al. (1988) suggested that such apparent nonlinear effects might
arise because the temporal position of the window depends on the masker
type. Specifically they assume that the observer can listen before or after the
signal (off-time listening) to maximize the signal-to-noise ratio. For the
forward masking case, the temporal window should be positioned some
time after the signal occurs. For the backward masking case, the temporal
window should be positioned some time before the signal occurs for the
same reason. When both maskers are used, the advantage of either off-time
listening is reduced, and an increase in threshold would be expected. It
remains unclear whether this increase would be sufficient to account for the
nonlinear way in which forward and backward masking combine.
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E. Amplitude-Modulation Detection
1. Broadband Noise

Another method used to estimate temporal acuity is to measure the ability
to detect amplitude modulation of a noise waveform. Traditionally, a si-
nusoidal modulation is imposed of the form

x() = [1 + m cos(2nf, t)]n(t) 9

where n(f) is the noise waveform, f,, is the rate of modulation, and m is the
depth of modulation. We define the sensitivity to modulation as the value of
20 log(1/m) necessary just to distinguish an amplitude-modulated stimulus
from an unmodulated stimulus. Measuring the modulation threshold for
several frequencies of modulation, we obtain a measure of the ability to
follow changes in amplitude as a function of the rate of amplitude change. A
modulation transfer function obtained in this manner is shown in Figure 9
(adapted from Viemeister, 1979).

The analogy between such a function and the systems analysis technique
is obvious. It must be used with some caution, as was discussed by Roden-
burg (1972) and Viemeister (1977). The Fourier transform of the modula-
tion transfer function can be likened to the temporal weighting function of a
convolution integral h(f) [see Eq. (1)]. The modulation transfer function
resembles a low-pass filter, and if a simple first-order filter is assumed, then
7 = 1/(2mf), where f, is the 3 dB point of the low-pass filter. Nonlinearities
in the auditory system will restrict the generality of this approach. Evidence
for such nonlinearity was cited earlier (see Figure 5). Additional problems
for this simple approach are evidenced by the attenuation slope of the trans-
fer function, which is closer to 3 dB per octave than the 6 dB per octave
expected with a first-order system. Despite these problems, the linear sys-
tems approach has proven useful; the interested reader is referred to Viem-
eister (1979).

Now, let us consider empirical results from several investigations. The
modulation thresholds shown in Figure 9 are roughly constant for modula-
tion frequencies below about 50 Hz. Above 50 Hz, sensitivity to modulation
decreases at a rate of about 3 dB/octave up to 1000 Hz. Assuming a half-
power cutoff frequency, f,, of 50 Hz, the derived time constant would then
be about 3 ms. Time constants of 2-3 ms are consistent with many esti-
mates derived from modulation transfer functions for broadband noise
(Rodenburg, 1972, 1977; Viemeister, 1977; Bacon & Viemeister, 1985; For-
mby, 1985; Forrest & Green, 1987; Formby & Muir, 1988). Furthermore,
the form of the modulation transfer function is largely independent of stim-
ulus level (Viemeister, 1979).

Several authors have commented on the attenuation slope of the transfer
function. From a simple low-pass filter we would expect an attenuation
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FIGURE 9 Modulation detection thresholds for broadband noise. Sensitivity to modula-
tion (20 log 1/m) is plotted as a function of modulation frequency (2 to 4000 Hz). (Adapted
from Viemeister, 1979.)

slope of —6 dB per octave. Although Rodenburg reported a slope of nearly
—6 dB per octave, investigators have typically reported a slope of about —3
dB per octave (Viemeister, 1977, 1979; Bacon & Viemeister, 1985; Formby,
1985; Forrest & Green, 1987; Formby & Muir, 1988; Eddins, 1993). In
general, this problem has been ignored, and a model using a simple low-
pass filter has been used that accurately predicts the empirical results from
several investigations of temporal acuity.

2. Narrowband Noise

As with gap detection, we are interested in whether temporal acuity as
measured by modulation detection differs for different frequency channels.
Again, a basic principle is that amplitude modulation is easier to detect for
larger noise bandwidths. This was first shown by Rodenburg (1972) and has
since been demonstrated by several investigators (Viemeister, 1979; van
Zanten, 1980; Formby & Muir, 1988). In general, as the noise bandwidth
increases, the half-power bandwidth of the transfer function shifts to higher
modulation frequencies and corresponding time constants decrease. Fur-
thermore, as the noise bandwidth increases, the sensitivity to modulation
improves across all modulation frequencies. In each of the studies men-
tioned, increases in noise bandwidth accompanied increases in center fre-
quency, limiting the separation of these two parameters.
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More recent work by Eddins (1993) indicates that the attenuation charac-
teristics of modulation transfer functions for narrowband noise are relatively
invariant with changes in frequency region and are almost entirely deter-
mined by stimulus bandwidth. Figure 10 shows Eddins’ data for stimulus
bandwidths ranging from 200 to 1600 Hz having upper-cutoff frequencies
of 600, 2200, or 4400 Hz. The data are similar in form to data for broadband
stimuli (Figure 9). Each panel of the figure shows a different bandwidth. As
bandwidth decreases from 1600 to 200 Hz, the cutoff frequency f. decreases
from 83 Hz to 27 Hz and the corresponding time constants increase from
about 1.9 to 5.9 ms. Time constants estimated from modulation transfer
functions, like gap-detection thresholds, decrease at a rate proportional to
the square root of the stimulus bandwidth. The sensitivity to modulation
also improves by approximately 3 dB per doubling of noise bandwidth. For
a given bandwidth, the half-power point on these functions is nearly inde-
pendent of center frequency. In accordance with previous results for broad-
band and narrowband noise, the slope of the functions was approximately
—3 dB per octave beyond f. In summary, time constants associated with
modulation transfer functions for narrowband noise decrease with increas-
ing bandwidth and are constant across frequency region, at least to 4400 Hz.

3. Theory

In view of the many measures of temporal acuity, it would be helpful to
have a model of temporal acuity to account for at least a few, if not most of
these results. A common model of auditory processing involves four stages:
an initial bandpass filter, a nonlinear operator, a temporal integrator, and a
decision device. Viemeister (1979) used such a model to predict his modula-
tion detection data with reasonable accuracy. Briefly, the initial bandpass
filter is analogous to peripheral auditory filtering. The nonlinear operator
served to convert the input waveform to a purely positive quantity; a half-
wave rectifier was used by Viemeister. The temporal integrator was mod-
eled as a low-pass filter. The final-stage decision process computed the
variance of the output of the low-pass filter. The free parameters in the
model were the bandwidths of the initial filter and the low-pass filter.
The model predicted the form of the modulation transfer function with
reasonable accuracy. An initial filter having a bandwidth of 2000 Hz and a
time constant of 2.5 ms (low-pass filter bandwidth of 65 Hz) nicely fits the
data obtained with wideband noise. The model requires a predetection filter
that is clearly wider than a single auditory filter, implying that the auditory
system somehow increases its effective bandwidth.

Forrest and Green (1987) used a model similar to Viemeister’s to predict
the results for both modulation and gap detection. The major difference
between the two models was the decision statistic. Forrest and Green used
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FIGURE 10 Modulation detection thresholds for narrowband noise. Sensitivity to mod-
ulation (20 log 1/m) is plotted as a function of modulation frequency with upper-cutoff fre-
quency as the parameter. Each panel represents the indicated bandwidth condition. The solid
line in panel A is the fitted low-pass function to the data for the 2200 Hz upper cutoff (see
Eddins, 1993). (The data are taken from Eddins, 1993.)

the ratio of the maximum to the minimum sample at the output of the low-
pass filter, rather than its variance. The choice of the max—min statistic was
partially motivated by the need for a decision statistic independent of the
overall level of the stimulus, as the level was randomized from interval to
interval in their gap-detection experiments. An advantage of this model is
that it does predict the nearly —3 dB per octave slope of the modulation
transfer functions. Both gap and modulation detection results were well
approximated by the model using an initial bandpass filter 4000 Hz wide
and a 3 ms time constant. Again, note the wide bandwidth of the pre-
detection filter.

The models of both Viemeister and Forrest and Green demonstrated that
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the width of the predetection filter necessary for accurate predictions was
much greater than a single auditory filter. One interpretation is that periph-
eral filtering does not have a strong influence on modulation or gap detec-
tion. That is not to say that peripheral filtering is not present. It is certainly
possible that the auditory system makes use of information obtained from
the output of many auditory filters combined at some higher neural level.
Although the models discussed here were used to predict data from broad-
band noise, they appear to be consistent with experiments using narrow-
band noise. Recall that neither the gap nor modulation detection experi-

ments employing narrowband stimuli showed obvious effects of peripheral
filtering (Eddins et al., 1992; Eddins, 1993).

F. Temporal Asynchrony

In a discrimination task similar to Hirsh’s temporal order judgment, Zera
and Green (1993a, 1993b) measured the ability of listeners to hear temporal
synchrony in multicomponent complexes. Two sounds, each of which lasted
about 0.5 s, were presented in a two-alternative, forced-choice task. For one
sound, the standard, all components of the complex started (or ended) at the
same time. For the other sound, the asynchronous signal, one or more
components began (onset condition) or ended (offset condition) at a differ-
ent time from the remainder. The listener was asked to indicate which
sound was asynchronous. In their experiment, for each onset condition, a
similar offset condition was measured by simply reversing the waveform in
time. The first major finding was that the thresholds for detecting onset
asynchrony are about three to ten times smaller than those for detecting
offset asynchrony. Indeed, for onset detection, an asynchrony of 1 ms is
almost always detectable in any condition and for any component frequen-
cy. In some conditions, the listeners could hear 0.1 ms of asynchrony.
Several different kinds of asynchrony should be distinguished because
they influence the ability to detect such changes. The asynchronous compo-
nents can begin before or after the remainder of the components. As one
might expect on the basis of masking, it was generally easier to hear asyn-
chrony if the asynchronous components occurred alone: either before the
other components had started in the onset condition, or after the others had
terminated in the offset condition. Another factor that strongly influenced
the results was the frequency of the asynchronous component and the com-
position of the complex. Detection of asynchrony is usually easier for har-
monic complexes rather than for complexes where successive frequencies
have a constant frequency ratio (equal spacing in logarithmic frequency).
The exception to this generalization occurs when the asynchronous compo-
nent is very high in frequency. In that case, several components fall within
the same critical band for the harmonic complex and asynchrony in log-
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arithmic complexes may be easier to hear, although overall performance is
very poor in such conditions.

Detection of onset asynchrony is especially acute for lower frequency
components in harmonic complexes. For frequencies below about 2000 Hz,
onset asynchrony is detectable if the odd component starts only 1/4 cycle
before the remaining components of the harmonic complex. The detection
of asynchrony in an inharmonic complex is less dependent on frequency,
either for onset or offset conditions.

Detecting the asynchrony of single components in a complex is best
when all the remaining components start or end at exactly the same time. In
one experiment, the standard stimulus was a complex in which each succes-
sive component of the complex began a constant time interval before or
after the preceding component. Thus, the time at which each component
began (or ended) was a linear function of time. Additional asynchrony was
created by altering the temporal position of a single component of the
complex. As might be expected, it is more difficult to detect the onset
asynchrony of a single component when the standard itself is asynchronous.
On the other hand, offset asynchrony detection was hardly affected by the
linear asynchrony of the standard sound.

There is as yet little theory to explain any of these findings. Among the
more obvious questions are these: Why does harmonic frequency spacing
lead to better detection of asynchrony than when the components are inhar-
monically spaced, and why is onset asynchrony so much easier to detect
than offset asynchrony?

IV. CONCLUSIONS
A. Temporal Integration

All stimulus conditions investigated produce a time—intensity trade. The
decrease in the signal level or relative signal level at the threshold is about x
dB when the signal duration is increased by a factor of 10. The value of x
ranges between 0.25 and 1.0, depending on the stimulus condition. The
maximum duration of the temporal integrator appears to be about 100 to
200 ms, except when the task is to detect an increment in a sinusoid. In that
case, it appears to be appreciably longer.

B. Temporal Acuity

The time constant for temporal acuity is appreciably shorter than the esti-
mated value for temporal integration. The estimated time constants range
from a fraction of a millisecond to 30 ms. Many of the estimates cluster at
about 2 ms. The number of very different experimental techniques leading
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to this similar estimate is impressive. Estimates of temporal acuity are rela-
tively stable over a broad range of stimulus conditions.

Sensitivity to either the amplitude modulation of noise or to gaps in the
noise varies as the square root of the bandwidth of the stimulus. The center
frequency of a narrowband noise has little influence on the estimated time
constant.

Temporal asynchrony of a single component in a multicomponent com-
plex is much easier to detect when the complex is harmonic than when it is
inharmonic and when the asynchronous component occurs at the onset
rather than the offset of the components.

Appendix

The Fourier transform F(w) of a signal of finite duration having nonzero
value only in the imerval —T to + T is
+T

F(w) = . f(t) eiwt dt (A1)

where f(t) is the time waveform, w is the frequency in radians per second,
and j is the imaginary number j = V-1. The energy spectrum of a signal is
simply the Fourier transform times its conjugate F*(w). If we represent the
Fourier transform as a real function A(w) and an imaginary function B(w),
then the energy spectrum is simply [A(w)2 + B(w)?].

Using Euler’s identity, we can rewrite Eq. (A1) in terms of the real and
imaginary parts, in which case

+T
A(w) = | f(t) cos(wr) dt (A2)
or
+T
Bw) = j I_T F(t) sin(wt) dt (A3)

An even function has the property that £.(f) = f.(—f), and an odd function
has the property that f,(f) = —f,(—¢). Any function f(f) can be considered the
sum of an odd part f, and an even part f,. The even part is simply [ f(f) +
f(—=8]/2, and the odd part is [ f(t) — f(—8)]/2.

Consider the energy spectrum of a waveform f{f) and a time-reversed
waveform f(—¢). It is easy to verify that the odd part of f(f) yields a Fourier
transform that is purely imaginary; B(w). The even part of f(f) yields a
Fourier transform that is purely real, with the forward wave, f(), producing
A(w) and the time-reversed wave, f(—1), producing —A(w). Thus, the ener-
gy spectra of the forward and time-reversed waves are the same; both are
equal to A(w)?2 + B(w)2.
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CHAPTER7

Across-Channel Processes in Masking

Joseph W. Hall III
John H. Grose
Lee Mendoza

I. INTRODUCTION

In many listening situations, the ear appears to be able to analyze energy at
one frequency to the effective exclusion of energy at surrounding frequen-
cies. Over the past 50 years, this “critical band” or “auditory filter” concept
has accounted for an immense body of psychophysical masking data (see
Chapter 5), and has been supported strongly by physiological data charac-
terizing frequency selectivity at the levels of the basilar membrane and the
eighth nerve (see Chapters 2 and 3). A tacit corollary of the auditory filter
concept has been that, in analyzing the output of a particular auditory filter,
the output of remote auditory filters are essentially inconsequential. Sur-
prisingly, however, it has recently become clear that the auditory system is
sometimes disposed to adopt strategies involving the combination of infor-
mation across auditory filters, even in apparently simple tasks such as the
detection of an intensity increment in a sinusoid or the detection of a pure-
tone signal presented in a masking noise. Whereas some of these across-
critical-band strategies can enhance performance considerably, other strate-
gies involving the processing of information across multiple auditory filters
actually lead to poorer performance than would be expected from the analy-
sis of information from a single auditory filter. This chapter describes sev-
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eral of these psychoacoustic phenomena that appear to hinge upon the
analysis of information across multiple auditory filters.

II. PROFILE ANALYSIS

The sensitivity of the auditory system to changes in the spectral envelope,
or shape, of a complex signal has been characterized by a paradigm known
as profile analysis. This manifestation of across-frequency processing was
first noticed by Spiegel, Picardi, and Green (1981), who were investigating
the effects of spectral uncertainty on the detection of an increment in level
of one component of a multiple-component masker. A curious finding
emerged: The detection of the increment was more difficult when the fre-
quency of the incremented tone was predictable while the components
constituting the masker were unpredictable than when the frequency of the
tone was unpredictable while the components constituting the masker were
predictable. A parsimonious interpretation was that, in the latter case, the
auditory system was detecting the increment as a change in spectral shape
from a known reference spectrum. Because the components of the masker
were distributed across a number of auditory filters, the extraction of the
spectral shape or profile required an across-frequency process.

In a typical profile analysis paradigm, the listener is presented with a
standard complex of equal-amplitude sinusoids distributed logarithmically
across some frequency range; for example, 200 to 5000 Hz (see inset to
Figure 1). The signal consists of a tone matched in both frequency and phase
to one of the masker components (the target) such that the addition of the
signal results in an amplitude increment in the target component. To ensure
that detection is based upon the change in spectral profile rather than level,
the overall level of the standard complex and the standard + signal complex
is randomly varied (roved) over some intensity range for each stimulus
presentation. The signal threshold is expressed as the level of the signal
relative to the level of the target component.

Given this basic paradigm, many stimulus parameters have been manipu-
lated to ascertain their importance to profile analysis (Green, 1988). The
results can be summarized as follows:

1. The range over which the level can be roved while maintaining “spec-
tral shape constancy” is about 40 dB (Mason, Kidd, Hanna, & Green, 1984).

2. Performance is generally good for a flat spectrum and becomes in-
creasingly degraded as the background spectrum is perturbed in amplitude
(Kidd, Mason, & Green, 1986; Kidd, 1987). However, with a (dense) flat
spectrum, performance improves slightly if the target component of the
masker is about 6 dB (but less than 12 dB) higher in level than the nontarget
components (Green & Kidd, 1983).
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FIGURE 1 Signal threshold in a multicomponent background as a function of the fre-
quency of the signal. (Data are redrawn from Green, Onsan, & Forrest, 1987.) Inset shows
schematic spectra of a nonsignal interval and a signal interval for a two-alternative forced-
choice task where the overall level is roved from interval to interval. The frequency scale on the
inset is linear; the background components were uniformly spaced on a logarithmic scale.

3. Some benefit to signal detection produced by nontarget masker com-
ponents can be observed if those components are presented to the contra-
lateral ear, but such dichotic effects are more limited than the monaural
effects (Bernstein & Green, 1987b; Green & Kidd, 1983).

4. If a multicomponent signal is used that, when added to the masker,
results in a ripple of the spectral envelope, performance is relatively constant
as long as the number of ripples across the stimulus spectrum remains
below about ten. Above this, performance deteriorates. However, perfor-
mance for this multicomponent signal is poorer than would be expected
from the optimal combination of information from changes in level of the
individual components (Bernstein & Green, 1987b; Green, Onsan, & For-
rest, 1987; Richards, Onsan, & Green, 1989).

5. As the number of components in the background spectrum increases
(i.e., spectral density increases), signal threshold improves up to about 11 to
21 components. Beyond this, the threshold deteriorates due to increased
peripheral masking as components fall within the same auditory filter as the
target (Bernstein & Green, 1987b; Green & Mason, 1985; Kidd, Mason,
Uchanski, Brantley, & Shah, 1991). The optimal frequency ratio between
successive components is 1.1 to 1.3 (Green, Kidd, & Picardi, 1983; Green,
Mason, & Kidd, 1984).

6. For a given number of components in the background spectrum,
performance improves with increasing spectral extent of the components
(Green et al., 1984).
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7. The signal threshold is lowest when the target component falls in the
middle region of the background spectrum and increases monotonically as
the position of the target component approaches either spectral edge, giving
a so-called bowl-shaped threshold curve as shown in Figure 1 (Bernstein &
Green, 1987a; Green & Mason, 1985; Green et al., 1987).

The final observation raises the question of whether all components in
the background spectrum are equally informative to the detection process.
Some insight on this issue can be gleaned from a method called conditional-
on-a-single-stimulus (COSS) analysis (Berg, 1989). COSS analysis involves
placing a small amplitude pe