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Preface

Recent advances in civil engineering technology require greater accuracy, effi-

ciency, and speed in the analysis and design of the corresponding systems. It is

therefore not surprising that new methods have been developed for optimal analysis

and design of real-life systems and models with complex configurations and a large

number of elements.

This book can be considered as an application of metaheuristic algorithms to

some important optimization problems in civil engineering. This book is addressed

to those scientists and engineers, and their students, who wish to explore the

potential of newly developed metaheuristics by some practical problems. The

concepts presented in this book are not only applicable to civil engineering prob-

lems but can equally be used for optimizing the problems involved in mechanical

and electrical engineering.

The author and his graduate students have been involved in various develop-

ments and applications of various metaheuristic algorithms to structural optimiza-

tion in the last two decades. This book contains part of this research suitable for

various aspects of optimization in civil engineering.

The book is likely to be of interest to civil, mechanical, and electrical engineers

who use optimization methods for design, as well as to those students and

researchers in structural optimization who will find it to be necessary professional

reading.

In Chap. 1, a short introduction is provided for the goals and contents of this

book. Chapter 2 discusses optimum design of laterally supported castellated beams

using tug-of-war optimization algorithm. Chapter 3 provides optimum design of

multi-span composite box girder bridges using the well-known cuckoo search

algorithm. In Chap. 4, the sizing optimization of skeletal structures using the

recently developed enhanced whale optimization algorithm is presented. Examples

are chosen from both trusses and frame structures. Chapter 5 contains the size and

geometry optimization of double-layer grids from the family of space structures

using the colliding bodies optimization (CBO) and Enhances colliding bodies

v
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optimization (ECBO) algorithms. Chapter 6 presents the sizing and geometry

optimization of different mechanical system of domes via the ECBO algorithm.

Special domes are discussed in the chapter. Chapter 7 presents improved magnetic

charged system search method for optimal design of single-layer barrel vault.

Chapter 8 contains optimal design of double-layer barrel vaults using the CBO

and ECBO algorithms. In Chap. 9, optimum design of steel floor system is

performed using ECBO. In Chap. 10, optimal design of the monopole structures

is performed using the CBO and ECBO algorithms. Chapter 11 deals with damage

detection in skeletal structures based on the charged system search (CSS) optimi-

zation using incomplete modal data. Such a study is an important issue in earth-

quake engineering. In Chap. 12, modification of the ground motions is performed

utilizing the ECBO. In Chap. 13, a combinatorial optimization is considered and the

bandwidth, profile, and wavefront of sparse matrices are optimized using four

metaheuristic algorithms consisting of the PSO, CBO, ECBO, and TWO. In

Chap. 14, optimal analysis and design of large-scale domes with frequency con-

straints is presented. Here, the importance of using optimal analysis in optimal

design of structures for large-scale domes is illustrated. In Chap. 15, an accurate and

efficient technique, so-called multi-DVC cascade optimization, is presented for

optimal design of 3D truss towers with a large number of design variables to

illustrate its applicability to optimum design of practical structures. Chapter 16

utilizes the vibrating particles system algorithm for truss optimization with fre-

quency constraints. Five examples are used for evaluating this algorithm. In

Chap. 17, the cost and CO2 emission optimization of reinforced concrete frames

is performed employing the ECBO algorithm. Nowadays, this is an important

environmental issue in civil engineering. Chapter 18 presents a study of the

construction site layout planning problem using the CBO and ECBO algorithms.

This chapter shows the use of optimization methods in construction management.
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Chapter 1

Introduction

1.1 Metaheuristic Algorithms for Optimization

Much has been made of the parallels between engineering and art, and yet a unique

economy of parts and adherence to a plethora of constraints from cost to market

trends, from maintainability to robustness, and from project schedules safely

distinguish engineering design from the arts and engineering projects from art-

works. At the heart of this distinction lies the concept of “optimization” – the

science of choosing design variable values within given constraints such that a

function, e.g., total system cost is minimized, or overall system reliability is

maximized.

While the last three decades has seen an explosion in new methodologies applied

to the problem of optimization, there is also evidence for a resurgence of improved

classical algorithms and a growing number of engineering problems where heuristic

and algorithmic optimization has overtaken and, in some cases, replaced the

engineering graybeards and rule-of-thumb optimization methods.

Some of the most commonly used classical algorithmic optimization techniques

were gradient based and allowed a search of the solution space near a given

parameter point where gradient information about the target function was available

[1, 2]. Gradient-based methods, in general, converge faster and can obtain solutions

of higher accuracy than more modern stochastic approaches. However, the acqui-

sition of gradient information for the target function can be either costly or even

impossible. Moreover, these types of algorithms are only guaranteed to converge to

local minima. Furthermore, a good starting point can be vital for the successful

execution of these methods. In many optimization problems, prohibited zones, side

limits, and non-smooth or non-convex functions need to be taken into consider-

ation, increasing the difficulty of obtaining optimal solutions.

There is a slew of more recently developed optimization methods, known as

metaheuristic algorithms, that are not restricted in the aforementioned manner.

These methods are suitable for global searches over the entire search space due to
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their capability of exploring and finding promising regions in the search space with

reasonable computational effort. Ultimately, metaheuristic algorithms tend to per-

form rather well for most optimization problems [3, 4]. This is because these

methods refrain from simplifying or making assumptions about the original prob-

lem. Evidence of this can be seen in their successful application to a vast variety of

fields, such as engineering, physics, chemistry, arts, economics, marketing, genet-

ics, operations research, robotics, social sciences, and politics.

The word heuristic has its origin in the old Greek work heuriskein, which means

the art of discovering new strategies or rules to solve problems. The suffix meta,
also a Greek prefix, has come to mean a higher level of abstraction in the English

language. The term metaheuristic was introduced by Glover in the paper [5] and

denotes a strategy of solving a problem using higher levels of abstractions and to

guide a heuristic search of the solution space.

A heuristic method can be considered as a procedure that is likely to discover a

very good feasible solution, but not necessarily an optimal solution, for a consid-

ered specific problem. In most cases no guarantee is provided for the quality of the

solution obtained, but a well-designed heuristic method usually can provide a

solution that is nearly optimal. The procedure also should be sufficiently efficient

to deal with very large problems. Heuristic methods are often iterative algorithms,
where each iteration involves conducting a search for a new solution that might be

better than the best solution found in a previous iteration. After a reasonable amount

of time when the algorithm is terminated, the solution it provides is the best one

found during all iterations. A metaheuristic is formally defined as an iterative

generation process which guides a subordinate heuristic by combining intelligently

different concepts for exploring (global search) and exploiting (local search) the

search space in order to efficiently find near-optimal solutions [6]. Learning strat-

egies can be employed to add the “intelligence” to such guided search heuristics.

Metaheuristic algorithms have found many applications in different areas of

applied mathematics, engineering, medicine, economics, and other sciences.

Within engineering, these methods are extensively utilized in the design stages of

civil, mechanical, electrical, and industrial projects.

1.2 Optimization in Civil Engineering and Goals
of the Present Book

In the area of civil engineering that is the main concern of this book, one tries to

achieve certain objectives in order to optimize weight, construction cost, geometry,

layout, topology, construction time, and computational time satisfying certain

constraints. Since resources, fund, and time are always limited, one has to find

solutions to optimize the usage of these resources.

The main goal of this book is to apply some well established and most recently

developed metaheuristic algorithms to optimization problems in the field of civil
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engineering, as detailed in the subsequent section. The subjects considered in this

book are structural design of various types of structures such as trusses, frames,

space structures, castellated beams, floor system, monopole structures, and multi-

span composite box girder bridges. From earthquake engineering, modification of

ground motions and damage detection in skeletal structures are studied. For optimal

analysis, bandwidth, profile, and wavefront optimization is performed using differ-

ent metaheuristic algorithms. From optimization with frequency constraints, large-

scale domes are studied using optimal analysis. For optimal design of large-scale

three-dimensional truss structures, an accurate and efficient technique, so-called

multi-DVC cascade optimization, is presented, and examples with large number of

design variables are investigated to illustrate the applicability of the presented

method for optimum design of practical structures. From concrete structures the

objective function of algorithm is considered as the construction material costs of

reinforced concrete structural elements and carbon dioxide (CO2) emissions

through different phases of a building life cycle. From construction management,

the construction of site layout planning problem is presented.

1.3 Organization of the Present Book

The remaining chapters of this book are organized in the following manner:

Chapter 2 introduces the recently developed metaheuristic so-called tug of war

optimization and applies this method to the optimal design of castellated beams.
Two common types of laterally supported castellated beams are considered as

design problems: beams with hexagonal openings and beams with circular open-

ings. In this chapter, castellated beams have been studied for two cases: beams

without filled holes and beams with end-filled holes. Here, tug of war optimization

algorithm is utilized for obtaining the solution of these design problems. For this

purpose, the cost is taken as the objective function, and some benchmark problems

are solved from literature [7].

Chapter 3 presents an integrated metaheuristic-based optimization procedure for

discrete size optimization of straight multi-span steel box girders with the objective
of minimizing the self-weight of girder. The selected metaheuristic algorithm is the

cuckoo search (CS) algorithm. The optimum design of a box girder is characterized

by geometry, serviceability, and ultimate limit states specified by the American

Association of State Highway and Transportation Officials (AASHTO). Size opti-

mization of a practical design example investigates the efficiency of this optimiza-

tion approach and leads to around 15% of saving in material (Kaveh et al. [8]).

Chapter 4 addresses a new nature-inspired metaheuristic optimization algo-

rithm, called whale optimization algorithm (WOA), and utilizes this algorithm for

size optimization of skeletal structures. This method is inspired by the bubble-net

hunting strategy of humpback whales. WOA simulates hunting behavior with

random or the best search agent to chase the prey and the use of a spiral to simulate

bubble-net attacking mechanism of humpback whales. In this chapter, EWOA is
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also compared with WOA and other metaheuristic methods developed in the

literature using four skeletal structure optimization problems. Numerical results

compare the efficiency of the WOA and EWOA with the latter algorithm being

superior to the standard implementation [9].

Chapter 5 applies the optimum design procedure, based on colliding bodies
optimization (CBO) method and its enhanced version (ECBO), to optimal design of

two commonly used configurations of double-layer grids, and optimum span–depth

ratios are determined. Two ranges of spans as small and large sizes with certain

bays of equal lengths in two directions and different types of element grouping are

considered for each type of square grids. These algorithms obtain minimum weight

grid through appropriate selection of tube sections available in AISC load and

resistance factor design (LRFD). The comparison is aimed in finding the depth at

which each of different configurations shows its advantages. Finally, the effect of

support locations on the weight of the double-layer grids is investigated [10].

Chapter 6 introduces a finite element model based on geometrical nonlinear

analysis of different mechanical systems of large-scale domes consisting of double-
layer domes, suspen-domes, and single-layer domes with rigid connections. The

suspen-dome system is a new structural form that has become a popular structure in

the construction of long-span roof structures. Suspen-dome is a kind of new

prestressed space grid structure which is a spatial prestressed structure and has

complex mechanical characteristics. In this chapter, an optimum geometry and

sizing design is performed using the enhanced colliding bodies optimization algo-

rithm. The length of the strut, the cable initial strain, the cross-sectional area of the

cables, the cross-sectional size of steel elements, and the height of dome are

adopted as design variables for domes, and the minimum volume of each dome is

taken as the objective function. A simple approach is defined to determine the

configurations of the dome structures. The design algorithm obtains minimum

volume domes through appropriate selection of tube sections available in AISC

load and resistance factor design (LRFD). This chapter explores the efficiency of

Lamella suspen-dome with pin-jointed and rigid-jointed connections and compares

them with single-layer Lamella dome and double-layer Lamella dome [11].

Chapter 7 optimizes two single-layer barrel vault frames with different patterns
via the improved magnetic charged system search (IMCSS). In the process of

optimization, contrary to size variables, shape is a continuous variable. In the

case of shape optimization of this type of space structures, since all of the nodal

coordinates as the shape variables are dependent on the height-to-span ratio of the

barrel vault, height is considered as the only shape variable in a constant span of

barrel vault. In comparison, the best height-to-span ratios of barrel vaults under

static loading conditions obtained from CSS, MCSS, and IMCSS algorithms are

approximately close to the value of 0.17 from a comparative study carried out by

Parke. Furthermore, as seen from the results, different patterns of barrel vaults have

different effects on the value of the best height-to-span ratio. Moreover, in com-

parison to CSS and MCSS algorithms, IMCSS found better values for the weight of

the structures with a lower number of analyses [12].

4 1 Introduction

http://dx.doi.org/10.1007/978-3-319-48012-1_5
http://dx.doi.org/10.1007/978-3-319-48012-1_6
http://dx.doi.org/10.1007/978-3-319-48012-1_7


Chapter 8 implements the recently developed metaheuristic algorithms colliding
bodies optimization (CBO) and its enhanced version (ECBO) for the optimization

of double-layer barrel vaults. Two kinds of double-layer barrel vaults are optimized

considering the weight of the structure as the objective function, where the design

constraints are imposed according to the provisions of AISC-ASD. The numerical

results show the successful performance of the CBO and ECBO algorithms in large-

scale structural optimization problems such as double-layer barrel vaults [10].

Chapter 9 considers a steel floor system consisting of decks, interior beams, edge

beams, and girders. Optimal design of a deck without considering beam optimiza-

tion is simple. However, a deck with a higher cost may increase the composite

action of the beams and decrease the beam cost, thus reducing the total expense.

Also different number of floor divisions can improve the total floor cost. Increasing

beam capacity by using castellated beams is another efficient method to save the

costs. In this study, floor optimization is performed and these three issues are

discussed. Floor division number and deck sections are some of the variables. For

each beam, profile section of the beam, beam-cutting depth, cutting angle, spacing

between holes, and number of filled holes at the ends of castellated beams are other

variables. The objective function is the total cost of the floor, consisting of the steel

profile, cutting and welding, concrete, steel deck, shear stud, and construction costs.

Optimization is performed by enhanced colliding bodies optimization (ECBO).

Results show that using castellated beams, selecting a deck with higher price and

considering different number of floor divisions can decrease the total cost of a

floor [13].

Chapter 10 studies a tubular steel monopole structure widely used for

supporting antennas in telecommunication industries. This chapter utilizes the

two recently developed metaheuristic algorithms, so-called colliding bodies opti-

mization (CBO) and enhanced colliding bodies optimization (ECBO), for size

optimization of monopole steel structures. The design procedure aims to obtain

minimum weight of monopole structures subjected to the TIA-EIA222F specifica-

tion. Two monopole structure examples are examined to verify the suitability of the

design procedure and to demonstrate the effectiveness and robustness of the CBO

and ECBO in creating optimal design for this problem. The outcomes of the ECBO

are also compared to those of the standard CBO to illustrate the importance of the

enhancement [14].

Chapter 11 studies the damage detection in structures by alteration in the

dynamic behavior of the structures. Observation of these changes has often been

viewed as a means to identify and assess the location and severity of damages in

structures. Among the responses of a structure, natural frequencies and natural

modes are both relatively easy to obtain and independent from external excitation

and, therefore, can be used as a measure of the structural behavior before and after

an extreme event which might have led to damage in the structure. This chapter

applies the charged system search algorithm to the problem of damage detection

using vibration data. The objective is to identify the location and extent of multi-

damage in a structure. Both natural frequencies and mode shapes are used to form

the required objective function. To moderate the effect of noise on measured data, a
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penalty approach is applied. Numerical examples consisting of beams, frames, and

trusses are examined. The results show that the present methodology can reliably

identify damage scenarios using noisy measurements and incomplete data [15].

Chapter 12 presents a simple and robust approach for spectral matching of
ground motions utilizing the wavelet transform and an improved metaheuristic

optimization technique. For this purpose, wavelet transform is used to decompose

the original ground motions to several levels, where each level covers a special

range of frequency and then each level is multiplied by a variable. Subsequently,

the enhanced colliding bodies optimization technique is employed to calculate the

variables such that the error between the response and target spectra is minimized.

The application of the proposed method is illustrated through modifying 12 sets of

ground motions [16].

Chapter 13 employs three recently developed metaheuristic optimization algo-

rithms, known as colliding bodies optimization (CBO), enhanced colliding bodies
optimization (ECBO), and tug of war optimization (TWO), for optimum nodal
ordering to reduce bandwidth, profile, and wavefront of sparse matrices. The

bandwidth, profile, and wavefront of some graph matrices, which have equivalent

pattern to structural matrices, are minimized using these methods. Comparison of

the achieved results with those of some existing approaches shows the robustness of

the utilized algorithms for bandwidth, profile, and wavefront optimization [17].

Chapter 14 involves the structural optimization of domes with a large number of

structural analyses using the democratic particle swarm optimization. When opti-

mizing large structures, these analyses require a considerable amount of computa-

tional time and effort. However, there are specific types of structure for which the

results of the analysis can be achieved in a much simpler and quicker way due to

their special repetitive patterns. In this chapter, frequency constraint optimization

of cyclically repeated space trusses is considered. An efficient technique is used to

decompose the large initial eigenproblem into several smaller ones, thus decreasing

the required computational time significantly. Some examples are presented in

order to illustrate the efficiency of the presented method [18].

Chapter 15 performs optimum design of real-world structures with high number

of design variables, large size of the search space, and control of a great number of

design constraints in a reasonable time. This chapter presents an accurate and

efficient technique, so-called multi-DVC cascade optimization, for optimal design

of three-dimensional truss towerswith large number of design variables to illustrate

its applicability to optimum design of practical structures [19].

Chapter 16 includes application of the recently developed physically inspired

non-gradient algorithm for structural optimization with frequency constraints. The

algorithm being called vibrating particles system (VPS) mimics the free vibration

of single degree of freedom systems with viscous damping. Truss optimization with

frequency constraints is believed to represent nonlinear and non-convex search

spaces with several local optima and therefore is suitable for examining the

capabilities of the new algorithms. A set of five truss design problems are consid-

ered for evaluating the VPS in this article. The numerical results demonstrate the

efficiency and robustness of the new method (Kaveh and Ilchi Ghazaan [20]).
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Chapter 17 investigates discrete design optimization of reinforcement concrete
frames using the recently developed metaheuristic called enhanced colliding bodies
optimization (ECBO) and the non-dominated sorting enhanced colliding bodies
optimization (NSECBO) algorithm. The objective function of algorithms consists

of construction material costs of reinforced concrete structural elements and carbon

dioxide (CO2) emissions through different phases of a building life cycle that meets

the standards and requirements of the American Concrete Institute’s building code.
The proposed method uses predetermined section database (DB) for design vari-

ables that are taken as the area of steel and the geometry of cross sections of beams

and columns. The use of ECBO algorithm for designing reinforced concrete frames

indicates an improvement in the computational efficiency over the designs

performed by Big Bang–Big Crunch (BB–BC) algorithm. The analysis also reveals

that the two objective functions are quite relevant, and designs focused on mitigat-

ing CO2 emissions could be achieved at an acceptable cost increment in

practice [21].

Chapter 18 employs two newly developed metaheuristic algorithms called

colliding bodies optimization and enhanced colliding bodies optimization to solve

construction site layout planning problem. Results show that both of these algo-

rithms have the capability of solving this kind of problem. Two case studies are

presented to illustrate the applicability and performance of the utilized

methods [22].

Finally, it should be mentioned that most of the metaheuristic algorithms are

attractive, because each one has its own striking features. However, the one which

is simple, less parameter dependent, and easy to implement, has a good balance

between exploration (diversification) and exploitation (intensification), has higher

capability to avoid being trapped in local optima and higher accuracy, is applicable

to wider types of problems, and can deal with higher number of variables can be

considered as the most attractive for engineering usage.

The type of problems to be optimized is also important. An algorithm can be

more suitable for a group of problems, while it might not be very efficient to another

group of problems. Therefore, unlike what some people argue, the author thinks no

restriction should be imposed on researchers in relation with developing new

algorithms. Unfortunately, there is no solid approach for characterizing the

metaheuristic algorithms and therefore one cannot easily identify the best ones.
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Chapter 2

Optimum Design of Castellated Beams Using

the Tug of War Algorithm

2.1 Introduction

In this chapter, the tug of war algorithm is applied to optimal design of castellated

beams. Two common types of laterally supported castellated beams are considered

as design problems: beams with hexagonal openings and beams with circular

openings. Here, castellated beams have been studied for two cases: beams without

filled holes and beams with end-filled holes. Also, tug of war optimization (TWO)

algorithm is utilized for obtaining the solution of these design problems. For this

purpose, the cost is taken as the objective function, and some benchmark problems

are solved from literature (Kaveh and Shokohi [1]).

Since the 1940s, the manufacturing of structural beams with higher strength and

lower cost has been an asset to engineers in their efforts to design more efficient

steel structures. Due to the limitations on maximum allowable deflections, using

section with heavyweight and high capacity in the design problem cannot always be

utilized to the best advantage. As a result, several new methods have been created

for increasing the stiffness of steel beams without increase in the weight of steel

required. Castellated beam is one of the basic structural elements within the design

of building, like a wide-flange beam (Konstantinos and D’Mello [2]).

A castellated beam is constructed by expanding a standard rolled steel section in

such a way that a predetermined pattern (mostly circular or hexagonal) is cut on

section webs and the rolled section is cut into two halves. The two halves are shifted

and connected together by welding to form a castellated beam. In terms of structural

performance, the operation of splitting and expanding the height of the rolled steel

sections helps to increase the section modulus of the beams.

The main initiative for manufacturing and using such sections is to suppress the

cost of material by applying more efficient cross-sectional shapes made from

standard rolled beam. Web-openings have been used for many years in structural

steel beams in a great variety of applications because of the necessity and economic

advantages. The principal advantage of steel beam castellation process is that

© Springer International Publishing AG 2017
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designer can increase the depth of a beam to raise its strength without adding steel.

The resulting castellated beam is approximately 50% deeper and much stronger

than the original unaltered beam (Soltani et al. [3], Zaarour and Redwood [4],

Redwood and Demirdjian [5], Sweedan [6], Konstantinos and D’Mello [7]).

In recent years, a great deal of progress has been made in the design of steel

beams with web-openings, and a cellular beam is one of them. A cellular beam is

the modern form of the traditional castellated beam, but with a far wider range of

applications in particular as floor beams. Cellular beams are steel sections with

circular openings that are made by cutting a rolled beam web in a half circular

pattern along its centerline and re-welding the two halves of hot rolled steel sections

as shown in Fig. 2.1. An increase in beam depth provides greater flexural rigidity

and strength to weight ratio.

In practice, in order to support high shear forces close to the connections,

sometimes it becomes necessary to fill certain openings. In cellular beams, this is

achieved by inserting discs made of steel plates and welding from both sides

(Fig. 2.2). The openings are usually filled for one of two reasons:

(i) At positions of higher shear, especially at the ends of a beam or under

concentrated loads

(ii) At incoming connections of secondary beams

It should be noted that for maximum economy infills should be avoided when-

ever possible, even to the extent of increasing the section mass.

In the last two decades, many metaheuristic algorithms have been developed to

help solve optimization problems that were previously difficult or impossible to

solve using mathematical programming algorithms. Metaheuristic algorithms pro-

vide mechanisms to escape from local optima by balancing exploration and exploi-

tation phases, being based either on solution populations or iterated solution paths,

Fig. 2.1 (a) A castellated beam with circular opening. (b) A castellated beam with hexagonal
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for instance, by using neighborhoods. In general, these algorithms are simple to

implement and present (near) optimal solutions in acceptable computational times

even in complex search spaces. TWO is a multi-agent metaheuristic algorithm,

which considers each candidate solutionXi ¼ xi, j
� �

as a team engaged in a series of

tug of war competitions.

The main aim of this study is to optimize the cost of castellated beams with and

without end-filled openings. For this purpose, the tug of war optimization approach

is utilized for design of such beams with circular and hexagonal holes.

The present chapter is organized as follows: In the next section, the design of

castellated beam is introduced. In Sect. 2.3, the problem formulation including the

mathematical model is presented, based on the Steel Construction Institute Publi-

cation Number 100 and Eurocode3. In Sect. 2.4, the algorithm is briefly introduced.

In Sect. 2.5, numerical examples are studied, and finally the concluding remarks are

provided in Sect. 2.6.

2.2 Design of Castellated Beams

The theory behind the castellated beam is to reduce the weight of the beam and to

improve the stiffness by increasing the moment of inertia resulting from increased

depth without usage of additional material. Due to the presence of holes in the web,

the structural behavior of castellated steel beam is different from that of the

standard beams. At present, there is no prescribed design method due to the

complexity of the behavior of castellated beams and their associated modes of

failure (Soltani et al. [3]). The strength of a beam with different shapes of web-

openings is determined by considering the interaction of bending moment and shear

at the openings. There are many failure modes to be considered in the design of a

beam with web-opening, consisting of lateral-torsional buckling, Vierendeel mech-

anism, flexural mechanism, rupture of welded joints, and web post buckling.

Lateral-torsional buckling may occur in an unrestrained beam. A beam is consid-

ered to be unrestrained when its compression flange is free to displace laterally and

rotate. In this chapter it is assumed that the compression flange of the castellated

beam is restrained by the floor system. Therefore, the overall buckling strength of

the castellated beam is omitted from the design considerations. These modes are

closely associated with beam geometry, shape parameters, type of loading, and

Fig. 2.2 Example of a

beam with filled opening
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provision of lateral supports. In the design of castellated beams, these criteria

should be considered (EN 1993-1-1 [8], Ward [9], Erdal et al. [10], Saka [11],

Raftoyiannis and Ioannidis [12], British Standards [13], AISC-LRFD [14]):

2.2.1 Overall Flexural Capacity of the Beam

This mode of failure can occur when a section is subjected to pure bending. In the span

subjected to pure bending moment, the tee sections above and below the openings

yield in a manner similar to that of a standard webbed beam. Therefore, the maximum

moment under factored dead and imposed loading should not exceed the plastic

moment capacity of the castellated beam (Soltani et al. [3], Erdal et al. [10]).

MU � MP ¼ ALTPYHU ð2:1Þ

where ALT is the area of lower tee, PY is the design strength of steel, and HU is the

distance between center of gravities of upper and lower tees.

2.2.2 Shear Capacity of the Beam

In the design of castellated beams, two modes of shear failure should be checked.

The first one is the vertical shear capacity, and the upper and lower tees should

undergo that. The vertical shear capacity of the beam is the sum of the shear

capacities of the upper and lower tees. The factored shear force in the beam should

not exceed the following limits:

PVY ¼ 0:6PY 0:9AWULð Þ circular opening

PVY ¼
ffiffiffi
3

p

3
PY AWULð Þ hexagonal opening

ð2:2Þ

The second one is the horizontal shear capacity. It is developed in the web post due

to the change in axial forces in the tee section as shown in Fig. 2.3. Web post with

too short mid-depth welded joints may fail prematurely when horizontal shear

exceed the yield strength. The horizontal shear capacity is checked using the

following equations (Soltani et al. [3], Erdal et al. [10]):

PVH ¼ 0:6PY 0:9AWPð Þ circular opening

PVH ¼
ffiffiffi
3

p

3
PY AWPð Þ hexagonal opening

ð2:3Þ

where AWUL is the total area of the web-opening and AWP is the minimum area of

web post.
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2.2.3 Flexural and Buckling Strength of Web Post

In this study, it is assumed that the compression flange of the castellated beam is

restrained by the floor system. Thus the overall buckling of the castellated beam is

omitted from the design consideration. The web post flexural and buckling capacity

in a castellated beam is given by Soltani et al. [3] and Erdal et al. [10]):

MMAX

ME
¼ C1 � α� C2 � α2 � C3

� � ð2:4Þ

where MMAX is the maximum allowable web post moment and ME is the web post

capacity at critical section A–A shown in Fig. 2.3. C1, C2, and C3 are constants

obtained by the following expressions

C1 ¼ 5:097þ 0:1464β � 0:00174β2 ð2:5Þ
C2 ¼ 1:441þ 0:0625β � 0:000683β2 ð2:6Þ
C3 ¼ 3:645þ 0:0853β � 0:00108β2 ð2:7Þ

where α ¼ S
2d is for hexagonal openings and α ¼ S

D0
is for circular openings, also

β ¼ 2d
tw

is for hexagonal openings, and β ¼ D0

tw
is for circular openings and S is the

spacing between the centers of holes, d is the cutting depth of hexagonal opening,

D0 is the hole diameter, and tw is the web thickness.

Fig. 2.3 Horizontal shear in the web post of castellated beams. (a) Hexagonal opening. (b)

Circular opening
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2.2.4 Vierendeel Bending of Upper and Lower Tees

Vierendeel mechanism is always critical in steel beams with web-openings, where

global shear force is transferred across the opening length, and the Vierendeel

moment is resisted by the local moment resistances of the tee sections above and

below the web-openings. This mode of failure often occurs in web-expanded beams

with long horizontal opening lengths.

Vierendeel bending results in the formation of four plastic hinges above and

below the web-opening. The overall Vierendeel bending resistance depends on the

local bending resistance of the web-flange sections. This mode of failure is associ-

ated with high shear forces acting on the beam. The Vierendeel bending stresses in

the circular opening obtained by using the Olander’s approach. The interaction

between Vierendeel bending moment and axial force for the critical section in the

tee should be checked as follows (Erdal et al. [10]):

P0

PU

þ M

MP

� 1:0 ð2:8Þ

where P0 andM are the force and the bending moment on the section, respectively.

PU is equal to the area of critical section �PY, and MP is calculated as the plastic

modulus of critical section �PY in plastic section or elastic section modulus of

critical section �PY for other sections.

The plastic moment capacity of the tee sections in castellated beams with

hexagonal opening is calculated independently. The total of the plastic moment is

equal to the sum of the Vierendeel resistances of the above and below tee sections

(Soltani et al. [3]). The interaction between Vierendeel moment and shear forces

should be checked by the following expression:

VOMAX � e� 4MTP � 0 ð2:9Þ

where VOMAX and MTP are the maximum shear force and the moment capacity of

tee section, respectively.

2.2.5 Deflection of Castellated Beam

Serviceability checks are of high importance in the design, especially in beams with

web-opening where the deflection due to shear forces is significant. The deflection

of a castellated beam under applied load combinations should not exceed span/360.

Methods for calculating the deflection of castellated beam with hexagonal and

circular openings are shown in Raftoyiannis and Ioannidis [12], and Erdal et al.

[10], respectively.

14 2 Optimum Design of Castellated Beams Using the Tug of War Algorithm



2.3 Problem Formulation

In optimization problem of castellated beams, the objective is to minimize the

manufacturing cost of the beam while satisfying certain constraints. In a castellated

beam, there are many factors that require special considerations when estimating

the cost of beam, such as man-hours of fabrication, weight, price of web cutting,

and welding process. In this study, it is assumed that the costs associated with

man-hours of fabrication for hexagonal and circular openings are identical. Thus,

the objective function comprises of three parts: the beam weight, price of the

cutting, and price of the welding. The objective function can be expressed as

Fcost ¼ ρAinitial L0ð Þ � p1 þ Lcut � p2 þ Lweld � p3 ð2:10Þ

In practice, in order to support high shear forces close to the connection or for

reasons of fire safety, sometimes it becomes necessary to fill certain openings using

steel plates. In this case, the price of plates is added to the total cost. Therefore, the

objective function can be expressed as

Fcost-filled ¼ ρ Ainitial L0ð Þ þ 2Ahole � twð Þ � p1 þ Lcut � p2 þ Lweldð Þ � p3 ð2:11Þ

where p1, p2, and p3 are the price of the weight of the beam per unit weight, length

of cutting, and welding per unit length, L0 is the initial length of the beam before

castellation process, ρ is the density of steel, Ainitial is the area of the selected

universal beam section, Ahole is the area of a hole, and Lcut and Lweld are the cutting
length and welding length, respectively. The length of cutting is different for

hexagonal and circular web-openings. The dimension of the cutting length is

described by the following equations:

For circular opening,

Lcut ¼ πD0 � NH þ 2e NH þ 1ð Þ þ πD0

2
þ e ð2:12Þ

Lcut-infill ¼ πD0 � NH þ 2e NH þ 1ð Þ þ πD0

2
þ eþ 2� Phole ð2:13Þ

For hexagonal opening,

Lcut ¼ 2NH eþ d

sin θð Þ
� �

þ 2eþ d

sin θð Þ ð2:14Þ

Lcut-infill ¼ 2NH eþ d

sin θð Þ
� �

þ 2eþ d

sin θð Þ þ 2� Phole ð2:15Þ

where NH is the total number of holes, e is the length of horizontal cutting of web,

D0 is the diameter of holes, d is the cutting depth, θ is the cutting angle, and Phole is

the perimeter of hole related to filled opening.
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Also, the welding length for both of circular and hexagonal openings is deter-

mined by Eqs. (2.16) and (2.17).

Lweld ¼ e NH þ 1ð Þ ð2:16Þ
Lweld-infill ¼ e NH þ 1ð Þ þ 4� Phole ð2:17Þ

2.3.1 Design of Castellated Beam with Circular Opening

Design process of a cellular beam consists of three phases: the selection of a rolled

beam, the selection of a diameter, and the spacing between the center of holes and

total number of holes in the beam as shown in Fig. 2.1 (Erdal et al. [10], Saka [11]).

Hence, the sequence number of the rolled beam section in the standard steel

sections’ tables, the circular holes diameter, and the total number of holes are

taken as design variables in the optimum design problem. This problem is formu-

lated by considering the constraints explained in the previous sections and can be

expressed as the following:

Find an integer design vector Xf g ¼ x1; x2; x3f gT , where x1 is the sequence

number of the rolled steel profile in the standard sections list, x2 is the sequence

number for the hole diameter which contains various diameter values, and x3 is the
total number of holes for the cellular beam (Erdal et al. [10]). Hence the design

problem can be expressed as follows:

Minimize Eqs. (2.10) and (2.11)

Subjected to

g1 ¼ 1:08� D0ð Þ � S � 0 ð2:18Þ
g2 ¼ S� 1:60� D0ð Þ � 0 ð2:19Þ
g3 ¼ 1:25� D0ð Þ � HS � 0 ð2:20Þ
g4 ¼ HS � 1:75� D0ð Þ � 0 ð2:21Þ

g5 ¼ MU �MP � 0 ð2:22Þ
g6 ¼ VMAXSUP � PV � 0 ð2:23Þ
g7 ¼ VOMAX � PVY � 0 ð2:24Þ
g8 ¼ VHMAX � PVH � 0 ð2:25Þ

g9 ¼ MA�AMAX �MWMAX � 0 ð2:26Þ
g10 ¼ VTEE � 0:50� PVYð Þ � 0 ð2:27Þ

g11 ¼
P0

PU

þ M

MP

� 1:0 � 0 ð2:28Þ
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g12 ¼ YMAX � L=360�0 ð2:29Þ

where tW is the web thickness, HS and L are the overall depth and the span of the

cellular beam, and S is the distance between centers of holes. MU is the maximum

moment under the applied loads, MP is the plastic moment capacity of the cellular

beam, VMAXSAP is the maximum shear at support, VOMAX is the maximum shear at

the opening, VHMAX is the maximum horizontal shear, and MA�AMAX is the

maximum moment at A–A section shown in Fig. 2.3. MWMAX is the maximum

allowable web post moment, VTEE represents the vertical shear on top of the hole,

P0 and M are the internal forces on the web section, and YMAX denotes the

maximum deflection of the cellular beam (Erdal et al. [10], AISC-LRFD [14]).

2.3.2 Design of Castellated Beam with Hexagonal Opening

In design of castellated beams with hexagonal openings, the design vector includes

four design variables: the selection of a rolled beam, the selection of a cutting depth,

the spacing between the center of holes and total number of holes in the beam, and

the cutting angle as shown in Fig. 2.1. Hence the optimum design problem is

formulated by the following expression:

Find an integer design vector Xf g ¼ x1; x2; x3; x4f gT where x1 is the sequence

number of the rolled steel profile in the standard sections’ list, x2 is the sequence

number for the cutting depth which contains various values, x3 is the total number

of holes for the castellated beam, and x4 is the cutting angle. Thus, the design

problem turns out to be as follows:

Minimize Eq. (2.10), Eq. (2.11)

Subjected to

g1 ¼ d � 3

8
HS � 2tfð Þ � 0 ð2:30Þ

g2 ¼ HS � 2tfð Þ � 10� dT � tfð Þ � 0 ð2:31Þ

g3 ¼
2

3
d cot θ � e � 0 ð2:32Þ

g4 ¼ e� 2d cot θ � 0 ð2:33Þ
g5 ¼ 2d cot θ þ e� 2d � 0 ð2:34Þ

g6 ¼ 45∘ � θ � 0 ð2:35Þ
g7 ¼ θ � 64∘ � 0 ð2:36Þ
g8 ¼ MU �MP � 0 ð2:37Þ

g9 ¼ VMAXSUP � PV � 0 ð2:38Þ
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g10 ¼ VOMAX � PVY � 0 ð2:39Þ
g11 ¼ VHMAX � PVH � 0 ð2:40Þ

g12 ¼ MA�AMAX �MWMAX � 0 ð2:41Þ
g13 ¼ VTEE � 0:50� PVYð Þ � 0 ð2:42Þ
g14 ¼ VOMAX � e� 4MTP � 0 ð2:43Þ

g15 ¼ YMAX � L=360�0 ð2:44Þ

where tf is the flange thickness, dT is the depth of the tee section, MP is the plastic

moment capacity of the castellated beam, MA�AMAX is the maximum moment at

A–A section shown in Fig. 2.3, MWMAX is the maximum allowable web post

moment, VTEE is the vertical shear on the tee, MTP is the moment capacity of the

tee section, and YMAX denotes the maximum deflection of the castellated beam with

hexagonal opening (Soltani et al. [3]).

2.4 Optimization Algorithm

In this section, the new metaheuristic algorithm developed by Kaveh and Zolghadr

[15, 16] is briefly introduced. The TWO is a population-based search method,

where each agent is considered as a team engaged in a series of tug of war

competitions. The weight of the teams is determined based on the quality of the

corresponding solutions, and the amount of pulling force that a team can exert on

the rope is assumed to be proportional to its weight. Naturally, the opposing team

will have to maintain at least the same amount of force in order to sustain its grip of

the rope. The lighter team accelerates toward the heavier team, and this forms the

convergence operator of the TWO. The algorithm improves the quality of the

solutions iteratively by maintaining a proper exploration/exploitation balance

using the described convergence operator. A summary of this method is provided

in the following steps.

Step 1: Initialization

The initial positions of teams are determined randomly in the search space:

x0ij ¼ xj,min þ rand xj,max � xj,min

	 

j ¼ 1, 2, . . . , n ð2:45Þ

where x0ij is the initial value of the jth variable of the ith candidate solution; xj,max

and xj,min are the maximum and minimum permissible values for the jth variable,

respectively; rand is a random number from a uniform distribution in the interval

[0, 1]; and n is the number of optimization variables.

Step 2: Evaluation of Candidate Designs and Weight Assignment The objec-

tive function values for the candidate solutions are evaluated and sorted. The best
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solution so far and its objective function value are saved. Each solution is consid-

ered as a team with the following weight:

Wi ¼ 0:9
fit ið Þ � fitworst
fitbest � fitworst

� �
þ 0:1 i ¼ 1, 2, . . . ,N ð2:46Þ

where fit(i) is the fitness value for the ith particle. The fitness value can be

considered as the penalized objective function value for constrained problems;

fitbest and fitworst are the fitness values for the best and worst candidate solutions

of the current iteration. According to Eq. (2.46) the weights of the teams range

between 0.1 and 1.

Step 3: Competition and Displacement In TWO each team competes against all

the others one at a time to move to its new position. The pulling force exerted by a

team is assumed to be equal to its static friction force (Wμs). Hence the pulling force
between the teams i and j (Fp,ij) can be determined as max{Wiμs,Wjμs}. Such a

definition keeps the position of the heavier team unaltered.

The resultant force affecting team i due to its interaction with heavier team j in
the kth iteration can then be calculated as follows:

Fk
r, ij ¼ Fk

p, ij �Wk
i μk ð2:47Þ

where Fk
p;ij is the pulling force between teams i and j in the kth iteration and μk is

coefficient of kinematic friction.

ak
ij ¼

Fk
r, ij

W k
i μk

 !
gk
ij ð2:48Þ

in which akij is the acceleration of team i toward team j in the kth iteration and gkij is

the gravitational acceleration constant defined as

gk
ij ¼ Xk

j � Xk
i ð2:49Þ

where Xk
j and Xk

i are the position vectors for candidate solutions j and i in the kth

iteration. Finally, the displacement of team i after competing with team j can be

derived as

ΔXk
ij ¼

1

2
ak
ijΔt

2 þ αk Xmax � Xminð Þ∘ �0:5þ rand 1; nð Þð Þ ð2:50Þ

The second term of Eq. (2.50) induces randomness into the algorithm. This term

can be interpreted as the random portion of the search space traveled by team

i before it stops after the applied force is removed. Here, α is a constant chosen from

the interval [0,1]; Xmax and Xmin are the vectors containing the upper and lower
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bounds of the permissible ranges of the design variables, respectively; ∘ denotes

element by element multiplication; and rand(1, n) is a vector of uniformly distrib-

uted random numbers.

It should be noted that when team j is lighter than team i, the corresponding

displacement of team i will be equal to zero (i.e., ΔXk
ij). Finally, the total displace-

ment of team i in iteration k is equal to

ΔXk
i ¼

XN
j¼1

ΔXk
ij ð2:51Þ

The new position of team i at the end of the kth iteration is then calculated as

Step 4: Handling of Side Constraints

It is possible for the candidate solutions to leave the search space, and it is important

to deal with such solutions properly. This is especially the case for the solutions

corresponding to lighter teams for which the values of ΔX are usually bigger.

Different strategies might be used in order to solve this problem. In this study, it

is assumed that such candidate solution can be simply brought back to their

previous permissible position (Flyback strategy) or they can be regenerated

randomly.

Step 5: Termination

Steps 2 through 5 are repeated until a termination criterion is satisfied.

Flowchart of the TWO algorithm is shown in Fig. 2.4.

The pseudo-code for design of castellated beam using the tug of war optimiza-

tion algorithm is shown in Fig. 2.5. It should be noted that each team is considered a

beam.

2.5 Test Problems and Optimization Results

In this section, numerical results are presented to demonstrate the efficiency of the

new metaheuristic method (TWO) for design of castellated beams. For this purpose,

three beams are selected from literature that have previously been optimized by

other algorithms. Among the steel sections’ list of British Standards, 64 universal

beam (UB) sections starting from 254� 102� 28 UB to 914� 419� 388 UB are

chosen to constitute the discrete set of steel sections from which the design

algorithm selects the cross-sectional properties for the castellated beams. In the

design pool of holes diameters, 421 values are arranged which vary between

180 and 600 mm with an increment of 1 mm. Also, for cutting depth of hexagonal

opening, 351 values are considered which vary between 50 and 400 mm with an

increment of 1 mm and cutting angle changes from 45 to 64. Another discrete set is

arranged for the number of holes. Likewise, in all the design problems, the modulus

of elasticity is equal to 205 GPa and Grade 50 is selected for the steel of the beam
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which has the design strength of 355 MPa. The coefficients P1, P2, and P3 in the

objective function are considered as 0.85, 0.30, and 1.00, respectively (Kaveh and

Shokohi [17–20]). A maximum number of iterations of 200 are used as the

termination criterion in all the examples, and α is taken as 0.1 for all design

problems. Also, all design problems have been solved in two cases, with and

without filled holes.

2.5.1 Castellated Beam with 4 m Span

A simply supported beam with a span of 4 m is considered as the first test problem,

shown in Fig. 2.6. The beam is subjected to 5 kN/m dead load including its own

weight. A concentrated live load of 50 kN also acts at mid-span of the beam, and the

allowable displacement of the beam is limited to 12 mm. For this problem the

number of agents (teams) is taken as 20.

Yes No

Step 1: Initialize N agents (teams) with 

random positions.

Step 2: Evaluate the objective function of teams, assign a 

weight for each them according to their fitness, and sort in the 

increasing order.   

Step 3: Determine the displacement of each team due to 

competition with other teams, and then calculate the new 

positions of teams. 

Step 5: Determine the new objective function for each team 

according to the new positions, compare the new objective 

function values, save the best result.

Stop

Step 4: If a team swerves a side limits, correct its position.

The termination

Conditions satisfied?

Fig. 2.4 Flowchart of the TWO algorithm
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Castellated beams with hexagonal and circular openings are separately designed

with TWO. These beams are designed for two cases. In case 1, it is assumed that the

end of the beams is not filled. Thus the objective function for this case is obtained

from Eq. (2.10). In the second case, it is assumed that the holes in the end of the

beam are filled with steel plate, and Eq. (2.11) is utilized for the objective function.

The optimum results obtained by TWO are given in Table 2.1. It is apparent from

the same table that the optimum cost for castellated beam with hexagonal hole is

equal to 89.73$ which is obtained by TWO. Also, according to the results, the tug of

war optimization algorithm has good performance in design of cellular beam. These

results indicate that the castellated beam with hexagonal opening has less cost in

comparison to the cellular beam. The same conclusion can be drawn for the filled

opening configuration from the results listed in Table 2.1.

Figure 2.7 shows the convergence curves of the TWO algorithm for design of

castellated beams with different shapes for the openings.

procedure Design of a Castellated Beam using the Tug of War Optimization algorithm

begin
Initialize parameters; Such as NOA, NOV, ROV, …% NOA=Number of Agent(Team), 

NOV=Number of Variable, ROV=Range of Variable.

Generate a population of NOA random candidate solutions (Beams);

while (not termination condition) do
Analyze beams and evaluate the objective function values for them.

Define the weights of the teams (Beams) Wi based on fit(Xi)

Sort the solutions and save the best one so far.

for each team i

for each team j

if (Wi < Wj)  

Move team i towards team j using Eq. (2.50); 

end if
end for

Calculate the total displacement of team i using Eq. (2.51);

Determine the final position of team i using k
i

k
i

1k
i XXX Δ+=+

Use the side constraint handling technique to regenerate violating variables 

Determine the new objective function for each team according to the new      

positions and save the best result.

end for
end while

end

Fig. 2.5 The pseudo-code for design of castellated beam using the TWO algorithm
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2.5.2 Castellated Beam with 8 m Span

In the second problem, the tug of war optimization algorithm is used to design a

simply supported castellated beam with a span of 8 m. Similar to the first example,

this beam is also designed for two different cases. The beam carries a uniform dead

load 0.40 kN/m, which includes its own weight. In addition, it is subjected to two

concentrated loads as shown in Fig. 2.8. The allowable displacement of the beam is

limited to 23 mm, and the number of agents is taken as 20.

This beam is designed by TWO, and the results are compared to those of the

other optimization algorithms as shown in Table 2.2. In design of the beam with

hexagonal hole, the corresponding cost obtained by the TWO is equal to 718.2$

which is the lowest value among all the methods. Therefore, the performance of the

tug of war optimization is better than other approaches (Kaveh and Shokohi [17–20])

for this design example. According to the obtained results, the designed beam with

hexagonal opening has less cost in comparison with the cellular beam, and it is a

better option in this case. In design of end-filled case, it is obvious that the presented

method has the same performance. Furthermore, the maximum value of the strength

ratio is equal to 0.99 for both hexagonal and circular beams, and it is shown that

these constraints are dominant in the design process.

Figure 2.9 shows the convergence history for optimum design of hexagonal

beam which is obtained by different metaheuristic algorithms.

2.5.3 Castellated Beam with 9 m Span

The beam with 9 m span is considered as the last example of this study in order to

compare the minimum cost of the castellated beams. The beam carries a uniform

load of 40 kN/m including its own weight and two concentrated loads of 50 kN as

shown in Fig. 2.10. The allowable displacement of the beam is limited to 25 mm,

and the number of agent is taken as 20.

Table 2.3 compares the results obtained by the TWO with those of the other

algorithms. In the optimum design of castellated beam with hexagonal hole, TWO

algorithm selects 684� 254� 125 UB profile, 16 holes, and 231 mm for the cutting

Fig. 2.6 Simply supported beam with a span of 4 m

2.5 Test Problems and Optimization Results 23



T
a
b
le

2
.1

O
p
ti
m
u
m

d
es
ig
n
s
o
f
th
e
ca
st
el
la
te
d
b
ea
m
s
w
it
h
4
m

sp
an

A
lg
o
ri
th
m

O
p
ti
m
u
m

U
B
se
ct
io
n

H
o
le

d
ia
m
et
er
�

cu
tt
in
g
d
ep
th

(m
m
)

T
o
ta
l
n
u
m
b
er

o
f
h
o
le
s

C
u
tt
in
g
an
g
le

M
in
im

u
m

co
st
($
)

T
y
p
e
o
f
th
e
h
o
le

C
as
e
1

E
C
S
S
[1
7
]

U
B
3
0
5
�
1
0
2
�
2
5

1
2
5

1
4

5
7
�

8
9
.7
8

H
ex
ag
o
n
al

C
B
O

[1
8
]

U
B
3
0
5
�
1
0
2
�
2
5

1
2
5

1
4

5
7
�

8
9
.7
8

C
B
O
-P
S
O

[2
0
]

U
B
3
0
5
�
1
0
2
�
2
5

1
2
5

1
4

5
7
�

8
9
.7
8

T
W
O

[1
]

U
B
3
0
5
�
1
0
2
�
2
5

1
2
6

1
3

6
1
�

8
9
.7
3

E
C
S
S
[1
7
])

U
B
3
0
5
�
1
0
2
�
2
5

2
4
8

1
4

–
9
6
.3
2

C
ir
cu
la
r

C
B
O

[1
8
])

U
B
3
0
5
�
1
0
2
�
2
5

2
4
4

1
4

–
9
1
.1
4

C
B
O
-P
S
O

[2
0
])

U
B
3
0
5
�
1
0
2
�
2
5

2
4
3

1
4

–
9
1
.0
8

T
W
O

[1
]

U
B
3
0
5
�
1
0
2
�
2
5

2
4
9

1
4

–
9
1
.1
5

C
as
e
2

E
C
S
S
[1
9
]

U
B
3
0
5
�
1
0
2
�
2
5

1
2
5

1
4

6
0
�

9
6
.4
5

H
ex
ag
o
n
al

C
B
O

[1
9
]

U
B
3
0
5
�
1
0
2
�
2
5

1
2
5

1
4

6
4
�

9
6
.6
1

C
B
O
-P
S
O

[1
9
]

U
B
3
0
5
�
1
0
2
�
2
5

1
2
5

1
4

5
6
�

9
6
.0
4

T
W
O

[1
]

U
B
3
0
5
�
1
0
2
�
2
5

1
2
5

1
4

5
6
�

9
6
.3
3

E
C
S
S
[1
9
]

U
B
3
0
5
�
1
0
2
�
2
5

2
4
4

1
4

–
9
8
.6
2

C
ir
cu
la
r

C
B
O

[1
9
]

U
B
3
0
5
�
1
0
2
�
2
5

2
4
3

1
4

–
9
8
.7
0

C
B
O
-P
S
O

[1
9
]

U
B
3
0
5
�
1
0
2
�
2
5

2
4
3

1
4

–
9
8
.5
8

T
W
O

[1
]

U
B
3
0
5
�
1
0
2
�
2
5

2
4
4

1
4

–
9
8
.6
2

24 2 Optimum Design of Castellated Beams Using the Tug of War Algorithm



depth and 57� for the cutting angle. The minimum cost of the design beam is equal

to 991.04$. Also, in the optimum design of cellular beam, the TWO algorithm

selects 610� 229� 125 UB profile, 14 holes of diameter 490 mm. It can be

observed from Table 2.3 that the optimal design has the minimum cost of 990.33

$ for beam with hexagonal holes which is obtained by the CBO-PSO algorithm;

however, the TWO results in better design for cellular beam. In the design of beam

with filled holes, the obtained results using the tug of war optimization algorithm

are slightly different from each other. This shows that in the case of holes filled with

steel plates, where the beam span is large, using cellular beams can be a good design

strategy. Similar to the previous example, the strength criteria are dominant in the

design of this beam, and it is related to the Vierendeel mechanism. The maximum

ratio of these criteria is equal to 0.99 for both hexagonal and cellular cases.

The optimum shapes of the hexagonal and circular openings with unfilled holes

are separately shown in Fig. 2.11. Also, the convergence histories of metaheuristics

0 20 40 60 80 100 120 140 160 180 200
50

100

150

200

250

300

Iteration

C
o
st

$

TWO-H(case 1)

TWO-C(case 1)

TWO-H(case 2)

TWO-C(case 2)

Fig. 2.7 Convergence curves recorded in the 4 m span beam problem for the TWO best

optimization runs [1]

Fig. 2.8 Simply supported beam with a span of 8 m
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are shown in Fig. 2.12 for design of cellular beam with filled openings. It is apparent

from the figure that TWO has good convergence rate in design of this problem and

finds better solution for cellular beam.

2.6 Concluding Remarks

In this chapter, the newly developed metaheuristic algorithm so-called tug of war

optimization is utilized for optimum design of castellated beams. Three benchmark

problems are solved in order to assess the robustness and efficiency of the TWO.

These beams are designed for two cases, with filled openings and unfilled openings,

where the hexagonal and circular holes are considered as the types of the web-

openings. Comparing the results obtained by TWO with those of other optimization

methods demonstrates that TWO has a better performance in the ability of finding

the optimum solution. Also, the convergence rate of this algorithm to the optimal

solution is quite good for most of problems, and it requires a less number of
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ECSS-H(case 1)
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Fig. 2.9 Comparison of best run convergence curves recorded in the 8 m span beam problem

(unfilled hexagonal holes) for different metaheuristic algorithms [1]

Fig. 2.10 Simply supported beam with 9 m span
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analyses to find better solution making TWO computationally more efficient. From

the results obtained in this chapter, it can be concluded that the use of the beam with

hexagonal openings leads to the use of less steel material and it is a better choice

than cellular beam in unfilled cases. For design of castellated beam with large

spans, especially in filled cases, it is observed that the cellular beam has a better

performance and it can be used as an alternative to castellated beam with hexagonal

opening.

Fig. 2.11 Optimum profiles of the castellated beams with unfilled cellular and hexagonal open-

ings for beam with 9 m span
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Fig. 2.12 Comparison of best run convergence curves recorded in the 9 m span beam problem

( filled circular holes) for different metaheuristic algorithms [1]
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Chapter 3

Optimum Design of Multi-span Composite

Box Girder Bridges Using Cuckoo Search

Algorithm

3.1 Introduction

Composite steel–concrete box girders are frequently used in bridge construction for

their economic and structural advantages. An integrated metaheuristic based opti-

mization procedure is proposed for discrete size optimization of straight multi-span

steel-box girders with the objective of minimizing the self-weight of the girder. The

selected metaheuristic algorithm is the cuckoo search (CS) algorithm. The optimum

design of a box girder is characterized by geometry, serviceability, and ultimate

limit states specified by the American Association of State Highway and Transpor-

tation Officials (AASHTO). Size optimization of a practical design example inves-

tigates the efficiency of this optimization approach and leads to around 15% of

saving in material (Kaveh et al. [1]).

For every product designed to satisfy human needs, the creator tries to achieve

the best solution for the task in hand (safety and serviceability) and therefore

performs optimization. This chapter is concerned with discrete size optimization

of straight multi-span steel-box girders with the objective of minimizing the self-

weight of girder. Composite steel-box girders in the form of built-up steel-box

sections and concrete deck slabs have become very frequent due to some positive

structural features such as high torsional and wrapping rigidity, aesthetical appeal

with regard to relatively large span-depth ratio, and economical advantages in

fabrication and maintenance (Chen and Yen [2]). Developments in computer

hardware and software, advances in computer-based analysis and design tools,

and advances in numerical optimization methods make it possible to formulate

design of complicated discrete engineering problems as optimization problems

and solve them by one of the optimization methods (Rana et al. [3]). Further

developments on box girders can be found in the works of Ding et al. [4] and Ko

et al. [5].

Many optimization methods have been developed during the last decades

pioneered by the traditional mathematical-based methods which use the gradient
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information to search the optimal solutions with drawbacks such as complex

derivatives, sensitivity to initial values, being limited to continuous search spaces,

and the large amount of numerical memory required (Lee and Geem [6]). Although

some mathematical programming-based methods have been developed for discrete

optimum design problems, they are not very efficient for obtaining the optimum

solution of the large size practical design problems (Saka [7]). In recent years, the

other class of optimization techniques, stochastic optimization algorithms inspired

by natural mechanisms, has been produced for overcoming these disadvantages

which which make it possible to optimize complicated discrete engineering opti-

mization problems.

Due to the presence of large number of design variables, discrete values of

variables, large size of search space, difficulties of modeling and analyzing

methods, and many constraints including stress, deflection, and geometry limita-

tions under various load types, size optimization of multi-span steel-box girders has

not been attempted. In practice several techniques with various degrees of consis-

tency are available for analysis. These range from the elementary or engineer’s
beam theory to complex-shell finite element analyses (Razaqpur and Li [8]). One of

the most prevalent analysis and design tools, the SAP2000, is employed in this

study and also took advantage of its open application programming interface

(OAPI) feature to model as practical and detailed as possible. To take full advan-

tage of the enhancements offered by the new multi-core hardware era, the

MATLAB software with its Parallel Computing Toolbox is used in this research

(Luszczek [9]). A population-based algorithm namely cuckoo search (CS), inspired

by the behavior of some cuckoo species in combination with Lévy flight behavior

(Yang and Deb [10, 11]), is selected to optimize straight multi-span composite

steel-box girders under self-weight. This population-based algorithm like the other

ones can benefit the features of parallel computing and has been used successfully

for discrete optimum deign of truss structures, 2D and 3D frames (Kaveh et al. [12],

Saka and Dogan [13], Saka and Geem [14], Kaveh and Bakhshpoori [15]). In order

to verify the efficiency of the CS, two other algorithms are also used to determine

the solution of the considered discrete optimization problem. These are the har-

mony search method (HS) (Kochenberger and Glover [16]) and particle swarm

optimization (PSO) (Kennedy et al. [17]) algorithm.

Taking into account all restrictions imposed by American Association of State

Highway and Transportation Officials (AASHTO [18]), a practical design example

is optimized using the proposed integrated parallel optimization procedure. The

results reveal a saving of around 15% of material for the considered bridge girder.

The remaining sections of this chapter are organized as follows. Section 3.2

states the design optimization problem. Section 3.3 outlines the details of parallel

CS-based optimization procedure. Section 3.4 contains a comprehensive practical

design optimized by the proposed method, to illustrate the features of the design

method. The chapter is concluded in Sect. 3.5.
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3.2 Design Optimization Problem

After the topology and support conditions are established, the girder is divided into

some segments along the girder length. The process of division is based on

fabrication requirements. The main design effort involves sizing the individual

girder sections for the predetermined segments with the objective of minimizing

the self-weight of the girder. A typical section for composite steel–concrete box

girder is shown in Fig. 3.1. As it is depicted, the design variables in each section are

slab thickness (tc), top flange width (bf), top flange thickness (tf), web depth (Dw),

web thickness (tw), and bottom flange thickness (tb). The center to center distance of
the top flanges and the inclination angle of web from the vertical direction are fixed

to 160 cm and 100�, respectively, for the entire girder because of fabrication

conditions. As a result, the width of bottom flange is a function of other variables.

The design procedure based on the AASHTO Division I [18] provisions can be

outlined as follows:

3.2.1 Loading

Maximum compressive and tensile stresses in girders that are not provided with

temporary supports during the placing of the permanent dead load are the sum of the

stresses produced by the dead loads acting on the steel girders alone and the stresses

produced by the superimposed loads acting on the composite girder. Therefore, two

different dead loads should be considered. In the first case, the dead load is exerted

on the non-composite section (L1). This load involves self-weight of the steel girder
and weight of the concrete deck. The second case is applied on the composite

section which includes the pavement, curb, pedestrian, and guard fence loads (L2).
The highway live loads on the roadways of bridges or incidental structures shall

consist of standard trucks or lane loads that are equivalent to truck trains. AASHTO

HS loading is applied in this study. The live load for each box girder (L3) shall be
determined by applying to the girder the fractionWL of a wheel load determined by

the following equation:

bf

Dw

tf

tw

tb

100° 100°

tc

160 cm

Fig. 3.1 A typical section

of steel-box girder
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WL ¼ 0:1þ 1:7Rþ 0:85=Nw,R ¼ Nw=Number of girders ð3:1Þ

in which Nw is the number of lanes. Dynamic effects of live load should be taken

into account as an impact coefficient based on Article 3.8.2 from the

AASHTO [18].

3.2.2 Geometric Constraints

According to Section 10 of the AASHTO [18], the following geometry limitations

are imposed on the section:

g1 :
tw � 1:5

tf
� 1 � 0

g2 :
Dw � 0:2

bf
� 1 � 0

g3 :
bf

tf � 23
� 1 � 0

g4 :
Dw

tw � 327
� 1 � 0

8>>>>>>>>><
>>>>>>>>>:

ð3:2Þ

3.2.3 Strength Constraints

The flanges of section, both top and bottom, should be designed for flexural

resistance as follows:

g5 :
σtop

σall topð Þ � 1 � 0

g6 :
σtop

σall botð Þ � 1 � 0
ð3:3Þ

The flexural stresses of top and bottom flanges, σ(top) and σ(bot), are calculated
under three loading conditions: the section without considering concrete slab under

L1, the composite section under L2 with creep and shrinkage effects, and the

composite section under live loads without long-term effects. Creep and shrinkage

effects are taken into account by dividing concrete elastic modulus by 3 based on

10.38.1.4 (AASHTO [18]). The allowable stress of top flange, σall(top), and tensile

allowable stress of bottom flange, σall(bot), are equal to 0.55 Fy. The bottom flange

allowable compressive stress is supplied on the 10. 39. 4. 3.

Concrete compressive stress under L2 and L3 loads should satisfy the following

constraint:
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g7 :
σconcrete
0:4f

0
c

� 1 � 0 ð3:4Þ

in which f
0
c is concrete cylindrical compressive strength.

Shear stresses in the web should be bounded by allowable shear stress as follows:

g8 :
f v ¼ V

2Dwtw cos θ

� �
Fv

� 1 � 0 ð3:5Þ

where V is the shear under dead and live loads (all three load conditions) and θ is the
inclination angle of the web, fv is the shear stress, and Fv is the allowable shear

stress which is obtained by 10.39.3.1.

3.2.4 Serviceability Constraints

Complying with Sect. 10.6, the composite girder deflections under live load plus the

live load impact (ΔL+I) for each span shall not exceed 1/800 span length (S) which
can be presented as follows:

g9 :
800� ΔLþI

S
� 1 � 0 ð3:6Þ

3.3 Parallel Metaheuristic Based Optimization Technique

3.3.1 Cuckoo Search Algorithm

Cuckoo search is a metaheuristic algorithm inspired by some species of a bird

family called cuckoo because of their special lifestyle and aggressive reproduction

strategy (Yang and Deb [11]). These species lay their eggs in the nests of other host

birds with amazing abilities like selecting the recently spawned nests and removing

existing eggs that increase hatching probability of their eggs. The host takes care of

the eggs presuming that the eggs are its own. However, some of host birds are able

to combat with this parasite behavior of cuckoos and throw out the discovered alien

eggs or build their new nests in new locations. The cuckoo breeding analogy is used

for developing new design optimization algorithm. A generation is represented by a

set of host nests. Each nest carries an egg (solution). The quality of the solutions is

improved by generating a new solution from an existing solution and modifying

certain characteristics. The number of solutions remains fixed in each generation. In

this study the later version of the CS algorithm is used, which is first introduced for

3.3 Parallel Metaheuristic Based Optimization Technique 35



optimum design of frames (Yang and Deb [11]). The pseudo-code of the optimum

design algorithm is as follows (Kaveh and Bakhshpoori [15]):

3.3.1.1 Initialize the Cuckoo Search Algorithm Parameters

The CS parameters are set in the first step. These parameters consist of the number

of nests (n), the step size parameter (α), the discovering probability (pa), and the

maximum number of frame analyses as the stopping criterion.

3.3.1.2 Generate Initial Nests or Eggs of Host Birds

The initial locations of the nests are determined by the set of values randomly

assigned to each decision variable as

nest
0ð Þ
i, j ¼ ROUND xj,min þ rand: xj,max � xj,min

� �� � ð3:7Þ

where nesti,j
(0) determines the initial value of the jth variable for the ith nest, xj,min

and xj,max are the minimum and the maximum allowable values for the jth variable,
and rand is a random number in the interval [0, 1]. The rounding function is utilized

due to the discrete nature of the problem.

3.3.1.3 Generate New Cuckoos by Lévy Flights

In this step, all the nests except for the best one are replaced based on quality by

new cuckoo eggs produced with Lévy flights from their positions as

nest
tþ1ð Þ
i ¼ nest

tð Þ
i þ α :S: nest

tð Þ
i � nest

tð Þ
best

� �
: r ð3:8Þ

where nesti
t is the ith nest current position, α is the step size parameter, r is a random

number from a standard normal distribution and nestbest is the position of the best

nest so far, and S is a random walk based on the Lévy flights. The Lévy flight

essentially provides a random walk while the random step length is drawn from a

Lévy distribution. In fact, Lévy flights have been observed among foraging patterns

of albatrosses, fruit flies, and spider monkeys. One of the most efficient and yet

straightforward ways of applying Lévy flights is to use the so-called Mantegna

algorithm. In Mantegna algorithm, the step length S can be calculated by

S ¼ u

vj j1=β
ð3:9Þ
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where β is a parameter between [1, 2] interval and considered to be 1.5; u and v are
drawn from normal distribution as

u � N 0, σ2u
� �

, v � N 0; σ2v
� � ð3:10Þ

σu ¼ Γ 1þ βð Þ sin πβ=2ð Þ
Γ 1þ βð Þ=2½ � β 2 β�1ð Þ=2

( )1=β

, σv ¼ 1 ð3:11Þ

3.3.1.4 Alien Egg Discovery

The alien egg discovery is performed for each component of each solution in terms

of probability matrix such as

Pij ¼ 1 if rand < pa
0 if rand � pa

�
ð3:12Þ

where rand is a random number in [0, 1] interval and pa is the discovering

probability. Existing eggs are replaced considering quality by the newly generated

ones from their current positions through random walks with step size such as

S ¼ rand : nests randperm1 nð Þ, :ð Þ � nests randperm2 nð Þ, :ð Þð Þ
nesttþ1 ¼ nestt þ S:*P

ð3:13Þ

where randperm1 and randperm2 are random permutation functions used for

different row permutations applied on nest matrix and P is the probability matrix.

3.3.1.5 Termination Criterion

The generating new cuckoos and discovering alien eggs steps are alternatively

performed until a termination criterion is satisfied. The maximum number of

analyses is considered as termination criterion of the algorithm.

3.3.2 Parallel Computing System

A visit to the neighborhood PC retail store provides ample proof that we are in the

multi-core era. This created demand for software infrastructure to utilize mechanisms

such as parallel computing to exploit such architectures. In this respect, the

MathWorks introduced Parallel Computing Toolbox software and MATLAB® Dis-

tributed Computing Server (Luszczek [9]). Regarding that our individual designs

proposed by population-based metaheuristic algorithms are evaluated independently,
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electing one ofMATLAB’s most basic programming paradigms, the parallel for loops

(Luszczek [9]), makes it easy for user to handle such optimization problem.

Since the parallel computing technique enables us to perform several actions at

the same time, it is needed to adjust the analysis and design assumptions for a prime

model of box girder in the SAP2000 environment. Once the optimization algorithm

invokes the model, a set of sections are assigned to the predefined segments. A

certain feasible number of proposed solutions get invoked for analysis, and evalu-

ating the penalized fitness value following the PARFOR conditional command the

next set of agents is generated. The iteration continues until a stopping criterion is

attained.

3.4 Design Example

3.4.1 A Three-Span Continuous Composite Bridge

In this section, a practical example is provided to investigate the application of the

presented parallel integrated optimization approach. The example bridge deck is

composed of three composite trapezoidal box girders which are continuous over

three spans of the lengths 15, 34, and 21 m. Figure 3.2a and b shows the topology,

support conditions, and segments of a girder and the cross section of the bridge,

respectively. The girder is divided to eight pre-built segments (Si, i¼ 1, 2,. . ., 8) in a
way to satisfy fabrication limitations and minimize material waste. Considering the

concrete slab thickness as a constant value (tc), Table 3.1 presents design variables

of the problem in which the second column states different cross sections for each

segment. Segments on the middle supports are shaped as non-prismatic due to the

presence of large negative moments. Plate thicknesses and widths are constant

along each segment; also the concrete slab thickness and the top flange width are

fixed for the entire girder. Altogether this problem contains 30 design variables. The

range of variables is tabulated in Table 3.2.

The optimum design problem can be expressed as follows:

Considering concrete slab thickness as a constant value tcð Þ :
find Xf g¼ bf ; tf1; tf2; . . . ; tf8;Dw1;Dw2; . . . ;Dw5; tw1; tw2; . . . ; tw8; tb1; tb2; . . . ; tb8½ �1�30

tominimizeW Xf gð Þ
Subject to : g1, g2, g3, . . . , g9

ð3:14Þ

where {X} is the set of design variables and its components are sized from the discrete

sets presented in Table 3.2 and W({X}) is the self-weight of girder obtained by

SAP2000. Optimum design of composite steel-box girders is one of those issues for

which the conventional objective function is not applicable. Considering concrete slab,
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shear connectors, and reinforcement cost seems to be necessary. Cost of the shear

connectors is negligible in comparison to the overall cost. Higher strength shear

connectors are considered to satisfy the complete composite action. According to

S8

4m 6m 12m
3m

S7S6S5S4S3S2S1

6m6m6m6m6m9m

(a)

11.80

10.40 0.70 0.35

0.70 0.35

0.35

0.35

1.602.601.602.601.60

1.001.401.401.401.00 2.802.80

1.701.70 4.20 4.20

(b)

Fig. 3.2 The practical design example. (a) Longitudinal view and (b) transverse view

Table 3.1 Segments and

related variables
Segment Section tc bf tf Dw tw tb

S1 A1 tc bf1 tf1 Dw1 tw1 tb1
S2 A2 tc bf1 tf2 Dw1 tw2 tb2

A3 tc bf1 tf2 Dw2 tw2 tb2
A4 tc bf1 tf2 Dw3 tw2 tb2

S3 A5 tc bf1 tf3 Dw3 tw3 tb3
S4 A6 tc bf1 tf4 Dw3 tw4 tb4
S5 A7 tc bf1 tf5 Dw3 tw5 tb5
S6 A8 tc bf1 tf6 Dw3 tw6 tb6

A9 tc bf1 tf6 Dw4 tw6 tb6
A10 tc bf1 tf6 Dw5 tw6 tb6

S7 A11 tc bf1 tf7 Dw5 tw7 tb7
S8 A12 tc bf1 tf8 Dw5 tw8 tb8

Table 3.2 Design variable range

Variable Lower bound (m) Upper bound (m) Increment (m)

tc 0.20 0.35 0.05

bf 0.25 0.8 0.05

tf, tw and tb 0.01 0.05 0.005

Dw 0.5 4.6 0.1
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Articles 3.24.10.2 and 3.24.3.1 provided by AASHTO [18] for designing the longitudi-

nal and transverse reinforcement, the reinforcement depends only on the slab thickness

and the distance of the girders. Thus reinforcement is not considered as a design

variable. Considering the concrete slab thickness as a design variable, the proposed

objective function is not representative and needs to be modified. Instead of the total

weight (concrete slab weight and steel section weight altogether), the sum of the total

cost of the concrete material and the total cost of the steel section material should be

used. Modification can be made using unit cost coefficients for each item. The choice of

the unit cost parameters can influence the properties of the most cost-efficient design

(Fragiadakis and Lagaros [19]). In addition slab thickness as a design variable has a

profound effect on the model stiffness matrix and dead load. Considering tc as a design
variable simultaneously with design variables representing the steel section can lead the

algorithm to unfeasible designs. In these regards, the CS is applied to find the optimum

design considering the slab thickness as a constant value from a certain practical interval

[0.2, 0.35] with 0.05 m increment to achieve the optimum thickness. The lower bound is

considered according to the provisions of AASHTO [18] (Table 3.8.9.2).

The design should be carried out in such a way that the girder satisfies the

strength, displacements, and geometric requirements presented in the second sec-

tion. In order to handle the constraints, a penalty approach is utilized. In this

method, the aim of the optimization is redefined by introducing the cost function as

f cost Xf gð Þ ¼ 1þ ε1: Nð Þε2 � W Xf gð Þ ð3:15Þ

where N is the constraint violation function. For generating the total penalty, each

segment is divided into five equal parts, and all the constraints, g1 to g8, are checked
for each part. In this way the constraint violation function can be obtained as

follows:

N ¼
X8
i¼1

vi, vi ¼ max μj
� �

, j ¼ 1, 2, ::, 5

μj ¼
X9
k¼1

max gk; 0½ �
ð3:16Þ

in which νi is the penalty of each segment and μj is the penalty value for jth part of

ith segment. ε1 and ε2 are penalty function exponents which are selected consider-

ing the exploration and the exploitation rate of the search space. Here, ε1 is set to
unity; ε2 is selected in a way that, in the first steps of the search process, it is equal to
1 and ultimately increased to 3.

In modeling, analysis, and design procedures, the fundamental assumptions are

made to idealize the results as follows: Material property for all sections is

considered as A36 steel material with weight per unit volume of ρ¼ 7849 kg/m3

(0.2836 lb/in3), modulus of elasticity of E¼ 199,948 MPa (29,000 ksi) and a yield

stress of fy¼ 248.2 MPa (36 ksi), and concrete material with the strength of

f
0
c ¼ 24 MPa (ksi) and ρ¼ 2500 t/m3 (lb/in3); the spacing of transverse stiffeners

is assumed 2 m and the bottom flange is longitudinally stiffened. As it was
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mentioned, the girder carries three types of loads (ton/m) as follows: L1¼ slab

weight + self-weight of girder, L2¼ 1.22, and L3¼ 1.326 (HS loading on a girder).

In order to verify the efficiency of the CS, two other algorithms are used to

determine the solution of the considered discrete optimization problem, which are

harmony search method (HS) (Kochenberger and Glover [16]) and PSO (Kennedy

et al. [17]) algorithm. These algorithms have been frequently used in multicriteria

and constrained optimization, typically associated with practical engineering prob-

lems. For example, Erdal et al. [20] have utilized these algorithms for optimum

design of cellular beams. The author and colleagues have used these algorithms for

discrete optimum design problem similar to the work by Erdal et al. [20]. Additional

details can be found in Erdal et al. [20]. Here the PSO, HS, and CS algorithms are

used for obtaining the optimum slab thickness and two adjacent depths. Consider-

ing the effect of the initial solution on the final results and the stochastic nature of

the metaheuristic algorithms, each algorithm is independently solved for five times

with random initial designs. Then the best run is chosen for performance evaluation

of each technique. The maximum number of box girder evaluations are considered

as 7000 for the termination criteria. The parameters of the CS algorithm are

considered as n¼ 7, α¼ 0.1, and pa¼ 0.3. The parameters of the PSO algorithm

are tuned as NPT¼ 50, C1¼C2¼ 2, ω¼ 1.2, and Vmax¼Δt¼ 1.3, and the param-

eters of the HS algorithm are tuned as hms¼ 70, hmcr¼ 0.8, and par¼ 0.2.

3.4.2 Discussions

Figure 3.3 shows the obtained optimum weight for various concrete slab thick-

nesses by the algorithms. All three algorithms result in the optimum thickness of

concrete slab as 0.2 m. It can be concluded that in this test problem, considering the
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concrete slab thickness equal to the minimum value provided by the AASHTO [18]

provisions leads to the optimum design. The optimum feasible designs obtained by

CS, PSO, and HS algorithms weighted 32.77, 33.34, and 38.36 t, respectively. For

graphical comparison of algorithms, the convergence histories for the best result of

five independent runs in the case of tc¼ 0.2 m are shown in Fig. 3.4. PSO and CS act

far better than the HS algorithm. PSO algorithm shows the fastest convergence rate

compared to other methods and this is because of the good global search ability of

PSO. It is obvious that PSO cannot perform efficiently in the local search stage of

the algorithm. However, PSO results in the same practical design as the CS but

needs higher number of girder evaluations (6450). Continuous step like movements

of the CS algorithm demonstrates its ability in balancing the global and local search

in this optimization test problem. The optimum design obtained by cuckoo search

algorithm is weighted 32.77 t which is approximately 15% lighter than the con-

ventional design. Related cross-sectional properties and mass per length of sections

for each segment are summarized in Table 3.3. The cross-sectional properties based

on the conventional design, considering the concrete slab thickness equal to 0.2 cm,

are also presented in this table.

Geometry constraint values of sections for each segment are listed in Table 3.4.

As it can be seen, the first constraint (g1) with the aim of controlling the top flange

thickness to the web thickness is the most active limitation. The last row exhibits

optimum design controlling priority with respect to the geometry constraints. The

serviceability and strength performance of the resulted optimum girder are illus-

trated in Fig. 3.5. Based on this figure, in spite of relatively long middle span, the

effect of deflection constraint is not notable here. Such a performance is also

observed for shear stress ratio constraint. Figure 3.5c shows the available and

allowable flexural stress ratios for the top and bottom flanges and the concrete

deck. It can be observed that the stress ratio of top and bottom flanges have more
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Table 3.3 Sectional designations of the best optimum design obtained by the CS

Segment Section bf tf Dw tw tb

Mass per length

(kg/m)

S1 A1 0.3

(0.45)

0.02

(0.025)

0.7

(1.5)

0.01

(0.015)

0.015

(0.025)

363.83 (741.55)

S2 A2 0.3

(0.45)

0.02

(0.025)

0.7

(1.5)

0.01

(0.015)

0.025

(0.025)

470.33 (741.55)

A3 0.3

(0.45)

0.02

(0.03)

1.8

(2)

0.01

(0.01)

0.025

(0.025)

568.05 (703.55)

A4 0.3

(0.45)

0.02

(0.02)

1.7

(1.5)

0.01

(0.01)

0.025

(0.02)

559.16 (588.49)

S3 A5 0.3

(0.45)

0.015

(0.02)

1.7

(1.5)

0.01

(0.01)

0.01

(0.02)

416.75 (546.14)

S4 A6 0.3

(0.45)

0.02

(0.02)

1.7

(1.5)

0.01

(0.01)

0.025

(0.02)

559.16 (546.14)

S5 A7 0.3

(0.45)

0.02

(0.02)

1.7

(1.5)

0.01

(0.01)

0.015

(0.02)

479.92 (546.14)

S6 A8 0.3

(0.45)

0.02

(0.02)

1.7

(1.5)

0.01

(0.01)

0.02

(0.02)

519.54 (546.14)

A9 0.3

(0.45)

0.02

(0.03)

2.0

(2)

0.01

(0.01)

0.02

(0.025)

550.28 (703.55)

A10 0.3

(0.45)

0.02

(0.025)

0.8

(1.5)

0.01

(0.015)

0.02

(0.025)

427.33 (741.55)

S7 A11 0.3

(0.45)

0.015

(0.025)

0.8

(1.5)

0.01

(0.015)

0.015

(0.025)

351.89 (741.55)

S8 A12 0.3

(0.45)

0.02

(0.02)

0.8

(1.5)

0.01

(0.01)

0.01

(0.02)

323.55 (546.14)

The values in parentheses are the at hand design using the conventional design procedure

Table 3.4 Geometry

constraint value of each

section for optimum design

obtained by the CS

Segment Section g1 g2 g3 g4

S1 A1 0.750 0.350 0.652 0.214

S2 A2 0.750 0.350 0.652 0.214

A3 0.750 0.900 0.652 0.550

A4 0.750 0.850 0.652 0.520

S3 A5 1.000 0.850 0.870 0.520

S4 A6 0.750 0.850 0.652 0.520

S5 A7 0.750 0.850 0.652 0.520

S6 A8 0.750 0.850 0.652 0.520

A9 0.750 1.000 0.652 0.612

A10 0.750 0.400 0.652 0.245

S7 A11 1.000 0.400 0.870 0.245

S8 A12 0.750 0.400 0.652 0.245

Min 0.750 0.350 0.652 0.214

Max 1.000 1.000 0.870 0.612

Average 0.792 0.671 0.688 0.410

SD 0.097 0.261 0.085 0.159

CP 1 3 2 4

CP optimum design controlling priority with respect to geometry

constraints
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effect in controlling the optimum design than the shear and concrete slab stress

ratios. Also it can be interpreted that the bottom and the top flange stress ratios are

dominant at the middle of spans and on the supports, respectively. This can be due

to the contribution of the concrete slab in carrying the loads in a composite manner

at the middle of spans.
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Fig. 3.5 Performance evaluation of the best achieved optimum design via CS. (a) Deflection; (b)

shear stress ratio; (c) flexural stress ratios
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3.5 Concluding Remarks

In this study, size optimization of composite continuous multi-span steel-box

girders is performed based on AASHTO code of practice for loading and designing

of bridges. The metaheuristic algorithm of choice is the cuckoo search algorithm.

This algorithm optimizes the self-weight of a girder by interfacing SAP2000 and

MATLAB software in the form of parallel computing. In order to verify the

efficiency of the CS, two other algorithms consisting of the PSO and HS are used

to determine the solution of the considered discrete optimization problem.

The results of this study reveal that the cuckoo search has a good ability in

finding acceptable 3 feasible designs in terms of accuracy and convergence rate. In

the case of size optimization of a box girder with 30 design variables and conditions

similar to practical design, the integrated parallel metaheuristic based optimization

procedure resulted in around 15% reduction of weight compared to the conven-

tional non-optimized design. The dominance of the constraints in controlling the

final optimized results is also investigated. Despite a relatively long middle span,

the effect of deflection constraint has not been notable here. Based on the present

study, it can be concluded that the geometry, the top and bottom flange flexural

strength, the middle span deflection, and the shear and concrete slab strength

constraints are effective in optimum design of a typical multi-span continuous

straight steel-box girders.
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Chapter 4

Sizing Optimization of Skeletal Structures

Using the Enhanced Whale Optimization

Algorithm

4.1 Introduction

The whale optimization algorithm (WOA) is a recently developed swarm-based

optimization algorithm inspired by the hunting behavior of humpback whales. This

chapter attempts to enhance the original formulation of the WOA in order to

improve solution accuracy, reliability, and convergence speed. The new method,

called enhanced whale optimization algorithm (EWOA), is tested in the sizing

optimization of skeletal structures. In this chapter, EWOA is also compared with

WOA and other metaheuristic methods developed in the literature using four

skeletal structure optimization problems. Numerical results compare the efficiency

of the WOA and EWOA with the latter algorithm being superior to the standard

implementation [1].

In this chapter, a new nature-inspired metaheuristic optimization algorithm,

called WOA, is utilized in sizing optimization of skeletal structures. This method

is introduced by Mirjalili and Lewis [2], and it is inspired by the bubble-net hunting

strategy of humpback whales. WOA simulates hunting behavior with random or the

best search agent to chase the prey and the use of a spiral to simulate bubble-net

attacking mechanism of humpback whales. Here, the original formulation of WOA

is modified in order to improve its convergence behavior. The new algorithm,

named EWOA, is tested in four structural optimization problems: two truss opti-

mization problems (spatial 72-bar truss and spatial 582-bar tower) and two frame

optimization problems (3-bay 15-story frame and 3-bay 24-story frame). The four

test problems are solved with both EWOA and WOA, and optimization results are

compared with the literature.

The remainder of the chapter is organized as follows: The mathematical model

of structural optimization is presented in Sect. 4.2. Section 4.3 describes the EWOA

algorithm together with a brief introduction to the basic WOA. In order to show the

capability of the proposed algorithms, four numerical examples are studied in

Sect. 4.4. Finally, some conclusions are derived in Sect. 4.5.
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4.2 Statement of the Optimization Problem

Sizing optimization of skeletal structures can be stated as follows:

Find Xf g ¼ x1; x2; ::; xng
� �

to minimize W Xf gð Þ ¼
Xnm
i¼1

ρiAiLi

subjected to :
gj Xf gð Þ � 0, j ¼ 1, 2, . . . , nc

xi min � xi � ximax

� ð4:1Þ

where {X} is the vector containing the design variables; ng is the number of design

variables;W({X}) is the weight of the structure; nm is the number of elements of the

structure; ρi, Ai, and Li denote the material density, cross-sectional area, and the

length of the ith member, respectively; ximin and ximax are the lower and upper

bounds of the design variable xi, respectively; gj({X}) denotes design constraints;

and nc is the number of constraints.

To handle the constraints, the well-known penalty approach is employed. Thus,

the objective function is redefined as follows:

f Xf gð Þ ¼ 1þ ε1:υð Þε2 �W Xf gð Þ, υ ¼
Xnc
j¼1

max 0, gj Xf gð Þ
h i

ð4:2Þ

where υ denotes the sum of the violations of the design constraints. The constant ε1
is set equal to 1 while ε2 starts from 15 and then linearly increases to 3.

4.3 Optimization Algorithms

4.3.1 Whale Optimization Algorithm

A recent addition to metaheuristic algorithms is the WOA, which was introduced by

Mirjalili and Lewis [2]. The WOA is inspired by the humpback whale hunting

method that is called bubble-net hunting strategy. They prefer to hunt school of krill

or small fishes close to the surface. Therefore, humpback whales swim around the

prey within a shrinking circle and along a spiral-shaped path simultaneously to

create distinctive bubbles along a circle or “9”-shaped path. To simulate this

behavior in WOA, there is a probability of 50% to choose between the encircling

mechanism and the spiral model to update the position of whales during optimiza-

tion. Their formulations are designed as follows:

1. Shrinking encircling preys: In WOA, the currently best candidate solution is

assumed as the target prey, and the other search agents try to update their

positions toward it. This behavior is represented by the following formula:
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~X tþ 1ð Þ ¼ ~X
∗
tð Þ � A:~D ð4:3Þ

~D ¼ ��C:~X∗
tð Þ � ~X tð Þ�� ð4:4Þ

A ¼ 2:a:r � a ð4:5Þ

C ¼ 2:r ð4:6Þ

where~X
∗
is the historically best position,~X is a whale position and t indicates the

current iteration, a is linearly decreased from 2 to 0 over the course of iterations,

and r is a random number uniformly distributed in the range of [0,1]. The sign

“||” denotes the absolute value.

2. Spiral bubble-net feeding maneuver: A spiral equation is used between the

position of whale and prey to mimic the helix-shaped movement of humpback

whales as follows:

~X tþ 1ð Þ ¼ ebk: cos 2πkð Þ: ~D0 þ ~X
∗
tð Þ ð4:7Þ

~D
0 ¼ ��~X∗

tð Þ � ~X tð Þ�� ð4:8Þ

where b is a constant for defining the shape of the logarithmic spiral and k is a
random number uniformly distributed in the range of [�1,1].

In order to have a global optimizer, when A is >1 or A <�1, the search agent is

updated according to a randomly chosen search agent instead of the best search

agent:

~X tþ 1ð Þ ¼ ~Xrand � A:~D
00

ð4:9Þ

~D
00
¼ ��C:~Xrand � ~X tð Þ�� ð4:10Þ

where~Xrand is selected randomly from whales in the current iteration. For further

details, the reader may refer to Mirjalili and Lewis [2].

4.3.2 Enhanced Whale Optimization Algorithm

The WOA is simple in concept and effective to explore global solutions. In order to

improve the solution accuracy, reliability of search, and convergence speed of
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WOA, a new algorithm is introduced in this chapter, which is called the EWOA.A key

point in improving an algorithm is to preserve the simplicity of the original method.

A random number in the [0,1] range is extracted for each whale in each iteration.

If it is >0.5, Eq. (4.7) is selected; otherwise, Eq. (4.12) is chosen for updating

whale’s position.
In exploration phase of EWOA, one component of each whale is changed with

the random value in the search space with a probability like p instead of Eq. (4.9).

p ¼ 0:3 1� iter=itermaxð Þ ð4:11Þ

where iter and itermax are current iteration number and the total number of the

iterations for optimization process, respectively.

For a selected whale, an integer random number is extracted in the interval [1,

ng] to choose which design variable should be randomly changed. At this point,

another random number q is extracted in the interval [0,1] and compared with the

probability threshold p. The selected variable xj is changed if q< p, according to

xj ¼ xjmin þ random: xjmax � xjmin

� �
, where random is a random number uniformly

distributed in the interval [0, 1].

The modified algorithm should be capable of maintaining proper balance

between the diversification and the intensification inclinations. According to this

point and the above change, Eq. (4.3) is redefined as follows:

~X tþ 1ð Þ ¼ ~X
∗
tð Þ � ~A∘~D

000
ð4:12Þ

~D
000
¼ ~r∘

��~X tð Þ�� ð4:13Þ
~A ¼ 2:~a∘~r � ~a ð4:14Þ

where ~r is a random vector that has each component uniformly distributed in the

range of [0,1] and ~a is a vector that has each component equal to a. The sign “�”
denotes an element-by-element multiplication.

Flowchart of EWOA is shown in Fig. 4.1.

4.4 Test Problems and Optimization Results

In this section, four benchmark examples are provided to demonstrate the effec-

tiveness, robustness, and efficiency of the WOA and EWOA. In order to reduce

statistical errors, each test is repeated 20 times independently. In all problems,

agents are allowed to select discrete values from the permissible list of cross

sections (real numbers are rounded to the nearest integer in the each iteration).

The algorithms are coded in MATLAB, and the structures are analyzed using the

direct stiffness method by our own codes.
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4.4.1 Spatial 72-Bar Truss Problem

Figure 4.2 shows the schematic of a spatial 72-bar truss structure. The material

density is 0.1 lb/in3 (2,767,990 kg/m3) and the modulus of elasticity is 107 psi

(6895 GPa). The elements are divided into 16 groups, because of structural sym-

metry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) A19– A22, (6) A23–A30,

(7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54,

(13) A55–A58, (14) A59–A66 (15), A67– A70, and (16) A71–A72. The structure is

subject to the two independent loading conditions listed in Table 4.1. The maxi-

mum stress developed in the elements must be less than �25 ksi (�172,375 MPa).

Maximum displacement of the uppermost nodes cannot exceed �0.25 in

(�635 mm), for each node, in all directions. In this case, the discrete sizing

Begin

All whales are randomly set

Evaluate penalized objective function for each

candidate design

With equal probability, each position is 

updated based on Eq. (4.7) or Eq. (4.12)

One component of each whale is changed with

probability of p

Is

terminating

criterion

fulfilled?

Report the best solution found by the algorithm

End

Yes

No

Fig. 4.1 Flowchart of the

EWOA algorithm [1]
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variables can be selected from a list of 64 discrete sections from 0.111 to 335 in2

(71,613–21,612,860 mm2) (Kaveh and Ilchi Ghazaan [3]).

This example is also used for adjusting b [a constant for defining the shape of the
logarithmic spiral in Eq. (4.7)], number of whales, and itermax (total number of

iterations). In order to adjust the value of b, a number of whales and itermax are,
respectively, set to 20 and 1000, and different amounts of b are considered as 0.5,

1, 15, and 2. The results shown in Table 4.2 demonstrate that the algorithm is not

very sensitive to the values of b; however, statistical results indicate that 0.5 is the

most efficient value. In order to adjust the number of whales, the value of itermax is

set to 1000, and various numbers of whales are selected as 10, 20, 30, and 40.

Comparison of the results is shown in Table 4.3, and it can be seen that 20 is a quite

suitable number. Different itermax are tested (500, 750, 1000, 1250, and 1500) to

adjust this variable. Table 4.4 summarizes the results and it can be concluded 1000

is the most suitable value for itermax.
Table 4.5 represents the results obtained by different optimization algorithms.

The lightest designs obtained by discrete heuristic particle swarm ant colony

optimization (DHPSACO) (Kaveh and Talatahari [4]), imperialist competitive

algorithm (ICA) (Kaveh and Talatahari [5]), and colliding bodies optimization

(CBO) (Kaveh and Ilchi Ghazaan [3]) are 393,380 lb, 39,284 lb, and 39,123 lb,

respectively. The best designs of improved ray optimization (IRO) (Kaveh et al.

[6]), adaptive elitist differential evolution (aeDE) (Ho-Huu et al. [7]), WOA, and

EWOA are identical (i.e., 38,933 lb). EWOA was the most robust optimizer,

achieving the lowest average weight over the independent optimization runs.

Figure 4.3 shows the convergence curves of the best and average results obtained

Fig. 4.2 Schematic of the

spatial 72-bar truss structure
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Table 4.1 Loading conditions for the spatial 72-bar truss problem

Node

Condition 1 Condition 2

Fx kips (kN) Fy kips (kN) Fz kips (kN) Fx kips (kN) Fy kips (kN) Fz kips (kN)

17 0.0 0.0 �5.0 (�22.25) �5.0 (�22.25) 5.0 (�22.25) �5.0 (�22.25)

18 0.0 0.0 �5.0 (�22.25) 0.0 0.0 0.0

19 0.0 0.0 �5.0 (�22.25) 0.0 0.0 0.0

20 0.0 0.0 �5.0 (�22.25) 0.0 0.0 0.0

Table 4.2 Sensitivity of EWOA to the b parameter studied for the 72-bar truss problem

b

Results

Weight (lb) Average optimized weight (lb) Standard deviation on average weight (lb)

0.5 389.33 389.64 0.74

1 389.33 389.98 1.58

1.5 389.33 389.89 1.29

2 389.33 389.81 0.78

Table 4.3 Sensitivity of EWOA to the number of whales studied for the 72-bar truss problem

Number of

whales

Results

Weight (lb)

Average optimized

weight (lb)

Standard deviation on average

weight (lb)

10 389.33 390.03 1.36

20 389.33 389.64 0.74

30 389.33 389.73 0.71

40 389.33 389.86 0.97

Table 4.4 Sensitivity of EWOA to the itermax parameter studied for the 72-bar truss problem

itermax

Results

Weight (lb)

Average optimized

weight (lb)

Standard deviation on average

weight (lb)

500 389.33 390.28 1.89

750 389.33 390.49 1.53

1000 389.33 389.64 0.74

1250 389.33 389.90 0.95

1500 389.33 389.93 1.33
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by WOA and EWOA. The best designs have been located at 6960 and 10,460

analyses for WOA and EWOA, respectively.

4.4.2 Spatial 582-Bar Tower Problem

The spatial 582-bar tower truss shown in Fig. 4.4 is optimized for minimum volume

with the cross-sectional areas of the members being the design variables. The

582 members are divided into 32 groups, because of structural symmetry. Cross-

sectional areas of elements (sizing variables) are selected from a discrete list of

W-shaped standard steel sections based on area and radii of gyration properties.

Cross-sectional areas of elements can vary between 616 and 215 in2 (i.e., between

3974 and 138,709 cm2). A single load case is considered: lateral loads of 112 kips

(50 kN) applied in both x- and y-directions and a vertical load of �674 kips

(�30 kN) applied in the z-direction at all nodes of the tower. Limitation on stress

and stability of truss elements are imposed according to the provisions of AISC [8]

as follows:

The allowable tensile stresses for tension members are calculated as

σþi ¼ 0:6Fy ð4:15Þ

where Fy is the yield strength.

The allowable stress limits for compression members are calculated depending

on two possible failure modes of the members known as elastic and inelastic

buckling. Therefore,

Fig. 4.3 Convergence curves obtained by EWOA and WOA in the 72-bar truss problem [1]
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σ�i ¼
1� λ2i

2C2
c

 !
Fy

" #
=

5

3
þ 3λi
8Cc

� λ3i
8C3

c

" #
for λi < C

12π2E

23λ2i
for λi � Cc

8>>>><
>>>>:

ð4:16Þ

where E is the modulus of elasticity; λi is the slenderness ratio λi ¼ kli=rið Þ ;
Cc denotes the slenderness ratio dividing the elastic and inelastic buckling regions

Cc ¼
ffiffiffiffiffiffiffiffi
2π2E
Fy

q
; k is the effective length factor (k is set equal to 1 for all truss

members); Li is the member length; and ri is the minimum radius of gyration.

The maximum slenderness ratio is limited to 300 for tension members, and it is

recommended to be 200 for compression members. Moreover, nodal displacements

in all coordinate directions must be less than�315 in (i.e.,�8 cm) for this example.

Table 4.6 represents the results obtained by different optimization algorithms.

The best design obtained by EWOA is better than other methods (1,294,929 in3).

The best volume found by PSO (particle swarm optimization) (Hasançebi et al. [9]),

DHPSACO (Kaveh and Talatahari [4]), hybrid Big Bang–Big Crunch optimization

(HBB–BC) (Kaveh and Talatahari [10]), CBO (Kaveh and Ilchi Ghazaan [11]), and

WOA is 1,366,674 in3, 1,346,227 in3, 1,365,143 in3, 1,334,994 in3, and

Fig. 4.4 Schematic of the spatial 582-bar tower
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1,302,038 in3, respectively. EWOA was again the most robust optimizer, achieving

the lowest average volume over the independent optimization runs. The stress ratios

evaluated for the best design optimized by WOA and EWOA are shown in Fig. 4.5.

Themaximum stress ratio and the maximum nodal displacements obtained byWOA

are 99.87% and 31,499 in, respectively, while 99.90% and 31,497 in are found by

EWOA for maximum stress ratio and the maximum nodal displacements. Figure 4.6

illustrates the convergence curves found by the proposed methods. The best designs

Fig. 4.5 Stress ratios evaluated at the optimized designs found by EWOA and WOA in the

582-bar tower problem

Fig. 4.6 Convergence curves obtained by EWOA and WOA in the 582-bar tower problem [1]

58 4 Sizing Optimization of Skeletal Structures Using the Enhanced Whale. . .



are achieved after 18,840 and 19,300 analyses in WOA and EWOA, respectively.

However, EWOA required only about 14,000 analyses to find better intermediate

designs than WOA and 17,100 analyses to find an intermediate design with volume

1,302,000 in3, better than theWOAoptimized volume (1,302,038 in3). Furthermore,

EWOA required only 11,740 analyses to find a volume of 1,330,000 in3, better than

the design optimized by CBO (1,334,994 in3 within 17,700 analyses).

4.4.3 A 3-Bay 15-Story Frame Problem

Figure 4.7 represents the schematic of a 3-bay 15-story frame. The applied loads

and the numbering of member groups are also shown in this figure. The modulus of

elasticity is 29 Msi (200 GPa) and the yield stress is 36 ksi (2482 MPa). The

effective length factors of the members are calculated as kx� 0 for a sway-

permitted frame, and the out-of-plane effective length factor is specified as

ky¼ 10. Each column is considered as non-braced along its length, and the

non-braced length for each beam member is specified as one-fifth of the span

length. Limitation on displacement and strength is imposed according to the pro-

visions of AISC [12] as follows:

(a) Maximum lateral displacement

ΔT

H
� R � 0 ð4:17Þ

where ΔT is the maximum lateral displacement, H is the height of the frame

structure, and R is the maximum drift index which is equal to 1/300.

(b) The inter-story displacements

di
hi
� RI � 0, i ¼ 1, 2, . . . , ns ð4:18Þ

where di is the inter-story drift, hi is the story height of the ith floor, ns is the
total number of stories, and RI is the inter-story drift index (1/300).

(c) Strength constraints

Pu

2φcPn

þ Mu

φbMn

� 1 � 0, for
Pu

φcPn

< 0:2

Pu

φcPn

þ 8Mu

9φbMn

� 1 � 0, for
Pu

φcPn

� 0:2

8>><
>>: ð4:19Þ

where Pu is the required strength (tension or compression), Pn is the nominal

axial strength (tension or compression), φc is the resistance factor (φc¼ 0.9 for

tension, φc¼ 0.85 for compression),Mu is the required flexural strengths,Mn is
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Fig. 4.7 Schematic of the

3-bay 15-story frame
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the nominal flexural strength, and φb denotes the flexural resistance reduction

factor (φb¼ 0.90). The nominal tensile strength for yielding in the gross section

is calculated by

Pn ¼ Ag :Fy ð4:20Þ

The nominal compressive strength of a member is computed as

Pn ¼ Ag :Fcr ð4:21Þ

where

Fcr ¼ 0:658λ
2
c

	 

Fy, for λc � 1:5

Fcr ¼ 0:877

λ2c

 !
Fy, for λc > 1:5

8>><
>>: ð4:22Þ

λc ¼ kl

rπ

ffiffiffiffiffi
Fy

E

r
ð4:23Þ

where Ag is the cross-sectional area of a member and k is the effective length

factor that is calculated by (Dumonteil [13]):

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6GAGB þ 4:0 GA þ GBð Þ þ 7:5

GA þ GB þ 7:5

s
ð4:24Þ

where GA and GB are stiffness ratios of columns and girders at two end joints,

A and B, of the column section being considered, respectively.

Also, the sway of the top story is limited to 925 in (235 cm) in this example.

The designs optimized by HPSACO (heuristic particle swarm ant colony opti-

mization) (Kaveh and Talatahari [14]), HBB–BC (Kaveh and Talatahari [10]), ICA

(Kaveh and Talatahari [5]), CSS (charged system search) (Kaveh and Talatahari

[15]), CBO (Kaveh and Ilchi Ghazaan [3]), WOA, and EWOA are compared in

Table 4.7. The EWOA algorithm obtained the lowest weight, which is 88,090 lb.

EWOAwas the most robust optimizer also in this test problem, obtaining the lowest

average weight over the independent optimization runs. Stress ratios and inter-story

drifts evaluated for the best designs of WOA and EWOA are shown in Figs. 4.8 and

4.9. Figure 4.10 compares the best and average convergence histories of EWOA

and WOA. The best designs are achieved after 19,060 and 19,940 analyses in WOA

and EWOA, respectively.
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4.4.4 A 3-Bay 24-Story Frame Problem

Figure 4.11 shows the schematic of a 3-bay 24-story frame. Frame members are

collected in 20 groups (16 column groups and 4 beam groups). Each of the four

beam element groups is chosen from all 267 W shapes, while the 16 column

element groups are limited to W14 sections. The material has a modulus of

Fig. 4.8 Stress ratios evaluated at the optimized designs found by EWOA and WOA in the 3-bay

15-story frame problem

Fig. 4.9 Inter-story drifts evaluated at the optimized designs found by EWOA and WOA in the

3-bay 15-story frame problem [1]
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elasticity equal to E¼ 29,732 Msi (205 GPa) and a yield stress of fy¼ 334 ksi

(2303 MPa). The effective length factors of the members are calculated as kx� 0 for

a sway-permitted frame, and the out-of-plane effective length factor is specified as

ky¼ 10. All columns and beams are considered as non-braced along their lengths.

Similar to the previous example, the frame is designed following the AISC-LRFD

specifications and uses an inter-story drift displacement constraint (AISC [12]).

The optimized designs found by the different algorithms are compared in

Table 4.8. The lightest design (i.e., 203,490 lb) is again obtained by EWOA. The

best weights found by ACO (ant colony optimization) (Camp et al. [16]), HS

(harmony search) (Degertekin [17]), ICA (Kaveh and Talatahari [5]), CSS

(Kaveh and Talatahari [15]), CBO (Kaveh and Ilchi Ghazaan [3]), and WOA are,

220,465 lb, 214,860 lb, 212,640 lb, 212,364 lb, 215,874 lb, and 206,520 lb,

respectively. The average optimized weight achieved by EWOA is better than

those obtained by the other metaheuristic algorithms considered in this study.

Figure 4.12 compares the convergence curves obtained by EWOA and WOA,

which found the optimum weight after 18,820 and 19,640 structural analyses,

respectively. It should be noted that EWOA required only 10,500 analyses to find

an intermediate design weighing 210,000 lb, better than the designs optimized by

ICA and CSS (212,640 and 212,364 lb, respectively), and only 13,500 analyses to

find an intermediate design weighing 206,000 lighter than the WOA optimized

design (206,520 lb).

Fig. 4.10 Convergence curves obtained by EWOA and WOA in the 3-bay 15-story frame

problem [1]
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Fig. 4.11 Schematic of the

3-bay 24-story frame
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4.5 Concluding Remarks

This chapter presented an improved formulation of the whale optimization algo-

rithm which tries to maintain a proper balance between the diversification and the

intensification inclinations. The EWOA algorithm was applied to weight minimi-

zation problems of skeletal structures. The simplicity of WOA is preserved in

EWOA since no internal parameter is added. The suitability and efficiency of

EWOA is illustrated through two truss and two frame optimization problems.

EWOA converged to better designs in all test problems. Also, the average

weight/volume found by EWOA in the independent optimization runs is lower in

all benchmark examples indicating that the search reliability of the proposed

method is superior to the compared methods. Besides, it can be seen from conver-

gence history curves that the convergence rate of the EWOA algorithm is higher

than that of the WOA.
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9. Hasançebi O, Çarbas S, Dogan E, Erdal F, Saka MP (2009) Performance evaluation of

metaheuristic search techniques in the optimum design of real size pin jointed structures.

Comput Struct 87(5–6):284–302

10. Kaveh A, Talatahari S (2010) A discrete Big Bang–Big Crunch algorithm for optimal design of

skeletal structures. Asian J Civil Eng 11(1):103–122

11. Kaveh A, Ilchi GhazaanM (2014) Enhanced colliding bodies optimization for design problems

with continuous and discrete variables. Adv Eng Softw 77:66–75

12. American Institute of Steel Construction (AISC) (2001) Manual of steel construction: load and

resistance factor design. American Institute of Steel Construction, Chicago, IL

13. Dumonteil P (1992) Simple equations for effective length factors. AISC Eng J 29(3):111–115

14. Kaveh A, Talatahari S (2009) Hybrid algorithm of harmony search, particle swarm and ant

colony for structural design optimization. Stud Comput Intell 239:159–198

15. Kaveh A, Talatahari S (2012) Charged system search for optimal design of frame structures.

Appl Soft Comput 12:382–393

16. Camp CV, Bichon BJ, Stovall S (2005) Design of steel frames using ant colony optimization. J

Struct Eng ASCE 131:369–379

17. Degertekin SO (2012) Improved harmony search algorithms for sizing optimization of truss

structures. Comput Struct 92–93:229–241

References 69



Chapter 5

Size and Geometry Optimization of

Double-Layer Grids Using the CBO

and ECBO Algorithms

5.1 Introduction

Space structures have become popular not only because of their topological attrac-

tiveness and greater reserves of strength compared to conventional structures but

also because of their easy and fast construction. Double-layer grids are ideally

suited for covering exhibition pavilions, assembly halls, swimming pools, hangars,

churches, bridge decks, and many types of industrial buildings in which large

unobstructed areas are required. Double-layer grids have been built successfully

at a lower cost than equivalent conventional systems, providing at the same time

additional advantages, such as greater rigidity, erection simplicity, and possibility

of covering larger areas.

These grids can be thought of as logical extensions of single-layer grid frame-

works, consisting of two or more sets of parallel beams intersecting each other at

right or oblique angles and loaded by forces perpendicular to the plane of the

framework. Single-layer grids are used for clear spans up to 10 m. For larger

spans, double-layer grids are more suitable and provide an economical solution

for spans up to 100 m. Double-layer grids consist of two plane grids (which are not

necessarily of identical layout) forming the top and bottom layers, parallel to each

other, and interconnected by vertical or inclined “web” diagonal members. Single-

layer grids are mainly under the action of flexural moments, whereas the component

members of double-layer grids are almost exclusively under the action of axial

forces. The elimination of bending moments leads to a full utilization of strength of

all the elements. Double-layer grids have a greater number of structural elements

and employing optimization techniques has a considerable impact on the economy

and efficient design of such structures [1]. This study focuses on economical

comparison of two commonly used double-layer grid configurations, namely,

two-way on two-way grid and diagonal on diagonal grid and determining their

optimum span-depth ratio. The span ranges of 15� 15 m and 40� 40 m with

certain bays of equal length in two directions are considered as small and big size

© Springer International Publishing AG 2017
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grids, respectively. Bottom layer is simply supported at the corner nodes and as

mid-edge at two parallel sides of the grid for the small and big span cases,

respectively. The discrete values of depth are chosen from a certain interval with

a 0.5 m increment for both cases to achieve the optimum value. For determining the

grouping effects, various grouping patterns are applied in each case. Finally the

20� 20 m square on larger square grid for the effect of support location on the

weight of the double-layer grid is introduced. The discrete values of depth are

selected from a certain interval with a 0.25 m increment in this case [2].

Colliding bodies optimization (CBO) is a new metaheuristic search algorithm

that is developed by Kaveh and Mahdavi [3]. CBO is based on the governing laws

of one-dimensional collision between two bodies from the physics where an object

collides with another and they move toward the minimum energy level. The CBO is

simple in concept, depends on no internal parameters, and does not use memory for

saving the best-so-far solutions. The enhanced colliding bodies optimization

(ECBO) is introduced by Kaveh and Ilchi Ghazaan [4], and it uses memory to

save some historically best solutions to improve the CBO performance without

increasing the computational cost. In this method, some components of agents are

also changed to help the agents to escape from local minima. In this chapter, the

ability of the CBO and ECBO on optimal design of double-layer grids is examined

to carry out a precise comparison between different configurations. The design

algorithm is supposed to obtain minimum weight grid through suitable selection of

tube sections available in AISC-LRFD [5]. Strength constraints of AISC-LRFD

specifications and displacement constraints are imposed on grids. Moreover, three

other powerful advanced algorithms consisting of the HPSACO [6] (based on PSO,

ACO, and HS algorithms), the HBB–BC [7] (based on BB–BC and PSO methods),

and the CS [8] are applied to carry out a precise assessment and demonstrate the

effectiveness and robustness of the CBO and ECBO algorithms in achieving better

designs and estimating better depth for each type. Finally the effect of support

location on the weight of different kinds of double-layer grids is investigated using

ECBO algorithm.

The remainder of this chapter is organized as follows: In Sect. 5.2, the mathe-

matical formulation of the structural optimization problems is presented and a brief

explanation of the AISC-LRFD is provided. Section 5.3 includes an explanation of

the CBO and ECBO algorithms. In Sect. 5.4 structural models are explained and

three numerical examples are presented in Sect. 5.5. The last section concludes the

chapter.

5.2 Optimal Design of Double-Layer Grids

The allowable cross sections are considered as 37 steel pipe sections as shown in

Table 5.1, where the abbreviations ST, EST, and DEST stand for standard weight,

extra strong, and double extra strong, respectively. These sections are taken from

AISC-LRFD [5] and this code is also utilized for design.
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Table 5.1 The allowable steel pipe sections taken from AISC-LRFD

Type

Nominal

diameter (in)

Weight per

ft (lb) Area (in2) I (in4)
Gyration

radius (in) J (in4)

1 ST ½ 0.85 0.25 0.017 0.261 0.034

2 EST ½ 1.09 0.32 0.02 0.25 0.04

3 ST ¾ 1.13 0.333 0.037 0.334 0.074

4 EST ¾ 1.47 0.433 0.045 0.321 0.09

5 ST 1 1.68 0.494 0.087 0.421 0.175

6 EST 1 2.17 0.639 0.106 0.407 0.211

7 ST 1¼ 2.27 0.669 0.195 0.54 0.389

8 ST 1½ 2.72 0.799 0.31 0.623 0.62

9 EST 1¼ 3.00 0.881 0.242 0.524 0.484

10 ST 2 3.65 1.07 0.666 0.787 1.33

11 EST 1½ 3.63 1.07 0.391 0.605 0.782

12 EST 2 5.02 1.48 0.868 0.766 1.74

13 ST 2½ 5.79 1.7 1.53 0.947 3.06

14 ST 3 7.58 2.23 3.02 1.16 6.03

15 EST 2½ 7.66 2.25 1.92 0.924 3.85

16 DEST 2 9.03 2.66 1.31 0.703 2.62

17 ST 3½ 9.11 2.68 4.79 1.34 9.58

18 EST 3 10.25 3.02 3.89 1.14 8.13

19 ST 4 10.79 3.17 7.23 1.51 14.5

20 EST 3½ 12.50 3.68 6.28 1.31 12.6

21 DEST 2½ 13.69 4.03 2.87 0.844 5.74

22 ST 5 14.62 4.3 15.2 1.88 30.3

23 EST 4 14.98 4.41 9.61 1.48 19.2

24 DEST 3 18.58 5.47 5.99 1.05 12

25 ST 6 18.97 5.58 28.1 2.25 56.3

26 EST 5 20.78 6.11 20.7 1.84 41.3

27 DEST 4 27.54 8.1 15.3 1.37 30.6

28 ST 8 28.55 8.4 72.5 2.94 145

29 EST 6 28.57 8.4 40.5 2.19 81

30 DEST 5 38.59 11.3 33.6 1.72 67.3

31 ST 10 40.48 11.9 161 3.67 321

32 EST 8 43.39 12.8 106 2.88 211

33 ST 12 49.56 14.6 279 4.38 559

34 DEST 6 53.16 15.6 66.3 2.06 133

35 EST 10 54.74 16.1 212 3.63 424

36 EST 12 65.42 19.2 362 4.33 723

37 DEST 8 72.42 21.3 162 2.76 324

ST standard weight; EST extra strong; DEST double extra strong
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The aim of weight minimization of a grid is to find a set of design variables

leading to minimum weight satisfying certain constraints. This can be expressed as

Find Xf g ¼ x1, x2, x3, . . . , xng
� �

, xi 2 D ¼ d1, d2, d3, . . . , d37f g

To minimizeW Xf gð Þ ¼
Xng

i¼1

xi
Xnm ið Þ

j¼1

ρj:Lj
ð5:1Þ

where {X} is the set of design variables, ng is the number of member groups in

structure (number of design variables), D is the cross-sectional areas available for

groups according to Table 5.1, W({X}) presents weight of the grid, nm(i) is the

number of members for the ith group, and ρj and Lj denote the material density and

the length for the jth member of the ith group, respectively.

The constraint conditions for grid structures are briefly explained in the

following:

Displacement constraints:

δi � δmax, i ¼ 1, 2, . . . , nn ð5:2Þ

Tension member constraints:

Pu � Pr : Pr ¼ min
Fy:Ag:ϕt

Fu:Ae:ϕt

�
ϕt¼0:9
ϕt¼0:75 ð5:3Þ

Compression member constraints:

Pu � Pr, Pr ¼ ϕc:Fcr:Ag; ϕc ¼ 0:85

Fcr ¼ min
0:658Fy=Fe

� �
Fy

0:877Fe

�
,

KL

r
� 4:71

ffiffiffiffiffiffiffiffiffiffiffi
E=Fy

q

KL

r
> 4:71

ffiffiffiffiffiffiffiffiffiffiffi
E=Fy

q , Fe ¼ π2E= KL=rð Þ2

ð5:4Þ

Slenderness ratio constraints:

λc ¼ KL=r � 200 for compression members

λt ¼ KL=r � 300 for tension members
ð5:5Þ

where δi and δmax
i are the displacement and allowable displacement for the ith node,

nn is the number of nodes, nm is the total number of members and K is effective

length factor taken as 1, Pu is the required strength (tension or compression), and Ag

and Ae are the cross-sectional and effective net areas of a member, respectively.
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In order to handle the constraints, a penalty approach is utilized. In this method,

the aim of the optimization is redefined by introducing a cost function as

f cost Xf gð Þ ¼ 1þ E1:vð ÞE2 �W Xf gð Þ, v ¼
Xnn
i¼1

vdi þ
Xnm
i¼1

v σi þ v λi
� � ð5:6Þ

where v is the constraint violation function and υdi , υ
σ
i , and υλi are constraint

violations for displacement, stress, and slenderness ratio, respectively. E1 and E2
are penalty function exponents which are selected considering the exploration and

exploitation rate of the search space. Here E1 is set to unity; E2 is selected in a way

that it decreases the penalties and reduces the cross-sectional areas. Thus, in the first

steps of the search process, E2 is set to 1 and it linearly increases to 3.

5.3 CBO and ECBO Algorithms

Colliding bodies optimization (CBO) is a new population-based stochastic optimi-

zation algorithm based on the governing laws of one-dimensional collision between

two bodies from the physics [3]. Each agent is modeled as a body with a specified

mass and velocity. A collision occurs between pairs of objects to find the global or

near-global solutions. Enhanced colliding bodies optimization (ECBO) uses a

memory vector to save some best solutions and utilizes a mechanism to escape

from local optima [4].

5.3.1 A Brief Explanation and Formulation of the CBO
Algorithm

In CBO, each solution candidate Xi containing a number of variables (i.e., Xi¼ {Xi,j})

is considered as a colliding body (CB). The massed objects are composed of two

main equal groups: stationary and moving objects, where the moving objects move to

follow stationary objects and a collision occurs between pairs of objects (Fig. 5.1).

This is done for two purposes: (i) to improve the positions of moving objects and

(ii) to push stationary objects toward better positions. After the collision, new

positions of the colliding bodies are updated based on new velocities using the

collision laws governed by momentum and energy [3]. When a collision occurs in

an isolated system, the total momentum of the system of objects is conserved.

Provided that there are no net external forces acting upon the objects, the momentum

of all objects before the collision equals the momentum of all objects after the

collision.

5.3 CBO and ECBO Algorithms 75



CBO starts with an initial population consisting of 2n parent individuals created
by means of a random initialization. Then, CBs are sorted in ascending order based

on the value of cost function as shown in Fig. 5.2.

The CBO procedure can briefly be outlined as follows.

As stated before each agent called CB has a specified mass that is defined as

mk ¼
1

fit kð ÞPn
i¼1

1
fit ið Þ

, k ¼ 1, 2, . . . , n ð5:7Þ

where fit(i) represents the objective function value of the ith CB and n is the number

of colliding bodies. After sorting colliding bodies according to their objective

function values in an increasing order, two equal groups are created: (i) stationary

group and (ii) moving group (Fig. 5.2). Moving objects collide with stationary

objects to improve their positions and push stationary objects toward better posi-

tions. The velocities of the stationary and moving bodies before collision (vi) are
calculated by

vi ¼ 0, i ¼ 1, . . . ,
n

2
ð5:8Þ

Fig. 5.1 Collision between

two bodies: (a) before

collision, (b) collision, and

(c) after collision

Fig. 5.2 The sorted CBs in

an ascending order and the

matching process for the

collision

76 5 Size and Geometry Optimization of Double-Layer Grids Using the CBO and. . .



vi ¼ xi�n
2
� xi, i ¼ n

2
þ 1,

n

2
þ 2 . . . , n ð5:9Þ

where xi is the position vector of the ith CB. The velocity of stationary and moving

CBs after the collision (v0i) is evaluated by

v0i ¼
miþn

2
þ εmiþn

2

� 	
viþn

2

mi þ miþn
2

i ¼ 1, 2, . . . ,
n

2
ð5:10Þ

v0i ¼
mi � εmi�n

2

� 	
vi

mi þ mi�n
2

i ¼ n

2
þ 1,

n

2
þ 2, . . . , n ð5:11Þ

ε ¼ 1� iter

itermax
ð5:12Þ

where ε is the coefficient of restitution (COR) and iter and itermax are the current

iteration number and the total number of iterations for optimization process,

respectively. New positions of each group are stated by the following formulas:

xnewi ¼ xi þ rand∘v
0
i, i ¼ 1, 2, . . . ,

n

2
ð5:13Þ

xnewi ¼ xi�n
2
þ rand∘v

0
i, i ¼ n

2
þ 1, . . . , n ð5:14Þ

where xnewi , xi, and v
0
i are the new position, previous position, and the velocity after

the collision of the ith CB, respectively. rand is a random vector uniformly

distributed in the range of [�1,1], and the sign “∘” denotes an element-by-element

multiplication.

5.3.2 Pseudo-Code of the ECBO Algorithm

In the ECBO, a memory that saves a number of historically best CBs is utilized to

improve the performance of the CBO and reduce the computational cost. Further-

more, ECBO changes some components of CBs randomly to prevent premature

convergence [4]. In this section, in order to introduce the ECBO algorithm, the

following steps should be taken.

5.3.2.1 Initialization

Step 1: The initial locations of CBs are created randomly in an m-dimensional

search space.
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x0i ¼ xmin þ random∘ xmax � xminð Þ, i ¼ 1, 2, 3, . . . , n ð5:15Þ

where x0i is the initial solution vector of the ith CB, xmin and xmax are the minimum

and the maximum allowable limits vectors, and random is a random vector with

each component being in the interval [0,1].

5.3.2.2 Search

Step 1: The value of the mass for each CB is calculated by Eq. (5.7).

Step 2: Colliding memory (CM) is considered to save some historically best CB

vectors and their related mass and objective function values. The size of the CM

is taken as n/10 (n is the population size) in this chapter. In each iteration,

solution vectors that are saved in the CM are added to the population, and the

same number of the current worst CBs are deleted.

Step 3: CBs are sorted according to their objective function values in an increasing

order. To select the pairs of CBs for collision, they are divided into two equal

groups: (i) stationary group and (ii) moving group.

Step 4: The velocities of stationary and moving bodies before collision are evalu-

ated by Eqs. (5.8) and (5.9), respectively.

Step 5: The velocities of stationary and moving bodies after collision are calculated

by Eqs. (5.10) and (5.11), respectively.

Step 6: The new location of each CB is evaluated by Eqs. (5.13) or (5.14).

Step 7: A parameter like Pro within (0, 1) is introduced which specifies whether a

component of each CB must be changed or not. For each CB Pro is compared

with rni (i¼ 1,2,. . ., n) which is a random number uniformly distributed within

(0, 1). If rni<Pro, one dimension of ith CB is selected randomly and its value is

regenerated by

xij ¼ xj,min þ random: xj,max � xj,min

� � ð5:16Þ

where xij is the jth variable of the ith CB. xj,min and xj,max are the lower and upper

bounds of the jth variable. In this chapter, the value of Pro is set to 0.3.

5.3.2.3 Terminating Condition Check

Step 1: After the predefined maximum evaluation number, the optimization process

is terminated [9].
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5.4 Structural Models

Two commonly used configurations for double-layer grids considered in this study

are two-way on two-way and diagonal on diagonal square grids [10]. Two span

values of 15� 15 m and 40� 40 m with certain bays of equal lengths in two

directions are considered as small and big size spans. Simply supported condition

is employed for bottom layer at the corner nodes and mid-edge at two parallel sides

for the small and big span cases, respectively. The discrete values of depth are

chosen from a certain interval with a 0.5 m increment for both cases to achieve the

optimum value. At last the 20� 20 m square on larger square grid for the effect of

support locations on the weight of the double-layer grid is introduced. The discrete

values of depth are selected from a certain interval with a 0.25 m increment in this

case [2].

As mentioned before double-layer grids have a large number of structural

elements, and in order to simplify the design, they should be divided into some

groups. The element grouping of such design can be selected by designers in any

scheme or patterns, but if the members with the same behavior are placed in the

same group, the design becomes more efficient and economical (e.g., all members

in one group have the same stress ratios, approximately). To address this issue, the

SAP2000 toolbox for auto and fully stressed design could be used to select the

element grouping pattern at the preliminary stage of design considering the stress

ratios of the elements. However, the selection of such pattern can be based on

experiences, engineering judgment, or administrative constraints. In this chapter

three element grouping patterns, namely, GP1, GP2, and GP3, are introduced for

the purpose of practical fabrication and determining the grouping effects on the

different systems. Considering different sections of the top-layer, bottom-layer, and

diagonal elements leads to the first grouping type which is only applied to the

15� 15 m span case with three design variables. In the second one, the top-layer,

bottom-layer, and diagonal elements are put into different groups in a diamond-like

manner around central node. The GP3 grouping pattern is the same as the second

one, but it is in a square form. The configuration, support locations, and element

grouping patterns of double-layer grids are shown in Fig. 5.3. Due to symmetry,

only a quarter of the 15� 15 m span case is shown in this figure. The element

grouping in the form of GP2 is depicted by dark and light hatching.

5.5 Numerical Examples

The double-layer grids are assumed as ball jointed, with top-layer joints being

subjected to concentrated vertical loads corresponding to the uniformly distributed

load of magnitude 200 kg/m2. Stress and slenderness constraints [Eqs. (5.3), (5.4),

and (5.5)] according to AISC-LRFD provisions and displacement limitations of

span/600 are imposed on all the nodes in vertical direction. The modulus of
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elasticity is considered as 205 kN/mm2, and the yield stress of steel is taken as

248.2 MPa.

In CBO and ECBO, a population of n¼ 30 CBs is utilized, and the size of

colliding memory is considered as n/10 that is taken as 3 for ECBO. The predefined
maximum evaluation number is considered as 15,000 analyses for all examples.

Because of the stochastic nature of the algorithms, each example has been solved

5 times independently. In all problems, CBs are allowed to select discrete values

from the permissible list of cross sections (real numbers are rounded to the nearest

integer in each iteration). The algorithms are coded in MATLAB and the structures

are analyzed using the direct stiffness method.

Fig. 5.3 Topology, element grouping, support locations for different cases; (a) 15� 15 m

two-way on two-way grid, (b) 15� 15 m diagonal on diagonal grid, (c) 40� 40 m two-way on

two-way grid, (d) 40� 40 m diagonal on diagonal grid [11]
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5.5.1 A 15� 15 m Double-Layer Square Grid

A 15� 15 m span structure is studied as a small sized double-layer grid. The first

common type is the two-way on two-way grid which contains 85 nodes and

288 members, and the second one is the diagonal on diagonal grid with

145 nodes and 528 members. Each span contains 6 bays of equal length in both

directions. Grouping patterns of GP1 and GP2 lead to 3 and 9 design variables for

each type. The third grouping pattern yields 14 and 19 design variables for two-way

on two-way and diagonal on diagonal grids, respectively. The range of discrete

depths is considered as the interval [3, 6] with increments of 0.5 m for each type to

achieve the optimum depth. The fundamental difference between diagonal and

rectangular grids is that in the former beams are of varying length (L ), and

therefore, even if all the beams are of the same cross-sectional dimensions and

have the same axial stiffness (EA), their relative stiffness (EA/L) varies consider-
ably. The diagonal grid consists of beams forming an oblique angle with the walls.

This type is often used for small span cases because its greater rigidity leads to a

substantial reduction in the deflections and not considering the number and com-

plexity of joints is often favored by engineers and architects because of its conve-

nience and appealing features. Table 5.2 shows that diagonal on diagonal grid is a

more suitable form for small span length compared to two-way on two-way grid

even with larger number of members. It is apparent from the table that CBO has

gained better results than other three methods (CS, HBB–BC, and HPSACO)

except for some cases with slight differences. Furthermore, the ECBO has produced

the lightest designs among other methods.

For graphical comparison of the algorithms, the convergence histories for the

best result of five independent runs are shown in Fig. 5.4 for the diagonal on

diagonal grid, GP3, and depth of 1.5 m.

Table 5.3 shows the best design vectors and the corresponding weights for two

methods, and these are compared with those of engineering design found by

SAP2000. The results of the CBO and ECBO are 22.6% and 25% lighter than

engineering design, respectively.

Figure 5.5 shows the obtained optimum weights for various grouping patterns

and depths of grids. As depicted, the optimum height for two-way on two-way and

diagonal on diagonal grids are 2 m and 1.5 m, respectively. More importantly, the

GP3 grouping type with more design variables results in heavier designs compared

to those of GP2 grouping type for two-way on two-way grid. In the GP1 case in

which the problem has only three design variables, all methods approximately yield

the same design. In diagonal on diagonal grid, GP2 and GP3 grouping patterns yield

the same results approximately. It is apparent that GP2 with fewer number of design

variables is more economical for this type of grid.
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Table 5.3 Optimum design of 15� 15 m double-layer grids

Group number

Optimum section (designations)

Engineering design CBO ECBO

1 PIPST (2) PIPST (1½) PIPST (1½)

2 PIPST (2½) PIPST (2) PIPST (2)

3 PIPST (1½) PIPST (1¼) PIPST (1¼)

4 PIPST (1) PIPST (1) PIPST (1)

5 PIPST (½) PIPST (½) PIPST (½)

6 PIPST (½) PIPST (½) PIPST (½)

7 PIPST (½) PIPST (½) PIPEST (½)

8 PIPST (3) PIPST (3) PIPST (2½)

9 PIPST (1½) PIPST (1) PIPST (1¼)

10 PIPST (1½) PIPST (1¼) PIPST (1¼)

11 PIPST (2) PIPEST (1½) PIPST (1½)

12 PIPST (2) PIPEST (1½) PIPEST (1½)

13 PIPST (2) PIPEST (1½) PIPEST (1½)

14 PIPST (2½) PIPST (2) PIPST (2)

15 PIPST (1¼) PIPST (1) PIPST (1)

16 PIPEST (1) PIPST (1) PIPST (1)

17 PIPST (1) PIPST (1) PIPST (1)

18 PIPEST (¾) PIPST (1) PIPST (1)

19 PIPEST (¾) PIPST (1) PIPST (1)

Demand/Capacity ratio limit 0.999 – –

Best weight (kg) 5061.1542 3917.5032 3794.8357

Fig. 5.4 The convergence history for the 15� 15 m diagonal on diagonal grid (GP3 and layer

thickness¼ 1.5 m)
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5.5.2 A 40� 40 m Double-Layer Square Grid

A 40� 40 m span case is considered as a big size of double-layer grids. The first

common type is two-way on two-way grid which contains 221 nodes and 800 mem-

bers. The second one is diagonal on diagonal grid with 401 nodes and 1520 members.

Each span contains 10 bays of equal length in both directions. The first grouping

pattern is ignored in this case because of the size of the structure. Grouping pattern of

GP2 leads to 15 design variables for both types. The third grouping pattern leads to

24 and 31 design variables for two-way on two-way and diagonal on diagonal grids,

respectively. The range of discrete depths of [4, 7] is considered with a 0.5 m

increment each type to achieve the optimum depth.

Figure 5.6 shows the obtained optimum weight for various grouping patterns and

depth of grids. As depicted, the curves of different groups for two-way on two-way

grid have approximately coincided with slight differences. It should be noted that

the GP2 is a more suitable way of grouping for two-way on two-way grid, because

of the fewer number of groups. It is shown that the optimum height of the first type

is equal to 3.5 and 3 m for GP2 and GP3, respectively, while for the second type it

equals 4 m for both grouping schemes. Table 5.4 in which the best obtained weight

is hatched for each case presents the performance of algorithms. The obtained

Fig. 5.5 Best results of ECBO for 15� 15 m double-layer grids in each group type: (a) two-way

on two-way grid and (b) diagonal on diagonal grid

Fig. 5.6 Best results of ECBO for 40� 40 m double-layer grids in each group type: (a) two-way

on two-way grid and (b) diagonal on diagonal grid
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optimum designs for the two-way on two-way grid in GP2 and GP3 grouping

schemes are 36% and 26% lighter than those of the diagonal on diagonal cases,

respectively. It can be realized that two-way on two-way grid is a more suitable

form for big span cases with the same number of span divisions (without consid-

ering the number and complexity of joints). It is apparent from the table that CBO

has obtained better results compared to HBB–BC and HPSACO in all cases. It

could also be seen that the enhanced version (ECBO) is capable of finding the best

results in all cases expect for one. The robustness of ECBO in size and geometry

optimization of big span double-layer grids is also evident.

5.5.3 The Effect of Support Location on the Weight
of Double-Layer Grids

In this case the 20� 20 m square of large square double layer grid consisting of 136

nodes and 440 members is considered as the last example. Each span is divided into

eight bays with equal lengths in each direction. There are some empty spaces in the

middle of the grid created by removing some of the bottom-layer members ((usually

in tension). The attached bracings of the square on square offset at a rectangular

pattern lead to a construction lighter than the usual type (Fig. 5.7). Due to the

addition of the openings, this system is more suitable when the architect intends to

provide more natural lights inside the building (skylights can be placed within the

openings). This system is usually selected for structures subjected to normal range

of loads. A uniformly distributed load of 200 kg/m2 is transmitted to the concen-

trated vertical loads which are assigned to the nodes of the top grid proportional to

their load-bearing area. Double-layer grids can be supported by steel or concrete

columns, load-bearing brickworks, or perimeter ring beams. The positions of

Fig. 5.7 (a) Element grouping for square on larger square double-layer grid. (b) Configuration

and various types of support location
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supports are important, as it influences the stress distribution. Often the locations of

the supports are selected considering the functional requirements of the building.

Sometimes architectural considerations may have a major effect on the location of

the supports as well as in the shape of the supporting structure. For shape and size

optimization, the ECBO is considered as optimization method. The grouping

pattern leads to 17 design variables in a square-like manner and is introduced for

the practical fabrication. Due to symmetry, only a quarter of this configuration is

shown in Fig. 5.7a. The range of discrete depths of [3, 5] is considered with a

0.25 m increment to achieve the optimum depth. Figure 5.8 shows the obtained

optimum weight, depth of grid, and comparison of the results between two cases of

support locations. ECBO obtains an optimum height of 1.75 m for this type of grid.

If possible, support at the extreme edges of the grid should be avoided as this will

produce heavy forces in the directly loaded members. Support positions slightly in

board are preferred. Often cantilevers can be provided by a proper support location;

this leads to considerable reduction in forces and deflections. As a rule, cantilevers

have little effect on shearing forces and hence on the size of the diagonals, but

cantilevers of approximately 0.3 of the clear span will result in a structure that has

less deflections, uses less material, and leads to a more uniform stress distribution.

The forces in the lower layer are nearly twice as much as the upper layer; however,

since these members are in tension, they are obviously not susceptible to buckling.

Table 5.5 shows the optimum design variables and best weight that ECBO has

produced as lightest design.
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Fig. 5.8 Effect of support location on the weight of square on larger square double-layer grid and

best results of ECBO algorithm
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5.6 Concluding Remarks

In this chapter, the CBO and ECBO algorithms are examined in the context of size

and geometry optimization of double-layer grids designed for minimum weight.

The CBO has simple structure and depends on no internal parameters and does not

use memory for saving the best-so-far solutions. In order to improve the exploration

capabilities of the CBO and to prevent premature convergence, a stochastic

approach is employed in ECBO that changes some components of CBs randomly.

Colliding memory is also utilized to save a number of the best-so-far solutions to

reduce the computational cost. In order to indicate the similarities and differences

between the characteristics of the CBO and ECBO algorithms, two types of double-

layer grids with various span lengths are considered. Grids are designed in accor-

dance with AISC-LRFD specifications and displacement constraints. In small span

cases, diagonal on diagonal grid with more connections and members is a suitable

form because of greater rigidity and other advantages like convenience and appeal-

ing features. For big span cases, two-way on two-way grids with fewer number of

members are better than diagonal on diagonal ones. In this type of space structures,

if the positions of supports are slightly in board, the weight of structure is decreased

considerably due to reduction in forces and deflections as it influences the stress

distribution and leads to using less material and results in lighter weight designs.

Table 5.5 Optimum design

of 20� 20 m double-layer

grids
Group number

Optimum section (designations)

ECBO

1 PIPST (1¼)

2 PIPST (1¼)

3 PIPST (2)

4 PIPST (1¼)

5 PIPST (2½)

6 PIPST (1¼)

7 PIPST (2)

8 PIPST (2½)

9 PIPST (1½)

10 PIPST (1¼)

11 PIPST (1)

12 PIPST (2)

13 PIPST (1¼)

14 PIPEST (1¼)

15 PIPEST (1½)

16 PIPEST (2)

17 PIPST (2)

Optimum height (m) 1.75

Best weight (kg) 5721.8492
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CBO has gained better results in small span case than three well-known algorithms

(CS, HBB–BC, and HPSACO) with small differences and for big sizes has gained

better design than HBB–BC and HPSACO. ECBO has better performance in all

cases than other methods because of the reliability of search, solution accuracy, and

speed of convergence. Generally, comparison of the results with other robustness

and hybridized algorithms shows the suitability and efficiency of the proposed

algorithms.

References

1. Makowski ZS (1990) Analysis, design and construction of double-layer grids, 1st edn. CRC

Press, UK

2. Kaveh A, Moradveisi M (2016) Optimal design of double-layer barrel vaults using CBO and

ECBO algorithms. Iran J Sci Technol Trans Civil Eng. doi:10.1007/s40996-016-0021-4

3. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel metaheuristic method.

Comput Struct 139:18–27

4. Kaveh A, Ilchi Ghazaan M (2014) Computer codes for colliding bodies optimization and its

enhanced version. Int J Optim Civil Eng 4:321–332

5. American Institute of Steel Construction (AISC) (1994) Manual of steel construction load

resistance factor design, 2nd edn. AISC, Chicago, IL

6. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony

search scheme hybridized for optimization of truss structures. Comput Struct 87:267–283

7. Kaveh A, Talatahari S (2009) Size optimization of space trusses using Big Bang–Big Crunch

algorithm. Comput Struct 87:1129–1140

8. Yang XS, Deb S (2010) Engineering optimization by Cuckoo search. Int J Math Model Numer

Optim 1:330–343

9. Kaveh A, Ilchi Ghazaan M (2014) Enhanced colliding bodies algorithm for truss optimization

with dynamic constraints. J Comput Civil Eng 10.1061/(ASCE)CP.1943-5487.

0000445,04014104

10. Makowski ZS (1990) Analysis, design and construction of double-layer grids. Applied Science

Publisher Ltd, London

11. Kaveh A, Servati H (2002) Neural networks for the approximate analysis and design of double

layer grids. Int J Space Struct 17:77–89

12. Kaveh A, Bakhshpoori T, Afshari E (2011) An optimization-based comparative study of

double layer grids with two different configurations using cuckoo search algorithm. Int J

Optim Civil Eng 1:507–520

References 89

http://dx.doi.org/10.1007/s40996-016-0021-4
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000445,04014104
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000445,04014104


Chapter 6

Sizing and Geometry Optimization

of DifferentMechanical Systems of Domes via

the ECBO Algorithm

6.1 Introduction

This chapter deals with the optimal design of double-layer Lamella domes, suspen-

domes, and single-layer domes with relatively long spans including nonlinear

structural behavior [1]. In recent years, much progress has been made in the optimal

design of space structures by focusing on their linear behavior, neglecting non-

linearities which can result in uneconomic designs. In this study, geometric

nonlinearity optimization is taken into account for the abovementioned domes.

There are two main steps involved in the optimization of structural problems:

analysis and design. In this chapter, OPENSEES [2] is employed for analysis, and

enhanced colliding bodies is utilized in the design phase. All of the required

programs for the optimization phase are coded in MATLAB [3]. The design vari-

ables include cross-sectional areas of the structural elements, the height of dome,

the initial strain of cables, and the cross sections of cables in the suspen-dome. In

order to illustrate the efficiency of the proposed methodology, three numerical

examples including optimization of a single-layer dome with rigid joints, a

suspen-dome, and a double-layer dome with 12 rings subjected to dead and snow

loading are presented. The main contribution of the chapter is to utilize an efficient

metaheuristic algorithm for optimization of domes. Optimal design of structures is

usually achieved by considering the design variables to find an objective function

which is the minimum weight while all of the design constraints are satisfied.

The dome shape not only provides an elegant appearance but also offers one of

the most efficient interior environments for human residence because air and energy

circulation are managed without obstruction.

Suspen-Dome is a new style of prestressed space grid structure [4]. In recent

years, this type of dome has been used in some large-scale engineering structures,

such as Hikarigaoka Dome in Japan and Olympic Badminton Stadium of Beijing in

China. The symmetrical configuration of the Lamella dome and its triangular

configuration make it the topmost single-layer dome of the type. Figure 6.1
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presented by Kitipornchai et al. [5] shows a Lamella suspen-dome system. This

study takes geometric imperfection, asymmetric loading, rise-to-span ratio, and

connection rigidity of the dome into consideration.

The Colliding Bodies Optimization (CBO) was introduced for design of struc-

tures with continuous and discrete variables [6]. Design variables are cross-

sectional areas selected from a discrete list of available values [7]. The design

optimization of geometrically nonlinear geodesic domes was carried out, where the

design algorithm developed determines the optimum height of the crown as well as

the optimum tubular steel sections for the members [8]. In this chapter, optimum

topology design of linear elastic geodesic domes was presented. The design algo-

rithm determines the optimum number of rings, the optimum height of crown, and

tubular sections for the geodesic domes. The optimum topology design algorithm

based on the hybrid Big Bang–Big Crunch optimization method was presented for

the Schwedler and Ribbed domes in Kaveh and Talatahari [9].

An investigation on the characteristics and feasibility of different tension

schemes and also checking the accuracy of the numerical model and its calculated

results was done for suspen-dome by Nie et al. [10]. Kamyab and Salajegheh [11]

used an enhanced particle swarm optimization (EPSO) algorithm for size optimi-

zation of nonlinear scallop domes subjected to static loading. A comparative study

was conducted for the optimal design of different types of single-layer domes by

Kaveh and Rezaei [12]. In Kaveh and Rezaei [13], a sizing optimization was carried

out for the optimum nonlinear design of suspen-domes having complex mechanical

components. In this chapter, the optimum geometry and topology design for single-

layer domes is carried out by utilizing the CBO.

The rest of this chapter is organized as follows. Section 6.2 consists of the

formulation of the optimal design of dome structures according to LRFD design

method. Section 6.3 summarizes the laws of collision between two bodies.

Fig. 6.1 Configuration of a

double-layer/suspen-dome
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In Sect. 6.4, three metaheuristic algorithms are compared for optimization of domes.

Comparative study is performed between optimal design of suspen-domes, single

layer with pin- and rigid-jointed domes, and double-layer Lamella domes using

ECBO algorithm in Sect. 6.5. Finally, Sect. 6.6 summarizes the main findings of

this chapter.

6.2 Optimal Design Problem of Lamella Domes According

to LRFD

The allowable and standard cables which should be used in the tensegrity system

(hoop and radial cables) are shown in Table 6.1. The allowable cross sections of

steel elements, used in the domes, are standard 37 steel pipe sections shown in

Table 6.2. In this table, the abbreviations ST, EST, and DEST stand for standard

weight, extra strong, and double-extra strong, respectively. These sections are taken

from LRFD-AISC [14] which is also utilized as the code of practice. The process of

the optimal design of the dome structures includes introducing variables and

constraints and can be summarized as:

Find X ¼ x1; x2; ::; xng
� �

, h
xi 2 d1f , d2, . . . , dng

�
hi 2 hminf , hmin þ h*, . . . , hmax

�
To minimize

V xð Þ ¼
Xnm
i¼1

xi:li

ð6:1Þ

subjected to the following constraints:

Displacement constraint:

δi � δmax
i i ¼ 1, 2, . . . , nn: ð6:2Þ

Interaction formula constraints:

Table 6.1 The standard cable section according to BS 5896

Diameter

(mm)

Tensile strength

(MPa)

Mass

(g/m)

Cross-sectional area

(mm2)

Yield stress at 0.1%

elongation

8 1860 296.8 38.0 60.8

9.3 1860 406.1 52.0 83.2

9.6 1960 429.6 55.0 87.7

11.3 1860 585.8 75.0 120.0

12.5 1860 726.3 93.0 149.0

12.9 1860 781.0 100.0 160.0

15.2 1770 1093.0 139.0 212.0

15.7 1770 1172.0 150.0 240.0
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Pu

2ϕcPn

þ Mux

ϕbMnx
þ Muy

ϕbMny

� �
� 1 for

Pu

ϕcPn

< 0:2 ð6:3Þ

Pu

ϕcPn

þ 8

9

Mux

ϕbMnx
þ Muy

ϕbMny

� �
� 1 for

Pu

ϕcPn

� 0:2 ð6:4Þ

where X is the vector containing the design variables of the elements; h is the crown
height; dj is the jth allowable discrete value for the design variables, hmin, hmax, and

h* are the permitted minimum, maximum, and increment values of the crown

height which in this chapter are taken as D/20, D/2, and 0.25 m, respectively, in

which D is the diameter of the dome; ng is the number of design variables or the

number of groups; V(x) is the volume of the structure; Li is the length of member i;
δi is the displacement of node i; δimax is the permitted displacement for the ith node;
nn is the total number of nodes; ϕc is the resistance factor (ϕc¼ 0.9 for tension,

ϕc¼ 0.85 for compression); ϕb is the flexural resistance reduction factor (ϕb¼ 0.9);

Mux and Muy are the required flexural strengths in the x- and y-directions, respec-
tively; Mnx and Mny are the nominal flexural strengths in the x- and y-directions,
respectively; Pu is the required strength; and Pn denotes the nominal axial strength

which is computed as

Pn ¼ AgFcr ð6:5Þ

where Ag is the gross area of a member and Fcr is calculated as follows:

Fcr ¼ 0:658λc
2

� �
:f y for λc � 1:5 ð6:6Þ

Fcr ¼ 0:877

λ2c

 !
:f y for λc > 1:5 ð6:7Þ

Here, f y is the specified yield stress and λc is obtained from

λc ¼ kl

πr

ffiffiffiffi
f y
E

r
ð6:8Þ

where k is the effective length factor taken as 1; l is the length of a dome member;

r is governing radius of gyration about the axis of buckling; and E is the modulus of

elasticity. In Eq. (6.9), Vu is the factored service load shear, Vn is the nominal

strength in shear, and φv represents the resistance factor for shear (φv ¼ 0.9).

Vu � φvVn ð6:9Þ
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Table 6.2 The allowable steel pipe sections taken from LRFD AISC

Type

Nominal

diameter (in)

Weight per

ft. (lb)

Area

(in2) I (in4) S (in3) J (in4) Z (in3)

1 ST ½ 0.85 0.250 0.017 0.041 0.082 0.059

2 EST ½ 1.09 0.320 0.020 0.048 0.096 0.072

3 ST ¾ 1.13 0.333 0.037 0.071 0.142 0.100

4 EST ¾ 1.47 0.433 0.045 0.085 0.170 0.125

5 ST 1 1.68 0.494 0.087 0.133 0.266 0.187

6 EST 1 2.17 0.639 0.106 0.161 0.322 0.233

7 ST 1¼ 2.27 0.669 0.195 0.235 0.470 0.324

8 ST 1½ 2.72 0.799 0.310 0.326 0.652 0.448

9 EST 1¼ 3.00 0.881 0.242 0.291 0.582 0.414

10 EST 1½ 3.63 1.07 0.666 0.561 1.122 0.761

11 ST 2 3.65 1.07 0.391 0.412 0.824 0.581

12 EST 2 5.02 1.48 0.868 0.731 1.462 1.02

13 ST 2½ 5.79 1.70 1.53 1.06 2.12 1.45

14 ST 3 7.58 2.23 3.02 1.72 3.44 2.33

15 EST 2½ 7.66 2.25 1.92 1.34 2.68 1.87

16 DEST 2 9.03 2.66 1.31 1.10 2.2 1.67

17 ST 3½ 9.11 2.68 4.79 2.39 4.78 3.22

18 EST 3 10.25 3.02 3.89 2.23 4.46 3.08

19 ST 4 10.79 3.17 7.23 3.21 6.42 4.31

20 EST 3½ 12.50 3.68 6.28 3.14 6.28 4.32

21 DEST 2½ 13.69 4.03 2.87 2.00 4.00 3.04

22 ST 5 14.62 4.30 15.2 5.45 10.9 7.27

23 EST 4 14.98 4.41 9.61 4.27 8.54 5.85

24 DEST 3 18.58 5.47 5.99 3.42 6.84 5.12

25 ST 6 18.97 5.58 28.1 8.50 17.0 11.2

26 EST 5 20.78 6.11 20.7 7.43 14.86 10.1

27 DEST 4 27.54 8.10 15.3 6.79 13.58 9.97

28 ST 8 28.55 8.40 72.5 16.8 33.6 22.2

29 EST 6 28.57 8.40 40.5 12.2 24.4 16.6

30 DEST 5 38.59 11.3 33.6 12.1 24.2 17.5

31 ST 10 40.48 11.9 161 29.9 59.8 39.4

32 EST 8 43.39 12.8 106 24.5 49.0 33.0

33 ST 12 49.56 14.6 279 43.8 87.6 57.4

34 DEST 6 53.16 15.6 66.3 20.0 40.0 28.9

35 EST 10 54.74 16.1 212 39.4 78.8 52.6

36 EST 12 65.42 19.2 362 56.7 113.4 75.1

37 DEST 8 72.42 21.3 162 37.6 75.2 52.8
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6.2.1 Nominal Strengths

Based on LRFD-AISC [14] specifications, the nominal tensile strength of a member

is equal to:

Pn ¼ FyAg ð6:10Þ

where Ag is the gross section of the member.

The nominal compressive strength of a member is the smallest value obtained

from the limit states of flexural buckling, torsional buckling, and flexural–torsional

buckling. For members with compact or non-compact elements, the nominal

compressive strength of the member for the limit state of flexural buckling is as

follows:

Pn ¼ FcrAg ð6:11Þ

where Fcr is the critical stress based on flexural buckling of the member, calculated

using Eqs. (6.6) and (6.7).

In the above equations, l is the laterally unbraced length of the member, K is the

effective length factor, r is the governing radius of gyration about the axis of

buckling, and E is the modulus of elasticity.

6.3 Metaheuristic Algorithm

This section introduces the enhanced colliding bodies optimization (ECBO) algo-

rithm. First, a brief description of standard CBO based on the work of Kaveh and

Mahdavi [15] is provided, and then the ECBO is introduced [16].

6.3.1 Colliding Bodies Optimization

The collision is a natural occurrence, and the CBO algorithm was developed based

on this phenomenon. In this method, one object collides with the other object, and

they move toward a minimum energy level (Figure 6.2). The CBO is simple in

concept, does not depend on any internal parameter, and does not use memory for

saving the best-so-far solutions. CBO algorithm, like other multi-agent methods, is

a population-based metaheuristic algorithm. Each solution candidate Xi containing

a number of variables (i.e., Xi¼ {xi,j}) is considered as a colliding body (CB). The

massed objects are divided into two equal groups, namely stationary and moving

objects, where moving objects collide with stationary objects to improve their

positions and push stationary objects toward better positions. After the collision,
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the new position of colliding bodies is updated based on the new velocity by using

the collision laws, and the lighter and heavier CBs move sharply and slowly,

respectively.

6.3.2 Enhanced Colliding Bodies Optimization

A modified version of the CBO which is presented by Kaveh and Mahdavi [15] is

ECBO, which improves the CBO to get faster and more reliable solutions [16]. The

introduction of a memory increases the convergence speed of ECBO with respect to

standard CBO. Furthermore, changing some components of colliding bodies will

help ECBO to escape from local optima. The steps involved in ECBO are as

follows:

Step 1: Initialization

The initial positions of all CBs are determined randomly in an m-dimensional

search space according to

x0i ¼ xmin þ rand xmax � xminð Þ, i ¼ 1, 2, 3, . . . , n ð6:12Þ

where x0i is the initial solution vector of the ith CB. Here, xmin and xmax are the

bounds of design variables, rand is a random vector for which each component is

in the interval [0, 1], and n is the number of CBs.

Step 2: Defining mass

The value of mass for each CB is evaluated according to:

mk ¼
1

fit kð ÞXn

i¼1

1
fit ið Þ

, k ¼ 1, 2, . . . , n ð6:13Þ

(a) V2i = 0
V1i

V1f
V2f

(b)

(c)

Fig. 6.2 Colliding of two

bodies
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Step 3: Saving

Considering a memory which saves some historically best CB vectors and their

related mass and objective function values can make the algorithm performance

better without increasing the computational cost [17]. Here a Colliding Memory

(CM) is utilized to save a number of the best-so-far solutions. Therefore in this

step, the solution vectors saved in CM are added to the population, and the same

number of current worst CBs are deleted. Finally, CBs are sorted according to

their masses in a decreasing order.

Step 4: Creating groups

CBs are divided into two equal groups: (i) stationary group and (ii) moving

group. The pairs of CBs are shown in Fig. 6.2.

Step 5: Criteria before the collision

The velocity of stationary bodies before collision is zero, i.e.,

vi ¼ 0, i ¼ 1, . . . ,
n

2
ð6:14Þ

Moving objects move toward stationary objects, and their velocities before

collision are calculated by

vi ¼ xi�n
2
� xi, i ¼ n

2
þ 1, . . . , n ð6:15Þ

Step 6: Criteria after the collision

The velocities of stationary and moving bodies are evaluated using Eqs. (6.16)

and (6.17), respectively.

v0i ¼
mi � εmi�n

2

� �
vi

mi þ mi�n
2

i ¼ n

2
þ 1,

n

2
þ 2, . . . , n ð6:16Þ

v0i ¼
miþn

2
þ εmi�n

2

� �
viþn

2

mi þ miþn
2

i ¼ 1, 2, . . . ,
n

2
ð6:17Þ

Step 7: Updating CBs

The new position of each CB is calculated by the following equations:

ε ¼ 1� iter

itermax

ð6:18Þ

xnewi ¼ xi�n
2
þ rand 0 v0i, i ¼ n

2
þ 1, . . . , n ð6:19Þ
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xnewi ¼ xi þ rand 0 v0i, i ¼ 1, 2, . . . ,
n

2
ð6:20Þ

Step 8: Escape from local optima

Metaheuristic algorithms should have the ability to escape from the trap when

agents get close to a local optimum. In ECBO, a parameter Pro within (0, 1) is

introduced, which specifies whether a component of each CB must be changed

or not. For each colliding body, Pro is compared with rni (i¼ 1, 2. . . n) which is

a random number uniformly distributed within (0, 1). If rni<Pro, one dimen-

sion of the ith CB is selected randomly and its value is regenerated as follows:

xij ¼ xj,min þ random: xj,max � xj,min


 � ð6:21Þ

where xij is the jth variable of the ith CB. xj,min and xj,max are the lower and upper

bounds of the jth variable, respectively. In order to protect the structures of CBs,
only one dimension is changed. This mechanism provides opportunities for the

CBs to move all over the search space, thus providing better diversity.

Step 9: Terminating condition check

The optimization process is terminated after a fixed number of iterations. If this

criterion is not satisfied, go to Step 2 for a new round of iteration.

For further details, the reader may refer to Kaveh and Mahdavi [18].

6.4 Configuration of Single-Layer Lamella Dome,

Suspen-Dome, and Double-Layer Dome

6.4.1 Configuration of Single-Layer Lamella Dome
with Rigid-Jointed Connections

Topology of a single-layer Lamella dome is shown in Fig. 6.3. For all domes,

including the Lamella dome, it is possible to generate the geometric structural data

if four parameters consisting of the diameter (D) of the dome, the total number of

rings, the total number of joints, and the height of the crown (h) are known. When

the geometry of a dome is formed according to mentioned parameters, the topology

of domes can be obtained. The topology contains the total number of members,

member incidences, and total number of joints of the domes. The distances between

the rings in the dome on the meridian line are generally made to be equal. It can be

easily seen from Fig. 6.4a and b that all the joints are located with equal distances

on a particular ring in both domes. The top joint which is the dome’s crown is

numbered as first joint (joint number 1). The first joint on the first ring is numbered

as joint 2 in each dome type. In Lamella dome, there is the same number of joints on
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each ring. The joint numbers of all the other first joints of other rings are computed

from the following equation:

Jr1 þ r � 1ð Þ � 10 ð6:22Þ

where r is the ring number and Jr1 is the first joint number of the first ring, namely

2 for Lamella dome. It is worthwhile to mention that all of the first joints of the

odd-numbered rings (ring 1 and ring 3) are located on the radius that makes angle

of 16� with the x-axis and, similarly, the first joints of the even-numbered rings

(ring 2) are located on the intersection points of that ring and the x-axis in Lamella

dome. First member is taken as one and connects joint 1 to joint 2 which makes an

angle of (360/Nn)� with x-axis in Lamella dome. For the first ring group, the start

node for all elements is the joint number 1 and the end nodes are those on the first

ring. The start and end nodes of ring elements can be obtained using Eqs. (6.24) and

(6.25), and for other rings (2 and 3), this process is repeated and all the member

incidences are similar.

Fig. 6.3 Schematic of a Lamella dome. (a) Plan view and (b) side view

100 6 Sizing and Geometry Optimization of Different Mechanical Systems of Domes. . .



xi ¼ D

2Nr
cos

360

4ni
i�
Xi�1

j¼1

4nj � 1

 � ! !

yi ¼
D

2Nr
sin

360

4ni
i�
Xi�1

j¼1

4nj � 1

 � ! !

ni ¼ 1, 2, . . . , Nr � 1; i : Joint number

zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ni

2D2

4Nr2

� �s
� R� hð Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð6:23Þ
I ¼ 10� ni � 1ð Þ þ jþ 1

J ¼ 10� ni � 1ð Þ þ jþ 2

�
j ¼ 1, 2, 3, . . . , 9ð Þ; ni ¼ 1, 2, . . . , Nr � 1 ð6:24Þ

I ¼ 10� ni � 1ð Þ þ 2

J ¼ 10� ni þ 1

�
ni ¼ 1, 2, . . . , Nr � 1 ð6:25Þ

Computation of x, y, and z coordinates of a joint on the domes requires the angle

between the line that connects the considered joint to the joint placed at the crown

of dome (joint number 1) and the x-axis as shown in Fig. 6.9. For Lamella dome,

the mentioned angle can be computed by Eqs. (6.26) and (6.27) for the odd- and

even-numbered rings, respectively:

ai ¼ 360

2Nn
ð6:26Þ

ai ¼ 360

2Nn
i� jr, 1

 � ð6:27Þ

Z

49

Xi
r = 2 r = 3

38

Zi

I
r = 1

h y1 y2 y3

y4

RR-h

D/2 D/2

(a) (b)

Fig. 6.4 (a) Joint coordinates of single-layer Lamella dome and (b) side view coordinate
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r is the ring number that joint i is placed on it and j is the first joint number on the

ring number r which is on the x-axis. The members group which is used in Tables is

mentioned in the following sentences. For Lamella domes, the ribbed members

between the crown and the first ring are group 1, the diagonal members between fist

ring and second ring are group 2, and the diagonal members between second ring

and third ring are group 3. The members on the first ring are group 4, and the

members on the second ring are group 5.

6.4.2 Configuration of Lamella Suspen-Domes

The lower tensegric system is detached from the upper single-layer dome as an

independent system. In the lower tensegric system, the strands and the vertical

struts are hinged in the joints. The tensegrity system is constructed of four rings of

hoop steel cables, radial steel cables, and struts at the lower part of model. The

cables are tension-only elements and the vertical struts are also compression

elements.

The upper single-layer Lamella dome is arranged as a triangle circular truss. The

struts which are the web members of suspen-dome and bending members that are

the elements of single-layer Lamella dome are circular standard steel tubes for

which the sections are listed in Table 6.1.

As it was mentioned before, the suspen-dome is constructed by combining

tensegrity system (cable-struts) and a single-layer reticulated dome. The configu-

ration of single-layer Lamella dome is explained in the previous part. As can be

seen from Fig. 6.5, the tensegrity system is constructed of hoop cable, radial cable,

and compression struts. The topology of tension-only cables, which are called

radial and hoop cables, is the same as the upper single-layer reticulated dome.

Therefore, the suitable configuration of tensegrity system depends on its upper

single-layer dome.

The suspen-dome which is discussed in this study uses the configuration of a

Lamella dome as the upper part. Therefore, the configuration of tensegrity system

should be obtained using the configuration of the Lamella dome. The current

tensegrity system is connected to the rings 3, 4, and 5 of a single-layer Lamella

dome by vertical struts elements.

Computation of x and y coordinates of a joint on tensegrity system requires

the angle between the line that connects the considered joint to the joint placed

at the crown of dome (joint number 1) and the x-axis. For Lamella suspen-dome,

the mentioned angle can be computed by Eqs. (6.26) and (6.27) for the odd- and

even-numbered rings, respectively.

Computation of z coordinates of a joint on tensegrity system can be obtained

using the following equation:
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zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n2i D

2

4Nr2

� �s
� R� hð Þ � Hhoop ið Þ ð6:28Þ

where Hhoop is the distance between the upper single-layer Lamella dome. In other

words, at the same time, it is the length of struts in the tensegrity structure.

For Lamella suspen-dome, the diagonal members between the crown and the

first ring are group 1, the diagonal members between first ring and the second ring

are group 2, the diagonal members between second ring and third ring are group

3, and the first ring, second ring, and third ring are groups 4, 5, and 6, respectively.

(c) 

Vertical element Hoop element Radial element

(a) (b)

Fig. 6.5 Configuration of the double-layer dome or the tensegrity part of the suspen-dome. (a)

Radial elements of the double-layer dome and suspen-dome. (b) Vertical elements of the double-

layer dome and suspen-dome. (c) Hoop elements of the double-layer dome and suspen-dome
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Then, after third ring each diagonal member and its related ring are numbered,

respectively. For example, if group 7 is the diagonal member between the ring 3 and

4, then the group 8 is the fourth ring of the dome.

6.4.3 Configuration of Double-Layer Lamella Dome

The lower grid system is detached from the upper single-layer dome as an inde-

pendent system. In the lower system, the steel elements and the vertical struts are

hinged in the joints. The lower layer is constructed of four rings of hoop steel

elements, radial steel elements, and vertical elements at the lower part of model

where these can be subjected to tension and pressure, contrary to the cables\strands

in suspen-dome.

In double-layer domes, the upper single-layer Lamella dome is arranged as a

triangle circular truss. The vertical elements which are the web members of the

double-layer dome and bending members which are the elements of single-layer

Lamella dome are circular standard steel tubes.

As it mentioned, the double-layer dome is constructed by combining two layers

of the grids which are lower grid (steel tube strut) and single-layer reticulated dome.

The configuration of a single-layer Lamella dome is explained in previous part. As

can be seen from Fig. 6.5, the configuration of a double-layer dome is chosen

exactly the same as a suspen-dome.

6.5 Convergence Curves of the Metaheuristic Algorithms

6.5.1 Comparison of the Convergence Curves of PSO, CBO,
and ECBO

To investigate the efficiency of different algorithms, the convergence curves of

three popular algorithms for dome structures are obtained in this section. Figure 6.6

shows the convergence curves of the PSO, CBO, and ECBO algorithms which are

useful metaheuristic methods for optimal design of various structures, and in this

study, these are used for a single-layer dome with six variables. CBO and ECBO

methods are parameter independent, but PSO depends on some parameters such as

C1,W, and C2 which should be set before starting analysis. Also Fig. 6.6 shows that

the design found by ECBO is lighter than those found by CBO and ECBO at the

same number of analysis. As another observatory, it can be seen that the conver-

gence rates of the ECBO and CBO algorithm are better than that of the PSO.

Therefore, the results obtained for this example are the main reason for choosing

ECBO in subsequent numerical models of this chapter. Therefore, optimization
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process is performed via ECBO algorithm to demonstrate the effectiveness and

robustness of the ECBO in creating optimal design of different domes.

Nonlinear structural behavior can originate from geometrical or material

nonlinearity. If a structure experiences large deformations, its changing geometric

configuration can be the cause of nonlinearly. In this study, a finite elements model

based on geometrical nonlinear analysis of different dome systems consisting of a

double-layer dome, a suspen-dome, and a single-layer dome with rigid connections

is presented by OPENSEES. In this model, a 3-D uniaxial co-rotational truss

element is utilized.

A significant criterion governing the design of domes is the requirement of full

triangulation of the geometry. Also this is one of the reasons for choosing Lamella

dome. Since these types of structures have a high stiffness in all directions and are

kinematically stable, triangulation must be used in the design of domes unless

making rigid connection designs. Therefore, for pin-connected dome design, the

latticed shell must be formed from the triangular units.

In this study, the different systems of the domes described in the previous

sections are optimized utilizing the ECBO. The modulus of elasticity for the steel

is taken as 205 kN/mm2. The limitations imposed on the joint displacements are

28 mm in the z-direction and 33 mm in the x- and y-directions for the 1st, 2nd, and
3rd nodes, respectively (Table 6.3).

To investigate the real performance of these domes, they are subjected to dead

and snow loads according to real load on roof of the dome. The design dead load is

established on the basis of the actual loads like the weight of various accessories

and cladding that may be expected to act on the dome structure. The dead, snow,

and wind loads of 200 N/m2, 800 N/m2, and 200 N/m2, respectively, are considered.

The loads are converted into equivalent point loads for each joint for the sake of

Fig. 6.6 Convergence curves for a single-layer dome
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simplicity. For this conversion, distributed load is multiplied by surface area

of dome.

The volume of the dome structures can be considered as a function of the

average cross-sectional area of the elements (A) and the sum of the element lengths,

expressed as:

V Xð Þ ¼ A �
Xnm
i¼1

Li ð6:29Þ

6.6 Comparison of Different Mechanical Systems of Domes

As mentioned in the previous section, a finite elements model based on geometrical

nonlinear analysis of different systems of domes which are double-layer dome,

suspen-dome, and single-layer dome with rigid connections is presented.

Rigid connections are often employed in the construction of long span single-

layer domes, since the load capacity of pin-connected single-layer domes is not

sufficient. However, pin connections are often used in double-layer lattice domes or

suspen-domes, because the additional layer can make a more stiff structure com-

pared to single-layer latticed dome structures.

Also by using the tensegrity system, the suspen-dome structure performs like a

double-layer dome structure. The tensegrity system is constructed of cables and

struts stiffening the suspen-dome structure. The stiffness comes from the opposite

force to the external gravity load. Therefore, it is logical to use pin-jointed connec-

tions in the construction of the suspen-dome system.

6.6.1 Optimal Design of Single-Layer Lamella Dome
with Rigid Joints

In this section, a single-layer Lamella dome is optimized using the ECBO algorithm

(Fig. 6.7). In this case, the dead and snow loads are considered for Lamella domes

Table 6.3 Displacement restrictions of single-layer domes

Displacement limitations (mm)

X-direction Y-direction Z-direction

Joint

no

Upper

bound

Lower

bound

Upper

bound

Lower

bound

Upper

bound

Lower

bound

1 � � � � 28 �28

2 33 �33 33 �33 28 �28

3 33 �33 33 �33 28 �28
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to investigate the real behavior and to obtain optimum geometry of dome under

these loading conditions. The dome structure is subjected to 0.8 kN/m2 of dead

load, 0.2 kN/m2 of live load, and 0.2 kN/m2 of basic wind pressure.

The number of rings is considered as 6 under this loading condition. The results

of the design are shown in Table 6.4. Due to the existence of a noticeable value of

dead/snow loading on each joint, the cross sections are obtained close to each other.

As can be seen, the optimal design of dome is found obtaining 5 m height for the

single-layer dome. For the dome with lower number of rings and lower number of

nodes, because of having the least number of joints and considerable amount of load

value on each joint, higher volume for dome is obtained and higher height is chosen

to provide higher stability. Because of this reason, the number of joints on each ring

in this study is chosen equal to 12. Also when the number of joints is increased, the

dead and snow loads are distributed among more joints.

6.6.2 Optimal Design of Lamella Suspen-Dome with Pin-
Jointed and Rigid-Jointed Connections

The six-ring suspen-dome is employed as an example to illustrate this idea. The top

part of the model is a single-layer lattice dome, which has 6 rings with 12 joints in

each ring. The single-layer Lamella dome which is a popular type of latticed dome

consists of steel tube beams that are fixed at both ends to suspen-dome with rigid-

jointed topmost layer and steel tube trusses for suspen-dome with rigid-jointed

topmost layer.

Its design tensile strength is 240 MPa. The computational model is a suspen-

dome having a span of 40 m. The material of cables is made of high strength wire,

the technical parameters of these are provided in Table 6.1. These dome structures

Fig. 6.7 Schematic of a

single-layer Lamella dome
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are subjected to 0.8 kN/m2 of dead load, 0.2 kN/m2 of live load, and 0.2 kN/m2 of

basic wind pressure.

In construction of the suspen-dome, the tensegrity system is constructed of three

rings of hoop cables, radial cables, and struts at the lower part of model. The

tensegrity system is connected to the rings 3, 4, and 5 of a single-layer Lamella

dome by vertical struts elements. For example, the struts of group 1 are connected to

the joints which are located in the third ring of the single-layer Lamella dome. The

struts are compression elements and have hinged connections on both ends; their

sections are circular steel tubes.

The tensegrity system is constructed of cables and struts stiffening the suspen-

dome structure (Figure 6.8). This also helps the suspen-dome to work like a double-

layer dome. Therefore, it is interesting to compare the optimum results of suspen-

dome with double-layer dome which is discussed in this study.

It is worthwhile to mention that the applied optimum prestressed force of

tensegrity system (radial and hoop cable) must be large enough to prevent cable

slack, but not so large as to make the struts buckle or induce very large opposite

moment compared to moment induced by external loads.

Table 6.4 Optimal design of single-layer Lamella dome with rigid-jointed connections for

Lamella dome using ECBO algorithm

ECBO algorithm

Section

Number of rings 6

Optimum tubular Group 1 PIPST (8)

Section designations Group 2 PIPST (8)

Group 3 PIPST (8)

Group 4 PIPST (8)

Group 5 PIPST (8)

Group 6 PIPST (8)

Group 7 PIPST (8)

Group 8 PIPST (8)

Group 9 PIPST (6)

Group 10 PIPST (6)

Group 11 PIPST (6)

Group 12 PIPST (6)

Height of crown (m) 5.00

Maximum displacement (cm) 2.75P
lI mð Þ 982.52

Ā (cm2) 49.34

Maximum strength ratio 27.01

Volume (m3) 2.14
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6.6.3 Optimal Design of Double-Layer Lamella Domes

As it was mentioned in the previous sections, the domes having rigid connections

are often used in the construction of long span single-layer domes, because the load

capacity and stiffness of pin-connected single-layer domes is very low. However,

pin connections are often used in double-layer lattice domes, because the additional

layer can make a more stiff structure compared to single-layer latticed dome

structures. For this reason, double-layer dome is studied here to compare it with

other systems of domes like single-layer and suspen-domes.

It is logical to use pin-jointed connections in the construction of the double-layer

dome systems. The upper layer of dome is constructed as a single-layer Lamella

dome. The lower system which is the second layer of dome is constructed utilizing

radial and vertical elements which stiffen the single layer of the dome structure. The

stiffness is provided by the second layer of dome. On the other hand, the moment

that is induced by the external load is sustained by two layers of the dome. This also

shows that the maximum bending moment of a double-layer dome which is

balanced by two layers of dome is decreased. Therefore, using double-layer dome

has two advantages consisting of reducing the element stresses and joint displace-

ments of the structure.

The six-ring double-layer dome is employed as an example to compare the

results with those of the previous example (Fig. 6.9). The computational model is

a double-layer dome having a span of 40 m. The top part of the model is a single-

layer Lamella dome, which has 6 rings and 12 joints in each ring. Both single-layer

Lamella domes consist of steel tube beams that are hinged at both ends and

constructed of steel tube trusses for double-layer dome which are made of

pin-jointed connections.

For construction of the double-layer dome, the lower layer (second layer)

consists of three rings of hoop elements, radial elements, and vertical elements at

the lower part of model. The second layer of double-layer dome is connected to the

rings 3, 4, and 5 of the single-layer Lamella dome by vertical elements. For

example, the vertical elements of group 1 are connected to the joints which are

Fig. 6.8 Configuration of a

suspen-dome
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located in the third ring of the single-layer Lamella dome. The vertical elements are

compression elements and are standard steel elements having hinged connections

on both ends; its sections are circular steel tubes; also the hoop elements and radial

elements are standard steel elements which induce the main difference between the

standard double-layer dome and suspen-dome discussed in the previous section.

Same as single-layer Lamella dome and suspen-dome, the double-layer dome

structure is subjected to 0.8 kN/m2 of dead load, 0.2 kN/m2 of live load, and

0.2 kN/m2 of basic wind pressure.

6.6.4 Results

In this case of loading, the wind, dead, and snow loads are applied on all the domes

and the diameter is 20 m. It can be seen from Table 6.5 that the capacity of elements

in the single-layer Lamella dome with rigid joints is approximately 27% of the

capacity of material which shows that material is overdesigned or on the other hand

the stress ratio of material does not control the design and the displacements govern

the design of single-layer Lamella dome with rigid joints. The maximum value of

displacement for this dome is equal to 2.75 cm and nearly the same as 2.80 which is

the maximum allowable displacement value of design. Therefore, displacement

Fig. 6.9 Schematic of a double-layer Lamella dome
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constraints are more active than the stress constraints for suspen-domes. The

optimum volume of single-layer dome is obtained 2.14 m3. The optimum height,

the total length of elements, and average cross-sectional area of single-layer dome

are obtained 5, 982.52, and 54.64, respectively.

It can be seen from Table 6.6 that using the capacity of elements in suspen-dome

with rigid joints is approximately 27% more than the suspen-dome with pin-jointed

connections. Displacement constraints are more active than the stress constraints

for suspen-domes. The length of the struts which are connected to rings number

3, 4, and 5 are obtained as 1.5, 1, and 0.5 for domes, respectively. Therefore, the

least area sections are obtained for struts elements. When the tensegrity systems of

suspen-domes are compared, according to their optimum geometry design, it can be

seen that the cable system of the suspen-dome with rigid-jointed upper layer is more

economical (Tables 6.6, 6.7, and 6.8).

When these suspen-domes are compared, it can be seen that the suspen-dome

with rigid-jointed topmost layer provides a lighter design. For example, the opti-

mum volumes of the topmost layers for the domes with pin-jointed and rigid-jointed

connections are 2.46 m3 and 1.86 m3, respectively, which clearly shows that in

suspen-domes, the topmost layer with pin-jointed connections is 24% heavier than

the topmost layer with rigid-jointed connections.

Table 6.5 Optimal design of upper single-layer dome with pin-jointed connections for Lamella

suspen-dome using the ECBO algorithm

ECBO algorithm

Pin-jointed

Number of rings 6

Optimum tubular Group 1 PIPST (3)

Section designations Group 2 PIPST (8)

Group 3 PIPST (10)

Group 4 PIPST (10)

Group 5 PIPST (8)

Group 6 PIPST (10)

Group 7 PIPST (10)

Group 8 PIPST (8)

Group 9 PIPST (10)

Group 10 PIPST (8)

Group 11 PIPST (10)

Group 12 PIPST (8)

Height of crown (m) 4.50

Maximum displacement (cm) 2.79P
lI mð Þ 979.37

Ā (cm2) 54.64

Maximum strength ratio 44.16

Volume (m3) 2.46

6.6 Comparison of Different Mechanical Systems of Domes 111



Table 6.6 Optimal design of

tensegrity system of the

suspen-dome with upper layer

pin-jointed and rigid-jointed

connections obtained using

the ECBO algorithm

ECBO algorithm

Pin-jointed

Number of hoop cables 3

Cable and section Hoop 1 Cable (11.3)

Hoop 2 Cable (15.2)

Hoop 3 Cable (9.6 + 15.7)

Radial 1 Cable (8)

Radial 2 Cable (11.3)

Radial 3 Cable (15.2)

Strut 1 PIPST (1/2)

Strut 2 PIPST (1/2)

Strut 3 PIPST (3/4)

Initial strain 0.00050P
lc mð Þ 562.39P
ls mð Þ 30

Hoop cable volume (m3) 0.72

Radial cable volume (m3) 0.031

Strut volume (m3) 0.006

Table 6.7 Optimal design of upper single-layer dome with pin-jointed and rigid-jointed connec-

tions for Lamella suspen-dome using the ECBO algorithm

ECBO algorithm

Rigid-jointed

Number of rings 6

Optimum tubular Group 1 PIPST (3)

Section designations Group 2 PIPST (8)

Group 3 PIPST (8)

Group 4 PIPST (8)

Group 5 PIPST (4)

Group 6 PIPST (8)

Group 7 PIPST (10)

Group 8 PIPST (5)

Group 9 PIPST (10)

Group 10 PIPST (8)

Group 11 PIPST (5)

Group 12 PIPST (4)

Height of crown (m) 3.50

Maximum displacement (cm) 2.54P
lI mð Þ 976.54

Ā (cm2) 39.28

Maximum strength ratio 75.07

Volume (m3) 1.86
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In geometry optimization of suspen-dome, the optimum height, the total length

of the elements, average cross-sectional area, and maximum strength ratio of

suspen-dome with rigid-jointed connections are obtained 3.50, 976.54, 39.28, and

75.07, respectively (Table 6.6). Also the optimum height, the total length of

elements, average cross-sectional area, and maximum strength ratio of suspen-

dome with pin connections are obtained 4.50, 979.37, 54.64, and 44.16,

respectively.

It can be seen from Table 6.9 that the double-layer dome discussed in this study

which has pin-jointed connections between elements performs as a truss structure.

The optimum volume of double-layer dome is obtained 2.11 m3. Also, the optimum

height, the total length of elements, average cross-sectional area, and maximum

strength ratio of the single-layer suspen-dome are obtained as 1577.04, 56.57, and

38.54, respectively. The length of the vertical elements in the double-layer dome

which are connected to rings number 3, 4, and 5 are obtained as 1.5, 1, and 0.5 for

domes, respectively. Also the least cross-sectional areas are obtained for vertical

elements.

In conclusion, it can be seen from Tables 6.4, 6.5, 6.7, and 6.9 that the most

optimum weight of the steel elements, between four discussed models in this study,

is obtained for the suspen-dome with rigid-jointed connections. But it is essential to

mention that considering the weight of strands which are in the tensegrity system of

suspen-dome, the total weight of suspen-dome can be changeable. Apart from the

weight of tensegrity system, the weight of suspen-dome with rigid-jointed connec-

tions is 25%, 13.44%, and 15% lighter than suspen-dome with pin joints, single-

layer Lamella dome, and double-layer dome, respectively.

Table 6.8 Optimal design of

tensegrity system of the

suspen-dome with upper layer

pin-jointed and rigid-jointed

connections obtained using

the ECBO algorithm

ECBO algorithm

Rigid-jointed

Number of hoop cables 3

Cable and section Hoop 1 Cable (9.6)

Hoop 2 Cable (15.2)

Hoop 3 Cable (15.7 + 8)

Radial 1 Cable (8)

Radial 2 Cable (11.3)

Radial 3 Cable (12.5)

Strut 1 PIPST (1/2)

Strut 2 PIPST (1/2)

Strut 3 PIPST (3/4)

Initial strain 0.00041P
lc mð Þ 562.39P
ls mð Þ 30

Hoop cable volume (m3) 0.6343

Radial cable volume (m3) 0.027

Strut volume (m3) 0.006
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As an another observatory, it can be seen that the double-layer dome has

acceptable performance under gravity loading and with considering the weight of

strands for rigid-jointed suspen-dome, double-layer dome can be comparable with

suspen-dome and may obtain one of the most optimum weights among the com-

pared systems. It should be mentioned that in double-layer domes because of

having pin connections, the structure is similar to a truss and also is less stiff than

other dome structures having rigid-jointed connections. Therefore, the displace-

ment constraints control the design. On the contrary, the pin-jointed suspen-domes

not only obtained the heaviest weight among others but also used the least amount

of the capacity of the elements among other mechanical systems of domes.

Table 6.9 Optimal design of double-layer dome with pin-jointed connections for Lamella suspen-

dome using ECBO algorithm

ECBO algorithm

Rigid-jointed

Number of rings 6

Optimum tubular Group 1 PIPST (3)

Section designations Group 2 PIPST (6)

Group 3 PIPST (6)

Group 4 PIPST (8)

Group 5 PIPST (6)

Group 6 PIPST (10)

Group 7 PIPST (10)

Group 8 PIPST (10)

Group 9 PIPST (10)

Group 10 PIPST (10)

Group 11 PIPST (10)

Group 12 PIPST (10)

Group 13 PIPST (8)

Group 14 PIPST (8)

Group 15 PIPST (8)

Group 16 PIPST (10)

Group 17 PIPST (8)

Group 18 PIPST (6)

Group 19 PIPST (8)

Group 20 PIPST (8)

Group 21 PIPST (6)

Height of crown (m) 5.00

Maximum displacement (cm) 2.80P
lI mð Þ 1577.04

Ā (cm2) 56.57

Maximum strength ratio 38.54

Volume (m3) 2.11
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6.7 Concluding Remarks

In this chapter, the ECBO is utilized for optimal design of different mechanical

systems of domes with pin and rigid-jointed connections. The different mechanical

systems of domes contain single-layer dome, double-layer dome and suspen-dome

with pin and rigid-jointed connections. The height of the domes, the length of the

strut/vertical elements, cables’ initial strain, the cross-sectional areas of the cables,
and the cross-sectional area of steel members are considered as design variables and

the volume of the entire structure is taken as the objective function. The optimiza-

tion method used in the chapter is based on the enhanced colliding bodies optimi-

zation algorithm. In this chapter, sizing and geometry of domes is presented. For

sizing optimization, the optimum steel section designations for the members of

domes are chosen from Table 6.2 and implemented in the design constraints from

LRFD-AISC.

A simple approach is presented to calculate the joint coordinates and specify the

elements to determine the configuration of single-layer Lamella domes and the

corresponding suspen-domes which are spatial prestressed structures with complex

mechanical characteristics. First, the joint coordinates are calculated, and then

using some simple relationships, the steel elements, struts, and cables are

constructed. This method considers not only the strength of steel components and

cables for optimal design as constraints but also considers the stability of the steel

members and controls the displacements of the overall structure.

An investigation on the efficiency of the ECBO method in optimal design of

single-layer domes is performed. In the suspen-dome structure and double-layer

dome, the tensegrity system and second layer significantly reduced the stresses and

the displacements of dome structure, respectively. By using the tensegrity system,

the suspen-dome structure performs like a double-layer dome structure. Therefore,

it is logical to use pin-connected joints in the construction of the suspen-dome

systems, and it is essential to compare them under the same conditions of loading as

discussed in this chapter. However, it is seen that the suspen-dome with upper layer

rigid joints offers a more economical design.

The ECBO method which is one of the recent additions to stochastic search

techniques of numerical optimization, is used to obtain the solution of the numerical

examples. It can be seen that the design examples of this study and the enhanced

colliding body method can be used for finding the solution of geometry and sizing

optimization of different mechanical system of domes such as double-layer domes,

suspend-domes which has complex mechanical structure, and single-layer domes.

As the future work, the cost of joints can also be added to the optimization

formulations. A comparative study can also be performed for other types of double-

layer and suspen-domes that are not studied in this chapter. Also optimum dynamic

analysis and design of different types of domes can be compared under seismic

loads.
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Chapter 7

Simultaneous Shape–Size Optimization

of Single-Layer Barrel Vaults Using

an Improved Magnetic Charged System

Search Algorithm

7.1 Introduction

The use of braced barrel vaults as a lightweight space structures is very common

and it is worthwhile to investigate their optimal design [1]. Metaheuristic

algorithms explore the feasible region of the search space based on randomization

and some specified rules through a group of search agents. Nature-inspired phe-

nomena are commonly used as a basis for the rules employed by these agents [2].

In the field of size optimization of single-layer barrel vault frames, some studies

are carried out. Kaveh and Eftekhar have presented optimal design of barrel vault

frames using IBB–BC algorithm [3], in which a 173-bar single-layer barrel vault is

optimized under both symmetrical and unsymmetrical load cases. In a study by the

author and colleagues, size optimization of some single-layer barrel vault frames

via IMCSS algorithm [4] has been presented.

In a study carried out by Parke [5], several different configurations of braced

barrel vaults have been investigated using the stiffness method of analysis. Three

different configurations have been analyzed, each with five different span/height

ratios and under both cases of symmetrical and nonsymmetrical imposed nodal

loads. The reported study which was a comparative investigation demonstrates that

the most economical height-to-span ratio from weight point of view is approxi-

mately 0 � 17.
Some studies in the case of size optimization and a comparative study consid-

ering shape optimization are carried out for barrel vaults, but a more comprehensive

study of the problem of simultaneous shape–size optimization of these structures is

still needed. In this chapter, the latter problem is investigated using a new optimi-

zation approach. In this approach, a programming interface tool called OAPI is

utilized, and an improved version of a recently proposed algorithm called IMCSS

algorithm is used as the optimization tool.

Charged system search (CSS) is a relatively new metaheuristic optimization

algorithm proposed by Kaveh and Talatahari [6]. This algorithm is based on the

© Springer International Publishing AG 2017

A. Kaveh, Applications of Metaheuristic Optimization Algorithms in Civil
Engineering, DOI 10.1007/978-3-319-48012-1_7

117



Coulomb and Gauss laws from physics and the governing laws of motion from the

Newtonian mechanics. The modified version of the CSS algorithm has also been

proposed by Kaveh et al. [2, 7]. In MCSS algorithm, the magnetic laws are also

considered in addition to electrical laws. In the present chapter, the IMCSS algo-

rithm is utilized. In the IMCSS algorithm, the harmony search scheme is used to

achieve better results. Some of the most effective parameters in the convergence

rate of algorithm are also modified.

This chapter is organized as follows: in Sect. 7.2, the problem of simultaneous

shape and size optimization for barrel vault frames is formulated. Section 7.3

presents the optimization approach. In Sect. 7.4, the static loading conditions acting

on the structures are defined. Two illustrative numerical examples are presented in

Sect. 7.5 to examine the efficiency of the proposed approach, and finally in

Sect. 7.6, the concluding remarks are derived.

7.2 Statement of Optimization Problem for Barrel Vault

Frames

The purpose of shape optimization of skeletal structures is to find a best state of

nodal coordinates in order to minimize the weight of the structure W. On the other

hand all of nodal coordinates of barrel vault structures are dependent to the height-

to-span ratio. All of nodal coordinates, therefore, can be automatically calculated

according to height in a constant span of barrel vault. In this process, the x and

y coordinates of the joints will remain constant and the z coordinate of the nodes is
calculated as follows:

zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � xi2 �

ffiffiffiffiffiffiffiffiffiffiffiffi
R� h

p� �r
ð7:1Þ

where xi is the x coordinate of the ith joint, h is the height of barrel vault, and R is the

radius of semicircle which is expressed as

R ¼ S2 þ 4h2

8h
ð7:2Þ

where S is the span of barrel vault.

The relation between nodal coordinates and height-to-span ratio for this type of

space structures is depicted in Fig. 7.1.

The aim of size of optimization of skeletal structures is to minimize the weight of

structure W through finding the optimal cross-sectional areas Ai of members. All

constraints exerted on both problems of shape and size optimization must be

satisfied, simultaneously.
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According to the mentioned considerations, the problem of simultaneous shape

and size optimization of barrel vault frames can be formulated as follows:

Find X ¼ x1; x2; x3; . . . ; xn½ �, h
xi 2 d1, d2, . . . , d37f g : Discrete Variables

hmin < h < hmax : Continous Variable

to minimize Mer Xð Þ ¼ f penalty Xð Þ �W Xð Þ

ð7:3Þ

Subjected to the following constraints

Displacement constraint:

υd
i ¼ δi

δi

����
����� 1 � 0, i ¼ 1, 2, . . . , nn ð7:4Þ

Shear constraint, for both major and minor axis (AISC-LRFD, Chapter G) [8]:

υ s
i ¼

Vu

φvVn

� 1 � 0, i ¼ 1, 2, . . . , nm ð7:5Þ

Constraints corresponding to interaction of bending moment and axial force (AISC-

LRFD, Chapter H) [8]:

υ I
i ¼

Pu

2φcPn

þ Mux

φbMnx
þ Muy

φbMny

� �
� 1 � 0 for

Pu

φcPn

< 0:2

Pu

φcPn

þ 8

9

Mux

φbMnx
þ Muy

φbMny

� �
� 1 � 0 for

Pu

φcPn

� 0:2

8>>><
>>>:

, i ¼ 1, 2, . . . , nm

ð7:6Þ

Fig. 7.1 The relation

between nodal coordinates

and height-to-span ratio

(h/S) in the barrel vault
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where X is a vector which contains the design variables; for the discrete optimum

design problem, the variables xi are selected from an allowable set of discrete

values; n is the number of member groups; h is the height of barrel vault which is

known as the only shape variable; dj is the jth allowable discrete value for the

size design variables; hmin and hmax are the permitted minimum and maximum

values of the height which are, respectively, taken as S/20 and S/2 in this chapter;

S is the span of barrel vault; Mer(X) is the merit function; W(X) is the cost

function, which is taken as the weight of the structure; fpenalty(X) is the penalty

function which results from the violations of the constraints corresponding to the

response of the structure; nn is the number of nodes; δi and δi are the displace-

ment of the joints and the allowable displacement, respectively; nm is the number

of members; Vu is the required shear strength; Vn is the nominal shear strength

which is defined by the equations in Chap. G of the LRFD specification [8]; φv is

the shear resistance factor φv ¼ 0:9 ; Pu is the required strength (tension or

compression); Pn is the nominal axial strength (tension or compression); φc is

the resistance factor (φc ¼ 0:9 for tension, φc ¼ 0:85 for compression); Mu is the

required flexural strength, i.e., the moment due to the total factored load (sub-

script x or y denotes the axis about which bending occurs); Mn is the nominal

flexural strength determined in accordance with the appropriate equations in

Chap. F of the LRFD specification [8]; and φb is the flexural resistance reduction

factor (φb ¼ 0:9).
For the displacement limitations which must be considered to ensure the ser-

viceability requirements, the BS 5950 [9] limits the vertical deflections δv due to

unfactored loads to span/360, i.e., δV ¼ S=360 and horizontal displacements δH to

height/300, i.e., δH ¼ h=300 [10].

The nominal axial strength Pn is defined as

Pn ¼ AgFcr ð7:7Þ

where Ag is the gross area of member and Fcr is obtained as follows:

Fcr ¼

0:658

λ2c

 !
:Fy for λc � 1:5

0:877

λ2c

 !
:Fy for λc > 1:5

8>>>>><
>>>>>:

ð7:8Þ

where Fy is the specified minimum yield stress and the boundary between inelastic

and elastic instability is λc ¼ 1:5, where:

λc ¼ KL

rπ

ffiffiffiffiffi
Fy

E

r
ð7:9Þ

where K is the effective length factor for the member (K¼ 1.0 for braced

frames [8]), L is the unbraced length of member, r is the governing radius of
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gyration about plane of buckling, and E is the modulus of elasticity for the member

of structure.

The cost function can be expressed as

W Xð Þ ¼
Xnm
i¼1

γi � xi � Li ð7:10Þ

where γi is the material density of member i; Li is the length of member i; and xi is
the cross-sectional area of member i as the design variable.

The penalty function can be defined as

f penalty Xð Þ ¼ 1þ ε1 �
Xnp
j¼1

υ k
jð Þ

 !ε2

; ð7:11Þ

where np is the number of multiple loading conditions. In this chapter ε1 is taken as
unity and ε2 is set to 1.5 in the first iterations of the search process, but gradually it is
increased to 3 [11]. υk is the summation of penalties for all imposed constraints for

kth charged particle which is mathematically expressed as

υk ¼
Xnn
i¼1

max υd
i ; 0

� 	þXnm
i¼1

max υ I
i ; 0

� 	þmax υ s
i ; 0

� 	� 	 ð7:12Þ

where υdi , υ
I
i , υ

s
i are the summation of displacement, shear, and interaction formula

penalties which are calculated by Eqs. (7.4) through (7.6), respectively.

7.3 The Optimization Approach

An approach which contains improved magnetic charged system search (IMCSS)

and open application programming interface (OAPI) is presented for the problem of

simultaneous shape and size optimization of barrel vaults. The IMCSS is used as the

optimization algorithm, and the OAPI is utilized as an interface tool between

analysis software and the programming language. In IMCSS algorithm, magnetic

charged system search (MCSS) and an improved scheme of harmony search (IHS)

are utilized, and two of the most effective parameters in the convergence rate of HS

scheme are improved to achieve a good convergence rate and good solutions

especially in final iterations [12].

The IMCSS algorithm and the OAPI tool are expressed in the following:
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7.3.1 Improved Magnetic Charged System Search

Recently, the CSS algorithm and its modified version MCSS algorithm are, respec-

tively, presented by Kaveh and Talathari [6] and Kaveh et al. [7] for optimization

problems. The CSS algorithm takes its inspiration from the physical laws governing

a group of charged particles (CPs). These charged particles are sources of the

electric fields, and each CP can exert electric force on other CPs. The movement

of each CP due to the electric force can be determined using the Newtonian

mechanic laws. The MCSS algorithm considers the magnetic force in addition to

electric force for movement of CPs.

In this chapter, an improved version of MCSS algorithm called IMCSS is

presented. The IMCSS algorithm can be summarized as follows:

Level 1: Initialization

Step 1: Initialization. Initialize the algorithm parameters; the initial positions of CPs

are determined randomly in the search space

x
0ð Þ
i, j ¼ xi,min þ rand � xi:max � xi,minð Þ, i ¼ 1, 2, . . . , n: ð7:13Þ

where x
ð0Þ
i;j determines the initial value of the ith variable for the jth CP; xi,min and

xi,max are the minimum and the maximum allowable values for the ith variable;

rand is a random number in the interval [0,1]; and n is the number of variables.

The initial velocities of charged particles are zero

v
0ð Þ
i, j ¼ 0, i ¼ 1, 2, . . . , n: ð7:14Þ

The magnitude of the charge is calculated as follows:

qi ¼
fit ið Þ � fitworst

fitbest� fitworst
, i ¼ 1, 2, . . . , N: ð7:15Þ

where fitbest and fitworst are the best and the worst fitness of all particles; fit(i)
represents the fitness of the agent i; and N is the total number of CPs. The separation

distance rij between two charged particles is defined as

rij ¼
Xi � Xj



 


Xi þ Xj

� 	
=2� Xbest



 

þ ε
; ð7:16Þ

where Xi and Xj are the positions of the ith and jth CPs, Xbest is the position of the

best current CP, and ε is a small positive number to avoid singularities.
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Step 2. CP ranking. Evaluate the values of Merit function for the CPs, compare with

each other and sort them in an increasing order based on the corresponding value

of merit function.

Step 3. Creation of charged memory (CM). Store CMS number of the first CPs in

the CM.

Level 2: Search

Step 1: Force calculation. The probability of the attraction of the ith CP by the jth
CP is expressed as

pij ¼ 1
fit ið Þ � fitbest

fit jð Þ � fit ið Þ > rand or fit jð Þ > fit ið Þ,
0 else:

8<
: ð7:17Þ

where rand is a random number which is uniformly distributed in the range of (0,1).

The resultant electrical force FE,j acting on the jth CP can be calculated as follows:

FE, j ¼ qj

�
X
i, i 6¼j

qi
a3
rij � i1 þ qi

rij2
i2

� �
� pij Xi � Xj

� 	
,

i1 ¼ 1, i2 ¼ 0 , rij < a,
i1 ¼ 0, i2 ¼ 1 , rij � a,
j ¼ 1, 2, . . . , N:

8<
:

ð7:18Þ

The probability of the magnetic influence (attracting or repelling) of the ith wire
(CP) on the jth CP is expressed as

pmij ¼ 1 fit jð Þ > fit ið Þ,
0 else:

�
ð7:19Þ

where fit(i) and fit( j) are the objective values of the ith and jth CPs, respectively.

Such a definition ensures that only a good CP can affect a bad CP by the magnetic

force.

The resultant magnetic force FB,j acting on the jth CP due to the magnetic field of

the ith virtual wire (ith CP) can be expressed as

FB, j ¼ qj

�
X
i, i 6¼j

Ii

R2
rij � z1 þ Ii

rij
� z2

� �
� pmij Xi � Xj

� 	
,

z1 ¼ 1, z2 ¼ 0 , rij < R,
z1 ¼ 0, z2 ¼ 1 , rij � R,
j ¼ 1, 2, . . . , N:

8<
:

ð7:20Þ
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where qi is the charge of the ith CP, R is the radius of the virtual wires, Ii is the
average electric current in each wire, and pmij is the probability of the magnetic

influence (attracting or repelling) of the ith wire (CP) on the jth CP.

The average electric current in each wire Ii can be expressed as

Iavg
� 	

ik
¼ sign df i,k

� 	� df i,k
�� ��� dfmin,k

dfmax,k � dfmin,k

; ð7:21Þ

df i,k ¼ fitk ið Þ � fitk�1 ið Þ; ð7:22Þ

where dfi,k is the variation of the objective function of the ith CP in the kth
movement (iteration). Here, fitk(i) and fitk�1(i) are the values of the objective

function of the ith CP at the start of the kth and k� 1th iterations, respectively.

Considering absolute values of dfi,k for all of the current CPs, dfmax,k and dfmin,k

would be the maximum and minimum values among these absolute values of df,
respectively.

A modification can be considered to avoid trapping in part of search space (Local

optima) because of attractive electrical force in CSS algorithm [7]:

F ¼ pr � FE þ FB; ð7:23Þ

where pr is the probability that an electrical force is a repelling force which is

defined as

pr ¼ 1 rand > 0:1 � 1� iter=itermaxð Þ,
�1 else:

�
ð7:24Þ

where rand is a random number uniformly distributed in the range of (0,1), iter is

the current number of iterations, and itermax is the maximum number of iterations.

Step 2: Obtaining new solutions. Move each CP to the new position and calculate

the new velocity as follows:

Xj, new ¼ randj1 � ka � Fj

mj
� Δt2 þ randj2 � kv � Vj, old � Δtþ Xj, old; ð7:25Þ

Vj, new ¼ Xj, new � Xj, old

Δt
; ð7:26Þ

where randj1 and randj2 are two random numbers uniformly distributed in the range

of (0,1). Here, mj is the mass of the jth CP which is equal to qj. Δt is the time step

and is set to unity. ka is the acceleration coefficient; kv is the velocity coefficient to

control the influence of the previous velocity. ka and kv are considered as
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ka ¼ c1 �
�
1þ iter

itermax

. �
, kv ¼ c2 �

�
1� iter

itermax

. �
; ð7:27Þ

where c1 and c2 are two constants to control the exploitation and exploration of the

algorithm, respectively.

Step 3. Position correction of CPs. If each CP violates the boundary, its position is

corrected using an improved harmony search-based approach which is expressed

as follows:

In the process of position correction of CPs using harmony search-based

approach, the CMCR and PAR parameters help the algorithm to find globally

and locally improved solutions, respectively. PAR and bw in HS scheme are very

important parameters in fine-tuning of optimized solution vectors and can be

potentially useful in adjusting convergence rate of algorithm to reach better

solutions [13]. The standard version of CSS and MCSS algorithms use the

traditional HS scheme with constant values for both PAR and bw. Small PAR

values with large bw values can lead to poor performance of the algorithm and

considerable increase in iterations needed to find optimum solution. Although

small bw values in final iterations increase the fine-tuning of solution vectors, in

the first iterations bw must take a bigger value to enforce the algorithm to

increase the diversity of solution vectors. Furthermore, large PAR values with

small bw values usually lead to improvement of the best solutions in final

iterations and a better convergence to optimal solution vector. To improve the

performance of the HS scheme and eliminate the drawbacks which lie with

constant values of PAR and bw, the IMCSS algorithms use improved HS scheme

with the variable values of PAR and bw in position correction step. PAR and bw
change dynamically with iteration number as shown in Fig. 7.2 and are

expressed as follows [13]:

PAR iterð Þ ¼ PARmin þ PARmax � PARminð Þ
itermax

� iter ð7:28Þ

and

First Iter Iter max
bw min 

bw max

Iteration

bw

First Iter Iter max

PAR min

PAR max

Iteration

PA
R

(a) (b)

Fig. 7.2 Variation of (a) bw and (b) PAR versus iteration number in IMCSS algorithm [4]
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bw iterð Þ ¼ bwmaxexp c � iterð Þ; ð7:29Þ

c ¼ Ln bwmin=
bwmax

� 	
itermax

; ð7:30Þ

where PAR(iter) and bw(iter) are the values of PAR and bandwidth for current

iteration, respectively. bwmin and bwmax are the minimum and maximum band-

width, respectively.

Step 4: CP ranking. Evaluate and compare the values of merit function for the new

CPs, and sort them in an increasing order.

Step 5: CM updating. If some new CP vectors are better than the worst ones in the

CM (in terms of corresponding merit function), include the better vectors in the

CM and exclude the worst ones from the CM.

Level 3: Controlling the Terminating Criterion

Repeat the search level steps until a terminating criterion is satisfied. The termi-

nating criterion is considered to be the number of iterations.

7.3.2 Discrete IMCSS Algorithm

The present algorithms can be also applied to optimal design problems with discrete

variables. One way to solve discrete problems using a continuous algorithm is to

utilize a rounding function which changes the magnitude of a result to the nearest

discrete value as follows:

Xj, new ¼ Fix randj1 � ka � Fj

mj
� Δt2 þ randj2 � kv � Vj, old � Δtþ Xj, old

� �
; ð7:31Þ

where Fix(X) is a function which rounds each element of vector X to the nearest

permissible discrete value. Using this position updating formula, the agents will be

permitted to select discrete values [13].

7.3.3 Open Application Programming Interface

Recently, Computers and Structures Inc. have introduced a powerful interface tool

known as Open Application Programming Interface (OAPI). The OAPI can be

utilized to automate and manage many of the processes required to build, analyze,

and design models through a programming language [14].
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The computer program SAP2000 is a software of proven ability in analysis and

design of practical large-scale structures. The utilization of this software, therefore,

could be useful for the problem of structural optimization. In this process, the OAPI

can be utilized in order to connect SAP2000 with the programming language which

provides a path for two-way exchange of SAP model information with the pro-

gramming language. There are many programming languages that can be used to

access SAP2000 through the OAPI such as MATLAB, Visual Basic, Visual C#,

Intel Visual Fortran, Microsoft Visual C++, and Python.

In some studies carried out by the author and colleagues, size optimization of

single-layer barrel vault frames [4] and double-layer barrel vaults [12] is already

investigated using this interface tool and MATLAB. Furthermore, Kaveh et al. [13]

have utilized this interfacing ability in the form of parallel computing within the

MATLAB for practical optimum design of real-size 3D steel frames.

In this chapter, MATLAB is utilized in order to perform the process of optimi-

zation via presented approach (OAPI and IMCSS).

7.4 Static Loading Conditions

According to ANSI-A58.1 [15] and ASCE/SEI 7-10 [16] codes, there are some

specific considerations for loading conditions of arched roofs such as barrel vault

structures. In this chapter, three static loading conditions are considered for opti-

mization of these structures which are expressed as follows:

7.4.1 Dead Load (DL)

A uniform dead load of 100 kg/m2 is considered for estimated weight of sheeting,

space frame, and nodes of barrel vault structure.

7.4.2 Snow Load (SL)

The snow load for arched roofs is calculated according to ANSI [15] and ASCE

[16] codes. Snow loads acting on a sloping surface shall be assumed to act on the

horizontal projection of that surface. The sloped roof (balanced) snow load, Ps,

shall be obtained by multiplying the flat roof snow load, Pf, by the roof slope factor,

Cs, as follows:
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Ps ¼ Cs:Pf ð7:32Þ

where Cs is

Cs ¼
1:0 α < 15∘

1:0� α� 15

60
15∘ < α < 60∘

0:25 α > 60∘

8><
>: ð7:33Þ

The Cs distribution in arched roofs is shown in Fig. 7.3. In this chapter, the flat

roof snow load Pf is set to 150 kg/m2.

7.4.3 Wind Load (WL)

For wind load in arched roofs, different loads are applied in the windward quarter,

center half, and leeward quarter of the roof which are computed based on ANSI [15]

and ASCE [16] codes as

P ¼ qGhCp ð7:34Þ

where q is the wind velocity pressure, Gh is gust-effect factor, and Cp is the external

pressure coefficient. These parameters are calculated according to ANSI [15] and

ASCE [16] codes.

Fig. 7.3 Cs distribution in

arched roofs
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7.5 Numerical Examples

This study presents optimal shape and size design of two single-layer barrel vault

frames which are first provided for size optimization by Kaveh et al. [4]. For all of

examples, a population of 100 charged particles is used, and the value of CMCR is

set to 0.95. The values of PARmin and PARmax in IMCSS algorithm are set to 0.35

and 0.9, respectively.

The two examples are discrete optimum design problems, and the variables are

selected from an allowable set of steel pipe sections taken from AISC-LRFD code

[17] shown in Table 7.1. For analysis of these structures, SAP2000 is used through

OAPI tool, and the optimization process is performed in MATLAB.

In all examples, the material density is 0.2836 lb/in3 (7850 kg/m3) and the

modulus of elasticity is 30,450 ksi (2.1� 106 kg/cm2). The yield stress Fy of steel

is taken as 34,135.96 psi (2400 kg/cm2) for both problems.

7.5.1 A 173-Bar Single-Layer Barrel Vault Frame

The 173-bar single-layer barrel vault frame with a 2-way grid pattern is shown in

Fig. 7.4. This spatial structure consists of 108 joints and 173 members. There are

16 design variables in this problem which consist of size and shape variables. For

the process of size optimization, all members of this structure are categorized into

15 groups, as shown in Fig. 7.4b. Furthermore, for the problem of shape optimiza-

tion, the lower and upper bounds of height as the only shape variable are 1.5 m and

15 m, respectively. The nodal displacements are limited to �1.05 in (26 mm) in x,
y directions and �1.64 in (41 mm) in z direction.

The configuration of the 173-bar single-layer barrel vault is as follows:

• Span (S)¼ 30 m (1181.1 in)

• Height (H )¼ 8 m (314.96 in)

• Length (L )¼ 30 m (1181.1 in)

According to ANSI/ASCE considerations mentioned in Sect. 7.4, this spatial

structure is subjected to three loading conditions:

A uniform dead load of 100 kg/m2 is applied on the roof. The applied snow and

wind loads on this structure are shown in Fig. 7.5a and b, respectively.

The convergence history for optimization of this structure using CSS, MCSS,

and IMCSS algorithms is shown in Fig. 7.6. Comparison of the optimal design

results using presented algorithms is also provided in Table 7.2.

As seen in Table 7.2, the IMCSS algorithm finds its best solutions in 89 iterations

(8900 analyses), but the CSS and MCSS algorithms have not found any better

solutions in 10,000 analyses. The best weight of IMCSS is 39,778.21 lb

(18,043.09 kg), while it is 41,589.25 lb and 42,957.98 lb for the MCSS and CSS
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algorithms, respectively. As it can be seen in the results, the IMCSS algorithm

obtains a better weight in a lower number of analyses than previous algorithms.

Furthermore, the values of 131.03 in, 131.62 in, and 113.9 in are obtained for the

height of barrel vault for the CSS, MCSS, and IMCSS algorithms, respectively.

Hence, the best height-to-span ratios obtained from CSS, MCSS, and IMCSS are

0.11, 0.11, and 0.10, respectively. It can be seen that these values are approximately

Fig. 7.4 The 173-bar

single-layer barrel vault

frame, (a) three-

dimensional view, (b)

member groups in top

view [4]
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Fig. 7.5 The 173-bar single-layer barrel vault frame subjected to (a) snow and (b) wind loadings [4]
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Fig. 7.6 Convergence curves for the 173-bar single-layer barrel vault frame using CSS, MCSS,

and IMCSS algorithms
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close to ratio of 0.17 from Parke’s study. As seen in Table 7.2, the maximum

strength ratio for CSS, MCSS, and IMCSS algorithms is 0.9865, 0.9604, and

0.9516, respectively, and the maximum displacement is 1.6118 in, 1.4360 in, and

1.1277 in for the CSS, MCSS, and IMCSS algorithms, respectively.

Figure 7.7a–c provides strength ratios for all elements of the 173-bar single-

layer barrel vault frame for optimal results of CSS, MCSS, and IMCSS algorithms,

respectively. The figures show that all strength ratios of elements are lower than 1;

thus there is no violation of constraints in the optimal results of presented algo-

rithms, and all strength constraints are satisfied. The maximum strength ratios for

element groups of the 173-bar single-layer barrel vault frame are shown in Fig. 7.8a

through c for optimal results of the presented algorithms.

Table 7.3 provides a comparison for the results of present work on simultaneous

shape and size optimization with those of a previous study [15] on size optimization

of the 173-bar barrel vault. Comparison of best weight for both problems is also

shown in Table 7.4. As it can be seen in the results, the value of weight of structure

has been reduced by 14.59%, 17.23%, and 18.8% via CSS, MCSS, and IMCSS

algorithms, respectively.

Table 7.2 Optimal solutions for simultaneous shape and size optimization of the 173-bar barrel

vault (in2)

Design

variables

CSS MCSS IMCSS

Section name

Area

(in.2) Section name

Area

(in.2) Section name

Area

(in.2)

1 A1 ‘XP1’ 0.639 ‘XP1’ 0.639 P1 0.494

2 A2 ‘XP1.5’ 1.07 ‘XP1.25’ 0.881 P2.5 1.7

3 A3 ‘XXP2’ 2.66 ‘P2.5’ 1.7 XP1.5 1.07

4 A4 ‘P1.5’ 0.799 ‘XP2’ 1.48 P3 2.23

5 A5 ‘P3.5’ 2.68 ‘XP1.5’ 1.07 XP1.5 1.07

6 A6 ‘XP1.25’ 0.881 ‘P2.5’ 1.7 P1.5 0.799

7 A7 ‘XP2’ 1.48 ‘P1.5’ 0.799 P1 0.494

8 A8 ‘P10’ 11.9 ‘P10’ 11.9 P10 11.9

9 A9 ‘XP6’ 8.4 ‘XP6’ 8.4 XP6 8.4

10 A10 ‘XP6’ 8.4 ‘P10’ 11.9 XP6 8.4

11 A11 ‘P10’ 11.9 ‘XP6’ 8.4 P10 11.9

12 A12 ‘XP6’ 8.4 ‘P10’ 11.9 P10 11.9

13 A13 ‘XP6’ 8.4 ‘P6’ 5.58 P6 5.58

14 A14 ‘P6’ 5.58 ‘P6’ 5.58 P6 5.58

15 A15 ‘P12’ 14.6 ‘P10’ 11.9 XP6 8.4

16 Height 131.0308 in (3.33 m) 132.6162 in (3.37 m) 113.9046 in (2.89 m)

Weight. lb. 42,957.98 41,589.25 39,778.21

Weight. kg. 19,485.41 18,864.57 18,043.09

Max. displacement (in) 1.6118 1.4360 1.1277

Max. strength ratio 0.9865 0.9604 0.9516

No. of analyses 10,000 10,000 8900
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Fig. 7.7 Strength ratios for the elements of the 173-bar single-layer barrel vault frame for optimal

results of (a) CSS, (b) MCSS, and (c) IMCSS algorithms
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Fig. 7.8 Maximum strength ratios for element groups of the 173-bar single-layer barrel vault

frame for optimal results of (a) CSS, (b) MCSS, and (c) IMCSS algorithms
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7.5.2 A 292-Bar Single-Layer Barrel Vault

This spatial structure which is shown in Fig. 7.9 has a three-way pattern [4]. The

structure consists of 117 joints and 292 members. The problem has 31 design

variables and consists of size and shape variables. In the problem of size optimiza-

tion, considering the symmetry of the geometry and loading conditions, all mem-

bers are grouped into 30 independent size variables as shown in Fig. 7.9b. For the

problem of shape optimization, the lower and upper bounds of height as the only

Table 7.3 Comparison of the optimal solutions for the 173-bar single-layer barrel vault frame

Design variables

Kaveh et al. [4] Present work

Size optimization

Simultaneous shape and size

optimization

CSS MCSS IMCSS CSS MCSS IMCSS

1 A1 0.494 0.639 0.25 0.639 0.639 0.494

2 A2 0.494 0.433 0.25 1.07 0.881 1.7

3 A3 1.07 0.494 0.25 2.66 1.7 1.07

4 A4 0.333 0.333 0.25 0.799 1.48 2.23

5 A5 0.32 0.639 0.32 2.68 1.07 1.07

6 A6 0.881 1.07 0.32 0.881 1.7 0.799

7 A7 0.799 0.639 0.25 1.48 0.799 0.494

8 A8 11.9 11.9 14.6 11.9 11.9 11.9

9 A9 11.9 11.9 8.4 8.4 8.4 8.4

10 A10 11.9 11.9 11.9 8.4 11.9 8.4

11 A11 11.9 11.9 11.9 11.9 8.4 11.9

12 A12 11.9 11.9 11.9 8.4 11.9 11.9

13 A13 5.58 5.58 5.58 8.4 5.58 5.58

14 A14 5.58 5.58 5.58 5.58 5.58 5.58

15 A15 11.9 11.9 11.9 14.6 11.9 8.4

16 Height (in) Invariable Invariable Invariable 131.03 131.62 113.90

Weight (lb.) 50,295.90 50,247.66 48,985.05 42,957.98 41,589.25 39,778.21

Max. strength

ratio

0.8724 0.8689 0.8751 0.9865 0.9604 0.9516

No. of analyses 20,000 20,000 19,800 10,000 10,000 8900

Table 7.4 Comparison of the best weights for the 173-bar single-layer barrel vault frame

optimization problem

Best weight (lb.)

CSS MCSS IMCSS

Size optimization [4] 50,295.90 50,247.66 48,985.05

Simultaneous shape and size optimization 42,957.98 41,589.25 39,778.21

Percent of reduction in best weights 14.59% 17.23% 18.80%
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shape variable are 1.8 m and 18 m, respectively. The nodes are subjected to the

displacement limits of�1.31 in (33 mm) in x, y directions and �1.97 in (50 mm) in

z directions.

Fig. 7.9 The 292-bar single-layer barrel vault frame: (a) three-dimensional view, (b) member

groups in top view [4]
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The configuration of this structure is as follows:

• Span (S)¼ 36 m (1417.3 in)

• Height (H )¼ 8 m (393.7 in)

• Length (L )¼ 20 m (787.4 in)

According to the loading consideration in Sect. 7.4, three loading conditions are

applied to this barrel vault as follows:

A uniform dead load of 100 kg/m2 is applied on the roof. The applied snow load

and wind load acting on this barrel vault are shown in Fig. 7.10a and b.

Table 7.5 is provided for comparison of the results of the CSS, MCSS, and

IMCSS algorithms for this structure. The convergence history of all algorithms is

shown in Fig. 7.11.

As shown in Table 7.5, the best weight of IMCSS algorithm is 51,856.76 lb

(23,521.83 kg), while it is 57,119.63 and 52,773.58 lb for the CSS and MCSS

algorithms. Although the CSS and MCSS algorithms find their best solutions in

13,200 and 12,500 analyses, the IMCSS algorithm obtains better solutions in

122 iterations (12,200 analyses).

Fig. 7.10 The 292-bar single-layer barrel vault frame subjected to (a) snow and (b) wind loadings [4]
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Table 7.5 Optimal solutions for simultaneous shape and size optimization of the 292-bar barrel

vault (in2)

Design

variables

CSS MCSS IMCSS

Section name

Area

(in.2) Section Name

Area

(in.2) Section name

Area

(in.2)

1 A1 ‘P12’ 14.6 ‘P10’ 11.9 P10 11.9

2 A2 ‘XP6’ 8.4 ‘XP6’ 8.4 P10 11.9

3 A3 ‘XP10’ 16.1 ‘XP8’ 12.8 XXP5 11.3

4 A4 ‘XXP5’ 11.3 ‘P10’ 11.9 XP6 8.4

5 A5 ‘XP6’ 8.4 ‘XP5’ 6.11 XP6 8.4

6 A6 ‘XP6’ 8.4 ‘XP6’ 8.4 XP6 8.4

7 A7 ‘XP6’ 8.4 ‘P10’ 11.9 P10 11.9

8 A8 ‘XXP5’ 11.3 ‘XP6’ 8.4 P10 11.9

9 A9 ‘XP6’ 8.4 ‘XXP5’ 11.3 P10 11.9

10 A10 ‘XP12’ 19.2 ‘P12’ 14.6 P12 14.6

11 A11 ‘XP2.5’ 2.25 ‘P1.25’ 0.669 XP3 3.02

12 A12 ‘XP3.5’ 3.68 ‘P2.5’ 1.7 P1 0.494

13 A13 ‘P2.5’ 1.7 ‘XXP3’ 5.47 XP1.5 1.07

14 A14 ‘P2.5’ 1.7 ‘P1.25’ 0.669 P1 0.494

15 A15 ‘XP2.5’ 2.25 ‘XP2.5’ 2.25 XP2.5 2.25

16 A16 ‘P2.5’ 1.7 ‘P2.5’ 1.7 XP3.5 3.68

17 A17 ‘P2.5’ 1.7 ‘XP5’ 6.11 P2.5 1.7

18 A18 ‘XP1.25’ 0.881 ‘P6’ 5.58 P1.5 0.799

19 A19 ‘XP3.5’ 3.68 ‘P2.5’ 1.7 P2.5 1.7

20 A20 ‘P0.75’ 0.333 ‘XP0.5’ 0.32 XP3 3.02

21 A21 ‘XP3’ 3.02 ‘P3’ 2.23 XP2 1.48

22 A22 ‘P4’ 3.17 ‘XP4’ 4.41 XP1.5 1.07

23 A23 ‘P2.5’ 1.7 ‘P2.5’ 1.7 XP1.5 1.07

24 A24 ‘P3’ 2.23 ‘P3’ 2.23 XP3 3.02

25 A25 ‘P2.5’ 1.7 ‘XP2’ 1.48 P3 2.23

26 A26 ‘P3’ 2.23 ‘XP2’ 1.48 P3 2.23

27 A27 ‘XP2.5’ 2.25 ‘XP4’ 4.41 XP3.5 3.68

28 A28 ‘P2.5’ 1.7 ‘XP3’ 3.02 P2.5 1.7

29 A29 ‘XP6’ 8.4 ‘XP2’ 1.48 P1.25 0.669

30 A30 ‘XP2.5’ 2.25 ‘XP2.5’ 2.25 XP1.25 0.881

31 Height 204.8791 in (5.20 m) 163.0436 in (4.14 m) 173.0666 in (4.40 m)

Weight. lb. 57,119.63 52,773.58 51,856.76

Weight. Kg. 25,909.03 23,937.69 23,521.83

Max. dis-

placement

(in)

1.5802 1.5008 1.4424

Max. strength

ratio

0.9413 0.9303 0.9746

No. of

analyses

13,200 12,500 12,200
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The best value for height of this barrel vault from CSS, MCSS, and IMCSS

algorithms is 204.88 in, 163.04 in, and 173.07 in, respectively. The best height-to-

span ratios, therefore, obtained from CSS, MCSS, and IMCSS algorithms are 0.15,

0.12, and 0.12, respectively, which are approximately close to value of 0.17 from

Parke’s study.
Table 7.5 also shows the maximum displacement and strength ratios for all

algorithms. The values of maximum strength ratio for CSS, MCSS, and IMCSS

algorithms are 0.9413, 0.9303, and 0.9746, respectively, and the values of maxi-

mum displacement are 1.5802 in. 1.5008 in. and 1.4424 in. respectively. The

strength ratios for all elements of the 292-bar single-layer barrel vault are depicted

in Fig. 7.12a through c, and the maximum strength ratios for element groups of this

structure are presented in Fig. 7.13a through c for optimal results of CSS, MCSS,

and IMCSS algorithms, respectively.

As shown in Fig. 7.12a–c, all of the strength ratios of elements are lower than 1;

therefore, all of the presented algorithms have no violation of constraints in their

best solutions, and the constraints are satisfied.

Table 7.6 draws a comparison between the results of present work on simulta-

neous shape and size optimization and those of a previous study on size optimiza-

tion [4] for this structure. On comparison of the best weights for presented

algorithms shown in Table 7.7, the value of weight of structure has decreased by

16.4%, 17.23%, and 17.65% via CSS, MCSS, and IMCSS algorithms,

respectively.

20 40 60 80 100 120 140
0.5

1

1.5

2
x 10

5

Iteration

W
ei

g
h
t 

(l
b
)

CSS

MCSS

IMCSS

Fig. 7.11 Convergence history for the 292-bar single-layer barrel vault frame using CSS, MCSS,

and IMCSS algorithms
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Fig. 7.12 Strength ratios for the elements of the 292-bar single-layer barrel vault frame for

optimal results of (a) CSS, (b) MCSS, and (c) IMCSS algorithms
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Fig. 7.13 Maximum strength ratios for element groups of the 292-bar single-layer barrel vault

frame for optimal results of (a) CSS, (b) MCSS, and (c) IMCSS algorithms

7.5 Numerical Examples 143



Table 7.6 Comparison of the optimal solutions for the 292-bar single-layer barrel vault frame

Design variables

Kaveh et al. [4] Present work

Size optimization

Simultaneous shape and size

optimization

CSS MCSS IMCSS CSS MCSS IMCSS

1 A1 14.6 14.6 14.6 14.6 11.9 11.9

2 A2 11.9 8.4 8.4 8.4 8.4 11.9

3 A3 12.8 12.8 11.9 16.1 12.8 11.3

4 A4 5.58 14.6 8.4 11.3 11.9 8.4

5 A5 12.8 11.9 11.9 8.4 6.11 8.4

6 A6 11.9 11.9 11.9 8.4 8.4 8.4

7 A7 11.9 14.6 11.9 8.4 11.9 11.9

8 A8 14.6 16.1 14.6 11.3 8.4 11.9

9 A9 11.9 11.9 11.9 8.4 11.3 11.9

10 A10 19.2 19.2 14.6 19.2 14.6 14.6

11 A11 2.25 0.25 1.48 2.25 0.669 3.02

12 A12 0.669 0.433 0.799 3.68 1.7 0.494

13 A13 6.11 1.7 0.669 1.7 5.47 1.07

14 A14 3.68 0.639 0.799 1.7 0.669 0.494

15 A15 1.7 0.669 0.494 2.25 2.25 2.25

16 A16 3.17 1.07 0.799 1.7 1.7 3.68

17 A17 1.48 2.68 2.25 1.7 6.11 1.7

18 A18 1.48 1.07 0.669 0.881 5.58 0.799

19 A19 5.47 0.639 0.639 3.68 1.7 1.7

20 A20 4.3 2.23 1.48 0.333 0.32 3.02

21 A21 2.66 1.48 0.799 3.02 2.23 1.48

22 A22 2.25 1.07 1.07 3.17 4.41 1.07

23 A23 0.639 2.23 0.799 1.7 1.7 1.07

24 A24 1.48 1.7 1.07 2.23 2.23 3.02

25 A25 0.799 0.669 0.669 1.7 1.48 2.23

26 A26 1.07 0.669 0.881 2.23 1.48 2.23

27 A27 0.799 1.7 0.799 2.25 4.41 3.68

28 A28 1.48 2.23 0.799 1.7 3.02 1.7

29 A29 1.07 0.799 1.48 8.4 1.48 0.669

30 A30 2.68 0.799 12.8 2.25 2.25 0.881

31 Height (in) Invariable Invariable Invariable 204.88 163.04 173.07

Weight (lb.) 68,324.57 65,892.33 62,968.19 57,119.63 52,773.58 51,856.76

Max. strength

ratio

0.9527 0.8883 0.9939 0.9413 0.9303 0.9746

No. of analyses 20,000 20,000 17,500 13,200 12,500 12,200
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7.6 Concluding Remarks

This chapter has applied an optimization approach which contains improved mag-

netic charged system search (IMCSS) and open application programming interface

(OAPI) for simultaneous shape and size optimization of barrel vault frames. In this

approach, OAPI is utilized as a programming interface tool through programming

language to manage the process of structural analysis during the optimization

process, and the IMCSS which is an improved version of MCSS algorithm is

used for achieving better solutions for the optimization problem.

Two single-layer barrel vault frames with different patterns are optimized via the

presented approach. In the process of optimization, contrary to size variables, shape

is a continuous variable. In the case of shape optimization of this type of space

structures, since all of the nodal coordinates of the shape variables are dependent on

the height-to-span ratio of the barrel vault, height is considered as the only shape

variable in a constant span of barrel vault.

In comparison, the best height-to-span ratios of barrel vaults under static loading

conditions obtained from CSS, MCSS, and IMCSS algorithms are approximately

close to value of 0.17 from comparative study carried out by Parke. Furthermore, as

seen in the results, different patterns of barrel vaults have different effects on the

value of best height-to-span ratio. Moreover, in comparison to CSS and MCSS

algorithms, IMCSS has found more optimal values for the weight of structures in a

lower number of analyses.

Since SAP2000 is a powerful software in modeling, analyzing, and designing of

large-scale spatial structures, OAPI would be a profit interface tool between this

software and MATLAB in the process of structural optimization.
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Chapter 8

Optimal Design of Double-Layer Barrel

Vaults Using CBO and ECBO Algorithms

8.1 Introduction

Barrel vault is one of the oldest architectural forms, used since antiquity. The brick

architecture of the Orient or the masonry construction of the Romans provides

numerous examples of the structural use of barrel vaults. The industrial and

technological developments which have taken place during the last three decades

have had a far-reaching effect upon contemporary architecture and modern engi-

neering. New building techniques, new constructional materials, and new structural

forms have been introduced all over the world. The architectural search for new

structural forms has resulted in the widespread use of three-dimensional structures.

The evolution of effective computer techniques of analysis is undoubtedly one of

the reasons for the truly phenomenal acceptance of space structures. During recent

years, architects and engineers have rediscovered the advantages of barrel vaults as

viable and often highly suitable forms for covering not only low-cost industrial

buildings, warehouses, large-span hangars, and indoor sports stadiums but also

large cultural and leisure centers. The impact of industrialization on prefabricated

barrel vaults has proved to be the most significant factor leading to lower costs for

these structures. A barrel vault consists of one or more layers of elements that are

arched in one direction [1]. Barrel vaults are given different names depending on

the way their surface is formed. The earlier types of barrel vaults were constructed

as single-layer structures [2–4]. Nowadays, with increase of the spans, double-layer

systems are often preferred. Whereas the single-layer barrel vaults are mainly under

the action of flexural moments, the component members of double-layer barrel

vaults are almost exclusively under the action of axial forces; the elimination of

bending moments leads to a full utilization of strength of all the elements. Formex

algebra is a mathematical system that provides a convenient medium for configuration

processing. The concepts are general and can be used in many fields. In particular,

the ideas may be employed for generation of information about various aspects of

structural systems such as element connectivity, nodal coordinates, details of

© Springer International Publishing AG 2017
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loadings, joint numbers, and support arrangements. The information generated may

be used for various purposes, such as graphic visualization or input data for

structural analysis. Double-layer barrel vaults have great number of structural

elements, and utilizing optimization techniques has considerable influence on the

economy.

Methods of optimization can be divided into two general categories of gradient-

based methods and metaheuristic algorithms. Many of gradient-based optimization

algorithms have difficulties when dealing with large-scale optimization problems.

To overcome these difficulties, utilizing metaheuristic algorithms is inevitable. The

formulation of metaheuristic algorithms is often inspired by either natural phenom-

ena or physical laws. A metaheuristic algorithm consists of two phases: exploration

of the search space and exploitation of the best solutions found. One of the main

problems in developing a good metaheuristic algorithm is to maintain a reasonable

balance between the exploration and exploitation abilities. In the past decades,

structural optimization has been studied by using different metaheuristic algorithms

[5]. Colliding bodies optimization (CBO) is a new metaheuristic search algorithm

that is developed by Kaveh and Mahdavi [6]. CBO is based on the governing laws

of one-dimensional collision between two bodies in the physics that one object

collides with the other object and they move toward a minimum energy level. CBO

is simple in concept, depends on no internal parameters, and does not use memory

for saving the best-so-far solutions. The enhanced colliding bodies optimization

(ECBO) is introduced by Kaveh and Ilchi Ghazaan [7], and it uses memory to save

some historically best solutions to improve the CBO performance without increas-

ing the computational cost. In this method, some components of agents are also

changed to jump out from local minima. In this chapter, the performance of the

CBO and ECBO on optimal design of double-layer barrel vaults is examined. The

design algorithm is supposed to obtain minimum weight grid through suitable

selection of tube sections available in AISC-LRFD [8]. The strength and stability

requirements of steel members are imposed according to AISC-ASD [9].

The remainder of this chapter is organized as follows: In Sect. 8.2, the mathe-

matical formulation of the structural optimization problems is presented and a brief

explanation of the AISC-ASD is provided. Section 8.3 includes an explanation of

the CBO and ECBO algorithms. In Sect. 8.4 structural models are explained and

three numerical examples are presented. The last section concludes the chapter.

8.2 Optimum Design of Double-Layer Barrel Vaults

The allowable cross sections are considered as 37 steel pipe sections shown in

Table 8.1, where the abbreviations ST, EST, and DEST stand for standard weight,

extra strong, and double extra strong, respectively. These sections are taken from

AISC-LRFD [8] which is also utilized as the code of design.

The aim of optimizing the truss structures is to find a set of design variables that

has the minimum weight satisfying certain constraints. This can be expressed as
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Table 8.1 The allowable steel pipe sections taken from AISC-LRFD

Type

Nominal

diameter (in) Weight per ft (lb) Area (in2) I (in4)
Gyration

radius (in) J (in4)

1 ST ½ 0.85 0.25 0.017 0.261 0.034

2 EST ½ 1.09 0.32 0.02 0.250 0.040

3 ST ¾ 1.13 0.333 0.037 0.334 0.074

4 EST ¾ 1.47 0.433 0.045 0.321 0.090

5 ST 1 1.68 0.494 0.087 0.421 0.175

6 EST 1 2.17 0.639 0.106 0.407 0.211

7 ST 1¼ 2.27 0.669 0.195 0.54 0.389

8 ST 1½ 2.72 0.799 0.31 0.623 0.620

9 EST 1¼ 3.00 0.881 0.242 0.524 0.484

10 ST 2 3.65 1.07 0.666 0.787 1.330

11 EST 1½ 3.63 1.07 0.391 0.605 0.782

12 EST 2 5.02 1.48 0.868 0.766 1.740

13 ST 2½ 5.79 1.7 1.53 0.947 3.060

14 ST 3 7.58 2.23 3.02 1.16 6.030

15 EST 2½ 7.66 2.25 1.92 0.924 3.850

16 DEST 2 9.03 2.66 1.31 0.703 2.620

17 ST 3½ 9.11 2.68 4.79 1.34 9.580

18 EST 3 10.25 3.02 3.89 1.14 8.130

19 ST 4 10.79 3.17 7.23 1.51 14.50

20 EST 3½ 12.50 3.68 6.28 1.31 12.60

21 DEST 2½ 13.69 4.03 2.87 0.844 5.740

22 ST 5 14.62 4.3 15.2 1.88 30.30

23 EST 4 14.98 4.41 9.61 1.48 19.20

24 DEST 3 18.58 5.47 5.99 1.05 12.00

25 ST 6 18.97 5.58 28.1 2.25 56.3

26 EST 5 20.78 6.11 20.7 1.84 41.3

27 DEST 4 27.54 8.1 15.3 1.37 30.6

28 ST 8 28.55 8.4 72.5 2.94 145

29 EST 6 28.57 8.4 40.5 2.19 81

30 DEST 5 38.59 11.3 33.6 1.72 67.3

31 ST 10 40.48 11.9 161 3.67 321

32 EST 8 43.39 12.8 106 2.88 211

33 ST 12 49.56 14.6 279 4.38 559

34 DEST 6 53.16 15.6 66.3 2.06 133

35 EST 10 54.74 16.1 212 3.63 424

36 EST 12 65.42 19.2 362 4.33 723

37 DEST 8 72.42 21.3 162 2.76 324

ST Standard weight; EST Extra strong; DEST Double extra strong
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Find Xf g ¼ x1, x2, x3, . . . , xng
� �

, xi 2 D ¼ d1, d2, d3, . . . , d37f g

To minimizeW Xf gð Þ ¼
Xng
i¼1

xi
Xnm ið Þ

j¼1

ρj:Lj
ð8:1Þ

The constraint conditions are briefly explained in the following:

δmin < δi < δmax, i ¼ 1, 2, . . . , nn
σmin < σi < σmax, i ¼ 1, 2, . . . , nm

σ b
i < σi < 0, i ¼ 1, 2, . . . , ns

ð8:2Þ

where {X} is the set of design variables, ng is the number of member groups in

structure (number of design variables), D is the list of cross-sectional areas avail-

able for groups according to Table 8.1,W({X}) presents weight of the structure, nm
(i) is the number of members for the ith group, nn and ns are the number of nodes

and number of compression elements, respectively, σi is the element stress and δi is
the nodal displacement, and ρj and Lj denote the material density and the length for

the jth member of the ith group, respectively. σbi is the allowable buckling stress in

member iwhen it is in compression. min and maxmean the lower and upper bounds

of constraints, respectively.

The penalty function can be defined as

f cost Xf gð Þ ¼ 1þ E1:vð ÞE2 �W Xf gð Þ, v ¼
Xnn
i¼1

vdi þ
Xnm
i¼1

v σi þ v λi
� � ð8:3Þ

where v is the constraint violations function, υdi , υ
σ
i , and υ

λ
i are constraint violations

for displacement, stress, and slenderness ratio, respectively, E1 and E2 are penalty

function exponents which were selected considering the exploration and exploita-

tion rate of the search space. Here, E1 is set to unity; E2 is selected in a way that it

decreases the penalties and reduces the cross-sectional areas. Thus, in the first steps

of the search process, E2 is set to 1.5 and it linearly increases to 3 [10].

The allowable tensile and compressive stresses are used according to the AISC-

ASD code [9], as follows:

σþi ¼ 0:6 Fy f or σi � 0

σ�i f or σi < 0

�
ð8:4Þ

where σ�i is calculated according to the slenderness ratio:
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σ�i ¼
1� λ2i

2C2
c

� �
Fy

	 

=

5

3
þ 3λi
8Cc

� λ3i
8C3

c

� �
for λi < Cc

12π2E

23λ2i
for λi � Cc

8>>><
>>>:

ð8:5Þ

where E is the modulus of elasticity, Fy is the yield stress of steel, Cc is the

slenderness ratio (λi) dividing the elastic and inelastic buckling regions

Cc ¼
ffiffiffiffiffiffiffiffi
2π2E
Fy

q� 
, λi is the slenderness ratio (λi¼ kLi/ri), k is the effective length

factor, Li is the member length, and ri is the radius of gyration.
According to AISC-ASD, the allowable slenderness ratio can be formulated as

follows:

λc ¼ KLi=ri � 200 for compression members

λt ¼ KLi=ri � 300 for tension members
ð8:6Þ

where K is the effective length factor for the members and equal to 1 for all truss

members. Li and ri are the length and minimum radius of gyration for the member i,
respectively.

8.3 CBO and ECBO Algorithms

Colliding Bodies Optimization (CBO) is a new population-based stochastic optimi-

zation algorithm based on the governing laws of one-dimensional collision between

two bodies in physics [6]. Each agent is modeled as a body with a specified mass and

velocity. A collision occurs between pairs of objects to find the global or near-global

solutions. Enhanced colliding bodies optimization (ECBO) uses memory to save

some best solutions and utilizes a mechanism to escape from local optima [11].

8.3.1 A Brief Explanation and Formulation of the CBO
Algorithm

In CBO, each solution candidate Xi containing a number of variables (i.e., Xi¼ {Xi,j})

is considered as a colliding body (CB). The massed objects are composed of two

main equal groups: stationary and moving objects, where the moving objects move

to follow stationary objects and a collision occurs between pairs of objects (Fig. 8.1).

This is done for two purposes: (i) to improve the positions of moving objects

and (ii) to push stationary objects toward better positions. After the collision,

new positions of colliding bodies are updated based on new velocity by using the

collision laws governed by the laws of momentum and energy [6]. When a collision
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occurs in an isolated system, the total momentum of the system of objects is

conserved. Provided that there are no net external forces acting upon the objects,

the momentum of all objects before the collision equals the momentum of all objects

after the collision.

CBO starts with an initial population consisting of 2n parent individuals created
by means of a random initialization. Then, CBs are sorted in ascending order based

on the value of cost function as shown in Fig. 8.2.

The CBO procedure can briefly be outlined as follows:

As stated before each agent called CB has a specified mass, which is defined as

mk ¼
1

fit kð ÞXn

i¼1

1
fit ið Þ

, k ¼ 1, 2, . . . , n ð8:7Þ

where fit(i) represents the objective function value of the ith CB and n is the number

of colliding bodies. After sorting colliding bodies according to their objective

function values in an increasing order, two equal groups are created: (i) stationary

Fig. 8.1 Collision between two bodies: (a) before collision, (b) during collision, and (c) after

collision

Fig. 8.2 The sorted CBs in an ascending order and the mating process for the collision
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group and (ii) moving group (Fig. 8.2). Moving objects collide with stationary

objects to improve their positions and push stationary objects toward better posi-

tions. The velocities of the stationary and moving bodies before collision (vi) are
calculated by

vi ¼ 0, i ¼ 1, . . . ,
n

2
ð8:8Þ

vi ¼ xi�n
2
� xi, i ¼ n

2
þ 1,

n

2
þ 2 . . . , n ð8:9Þ

where xi is the position vector of the ith CB. The velocity of stationary and moving

CBs after the collision (v0i) is evaluated by

v
0
i ¼

miþn
2
þ εmiþn

2

� 
viþn

2

mi þ miþn
2

i ¼ 1, 2, . . . ,
n

2
ð8:10Þ

v
0
i ¼

mi � εmi�n
2

� 
vi

mi þ mi�n
2

i ¼ n

2
þ 1,

n

2
þ 2, . . . , n ð8:11Þ

ε ¼ 1� iter

itermax

ð8:12Þ

where ε is the coefficient of restitution (COR) and iter and itermax are the current

iteration number and the total number of iterations for optimization process,

respectively. New positions of each group are stated by the following formulas:

xnewi ¼ xi þ rand∘v
0
i, i ¼ 1, 2, . . . ,

n

2
ð8:13Þ

xnewi ¼ xi�n
2
þ rand∘v

0
i, i ¼ n

2
þ 1, . . . , n ð8:14Þ

where x newi , xi and v0i are the new position, previous position, and the velocity after

the collision of the ith CB, respectively. rand is a random vector uniformly

distributed in the range of [�1,1] and the sign “∘” denotes an element-by-element

multiplication.

8.3.2 Pseudo-Code of the ECBO Algorithm

In the Enhanced Colliding Bodies Optimization (ECBO), a memory that saves a

number of historically best CBs is utilized to improve the performance of the CBO

and reduce the computational cost. Furthermore, ECBO changes some components

of CBs randomly to prevent premature convergence [12]. In this section, in order to

introduce the ECBO algorithm, the following steps should be taken.
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8.3.2.1 Initialization

Step 1: The initial locations of CBs are created randomly in an m-dimensional

search space.

x0i ¼ xmin þ random∘ xmax � xminð Þ, i ¼ 1, 2, 3, . . . , n ð8:15Þ

where x0i is the initial solution vector of the ith CB. xmin and xmax are the minimum

and the maximum allowable limits vectors, respectively, and random is a random

vector with each component being in the interval [0,1].

8.3.2.2 Search

Step 1: The value of the mass for each CB is calculated by Eq. (8.7).

Step 2: Colliding Memory (CM) is considered to save some historically best CB

vectors and their related mass and objective function values. The size of the CM

is taken as n/10 (n is the population size) in this study. At each iteration, solution
vectors that are saved in the CM are added to the population and the same

number of the current worst CBs are deleted.

Step 3: CBs are sorted according to their objective function values in an increasing

order. To select the pairs of CBs for collision, they are divided into two equal

groups: (i) stationary group and (ii) moving group.

Step 4: The velocities of stationary and moving bodies before collision are evalu-

ated by Eqs. (8.8) and (8.9), respectively.

Step 5: The velocities of stationary and moving bodies after collision are calculated

by Eqs. (8.10) and (8.11), respectively.

Step 6: The new location of each CB is evaluated by Eqs. (8.13) or (8.14).

Step 7: A parameter like Pro within (0, 1) is introduced which specifies whether a

component of each CB must be changed or not. For each CB Pro is compared

with rni (i¼ 1, 2, . . ., n) which is a random number uniformly distributed within

(0, 1). If rni<Pro, one dimension of ith CB is selected randomly and its value is

regenerated by

xij ¼ xj,min þ random: xj,max � xj,min

� � ð8:16Þ

where xij is the jth variable of the ith CB. xj,min and xj,max are the lower and upper

bounds of the jth variable. In this chapter, the value of Pro is set to 0.3.

8.3.2.3 Terminating Condition Check

Step 1: After the predefined maximum evaluation number, the optimization process

is terminated [11].
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8.4 Numerical Examples

In this section, two kinds of double-layer barrel vaults are optimized by CBO and

ECBO algorithms and the results are compared with the engineering design which

was found by SAP2000 to show the efficiency of these algorithms. SAP2000

software has a toolbox for the auto and fully stressed design according to the related

provisions. Auto select section lists are lists of previously defined steel sections

(including cold-formed steel). When an auto select section list is assigned to a

frame member, the program can automatically select the most economical, ade-

quate section from the auto select section list when designing the member. The first

example is a 384-bar double-layer barrel vault, which was optimized by Kaveh

et al. [13] using continuous variables under two types of loadings. The second one is

a 910-bar double-layer braced barrel vault introduced as a new type. Two problems

are solved utilizing discrete variables for the purpose of practical design. All

connections are assumed as ball-jointed, and top-layer joints are subjected to

concentrated vertical loads. Stress and slenderness constraints [Eqs. (8.4), (8.5),

and (8.6)] are according to AISC-ASD provisions, and displacement limitations of

�0.1969 in (5 mm) are imposed on all nodes in x-, y-, and z-directions. The modulus

of elasticity is considered as 30,450 ksi (210,000 MPa), and the yield stress of steel

is taken as 58 ksi (400 MPa).

In CBO and ECBO, the population of n¼ 30 CBs is utilized, and the size of

colliding memory is considered as n/10 that is taken as 3 for ECBO. The predefined
maximum evaluation number is considered as 30,000 analyses for all examples.

Because of the stochastic nature of the algorithms, each example is solved 5 times

independently. In all problems, CBs are allowed to select discrete values from the

permissible list of cross sections (real numbers are rounded to the nearest integer in

each iteration). The algorithms are coded in MATLAB, and the structures are

analyzed using the direct stiffness method. The computational time is measured

in terms of CPU time of a PC with the processor of Intel® Core™ i7-3612 QM @

2.1 GHz equipped with 6 GBs of RAM.

8.4.1 A 384-Bar Double-Layer Barrel Vault

Similar to the flat double-layer grids, double-layer barrel vaults consist of a top and

bottom layer connected to each other by bracing members. The top/bottom layers

are also called the “chord members.” All the flat double-layer configurations can

also be used for doublelayer braced barrel vaults. The 384-bar double-layer barrel

vault is the first example; this structure consists of two rectangular nets, and for

making it stable, angles of the bottom nets are put into the center of one of the above

nets, and these are connected through diametrical elements as shown in Fig. 8.3a.

This example is subjected to two types of loadings. Case 1 is a symmetric loading

condition where the vertical concentrated loads of �20 kips (�88.964 kN) are
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applied on free joints (nonsupport joints) of top layer. In Case 2, which is asym-

metric, the concentrated loads of �10 kips (�44.482 kN) are applied at the right-

hand half and at the left-hand half of the structure the loads of �6 kips

(�26.689 kN) are applied on nonsupport top layer joints, respectively. All members

of this double-layer barrel vault are categorized into 31 groups, as shown in

Fig. 8.3b, and the supports are considered at the two external edges of the top

layer of the barrel vault.

Tables 8.2 and 8.3 show the best design vectors and the corresponding weights

for the two methods, for the Case 1 and Case 2 loading conditions, respectively. In

Case 1 (Symmetric loading condition), ECBO could find the weight which is 2.2%

Fig. 8.3 Schematic of the 384-bar double-layer barrel vault: (a) 3D view and (b) element

grouping (plan view)
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lighter than CBO and 11.9% lighter than Engineering design which was found by

SAP2000. In Case 2 (Asymmetric loading condition), this percentage was equal to

10.7% and 19.7% better than CBO and Engineering design, respectively. It is also

Table 8.2 Optimal design of the 384-bar double-layer barrel vault for Case 1

Group number

Optimum section (designations)

Engineering design CBO ECBO

1 ST 1¼ ST 1¼ ST 1¼

2 EST 2 EST 2 ST 2½

3 EST 2 EST 3 EST 2

4 ST 1¼ ST 1¼ ST 1¼

5 EST 4 DEST 2 DEST 2½

6 DEST 8 EST 1½ ST 1¼

7 ST 12 EST 10 EST 12

8 EST 8 DEST 5 DEST 5

9 ST 10 DEST 6 ST 10

10 EST 10 EST 10 ST 12

11 ST 8 DEST 5 ST 8

12 EST 8 ST 12 ST 12

13 EST 5 EST 5 DEST 4

14 ST 8 ST 5 ST 6

15 ST 3½ ST 3½ ST 3

16 ST 6 DEST 2½ DEST 2½

17 ST 8 EST 5 EST 5

18 EST 1½ EST 2 ST 2

19 ST 1¼ ST 1¼ ST 1¼

20 EST 2 ST 1¼ ST 2

21 EST 2 EST 2 EST 1¼

22 EST 2 ST 1¼ ST 1¼

23 EST 2 EST 2 ST 2

24 ST 4 EST 3 ST 4

25 ST 2½ EST 2 EST 2½

26 ST 3 EST 2 ST 2½

27 DEST 2½ DEST 2 ST 3½

28 ST 2½ EST 2 EST 2

29 ST 2½ ST 2½ ST 2

30 EST 2 EST 2 ST 2½

31 EST 2 EST 2 EST 2

Demand/capacity ratio limit 0.999 – –

Max stress ratio 0.559 0.7649 0.8773

Max displacement ratio 0.9997 0.9994 0.9999

Best weight (kg) 32,259.90 29,057.93 28,415.20

Mean weight (kg) – 33,465.09 29,900.15

Computation time (s) – 296 291
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worthwhile to mention that CBO results were 9.9% and 10.1% better than Engi-

neering design for Case 1 and Case 2 loading condition, respectively. It can be

observed that ECBO has better performance than CBO without increasing the

Table 8.3 Optimal design of the 384-bar double-layer barrel vault for Case 2

Group number

Optimum section (designations)

Engineering design CBO ECBO

1 ST 1¼ ST 1¼ ST 1¼

2 EST 2 EST 2 ST 2

3 ST 1¼ ST 1¼ ST 1¼

4 DEST 2 ST 3½ ST 3½

5 EST 2 EST 2 EST 2

6 EST 2 EST 2 ST 2

7 EST 5 EST 5 EST 6

8 EST 5 ST 8 DEST 4

9 EST 5 DEST 3 EST 3

10 ST 5 ST 3½ ST 3

11 ST 5 ST 3½ ST 3

12 ST 5 EST 3½ ST 4

13 DEST 2 EST 1½ EST 1½

14 ST 2½ ST 3½ ST 2½

15 EST 3 ST 4 ST 4

16 DEST 2½ EST 3½ ST 5

17 ST 5 ST 4 EST 3½

18 EST 1½ ST 1½ ST 1½

19 EST 2 EST 2 ST 2

20 EST 2 EST 2 ST 2

21 EST 2 EST 2 ST 2

22 ST 2½ EST 2 ST 2

23 ST 1½ EST 2 ST 1¼

24 EST 1¼ EST 1 ST 1

25 EST 2 EST 2 ST 1½

26 EST 1½ ST 1½ ST 1½

27 EST 2 EST 2½ ST 2

28 EST 2 EST 2 ST 2

29 EST 2½ EST 2 ST 2

30 DEST 2 ST 2½ ST 3

31 ST 2½ EST 2 ST 2

Demand/capacity ratio limit 0.999 – –

Max stress ratio 0.888 0.7176 0.9372

Max displacement ratio 0.9962 0.9991 0.9996

Best weight (kg) 16,617.81 14,940.13 13,345.92

Mean weight (kg) – 18,602.01 15,856.61

Computation time (s) – 301 299
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computational cost. For graphical comparison of the algorithms, Figs. 8.4 and 8.5

illustrate the convergence curves for the Case 1 and Case 2 loading conditions by

the proposed methods, respectively.

Fig 8.4 Convergence curves for the 384-bar double-layer barrel vault (Case 1)

Fig 8.5 Convergence curves for the 384-bar double-layer barrel vault (Case 2)
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8.4.2 A 910-Bar Double-Layer Braced Barrel Vault

Braced barrel vaults consist of developable surfaces generated by the repetitive use

of a curve known as “directrix” over a generator straight line. The directrix may be

a circular arc, an ellipse, a catenary, a parabola, or a cycloid. Most of braced barrel

vaults built in practice are part of a right circular cylinder, which may be either

supported by columns or simply springing from the ground surface. The semicir-

cular barrel vaults have the clear advantage of facilitating water drainage and

providing strong architectural form recognition. Under loads, braced barrel vaults

may behave in two different modes: arch and beam, depending mainly on the

location of supports. The braced barrel vault behaves as an arch when supported

along the sides. The braced barrel vault behaves in the beam mode when it is

supported at its ends. In this case, the longitudinal compression forces occur near

the crown and longitudinal tensile forces toward the free edge. If the braced barrel

vault is supported at the four corners, it behaves as a combined beam and arch under

loads. In this case, it acts as a series of arches in cross-section direction and as a

beam longitudinally.

In this section, one type of braced barrel vault which contains 266 nodes and

910 members is introduced as the last example. The structural members are divided

into 30 groups as shown in Fig. 8.6a, and the other related details are shown in

Fig. 8.6b and c.

The uniformity of the distribution of stiffness in the vicinity of the structure is an

important issue for large-scale structures. If part of the structure has elements of low

axial forces and small displacements (low cross sections), and another part contains

elements of high cross sections, then the uniformity of the distribution of the

stiffness will not be achieved. For this reason, the element grouping is selected

according to two symmetry lines of the configuration leading to uniform distribu-

tion of stiffness for the entire structure. The loading conditions consist of the

following:

1. At the nodes of central arc, a downward concentrated load of �15 kips

(�66.72 kN).

2. At the nodes of the arcs adjacent to the central arc, a downward concentrated

load of �10 kips (44.48 kN).

3. At the nodes of arcs adjacent to the external arcs, a downward concentrated load

of �5 kips (�22.24 kN).

4. At the nodes of external arcs, a downward concentrated load of �2 kips

(�8.90 kN).

All external and internal side nodes are simply supported, and for this reason,

this double-layer braced barrel vault behaves as an arch. Table 8.4 lists the optimal

values of 30 variables obtained by ECBO and CBO. The result of ECBO method is

lighter than the result found by CBO. The optimum design for CBO and ECBO has

the weights of 18,636 kg and 18,615 kg, respectively, and all optimum designs

found by the algorithms satisfy the design constraints. The CBO and ECBO weights

are 1258.77 kg (6.3%) and 1279.12 kg (6.4%) lighter than Engineering design,
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respectively. Convergence history of the present algorithms for the best optimum

designs is depicted in Fig. 8.7.

Fig 8.6 Schematic of the 910-bar double-layer braced barrel vault: (a) element grouping in 3D

view, (b) front view, and (c) plan view
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Table 8.4 Optimal design of the 910-bar double-layer braced barrel vault

Group number

Optimum section (designations)

Engineering design CBO ECBO

1 DEST 2 EST 2 ST 3

2 DEST 5 ST 10 DEST 6

3 ST 8 ST 10 ST 10

4 ST 8 DEST 2½ ST 8

5 DEST 2 ST 3½ ST 2

6 EST ¾ EST ¾ ST 1½

7 ST 4 EST 3 EST 1½

8 ST 8 DEST 3 EST 3

9 ST 10 DEST 5 DEST 4

10 ST 12 DEST 6 EST 12

11 ST 1 ST 1¼ ST 1

12 ST 1 ST 1¼ ST 1

13 EST 1 ST 1¼ ST 1¼

14 ST 1 ST 1 ST 1

15 EST 2 ST 1 ST 1

16 ST 1 ST 3 EST 2

17 EST 1½ EST 1½ EST 2

18 EST 1½ EST 1 EST 1½

19 ST 1¼ EST 2 EST 3

20 EST 2 ST 2½ EST 2

21 EST 3½ ST 2½ EST 2

22 DEST 2½ ST 2½ EST 2

23 ST 5 EST 4 DEST 3

24 EST 5 ST 8 EST 5

25 ST ¾ ST ¾ ST ¾

26 ST ¾ ST ¾ ST ¾

27 ST ¾ ST½ ST ¾

28 ST ¾ ST ¾ EST ¾

29 EST 2 ST ¾ ST ¾

30 EST 1 EST 2 EST 1½

Demand/capacity ratio limit 0.999 – –

Max stress ratio 0.95 0.9767 0.9818

Max displacement ratio 0.9993 0.9990 0.9978

Best weight (kg) 19,894.44 18,635.67 18,615.32

Mean weight (kg) – 23,806.75 22,442.64

Computation time (s) – 975 926
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8.5 Concluding Remarks

This chapter utilizes two newly developed, simple, and efficient metaheuristic

algorithms for discrete optimization of double-layer barrel vaults. The CBO has

simple structure and depends on no internal parameter and does not use memory for

saving the best-so-far solutions. In order to improve the exploration capabilities of

the CBO and to prevent premature convergence, a stochastic approach is employed

in ECBO that changes some components of CBs randomly. Colliding Memory is

also utilized to save a number of the so-far-best solutions to reduce the computa-

tional cost. In order to indicate the similarities and differences between the char-

acteristics of the CBO and ECBO algorithms, two types of double-layer barrel

vaults are examined. Structures are designed in accordance with AISC-ASD spec-

ifications and displacement constraints. In both examples, the discrete variables are

assigned to each group for the purpose of practical design and selected from

available steel pipe section table. ECBO has better performance in all cases than

CBO because of the reliability of search, solution accuracy, and speed of conver-

gence. It can be also stated that both CBO and ECBO have better efficiency in

finding results than SAP2000 in all cases. It is also worthwhile to mention that all

designs are governed by displacements because of large vertical displacements at

the apex of these structures. Furthermore, the results show that CBO and ECBO are

robust optimization tools for optimum practical design of large-scale structures like

double-layer barrel vaults.

Fig. 8.7 Convergence curves for the 910-bar double-layer braced barrel vault
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Chapter 9

Optimum Design of Steel Floor Systems

Using ECBO

9.1 Introduction

Decks, interior beams, edge beams, and girders are parts of a steel floor system. If

the deck is optimized without considering beam optimization, finding the best result

is simple. However, a deck with a higher cost may increase the composite action of

the beams and decrease the beam cost, thus reducing the total expense. Also, a

different number of floor divisions can improve the total floor cost. Increasing beam

capacity by using castellated beams is another efficient cost-saving method. In this

study, floor optimization is performed and these three issues are discussed. Floor

division number and deck sections are some of the variables. Also, for each beam,

profile section of the beam, beam-cutting depth, cutting angle, spacing between

holes, and number of filled holes at the ends of castellated beams are other vari-

ables. Constraints include the application of stress, stability, deflection, and vibra-

tion limitations according to the load and resistance factor (LRFD) design. The

objective function is the total cost of the floor consisting of the steel profile, cutting

and welding, concrete, steel deck, shear stud, and construction costs. Optimization

is performed by enhanced colliding bodies optimization (ECBO). Results show that

using castellated beams, selecting a deck with a higher price and considering the

different number of floor divisions can decrease the total cost of the floor (Kaveh

and Ghafari [1]).

Many researchers have tried to optimize simple, composite, and castellated

beams. Morton and Webber [2] used a relatively straightforward exhaustive search

method to optimize composite beams. Klanšek and Kravanja [3] utilized the

nonlinear programming (NLP) approach to optimize composite beams according

to Euro-code 4 and conditions of both ultimate and serviceability limit states.

Senouci and Al-Ansari [4] optimized composite beams by genetic algorithms

according to AISC-LRFD. They also tried to find the effect of span and loading

on the optimum result by a parametric study.
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Cost optimization of floor systems is studied first by Adeli and Kim [5]. They

utilized neural networks and mixed integer nonlinear programming according to the

LRFD criteria. They also employed floating-point genetic algorithms to find the

best results. Platt [6] used the evolver (genetic algorithm solving program) to

parametric optimization of the floor. She considers the combination of configura-

tion, size, topology, and spacing of truss girders and beams. Kaveh and Abadi [7]

used an improved harmony search (HS) algorithm. They optimized a composite

floor system consisting of reinforced concrete slab and steel I-beams according to

AISC-LRFD rules. Poitras et al. [8] considered a complete floor system and utilized

particle swarm optimization (PSO) for optimization. They found that composite

action can be as economical as non-composite action depending on some condi-

tions, and they used formed steel deck instead of normal concrete deck. Kaveh and

Ahangaran [9] employed the social harmony search and found this new variant of

HS to be better than other variants of it. Kaveh and Massoudi [10] optimized floors

by ant colony optimization (ACO).

The main objective of the present chapter is to optimize the cost of the steel floor

elements and to find the effect of the number of floor divisions, concrete thickness,

and using castellated beams. This chapter is organized as follows: In Sect. 9.2, the

design of structural elements of floor is introduced. Section 9.3 defines the optimi-

zation problem and identifies the variables, the constraints, and the objective

function. The optimization algorithm is discussed in Sect. 9.4. Some numerical

examples are introduced in Sect. 9.5. Finally, conclusions are extracted in Sect. 9.6.

9.2 Structural Floor Design

Structural elements are designed according to AISC-LRFD 10. Thus, the load

combination W for stress and stability check is (ASCE [11])

W ¼ 1:2DLþ 1:6LL

where DL is the dead load and LL is the live load, and the load combination for

serviceability criteria (deflection and vibration) is

Wdef ¼ DLþ LL

where Wdef is the total loading for deflection calculation.

A composite castellated beam and a steel deck section (perpendicular to each

other) are presented in Fig. 9.1. The deck should be designed independent of the

beam as follows:
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9.2.1 Deck Design

Deck span is the distance between two beams (B), and deck width is taken as

1 meter for the design. In this study, composite steel deck is used so that its section

shape can guarantee the composite action roll formed steel decks and concrete. Also

the shrinkage and temperature effects of the concrete are controlled by rebar. Due to

the complex effect of roll formed steel decks, the partial composite action, and the

wide variety of the produced sections, the specifications provided by the manufac-

turers should be used for determining their capacity.

9.2.2 Castellated Composite Beam Design

Castellated beams are produced by cutting rolled profile beam in special shape and

welding them together in order to increase moment of inertia and moment capacity.

Hexagonal cutting shape is one of the most popular cutting methods. But it is

necessary to avoid keen corners because of stress concentration effects. Web

openings of these beams produce some secondary effects, which can be controlled

by filling end holes.

Composite beams are produced by composite interaction between concrete and

steel. This composite action can help to increase the moment capacity of the beams.

For designing this type of beams, first the effective width of the concrete slab

should be calculated for interior beams, edge beams, and girders according to span

and beam spacing (AISC [12]). Second, for the composite section, the center line

must be calculated. For interior and edge beams, deck ribs are perpendicular to the

beam axis, and top concrete (Fig. 9.1) must be considered only. However, for

girders, the deck ribs are parallel to the beam axis and the entire concrete can be

Fig. 9.1 Details of a composite castellated beam and steel deck
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considered (AISC [12]). In this study, the center line, the moment of inertia, and the

moment capacity of the composite section are determined by the superposition of

the elastic stresses. For some stresses, stability, deflection, and vibration criteria

must be checked as follows.

9.2.2.1 Stress Criteria

In this study, the unbraced length ratio of all beams is considered as zero. This is

because the top flange of the beam is controlled by concrete slab.

The ultimate moment calculated for load combinations must be smaller than the

nominal moment (AISC [12]):

Mu < φbMn ¼ φb �min Mn-con;Mn-stð Þ
¼ φb �min 0:7FcZnet-com-top,FyZnet-com-bot

� � ð9:1Þ

where Mn is the nominal moment capacity of the beam, Mn-con is the nominal

moment capacity (concrete limit), Mn-st is the nominal moment capacity (steel

limit), Znet-com-bot is the plastic modulus at the bottom of composite net section,

Znet-com-top is the plastic modulus at the top of composite net section, φb is the

bending reduction factor, Fc is the compressive strength of the concrete, and Fy is

the yield strength of the steel.

Also the Vierendeel effect at unfilled holes produces secondary moment, and

these two moments must satisfy the following equations:

mu ¼ Vu � e

4
ð9:2Þ

Mu

Znet-com-bot
þ mu

Ztee

< φbFy ð9:3Þ

wheremu is the secondary shear ultimate moment, Vu is the ultimate shear force, e is
the web post length,Mu is the ultimate moment, Znet-st is the plastic modulus of steel

net section, and Ztee is the plastic modulus of steel tee section. φb for concrete and

steel are considered to be 0.9 (AISC [12]).

For a composite section, steel beams must resist shear forces alone (AISC [12])

as described in the following:

AW ¼ ds � tw ð9:4Þ
Vu < φvVn�w ¼ φv � 0:6FyAWCv ð9:5Þ

where Aw is the area of the net section web, tw is the thickness of the web, ds is the
internal castellated beam height, Vu is the ultimate shear force, Vn�w is the nominal

web shear capacity of net section, φv is the shear reduction factor, and Cv is the web

shear coefficient.
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Also the vertical shear capacity of the tee beams must be controlled by (AISC

[12]):

Atee ¼ dtee � tw ð9:6Þ
Vu

2
< φvVn�tee ¼ φv � 0:6FyAteeCv ð9:7Þ

where Atee is the area of each tee section and Vn�tee is the nominal web shear

capacity of the tee section.

Horizontal shear between holes in castellated beams must be checked as follows:

Ahe ¼ e� tw ð9:8Þ

Vh ¼ Vu � Qcom

Icom
� s < φvVn�p ¼ φv � 0:6FyAheCv ð9:9Þ

where Vh is the horizontal shear at web post; Qcom and Icom are the first and second

moments of inertia of the composite section, respectively; s is the spacing between

the holes (Fig. 9.1); Vn�p is the nominal shear capacity of the web post; and φv and

Cv are equal to 1 (AISC [12]).

When steel deck is used in a perpendicular position, Qcom and Icom must be

considered for two conditions, because each choice may produce a greater shear

force and a more critical condition:

(a) Considering the whole thickness of the concrete

(b) Considering the top thickness of the concrete

9.2.2.2 Stability Criteria

Horizontal shear may cause web plate buckling in the castellated beam (Kerdal and

Nethercot [13]). According to the Structural Stability Research Council (SSRC),

in-plane stress at the unfilled web must satisfy the following equations:

Lb ¼ 2dh

rT ¼ twffiffiffiffiffi
12

p

Cb ¼ 1:75þ 1:05
M1

M2

þ 0:3
M1

M2

� �2

< 2:3

Cc ¼ 2π2Es

Fy

f rb ¼
3

4

Vh tan θ

twθ
2e

< φbFrb ¼ 1�
Lb
rT

� �2
2Cc

2Cb

2
64

3
75φbFy

ð9:10Þ
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where θ, e, and dh are the cutting angle, hole pure distance, and cutting depth of

castellated beam, respectively (Fig. 9.1), tw is the thickness of the web, M1 and M2

are the moments at each beam end, Es is the modulus of elasticity of the steel, and

φb is equal to 0.9 similar to the moment equation.

9.2.2.3 Deflection Criteria

Beam deflection can be calculated by means of the standard equations of structural

analysis. For interior and edge beams, bending deflection (defb) can be calculated as

defb ¼ 5Wd1LT
4

384EsIn
þ 5Wd2LT

4

384EsIdef
ð9:11Þ

where Wd1 and Wd2 are the pre-composite and post-composite loads, respectively,

LT is the total beam length, and Idef and In are the effective moment of inertia for

deflection of composite beam and steel net section moment of inertia, respectively.

Concrete weight must be resisted by steel section only (pre-composite level),

and other dead and live loads must be sustained by composite section (post-

composite level).

Deflection of the girders is related to the number floor divisions (beam spacing)

and the number of interior beams.

Unlike the standard composite beam, the shear deflection of the composite beam

with web opening is significant. Thus researchers have developed experimental-

based equation for calculating the shear deflection (defs) as follows (Benitez et al.

[14]):

defs ¼ defb � 1þ 1

5

HEW

LT

� �
Icom
Icom�g

� 1

� �
3� HEW

LT

� �3

� 4� HEW

LT

� �2
  

�6� HEW

LT

� �
þ 12

!!
ð9:12Þ

where Icom and Icom�g are the net and gross composite section moments of inertia,

respectively. This equation is based on rectangular shape holes, and the hexagonal

shapes must be considered as rectangular shapes with effective width:

HEW ¼ eþ dh � cot αð Þ ð9:13Þ

and defs identifies the effect of one hole. For web opening with a width to height

ratio lower than 2, maximum deflection of the beam is independent of the location

of the holes. Thus, the total shear deflection can be obtained from the number of

unfilled holes (Nuh) times the defs, and the total beam deflection is calculated as

follows:
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def ¼ defb þ defs � Nuh

Also for considering the effect of differential shrinkage and creep on a composite

steel–concrete structure, the effective width (or concrete modulus of elasticity) can

be divided by 3 (Roll [15]).

Also, the allowable deflection (defall) under the live and dead loads is specified

by AISC [12] as

def < defall ¼ LT
240

ð9:14Þ

9.2.2.4 Vibration Criteria

A portion of the live load (between 10 and 25%) that is used for calculating

deflection is utilized for calculating vibration (defvib) (Murray et al. [16]). Com-

bining the effect of the interior beam deflection (defint), the girder beam deflection

(defgir), and column deflection (defcol) for calculating frequency is considered as

follows (Naeim [17]):

defvib ¼ defint þ defgir

1:3
þ defcol ð9:15Þ

In order to take into account the difference between the frequency of a simply

supported beam with distributed mass and concentrated mass at mid-span, the

deflection is divided by 1.3 4
π

� �
(Murray et al. [16]).

Because of the small compression deflection of the column, defcol is considered

as zero. Also, 0.2 times of the live load is used in calculating the deflection.

For considering greater stiffness of concrete on the metal deck under dynamic

loading compared to the static loading, it is assumed that the modulus of elasticity

for the concrete is 1.35 times that of the normal concrete. The effect of differential

shrinkage and creep on a composite steel–concrete structure is not considered for

vibration calculations.

f ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Stiffness

Mass

r
¼ 1

2π

ffiffiffiffiffiffiffiffi
W

defvib
W
g

vuut ffiffiffiffiffiffiffiffiffiffiffi
g

defvib

r
¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffi
g

defvib

r
ð9:16Þ

where W and g are the load and gravity acceleration, respectively.

In order to consider the effect of frequency of all parts of the floor, the total

frequency of the floor ( ft) is determined by
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1

f t
¼ 1

f int
þ 1

f gir
þ 1

f col
ð9:17Þ

where fint, fint, and fint are the interior, girder, and column frequencies, respectively.

Due to the large axial stiffness of the column in comparison to the bending

stiffness of beams, column frequency is considered infinity.

The maximum initial amplitude (inch) of the beam (Ao) is determined as (Naeim

[17])

Aot ¼ DLFð Þmax �
0:6 LT � 0:393ð Þ3

48 Es � 14:22� 10�3
� �

Idef � 0:3934
� �

 !
ð9:18Þ

hc�eff ¼ ActualSlabWeight

ConcreteWeight
ð9:19Þ

Neff ¼ 2:97� 0:0578� Sb
hc�eff

� �
þ 2:56� 10�8 � LT

4

Idef

� �

þ 0:0001
LT
Sb

� �3

ð9:20Þ

A0 ¼ Aot

Neff

ð9:21Þ

where Sb is the beam spacing. (DLF)max values for various natural frequencies are

presented in design practice to prevent floor vibrations (Naeim [17]). Effective

concrete height (hc�eff) is not equal to the concrete height in the steel deck floor.

Required damping ratio (Dreq) for specified amplitude and frequency must be lower

than the allowable damping ratio (Dall), and it is determined as (Naeim [17])

Dreq ¼ 35Ao f þ 2:5 < Dall ¼ 0:035 ð9:22Þ

9.2.3 Shear Stud Design

For a desired composite action between steel and concrete, shear studs are required.

The shear capacity of these elements must be larger than the maximum shear forces

that composite beam will experience. Steel-headed stud anchor is considered in this

chapter. Its diameter is considered as 19 mm and 1, 2, or 3 studs can be installed at

each rib.
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Qu ¼ min 0:85Fcbehc,AsFy

� �
< NcφvQn ¼ Nc � φv � 0:5Asa

ffiffiffiffiffiffiffiffiffiffi
FcEc

p
� RgRpAsaFu�ss ð9:23Þ

where Fc and Ec are the compression strength and modulus of elasticity of concrete,

respectively; be and hc are the effective width and height of concrete, respectively;

As and Asa are the steel section area and steel-headed shear stud area, respectively;

Fu�ss is the ultimate stress of shear stud; and Rg and Rp are the group and position

effect factor for shear stud, respectively. Considering linear shear diagram, Nc is

half of the total number of shear stud and φv is equal to 0.75 (AISC [12]).

9.3 Problem Definition

9.3.1 Cost Function

The cost for each beam is considered as the sum of the profile steel beam cost,

welding procedure cost, cutting procedure cost, and shear stud cost. The cost for

steel deck is the sum of the steel deck concrete cost, steel deck steel plate cost, and

steel deck application cost. Initial cost is the sum of the beam costs and steel

deck cost.

Each sub-cost is determined by multiplying the corresponding weight, length,

volume, or area by appropriate coefficients. Cost of filling end holes by plates is

considered by the cost of the added weights, cutting, and welding to the total cost.

9.3.2 Variables

In this chapter, five variables are used for optimal design of each beam, consisting

of the profile section, cutting depth (dh), cutting angle (α), hole spacings (s), and
number of filled end holes of the castellated beams. The number of beams at

floor width and concrete thickness are two other variables that are changed. The

minimum and maximum magnitudes of the variables must be known for avoiding

unacceptable results and for fast convergence to the global optimum. Profile

section is the sequence number of the hot rolled steel profiles. Cutting angle is

limited between 40� and 64�. Other limits on the variables are presented as the

constraints.
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9.3.3 Constraints

Castellated beam application constraints (g1 to g5) and steel beam design con-

straints (g6 to g14) are considered as follows:

g1 ¼ dh � 3

8
Hs � 2tfð Þ ð9:24Þ

g2 ¼ Hs � 2tfð Þ � 10 dt � tfð Þ ð9:25Þ

g3 ¼
2

3
dh cot αð Þ � e ð9:26Þ

g4 ¼ e� 2dh cot αð Þ ð9:27Þ
g5 ¼ 2dh cot αð Þ þ e� 2dh ð9:28Þ

g6 ¼ Mu � φbMn ð9:29Þ

g7 ¼
Mu

Znet-com-bot
þ mu

Ztee-com
� φbFy ð9:30Þ

g8 ¼ Vu � φvVn�w ð9:31Þ

g9 ¼
Vu

2
� φvVn�tee ð9:32Þ

g10 ¼ Vh � φvVn�p ð9:33Þ
g11 ¼ f rb � φbFrb ð9:34Þ
g12 ¼ def � defall ð9:35Þ
g13 ¼ Dreq � Dall ð9:36Þ

Some design constraints for the steel decks are as follows:

g14 ¼ B� Lsd�max ð9:37Þ

where Lsd�max is the maximum length of the unshored steel deck.

For comparison and for comparing the sum of constraints with each other, these

are normalized.

9.3.4 Penalty Function

Optimization algorithms are designed for unconstraint problems, and an external

procedure should be defined for avoiding unacceptable regions. Penalty functions

increase the objective function cost, and the optimization algorithm automatically
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avoids infeasible areas. In this study, penalty function is expressed as the function

of positive (unacceptable) values of the constraint functions:

NAC ¼ sum gi > 0ð Þ ð9:38Þ
PF ¼ 10NAC ð9:39Þ

Costfin ¼ Costini � PF ð9:40Þ

where Costfin and Costini are the final and initial costs, respectively. The value of

10 is chosen by the experience for the current problem and it can be changed for

other problems.

9.4 Optimization Algorithm

Interior beam optimization, edge beam optimization, girder optimization, and deck

optimization are four suboptimizations of this problem. Each of the first three

problems has five variables according to the explanation given in the previous

section. Deck optimization has one variable and the number of floor division is

another variable. Thus, there are 17 optimization variables for this problem. Opti-

mizing these variables simultaneously decreases the convergence rate. In order to

solve this problem, and to observe the conditions around the optimum result, the

following approach is adopted.

9.4.1 Suboptimization Approach

If the deck is optimizedwithout considering beamoptimization, finding the best result

is simple. But other decks with higher costs can increase composite action of the

beams and decrease the beam cost, hence reducing the total cost. Thus, after finding

the best deck independently (by sorting deck choices from lower to highest cost and

selecting the first acceptable choice), some other near acceptable results are consid-

ered, and optimum result of other parts of the floor is calculated for the entire system.

The range for the number of divisions of the floor is limited for different

examples. To observe the impact of increasing the number of division, different

values are considered and the results of optimization are obtained.

In order to optimize each beam, the following metaheuristic algorithm is used:

9.4.2 Metaheuristic Optimization Algorithm

Metaheuristic algorithms try to find the best solution to a problem in an iterative

manner. They have an initial population and evaluate the objective function values of
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them. The algorithm produces the next generation from the initial population in order

to increase the chance of find the best result. So increasing the number of population

and iteration number can increase the chance of finding the optimum result.

Colliding bodies optimization is one of the recently developed metaheuristic

algorithms. The efficiency of this algorithm for structural optimization is validated

by researchers (Kaveh and Mahdavi [18]). The CBO is simple in concept and

depends on no internal parameter.

In this technique, one object collides with other objects and they move toward a

minimum energy level. Each colliding body (CB) has a specified mass (mk) related

to the fitness function as

mk ¼
1

fit kð ÞXn
i¼1

1

fit ið Þ , k ¼ 1, 2, . . . , n

ð9:41Þ

where fit and n are the fitness function and the number of CBs, respectively. In order

to select pairs of objects for the collision, CBs are sorted according to the magni-

tudes of their mass in a decreasing order, and are divided into two equal groups: a

stationary group and amoving group. Moving objects collide with stationary objects

to improve their positions and push stationary objects toward better positions by

changing their velocity. Initial velocity of the moving objects (v1) is defined as a

distance between their positions and destination of the stationary object. Initial

velocity of stationary objects is considered as zero. Next, velocity of stationary

(vsta) and moving (vmov) groups is calculated as follows:

vmov ¼ m1 � εm2ð Þv1
m1 þ m2

ð9:42Þ

vsta ¼ m1 þ εm2ð Þv1
m1 þ m2

ð9:43Þ

where m1, m2, v1, and v2 are the mass and velocity of each pair of moving and

stationary objects. Also, ε is defined as follows:

ε ¼ 1� iter

itermax
ð9:44Þ

where iter and itermax are the current iteration number and maximum iteration

number, respectively. Next, position of each CB is its last position plus a random

ratio of velocity.

In order to improve the CBO to get faster and more reliable solutions, enhanced

colliding bodies optimization (ECBO) has been developed which uses a memory to

save a number of historically best CBs and also utilizes a mechanism to escape from

local optima (Kaveh and Ilchi Ghazaan [19]). Utilizing this improvement requires

to identify the colliding memory size (CMS) and the random parameter (RP).

Flowchart of the analysis and optimization of floor system is shown in Fig. 9.2.
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9.5 Numerical Examples

In order to study the effect of parameters on the optimum cost of the floor, two

examples are studied. MATLAB software is used for modeling the optimization

process. This software is also used for the analysis and checking design criteria. The

design results are also double-checked with ETABS software.

In both examples, floor systems with two girders, two edge beams, and some

interior beams are considered as shown in Fig. 9.3, and all connections are assumed

pinned connections.

For algorithm adjustments, the population size and the iteration number are

40 and 60, respectively. Also, CMS and RP are considered to be 4 and 0.3,

respectively.

9.5.1 Example 1: Floor System (Span 10 m and Width 8 m)

At the first example, the span and width of the floor system are 10 m and 8 m,

respectively. Interior beams are affected by live and dead area loads. Edge and

girder beams are affected by live and dead uniformly distributed loads (in order to

take the influence of adjacent bay and wall load into account). Girder beam is also

affected by end reaction of interior beam as a point load.

Full composite action is considered, since partially composite action is very

sensitive to construction and installation conditions of shear studs and it has a large

amount of uncertainty.

Fig. 9.2 Flowchart of the

process of optimum design

of steel floor system
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In order to have a comparison with other reference examples (Poitras et al. [8]),

the steel deck choices were taken from the Canam® steel catalogue as presented in

Fig. 9.4. According to P-2434 (composite type of this catalogue), deck thickness

values are considered as 0.76, 0.91, and 1.21 mm. Slab thickness values are taken as

125, 140, 150, 165, 190, and 200 mm. Maximum span for each combination of deck

and steel thickness is determined and the load resistance for each span is calculated.

It is assumed that each span has adjacent span in the start and end (triple span

condition). Shoring decks are not considered.

The profile sections are chosen by the Canadian Handbook of the Steel Con-
struction, starting from W410� 39 and ending with W690� 289. The steel yield-

ing stress, steel modulus of elasticity, and concrete compression capacity are

3550 kg/cm2, 2,050,000 kg/cm2, and 200 kg/cm2, respectively.

The values of the cost coefficients are determined by other researchers (Poitras

et al. [8]) and engineering experiences. Cost coefficients are given in Table 9.1.

W

L

B

Girder

Girder

Edge beam

Edge beam

Interior beam

Interior beam

Interior beam

Fig. 9.3 Floor system configuration for the floor division number is equal to 4

Fig. 9.4 Details of a steel deck from Canam® steel catalogue
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Poitras et al. [8] did not consider the effect of shrinkage and temperature as

discussed below. In order to compare the results of this study with their results,

shrinkage and temperature effects are not considered in Example 1. They also used

the S16 standard requirements (CSA [20]). Penalty factors in their work were

considered constant and this assumption decreased the convergence rate.

For comparing results with other researchers and presenting effect of castellated

beams, four problem types are assumed and they are defined in Table 9.2. Also final

costs of each type are presented in this table.

Critical constraints (over 80% demand capacity ratio) are shown in Table 9.3.

Also, detailed results include the section profile of each beam as presented in

Table 9.4.

The results of Example 1 are shown for comparison, and 4% difference is

observed between the results of Poitras et al. [8] and the checked values. It should

be mentioned that they considered 75% for composite action and our study

considers full composite action. Thus, the number of shear studs is lower than our

study.

Table 9.1 Cost coefficients Component Price ($) Unit

Steel profile 2.86 $ per each kg

Welding beams 1 $ per each m

Cutting beams 0.8 $ per each m

Shear studs 2.4 $ per each kg

Concrete 131 $ per each m3

Steel deck 2.25 $ per each kg

Application 10.8 $ per m2

Table 9.2 Problem-type description and costs (Example 1)

Type Description Cost ($) %

1 Poitras et al. [8] best results 14,832 0.96

2 Checking Poitras et al. [8] results 15,523 1.00

3 Optimizing composite beams 14,097 0.91

4 Optimizing composite castellated beams 12,796 0.82

Table 9.3 Critical

constraints (Example 1)a
Type Girders Edge beams Interior beams

1 – – – – – – – – –

2 FM CC VB FM

3 FM CC FM De VB FM De VB

4 FM BU HS De VB HS FM De VB
aHS horizontal shear, RM radial moment, DE deflection, FM
flexural moment, VB vibration, BU buckling web, CC concrete

compression
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By changing floor division numbers and deck sections, a parametric study is

performed for composite and composite castellated beams and it is presented in

Table 9.5.

9.5.2 Example 2: Floor System (Span 6 m and Width 7 m)

This example is similar to Example 1. Span and width are 6 m and 7 m, respec-

tively. The profile sections are chosen from the IPE steel sections, starting from

IPE140 and ending with IPE600. The steel yielding stress, steel modulus of

elasticity, and concrete compression capacity are 2400 kg/cm2, 2,039,000 kg/cm2,

and 250 kg/cm2, respectively. The effects of shrinkage and temperature are consid-

ered. There is no uniform distributed load on edge beams and girders. In order to

simulate adjacent bay conditions, they also resist two times of typical load of the

exiting bay. Because the same loading was used on the interior and edge beams,

their results are presented together. Other parameters of Example 2 are similar to

those of Example 1.

Critical constraints (over 80%), detailed results, and costs of the choices are

shown in Table 9.6, Table 9.7, and Table 9.8, respectively. Also, hole spacing for

cutting depths is extracted from detailed results for beams, and the average of these

ratios is calculated and presented in Table 9.9.

Table 9.5 Effect of the floor division number and deck section on the total cost (Example 1)

Floor division number

Deck price

Composite beams Composite castellated beams

Low Medium High Low Medium High

2 20,197 17,851 17,207 19,762 16,350 17,484

3 14,892 14,170 14,323 14,422 13,969 14,446

4 14,399 14,097 14,639 12,796 13,312 13,842

5 14,208 14,274 14,444 13,781 15,440 14,057

Table 9.4 Results (Example 1)

Type

Girders Edge beams Interior beams Concrete floor

Section Section Section Number

Steel thickness

(mm) Depth (mm)

1 W530� 82 W460� 60 W460� 60 2 0.76 140.00

2 W530� 82 W460� 60 W460� 60 2 0.76 140.00

3 W460� 60 W410� 39 W410� 46 3 0.91 125.00

4 W460� 52 W410� 39 W410� 39 3 0.76 125.00
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9.6 Concluding Remarks

Optimization and parametric studies of steel floor systems with composite and

castellated beams and steel decks are performed in this study. The objective

function is the floor cost where 17 variables and parameters are considered. The

stress, stability, deflection, and vibration criteria are all discussed. Results indicate

that:

1. Using the high-price decks in order to amplify the composite action can improve

the results and decrease the cost between 5 and 10% in composite beams and

composite castellated beams. It seems that choosing the most expensive deck

does not guarantee the best result. So considering the first three acceptable decks

is a good assumption.

2. Considering different number of divisions can decrease the total cost between

10 and 20%.

3. Using composite castellated beams improves the results by about 14% com-

pared to the composite beams.

4. The optimum degree of castellated cutting angle is about 63�.
5. Average ratio of hole spacing to cutting depth is between 2 and 3. This ratio is 3

for commercial castellated beams

The results show that the utilized optimization algorithm, ECBO, performs quite

well, and it has reliable and accurate solution. The fast-converging feature of the

standard CBO is generally preserved in ECBO, whereas the modifications of the

latter algorithm improve the exploration capabilities of the CBO. One can conclude

that ECBO algorithm is competitive with the other available optimization methods.

For an extensive comparative study of ECBO, when applied to different structural

optimization problems, one can refer to Kaveh [21].

Table 9.6 Critical constraints (Example 2)a

Floor division number Deck price Girders Interior and edge beams

3 Low HS FM RM HS FM RM VS

Medium HS HS FM RM VS

High HS FM RM HS FM RM VS

4 Low HS FM RM HS FM RM

Medium HS HS FM VS DE

High FM HS FM RM

5 Low HS RM HS RM FM VS

Medium HS FM RM HS FM VS DE

High HS FM VS HS FM VS
aHS horizontal shear, RM radial moment, DE deflection, FM flexural moment, VS vertical shear
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Chapter 10

Optimal Design of the Monopole Structures

Using the CBO and ECBO Algorithms

10.1 Introduction

Tubular steel monopole structures are widely used for supporting antennas in

telecommunication industries. This chapter utilizes two recently developed

metaheuristic algorithms, so-called colliding bodies optimization (CBO) and its

enhanced version (ECBO), for size optimization of monopole steel structures. The

optimal design procedure aims to obtain minimum weight of monopole structures

subjected to the TIA-EIA222F specifications. Two numerical examples are exam-

ined to verify the suitability of the design procedure and to demonstrate the

effectiveness and robustness of the CBO and ECBO in creating optimal design for

this problem. The outcomes of the ECBO are also compared to those of the standard

CBO to illustrate the importance of the enhancement of the CBO algorithm [1].

Over the last decade, there has been an increasing use of cellular telephones,

including new smartphones, for voice and data communication, and wireless

Internet access, which has increased the demand for wireless data transmission

bandwidth. As a result, there has been a large increase in the number of monopoles

installed around populated areas to support antennas. Monopoles have become an

important part of our communications infrastructure [2–4]. Therefore, optimal

design of the monopole structures can be an interesting and challenging issue in

the structural engineering research.

The monopole structures can be categorized based on cross-sectional variations

along height into two types: the tapered type and stepped type. In tapered type the

cross section is continuously decreasing from bottom to top of monopole, and in

stepped type the structure is divided into some parts with abrupt changes between

sections [2]. The sections of stepped monopoles can be circular and polygonal in

shape [5]. Figure 10.1 shows the schematic shape of a treble-part-monopole with

circular sections. The main objective of this chapter is to find the optimum size of

sections of the steel circular stepped monopoles. Here, the CBO and ECBO

algorithms are utilized for optimization, where the weight of the monopole is

© Springer International Publishing AG 2017
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considered as the objective function. The design method used in this chapter is also

consistent with TIA-EIA222F specifications [6].

Optimization algorithms can be divided into two categories: (1) local optimizers

and (2) global optimizers. Local optimizer algorithms which often utilize the

gradient information or iterative methods to search the solution space near an initial

starting point by local changes, are hard to apply and time-consuming in these

Fig. 10.1 The circular treble-part-monopole: (a) Three-dimensional view, (b) front view
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optimization problems. Therefore, global optimizers such as metaheuristic algo-

rithms are proposed for solving difficult optimization problems by performing

global search [7, 8]. In recent years, many metaheuristics have been developed

based on or inspired by natural phenomena from a variety of scientific fields (see,

e.g., [9–12]). CBO belongs to a family of metaheuristic algorithms which are

recently developed by the author and colleagues [8, 13]. This algorithm can be

considered as a multi-agent method, where each agent is a colliding body (CB).

Simple formulation and no internal parameter tuning are advantages of this algo-

rithm. The ECBO was introduced by Kaveh and Ilchi Ghazaan [14], and it uses

memory to save some historically best solutions to improve the CBO performance

without increasing the computational cost. ECBO also changes some components

of agents randomly to help them leave the local minima.

In this chapter, two design examples are considered to be optimized by CBO and

ECBO algorithms. Comparison of the optimal solutions of the ECBO algorithm

with those of the CBO method demonstrates the capability of CBO in solving the

present type of design problems. It is also observed that optimization results

obtained by the ECBO algorithm for two design examples have less weight in

comparison to the results of the standard CBO algorithm. From the results obtained

in this chapter, it can be concluded that the optimum structures obtained by

metaheuristic algorithms require smaller amount of steel material.

The remainder of this chapter is organized as follows: In Sect. 10.2, firstly, the

mathematical formulations of the structural optimization of monopole structure

problems are presented, and a brief explanation of the TIA-EIA222F [6] is pro-

vided. In Sect. 10.3, after an explanation of the CBO, the ECBO algorithm is

presented. Section 10.4 includes two standard examples. The last sections provide

a discussion on the results of the examples and conclude the chapter.

10.2 Monopole Structure Optimization Problem

The optimization problem can formally be stated as follows:

Find X ¼ x1; x2; x3; . . . ; xn½ �
to minimizes Mer Xð Þ ¼ f Xð Þ � f penalty Xð Þ
subjected to gi Xð Þ � 0, i ¼ 1, 2, . . . ,m

ximin � xi � ximax

ð10:1Þ

where X is the vector of design variables with n unknowns, gi is the ith constraint

fromm inequality constraints, Mer(X) is the merit function, f(X) is the cost function,
fpenalty(X) is the penalty function which results from the violations of the constraints

corresponding to the response of the monopole structures, and also ximin and ximax

are the lower and upper bounds of the design variable vector, respectively.
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Exterior penalty function method is employed to transform the constrained

optimization problem into an unconstrained one as follows:

f penalty Xð Þ ¼ 1þ γp
Xm
i¼1

max 0, gj xð Þ
� �

ð10:2Þ

where γp is the penalty multiplier.

10.2.1 Design Variables

The most effective parameters for creating the monopole structure geometry are

shown in Fig. 10.1. These parameters can be adopted as design variables:

X ¼ D1 D2 � � � Dn t1 t2 � � � tnf g ð10:3Þ

where X, the vector of design variables, contains 2n shape parameters of monopole

structures, n is the number of monopole parts, and Di and ti are the diameter and

thickness of pipe cross section of ith part.

10.2.2 Design Constraints

Design constraints are divided into some groups including the operational, stress,

and stability constraints. The operational constraint is the restricted rotation at the

top of pole structure that is limited to 1.5�. The stress constraint is considered

according to ASICE-LRFD [15] manual. The constraint on the local stability of the

cross-section is achieved as follows:

Di

ti
� 0:11

E

Fy

) Di

ti
� 96:25 ð10:4Þ

where E and Fy are the modulus of elasticity and minimum yield stress of the

material, respectively. Here, it is assumed that the material type is st-37 (E¼ 210

GPa, Fy¼ 240 MPa, and ρ¼ 7928.5 kg/m3).

10.2.3 Cost Function

The cost function is the weight of the monopole structure, which may be expressed

as
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f Xð Þ ¼
Xn
i¼1

ρVi ¼
Xn
i¼1

ρAili ¼
Xn
i¼1

ρ 2πritið Þli ð10:5Þ

where ρ is the weight per volume of monopole material and Vi, Ai, and li are the

volume, cross-sectional area, and length of ith part of monopole structure,

respectively.

10.2.4 The Applied Loads

In this study, TIA-EIA222F [6] specifications are used for considering the wind and

ice loading and their influence on structures. The applied loads on the monopole

structures consist of the vertical and horizontal loads, which are described in the

following subsections.

10.2.4.1 The Vertical Loads

The most effective vertical loads, which should be considered in analysis process,

consist of the self-weight of structure, the weight of ice, and the weight of appur-

tenance (i.e., dish, light rod, and cable). For considering the load of ice weight, it is

assumed that the type of ice is solid and its density (ρice) is equal to 897.043 kg/m3

and thickness of attached ice on structure (tice) is 0.0127 m (0.5 in). Thus, the weight

of ice on unit length of ith part of pole structure (Wice
i ) is calculated as

W ice
i ¼ ρiceSitice ¼ 897:043* πDið Þ*0:0127 ¼ 35:790Di ð10:6Þ

where Si and Di are the circumference and diameter of cross section of the ith part.

The (Wice
i ) load is a uniform load which is vertically assigned to the ith part.

In the load case of attached appurtenance weight at the top of pole structure, the

weight of feedle cable of monopole is assumed as 2721.6 kg. The weight of dish and

light rod with and without ice weight are also assumed as in Table 10.1. It should be

noted that these concentrated loads are assigned to the top point of the pole

structure.

10.2.4.2 The Horizontal Loads

The wind load is considered as lateral load applied to the pole structure. The applied

distributed wind load to unit length of the ith part (ωwind
i ) is calculated as
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ωwind
i ¼ FiZi ð10:7Þ

where Zi is the elevation of the center of the ith part and Fi is related to the

coefficient of wind force of the ith part which is calculated as

Fi ¼ GhQziAeiCF ð10:8Þ

where Gh is the gust response factor for the fastest mile basic wind speed and it is

assumed as 1.69 for pole structures. The structure force coefficient CF is deter-

mined as 0.59 based on Table 1 of TIA/EIA-222-F. Qz is the velocity pressure and

determined as

Qzi ¼ 0:613KziV
2 ð10:9Þ

where V is the basic wind speed of the location of the structure that is assumed as

36.1 m/s (130 km/h) and Kz is the exposure coefficient:

Kzi ¼ Zi=10ð Þ0:285 � 1 ð10:10Þ

Also, Aei is the effective projected area of the ith part cross section in one face:

Aei ¼ 1:03Agi ¼ 1:03LiDi ð10:11Þ

where Agi, Li, and Di are the projected area, length, and diameter of the ith part.

Moreover, the ice effect is ignored in above equation. If we consider the ice

thickness (i.e., 0.0254 m or 1 in. on the diameter of pole structure, Aei is modified as

Ae icei ¼ 1:03Ag ice
i ¼ 1:03Li Di þ 0:0254ð Þ ð10:12Þ

The wind load applied to the appurtenance at the top of the pole structure is

similarly calculated. In this case, the coefficient of wind force (F) is calculated as

F ¼ GhQzAaCa ð10:13Þ

where Aa and Ca are the projected area and force coefficients of appurtenance,

respectively. The appurtenance force coefficient (Ca) is assumed as 1.20 based on

Table 3 of TIA/EIA-222-F. The Aa is assumed as 1.45 and 1.50 m2 with and without

the effect of ice thickness on the appurtenance, respectively.

Table 10.1 Weight of the

appurtenance loading with

and without the influence

of ice

Description Weight (kg)

The light rod 16

The dish 1235

Sum of the weights 1251

Sum of the weights with considering the ice 1625
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10.2.5 Loading Combinations

In this chapter, two loading combinations have been considered based on existence

of the ice load effect. Then, two loading combinations are defined:

The load combination 1 (without consideration of the ice load effect): dead load

(consisting of the self-weight of structure and weight of the appurtenance) +wind

load (consisting of the applied wind load to the face of the pole structure and

appurtenance without the ice thickness)

The load combination 2 (with consideration of the ice load effect): dead load

(consisting of the self-weight of structure, weight of the appurtenance, and ice

thickness) +wind load (consisting of the applied wind load to the face of pole

structure and appurtenance with consideration of the ice thickness)

10.3 Enhanced Colliding Bodies Optimization Algorithm

Optimization of monopole structures is a complex problem because of a large

search space, multiple local optima, and corresponding constraints. In this chapter

we apply a simple and efficient metaheuristic algorithm, the so-called enhanced

colliding bodies optimization (ECBO), to solve this problem. For comparative

study and showing the complexity of the problem, the standard CBO is also

utilized. In the following, both standard CBO and ECBO algorithms are briefly

introduced.

10.3.1 Colliding Bodies Optimization Algorithm

The CBO is based on momentum and energy conservation law for one-dimensional

collision [13]. This algorithm contains a number of colliding bodies (CBs) where

each one is treated as an object with specified mass and velocity which collides with

others. After collision, each CB moves to a new position with new velocity with

respect to old velocities, masses, and coefficient of restitution. CBO starts with a set

of agents determined with random initialization of a population of individuals in the

search space. Then, CBs are sorted in an ascending order based on the values of cost

function (see Fig. 10.2a). The sorted CBs are divided equally into two groups. The

first group is the stationary group, which consists of good agents for which the

velocities before collision are zero. The second group consists of moving agents

which move toward the first group. Then, the better and worse CBs, i.e., agents with

upper fitness value, of each group collide together to improve the positions of

moving CBs and to push stationary CBs toward better positions (see Fig. 10.2b).

The change of the colliding bodies positions represent the velocities of the CBs

before collision as
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vi ¼ 0, i ¼ 1, . . . , n
xi � xi�n, i ¼ nþ 1, . . . , 2n

�
ð10:14Þ

wherevi andxi are the velocity vector and position vector of the ith CB, respectively,
and 2n is the population size.

After the collision, the velocity of bodies in each group is evaluated using

momentum and energy conservation law and the velocities before collision. The

velocity of the CBs after the collision is

v
0
i ¼

miþn þ εmiþnð Þviþn

mi þ miþn
, i ¼ 1, . . . , n

mi � εmi�nð Þvi
mi þ mi�n

, i ¼ nþ 1, . . . , 2n

8>><
>>:

ð10:15Þ

where vi and v0i are the velocities of the ith CB before and after the collision,

respectively, and mi is the mass of the ith CB defined as

mk ¼
1

fit kð ÞXn
i¼1

1

fit ið Þ
, k ¼ 1, 2, . . . , 2n ð10:16Þ

where fit(i) represents the objective function value of the ith agent. Obviously, a CB
with good values exerts a larger mass and fewer moves than the bad ones. Also, for

maximizing the objective function, the term 1
fit ið Þ is replaced by fit(i). ε is the

coefficient of restitution (COR) and is defined as the ratio of the separation velocity

of the two agents after collision to the approaching velocity of the two agents before

collision. In this algorithm, this index is defined to control the exploration and

exploitation rates. For this purpose, the COR decreases linearly from unit value to

zero. Here, ε is defined as

ε ¼ 1 � iter=itermaxð Þ ð10:17Þ

where iter is the actual iteration number and itermax is the maximum number of

iterations. Here, COR values equal to unity and zero correspond to the global and

Fig. 10.2 (a) The sorted

CBs in an increasing order.

(b) The pairs of objects for

the collision
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local search phases, respectively. In this way a good balance between the global and

local search is achieved as the iteration number increases.

The new positions of CBs are evaluated using the generated velocities after the

collision in the position of stationary CBs:

xnewi ¼ xi þ rand∘v
0
i , i ¼ 1, . . . , n

xi�n þ rand∘v
0
i , i ¼ nþ 1, . . . , 2n

�
ð10:18Þ

where xnewi and v0i are the new position and the velocity after the collision of the ith
CB, respectively.

10.3.2 Enhanced Colliding Bodies Algorithm

In order to improve the CBO to obtain faster and more reliable solutions, ECBO

was developed which uses a memory to save a number of historically best CBs and

also utilizes a mechanism to escape from local optima [14]. The steps of this

technique are given as follows:

Level 1: Initialization

Step 1: The initial positions of all the CBs are determined randomly in the search

space.

Level 2: Search

Step 2: The value of mass for each CB is evaluated according to Eq. (10.16).

Step 3: Colliding memory (CM) is utilized to save a number of historically best CB

vectors and their related mass and objective function values. Solution vectors

which are saved in CM are added to the population and the same number of

current worst CBs are removed. Finally, CBs are sorted according to their

masses in a decreasing order.

Step 4: CBs are divided into two equal groups: (i) stationary group and (ii) moving

group (Fig. 10.2).

Step 5: The velocities of stationary and moving bodies before collision are evalu-

ated by Eq. (10.14).

Step 6: The velocities of stationary and moving bodies after the collision are

evaluated using Eq. (10.15).

Step 7: The new position of each CB is calculated by Eq. (10.18).

Step 8: A parameter like Pro within (0, 1) is introduced, which specifies whether a

component of each CB must be changed or not. For each colliding body, Pro is

compared with rni (i¼ 1, 2, . . ., n) which is a random number uniformly distrib-

uted within (0, 1). If rn<Pro, one dimension of the ith CB is selected randomly

and its value is regenerated as follows:
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xij ¼ xj,min þ random: xj,max � xj,min

� � ð10:19Þ

where xij is the jth variable of the ith CB and xj,min and xj,max are the lower and upper

bounds of the jth variable, respectively. In order to protect the structures of CBs,

only one dimension is changed.

Level 3: Termination Condition Check

Step 9: After a predefined maximum evaluation number, the optimization process is

terminated.

10.4 Design Examples

In this section, two recently developed optimization algorithms consisting of the

CBO and ECBO are utilized for optimization of two monopole structures. The

number of design variables for the first and the second examples are 10 and

12, respectively. Similarly, the number of colliding bodies (CBs) or agents for

these examples is considered as 30. For both examples, the maximum number of

iterations is considered as 200. For the sake of simplicity, the penalty approach is

used for constraint handling. The optimization algorithms and the analysis and design

of monopole structures are coded in MATLAB and SAP200 software, respectively.

10.4.1 A 30 m High Monopole Structure

As the first example, a monopole structure with a height of 30 m is considered. The

height of the structure is divided into five equal parts. For this test example, the

weight of structure is the objective function. The monopole structure is modeled by

ten shape design variables as

X ¼ D1 D2 D3 D4 D5 t1 t2 t3 t4 t5f g ð10:20Þ

Design variables can be selected from a discrete list of available values set D¼
{20, 21, 22, . . ., 89, 90} cm and t¼ {0.4, 0.45, 0.5, 0.6, 0.8, 0.9, 1} cm, which have

78 discrete values.

Table 10.2 compares the results obtained by both algorithms with engineering

design values, for which the appropriate values are determined by the author using

trial–error method [16]. The constraint values are also shown in Table 10.2; it can

be seen that all constraints of the results of both algorithms are satisfied. Moreover,
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the evolution process of best fitness values obtained by both algorithms are shown

in Fig. 10.3.

10.4.2 A 36 m High Monopole Structure

We now consider a monopole structure with a height of 36 m. The height of the

structure is divided into six equal parts. Similarly, for this test example, the weight

of the structure is the objective function. All assumptions and definitions are the

same to the first example. The monopole structure is modeled by 12 shape design

variables as

X ¼ D1 D2 D3 D4 D5 D6 t1 t2 t3 t4 t5 t6f g ð10:21Þ

Table 10.3 compares the results obtained by both algorithms with engineering

design values. All of the constraints for the designs obtained by both algorithms are

satisfied as the first example. Moreover, the evolution process of best fitness values

obtained by both algorithms are shown in Fig. 10.4.

Table 10.2 Optimum design variables (cm) for the 30 m high monopole using different methods

Design variables Engineering design CBO ECBO

D5 40 38 38

D4 47 50 55

D3 60 57 59

D2 70 73 69

D1 80 75 76

t5 0.45 0.6 0.4

t4 0.5 0.6 0.6

t3 0.8 0.6 0.8

t2 0.8 0.8 0.8

t1 1 1 0.8

Weight (kg) 3329.4 3253.4 3123.1

Rotation 1.3454 1.3469 1.3499

Maximum stress ratio 0.4194 0.4416 0.4574

Maximum (D/t) 94.00 95.00 95.00

Rotation: rotation at top pole structure (degree)
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10.5 Discussion on the Results of the Examples

In this section, the results obtained in the examples will be discussed. Firstly, it

should be noted that optimization of monopole structures is a non-convex and

nonlinear optimization problem, because the stiffness and applied loads [consisting

of the self-weight, ice, and wind load as described in Eqs. (10.6–10.13)] simulta-

neously increase with increasing the cross-sectional diameters of parts.

Tables 10.2 and 10.3 compare the results obtained using the CBO and ECBO

algorithms with the engineering design ones for both examples, respectively. As

discussed before and shown in these tables, the constraints of the final designs of

both algorithms are satisfied, and therefore these results could be compared with the

engineering design. As anticipated the results obtained using both algorithms are
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Fig. 10.3 Comparison of the convergence rates between the two algorithms for the first example.

(a) All iterations, (b) 10–200 iterations [1]
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better than the engineering design for both examples. Moreover, the results

obtained by the ECBO algorithm are better than those of CBO using the same

number of objective function evaluations.

It can be seen from Figs. 10.3 and 10.4, though the CBO algorithm is consider-

ably faster in the early optimization iterations, the ECBO algorithm has converged

to a significantly better design in the latter optimization iterations without being

trapped in local optima.

10.6 Concluding Remarks

An efficient optimization method is proposed for optimal design of the steel circular

stepped monopole structures, based on CBO and ECBO algorithms. The CBO

mimics the laws of collision between objects. The simple implementation and

parameter independency are definite strength points of CBO. In the ECBO, some

strategies have been utilized to promote the exploitation ability of the CBO. In

order to find the optimal cross-sectional sizes of monopole structure, the weight of

monopole and cross-sectional sizes are respectively defined as objective function

and variables in the optimization process. Then, the cross-sectional sizes are

selected based on optimization algorithms from available discrete variables.

The validity and efficiency of the proposed method are shown through two test

problems. The results of the proposed algorithms are compared to those of the

engineering design values. The results indicate that both algorithms could decrease

Table 10.3 Optimum design variables (cm) for the 36 m high monopole using different methods

Design variables Engineering design CBO ECBO

D6 43 40 39

D5 57 56 56

D4 66 65 64

D3 73 74 74

D2 75 76 76

D1 85 86 86

t6 0.5 0.45 0.45

t5 0.6 0.60 0.60

t4 0.8 0.80 0.80

t3 0.8 0.80 0.80

t2 0.8 0.80 0.80

t1 1 1 0.90

Weight (kg) 4608.55 4557.59 4430.80

Rotation 1.4115 1.4449 1.4951

Maximum stress ratio 0.6247 0.6060 0.6041

Maximum (D/t) 95.00 95.00 95.00

Rotation: rotation at top pole structure (degree)
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the weight of engineering design monopole structures without causing any viola-

tions. Moreover, the ECBO algorithm clearly outperforms the CBO algorithm with

the same computational time. This indicates the importance of selecting the effec-

tive optimization algorithm in this problem. Future researches can investigate

problems such as optimization of other types of monopole structures using recently

developed metaheuristic optimization algorithms.
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Chapter 11

Damage Detection in Skeletal Structures

Based on CSSOptimization Using Incomplete

Modal Data

11.1 Introduction

It is well known that damaged structural members may alter the behavior of the

structures considerably. Careful observation of these changes has often been

viewed as a means to identify and assess the location and severity of damages in

structures. Among the responses of a structure, natural frequencies and natural

modes are both relatively easy to obtain and independent from external excitation

and, therefore, can be used as a measure of the structural behavior before and after

an extreme event which might have led to damage in the structure. This chapter

applies charged system search algorithm to the problem of damage detection using

vibration data. The objective is to identify the location and extent of multi-damage

in a structure. Both natural frequencies and mode shapes are used to form the

required objective function. To moderate the effect of noise on measured data, a

penalty approach is applied. A variety of numerical examples including beams,

frames, and trusses are examined. The results show that the present methodology

can reliably identify damage scenarios using noisy measurements and incomplete

data [1].

During the past two decades, structural damage identification has gained increas-

ing attention from the scientific and engineering communities, since damage that is

not detected and not repaired may lead to catastrophic structural failure. Former

methods of damage identification either visual or localized experimental methods

require that the vicinity of the damage is known and accessible. Hence, the

vibration-based damage identification method as a global damage identification

technique is developed to overcome these difficulties. The basic idea of vibration-

based damage methods is that modal parameters (notably frequencies, mode

shapes, and modal damping) are functions of the physical properties of the structure

(mass, damping, and stiffness). Therefore, changes in the physical properties will

cause changes in the modal properties [2].
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The usual model-based damage detection methods minimize an objective func-

tion, which is defined in terms of the discrepancies between the mathematical

model and real structural system. There are two general methods to optimize the

objective function, namely, mathematical programming and metaheuristic

methods. Unlike the mathematical methods, one of the important characteristics

of metaheuristic methods is their effectiveness and robustness in coping with

uncertainty, insufficient information, and noise. Many successful applications of

damage detection using the metaheuristic algorithms have been reported in the

literature. Perera and Torres [3] proposed a method based on mode shapes and

frequencies using genetic algorithm on beams. Laier and Morales [4] improved the

genetic algorithm to solve damage detection problem for two-dimensional truss-

type structures. They used natural frequencies and mode shapes to form objective

function. Miguel et al. [5] combined time-domain modal identification technique

(SSI) with evolutionary harmony search (HS) algorithm to detect damages under

ambient vibration; they studied three cantilever beams under different damage

scenarios. Kang et al. [6] proposed an immunity-enhanced particle swarm optimi-

zation (IEPSO) for damage detection of structures; they tested this method on a

simple beam and a truss. Majumdar et al. [7] presented a method to identify

structural damages in truss structures from changes in natural frequencies by

using ant colony optimization.

Natural frequencies and mode shapes are the most popular parameters used in

the damage identification. These gain their popularity because the modal properties

have their physical meanings and are thus easier to be interpreted or interrogated

than those abstract mathematical features extracted from the time or frequency

domain [8].

Metaheuristic optimization methods are the recent generation of optimization

methods. These methods are inspired from natural phenomena. Particle swarm

optimization proposed by Eberhart and Kennedy [9] and ant colony optimization

proposed by Dorigo et al. [10] simulate social behavior of animals. Harmony search

presented by Geem et al. [11], Big Bang–Big Crunch algorithm proposed by Erol

and Eskin [12], charged system search proposed by Kaveh and Talatahari [13],

magnetic charged system search (MCSS) proposed by Kaveh et al. [14], ray

optimization of Kaveh and Khayatazad [15], and dolphin echolocation optimization

of Kaveh and Farhoudi [16] are other metaheuristic algorithms which have sources

in nature.

In this chapter an objective function based on natural frequencies and mode

shapes is used to solve damage detection problem. Charged system search algo-

rithm and enhanced charged system search are utilized to search for global opti-

mum of the proposed objective function. The damage detection methodology is

applied to four different types of structures.

202 11 Damage Detection in Skeletal Structures Based on CSS Optimization Using. . .



11.2 Damage Identification Methodology

The proposed damage detection method consists of performing an optimization

problem through an objective function based on vibration data. Here, damage is

considered as a reduction in the elastic modulus.

11.2.1 Objective Function

The objective function is based on natural frequencies and mode shapes and is

given by Eq. (11.1). Due to measurement noise, tendency will always be to find

damage at most of the elements [17]. Thus, a penalty is introduced to weigh against

an increased number of damage sites:

cost ¼ E 1þ β � penaltyð Þ, E ¼ Eϕ þ Eω ð11:1Þ

Eϕ ¼
Xr
j¼1

ϕm
j � ϕa

j

ϕm
j þ ϕa

j

ð11:2Þ

Eω ¼
Xr
j¼1

ωm
j � ωa

j

� �2
ωm
j

� �2
0
B@

1
CA ð11:3Þ

where ωm
j and ωa

j are the jth measured and analytical natural frequencies of the

damaged structure, respectively; ϕm
j and ϕa

j are the measured and analytical values

of the jth mode shapes, respectively; r is the number of measured modes; and β is a

penalty factor which is related to the type of structure and the closeness of the

measured data and the exact data. Here, penalty is the number of damaged elements

in the analytical model.

11.3 Optimization Algorithm

11.3.1 Standard Charged Search System

Charged system search is a population-based metaheuristic algorithm proposed by

Kaveh and Talatahari [12]. This algorithm is based on laws from electrostatics of

physics and Newtonian mechanics. The pseudo-code of the CSS algorithm is

presented as follows [18]:
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Level 1: Initialization

Step 1: Initialization. Initialize the parameters of the CSS algorithm. Initialize an

array of charged particles (CPs) with random positions. The initial velocities of

the CPs are taken as zero. Each CP has a charge of magnitude (q) defined

considering the quality of its solution as

qi ¼
fit ið Þ � fitworst

fitbest � fitworst
ð11:4Þ

where fitbest and fitworst are the best and the worst fitness of all the particles

respectively, and fit(i) represents the fitness of agent i. The separation distance rij
between two charged particles is defined as

rij ¼ Xi � Xj

XiþXjð Þ
2

� Xbest þ ε
ð11:5Þ

where Xi and Xj are the positions of the ith and jth CPs, respectively, Xbest is the

position of the best current CP, and ε is a small positive value to avoid singularities.

Step 2: CP ranking. Evaluate the magnitudes of the fitness function for the CPs,

compare with each other, and sort them in increasing order.

Step 3: CM creation. Store the number of the first CPs equal to charged memory

size (CMS) and their related values of the fitness functions in the charged

memory (CM).

Level 2: Search

Step 1: Attracting force determination. Determine the probability of moving each

CP toward the others considering the following probability function:

pmji ¼ 1 , fit ið Þ > fit jð Þ _ 0:02 1� iter

itermax

� �� �
> rand

0 , else,

8<
: ð11:6Þ

and calculate the attracting force vector for each CP as follows:

Fj ¼ qj
X
i, i 6¼j

qi
a3
rij � i1 þ qi

r2ij
� i2

 !
pij Xi � Xj

� �
,

i1 ¼ 1, i2 ¼ 0 , rij < a,
i1 ¼ 0, i2 ¼ 1 , rij � a;

�
ð11:7Þ

where Fj is the resultant force affecting the jth CP.

Step 2: Solution construction. Move each CP to the new position and find its

velocity using the following equations:
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Xj, new ¼ randj1 ∙ ka ∙
Fj

mj
∙Δt2 þ randj,2 ∙ kv ∙Vj,old ∙Δtþ Xj,old ð11:8Þ

Vj, new ¼ Xj, new � Xj, old

Δt
ð11:9Þ

where randj2 and randj2 are two random numbers uniformly distributed in the range

(1,0); mj is the mass of the CPs, which is set to unity in this chapter; Δt is the time

step, which is set to 1; ka is the acceleration coefficient; and kv is the velocity

coefficient to control the influence of the previous velocity. In this chapter kv and ka
are taken as

ka ¼ ca 1þ iter

itermax

� �
ð11:10Þ

kv ¼ cv 1� iter

itermax

� �
ð11:11Þ

where ca and cv are two constants to control the exploitation and exploration of the

algorithm, iter is the iteration number, and itermax is the maximum number of

iterations.

Step 3: CP position correction. If each CP exits from the allowable search space,

correct its position.

Step 4: CP ranking. Evaluate and compare the values of the fitness function for the

new CPs, and sort them in an increasing order.

Step 5: CM updating. If some new CP vectors are better than the worst ones in the

CM, in terms of their objective function values, include the better vectors in the

CM and exclude the worst ones from the CM.

Level 3: Controlling the Terminating Criterion

Repeat the search level steps until a terminating criterion is satisfied.

11.3.2 Enhanced Charged Search System

As mentioned before, CSS is a population-based algorithm. For multi-agent

methods, the updating process is performed after all agents have created their

solutions. Similarly, for the CSS algorithm, when the calculations of the amount

of forces are completed for all CPs and the new locations of agents are determined,

the CM updating is performed. In the present case, it is assumed that after creating

each solution, all updating processes are performed. In this way, the new position of
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each agent can affect on the moving of the subsequent CPs, while in the standard

CSS unless an iteration is completed, the new positions cannot be utilized. Due to

using the information obtained by the CPs immediately after creation, this modifi-

cation enhances the intensification of the algorithm [19].

11.4 Numerical Examples

In this section, the efficiency and effectiveness of the proposed methods are

evaluated through some numerically simulated damage identification tests using

incomplete modal data. A continuous beam, a three-story and three-span plane

frame, and a two- and three-dimensional truss are considered with two different

damage scenarios for each of them. Due to the stochastic nature of the metaheuristic

algorithms for each scenario, the algorithm is run ten times and the solution with the

lowest cost is selected as the ultimate damage scenario. The mode shapes are

measured with less accuracy than the natural frequencies. In order to simulate the

conditions of a real test, the measured parameters are numerically perturbed by 1%

for natural frequencies and 3% for mode shapes to consider the presence of the

noise.

11.4.1 A Continuous Beam

For the first example, a continuous beam depicted in Fig. 11.1 is considered. Beam

length is equally divided into 26 elements with a uniform section (IPE240). The

area of cross section and moment of inertia of the simulated beam are 39.1 cm2 and

3892 cm4, respectively. The modulus of elasticity and the material density are

200 GPa and 7780 kg/m3, respectively. The first six natural frequencies and mode

shapes of the structure are used to form the objective function. Figures 11.2 and

11.3 represent the damage states found by both optimization algorithms with the

actual damage states in different scenarios.

11.4.2 A Planar Frame

The frame with three spans and three stories depicted in Fig. 11.4 is considered as

the second example. The sections used for the beams and columns are IPE240 and

IPE300, respectively. The modulus of elasticity and material density are identical to

those of the previous model. The first six natural frequencies and six mode shapes of

the structure are utilized to form the objective function. Figures 11.5 and 11.6

represent the damage states found by both optimization algorithms with the actual

damage states in different scenarios.
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Fig. 11.3 Damage detection results of the algorithms for the beam (scenario II)
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Fig. 11.4 Schematic of a three-span two-story frame
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Fig. 11.2 Damage detection results of the algorithms for the beam (scenario I)
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Fig. 11.1 Schematic of a beam modeled with 26 finite elements
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11.4.3 A Planar Truss

As the third example, a statically indeterminate truss bridge shown in Fig. 11.7 is

considered. The area of cross section for all elements is taken as 10 cm2. The

modulus of elasticity and material density are the same as the previous model. The

first five natural frequencies and mode shapes of the structure are used to form the

objective function. Figures 11.8 and 11.9 represent the damage states found by both

optimization algorithms with the actual damage states in different scenarios.

11.4.4 A Space Truss

A space truss is considered as the last example. The geometry, element numbering,

and material properties are shown in Fig. 11.10. The first six natural frequencies

and mode shapes of the structure are utilized to form the objective function.

Figures 11.11 and 11.12 represent the damage states found by both optimization

algorithms with the actual damage states in different scenarios.
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Fig. 11.5 Damage detection results of the algorithms for the three-span two-story frame (scenario I)
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Fig. 11.6 Damage detection results of the algorithms for the three-span two-story frame (scenario II)
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11.5 Concluding Remarks

A method for damage detection in skeletal structures based on natural frequencies

and mode shapes is studied in this chapter. A penalty approach is applied to

moderate the effect of noise on modal data. Two versions of the CSS are utilized

for searching the correct damage scenarios. Damage detection is conducted on a
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Fig. 11.7 Schematic of a truss with 25 elements
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Fig. 11.8 Damage detection results of the algorithms for the planar truss (scenario I)
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Fig. 11.9 Damage detection results of the algorithms for the planar truss (scenario II)
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Fig. 11.10 Schematic of a space truss with 25 elements
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Fig. 11.11 Damage detection results of the algorithms for the space truss (scenario I)
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Fig. 11.12 Damage detection results of the algorithms for the space truss (scenario II)
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variety of numerical problems with different scenarios to verify the performance of

the proposed methodologies. In most of the cases, the results show that the

algorithm successfully finds the location and the severity of the damages. In the

continuous beam, the cantilever part is adversely affected by the noise which causes

a misidentification in the second scenario for both algorithms. Generally, it can be

concluded that the both proposed algorithms are quite efficient and robust for

damage detection problems, and they can identify the locations and severities of

damages using incomplete modal data which is contaminated by random noise.
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Chapter 12

Modification of Ground Motions Using

Enhanced Colliding Bodies Optimization

Algorithm

12.1 Introduction

In this chapter a simple and robust approach is presented for spectral matching of

ground motions utilizing the wavelet transform and an improved metaheuristic

optimization technique. For this purpose, wavelet transform is used to decompose

the original ground motions to several levels, where each level covers a special

range of frequency, and then each level is multiplied by a variable. Subsequently,

the enhanced colliding bodies optimization (ECBO) technique is employed to

calculate the variables such that the error between the response and target spectra

is minimized. The application of the proposed method is illustrated through mod-

ifying 12 sets of ground motions [1].

Recent aseismic code regulations recommend the use of linear or nonlinear

dynamic time history analyses for design of irregular, high rise, and important

structures due to the increased capabilities of the commercial software to account

for the potential inelastic behavior of structural systems under seismic time histo-

ries. These acceleration time histories can be achieved either by using a set of real

recorded earthquake accelerograms associated with historical seismic events, or

utilizing an ensemble of numerically simulated earthquake signals. In the latter

approach, one can make pure artificial records and filter them according to the site

characteristics or to reconstruct the real record so that its spectrum fits the target

standard [2]. Obviously finding suitable methods for reconstructing or modifying

realistic ground motions is an important and challenging problem.

The main objective of the reconstruction/modification of ground motions is to

modify a given set of ground motions such that these response spectrums become

compatible with a specified design spectrum. For this purpose, various time or

frequency-domain methods are used. The time-domain methods manipulate only

the amplitude of the recorded ground motions, while the frequency-domain

approaches operate the frequency contents and phasing of actual ground motions

in order to match with the design spectrum. During the last two decades, a number
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of researches are performed on this problem employing the frequency-domain

methods. Gupta and Joshi [3] and Shrikhande and Gupta [4] used the phase

characteristics of recorded accelerograms. Conte and Peng [5] directly modeled

the evolutionary power spectral density function of the ground motion process.

Recently, many researches focused on modifying the recorded ground motions

using wavelet (e.g., Refs. [6–10]). For examples, Hancock et al. [6] utilized wavelet

and Mukherjee and Gupta [7] developed an iterative wavelet-based method for

spectral matching. Cecini and Palmeri [8] also proposed an iterative procedure

based on the harmonic wavelet transform to match the target spectrum through

deterministic corrections to a recorded accelerogram. As will be mentioned in the

coming sections, these works achieved an iterative approach to obtain the sought

spectrum-compatible accelerograms. These approaches do not guarantee the

requirements of the code regulations.

In this chapter an approach is utilized to modify the real ground motions

such that these response spectrums become compatible with the elastic spectrum

of the European Code (CEN [11]) regulation. For this purpose, wavelet trans-

form is used to decompose the ground motions to several levels each covering

a special range of frequency. Then each level is multiplied by a variable.

Subsequently, an optimization algorithm is employed to calculate the variables

to minimize the error between response and target spectrums, while the require-

ments of the code regulations are considered as constrains of the optimization

process [1].

Optimization algorithms can be divided into two categories: (1) deterministic

and (2) stochastic. Deterministic algorithms are mostly gradient-based methods,

and the stochastic algorithms consist of heuristic and metaheuristic methods.

These optimization techniques which mimic stochastic natural phenomena have

emerged as robust and reliable computational tools compared to the conven-

tional gradient-based methods in solving complex problems. The stochastic

nature of such algorithms allows exploration of a larger fraction of the search

space compared to the case of gradient-based methods. Since the objective

function of this work (the difference between design spectrum and average

response spectrum of modified ground motion) is non-smooth and non-convex,

the gradient-based optimization methods can be trapped in local optima. Thus, a

recently developed metaheuristic algorithm is utilized to optimize this objective

function. Some algorithms based on natural evolution phenomenon are devel-

oped by Eberhart and Kennedy [12], Dorigo et al. [13], Eroland and Eksin [14],

Kaveh and Talatahari [15], Sadollah et al. [16], and Kaveh and Mahdavi

[17]. ECBO is an improved version of the recently developed metaheuristic

algorithm so-called colliding bodies optimization (CBO) [18]. Simple formula-

tion and the need for no parameter tuning are the main characteristics of this

algorithm.
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12.2 Spectral Matching Problem According to Eurocode-8

12.2.1 Standard Design Spectrum in Eurocode-8

The elastic acceleration response spectrum, Sa(T ), for oscillators with 5% ratio of

critical damping and natural period, T, is defined by the European seismic code

provisions (CEN [11]) as

Sa Tð Þ ¼

αgS 1þ 1:5T

TB

� �
0 � T � TB

2:5αgS TB � T � Tc

2:5αgS
TC

T

� �
TC � T � TD

2:5αgS
TCTD

T2

� �
TD � T � 4s

8>>>>>>>><
>>>>>>>>:

ð12:1Þ

where S is the soil factor, TB and TC are the limiting periods of the constant spectral

acceleration branch, TD defines the beginning of the constant displacement response

range of the spectrum, and ag is the design ground acceleration on type A ground,

which is defined according to the seismic hazard. In this study, ag is chosen as

0.35 g.

The values of the periods TB, TC, and TD and the soil factor S describing the

shape of the elastic response spectrum depend on the ground type. In Table 12.1, the

specific values that determine the spectral shapes for Type 1 spectra are listed, and

the resulting spectra is normalized by ag and plotted in Fig. 12.1.

12.2.2 Spectra Matching Requirements Based on Eurocode-8

According to Eurocode-8, seismic ground motions can be classified depending on

the nature of the application and on the information actually available by natural,

artificial, or simulated accelerograms. These seismic ground motions should reflect

some important seismological parameters in local seismic scenarios and should

match the following criteria: (1) a minimum of 3 accelerograms should be used;

(2) mean of the zero period spectral response acceleration values should not be

Table 12.1 Values of the

parameters describing the

recommended Type 1 elastic

response spectra

Ground type S TB (s) TC (s) TD (s)

A 1.0 0.15 0.4 2.0

B 1.2 0.15 0.5 2.0

C 1.15 0.2 0.6 2.0

D 1.35 0.2 0.8 2.0

E 1.4 0.15 0.5 2.0
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smaller than the value of agS for the site in question; and (3) in the range of periods
between 0.2Tn and 2Tn, where Tn is the fundamental period of the structure in the

direction where the accelerogram is applied, no value of the mean 5% damping

elastic spectrum calculated from all time histories should be < 90% of the

corresponding value of the 5% damping elastic response spectrum.

Moreover, the code allows the consideration of the mean effect on the structure,

rather than the maximum effect if at least seven nonlinear time history analyses are

performed.

12.3 Wavelet Transform

Wavelet transform provides a powerful tool to characterize local features of a

signal. Unlike Fourier transform, where the function used as the basis of decom-

position is always a sinusoidal wave, other basis functions can be selected for

wavelet shape according to the features of the signal. The wavelet transform uses a

series of high-pass filters to analyze high frequencies of a signal, and a series of

low-pass filters to analyze low frequencies of a signal. In the first level of wavelet

transform process, the signal f(t), which is a finite energy function, is filtered into

high- and low-pass frequency signals indicating a detailed and approximate version

of the original signal, respectively. The low-pass filtered signal (i.e., approximate

signal) is sent to next level, and it filters into high- and low-pass frequency signals

once again. The decomposition levels continue until the desired level is attained, as

shown in Fig. 12.2.

By decomposing a signal f(t) of length T into n signals, the detailed signal at

level j (Dj(t)) is defined as

Fig. 12.1 Elastic response spectra for different site soil classes, based on the EC8
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Dj tð Þ ¼
X1
k¼�1

cDj kð Þψ j,kdk ð12:2Þ

where ψ j is the wavelet function, k is the translation parameter, and cDj(k) is the
wavelet coefficient at level j which is defined as

cDj kð Þ ¼
ð1

�1
f tð Þψ j,kdt ð12:3Þ

The approximate signal at level j is defined as

Aj tð Þ ¼
X1
k¼�1

cAj kð Þφj,kdk ð12:4Þ

where φj is the scaling function and cAj(k) is the scaling coefficient at level j which
is defined as

cAj kð Þ ¼
ð1

�1
f tð Þφj,k dt ð12:5Þ

In this chapter for decomposing the signals, Daubechies wavelet and scaling

function of order 10 (db-10) are used [19]. Finally, the signal f(t) can be represented by

f tð Þ ¼ An tð Þ þ
X
j�n

Dj tð Þ ð12:6Þ

Fig. 12.2 Signal decomposition in wavelet transform
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In wavelet transformation, scaling and wavelet functions are used. These are

related to low-pass and high-pass filters, respectively. A wavelet function can also

be represented as

ψ j,k tð Þ ¼ 1ffiffiffiffi
2j

p ψ
t� 2jk

2j

� �
ð12:7Þ

The scaling function can also be expressed as

φj,k tð Þ ¼ 1ffiffiffiffi
2j

p φ
t� 2jk

2j

� �
ð12:8Þ

In wavelet transform, each Dj(t) has nonzero components only in an exclusive

range of frequency which is denoted by

Frequency range of level j ¼ f1, f2½ � ¼ 1

2jþ1Δt
;

1

2jΔt

� �
ð12:9Þ

Period range of level j ¼ T1, T2½ � ¼ 2jΔt, 2jþ1Δt
� � ð12:10Þ

where Δt is the time step of the signal f(t) (Refs. [20, 21]).

12.4 The Proposed Methodology

An iterative method is used for solving spectral matching problem that is based on

the work of Mukherjee and Gupta [7]. In this method, first an ordinary ground

motion is decomposed using wavelet transform, and detailed signals are deter-

mined. Then, the ground motion is modified by scaling each of the detailed signals

(Dj) up/down based on the amplification/reduction required to reach target spectral

ordinates in the period band corresponding to that time history. Thus, in the ith

iteration, the detailed signals D
i

j

	 

are modified for level j to the modified detailed

signal D
iþ1

j

	 

such that

Diþ1
j ¼ Di

j

ðT2
T1

Sa Tð Þ½ �TargetdTðT2
T1

PSA Tð Þ½ �calculateddT
ð12:11Þ

where T1 and T2 are the period bounds on the range of level j [Eq. (12.10)]. Finally,
a modified ground motion is constructed using Eq. (12.6). The disadvantages of this

method can be mentioned as (i) it modifies only one ground motion, (ii) it cannot
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handle the manual requirements, and (iii) it needs a non-overlapping wavelet

transform for decomposing ground motion.

Here, we propose a new method based on a constrained metaheuristic algorithm,

where its variables are scaling factors of Eq. (12.11), and wavelet transform

modifies the recorded accelerograms until the response spectrum gets close to a

specified design spectrum. Further, the response spectrum obtained from modified

accelerograms should also satisfy the requirements of the Eurocode-8 mentioned in

Sect. 12.2.

The proposed method is briefly outlined as follows:

Step 1. Selection of ground motions: A set of ground motions is selected. According

to Eurocode-8, the minimum number of records for this selection is 3. In this

chapter, three horizontal ground motion components with identical soil condi-

tions are selected from the well-known PEER strong motion database [22].

Step 2. Decomposition of the ground motions: In this step the ground motions are

decomposed with wavelet to levels j¼ n, and the detailed and approximate

signals (Dj and Aj) at each level are specified based on Eqs. (12.2) and (12.4),

respectively. The number of decomposition levels (n) depends on the studied

period range. In this chapter, the studied period range and the time step of ground

motions are taken as 0–5 s and 0.01 s, respectively. Given Eq. (12.10), the

ground motions are decomposed into eight levels using wavelet with the detailed

coefficients covering the period range of [0–5.12] s.

Step 3. Reconstruction of the modified ground motions: After specifying the

detailed and approximate signals of the original ground motions in each level

(in the previous step), the modified ground motions ( fm(t)) can be expressed by

the following equation:

f m tð Þ ¼
Xn
j¼1

αjDj

� �þ αnþ1An ð12:12Þ

where Dj and An are the detailed and approximate signals at levels j and n,
respectively, and αj is the jth modified value. In fact, this value is a variable in

the optimization process. The number of optimization variables is equal to n+ 1

multiplied by the number of ground motions, and in the present chapter, this is

equal to 9 * 3¼ 27.

Step 4. Creation of the response spectrum: In this step, the response pseudo-

acceleration spectrums of the modified ground motions is determined. As men-

tioned before based on Eurocode-8, when a set of 3 through 6 ground motions is

used, the structural engineer should use the maximum response value instead of

the mean response value. Hence, the response spectrum of ground motions

should be calculated as

PSA Tð Þ ¼ max PSAi Tð Þð Þ i ¼ 1, 2, 3 ð12:13Þ

12.4 The Proposed Methodology 219



where PSAi(T ) is the pseudo-acceleration spectrum of the ith modified ground

acceleration in period T which is calculated as

PSA ω; ξð Þ ¼ ω2 max
t

x tð Þj jð Þ, ξ ¼ 5% , ω ¼ 2π

T
ð12:14Þ

€x tð Þ þ 2ξω _x tð Þ þ ω2x tð Þ ¼ �f m tð Þ ð12:15Þ

where ω, ζ, and fm(t) are the fundamental frequency, the damping coefficient of

the single degree of freedom system, and the earthquake ground acceleration,

respectively.

Step 5. Determination of the penalty function: In this chapter penalty method is

utilized to satisfy the code requirements:

Penalty ¼ P1 þ P2 þ P3 ð12:16Þ

P1 ¼ max
�
0, max

i
0:9*Sa Tið Þ � PSA Tið Þð Þ , 0:2Tn � Ti � 2Tn ð12:17Þ

P2 ¼ max 0, Sa T1ð Þ � PSA T1ð Þð Þ , T1 ¼ 0 ð12:18Þ

P3 ¼ max 0, �max
i

αið Þ
� �

, i ¼ 1, 2, . . . , 27 ð12:19Þ

Here, P1 and P2 are considered in order to prevent the maximum response

spectrum from falling below the target spectrum within the code-specific period

range and zero period, respectively; P3 keeps the values of scale factors in the

range of >0. Sa and Tn are the target spectrum and fundamental period of

structure, respectively.

Step 6. Computation of the objective function. In this step the objective function of

the optimization process is computed as

F Xð Þ ¼ Err Xð Þ* 1þ λ*penalty Xð Þð Þ ð12:20Þ

where X is the vector of the optimization variables [i.e., the modified values in

Eq. (12.12)], λ is a large number which is selected to magnify the penalty effects,

and Err is calculated using Eq. (12.21) as the response spectrum becomes close

to the target spectrum:

Err Xð Þ ¼ 100*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

log Sa Tið Þð Þ � log PSA Tið Þð Þð Þ2
vuut ð12:21Þ
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where N is the number of specified periods. Here, 500 period points are consid-

ered in the range [0–5] s with period steps of 0.01 s.

Step 7. Termination criterion: The optimization process is repeated starting with

Step 3 until the maximum number of iterations as a termination criterion is

attained.

Step 8. Correction of baseline: The velocity and displacement time history of

reconstructed ground accelerations do not become unrealistic due to systematic

low-frequency errors. Hence, the baseline correction of the modified

accelerograms is needed for this purpose.

The flowchart of this method is shown in Fig. 12.3.

12.5 Enhanced Colliding Bodies Optimization Algorithm

The ground motion modification problem is a complex problem because of having

a large search space, multiple local optima, and corresponding constraints. In

this chapter we apply a simple and efficient metaheuristic algorithm, so-called

ECBO, to solve this problem. For comparative study and showing the complexity

of the problem, the standard CBO is also utilized. In the following, both standard

CBO and ECBO algorithms are briefly introduced.

12.5.1 Colliding Bodies Optimization Algorithm

The CBO is based on momentum and energy conservation law for one-dimensional

collision (Kaveh and Mahdavi [23]). This algorithm contains a number of colliding

bodies (CB) where each one is treated as an object with specified mass and velocity

which collides with others. After collision, each CB moves to a new position with

new velocity with respect to previous velocities, masses, and coefficient of restitu-

tion. CBO starts with a set of agents determined with random initialization of a

population of individuals in the search space. Then, CBs are sorted in an ascending

order based on the values of their cost functions (see Fig. 12.4a). The sorted CBs are

divided equally into two groups. The first group is stationary and consists of good

agents. This set of CBs is stationary and their velocity before collision is zero. The

second group consists of moving agents which move toward the first group. Then,

the better and worse CBs, i.e., agents with upper fitness values of each group,

collide together to improve the positions of the moving CBs and to push stationary

CBs toward better positions (see Fig. 12.4b). The change of the body position

represents the velocity of the CBs before collision as
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vi ¼ 0, i ¼ 1, . . . , n
xi � xi�n, i ¼ nþ 1, . . . , 2n


ð12:22Þ

where, νi and xi are the velocity vector and position vector of the ith CB, respec-

tively. 2n is the number of population size.

Fig. 12.3 Flowchart of the proposed method
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After the collision, the velocity of bodies in each group is evaluated using

momentum and energy conservation law and the velocities before collision

[Eq. (12.22)]. The velocity of the CBs after the collision becomes

v
0
i ¼

miþn þ εmiþnð Þviþn

mi þ miþn
, i ¼ 1, . . . , n

mi � εmi�nð Þvi
mi þ mi�n

, i ¼ nþ 1, . . . , 2n

8>><
>>:

ð12:23Þ

where vi and v 0i are the velocities of the ith CB before and after the collision,

respectively; mi is the mass of the ith CB defined as

mk ¼
1

fit kð ÞXn
i¼1

1

fit ið Þ
, k ¼ 1, 2, . . . , 2n ð12:24Þ

where fit(i) represents the objective function value of the ith agent. Obviously a

CBs with better objective function values will be assigned with larger mass values.

Also, for maximizing the objective function, the term 1/fit(i) is replaced by fit(i). ε is
the coefficient of restitution (COR) and is defined as the ratio of the separation

velocity of the two agents after collision to approach velocity of two agents before

collision. In this algorithm, this index is defined to control the exploration and

exploitation rates. For this purpose, the COR decreases linearly from unit value to

zero. Here, ε is defined as

ε ¼ 1� iter

itermax

ð12:25Þ

where iter is the actual iteration number and itermax is the maximum number of

iterations. Here, COR is equal to unity and zero representing the global and local

search, respectively. In this way a good balance between the global and local search

is achieved by increasing the iteration number.

Fig. 12.4 (a) The sorted

CBs in an increasing order,

(b) the mating process for

the collision
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The new positions of CBs are evaluated using the generated velocities after the

collision:

xnewi ¼ xi þ rand∘v
0
i , i ¼ 1, . . . , n

xi�n þ rand∘v
0
i , i ¼ nþ 1, . . . , 2n


ð12:26Þ

where xi
new and xi are the new position and the velocity after the collision of the

ith CB, respectively.

12.5.2 Enhanced Colliding Bodies Optimization Algorithm

In order to improve the CBO to obtain faster and more reliable solutions, ECBO is

developed which uses memory to save a number of historically best CBs and also

utilizes a mechanism to escape from local optima (Kaveh and Ilchi Ghazaan [18]).

The steps of this technique are as follows:

Level 1: Initialization

Step 1: The initial positions of all the CBs are determined randomly in the search

space.

Level 2: Search

Step 1: The value of mass for each CB is evaluated according to Eq. (12.24).

Step 2: Colliding memory (CM) is utilized to save a number of historically best CB

vectors and their related mass and objective function values. Solution vectors

which are saved in CM are added to the population, and the same number of

current worst CBs are removed. Finally, CBs are sorted according to their

masses in a decreasing order.

Step 3: CBs are divided into two equal groups: (i) stationary group and (ii) moving

group (Fig. 12.4).

Step 4: The velocities of stationary and moving bodies before collision are evalu-

ated by Eq. (12.22).

Step 5: The velocities of stationary and moving bodies after the collision are

evaluated using Eq. (12.23).

Step 6: The new position of each CB is calculated by Eq. (12.26).

Step 7: A parameter like Pro within (0, 1) is introduced, which specifies whether

a component of each CB must be changed or not. For each colliding body, Pro

is compared with rni (i¼ 1, 2, . . ., n) which is a random number uniformly

distributed within (0, 1). If rn<Pro, one dimension of the ith CB is selected

randomly, and its value is regenerated as follows:
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xij ¼ xj,min þ random: xj,max � xj,min

� � ð12:27Þ

where xij is the jth variable of the ith CB and xj,min and xj,max are the lower and

upper bounds of the jth variable, respectively. In order to protect the structures of
CBs, only one dimension is changed.

Level 3: Termination Condition Check

Step 1: After a predefined maximum evaluation number, the optimization process is

terminated.

12.6 Numerical Examples

The proposed method is applied to a sample with 12 recorded earthquake

accelerograms to obtain the modified accelerogram sets compatible with

Eurocode-8 design spectrum of soil classes A and B. The earthquake accelerograms

are categorized into two classes according to these soil conditions in order to be

consistent with soil classes of target spectrums. Moreover, in each soil class, two

sets of accelerograms are selected to illustrate the independency of the proposed

method to the selection of the accelerograms. Therefore, the number of ground

motions selected for a ground motion set is set to 4, as shown in Table 12.2. All of

the records are discretized at 0.01 s with different durations for the strong ground

motions. After considering records, three fundamental periods of 0.45, 0.9, and

1.8 s, which represent typical short period, medium period, and long period,

respectively, are selected for controlling the requirements of Eurocode-8 in the

range of the considered periods [24].

Table 12.2 The sets of earthquake components for spectral matching

Site soil class Set No. Name of station Record ID

Class A Set 1-A Anza (Horse Cany) ANZA/PFT135

Kocaeli, Turkey KOCAELI/GBZ000

Loma Prieta LOMAP/G01090

Set 2-A Whittier Narrows WHITTIER/A-GRN180

Northridge NORTHR/WON185

San Fernando SFERN/L09021

Class B Set 1-B Cape Mendocino CAPEMEND/EUR090

Coyote Lake COYOTELK/G06320

Duzce, Turkey DUZCE/1061-E

Set 2-B Friuli, Italy FRIULI/B-FOC270

Kern County KERN/TAF111

Morgan Hill MORGAN/G06090
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In the optimization process of all the cases, the CBO and ECBO algorithms

are used to provide a comparison between these two algorithms. In these cases,

the number of agents is set as 30. The maximum number of iterations is also

considered as 300. As mentioned before, the well-known penalty approach

is used for satisfying the code requirements. Comparisons are made through the

error between the target spectrum and modified maximum response spectrums

[Eq. (12.21)]. The algorithms are also coded in MATLAB.

Figures 12.5 and 12.6 display the original and modified acceleration and

the displacement time histories of the SetA-1, respectively. From these figures it

can be seen that the frequency contents of the modified acceleration time histories

are different with those of original ones. In this case, comparing the actual and

modified accelerograms, it can be seen that the modified acceleration and dis-

placement time histories of the Anza and Kocaeli earthquakes are modified more

than the Loma Prieta earthquake. The modified displacement time histories are

also realistic due to the use of the baseline correction in the last step of proposed

method.

The maximum response spectrums of the SetA-1 original and modified ground

motions obtained by both algorithms for three fundamental periods and target

spectrum are shown in Fig. 12.7. The 90% design spectrum (the red dashed lines)

and the period ranges of interest (the vertical blue dashed lines) are also displayed

as these are the spectral amplitude limits specified by the Eurocode-8. It can be seen

the maximum response spectrum of the original accelerograms is far away from the

target spectrum, and it falls below the 90% design spectrum within the period limits

as well. While the maximum response spectrums of the modified accelerograms

have approached to the target spectrum with modification of these original ground

motions using the presented method. Also, the maximum response spectrum does

not fall below the 90% target spectrum within the code-specific period range and

zero periods.

Figures 12.7, 12.8, 12.9, and 12.10 show the maximum response spectrums of

the modified ground motions obtained by the proposed method for the SetA-2,

SetB-1, and SetB-2 as well as three fundamental periods, respectively. Similar

results and comparisons can be obtained from these figures. Table 12.3 shows the

optimized error obtained by CBO and ECBO for all cases. As shown in this table

and Figs. 12.7, 12.8, 12.9, and 12.10, the resulted lower error leads to the

response spectrum that is close to the target spectrum. This indicates that more

suitable modification of the recorded accelerograms can be achieved using more

efficient optimization algorithms. It can be seen that the errors obtained by ECBO

are better than those obtained for the CBO algorithm, which indicates the

importance of the enhancement of the algorithm in this problem. The errors are

also decreased with increase of the fundamental period (Tn); therefore, the

recorded accelerograms can easily be modified in high fundamental periods

using the proposed method.
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Fig. 12.5 Original and modified acceleration time histories of (a) Anza, (b) Kocaeli, and (c)

Loma Prieta
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Fig. 12.6 Original and modified displacement time histories of (a) Anza, (b) Kocaeli, and (c)

Loma Prieta
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Fig. 12.7 Comparison of various maximum response spectrums of SetA-1 matched with the

target spectrum of soil class A for fundamental periods: (a) Tn¼ 0.45, (b) Tn¼ 0.9, (c) Tn¼ 1.8
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Fig. 12.8 Comparison of various maximum response spectrums of SetA-2 matched with the

target spectrum of soil class A for fundamental periods: (a) Tn¼ 0.45, (b) Tn¼ 0.9, (c) Tn¼ 1.8
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Fig. 12.9 Comparison of various maximum response spectrums of SetB-1 matched with the target

spectrum of soil class B for fundamental periods: (a) Tn¼ 0.45, (b) Tn¼ 0.9, (c) Tn¼ 1.8
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Fig. 12.10 Comparison of various maximum response spectrums of SetB-2 matched with the

target spectrum of soil class B for fundamental periods: (a) Tn¼ 0.45, (b) Tn¼ 0.9, (c) Tn¼ 1.8
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12.7 Concluding Remarks

In the present chapter, a new method is proposed for modification/reconstruction of

ground motions utilizing a metaheuristic algorithm and wavelet transformation.

From the results obtained, the following conclusions can be derived:

(i) The accelerograms are modified in time and frequency domain using the

wavelet transformation such that the response spectrums get closer to the

target spectrum.

(ii) A common method for solving spectral matching problem is iterative wavelet-

based approach, and this procedure has some disadvantages. However, in the

proposed method, this problem is formulated as a constrained optimization

problem leading to some improvements such as modification of a set of ground

motions and handling the manual requirements.

(iii) The Eurocode-8 is utilized for spectra matching requirements and definition of

target spectra. In the proposed method, the penalty function is employed to

satisfy the corresponding requirements.

(iv) The problem is non-convex and has some local optima because of using the

overlapping frequency domain in wavelet transformation having some con-

straints. Hence the selection of an efficient optimization algorithm is an

important issue for handling this problem.

(v) An improved version of the recently developed metaheuristic algorithm

called ECBO is used to reduce the error between the response and target

spectra. A comparative study of ECBO and CBO algorithms on modifying

four sets of accelerograms clearly indicates that the response modified spec-

trums obtained by ECBO are closer to the target spectrum than those obtained

by the CBO.

(vi) It should be noted that the purpose of this chapter has been the introduction of

a new method for spectra matching of accelerograms. This goal can also be

achieved by considering different target spectrums, manual requirements,

optimization algorithms, and transformation functions such as wavelet packet

and S transform.

Table 12.3 The errors

obtained for all cases using

both algorithms
Set No.

Error (%)

Tn¼ 0.45 s Tn¼ 0.9 s Tn¼ 1.8 s

CBO ECBO CBO ECBO CBO ECBO

Set 1-A 5.84 3.43 4.22 3.27 4.42 2.97

Set 2-A 10.32 9.06 12.96 11.27 9.32 8.57

Set 1-B 10.31 8.92 8.12 7.08 7.66 6.45

Set 2-B 7.36 7.23 8.94 6.31 8.78 6.41
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Chapter 13

Bandwidth, Profile, and Wavefront

Optimization Using CBO, ECBO, and TWO

Algorithms

13.1 Introduction

In this chapter three recently developed metaheuristic optimization algorithms,

known as colliding bodies optimization (CBO), enhanced colliding bodies optimi-

zation (ECBO), and tug of war optimization (TWO), are utilized for optimum nodal

ordering to reduce bandwidth, profile, and wavefront of sparse matrices. The

bandwidth, profile, and wavefront of some graph matrices, which have equivalent

patterns to structural matrices, are minimized using these methods. Comparison of

the achieved results with those of some existing approaches shows the robustness of

these three new metaheuristic algorithms for bandwidth, profile, and wavefront

optimization [1].

The solution of sparse systems of simultaneous equations is required by the

analysis of many problems in structural engineering. Such non-singular systems of

linear algebraic equations are in the form Ax¼ b arising from finite element

method. These types of equations commonly involve a positive definite, symmetric,

and sparse coefficient matrix A. For large structures a great deal of the computa-

tional effort and memory are dedicated to the solution of these equations. Hence,

some suitable specified patterns for the coefficients of the corresponding equations

have been provided, like banded form, profile form, and partitioned form. These

patterns are often achieved by nodal ordering of the corresponding models.

In finite element model (FEM) analysis, for the case of one degree of freedom

per node, performing nodal ordering is equivalent to reordering the equations. In a

more general problem with m degrees of freedom per node, there are m-coupled
equations produced for each node. In this case re-sequencing is usually performed

on the nodal numbering of the graph models, to reduce the bandwidth, profile, or

wavefront, because the size of these problems is m fold smaller than those for

m degree of freedom numbering. In this chapter, the mathematical model of a FEM

is considered as an element clique graph, and nodal ordering is carried out to
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decrease the bandwidth, profile, or wavefront of the corresponding matrices (Kaveh

[2–4]).

There is an important rule for nodal numbering in the solution of sparse systems.

It can be attained by permuting the rows and columns of a matrix by proper

renumbering of the nodes of the associated graph. Three important subjects in

nodal ordering are bandwidth, profile, and wavefront optimization. In fact, for

sparse matrices the size can be measured by the bandwidth or profile or wavefront

of such matrices. These problems have created considerable interest during recent

years because it has practical relevance to a significant range of global optimization

applications. Since the nature of the problem of nodal numbering is NP complete

(Papademetrious [5]), many approximate approaches and heuristics are proposed,

examples of which can be found in Gibbs et al. [6], Cuthill and McKee [7], Kaveh

[2], Bernardes and Oliveira [8], and King [9].

Metaheuristic techniques are the recent generation of the optimization methods

to solve complex problems. These approaches explore the feasible region based on

randomization and some specified rules through a group of search agents. The rules

are usually inspired from laws of natural phenomena (Kaveh [10]).

As a newly developed type of metaheuristic algorithm, CBO is introduced and

employed to structural problems by Kaveh and Mahdavi [11]. The CBO is a multi-

agent approach which is inspired by a collision between two objects in one

dimension. Each agent is considered as a body with a specified mass and velocity.

A collision occurs between pairs of bodies, and the new positions of the colliding

bodies are updated based on the collision laws. The enhanced colliding bodies

optimization is introduced by Kaveh and Ilchi Ghazaan [12], and it employs

memory to save some best-so-far positions to improve the CBO performance

without increasing the computer execution time. This algorithm uses a mechanism

to escape from local optima.

TWO is a multi-agent metaheuristic approach, which is introduced by Kaveh

and Zolghadr [13]. This method models each candidate solution as a team engaged

in a series of tug of war competitions. The weight of the teams is defined based on

the quality of the corresponding solutions, and the amount of pulling force which a

team can exert on the rope is assumed to be proportional to its weight. Naturally, the

opposite team will have to maintain at least the same amount of force in order to

sustain its grip of the rope. The lighter team accelerates toward the heavier team and

this forms the convergence operator of TWO algorithm. The approach improves the

quality of the solutions iteratively by maintaining a proper exploration/exploitation

balance using the described convergence operator.

The rest of this chapter is organized as follows: In Sect. 13.2 some definitions

from graph theory, bandwidth, profile, and wavefront are stated. The CBO, ECBO,

and TWO algorithms are briefly presented in Sect. 13.3. In order to show the

performance of these methods on bandwidth, profile, and wavefront reduction,

Sects. 13.4 and 13.5 contain the results of four examples and the corresponding

discussions, respectively. The final section concludes the chapter.
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13.2 Problem Definition

13.2.1 Definitions from Graph Theory

LetG(N,M) be a graph with members setM(|M|¼m) and nodes set N(|N|¼ n) with a
relation of incidence. The degree of a node is the number of members incident with

the node, and the 1-weighted degree of a node is defined as the sum of the degrees of

its adjacent nodes. A spanning tree is a tree containing all the nodes of S. A shortest
route tree (SRTn0) rooted from a specified node (starting node) n0 is a spanning tree
for which the distance between every node nj of S and n0 is minimum, where the

distance between two nodes is defined as the number of members in the shortest

path between these nodes. A contour Cn0
k contains all the nodes with equidistance

k from node n0. The number of contours of an SRTn0 is known as its depth, denoted
by d(SRTn0), and the highest number of nodes in a contour specifies the width of the
SRTn0. A labeling As of G assigns the set of integers {1, 2, 3, . . ., n} to the nodes of
graph G. As(i) is the label or the integer assigned to node i and each node has a

different label. The bandwidth of node i for this assignment, bw(i), is the maximum

difference of As(i) and As( j), where As( j) is the label of nodes adjacent to node i or
the number assigned to its adjacent nodes (Kaveh [3]). That is

bwAs ið Þ ¼ max As ið Þ � As jð Þj j : j 2 N ið Þf g ð13:1Þ

where N(i) is the set of adjacent nodes of node i. The bandwidth of the graph Gwith

respect to the assignment As(i) is then

BWAs Gð Þ ¼ max bw ið Þ : i 2 Gf g ð13:2Þ

The minimum value of BW over all possible assignments is the bandwidth of the

graph:

BW Gð Þ ¼ min BWAs Gð Þ : 8As ið Þf g ð13:3Þ

The profile of the N � N matrix related to graph G, for the assignment As(i), is
defined as

PAs ¼
XN
i¼1

bi ð13:4Þ

where the row bandwidth, bi, for row i is defined as the number of inclusive entries

from the first nonzero element in the row to the (i+ 1)th entry for this assignment.

The efficiency of any given ordering for the profile solution scheme is related to the

number of active equations during each step of the factorization process. Formally,

row j is defined to be active during elimination of column i if j � i, and there exists
aik ¼ 0 with k � i. Hence, at the ith stage of the factorization, the number of active

13.2 Problem Definition 237



equations is the number of rows of profile that intersect column i, which is ignored

if those rows already eliminated. Let fi denote the number of equations that are

active during the elimination of the variable xi. It follows from the symmetric

structures of the matrix that

PAs ¼
XN
i¼1

f i ¼
XN
i¼1

bi ð13:5Þ

where fi is commonly known as the frontwidth or wavefront. Assuming that N and

the average value of fi are significantly large, it can be shown that a complete profile

or front factorization needs approximately O(NF2
rms) operations, where Frms is the

root–mean square frontwidth, defined as

Frms ¼ 1

N

XN
i¼1

f 2i

" #0:5
ð13:6Þ

In the bandwidth reduction problem, one searches an assignment As(i) which
minimizes BW(G). Such an assignment moves all the nonzero elements of the

matrix onto a band, which is as close as possible to the main diagonal (Kaveh

and Sharafi [14,15] and Kaveh and Bijari [16]). In this chapter, for bandwidth

minimization, one should find a suitable assignment for nodal ordering of a graph to

reduce the bandwidth of the associated matrix employing PSO, CBO, ECBO, and

TWO algorithms. The algorithms for bandwidth reduction are based on reordering

or assigning new integers to the nodes of the graph to achieve an optimal

bandwidth.

Each permutation of columns and rows of an N � N sparse matrix associated to

graphG leads to a new reordering called the assigning set. If the primary ordering of

the graph is {1, 2, 3, . . ., n}, each permutation of this list will be a new assigned set.

The aim is to find the optimal assigning list to obtain the best bandwidth.

For the purpose of finding an optimal nodal ordering in the profile and frontwidth

reduction problems, it is tried to assign the set of integers {1, 2, 3, . . ., n} to the

nodes of G using a priority function, and the coefficients of the priority function are

found employing PSO, CBO, ECBO, and TWO algorithms.

13.2.2 An Algorithm Based on Priority Queue for Profile
and Wavefront Minimization

The nodal numbering in a priority queue is carried out through the assignment of

status, based on the numbering approach of King [9]. King’s method was general-

ized by Sloan [17], by introducing a priority queue which controls the order to be

followed in the numbering of the nodes. This algorithm comprises of two phases:
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Phase 1: Selecting a pair of pseudo-peripheral nodes

Phase 2: Nodal numbering

Phase 1 selects a pair of nodes as starting and ending nodes according to the

following steps:

Step 1: Choose an arbitrary node s of minimum degree.

Step 2: Generate an SRTs ¼ Cs
1;C

s
2; . . . ;C

s
d

� �
rooted from s. Let S be the list of the

nodes of Cs
d, which is stored in the order of increasing degree.

Step 3: Decompose S into subsets Sj of cardinality Sj
�� ��, j ¼ 1, 2, . . . , Δwhere Δ is

the maximum degree of any node of S, such that all nodes of Sj have degree j.
Generate an SRT from each node y of S, for the first 1 � mj � Δ. If

d SRTy

� �
> d SRTsð Þ, then set s¼ y and go to Step 2.

Step 4: Let e be the root of the longest SRT that has the smallest width. When the

algorithm terminates, s and e are the end points of a pseudo-diameter.

Phase 2 reorders the nodes of an element clique graph and ensures that the

position of a node in this reordering phase follows a priority rule according to the

following steps:

Step 1: Find the status of all nodes. A node can be in the following four states as

shown in Fig. 13.1. A node which has been assigned a new label is defined as

post-active. Nodes which are adjacent to a post-active node, but do not have a

post-active status, are said to be active. Each node which is adjacent to an active
node, but is not post-active or active, is said pre-active. The nodes which are not
post-active, active, or pre-active are said to be inactive.

Step 2: Prepare the list of the candidate nodes for labeling in the next step, which

consists of active and pre-active nodes.

Step 3: Calculate the priority number for all the candidate nodes. For node i the
number is obtained from the following relationship:

Pi ¼ W1 � δi �W2 � Di ð13:7Þ

Post-active
Active

Pre-active

Inactive

Fig. 13.1 Different status

of nodes
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where W1 and W2 are integer weights (suggested as W1¼ 1 and W2¼ 2 in the

original Sloan’s algorithm), δi is the distance between each node i from the end

node, and Di is the incremental degree of node i which is defined as

Di ¼ di � ci þ ki ð13:8Þ

where di is the degree of node i, ci is the number of active and post-active nodes

adjacent to node i, and ki is zero if the node i is active or post-active and unity

otherwise.

Step 4: Select the node with the highest priority among the candidate nodes and

label it.

Step 5: Repeat Steps 1–4 until all the nodes are labeled.

In Eq. (13.7) if W1¼ 0 and W2¼ 1, the node-labeling algorithm will become

similar to the one proposed by King.

13.2.3 The Priority Function with New Integer Weights

As can be seen from Eq. (13.7), Sloan’s algorithm employs a linear priority function

of two graph parameters and the weights determine the importance of each param-

eter. In Sloan’s algorithm the pair W1¼ 1 and W2¼ 2 has been recommended for

the weights. However, some research results (Kaveh and Roosta [18], Rahimi

Bondarabadi and Kaveh [19]) show that for some problems, there are advantages

in using other values.

In general, the priority can be determined by a general linear function of vectors

of graph parameters and their coefficients as

Pi ¼
XL
i¼1

Wi � Ci ð13:9Þ

where Ci i ¼ 1, 2, . . . ,Lð Þ are the normalized Ritz vectors indicating the graph

parameters, and Wi i ¼ 1, 2, . . . ,Lð Þ are the coefficients of the Ritz vectors (Ritz

coordinates) that are unknowns. That is, one can employ L characteristics of a graph

to define the priority function and find the coefficients which can guide the

algorithm to select an optimal profile and wavefront.

Sloan’s algorithm employs L¼ 2 characteristics of the graph model. Here, we

find the best sets of coefficients for the priority function with L¼ 2 and 5. These sets

of coefficients (integer weights) are found by optimizing the results utilizing PSO,

CBO, ECBO, and TWO algorithms.

In the first case, L¼ 2 method is presented. The vectors of graph properties are

taken similar to those of Sloan’s algorithm. In the second case, L¼ 5 method is

presented using five vectors Ci i ¼ 1, 2, . . . , 5ð Þ as follows:
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C1 Degrees of the nodes

C2 Node distances from the end node

C3 Node distances from the starting node

C4 The 1-weighted degree

C5 The width of an SRT rooted from the starting node

Once the graph parameter vectors are formed, their coefficients can be obtained

using PSO, CBO, ECBO, and TWO algorithms.

13.3 Metaheuristic Algorithms

This section includes the colliding bodies optimization algorithm, its enhanced

version, and tug of war optimization algorithm. First, a brief description of standard

CBO is provided. The ECBO is presented (Kaveh and Ilchi Ghazaan [12]), and then

a new algorithm called TWO is stated.

13.3.1 Colliding Bodies Optimization

Collision is a natural phenomenon, and the colliding bodies optimization algorithm

was developed based on this occurrence by Kaveh and Mahdavi [11]. In this

method, one object collides with another and they move toward a minimum energy

level. The CBO utilizes simple formulation, does not require any internal param-

eters, and does not use memory for saving the best solutions so far.

This technique is a population-based metaheuristic algorithm. Each solution

candidate Xi is considered as a colliding body (CB), and it has a specified mass

defined as

mk ¼
1

fit kð Þ
1Xn

i¼1

1

fit ið Þ

k ¼ 1, 2, . . . , n ð13:10Þ

where fit(i) represents the objective function value of the ith CB and n is the number

of colliding bodies. In order to select pairs of objects for collision, CBs are sorted

according to their mass in a decreasing order and they are divided into two equal

groups: (i) stationary group and (ii) moving group. Moving objects collide to

stationary objects to improve their positions and push stationary objects toward

better positions (see Fig. 13.2).

The velocity of the stationary bodies before collision is zero, so

13.3 Metaheuristic Algorithms 241



vi ¼ 0, i ¼ 1 , 2 , . . . ,
n

2
ð13:11Þ

The velocity of each moving body before collision is

vi ¼ xi�n
2
� xi , i ¼ n

2
þ 1,

n

2
þ 2, . . . , n ð13:12Þ

The velocity of each stationary CB after the collision (v
0
i) is specified by

v0i ¼
miþn

2
þ εmiþn

2

� �
viþn

2

mi þ miþn
2

, i ¼ 1 , . . . ,
n

2
ð13:13Þ

The velocity of each moving CB after the collision (v
0
i) is defined by

v0i ¼
mi � εmi�n

2

� �
vi

mi þ mi�n
2

, i ¼ n

2
þ 1 ,

n

2
þ 2 , . . . , n ð13:14Þ

Here ε is the coefficient of restitution (COR) that decreases linearly from unit

to zero.

Thus, it is stated as

ε ¼ 1� iter

itermax
ð13:15Þ

where iter is the current iteration number and itermax is the total number of

iterations for optimization process.

New positions of CBs are updated according to their velocities after the collision

and the positions of stationary CBs. Therefore, the new position of each stationary

CB is

Fig. 13.2 The pairs of CBs for collision
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xnewi ¼ xi þ rand∘v0i, i ¼ 1, . . . ,
n

2
ð13:16Þ

where xnewi , xi, and v
0
i are the new position, previous position, and the velocity after

the collision of the ith CB, respectively, rand is a random vector uniformly

distributed in the range of [�1, 1], and the sign “∘” denotes an element-by-element

multiplication. The new position of each moving CB is calculated by

xnewi ¼ xi�n
2
þ rand∘v0i, i ¼ n

2
þ 1,

n

2
þ 2, . . . , n ð13:17Þ

The process of optimization is terminated if the maximum number of analyses

has been evaluated. For further details, the reader may refer to Kaveh and

Mahdavi [11].

13.3.2 Enhanced Colliding Bodies Optimization

A modified version of the CBO is enhanced colliding bodies optimization, which

improves the CBO to get more reliable solutions. The introduction of memory can

increase the convergence speed of ECBO compared to standard CBO. Furthermore,

changing some components of colliding bodies will help ECBO to escape from

local optima. The steps of ECBO are as follows:

Step 1: Initialization

The initial positions of all CBs are determined randomly in an m-dimensional

search space.

x0i ¼ xmin þ random∘ xmax � xminð Þ, i ¼ 1, 2, . . . , n ð13:18Þ

where x0i is the initial solution vector of the ith CB. Here, xmin and xmax are the

bounds of design variables, random is a random vector in which each component

is in the interval [0, 1], and n is the number of CBs.

Step 2: Defining mass

The value of mass for each CB is evaluated according to Eq. (13.10).

Step 3: Saving

Considering a memory which saves some historically best CB vectors and their

related mass and objective function values can make the algorithm performance

better without increasing the computational cost (Kaveh and Ilchi Ghazaan

[12]). Here, a colliding memory (CM) is utilized to save a number of the best-

so-far solutions. Therefore, in this step, the solution vectors saved in CM are

added to the population, and the same numbers of current worst CBs are deleted.

Finally, CBs are sorted according to their masses in a decreasing order.
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Step 4: Creating groups

CBs are divided into two equal groups: (i) stationary group and (ii) moving

group. The pairs of CBs are defined according to Fig. 13.2.

Step 5: Criteria before the collision

The velocity of stationary bodies before collision is zero [Eq. (13.11)]. Moving

objects move toward stationary objects and their velocities before collision are

calculated by Eq. (13.12).

Step 6: Criteria after the collision

The velocities of stationary and moving bodies are evaluated using Eqs. (13.13)

and (13.14), respectively.

Step 7: Updating CBs

The new position of each CB is calculated by Eqs. (13.16) and (13.17).

Step 8: Escape from local optima

Metaheuristic algorithms should have the ability to escape from the trap when

agents get close to a local optimum. In ECBO, a parameter like Pro within (0, 1)
is introduced which specifies whether a component of each CB must be changed

or not. For each colliding body, Pro is compared with rn (i¼ 1, 2, . . ., n) which is
a random number uniformly distributed within (0, 1). If rni<Pro, one dimen-

sion of the ith CB is selected randomly, and its value is regenerated as follows:

xij ¼ xj,min þ random: xj,max � xj,min

� � ð13:19Þ

where xij is the jth variable of the ith CB and xj,min and xj,max, respectively, are

the lower and upper bounds of the jth variable. In order to protect the structures

of CBs, only one dimension is changed. This mechanism provides opportunities

for the CBs to move all over the search space, thus providing better diversity.

Step 9: Terminating condition check

The optimization process is terminated after a fixed number of iterations. If this

criterion is not satisfied, go to Step 2 for a new round of iteration (Kaveh and Ilchi

Ghazaan [12]).

13.3.3 Tug of War Optimization Algorithm

TWO is a multi-agent metaheuristic approach, which is introduced by Kaveh and

Zolghadr [13]. This method models each candidate solution Xi ¼ xi, j
� �

as a team

engaged in a series of tug of war competitions. The weight of the teams is defined

based on the quality of the corresponding solutions, and the amount of pulling force

which a team can exert on the rope is assumed to be proportional to its weight.

Naturally, the opposite team will have to maintain at least the same amount of force

in order to sustain its grip of the rope. The lighter team accelerates toward the

heavier team and this forms the convergence operator of TWO algorithm. The

approach improves the quality of the solutions iteratively by maintaining a proper
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exploration/exploitation balance using the described convergence operator. The

steps of TWO can be stated as follows:

Step 1: Initialization

A population of N initial solutions is generated randomly:

x0ij ¼ xj,min þ rand xj,max � xj,min

� �
j ¼ 1, 2, . . . , n ð13:20Þ

where x0ij is the initial value of the jth variable of the ith candidate solution; xj,max

and xj,min are the maximum and minimum permissible values for the jth variable,
respectively; rand is a random number from a uniform distribution in the interval

[0, 1]; and n is the number of variables.

Step 2: Evaluation and weight assignment

The objective function values for the candidate solutions are evaluated and

sorted. The best solution so far and its objective function value are saved.

Each solution is considered as a team with the following weight:

Wi ¼ 0:9
fit ið Þ � fitworst
fitbest � fitworst

	 

þ 0:1 i ¼ 1, 2, . . . , N ð13:21Þ

where fit(i) is the fitness value for the ith particle. The fitness value can be

considered as the penalized objective function value for constrained problems;

fitbest and fitworst are the fitness values for the best and worst candidate solutions

of the current iteration. According to Eq. (13.21), the weights of the teams range

between 0.1 and 1.

Step 3: Competition and displacement

In TWO each team competes against all the others one at a time to move to its

new position in every iteration. The pulling force exerted by a team is assumed

to be equal to its static friction force (Wμs). Hence, the pulling force between

teams i and j (Fp,ij) can be determined as max{Wiμs,Wjμs}. Such a definition

keeps the position of the heavier team unaltered.

The resultant force affecting team i due to its interaction with heavier team j in
the kth iteration can then be calculated as follows:

Fk
r, ij ¼ Fk

p, ij �Wk
i μk ð13:22Þ

where Fk
p;ij is the pulling force between teams i and j in the kth iteration and μk is

the coefficient of kinematic friction.

ak
ij ¼

Fk
r, ij

W k
i μk

 !
gk
ij ð13:23Þ

in which akij is the acceleration of team i toward team j in the kth iteration and gkij
is the gravitational acceleration constant which is defined as
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gk
ij ¼ Xk

j � Xk
i ð13:24Þ

where Xk
j and X

k
i are the position vectors for candidate solutions j and i in the kth

iteration. Finally, the displacement of team i after competing with team j can be

derived as

ΔXk
ij ¼

1

2
ak
ijΔt

2 þ αk Xmax � Xminð Þ∘ �0:5þ rand 1; nð Þð Þ ð13:25Þ

The second term of Eq. (13.25) induces randomness into the algorithm. This

term can be interpreted as the random portion of the search space travel by team

i before it stops after the applied force is removed. Here, α is a constant chosen

from the interval [0,1]; Xmax and Xmin are the vectors containing the upper and

lower bounds of the permissible ranges of the design variables, respectively; ∘
denotes element-by-element multiplication; and rand(1, n) is a vector of uni-

formly distributed random numbers.

It should be noted that when team j is lighter than team i, the corresponding

displacement of team i will be equal to zero (i.e., ΔXk
ij). Finally, the total

displacement of team i in iteration k is equal to

ΔXk
i ¼

XN
j¼1

ΔXk
ij ð13:26Þ

The new position of team i at the end of kth iteration is then calculated as

Xkþ1
i ¼ Xk

i þ ΔXk
i ð13:27Þ

Step 4: Side constraint handling

It is possible for the candidate solutions to leave the search space, and it is

important to deal with such solutions properly. This is especially the case for the

solutions corresponding to lighter teams for which the values of ΔX are usually

bigger. Different strategies might be used in order to solve this problem. For

example, such candidate solutions can be simply brought back to their previous

permissible position (flyback strategy) or they can be regenerated randomly. In

this chapter a new strategy is introduced and incorporated using the global best

solution. If the jth variable of any candidate solution, Xi violates the side

constraints in the kth iteration, the new value is defined as

xkij ¼ GBj þ randn

k

	 

GBj � xk�1

ij

� �
ð13:28Þ

where GBj is the jth variable of the global best solution (i.e., the best solution so
far) and randn is the random number drawn from a standard normal distribution.
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There is a very slight possibility for the newly generated variable being still

outside the search space. In such cases a flyback strategy is used.

Step 5: Termination

Steps 2 through 5 are repeated until a termination criterion is satisfied (Kaveh

and Zolghadr [13]).

13.4 Numerical Examples

In this section, four finite element meshes (FEMs) are considered. Element clique

graph is a type of graph model that is employed for transferring topological

properties of finite element models into connectivity properties of graphs (Kaveh

[4]). This graph model has the same nodes as those of corresponding finite element

model, and the nodes of each element are cliqued, avoiding the multiple members

for the whole graph. The first example is a Z-shaped finite element model for shear

wall. An element clique graph of a rectangular FEM with four openings is consid-

ered in the second example. The third example is the grid model of a fan with

one-dimensional beam elements, and an H-shaped finite element grid is presented

in the fourth example. The well-known standard PSO algorithm; two new algo-

rithms, namely, the colliding bodies optimization and enhanced colliding bodies

optimization; and a recently developed method called tug of war optimization are

applied for all of three bandwidth, profile, and wavefront minimizing problems. The

results in bandwidth reduction problem are then compared to those of the four-step

algorithm of Kaveh [2] and those of Kaveh and Sharafi [14,15] in Table 13.1. The

results obtained in profile and wavefront minimizing problems with L¼ 2 and

5 methods are compared to those of the Sloan and King’s algorithms in Tables 13.2

and 13.3, respectively.

13.4.1 Example 1: The FEM of a Shear Wall

The FEM of a shear wall with 550 nodes is considered. The element clique graph of

this model is shown in Fig. 13.3. The performance of the abovementioned

Table 13.1 Comparison of the results of different algorithms for bandwidth reduction

4-step algorithm PSO CBO ECBO TWO

Kaveh and Sharafi [14,15]

4-step ACO CSS

Example 1 28 28 28 28 28 29 29 –

Example 2 29 29 29 29 29 – – –

Example 3 18 18 18 18 18 23 23 21

Example 4 57 57 57 57 57 66 60 58
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Table 13.2 Comparison of the results of different algorithms for profile reduction

Example Algorithm W1 W2 W3 W4 W5 Profile

Example 1 Sloan 1 2 10,530

King 0 1 10,974

PSO L¼ 2 0.0007 0.4852 10,501

L¼ 5 �0.0863 0.4638 �0.3677 0.0034 0.9191 9280

CBO L¼ 2 0.0043 0.4001 10,501

L¼ 5 0.2191 0.9551 �0.6962 �0.0390 �0.3207 9242

ECBO L¼ 2 0.0001 0.9881 10,501

L¼ 5 �0.0255 0.8883 �0.6256 �0.0110 �0.9183 9237

TWO L¼ 2 0.0129 0.7645 10,501

L¼ 5 �0.0404 0.8801 �0.5940 �0.0063 0.7426 9237

Example 2 Sloan 1 2 18,719

King 0 1 18,839

PSO L¼ 2 0.6645 0.9066 18,690

L¼ 5 0.1056 0.8858 �0.4835 �0.0152 0.0524 17,136

CBO L¼ 2 0.1899 0.2566 18,689

L¼ 5 �0.3332 �0.7097 0.9412 0.0507 0.9747 17,122

ECBO L¼ 2 0.6665 0.9228 18,581

L¼ 5 �0.0458 0.7835 �0.6332 0.0060 �0.2254 17,039

TWO L¼ 2 0.7136 0.9633 18,581

L¼ 5 �0.0178 �0.4092 0.9291 0.0024 �0.5575 17,039

Example 3 Sloan 1 2 28,703

King 0 1 28,853

PSO L¼ 2 0.2588 0.6068 28,629

L¼ 5 �0.2965 0.5407 �0.6326 �0.0214 �0.1835 29,674

CBO L¼ 2 0.2129 0.4426 28,608

L¼ 5 �0.5700 0.8618 �0.5831 0.0777 0.3363 27,992

ECBO L¼ 2 0.1765 0.9272 28,587

L¼ 5 �0.4186 0.9776 �0.7792 0.1007 �0.0557 27,982

TWO L¼ 2 0.1613 0.8465 28,579

L¼ 5 �0.3306 0.8144 �0.5654 0.0668 0.6810 27,977

Example 4 Sloan 1 2 157,457

King 0 1 157,103

PSO L¼ 2 0.0449 0.6963 157,095

L¼ 5 0.1106 0.9323 �0.0624 �0.0284 �0.3706 160,705

CBO L¼ 2 0.0229 0.9146 157,095

L¼ 5 �0.9709 �0.9856 0.1853 0.2102 �0.3565 159,681

ECBO L¼ 2 0.0620 0.9365 157,095

L¼ 5 �0.5805 �0.7778 0.2437 0.1277 �0.1065 159,676

TWO L¼ 2 0.0721 0.9800 157,095

L¼ 5 �0.8206 �0.8691 0.5953 0.4801 0.2781 159,675
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Table 13.3 Comparison of the results of different algorithms for wavefront reduction

Example Algorithm W1 W2 W3 W4 W5 Frms

Example 1 Sloan 1 2 20.1739

King 0 1 21.0798

PSO L¼ 2 0.3069 0.2202 20.1401

L¼ 5 �0.3188 0.9852 �0.7009 0.0489 0.118 17.2693

CBO L¼ 2 0.8701 0.6144 20.1401

L¼ 5 �0.1888 0.9093 �0.8122 0.0210 0.8648 17.1544

ECBO L¼ 2 0.8858 0.6517 20.1401

L¼ 5 �0.1891 �0.8720 0.9777 0.0199 �0.4653 17.2239

TWO L¼ 2 0.8711 0.6352 20.1401

L¼ 5 0.0101 0.9086 �0.8164 �0.0034 �0.1742 17.1492

Example 2 Sloan 1 2 25.9092

King 0 1 26.6508

PSO L¼ 2 0.2053 0.3469 25.8411

L¼ 5 �0.0879 �0.3811 0.8933 0.012 �0.1249 23.5891

CBO L¼ 2 0.3181 0.5433 25.8438

L¼ 5 �0.0713 �0.6558 0.9556 0.0095 �0.6861 23.4955

ECBO L¼ 2 0.1855 0.3155 25.8411

L¼ 5 �0.1056 0.8982 �0.7698 0.0121 �0.7255 23.4743

TWO L¼ 2 0.5752 0.9624 25.8438

L¼ 5 �0.0919 0.9571 �0.6803 0.0130 �0.0568 23.5090

Example 3 Sloan 1 2 18.3958

King 0 1 18.4698

PSO L¼ 2 0.0605 0.3289 18.3126

L¼ 5 �0.0709 0.6589 �0.9003 �0.0677 �0.4860 18.9964

CBO L¼ 2 0.1382 0.8659 18.3235

L¼ 5 �0.2174 �0.4203 0.4590 0.0462 �0.2162 19.2531

ECBO L¼ 2 0.1688 0.8892 18.3232

L¼ 5 0.1883 0.7370 �0.5928 �0.0607 �0.0945 18.6574

TWO L¼ 2 0.0357 0.1982 18.3240

L¼ 5 0.0441 0.9101 �0.7696 0.0139 �0.6153 18.0211

Example 4 Sloan 1 2 32.3665

King 0 1 32.2875

PSO L¼ 2 0.0445 0.6963 32.2869

L¼ 5 0.2036 �0.9340 0.0601 0.0151 �0.5008 32.9486

CBO L¼ 2 0.0361 0.8204 32.2869

L¼ 5 �0.0469 �0.9805 0.0890 0.0109 �0.0406 32.7939

ECBO L¼ 2 0.0145 0.6215 32.2869

L¼ 5 �0.0665 �0.9779 0.2937 0.0204 0.0726 32.8298

TWO L¼ 2 0.0772 0.9898 32.2869

L¼ 5 �0.3335 �0.6943 0.6808 0.1610 �0.0604 32.8845
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algorithms is tested on this model for bandwidth, profile, and wavefront optimiza-

tion problems. The results for these problems are given in Tables 13.1, 13.2, and

13.3, respectively. Quality of the results is provisioned in these tables.

13.4.2 Example 2: A Rectangular FEM with Four Openings

This is the element clique graph of a rectangular FEM with four openings, as shown

in Fig. 13.4, having 760 nodes. The performance of the PSO, CBO, ECBO, and

TWO algorithms is tested on this model for bandwidth, profile, and wavefront

minimizing problems. The results for these problems are provided in Tables 13.1,

13.2, and 13.3, respectively.

13.4.3 Example 3: The Model of a Fan

The graph model of a fan containing 1575 nodes is considered, as shown in

Fig. 13.5. Similar to the previous examples, the results of the algorithms for

Fig. 13.3 A FEM of a shear wall
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Fig. 13.4 The element clique graph of a rectangular FEM with four openings

Fig. 13.5 The graph model of a fan
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bandwidth, profile, and wavefront reduction problems are represented in

Tables 13.1, 13.2, and 13.3 respectively, where the results can easily be compared.

13.4.4 Example 4: An H-Shaped Shear Wall

The FEM of an H-shaped shear wall with 4949 nodes is considered, as shown in

Fig. 13.6. The performance of the abovementioned algorithms is tested on this

model, and the results for bandwidth, profile, and wavefront minimizing problems

are given in Tables 13.1, 13.2, and 13.3, respectively.

13.5 Discussion

For Example 2, comparison of the results is shown in Figs. 13.7 and 13.8. The

convergence curves of the CBO, ECBO, PSO, and TWO algorithms are illustrated

in Figs. 13.9, 13.10, 13.11, and 13.12. The convergence histories show that these

four algorithms act in relatively the same way. To indicate the difference of the

Fig. 13.6 The finite element grid model of a shear wall
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convergence curves better, only 25 iterations have been shown. As can be seen from

Figs. 13.9, 13.10, 13.11, and 13.12, the CBO, ECBO, and TWO algorithms have

better convergence, search better the space of the problem, and obtain better results

compared to the PSO method.
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13.6 Concluding Remarks

The main purpose of this chapter was to show the performance and robustness of

the CBO, ECBO, and TWO for bandwidth, profile, and wavefront reduction of

matrices. From Table 13.1, it can be observed that the attained results from these

three algorithms are quite satisfactory compared to the well-known graph theoret-

ical method, four-step algorithm. CBO, its enhanced version, and TWO improve

the bandwidth values previously obtained by CSS and ACO algorithms, and these

values are the best results so far.

In profile and wavefront minimizing problems with L¼ 2 and 5 methods, the aim

was to show the applicability of using different priority functions employing CBO,

ECBO, and TWO algorithms. Optimal coefficients for these functions are obtained by

optimization process, for decreasing the profile andwavefront of the stiffness matrices

of finite element models. FromTables 13.2 and 13.3, it can be observed that Sloan and

King’s methods can be improved in most cases using some new parameters and

coefficients. The weights achieved for different examples show that in the

two-parameter approach (L¼ 2), more suitable profile and wavefront values can be

obtained than those of the Sloan and King’s algorithms. In the five-parameter method

(L¼ 5), smaller profile and wavefront values can be attained than two-parameter

approach and Sloan and King’s algorithms except Example 4 that profile and

wavefront values of Sloan and King’s methods are smaller than those of the five-

parameter approach. It should be noted that in the L¼ 5 algorithm, the active degrees

are not updated as in Sloan’s method. Therefore, one should not always expect a better

result when five adjusted parameters are utilized in place of two free parameters. The

value of profile and wavefront reduction in L¼ 5 method proportion to Sloan and

King’s algorithm is more than that in L¼ 2 method because of utilizing more graph

properties. For example, comparison of profile and wavefront results for Example 2 is

represented in Figs. 13.7 and 13.8, respectively. Among five parameters, the impor-

tance of parameter C2 is the highest and parameter C4 has the smallest effect.

A recently developed metaheuristic algorithm, tug of war optimization, is

employed, and from Tables 13.2 and 13.3, it can be seen that this algorithm obtains

good results like CBO and ECBO and in some cases achieves better values and the

best results so far.

Though the methods of this chapter are used for nodal ordering in the stiffness

method, however, the application of the methods can easily be extended to cycle or

generalized cycles ordering to optimize the bandwidth of the flexibility matrices [3,4].
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Chapter 14

Optimal Analysis and Design of Large-Scale

Domes with Frequency Constraints

14.1 Introduction

Structural optimization involves a large number of structural analyses. When

optimizing large structures, these analyses require a considerable amount of com-

putational time and effort. However, there are specific types of structure for which

the results of the analysis can be achieved in a much simpler and quicker way due to

their special repetitive patterns. In this chapter, frequency constraint optimization

of cyclically repeated space trusses is considered. An efficient technique is used to

decompose the large initial eigenproblem into several smaller ones and thus to

decrease the required computational time significantly (Kaveh and Zolghadr [1]).

In low-frequency vibration problems, the response of the structure primarily

depends on its fundamental frequencies and mode shapes (Grandhi [2]). Therefore,

the dynamic behavior of a structure can be controlled by constraining its funda-

mental frequencies. Mass minimization of a structure for which some natural

frequencies should be upper and/or lower bounded is known as a structural opti-

mization problem with frequency constraints.

History of structural optimization with frequency constraints dates back to 1960s

and since then has always received considerable attention by optimization experts

utilizing a wide variety of algorithms (Taylor [3], Armand [4], Cardou and Warner

[5], Elwany and Barr [6], Lin et al. [7], Konzelman [8], Grandhi and Venkayya [9],

Sedaghati et al. [10], Lingyun et al. [11], Gomes [12], Kaveh and Zolghadr

[13, 14]).

In a frequency constraint structural optimization problem, large generalized

eigenproblems should be solved in order to find the natural frequencies of the

structure. The size of the structure affects the dimensions of the matrices involved

and thus the required computational time and effort. On the other hand, as the

number of optimization variables increases, more and more structural analyses are

needed to be performed in order to obtain a near-optimal solution. There are

numerous algebraic methods for eigensolution of large structural systems, some
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of them utilizing such properties as sparsity and symmetry of the associated

matrices. For general structures, utilization of general time-consuming algebraic

methods seems to be inevitable. However, fast and efficient techniques could be

used for several types of structures, which benefit specific characteristics such as

symmetry. These methods utilize the characteristics of special categories of matri-

ces whose eigenvalues and eigenvectors can be more easily obtained by using block

diagonalization techniques. Several applications of these techniques could be found

in the literature. Kaveh and Rahami [15, 16] utilized block diagonalization tech-

niques for different types of canonical forms for applications in structural mechan-

ics. Kaveh [17] employed special canonical forms for the efficient eigensolutions of

Laplacian and adjacency matrices of special graphs and free vibration and buckling

load analysis of cyclically repeated space truss structures (Koohestani and Kaveh

[18]).

Many different types of complex structural systems can be considered as the

cyclic repetition of a simple substructure around a revolution axis. These structures,

which are usually called cyclically symmetric, exhibit some special patterns in their

structural matrices. Structures like domes and cooling towers fall into this category.

These special patterns and the benefits they bring about in the analysis of such

structures have been studied in the works of Courant [19], Leung [20], Williams

[21], Vakakis [22], Karpov et al. [23], Liu and Yang [24], El-Raheb [25], Zingoni

[26], Tran [27], and Kaveh [17] among many others.

The aim of this chapter is to incorporate previously existing efficient methods of

analysis for cyclically repeated truss structures into the well-known frequency

constraint optimization problem in order to achieve considerable computational

savings. An efficient method for free vibration analysis of these structures, intro-

duced by Koohestani and Kaveh [18], is utilized to decompose the initial general-

ized eigenproblem to several smaller ones and to reduce the required computational

time consequently. Other swift and efficient methods for the analysis of different

types of symmetric, regular, and near-regular structures could be found in

Kaveh [17].

The remainder of this chapter is organized as follows: In Sect. 14.2, the math-

ematical statement of the minimum weight optimization problem for a truss struc-

ture subject to frequency constraints is summarized. In Sect. 14.3, basic formulation

of free vibration analysis of a truss structure and the corresponding stiffness matrix

are presented concisely. The efficient eigensolution of cyclically repeated dome

trusses is then discussed in Sect. 14.4 followed by three numerical examples,

examined in Sect. 14.5, in order to show the efficiency of the proposed method.

Finally, some concluding remarks are presented in Sect. 14.6.
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14.2 Formulation of the Optimization Problem

Size optimization of a truss structure subject to frequency constraints where the

objective is to minimize the weight of the structure can be mathematically stated as

follows:

Find X ¼ x1, x2, x3, . . . :, xn½ �
to minimize P Xð Þ ¼ f Xð Þ � f penalty Xð Þ
subject to

ωj � ωj
* for some natural frequencies j

ωk � ωk
* for some natural frequencies k

ximin � xi � ximax

ð14:1Þ

where X is the vector of the design variables, i.e., cross-sectional areas; n is the

number of optimization variables which depends on the element grouping scheme;

f(X) is the cost function, which is taken as the weight of the structure in a weight

optimization problem; and fpenalty(X) is the penalty function, which is used to make

the problem unconstrained. When some constraints are violated in a particular

solution, the penalty function magnifies the weight of the solution by taking values

bigger than one; P(X) is the penalized cost function or the objective function to be

minimized; ωj is the jth natural frequency of the structure with the corresponding

upper bound ωj
*, while ωk is the kth natural frequency of the structure with the

corresponding lower bound ωk
*; and ximin and ximax are the lower and upper bounds

for the design variable xi, respectively.
The cost function can be expressed as

f Xð Þ ¼
Xnm
i¼1

ρiLiAi ð14:2Þ

where nm is the number of structural members and ρi, Li, and Ai are the material

density, length, and cross-sectional area of the ith element.

The penalty function is defined as

f penalty Xð Þ ¼ 1þ ε1:vð Þε2 , v ¼
Xq
i¼1

vi ð14:3Þ

where q is the number of frequency constraints. The values for vi can be considered
as

vi ¼
0 if the ith constraint is satisfied

1� ωi

ω*
i

����
���� else

(
ð14:4Þ
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The parameters ε1 and ε2 determine the degree to which a violated solution

should be penalized. In this study ε1 is taken as unity, and ε2 starts from 1.5 and then

linearly increases to 6 for all test problems. Such a scheme penalizes the infeasible

solutions more severely as the optimization process proceeds. As a result, in the

early stages, the agents are free to explore the search space, but at the end they tend

to choose solutions without violation.

14.3 Free Vibration Analysis of Structures

14.3.1 Basic Formulation

Abovementioned frequency constraint structural optimization involves a large

number of free vibration analyses of the structural system under consideration.

The mathematical formulation of the free vibration of a structure leads to a

generalized eigenproblem of the following form:

Kϕi ¼ γiMϕi ð14:5Þ

in which K is the elastic stiffness matrix and M is the mass matrix of the

structure, ϕ i is the ith eigenvector (mode shape) corresponding to the ith
eigenvalue γi, and the ith period (Ti) and circular frequency (ωi) are related to

the ith eigenvalue by

γi ¼ ωi
2 ¼ 2π=Tið Þ2 ð14:6Þ

General methods to solve the generalized eigenproblem of Eq. (14.4) require

manipulation of large matrices resulting in high computational costs. This is

particularly the case when performing structural optimization, where the anal-

ysis part should be carried out thousands of times. Specifically, when the

number of degrees of freedom of the structure is relatively large, the required

computational time becomes significant. In the next subsection, a formulation is

presented based on the works of Kaveh [17] and Koohestani and Kaveh [18],

which helps to obtain special patterns in the matrices involved in Eq. (14.4).

Such a formulation allows the initial eigenproblem to be decomposed into

several smaller ones and results in a much faster solution to the problem

at hand.
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14.3.2 Elastic Stiffness Matrix of a Three-Dimensional Truss
Element

Figure 14.1 shows a three-dimensional (3D) truss element in global Cartesian

coordinate system together with the corresponding components of displacement.

The elastic stiffness matrix of such an element is as follows:

Kxyz
ij ¼ EAij

Lij

dii �dii
�dii dii

� �
, dii ¼

l2ij lijmij lijnij
mijlij m2

ij mijnij
nijlij nijmij n2ij

2
64

3
75 ð14:7Þ

where E is the modulus of elasticity and Aij and Lij are the cross-sectional area and
the length of the element, respectively. In the submatrix dij, lij, mij, and nij are the

direction cosines of the element with respect to x-, y-, and z-axes, respectively:

lij ¼ xi � xi
Lij

, mij ¼ yi � yi
Lij

, nij ¼ zi � zi
Lij

ð14:8Þ

It is apparent from Eq. (14.6) that the element stiffness matrix in Cartesian

coordinates is not invariant under rotation about any axis. Therefore, the global

stiffness matrix of a cyclically repetitive structure does not generally exhibit any

favorable pattern in Cartesian coordinates.

In order to use the desirable patterns of the global stiffness matrices of cyclically

symmetric structures, the element global stiffness matrix should be developed in a

cylindrical coordinate system. In such a coordinate system, the element stiffness

matrix is invariant under rotation about an axis of revolution. Thus, the global

stiffness matrix of a cyclically repeated structure exhibits a special pattern which is

highly desired for efficient eigensolutions. A three-dimensional truss element

Fig. 14.1 A three-

dimensional truss element

in the global Cartesian

coordinate system
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together with its displacement components in cylindrical coordinate system is

shown in Fig. 14.2.

The element stiffness matrix in Cartesian coordinate system can be transformed

into the cylindrical coordinate system by the following transformation:

Krzθ
ij ¼ RtKxyz

ij R ð14:9Þ

where R is a transformation matrix:

R ¼ Roi 0

0 Roj

� �
ð14:10Þ

in which the submatrices Roi and Roj can be defined as

Roi ¼
loi �moi 0

moi loi 0

0 0 1

2
4

3
5, Roi ¼

loj �moj 0

moj loj 0

0 0 1

2
4

3
5 ð4:11Þ

in which we have

loi ¼ xi � x0
roi

, moi ¼ yi � y0
roi

, loj ¼ xj � x0
roj

, moj ¼
yj � y0
roj

ð14:12Þ

where

roi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

q
, roj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j þ y2j

q
ð14:13Þ

The expanded form of the element global stiffness matrix in cylindrical coordi-

nates can then be derived as

Fig. 14.2 Schematic of the

three-dimensional truss

element in the global

cylindrical coordinate

system
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Krzθ
ij ¼ EAij

Lij

s21 �s1s2 s1nij �s1s3 s1s4 �s1nij
s22 �s2nij s2s3 �s2s4 s2nij

n2ij �s3nij s4nij �n2ij
s23 �s3s4 s3nij

sym s24 �s4nij
n2ij

2
6666664

3
7777775

ð14:14Þ

where

s1 ¼ lijloi þ mijmoi

s2 ¼ lijmoi þ mijloi
s3 ¼ lijloj þ mijmoj

s4 ¼ lijmoj þ mijloj

ð14:15Þ

As it can be seen, this form of element stiffness matrix is invariant under rotation

about the axis of revolution. Therefore, all similar substructures have the same

stiffness matrix regardless of their rotational positions. Hence, the global stiffness

matrix of the structure embodies some interesting patterns, which can be used for

efficient eigensolution of the structure.

In relation to mass matrix, it should be noted that both lumped and consistent

mass matrices are invariant under rotation and therefore no transformation is

needed. Since additional lumped masses are added to the free nodes, the difference

between consistent and lumped mass matrices is negligible. A lumped mass matrix,

which lumps the masses of the elements in their end nodes, is utilized in this

chapter. Therefore, the mass matrix is a diagonal one.

14.4 Efficient Eigensolution

Matrices related to a three-dimensional truss element in cylindrical coordinate

system are invariant under rotation about axis of revolution. Therefore, if the

nodes of all similar substructures are labeled in a similar manner, the matrices

corresponding to these substructures would be the same, and the global mass and

stiffness matrices of a cyclically repeated structure exhibit the canonical form

shown in Eq. (14.15). This canonical form is called block tri-diagonal matrix

with corner blocks (BTMCB).
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A B Bt

Bt A B
: : :

: : :
: : :

Bt A B
B Bt A

2
666666664

3
777777775

ð14:16Þ

For a three-dimensional truss structure which is formed of n cyclically repeated

substructures each having m nodes, both mass and stiffness matrices are

3 nm� 3 nm. Submatrices A, B, and Bt are square matrices with dimension 3 m.

Although applying the support conditions will change these dimensions, the canon-

ical form of Eq. (14.15) will be preserved if the boundary conditions are also

cyclically symmetric. Hence, the structural matrices could be decomposed using

Kronecker products as

K 3nm�3nmð Þ ¼ In�n � AK 3m�3mð Þ þ H n�nð Þ � BK 3m�3mð Þ þ Ht
n�nð Þ

� Bt
K 3m�3mð Þ ð14:17Þ

M 3nm�3nmð Þ ¼ In�n � AM 3m�3mð Þ þ H n�nð Þ � BM 3m�3mð Þ þ Ht
n�nð Þ

� Bt
M 3m�3mð Þ ð14:18Þ

where subscripts K and M for A, B, and Bt refer to stiffness and mass matrices,

respectively, I is an n� n identity matrix, and H is an n� n unsymmetric permu-

tation matrix as

H ¼

0 1 0

0 0 1

: : :
: : :

: : :
0 0 1

1 0 0

2
666666664

3
777777775

ð14:19Þ

Kronecker product of two matrices Am� n and Bp� q, denoted by A� B, is an
mp� nq block matrix and could be defined as

A� B ¼
a11B . . . a1nB
⋮ ⋱ ⋮

am1B � � � amnB

2
4

3
5 ð14:20Þ

Block diagonalization of a BTMCB matrix is studied in Kaveh [17] and

Koohestani and Kaveh [18] and could be summarized as follows. Equation (14.4)

has a nontrivial solution if and only if
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det Ωið Þ ¼ det K � γiMð Þ ¼ 0 ð14:21Þ

where “det” stands for determinant. Here, the goal is to block diagonalize Ωi and

hence to decompose the main problem into some simpler subproblems. Let us

consider the following definitions:

A ¼ AK � γiAM

B ¼ BK � γiBM

Bt ¼ Bt
K � γiB

t
M

ð14:22Þ

Combining Eqs. (14.17 and 14.18) with the above equations, Ωi can be written as

Ωi ¼ I � Aþ H � Bþ Ht � Bt ð14:23Þ

This form of Ωi can now be block diagonalized, and its jth block is as follows:

Ω j
i ¼ Aþ λjBþ λjB

t ð14:24Þ

where λj is the jth eigenvalue of matrix H and the bar sign means conjugation of a

general complex number. Thus, the following equation holds

det Ωið Þ ¼
Yn
j¼1

det Ω j
i

� �
ð14:25Þ

The determinant of the jth block of Ωi is in turn a new generalized eigenproblem.

Therefore, the original eigenproblem is decomposed into n highly smaller and

simpler subproblems as

Kjxi ¼ γiMjxi, j ¼ 1, 2, 3, . . . , n ð14:26Þ

in which

Kj ¼ AK þ λjBK þ λjB
t
K

Mj ¼ AM þ λjBM þ λjB
t
M

ð14:27Þ

where xi could be converted to the required eigenvector corresponding to γi (Kaveh
[17]).

14.5 Numerical Examples

In this section three numerical examples are studied in order to examine the

viability and efficiency of the proposed method. Democratic particle swarm opti-

mization (DPSO) as introduced by Kaveh and Zolghadr [14] is utilized as the
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optimization algorithm. However, any other metaheuristic algorithm could be used.

The algorithm and the finite element analysis were implemented by MATLAB

R2009a on a laptop computer with an Intel (R) Core(TM)2 Duo 2.50 GHz processor

and 4.00 GB RAM under the Microsoft Windows Vista™ Home Basic operating

system. MATLAB internal eigenvalue function was used equally for the initial

eigenproblem and the decomposed ones. The overall computational times required

for different optimization runs utilizing the standard method and the proposed one

are compared. The results show that the proposed efficient method is significantly

faster.

14.5.1 A 600-Bar Single-Layer Dome

The first test problem is the 600-bar single-layer dome structure shown in Fig. 14.3.

The entire structure is composed of 216 nodes and 600 elements generated by cyclic

repetition of a substructure having 9 nodes and 25 elements. The angle of cyclic

symmetry between similar substructures is 15	. A nonstructural mass of 100 kg is

attached to all free nodes. Table 14.1 summarizes the material properties, variable

bounds, and frequency constraints for this example. Figure 14.4 shows a substruc-

ture in more detail for nodal numbering and coordinates. Each of the elements of

this substructure is considered as a design variable. Thus, this is a size optimization

problem with 25 variables.

Using the classical method, it takes 2.6150 s to perform a typical analysis for this

structure, while the efficient method needs 0.0198 s, i.e., the efficient method is

about 132 times faster on a single analysis. Two different optimization cases are

performed on this example as well as the other two. In Case 1, the initial

eigenproblem is solved directly using MATLAB internal eigenvalue function;

Fig. 14.3 Schematic of the 600-bar single-layer dome
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this is called the classical method. In Case 2, the abovementioned efficient method

is used for the analysis part, i.e., the initial eigenproblem is decomposed into several

smaller ones, and then each of the subproblems is solved using the same MATLAB

function. In this example, 30 particles and 300 iterations (9000 analyses) are used

for both cases. The required computational time to complete a single optimization

run for Cases 1 and 2 is 27,326.25 s and 190.77 s, respectively. This means that the

optimization procedure could be performed about 143 times faster using the

efficient analysis method under the same circumstances. This example was solved

10 times using the efficient analysis method and the best result is presented in

Table 14.2.

The total computational time to perform ten optimization runs using the efficient

method is 1906.68 s (less than an hour), while it would have taken approximately

Fig. 14.4 Details of a substructure of the 600-bar single-layer dome

Table 14.1 Material properties, variable bounds, and frequency constraints for the 600-bar

single-layer dome

Property/unit Value

E (modulus of elasticity)/N/m2 2� 1011

ρ (material density)/kg/m3 7850

Added mass/kg 100

Design variable lower bound/m2 1� 10�4

Design variable upper bound/m2 100� 10�4

Constraints on the first three frequencies/Hz ω1� 5, ω3� 7

14.5 Numerical Examples 267



273,112.84 s (more than 3 days) to perform the same runs using the classical

method. Table 14.3 presents the first five natural frequencies of the optimized

structure. It can be seen that the constraints are fully satisfied. These frequencies

are in full agreement with the results of the classical analysis method up to ten

significant digits. The mean weight of the structures found in ten runs is 6674.71 kg

with a standard deviation of 473.21 kg. Figure 14.5 shows the convergence curve of

the best result for the 600-bar dome truss using the efficient method.

14.5.2 A 1180-Bar Dome Truss

The second test problem solved in this study was the weight minimization of the

1180-bar dome truss structure shown in Fig. 14.6. The entire structure is composed

of 400 nodes and 1180 elements generated by cyclic repetition of a substructure

with 20 nodes and 59 elements. The angle of cyclic symmetry between similar

substructures is 18	. A nonstructural mass of 100 kg is attached to all free nodes.

Table 14.4 summarizes the material properties, variable bounds, and frequency

constraints for this example. Figure 14.7 shows a substructure in more detail for

Table 14.2 Optimized design for the 600-bar dome truss problem (added masses are not

included)

Element no. (nodes)

Cross-sectional area

(cm2) Element no. (nodes)

Cross-sectional area

(cm2)

1 (1–2) 1.365 14 (5–13) 5.529

2 (1–3) 1.391 15 (5–14) 7.007

3 (1–10) 5.686 16 (6–7) 5.462

4 (1–11) 1.511 17 (6–14) 3.853

5 (2–3) 17.711 18 (6–15) 7.432

6 (2–11) 36.266 19 (7–8) 4.261

7 (3–4) 13.263 20 (7–15) 2.253

8 (3–11) 16.919 21 (7–16) 4.337

9 (3–12) 13.333 22 (8–9) 4.028

10 (4–5) 9.534 23 (8–16) 1.954

11 (4–12) 9.884 24 (8–17) 4.709

12 (4–13) 9.547 25 (9–17) 1.410

13 (5–6) 7.866 Weight (kg) 6344.55

Table 14.3 Natural

frequencies (Hz) evaluated at

the optimized design for the

600-bar dome truss problem

Frequency number Frequency value

1 5.000

2 5.000

3 7.000

4 7.000

5 7.000
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Fig. 14.5 Convergence curve of the best result for the 600-bar dome truss using the efficient

method [1]

Fig. 14.6 Schematic of the 1180-bar dome truss
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nodal numbering. Table 14.5 summarizes the coordinates of the nodes in Cartesian

coordinate system. Each of the elements of this substructure is considered as a

design variable. Thus, this is a size optimization problem with 59 variables.

A single analysis takes up to 11.3575 s of computational time using the classical

method. The required computational time for a similar analysis using the efficient

method is only 0.0720 s. This means that the efficient method is about 157 times

faster for a single analysis. About 100 particles and 500 iterations (50,000 analyses)

are used for optimization of this test problem. The required computational time to

complete a single run for Case 2 is 7095.56 s. Figure 14.8 shows the variation of the

computational time with the number of analyses for Case 1. According to the figure,

it is estimated that it would take 800,160 s to perform the same optimization run for

Case 1 (50,000 analyses). Therefore, the optimization procedure could be

performed about 113 times faster under the same circumstances using the efficient

analysis method. Again, this example was solved ten times using the efficient

analysis method and the best result is presented in Table 14.6.

Table 14.4 Material properties, variable bounds, and frequency constraints for the 1180-bar

dome truss

Property/unit Value

E (modulus of elasticity)/N/m2 2� 1011

ρ (material density)/kg/m3 7850

Added mass/kg 100

Design variable lower bound/m2 1� 10�4

Design variable upper bound/m2 100� 10�4

Constraints on the first three frequencies/Hz ω1� 7, ω3� 9

Fig. 14.7 Details of a

substructure of the 1180-bar

dome truss
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It takes 68,933.06 s to perform ten optimization runs using the efficient method

for this example, while it would have taken approximately 7,773,580 s (about

90 days) to perform the same runs using the classical method. Table 14.7 presents

the first five natural frequencies of the optimized structure for this example. The

mean weight of the structures found in ten runs is 38,294.45 kg with a standard

deviation of 550.5 kg. Figure 14.9 shows the convergence curve of the best result

for the 1180-bar dome truss using the efficient method.

Table 14.5 Coordinates of the nodes of the main structure (the 1180-bar dome truss)

Node no. Coordinates (x, y, z) Node no. Coordinates (x, y, z)

1 (3.1181, 0.0, 14.6723) 11 (4.5788, 0.7252, 14.2657)

2 (6.1013, 0.0, 13.7031) 12 (7.4077, 1.1733, 12.9904)

3 (8.8166, 0.0, 12.1354) 13 (9.9130, 1.5701, 11.1476)

4 (11.1476, 0.0, 10.0365) 14 (11.9860, 1.8984, 8.8165)

5 (12.9904, 0.0, 7.5000) 15 (13.5344, 2.1436, 6.1013)

6 (14.2657, 0.0, 4.6358) 16 (14.4917, 2.2953, 3.1180)

7 (14.9179, 0.0, 1.5676) 17 (14.8153, 2.3465, 0.0)

8 (14.9179, 0.0, �1.5677) 18 (14.4917, 2.2953, �3.1181)

9 (14.2656, 0.0, �4.6359) 19 (13.5343, 2.1436, �6.1014)

10 (12.9903, 0.0, �7.5001) 20 (3.1181, 0.0, 13.7031)

Fig. 14.8 Variation of the computational time with a number of analyses for Case 1 (1180-bar

dome truss)
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Table 14.6 Optimized design for the 1180-bar dome truss problem (added masses are not

included)

Element no. (nodes)

Cross-sectional area

(cm2) Element no. (nodes)

Cross-sectional area

(cm2)

1 (1–2) 7.926 31 (8–9) 34.642

2 (1–11) 10.426 32 (8–17) 19.860

3 (1–20) 2.115 33 (8–18) 25.079

4 (1–21) 14.287 34 (8–28) 18.965

5 (1–40) 3.846 35 (9–10) 47.514

6 (2–3) 5.921 36 (9–18) 28.133

7 (2–11) 7.955 37 (9–19) 33.023

8 (2–12) 6.697 38 (9–29) 32.263

9 (2–20) 1.889 39 (10–19) 33.401

10 (2–22) 11.881 40 (10–30) 1.344

11 (3–4) 7.121 41 (11–21) 9.327

12 (3–12) 6.080 42 (11–22) 7.202

13 (3–13) 6.599 43 (12–22) 6.792

14 (3–23) 7.772 44 (12–23) 6.228

15 (4–5) 9.358 45 (13–23) 6.601

16 (4–13) 6.213 46 (13–24) 6.584

17 (4–14) 8.200 47 (14–24) 8.320

18 (4–24) 7.799 48 (14–25) 8.844

19 (5–6) 11.752 49 (15–25) 11.254

20 (5–14) 7.494 50 (15–26) 12.162

21 (5–15) 9.696 51 (16–26) 13.854

22 (5–25) 9.177 52 (16–27) 13.844

23 (6–7) 17.326 53 (17–27) 17.536

24 (6–15) 11.797 54 (17–28) 20.551

25 (6–16) 14.002 55 (18–28) 24.072

26 (6–26) 11.562 56 (18–29) 27.287

27 (7–8) 23.981 57 (19–29) 32.965

28 (7–16) 12.996 58 (19–30) 36.940

29 (7–17) 16.591 59 (20–40) 3.837

30 (7–27) 15.910 Weight (kg) 37,779.81

Table 14.7 Natural

frequencies (Hz) evaluated at

the optimized design for the

1180-bar dome truss problem

Frequency number Frequency value

1 7.000

2 7.000

3 9.000

4 9.000

5 9.005
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14.5.3 A 1410-Bar Double-Layer Dome Truss

The third test problem solved in this chapter was the weight minimization of the

1410-bar double-layer dome truss as shown in Fig. 14.10. The entire structure is

composed of 390 nodes and 1410 elements generated by cyclic repetition of a

substructure with 13 nodes and 47 elements. The angle of cyclic symmetry between

similar substructures is 12	. A nonstructural mass of 100 kg is attached to all free

nodes. Table 14.8 summarizes the material properties, variable bounds, and fre-

quency constraints for this example. Figure 14.11 shows a substructure in more

detail for nodal numbering. Table 14.9 presents the coordinates of the nodes in

Cartesian coordinate system. Each of the elements of this substructure is considered

as a design variable. Thus, this is a size optimization problem with 47 variables.

Required computational times for classical and efficient methods are 11.7101

and 0.0140 s, respectively. Like the previous example, 100 particles and 500 itera-

tions (50,000 analyses) are used for optimization of this test problem. The required

computational time to complete a single run for Case 2 is 3871.62 s. Figure 14.12

shows the variation of the computational time with the number of analyses for Case

1. According to the figure, it is estimated that it would take 950,240 s to perform the

same optimization run for Case 1 (50,000 analyses). Therefore, the optimization

procedure could be performed about 245 times faster under the same circumstances

using the efficient analysis method. This example was solved ten times using the

efficient analysis method and the best result is presented in Table 14.10.

Fig. 14.9 Convergence curve of the best result for the 1180-bar dome truss using the efficient

method [1]
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Fig. 14.10 Schematic of the 1410-bar dome truss

Table 14.8 Material properties, variable bounds, and frequency constraints for the 1410-bar

dome truss

Property/unit Value

E (modulus of elasticity)/N/m2 2� 1011

ρ (material density)/kg/m3 7850

Added mass/kg 100

Design variable lower bound/m2 1� 10�4

Design variable upper bound/m2 100� 10�4

Constraints on the first three frequencies/Hz ω1� 7, ω3� 9

Fig. 14.11 Details of a

substructure of the 1410-bar

dome truss
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It takes 38,310.43 s to perform ten optimization runs using the efficient method

for this example, while it would have taken approximately 9,386,055 s (about

108 days) to perform the same runs using the classical method. Table 14.11 presents

the first five natural frequencies of the optimized structure for this example. The

mean weight of the structures found in ten runs is 38,294.45 kg with a standard

deviation of 550.5 kg. Figure 14.13 shows the convergence curve of the best result

for the 1410-bar dome truss using the efficient method.

Table 14.9 Coordinates of the nodes of the main substructure (the 1410-bar dome truss)

Node no. Coordinates (x, y, z) Node no. Coordinates (x, y, z)

1 (1.0, 0.0, 4.0) 8 (1.989, 0.209, 3.0)

2 (3.0, 0.0, 3.75) 9 (3.978, 0.418, 2.75)

3 (5.0, 0.0, 3.25) 10 (5.967, 0.627, 2.25)

4 (7.0, 0.0, 2.75) 11 (7.956, 0.836, 1.75)

5 (9.0, 0.0, 2.0) 12 (9.945, 1.0453, 1.0)

6 (11.0, 0.0, 1.25) 13 (11.934, 1.2543, �0.5)

7 (13.0, 0.0, 0.0)

Fig. 14.12 Variation of the computational time with a number of analyses for Case 1 (1410-bar

dome truss)
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Table 14.10 Optimized design for the 1410-bar dome truss problem (added masses are not

included)

Element

no. (nodes) Cross-sectional area (cm2)

Element

no. (nodes) Cross-sectional area (cm2)

1 (1–2) 7.209 25 (8–9) 2.115

2 (1–8) 5.006 26 (8–14) 4.923

3 (1–14) 38.446 27 (8–15) 4.047

4 (2–3) 9.438 28 (8–21) 5.906

5 (2–8) 4.313 29 (9–10) 3.392

6 (2–9) 1.494 30 (9–15) 1.902

7 (2–15) 8.455 31 (9–16) 4.381

8 (3–4) 9.488 32 (9–22) 8.442

9 (3–9) 3.480 33 (10–11) 5.011

10 (3–10) 3.495 34 (10–16) 3.577

11 (3–16) 16.037 35 (10–17) 2.805

12 (4–5) 9.796 36 (10–23) 2.024

13 (4–10) 2.413 37 (11–12) 6.709

14 (4–11) 5.681 38 (11–17) 5.054

15 (4–17) 15.806 39 (11–18) 3.259

16 (5–6) 8.078 40 (11–24) 1.063

17 (5–11) 3.931 41 (12–13) 5.934

18 (5–12) 6.099 42 (12–18) 7.057

19 (5–18) 10.771 43 (12–19) 5.745

20 (6–7) 13.775 44 (12–25) 1.185

21 (6–12) 4.231 45 (13–19) 7.274

22 (6–13) 6.995 46 (13–20) 4.798

23 (6–19) 1.837 47 (13–26) 1.515

24 (7–13) 4.397 Weight (kg) 10,453.84

Table 14.11 Natural

frequencies (Hz) evaluated at

the optimized design for the

1410-bar dome truss problem

Frequency number Frequency value

1 7.001

2 7.001

3 9.003

4 9.005

5 9.005
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14.6 Concluding Remarks

Structural optimization using metaheuristic algorithms involves a large number of

structural analyses, which requires a great amount of computational time, especially

when optimizing large structural systems. In this chapter simultaneous optimal

analysis and design of cyclically repetitive dome trusses with frequency constraints

are considered. These types of structures exhibit some favorable patterns in their

structural matrices, which makes it possible to utilize some efficient analysis

methods. These methods decompose the original eigenproblem into several smaller

ones, which are simpler to solve and require less computational time. Democratic

particle swarm optimization (DPSO) introduced by Kaveh and Zolghadr [14] is

utilized as the optimization algorithm.

Three different dome trusses are considered as numerical examples to show the

efficiency of the proposed method. It can be seen that using the efficient method for

analysis, the optimization procedure can be performed significantly faster. While all

the runs are taken in <2 days using the efficient methods, it would have taken more

than 200 days to do the same thing using classical methods. Such a substantial

saving in computational time is due to the regular nature of the structures under

consideration. Other types of efficient methods could also be used in order to deal

with near-regular structures (Kaveh [17]).

Fig. 14.13 Convergence curve of the best result for the 1410-bar dome truss using the efficient

method [1]
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The presented concepts can be generalized to optimization of other types of

symmetric or regular structures as well as structural optimization with static

constraints.
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Chapter 15

Optimum Design of Large-Scale Truss

Towers Using Cascade Optimization

15.1 Introduction

High number of design variables, large size of the search space, and control of a

great number of design constraints are major preventive factors in performing

optimum design of real-world structures in a reasonable time. This chapter presents

an accurate and efficient technique for optimal design of truss towers with large

number of design variables to illustrate its applicability to optimum design of

practical structures [1].

Cascade sizing optimization utilizing a series of design variable configurations

(DVCs) is used in this study. Several DVCs are constructed in order to utilize a

different configuration at each cascade optimization stage. Each new cascade stage

is coupled with the previous one by initializing the new stage using the finally

attained optimum design of the previous stage. The first stages of the cascade

procedure are executed with the coarsest DVCs, and the final cascade stages utilize

the finest DVCs in order to handle large numbers of design variables. In all stages of

the procedure, enhanced colliding bodies optimization (ECBO) is employed. The

multi-DVC cascade optimization performs better than non-cascade procedure in all

the considered examples. High solution accuracy and convergence speed of the

proposed method are shown through three test examples [1].

In the last decades, a number of optimization techniques have been developed

and used for structural optimization problems. The aim of the optimization is to

minimize an objective function that is often considered as the cost of the structure

or a quantity directly proportional to the cost under certain constraints. These

constraints may consist of any engineering demand parameter like stresses, dis-

placements, maximum inter-story drift, etc. Recent years have witnessed an

increasing interest in the development and application of metaheuristic algorithms

that are effective and robust techniques for optimization problems. These algo-

rithms are often population based, and they search for the global optimum of the

problem through sharing information to cooperate and/or compete among the

© Springer International Publishing AG 2017
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individuals. Many of the recently developed metaheuristic algorithms for optimal

design of structures can be found in Kaveh [2].

Structural optimization has grown from a narrow academic discipline, where

researchers focused on optimum design of small idealized structural components

and systems, to form the basis for modern design of complex structural systems

[3]. On the other hand, optimal design of large-scale structures is a rather difficult

task and the computational efficiency of the currently available methods needs to be

improved. In this chapter, optimal design of three truss towers with 582, 942, and

2386 elements is studied in the framework of cascade evolutionary structural sizing

optimization for presenting the efficiency of this technique in solving large-scale

truss tower problems. In this method, several DVCs are constructed, in order to

utilize a different configuration at each cascade optimization stage. Each new

cascade stage is coupled with the previous one by initializing the new stage using

the finally attained optimum design of the previous stage. The early optimization

stages of the cascade procedure make use of the coarsest configurations with small

numbers of design variables and serve the purpose of basic design space explora-

tion. The later stages exploit finer configurations with larger numbers of design

variables and aim at fine-tuning of the achieved optimal solution [4].

In general, the optimization algorithm utilized at each stage of a cascade process

may or may not be the same. In this chapter, ECBO (Kaveh and Ilchi Ghazaan [5])

is utilized in all stages of a cascade process. In this technique, one object collides

with another and they move toward a minimum energy level. The CBO developed

by Kaveh and Mahdavi [6] has a simple theoretical structure, usually converges

quickly, and depends on no internal parameters. By using memory to save a number

of historically best solutions and also utilizing a mechanism to escape from local

optima, ECBO usually performs better than CBO (Kaveh and Ilchi Ghazaan [7]).

The rest of this chapter is organized as follows: In Sect. 15.2, description of the

cascade sizing optimization method that employs a series of configurations is

presented. In Sect. 15.3, the ECBO algorithm is presented in detail. Then

Sect. 15.4 uses numerical examples to confirm the validity of the proposed

approach. Finally, concluding remarks are provided in Sect. 15.5.

15.2 Cascade Sizing Optimization Utilizing Series

of Design Variable Configurations

In this section, the multi-DVC cascade optimization is presented after a brief

introduction to the concept of the cascade optimization.
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15.2.1 Concept of Cascade Optimization

No single optimizer can successfully solve all the structural design problems.

Cascade optimization strategy was proposed to alleviate this deficiency which

utilizes several optimizers, one followed by another in a specified sequence, to

solve a problem [8]. In the first stage of the cascade procedure, the first optimizer

starts from a user-specified design, known as the “cold-start.” The intermediate

optimal solution reached in the first cascade stage, which may be perturbed using a

pseudo-random technique, is called a “hot-start” and is used to initiate the second

optimization stage. Accordingly, each optimization stage of the cascade procedure

starts from the optimum design achieved in the previous stage (possibly perturbed).

Thus, each cascade stage initiates from a hot-start and produces a new hot-start for

the next stage. This way the autonomous computations of successive optimization

stages are coupled. In general, the optimization algorithm implemented at each

stage of a cascade process may or may not be the same. Cascade optimization has

been implemented using different deterministic and/or probabilistic optimizers in

the cascade stages (Charmpis et al. [3]).

15.2.2 Multi-DVC Cascade Optimization

A series of appropriate DVCs for the sizing optimization problem under consider-

ation is formed, in order to utilize a different configuration at each cascade

optimization stage. Each new cascade stage is coupled with the previous one by

initializing the new stage using the finally attained optimum design of the previous

one (Charmpis et al. [4]). The first stages of the cascade procedure are executed

with the coarsest DVCs aiming at a basic non-detailed search of the full design

space. This search is facilitated by the manageable DVCs handled to avoid confus-

ing the optimizer with huge design spaces. Thus, the areas of appropriate design

variable values are identified by detecting near optimum solutions among the

relatively limited design options provided. As the numbers of design variables

processed in the cascade stages become larger, more detailed representation of

the full design space is offered and the optimizer is given the opportunity to

improve the quality of the optimal solution reached. In the final cascade stages

utilizing the finest DVCs, relatively small adjustments to an already good-quality

design occur, in an effort to identify (or at least approach) the globally optimum

design. Hence, the early optimization stages of the cascade procedure serve the

purpose of basic design space exploration, while the later stages aim at fine-tuning

of the achieved optimal solution (Charmpis et al. [4]).

This multi-DVC cascade computational procedure can be implemented using an

arbitrary optimization algorithm. In this study, ECBO (Kaveh and Ilchi Ghazaan

[7]) that is presented in the next section is utilized in all stages. Flowchart of the

Multi-DVC cascade optimization procedure is shown in Fig. 15.1.

15.2 Cascade Sizing Optimization Utilizing Series of Design Variable Configurations 283



15.3 Enhanced Colliding Bodies Optimization

Colliding bodies optimization (CBO) is a population-based metaheuristic algorithm

introduced by Kaveh and Mahdavi [6]. This method originates from

one-dimensional collisions between two bodies in which one object collides with

the another and they move toward minimum energy level. The movement process

of the objects is based on the governing laws of collision in physics. ECBO was

proposed by Kaveh and Ilchi Ghazaan [7] that utilizes a memory to store a certain

number of best designs obtained so far to improve convergence behavior of CBO.

Furthermore, some components of agents are randomly changed to allow them to

escape from local minima and prevent premature convergence. This algorithm

consists of the following steps:

Fig. 15.1 Flowchart of the multi-DVC cascade optimization procedure
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Step 1: Initialization

Each solution candidate xi is considered as a colliding body (CB) and the initial

positions of all CBs are determined randomly in an m-dimensional search space.

xi
0 ¼ xmin þ rand∘ xmax � xminð Þ, i ¼ 1, 2, . . . , n ð15:1Þ

where xi
0 is the initial solution vector of the ith CB. Here, xmin and xmax are the

bounds of design variables; rand is a random vector in which each component is

in the interval [0, 1]; the sign “�” denotes an element-by-element multiplication;

n is the number of CBs.

Step 2: Defining mass

Each CB has a specified mass defined as

mk ¼
1

fit kð Þ
1Xn

i¼1

1

fit ið Þ

, k ¼ 1, 2, . . . , n ð15:2Þ

where fit(i) represents the objective function value of the ith CB.

Step 3: Saving

Colliding memory (CM) is utilized to save a number of the best-so-far solutions.

In this study, the size of the CM is taken as n/10. At each iteration, solution

vectors saved in CM are added to the population, and the same number of current

worst CBs are deleted. Finally, CBs are sorted according to their masses in a

decreasing order.

Step 4: Creating groups

In order to select pairs of objects for collision, CBs are divided into two equal

groups: (i) stationary group and (ii) moving group. Moving objects collide with

stationary objects to improve their positions and push stationary objects toward

better positions.

Step 5: Criteria before the collision

The velocity of the stationary bodies before collision is zero so

vi ¼ 0, i ¼ 1, 2, . . . ,
n

2
ð15:3Þ

The velocity of each moving body before collision is

vi ¼ xi�n
2
� xi, i ¼ n

2
þ 1,

n

2
þ 2, . . . , n ð15:4Þ

Step 6: Criteria after the collision

The velocity of each stationary CB after the collision (v
0
i) is specified by
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v0i ¼
miþn

2
þ εmiþn

2

� �
viþn

2

mi þ miþn
2

i ¼ 1, 2, . . . ,
n

2
ð15:5Þ

The velocity of each moving CB after the collision (v
0
i) is defined by

v0i ¼
mi � εmi�n

2

� �
vi

mi þ mi�n
2

i ¼ n

2
þ 1 ,

n

2
þ 2 , . . . , n ð15:6Þ

ε is the coefficient of restitution (COR) that decreases linearly from unit to zero

ε ¼ 1� iter

itermax
ð15:7Þ

where iter is the current iteration number and itermax is the total number of

iterations for optimization process.

Step 7: Updating CBs

New positions of CBs are updated according to their velocities after the collision

and the positions of stationary CBs. Therefore, the new position of each station-

ary CB is

xi
new ¼ xi þ rand∘vi

0
, i ¼ 1, 2, . . . ,

n

2
ð15:8Þ

New position of each moving CB is calculated by

xi
new ¼ xi�n

2
þ rand∘vi

0
, i ¼ n

2
þ 1,

n

2
þ 2, . . . , n ð15:9Þ

Step 8: Escape from local optima

A parameter like Pro within (0, 1) is introduced which specifies whether a

component of each CB must be changed or not. For each colliding body, Pro
is compared with rni (i¼ 1, 2, . . ., n) which is a random number uniformly

distributed within (0, 1). If rni< pro, one dimension of the ith CB is selected

randomly and its value is regenerated as follows:

xij ¼ xj,min þ rnd: xj,max � xj,min

� � ð15:10Þ

where xij is the jth variable of the ith CB. xj,min and xj,max, respectively, are the

lower and upper bounds of the jth variable. rnd is a random number in the

interval [0,1]. In this study, pro is set to 0.25.

Step 9: Termination condition check

After the predefined maximum evaluation number, the optimization process is

terminated.
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15.4 Design Examples

Three large-scale truss structures are optimized for minimum volume with the

cross-sectional areas of the members being the design variables to verify the

efficiency of the multi-DVC cascade optimization. A population of 20 CBs is

used for the first and second examples and 30 CBs are utilized for the last problem.

The optimization process in each stage except the last one is terminated after a fixed

number of iterations without any improvement. This value is considered as the

minimum of the number of design variables in the stage as 30. When the total

number of iterations is equal to 1000, the process is terminated. In all problems, the

CBs are allowed to select discrete values from the permissible list of cross sections

(real numbers are rounded to the nearest integer in the each iteration). The well-

known penalty approach is employed to handle the constraints (Kaveh and Ilchi

Ghazaan [7]). The algorithms are coded in MATLAB, and the structures are

analyzed using the direct stiffness method.

15.4.1 A Spatial 582-Bar Tower

The schematic of a 582-bar tower truss is shown in Fig. 15.2 as a well-known

benchmark problem. The symmetry of the tower about x-axis and y-axis is consid-
ered to group the 582 members into 32 independent sizing variables. A single load

case is considered consisting of the lateral loads of 1.12 kips (5.0 kN) applied in

both x- and y-directions and a vertical load of�6.74 kips (�30 kN) applied in the z-
direction at all nodes of the tower. A discrete set of standard steel sections selected

from W-shape profile list based on area and radii of gyration properties is used as

sizing variables. Cross-sectional areas of elements can vary between 6.16 and

215 in2 (i.e., between 39.74 and 1387.09 cm2). Limitations on the stress and

stability of truss elements are imposed according to the provisions of ASD-AISC

[9] as follows.

The allowable tensile stresses for tension members are calculated by

σþi ¼ 0:6Fy ð15:11Þ

where Fy stands for the yield strength.

The allowable stress limits for compression members are calculated depending

on two possible failure modes of the members known as elastic and inelastic

buckling. Thus,
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σ�i ¼
1� λ2i

2C2
c

� �
Fy

� 	
=

5

3
þ 3λi
8Cc

� λ3i
8C3

c

� 	
for λi < C

12π2E

23λ2i
for λi � Cc

8>>><
>>>:

ð15:12Þ

where E is the modulus of elasticity, λi is the slenderness ratio λi ¼ kli=rið Þ, Cc

denotes the slenderness ratio dividing the elastic and inelastic buckling regions

cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p� �
, k is the effective length factor (k is set 1 for all truss members),

Li is the member length, and ri is the minimum radius of gyration.

In this design code provisions, the maximum slenderness ratio is limited to

300 for tension members, and it is recommended to be 200 for compression

members.

Nodal displacements in all coordinate directions must be less than�3.15 in (i.e.,

�8 cm).

This problem is optimized in 3 stages. The number of design variable in stages

1, 2, and 3 are 8, 15, and 32, respectively. Table 15.1 presents the DVCs. The multi-

DVC cascade optimization procedure achieves 1,295,779 m3 after 18,700 analyses.

This problem was previously solved by ECBO, and it obtained 1,296,776 m3 after

19,700 analyses (Kaveh and Ilchi Ghazaan [5]). The required number of analyses to

achieve 0.5% heavier designs than the optimal design for non-cascade and cascade

3D view Top view Side view

Fig. 15.2 Schematic of the spatial 582-bar tower
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optimization procedures are 8980 and 6620 analyses, respectively. It means that the

algorithm manages to find a near optimal solution in the early iterations while it

continues searching the search space until the last iterations. Convergence curves

are depicted in Fig. 15.3. The final volumes achieved in stage 1 (containing 8 design

variables) and stage 2 (containing 15 design variables) are 1,438,697 m3 and

1,363,348 m3, respectively. These stages are terminated in 95th and 197th itera-

tions. It can be seen that the convergence rate of the cascade optimization pro-

cedures is higher than the non-cascade procedure.

15.4.2 A Spatial 942-Bar Tower

Figure 15.4 shows the schematic of a 942-bar tower truss. This example has been

analyzed by many researchers considering 59 design variables (Hasançebi [10]). In

this study, the design variables are increased to 76 and the performance constraints,

material properties, and other conditions are the same as those of the first example.

Table 15.1 Design variable configurations utilized for the 582-bar tower problem

Number of design

variables in stages

Design variables in the group (design variable

configurations)

Stage 1 8 [1 6 9]; [2 4 7 10]; [3 5 8 11]; [12 13 14]; [19 22 25 28 31];

[32]; [15 17 20 23 26 29]; [16 18 21 24 27 30]

Stage 2 15 [1 6 9]; [2 4]; [7 10]; [3 5]; [8 11]; [12]; [13]; [14]; [19 22

25]; [28 31]; [32]; [15 17 20]; [23 26 29]; [16 18 21];

[24 27 30]

Fig. 15.3 Convergence curves of non-cascade (solid lines) and cascade optimization procedures

(dotted lines) obtained in the 582-bar tower problem [1]
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Figure 15.5 shows the member groups. Three stages with 16, 28, and 76 design

variables are considered to solve this problem. The DVCs are shown in Table 15.2.

The design obtained by cascade optimization procedures is 3,323,028 m3, and the

best design attained without cascading is 3,376,968 m3. These values are found after

18,320 and 19,960 analyses, respectively. The proposed method can reach the best

design of non-cascade procedure after about 11,060 analyses. Convergence history

diagrams are depicted in Fig. 15.6. The final volume found in stage 1 (containing

16 design variables) in 112th iteration is 4,467,989m3. Stage 2 (containing 28 design

variables) terminated in 287th iteration and its corresponding value is 3,809,870 m3.

It can be seen that the curve of the multi-DVC cascade optimization lies below those

of the non-cascading procedure.

15.4.3 A Spatial 2386-Bar Tower

The schematic of a 2386-bar tower truss is shown in Fig. 15.7 as the last design

example. This example is studied here for the first time. The Performance con-

straints, material properties, and other conditions are the same as those of the first

3D view Top view Side view

Fig. 15.4 Schematic of the spatial 942-bar tower
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Fig. 15.5 Member groups of spatial 942-bar tower

Table 15.2 Design variable configurations utilized for the 942-bar tower problem

Number of design

variables in stages

Design variables in the group (design variable

configurations)

Stage 1 16 [1]; [2–6]; [7–12]; [13–18]; [19–24]; [25–29]; [30–35];

[36]; [37–43]; [44–51]; [52–58]; [59]; [60–64]; [65–70];

[71–75]; [76]

Stage 2 28 [1]; [2 3]; [4–6]; [7–9]; [10–12]; [13–15]; [16–18]; [19–21];

[22–24]; [25 26]; [27–29]; [30–32]; [33–35]; [36]; [37–39];

[40–43]; [44–47]; [48–51]; [52–54]; [55–58]; [59]; [60 61];

[62–64]; [65–67]; [68–70]; [71 72]; [73–75]; [76]

Fig. 15.6 Convergence curves of non-cascade (solid lines) and cascade optimization procedures

(dotted lines) obtained in the 942-bar tower problem [1]
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example. The elements are divided into 220 groups and member groups are

presented in Fig. 15.8. Four stages are considered to optimize this example. The

number of design variables in stages 1, 2, 3, and 4 are 21, 42, 84, and 220, respec-

tively. Table 15.3 lists the DVCs.

The proposed method obtained 12,535,919 m3 after 29,010 analyses which is

better than 14,086,857 m3 found by the non-cascade procedure after 29,670 ana-

lyses. The best design of non-cascade procedure can be achieved by multi-DVC

cascade optimization after only 6900 analyses. Convergence curves are compared

in Fig. 15.9. The final volumes achieved in stage 1 (containing 21 design variables),

stage 2 (containing 42 design variables), and stage 3 (containing 84 design vari-

ables) are 14,504,868 m3, 13,416,104 m3, and 12,862,132 m3, respectively. These

stages are terminated in 225th, 501th, and 761th iterations. It can be seen from the

3D view Top view Side view

Fig. 15.7 Schematic of the spatial 2386-bar tower

1ststory 2ndstory 32ndstory

Fig. 15.8 Member groups of spatial 2386-bar tower
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Table 15.3 Design variable configurations utilized for the 2386-bar tower problem

Number of design

variables in stages

Design variables in the group (design variable

configurations)

Stage 1 21 [1–10]; [11–20]; [21–31]; [32–41]; [42–51]; [52–62];

[63–72]; [73–82]; [83–92] [93–103]; [104–113]; [114–124];

[125–135]; [136–146]; [147–156]; [157–167] [168–178];

[179–188]; [189–199]; [200–210]; [211–220]

Stage 2 42 [1:4]; [5:10]; [11:15]; [16:20]; [21:25]; [26:31]; [32:36];

[37:41]; [42:46]; [47:51]; [52:56]; [57:62]; [63:67]; [68:72];

[73:77]; [78:82]; [83:87]; [88:92]; [93:97]; [98:103];

[104:108]; [109:113]; [114:118]; [119:124]; [125:129];

[130:135]; [136:140]; [141:146]; [147:151]; [152:156];

[157:161]; [162:167]; [168:172]; [173:178]; [179:183];

[184:188]; [189:193]; [194:199]; [200:204]; [205:210];

[211:215]; [216:220]

Stage 3 84 [1]; [2–4]; [5–7]; [8–10]; [11 12]; [13–15]; [16 17]; [18–20];

[21 22]; [23–25]; [26–28]; [29–31]; [32 33]; [34–36];

[37 38]; [39–41]; [42 43]; [44–46]; [47 48]; [49–51];

[52 53]; [54–56]; [57–59]; [60–62]; [63 64]; [65–67];

[68 69]; [70–72]; [73 74]; [75–77]; [78 79]; [80–82];

[83 84]; [85–87]; [88 89]; [90–92]; [93 94]; [95–97];

[98–100]; [101–103]; [104 105]; [106–108]; [109 110];

[111–113]; [114 115]; [116–118]; [119–121]; [122–124];

[125 126]; [127–129]; [130–132]; [133–135]; [136 137];

[138–140]; [141–143]; [144–146]; [147 148]; [149–151];

[152 153]; [154–156]; [157 158]; [159–161]; [162–164];

[165–167]; [168 169]; [170–172]; [173–175]; [176–178];

[179 180]; [181–183]; [184 185]; [186–188]; [189 190];

[191–193]; [194–196]; [197–199]; [200 201]; [202–204];

[205–207]; [208–210]; [211 212]; [213–215]; [216 217];

[218–220]

Fig. 15.9 Convergence curves of non-cascade (solid lines) and cascade optimization procedures

(dotted lines) obtained in the 2386-bar tower problem [1]
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plots that the intermediate designs found by proposed method are always better than

those found by non-cascade procedure. The stress ratios for all the members are

shown in Fig. 15.10. The maximum values of the stress ratio for non-cascade and

cascade procedures are 97.57% and 99.96%, respectively.

15.5 Concluding Remarks

Three numerical examples chosen from size optimum design of truss towers with

large number of design variables are studied to test and verify efficiency of the

multi-DVC cascade optimization that utilizes a different DVC in each stage of the

cascade optimization procedure, as well as to illustrate its applicability for optimum

design of practical structures. In the 32-variable design example, the best volumes

obtained by non-cascade and cascade optimization procedures were approximately

the same, but cascade optimization procedure had a better convergence rate. The

optimum volume found by cascade optimization procedure in the 76-variable

design example was about 2% lighter than that obtained by non-cascade procedure.

Also, the required number of iterations for achieving the best design of non-cascade

procedure was also decreased 50% by the proposed method. In the 220-variable

design example, the design obtained by the cascade optimization procedures is

about 11% lighter than the best design attained without cascading. The required

number of iterations for achieving the best design of non-cascade procedure was

also decreased 50% by the proposed method. It can be concluded that by increasing

the size of the search space, the differences between the accuracy of the cascading

and non-cascading procedures considerably increase. To sum up, multi-DVC

Fig. 15.10 Element stress ratio obtained in the 2386-bar tower problem: (a) non-cascade optimi-

zation procedures and (b) cascade optimization procedures
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cascade optimization can be considered as a fast and reliable method in handling

large number of design variables and corresponding design spaces in the context of

size optimization problems.
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Chapter 16

Vibrating Particles System Algorithm

for Truss Optimization with Frequency

Constraints

16.1 Introduction

In this chapter a recently developed physics-inspired non-gradient algorithm is

employed for structural optimization with frequency constraints. The algorithm

being called vibrating particles system (VPS) mimics the free vibration of single

degree of freedom systems with viscous damping. Truss optimization with fre-

quency constraints is believed to represent nonlinear and non-convex search spaces

with several local optima and therefore is suitable for examining the capabilities of

the new algorithms. A set of five truss design problems are considered for evalu-

ating the VPS in this article. The numerical results demonstrate the efficiency and

robustness of the new method (Kaveh and Ilchi Ghazaan [1]).

Fundamental frequencies of a structure are important, easily obtained character-

istics which allow the designer to keep out from the dangerous resonance phenom-

enon. When dynamic excitations are critical, these characteristics cannot be

neglected. Frequency responses are highly implicit, non-convex, and nonlinear

with respect to the cross-sectional area of bar elements, so the search spaces

normally contain multiple local minima [2] and call for a competent optimization

algorithm in order to be appropriately addressed.

Structural optimization considering natural frequency constraints has been

studied since the 1980s [3] using mathematical programming and metaheuristic

algorithms. Lin et al. [4] studied the minimum weight design of structures under

simultaneous static and dynamic constraints proposing a bi-factor algorithm

based on the Kuhn–Tucker criteria. Konzelman [5] considered the problem

using some dual methods and approximation concepts for structural optimization.

Grandhi and Venkayya [6] utilized an optimality criterion based on uniform

Lagrangian density for resizing and scaling procedure to locate the constraint

boundary. Wang et al. [7] proposed an optimality criterion algorithm for com-

bined sizing–layout optimization of three-dimensional truss structures. In this

method, the sensitivity analysis helps to determine the search direction, and the
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optimal solution is achieved gradually from an infeasible starting point with a

minimum weight increment, and the structural weight is indirectly minimized.

Sedaghati [8] utilized a new approach using combined mathematical program-

ming based on the sequential quadratic programming (SQP) technique and a finite

element solver based on the integrated force method. Lingyun et al. [9] combined

the simplex search method and the niche genetic hybrid algorithm (NGHA) for

mass minimization of structures with frequency constraints. Gomes [10] used the

particle swarm optimization (PSO) algorithm to study simultaneous layout and

sizing optimization of truss structures with multiple frequency constraints. Kaveh

and Zolghadr [11] combined charged system search and Big Bang-Big Crunch

with trap recognition capability (CSS–BBBC) to solve layout and sizing optimi-

zation problems of truss structures with natural frequency constraints. Miguel and

Fadel Miguel [12] employed harmony search (HS) and firefly algorithm (FA) to

study simultaneous layout and sizing optimization of truss structures with multi-

ple frequency constraints. A hybrid optimality criterion (OC) and genetic algo-

rithm (GA) method was used by Zuo et al. [13] for truss optimization with

frequency constraints. Kaveh and Javadi [14] utilized hybridization of harmony

search, ray optimizer, and particle swarm optimization (PSO) algorithm for

weight minimization of trusses under multiple natural frequency constraints.

Kaveh and Ilchi Ghazaan [15] employed particle swarm optimization with an

aging leader and challengers (ALC–PSO) and HALC–PSO that transplants har-

mony search-based mechanism to ALC–PSO as a variable constraint-handling

approach to optimize truss structures with frequency constraints. Hosseinzadeh

et al. [16] used hybrid electromagnetism-like mechanism algorithm and migration

strategy (EM–MS) for layout and size optimization of truss structures with

multiple frequency constraints.

This chapter proposes the application of the VPS for optimum design of truss

structures with frequency constraints. In this method, the solution candidates are

considered as particles that gradually approach to their equilibrium positions.

Equilibrium positions are achieved from current population and historically best

position in order to have a proper balance between exploration and exploitation

[17]. In order to evaluate the performance of the VPS, five truss structures are

optimized for minimum weight that the design variables are considered to be the

cross-sectional areas of the members and/or the coordinates of some nodes. The

truss examples have 10, 37, 72, 120, and 600 members. The numerical results

indicate that the proposed algorithm is quite competitive with other state-of-the-art

metaheuristic methods.

The remainder of this chapter is organized as follows: In Sect. 16.2, the math-

ematical formulation of the structural optimization with frequency constraints is

stated. The optimization algorithm is proposed after a brief overview of the free

vibration of single degree of freedom systems with viscous damping in Sect. 16.3.

Five structural design examples are studied in Sect. 16.4 and some concluding

remarks are finally provided in Sect. 16.5.

298 16 Vibrating Particles System Algorithm for Truss Optimization with Frequency. . .



16.2 Statement of the Optimization Problem

In this chapter, the objective is to minimize the weight of the structure while

satisfying some constraints on natural frequencies. Each variable should be chosen

within a permissible range. The mathematical formulation of these problems can be

expressed as follows:

Find Xf g ¼ x1; x2; ::; xng
� �

to minimize W Xf gð Þ ¼
Xnm
i¼1

ρiAiLi

subjected to :

ωj � ω∗
j

ωk � ω∗
k

xi min � xi � ximax

8>><
>>:

ð16:1Þ

where {X} is the vector containing the design variables; ng is the number of design

variables; W({X}) presents the weight of the structure; nm is the number of

elements of the structure; ρi, Ai, and Li denote the material density, the cross-

sectional area, and the length of the ith member, respectively; ωj is the jth natural

frequency of the structure and ωj
* is its upper bound; ωk is the kth natural frequency

of the structure and ωk
* is its lower bound; xi min and xi max are the lower and upper

bounds of the design variable xi, respectively.
To handle the constraints, the well-known penalty approach is employed. Thus,

the objective function is redefined as follows:

f cost Xf gð Þ ¼ 1þ ε1:υð Þε2 �W Xf gð Þ, υ ¼
Xnc
j¼1

max 0, gj Xf gð Þ
h i

ð16:2Þ

where υ denotes the sum of the violations of the design constraints and nc is the

number of the constraints. Here, ε1 is set to unity and ε2 is calculated by

ε2 ¼ 1:5þ 1:5� iter

itermax
ð16:3Þ

Thus, in the first steps of the search process, ε2 is set to 1.5 and ultimately

increased to 3. Such a scheme penalizes the infeasible solutions more severely as

the optimization process proceeds. As a result, in the early stages, the agents are

free to explore the search space, but at the end they tend to choose solutions with no

violation.
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16.3 The Vibrating Particles System Algorithm

This section describes the VPS algorithm. First, a brief overview of the free

vibration of single degree of freedom systems with viscous damping is provided,

and then the proposed method is presented.

16.3.1 The Physical Background of the VPS Algorithm

There are two general types of vibrations, namely, free vibration and forced

vibration. In free vibration, the motion is only maintained by the restoring forces,

and in the forced vibration, a time-dependent force is applied to the system. The

effects of friction in a vibrating system can be neglected resulting in an undamped

vibration. However, all vibrations are actually damped to some degree by friction

forces. These forces can be caused by dry friction, or Coulomb friction, between

rigid bodies, by fluid friction when a rigid body moves in a fluid, or by internal

friction between the molecules of a seemingly elastic body. In this section, the free

vibration of single degree of freedom systems with viscous damping is studied. The

viscous damping is caused by fluid friction at low and moderate speeds. Viscous

damping is characterized by the fact that the friction force is directly proportional

and opposite to the velocity of the moving body [18].

Figure 16.1 shows the vibrating motion of a body or system of mass m having

viscous damping. A spring of constant k and a dashpot are connected to the block.

The effect of damping is provided by the dashpot, and the magnitude of the friction

force exerted on the plunger by the surrounding fluid is equal to c _x: (c is the

coefficient of viscous damping, and its value depends on the physical properties of

the fluid and the construction of the dashpot). When the block is displaced a

distance x from its position of stable equilibrium, the equation of motion can be

expressed as

m€xþ c _x þ kx ¼ 0 ð16:4Þ

Before presenting the solutions for this differential equation, we define the

critical damping coefficient cc as

cc ¼ 2mωn ð16:5Þ

ωn ¼
ffiffiffiffi
k

m

r
ð16:6Þ

where ωn is the natural circular frequency of the vibration.

Depending on the value of the coefficient of viscous damping, three different

cases of damping can be distinguished: (1) over-damped system (c> cc), (2) criti-
cally damped system (c¼ cc), and (3) under-damped system (c< cc). The solutions
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of over-damped and critically damped systems correspond to a nonvibratory

motion. Therefore, the system only oscillates and returns to its equilibrium position

when c< cc.
The solution of Eq. (16.4) for under-damped system is as follows:

x tð Þ ¼ ρe�ξωnt sin ωDtþ φð Þ ð16:7Þ

ωD ¼ ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

q
ð16:8Þ

ξ ¼ c

2mωn
ð16:9Þ

where ρ and φ are constants generally determined from the initial conditions of the

problem. ωD and ξ are damped natural frequency and damping ratio, respectively.

Equation (16.7) is shown in Fig. 16.2 and the effect of damping ratio on vibratory

motion is illustrated in Fig. 16.3.

16.3.2 The VPS Algorithm

The VPS is a population-based algorithm which simulates a free vibration of single

degree of freedom systems with viscous damping [17]. Similar to other multi-agent

Fig. 16.1 Free vibration of

a system with damping
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methods, VPS has a number of individuals (or particles) consisting of the variables

of the problem. The solution candidates gradually approach to their equilibrium

positions that are achieved from current population and historically best position in

order to have a proper balance between diversification and intensification. In VPS,

the initial locations of particles are created randomly in an n-dimensional search

space.

xi
j ¼ xmin þ rand: xmax � xminð Þ ð16:10Þ

where xi
j is the jth variable of the particle i, xmin and xmax are the minimum and the

maximum allowable variable bound vectors, and rand is a random number uni-

formly distributed in the range of [0, 1].

Fig. 16.2 Vibrating motion of under-damped system

Fig. 16.3 Free vibration of systems with four levels of damping: (a) ξ ¼ 5%, (b) ξ ¼ 10%, (c)

ξ ¼ 15%, and (d) ξ ¼ 20%
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For each particle, three equilibrium positions with different weights are defined,

and during each generation, the particle position is updated by learning from them:

(1) the historically best position of the entire population (HB), (2) a good particle

(GP), and (3) a bad particle (BP). In order to select the GP and BP for each

candidate solution, the current population is sorted according to their objective

function values in an increasing order, and then GP and BP are chosen randomly

from the first and second half, respectively.

A descending function based on the number of iterations is proposed in VPS to

model the effect of damping level in the vibration that is depicted in Fig. 16.3.

D ¼ iter

itermax

� �α

ð16:11Þ

where iter is the current iteration number and itermax is the total number of iterations

for optimization process. α is a constant.

According to the above concepts, the update rules in the VPS are given by

x ji ¼ w1: D: A: rand1þ HBj
� �þ w2: D: A: rand2þ GPj

� �
þ w3: D: A: rand3þ BPj

� � ð16:12Þ
A ¼ w1: HBj � x ji

� �h i
þ w2: GPj � x ji

� �h i
þ w3: BPj � x ji

� �h i
ð16:13Þ

w1 þ w2 þ w3 ¼ 1 ð16:14Þ

where xi
j is the jth variable of the particle i; w1, w2, and w3 are three parameters to

measure the relative importance of HB, GP, and BP, respectively; and rand1,
rand2, and rand3 are random numbers uniformly distributed in the range of [0,1].

The effects of A and D parameters in Eq. (16.12) are similar to that of ρ and e�ξωnt

in Eq. (16.7). Also, the value of sin ωDtþ φð Þ is considered unity in Eq. (16.12)

(x tð Þ ¼ ρe�ξωnt are shown in Fig. 16.2 by red lines).

In order to have a fast convergence in the VPS, the effect of BP is sometimes

ignored in updating the position formula. Therefore, for each particle, a parameter

like p within (0, 1) is defined, and it is compared with rand (a random number

uniformly distributed in the range of [0,1]), and if p< rand, then w3¼ 0 and

w2¼ 1�w1.

There is a possibility of boundary violation when a particle moves to its new

position. In the proposed algorithm, for handling boundary constraints, a harmony

search-based approach is used [19]. In this technique, there is a possibility like

harmony memory considering rate (HMCR) that specifies whether the violating

component must be changed with the corresponding component of the historically

best position of a random particle or it should be determined randomly in the search

space. Moreover, if the component of a historically best position is selected, there is

a possibility like pitch adjusting rate (PAR) that specifies whether this value should
be changed with a neighboring value or not.
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In this chapter, after the predefined maximum evaluation number, the optimiza-

tion process is terminated. However, any terminating condition can be used.

Flowchart of the VPS is illustrated in Fig. 16.4.

16.4 Test Problems and Optimization Results

This section discusses the computational examples used to investigate the perfor-

mance of the proposed algorithm. The values of the population size, the total

number of iteration, α, p, w1, and w2 are set to 20, 1500, 0.05, 70%, 0.3, and 0.3

for all examples, respectively. Sensitivity analyses of the VPS on these parameters

are investigated in [17]. Twenty independent optimization runs are carried out for the

Fig. 16.4 Flowchart of the VPS algorithm
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first four considered examples, and the last example has been solved five times

independently. The algorithm is coded in MATLAB, and the structures are ana-

lyzed using the direct stiffness method by our own codes.

16.4.1 A 10-Bar Plane Truss

The 10-bar plane truss is a well-known benchmark problem, and Fig. 16.5 shows

the topology and nodal and element numbering of this truss. The cross-sectional

area of each of the members is considered to be an independent variable. The

material density is 2767.99 kg/m3 and the modulus of elasticity is 68.95 GPa for all

elements. At each free node (1–4), a nonstructural mass of 453.6 kg is attached. The

range of cross-sectional area of all members is from 0.645 to 50 cm2. The first three

natural frequencies of the structure must satisfy the following limitations ( f1� 7 Hz,

f2� 15 Hz, and f3� 20 Hz).

Table 16.1 provides a comparison between some optimal design reported in the

literature and the present work. It can be seen that the lightest design (i.e.,

530.77 kg) and the best standard deviation on average (i.e., 2.55 kg) are obtained

by the VPS. The firefly algorithm (FA) [12] achieved the best average optimized

weight (i.e., 535.07 kg), and after that the VPS obtained 535.64 kg. Table 16.2

reports the natural frequencies of the optimized structures, and it is clear that none

of the frequency constraints are violated. The VPS converges to the optimum

solution after 4620 analyses. The methods utilized by Lingyun et al. [9], and

Gomes [10] and Miguel and Fadel Miguel [12] give the best result in 8000, 2000,

and 50,000 analyses. However, the VPS achieve the best design of PSO [10] after

940 analyses.

Fig. 16.5 Schematic of the

10-bar plane truss
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16.4.2 A Simply Supported 37-Bar Plane Truss

The 37-bar plane truss with initial configuration is shown in Fig. 16.6. Nodal

coordinates in the upper chord and member areas are regarded as design variables.

In the optimization process, nodes of the upper chord can be shifted vertically. In

addition, nodal coordinates and member areas are linked to maintain the structural

symmetry. Thus, only five layout variables and fourteen sizing variables will be

considered for the optimization. All members on the lower chord (numbers 28–37)

are modeled as bar elements with constant rectangular cross-sectional areas of

4� 10�3 m2, and the others are modeled as bar elements with initial cross-sectional

Table 16.1 Comparison of optimized designs found for the 10-bar plane truss problem

Design variable

Areas (cm2)

Wang

et al. [7]

Lingyun

et al. [9]

Gomes

[10]

Miguel and Fadel

Miguel [12]

Present

work [1]

1 32.456 42.234 37.712 36.198 35.1471

2 16.577 18.555 9.959 14.030 14.6668

3 32.456 38.851 40.265 34.754 35.6889

4 16.577 11.222 16.788 14.900 15.0929

5 2.115 4.783 11.576 0.654 0.6450

6 4.467 4.451 3.955 4.672 4.6221

7 22.810 21.049 25.308 23.467 23.5552

8 22.810 20.949 21.613 25.508 24.4680

9 17.490 10.257 11.576 12.707 12.7198

10 17.490 14.342 11.186 12.351 12.6845

Weight (kg) 553.8 542.75 537.98 531.28 530.77

Average optimized

weight (kg)

N/A 552.447 540.89 535.07 535.64

Standard deviation on

average weight (kg)

N/A 4.864 6.84 3.64 2.55

Table 16.2 Natural frequencies (Hz) evaluated at the optimum designs of the 10-bar plane truss

problem

Frequency

number

Natural frequencies (Hz)

Wang et al.

[7]

Lingyun

et al. [9]

Gomes

[10]

Miguel and Fadel

Miguel [12]

Present

work [1]

1 7.011 7.008 7.000 7.0002 7.0000

2 17.302 18.148 17.786 16.1640 16.1599

3 20.001 20.000 20.000 20.0029 20.0000

4 20.100 20.508 20.063 20.0221 20.0001

5 30.869 27.797 27.776 28.5428 28.6008

6 32.666 31.281 30.939 28.9220 29.0628

7 48.282 48.304 47.297 48.3538 48.4904

8 52.306 53.306 52.286 50.8004 51.0476
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areas of 1� 10�4 m2. The material density is 7800 kg/m3 and the modulus of

elasticity is 210 GPa for all elements. Nonstructural mass of 10 kg is attached to

each of the free nodes on the lower chord which remain fixed during the design

process. The first three natural frequencies of the structure must satisfy the follow-

ing limitations: f1� 20 Hz, f2� 40 Hz, and f3� 60 Hz.

This truss structure was previously optimized by Wang et al. [7] utilizing an

evolutionary node shift method, Lingyun et al. [9] using niche hybrid genetic

algorithm, Gomes [10] employing particle swarm optimization algorithm, Miguel

and Fadel Miguel [12] using firefly algorithm, and Kaveh and Ilchi Ghazaan [15]

utilizing particle swarm optimization with an aging leader and challengers and

harmony search-based side constraint-handling approach. Table 16.3 presents a

comparison between the results of the optimal designs reported in the literature and

the present work. The best weight, average optimized weight, and standard devia-

tion on average weight obtained by VPS and HALC–PSO [15] are approximately

identical although their designs are different. Table 16.4 shows the optimized

structural frequencies (Hz) for various methods. None of the frequency constraints

are violated. The proposed method requires 7940 structural analyses to find the

optimum solution, while NHGA [9], PSO [10], FA [12], and HALC–PSO [15]

require 8000, 12,500, 50,000, and 10,000 structural analyses, respectively.

16.4.3 A 72-Bar Space Truss

The 72-bar space truss is shown in Fig. 16.7 as the third design example. The

elements are divided into 16 groups, because of symmetry. The material density is

2767.99 kg/m3 and the elastic modulus is 68.95 GPa for all members. Four

nonstructural masses of 2268 kg are attached to the nodes 1 through 4. The

allowable minimum cross-sectional area of all elements is set to 0.645 cm2. This

example has two frequency constraints. The first frequency is required to be

f1¼ 4 Hz and the third frequency is required to be f3� 6 Hz.

Optimal structures found by Konzelman [5], Gomes [10], Kaveh and Zolghadr

[11], Miguel and Fadel Miguel [12], and Kaveh and Ilchi Ghazaan [15] and the

proposed method are summarized in Table 16.5. The CSS–BBBC (hybridization of

charged system search and Big Bang with trap recognition capability) [11] obtained

Fig. 16.6 Schematic of the simply supported 37-bar plane truss
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the lightest design; however, the best designs of all methods are approximately

identical. The average optimized weight and the standard deviation on average

weight of the VPS are less than those of all other methods. Frequency constraints

Table 16.3 Comparison of optimized designs found for the 37-bar truss problem

Design variable

Y coordinates (m) and areas (cm2)

Wang

et al.

[7]

Lingyun

et al. [9] Gomes [10]

Miguel

and Fadel

Miguel

[12]

Kaveh

and Ilchi

Ghazaan

[15]

Present

work [1]

Y3, Y19 (m) 1.2086 1.1998 0.9637 0.9392 0.9750 0.9042

Y5, Y17 (m) 1.5788 1.6553 1.3978 1.3270 1.3577 1.2850

Y7, Y15 (m) 1.6719 1.9652 1.5929 1.5063 1.5520 1.5017

Y9, Y13 (m) 1.7703 2.0737 1.8812 1.6086 1.6920 1.6509

Y11 (m) 1.8502 2.3050 2.0856 1.6679 1.7688 1.7277

A1, A27 (cm2) 3.2508 2.8932 2.6797 2.9838 2.9652 3.1306

A2, A26 (cm2) 1.2364 1.1201 1.1568 1.1098 1.0114 1.0023

A3, A24 (cm2) 1.0000 1.0000 2.3476 1.0091 1.0090 1.0001

A4, A25 (cm2) 2.5386 1.8655 1.7182 2.5955 2.4601 2.5883

A5, A23 (cm2) 1.3714 1.5962 1.2751 1.2610 1.2300 1.1119

A6, A21 (cm2) 1.3681 1.2642 1.4819 1.1975 1.2064 1.2599

A7, A22 (cm2) 2.4290 1.8254 4.6850 2.4264 2.4245 2.6743

A8, A20 (cm2) 1.6522 2.0009 1.1246 1.3588 1.4618 1.3961

A9, A18 (cm2) 1.8257 1.9526 2.1214 1.4771 1.4328 1.5036

A10, A19 (cm2) 2.3022 1.9705 3.8600 2.5648 2.5000 2.4441

A11, A17 (cm2) 1.3103 1.8294 2.9817 1.1295 1.2319 1.2977

A12, A15 (cm2) 1.4067 1.2358 1.2021 1.3199 1.3669 1.3619

A13, A16 (cm2) 2.1896 1.4049 1.2563 2.9217 2.2801 2.3500

A14 (cm2) 1.0000 1.0000 3.3276 1.0004 1.0011 1.0000

Weight (kg) 366.5 368.84 377.20 360.05 359.93 359.94

Average optimized

weight (kg)

N/A 378.8259 381.2 360.37 360.23 360.23

Standard deviation on

average weight (kg)

N/A 9.0325 4.26 0.26 0.24 0.22

Table 16.4 Natural frequencies (Hz) evaluated at the optimum designs of the 37-bar truss

problem

Frequency

number

Natural frequencies (Hz)

Wang

et al. [7]

Lingyun

et al. [9]

Gomes

[10]

Miguel and

Fadel Miguel

[12]

Kaveh and Ilchi

Ghazaan [15]

Present

work [1]

1 20.0850 20.0013 20.0001 20.0024 20.0216 20.0002

2 42.0743 40.0305 40.0003 40.0019 40.0098 40.0005

3 62.9383 60.0000 60.0000 60.0043 60.0017 60.0000

4 74.4539 73.0444 73.0440 77.2153 76.7857 77.2124

5 90.0576 89.8244 89.8240 96.9900 96.3543 97.3173
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are satisfied by all methods (see Table 16.6). Figure 16.8 compares the best and

average runs of convergence histories for the proposed method. The VPS requires

4720 structural analyses to find the optimum solution, while PSO [10], FA [12], and

HALC–PSO [15] require 42,840, 100,000, and 8000 structural analyses,

respectively.

16.4.4 A 120-Bar Dome Truss

Figure 16.9 shows the 120-bar dome truss. The members are categorized into seven

groups because of symmetry. The material density is 7971.810 kg/m3, and the

modulus of elasticity is 210 GPa for all elements. Nonstructural masses are attached

to all free nodes as follows: 3000 kg at node one, 500 kg at nodes 2–13, and 100 kg

at the remaining nodes. Element cross-sectional areas can vary between 1 cm2 and

129.3 cm2. The frequency constraints are as follows: f1� 9 Hz and f2� 11 Hz.

Fig. 16.7 Schematic of the spatial 72-bar truss
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The comparison of the results of the VPS algorithm with the outcomes of other

algorithms is shown in Table 16.7. The present algorithm yields the least weight.

The best weight of the VPS algorithm is 8888.74 kg, while it is 9046.34 kg for CSS–

BBBC [11] and 8889.96 kg for the HALC–PSO [15]. Moreover, it can be seen that

the lightest average optimized weight and the standard deviation on average weight

are found by the proposed method. Table 16.8 reports the natural frequencies of the

optimized structures, and it is clear that none of the frequency constraints are

violated. Figure 16.10 compares the convergence curves of the best and the average

results obtained by the proposed method. The HALC–PSO [15] and VPS algo-

rithms get the optimal solution after 17,000 and 6860 analyses, respectively.

Table 16.6 Natural frequencies (Hz) evaluated at the optimum designs of the 72-bar truss

problem

Frequency

number

Natural frequencies (Hz)

Konzelman

[5]

Gomes

[10]

Kaveh and

Zolghadr

[11]

Miguel and

Fadel Miguel

[12]

Kaveh and

Ilchi Ghazaan

[15]

Present

work

[1]

1 4.000 4.000 4.000 4.0000 4.000 4.0000

2 4.000 4.000 4.000 4.0000 4.000 4.0002

3 6.000 6.000 6.004 6.0000 6.000 6.0000

4 6.247 6.219 6.2491 6.2468 6.230 6.2428

5 9.074 8.976 8.9726 9.0380 9.041 9.0698

Fig. 16.8 Convergence curves obtained for the 72-bar truss
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16.4.5 A 600-Bar Single-Layer Dome Truss

The 600-bar single-layer dome structure shown in Fig. 16.11 is considered as the

last example. The entire structure is composed of 216 nodes and 600 elements. A

more detailed substructure is depicted in Fig. 16.12 to show the nodal numbering

and coordinates. Each of the elements of this substructure is considered as a design

variable. Thus, this is a size optimization problem with 25 variables. The material

density is 7850 kg/m3 and the elastic modulus is 200 GPa for all members.

A nonstructural mass of 100 kg is attached to all free nodes. The minimum

Fig. 16.9 Schematic of the spatial 120-bar dome truss
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Table 16.7 Comparison of optimized designs obtained for the 120-bar dome problem

Design variable

Areas (cm2)

Kaveh and

Zolghadr [11]

Kaveh and Ilchi

Ghazaan [15]

Present

work [1]

1 17.478 19.8905 19.6836

2 49.076 40.4045 40.9581

3 12.365 11.2057 11.3325

4 21.979 21.3768 21.5387

5 11.190 9.8669 9.8867

6 12.590 12.7200 12.7116

7 13.585 15.2236 14.9330

Weight (kg) 9046.34 8889.96 8888.74

Average optimized weight (kg) N/A 8900.39 8896.04

Standard deviation on average

weight (kg)

N/A 6.38 6.65

Table 16.8 Natural frequencies (Hz) evaluated at the optimum designs of the 120-bar dome

problem

Frequency

number

Natural frequencies (Hz)

Kaveh and Zolghadr

[11]

Kaveh and Ilchi Ghazaan

[15]

Present work

[1]

1 9.000 9.000 9.0000

2 11.007 11.000 11.0000

3 11.018 11.000 11.0000

4 11.026 11.010 11.0096

5 11.048 11.050 11.0491

Fig. 16.10 Convergence curves obtained for the 120-bar dome truss
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cross-sectional area of all members is 1� 10�4, and the maximum cross-sectional

area is taken as 100� 10�4 m2. The frequency constraints are as follows: ω1� 5 Hz

and ω3� 7 Hz.

The optimized designs found by the ECBO [20] and VPS are compared in

Table 16.9. It can be seen that the lightest design (i.e., 6133.02 kg) is obtained by

the VPS, and this method performs better than ECBO in terms of average optimized

weight and standard deviation on average weight. Table 16.10 reports the natural

Fig. 16.11 Schematic of the 600-bar single-layer dome truss

Fig. 16.12 Details of a substructure of the 600-bar single-layer dome truss
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Table 16.9 Comparison of optimized designs obtained for the 600-bar single-layer dome truss

problem

Design variable (nodes)

Areas (cm2)

Kaveh and Ilchi Ghazaan [20] Present work [1]

1 (1–2) 1.4305 1.3030

2 (1–3) 1.3941 1.3998

3 (1–10) 5.5293 5.1072

4 (1–11) 1.0469 1.3882

5 (2–3) 16.9642 16.9217

6 (2–11) 35.1892 38.1432

7 (3–4) 12.2171 11.8319

8 (3–11) 16.7152 16.6149

9 (3–12) 12.5999 11.3403

10 (4–5) 9.5118 9.3865

11 (4–12) 8.9977 8.7692

12 (4–13) 9.4397 9.6682

13 (5–6) 6.8864 6.9826

14 (5–13) 4.2057 5.4445

15 (5–14) 7.2651 6.3247

16 (6–7) 6.1693 5.1349

17 (6–14) 3.9768 3.3991

18 (6–15) 8.3127 7.7911

19 (7–8) 4.1451 4.4147

20 (7–15) 2.4042 2.2755

21 (7–16) 4.3038 4.9974

22 (8–9) 3.2539 4.0145

23 (8–16) 1.8273 1.8388

24 (8–17) 4.8805 4.7965

25 (9–17) 1.5276 1.5551

Weight (kg) 6171.51 6133.02

Average optimized weight (kg) 6191.50 6142.03

Standard deviation on average weight (kg) 39.08 12.54

Table 16.10 Natural frequencies (Hz) evaluated at the optimum designs of the 600-bar single-

layer dome truss problem

Frequency number

Natural frequencies (Hz)

Kaveh and Ilchi Ghazaan [20] Present work [1]

1 5.002 5.0000

2 5.003 5.0003

3 7.001 7.0000

4 7.001 7.0001

5 7.002 7.0002
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frequencies of the optimized structures, and it is clear that none of the frequency

constraints are violated. The convergence rates of the best and average results found

by the proposed method are provided in Fig. 16.13. The ECBO and VPS algorithms

get the optimal solution after 19,020 and 19,740 analyses, respectively.

16.5 Concluding Remarks

Structural optimization with multiple natural frequency constraints is a challenging

class of optimization problems characterized by highly nonlinear and non-convex

search spaces with numerous local optima. This chapter presents VPS for finding

the optimum design of this kind of problems. The VPS has a simple theoretical

structure, and self-adaptation, cooperation, and competition concepts are consid-

ered in its updating formula. The solution candidates gradually approach toHB, and
any particle has the chance to have an influence on the new position of the other

one; therefore, the self-adaptation and cooperation between the particles are pro-

vided. Moreover, since the influence of GP is more than that of BP in position

updating, the competition is supplied. Five planar and spatial trusses are studied in

this work to verify the proposed method. The numerical results of the investigated

design examples indicate the advantages of the proposed method in terms of speed

of convergence, stability, and optimality of the final solutions.
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Chapter 17

Cost and CO2 Emission Optimization

of Reinforced Concrete Frames Using

Enhanced Colliding Bodies Optimization

Algorithm

17.1 Introduction

This chapter investigates discrete design optimization of reinforcement concrete

frames using the recently developed metaheuristic called Enhanced Colliding

Bodies Optimization (ECBO) and the Non-dominated Sorting Enhanced Colliding

Bodies Optimization (NSECBO) algorithm. The objective function of algorithms

consists of construction material costs of reinforced concrete structural elements

and carbon dioxide (CO2) emissions through different phases of a building life cycle

that meets the standards and requirements of the American Concrete Institute’s
Building Code. The proposed method uses predetermined section database (DB) for

design variables that are taken as the area of steel and the geometry of cross sections

of beams and columns. A number of benchmark test problems are optimized to

verify the good performance of this methodology. The use of ECBO algorithm for

designing reinforced concrete frames indicates an improvement in the computa-

tional efficiency over the designs performed by Big Bang–Big Crunch (BB–BC)

algorithm. The analysis also reveals that the two objective functions are quite

relevant and designs focused on mitigating CO2 emissions could be achieved at

an acceptable cost increment in practice. Pareto results of the NSECBO algorithm

indicate that both objectives yield similar solutions [1].

The growing global climate change with the progress of human activity and

rapid industrialization has created a need to appraise the impact of the products used

in construction process and has challenged many contractors and companies to

come up with more environmentally friendly ways of construction. Most of global

warming has being caused by increasing concentration of greenhouse gases in the

earth’s atmosphere during the past ten decades [2]. The Intergovernmental Panel on

Climate Change [3] reported that carbon dioxide makes up approximately 77% of

greenhouse gases in which construction industry has a remarkable contribution.

Concrete as the most popular manufactured product with sustainability benefits,

including considerable compressive strength and durability, excellent thermal
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mass, and long service life, contributes 5% of annual anthropogenic global CO2

production. Main contributor for it to happen is chemical conversion process used

in the production of Portland clinker and cement production by fossil fuel combus-

tion. With annual consumption approaching 20,000 million metric tons of concrete,

the manufacturing process releases 0.9 tons of CO2 per ton of clinker [2]. In

addition to the 1.6 billion tons of cement used worldwide, the concrete industry is

consuming 12.6 billion tons of raw materials each year. Thus, besides cement’s role
in CO2 emission, mining, processing, and transporting of raw materials consume

energy in large quantities and adversely affect theology of the planet [4]. Reducing

atmospheric concentration of CO2 caused by construction industry can be reached

through innovative architecture, sustainable structural design, and reducing the

cement of concrete mixture [2].

The purpose of this chapter is to present an optimal design technique in order to

achieve more sustainable, environmentally friendly, and economically feasible

structural design. The methods of structural optimization can be divided into two

categories: exact methods and approximate methods. The exact methods are based

on mathematical programming techniques such as the Lagrangian multipliers

method, convex programming, linear programming, and sequential unconstrained

minimization for which the required computational cost for finding an optimal

solution grow polynomially with problem size, hence the applications of the exact

methods are limited to simple and deterministic polynomial problem instances. To

overcome these problems, metaheuristic methods are developed. These methods

provide the practical possibility to improve the design process without the need for

complex analysis; however, they require a great computational effort because of a

large number of iterations needed for the evaluation of objective functions and

structural constraints.

Some recent research studies are focused on cost optimization of reinforced

concrete structures using evolutionary optimization methods. Rajeev and

Krishnamoorthy [5] applied a simple genetic algorithm to perform optimal design

of planar reinforced concrete frames, Camp et al. [6] used genetic algorithm for

flexural design of RC frames, Lee and Ahn [7] applied genetic algorithm to

optimum design of two-dimensional frames, Paya-Zaforteza et al. [8] conducted a

multi-objective comparison for RC building frames using simulated annealing,

Kwak and Kim [9] studied an optimum design of RC plane frames using integrated

genetic algorithm complemented with direct search, Kaveh and Sabzi [10]

conducted a comparative study of heuristic big bang–big crunch, heuristic particle

swarm, and ant colony optimization for optimum design of RC frames, and Akin

and Saka [11] used harmony search algorithm for optimum detailed design of RC

plane frames.

Recently, attention to the preservation of environment and reducing CO2 emis-

sions has been the focus of studies in optimum design of RC structures. Paya-

Zaforteza et al. [12] used simulated annealing for CO2 optimization of reinforced

concrete frames; Camp and Huq [13] applied the Big Bang–Big Crunch algorithm

for CO2 and cost optimization of RC frames. The objective of this chapter is

optimal design of cost and CO2 emissions in terms of cross-section dimensions
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and reinforcement details applying the American Concrete Institute’s Building

Code [14] of practice. The optimization is carried out using enhanced colliding

bodies optimization (CBO) algorithm developed by Kaveh and Ilchi Ghazaan [15]

based on the improvement of CBO performance originally developed by Kaveh and

Mahdavi [16] using memory to preserve some historically best solutions.

The rest of this chapter is structured as follows: Sect. 17.2 describes the

formulation of optimization problem, Sect. 17.3 contains the explanations of

utilized metaheuristic algorithm, and in Sect. 17.4 the results obtained for three

benchmark frames are detailed and discussed. Finally, in Sect. 17.5, the concluding

remarks are presented.

17.2 Formulation of the RC Frame Optimization Problem

17.2.1 Design Variables and Section Databases

The assessment of the objective functions requires the definition of the structure in

terms of the design variables including cross-sectional dimensions of elements, area

and type of steel bars, and resisting capacity. Due to the discreteness of member

dimensions and reinforcement sizes, large number of sections, and different pat-

terns of reinforcements, two section databases for beams and columns are created to

reduce the elaboration of the problem. The identification numbers of the sections

are related with all design variables. It is worth pointing out that the capacity of

members is defined by applying ultimate strength design method. Two section

databases are created based on ACI building code criteria and specified assump-

tions, which are followed for both beams and columns sections.

17.2.1.1 Beams

For beams, the sections are considered as rectangular and singly reinforced; there-

fore, the compression reinforcement at support and the tension reinforcement near

mid-span are checked separately. This approach leads to a conservative and simple

analysis. The area of steel varies from one #3 bar to a maximum of four #11 bars.

The depth to width ratio varies between 1 and 2.5.

The last distance measured from the surface of the concrete member to the

surface of the embedded reinforcing steel is taken as 380 mm. The assumed ranges

and increment steps for cross-sectional dimensions are different in each design

example. Figure 17.1a defines the geometry of a general rectangular singly

reinforced concrete beam.

To evaluate flexural response of the beam elements, their capacity is defined

using the ACI code. In order to ensure ductile failure, these must be designed as
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under reinforced beams. The nominal resisting moment capacity of a singly

reinforced concrete beam section is

Mn ¼ As f y d � a

2

� �
ð17:1Þ

where As is the total area of tensile reinforcement, f y is the yield strength of

reinforcement, d is the distance from extreme compression fibers of the concrete to

the centroid of tension reinforcement, and a refers to the depth of equivalent

rectangular compression block given as

a ¼ As f y

0:85f
0
cb

ð17:2Þ

where f 0c denotes the specified compressive strength of concrete and b is the width of
section.

Taking the abovementioned rules into account, DB sections for beams

containing the width, the height, the number of reinforcing bar, the steel ratio, the

moments of inertia, and the ultimate bending moment capacity can be created.

Finally, the sections are arranged in the order of increasing moment resisting

capacities.

17.2.1.2 Columns

For columns, the sections are considered as rectangular tied and short, so the

applied moment will not be magnified. The area of steel varies from four #3 bars

to a maximum of twelve #11 bars. For the rebar topologies, an even number of bars

with the same size are distributed along all four faces so that the column is

symmetric about the axis of bending. Table 17.1 represents the prespecified

(a) (b)
d´

tc

d
h

tc

d
h

b

di

td b
td

Fig. 17.1 General

rectangular reinforced

concrete beam and column
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reinforcement patterns for columns. The depth to width ratio is considered between

1 and 2.5. Figure 17.1b defines the geometry of a rectangular tied column.

Column sections are subjected to bending moment in combination with axial

forces; therefore, the equilibrium of internal forces changes resulting in different

behavioral modes depending on the level of accompanying eccentricity. The

sustainability and serviceability of column sections can be evaluated in a variety

of combinations of bending moment and axial force derived by varying the applied

axial strain. To find points corresponding to a specific value of strain distribution

within the cross section, a rectangular stress block in the concrete must be deter-

mined. The same method is used to specify the stress distribution in reinforcement.

Plotting values of load and moment capacities corresponding to different assumed

values for the neutral axis depth (resulting in different strain distributions) via an

iterative calculation results in some contour charts called interaction diagrams.

Figure 17.2 shows a curve plot of controlling key points connected by linear

relationships for a typical column section. The nominal axial load capacity for a

given strain distribution defined by ACI Code is found by

Pn ¼ Cc þ
Xn

i¼1
Fsi ð17:3Þ

where n is the number of reinforcement layers and Cc is the compressive force of

concrete given as

Cc ¼ 0:85f 0cab ð17:4Þ

and Fsi is the force in each layer of the reinforcement given as

Fsi ¼ f siAsi if a � di ð17:5aÞ
Fsi ¼ f si � 0:85f 0c

� �
Asi if a > di ð17:5bÞ

where f si is the yield strength of reinforcement given as

f si ¼ εsiEs � fY < f si < fY ð17:6Þ

where Es is the elastic modulus of reinforcement and εsi is the strain of the ith layer
of steel given as

Table 17.1 Column

reinforcement combinations

[13]
Index no.

Reinforcement combination

Width side Height side

1 2 2

2 3 2

3 2 3

4 3 3

5 4 3

6 4 4
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εsi ¼ 0:003
c� di
c

� �
ð17:7Þ

where c is:

c ¼ 0:003

0:003� εy

� �
di ð17:8Þ

The nominal moment capacity for the specified strain distribution defined by

ACI Code is found by

Mn ¼ Cc

h

2
� a

2

� �
þ
Xn

i¼1
Fsi

h

2
� di

� �
ð17:9Þ

where a is:

a ¼ β1c ð17:10Þ

and β is:

β1 ¼ 0:85 � 0:05
f 0c � 30
� �

7
� 0:65 if f 0c > 30MPa ð17:11aÞ

β1 ¼ 0:85 if 30MPa < f 0c < 50MPa ð17:11bÞ

Considering the above information, DB sections for columns containing the

width, the height, the number of reinforcing bars, the steel ratio, the moments of

inertia, and the combination of bending moment and axial force capacities can be

created. Finally, the sections are arranged in increasing order of normalized areas

for the P–M interaction diagram.

Compression Controlled Region

Transition Region

Tension Controlled Region

Pn

Mn

P0

0.8P0

M0

εs < εy

εs = εy

εs > εy

Fig. 17.2 Column load–

moment interaction diagram
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17.2.2 Structural Constraints

Structural constraints are a series of restrictions in terms of the limitations and

specifications provided by the ACI code. A structure should comply with these

limitations in order to guarantee the feasibility of the solutions generated during

iterative procedure. Making the solutions stand inside the feasible region is often a

challenging effort, and it is one of the complexities for handling the constrained

problems. The most common method to overcome this issue is reducing the fitness

value of the merit functions by a product of eventual constraint and the objective

function which converts the constrained problem into an unconstrained problem.

The use of exponential penalty function allows us to enforce the constraint on the

objective function. To compute the capacity constraints violation, the internal

forces by the action of the vertical and horizontal loads upon the RC element are

required. In this study, the first-order elastic analysis via matrix method is used to

obtain the stress envelopes. By summing over the different constraints either in

terms of capacity or geometry, the total penalty of each design can be expressed as

f p xð Þ ¼ 1þ
Xn

i¼1
max 0,Ci xð Þð Þ

� �k
ð17:12Þ

where x is the vector of design variables that are taken as the area of steel and the

geometry of cross sections of beams and columns, Ci is the normalized degree of

violation of the ith constraint, n is the number of constraints, and k> 0 is a penalty

exponent required for tuning the penalty function. Since k reflects the solution

quality, imposing a large k results in severe penalty, which is reflected in rapid

convergence to local optima (exploitation). Conversely, a small k reduces the

severity of penalty; therefore, a comprehensive search through the search space

with slow convergencewill be used to explore the solutions (exploration). Depending

on the case study, penalty exponent can be obtained through trial and error.

17.2.2.1 Beam Constraints

Structural capacity of reinforced concrete beams must be greater than the ultimate

bending moment derived from the applied loading. The moment capacity penalty

can be expressed in normalized form as below:

C1 ¼ Muj j �∅Mn

∅Mn

ð17:13Þ

whereMu is the ultimate applied moment and∅ is the strength reduction factor. For

compression-controlled sections having a net tensile strain in the extreme tension

steel equal to or smaller than 0.002 while the extreme fibers of compression face in
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concrete reach its crushing strain of 0.003, ∅ is taken as 0.65, and for tension-

controlled sections having the strain values in tension reinforcement farthest from

the compression face of a member >0.005 while concrete reaches its crushing

strain of 0.003, ∅ is taken as 0.9. Sections between these two extremes are called

transition sections, and the strength reduction factor is calculated by linear

interpolation.

In order to prevent the possibility of sudden failure and improve the cracking

behavior, the lower bound of reinforcement ratio is limited to

ρmin ¼
ffiffiffiffi
f 0c

p
4f y

� 1:4

f y
ð17:14Þ

The minimum reinforcement ratio penalty is

C2 ¼ ρmin � ρ ð17:15Þ

To ensure the ductile behavior and the requirements for placing the reinforcing

bars, the upper bound on the reinforcement ratio is limited to

ρmax ¼ 0:85β1
f 0c
f y

600

600þ f y
ð17:16Þ

The maximum reinforcement ratio penalty is

C3 ¼ ρ� ρmax ð17:17Þ

For controlling the deflection, the minimum thickness is limited depending on

the manner in which beams are supported. In this study, the beams are considered as

non-prestressed at both continuous ends with allowable thickness of

hmin ¼ l

21
ð17:18Þ

where l is the span of the beam. The penalty for the thickness of the beam can be

expressed as

C4 ¼ hmin � h

hmin

ð17:19Þ

If the rectangular compression-block depth is greater than the effective depth, the

penalty is applied as
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C5 ¼ a� d

d
ð17:20Þ

In order to place and compact concrete between bars satisfactorily and provide

proportionate bond, the minimum clear spacing smin should be db but not <1 in.

Here db is the diameter of reinforcement bars. The bar spacing penalty is

C6 ¼ smin � s

smin

ð17:21Þ

Since the section capacities are evaluated separately, the reinforcement topology

including bar spacing and steel ratio could be different in both sections at the

support and mid-span while the dimensions are the same. For this reason, the same

procedure for determining constraints related to reinforcement topology must be

performed for the section under negative bending moment.

17.2.2.2 Column Constraints

A column section is acceptable when the design action effects defined by combi-

nation of Mn and Pn fall within the load–moment interaction diagram. The load–

moment interaction penalty can be expressed as

C7 ¼ r � r0
r0

ð17:22Þ

where r is the radial distance between the origin of the interaction diagram and the

corresponding pair under the applied loading and r0 is the radial distance between
the origin of the interaction diagram and the intersection of vector r with the load–

moment curve.

For compression members, the minimum longitudinal reinforcement ρmin is

limited to 0.01. The minimum reinforcement penalty is

C8 ¼ ρmin � ρ ð17:23Þ

For compression members, the maximum longitudinal reinforcement ρmax is limited

to 0.08. The maximum reinforcement penalty is

C9 ¼ ρ� ρmax ð17:24Þ

The clear distance between longitudinal bars should be 1.5 db but not <1.5 in. The

longitudinal bar spacing penalty is
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C10 ¼ smin � s

smin

ð17:25Þ

Since the bars are distributed along all four faces, the longitudinal bar spacing

constraint must be checked in both width side and height side of the section.

17.3 Formulation of the Optimization Problem

17.3.1 Objective Functions

The optimal design criterion for reinforced concrete frames involves two different

objective functions: The first objective function is based on the most economical

solution that accounts for the cost of materials in terms of the concrete, the steel,

and the labor cost in construction process. The second objective function quantifies

the embedded CO2 resulting from the use of materials, which involve emissions at

different stages of the production and the placement of concrete and steel in

structure. The unit costs and CO2 emissions were obtained from the 2007 database

of the Institute of Construction Technology of Catalonia [17]. It is important to note

that the calculation of GHG or CO2 emissions of buildings does not contain

transport emissions including transportation for building materials, construction

equipment, and workers, since transport distance from cradle to site is highly

dependent on the case study. The general form of the objective function for current

study can be expressed as

min : f xð Þ ¼
Xn
i¼1

uimi x1; x2; . . . ; xrð Þ
s:t: Ci x1; x2; . . . ; xrð Þ � 0

ð17:26Þ

where ui represents the unit prices or unit CO2 emissions of material and

construction components, mi is the measurements of the construction units, xi are
the design variables, n is the number of construction members, r is the number of

design variables, and Ci (i¼ 1, 2, . . ., n) are the design constraints.

17.3.2 Proposed Metaheuristic Algorithm

Metaheuristic algorithms are often based on the simulation of natural evolution and

the principle of preservation or the survival of the fittest, which is a hypothetical

population-based optimization procedure. In other words, a metaheuristic algorithm

is an iterative process, which applies a set of agents to move through the design

space and seek near-optimal solutions of the complex problems in a reasonably
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practical timescale. Although these optimization algorithms are usually

nondeterministic, they make a reasonable trade-off between randomization and

local search, this is why they can be used to find good feasible solutions in an

acceptable time especially in case of intractable real-world problems. This chapter

presents the application of a novel population-based stochastic algorithm so-called

CBO which simulates a fundamental law of physics, namely collision between two

bodies.

17.3.2.1 Enhanced Colliding Bodies Optimization Method

Collision is a short-term interaction between two bodies in which they are pushed

away from each other and tend to form the most stable configuration and achieve

the lowest energy state. According to the law of energy and momentum conserva-

tion, in all collisions the total amount of momentum possessed by the two objects

does not change, i.e., the amount of momentum gained by one object is equal to the

amount of momentum lost by the other object while the total kinetic energy after the

collision may not be equal to the total kinetic energy before the collision and it

changes to some other form of energy. What distinguishes different types of

collisions is whether they conserve kinetic energy. When the total kinetic energy

of system is lost, a perfectly inelastic collision occurs in which the two bodies stick

together after the impact. Contrariwise if the total kinetic energy of system is

conserved, a perfectly elastic collision occurs. The plot for this configuration is

shown in Fig. 17.3.

In terms of this conception, the search ability of the CBO algorithm can be

framed based on the interaction between colliding bodies (CBs) that are moving

through predefined amplitude, starting with random initial positions to find near-

optimal solutions. Each colliding body, as a solution candidate, contains a number

of decision variables and is characterized by its position and velocity. The laws of

x1

x2

xn/2

xn/2+1

xn/2+2

xn

x1

x2

x1

x2

xn/2+1

xn/2+2

xn/2+1

xn/2+2

xn/2 xn/2xn xn

Fig. 17.3 The collision

between the sorted pairs

of CBs
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energy conservation as well as linear momentum conservation allow us to adjust the

changes of these attributes in two-body collisions.

The magnitude of the body mass for each CB is defined in association with the

respective fitness value given as

mi ¼
1

fit ið ÞXn

j¼1

1

fit jð Þ
i ¼ 1, 2, . . . , n ð17:27Þ

where fit is the objective function value of the CBs and n is an even number of

colliding bodies. In order to select pairs of objects for collision, CBs are sorted

according to the value of their objective function in an increasing order and divided

into two equal groups. Agents with upper fitness values (moving objects) and finite

speed push the corresponding agents with lower fitness values (stationary objects),

which are at rest before the collision, toward better positions. The velocity of

moving bodies before the collision is given as

vi ¼ xi � xi�n
2

i ¼ n

2
þ 1, . . . , n ð17:28Þ

where xi is the position vector of the ith CB in moving group and xi�n
2
is the

corresponding position vector in the stationary group.

After the collision, the attributes of each moving object are updated as follows:

v0i ¼
mi � εmi�n

2

� �
vi

mi þ mi�n
2

i ¼ n

2
þ 1 , . . . , n ð17:29Þ

x0i ¼ xi�n
2
þ rv0i ð17:30Þ

where mi is the mass of the ith moving CB, vi is the velocity of the ith moving CB

before the collision, mi�n
2
is the mass of the ith stationary CB, xi�n

2
is the previous

position of the ith stationary CB, r is a random vector uniformly distributed in the

range of (�1,1), and ε represents the coefficient of restitution defined as

ε ¼ 1� iter

itermax
ð17:31Þ

where iter is the number of iterations. Adjustment of this indicator changes the rate

of intensification and diversification in the system and generally ranges between

zero and one.

In addition, the attributes of each stationary object after the collision, which now

has a velocity in the same direction of the moving object, are updated as follows:
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v0i ¼
miþn

2
þ εmiþn

2

� �
viþn

2

mi þ miþn
2

, i ¼ 1 , . . . ,
n

2
ð17:32Þ

x0i ¼ xi þ rv0i ð17:33Þ

wheremi is the mass of the ith stationary CB,miþn
2
is the mass of the ith moving CB,

viþn
2
is the velocity of the ith moving CB before the collision, and xi is the previous

position of the ith stationary CB.

Historical best solutions are saved by employing the colliding memory

(CM) which stores some best solutions of each iteration found in previous popula-

tion and substitutes them with some current worst CB vectors. Introducing new best

bodies into the population prevents the population from moving only to neighbor-

ing states and speeds up the convergence rate without increasing the computational

cost.

In order to break one or more members of the population out of local minima and

produce a more efficient search, one component of the ith CB is regenerated in a

random manner in any given generation. The probability of choosing the compo-

nent is expressed as Pro, which ranges between (0, 1).

In accord with the given definition, enhanced colliding bodies algorithm is a

continuous variable-based method improved by saving the best solutions and

regenerating random members of population occasionally to produce a more

efficient and reliable solution. The steps of this algorithm can briefly be outlined

as follows:

Step 1: Randomly initialize the vector of CBs with n variables and evaluate their

associated fitness function.

Step 2: Store some best solutions of each iteration in the colliding memory and

replace them with the current worst CB vectors.

Step 3: Calculate the mass value for each CB using Eq. (17.27).

Step 4: Sort the fitness value of the objective function for each CB in an increasing

order, and then determine the pairs of CBs for collision.

Step 5: Evaluate the velocity of moving bodies before the collision using

Eq. (17.28).

Step 6: Update the velocities of stationary and moving bodies after the collision

using Eqs. (17.32) and (17.29), respectively.

Step 7: Update the positions of stationary and moving bodies using the generated

velocities after the collision in Step 6 and Eqs. (17.33) and (17.30), respectively.

If some bodies’ new positions violate the boundaries, correct their position and

return to the specified domain.

Step 8: Compare Pro with a random number, rni (i¼ 1, 2 . . . n), which is distributed
uniformly between (0, 1), if rni < pro, randomly select a CB from both moving

and stationary group and regenerate one related component accidentally.

Step 9: Return to Step 2 until a terminating criterion is satisfied.
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17.3.2.2 Non-dominated Sorting Enhanced Colliding Bodies

Optimization

The proposed multi-objective algorithm is based on an improved version of the

non-dominated sorting genetic algorithm, called NSGA-II, which is proposed by

Deb et al. [18]. The non-dominated sorting genetic algorithm (NSGA) is based on

some modifications to the ranking procedure of the individuals, originally proposed

by Goldberg.

The basic design concept of NSGA-II is to find a set of non-dominated and

evenly distributed solutions using two ranking techniques called non-dominated

sorting and crowding approach. Each individual in population is assigned a rank on

the basis of non-domination before selection. All non-dominated solutions are

ranked 1. In other words, these individuals are assigned the highest rank. Then,

this group of classified individuals is removed from the population and another set

of non-dominated individuals from the remaining population are ranked. This group

of classified individuals is also removed. This process continues until all individuals

in the objective function space are classified. In order to provide a diversity and

uniform distribution across the Pareto front, individuals at the same non-domination

front are compared with a crowding distance. This helps the algorithm to explore

the search space. After sorting procedure, the evolutionary operations are adopted

to create new pool of offspring, and then the parents and offspring are combined.

Considering the basic concept of NSGA-II, in order to select pairs of objects for

collision, CB vector of each iteration is sorted by non-dominated sorting and

crowding approach. Since agents in the first front have the maximum fitness

value, they push the corresponding agents with the lower fitness value (stationary

objects). The ranking techniques are also adopted to store some best CB vectors into

the colliding memory.

17.4 Design Examples

In order to demonstrate the efficiency and performance of the proposed algorithms,

three symmetric multistory and multi-bay benchmark problems of reinforced con-

crete frames are adapted and solved: the first example is a two-bay six-story frame

originally designed by Rajeev and Krisnamoorthy [5] and redesigned by Camp

et al. The remaining examples are a two-bay four-story frame and a two-bay

six-story frame presented by Paya-Zaforteza et al. [8] and redesigned by Camp

and Huq [13]. In order to compare the results with those of the previous researches,

the same assumptions are followed. It is important to note that the assessment of the

frames originally designed by Paya-Zaforteza et al. [8] follows the Spanish Code of

structural concrete [19].
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17.4.1 Two-Bay Six-Story Frame

Figure 17.4 illustrates the two-bay six-story frame originally designed by Rajeev

and Krisnamoorthy [5] using standard GA algorithm and redesigned by Camp at

al. [6, 13] using GA and BB–BC algorithm. The height of each story is 4 m and the

span of the left and right bay is 6 m and 4 m, respectively. The optimal dimension of

width for beam and column sections is considered between (200, 460)mm and

(150, 560)mm, respectively. The step of increment for both beam and column

sections is 30 mm. As shown in Fig. 17.4, the frame consists of 12 beams and

Fig. 17.4 Two-bay

six-story RC plane frame
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18 columns arranged in 4 beam groups and 3 column groups according to case 1 of

Table 17.2. A factored uniformly distributed dead load of 30 kN=m is applied on

each beam, and the lateral equivalent static load of 10 kN is applied as joint load at

each story level. Concrete has the compressive strength of 20 MPa, and the unit

weight of 2323 kg=m3. Reinforcement has the yield strength of 414 MPa, and the

unit weight of 7849 kg=m3. The number of DB sections created for beams and

columns are 7128 and 9450, respectively, which results in a design space of

2.17e27. The frame has a total of 36 design variables, which define the geometry

of the cross sections, the reinforcement bar size, and the number of reinforcing bars.

Due to the number of design variables and the size of the design space, a small

population of 12 with a typical stopping criterion of 3000 was required. In all cases

the algorithm is executed 50 times to obtain the best statistical data of the results.

Based on the examinations, the suitable values for the parameter Pro and CM are

taken as 0.35 and np=2, respectively. Where np is the number of CBs. The objective

function is implemented to minimize the structural cost defined as

f k ¼
Xnbþnc

i¼1

Ccbihi þ CsAsi þ 2Cf bi þ hið Þf gli ð17:34Þ

where Cc is the unit cost of concrete, Cs is the unit cost of steel reinforcement, Asi is

the area of reinforcing bars, Cf is the unit cost of formwork, nb is the number of

Table 17.2 Different type of grouping for two-bay six-story frame

Member

type

Group

no.

Grouping type

Case 1 Case 2

Case

3

Case

4

Case

5

Case

6

Beam 1 29 29 19-20 19-21 19-20 19-20

2 30 30 21-22 20-22 21-22 21-22

3 19-21-23-25-27 19-21-23-25-27 23-24 23-25 23-24 23-24

4 20-22-24-26-28 20-22-24-26-28 25-26 24-26 25-26 25-26

5 – – 27-28 27-29 27-28 27-28

6 – – 29-30 28-30 29-30 29-30

Column 1 1-2-3-4-5-6 1-7-13-2-8-14 1-13 1-13 1-7 1

2 7-8-9-10-11-12 3-9-15-4-10-16 2-14 2-14 2-8 2

3 13-14-15-16-17-18 5-11-17-6-12-18 3-15 3-15 3-9 3

4 – – 4-16 4-16 4-10 4

5 – – 5-17 5-17 5-11 5

6 – – 6-18 6-18 6-12 6

7 – – 7 7 13 7-13

8 – – 8 8 14 8-14

9 – – 9 9 15 9-15

10 – – 10 10 16 10-16

11 – – 11 11 17 11-17

12 – – 12 12 18 12-18
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beams, and nc is the number of columns. The unit costs of concrete, steel, and

formwork are estimated as $735=m3, $7:1=kg, and $54=m2, respectively.

Table 17.3 compares the results obtained by the proposed algorithm with the

previous solutions.

The best solution reported by the ECBO is 23,081.57$. The best ECBO design is

2.46% less than the best solution given by BB–BC.

Five more types of grouping are considered for the design of frame listed in

Table 17.2. The comparison of the solutions (Fig. 17.5) shows a maximum of

4.39% decrease in cost for case 2 of grouping. Since the members in the same

group have the same design variables, the capacity violations must be relatively

close. More precisely, the internal force distributions in each group, which is highly

related to the load pattern, should have insignificant difference as much as possible.

Hence, the pattern of grouping should match closer to the internal force distribu-

tions while the number of groups should compromise between the economic design

and computing time. The information pertaining to compare the strength ratio

between different cases of grouping has been quantified in Fig. 17.6.

One of the best approaches to handle the constraints is evaluating the fitness

function in the feasible search space. This approach is called death penalty. The

feasible region is achieved by rejection of infeasible individuals. Some of the

geometric constraints can be applied during the process of creating DB sections.

Therefore, no further calculations are necessary to enforce these constraints on the

objective function. This technique is limited to problems in which the constraints

are not dependent on the geometric information related to the structure. The

remaining constraints to be checked in each iteration are the capacity (C1,C7

�
and the allowable thickness (C4

�
restrictions. Taking the abovementioned procedure

into account, the size of the search space is declined to 7.28e24 (Table 17.4). The

algorithm could attain the similar best solution in a significant short iteration

number of 800 and computational time of 0.46 s which is 6.93 times faster than

case 1. With the stopping criterion of 3000, it could decrease the solution by 2.73%

with the computational time of 2.56 s, which is 1.24 times faster than case 1. As

shown in Fig. 17.7, the speed of convergence to the optimum value has had a

considerable increase.

17.4.2 Two-Bay Four-Story Frame

Figure 17.8 illustrates the two-bay four-story frame originally designed by Paya-

Zaforteza et al. [8] using SA algorithm and redesigned by Camp et al. [13] using

BB–BC algorithm. The height of each story is 3 m, and the span of each bay is 5 m.

The optimal dimension of width for beam and column sections is considered

between (150, 1200) mm and (250, 1200) mm, respectively. The step of increment

for beam sections is 10 mm and for column sections is 50 mm. As shown in

Fig. 17.8, the frame is consisted of 8 beams and 12 columns arranged in 4 beam
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groups and 8 column groups. The spacing considered between adjacent parallel

frames is 5.00 m, and the thickness of the slab for all stories is 290 mm. Twelve load

combinations that include counteracting effects of dead, live, and wind loads are

taken into account to determine the required strength of the members as listed

below:

1 2 3 4 5 6
22,600
22,800
23,000
23,200
23,400
23,600
23,800
24,000
24,200
24,400

Grouping

Co
st

 (d
ol

la
r)

Fig. 17.5 Best cost design for different cases of grouping

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3

4

5

6

Strength Ratio

G
ro

up
in

g

Beam
Column

Fig. 17.6 Strength ratio in the groups for different cases of grouping

Table 17.4 Best cost design

in different size of the search

space and number of iteration

Description Case 1 Case 2 Case 3

Database of beam 7128 3330 3330

Database of column 9450 3898 3898

Search space 2.17e27 7.28e24 7.28e24

Iteration 3000 3000 800

Best cost ($) 23,081.57 22,450.4 23,008.15

Computation time (s) 3.19 2.56 0.46
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Fig. 17.7 Convergence rate in different size of the search space and number of iteration [1]

Fig. 17.8 Two-bay four-story RC plane frame
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U ¼ 1:5D ð17:35aÞ
U ¼ 1:5Dþ 1:6L1 ð17:35bÞ
U ¼ 1:5Dþ 1:6L2 ð17:35cÞ
U ¼ 1:5Dþ 1:6LT ð17:35dÞ
U ¼ 1:5Dþ 1:6W1 ð17:35eÞ
U ¼ 1:5Dþ 1:6W2 ð17:35fÞ

U ¼ 1:5Dþ 1:44L1þ 1:44W1 ð17:35gÞ
U ¼ 1:5Dþ 1:44L2þ 1:44W1 ð17:35hÞ
U ¼ 1:5Dþ 1:44LT þ 1:44W1 ð17:35iÞ
U ¼ 1:5Dþ 1:44L1þ 1:44W2 ð17:35jÞ
U ¼ 1:5Dþ 1:44L2þ 1:44W2 ð17:35kÞ
U ¼ 1:5Dþ 1:44LT þ 1:44W2 ð17:35lÞ

where D is the uniform dead load applied to each beam, L1 stands for the live load

applied to only one beam in each story while the bays change alternatively, L2 is the
uniform live load applied in a pattern opposite of L1,W1 is the wind load applied to

the left side of the frame, and W2 is the wind load applied to the right side of the

frame. Table 17.5 lists the values of the uniform loads and wind loads at each story.

Compressive strength of concrete varies in each story from 25 to 50 MPa with the

increment step of 5 MPa. The unit weight of concrete is 2323 kg=m3. Reinforce-

ment has the yield strength of 500 MPa, and the unit weight of 7849 kg=m3. The

number of DB sections created for beams and columns are 98,424 and 7584,

respectively, which results in a design space of 2.23e60. The frame has a total of

60 design variables. Hence, the population of 16 CBs with a typical stopping

criterion of 4000 was required. In this example, two objective functions are

implemented to minimize cost and CO2 emissions in terms of the materials and

construction process. The general form of the cost function is defined as

Table 17.5 The applied

loads on the frame
Action Value

DL in story 1–3 (kN/m2) 4

DL in story 4 (kN/m2) 6

LL in story 1–3 (kN/m2) 3

LL in story 4 (kN/m2) 1

WL in story 1 (kN) 8.83

WL in story 2 (kN) 9.86

WL in story 3 (kN) 10.74

WL in story 4 (kN) 5.81
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f k ¼
Xnbþnc

i¼1
Ccbihi þ CsAsif gli þ

Xnb

i¼1
Cf bi þ 2 hi � tið Þð Þ þ Ctbif gli

þ
Xnc

i¼1
2Cf bi þ hið Þf gli ð17:36Þ

where Ct is the unit rate of scaffolding and ti is the thickness of the slab. The CO2

emission function has the same form of the cost function; however, the unit values

are different and also the scaffolding term is not considered. The unit rates for cost

and CO2 emissions are listed in Table 17.6.

The results for single objective of cost function obtained by the proposed

algorithm and the previous research works are compared in Table 17.7. The best

solution reported by the ECBO is 3429.92€ with 3587.88 kg of CO2 emissions. The

best ECBO cost design is 3.13% less than the best solution given by BB–BC.

Concrete represents 18.22% of the total cost, while reinforcing steel about 25.55%

of the total cost. Table 17.8 compares the results for single objective of CO2

emission functions. The best solution reported by the ECBO is 3238.25 kg with a

cost of 3525.27€. The best ECBO CO2 design is 2.67% less than the best solution

given by BB–BC. The percentage comparison of the solutions indicates that the

best CO2 emission design decreased the CO2 emissions by 9.74% with a slight

increase in cost of 2.77%. Since more environmentally friendly solutions are

recommended by IPCC, on the other hand, the low-CO2 emission design could

decrease the CO2 emissions considerably at an acceptable cost increment in prac-

tice; it seems that designing the RC structures based on the CO2 emissions is more

logistical (Table 17.9).

Figure 17.9 compares the strength ratio in element groups for both cost and CO2

objective functions. As can be seen, in beam groups the use of section capacity in

low-cost design is lower than low-CO2 emission design, while in column groups the

use of section capacity is higher. This finding shows that there is a relationship

between the geometry of frame and the objective functions. Table 17.2 indicates the

Table 17.6 Unit prices and CO2 emissions

Description

Cost (€) CO2 (kg)

Beam Column Beam Column

Steel B-500 (kg) 1.3 1.3 3.01 3.01

Concrete HA-25 (m3) 78.40 77.80 132.88 132.88

Concrete HA-30 (m3) 82.79 82.34 143.48 143.48

Concrete HA-35 (m3) 98.47 98.03 143.77 143.77

Concrete HA-40 (m3) 105.93 105.17 143.77 143.77

Concrete HA-45 (m3) 112.13 111.72 143.77 143.77

Concrete HA-50 (m3) 118.60 118.26 143.77 143.77

Form work (m2) 25.05 22.75 3.13 8.90

Scaffolding (m2) 38.89 – 4.86 –
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ratio between cost and CO2-optimized design variables. The dimension of beams

are bigger over the low-CO2 emission design than over the low-cost design.

In Table 17.10, the percentage of cost and CO2 emissions is quantified for

materials and construction components. Concrete, reinforcing steel, formwork, and

scaffolding represent approximately 26, 18, 46, and 10% of the total cost and

50, 35, and 15% of the total emissions, respectively.

Table 17.11 summarizes the results of the ECBO single-objective and multi-

objective designs. The best NSECBO design with lower cost is 3490€ with 3475 kg
of CO2 emissions which are 1.78% and 7.31% higher compared to single-objective

designs of cost and CO2 emissions, respectively. Alternatively, the best NSECBO

Table 17.9 Ratio between

Cost and CO2-optimized

design variables
Group no.

Frame characteristics

Concrete strength Area of elements

1 0.75 0.97

2 0.75 0.91

3 1.2 0.70

4 1 0.64

5 0.75 1.33

6 0.75 1.20

7 1.2 0.77

8 1 1.40

9 0.75 1.54

10 0.75 0.71

11 1.2 1

12 1 1
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Fig. 17.9 Strength ratios in element groups for both cost and CO2 objective functions
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design with lower emissions is 3318 kg with a cost of 3520€, which are 2.47% and

2.65% higher, respectively. Both objectives are closely related and result in similar

solutions. All these lead to a tentative conclusion that the CO2 and cost objectives

should be considered together in RC structural designs. The Pareto front is

presented in Fig. 17.10.

17.4.3 Two-Bay Six-Story Frame with Unequal Bays

Figure 17.11 illustrates the two-bay six-story frame originally designed by Paya-

Zaforteza et al. [8] using SA algorithm and redesigned by Camp et al. [13] using

BB–BC algorithm. The story height and bay span of the frame and the search space

specifications are the same as defined for the two-bay four-story frame in Example

Table 17.10 Percentage of total cost and CO2 emissions

Description

Cost (%) CO2 (%)

Beam Column Total Beam Column Total

Steel 70 30 26 70 30 50

Concrete 52 48 18 60 40 35

Form work 33 67 46 18 82 15

Scaffolding 10 – 10 – – –

Total 100 100

Table 17.11 Results of the

ECBO single-objective and

multi-objective designs

Objective Cost (€) CO2 (%)

ECBO-Cost 3429 3587

NSECBO-Cost 3490 3475

ECBO-CO2 3525 3238

NSECBO-CO2 3520 3318

3490 3495 3500 3505 3510 3515 3520
3300

3320

3340

3360

3380

3400

3420

3440

3460

3480

Cost (euro)

Co
2 

(k
g)

Fig. 17.10 NSECBO

Pareto front
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2. As shown in Fig. 17.11, the frame consists of 12 beams and 18 columns, which

are arranged in 6 beam groups and 12 column groups. The type of grouping, spacing

considered between adjacent parallel frames, the thickness of the slab, the strength

and the unit weight of concrete and steel, the load patterns, and the magnitude of

Fig. 17.11 Two-bay

six-story RC plane frame

17.4 Design Examples 345



loads except the wind loads are the same as in Example 2. Table 17.12 lists the

values of the wind loads at each story. The frame has a total of 90 design variables

and the design space of 3.34e90. The general form of the objective functions is

given in Eq. (17.36).

Table 17.13 compares the results for single objective of cost function obtained

by the proposed algorithm with those of the previous researches. The best solution

reported by the ECBO is 5697.98€ with 5834.72 kg of CO2 emissions. The best

ECBO cost design is 2.29% less than the best solution given by BB–BC.

Table 17.14 compares the results for single objective of CO2 emission functions.

The best solution reported by the ECBO is 5682.82 kg with a cost of 5913.02€. The
best ECBO CO2 design is 2.16% less than the best solution given by BB–BC. The

percentage comparison of the solutions confirms the previous findings.

17.5 Concluding Remarks

This chapter aimed to evaluate the usefulness of the ECBO and NSECBO through

the optimization of three multistory-multi-bay frames based on the ACI Code

including architectural and reinforcement detailing. The algorithm is applied to

two objective functions: the cost of material and the embedded CO2 emissions

during the construction process. Based on the present work, the following conclu-

sions can be derived:

1. The ECBO design improved the results from both objective functions in a

reasonably practical time over the designs developed by the BB–BC algorithm.

Moreover, in comparison with other evolutionary approaches, the ECBO algo-

rithm is simple to implement and it requires a few parameters to be set. These

findings proved that ECBO-based methodology could be applied as an effective

and powerful algorithm to arrive at a realistic design solution for real complex

problems.

2. Conclusive solution of the algorithm is improved through selecting more ratio-

nal groups of the elements. This implies that grouping in which the members in

the same group are similar in the internal force distribution results in more

economical solutions.

Table 17.12 Wind loads for

two-bay six-story frame
Action Value

WL in story 1 8.83

WL in story 2 9.86

WL in story 3 10.74

WL in story 4 11.62

WL in story 5 12.36

WL in story 6 6.62
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3. Considerable reduction of the size of the search space by rejection of infeasible

individuals during the process of creating DB sections and eliminating the

related terms of violation from the penalty function can reduce the calculation

time and give a very rapid convergence in the early iterations toward the feasible

solution. Moreover, with the same number of iterations and qualifications, the

best solution decreases significantly.

4. Investigating the relationship between the two objective functions of cost and

CO2 emissions indicates that although the CO2 emission function causes a

relative increase in the cost, it decreases the CO2 emissions by up to 9.74%.

Due to the growing efforts and the IPCC recommendation to reduce the atmo-

spheric concentration of CO2 caused by construction industry, it appears that

optimal design of RC structures with respect to the CO2 emissions as the key

control point of the low carbon economy and a sustainable environment is more

rational.

5. Comparison between the cost and CO2-optimized design variables indicates that

the geometry and physical dimension of elements are different in a way that the

beam areas are bigger over the low-CO2 emission design than over the low-cost

design.

6. The results of the ECBO single-objective and multi-objective designs reveal that

both objective functions yield similar solutions and economical solutions also

perform well in terms of CO2 emissions.
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Chapter 18

Construction Site Layout Planning Using

Colliding Bodies Optimization and Enhanced

Colliding Bodies Optimization

18.1 Introduction

In this chapter, two recently developed metaheuristic algorithms, so-called CBO

and ECBO, are employed for construction site layout planning. Results show that

both of these algorithms have the capability of solving this kind of problem. Two

case studies are presented to show the applicability and performance of the utilized

methods [1].

Suitable facility layout is believed to be the heart of efficient production (Wong

et al. [2]) that should be considered early in the planning phase [3]. An appropriate

construction site layout boosts the effectiveness and efficiency of the works.

However, the arrangement of site facilities is hindered by many constraints such

as limitations on the site area, adjacent buildings, access, the location and orienta-

tion of the building to be constructed, Ref. [4].

The objective of the construction site layout is to arrange the temporary facilities

such as job office, labor residence, warehouse, and batch plants (Adrian et al. [3]),

so that all design requirements are fulfilled and maximum design quality is

achieved in terms of design preferences such as minimizing the total cost associated

with the interactions among these facilities [5]. Based on studies carried out in the

manufacturing industry, the material handling costs can be reduced by 20–60% if

appropriate facility layout is adopted [4].

Since site layout planning is an intricate task, the construction managers often

implement this task using previous experiences, ad hoc rules, and first-come-first-

serve approach which leads to inefficiency (Adrian et al. [3], and Said and El-Rayes

[6]). Therefore, an effective construction site layout planning (CSLP) is of utmost

importance for the success of a construction project [7].

Construction site layout problem can be modeled as a quadratic assignment

problem (QAP) when the costs associated with flow between departments are

assumed to be linear with respect to distance traveled and quantity of the flow

[8]. The QAP is one of the classical combinatorial optimization problems, which is

© Springer International Publishing AG 2017

A. Kaveh, Applications of Metaheuristic Optimization Algorithms in Civil
Engineering, DOI 10.1007/978-3-319-48012-1_18

351



known for its diverse applications and is widely regarded as the most difficult

problem in classical combinatorial optimization [9]. QAP problems are known as

non-polynomial hard problems (NP-hard) and because of the combinatorial com-

plexity, these cannot be solved exhaustively for reasonably sized layout problems

[5]. As an example, for n facilities, the number of possible alternatives, that is the

number of feasible configurations, is n! with larger growth than en. This is a huge
number, even for a small n. For 10 facilities, the number of possible alternatives is

already well over 3,628,000. For 15 facilities, we are already in the 12-digit

numbers. In real problems, a project with n¼ 15 can be considered as a small

project [10].

Due to the complexity of the site layout problems, numerous techniques have

been proposed to find solutions to these problems; however, it is very difficult to

obtain an optimal one suitable for hand calculations. Thus, optimization techniques

seem to be suitable means to search for solutions of the site layout problems. The

problem can be solved using two classes of techniques: exact algorithms and

approximate algorithms. Exact algorithms such as mathematical optimization pro-

cedures were designed to find optimum solutions. But these methods could not be

adopted for large-scale projects because of the need for huge calculations and

computational efforts [11]. Therefore, they have been only successful for a single

or very limited number of facilities, as reported by Tommelein et al. [12]. Approx-

imate algorithms are categorized into two groups, heuristic and metaheuristic

algorithms, and they are developed to get the near-optimal solution in a short and

reasonable time for handling complex real-life projects. When the number of

facilities is <15, these two types of methods are able to reach an optimal solution.

However, when the number of facilities is more than 15, the problem becomes

NP-complete. For definition of NP-complete problems, the reader may refer to

Garey and Johnson [13]. As the number of facilities increases, the computational

time increases exponentially by 2n.

Since the optimal solution is not easy to obtain for large projects, researchers

have tackled the construction site layout problem (CSLP) utilizing metaheuristic

algorithms. There are many metaheuristics that can be used to address the problem

of construction site layouts (Adrian et al. [3]).

The use of artificial neural networks was investigated by Yeh [10] to improve a

predetermined site layout planning. The model minimizes a total cost function that

includes the cost of constructing a facility at the assigned location on site and the

cost of interacting with other facilities.

The Genetic Algorithm (GA) mimics the process of natural evolution and is

routinely utilized to generate useful solutions to optimization and search problems.

GA generates solutions to optimization problems using techniques inspired by

natural evolution, such as inheritance, mutation, selection, and crossover. Numer-

ous applications of GA are suggested for the facility site layout problems (Adrian

et al. [3], Cheung et al. [14], Li and Love [15, 16], Zouein et al. [17], Mawadesley

et al. [18], and Mavadesley and Al-Jibouri [19]). Li and Love [16] presented an

investigation applying the Genetic Algorithm to attain the optimal solution for

single-objective CSLP problem to accommodate facilities of unequal area in
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predetermined locations. Osman et al. [20] proposed a hybrid CAD-based algo-

rithm using genetic algorithm in order to optimize the assignment of unequal area

facilities to any unoccupied space at a construction site.

Particle swarm optimization (PSO) is another metaheuristic approach that sim-

ulates the social behavior of bird flocking to a desired place [21]. Zang and Wang

[22] proposed a PSO-based methodology. They modeled the CSLP problem to

optimize static layout under single-objective function to accommodate facilities of

unequal area in predetermined locations. Another study relevant to the PSO was

conducted by Xu and Li [23]. Their approach used a multi-objective particle swarm

optimization (MOPSO) algorithm. This approach was also applied for solution of

the multi-objective dynamic CSLP problem. Lien and Cheng [24] proposed a

hybrid swarm intelligence-based particle-bee algorithm for construction site layout

optimization with single-objective function to locate facilities in predetermined

locations.

The ant colony optimization (ACO) is a biologically inspired metaheuristic that

simulates the behavior of ants searching for food [25]. The ACO was employed to

solve facility layout problem in a hypothetical medium-sized construction site

[26]. Gharaie et al. [27] and Lam et al. [26] employed ACO to solve a static site

layout problem for a construction project. Ning et al. [7] used Max–Min Ant System

(MMAS), which is one of the standard versions of ACO algorithms to solve a

dynamic CSLP. Though the CSLP problem has been tackled by some researchers;

however, the application of new metaheuristics is always beneficial and can

improve the solutions.

In this chapter, two recently developed metaheuristic algorithms, known as

colliding bodies optimization (CBO) and Enhanced colliding bodies optimization

(ECBO), are applied to the solution of construction site layout problems. Colliding

Bodies Optimization is developed by Kaveh and Mahdavi [28], and Enhanced

Colliding Bodies Optimization is presented by Kaveh and Ilchi Ghazaan

[29]. CBO and ECBO are employed for solution of the CSLP problem and results

are compared with those of some previous algorithms. Two case studies are

conducted to evaluate the performance and applicability of the utilized algorithms.

The structure of the chapter is as follows: in Sect. 18.2, the construction site layout

problem is described briefly and the mathematical model is presented. In Sect. 18.3,

the CBO and ECBO are described in detail. Section 18.4 shows the computational

results, and finally the concluding remarks are provided in Sect. 18.6.

18.2 Construction Site Layout Planning Problem

Construction site layout planning problems can be modeled as a QAP in which costs

associated with the flow between facilities are linear with respect to the distance

traveled and quantity of the flow [8]. The objective of construction site layout

planning is to assign a number of predetermined facilities (n) uniquely into a

number of predetermined locations (m) where the number of locations should be
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equal or greater than number of facilities. If the number of predetermined locations

(m) is greater than the number of predetermined facilities (n), then m� n dummy

facilities can be added to make both numbers equal. By assigning both the distance

and frequency as 0, the “dummy” facilities will not affect the layout results [16].

If each of the predetermined places is capable of accommodating any of the

facilities, then the facility layout problem can be modeled as an equal-area facility

layout problem. If some of the predetermined places are only able to accommodate

some of the facilities, then the problem becomes an unequal-area facility layout

problem, where predetermined places have differing areas. Generally, unequal-area

layout problems are more difficult to solve than equal-area layout problems,

primarily because unequal-area layout problems introduce additional constraints

into the problem formulation [16].

18.2.1 Objective Function

The objective function of several models given in Table 18.1 takes the general form

(Osman et al. [20]):

Minimize F ¼
Xn
i¼1

Xn
j¼1

Wij � dij ð18:1Þ

where F is the objective function and n is the number of facilities and locations.

Coefficient Wij represents either the actual transportation cost per unit distance

between facilities i and j (taking into consideration the number of trips made) or a

relative proximity weight that reflects the required closeness between facilities i and
j, and dij is the distances between facilities i and j.

Table 18.1 Different kind of objective functions in the previous researches (Osman et al. [20])

No. Pseudo model of the objective function Study reference

1 To minimize the frequency of trips made by construction

personnel

Li and Love [15, 16]

2 To minimize the total transportation costs of resources

between facilities

Cheung et al. [14] and

Tam et al. [30]

3 To minimize the cost of facility construction and the interac-

tive cost between facilities

Yeh [10]

4 To minimize the total transportation costs of resources

between facilities (presented through a system of proximity

weights associated with an exponential scale)

Hegazy and Elbeltag

[31]

5 To minimize the total transportation costs of resources

between facilities and the total relocation costs (presented

through a system of proximity weights and relocation weights)

Zouein and Tommelein

[32]
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18.2.2 Layout Representation

Each layout alternative can be represented by a n� n permutation matrix (n is the

number of facilities or locations), whose rows and columns represent facilities and

locations, respectively. The permutation matrix allows a single entry of one in each

row and each column, with all remaining entries being zero. Table 18.2 shows an

example of a permutation matrix with 10 facilities and 10 locations.

A specific solution to the site layout problem as shown by Table 18.2 is a very

sparse matrix and would therefore consume unnecessary computing resources if it is

used for large and practical problems. Therefore, because of the property of one to one

correspondences between facilities and locations, a sequence of integers can be used

as a more efficient alternative, like that in Table 18.3. Each position or entry in the

sequence represents a facility; the integer number in the entry represents the location

to place the corresponding facility. However, the sequence-based representation may

lead to infeasible solutions where multiple entries in the sequence have the same

integer number, i.e., the situation of overlay, when adopting the metaheuristic

methods. Therefore, some modifications should be made to overcome this difficulty

(Li and Love [15], Mavadesley and Al-Jibouri [19], and Zhang and Wang [22]).

18.3 Metaheuristic Algorithms

In this chapter, two new metaheuristic algorithms consisting of the colliding

bodies optimization and enhanced colliding bodies optimization are used for

construction site layout problems (CSLP). These algorithms, which are powerful

Table 18.2 An example of the permutation matrix representation for CSLP

Table 18.3 An example of the sequence-based representation for CSLP
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and effective in finding the best solution for NP-hard problems, are utilized for

CSLP problem.

18.3.1 Colliding Bodies Optimization

Colliding Bodies Optimization (CBO) is an efficient metaheuristic optimization

algorithm that is based on one-dimensional collisions between bodies [28]. All of

the following explanations about this method, including definitions and formulas,

are extracted from Kaveh and Mahdavi [28] and Kaveh [33].

In this method, one object collides with the other object, and they move toward a

minimum energy level. Collisions between these objects are governed by two laws

of physics: momentum law and energy law.

In CBO, each solution candidate Xi containing a number of variables

i:e:,Xi ¼ Xij

� �� �
is considered as a colliding body (CB). The objects have assigned

masses and are divided into two equal groups, i.e., stationary and moving objects

(Fig. 18.1), where the moving objects move to follow stationary objects and a

collision occurs between pairs of objects. This takes place for two purposes: (i) to

improve the locations of moving objects and (ii) to push stationary objects toward

better locations. After the collision, new locations of colliding bodies are updated

based on the new velocities using collision laws.

The CBO algorithm is briefly presented in the following:

Step 1: Initialization

The algorithm starts with a random initial population of agents (CBs) in an

m-dimensional search space by the following formula:

xi
0 ¼ xmin þ random∘ xmax � xminð Þ, i ¼ 1, 2, . . . , n ð18:2Þ

where x0i determines the initial value vector of the ith CB. xmin and xmax are the

minimum and the maximum allowable value vectors of variables, rand is a random
number in the interval [0, 1], and n is the number of CBs.

Step 2: Defining mass

Each colliding body (CB), Xi, has a specified mass defined as

Fig. 18.1 The pairs of CBs for collision
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mk ¼
1

fit kð Þ
1Xn

i¼1

1

fit ið Þ

, k ¼ 1, 2, . . . , n ð18:3Þ

where fit(i) represents the objective function value of the ith CB and n is the number

of colliding bodies. It should be noted that larger mass values are assigned to CBs

with better objective function values.

Step 3: Creating groups

Then CB’s objective function values are arranged in an ascending order. The

sorted CBs are divided into two equal groups:

• The lower half of the CBs are stationary CBs that have lower objective

function values. These CBs are considered as good agents.

• The CBs of the upper half are moving ones. These CBs move toward the

lower ones and then the agents with upper value of each group collide

together.

Step 4: Criteria before the collision

The initial velocities of stationary CBs are equal to:

vi ¼ 0, i ¼ 1, 2, . . . ,
n

2
ð18:4Þ

The velocities of moving CBs before collision are equal to:

vi ¼ xi�n
2
� xi, i ¼ n

2
þ 1,

n

2
þ 2, . . . , n ð18:5Þ

where vi and xi are the velocity and location vector of the ith CB in this group,

respectively, and xi�n
2
is the ith CB pair location of xi in the previous group.

Step 5: Criteria after the collision

After the collision, the velocity of stationary CBs (v
0
i) are specified by

vi
0 ¼

miþn
2
þ εmiþn

2

� �
viþn

2

mi þ miþn
2

i ¼ 1, 2, . . . ,
n

2
ð18:6Þ

Also, the velocities of moving CBs (v
0
i) after the collision are

vi
0 ¼

mi � εmi�n
2

� �
vi

mi þ mi�n
2

i ¼ n

2
þ 1,

n

2
þ 2, . . . , n ð18:7Þ

where ε is the coefficient of restitution (COR) that decreases linearly from unity to

zero. Thus, it is expressed as
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ε ¼ 1� iter

itermax
ð18:8Þ

where iter and itermax are the current iteration number and the total number of

iterations for optimization process, respectively.

Step 6: Updating CBs

New locations of the CBs are evaluated using their velocities after the collision.

The new locations of stationary CBs are

xnewi ¼ xi þ rand�v
0
i i ¼ 1, 2, . . . ,

n

2
; ð18:9Þ

and the new locations of moving CBs are

xnewi ¼ xi�n
2
þ rand�vi

0
, i ¼ n

2
þ 1,

n

2
þ 2, . . . , n ð18:10Þ

where xnewi , xi, and v
0
i are the new location, previous location, and the velocity after

the collision of the ith CB, respectively. rand is a random vector uniformly

distributed in the range of [�1,1] and the sign “�” denotes an element-by-element

multiplication.

Step 7: Termination criterion check

The process of CBO algorithm is repeated from Step 2 until a termination

criterion, such as maximum iteration number, is satisfied.

Flowchart of the CBO algorithm is depicted in Fig. 18.2.

18.3.2 Enhanced Colliding Bodies Optimization

Enhanced Colliding Bodies Optimization (ECBO) is a new version of the CBO

which improves the CBO to get faster and to obtain more reliable solutions. This

method is developed recently by Kaveh and Ilchi Ghazaan [29]. Unlike CBO, the

main feature of the ECBO is that it uses a memory to save some best solutions that

cause an increase in the convergence speed of ECBO with respect to standard CBO.

In order to improve the exploration capabilities of the CBO and to prevent prema-

ture convergence, ECBO utilizes a mechanism to escape from local optimal.

All of the following explanations about this method, including definitions and

formulas, are extracted from Kaveh and Ilchi Ghazaan [29]. In order to introduce

the ECBO, the following steps are developed:
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Step 1: Initialization

The algorithm starts with a random initial population of agents (CBs) in an

m-dimensional search space by the following formula:

xi
0 ¼ xmin þ random∘ xmax � xminð Þ, i ¼ 1, 2, . . . , n ð18:11Þ

where x0i determines the initial value vector of the ith CB. xmin and xmax are the

minimum and the maximum allowable values vectors of variables, rand is a random
number in the interval [0, 1], and n is the number of CBs.

Start

Initialize all CBs by Eq. (16.2)

Objective function is evaluated and masses are 

defined by Eq. (16.3)

Stationary and moving groups are created and 

velocities are calculated by Eqs. (16.4) and (16.5)

The velocity of CBs are updated by Eqs. (16.6) and 

(16.7)

Updated location of each CBs is calculated by Eq. 

(16.9) and (16.10)

Is terminating 

criterion 

fulfilled?

Report the best solution found by algorithm

End

No

Yes

Fig. 18.2 Flowchart of the

CBO algorithm [28]
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Step 2: Defining mass

The value of mass for each CB is evaluated according to Eq. (18.3).

Step 3: Saving

In this step, colliding memory (CM) is utilized to save a number of historically

best CB vectors and their related mass and objective function values with the

aim of improving the algorithm’s performance. At each iteration, solution

vectors that are saved in the CM are added to the population and the same

number of the current worst CBs are deleted. Finally, CBs are sorted according

to their masses in a decreasing order.

Step 4: Creating groups

The CBs are divided into two equal groups according to their objective function

values: stationary and moving group.

Step 5: Criteria before the collision

The velocities of the stationary and moving bodies before collision are evaluated

by Eqs. (18.4) and (18.5), respectively.

Step 6: Criteria after the collision

The velocities of the stationary and moving bodies after collision are evaluated

by Eqs. (18.6) and (18.7), respectively.

Step 7: Updating CBs

The new location of each CB is evaluated by Eqs. (18.8 or 18.9).

Step 8: Escape from local optimal

In order to escape from local optimal, a parameter like Pro within (0, 1) is

introduced, which specifies whether a component of each CB must be changed

or not. For each colliding body Pro is compared with rni i ¼ 1, 2, . . . , nð Þ which
is a random number uniformly distributed within (0, 1). If rni < pro, one
dimension of the ith CB is selected randomly and its value is regenerated as

follows:

xij ¼ xj,min þ random � xj,max � xj,min

� � ð18:12Þ

where xij is the jth variable of the ith CB. xj,min and xj,max are the lower and upper

bounds of the jth variable, respectively. In order to protect the structure of CBs,

only one dimension is changed.

Step 9: Termination criterion check

After the predefined maximum iteration number, the optimization process is

terminated. If this criterion is not satisfied, go to Step 2 for a new round of

iteration.

Flowchart of the ECBO algorithm is illustrated in Fig. 18.3.
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Start

Initialize all CBs by Eq. (18.2)

Objective function is evaluated and masses are 

defined by Eq. (18.3)

Stationary and moving groups are created and 

velocities are calculated by Eqs. (18.4) and (18.5)

The velocity of the CBs are updated by Eqs. (18.6) 

and (18.7)

Updated location of each CB is calculated by Eq. 

(18.9) and (18.10)

Report the best solution found by the algorithm

End

No

Yes

Update the  Colliding Memory and population 

Is terminating

criterion fulfilled?

Fig. 18.3 Flowchart of the

ECBO algorithm [29]
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18.4 Model Application and Discussion of the Results

In CBO and ECBO algorithms, each solution candidate Xi containing a number of

variables i:e:,Xi ¼ Xij

� �� �
is considered as a colliding body (CB). In the CSLP

problems, each CB is considered as a sequence of variables that represents a layout

solution and different sequences mean different layout solutions. Each variable in

the sequence represents a facility, and the value of variable indicates the location

that is assigned to the corresponding facility. Since every location is capable of

receiving only one facility, the CBs should not have duplicated values; violation

from this point generates infeasible solutions. However, all the variables of a CB in

CBO and ECBO are independent of each other; thus, updating the velocity and

position of a CB is performed independently. Therefore, more than one variable in

an updated CB may have the same value. Thus, some modifications in updating

mechanism should be performed to overcome this infeasibility. The updating

mechanism of the CBs is explained in the following:

CB’s Updating Mechanism

Partially mapped crossover (PMX) in GA is a mechanism to overcome infeasibility

in permutation problems. In the PMX method, at each of the selective (i.e.,

randomly) gene, two values in the two parents’ chromosome are exchanged.

Then, the repeated value at another gene in one parent is replaced by the mapped

value at the specified selective gene in the second parent (the former value of

selective gene in first parent), and then, the same action is performed with second

parent [34].

In this chapter, inspired by the concept of the PMX in generating feasible layout,

an updating mechanism for generating feasible layout in the CBO and ECBO

algorithms is used. In this mechanism, the velocity of stationary and moving CBs

after collision is computed and considered as a criterion to decide which variable of

a CB should be updated earlier. A larger velocity means there is larger gap between

that variable and its goal, and it has higher tendency to be updated earlier. There-

fore, the absolute value of the velocity is used herein to represent the order of

variables that should be updated [34].

Every variable of a CB is selected as the current variable (CV) according to the

sorted velocity of variables. The value of the current variable is updated according

to its reference and using to Eqs. (18.6–18.10). The reference of moving CB is its

corresponding stationary CB, and the reference of a stationary CB is itself. Then,

the repeated value of another variable in this CB is substituted by the former value

of the current variable. In this step, if the value of the variable that is obtained in this

step has been selected before (for any of the previous current variables), updating

the CV is ignored and the next variable is selected for updating until the last

variable is updated. Flowchart for the updating mechanism of a CB is presented

in Fig. 18.4.
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18.5 Case Studies of Construction Site Layout Planning

Two case studies are selected to show the applicability and performance of the CBO

and ECBO algorithms for construction site layout optimization and their results are

compared to those of the PSO. Parameter values used in these case studies are

shown in Table 18.4. The algorithms are coded in MATLAB R2011a, and the

Start

Sort variables' velocity of CB

N� Number of variables 

C� 1

Select current variable (CV)

Update CV's value

Find the variable with repeated 

value

Swap the found 

variable with CV

No

Yes

C ≤ N

C = C+1

Revert updated value of 

CV to previous value 

End

Yes

No

Has the updated 

value of CV been selected

before?

Fig. 18.4 Flowchart for the

updating mechanism of

a CB
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experiments are performed on a personal computer with Intel®CoreTM i7 processor

(1.73 GHz) and 4 GB RAM under the windows 10 Home 64-bit operating system.

The detailed case studies and the results are as follows:

18.5.1 Case Study 1

This case study is a medium-sized project and is taken from Li and Love [15]. The

purpose of this problem is to find the most appropriate arrangement for placing

11 facilities into 11 predetermined locations on the site. Table 18.5 shows the

11 facilities and their corresponding index numbers.

In this case study, for the construction site layout selection, two assumptions are

made:

1. Each of the predetermined locations is capable of accommodating any of the

facilities.

2. The main gate and side gate are treated as special facilities, which have been

fixed on the predetermined locations.

18.5.1.1 Objective Function

The objective of this case is to minimizing the total traveling distance of site

personnel between facilities. The total travel distance is based on the formulation

of Li and Love [15] as

Minimize TD ¼
Xn
i¼1

Xn
j¼1

Xn
l¼1

Xn
k¼1

xik � xjl � f ij � dkl

Subjected to
Xn
i¼1

xij ¼ 1 ,
Xn
j¼1

xij ¼ 1

ð18:13Þ

where n¼ number of facilities. xik ¼ 1when the facility i is assigned to the location
k; otherwise it is equal to 0; xjl is similarly defined. Coefficient fij is the frequency of
trips made by construction personnel between facilities i and j per day. Coefficient
dkl is the distances between the locations k and l. Therefore, TD provides the total

traveling distance made by construction personnel per day.

Table 18.4 Parameter values used in case studies
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18.5.1.2 Travel Distances Between Site Locations

The travel distances between predetermined locations are provided in Table 18.6

(Li and Love [15]).

18.5.1.3 Trip Frequencies Between Facilities

Trip frequencies between facilities influence the site layout planning and proximity

between predetermined site facilities. Therefore, the frequencies of the trips made

between facilities on a single day are presented in Table 18.7 (Li and Love [15]).

Table 18.5 Facilities and their corresponding index numbers for case study 1

Index number Site facilities Note

1 Site office Not fixed

2 False work workshop Not fixed

3 Labor residence Not fixed

4 Storeroom 1 Not fixed

5 Storeroom 2 Not fixed

6 Carpentry workshop Not fixed

7 Reinforcement steel workshop Not fixed

8 Side gate Fixed to 1

9 Electrical, water, and other utilities control room Not fixed

10 Concrete batch workshop Not fixed

11 Main gate Fixed to 10

Table 18.6 Travel distances between the predetermined locations

Distance

Location

1 2 3 4 5 6 7 8 9 10 11

Location 1 0 15 25 33 40 42 47 55 35 30 20

2 15 0 10 18 25 27 32 42 50 45 35

3 25 10 0 8 15 17 22 32 52 55 45

4 33 18 8 0 7 9 14 24 44 49 53

5 40 25 15 7 0 2 7 17 37 42 52

6 42 27 17 9 2 0 5 15 35 40 50

7 47 32 22 14 7 5 0 10 30 35 40

8 55 42 32 24 17 15 10 0 20 25 35

9 35 50 52 42 37 35 30 20 0 5 15

10 30 45 55 49 42 40 35 25 5 0 10

11 20 35 45 53 52 50 40 35 15 10 0
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18.5.1.4 Result and Discussion

This example is solved by carrying out 50 independent optimization runs through

200 iterations to obtain statistically significant results by PSO, CBO, and ECBO.

Statistical results of 50 independent runs are provided in Table 18.8 for comparison.

As it can be seen from this table, the average, worst, and standard deviation for

ECBO are 12,555, 12,746, and 32.11, respectively, which are better than those of

CBO and PSO. This indicates that ECBO not only finds a better best solution, but

also it is more stable. The convergence curves for the ECBO, CBO, and PSO in

terms of the number of iterations are shown in Fig. 18.5. A comparison of the results

of the present algorithms and those of the previously reported researches for Case 1

is shown in Table 18.9. The results show that for this case study, the best result is

12,546 which is better than that of the GA and it is the same as that of the ACO.

18.5.2 Case Study 2

In the optimization of construction-site precast yard layout, the efficiency of a site

precast yard is very much affected by positioning of the various facilities [2]. The

hypothetical site precast yard in this section is taken from Cheung et al. [14]. There

Table 18.7 Trip frequencies between the facilities

Trip frequency

Facility

1 2 3 4 5 6 7 8 9 10 11

Facility 1 0 5 2 2 1 1 4 1 2 9 1

2 5 0 2 5 1 2 7 8 2 3 8

3 2 2 0 7 4 4 9 4 5 6 5

4 2 5 7 0 8 7 8 1 8 5 1

5 1 1 4 8 0 3 4 1 3 3 6

6 1 2 4 7 3 0 5 8 4 7 5

7 4 7 9 8 4 5 0 7 6 3 2

8 1 8 4 1 1 8 7 0 9 4 8

9 2 2 5 8 3 4 6 9 0 5 3

10 9 3 6 5 3 7 3 4 5 0 5

11 1 8 5 1 6 5 2 8 3 5 0

Table 18.8 Comparison of the results of 50 independent runs for the first case example

Algorithm Best Average Worst

Difference best–

average solution%

Difference best–

worst solution% STD

PSO 12,546 12,560 12,756 0.112 1.647 47.39

CBO 12,546 12,558 12,768 0.096 1.769 45.51

ECBO 12,546 12,555 12,746 0.072 1.594 32.11
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are 11 facilities that should be assigned to 11 predetermined locations on the yard.

The facilities and their corresponding index numbers are listed in Table 18.10. Four

types of resources and transport costs per unit distance are also presented in

Table 18.11.

18.5.2.1 Objective Function

The objective function is considered as the total cost per day for transporting all

resources necessary to achieve the anticipated output. The objective function based

on Cheung et al. [14] is calculated as follows:

Fig. 18.5 Convergence curves of the utilized metaheuristics

Table 18.9 A comparison between the final solution of the present work and those of the

previously reported researches

Algorithms

Total

distance

Best layout

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

PSOa 12,546 9 11 5 6 7 4 3 1 2 8 10

CBOa 12,546 9 11 6 5 7 4 3 1 2 8 10

ECBOa 12,546 9 11 4 5 7 6 3 1 2 8 10

GA (Li and Love [15]) 15,090 11 5 8 7 2 9 3 1 6 4 10

ACO (Gharaie et al. [27]) 12,546 9 11 6 5 7 2 4 1 3 8 10
aCurrent study
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Minimize TC ¼
Xn
k¼1

Xq

i¼1

Xq

j¼1

TCLMk, i, j

TCLMk, i, j ¼ MLMij � CMk

MLMij ¼ FLMkij � Dij

ð18:14Þ

where

Dij¼ rectangular distance between the location i and location j.
CMk¼ cost per unit distance for resource Mk flow.
TCLMk,i,j¼ total cost of resource Mk flow between the locations i and j.
MLMki,j¼ distance traveled of resource Mk flow per unit time between locations

i and location j.
FLMk,i,j¼ frequency of resourceMk flow between the locations i and j per unit time.

18.5.2.2 Travel Distance Between Site Precast Yard Locations

The rectangular distance between locations is measured and presented in

Table 18.12.

Table 18.10 Facilities and the corresponding index numbers

Index number Site facilities

1 Main gate

2 Side gate

3 Batching plant

4 Steel storage yard

5 Formwork storage yard

6 Bending yard

7 Cement and sand and aggregate storage yard

8 Curing yard

9 Refuse dumping area

10 Casting yard

11 Lifting yard

Table 18.11 Four types of resources and transport costs per unit distance

Mk Resources Cost per Unit

1 Aggregate, sand, and cement/concrete 5

2 Reinforcement bars 4

3 Formwork 8

4 Completed precast units 8.5
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18.5.2.3 Frequency of Resources Flow Between Facilities

The flow frequency of the four types of resources between the facilities is presented

in Table 18.13.

18.5.2.4 Result and Discussion

This example was solved by carrying out 30 independent optimization runs through

1000 iterations to obtain statistically significant results by PSO, CBO, and ECBO.

Statistical results of 30 independent runs are compared in Table 18.14. As it can be

seen from Table 18.14, the average, worst, and standard deviation for ECBO are,

respectively, 92,758, 102,920, and 2733.5, which are better than those of CBO and

PSO. This indicates that ECBO not only finds a better best solution but also is more

stable. The convergence curves for the ECBO, CBO, and PSO in terms of the

number of iterations are shown in Fig. 18.6, indicating that ECBO has better

convergence rate than others. Table 18.15 summarizes the results obtained by the

present work and those of the previously reported researches. In this case study, the

best result is 92,758 which is better than that of GA, multi-searching TS, and MIP,

and it is the same as that of the Harmony search.

18.6 Concluding Remarks

In this chapter, the application of two recently developed metaheuristic algorithms,

CBO and ECBO, is introduced to solve construction site layout problem. The

governing laws of physics initiate the base of the CBO and ECBO algorithms,

where these laws determine the movement process of the objects. CBO utilizes

Table 18.12 Distance between locations in case study 2

Distance

Location

1 2 3 4 5 6 7 8 9 10 11

Location 1 0 12 17 30 35 33 55 53 38 30 19

2 12 0 9 22 27 21 47 45 40 18 31

3 17 9 0 13 22 30 38 36 31 27 22

4 30 22 13 0 15 23 25 23 38 20 29

5 35 27 22 15 0 8 20 38 53 25 44

6 33 21 30 23 8 0 28 46 61 17 52

7 55 47 38 25 20 28 0 18 33 45 40

8 53 45 36 23 38 46 18 0 15 43 38

9 38 40 31 38 53 61 33 15 0 58 23

10 30 18 27 20 25 17 45 43 58 0 49

11 19 31 22 29 44 52 40 38 23 49 0
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Table 18.13 The flow frequency of the four types of resources between the facilities

Flow frequency

Facility

1 2 3 4 5 6 7 8 9 10 11

1. Aggregate, sand, and cement

Facility 1 20

2 15

3 35 35

4

5

6

7 20 15 35

8

9

10 35

11

2. Reinforcement

Facility 1 30

2 20

3

4 30 20 50

5

6 50 50

7

8

9

10 50

11

3. Formwork

Facility 1

2

3

4

5 48

6

7

8

9

10 48

11

4. Completed precast units

1 28

2 20

3

4

(continued)
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simple formulation to find minimum of objective functions and does not depend on

any internal parameter. In order to improve the exploration capabilities of the CBO

and to prevent a premature convergence, ECBO uses a mechanism to escape from

local optimal. The latter also uses a Colliding Memory to save a number of the so

far best solutions to reduce the computational cost. To validate the models, two case

studies are considered. The results verify that the proposed approach performs very

Table 18.13 (continued)

Flow frequency

Facility

1 2 3 4 5 6 7 8 9 10 11

5

6

7

8 48 48

9

10 48

11 28 20 48

Table 18.14 Comparing of the results of 30 independent runs for second case example

Algorithm Best Average Worst

Difference best–

average solution%

Difference best–

worst solution% STD

PSO 92,758 97,667 106,630 5.292 14.955 3363.1

CBO 92,758 97,504 103,038 5.117 11.083 3149

ECBO 92,758 96,670 102,920 4.217 10.955 2733.5

Fig. 18.6 Convergence curves of the employed metaheuristics
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well both in finding better results and using lower number of evaluations to find the

optimum. Comparison of the results with some other well-known metaheuristics

shows the suitability and efficiency of the utilized algorithms in CSLP. The

proposed algorithms are highly competitive with other metaheuristic algorithms

in quality of solutions and convergence speed.
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