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Series Editors’ Foreword

The topics of control engineering and signal processing continue to flourish and
develop. In common with general scientific investigation, new ideas, concepts and
interpretations emerge quite spontaneously and these are then discussed, used,
discarded or subsumed into the prevailing subject paradigm. Sometimes these
innovative concepts coalesce into a new sub-discipline within the broad subject
tapestry of control and signal processing. This preliminary battle between old and
new usually takes place at conferences, through the Internet and in the journals of
the discipline. After a little more maturity has been acquired by the new concepts
then archival publication as a scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when
sufficient material has evolved for the topic to be taught as a specialised tutorial
workshop or as a course to undergraduate, graduates or industrial engineers.
Advanced Textbooks in Control and Signal Processing are designed as a vehicle
for the systematic presentation of course material for both popular and innovative
topics in the discipline. It is hoped that prospective authors will welcome the
opportunity to publish a structured and systematic presentation of some of the
newer emerging control and signal processing technologies.

The essentials for any advanced course on control include a thorough
understanding of state-space systems, both continuous- and discrete-time, the
concepts of stochastic systems and insights into their optimal control systems. This
textbook on Discrete-time Stochastic Systems by Torsten Séderstrém provides an
invaluable introduction to these topics. It is a revised edition of an earlier Prentice
Hall textbook which has benefited from a decade of classroom experience with
Professor Soderstrom’s course at Uppsala University, Sweden.

Apart from being used to support a full course, the text also has some
interesting and useful features for the individual reader. The chapters are
exceptionally well structured and can be used in a reference book fashion to
instruct or review different technical topics, for example, spectral factorization.
Unlike many linear stochastic control textbooks, Professor Soderstrom has given
both time-domain and polynomial methods, proofs and techniques for topics like
linear filtering and stochastic control systems. There are strong and fascinating
links between these two approaches and it is invaluable to have them presented
together in a single course textbook.

Every course lecturer likes to point their students to some topics which are a
little more challenging and which might lead on to an interest deepening into



viii Series Editors’ Foreword

research. Professor Séderstrom has included a chapter on nonlinear filtering which
demonstrates how linear methods can be extended to deal with the more difficult
nonlinear system problems. Each chapter is also accompanied by a bibliographical
list of books and references to further reading for the interested reader.

The Advanced Textbook in Control and Signal Processing series seeks to create
a set of books that are essential to a fundamental knowledge of the control and
signal processing area. Professor Sdderstrdm’s text is a welcome complement to
other books in the series like Kamen and Su’s Introduction to Optimal Control
(ISBN 1-85233-133-X) and Williamson’s Discrete Time Signal Processing (ISBN
1-85233-161-5) and we hope you will add Discrete-time Stochastic Systems to your

library.

M.J. Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, UK.

April, 2002



Preface

This book has been written for graduate courses in stochastic dynamic sys-
tems. It has emerged from various lecture notes (in Swedish and in English)
that I have compiled and used in different courses at Uppsala University since
1978.

The current text is a second edition of a book originally published by
Prentice Hall International in 1994. All chapters have been revised. A number
of typographical and other errors have been corrected. Various new material
and results, including further problems, have been added.

The reader is assumed to be somewhat familiar with dynamic systems
and stochastic processes. In particular, it is assumed that the reader has a
working knowledge of the following areas (or is prepared to re-examine this
background elsewhere, should it be necessary):

e Fundamentals of linear discrete-time systems (such as state space mod-
els and their relationships with transfer function operators and weighting
functions).

o Fundamentals of probability theory (including Gaussian distributed ran-
dom vectors and conditional probabilities).

e Fundamentals of linear algebra and matrix calculations.

o Fundamentals of stochastic processes (such as the concepts of covariance
function and spectral density, particularly in discrete time).

In compiling the manuscript, I have taken inspiration from various sources,
including other books. Some parts reflect my own findings and derivations.
The bibliographical notes at the end of each chapter give hints for further
reading. These notes have intentionally been kept brief and there is no am-
bition to supply comprehensive lists of references. The cited references do
contain, in many cases, extensive publication lists. Many books deal with
the fundamentals of linear stochastic systems, using analysis of state space
models leading to the celebrated Kalman filter. Treatments using polyno-
mial methods, as presented here, seem much less frequent in the literature.
The same comment applies to extensions to nonlinear cases and higher-order
statistics.

Most of the chapters contain problems to be treated as exercises by the
reader. Many of these are of pen-and-pencil type, while others require nu-
merical computation using computer programs. Some problems are straight-
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forward illustrations of the results in the text. Several problems, however, are
designed to present extensions and to give further insight. To achieve knowl-
edge and understanding of the estimation and control of stochastic systems,
it is of great importance that the user gains experience by his or her own
work. I hope that the problem sections will stimulate the reader to gain such
experience. When using the text for graduate courses I have let the students
work with some of the problems as an integral part of the course examination.

The structure of the book is as follows.

Chapter 2 begins by giving a short review of probability theory. Some
useful properties of conditional probabilities and densities, and of Gaussian
variables are stated. One section is devoted to complex-valued Gaussian vari-
ables.

Various model descriptions of stochastic dynamic systems are illustrated
in Chapter 3. Some basic definitions are reviewed briefly. The important
concepts of a Markov process and a state vector in a stochastic setting are
discussed. Properties of covariance functions, spectra, and higher-order mo-
ments are also presented.

Chapter 4 covers the analysis of linear stochastic systems, with an em-
phasis on second-order properties such as the propagation of the covariance
function and the spectral density in a system. Spectral factorization, which is
a very fundamental topic, is also treated. It is concerned with how to proceed
from a specified spectrum to a filter description of a signal, so constructed
that optimal prediction and control can be derived easily from that filter
model.

The topic of Chapter 5 is optimal estimation, where “optimal” refers to
mean square optimality (i.e. the estimation error variance is minimized).
Under certain conditions more general performance measures are also min-
imized. The general theory is given, showing that the optimal estimate can
often be described by a conditional expectation.

The celebrated Kalman filter is derived in Chapter 6, using the results
of the previous chapter. Optimal prediction and smoothing algorithms (as-
suming that future data are available) are presented for a general linear state
space model.

Optimal prediction for processes given in filter or polynomial form is pre-
sented in Chapter 7. The basic relations for Wiener filtering are also derived.
A general (single input, single output) estimation problem is solved by ap-
plying the Wiener filter technique and using a polynomial formalism. Where
a time-invariant input—output perspective is sufficient, this gives a conve-
nient and interesting alternative to the state space methodology based on
the Kalman filter. The solution is naturally the same in the time-invariant
case using either approach.

Chapter 8 is devoted to an example in which a detailed treatment using
both the state space and the polynomial approaches is examined. The optimal
filters, error variances, frequency characteristics, and so on, are examined,
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and it is shown how they are influenced by the measurement noise, etc. The
calculations illustrate the close connections between the polynomial and the
state space approaches.

Many systems are inherently nonlinear. In Chapter 9, some nonlinear
filters and nonlinear effects such as quantization are dealt with. The greater
part of the chapter deals with the extended Kalman filter and some variants
thereof.

The topic of Chapter 10 is the control of stochastic systems. It is first
shown that the way in which uncertainties are introduced can make a distinct
difference to the way in which the system should be optimally controlled.
Next, the general optimal control problem is handled by using the principle of
dynamic programming. As this approach, while theoretically very interesting,
requires extreme amounts of computation, some suboptimal schemes are also
discussed.

Finally, optimal control for linear systems that are perturbed by process
and measurement noise is the topic of Chapter 11. This problem, known
as linear quadratic Gaussian control, has an elegant solution based on the
so-called separation theorem, and this is also described. Also, the use of
polynomial formalism to derive some simple optimal controllers and some
comparisons with state space formalism are included.

It is worth stressing here that the Glossary (pp. xili-xv) contains items
that appear frequently in the book.

Several people have contributed directly or indirectly to these lecture
notes. As mentioned above, | have been teaching stochastic systems regu-
larly in Uppsala and elsewhere for more than a decade. The feedback I have
received from the many students over the years has been very valuable in
compiling the manuscript. For the second edition I thank all those who have
pointed out unclear points and errors in the first version. Special thanks go to
Fredrik Sandquist, who detected a tricky mistake, to Dr Erik G. Larsson who
pointed out a flaw in a proof, and to Professor Torbjéorn Wigren who gave
many suggestions for improving the chapter on nonlinear estimation and also
provided some further exercises. Dr Egil Sviestins and Dr Niclas Bergman
have contributed with valuable comments on nonlinear estimation.

Several students who recently used the text in a graduate course have
pointed out various typos or unclear points. I am grateful to Emad Abd-
ElRady, Richard Abrahamsson, Bharath Bhikkaji, Hong Cui, Mats Ekman,
Kjartan Halvorsen, Bengt Johansson, Erik K. Larsson, Kaushik Mahata,
Hans Norlander and Erik Ohlander for numerous valuable comments. Need-
less to say, the responsibility for any remaining errors rests upon me.

Last, but not least, I also acknowledge the nice and smooth cooperation
with Springer-Verlag, and the persons who in some way or another have
been involved in the production of this book: Professor Michael Grimble,
Professor Michael Johnson, Ms. Catherine Drury, Mr Frank Holzwarth, Mr
Oliver Jackson and Mr Peter Lewis.
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To all the above people I express my sincere thanks.

In control, feedback is an essential concept. This is also true for writing
books. I welcome comments by the readers, and can be reached by the email
address ts@syscon.uu.se.

Torsten Saderstrém

Department of Systems and Control
Uppsala University

P O Box 337, SE 751 05 Uppsala
Sweden

Spring 2002
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Notation

QBT gty S
=
= 7

complex plane

complex Gaussian distribution

expectation operator

white noise (a sequence of independent random variables)

transfer function operator

transfer function operator, noise shaping filter

sampling interval

weighting function coefficient, H(q) = Y pe hxg™*

identity matrix

{(n|n) identity matrix

imaginary unit

optimal predictor gain (in Kalman filter)

optimal filter gain (in Kalman filter)

optimal predictor gain (in Kalman filter)

optimal feedback gain

Laplace transform

matrix is m by n

normal (Gaussian) distribution of mean value m and
covariance matrix P

model order

probability

transition matrix for a Markov chain

covariance matrix of state or state prediction error

differentiation operator

conditional probability of z given y

shift operator, qz(t) = z(t + 1)

backward shift operator, ¢~ !z(t) = z(t — 1)

real axis

covariance function

covariance function

cross-covariance function between y(t) and u(t)

solution to Riccati equation for optimal control

transpose of the matrix A
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t time variable (integer-valued for discrete-time models)

tr trace (of a matrix)

u(t) input signal (possibly vector-valued)

Vv loss function, performance index

v(t) white noise (a sequence of independent random variables)

z(t) state vector

\ & all available output measurements at time ¢,
YVi={y(®),y(t-1)...}

y(t) output signal (possibly vector-valued)

gLt —1) optimal one-step predictor of y(t)

g(t) prediction error, innovation

Z z transform

v(z;m, P) pdf of normal (Gaussian) distribution of mean value m

and covariance matrix P

A difference

Ot.s Kronecker delta (=1 if s = t, else = 0)

d(m,n) extended Kronecker delta (=1 if m =n =0, else = 0)

o(1) Dirac function

e(t) prediction error

A covariance matrix of innovations

A2 variance of white noise

p control weighting

¢ Euler matrix

da(2) closed loop characteristic polynomial

do1(2) open loop characteristic polynomial

&(2) spectrum

d(w) spectral density

¢y (w) spectral density of the signal u(t)

Pyu(w) cross-spectral density between the signals y(¢) and u(t)

qg positive real part of spectrum

p(w) characteristic function

T time lag (in covariance function)

w angular frequency

Abbreviations

AR autoregressive

AR(n) AR of order n

ARE algebraic Riccati equation

ARMA autoregressive moving average

ARMA(n,m) ARMA where AR and MA parts have orders n and m
respectively

ARMAX autoregressive moving average with exogenous input

cov covariance matrix

deg

degree
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FIR finite impulse response

GMV generalized minimum variance
GPC generalized predictive control
iid independent and identically distributed
IR infinite impulse response
IMM interacting multi models
LLMS linear least mean square

LQG linear quadratic Gaussian
LTR loop transfer recovery

MA moving average

MA(n) MA of order n

ML maximum likelihood

pdf probability density function
SISO single input, single output

tr trace (of a matrix)

Notational Conventions

H™'(q) [H(q)]

0 [z()]"

AfT [Afl}T

A>B the difference matrix A — B nonnegative definite
A>B the difference matrix A — B positive definite
A

= defined as

~ distributed as

[+ causal part of a transfer function

w complex conjugate of w

wT transpose of w

w* conjugate transpose of w, w* = w!

w* (w™1)* = (w*)7!

Conventions for Polynomials

Alz)=2"4+ a1 2" '+ ... +ay

A*(2) = [AQR))* = 2™ +arz*" D 4 ar
Az ) =2 +ajz ™V 4 tal
Az YV =z""+az7" V4. ta,

If A(2) has real-valued coeflicients
A*(z77) = Az
On the unit circle

=27l 2=z, AR)=A(ETT), A*(2) =AY
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1. Introduction

1.1 What is a Stochastic System?

A “stochastic system” is understood here as a dynamic system that has some
kind of uncertainty. The type of uncertainty will be specified in a precise
mathematical sense when dealing with methods of analysis and design. At
this point, it is sufficient to say that the uncertainty will include disturbances
acting on the system, sensor errors and other measurement errors, as well as
partly unknown dynamics of the system. The uncertainties will be modelled
in a probabilistic way using random variables and stochastic processes as
important tools.

Theories of stochastic systems are very useful in many areas of systems
science and information technology, such as controller design, filtering tech-
niques, signal processing and communications. They give systematic tech-
niques on how to model and handle random phenomena in dynamic systems.

Some typical illustrations of the usefulness of stochastic systems are given
later in this chapter. They show that the concepts of stochastic dynamic
systems can be useful for forecasting (Example 1.1), control under uncertainty
(Example 1.2) and the design of filters (Example 1.3).

This book is aimed as an introduction to the properties of stochastic
dynamic systems in discrete time. There are several reasons why the emphasis
is on discrete-time systems only. One is that, today, processing equipment
for filtering and control is very often based on digital hardware, so data are
available only in discrete time. Another reason is that discrete-time stochastic
processes are much easier to handle than their continuous-time counterparts,
which have certain mathematical subtleties that are far from trivial to handle
in a stringent way. Nevertheless, continuous-time processes will occasionally
be discussed, especially as far as sampling is concerned.

Most of the material centres around the treatment of linear systems us-
ing variance criteria as measurements of performance. This is no doubt very
useful in many areas of application. The combination of linear dynamics and
quadratic performance criteria also leads to neat mathematical analysis. One
should, however, remember that aspects other than low variance may some-
times be of importance. There can also be strong nonlinear effects to consider.
Such aspects are only discussed briefly in the book, and the mathematics then

T. Soderstrom, Discrete-time Stochastic System
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Fig. 1.1. Electric power consumption for a period of 120 h

no longer show the neat character of the linear quadratic case. Both input—
output models and state space formalisms will be used extensively in the
book. In the linear case, there are always close links between these two ways
of treating dynamics, and it is fruitful to see how any concept appears in
both types of model.

For illustration of the theories of stochastic systems that can be used, a
few examples are in order.

Ezample 1.1 The consumption of electrical energy in an area varies consid-
erably over time. A typical pattern is shown in Figure 1.1.

The energy consumption shows a regular variation through the day and
decays to low values at night. There is also a random effect that adds to
the regular effect. This random effect has several causes: effect of weather,
special needs in industry, popular TV programs, etc. In order to generate the
amount of power that is needed for every time instant, it is important to be
able to forecast the demand a few hours ahead. The regular component of
the consumption may be known, but there is a need to describe (i.e. model)
the random contribution, and use that description to find good forecasts or
predictions of its future value using currently available measurements. O

Ezample 1.2 In the processing industry, there are many examples of pro-
duction of paper, pulp, concrete, chemicals, etc., where variations in raw
material, temperature and several other effects produce random variations
in the final product. For several reasons, the producer may want to reduce
such variations. One reason could be the quality requirements of the cus-
tomers. Another could be the need for more efficient saving of energy and
raw material. A third could be that smaller variations allow a more econom-
ical setpoint. This is illustrated in Figure 1.2, which shows how a reduced
variation can allow the setpoint to be chosen closer to a critical level.
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Fig. 1.3. Block diagram for a simple radio communication

To achieve efficient control of the process, it is often necessary to have
a stochastic model of how the output is influenced both by the inputs (the
control variables) and by disturbances. Such a model can then be the basis
for the design of regulators, which seek to minimize the influence of the dis-
turbances. ]

Ezample 1.3 As yet another illustration, consider mobile radio communica-
tion, which in a very simplified form can be described as follows. The message
to be transmitted is digitized. In this example it is represented as a binary
signal, u(t) = £1; see Figure 1.3.

The channel refers to the “system” or “filter” that describes how the
signal is distorted before it arrives at the receiver. A typical reason for such
distortions is that the signal propagates along several paths to the receiver.
Signals that arrive after reflection travel a longer distance than direct signals
and introduce a delay. There is often also noise, for example sensor noise in the
receiver, e(t), that adds to the signal, (t), so that the actual measurement is
y(t). A simple approach to reconstructing the transmitted signal is to take the
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Fig. 1.4. Examples of signals for a digital radio communication

sign of y(t) to form a binary signal z(t). It should resemble the transmitted
signal z(t) for a good communication system. The procedure for determining
z(t) from the measurements y(t) is called equalizing. The transmission causes
a distortion of the transmitted signal, which is called intersymbol interference.
A good equalizer will include a dynamic filter operating on y(¢) and not only
the sign operator. To design such a filter, it is important to have a good
description (i.e. a model) of the channel, and the statistical properties of
the transmitted signal x(t) and the disturbance e(t). The “best” equalizer
is a compromise between different objectives. Should there be no noise and
the channel model be invertible, it is, of course, optimal to filter y(t) by
the inverse of the channel model. However, the inverse is often not stable,
which makes the design more complicated. Another difficulty is how to take
appropriate consideration of the noise. In the extreme case, when only the
effect of the noise is considered, a filter giving zero as output would be ideal.
In the general case, the filter must be a compromise between damping the
noise and trying to “invert” the channel by a stable filter.

Figure 1.4 illustrates, by simulation for a simple case, what the signal
u(t), z(t), y(t) and z(t) may look like.
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This example can also illustrate the concept of smoothing. In order to
reconstruct the transmitted signal z(t) as efficiently as possible, it seems per-
tinent to allow the output z(¢) to depend not only on y(s), s < t, but also
on future data, y(s), s <t + 7. Such a principle would introduce a delay in
the received message, so that ideally z(¢) = u(t — 7). However, such a (small)
delay can often be accepted, especially if it improves the quality of the out-
come. O

In various communication systems, such as radar, sonar and radio com-
munications, it is convenient to describe the signals as being complex-valued.
For example, in radar, the amplitude of the echo (response) is a measure of
the effective size of the target, and the phase (due to Doppler shift in the
carrier frequency) is a measure of the target’s radial velocity towards the
radar. In many parts of the book, complex-valued signals and processes are
treated in order to make the treatment as general as possible. In other parts,
though, the more traditional approach of considering only real-valued signals
is employed.

The need for complex-valued signal models can be heuristically motivated
in various ways.

o The signals are often of the narrow-band type, meaning that they have their
energy concentrated in a small frequency region. The signals can therefore
be (approximately) characterized as sinewaves. Interesting information is
contained in the amplitude and the phase. To model amplitudes, phases
and how they are affected by linear filtering, it is convenient to introduce
complex-valued modelling of the signal.

o A radio communication signal contains a low-frequency message that is
modulated using a carrier signal of high frequency. The transmitted signal
then has a frequency content that is varied slightly around the carrier
frequency. Distortion affects this frequency content. After demodulation,
when retrieving the low-frequency message, it turns out that the frequency
content is not symmetric. This can be viewed as a sign that a complex-
valued description of the signal is needed.

Not only may the signal be complex-valued, but the dynamic system itself
may also be complex-valued. Section 3.A gives a brief account of complex-
valued models of narrow-band signals and the properties of linear dynamic
complex-valued systems.
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2. Some Probability Theory

2.1 Introduction

Some fundamentals of probability theory are reviewed in this chapter. These
concepts will be instrumental in describing random phenomena and prop-
erties of stochastic dynamic systems. The presentation will be intentionally
brief, assuming that the reader already has some familiarity with the subject,
and is intended mainly as a refresher chapter. The emphasis will be on mul-
tivariable random variables, Gaussian distributions, conditional distributions
and complex-valued random variables.

2.2 Random Variables and Distributions

2.2.1 Basic Concepts

A random variable £ is a function from an “event space” §2 to R. Its “out-
comes” (or realizations, or observed values) will be denoted by x. There is
a probability measure associated with & so that subsets of {2 are assigned
a probability P(2). There is a distribution function F¢(z) and a probability
density function (pdf) pe(x) defined as

Fe(z) = P(§ <), (2.1)
pe(z) = d—%(;—) : (2.2)

The distribution function has the following properties:

F(z) is increasing.
lim, o F(z) = 1.
lim,—, o F(z) = 0.

The pdf has the properties

pe(x) > 0.
ffooo pe(z)dz = 1.
P(a<§<b) = [ pe(a) da.

T. Soderstrom, Discrete-time Stochastic System
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Fig. 2.1. Pdfs (dashed lines) and distribution functions (solid lines) for Gaussian
and uniform distributions

Ezample 2.1 A Gaussian, or normal, distribution is characterized by

1 _(z=m)?
ps(w)ZMUe > (>0, z€R),

whereas a uniform distribution is given by

1
[ a<z<b (b>a)
pg(w)—{o elsewhere.

These pdfs and associated distribution functions are illustrated in Figure 2.1.
a

Next consider random vectors. The previous development must be ex-
tended to multivariate £ and xz. Consider first the two-dimensional case, as
generalization to an arbitrary dimension is straightforward.

Let the random variables £ and n be characterized by a joint distribution
function

Fﬁyfl(way) ZP(fﬁﬂ?ﬂ) Sy) (23)
and the associated (joint) pdf
BQFE n(ﬁ,y)

= g 24

p&,n(wa y) axay ( )

These functions have the following properties:

Fe (z,y) is increasing in z and in y.

Fe p(z,y) = 1lasz = oo and y — oo.
F¢p(z,y) = 0as 2 — —oo and y — —o0.
P((&m) € A) = [ [, pen(z,y) dzdy.
Fep(z,y) = [Y 2 pen(asy') da’ dy'.
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The relations to the marginal pdf p¢(z) and the distribution function
F¢(z) are as follows:

o Fe(z) = limyo0 Fe (2, ).
o pe(z) = [2o pen(z,y)dy.

Ezxample 2.2 Consider the joint pdf
ps,n(ﬂ?,y)=g(x+y)2, 0<z<1, 0<y<1,
for which the distribution function can be derived as follows:
Fep(z,y) = /Oz /Oy g(x’ +y")?da' dy’

?7—y(2x2+3xy+2y2), 0<z<1, 0<y<1.

The marginal pdf and the distribution functions of £ and 7 are equal and
are given by

Fe(z) = Fep(z,1) = -”_?(%2 +30+2),
2
pe(z) = 7(3z2 +3z+1).
These functions are illustrated in Figure 2.2. O

The expected value of a random variable, or its mean value, is

Ef= / zpe(z) dz . (2.5)
More generally, the expected value of a function of &, say g(£), is
Eg(e)= [ goipelo)ds. (26)

When g(€) is a power of £ (such as g(£) = £,&2, etc.) the expected value is
called a moment of £.
Let € be a random vector. Then its mean value is often denoted as

m:Efz/_oo zpe(z)de . (2.7)

The covariance matrix of £ is defined as

cov(§) = E (£ -m) (€ - m)”
=E&r —mmT . (2.8)

The following result will be used repeatedly in the book. It will be useful
when evaluating various performance criteria.
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Fig. 2.2. Joint and marginal pdfs and distribution functions for Example 2.2. Joint

pdfs and joint distributions given as mesh plots and with contour levels

Lemma 2.1 Let z be a stochastic vector with mean m and covariance matriz

P, and S a quadratic matriz. Then

EzTSz =mTSm+tr (SP) .

(2.9)
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Proof Using straightforward calculations and properties of the trace opera-
tor:

Ez7Sz = E tr(SzzT) = tr (SE [(z — m)(z — m)T + mmT))
= tr (S[P + mmT))
= tr ((m?'Sm + SP))
=mTSm +tr (SP) . |

In subsequent chapters the same notation for random variables (such as

£) and their outcomes (such as z) will often be used for simplicity.

2.2.2 Gaussian Distributions

Let m be an n-vector and P a symmetric positive definite (P > 0) n|n matrix.
The random vector is said to be normal or Gaussian distributed as

§~N(m,P),
if its pdf is

¥(z;m, P)

mexp (—%(.’I} — m)TP_l(m — m)) .

pe(x) (2.10)

>l

Note how this generalizes from the scalar case; see Example 2.1. The Gaussian
pdf will be used repeatedly in the book. The specific notation ~(z;m, P) is
reserved for it.

There are several reasons why it is of particular interest to study the
Gaussian distribution:

e Owing to the central limit theorem, the sum of many independent and
equally distributed random variables can be well approximated by a Gaus-
sian distribution. If disturbances are assumed to be due to the effects of
many independent physical causes, it should therefore be relevant to model
the total effect as Gaussian distributed random variables.

e Gaussian random variables have attractive mathematical properties; see
below. In particular, linear transformations of Gaussian variables are still
Gaussian distributed.

e For Gaussian distributed random variables, optimal estimates have a sim-
ple form. In contrast, in most other cases, it is very complicated to calculate
optimal estimates explicitly.

The Gaussian distribution has the following properties:
¢ If ¢ ~N(m,P) then E€ =m.
o If ¢ ~ N(m, P) then cov(£) = P.
o If £ ~ N(m,P) is a random n-vector, A an r|n matrix of rank r < n

and b an r vector, then n = Af + b is also Gaussian distributed, 5 ~
N(Am + b, APAT).
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The third property mentioned above is very important. Gaussian distri-
butions are preserved under linear transformations. As an implication, linear
filtering of a Gaussian distributed input signal will produce a Gaussian dis-
tributed output.

One important implication of the first two properties is that the distribu-
tion is fully determined by the mean vector and the covariance matrix.

2.2.3 Correlation and Dependence

Let £ and 5 be two random vectors with mean values m¢ and m,, respectively.
The vectors are said to be uncorrelated if

E (£ -mg)(n—-my)T =0. (2.11)
The vectors are said to be independent if

Pen(@,y) = pe(z)pn(y) - (2.12)
The following results hold:

e ¢, 7 independent = £, 7 uncorrelated.
o £, 7 uncorrelated and Gaussian = £, 7 independent.

2.3 Conditional Distributions

Let £ and 1 be two correlated random variables (possibly vector-valued). As-
sume that 7 is observed or measured to have an outcome y. This information
is to be used to infer something about £. Given 1 = y, the pdf of £ should
take the form

p&l":y(x) = cpﬁﬂl(z7y) )

where ¢ is a normalizing constant. Recall that p¢ ,(z,y) dz dy is the proba-
bility P(z < § <z + dz,y <9 <y+ dy). As

o0 o0
1= / Pejn=y(z) dz = c/ pe.q(x,y) dz = cpy(y)
oo o

it follows that ¢ = 1/py(y), and the conditional pdf is

p£|n=y(w) _ P&;((Zy)y) ) (2.13)

In a more strict sense, (2.13) is often taken as the definition of the conditional
pdf. One could possibly start with Bayes’ rule

P(AB)

P(A|B) = P(B)
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Fig. 2.3. Contour levels of the joint pdf, p¢ 4(x,y), the conditional pdf pej,=,(z)
and conditional distribution function Fg,—,(z) for y = 0,1 and 3. (Solid lines)
Pe.n(z,y), (dashed lines) pejn=y (), (dotted lines) Fejy=,(x)

for events A and B. There is, though, a difficulty with such an approach for
“deriving” (2.13), as P(n = y) = 0 for a continuous random variable.

Using the relation between the joint and the marginal distributions, one
finds

pe(z) = /pg,n(m,y) dy = /pgm:y(af,y)pn(y) dy , (2.14)

which will be useful later.

Ezample 2.3 Let £ and 5 be jointly Gaussian distributed:

()=~ (()- ("))

The joint pdf p¢ ,(z,y) and the conditional pdf pgj,—,(z) are illustrated in
Figure 2.3. |

The following lemma gives an important result concerning expectation
and conditional expectation.
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Lemma 2.2

E¢{ =E,{E[¢n]} (2.15)

holds, where E, denotes expectation with respect to 0.

Proof The left-hand side of (2.15) can be written as

E€=//wpg,n(m,y)dwdy,

while the inner part of the right-hand side of (2.15) can be rearranged first
as

Pen(T,Y)
E[¢n :/wp - (w)dw:/z——————dw,
[ l ] € |n=y Pn(y)
from which it follows that
p§,n(way)
E. {E[{|n 2/[/1'—(1%']]9 y)dy,
{E [n]} Po(¥) n(Y)
which coincides with the left-hand side. [ |

2.4 The Conditional Mean for Gaussian Variables

This section treats the case of Gaussian distributed random variables. It turns
out that, for this case, the conditional pdf is Gaussian as well. The conditional
mean is identical to the so-called linear least mean squares (LLMS) estimate,
which will be derived in Section 5.3. The detailed result is given here as a
lemma.

Lemma 2.3 Let z and y be two real-valued, jointly Gaussian random vari-
ables

(Z> NN((&)(}Z %yy)) : (2.16)

Assume that the covariance matriz of the distribution is positive definite.
Then the conditional pdf p(z|y) is Gaussian as well:

p(mly) ~ N(m7P) ) (217)

with

m =& = E[z|y] = me + Rey Ry (y —my) ,
(2.18)
P =cov[zly] = R, — RoyR, 'Ry, .
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Proof Recall that the pdf of a Gaussian distribution N(m, P) is given by

1 1 B
§o) = gy o (3t - P ) |

where n = dimz. Now set n, = dimz, n, = dimy and R = fe Hay )
Ry: R,
Using Bayes’ rule:
( | )_ p(w7y) _ (27[)ny/2(det Ry)1/2
PRV ) T @me P2 (des RV
L 7 .7 T Typ—1 (T = Mg
X exp (,5(1 m, Yy —my,)R y—m,
1 _

b ) R - m)) (2.19)

Consider first the ratio of the determinants:

_ Ry Ry
det R = det <Ryz R, >

— det 1, -RWR;l R, Ryy I, 0
0 L, Ry, R, —R;lRW I,
PO
= det <0 Ry> = det Pdet R,
holds. Hence
(det R,)'/? 1
= . 2

(det R)1/2 (det P)1/2 (220)

Proceed to examine the quadratic form in the exponent. It is first established
that

Rl ( P! —P—lllzzyR%j1 )
~R'Ry.P~' R;' + R;'Ry, PT'Ryy R )7

This can be verified by direct multiplication (alternatively, use the hint of
Exercise 3.4):

Ry Ray p! —P Ry B!
Rys Ry )\ ~R;'Ry ;P R;' + R;'R,, P~ 'R, R’

— PP _RmP_lengjl + RzyRy_l + RzyRy_lRsz_leyRy_l
=\ 0 RyR,"

(I, ReyR;' — PPT'Ryy RV
0 I, T et

Hence the quadratic form can be written as, skipping a factor —%:
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- r— Mg —
@ =t TR (5 ) () TR~ my)

= (2~ ma) P~ (2~ my) — (@ - my) P Ry By (y — my)
—(y - my)TRylesz_l(Z —my)
+(y — my)T{jolRsz_leyR;l}(y —my)
=(x-2)TP Yz -12). (2.21)
Inserting (2.20) and (2.21) into (2.19), it is found that
p(aly) ~ N(m, P)
which is the stated result. [ |
Note that, for Gaussian variables, the conditional mean # becomes iden-
tical to the so-called LLMS estimate Zrims. See Section 5.3.
In fact little more can be said about the optimal estimate & of a vector z
when a correlated vector y is observed. It is easy to show (as in Section 5.3)

that z — & and y are uncorrelated. It will also be shown that they are jointly
Gaussian distributed and therefore independent. In fact:

g2\ _ (I -ReyRJM\ (2 4 —mg + Rey R, my,
Y 0 I Y 0 )

This shows that « — & and y are jointly Gaussian. Further, as can also be
predicted from the previous calculation:

= (%)= (n),

B (70 ) (@-a w-m)")

Yy—my

_ (I -RoyR;"\ [ R. Ry, I 0\ (PO
“\o T Ry Ry J\-R;j'R,, 1) ~\0R,)

which demonstrates that the estimation error  — £ is uncorrelated and in-
dependent of the measurement y.

There is another useful result dealing with the case when y can be split
into two uncorrelated parts.

Lemma 2.4 Let y = Zl with y; and yo uncorrelated and let (';) be
2
jointly Gaussian distributed. Then
E [zy] = E [z[y1] + E [z|yz] - E [2] . (2.22)
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Proof Straightforward calculation, using Lemma 2.3

E [z]y] = m; + Rzngjl(y — my)

-1
=My + (Rzyl Rzyz) <R6/1 R(:J ) (yl B my1>

Y2 — My,
=g + Ray, R, (1 —my,) + Rey, R (Y2 — my,)
=E [z|y:] + E [z]y2] — m, . ]

2.5 Complex-Valued Gaussian Variables

Complex-valued Gaussian variables are treated in this section. The scalar
case, which is relatively straightforward, is analyzed first. The multivariable
case, which contains some technicalities, is treated next. Finally, the distri-
butions of the norms of complex Gaussian variables are discussed.

2.5.1 The Scalar Case

Let z and y be zero mean Gaussian distributed random variables and set
w = z + iy. Then define the variance of w as

Eww = E |w|* = E (z + iy)(z — iy) = E2® + E¢2. (2.23)

Assume for simplicity that z and y are independent and have equal variance,
say E 2?2 = Ey? = ¢2/2. Then E |w|?> = 02 and

w ~ CN(0, 0?) (2.24)

is said to be complex Gaussian distributed with zero mean and variance o2.
Note that in such a case

Ew’=E(z+iy) =E2’ -Ey* +2iEzy =0. (2.25)

The pdf for w can be derived from

wo=s((3))

Note that

()~ ()5 ()

and therefore
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Pu(w) = ;et(azI/Q) exp( He 0eD” 1<Z>)

- sfen (e (3) )

1
= —e —@ /et (2.26)

Next examine linear transformations of complex Gaussian variables. Let
¢ =¢r +ip1 € C,w =z +iy ~ CN(0,0?%), and set m = pw. Clearly:

Em=0,

var(m) = Em = E puwg = o?|p|? . (2.27)

Moreover, the real and imaginary parts of m can be examined by rewriting
it as
m =mg +im1 = (pr +ier)(z +1iy) ,
giving
mRr = YRT —¥1Y,
= prYy t+ 17,

This g",fis) that( - ‘“‘”)( ) (2.28)
( 1) = (o)
=
(%7

or

As

() =~ () =5

obviously holds, one can conclude that

m ~ CN(0,02|¢|?) . (2.29)
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2.5.2 The Multivariable Case

Before coping with the multivariable case, some technical results are needed,
such as a convention for splitting up a complex-valued matrix, or vector, into
real and imaginary parts.

In Section 2.5.1 it was shown how the scalar linear relationship

m = pw (2.30)
could be split up into real and imaginary parts as
(m)-(27)(2)
my $1 ¥R wy

This simple example gives some guidelines on how to link a complex-valued
representation to a real-valued one.

In this section, let f(w) denote the real-valued variable associated with
w. In the above example, f(w) and f(p) are given by

_ [ wr _ [ YR —¥I
s =) 0= (5.
Next, this idea is formalized.

Convention 2.1 Let
w=(wy ... w,)T

be a complex-valued vector. Then define

A
fw) = (wir wir war War.. Wnr Wnr)',

where w;r = Re(w;), wji = Im(w;). Similarly, if 4 is an (m|n) matrix,
introduce the matrix f(A) of dimension (2m|2n) as

[ S dln
f(A)=1 : ;
Gm1 --- Qmn

where the block a,,, is
Gy = (aWR —a,w1>
Quy1  QuuR
and where
auwr = Re(ay), ap1 =Im(au) . O
Some results showing how transformations of A and w can be described

equivalently by f(A) and f(w) will be needed later. A number of lemmas are
now presented with this in mind.
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Lemma 2.5 The transformation A — f(A) is unique and invertible in the
sense that

A=B &> f(A) = f(B) . (2.32)

Proof Obvious. [ ]

Lemma 2.6 Let A and B be two complez-valued matrices. Then
f(AB) = f(A) x f(B) . (2.33)
Proof Evaluate the uv-block of each side:
(FAB)w = FQ_ aubi) = FQ_(aukr + iaurn)(Brur + ibrur))
k

k

=Y f((aurbewr — auribru] + i[@uerbeot + auribror])
k

_ Z aukrbEvR — Qurtbrsr —0ukRORVT — Guribrur
p aurrbrv1 + auribivR  @ukRbEVR — QurTbrul

(F(A) X FB)uw = Y _(F(A)ur(f (Bt
k
a —a brur —bry
=3 (o) (e )

Hence both sides of (2.33) are equal. |

Lemma 2.7 Let A be invertible. Then
FAY = (@A), (2.34)

Proof Apparently f(I) = I. (More exactly, f(I,) = I2,.) Using Lemma 2.6
with B = A~!, one easily obtains

I=f(I)=f(4) x4,
which proves (2.34). [

Lemma 2.8

FA") = (F(A)T. (2.35)
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Proof By straightforward calculations,

(e = (e () = (Agn o),

T
v (Aur ~Avu) _ [ Aur Avu
(f(A))NV B (Au,ul AV/JR B _Auu.l AvuR -

|

Lemma 2.9 Let A be a quadratic matriz. Then
A unitary <= f(A) orthogonal . (2.36)
Proof A unitary <= A7 = A* < f(471) = f(4") < (f(A)! =
(f(A)T < f(A) orthogonal. n
Lemma 2.10 Let A be Hermitian with eigenvalues A1, ..., A,. The matriz

F(A) has eigenvalues A1, A1, A2, Ao, ..., An, Ay,

Proof As A is Hermitian, it can be diagonalized as A = U*DU, with U
unitary and D diagonal and real-valued elements. By Lemmas 2.6 and 2.8,

f(A) = fFUNf(D)f(U) = (f(U))T f(D)f(U). Apparently, f(D) is diagonal.

The matrix A has the same eigenvalues as
A1 0
p=| - |,
0 An
and f(A) has the same eigenvalues as

Al 0
A1

(D) = -
An
0 An

Lemma 2.11 Let A be Hermitian. Then
det[f(A)] = [det A]2 . (2.37)

Proof Following Lemma 2.10, det[f(A4)] = A2X2...02 = (MA2...0)% =
[det(A)]%. ]

Lemma 2.12 Let A be a Hermitian matriz and w a vector. Then

w* Aw = (f(w))T f(A) f(w) . (2.38)
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Proof As A is Hermitian, a;xr = arjr, ajr1 = —axj1. Hence
* —_— —
w*Aw = ijajkwk = Zwkakkwk
J.k k
+ ijajkwk + ijajkwk
i<k k<j
_ 2 2
=Y arkr(wig + wi)
k
+ ) {(wir — iwj)(ajer + iajr) (wer + iwgr)
i<k

+(ka — iwkl)(aij + iakjl)(ij + i’ll)jl)}
= Z apr (Wig + win)
k
+ > lajkr +iaje)
<k
x{(wjrwir + wjrwir) + i(wjr Wk — wirwir )}
+(ajkr — iajr) {(wirwer + wiwir) + (werwj — wawir)}]

= Z arkr (Wig + wiy)

k
+2 Z{aij(ijka + wjlwkl) - ajkl(ijwkI - wjlka)} .
i<k
Moreover:
(F)T F(A) fw) =Y (Fw)T (F(A)) 5 (f(w))x
ik
_ ) ) QjkR —QjkI WER
%(wm v <ajk1 @jkR ) (wkl >
= Z{aij(ijka + wjrwir)
ik
+ajk1(wjiwer — WjRWkI)} ,
which proves the lemma. ]

After all these lemmas, the scene is finally ready to cope with the mul-
tivariable complex Gaussian distribution. A very important special case will
be treated. It can be viewed as a linear transformation of independent scalar
CN(0,1) variables. Compare this with filtering white, real-valued noise to
obtain a general class of stationary stochastic processes.

Theorem 2.1 Let

w = (w ...wn)T,
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where wy, . .., wy, are independent and CN(0,1) and set
s = Aw, (2.39)

where A is a complez-valued nin matriz. Then

Ess* = AA* 2P, (2.40)
and
s ~ CN(0, P,) ,

which means that
1

* p—1
T(Tdet—PSeXp (—S Ps S) . (241)

ps(s) =

Proof

f(s) = f(A)f(w), f(w) ~ N(0,1/2)
clearly holds, and hence

F(s) ~ N(0, f(A)(F(A)"/2).

Therefore:
1

(Vo Ja A )/
xexp (=SNG /27 1)
1

= XD [ — s T Ty\1—1 )
= @@ o e TG )

ps(s) =

(2.42)
Note, using Lemma 2.11 and (2.40):

det[f(A)(f(A))T] = [det f(A)]* = [det(A)]*
= [det(A) det(A*)]* = [det P,]°.

From Lemmas 2.8 and 2.12, and (2.40), it further follows that

DTS ANTT () = (F)TFA)F(A) T f(s)
= (F(s)TIF(AAT)] " f(s)
= (FE) (P f(5)
= (f)TF(P ) f(s) = s"P s .
Inserting these expressions into (2.42) gives
1 -
ps(s) = 7 det Py "

which is (2.41). [ |



24 2. Some Probability Theory
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Fig. 2.4. The Rayleigh pdf

2.5.3 The Rayleigh Distribution

In the case where w = z+iy, where z and y are independent Gaussian random
variables with zero mean and equal variance, the magnitude |w| is said to have
a Rayleigh distribution. This distribution is described and studied next.

Lemma 2.13 Let ¢ and y be independent and N(0,0?) distributed. Set w =
V22 + y2. Then the probability density function of w is

T . p2/9s2
fulr) = —5 &7 /27 (243)
Proof First calculate the distribution function Fy,(r) = for fuw(t) dt as follows:
Fy(r) = Pw <) = Pa” +y* <1%)

:// 1 e—m2/202e~y2/202dxdy
m2+y2§r2 27{02

T ]. 2 2 2 2
— 9 —p* /20 —1_a T /2 .
/0 Py —3e dp=1-e

The pdf is then easily found as

d T _r2/242 | ]
fu(r) = aFw(r) = ;e /207

The pdf f,(r) is illustrated in Figure 2.4.

Remark The squared and normalized value, w? /a2, is x?(2) distributed. A
x%(n) distributed random variable is obtained as a sum of n independent
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squared Gaussian random variables of zero mean and unit variance. Its pdf
is given by

— 1 $n/2~1
22T (n)2)

where I'(-) is the I" function (for n an integer it holds that I'(n) = n!). In
particular, for x%(2) distributed random variables:

—z/2

pg(.’L‘) € ;

1 _
P&(fﬂ):ge e o

Some properties of the Rayleigh distribution are given next.

Lemma 2.14 Let w be a Rayleigh distributed random variable, with the pdf
given by (2.48). Then

L. fu(r) has its mazimum for r = 0.

2 Buw=,/%0~1.20.

3. var(w) = (2 - T)o? = 0.4307.
Proof Setting ad; fuw(r) = 0 easily gives

.2 2 2r 2 2
er/2a __7_2 267'/20 :07
g

from which it is concluded that the maximum of f,(r) occurs for r = o.
The mean value is derived by the following calculation:

> o0 p2 20 2
Ew:/ rfw(r)dr:/ — e /20" dr
0 o 0
- {“7‘ e_T2/202]w + /oo e T2 gy = —ﬁ[a .
0 0 2

Further:
oo .3 5
E w? :/ r_2 e~ /20" 4y
0 a
= [—r2 e_rg/%z] +/ 2 e /20" 4p = 207 ,
0 0
and hence
var(w) = Ew? - (Ew)? = (2—%[) o’ . .
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Exercises

Exercise 2.1 Consider a random variable £.

(a) Let € be uniformly distributed in the interval (—a, a). Derive its moments
E ¢k for k=1,2,3,4.

(b) Let £ be Gaussian distributed, £ ~ N(m,0?). Derive its moments E ¢*
for k = 1,2,3,4.

Exercise 2.2 Consider the joint pdf of Example 2.2:
6
Pen=z(@+y)?, 0<z<l, 0<y<l.
Derive the mean and the covariance matrix of the random vector (¢ 7).

Exercise 2.3 Let £ and 5 be jointly Gaussian

(5)-(()- (%))

(a) Under what conditions on p is the covariance matrix positive definite?
(b) Sketch the contour levels of the joint pdf. Show that if p & —1, then
(with high probability)

N4 - 28
(c) What is the conditional pdf pyj¢—.(y)? Compare this with the findings
of (b).

Exercise 2.4 Let v and e be two random vectors of zero mean that are
jointly Gaussian. Let e have a positive definite covariance matrix. Show that
there exists a unique matrix B, such that

v=Be+w

with e and w being independent.

Exercise 2.5 Consider two random variables £ and 7.

(a) Assume that ¢ and 5 are independent with pdfs p¢(x) and p,(y) respec-
tively. Set { = £ + 0. Derive the pdf p¢(z).

(b) Assume in particular that £ and n are both uniformly distributed over
the interval (a,b). Give p¢(z) in an explicit form.

Exercise 2.6 Let £, n and ¢ be random variables. Prove the relation

P5|<=z(l') = /pﬁln:y,czz(x)pmc:z(y) dy .
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Exercise 2.7 Consider a sinewave of the form
&(t) = Acos(wt + ) ,

where the amplitude A is Gaussian, A ~ N(m,o) and the phase ¢ is uni-
formly distributed over (0,2n). The random variables A and ¢ are indepen-
dent, w is a deterministic angular frequency and ¢ denotes time. Consider
also a phase-shifted variant of the signal

n(t) = Asin{wt + @) .

(a) Show that E£(t) = 0, En(t) = 0 and derive the covariance elements

E&(t), En’(t), E€(tn(1).
(b) Set m = 0. Introduce the random variable

(=¢&+1in.
Find the moments E ¢, E|¢|, E (3, E |¢|*.
(c) Set m = 0. Will { be complex Gaussian distributed?

Hint. Examine the ratio (E |¢|*)/(E |¢|)2.
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3. Models

3.1 Introduction

Some basic models and concepts are introduced in this chapter.

Stochastic processes are fundamental when describing random effects in
dynamic systems and analyzing filtering. A very brief review of the funda-
mentals of stochastic processes is given in Section 3.2. Section 3.3 is devoted
to a short discussion on Markov processes and how the important concept
of a state vector appears for stochastic systems. Stationary stochastic pro-
cesses are considered in Section 3.4, and some fundamental properties of the
covariance function and the spectral density are established.

In some situations, moments of order higher than two (the covariance
function) are useful for describing and analyzing stochastic processes. Section
3.5 gives a short introduction to bispectra, which constitute the simplest class
of higher-order statistics.

Two appendices (Sections 3.A and 3.B) contain supplementary material
on complex-valued models of signals and systems, and of Markov chains.

Note at this stage that noise models in terms of stochastic processes can
be used in various ways.

¢ One possibility is to let the noise models describe random disturbances
that are assumed to be present. Sensor noise and the effects of unmodelled
sources are typical interpretations of such descriptions.

e Another aspect is to use the noise model as a means for expressing model
uncertainties. If the model description relating input and output variables
is uncertain, then the uncertainties can be incorporated in a noise model. In
such a way one may, for example, design filters, predictors, or controllers,
which have some robustness against modelling errors. Some ideas along
this line will be presented in Section 7.5.

e A third possibility is to regard the noise model from a more pragmatic
point of view. It may be interpreted as tuning variables by a user when
constructing a filter. By changing the noise model parameters, the user
can change the frequency properties of, say, an associated optimal filter.
This idea will be illustrated in Section 6.7.

T. Soderstrom, Discrete-time Stochastic System

© Springer-Verlag London 2002
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o Another illustration is given in Section 11.5.3, where a particular noise
model is used as a means for achieving certain robustness properties of a
feedback system designed by stochastic control theory.

3.2 Stochastic Processes

A very brief account on the fundamentals of stochastic processes is given in
this section. The real-valued case is treated, and some extensions to complex-
valued processes are relatively straightforward; see Sections 2.5 and 3.4.

Definition 3.1 A stochastic process z(t) is a family of (possibly vector-
valued) random variables {x(t)}, where the time t belongs to an index set.
(In discrete time, the index set is mostly N, the natural numbers, or Z, the
integers.) O

In order to describe the properties of a stochastic process fully, its distri-
bution function

P(z(t1) < z1,2(t2) < @2,... ,2(tk) < 70) (3.1)

is needed for arbitrary k, z1,... ,Zg, t1,... ,tx. In many cases, it is too
cumbersome to use the whole distribution function and one resorts to using
moments, often only first-order (the mean value) and second-order moments
(the covariance function).

In the special case, where z(t) is a Gaussian process, the distribution func-
tion is (multivariable) Gaussian. It will remain Gaussian after linear transfor-
mations and it will be completely characterized by its first- and second-order
moments.

Next define the first- and second-order moments.

Definition 3.2 Let z(t) and y(t) be vector-valued stochastic processes, not
necessarily of the same dimension. The mean of z(t) is defined as

m(t) = me () 2E (t) . (3:2)

The covariance function of z(t) (autocovariance function) is

r(t,s) = ro(t,s) 2 E [2(t) — me(8)][2(s) — ma(s)]7, (3.3)
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(which is a square matriz). The cross-covariance function of z(t) and y(t) is

ray(t, 8) = E[2(t) — ma(8)][y(s) ~ my(s)]" . (3.4)

a

Stationary processes are mostly used in the book. There are several con-
cepts of stationarity.

Definition 3.3 The stochastic process x(t) is strictly stationary if its distri-
bution is invariant to time shifts, that is:

P(x(ti +7) <1, z(ty +7) < 7%)

does not depend on 7. It is weakly stationary if the mean and the covariance
functions are invariant to time shifts, that is:

(t+7)=m(t)
r(t+ ;n, s+71) =r(t,s) (all 7). (3.5)

O

A strict stationary process is also weakly stationary, but the converse is
not generally true. An important exception is Gaussian processes, for which
the two concepts are equivalent. In what follows, it will not always be specified
what type of stationarity is needed. In the case x(t) is weakly stationary,
the mean is apparently a constant (vector). Further, the covariance function
depends only on the difference between its time arguments. It is therefore
very common to denote the covariance function of stationary processes as

r(r) 2E [zt + 1) — m][z(t) — m]T . (3.6)

Some further concepts will be useful.

Definition 3.4 A sequence of independent and identically distributed (iid)
random variables is called white noise. Mostly, it is assumed that the mean
value is zero. a

Remark In many cases the random variables in a white noise sequence are
not only independent but also identically distributed. In such a case one
sometimes refer to iid random variables. 0

Next, an important class of random processes, obtained by linear filtering
of white noise, is introduced.



32 3. Models

Definition 3.5 Consider the stochastic process y(t), given as the solution to
the difference equation
y(t)+ar1y(t—1)+.. . +apy(t—n) = e(t)+cre(t—1)+.. .+cme(t—m) ,(3.7)

where e(t) is white noise of zero mean. Such a process is called an autore-
gressive moving average (ARMA) process. To indicate the number of terms in
(8.7), it is sometimes denoted as an ARMA(n,m) process. An ARMA(n,0)
process is called an autoregressive, AR or AR(n), process. An ARMA(0,m)
process is colled a moving average, MA or MA(m ), process. a

Introduce the polynomials
AlZ)=2"+a1z" 1 +... +a,,
Clz)=z"+cz™  +...+cm,

and the shift operator ¢, gz(t) = (t + 1). The ARMA model (3.7) can then
be written compactly as
Al@y(t —n) = Clg)e(t —m) . (3.9)

As the white noise can be “relabelled” without changing the statistical prop-
erties of y(¢), (3.7) is much more frequently written in the form

Al@Qy(®) = Clg)e'(t) - (3.10)

where €'(t) = e(t + n —m) is a “relabelled” white noise sequence.
Some illustrations of ARMA processes will be given in Example 3.2.
ARMA processes will also be used in many subsequent examples.

(3.8)

Remark 1 As an alternative, one can work primarily with the backward shift
operator g~!. An ARMA model would then be written as

Al@Ny(®) = Clae(t)
where the polynomials are

A =14ag +...+aqg",
ClgH)=1+aqgt+...+emg ™.

The advantage of using the g-formalism is that stability corresponds to the
“patural” condition |z] < 1. The advantage of the alternative ¢! formalism
is that causality considerations become easier to handle. The ¢ formalism is
used in this book. o

Remark 2 It is usually assumed that the ARMA model is stationary. This
means that the polynomial A(z) has all zeros strictly inside the unit circle. In
some situations, such as modelling a drifting disturbance, it is appropriate to
allow A(z) to have zeros on or even outside the unit circle. Then the process
will not be stationary and should only be considered for a finite period of
time. A drifting disturbance is obtained when A(z) has a zero at z = 1. The
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special simple case A(z) = z — 1, C(z) = z is known as a random walk. That
particular model:

y(8) —y(t—1) =e?)

can easily be iterated to obtain

y(t) =y(0)+ ) _els).

The name “random walk” refers to a walk along a straight line where the
increments e(t) for each time step are independent. O

Remark 3 One might add an input signal term to (3.8) in order to obtain
an ARMA with eXogenous input (ARMAX) model:

A(g)y(t) = Blg)u(t) + Clge(t) - (3.11)

The system must be causal, which means that y(¢) is not allowed to depend
on future values of the input u(t + 7), 7 > 0. Hence it is required that
deg A > deg B. Otherwise y(t) would depend on future input values. |

3.3 Markov Processes and the Concept of State

The concept of states is fundamental for deterministic dynamic systems. The
state vector, usually denoted by z(t), and its associated state equation, have
the property that they contain all information about the history of the system
that has any impact on its future behaviour. Phrased differently, to compute
the system response at times ¢; > ¢, it is sufficient to know z(¢) and external
input signals in the interval [t,#1].

This notation of state does not directly carry over to stochastic systems,
as such systems contain random elements or signals. A Markov process is
defined to begin with.

Definition 3.6 Let t; < ty < ... < tx < t. The process x(t) is said to be a
Markov process if the conditional pdf satisfies

plz(®)z(t1),...z(te)) = p(z(t)|z(tk)) - (3.12)

a

Hence, if several old values of the process are known, only the most recent
one has any influence on the future behaviour of the process.

If the process z(t) only takes a finite number of values it is called a Markov
chain. Markov chains are described and analyzed in Section 3.B.
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The statistical properties of a Markov process can be calculated once
the distribution for an initial time ¢y is known as well as the transition pdfs
p(z(t + 1)|z(t)). This is so as by Bayes’ rule, for example:

p(z(to +2),z(to + 1)) = p(z(to + 2)|z(to + 1))p(z(to + 1))

= p(a(to + 2)|z(to + 1)) / pz(to + 1)]x(to))p(z(to)) dz(to) .(3.13)
— o0

Next, consider an important and general class of discrete-time processes
that satisfy the Markov property. Let the sampling interval be one time unit.
The conditional pdf, p(z(t + 1)|z(t)), for how the process propagates from
one time step to the next one, is important for describing the updating of
z(t). In particular, the new state, z(t+ 1), will be modelled as the conditional
mean

g(e(t),) 2 E [a(t + 1)[z(2)]
= / z(t + Dp(z(t + 1)|z(t)) dz(t + 1) . (3.14)

—00

Thus consider processes of the form
z(t+1) = g(z(t),t) + v(z(t),t) , (3.15)
where v(t) is a random disturbance. Assume, further, that

o {v(z(t),t)} is white noise, that is v(z(¢1),t1) and v(z(t2),t2) are indepen-
dent for t1 75 12.
e g(z(t),t) does not depend on older values of z(t — 7).

Then the process is a Markov process. The vector z(¢) is called the state
vector, as, owing to (3.13) and (3.14), z(t) contains everything about the
past that has any impact on the future behaviour of the process. The future
behaviour will also be influenced by the process noise v(-). Note, though, that
future values of v(-) will be independent of z(¢). Under the above assumptions,
(3.15) is often called a stochastic difference equation. The conditional pdf
p(z(t +1)|z(t)) is sometimes called the hyperstate of the process. In order to
obtain a full description of the process, the hyperstate must be known. In
the special case of linear systems with additive Gaussian process noise, the
hyperstate turns out to be given by a Gaussian distribution. It can thus be
characterized fully by the mean and the covariance.

In order to obtain a more complete model, (3.15) should be complemented
by describing the outputs or measurements. These are often given in the form

y(t) = h(z(t),e(t)) , (3.16)
where e(t) is a random term called measurement noise. It is often assumed
that e(t) is white noise. (Then e(t;) and e(t2) are independent if t; # t3.)

In most cases, one further assumes that v(t;) and e(t2) are independent
for all ¢; and t,.
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Regarding systems equipped with a measurement equation, the notation
of state sometimes requires that
pla(t + 1)]x(t), y(t)) = plx(t + ]x(t)) . (3.17)

For this to hold for the model (3.15) and (3.16), one must generally require
v(t) and e(t) to be independent. Otherwise, loosely speaking, y(t) contains,
through e(t) and therefore through v(t), additional information about z(¢+1).

It is often possible to transform a model where v(t) and e(t) are depen-
dent into another one where the process noise and measurement noise are
independent. The trick is to augment the state vector. The idea is illustrated
by an example.

Ezample 3.1 Consider a process of the form
z(t +1) = g(x(t)) + g2(x(8))0(?)
y(t) = h(z(t)) +e(t) ,

where v(t) and e(t) are mutually correlated, zero mean white noise sequences
with covariance matrices

Ev(t)v(s) = Rids ,
Ee(t)e?(s) = Ryds s ,
Ev(t)el (s) = Ri20¢5

and d; s is the Kronecker delta (6, s = 1 if t = s, and 0 elsewhere). Assume
that one can find a matrix B so that

v(t) = Be(t) + w(t) ,

and where e(t) and w(t) are independent. See Exercise 2.4. Then set

- (). o= (i)

Clearly, ©(t) will be a white noise sequence. Then it holds that

- _ (zt+ 1)\ _ [ 9(z(t) + g2(x(t))(Be(t) + w(t))
ot +1) = (i(t+1)>_<g g2elzt+1)e B )

I

g(z(t)) + g (T(t))0(t)
y(t) = hla(t) +e(t) 2RE())
In particular, for the linear model
z(t+1) = Fz(t) + v(t) ,
y(t) = Ha(t) +e(t)

one obtains
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z(t+1) = (Fz(t) :(fi(?)Jr w(t)) = (F B) z(t) +3(t)

Remark One may question if it is reasonable to allow the process noise
v(t) and the measurement noise e(t) to be correlated, that is Rip # 0. If
v(t) and e(t) really correspond to a model where the states have physical
interpretations, it is likely that v(¢) and e(t) are uncorrelated. However, state
space models may also be obtained in other ways. For example, assume that
the second-order AR process

yt) +ayt-1) +ay(t-2) =e(t), N =Et),
is to be represented in state space form. There is no unique solution. One
possibility is

mu+1y:(j“j?>zm+wuy

y(t) =1 0)z(®),

2
with By = )(\) (0)

possibility is to choose

z(t+1) = (—a1 1) z(t) + v(t) ,

). Note that B2 = 0, Rij2 = 0 in this case. Another

—a3 0
y(&) = (1 0)z(t) +e(t),

with
2
_2( a1 (G2 32 _y2 [
Ry =2 <a1a2 . ) , Ry = )°, Rz = A (—(12) ;
for which apparently Ry2 # 0. m]

3.4 Covariance Function and Spectrum

Properties of the covariance function and the spectrum are examined in this
section. In order to make the treatment general, the stochastic processes are
allowed to be complex-valued.

Definition 3.7 Let z(t) be a stationary, zero mean, possibly complez-valued,
stochastic process. Its covariance function is defined as

r(r)2Ez(t +1)2" (t) . (3.18)
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The process has an associated covariance matriz

r(0) r(1)...r(m-1)
R(m) = T(_:l) "0 o . (3.19)

rem+1) .. 1(0)

Remark 1 To emphasize the connection to the process z(t), the notations
rz(7) and R, (m) will frequently be used. |

Remark 2 If z(t) instead has a nonzero (constant) mean value m, the co-
variance function is

r(r) 2E [z(t + 1) — m][z(t) — m]* . (3.20)

O

Definition 3.8 Let x(t) and y(t) be stationary processes with zero mean.
Then the cross-covariance function is defined as

rey(r) = Balt + )y (1) (3.21)

Next, the spectrum of a stationary process is defined.

Definition 3.9 Let z(t) be a (discrete-time) stationary process with covari-
ance function (7). Then its spectrum is defined as

TOEED DRI (3.22)

O

Remark The series of (3.22) converges at least in a circle strip Ry < |z| < Ra,
0< R <1,1< Ry < 0. O

Definition 3.10 The spectrum considered at the unit circle, ¢(e*), is called
the spectral density. It is a periodic function of w, and is mostly studied for
lw] < 7. O
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Remark 1 When a discrete-time model is sampled from a continuous-time
model, it is often valuable to emphasize the influence of the sampling interval
h. (In other situations, it is common practice to consider a normalized time
scale and set h = 1.) In such a case, the definition of the spectrum is modified
to

o0
é(z) =h Z r(nh)z™" (3.23)
n=—oo
and the spectral density is ¢(e™“?), |w| < n/h. O

Remark 2 Many results for stationary processes do also apply for a wider
class of signals. In a control context it is common to treat the input as a de-
terministic signal and model the effect of various disturbances as a stationary
process with an underlying model of the form

y(t) = G(q)u(t) +v(t)

where G(q) is a transfer function operator describing the input-output rela-
tion, and v(t) is the total disturbance acting on the output.

The concept of quasi-stationary signals is often useful when characterizing
deterministic and stochastic signals jointly. A signal y(t) is said to be quasi-
stationary if the limit

N
1
lim — t *(t) =
Jim ;y( +7)y*(t) = R(7)
exists for all 7. This is the case for ergodic stochastic processes, where the
right-hand side is precisely the covariance function. For other signals, one
may denote the operation in the left-hand side by

Ey(t+ny" (1)

and maintain the notation of “covariance function”. Once a covariance func-
tion is introduced, one can continue to use the concept of spectrum as in
Definition 3.9.

There are quite a number of different types of quasi-stationary signal.
Transient phenomena, in dynamic systems is one example. Another is periodic
signals, which leads to covariance functions being periodic too, and to spectra
being composed of a number of weighted delta functions.

As many of the results for stochastic processes described in this book are
based on the representations in terms of covariance function and spectrum,
they can potentially be extended to the wider class of quasi-stationary sig-
nals. Note in this context that by using spectral factorization, see Section
4.3, one can also derive time domain models of the signal itself. a
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Definition 3.11 The cross-spectrum between two zero mean stationary pro-
cesses x(t) and y(t) is defined as

oC

$ay(2) = Y ray(n)z " (3.24)

n=-—0o0

0

It is easy to set up the inverse relation, which for a given spectrum, pro-
duces the covariance function. This is done as follows (§ denotes integration
around the unit circle counterclockwise):

dz
y,m T
2n1%¢ z 27t1}( i z

1 ntm dz
:ZT()T%Z +7

n=-—oo

= Z r(n)dpm =r(m) . (3.25)

n=—00

Definition 3.12 Let z(t) be a stationary stochastic process with covariance
function v(7). The positive real part of the spectrum is defined as

o(z) = %1‘(0) + Z r(n)z™". (3.26)

|

The term “positive real part” will be explained later (see Section 4.6).
Note that ¢(z) has a close connection to the z-transform of {r(n)}>2,. In
fact:

3(2) = R(z) - 5r(0) (.27)
where
R(z) =Y _r(n)z™" = Z({r(n)}) (3.28)

is the z-transform of the covariance function (for positive lags).
The connections between model representation, realization, covariance
function and spectral density are illustrated in the following example.
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Ezample 3.2 Consider an ARMA process

Aq)y(t) = Clg)e(?) -
The coefficients of the A(q) and C(g) polynomials determine the properties
of the process. In particular, the zeros of A(z), which are called the poles,
determine the frequency contents of the process. The closer the poles are lo-
cated towards the unit circle, the slower or more oscillating the process will
be. Figure 3.1 illustrates the connections between the A and C coeflicients,
realizations of processes and their second-order moments as expressed by co-
variance function and spectral density. O

Some useful properties of the covariance function r(7) and the spectrum
are presented in the following two lemmas.

Lemma 3.1 Let x(t) be a stationary process. Its covariance function has the
following properties:

(i) r(7) is generally complez-valued, r(0) has real-valued and positive diag-
onal elements.
(i1) r(—1) =7r*(1) . (3.29)
(iit) R(m) is a Hermitian matriz (i.e. R*(m) = R(m)).
(iv) {r(7)} is a nonnegative definite sequence, that is, the matriz R(m) is
nonnegative definite for any m (i.e. w*R(m)w > 0 for all w).
Proof It is no restriction to assume that x(¢) has zero mean. Part (i) is
obvious. Note that
rii(0) = Ez;(t)z} (t) = E|z;(t)|> > 0.
Part (ii) follows from
r(—7) =Bzt —-1)z*(t) = Ex(t)z*(t + 1)
=[Ez(t+ )z ()] =ri(1) .
Part (iii) is immediate from part (ii). Finally, consider part (iv). Introduce
the vectors u and ¢(t) as
ut = (uj, uy ... up),
pt) = (z*t -1 z*t—2)...a*(t—-m))"
where u1,us, etc., have the same dimensions as z(t). Then
U1
* Uz
uw*Ru = (uf ul ... u}, ) Eo(t)*(t)
Um

=E)_ujat - I 2*(t - ku] =E|Y ujz(t— k) 0.

k=1 k=1 k=1
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Fig. 3.1. Illustration of some ARMA processes.

Process I: A(g) =¢> —1.5¢+0.8, C(q) = 1.

Process II: A(g) =q® —1.0¢ + 0.3, C(q) = 1.

Process I1I: A(q) = ¢° — 0.5¢ + 0.8, C(q) = 1.

Process IV: A(q) = ¢° — 1.0¢ + 0.8, C(q) = ¢* — 0.5¢ + 0.9.

First four plots show realizations of processes I-IV. Last two plots show covari-
ance functions and spectral densities: Processes I (solid lines), I1 (dashed lines), 111
(dotted lines), IV (dash-dotted lines)

Since this holds for arbitrary vectors u and arbitrary m, it can be seen that
part (iv) holds. n
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Remark. Note that R has a (block) Toeplitz structure. Recall also that a
Hermitian matrix (defined by the requirement R = R*) can be diagonalized
as

R=UDU",

where U is a unitary matrix (U*U = I) with the columns being the eigenvec-
tors of R, and D is a real-valued diagonal matrix containing the eigenvalues.
As R is nonnegative definite, all eigenvalues are positive (> 0). O

Lemma 3.2 The spectrum ¢(z) of a stationary process satisfies the following
relations:

(i) 9" (2) = ¢(z77) . (3.30)
(ii) The spectral density matriz ¢(e') is nonnegative definite.
(iii) The diagonal elements of ¢(e) are real-valued and positive.
(i) In the scalar case ¢(e“) is, in general, not symmetric. If the real and
imaginary parts of z(t) are uncorrelated, then ¢(el) is symmetric in
the sense that

Ple™) = p(e“) . (3.31)
Proof To prove part (i), note that

$"(z) =D rm)") =Y r(-n)(E)"

n n

= Zr(n)z*" =¢(z7") .
To prove part (ii), assume, for simplicity, that the covariance function
decays exponentially with |k| as
| r(k) |I< Ca®  for 0<a<1.

Let u be an arbitrary vector and set z = e'“. By Lemma 3.1, part (iv), it
follows that, N being arbitrary:

1 * * * -
OSN(U u*z ... u 2N 1)

r(0) r(l)...r(N-1) u
r(-=1) r(0) wz—]
% : .
r(—N +1) r(0) uz” (V=1
N
= —;f-[Nu*r(O)u + Z(N — k) [utr(k)uzF + utr(—k)uz*]]
N . 1 X
=u'( Y r(k)z M- 5 > [klutr(k)uz™* (3.32)
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The second term in (3.32) can asymptotically be neglected as

M 1 N

1 * —k) o L 2 |k

I~ > |kfutr(k)uz*| < ~ el > |k|Cal*!
k=—N k=—N

2012 Y gk
:WHUH Zka -0 as N-o0o.
k=1

By letting N tend to infinity in (3.32):
o0

0 <u*( Z r(k)z "u = ud(2)u,

k=—0c0
which proves part (ii). Part (iii) follows directly from part (ii).
Finally, consider part (iv). Write the process as w(t) = z(t) + iy(t) and
let z(t) and y(t) be independent real-valued processes. Then
ro(r) = E [zt + 7) +iy(t + 7)][z(¢) - y(2)]
= [re(7) + ry(7)] +i[—ray (7) + 7y (7)]
=714(T) +1y(7) .
Hence ¢, (w) = ¢5(w) + ¢y(w). However, for a realvalued process, such as
x(t), r5(7) is real-valued and

[o.o} oo
¢z(e—~iw) — Z rz(n) el — Z ra(—n) elnw
n=-—o n=--oo
o0
= Z ry(n) 7™ = ¢ (),
n=-—oo
from which the statement follows. ]

Remark It is a consequence of part (i) that the spectral density matrix
¢(e*) is Hermitian. O

Corollary Let z(t) and y(t) be stationary processes with zero mean. Then

¢;y(z) = ¢yz(z_*> (3.33)
holds.

Proof Set
o=

This implies that

ou()= (220 %))
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Now use the relation in (3.30) to see that

Pulz) = (qszy(( ) ¢*((z))) ’

—%y ¢z(z_*) ¢zy(z_*)>
e = (f0 ) )
Equating the lower left blocks gives the desired equality. [ |

The next lemma establishes a relation between ¢(z) and ¢(z).

Lemma 3.3

$(2) = §(2) + ¢* (=) (3.34)
holds.

Proof By Definitions 3.9 and 3.12, and (3.29):
-1

b(2) = 32 + 2O+ 3 r(m)em

2 n=—oo
7 1 * o~ * n
= ¢(2) + 57(0) + n; r*(n)z
it 1 > — n ) 7 * —%
=¢(2) + | 5r(0) + Y r(n)(z™) =¢(z) +¢"(277)
n=1
|
Corollary
$(e) = G(e) + ¢*(e), (3.35)
and in the scalar case
#(e*) = 2Re p(el¥) (3.36)
hold.
Proof Immediate by the substitution z — €. [ ]

A specific feature of complex-valued processes is that the spectral density
is no longer symmetric; see Lemma 3.2, part (iv). This is illustrated in the
following example.

Ezample 3.3 Let e(t) be a scalar, complex-valued white noise satisfying
Ee(t)e"(s) =6t ,

and set
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z(t) = e(t) + pe(t - 1),
@ = a + ib being a complex constant. One easily obtains
r(0) = Ex(t)z*(t) = 1 + ¢ = 1 + [pf,
r,()=Ez(t+1)z"(t) = ¢,
ra(-1)=Ez(t)z"(t+1) =7,
rz(7) =0 7| > 1,
and hence
$a(€) = [L+ 9P +pe ™ + pe]
= [1+ " + 2Re(pe )]
=(1+pe ™) (1+pev) =l +pe ™,
which illustrates that ¢(e'“) is real-valued and positive. Further,
¢ () =1+ a®> +b* + (a+ib)e”™ + (a — ib) e
=14+a®+b*+2acosw + 2bsinw .

45

The spectral density is not symmetric unless b = 0, which corresponds to ¢

being real-valued.

0

The next lemma gives a relation between the extrema of the spectral

density ¢(e!“) and the covariance matrix R(m), (3.19).

Lemma 3.4 The mazimal and minimal eigenvalues of R(m) satisfy

Amax(R(m + 1)) > Apax(R(m)) , (3.37)
Amin(R(m + 1)) < Amin (R(m)) , (3.38)
. u*qﬁ(ei“’)u B "

Jm Amax(£(m)) 2 supsup — T = sup Amax[6(e)] (3.39)
- e U*¢(eiw)u . i
lim Apin(R(m)) < infinf —————— = inf Ayin ()] . (3.40)

m—o0 w u u*u w

Proof The maximal eigenvalue, Apnax(R(m)), satisfies
* * 1
Amax (B(m + 1)) = sup T R(m + )z > v R(m + v , for any v .

z r*r - v*U

Consider, in particular, vectors v of the form

- (1),

Then
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Asg this relation holds for any @, one can conclude that

5 ROM)
Amax (R(m + 1)) > sup m = Amax(R(m)) .
B VY
The relation (3.38) is proved analogously.
Consider next a vector of the form

oF = (u* urz...ut2™Y),

where z = €. Then

z*R(m)x
A (R(m) > ZT
_ 1 “ * —k
= — k:Z_m(m [kNu*r(k)uz
=2 u*{ i r(k)z % u — ! i [k|u*r(k)uz™*k .
u*u — mu*u i

Now let m tend to infinity. The last sum will tend to zero, just as in the
proof of Lemma 3.2. Thus
1

u*o(e“)u .
—u'g(e)

mli_IPOO Amax(R(m)) >

As this inequality holds for any u and w, the inequality part of (3.39) follows.
Then the equality follows, as for a general Hermitian matrix A

T* Az
SUp ~——— = Amax(4)
z#0 IT°T

where the right-hand side denotes the maximum eigenvalue of A. The rela-
tions in (3.40) are proved by similar arguments. ]

Remark Under weak stationarity assumptions, the inequalities in (3.39) and
(3.40) can be replaced by equalities. It is, for example, sufficient to let z(t)
be filtered white noise. o

3.5 Bispectrum

The bispectrum is a special case of higher-order spectra that generalizes the
usual second-order spectrum. The bispectrum is the simplest form of higher-
order spectra. Such spectra are useful tools for the following:

e extracting information due to deviations from a Gaussian distribution,
o estimating the phase of a non-Gaussian process,
e detecting and characterizing nonlinear mechanisms in time series.
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It should be mentioned that bispectra are useful only for signals that do not
have a pdf that is symmetric around its mean value. For signals with such a
symmetry, spectra of higher order (such as fourth order) are needed.

In order to simplify the development here, it is generally assumed that
signals have zero mean. This can also be stated as that only deviations of the
signals from an operating point (given by the mean values) are considered.

Let z(t) be a scalar stationary, real-valued process. Define its third-order
moment sequence, R(m,n), as

R(m,n) =Ez(t)z(t + m)z(t +n), (3.41)

and its bispectrum as

B(z1, 23) Z Z M. (3.42)

m=—00 N=—00

The third-order moment sequence satisfies a number of symmetry relations.

Lemma 3.5 For a stationary process

R(m,n) = R(n,m)

—-m,n —m) (3.43)
holds.

Proof The equalities are easy to verify. In fact:

R(n,m) = Ex(t)z(t + n)x(t + m) = R(m,n) .
R(-n,m —n) =Ez@t)z(t —n)z(t + m —n)
=Ez(t +n)x#®)z(t + m) = R(m,n) .
R(n—m,—m) =Ez@)z(t + n — m)z(t —m)
= Ea:(t+m) (t+n)x(t) = R(m,n) .
Rm—n,—n)=Ez(@)z(t+m—n)z(t —n)
= Ea:(t n)z(t + m)z(t) = R(m,n) .
R(=m,n - m) = Ba()a(t — m)a(t +n — m)
=Ez{t +m)z(t)z{t + n) = R(m,n) . n

Similarly, the bispectrum satisfies a number of symmetry relations and
properties.

Lemma 3.6 For a stationary process

(i) B(e“1,ei%2) is in general complex-valued. (3.44)
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(i)
B(ei(“”+2m,ei(“’2+2m) — B(ei(u1+2ﬂ),eiu2)
= B(el“1,el@2t2M) = B(elvr elw2) . (3.45)
(ii1)
B(z1,22) = B(z3,21) = B*(23,27) = B*(2],2})

B(z; ‘25", 23) = Blz2, 21 '25 ')
= B(z1,27 2 ") = Bz 25t 1) (3.46)

I

hold.

Proof Property (i) is trivial. Property (ii) is immediate from the definition
in (3.42). It follows that

B(zy,21) =
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3.A Appendix. Linear Complex-Valued Signals and
Systems

3.A.1 Complex-Valued Model of a Narrow-Band Signal

A simple mathematical treatment may be as follows. Let the narrow-band signal
be described as

s(t) = A(t) cos(wet + p(t)) . (347

Here the amplitude A(t) and the phase w(t) are slowly time-varying. The signal
can then also be described by a complex-valued representation as

= Re[5(t)] ,
§(t) = A(t) elwet+o(t))

The amplitude A(t) and the phase p(t) are easy to find in this representation.

Next, consider a time-delayed version of the signal. Assume that for the delay
7, the amplitude and phase remain unchanged (A(t) = A(t ~ 7), ¢(t) = ¢(t — 7)).
Then

(3.48)
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§(t— 1) = 3(t) e T .

In particular, specialize to a delay of 90 degrees phase shift, that is 7 = m/(2w.),
to obtain

s(t — m/2we) = A(t) sin(wet + @(t))

and hence the following connection between the real-valued and the complex-valued
representation of narrow-band signals:

3(t) = s(t) + is(t — 7/2uwe) (3.49)

has been established.

The construction of §(¢) from discrete-time measurements is called quadrature
sampling. The component s(t) = Re[5(t)] is called the in-phase component, and
Im[5(t)] = s(t — n/(2w.)) is the quadrature component.

3.A.2 Linear Complex-Valued Systems

Most properties of linear systems continue to hold without change in the complex-
valued case. The following standard representations:

state space form

z(t + 1) = Fz(t) + Gu(t) ,

y(t) = Ha(t) + Du({) (3:50)
transfer function operator
v(t) = Hla)ult) = G utt) (3.51)
weighting function
y(t) =Y heult — k), (3.52)

can, for example, all be used. Note that these representations (the matrices
F,G, H, D, the polynomial coefficients of A(g) and B(q), or the weighting function
coefficients {hi}) are now generally complex-valued. The usual relations between
them apply, such as

H(Q)=H@I-F)'G+D=H(I-Fq¢ ' 'Gy'+D,
H(g) =) hq™*,
k=0

h(k) = HF*'G, k>0; h(0)=D.

Further, the usual canonical forms of state space realizations apply, and can be
used for transforming transfer function operators into state space forms.

Poles and zeros are defined in the usual way as the poles and zeros of the
analytical function H(z). More specifically, the poles are the solutions of A(z) = 0,
and the zeros solve B(z) = 0. The poles can also be found as the eigenvalues of F.

Stability (or, in a strict sense, asymptotic stability) is defined in the usual
way. The system is said to be asymptotically stable if, for zero input, the output
converges to zero for arbitrary initial values. The system will be asymptotically
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Fig. 3.2. The behaviour of z(t), z(t + 1) = fxz(t), f = 0.9¢*, £(0) = 1.
(a) Re(z(t)), (b) Im(z(t)), (¢} |z(t)|, (d) Re(z(t)) versus Im(z(t))

stable if and only if all poles lie strictly inside the unit circle. In such a case, the
weighting function coefficients {hs} will decay exponentially to zero.

A system with all zeros inside the unit circle is called minimum-phase. Minimum-
phase models will play a key role in many places; see Sections 4.3 and 7.2.

One difference from the real-valued case is that it is no longer necessary that
the poles appear in complex conjugate pairs. As a matter of fact, oscillatory modes
can be obtained with a single pole (in contrast to the real-valued case, where two
poles are required), as illustrated in the following example.

Ezample 3.4 Consider a first-order system
z(t+1) = fz(t), =(0)=zo.

In Figures 3.2 and 3.3, the behaviour of z(t) for f = 0.9e* and f = 0.9e™* 2o =1
is shown. 0
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3.B Appendix. Markov Chains

In this appendix, Markov chains are introduced and briefly analyzed. Such a process
attains only discrete values and satisfies the Markov property in (3.12). Let the
possible states of the chain be denoted by {S}. The Markov property then reads

P(z(t) = z¢|z(t — 1) = z¢-1, ... 2(0) = zq)
= P(z(t) = ze|z(t — 1) = 34-1). (3.53)

In loose terms, only the most recent value of the state (i.e. z(t —1)) is of importance
for the future behaviour of the process.
Introduce the probabilities

pi(t) = P(z(t) in S;) (3.54)
and the transition probabilities (which are assumed not to depend on #)

Using vector and matrix notation:

p(t)=(p:(t)), P=(py),

where P will be called the transition matrix, Bayes’ rule gives
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pi(t+1) = P(z(t+ 1) in S;)
=Y P(a(t+1) in Sjla(t) in $;)P(z(t) in )

12
= Zpijpi @),
i
or, in compact form:

p(t+1)=pt)P. (3.56)

Transitions over a larger interval can be obtained by iteration of (3.56). Apparently,
one can make the interpretation

(P*)i; = P(x(t + k) in S;|z(t) in ;) .

In what follows, assume that z(t) is a regular Markov chain, in that it has a
stationary distribution

p = lim p(t) = lim p(0)P* . (3.57)

Note from (3.56) that such a distribution can be obtained as a left eigenvector to
P associated with an eigenvalue A = 1:

p=pP. (3.58)
It is, further, easy to see that P always has an eigenvalue A = 1. Set

e=(1...107. (3.59)
Then

(Pe)i =) _pije; = Y pis
i j

= ZP(z(t+ 1) in Sj|e(t) in Si)
=1.

As the elements of P are probabilities, and the elements of each row sum to 1, it is
shown next that P cannot have any eigenvalue with magnitude larger than 1. The

. . o L
relation Pz = Az, with max |z;| =m, implies that

|Alm = max |(Az)i| = max |(Pxz);|
= max| Y pisl
j

gma.xz pi;m
1

j
:m,

and hence that |A| < 1.
Next, assume that all eigenvalues except A = 1 lie strictly inside the unit circle,
which will guarantee the existence of the limiting distribution in (3.57).
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Ezample 3.5 Consider a binary Markov chain with

l1—a «
P:( B 1_ﬂ)>0§afl,0§ﬂfl'

The eigenvalues are easily found to be A1 =1 and A2 =1 — a — 3. The only cases
when A2 will be located on the unit circle are the following.

I «a =8 =0. Then P = I and p(t) = p(0). A stationary distribution exists, but
it depends on the initial distribution.

I a=p=1 Then P = <(1) [1)) and no stationary distribution exists. The pro-

cess will (for sure) jump between the two states at every time step. O

In what follows, the mean value and the covariance function for a stationary
Markov chain will be derived. Assume that the effect of the initial distribution has
decayed and can be neglected. For this purpose, it will be convenient to introduce

S1 0
S= , (3.60)
0 Sn

where s; is the value assigned to z(t) when it is in stage S;. Further, make an
eigendecomposition of P as

PU=UA. (3.61)

As it is known that e is an eigenvector with associated eigenvalue A = 1, it is
possible to write (3.61) in partitioned form as

Ple Us) = (e Us) (é%) , (3.62)

where the matrix F' has all eigenvalues strictly inside the unit circle. (If the eigen-
values are distinct, F' can be chosen diagonal; otherwise it can be chosen in Jordan
canonical form.) P has, similarly, a set of left eigenvectors

(8)7= (k) (8) om0

Note that the first row of (3.63) is nothing other than (3.58). The eigenvectors are
assumed to be normalized in such a way that

(§2> (e Ua)=1. (3.64)
It is easy to obtain the (stationary) mean

m=Ez(t) = ZSZP(x(t) = si)

= pSe. (3.65)

Let k be a nonnegative integer. The covariance function of z(t) can be found as
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Il

r(k) = Ez(t+ k)z(t) —

Z Zs,s]P(m(t + k) =s5;,2(t) = s5) ~

I

Z Z si8; Pla(t + k) = sila(t) = 55)P(a(t) = 5,) -

Z ijSj(P )jisi —m?
i

= pSP*Se — m?
Using the eigendecomposition of (3.61) results in

= (UAV)* = UA*V

ew(1)(8).

which gives, with (3.66),

r(k) = pS(e U) ((1) F(')k> (‘I/;) Se — m?

= (pSe)* + pSU F*V3Se — m
= (pSUz)F*(VaSe) .

m

2

(3.66)

(3.67)

(3.68)

The square matrix F has dimension n — 1. Now compare the expression in (3.68)

with (4.21). It can be seen that

the covariance function of the Markov chain will have the same form as that of a
linear dynamic system of order n — 1. The associated spectrum is thus a rational

function, just as is the spectrum of an ARMA process.

Ezample 3.6 Reconsider the binary Markov chain of Example 3.4 and assume that

0 < a+ 8 < 1. The eigendecomposition of (3.61) turns out to be
F=1-a-8,

1
-(13)

_(Ba)_ 1
ve(15)

One obtains from (3.65)

m= alTﬁ(le + ass) ,
and from (3.68)

r(k)=(1—a—ﬁ)kﬁ(sl—32)2, k>0.

The associated spectrum can be found directly from Example 4.1:

__r@Q-F)
= o)
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Exercises

Exercise 3.1 Consider a system given by
g+0.5 g+ 0.7

—_——u(t t

e Al y LUK

where ¢(t) is white noise of zero mean and unit variance. Convert it into an
ARMAX model. Also represent it in a state space model of the form

z(t + 1) = Fz(t) + Gu(t) + v(t) ,
y(t) = Hz(t) + Du(t) +e(t) ,

where v(t) and e(t) are white noise sequences with zero mean and covariance
matrices

v(t) T T _{ R Rz
E (e(t)) (v' (t) e () = <R21 R, | -
Give R;, Ri2 and Ry. Can the system be represented in such a state space
form with Ris = 07

y(t) =

Exercise 3.2 Consider a real-valued moving average process
y(t) =e(t) +cre(t—1) 4+ ...+ cpe(t—n), Ee(t) =0, Ee(t) = A*.
Show that the covariance function r(7) of y(t) satisfies

r0) = 1+ +...+c2),

(1) = X2(er +ciCrp1 + .. CnerCh) T=1,... ,n—-1,
r(n) —)\2cn,
r(r) = T>n,

r(-7) = ( ) -

Exercise 3.3 Examine the bounds in (3.37), (3.38), (3.39) and (3.40) by
some numerical examples. Are the bounds crude or sharp?

Exercise 3.4 Consider the system
z(t+1) = Fz(t) +v(t),
y(8) = Hz(t) + e(t)

where v(t) and e(t) are jointly Gaussian white noise sequences with zero mean
and covariance matrices

Ev(t)oT(t) = Ry ,
Ev(t)e’ (t) = Raa,
Ee(t)ef(t) = R, .

The initial value z(f9) is assumed to be Gaussian distributed, z(to) ~
N(my, Roy), and independent of the noise sources.
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(a) Derive the conditional pdfs p(z(t + 1)|z(t)) and p(z(t + 1)|z(¢),y(t)).
When do they coincide?

Hint. If A, D and the matrix below are invertible:

(#8)"-(52)- (4 )o-coar
x(—CA™ I).

holds.
(b) In case the two conditional pdfs differ, show that one can use

_ z(t)
Z(t) =
®=(50)
as a state vector. Show that it satisfies
T(t+1) = Fz(t) + ()
with ©(t) white noise, and give explicit expressions for F and R; =
Eo(t)vT (t).
Exercise 3.5 Consider the following simplified model of amplitude modula-
tion:
z(t) = a(t) sin(wot + ) ,

where a(t) is a stationary stochastic process with zero mean, covariance func-
tion r,(7) and spectrum @,(z), and ¢ is a random variable that is uniformly
distributed over [0,2n] and independent of a(?).

Show that z(t) is a stationary stochastic process with covariance function

ry(7) = ira(r) COSwWoT ,

and spectrum
82(2) = halee™) + 16a(ze)
Remark The spectral density of z(¢) thus satisfies
82(68) = 79ae70) + JoaeeHD)

If a(t) has a lowpass character (i.e. ¢,(e!*) has most of its energy around
w = 0), z(t) will therefore have a bandpass character (¢,(e) most of its
energy around w = Fwp).
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a(e)
P2 (eiw)
I ]

Exercise 3.6 Examine various “symmetries” of the third-order moment se-
quence and the bispectrum.

{(a) Show that if a third order moment sequence is known in any of the six
sectors below, it can easily be determined for all arguments:

(b) Show that if the bispectrum is known in any of the 12 sectors below, then
it can easily be determined for all arguments:
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]

W

The bispectrum can be considered for arguments z, = e“*, k = 1,2.
This is sufficient since B(z1, z2) is analytic. Note that the angles of the
sectors are not 22.5 degrees.
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4. Analysis

4.1 Introduction

In this chapter stochastic models are analyzed in various ways. The following
issues will be treated.

e Linear filtering and its effect on the spectrum. Complex-valued signals will
be allowed (Section 4.2).

e Spectral factorization (Section 4.3), permitting complex-valued signals.

e A review of linear continuous-time models and their properties (Section
4.4), and sampling of such models (Section 4.5).

e Some aspects on the positive real part of the spectrum (Section 4.6).

e Properties of the bispectrum when stochastic signals are filtered (Section
4.7).

e Algorithms for covariance calculations based on finite-order models (Sec-
tion 4.8).

4.2 Linear Filtering
In this section we examine how linear filtering influences spectral densities.

The cases of transfer function models and state space models are treated in
separate subsections.

4.2.1 Transfer Function Models
For transfer function models, the following result holds.

Lemma 4.1 Let u(t) be a stationary process with mean m,, and covariance
function r,(7) and spectrum ¢, (z). Let

y(t) = Glghu(t) = Y gru(t — k) , (4.1)
k=0

where G(q) is an asymptotically stable filter.

T. Soderstrom, Discrete-time Stochastic System

© Springer-Verlag London 2002
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Then y(t) is a stationary process with mean my = G(1)m, and spectra

?y(2) = G(2)pu(2)G*(277) , (4.2)

Pyu(2) = G(2)du(2) . (4.3)

Proof Applying the expectation operator to both sides of (4.1), one obtains
directly

oo oo
=E ) guu(t—k) =) _ gmu =G(1)m
k=0 k=0
Next introduce the deviations §(t), @(t) from the mean values as

gy =yt) —my,  G(t) =ut) —ma.
It is easy to see that

=" gl — k) + my] —my = gxi(t - k)
k=0 k=0

Hence ii(t) propagates to §(t) in the same way as u(t) to y(t). Therefore, one
can assume, when coping with the covariance functions, that the signals have
zero mean. (Alternatively, it may be said that the notation ~ is dropped in
the following part of the proof.) By direct calculation:

ry(t+7,t) =Ey(t+7)y* [ngu +7—k ][ng(t-—@)]

:ZZ aEut+71 —kyu*(t—€)g}
Zngru (r—k+0)g;

k

As this expression does not depend on ¢, it is concluded that y(¢) is a sta-
tionary stochastic process. Now proceed to derive the spectrum of y(¢):

o]

by(z) = Y my(m)z"

n=—oo

o oo 00
D N> giruln -k + 0)g;z (TR R

n=-00 k=0 {=0

ngz S rum)e Y g2

m=—x

()¢u() (27
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which is (4.2). Similarly, for the cross-covariance function and the cross-
spectrum:

ryu(T) =Eyt+1)u"(t) =E [Z gru(t + 7 — k)]u*(t)
k=0

oo

> geru(r— k),

k=0

¢yu(z) = i igkru(” - k)z—(n_k)z_k

n=-—00 k=0

il

oo

=D oz ML Y rum)zTm = G(2)du(2) - L
k=0

m=—0o0

The following corollary is a form of Parseval’s relation. By specializing
the matrix case to various elements several special cases can be derived.

Corollary Assume that u(¢) is an uncorrelated sequence with covariance
matrix E u(t)u*(t) = A. Then

Eyt)y (t) = > grdg} = 2—71;1 fG(z)AG*(z)% , (4.4)
k=0

where the integration is counterclockwise around the unit circle.

Proof When u(t) is an uncorrelated sequence

Eyt)y"(t) =ry(0) =YY geAd 009 = Y g g;
k:o

k=0 {=0
1 dz 1 ., dz
— o o = 5= $ 6467

holds. In the last equation, (4.2) and the fact that 2~* = 2 on the unit circle
have been used. [ |

4.2.2 State Space Models

Next turn to the analysis of state space models.

Lemma 4.2 Consider the system

z(t+1) = Fz(t) +v(t), (4.5)
y(t) = Ha(t) +elt) '




62 4. Analysis

where v(t) and e(t) are complez-valued uncorrelated sequences with zero mean
and

B (1)) 0@ eo=( )6, (46

Let the initial value z(t9) be a random vector with mean mq and covariance
matric Ry, and be independent of v(t) and e(t) for allt > to. Then the mean,
mg(t), and the covariance function, R;(t,s), of the state vector satisfy

mg(t +1) = Fmg(t) = Ftom, (4.7)
Ry (t+7,t)=F"P(t), 7>0, (4.8)
P(t+1)=FPt)F*+R,, P(t)=R,. (4.9)

Proof Equation (4.7) is immediate from (4.5). Set P(t) = Ry(tt)
= E [z(t) — m;(t)][z(t) — m,(t)]* and let 7 > 0. Then by straightforward
calculation:
Ry(t+7,t) = E[2(t+ 1) — mg(t + 7)][z(t) — mg(t)]*
=E[Fz(t+7-1)+v(t+7-1)—Fm,(t+7-1)]
x[z(t) = ma ()]
=FR,(t+7-1,t).
Equation (4.8) is obtained by iteration. In order to obtain (4.9), proceed as
follows (note that, by construction, z(t) is uncorrelated with v(s) for t < s):
Pt+1)=E[z(t+1)—my(t + D]zt + 1) — m(t + 1)]*
= E [Fz(t) + v(t) — Fm,(t)][Fz(t) + v(t) — Fm(t)]*
= E Flz(t) — my(t)][z(t) — mz()]* F* + Ev(t)v(t)*
=FP(t)F*+R; . u

Remark 1 Equation (4.9) is called a Lyapunov equation. The matrix P(t) is
apparently precisely the covariance matrix of the state vector z(t):

P(t) = covlz(t)] = E [2(t) — ma()][z(t) — m4(8)]* . (4.10)

0
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Remark 2 If the system contains a deterministic input and reads
z(t+1) = Fa(t) + Gu(t) + v(t) ,

y(t) = Halt) +e(t) (410
instead of (4.5), the mean value m,(t) is modified to
mg(t + 1) = Fmg(t) + Gu(t) ,
ma(to) = mo . “.12)
and the covariance properties are not changed. O

Remark 3 The results extend easily to time-varying systems. In principle, F'
and H and the covariance matrices are used with the current time index in-
stead of being treated as time-invariant factors. To be more specific, consider
the system

z(t+1)= (t):v(t) +o(t) ,

y(t) = H(t)a(t) + elt) (4.13)
( ) ( ﬁ;f?) %22(%)) bt.s - (4.14)

Then, (4.7)-(4.9) are modified to (use the convention [[:Z} F(s) = I)
ma(t+1) = H F(s)mg , (4.15)
Ry(t+7.1) :F(t+T—1)I;$Z;+T—1,t) (4.16)
t+TH_1 F(s)P(t), 720, (4.17)
Plt+1) = F®)POF* () + Ri(t),  Plto) = Ro . (4.18)

In what follows, it is mostly assumed that the system is time-invariant. Sev-
eral results for optimal estimation and control can also be easily extended to
the time-varying case, though. a

Corollary 1 The output mean and covariance functions satisfy

my(t) = Hmg (1) , (4.19)

Ry(t,t) = HP(t)H" + R, , (4.20)

R (t+7,t) = HF ' [FP(t)H* + Ris], 7>0. (4.21)
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Proof Equation (4.19) is immediate. So is (4.20), as
y(t) —my(t) = Hlz(t) —ma(t)] +e(t) .
Let 7 > 0. Then (recall that y(t) is uncorrelated with v(s) and e(s), t < s)
Ry(t+7,8) = E[y(t +7) - my(t +)]w(®) — m, O
= E[H{a(t + 1) — ma(t+ 1)} + et + D]y(t) — my (O]
=HE[F{z(t+7—-1)—-m,(t+7-1)}+v({t+7-1)]
x[y(t) —my(8)]"
=HFE[z(t+7—-1) —mg(t+ 7 — 1)][y(t) — my(t)]"
=...= HFT'E [F{z(t) — mo(t)} +v()]ly(t) ~ my(t)]"
= HF'E [F{z(t) — mo () HH[2(t) — ma ()]}
+o(t)e(t)]
= HFT_l[FP(t)H* + R12] ,
which is (4.21). n

Corollary 2 Assume, further, that the system is asymptotically stable. Then:

(i) The solution P(¢) to (4.9) converges to a solution of the Lyapunov equa-
tion

P=FPF*+R,, (4.22)

as t—tg— oo. The Lyapunov equation has a unique solution (for F having
all eigenvalues strictly inside the unit circle). The solution is Hermitian
and nonnegative definite.

(ii) The processes z(t) and y(¢) are asymptotically stationary (as t—to— 00).

Proof By straightforward iteration of (4.9):

t—1
P(t) = Ft—tOROF*(t—to) + Z Ft—l-sRlF*(t_l_s)
S:to
t—to—1 )
= FotoR Pt 4 N iR R (4.23)
j=0

When the matrix F' has all eigenvalues strictly inside the unit circle, the
above expression will converge, as t — t— oo, to

e o]
P=> FIRFY, (4.24)
j=0

which satisfies (4.22) by inspection.
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The sum in (4.24) is convergent, which can be seen as follows. Assume first
that F is diagonalizable, and write F = SDS™!, where the diagonal matrix
D contains the eigenvalues A;, 7 = 1,...,n. Then each matrix element of
(4.24) will consist of sums

n o0
> Y MG
pv=1 j=0
Such sums are convergent as all eigenvalues of F lie strictly inside the unit

circle for an asymptotically stable system. In the case there are multiple
eigenvalues, the sums will rather take the form

o0
SN pun NN
w,v j=0
where p, ,(j) is a polynomial, whose degree corresponds to the multiplicity
of the repeated eigenvalue. The conclusion about convergence of the sum
remains.

In order to show uniqueness of the solution, assume that P, and P; are
solutions to (4.22) and set X = P; — P». It is then easy to derive the
equality X = FXF*. By successive iterations, one obtains X = F*XF*k
for any positive k. Considering the limiting case in particular gives X =
limy_, o F*X F** = 0, which completes the proof of uniqueness.

From part (i) it follows easily that asymptotically (as t — tg— 00) P(t)
can be replaced by P and that m,(t) and m,(t) both tend to zero. Hence
the covariance functions depend only on the difference between the time ar-
guments, and the processes are stationary. [ ]

Remark In the stationary case, the spectrum of y(¢) becomes
¢y(2) = H(zI — F)"'Ry(z7*1 — F)"™*H* + Ry
+H(2I — F) 'Rig + Ryy (:7*I — F)"*H* . (4.25)

This can be proved by applying the definition of the spectrum to equations
(4.19)—(4.21) for the covariance function. It can be derived more conveniently
from (4.2) and (4.5). Set

Then

y(t) = [H(gl = F)7" Iu(t)
holds. By the identification

Glg) =[H(gI - F)" I,

o _( B1 Ri»
ou(e) = R = (2 T2 |
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and (4.2), (4.25) follows easily. 0
The results are illustrated by three examples.

Ezample 4.1 Consider the first-order real-valued process

z(t+1) =azx(t) +v(t), |aj<1, E?(1) =), (4.26)
observed from t = —ooc. It is then stationary. Its variance P is the unique
solution to the Lyapunov equation

P=ad’P+)?,

giving P = A2/(1 — a?). Note that this is consistent with (4.24). The covari-
ance function is, according to (4.21):

2
A >0, (4.27)

Tz(T)=aTP=aT1—_a—2“, Z

and the spectrum
/\2
SN EDEREDk
As a further illustration, note that expression in (4.28) for the spectrum
follows directly by applying Lemma 4.1 to the model of (4.26). One may then

apply (3.25) and residue calculus to find the covariance function. Let 7 > 0.
Then

) = g 627 Z
1

2
2

_ A2 ,dz

B 5;[_1% (z—a)(z71 —a)z z

1 ?{ A2z"
=— ¢ ————dz
2ni ) (2 —a)(1-—-az)
N
T 1-a?’
In the above calculations ¢ denotes integration counterclockwise around the
unit circle. The result is in full agreement with (4.27). The last equality fol-

lows as the pole z = a is within the unit circle, whereas the other pole z = 1/a
is not. O

(4.28)

Ezample 4.2 Consider the first-order ARMA process
y(t) +ay(t—1)=e(t) +ce(t-1), la| < 1,

where e(t) is white noise of zero mean and variance A\%. The stationary vari-
ance of y(t) is sought. This variance can be calculated in many ways. Here
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it is chosen to derive it through a state space formalism. First, represent the
system as

ot +1) = (‘O“ (1)) (1) + (i) o(t) |
y(t) = (1 0)z(?) -

In this case, v(t) = e(t + 1), again white noise of zero mean and variance A2.
The “relabelling” of the time index in the noise sequence will not change its
statistical properties. The steady state covariance matrix P can be found by
solving the Lyapunov equation of (4.22). Set

P <P11 Plz) ’
P12 P22

which gives

P11 P12 —al) (pup2)[-al 2 (1
= + A 1e¢).

(Pn P22) < 0 0) <P12 P22> < 1 0) (C) (1)
When reformulating this as a system of equations, note that, owing to sym-
metry, the 12 element and the 21 element of the equation will give the same
information. Equating the elements gives

p11 = a’pi1 — 2apyz + pas + A7

P12 = Ae )

pa2 = A% .
The solution is now readily obtained:

1 1+ ¢? - 2ac
varfy(t)] = (1 0)P (O) =pn = /\QW . o

Example 4.3 As an illustration of the transient effects that can be modelled
by the state space technique, consider a first-order model

z(t+1) = az(t) + v(t) , v(t) ~ N(0,2?) , z(to) ~ N(m,, Ro) ,

with Gaussian distributed noise and initial state z(¢p). Figure 4.1 illustrates
how the pdf propagates with time. d

4.2.3 Yule—Walker Equations

In this subsection, the so-called Yule-Walker equations for a real-valued
ARMA process, and their possible role in determining a covariance function,
are examined.

Consider first the case of an AR process

yO) +ayt—1)+...+ayt—n)=et), Ee*t)=I2  (4.29)
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p(z(t))

Fig. 4.1. Propagation of the pdf of z(t) as a function of ¢, Example 4.3. Parameters:
a = 0.75, mo = 3, Ro = 0.25, A? = 0.04. The values of m(t) are denoted by circles

Note that y(t) can be viewed as a linear combination of all old values of
the noise, that is {e(s)}:—_... By multiplying y(t) by a delayed value of the
process, say y(t — 7), 7 > 0, and applying the expectation operator, one

obtains
Ey(t—7)y@t) +ary(t — 1)+ ...+ any(t —n)]| = Ey(t — r)e(t) ,

or

r(r)+a1r(r—1)+...+anr(r—n):{)?2’ :zg’ (4.30)

which is called a Yule-Walker equation. Note in passing that it can be written
as

0, t>-n,
A ={ 3 {2
By using (4.30) for 7 = 0,... ,n, one can construct the following system

of equations for determining the covariance elements r(0),r(1),... ,7(n):
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1 a1 ... an r(0) A2
a; 1+ as ap 0 . 0
: . : =1 . 1. (4.31)
an Qp_1 ... 1 r(n) 0
The matrix appearing in (4.31) can be written as
0 a ... Qp,
1 .0 0Oar a0
ai 1
+
ap, 0
Qp Ap_1 1 00
Once 7(0), ... ,r(n) are known, (4.30) can be iterated (for 7 = n + 1,
n+2, ...) to find further covariance elements.

Ezample 4.4 Apply the Yule-Walker equations for computing the covariance
function of a first-order AR process

y(t) —ay(t—1) =e(t), Ee*(t)=A2.
The system of equations of (4.31) becomes
(7)) =(0)
—a 1 r(1)) L0 /"
giving

A2 ar?

- =2
e "WETTe

Next, it is found from (4.30) that

r(0)

r(r)—ar(r~1)=0, 7>0,
which implies that
/\2
r(T):aT——l_az, 7>0.

This expression coincides with the previous findings in (4.27). O

Consider next a full ARMA process
yt) +aryt -1+ ... +any(t —n)
=e(t)+celt—1)+... +tepe(t—m),
Ee2(t) = A2 (4.32)
Now the cross-covariance function between y(t) and e(t) must be involved as

an intermediate step. Multiplying (4.32) by y(¢t — 7), 7 > 0, and applying the
expectation operator, gives
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ry(T) + arry (1 = 1) + ... 4 apry(7 — 1)
=7ey(T) + C1rey (T — 1) + ...+ emTey(T —m) . (4.33)

In order to obtain the output covariance function r,(7), the cross-covariance
function 7, (7) must first be found. This is done by multiplying (4.32) by
e(t — 7), and applying the expectation operator, which leads to

Tey(—T) + a1Tey (=T + 1) + ... + anrey (=7 + 1)
= /\2[(5‘,-,0 + 615.,-_1,0 + ...+ Cm(s.,—_m’o] . (434)

As y(t) is a linear combination of {e(s)},__., it is found that re,(r) = 0 for
7 > 0. Hence (4.33) gives

ry(T)+arry(t—1)+.. . +apry(r—n)=0, T>m. (4.35)

The use of (4.29)—(4.35) to derive the autocovariance function is illustrated
next by applying them to a first-order ARMA process.

Ezample 4.5 Consider the ARMA process
y(t) +ay(t—1) =e(t) +ce(t—1), Ee(t)=1.
In this case n = 1, m = 1. Equation (4.35) gives
ry(T) +ary(r-1) =0, 7>1.
Using (4.33) for 7 = 0 and 1 gives
(1 a) (ry(o)) _ (1 c) ( Tey(0) )
al ry(1) )~ \c0) \rey(=1) )~
Now consider (4.34) for 7 = 0 and 1, which gives
(1) (i) =2 (2)
al) \rey(-1) c

By straightforward calculations, it is found that

Tey(0) = A2,
Tey(—1) = M(c—-a),
ry(0) = X (1+ ¢® — 2ac)
1-a? ’

2
r(1) = 12 (e~ a)(1 ~ ac),

and finally:
2

T—zlc-al- ac)(-a)™"t, T>1.

ry(T) =
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The expression above for r,(0) coincides with the former results for the vari-
ance in Example 4.2. a

4.3 Spectral Factorization
We now discuss how the concept of spectral factorization applies for complex-

valued processes. Its role is instrumental in deriving (parametric) time-
domain models from a spectrum representation.

4.3.1 Transfer Function Models

The key tool for the analysis will be Lemma 4.6 in Section 4.A. The lemma
is applied to finite-order spectra in the following theorem.

Theorem 4.1 Let ¢(z) be a scalar spectrum that is rational in z, that is it
can be written as

Brz*
6(2) = Z—‘k@——g . (4.36)
2lkj<n k%
Then there are two polynomials:
AR)=2"+a12" 1+ ... +ay,
Clz)=z"4+cz2™ + .. . +em, (4.37)
and a positive real number X\? so that
(i) A(z) has all zeros inside the unit circle,
(i) C(z) has all zeros inside or on the unit circle,
C(z) €
(143) =2 Z > ) 4.38)
¢(Z) A(Z) A*(zv*) (

In the case where (') > 0, YV w, C(z) will have no zeros on the circle.

Proof The statement is immediate from Lemma 4.6. [ |

Remark 1 Any continuous spectrum can be arbitrarily well approximated
by a rational function in 2z as in (4.36), provided that m and n are appro-
priately chosen. Hence, the assumptions of the theorem are not restrictive,
but the results are applicable, at least with a small approximation error, to
a very wide class of stochastic processes. O



72 4. Analysis

Remark 2 An important implication of Theorem 4.1 is that (as far as second-
order moments are concerned) the underlying stochastic process can be re-
garded as generated by filtering white noise, that is as the ARMA process

A(gy(t) = C(q)e(t) ,
E e(tgeg(t) = /\2? : (4.39)

This means, in particular, that for describing stochastic processes (as long
as they have a rational spectral density), it is no restriction to assume the
input signal to be white noise. It thus also gives a rationale for the state
space model in (4.5) and the assumption that v(t) and e(t) are white noise
sequences therein. Note that any linear state space model driven by corre-
lated noise can be converted into the form of (4.5) by introducing additional
state variables. In the representation in (4.39), the sequence {e(t)} is called
the output innovations. a

Remark 3 Spectral factorization can also be viewed as a form of aggregation
of noise sources. Assume, for example, that an ARMA process

A(g)z(t) = Clg)u(t) (4.40)
is observed in measurement noise
y(t) = =(t) +e(t) (4.41)

and that v(t) and e(t) are uncorrelated white noise sequences of zero mean
and variances A2 and A2 respectively. As far as the second-order properties
(such as the spectrum or the covariance function) are concerned, y(¢) can be
viewed as generated from one single noise source as

A(g)y(t) = D(q)e() - (4.42)

The polynomial D and the noise variance A are derived as follows. The
spectrum is, according to (4.40) and (4.41):

_ 3 CE)C ()

M\EJ N\ T 2
Y A(2)A*(z7) e

by (2) = ¢2(2) + ¢e(2)
while (4.42) gives

0(0) =B
Equating these two expressions gives
M D(2)D*(z7*) = X2C(2)C* (27*) + M2 A(2)A* (7). (4.43)
The two representations given by (4.40) and (4.41), and by (4.42) of the
processes y(t), are displayed schematically in Figure 4.2. |

Remark 4 The theorem can be extended to the multivariable case. Assume
that the spectral density ¢(e'*) is rational and nonsingular. Then there is
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e(t)
v(t) Clg) | =@ y(t) e(t) D(g) | w(®)
Ag) Alg)

Fig. 4.2. Two representations of an ARMA process with noisy observations

a finite-dimensional filter H(g) and a Hermitian positive definite matrix A,
such that H(q) and H!(q) are asymptotically stable, H(oco) = I, and

P(e) = H(eW)AH*(elv) . (4.44)

The condition H (oco) = I simply corresponds in the scalar case to the condi-
tion that A(z) and C(z) in (4.37) are monic polynomials, that is they have
a leading coefficient equal to one. a

FEzxample 4.6 As an illustration of the spectral factorization considered in
Remark 3 above, consider an AR(2) process observed in some additional
noise. In this case we take

Alg) =14ag7" +aq?,
with
a1 =-15, a;=08.
The measurements can be described as an ARMA(2,2) model; see (4.42):

y(t) = flg:]))e(t) ‘ (4.45)
Now set
S =222,

The value of S describes the amount of measurement noise. The zeros of the
ARMA process in (4.45) varies from the origin when S = 0 to the positions
of the zeros of A(2) (in this case more precisely to z = 0.75+10.487) when S
tends to infinity. How the zero locations vary with S are displayed in Figure
4.3.

The spectral density of y(¢) is, of course, also influenced by S. When S
is close to zero, y(t) is (almost) the AR process 1/A(g~1)v(t), which has a
high peak in its spectrum. On the other hand, when S tends to infinity, y(t)
becomes more and more like white noise with a flat spectrum. The spectral
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10’ o
(a)
1 10°
S=0o
0.5 /e
§=0 »
0 10
-2
10}
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-1 0 1
-3
10 :
0 2 4

w

Fig. 4.8. (a) Zero locations for the ARMA process given by (4.45), as a function

of the parameter S. (b) Normalized spectral densities, ¢(e')/¢(1), for some values
of §

density is displayed in part Figure 4.3 (b) for a few S values. To facilitate
comparisons, the normalized spectral density, ¢(e!*)/¢(1) is plotted versus
the angular frequency w. It is clear that the spectral density gradually be-
comes increasingly flat as the amount of measurement noise increases.

4.3.2 State Space Models
For state space models, the following result holds.

Theorem 4.2 Consider the asymptotically stable system

z(t+1) = Fz(t) + v(t) ,
y(t) = Hz(t) +e(d),

where {v(t)}, {e(t)} are zero mean white noise sequences with

v(t) . . _( B1 Rao
E (e(t)) (v*(s) e*(s)) = (R21 R ) Ot - (4.47)
Assume that P is a Hermitian, positive definite solution to the algebraic
Riccati equation (ARE):

(4.46)



4.3 Spectral Factorization 75

P:FPF*+R1—(FPH*+R12) (448)
X(HPH* +R2)—1(HPF* + R21) .
Set
H()=I+H(gI-F)'K, A=HPH*+R,, (4.49)
where
K = (FPH* + Ry5)(HPH" + Ry)™!. (4.50)
Then
(i) H(oo) =1 and H(q) is asymptotically stable.
(i) HYq)=I-H( -F+KH)'K . (4.51)
(41) H~1(q) is stable.
(iv) oy(2) = H(z2)AH*(27*) . (4.52)

Proof Part (i) is trivial by construction of H(q). Equation (4.51) for H~1(q)
is verified by direct multiplication:
H(q)x[I-H(qgl - F+ KH) 'K]
=I+H(gl-F)'K-H(ql -F+KH)"'K
~H(gl-F)'KH(ql -F+KH)'K
=I+H(ql-F)'[(¢gl - F+KH)~ (g - F) - (KH)]
x(ql -F+KH) 'K
=1I.

In order to prove (iii), it must be shown that F — K H has all eigenvalues
inside (or on) the unit circle. For this purpose, consider the system

2t+1) = (F - KH)*2(t), (4.53)

and prove that it is stable by using the Lyapunov function V(z) = z*Pz.
Obviously, V(z) > 0 with equality if and only if z = 0.
If it can be proved that

AV() 2V (2(t +1)) — V(2(2))
is nonpositive (AV(t) < 0), then it follows that V(¢) is nonincreasing, and
V(z(t)) < V(2(0)) .
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One can then conclude that

I 2(t) I< C || 2(0) |
for some constant C. [In fact, the tightest C is the condition number of P,
C = Amax(P)/Amin(P).] Hence the system in (4.51) is stable.

When AV (t) < 0, it holds that V' (z(t)) is monotonically decreasing and
bounded from below. Hence V(z(t)) is then convergent. If it further can
be shown that the limit is V = 0 (or equivalently, lim; . 2(t) = 0), we
have established asymptotic stability. (A sufficient condition would be that
AV (t) = —2*(t)Qz(t) with @ positive definite.)

Straightforward calculation gives

AV(t) =2*(t)[(F — KH)P(F — KH)* — PJz(t) . (4.54)
However, using (4.48):
(F - KH)P(F — KH)* - P = FPF* — KHPF* — FPH*K*
+KHPH*K* — P

— _R, + K(HPH" + Ry))K* —- KHPF* — FPH*K* + KHPH*K*

= —-R; + KQHPH" + R;)K* — K[(HPH" + Ry)K"* — Ry
~[K(HPH* + Ry) — Rys]K*

= —R; — KRy K™ + KRy1 + Ri12 K™

- (I -K) ( }12%211 };1;) (_ﬁ{) <0. (4.55)

Hence V(z(t)) is nonincreasing with time, which proves stability.
Consider, finally, part (iv). Straightforward calculation gives,

8,(2) — H(z) AH* (™)
= H(zI — F)"\R,(z*I = F)~*H* + Ry + H(zI — F)"' Ry

+Ro1(z~*T — F)~*H* — A — H(zI - F)"'K A

—AK*(z~*I = F)~*H* — H(zI - F)'KAK*(z~*I — F)~*H*
= H(zI ~F)"Y Ry — (21 - F)P(z=*I - F)* - FP(z™*I - F)*
(2] — F)PF* — KAK*|(z~*I — F)~*H*
= H(zI - F)"'[R, — P — FPF* + FPF* + FPF* - KAK*]
X(z7*I — F)~*H*
0.

]

Remark 1 The theorem implies that (as far as second order moments are
concerned) the output can be represented equivalently as

y(t) = H(@)y(t) , EgH)g (s) = Ao, - (4.56)

The white noise sequence {§(t)} are the (output) innovations. They appear as
the sequence {e(t)} in (4.39). A state space representation of (4.56) is readily
found:
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$0(t +1) = Fl’o(t) + Kg](t) ,
y(t) = Hao(t) +9(¢) -
Both forms, (4.56) and (4.57), are called the innovations form or innovations

representation. The states zo(t) can be shown to be the optimal one-step
prediction of the original states. Compare Section 6.4. m]

(4.57)

Remark 2 It can be proved that the Riccati equation has at most one positive
definite solution. See Exercise 6.11. Sometimes it has additional nonnegative
definite solutions. If no positive definite solution exists, the innovations form
will often be found by taking the “largest” nonnegative definite solution.
More precisely, denote the solution to the Riccati equation that corresponds
to the innovation form by P.. Then, for any other symmetric solution P to
the Riccati equation, it holds that

FP,—-P>0 (4.58)
meaning that P, — P is nonnegative definite. See Exercise 4.25 for an illus-
tration. O

Remark 3 Note that it is a consequence of (4.51) that the zeros of the in-
novations form are given by the eigenvalues of F — KH. O

Corollary Let the assumptions of the theorem be satisfied. Assume further
that Ry is positive definite, and introduce

F:F—RlzRng,

~ 4.59
Ry = Ry — R2R; 'Ry (4.59)

and factorize the matrix Rl as

R, = BB*. (4.60)

Assume that the pair (F, B) to be stabilizable. Then the filter H~1(q), (4.51),
is asymptotically stable.

Proof The result follows if the following implication
AV(t) =0 Vt = 2(t)=0 Vi,
can be proved. Here we get from (4.54) and (4.55):
AV (t) = 2*(t)[(F — KH)P(F — KH)* — P]z(t)
= —2"(t)[R1 — KRy1 — R12K* + KRy K*)2(t)
= —2*(t)[BB* + R12R; 'Ra1 — KRay ~ RioK* + KRyK*)2(t)
=~ || B*2(t) || ~2*(t)[K — Ri2R; " |Ro[K ~ RiaR7']"2(t) -
Hence,

_ B*2(1)
avin=0 = {(K—Rngl)*z(n

I

0
0 (4.61)



78 4. Analysis

As (F, B) is stabilizable, there exists some feedback L such that F2F-BL
has all eigenvalues strictly inside the unit circle. The dynamics of the system
in (4.53) become
z2(t+1) = (F - KH)*2(t)

=[(F + Ri2R;'H)* — H*K*)2(t)

= [F* + H*R;'Ry; — H*R; ' Ray]2(t)

= F*2(t)

= [F + BL]*z(t)

=F2),
which is asymptotically stable. Note that in the above calculations we used
(4.59) and (4.61). Hence the only possible limit point is z = 0, which proves
asymptotic stability of (4.51) and (4.53). [

Remark 1 As F' was considered asymptotically stable in Theorem 4.2, in
the case B2 = 0 it directly holds that (F, B) is stabilizable. a

Remark 2 The stability result of the corollary can be extended to unsta-
ble systems (F not necessarily asymptotically stable). The condition (F, B)
being stabilizable essentially means that all unstable modes of the system in
(4.46) must be controllable from the “input” v(t). O

4.3.3 An Example

As an illustration, a simple spectral factorization problem will be solved using
both the transfer function approach and the state space approach.

Reconsider Example 3.3, but now start with the spectral density (a,b
being real-valued)

¢(e) =1+ a® + b* + 2acosw + 2bsinw .

Introducing ¢ = a + ib, it can also be written as
$(e) = [1+ ¢ +pe ™ + pe] .

The transfer function approach is now used to find ¢ and A?, such that
1+ 9P+ pe ™ + Felv = X2(e“ +¢)(e™ +7)

subject to

¢ complex, || <1,
A2 real, A >0.

Equating the powers of e gives the following two equations:
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1+ ¢g = XN(1+c2),
p=Nec.

There are two solutions.

Solution 1 ¢ = ¢, A\* = 1. This solution is the one sought, provided that
ol < 1.

Solution 2 ¢ = 1/, A? = ip. This solution is the one sought, if || > 1.

Note that the two solutions correspond to reflected zero positions. The
zero in the first case is 21 = —¢, whereas in the second itis z, = —1/¢ = 1/Z;.

Next, consider the state space approach and choose first to represent the
system as

st +1) = (g;) 2(t) + o(t)

y(t) = (1 0)z(t),

19"
E v(t)v*(s) = 105 -
w6 = (7)o
It is straightforward to verify that y(t) will then have the given spectral
density. Let the ARE have a solution

P= (’E””) .
D12 P22

(Note that p;; and pyo are real.) Writing the Riccati equation explicitly:

<P11p12> _ (01) (pu plz) (0 0) + (1 @)

D12 P22 00 D12 p22 10 » PP

_ (01 P11 P12 1 -1 P11 P12 00
(00> (mmz) (0) ()1 0) <I7_15P22> (1 0) '

Evaluating the various matrix elements gives the following equations:

Element 11:  pj1 = pea + 1 — p12P12/p11
Element 12: p;2, =7,
Element 21: P2 =g,
Element 22: pg2 = ¢,
which gives
pi1 =1+ ¢p— Lid )
P11

with the two solutions p;; = 1 and p;1 = ¢@. Thus it is found that the
corresponding matrices are



80 4. Analysis

PM = (;;;) = (;) 19,

p@ — <<P¢ [ ) .
© ¥P
It is easy to verify that P(1) is positive semidefinite. The matrix P?) is posi-
tive definite if || > 1, indefinite if || < 1 and coincides with P(1) if || = 1.

The solution sought is therefore given by P(!) for || < 1 and by P® for
|o| > 1. Next, compute the corresponding values of K, H(q) and A.

Case 1 |p| < 1. Simple calculations give

_ (P/pun _
- ()-(0).
H(g=1+(1 0)(3‘;) (‘6’)=1+<pq—1, A=py;=1.

Case 2 |p| > 1. By similar means:

(%))
H(q)=1+%q‘1,

A=pn=yp.

Note that the solution is, of course, the same as the one previously ob-
tained using the transfer function approach. Also, note that for the case where
|¢| < 1, no positive definite solution exists for the Riccati equation but that
the (only) nonnegative definite solution leads to the correct innovations form.

4.4 Continuous-time Models

This section illustrates how some of the properties of discrete-time stochas-
tic systems appear in analogue form for continuous-time models. However,
some mathematical problems occur as well. White noise leads to considerable
difficulties that must be solved in a mathematically rigorous way.

4.4.1 Covariance Function and Spectra

In continuous time, the covariance function of a process y(t) is still defined
as (compare (3.18)):

r(r) =Eyt+7)y*@#), (4.62)

assuming for simplicity that y(t) has zero mean. The spectrum will now be
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o(s) = / r(r)e™*"dr, (4.63)
—o0
and the spectral density will be
B(iw) = / r(r)e T dr . (4.64)

The inverse relation to (4.63) is

/ é(s)e’" ds (4.65)

where integration is along the whole imaginary axis. One can therefore alter-
natively write

=1 / " P(iw) e dw . (4.66)
2n J_o

By setting 7 = 0 in (4.66), the usual interpretation is obtained: the spectral
density describes how the variance or power is distributed over the frequency
range.

The positive real part of the spectrum is defined as

3(s) = / r(r)e=T dr . (4.67)
0
It is thus precisely the ordinary Laplace transform of the covariance function.

The continuous-time variant of the results of Lemma 3.2 is as follows:

o ¢ (s) = 6(-3).

e ¢(iw) is nonnegative definite.

e The diagonal elements of ¢(iw) are real-valued and positive.

e In the scalar case ¢(iw) = ¢(—iw) if and only if the real and imaginary
parts of the process are uncorrelated.

o 62,(5) = Gue(—5).
o 6(s) = B(s) + 6" (~3).

4.4.2 Spectral Factorization

Consider a stationary stochastic process described by a spectral density ¢(iw)
that is a rational function of iw. For simplicity, assume that the process is
scalar and real-valued. Then, by pure analogy with the discrete-time case
(Theorem 4.1), it is found that

B(iw)B(~iw)
A(iw)A(~iw) ’

where the polynomials

#liw) = (4.68)
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Ap)=p"+ap" 1 +...+ay,,

B(p) = bip" '+ ...+ by, (4.69)

have all zeros in the left half plane (i.e. in the stability area). Here p is an
arbitrary polynomial argument, but it will subsequently denote the differen-
tiation operator (py(t) = y(t)).

The effect of filtering a stationary process, say u(t), with an asymptoti-
cally stable filter, say H(p), can be easily phrased using the spectra. Let the
filtering be described by

y(t) = H(p)u(?) . (4.70)
Then

¢y(3) = H(s)¢u(s)H*(-3) , (4.71)

again paralleling the discrete-time case (Lemma 4.1). As a consequence, one
can interpret any process with a rational spectral density given by (4.68) as
having been generated by filtering as in (4.70) by using

H(p) = 2@ (4.72)

A(p)

The signal u(t) would then have a constant spectral density, ¢, (iw) = 1. As
for the discrete-time case, such a process is called white noise.

4.4.3 White Noise

From (4.66) it can immediately be seen that white noise, if meaningful at all,
leads to mathematical difficulties. For such a case, it must follow that

r(0)=i/_oo¢(iw)x1dw=%/joldw:oo. (4.73)

Continuous-time white noise thus has infinite variance. Generalizing the
discrete-time case, one would also expect white noise to be uncorrelated for
different time arguments, which would require

r(r)=0, T#0. (4.74)

In attempting to comply with the requirements of (4.73) and (4.74), it is
necessary to step outside the space of integrable functions and use distribu-
tions (generalized functions) instead. As an attempt, let

r(r) = rod(7) , (4.75)
where §(7) is Dirac’s é-function. Then (4.63) gives

o(s) = /oo rod(r) e dr

-0

= 7"0 , (4.76)
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which has the desired form (i.e. it is constant as a function of s).

For practical purposes, with some care in the calculations, one can use
the concept of continuous-time white noise and proceed as one would expect.
To be more stringent, though, note that it is far from trivial that differential
equations such as

y(t) = ];’I%e(t) , (.17)
that is
A)y(t) = Belt) | (4.78)

where e(t) is white noise, have reasonable meaning or well-defined solutions.
Those who are mathematically inclined often choose to cope with this prob-
lem by using Wiener processes, which can be regarded as integrated white
noise.

4.4.4 Wiener Processes

Introduce, in a heuristic way, an integrated white noise process for ¢ > 0:

t
w(t) :/ e(s)ds, (4.79)
0
where e(t) is assumed to have zero mean and covariance function 7¢6(7).

Remark Note that the discrete-time correspondence to a Wiener process is
a random walk process y(t) given by y(0) = 0, and

y(®) =yt -1 +0(t)

=) (s, (4.80)

s=1

where {v(s)} is discrete-time white noise. O

Some properties of Wiener processes are now analyzed. In a stringent
analysis it is necessary to establish that the integral is well defined and that
integration and expectation can commute. A more heuristic analysis is per-
formed here.

First note that, by its construction, increments of a Wiener process over
disjoint intervals are uncorrelated. If t; < to < t3 < t4 it is obvious that

w(ts) — w(ts) = / ' e(s)ds

t3

and

w(ty) —w(ty) = /t ’ e(s)ds
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are uncorrelated.
Next consider the covariance function of w(t). The Wiener process is not
a stationary process. Let 7 > 0,t > 0. Then

rt+7,t) = BEw(t +7)w*(t)
=E[w(t+7) - w(t) + w(t)w" ()
= Ew(t)w"(t)

¢ ¢
=E/ e(s')ds'/ e*(s")ds"
0 0
¢t ot
=/ / Ee(s')e*(s")ds' ds"
0 Jo
t ot
=/ / r06(s' — s")ds' ds"
0 Jo
t
=/ rods
0

= 1ot . (4.81)
In particular:
E [w(t + At) — w(t)][w(t + At) — w(t)]*
= Ew(t + At)w*(t + At) — Ew(t + At)w*(t)
—E w(t)w*(t + At) + E w(t)w*(¢)
= ro(t + At) — rot — rot + rot = roAt . (4.82)
In the limiting case, this can be written as
E dwdw* =rodt. (4.83)
It can be stated informally that white noise is the derivative of a Wiener
process:
dw(t
cf. (4.79).

(4.84)

4.4.5 State Space Models

Differential equation models with white noise e as input can be written in
state space form as

&= Az + Be. (4.85)

In a more stringent analysis, (4.85) is “multiplied by” dt¢ and written in the
form
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dz = Azdt + Bdw, (4.86)

which is called a stochastic differential equation. Here dw = e dt is the incre-
ment of a Wiener process w(t).

For practical use, the more intuitive form, (4.85), can be used. Forms
where the white noise term appears under an integral sign are “safer” to use
than others.

Next, the covariance function of z(t) in (4.85) is examined in order to
find the continuous-time correspondence to Lemma 4.2. The solution to the
differential equation in (4.85) can be written in the usual way:

i
2(t) = A0 5(10) + / eAt=%) Be(s) ds . (487)

to

Assume that e has covariance function Rod(7). Assume, further, that the
initial state x(t9) has zero mean and covariance matrix Py and is independent
of e(s). It is easily found that z(t) has zero mean:

t
E z(t) = et E z(ty) + / e(t=9) BEe(s)ds =0 . (4.88)
to

The covariance matrix of z(t), say P(t), can be evaluated as follows. The two
terms in (4.87) are apparently uncorrelated. Therefore,

P(t) = Ex(t)z" (t) = eA(7%) P(tg) e (*=10)

¢ ¢

+E [/ eA(t=5) Be(s') ds'][/ e4(t=5") Be(s") ds"]*
to tO

— eA(t—to) P(to) eA'(t—to)

t gt
+/ / eA(t~s’) BRo(s(Sl _ SII)B* eA"(t—s”) ds' ds"”
tg Jtg
— eA(t-—to) P(t()) eA*(t~t0)
¢
+ / eA(t=3) BRyB*eA"(:"9) ds . (4.89)
to
By straightforward differentiation of (4.89), it is found that P(t) satisfies the
differential equation (of Lyapunov type)
P(t) = AP(t) + P(t)A* + BRyB* . (4.90)

Assume that A is asymptotically stable. It follows that, in the limit as
t — to — 00, the covariance matrix P is the unique (and nonnegative defi-
nite) solution to

0= AP + PA* + BRyB* . (4.91)

This is a continuous-time Lyapunov equation.
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Note from (4.89) that P can also be represented in the integral form, cf.
(4.24):

t
P= / (=) BRyB*e*" (t7%) ds
—00

o0
= / e BRyB* et dt . (4.92)
0

It is also possible to evaluate the covariance function of z(t). Let 7 > 0. Then

Ry(t+7,t) =Exz(t+7)z*(t)
t+7
=E [eAT z(t) +/ eAlt+7-9) Be(s) ds| £* (1)
¢

= el P(t). (4.93)

Hence z(t) is a stationary process when t3 — —-occ. Its spectral density can
be found by applying the definition to the equation (4.93) for R(7). It can
also be derived more simply by noting that

z(t) = [pI — A]"'Be(t) , (4.94)
giving, with (4.71):
b:(s) = [sI — A| "' BRyB*[—3I — A]™*. (4.95)

Finally, note that (in the stationary case) the covariance function R(7) satis-
fies the Yule-Walker equation, that is R(7) satisfies the following differential
equation:

(P"+aip" ' +...+a)R(r) =0, 71>0, (4.96)
where
p" +apVt +...+a, =det(p] — A) =0 (4.97)

is the characteristic equation of the matrix A.
This follows from the Cayley-Hamilton theorem (which states that every
square matrix satisfies its own characteristic equation):

(P"+ar1p” ...+ a)R(T) =@  +ap" 4+ ... +a,) e P
= (A" +a AV + .. +a,)ed P
=0. (4.98)

4.5 Sampling Stochastic Models

4.5.1 Introduction

There are many interesting features in sampling a stochastic process. Note
that, in this form of sampling, only the output values at the sampling events
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are used. The output values have, of course, the same statistical properties
before and after sampling. Hence, the output covariance function must be
retained. This form of sampling differs from sampling a deterministic control
system, in which case the sampling is characterized by the input being kept
constant over the sampling intervals. As a side comment, recall that in filter
design still another form of sampling is used, namely approzimation of the
continuous-time frequency function. There is no unique way in which such
an approximation must be performed. Also note that some further results on
sampling will appear in Section 4.8.4.

4.5.2 State Space Models

Consider a continuous-time model
t=Az+v, (4.99)

where v is white noise with covariance function r,(7) = R.4(7). Now sample
this process by considering it for times ¢t = 0,h,2h,.... Then (k being an
integer)

z(kh + h)

kh+h
Ah g (kh) + / eAlkh+h=3) 4 (5) ds
kh

Fa(kh) + e(kh) , (4.100)

He

where
F = eAh
e(kh) = fkh+h A(kh+h=s) 4(g) ds .

By its construction, it follows that e(kh) is (discrete-time) white noise. Note
that (4.100) is therefore a standard discrete-time stochastic state space model.
When dealing exclusively with discrete-time models, the time scale is usually
normalized by using the sampling interval as the time unit. This would imply
that, in such a case, (4.100) can be rewritten in the simplified form

z(k + 1) = Fa(k) + e(k) . (4.102)

In order to emphasize the relation to continuous time, it may be useful to
keep the notation h explicitly in the time argument.

The covariance matrix of the white noise sequence e(kh) in (4.101) can
be evaluated as follows:

Ry 2 Ee(kh)e*(kh)

kh+h pkh+h , . N
/ / A(kh+h—s ) ’U(SI)’U*(S”) eA (kht+h—s )dsl ds"
kh kh

(4.101)

kh+h pkh+h , . .
/ / A(kh+h—s ) RC(S(S’ _ S”) e (kh+h—s )dsl ds"
kh kh
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kh+h .
_ / Alkhth—s) p o A°(kh+h—s) 4
kh

h
= / e4* R.e? "% ds . (4.103)
0

Remark. Note that even if R, is singular (say of rank 1), the covariance
matrix Ry of the sampled noise process will mostly (say, generically) be non-
singular (and hence positive definite). O

4.5.3 Aliasing

In this section, the aliasing or folding effect when sampling a continuous-time
stochastic process is investigated.

Consider a continuous-time process with covariance function r(7) and
spectral density

¢e(iw) = / ” r(r)e ™ dr . (4.104)
Then
r(r) = 21—“ /_ o:o e (iw) ™ dw . (4.105)

Now sample this signal. The covariance sequence is then
re =r(kh), k=0,%1,...

and the associated discrete-time spectral density is

o0
$a(€“?)=h Y rpeh (4.106)
k=—00
which is defined for |w| < 7/h.
Next derive a relation between ¢. and ¢q. The key tool is Lemma 4.7,
given in Section 4.A.

This gives
. st .
¢d(e1wh) =h Z r(kh) e ikwh
k=—o00
_i = —ikwh oo oo ikhw' 1
= Z e de(iw') e dw
k=—o00 -
h [ s = —ik(w—w')h !
= 5;/ Pe(iw') Z e dw
- k=—o00

00 00
= %/ dc(iw')2n Z d(w'h — wh - 2nj) du'

i=—00
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/ pe(iw') Z 5(w —w———y) dw',

j=—00

and, in final form:

(hy Z ¢C< (Wt h)> (4.107)

]“OO

The geometric interpretation of this result is that the spectral density is
folded at w = i%ﬂ, +4% . into the interval (—n/h,n/h) and that all con-
tributions are added.

Remark Equation (4.107) also illustrates the sampling theorem. Assume
that the signal has no energy above the Nyquist frequency wy = n/h. Then
¢c(iw) will vanish as soon as |w| > wn, and (4.107) simplifies to

$a(€") = ge(iw) - (4.108)

Under such circumstances, it seems plausible that there is “no loss of in-
formation” due to the sampling. In fact, one can prove (and this is what
Shannon’s sampling theorem is about) that for such a band-limited signal
one can reconstruct its value at any time from the discrete-time measure-
ment {y(kh)}32 _ . The reconstruction happens to be given by

sin rti=kh
Z £ (k) — k;; : (4.109)

k=—

O

Ezxzample 4.7 Consider a first-order model given by

(p +a)y(t) = av(t)
where v(t) is white noise with covariance function §(t). Its continuous-time
spectral density is readily obtained from (4.71):

a2

e(iw) = ra
The sampled form of y(t) is readily obtained from (4.100) and (4.101) as
y(kh + ) — e %hy(kh) = e(kh) ,

where the discrete-time white noise e(kh) has variance

E 2(kh) = A2 %(l—e_%h).

The discrete-time spectral density is
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18—
ST e} ]
-]

s 14l h=3/a 1
3 |
312 h=25/a
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Fig. 4.4. F‘re%uency foldmg when sampling a stochastic process with spectral den-
sity dc(w) = a/(w®+a?). The solid line shows ¢.(w); the dotted lines show ¢q(e'")
for some different sampling intervals h

Ah ah 1—e 2k
iwhy _ _ — < —.
$a(€) eiwh —e—ah|2 2 14 e-20h — 2e=chcoswh ’ wl < h

By straightforward calculation, it can be shown that for fixed w, ¢q(e'“*) de-
creases monotonously to ¢.(iw) as h tends to zero. The relation between the
continuous-time and discrete-time spectral densities is illustrated in Figure
44. O

4.6 The Positive Real Part of the Spectrum

In this section, it will be shown how the positive real part of the spectrum
can be conveniently found for finite-order models. The relations derived can
be used for algorithmic purposes, as explained in Section 4.8. The case of
real-valued processes is considered.

4.6.1 ARMA Processes

A detailed analysis of ¢(z) for ARMA processes will be useful. The following
lemma turns out to be useful.
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Lemma 4.3 Consider the identity

MNC(2)C(z~") = D(2)A(z~Y) + A(2)D(z7) (4.110)

where
Az) = 2"+ a2 + ... +a,,
Clz)=2"+c12" 1 +... +en, (4.111)
D(z) =do2™ +di 2" '+ ... +d, .

Assume that the polynomial A(z) is known and has all zeros strictly inside
the unit circle.

(i) Assume that X2 and C(z) are given. Then there exists a unique D(z)
satisfying (4.110).

(ii) Assume that D(z) is given. Then there are A2 and C(z) satisfying
(4.110), if and only if D(z)/A(z) is positive real, that is:

D(e™)

A(elw) —

If (4.112) is satisfied, C(2) can be chosen with all zeros inside or on the

unst circle. If strict inequality holds in (4.112), then C(z) can be chosen
with all zeros strictly inside the unit circle.

Re Yw . (4.112)

Remark Equation (4.110) is an example of a Diophantine equation (in poly-
nomials). Diophantine equations are generally of the form

A(z2)X(2) + B(2)Y (z) = C(2) , (4.113)

where A(z), B(z), C(z) are given polynomials of z, and X(z) and Y (2) are
unknown polynomials. In order to obtain a solution, one must require that
A(z) and B(z) are coprime (or that a common factor also appears in C(z);
in such a case, it can be cancelled) and that X (z) and Y (z) are allowed to
have appropriate degrees. Diophantine equations of such a form also appear
very naturally in polynomial pole placement of control systems. They will
appear repeatedly in simplified form in this book in the treatment of predic-
tion problems. m|

Proof Consider first part (i). Note that (4.110) is a Diophantine equation,
but with some symmetry constraints. The key property to use is that A(z) and
A(z™1) are coprime. More specifically, the identity can easily be reformulated

as a system of linear equations in the unknowns dy, ... ,d,. Hence a unique
solution exists if and only if
D(z)A(z7Y) + A(2)D(z71) =0 (4.114)

implies D(z) = 0. However, (4.114) easily gives
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D(2)A(z"Y) = —A(z)D(z7Y) .

Noting that both sides must have the same zeros and that A(z) and A(z71)
do not have any common zero, it follows that D(z) must be a multiple of A(z).
However, inserting D(z) = aA(2) into (4.114) gives 2aA(2)A(z ) = 0, from
which it is concluded that @ = 0 and D(z) = 0.

The proof of part (ii) relies on spectral factorization. Clearly, solutions
with respect to A% and C(z) exist if and only if

D(e“)A(e™“) + A(e“)D(e™ ) >0, Vw.
After division by A(e'“)A(e™%), this is written equivalently as

1w —lw 1w

o< D) | DET™) _ op, D)

A(elw) A(e-—lw) A(elw)

Hence, it has been proved that (4.112) is a necessary and sufficient condition
for the existence of a solution. That C(z) can be chosen with all zeros inside
or on the unit circle (strictly inside if all inequalities are strict) follows from
the properties of spectral factorization. See Section 4.3. ]

Remark Note that the identity in (4.110) can be written as

pCRCET) _ D) | D). its)
ARARTY T AlR) AT
The situation dealt with in part (i) of the lemma can thus be interpreted as a
partial fraction decomposition. To be more precise, let A(z) have zeros {p;},
and assume them to be distinct and nonzero for simplicity. A partial fraction
decomposition of the left-hand side of (4.115) can then be written, using the
symmetry in the problem as

C(z)C( Bi
/\2A( A ,30+Z( —p1+2_1—p,'> .

It is possible to merge (/2 and the fractions with poles in {p;} as

The function ¢(z) can now be characterized. The result is formulated as
a lemma.

Lemma 4.4 Consider the ARMA process
A(q)y(t) = Clgle(t) . (4.116)
Then qg(z), the positive real part of the spectrum, as defined by (3.26), satisfies
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(4.117)

where D(z) is the solution of (4.110).

Proof The covariance function r(k) satisfies the Yule-Walker equations, see
Section 4.2.3:

r(k) +air(k—1)+...+apr(k—n)=0, k>n. (4.118)
Using the properties of z-transforms, this implies that

A(2)R(z) = Fo(2) ,

where
R(z) = Z r(k)z~F
k=0

is the z-transform of the covariance function and Fp(z) is a polynomial of
degree n that depends on the initial conditions of (4.118). Now, using (3.27):

AG)E) = AQ) [RE) - 5r0)] = Foe) - 3r004()

=F(z),
where F(z) is a polynomial of degree n. Using the relation in (3.35):
8(e) = (e + 8" () = 2Re G(e)
which gives
2 CE)C™) _ F() | Fle™)
A(e“)A(e™™)  Alev) A

or
MC(R)C(z™!) = F(2)A(z™Y) + F(z ) A(z) .
Hence, F'(z) is nothing other than D(z), ¢f. (4.110). This proves (4.117). ®

Remark 1 One can alternatively proceed as follows to prove Lemma 4.4.
Invoking Lemma 4.3, the spectrum of y(t) can be written as

2:C(x)0("Y) _ D) D)
AR)A(™Y)  A(z)  A(TYH
The series above can be viewed as a Laurent series. It will converge in a strip

including the unit circle.
However, the spectrum can also be written as (3.22)

P(z) = A (4.119)
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o) = 3 rin)en = [%T(O) +Zr(n)z—"]

i

#(2) + d(z71) .

which also converges on the unit circle. As the Laurent series expansion is
unique, it can be concluded that (4.117) is true. This idea is closely related
to the concepts of splitting a general filter into a causal and an anticausal
part, which will be discussed in Section 7.3.3. O

Remark 2 D(z)/A(z) is positive real. This is easy to see, since for any w

= Re §(e) = 29(6) > 0. 0

Ezample 4.8 For illustration, compute ¢(z) for a first-order ARMA process
yt) +ayt—1) =e(t) +cet—1), Ee(t)=2A2. (4.120)

First, to recapitulate from Example 4.5:
2

1—a?
2

r(r) = ﬁ(c —a)(l-ac)(-a)""t, 7T>1.

Direct use of Definition 3.12 now gives

#(z) = 0.5r7(0 Z

r(0) = (1+ ¢ - 2ac),

:51_a2(1+c — 2ac)
2 o0
+1—a2 c—a)( 1-acz n-l,-n
n=1
)\2

1—a? 1+az
RS
T 1-a2z+4a

1 . 27!
= [5(1+c - 2ac) + (¢ —a)(1 —ac)—_T]

[%(z +a)(14c —2ac) + (c—a)(1 - ac)] .
(4.121)
Next consider the identity in (4.110), which gives
Niz+e)(z7 +¢) = (doz+di) (27! +a) + (z+ a)(doz™! + dy) ,
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or, after equating the powers of z:

(@) (2)=("57)

with the solution

dp =

DO = DO
>
[N

dy =

By Lemma 4.4:

(Z)(Z) _ doz + dy

which coincides with the direct calculations above. 0

2

zZ+a

4.6.2 State Space Models

In this section, a standard state space model

z(t+1) = Fz(t) + v(t) ,
y(t) = Hz(t) + e(t)

is considered, where v(t) and e(t) are mutually independent, white noise
sequences of zero mean and covariances R; and R; respectively. A state space
representation of ¢~>(z), the positive real part of the spectrum, is sought. The
solution is given in the following lemma.

(4.122)

Lemma 4.5 Consider the system in (4.122). Then

#(z) =J+ H(zI - F)"'FPH* , (4.123)

where
J=(HPH" + Ry)/2, (4.124)
P = FPF* +R. (4.125)

Proof The proof is by direct verification. From (4.123), it is clear that ¢(z)
can be interpreted as a weighted sum of negative powers of z. By straight-
forward calculation

$(2) +¢*(z7)
=J+H(z2I-F)"'FPH* + J* + HPF*(:"'I - F*)"'H*
=J+J*+H(zI - F)"'[FP(z~'I — F*) + (2I — F)PF*]
x(z71 — F*)~1H*
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=Ry + H(2I - F) (2] - F)P(z" ' —~ F*) + FP(z"I - F*)
+(zI ~ F)PF*|(z"*I - F*)"'H*
=Ry + H(zI — F)"![P - FPF*|(z"I - F*)"'H*
=Ro+ H(zI - F) 'Ry (271 -~ F*) " 1H* = ¢(2) .
Referring to Lemma, 3.3, the proof is thus completed. | |
Remark 1 Note that (4.125) is the standard Lyapunov equation for de-
termining the state covariance matrix P. Furthermore, it can be seen that
2J =ry(0). o
Remark 2 Making a series expansion of (4.123):
#(z) = J+ H(zI - F)"'FPH*
=J+2'H(I-z'F)"'FPH*
=J+z'HY I F/FPH"

§=0

o0
=J+H)Y z*F*PH",
k=1
and, comparison with Definition 3.12:

3= 30 + 3 rl)
n=1

gives by identifying coefficients
r(0) =2J =HPH*+R,,
r(k) = HF*PH*, k>1,
which is perfectly in agreement with (4.20) and (4.21). O

Ezample 4.9 As an illustration, reconsider Example 4.8, but use the state
space formalism. First, represent the ARMA model

y(t) +ay(t—1) =e(t) +ce(t - 1)

in state space form as

z(t+1) = (—Oa (1)) z(t) + (i) v(t),
y(t) =1 0)=(t).

See Example 4.2. From that example, recall that
P /\2 (1ilci;2ac ¢ ) .

c c?
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Now, (4.124) implies
1 A 14 - 2ac
J—i(Puﬁ-O)—? B pEpTE

and (4.123) finally gives
-1
~ _ z4+a -1 -al
s =0 (*h ) (30)
y (1011 P12) (1>
D12 P22 0
1
= % + m(_apll + p12)

_ (P11/2)z 4 (—ap11/2 + p12)
z+a ’

As

2(1 - a?)
)\2

2(1 — a2)[

—ap11/2+p12 = [~a(1 + & - 2ac) + 2¢(1 — a?)]

2c —a —ac’],

it is finally seen that

TS (1+¢* —2ac)z + (2c — a — ac?)
¢(z) = 2(1 - a?) z+a ’

which is in agreement with the result of Example 4.8.

97

A related problem concerns the conditions under which a “state space

representation”

#(z) = J + H(zI - F)"'G

(4.126)

is positive real. In terms of stochastic systems, this would mean that q;(z)
is the positive real part of a spectrum. The answer to the above question is
given by the Kalman-Yakubovich lemma, also called the positive real lemma.
It states that ¢(z) is positive real if and only if there exists a positive definite

Hermitian matrix P and matrices L and W such that

P=F*PF+LL*,
F*PG = H* - LW ,
W*W = J + J* — G*PG .

(4.127)

It is straightforward to demonstrate sufficiency (the “if part”). Using (4.126):
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(z)+ ¢ (z ") =J+ H(zI - F)"'G + J* + G*(z~'I - F*)"'H*
=W*W +G*PG + (W*L* + G*PF)(2I — F)"'G+ G* (271 — F*)™!
x(F*PG + LW)
= [W*+G*(z 1 - F*)"'L|W + L*(2I - F)7'G]
+G*(z ' - F*) (27T — F*)P(2I — F) + (2 'I - F*)PF
+F*P(zI - F) - LL*|(zI - F)™'G
= [W*+G*(z7H - F*) L)W + L*(2I - F)"'G]
+G*(z7' [ - F*)"Y[P - F*PF — LL*|(zI - F)"'G
=[W +L*(z™*I - F)"'G]*"|W + L*(zI - F)"'@G],
which has the form of a spectrum in factorized form. For proofs of the neces-
sity of (4.127), see the literature, cited in the Bibliography section.
The condition in (4.127) can also be formulated as
P—-F*PF H*-F*PG (L
H-G*PF J+J*—-G*PG )~ \wW*
The left-hand side of (4.128) must thus be positive semidefinite. As an equa-
tion in P, this condition must have a positive definite solution.

)(U W)>0. (4.128)

4.6.3 Continuous-time Processes

Some results analogous to those in Section 4.6.1, but for (asymptotically
stable) continuous-time processes, will now be developed. Consider, therefore,
processes of the form

y(t) = —?—%e(t) ,

Bp) =bp" ' +...+ by, (4.129)
Fp)=p"+fip" ' +...+ fa,

with e(t) being continuous-time white noise, E e(t)e(s) = 6(t — s).
Let r(7) be the covariance function of y(t) and R(s) = ¢(s) its Laplace
transform; see (4.67). Noting that r(7) satisfies the Yule-Walker equation

(see (4.96))
"+ fp" T+ + fu)r(7) =0, (4.130)
it is found that

o(s) = R(s) = F5) (4.131)
for some polynomial
D(s)=dys" ' +... +d,, (4.132)

which accounts for the initial values of (4.130). Note that dy = 0 due to the
variance r(0) being finite. As explained in Section 4.4:
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d(iw) = ¢(iw) + d(—iw) = 2 Re @(iw) (4.133)
holds, which implies

Biw)B(~iw)  D(iw) + D(—iw)

F(iw)F(-iw) F(w) F(-iw)’
and finally:
B(s)B(—s) = D(s)F(—=s) + D(—s)F(s) . (4.134)

It is immediate from (4.133) that D(iw)/F(iw) is positive real.

4.7 Effect of Linear Filtering on the Bispectrum

This section deals with how the bispectrum is affected by linear filtering.
Some preliminary results are first established.

Gaussian processes

Let z(t) be zero mean Gaussian. Then
R(m,n) =0, B(z,22)=0. (4.135)

Non-Gaussian white noise

Let z(t) be non-Gaussian white noise, so that z(t) and x(s) are independent
fort # s, Ex(t) = 0, Ez?(t) = 02, E23(t) = 8. Then

R(m,n) = E z(t)z(t + m)z(t + n) = Bé(m,n) . (4.136)

Here the usual Kronecker delta notation has been extended, in the sense that

1, m=n=20,
§(m,n) = {0, elsewhere . (4.137)

The bispectrum becomes a constant:
B(Zl,ZQ) = [j . (4138)
Effect of linear filtering

After these preludes, consider now a linear, asymptotically stable filter of the
form

y(t) =Y heu(t— k), (4.139)
k=0
and set

H(z) = i hyz " (4.140)
k=0
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Both u(t) and y(t) are assumed to be scalar signals. Let u(t) be a station-
ary process with zero mean, third-moment sequence R,(m,n) and bispec-
trum B, (z1,22). The corresponding quantities R,(m,n) and By(21,2) for
the output y(t) are sought. By straightforward calculations

Ry(m,n) = Ey(t)y(t + m)y(t + n)
= Z Z Z hihihkE u(t — du(t +m — jlu(t +n — k)

i=0 j=0 k=0

= hihjhkRu(m+i—j,n+i—k),

[o o] o0
By(z1,22) = Z Z Ry(m,n)z; ™23 "

|
8
WK
M
WK
WK

= H(z7 25 V) H(21)H(22) Bu(21, 22) - (4.141)

The result in (4.141) is a generalization of (4.2), which applies for the usual
(second-order) spectrum. It is well known that the spectral density (the power
spectrum) does not carry information about the phase properties of a filter.
In contrast to this, phase properties can be recovered from the bispectrum
when it exists. This point is illustrated by a simple example.

Ezample 4.10 Let e(t) be non-Gaussian white noise with
Ee(t)=0, E&(t)=1, Ee(t)=8#0. (4.142)

Let @ and b be two real-valued parameters in the interval (—1,1) and consider
the following processes:

y1(t) = (1+ag™")(1 +bg ™ )e(t)
=e(t) + (a + b)e(t — 1) + abe(t — 2) . (4.143)

¥a(t) = (L+ag ) (b+ g Ve(t)
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= be(t) + (ab+ 1)e(t — 1) + ae(t - 2) . (4.144)

ys(t) = (a+ ¢ ) (b+q Ve(t)
=abe(t) + (a + be(t — 1) +e(t —2) . (4.145)
Note that y;(t) is obtained with a minimum-phase filter, y3(t) with a maxi-
mum-phase filter and y2(t) with a mixed-phase filter.

The power spectra for the three processes are identical, since they have
identical autocovariance functions. In fact:

4, (0) = 14 (@ +b)? + a®b* = 1+ a® + b* + 2ab + a®b? ,

Ty, (1) = (@ + b)(1 + ab) ,

Ty (2) = ab,

Ty, (7) =0 T>2.

7y, (0) = b% + (ab+ 1)> + a® =1, (0) ,
Ty (1) = (ab+1)(a +b) =71y, (1) ,

Tys (2) =ab=1ry(2),

Ty(7) =0, 7>2

74 (0) = @%b + (a+ b)> + 1 =1y, (0)
Ty (1) = (ab+ 1)(a+b) =1y, (1),

Tys (2) =ab= Ty (2) )

Tye(T) = T>2.

As yi(t), y2 (t), and y3(t) have identical covariance functions, their spectra
will coincide as well.

Next calculate the third-moment sequences for the processes and con-
sider only the nonzero elements of these sequences. In order to make the
calculations general, write the processes in the jointly valid form

y(t) = hoe(t) + hie(t — 1) + hoe(t — 2) ,

which covers all the three processes y;(t), y2(t), ys3(t). Note first that it is
sufficient to consider the elements R(m,n) with 0 < n <m < 2. This gives

R(0,0) = E 3(t 6[h0+h3+h]

R(1,0) = Ey(t+1) E[hoe t+ 1)+ hye(t) + hoe(t — 1)]
x [hoe(t) + hle(t — 1) + hae(t — 2)]

R(1,1) = Ey*(t + )y(t)
= Blh2ho + h3hi] ,
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Table 4.1. Third-moment sequence elements for some MA(2) models

R(m,n)/B v y2 Ys

m n (minimum-phase) (mixed-phase) (maximum-phase)

0 0 1+(a+b)?*+a’® P+ (ab+1)°+a® &P+ (a+b)>+1
1 0 (a+b)+abla+d)? b*(ab+1)+alab+1)* (a+b)a®b® + (a+b)®
1 1 (a+b)?+a’*(a+b) (ab+1)*b+a’*(ab+1) (a+b)%ab+ (a+bd)
2 0 ab ab? a’b?

2 1 ab(a +b) ab(1 + ab) ab{a + b)

2 2 a’v? a’b ab

R(2,0) = Ey(t +2)y*(t) = E [hoe(t + 2) + hae(t + 1) + hae(t)]
X[hoe(t) + hie(t — 1) + hge(t — 2)]2

= Bhoh} ,

R(2,1) =Ey(t+2)y(t+ 1)y(t)
= Bhahiho ,

R(2,2) = E¢(t + 2)y(t)
= Bh3hg .

When applying these calculations to the particular processes in (4.143)-
(4.145), the results shown in Table 4.1 are obtained.

Apparently, the three processes have different third-moment sequences,
and hence also different bispectra. O

One would expect that for a given process, the same type of filter repre-
sentation will appear for the power spectrum and for the bispectrum. This is
not so in general, as illustrated by the following example.

Ezample 4.11 Consider a process consisting of summing two independent and
real-valued AR processes

y(t) = -ﬁq—)e(t) + 0—255”“) , (4.146)

e(t) being Gaussian white noise and v(t) non-Gaussian white noise. Both
sequences are assumed to have unit variance, and E v3(t) = 1.

The Gaussian process will not contribute to the bispectrum. Further,
B,(z1,22) =1, and, according to (4.141), the bispectrum will be

By(21,22) = H(z; 'z, ') H(21)H (22) By (21, 22)
1 1 1
T OG5 O O (4147

S0

H(z) =1/C(2) (4.148)
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is the relevant filter representation as far as the bispectrum is concerned.
However, the power spectrum becomes

1 1

"= dmaE T emoE (4149
and in this case it will have a spectral factor of the form

H(z) = A—(:% ; (4.150)
where

B(z)B(z™!) = A(2)A(z7) + C(2)C(z7!) (4.151)
due to the spectral factorization. Clearly, the two filter representations of
(4.148) and (4.150) differ. O

4.8 Algorithms for Covariance Calculations and
Sampling

In this section some algorithms, most of which are based on the positive
real part of the spectrum, are given. They will be useful for determining the
covariance function. Another one can be used for sampling a continuous-time
model. In the last section, algorithms for solving the Lyapunov equation are
discussed. The case of real-valued processes is considered.

4.8.1 ARMA Covariance Function

Consider an ARMA process (scalar case)

A(q)y(t) = C(q)e(t) ,

B () = 3 (4.152)

and the problem of finding the covariance function (k) = E y(¢+k)y(2). It is
solved here by means of the positive real part of the spectrum. First compute
D(z) from (4.110):

MC(2)C(z7Y) = D(2)A(z7) + A(2)D(z7Y) . (4.153)
Then, by (4.117), (3.27) and (3.28):

#(z) = % = ;r(k)z"k + %T‘(O) : (4.154)

Setting z71 = 0 easily gives

do = r(0)/2 . (4.155)
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By multiplication in (4.154) by A(z):
(do2™ +d12" 4+ ... +dy) =do(2" + a12" 7 + ... +ay)

o0

+(z"+a12"  + ..+ an) Zr(k)z”k . (4.156)
k=1

By equating the different powers of z, the covariance elements are found as

7’(1) = d1 - d0a1 s
7’(2) = d2 - d0a2 - alr(l) 5

(4.157)
r(n) =dp — doan —a17(n — 1) —agr(n — 2)... —ap_17r(1),
and (the Yule-Walker equations!)
r(k)=-Y air(k—i), k>n. (4.158)
i=1

Alternatively, from (4.154) it can be seen that, except for k = 0, r(k) is
precisely the impulse response of the filter D(z)/A(z). This may be a more
convenient formulation of the relations in (4.157) for some forms of computer
implementation.

Ezample /.12 Consider a first-order ARMA process

y(t) +ay(t—1) =e(t) +ce(t—1), Ee(t)=x.
According to Example 4.8:
)\2

1
dy — = ——— 2_2
o 21_a(l-i-c ac) ,
1 A2
=> -2 _(2c—a-ac).
dq 21—a2(c a— ac”)

Therefore, from (4.155):

2
1-a?
Next, (4.157) implies that

r(0) =2dy = (1+ ¢ - 2ac) .

2

’I‘(l) = d1 —ado = 1i—

a2 (C - a)(]- - ac) )

and from (4.158) one finally obtains
2

1-—aq?

Recall that the same results were established in Example 4.5. O

r(k) = (—a)F 1 (c—a)(1 —ac) .
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4.8.2 ARMA Cross-Covariance Function

Consider the following situation. Assume that two (real-valued) ARMA pro-
cesses are given:

A(g)y(t) = B{qg)e(?) ,
Al =q¢"+mq" '+ .. +an, (4.159)
B(q) = bog™ +b1g" ' + ...+ b, ,
and
Clgw(t) = D(g)e(?) ,
Clg)=q"+c1q™ ' +...+cm, (4.160)
D(q) = doq™ + dig™ ' + ...+ dpy -

Assume that e(t) is the same in (4.159) and (4.160) and that it is white noise
of zero mean and unit variance. Find the covariance elements

r(k) =Ey(t + kw(t) (4.161)

for a number of arguments k. The cross-covariance function r(k) is related
to the cross-spectrum ¢y, (z) as (see (3.24) and (4.3))

o0

Syul(z) = Y (k)2
k=—00
_B(z) D*(z™)
 Az) C*(27)
_ B(z) D(z"")
=10 060 (4.162)
Introduce the two polynomials
F(z) = foz" + fiz" " 4.+ fu,
Gz =goz ™+ g1z ™V g1zt (4.163)
through
B(z) D) _F(z) | G("") w168

Az CEY 4k o)
or, equivalently:
B(2)D(z7!) = F(2)C(z7Y) + 2A(2)G(27Y) . (4.165)

Since A(z) and C(z™!) are coprime, (4.165) has a unique solution. Note that,
as a linear system of equations, (4.165) has n+m+ 1 equations and the same
number of unknowns. The coprimeness condition ensures that the matrix
appearing in the system of equations has full rank. Equations (4.162) and
(4.164) now give
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z Z_l
> rk)zF = igz; +zggz_1; : (4.166)

k=—00

The two terms in the right-hand side of (4.166) can be identified with each
part of the sum. In fact:

F(z) _ — ok

Az ];:0 r(k) , (4.167)
2G(z7Y) — _
) _k=§—ooj r(k)z7F . (4.168)

From (4.167), one obtains
F(z) = A(2))_r(k)z ™% . (4.169)
k=0

Equating the powers of z gives

"'yw(o) = fo,
Tyw(]-) = fl - alr(O) ’

: (4.170)
ryw(k) = fe = Sy agrk =), 2 <k <),
n .
ryw(k) = — Zj:l ajr(k—j), (k>n).
Note that the last part of (4.170) is a Yule-Walker type of equation.
Similarly, from (4.168):
-1
Gz =01 Y rk)z*, (4.171)

Example 4.13 Consider again a first-order ARMA process
y(t) tay(t—1) =e(®) +ce(t—-1), Ee*(t)=1.

In this case the autocovariance function is sought. Hence choose 2(t) = y(t)
and thus A(q) = q+a, B(q) = q+¢, C(q9) = ¢+a, D(q) = ¢+ c. The identity
in (4.165) becomes

(z+ )zt +¢) = (for + fi) (27" +a) + 2(z +a)(goz7") .
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Equating the powers of z leads to

a0l fo c
laa fil=(1+¢
010 go c
The solution of this system is easily found to be
1+ - 2ac (c—a)(1 — ac)
fo—Wy fi=c, 90——“*1—?—-
Hence (4.170) implies that
1+c% - 2ac
0) = =
T'( ) fO 1— a2 ’
— a1 -
r(1) = fi - ar(0) = 0200
1-a?

(k) = (o)1), k21
while (4.172) gives

r(=k) = (=a)*r(=1), k>1.

Needless to say, these expressions for the covariance function are the same as
those derived in previous examples. O

4.8.3 Continuous-Time Covariance Function

In order to compute the covariance function in continuous time, the procedure
is a little different than in the discrete-time case. Assume that a model of the
form

5(p)
(t) F(p)e(t) ,
Bp) =bip" '+ ...+ by, (4.173)

Fp)=p"+ fit" " +...+ fn,

where e(t) is continuous-time white noise, E e(t)e(s) = é(t—s), is given. Find
the covariance function r(7) of y(¢). First compute D(s) by solving (4.134):

B(s)B(—s) = D(s)F(-s) + D(—s)F(s) (4.174)
with respect to
D(s)=dis" ' +...+d, .
From (4.131):
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6) = £r) = 3

where £ denotes the Laplace transform.
Next choose H, F, and zg so that

D(s)

F(s)

This can be done, for example, by using any canonical form. Using
Lr(t) = H(sI - F) 'z, (4.177)

a state space model governing the covariance function is readily obtained:

(4.175)

H(sI - F.) 'z = (4.176)

t=Fzx, =z(0)=u=m,

v = Hz . (4.178)
Hence the covariance function can be written as
r(t) = Hef'zy, t>0. (4.179)

It should be emphasized that the state space approach outlined above
may be useful for computer implementation. For hand calculations, it seems
more feasible to use Lr(t) = D(s)/F(s) and a table of Laplace transforms in
order to find the covariance function r(t).

4.8.4 Sampling

Assume that a continuous-time process is given in the form
A(p)y(t) = B(p)e(t) (4.180)
where

Alp) =p"+ap" P +... +a,,
Blp) =bip" ' +...+bn,
Ee(t)e(s) = 6(t —s) .
Find the sampled form of the model of (4.180). The following algorithm is
an alternative to the state space approach described in Section 4.5.2.
Step 1 Compute @.(s) = D(s)/A(s) where
D(s)=dis" +...+d,
by solving (4.134):
B(s)B(—s) = D(s)A(—s) + D(-s)A(s) . (4.181)
Step 2 Next use the relations (see (4.131) and (3.27))
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0c(s) = L{r(t)} , (4.182)

balz) = | Z4r(km) - 5r(0) (4.183)
to compute ¢4(z) as a fraction:

x . _ . Dalz)

falz) =hg (4.184)

The details of this step are dealt with after the description of Step 3.

Step 3 Finally, perform a spectral factorization
XNC(2)C(27") = Da(2)Aa(27") + Aa(2)Da(z71) (4.185)
to find A2 and C(z). This gives the ARMA model

Aa(g™Ny(t) = Clg (1),
Bo(th(s) = X6, (4.186)

0O

In order to complete the algorithm, a procedure for Step 2 on how to
go from a Laplace transform to the corresponding z-transform is needed.
Fortunately, this is easy for a function that is a sum of exponentials. Such a
function f(¢) can always be expressed as the solution to

t=Fz, 2(0) =z,

f=Hz, (4.187)
giving
f(t) = HeFtzy
L{f(®)} = HlsI - F "'y . (4.188)
The z-transform of the discretized function is easily obtained as
f(kh) = Hef* g | (4.189)
Z{f(kh)} = H(I — 27 efh) g (4.190)
— oFh _
z(kh+ h) =e""z(kh), z(0) =z, (4.191)

f(kh) = Hz(kh) .

One can regard f(t) as the impulse response of the system in (4.187), while
f(kh) is the impulse response of the discrete-time system in (4.191).

When applying this idea to Step 2, represent .(s) = D(s)/A(s) in (some)
state space form as (4.188). Then (4.191) can easily be calculated, and its
impulse response evaluated as in (4.189). In this way the representation in
(4.184) can be calculated.
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4.8.5 Solving the Lyapunov Equation

When the solution to the Lyapunov equation
P(t+1)=FPt)FT + R, , (4.192)

is needed for all ¢, it has to be iterated. In many cases, it is enough to seek
the stationary solution, which, of course, satisfies

P=FPFT +R,. (4.193)

It is usually a bad idea to iterate (4.192) to convergence. An alternative is
to convert (4.193) into an explicit set of linear equations. This will, however,
often give rise to a high-order problem, as the number of unknowns will be
n(n +1)/2, taking the symmetry of P into account. The specific structure of
the problem can be taken into account by some such algorithm.

There are several numerically efficient algorithms for solving the Lya-
punov equation of (4.192). An acceleration algorithm is presented here. The
idea is to compute the solution of (4.192) with increasing steps, more pre-
cisely at times £ = 1,2,4,8,16.... As the time interval between the points is
doubled repeatedly, the convergence is fast.

Assume that P(2¥) is known, and let P(0) = 0. Then (see (4.23)):

pLE. |
Py = Y FIRFT
j=0
ok+l_j
=P@2*)+ ) FRFT
j=2*
2%(2-1)—1 ' .
=P@"+FCY Y FIRFTIFTY
7=0
— P(2%) + FCY Pk FT™" . (4.194)

This gives the following algorithm.
SteplSetPO:Rl, F():F.

Step 2 Iterate

Piy1 = P FT + Py,
Fry = F7,

until convergence. O

(4.195)
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4.A Appendix. Auxiliary Lemmas

Lemma 4.6 Consider the scalar function

f2) =" fuz*, (4.196)
{fx} being complez-valued coefficients. Assume that f(€'*) is real-valued and non-
negative (> 0) for allw. Then
(i) There exists a real-valued, strictly positive constant C and a monic polynomial
9(2)=2"+g2" " +.. . +gn,
with all zeros inside or on the unit circle, such that
f(2) = Cyl(z)g"(z77) - (4.197)

(ii) In the case where f(ef“’) >0, Yw, g(2) has no zeros on the unit circle.
(i) In the case where f(e'*) = f(e™'“), the coefficients {g;} are real-valued.

Proof The constraint that f(e') is real-valued for all w implies

0=Imf(e“)=Im |fo+ Z(fk e+ fk e Ryt

k=1
and hence Im (fy) = 0, and

Im[fi e + fre *] =0,
giving f_ = f,. Let z1 be a zero of f(z). Then z; # 0. Further:

n =) hEt =) fa

[k|<n [k|<n
E f_kzl = E fr2k = )=0.
k| <n |k|<n

Hence ;! is also a zero. As f(z) has 2n zeros, it follows that they can be charac-
terized as 21 ... 2, fulfilling 0 < |2;| <1 and 2n4; = Z; ! satisfying 1 < |2n+:| < 00,
i=1,... ,n. Set

This gives g"(27") =[], (z7" — 2:)) =[]}, (7' — %) and

f(z) = Cy(z)g" kaz —cHz—zzH “t-3z)

k=—mn i=1

=2""fn H(z —z)(z =% 1) — C 1)"fn H(z ~z)z " H(l — 2%;)

Zi
1111,:1

[
’I_i‘
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_ z_"fn H(z - zi) ['H(Z - E]_l) — 1_}:1)1: H(l - zzj) =0.
i=1 1 k=1%k

=1

This proves the relation in (4.197). Next, consider the identity for z = e“. By
assumption f(e') is real-valued and nonnegative. Further:

g9(e“)g(e) = |g(e“)|* 2 0.
It thus follows that C is real-valued and positive.
To prove part (ii), note simply that in this case
f(e“) =Clg(e“)* >0, V.

Finally, consider part (iii). The symmetry condition f(e*“) = f(e™*) implies not
only that f_; = f, but that the {fx} are real-valued. Hence the zeros z; are real-
valued or appear in complex conjugated pairs. Therefore, g(2) will have real-valued
coefficients. ]

Lemma 4.7 The following holds (in a distribution sense):

oo

Y et =on i 8(z - 2mj) . (4.198)

k=—00 j=—00
Proof Introduce a periodic function f(z) through

f@="-te-m?, o<ac<om,

fl+2m) = £(z) .

The function f(z) is displayed in Figure 4.5.
As f(z) is periodic, it can be developed in a Fourier series

o0

f(z) ~ Z cn ™ .

n=-—oo

The Fourier coefficients {c.} are given by

1 [ .
_ - —ing
Cn = 2ﬂ/() fz)e ™ dx .
By straightforward computing,

1 ™[ 1 2
ﬁ | [—6——5(17—7() dz

u L[(z—nf]m:(,,

Co =

6 4n 3
and for n # 0:

0
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Fig. 4.5. The function f(z) and its derivative f'(z)
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The Fourier series is uniformly convergent. Hence write

[e)

@)=Y e

n=-—00

n#0

inz

By termwise differentiation,

SO .
flay= Y —me™,
ety
oo

flay= ), &

113
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The following also holds:

f)=—(z—-mn), 0<z<2m,
"(z) = -1, 0<z<2m 2n<z<4m,

' (z) = 2né(z) , z =0, £2n, +4n, etc.,

or, more precisely:
o0
flay=-1+ Y 2md(z —2mj) . (4.199)
j=—c0

Combining the two expressions for f"(z) gives (4.198). ]
Exercises

Exercise 4.1 Give a simple example of two stochastic processes having the

same first- and second-order moments but distinctly different realizations.

Exercise 4.2 Consider the transfer function operator
H(q)=1+H(gl-F)'K,

and represent it in state space form as

z(t +1) = Fz(t) + Ku(t) ,
y(t) = Hz(t) + ult) .

Show that the inverse system from y(¢) to u(t) can be represented as

z(t+1) =(F - KH)z(t) + Ky(t) ,
u(t) = —Hz(t) +y(t)

and obtain (4.51), that is
HYq)=I-H(@l-F+KH)'K .

Exercise 4.3 Consider an ARMA process observed in uncorrelated noise:

) = L5 0(t) +et),

where v(t) and e(t) are uncorrelated white noise sequences with variances
Evi(t) =18, Eé&X(t)=125.

Find the innovations form of y(t).

Exercise 4.4 Consider a first-order model
(p+a)y=e, Ee(t)e(s)=rd(t—s).

Determine the variance of y in two ways:
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(a) by integrating the spectral density,
(b) by solving the Lyapunov equation.

Exercise 4.5 Consider the sampling of a state space model. Let the sampled
system be characterized by the state transition matrix F'(h) and the noise
covariance matrix Rq(h) where h is the sampling interval. Prove the doubling
algorithm

F(2h) = F*(h) ,
Ra(2h) = Ry(h) + F(h)Ra(h)FT (h) .
Exercise 4.6 Show that the following is a simple (but not necessarily com-

putationally efficient) way to compute a sampled system on state space form.
Set

5[4 R + _ An _ [ Fu1 Fi2

A—(O—AT>’ F=e= Foy Foy ) -
Prove that

F=F1, Ra=FnF;".

Exercise 4.7 Consider the continuous-time Lyapunov equation (4.91):
0=AP +PAT + R, . (4.200)
(a) Show that the bilinear transformation (« is an arbitrary positive scalar)
F=(al-A)"A+al),
Ry = 2a(al — A)'R.(al — AT)"!
converts it into the discrete-time Lyapunov equation

P=FPF" + Ry, (4.202)

that is, (4.200) and (4.202) have the same solution P.
(b) Verify that the inverse transformation (4.201) is given by
A=alF-DH{I+F)!,
R.=2a(F+ D) 'Ry(FT + )7

(4.201)

Exercise 4.8 Consider a function

~ _d02+d1
9(z) = z24a

)

where |a| < 1. Determine for what values of dy and d; the function ¢(z) is
positive real.

(a) Use the methodology outlined in Section 4.6.1.
(b) Use the methodology outlined in Section 4.6.2.
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Exercise 4.9 Let y(t) be an AR(p) process
y() +aryt —1)+... +apy(t —p) = e(t) .

Assume that e(t) is zero mean, non-Gaussian white noise with E e3(t) = 8.
Show that the third-moment sequence of y(t), R,(m,n), satisfies

p
Ry(~k,~0) + Y aiRy(i — ki — ) = Bi(k,£)

i=1

for k>0, ¢> 0.

Exercise 4.10 Let y(t) be a stationary process with zero mean and bispec-
trum B(z1, z2). Prove that

1 dz
EE}{B(ZhZz)—zz— = ¢y y2(21),

where the integration is counterclockwise around the unit circle and ¢, ,2(2)
denotes the cross-spectrum between y(t) and y2(t).

Exercise 4.11 Consider an AR(2) process
y(t) + ary(t — 1) +ay(t —2) =e(t), Ee(t)=A2.

(a) Determine its covariance function r(7) for 7 = 0, 1,2 using the algorithm
of Section 4.8.1.

(b) Determine the same covariance elements by using the Yule-Walker equa-
tions in (4.30).

(c) Determine the same covariance elements by representing the process in
state space form and solving the Lyapunov equation.

Exercise 4.12 Use the algorithm of Section 4.8.2 to compute the cross-
covariance function between the two AR processes

W)= remre® 0l = T emrel®.

Exercise 4.13 Consider the second-order model

(p+ai)(p+a2)yt) = et),
Ee(t)e(s) = 6(t —s),
where oy #as, a1 >0, a3 >0.
(a) Represent the model in state space form.

(b) Determine its covariance function using the algorithm of Section 4.8.3.
(c) Use the state space form to determine its covariance function.
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Exercise 4.14 Consider the sampling of a first-order model
ytay=e — y(t)+ fyt—h)=(),
E e(t)e(s) = r.0(t — ) Ev’(t) = A2 .

(a) Determine f and A? as functions of a and r. by using the state space
approach. Also find explicit forms for the spectral densities ¢.(w) and
Pa(e™).

(b) Determine f and A? by using the algorithm of Section 4.8.4. Also deter-
mine ¢.(s) and ¢4(z) and verify the relations

2 Re gc(iw) = pe(w) ,
2 Re éd(eiwh) - ¢d(eiwh) .
Exercise 4.15 Consider the acceleration algorithm (4.195) for solving the
Lyapunov equation (4.192). Introduce the error
Ex=P-P.
(a) Show that
E, = F* p(FT)?" .
(b) Show that Pi essentially converges quadratically in the sense that
| Bk lI< e,
where
ert1 = cef

¢ being a constant that depends on the original Lyapunov equation.

Exercise 4.16 Consider a state space model
z(t+1) = Az(t) + v(t), (4.203)

where 4 € C, Ev(t)v*(s) = Ré; s, R € R, Ev(t)v”(s) = 0. Introduce the
vector

o _ [Rez(t)
() = (Im .Z'(t)) '

Derive a stochastic real-valued state space model for Z(¢) of the form
B(t+1) = AZ(t) + 8(¢) . (4.204)

Establish the links between the models in (4.203) and (4.204). Show how the
Lyapunov equations giving the state covariance matrices P = E z(t)z*(¢)
and P = E #(t)Z*(t) are related. Derive the Lyapunov equation for P from
the Lyapunov equation for P.
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Exercise 4.17 Consider the process

1 ¢’ -2 q
)= ————— t
y(t) g2 —0.5¢+0.5 (—O.5q+ 1¢* - 0.5¢ v®,

where v(t) is white noise of zero mean and covariance matrix
11
T4y —
Ev(t)v' (t) = <1 2) .

(a) Show that the filter above is stable but that its inverse is unstable.
(b) Show that the system can be represented in state space form as

ot +1) = (_0(')?5 (1)) () + (:(1):2 é) o(t) |

y(t) = ((1) 2) o(t) + ((1) 2) o(t) .

(c) Determine the innovations form for y(t).

Hint. The solution to the Riccati equation for the representation in (b)
has the form

p:(gg).

Remark Reasons for the solution to have this form are asked for in Ex-
ercise 6.9. a

Exercise 4.18 Consider the sampling of a state space model
t=Az+e — z(t+h)=Fz(t)+ov(t),
Ee(t)eT (s) = Ro(t — s) E v(t)vT (s) = Rades -
Consider the following approach for determining Rq. The state covariance

matrix, P = E z(t)z” (t), must remain unchanged after the sampling. Then
first determine P by solving

AP+ PAT +R. =0.
with respect to P. Next determine Ry from
P=FPFT +R,.
Is this a sound approach? In particular, examine what numerical accuracy

can be achieved.

Exercise 4.19 It is sometimes convenient to work with models where the
cross-covariance matrix Rjs = 0. It may under certain circumstances be
possible to convert a model
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et +1) = FOLY @) 400 (1),
y(t) = HMVzW (1) + M (1) (4.205)
(1) R{" Ry} 1)
cov <€(1)(t)> = Rgll) Rél) ) R12 ?/: 0 )

into another model
et +1) = F@z3) (1)
y(t) = H®z® (1)

oy (P2O) _ (R0
e?t)) \ o R )
(a) Take z(?(t) as an extension of z(1)(t); more precisely
(1)
@~ (21
9 (t) (e(l)(t) .
Show that this leads to a model of the form in (4.206) and give F(?| H(®)|

R, R, (1), e (1).
(b) Consider a scalar case (n = 1) with

FO =08, HY =1, R =025, R} =05, RV =1.

+o(¢)
+e@(t), (4.206)

Show by construction that there exists a first-order model of the form in
(4.206) that preserves the spectrum [in the sense ¢,a)(2) = @y (2)]-
(c) Consider an MA(1) process
y(t) =e(t) +ce(t - 1),
which may be represented in the form in (4.205) with
FO =0, HV =1, R" = R) =¢, R{) =1.

Show that there does not exist any first-order model of the form in (4.206)
that can represent the process.

Exercise 4.20 Consider a sequence {r(k)}32, satisfying r(k) = (—a)¥~1r(1),
k > 1, |a| < 1. Under what conditions on 7(0) and r(1) will {r(k)}3>, be a
covariance sequence?

Exercise 4.21 Reconsider Example 4.10. Assume that the third-order se-
quence elements R(m,n) are given for 0 <n < m < 2. Is it possible to derive
uniquely from these elements the model parameters hg, b1, hs, 8 of the model
y(t) = hoe(t) + hle(t — 1) + hze(t — 2) R
E(t) =47
If not, explain what ambiguity remains. It can be assumed that y(t) is gen-
erated by such an MA(2) process, with unknown parameters.
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Exercise 4.22 Consider the filtering
o0
y(t) =D grult k), (4.207)
k=0 ‘

where u(t) is a stationary process and G(g) = Yo gxg ™" is an asymptotically
stable filter. It is @ priori not obvious that the infinite sum in (4.207) exists.
Use convergence in mean square and set

Un(t) =D gru(t — k) .
k=0

It is said that y,(tf) = y(f) in mean square if E || y,(t) — y(¢) ]|>= 0 as
n— 00. It can be proved that this is the case if y,(t) is a Cauchy sequence,
that is, if it satisfies

E || yn(t) —ym(t) ||*= 0, as min(m,n)— co. (4.208)

Prove that under the given assumptions the condition in (4.208) is satisfied.

Exercise 4.23 Consider the AR process
y(t) —ay(t—1) =e(t), la|<1,

where {e(t)} forms a sequence of independent random variables with zero
mean and moments E [e(t)]* = B, B3 # 0:

(a) Find the third-order moment

R(—p,—v) =Ey(t)y(t — py(t —v)

forO0<pu<v,u+v>0.
(b) Prove explicitly that (cf. Exercise 4.9)

R(-p,—v)—aR(l-—p,1-v)=0.

(c) Consider the estimation of a from “measured” data y(1),... ,y(N) by
the Yule-Walker equation

fp)—af(p—1)=0, pu>0,

where
1 &
) = 5 2 vBult+p).
t=1

Determine the asymptotic variance of @ as N— oo. How is the result
influenced by p? In particular, how should y be chosen to make the vari-
ance small?

Hint. It holds that #(x) — r(u), as N— oo. Hence:
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. P, T —af(p—1)
Fu—1) r(p—1)
N
=T WOMEE
(d) Consider the estimation of a using the equation, cf. (b):
R(—p,-v)—aRQ—p,1-v)=0, (O<p<v).
Here

N
R(op, =) = = 3 yO(t + wyt )
t=1

Determine the asymptotic (N— oo) variance of a. How is it influenced
by p and v? In particular, how should x and v be chosen to make the
variance small?

Hint. Tt holds that R(—p ,—v) = R(—p, —v) as N— oo.
(e) Compare the variances achieved in parts (c¢) and (d). Is one of them
uniformly better than the other?

Exercise 4.24 Examine the possibilities to extend the Yule-~Walker equa-
tion approach to compute the covariance function of a complez-valued AR
process.

Exercise 4.25 Consider the ARE with
-al 1le¢
= (Vo) m=(08).
H=(10), R, =0,
where ¢? # 1.

(a) Determine all symmetric solutions.

(b) Show that one solution (which one?) is largest in the sense expressed in
(4.58).
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5. Optimal Estimation

5.1 Introduction

In this chapter, the basis for optimal estimation methods is presented. By
an optimal estimate we mean one that gives as small an error as possible. In
many cases it is appropriate to measure the goodness of an estimate by the
estimation error variance.

The initial sections cope with the problem of how to extract information
about one stochastic variable, say z, when only another variable, say y, that
is correlated with z, is available. In Secton 5.4 we discuss how the approaches
and results can be used for estimating the states of a dynamic system when
only, possibly noisy, measurements of the output are available. The case of
Gaussian distributions is dealt with in much more detail in Chapter 6. The
reason is twofold. First, it is often relevant to assume that errors are Gaussian
distributed. Secondly, the assumption of Gaussian distributed disturbance
eases the computational burden considerably in finding the optimal estimate.

More detailed results on the optimal estimation of dynamic systems will
be given in the following two chapters. Chapter 6 deals with state space
models, and transfer function models are treated in Chapter 7 using polyno-
mial methods. Some comparisons are offered in Chapter 8, and suboptimal
solutions and approaches are presented in Chapter 9.

5.2 The Conditional Mean

In this section, we address the problem of how to estimate the value of a
vector * when another vector y, correlated to z, is observed. Both x and y
are assumed to be real-valued. In Section 2.3 it was shown that the conditional
mean is a natural estimate. In fact, under weak conditions, the best (i.e. the
optimal) estimate is the conditional (or a posteriori) mean

#2E [zly] . (5.1)

Recall that this is given by

T. Soderstrom, Discrete-time Stochastic System

© Springer-Verlag London 2002
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Ewwr=/mxmmwdm

-0
_ / )
p(y)
_ Jep(z,y)da
[p(z,y)dz
where p(z|y) is the conditional pdf of z, given y; p(x,y) is the joint pdf of =
and y; and p(y) is the pdf of y.
In order to formulate the optimization problem, consider the following,
matrix-valued, criterion:

QU W) =E [(¢- fw) (e - £w) ] , (53)

where f(y) is an arbitrary estimate of z. It is, of course, a function of the
observation y. It apparently holds that

E [f(y)ly] = f(y) - (5.4)

By an optimal estimate of z is meant a function f(y) that makes the crite-
rion ¢ “as small as possible”. What is meant by this for the matrix-valued
criterion @) is stated in the following lemma.

(5.2)

Lemma 5.1 The optimal estimate that minimizes any scalar-valued, mono-
tonically increasing function of Q (5.3) is the conditional mean & = E [z|y].

Proof We find, using (5.1)
QU ) = Efzz” ~ fy)a” —ofT () + FW) T ®)ly)
=E[zz"ly] - f@)2" - 2fT(v) + F)fT )
=E[(z - #)(z - &) |yl + (& - f®)) (@ - fF)T

= Q@)+ (@& - fW)@ - fy)T 2 Q@) . (5.5)
Hence, it can be concluded that the conditional mean & is the optimal esti-
mate. u

Remark Examples of “scalar-valued, monotonically increasing functions of
Q7 are det(@), tr (@), and tr (WQ) with W a positive definite weighting ma-
trix. a

The conditional mean turns out to be optimal even under partly weaker
conditions than those in Lemma 5.1.

Lemma 5.2 Consider the criterion of the form

Q(f(¥) =E[f(z - f(y)ly] - (5-6)
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and make the following assumptions:

(a) The function £(z) is symmetric ({(—x) = {(z)) and increasing for x > 0.
(b) The conditional pdf p(z|y) is symmetric around the conditional mean

Z= /zp(zly) dz .
(c) The conditional pdf p(z|y) is decreasing for x > &.

Then the conditional mean & is optimal in the sense that it minimizes the
criterion in (5.6).

Proof In order to prove this statement, Lemma 5.4 of the appendix (Section
5.A) will be used. Take

h(z) = p(z + 2ly), g(z) =L(z),

which gives (set ¢ = & — &)
QU =Bltle - 16Dl = | te = )plaly) do
= [ e e - snte-+atat
= [~ gt 2 - sapmc e
> [~ aomwat= [ tta - aptely)do = Qo).

—00

The minimum of the criterion given in (5.6) is hence achieved by the condi-
tional mean of (5.1). |

Recall that, in Section 2.4 it was shown that for jointly Gaussian dis-
tributed random variables the conditional mean is also Gaussian distributed.

An example is now presented where the assumptions of the two lemmas
are violated, and Z happens not to be the optimal estimate.

Ezample 5.1 Let x be a scalar and consider the criterion

QUf W) =Ellz - fw)lly] . (5.7)
Find the estimate f(y) that minimizes this function. Apparently:

Q) = [ " o - F)lp(aly) de

-0

fly) 00
- / £ () — lp(zly) do + / (& — f(9)lp(aly) de .
—00 f(y)

Now, recall the formula (Leibnitz’ rule)
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d rv v2(y) o ,
@/‘ ﬂ%ww—/ %(%wm+%@MWMW)

vi(y) v1(y)
~v1(¥)g(v1(y),y) -
Applying this formula gives

dQ f) 00

= selwas- [ plaly)as,
—o0 S1E7)

d2

d—JS = 2p(fy)ly) > 0.

Hence the optimal estimate is characterized by

fly) 00
/ " plaly) do = | plalas,

—00 fy)

which means that f(y), the optimal estimate of z, is the median of the condi-
tional pdf p(z|y). If this pdf is nonsymmetric, the conditional median differs
from the conditional mean Z. m|

Note that the result is not in conflict with Lemmas 5.1 and 5.2. The
criterion in (5.7) differs from that of Lemma 5.1. Condition (b) of Lemma
5.2 is violated in this example.

5.3 The Linear Least Mean Square Estimate

As shown in Section 5.2, the conditional mean is, under weak assumptions,
the mean square optimal estimate. It is fairly complicated to use for dy-
namic systems, as will be shown later in Section 5.4. There is an important
exception, however: linear systems with Gaussian distributed disturbances.

There is thus a motivation for some simpler estimates. Restricting the
analysis to consider linear estimates, the problem becomes much easier to
handle. The corresponding estimate is sometimes called the linear least mean
square (LLMS) estimate. It turns out to be identical to the conditional mean
for Gaussian random variables.

The LLMS estimate is easy to derive. Let z and y be complex-valued.
Postulate an estimate of z to be affine, that is, of the form

T=Ay+b, (5.8)

and find the matrix A and the vector b so as to minimize any appropriate
scalar measure of the error covariance matrix. Note that & will then no longer
(except for special cases) denote the conditional mean, but, rather, just some
estimate.
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Lemma 5.3 Assume that x and y are correlated and

Ez=m,, Ey=my,

E(T7™ )@ —m: y*—m) = Re Roy >9)
y—my v ¥ v Ry Ry J’
with R, being nonsingular. The linear estimate of the form
T=Ay+b, (5.10)

that minimizes
J=E(z-12)(z-2)",

in the sense J — Jnin nonnegative definite, is given by

ELLMS = Me + Rey R, (y —my) (5.11)

The mintmal value is
minJ = Ry — Ry R, Ry . (5.12)
The estimation error x — TpiMms 15 orthogonal to y in the sense that
E(z-2Zrms)y” =0. (5.13)

Proof Using standard rules for the expected value of a quadratic form, one
obtains

J=E(z- Ay - b)(z — Ay - b)*
= (my — Amy — b)(mg; — Am, — b)*
R, R, I
= () ()
= (my — Amy — b)(mgz — Amy — b)*
+(Ry — ARyz — RpyA™ + AR A™)
= (mg — Amy — b)(mg — Amy — b)*
+(A — RoyR, ")Ry(A — Ry R, )
+(R; — RznglRyx) :
We find that
J > Ry — RoyR, 'Ry,

and that J is minimized by the choice A = R,y R.', b = m, — Am,,. Hence
the LLMS estimate is

ELims = me + Rey R, (y — my)



128 5. Optimal Estimation

-

Frims y

Fig. 5.1. Geometrical illustration of the LLMS estimate

which is (5.11). The estimation error Z = z — ZMs is uncorrelated to “the
measurements” y, as the following calculations show:
Elz - iuimsly” = E[(z —mg) — Rzngl(y - my)]y*
= Rgy — RWR;lRy =0,
which proves (5.13). [

The geometric interpretation is that the best estimate of x given y is the
orthogonal projection of £ on y. The random variables are then regarded as
elements of a Hilbert space. The scalar product of £ and y is then chosen as

<zly>=E (z —mg)*(y —my) .

Hence, two variables are orthogonal precisely when they are uncorrelated.
The optimal linear estimate of z is illustrated in Figure 5.1.
Intuitively, it is clear that the estimation error # has minimum amplitude

V<Z&|z> = \/E || Z || precisely when it is perpendicular (i.e. orthogonal)
to the vector y.

5.4 Propagation of the Conditional Probability Density
Function

Consider a nonlinear stochastic system of the form

z(t +1) = f(z(t),v(t)) , (5.14)
y(t) = h(z(t) +e(t) , (5.15)
where v(t) and e(t) are mutually independent white noise sequences of zero

mean. From Section 5.2 it is known that, under mild conditions, the mean
square optimal state estimate is
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&(t) = E[z()Y"], (5.16)
where Yt denotes all the available measurements at time ¢, that is:
YIS, vt -1), )T (5.17)

It is desirable to find some recursive formula for the state estimate of
(5.16). For that purpose, it is first necessary to find a recursion for the con-
ditional pdf p(z(t)|Y'?). Using Bayes’ rule, one finds that

p(z(t+1),y(t+ DY) = plz(t + 1)|y(t + 1), Y)p(y(t + 1)|Y?) (5.18)
=py(t+ Dzt + 1), Y)p(z(t +1)|Y"). (5.19)

As (5.15) is free from any dynamics and e(t + 1) is white, and in particular
independent of Y%, it is found that

p(y(t + D]zt +1),Y") = p(y(t + ]e(t + 1)) , (5.20)
and hence, by (5.18) and (5.19)

ply(t + 1)]z(t + 1))
p(y(t + 1)|Y?)

Now recall (2.14), which is rewritten in the form

ple(t +1)) = / p(e(t + 1)[z(t)p(e(t)) de(t) - (5.22)

All the pdfs in (5.22) can be conditioned on Y?, see Exercise 2.6. Hence,
owing to (5.14) and the fact that v(t) is white:

p(z(t+ 1Y) = p(z(t +1)|Y?). (5.21)

p(a(t + DY) = / pe(t + 1|(t), Yp(e(t)|Y") da()

= /p(w(t + Dla(t))p(=(t)[Y*) dz(t) . (5.23)

Combining (5.21) and (5.23) gives

py(t+1)z(t +1))
p(y(t +1)|Y?) (5.24)

x / p((t+1)]e®)p(e®)]Y?) da(t)

plz(t+ 1Y) =

Note that (5.24) gives a relation for how the conditional pdf propagates from
p(z(®)|Y?) to p(z(t + 1)|Y**!). The properties of the state equation f(',)
enters through the factor p(z(t+1)|x(t)), and p(y(¢ + 1)[z(t + 1)) reflects the
measurement function h('). Finally, the denominator p(y(t + 1)|Y?) can be
viewed as a normalizing factor that ensures the left-hand side of (5.24) is a
pdf (and integrates to unity).

The denominator of (5.24) can be written as (use Bayes’ rule and recall
the assumption that v(¢) is white)
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py(t+ )Y // (Wt + Dt + 1), 2(), Y)p(a(t + V() V)
(z(t)|Y?) dw(t) da(t + 1)

// (y(t + Dzt + D)p(e(t + Dle(?)
p(z(®)|Y?) dz(t) dz(t + 1) . (5.25)

To summarize so far, it has been found that the conditional pdf propagates
as

pla(t + Y

oyt +1)|2@ + 1))pla(t + 1)|x(#)p(z(t)|Y?) de(t)
= Tyt + Dlalt + D)p(a(t + )]z())p(z(t)]Y?) dz(t) dz( + 1)

Equation (5.26), or, equivalently, (5.24), describes how p(z(t)|Y'?) propa-
gates to p(z(t + 1)|]Y**!) as time increases from ¢ to ¢ + 1. As it stands, it
is not very practical. To evaluate all the pdfs involved in (5.26) requires a
huge amount of computation. One therefore has to resort to special cases or
approximations.

For linear systems with Gaussian disturbances

z(t + 1) = Fz(t) + v(t) ,

y(t) = Ha(t) +e(t)

the propagation equations have a much simpler form. All the conditional

pdfs will then be Gaussian. As will be seen in Section 6.3, the conditional

mean and covariance matrix then propagates according to the Kalman filter
equations.

. (5.26)

(5.27)

5.5 Relation to Maximum Likelihood Estimation

The maximum likelihood (ML) principle is a powerful statistical tool. ML
estimates have strong statistical properties under mild conditions, such as
minimal variance and consistency (convergence to the “true” values when
the number of observations grows to infinity).

Let y be a stochastic variable whose distribution depends on an unknown
vector 8. Assume that y is observed. The likelihood function L(f) is the pdf
of y given 8, evaluated using the observations

L(8) = p(y|f) . (5.28)
The ML estimate of € is the argument that maximizes the likelihood function
O = arg max L(9) . (5.29)

Hence, éML is the @ value that makes the a posteriori probability (likelihood)
of the observations as large as possible.
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ML estimates are often difficult to calculate analytically in non-Gaussian
cases. In the Gaussian case, though, the problem often becomes more tractable
for linear systems.

Consider the special case of a linear dynamic system

z(t+1) = Fz(t) +v(t) ,

y(t) = Hx(t) +e(t) (5.30)

where z(0), v(t) and e(f) are independent Gaussian random vectors with
means mg, 0 and 0, respectively, and covariance matrices Ry, R; and Rs
respectively. Assume, for simplicity, that all these covariance matrices are
positive definite.

Consider the problem of estimating the states

z(0)
xN=1
z(N)
from the measurements
y(0)
YN = :
y(N)
The ML estimate of XV given YV is maximizing the pdf
YN N
p(YNlXN):p( aX )

p(XN)

In case the denominator p(X ™) can be neglected here, we should maximize
the joint pdf p(YN, XV). This is otherwise an approximation of the (true)
ML estimate.

Another interpretation of maximizing p(X”~,Y ") is to consider the max-
imum a posteriori (MAP) estimate, which is defined as the maximizing ar-
gument of the conditional pdf p(X~|Y"). Note that

Xiap = arg maxp(X~[V7)

p(XN,YN)
= arg max _PW_

_ N yN
= arg Ir)l(i;l,vxp(X YN (5.31)

as the marginal pdf p(Y"V) does not depend on X*. In what follows we will
examine the estimate in (5.31) more closely.
First, note that there are transformations
YN« XN EN |
XN — z(0), vV,
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where
e(1) v(1)
EN == : VN — :
e(N) v(N)
Noting that z(0), V™ and EN are independent:
p(YV, X") = p(z(0))p(VN)p(EV) . (5.32)

It is therefore found that the MAP state estimates should maximize

J = v(z(0);mo, Ro lH y(v(t);z(t +1) - x(t),R1)}

N
X [H v(e(t); y(t) — Hx(t),Rz)] ; (5.33)
t=1

where v(z;m, P) is the pdf of a vector-valued Gaussian random variable

y(z;m, P) = —%[a: -m)TP Yz — m]) .(5.34)

1
(2n)"/2(det P)1/2 P (

Hence,

log J = ~3{z(0) ~ mo]" By [£(0) ~ o

—% 3 [a(t + 1) — Fa(t)]" Ry \[z(t + 1) — Fa(t)]

N
_% 3 ly(t) — Ha(8)] "Ry y(t) — Ha(t)]
t=1

—% log[(2n)™ det Ro]
N n N n
-3 log[(2n)" det Ry] — 3 log[(2m)™ det R») . (5.35)
To maximize the function J with respect to {z(0),...,2(N)} is thus the same

as minimizing the criterion

Vi = 312(0) — mo] By [2(0) — m]
-1
+;§ 2(t +1) - Fa()]T R [zt + 1) — Fa()]
N

3 Yol ~ Ha)] Ry [y(e) - Ha )] (5.36)
t=1

This minimization problem will be examined in some detail in Section 6.6.
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5.A Appendix. A Lemma for Optimality of the
Conditional Mean

Lemma 5.4 Let g(x) and h(z) be two integrable, real-valued, positive symmetric
functions, such that g(x) increases for x > 0, h(x) decreases for ¢ > 0. Then

/°° g(z +a)h(z)dz > /00 g{z)h(z)dz , (5.37)

o0

provided the integrals exist.

Proof Assume that the integrals exist, and that a > 0. Then

/ lo(z + a)h(z) — g(@)h(x)] dz

—~a/2 00
- / lo(z +0) — g(@)}h(z) dz + / lo(z +a) — g()]h(z) dz
-0 —~a/2
- / ot =)~ Mhte) b+ | lte) ot~ o)tz )
a/2 a/2
= [ o)~ sta — e —0) ~h(e) s
For a/2<z<a,  g(z)-g(z~a)=g(z)— gla—z)>0.
For z2>a, g(z)—glx—a)>0.
For z>a/2, h(z —a)—h(z) >20.

Hence, the integrand above is positive, which proves the lemma for the case where
a>0.

To complete the proof that (5.37) also holds for negative a, let ¢ > 0 and make
the substitutions

g1(y) = —h(y), hi(y)=-9(y).

These functions satisfy the assumptions. Further:

/ o(z — a)h(z) dz = / g(@)h(z +a)ds = / h()ar(y + a) dy

o0 oo

> / h1(y)g:(y) dy

= /°° g(z)h(z)dzx . [

o0
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Exercises

Exercise 5.1 Let £ ~ N(mg, R;) and e ~ N(0, R,) be independent Gaus-
sian random vectors. Suppose one observes

y=Czr+e.

Determine the mean square optimal estimate of z based on the observation
y. What is the variance of the estimate?

Exercise 5.2 Let z and v be random vectors and jointly Gaussian dis-
tributed:

T m R, 0

(5)~~((5) (5 r))
and set

y=Az+v.

Assume that dimy > dim z and that A has full (column) rank.

(a) What is the conditional distribution of (z|y)? Find the conditional mean
Z and the conditional covariance matrix P.

(b) Suppose R, = A?I and that the a priori information of z is inaccurate, so
that R, /A% — oo (or A2R;! — 0). What expressions are then obtained
for  and P?

(c) Generalize the situation in (b) to correlated v (R, nondiagonal) but
R;! = 0.

Hint. For rectangular matrices of compatible dimensions
A(I+BA) ' =(I+AB)"'A

holds.
(d) Apply the result of (b) to the following situation. Consider the first-order
System

z(t +1) = az(t) + bu(t) +v(t) ,

where a is known, z(t) is measurable, and v(t) is Gaussian white noise of
zero mean and variance A2. Let b be Gaussian but let its variance tend
to infinity. Find

E [b|X*] and var[b|X?].

Compare with the theory of linear regression.

Exercise 5.3 Let x be a uniformly distributed random variable, with pdf

1,0<2<1,
fa(z) = {O, elsewhere.
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(a) Assume that neither measurements nor any further information are avail-
able. What is the best estimate of z in a mean square sense? (That is,
determine a number #ys so that E ($ms — z)? is minimal.)

In what follows assume that a noisy measurement is available as
y=x+v,

where v is noise with a uniform distribution:

fulv) = {1/@1")7 ol <,

0, elsewhere.

The variables z and v are independent, and 0 < r < 0.5.

(b) Find the conditional mean E [z]y].
(c¢) Find the LLMS estimate of .
(d) Hlustrate graphically how the estimates in (a)-(c) depend on y and r.
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6. Optimal State Estimation for Linear
Systems

6.1 Introduction

The general state estimation problem for linear systems is formulated and
discussed in this section.
Consider the state space model

z(t + 1) = Fz(t) + Gu(t) + v(t) ,
y(t) = Hx(t) +e(t)

where v(t) and e(t) are white noise sequences with zero mean and covariance
matrix

v(t) « x _( R Ry
E (e(t)) (v™(s) €e*(s)) = (R21 R, ) Ot . (6.2)
At time ¢, the available information is
Yt = {yT(t)vuT(t)v yT(t - 1)7 uT(t - 1): cee ;yT(tO)a uT(tO)}T :

Now find the optimal state estimate of z(t) given the measurements Y'*.
Based on the relations between t and s, one can distinguish three cases:

(6.1)

o If t > s, it is a prediction problem.
o If t = s, it is a filtering problem.
o If t < s, it is a smoothing (or interpolation) problem.

The optimal estimate of z(t) will be denoted by #(t|s). The covariance
matrix of the estimation error will be denoted by

P(t|s) = E [z(t) — &(t]s)][z(t) — 2(t|s)]" - (6.3)

Assume that the input signal to the system is either a known deterministic
signal, or that it is determined by a feedback in such a way that wu(t) is
completely determined from Y.

The optimal state estimation can be derived under some additional as-
sumptions. Two different approaches will be considered:

¢ Section 6.2 is devoted to a study of the linear least mean square (LLMS)
filter. Then the system is allowed to be complex-valued. Lemma 5.3 will
be an important tool in the derivation.

T. Soderstrom, Discrete-time Stochastic System

© Springer-Verlag London 2002
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o In Section 6.3, it will be assumed that the state space model is real-valued
and that the noise sequences are Gaussian. It is known from Lemmas 5.1
and 5.2 that the optimal estimate is the conditional mean

&(t|s) = E [z(t)| Y] .

The results of Sections 5.3 and 5.4 will be used to derive the optimal state
estimates.

The two approaches will lead to the same filter, known as the Kalman
filter. This is not surprising, as it is already known from Chapter 5 that the
LLMS estimate coincides with the conditional mean for Gaussian distributed
data.

Some further results related to the prediction and filtering cases will be
given in Section 6.4, and smoothing is discussed in Section 6.5.

6.2 The Linear Least Mean Square One-Step Prediction
and Filter Estimates

Consider now the system of (6.1) for the one-step prediction case, that is,
t = s + 1. Find the LLMS estimate. Assume that an initial state estimate
&(to|to — 1) and its covariance matrix

R(to) =E [.’I)(to) — .'f)(tolto — 1)][(1)(750) —- .f)(t0|t0 — 1)]*

are available, and that £(tg|to—1) is independent of the noise sequences {e(t)},

{v(#)}. The initial estimate and its covariance may be chosen as the mean, if

known, of the initial value z(to) and its covariance matrix respectively.
Introduce the output innovations {{(t)} as the one-step prediction errors

g(t) = y(t) — gt - 1) (6.4)

The term “innovation” reflects that §(t) is the new piece of information in
y(t) that was not known at time ¢ — 1. It follows from Lemma 5.3 that the
{4(t)} is a sequence of uncorrelated random variables. It can also be noted
that there is a 1-1 transformation between {§(t)} and {y(t)}. Utilizing this
transformation, the conditional expectations E [z(t)|Y"?] and E [z(t)|Y?] will,
therefore, be the same.

As e(t) is uncorrelated with Y1,

gt — 1) = HE(tjt — 1) . (6.5)
Now set

A SE§()§* (8) - (6.6)
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In what follows, notation such as R,(;)y+ will be used to denote the co-
variance matrix between the state z(t) and the collected observations Y?.
This will follow the notational conventions of Chapter 2 and Section 5.3.

The input signal u(t) will be regarded as known and deterministic. It will
then play a role corresponding to the mean values of Section 5.3. Further, the
observation that {§(¢)} and {y(t)} have the same span can be reformulated
as that there exists a nonsingular matrix (Jo and a vector ¢; such that

Y =QoY' +q1, (6.7)
where
Y= ("), 5"t -1),...5" ()} . (6.8)

The vector g; will be the mean value of Y. See also Exercise 6.18 for more
details.

It may be said that Y* carries the same informatjon as Y* and hence one
can equivalently base the estimate of z(t + 1) on Y* instead of Y'*. The main
advantage of using Y? is that the components (the individual (t) values)
are uncorrelated. Hence, Ry, will be block-diagonal, which will simplify the
final results considerably. In order to see the details, apply Lemma 5.3. The
deterministic input will give the mean value contribution. Proceeding in this
way:

gt +1t) =Exz(t+ 1) + Ryryye Ryt [Y — E Y]
=Ez(t+1)
+eov[z(t + 1), QoY + ¢1][E {QoY Y Q1) 1 [QoY]
=Ez(t+1) +coviz(t + 1), YE YY1y
¢
=Eaz(t+1)+ Y_[Ea(t+1)g* ()47 (s)ii(s) . (6.9)

s=tgy
Next, set
A _
K(t) = Ry(er1ygnA L), (6.10)
and observe that

1. Ex(t+1) = FEz(t) + Gu(t) .
2. v(t) is uncorrelated with §(s) for s < ¢.

This gives
#(t+ 1|t) = FE 2(t) + Gu(t) + K(t)j(t)
+ > [Ea(t+ 1) ()4 (s)i(s)

= FE z(t) + Gu(t) + K (t)§(2)
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+ 37 B {[Fa(t) + Gu(t) + o0l ()} A~ (s)i(s)
— Gult) + KO
t—1
+F[E z(¢) -+§:mz §* ()] A7 (8)§(s)]

= Fi(t|t — 1) + Gu(t) + K(t)[y(t) — HE(t|t - 1)] . (6.11)
Set
) =z(@) - 2(tlt-1). (6.12)
Hence (see (6.3)),
P(tlt—-1) =EZ(t)z*(¢t) .

As
§(t) =y(®) -9t - 1)
= Ha(t) +e(t) - HE(t|t - 1)
= Hi(t) +e(t), (6.13)
and #(t) and e(t) are uncorrelated, it follows that
Alt) =HP(t|jt—1)H* + R, . (6.14)

Next the remaining part of the gain K (t) must be evaluated. Recall from
Lemma 5.3 that .i;(t) and Z(t[t — 1) are uncorrelated. Hence
E z(t + 1)§*(t) = E [Fz(t) + Gu(t) + v(t))[&* ) H* + e*(t)]
= E[Fz(t)3* () H"] + E [u(t)e"(t)]
:EF[.’L'()+IIIt|t—1)]1! )H*+R12
=FP(tit— 1)H* + Ry . (6.15)
It remains to derive an equation for the state prediction error covariance

matrix P(t|t — 1). To do so, first establish a difference equation for the error
Z(t):

#(t+1) = Fa(t) + Gu(t) + v(t) - [Fa(t|t — 1) + Gu(t) + Kt)§(t)]

= F&(t) +v(t) - K(t)g(t) . (6.16)
Next, observe
E z(t)v*(t) =0
Ez()g*(t) =Ez()[Z*(t)H" +e (t)] Pt - 1H)H*, (6.17)
Ev(t)§"(t) = Ev(t)[Z*(0)H" + €*(t)] = R12 ,
from which one obtains
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Pit+1t) =Ez(t+1)z*(t+1)
= E[FZ(t) +v(t) - KOFOFZ() +v(t) - K@)
= FP(tjt - 1)F* — FP(t|t — ) H*K*(t) + R,
—RlzK*(t) - K(t)HP(tlt — l)F* — K(t)R21
+K(t)A(t)K*(t)
= FP(tjt - 1)F* + Ry — [FP(t|t - 1)H" + R12]K*(t)
(O)[HP(t|t — 1)F* + Ra1] + K($) AW K*(t) .
Inserting (6.10), (6.14) and (6.15) finally gives the Riccati equation
P(t+1jt) = FP(t|{t — 1)F* + R, — [FP(t|{t — 1)H" + Ry2]
x[HP(t|t — )H* + Ry] ' [HP(t|t — 1)F* + Ry] . (6.18)
The predictor is to be initialized at time ¢. An initial estimate Z(to|to—1)
was assumed available. Further, P(to|to — 1) = R(to).
Next, the LLMS filter estimate of z(t) given Y is derived. One can pro-
ceed along the same lines as before and obtain
£(tlt) = Ex(t) + Ryyy: Ryt [Y' - EYY)
= Ez(t) + covlz(t), QoY" + ¢:][QoE Y'Y Q3] QoY

t

= Ez(t) + Y _[Ex(t)i*(s)]A (s)ii(s)

+HE z(t)g" ()47 ()§(t)
E(t|t — 1) + Ki(8)g(2)
= Z(t|t - 1) + K¢ (t)[y(t) — Hi(t|t — 1)], (6.19)
where the filter gain K¢(t)
K:(t) = Ex(t)g"(t) A7 (¢)
= [E{&(t) + 2(¢]t - DHHZ() + e(t)}']47 @)
= P(tjt - DH* A7 (1) . (6.20)
It remains to find the filter covariance P(t|t). Note that, from (6.19):
z(t) — Z(tt) = 2(t) — Ke(t)g(t) ,
and (6.17) gives the correlation between Z(t) and 7(t). Hence:
P(t|t) = E [z(t) — 2(t|0)][z(t) — 2(t])]"
= P(t|t - 1) + K¢(t)A () K¢ (t)
—P(tjt = 1)H*K{(t) — Ke(t)HP(t|t — 1)
=P(tjt—1) - P(t|t — )H*A'HP(t|t - 1)

11>

can be evaluated as follows:
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= P(t|t - 1)

—P(t|t — )H*[HP(t|t — 1)H* + Ry 'HP(t]t - 1) .

Summing up, the following result has been derived.

Lemma 6.1 Consider the state space model

z(t+ 1) = Fz(t) + Gu(t) + v(t) ,
y(t) = Hz(t) +e(t)

v(t) x * _( Ry Rys
e (10) 06 ew= (52 b
Ex(to) =mg, COV(])(to)) = R() .
The LLMS prediction estimate is

#(t+ 1)t) = Fa(t|t — 1) + Gu(t)
+K(#)[y(t) - He(tlt - 1)],
.’i:(tolto el 1) =mg,

and the LLMS filter estimate is

2(t]t) = 2(eft — 1) + Ke($)[y(t) — H (¢t - 1)] .

The predictor and the filter gains are

K(t)
Ki(t)

[FP(t|t — 1)H* + Ry2)A71(2)
P(tlt — 1)H*A™\(t)

where

A(t) = HP(t|t — 1)H* + R, ,
P(t+1]t) = FP(t|t - 1)F* + R,
—K(t)[Rn + HP(t]t — 1)F*],
P(tolto— 1) = Ro .

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

These matrices relate to the accuracy of the estimates in the following way:

cov[E(t + 1|t)] = P(t + 1|t) ,
cov[E(t|t)] = P(t|t — 1) — K¢(t)HP(t|t — 1),
cov[y(t) — HE(t|t - 1)] = A(t) .

(6.27)

The optimal state estimators are now illustrated by two simple examples.
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Ezample 6.1 Consider the estimation of a constant from noisy and indepen-
dent measurements. The following model is used to describe this situation:

et+1) =az(t), [=z(0)]
y(t) =a(t) +et), Ee()=r:.
Suppose the a priori information about z(0) is given as an N(zo, Rg) distri-
bution. Find the optimal estimate of z(0) given the measurements y(0),... ,
y(t). As the state is constant, identical results are obtained whether one looks

for the optimal predictor Z(¢ + 1|¢) or the optimal filter estimate Z(¢|t).
The Riccati equation (6.18) simplifies in this case to

2 _
P(t+1]t) = P(t}t 1) — 73%%){%
P(tlt - D B
= P T 1n FON=R.

Inverting this gives a linear relationship
1

Plt+1t) = —+ P 1tt~1),
T2

which is easy to solve. It can readily be found that

t t
Pt —1) = —+ P 1(0]-1) = tho + 72
re T2 Ro

so (6.25) implies that
P(tjt - 1) Ry
®) P(tlt—-1)+re (t+1)Ro+72
The optimal predictor estimate can now be written as (see (6.23))
B
(t+ DRy + 19

To simplify this recursion, introduce

B(t+1]t) = B(t|t - 1) + [y(t) — &(t)t — 1)] .

2(t) 2 (tRo + r2) 2 (t|t — 1) .
Then

z(t+1) = z(t) + Roy(t) ,
and hence

z(t+1) = 2(0) + Ro[y(0) + ... +y(t)] -
Backsubstitution finally gives

Bt +1Jt) = At +1)

(t+ l)Ro +T'2
1 t

- m[&gy(s) +ra#(0]-1)] .
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Note that this result shows explicitly how the optimal estimate is a weighted
. . . 1 i

average of the arithmetic mean of the observations &5 3°._,y(s) and the

a priori estimate £(0|-1). In particular, if the a priori estimate becomes very

uncertain (Ry — o0), the optimal estimate will converge to the arithmetic

mean of the observations. a

Ezample 6.2 Consider the estimation of an exponential decay from noisy
measurements. This is modelled as

z(t+1) = fz(t),
y(t) = z(t) +e(t) .
Applying (6.23) it is found that the optimal prediction estimate will be
E(t+1)t) = fa(tjt - 1) + K(t)[y() - fa(tlt —1)],

_ fP(t)t -
K=t r
2 p2 _
P(t+1jt) = f2P(tjt - 1) - ﬁ%}%f)—;% ,
20| - 1) = zo ,
P(O|-1)=Ry .

The performance of the above filter may be compared with one with a con-
stant gain:
Et+1)= f&(t)+ K[yt) — &(tjt - 1)] .

Such a filter is of course simpler but may have a degraded performance. It is
instructive to compare the behaviour of the estimation error () = z(t)—£(t)
of such a filter with the Kalman filter. It is easy to derive
F(t+1) = fi(t) - K[Z(t) + e(2)]
= (f - K)Z(t) — Ke(t) .
The choice of the gain K should meet two conflicting objectives.
e One objective is to have the error Z(t) converge rapidly, which requires
f — K to be “small”. In some sense this means that K should be “large”.

e Another objective is that Z(t) should have a small steady state variance.
This variance turns out to be

K2T2
1-(f-K)

It will hence be small when K is small.

var[Z(t)] =

With a time-invariant filter, both objectives cannot be met simultane-
ously. The Kalman predictor makes the optimal trade-off between the objec-
tives by minimizing the time-varying mean square error. When ¢ is small, the
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gain K(t) is “large” in order to obtain a fast decay of the transient, whereas
K (t) decreases with time so that the variance contribution is small as well.

The optimal and the time-invariant estimators are illustrated in Figure
6.1. In this case, the parameters are

2(0) =1, Ro=1,
2(0]—
F=09, rp=004. 0

6.3 The Conditional Mean

In this section the optimal state estimate will be derived based on the results
given in Section 5.4 on the propagation of the conditional mean.
The result is formulated as a theorem.

Theorem 6.1 Consider the system

z(t + 1) = Fz(t) + Gu(t) + v(t) ,
y(t) =Haz(t) +e(t),

where v(t) and e(t) are mutually independent Gaussian white noise sequences
with zero means and

E (ZEQ) (WT(s) eT(s)) = (}31 ;;2) Gus - (6.29)

Assume that the initial state z(to) is Gaussian distributed, x(to) ~ N(mo, Ry),
and independent of the noise sequences. Recall that the input signal is as-
sumed to be either deterministic or determined by a feedback such that u(t)
is completely known from Y1

Then the conditional distributions of the state are given as

(6.28)

p(z(8)[Y") ~ N((tft), P tlt) (6.30)
p(a(t + DY) ~ N(&(t + L[t), P(¢ + 1]¢)) -

The conditional means and covariances are propagating as

Ft+1)t) = Fa(tlt— 1)+ Gult) + Kp(t)[y(t) — Ha(tt - 1)],

Bt +lt+1) = a(t+ 1) + Ke(t + Dyt + 1) — Hat + 1)) , 53D

K,(t) = FP(t|t - YHT[HP(t|t — 1)HT + R, ]“ 6.39
Ki(t) = P(t|t — WVHT[HP(t|t - 1)HT + Ry]™* (6:32)
P(t+1|t) = FPtt)FT + Ry ,
P(t|t) = P(t|t - 1) - P(tjt - 1)HT (6.33)
x[HP(t|t - 1)HT + Ry]"'*HP(t]t - 1) .
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Fig. 6.1. Illustration of optimal and time-invariant estimators; Example 6.2. Top:
exponential decay x(t) (solid line); measurements y(t) (dotted line). Middle: esti-
mates based on time-invariant gains K = 0.05 (solid line); 0.1 (dashed line); 0.2
(dotted line); 0.4 (dash—dotted line). Bottom: Optimal estimate &(¢t+1(t) (solid line);
optimal time-varying gain K (t) (dashed line)

The initial values are
f)(tolto“l):mo, P(tolto—l)‘—‘Rg .

Proof It follows from Lemma 2.3 that the LLMS estimate and its error
covariance are in fact also the mean value and the covariance matrix, respec-
tively, of the conditioned pdf. The stated results then follow from Section
6.2.
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In Section 6.A.2, a more direct proof based on the developments of Chap-
ter 5 is presented. It consists of lengthy calculations. |

Remark 1 Note that K¢(t) in (6.32) is the filter gain and K, (t) is the pre-
dictor gain. ]

Remark 2 Note that the equation for P(t+ 1|t) and P(t|t) can be combined
to give the Riccati equation
P(t+1Jt) = FP(t|t - 1)FT + R,
~FP(tit - WHT[HP(t|t - )HT + Ry 'HP(t|t - 1)FT . (6.34)
O

6.4 Optimal Filtering and Prediction

Reconsider the system of (6.28) with the additional assumptions stated in
Theorem 6.1. In particular let Ri» = 0. The present aim is first to establish
some further links between the estimates (¢ + 1|t) and Z(¢|t). In the second
half of this section, the optimal general predictor &(t + k|t), k > 0, will be
derived.

We first note from (6.32) that

K,(t) = FK¢(t) . (6.35)
As a consequence:
2t + 1)t) = Fi(t]t) + Gu(t) (6.36)

(see (6.31)).
One can establish a direct difference equation for #(¢t), as is shown next.
Lemma 6.2 The optimal filter estimate Z(t|t) satisfies
Et+1t+1) =[I — Ke(t + 1)H]Fi(t|t)
+[I - Ke(t + DH]|Gu(t) + Ke(t + Dyt +1) . (6.37)
Proof By direct calculation from (6.19) and (6.36):
t+1t+1) =1 -Ke(t + )H)Z(t + 1]t) + Ke(t + Dyt + 1)
=[I - Ke(t + 1)H][F2(t]t) + Gu(t)] + Ke(t + Dy(t + 1) .
|
Then consider the general prediction problem of estimating z(t + k) from

Y?, k> 0. Recall that the future input values u(s), t +1 < s, that appear in
the following expressions are assumed to be known at time t. For k > 1:
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zt+k)=Fz(t+k-1)+Gu(t+k-1)+ov(t+k—-1). (6.38)
Therefore, since v(t + k — 1) is uncorrelated with ¢,
#(t +k|t) = E [z(t + k)|Y?]
=FE[z(t+ k- 1Y ]+ GE [u(t + k — 1)|Y"]
+E(t+k - 1YY

=Fi(t+k—-1t) +Gu(t+k—1). (6.39)
Equation (6.39) can be iterated to give
t+k-1
B(t+klt) = FF1a(t+ 10ty + ) FHH1=¢Gu(s)
s=t41
or
t+k—1
B(t+klt) = F¥a(t]t) + Y F™H17Gu(s) . (6.40)
s=t

It is also of interest to evaluate the conditional covariance matrix. Straight-
forward calculation gives

P(t+k|t) = E [zt + k) — 3(t + kt)][z(t + k) — (¢ + k[t)]*
=E[F{z(t+k-1)—#(t+k— 1)} +o(t +k - 1)]
x[F{e(t+k—1) - d(t+k— 1))} +o(t + k — 1)J*

=FP(t+k—1t)F*+ R, . (6.41)
This equation can be iterated to yield
.kt

P(t+k|t) = F*P(t|t) F* +)_ F*R\F* . (6.42)
s=0

6.5 Smoothing

Consider again a discrete-time stochastic system (6.28). For simplicity, drop
the input term.
z(t+1) = Fz(t) + v(t)
y(t) = Ha(t) +e(t)
where z(t) is the state vector and v(t) and e(t) are white noise sequences
with covariance matrices
Ev(t)v*(t) =R1, Ev@)e'(t)=0, Ee(t)e'(t)=R:. (6.44)

The smoothing estimate of z(t) is #(t|s) where s > ¢. In this section we
will treat two different situations:

(6.43)

o Fixed point smoothing. Then ¢ is fixed, while s is changing.
o Fixed lag smoothing. In this case the time difference s — ¢ is kept fixed.
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6.5.1 Fixed Point Smoothing

We modify the notation slightly as follows. The purpose is to compute the
optimal fixed point smoothing estimate Z(¢o|t), ¢ > to. Note that here ty
denotes an arbitrary fixed time, not the initial time. Consider the following
augmented system, where z,(t) = 2(to):

o(t) £ (;:(2)) L t>t,

2t +1) = <€?>z(t)+ (”%”) ) = (‘;ggg) . (6.45)
y(t) = (H 0)2(t) +e(t)

By applying a standard Kalman filter to this system, one can obtain the
optimal estimate £(¢ + 1{¢). The lower half of this vector is precisely #(tot).

In order to obtain a more detailed algorithm, it is necessary to partition
the Kalman filter for 2(¢ + 1|t). The Riccati equation associated with (6.45)
can be written as

Ppy(t+1)t) Po(t + 1)t

P1*2(t + llt) P22(t + llt

. 11(t|t—1 P12(tlt—~1) F*0 " R, 0

- Py (t)t — 1) Pyo(tlt — 1) 01 00

K1 (t) Pri(t|t — 1) Pia(t]t — 1)
- (Kl(t)) a0 (a1 me ) (07) oo
where the Kalman (predictor) gain is

Kit)\ _ (FOY\ [ Pu(tlt-1) Pa(tit - 1)
<K2(t)) = (0 I) (Pl*2(t|t—1 Pyt — 1) )

x (’%) (HPu (8]t — 1)H" + Ry)™" . (6.47)

— e ~— N

Examining the equations for Py (t|t — 1) and K (#), it can easily be seen
that they are precisely (as they should be!) the standard equations for the
one-step optimal predictor. Hence Pi;(t + 1jt) = P(¢t + 1|¢t). Equating the
other blocks of the Riccati equation gives

Pio(t+ 1)t) = [F — K1(¢)H]|Pi2(tt — 1), (6.48)
P22(t + ].lt) = P22(tlt - 1) - KQ(t)lez(ﬂt - 1)
= Poo(tit — 1) — P,(¢|t — 1)H*
X[HPj1 (¢t — 1)H* + R ' HPpa(tt — 1) . (6.49)
As

2(to) = (ﬁﬁiﬁ;) , (6.50)



150 6. Optimal State Estimation for Linear Systems

it is concluded that the initial values for (6.48) and (6.49) are given by
Plz(t()lt() - ].) = P22(t0|t0 - 1) = Pll(t0|t0 - ].) = P(tolto - 1) . (651)
The gain K,(t) is given by

Ky (t) = Ply(t|t — V)H*[HPy (tt — 1)H* + Ry] L. (6.52)
The fixed point smoothing estimate will thus be
Z(to[t) = &(to|t — 1) + K2(t)[y(t) — HE(t|t — 1)] . (6.53)

This equation can be iterated to give

t

&(tolt) = &(tolto) + D Ka(s)[y(s) — Hi(sls — 1)]. (6.54)
s=tg+1

Equation (6.54) demonstrates how the smoothing estimate of z(¢y) based on
Y (t > to) is equal to the filter estimate Z(to|to) plus a weighted sum of the
future output innovations §(s), s =to +1,... ,t.

6.5.2 Fixed Lag Smoothing

We set for convenience

m=s—t (6.55)
and seek the smoothing estimate

E(tt+m) . (6.56)

The solution can be derived in different ways. One possibility is to start
with the fixed point smoothing estimate. Here, we will follow another route,
and use an extended state space, partly as in (6.45). As a consequence, we
will get not only the estimate in (6.56), but also

Ett+1i), i=0,...,m. (6.57)
Introduce the extended state vector
x(t)
2(t) = : . (6.58)
z(t —m)

Then it is easily seen that

2(t+1) = Fz(t) + v(t)

y(t) = Hz(t) + e(t) (6.59)

with
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F 0 R, O 0
_ I = 0
F= . ) Rl - Eﬁ(t)ﬁT(t) = 3
0 I0 0 0
(6.60)
H=(HO0...0).
Further, the filter estimate of z(¢) must be
Z(t[t)
&(t —1|t)
Z(tt) = , , (6.61)
&(t —mlt)

and updating Z(¢|t) thus provides all the smoothing estimates in (6.57). The
estimate in (6.57) can be updated according to Lemma 6.2 as

At =Fa(t — 1t — 1)+ K;(H)[y(t) - HF2(t — 1|t - 1)] , (6.62)
and the gain matrix K(¢) will be written in partioned form as
KO\t
Ke(t) = 5 . (6.63)
Km(t)

Spelling out the details, (6.62) and (6.63) mean
E(tt) = Fat — 1t - 1)+ KO®@®)[y(t) - HF&(t — 1|t — 1)], (6.64)
E(t—ilt) =2t —it - 1)+ KD@)[y(t) - HF&(t - 1|t — 1],
i=1,...,m. (6.65)
Note that (6.64) is nothing but the usual filter update, so K@ (t) = K;(t)
must hold. Further note that
y(t) - HF&(t - 1|t — 1) = y(¢t) — Hz(t|t — 1) (6.66)

is the usual innovation or prediction error §(t) at time ¢.

Note the similarity between (6.54) and (6.65). Both formulas show how
the smoothing estimate &(t —i|t) is a linear combination of the filter estimate
&(t — i|t — 7) and the future output innovations §(t — i+ 1),... ,g(t).

It remains to find expressions for the gains K (t), i = 1,... ,m. Natu-
rally, K;(t) is linked to the solution of a Riccati equation as

Kit) = POH [HPOH +Rs]™", (6.67)
Pt+1) =R +F [?(t) ~PWH [HPHH + R2]—17{“P(t)] 7.

(6.68)
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To proceed, we partition also P(t) as

POy pOL(y ... pOm)(¢)
POty pAD(gy ..,

P(t) = ' (6.69)
Pmo) () plmb) (g .. plmm)(4)
Spelling out (6.67) we have
K© = pOO)HT[HPOO ($)HT + Ry] !,
KO = PO HTHPOWHT + By]!, i=1,...,m. &0
The first block of the Riccati equation in (6.68) becomes
PO (¢ 4+ 1) = Ry + F [P0 (t) - POO()HT (6.71)

x {HPOO($)HT + Ry}~ 1HP0)(¢)] FT
which indeed shows that
PO(t) = P(tlt — 1), KO(t) = Ki(t) (6.72)

as already known, as the first block of 2(¢|t) is £(t{t). In what follows we will
use the abbreviated notation

P@t)=P(tt-1). (6.73)
Equating (6.68) for blocks (0,7) with ¢ =1,... ,m gives
POt +1) = FPO-V(4) - FP@)HT
x[HP)HT + Ry *HP®-1(¢) (6.74)
and for blocks (1,j), i,7=1,... ,m
P (¢ +1) = pi-Li-D(t) - pe-LOGHHT
x[HP(t)HT + Ry *HP®3~V(¢) . (6.75)

Equations (6.74) and (6.75) indicate how the block components of P(t) are
updated from blocks of similar or lower indices ¢, j.

The initial values for the Riccati equation in (6.69) and the state estimator
are

Ry0...0
_ 00
PO =] . . , (6.76)
0 o
(™o
o-n=1| . |, (6.77)
\ 0
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where N(my, Ro) is the a priors distribution of the initial state vector z(0).
The associated initial value of the filter estimate in (6.61) is

my
0
2(0]0) = . (6.78)

with
my = #(0[0) = mo + RoHY (HRyHT + Ry) ™Y (y(0) — Hmyg) . (6.79)

6.6 Maximum a posteriori Estimates

In Section 5.5 it was stated that the MAP state estimates of z(0),...z(N),

given the measurements y(1),... ,y(N), are the minimizing elements of the
criterion
1
Vi = 512(0) - mol" Bg [z (0) — ma]
LN
+5 Y [x(t+1) - Fe()]" Ry ot + 1) — Fa(t)]
t=0
L N
+5 _lu(t) — Ha(@®)]" By 'y(t) - Ha(1)] (6.80)

1

-
Il

According to the previous findings in this chapter, the optimal estimates must
be the smoothing estimates Z(t|N), t = 0,... , N, as given in Section 6.5.
The aim of the present analysis is to show that the smoothing estimates do
in fact minimize the criterion in (6.80).

As a starting point, the derivatives of Vi with respect to the state vari-
ables are evaluated. Straightforward calculation gives

T
2(0)2 (;L(g)) = R5[2(0) — mo] — FTR [x(1) - F2(0)], (6.81)

A 6VN T 1
2(N) £ <6w(N)) = R z(N) - Fz(N - 1)]

~H"R;'[y(N) — Hz(N)] . (6.82)
and fort=1,...N -1
T
2(t) & <%%> =R '[z(t) — Fx(t — 1)] - FTR ' [z(t + 1) — Fz(t)]
~HTR;Y[y(t) - Hz(1)] . (6.83)
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The minimizing elements {z(t)}{, of Vy correspond to z(t) = 0, for
t =0,...,N given all the measurements, that is Y. By taking conditional
expectations of both sides of (6.81) - 6.83), we see that replacing z(t) with the
conditional expection E [z(¢)|YN],t = 0,..., N will make both sides equal to
zero, if

E[z#)|YN]=0, t=0,...,N. (6.84)
This, in turn, is equivalent to

E[2(t)|ly(s))]=0, t=0,...,N; s=1,... ,N. (6.85)
or yet

Ez(t)yT(s)=0, t=0,...,N; s=1,...,N. (6.86)

In order to verify (6.86), a first step is to rewrite z(t) using the nominal
model. This gives

2(0) = Ry '[2(0) — mo] — FTR'0(0), (6.87)
z(N) = Ry "o(N ~ 1) — HTR;'e(N), (6.88)
2(t) = Ry 'o(t — 1) — FTRYu(t) — HTRye(t) (6.89)

(t=1,... ,N-1).

As, by construction, y(s) is a (linear) function of e(s),v(s—1),e(s—-1),...,
v(0), e(0), z(0), it is directly seen that (6.86) is satisfied at least as soon as
s<t-1.

" Consider next the case where t = N ,§ = N. Then

E z(N)y"(N) = E[R;'v(N — 1) — HTR;'e(N)][Hz(N) + e(N)]¥
= R7Ev(N — 1)2T(N)HT — HTR; 'R,
=R 'Ev(N - 1)[Fe(N -1)+v(N - 1)]THT - HT
=R 'R HT - HT
=0.

Secondly, consider the case where ¢t = 0,s > ¢. In this case
E 2(0)y"(s) = E [Ry ' (2(0) — mo) — FT R 0(0)][Ha(s) + e(s)]”
= B[Ry (2(0) — mo) — FT Ry ' v(0)][F*=(0) + F*~'v(0)

s—1
+Y P () THT
Jj=1

= E [Ry*(2(0) — mo) — FTR;v(0)]
x[zT(0)FT + vT(0))FT" HT
= [Ry'RoFT — FTR{'R)FT" ™ HT
=0.
As the third and last case, let t=1,... ,N.Iff s=#¢:
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Ez(t)yT(t) = E[R{'w(t — 1) — FTR'v(t) — HTR; 'e(t)]
x[Hz(t) +e(t)]T
=E[R 't - D)z ()]H" - H'R; 'R,
= R 'Ev(t - )[Fz(t - 1) +v(t - 1)]THT - HT
=R 'RH"-HT
=0,
and s >t implies that
E z(t)yT E[R;'v(t — 1) — FTR;'w(t) — HTR; 'e(t)]
x[Hz(s) +e(s)]"
=E[R;'v(t—1) - FTR"(t) - H'R;'e(t)]

s—t—1

x[F*~tz(t) + F*~ Lo (t) + Z Fet=1igt + ))THT

.
[

=E[Ry'o(t - 1) ~ FTR () - HT Ry e(t)]
x[Fz(t) +v@]FT " HT
= [R{'Ev(t - DT ®)FT = FTRT'E v(t)oT (1) FT" " 'HT
= [R{'Ev(t - V)[Fz(t - 1) +v(t - D)]TFT — FTR'R)]
xFT ' HT

= [R'R,FT — FT)FT™"'gT

=0.

Thus (6.86) has been established, which means that the conditional means
{2(t|N)}}, minimize the criterion Vi (6.80). In other words, the optimal
state estimates can also be interpreted as maximum a posteriori estimates.

6.7 The Stationary Case

The stationary case is studied in this section. Let t; — —o0, so that an infinite
set of data is available. Under weak conditions, the optimal state estimators
will then be time-invariant. The following result holds, but will not be proved
here (for a comprehensive treatment see the book edited by Bittanti et al.
(1991) listed in the Bibliography section at the end of this chapter.

Theorem 6.2 Consider the Riccati equation
P(t+1jt) = FP(t|t - )FT + R,
~FP(t|t - VHT[HP(t|t — 1)HT + Ry "' HP(t|t - 1)FT .
(6.90)
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Assume that Ry is positive definite and that the nonnegative definite matriz
R is factorized as

R1 ZBBT .

Assume, further, that the pair (F, B) is stabilizable, and that the pair (F, H) is
detectable. Then the solution to (6.90) converges, ast —to— 00, to a positive
definite matriz P that satisfies the ARE

P=FPFT + R, - FPHY(HPHT + R,) "'HPFT . (6.91)
]

As a further consideration, the following lemma holds.

Lemma 6.3 Consider the ARE

P=FPFT + R, — FPHT(HPHT + Ry))"'HPFT , (6.92)
and let it have a positive definite solution P. Let
K =FPHT(HPHT + Ry)™'. (6.93)

Assume that (F, B) is controllable, where Ry = BBT and R, is nonsingular.
(We may, as an alternative to these two assumptions, assume that Ry is
positive definite.} Then the matriz

F=F-KH (6.94)
has all its eigenvalues strictly inside the unit circle.

Proof (The proof will follow the path given in Theorem 4.2.) Examine the
stability properties of the system

z(t+1) = FTz(t)
by means of the candidate Lyapunov function
V(z(t) = T (t)Px(t) .
Clearly, V(z(t)) > 0. Further:
A

AV(z) = V(z(t+1)) - V(x(t))
= T (t)[FPFT - Plz(t)
= 2T (t)[FPFT - KHPFT - FPHTK”
+KHPHTKT — Pla(t)
= —zT ()[R, + KR:KT]x(t) <0. (6.95)
It remains to show that AV (z) = 0= z(t) = 0.
However:
AV (z(t)) =0 = Riz(t) =0, K"z(t)=0. (6.96)

Hence, BTz(t) = 0 and the dynamics become
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z(t+1) = (FT —HTKT)x(t) = FTa(t) . (6.97)
If (6.96) and (6.97) hold for any ¢, it is required that
BT
BTFT
: z(0)=0.
BT(FT)n—l

As (F, B) is controllable, the pair (F7, BT) is observable. This implies that
z(0) = 0 and hence that z(t) = 0. This completes the proof that F' is asymp-
totically stable. [ ]

It is appropriate to recapitulate briefly the optimal state estimator for the
stationary case, assuming that the solution to the Riccati equation converges
to P. The Kalman prediction gain is given by (6.93). The optimal one-step
predictor is

(t + 1jt) = F&(t|t — 1) + Gu(t) + K[y(t) — Hz(tjt — 1)], (6.98)
which can also be written as
E(tt — 1) = [¢f — (F — KH)] 7 [Gu(t) + Ky(t)] (6.99)

where it is emphasized how the predictor depends on all the available past
data points. The optimal filter estimate can be written as (see (6.37))

E(t+ 1t +1) = [I — KH|F3(t|t) + [I — KeH|Gu(t) + Key(t + 1),
or
#(t|t) = [¢I — (F — KeHF))™Y[(I — K H)Gu(t) + Kry(t +1)] . (6.100)

In another form, using (6.36) and (6.99), the filter estimate can be written
as

2(t|t) = (I — KeH)2(t|t — 1) + Key(t)
= (I - K¢eH)[ql — (F - KH)]‘1
x[Gu(t) + Ky(t)] + Key(t) - (6.101)

Here Kt = PHT(HPHT + R,)~! is the stationary filter gain.
Consider also the fixed point smoothing estimate. From (6.48),

Pia(tlt—1) = (F = KH)" % Pyy(tolte — 1) .
Note, however, that

Pis(tolto — 1) = cov[z(t)|Y ] = P.
Hence

Piy(tt—1) = (F - KH)!Pp. (6.102)
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and the gains become (see (6.52)),
Ks(t) = P(F = KH)T " HT[HPHT + Ry]™* . (6.103)

The accuracy of the smoothing estimate can be expressed by Pss(t). In
the stationary case, (6.49) and (6.102) give

Po(t+1]t) = Pu(tjt—-1) - P(F = KH)T'™°
xHT(HPHT + Ry)"'H(F - KH)!~%pP . (6.104)

The initial value is the predictor accuracy

P, (to‘to — 1) =P. (6105)
Equation (6.104) shows the successive improvement in accuracy when a new
piece of data is used for the smoothing estimate. By iterating (6.104),

t—to—1
Pyu(tlt-1)=P~P Y (F-KH)"HT(HPHT + Ry)™
$=0

xH(F — KH)*P . (6.106)

The matrices {Po2(t|t—1)}, t > to, form a bounded and decreasing sequence.
They therefore converge. Next, examine the limit as ¢ — co. The limit will
be the covariance matrix obtainable when estimating the stable x(tp) from
data ranging from ¢t = —co to t = oco. Set

t
Q@)=Y (F-KH)HT(HPHT + Ry))'H(F - KH)* . (6.107)
$=0

Apparently:
Pyu(tlt—1) =P - PQ(t —ty — 1)P. (6.108)
The matrix Q(t) obeys the Lyapunov equation
Qit+1)=(F-KHTQ(t)(F-KH)+HT(HPHT + R,) ' H .(6.109)

As the matrix F' — K H has all its eigenvalues inside the unit circle, Q(¢) will
converge as t — oo (see Corollary 2 of Lemma 4.2). The limit, say @, satisfies
the algebraic Lyapunov equation

Q=(F-KH)TQF-KH)+ HI(HPHT + Ry)"'H . (6.110)
The ultimate smoothing accuracy is

Py = lim Py(tlt—1)= P - PQP. (6.111)

This section ends with a discussion of the role of the noise model, notably
the covariance matrices B; and Ry on the filter performance. One possibility
is to regard R; and R, just as the user’s tuning knobs for achieving certain
filters. By adjusting these matrices, the bandwidth and the shape of the
filters, etc., can be changed.
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It can be seen from the ARE that it is the relation between R; and R,
that plays a role, not the absolute values of these matrices. More precisely,
if R; and Ry are changed into aR;, aRy (o being a scaling factor), then P
will change into P but the predictor gain K will remain unchanged. In the
scalar output case, it is thus the normalized covariance matrix R;/Ry that
will have an impact on the filter. In general terms, when R;/R» is increased,
the measurements are given larger weights and the filter bandwidth will in-
crease. The idea is illustrated by the following example.

Ezample 6.3 Consider an AR(2) process with measurement noise, modelled

as
ot +1) = (:Z; (1)) () + ((1)) o(t)
y(t) =1 0)z(t) +e(t) .

In this case, set

r 0
R1—<00)7 R?“‘l,

and regard r as a tuning variable. The filter for estimating the undisturbed
AR process from the current measurements turns out to be (¢f. (6.100))

&1 (tt) = Hqlql — (F — KeHF)] ™' Kry(¢)

2 Glg)y(t) -

The frequency properties of G(g) are illustrated graphically in Figure 6.2.
a

6.8 Algorithms for Solving the Algebraic Riccati
Equation

6.8.1 Introduction

An important aspect when finding the optimal filter in steady state is solving
the ARE. This section is devoted to discussing that problem and to providing
an algorithm in Section 6.8.2. See also Exercises 6.11, 6.12, 6.21-6.24.

First, it is shown that the general problem with R;5 # 0 can be reduced
to the somewhat simpler case where Ry = 0.
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Fig. 6.2. Frequency function G(e'*), Example 6.3, a1 = —1.5, a2 = 0.7, with r as
a parameter

Lemma 6.4 Consider the Riccati equation
P(t+1)= FP(t)FT + Ry — [FP(t)HT + Ryy)

x[HP(t)HT 4+ Ry] M [HP(t)FT + Ry ] . (6.112)
Set
T -1
= B R 6113)
Then P(t) satisfies
P(t+1) =FPH)F +R,
~FPOHT[HP(W)HT + R)'HPWF' . (6.114)

Proof It is apparently sufficient to show that the right-hand sides of (6.112)
and (6.114) are identical for any P(t). Set P = P(t), Q = HP(t)HT + R,,
W = PHTQ 'HP. The difference between the right-hand sides can then be
evaluated as
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FPFT + Ry — [FPHT + Ry3)[HPHT + Ry) ' [HPFT + Ry]
_FPF' — R, +FPHT|HPHT + Ry]"'HPF "

= FPFT + Ry ~ FWFT - R;;Q 'HPFT - FPHTQ 'Ry,
—R12Q 'Ry, — [FPFT — R;3R;"HPFT — FPHTR; 'Ry,
+R12R; 1 (Q — Ry)R; 'R |
—[Ry = R12R; 'Ry
+[FWFT - RiyR;y'HWFT — FWHTR; 'Ry,
+RisR; " HWHT R, Ry1]

=F[P-W-P+W]FT
+F[-PHTQ™'+ PHTR;' - WHTR; '|Ry,
+Ri2[-Q 'HP + R;'HP — R;'HW]FT
+Ri2[-Q ' - Ry'QR;' + Ry + Ry + Ry "HWHTR; 'Ry

= FPHTQ '[-Ry + Q — HPHT|R; 'Ry,
+R;2R; ' [-Ry + Q - HPHT)Q'HPFT
+R12R; ' [-RyQ 'Ry — Q + 2R, + HPHTQ 'HPHT|R; 'Ry,

= RiRy [-RQ7 Ry — Q + 2Ry + (Q — R2)Q7H(Q — Re)JR; 'R

=0. [

When the time-varying problem is to be solved, a straightforward ap-
proach is to iterate the Riccati equation in (6.112) successively. However,
such an attempt is not numerically sound, as rounding errors may accumu-
late in an uncontrollable fashion and destroy the result. In extreme cases the
computed P(f) matrix may even be indefinite. In such cases, the Kalman
filter will deteriorate considerably. Instead, one should use square-root types
of algorithm such as the U-D algorithm. The idea is that a positive definite
covariance matrix P(t) can be written as

P(t) = U@®)D@®)UT(t), (6.115)

where D(t) is diagonal and U(t) is lower triangular with unit diagonal el-
ements. Instead of directly updating P(t), the factors U(t) and D(t) are
updated. In this way, the rounding errors are kept under control. By con-
struction, P(t) in (6.115) is constrained to be nonnegative definite.

6.8.2 An Algorithm Based on the Euler Matrix

It will first be shown how the Riccati equation is closely tied to a 2n-
dimensional linear system. In order not to complicate the analysis, the case
of nonsingular F' and R is considered.
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Lemma 6.5 Consider the Riccati equation

P(t+1)=FP#)FT + R, - FP(t)HT[HP(t)HT + Ry]!
xHP(#)FT , (6.116)
P0)=PF,.

Assume that F' and R are invertible. Consider also the system

(S8) - (ot ) (58) . o

with the initial condition

YoOo=I1, Z0)=p5. (6.118)
Then

P(t) = Z(t)Y\(t) . (6.119)

Remark The matrix

af FT FTHTR;'H
¢= (RIF*T F+R,F-THTR;'H (6.120)
appearing in (6.117) is called the Fuler matriz. O

Proof Equation (6.119) is proved by induction. Apparently, it is true for
t = 0. Assume that it is true for time ¢. Set P = P(t). Using the matrix
inversion lemma, (Lemma, 6.7), it is found that
Zt+ 1Yt +1)
= [RiF7TY(t) + {F + RiF " THTR;'H}PY (t)]
x[F7TY(t) + FTHTR;'HPY ()] !
=[RF T+ {F+RF THTR;'H}P)[I + HTR;'HP)'FT
=[RiF T +{F+RF THTR;'H}P]
x[I - HT(Ry + HPHT)"'HP]FT
=R, + FPFT + R\ F-THTR;'"HPFT
~[RiF T+ {F+RF THTR;'H}P|HT (R, + HPHT)"'HPFT
=R, + FPFT - FPHT(Ry + HPHT)*HPFT + RyF~THT
x[R;' — (Ry + HPHT)™' — R;'HPHT(Ry + HPHT) '|HPFT
=P(t+1)+ R F THTR;' (R, + HPHT)
—Ry, — HPHT|(R, + HPHT)'HPFT
=P@t+1).
Apparently, the solution to the ARE is closely tied to the properties of the

system of (6.117) and the Euler matrix. In order to proceed, some properties
of the Euler matrix are first investigated.
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Lemma 6.6 Consider the Euler matrix
A ( F-T F-THTR;'H )

¢: RlF_T F+ R1F~THTR2—1H (6121)

(a) Set Ry = GG, A(2) = det(z] — F) and H(zI — F)"'G = B(2)/A(2).
The characteristic polynomial of ¢ can be written as

BT(z7') __, B(z)
T B A(z)] . (6.122)

(b) Let )\ be a nonzero eigenvalue of ¢. Then A~! is also an eigenvalue of ¢.

det[z] — ¢] = (d;:;: A(z)A(z71) det [I +

Proof In order to prove part (a), apply Lemma 6.8, which gives
-T —TygTp-1
det(z] — ¢) = det (—ZéGTg}T ol - F —FGGIT{FI—%%H%R;IH>
=det(z] — F~T)det[zI - F - GGTFTHTR;'H
~GGTFT(2I - F- )y 'F-THTR;'H]
= det(F 1) det(zFT - I)
x det[z] - F — GGTF T (21 - F"T)"1:HTR; ' H)|
= (—z)nA(z'l)A(z)
det F
x det[I — (21 — F)"'GGTF~T(2I - F~T)"'2HTR; ' H]
= U A 40)
det F'
x det[I — GT(FT — 2='I)"'HTR;*H(2I — F)™'@]

= A ) AC) det [I+ BT(Z_I)R;B(Z)} :

det F A(z™h A(z)
which is (6.122). In the penultimate equality, Lemma 6.9 was applied. Part
{b) is immediate from part (a). [
As

Z(t) Z(0) R)’
it can be seen that the asymptotic (as t— oo) properties of the solution

to (6.117) and to the ARE are determined by the modes associated with
eigenvalues with magnitude larger than one. Let

Ui Uia

U1 Uae
denote a 2n|2n matrix, whose columns contain the eigenvectors of ¢ sorted
so that the associated eigenvalues are decreasing.
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As a consequence of Lemma 6.6, the modes associated with eigenvalues
with magnitude larger than one constitute the matrix

Un
U )~
Assume that Uj; is invertible. It then follows from Lemma 6.5 that the solu-
tion to the Riccati equation converges to
P= U21U1_11 . (6123)

The development so far has given a basis for the following algorithm.

Algorithm for solving the ARE

1. Compute the Euler matrix and perform an eigendecomposition. Collect
the n eigenvectors associated with the eigenvalues of largest modulus in
the matrix

Un
Uan )~
2. Assuming that the inverse exists, set

P=UxnU;". (6.124)
O

See also Exercise 6.21 for some further details on the connection between
the Euler matrix and the ARE.

The algorithm sketched above is limited in the sense that it is constrained
to the case with both F' and Ry being nonsingular.

Standard software for solving the ARE is rather based on a generalized
eigenvalue problem. Assume R, to be nonsingular but allow F to be arbitrary.
Consider the matrix pencil

AL-M (6.125)
where
_(IHTR;'H _(FTo
L= (0 F , M= R 1) (6.126)
Then determine orthogonal matrices U and V such that
VOAL-MU=A.-M (6.127)

with L and M being quasi-upper triangular (triangular if all eigenvalues are
real-valued; complex-valued eigenvalues leads to 2 x 2 real-valued blocks on
the diagonal). This is a standard step when solving generalized eigenvalue
problems numerically.
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Assume further that the generalized eigenvalues of (6.125) are sorted so
that those inside the unit circle are in the upper block. Decompose the matrix

U as
Ui Urz
U= . 6.128
( U1 Usz ) ( )
Then the sought solution of the ARE is
P=UnU;". (6.129)

Note the similarity with (6.124). Further, the corresponding generalized
eigenvalues of the pencil (6.125) are precisely the eigenvalues of F — K H.

Remark There are techniques to handle the case of a singular R, matrix.
One then starts with the pencil

I 0090 F 0HT
AlO F O] -t-RiI O
0-HO 0 0Ry

and proceed by first compressing it to an “equivalent” matrix pencil of order
(2n)|(2n). i

6.A Appendix. Proofs

6.A.1 The Matrix Inversion Lemma
The following lemma is a useful tool in linear system and estimation theory.
Lemma 6.7 Assuming that the involved matrices have compatible dimensions and
that the indicated inverses exist:

(A+BCD) ' =A"'-A'B(C"'+DA'B)"'DA™" (6.130)
holds.

Proof By direct calculations:
(A+ BCD)A™' —A'B(C™' + DA™'B)™' DA™Y
=I1+BCDA ' —B(C™'+DA™'B)'DA™!
~BCDA™'B(C™" + DA™'B)"'DA™!
=I+B[C(C"'+DA'B)—I1-CDA'B]
x(C™'+DAT'B)"'DA™!
=1,
which verifies (6.130). [ ]
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6.A.2 Proof of Theorem 6.1

That the conditional pdfs are Gaussian is proved by induction. According to the
assumptions, this is at least true for ¢ = ¢¢. In that case:
.’i’(tolto) =m, P(t0|to) =Ry. (6.131)

Assuming that (6.30) holds for a particular value of ¢, it will be seen that it holds
for t + 1 as well. Recursions for the conditional means £(¢|t), Z(¢ + 1|t) and the
conditional covariance matrices P(t|t), P(t + 1|t) are derived. Recall that if « is
Gaussian distributed, £ ~ N(m, P), then the notation

p(z) = y(z;m, P)
is used.

Time update

Consider first the time update, that is, examine p(z(t 4+ 1)|Y*). In order to do so,
the results of Section 5.4 will be used.
First note that

p(z(t +1)|z(t)) = pory(z(t + 1) — Fz(t) — Gu(t))
= y(z(t +1); Fz(t) + Gu(t) , R1) .

Hence, according to (5.23):

plz(t+1)|Y") = /P($(t+ Dlz(t)p(z(®)[Y") dz(2)

1
- / (2m)n/%(det Ry )1/2
exp (———21—[z(t +1) = Fo — Gu(®)]"R; [zt + 1) — Fz + Gu(t)])

G delt O exp(~%[x — & (tl)T P Wlle - 3(¢10)] ) do (6132)

This relation can be rewritten as

pla(t+ 1Y) = 1

(270)" (et Ry1)/2(det P(t[t)) /2

X /exp (—%[wTQ_lw —Tb-b"z+ c]) dez | (6.133)

where
Q' =P '(t|t)+ FTR;'F,
b=FTR " (z(t+1) — Gu(t)) + P (t]t)&(t|t) , (6.134)
c= ("t +1) —uT(®)GT)R (x(t + 1) — Gu(t))
+&T ()P ()2 (t]E) .

Recalling the form of the Gaussian pdf, the integral in (6.133) can be evaluated
as follows:

/exp (—%[a:TQ‘lx —2Tb-b"z+ c]) de
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_ n/2 1/2 !
= (2m)"/*(det Q) / (2m)n/2(det Q)72

X exp (—%[z -Qu'Q [z - Qb]) dz exp (%(bTQb - c))
= (21)™*(det Q)% exp (%(bTQb—c)) . (6.135)
For the particular case given by (6.132), one obtains using (6.134) and (6.135):

(det Q)'/? 36T Qb-0)
(2n)"72(det Ry )1/ (det P(£[2))1/2 '

plx(t+1)|Y") = (6.136)

In this case
det R1 x det P(t|t)
det @

= det Ry x det P(t|t) x det (P~ ' (t|t) + FTR; ' F)

= det Ry det (I + P(t|t)F" R;'F)

= det Ry det (I + FP(t[t)F"R}")

= det (FP(t|t)F" + R:)

= det P(t + 1|t) (6.137)

also holds, where

P(t+1)t) 2 FP{t)FT + Ry (6.138)
was introduced. It is also true that
bTQb— ¢
="t +1) —u"O)GT)R'F + &T(t|) P (#D)][PT  (¢|t) + FT R F]™}
x[FTRT (z(t + 1) — Gu(t)) + P71 (t]t)d(¢]t)]
—(&"(t+1) =" ®OGCTR; M(x(t + 1) — Gu(t)) — &7 (¢|t) P~ (t[t)d(¢[t)
= (z(t+1) ~ Gu®)) {R{'F[P'(tt) + FTRy'F]™!
xFTRT" — Ry ' Ha(t +1) — Gu(t))
+(@(t+1) — Gu(t))"R{'F[P (t|t) + FT Ry F]™ P71 (t]t)2(¢|t)
+&T (@t P [P () + FTRT'FIT'FTR Y (2(t + 1) — Gu(t))
+&T (E){PT )P (t)t) + FTRTVF)TIPT(8t) — PR (¢E) 2 (8)E) -

Next evaluate the matrices of the above quadratic forms, using the matrix
inversion lemma (Lemma 6.7) repeatedly:

RI'F[PT'(#t) + FTR'F)'FTR — RT!
= —(Ri + FP(t)FT)™!
=P ' (t+ 1{t)R;"F[PT (t|t) + FT R F] ' P (2]t)
= R{'F[I +P(t|t)F"R7'F]™*
=[I+R;'FP@t)F"] 'R 'F
=P ¢+ 1)FP () [P (t]t) + FTRTFI P~ (tlt) — P71 (¢)t)
= [P(t|t) + P(t[t)FTRT'FP(t|t)] " — P (¢]t)



168 6. Optimal State Estimation for Linear Systems

= ~FT[R, + FP(t|t)FT]"'F
=—FTP 't +1jt)F.

Thus
bTQb— ¢ = —[x(t+ 1) — Gu(t) — Fi(t|t)]" P~ (¢ + 1]t)
x[z(t + 1) — Gu(t) — FE(t[t)] . (6.139)
Now, using (6.137), (6.138) and (6.139) in (6.136) gives
1 1

pla(t+ VYY) =

@m)/ (et PG+ 1[0)1/
X exp (—%[x(t +1) =8+ LT Pt + 1) [a(t + 1) — (¢ + 1|t)])
= y(a(t + 1) (¢ + 1}t), Pt + 1]1)) , (6.140)

where
Z(t + 1{t) = FE(t{t) + Gu(t) . (6.141)

Measurement update

The measurement update must be considered next, that is, how to find
p(z(t + 1)|Y*+1). To do this, (5.21), rather than (5.26), will be used, as p(z(t + 1)|Y?)
is known. In fact, all the conditional pdfs appearing in (5.21) are known:

{p(y(t + D]zt + 1)) = y(y(t +1); Ha(t + 1), Rz) ,

py(t + DY) = y(y(t + 1); HE(t + 1]t), HP(t + 1}t)HT + R,) ,
p(z(t + 1)[Y) = y(z(t + 1); 2(t + 1|t), P(t + 1|t)) .

(6.142)
Inserting the explicit expressions for the pdfs, gives
1
t+ DYy ———
p(-'ﬂ( + )I ) (27{)"9/2(det R2)

X exp (~%[y(t +1) ~ Ha(t + D] Ry '[y(t +1) - Ha(t + 1)])

(2m)™/%(det[HP(t + 1{t)HT + R,])*/?
X D

1
X @m)n 2 (det P(t + 1]2))/?

X exp (—%[z(t +1) = 2t + 1OT Pt + L)t + 1) — £(t + 1|t)]) ,

where the denominator factor D is given by
D = exp (—%[y(t +1) — Ha(t + L) [HP( + Lt)HT + Ro] ™"
x [y(t + 1) — Ha(t + 1|t)]) . (6.143)

Now introduce, as in (6.30)-(6.33),
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4+t +1) = &t + 1)) + K@O)[y(t +1) — HE(t + 1)t)]
K(t) = P(t+ 1) HT[HP(t + 1t)HT + Ry]™!
Pt +1Jt+1) = P(t + 1]t) — P(t + 1}¢t)
xHT[HP(t+ 1{t)HT + Ry "' HP(t + 1]t) .

The “nonexponential factor” of (6.143) is examined first. Using (6.144), it is found
that

(6.144)

det[P(t + 1ft + 1)] = det(P(t + 1]t))
x det[I — HT(HP(t + 1}t)H” + Ry) " HP(t + 1]t)]
= det(P(t + 1]t))
x det[I — HP(t + 1{{)HT{HP(t + 1|{t)H” + R,} ")
det(P(t + 1[t)) det(Rz)
" det(HP(t + 1}{)HT + Ra)
Thus the “nonexponential factor” of (6.143) is precisely
1 1
(2m)™/2 (det P(t + 1]t + 1))1/2 °

Next, the exponential factors are considered. For brevity, the notation

K =K(t),
Q=HPt+1t)H" + R, ,
P=P(t+1t),

&= &(t+ 1)t) .

is used. The total exponent appearing in (6.143), save for the factor —1/2, can be
written as

[y(t+1) ~ He(t+ 1)) Ry [y(t + 1) — Ha(t + 1)]
~lyt+1) - H2]"Q '[y(t + 1) — Hz] + [x(t + 1) — )" P [z(t + 1) — ]
=z (t+DH'R;'H+ P Vet +1) — 2" (t+ )[H R 'y(t + 1) + P14
+[H'R; 'yt + 1)+ P '&])Tz(t + 1)
+{y (t+ )Ry y(t+1) - [yt +1) - HE)"Q '[y(t + 1) — H3]

+2TP '8} . (6.145)
Applying the matrix inversion lemma to P(t + 1|t + 1) in (6.144) gives
P lt+1t+1)=P '+ H'R;'H . (6.146)

The right-hand side in this relation appears in the first term of the right-hand side
of (6.145). To examine the second and third terms of (6.145), write

H R 'yt +1)+ P 'z
=P 't +1t+1)[P - PH'Q 'HP][H'R; 'y(t + 1) + P"'3)
=P 't +1jt+1)
x[PH"(I - Q' HPH")R; 'y(t + 1) + (I - PHTQ ' H)%)
=P '(t+1t+ DPH Q™ (Q — HPH)R; 'y(t + 1) + & — KH3)
= (t+1|t+1[Kyt+1)+:%-KHi']
=P lt+1t+1)E(E+1t+1).
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Finally, the last term of (6.145) is investigated. It can be written as

yT(t+ )R 'yt +1) — [yt +1) — HF|"Q '[y(t +1) — HE| + 2" P 'z

=T+ DR - Q Yyt + 1)+t +1)Q 'HE + THTQ 'yt +1)
+&" [P - HTQ 'H]z . (6.147)

Now compare this expression with what is expected, namely:

T+ P+ 1t + DT+ 1t +1)

= Kyt +1)+ (I - KH)#)"[P~' + H'R; 'H|[Ky(t + 1) + (I - KH)z| .

(6.148)

It has to be shown that (6.147) and (6.148) are identical. To do so, examine
the difference of the matrices in the quadratic forms. For the quadratic forms in
y(t +1):

KT'(P'+HTR;'H)K - R;' + Q™!

=Q 'HP(P"'+ H'R;'H)PHTQ™' —R;' + Q!

=Q '[HPHT + HPHTR;'"HPH" - QR;'Q +Q|Q™"

=Q7 Q- R)+(Q-R)R;(Q-R2) - QR 'Q+QlQ™

=0.

For the quadratic form in Z:

(I-H'K"YP'+HTR,'"H)(I-KH)-P '+ H'Q"'H

=P '+H'R;'H-H"Q'"H-H"Q"'HPH"R;'H
-H'Q'H-H"R;'HPH"Q'H+ H"Q 'HPH"Q™'H
+HT'Q'HPH"R;'HPH'Q'H - P '+ H'Q'H

= HTQ '[QR;'Q - HPHTR;'Q - Q — QR; 'HPH”
+HPHT + HPHTR;'HPHT|Q™'H

=H'Q'[QR;'Q - (@ - R2)R;'Q - Q- QR;'(Q — Re)
+Q—-Re)+(Q - R2)R; ' (Q - R2)IQ™'H

=0.

Similarly, for the mixed form:
KT (P'+HTR;'HYI - KH)- Q™ 'H

=Q '[HP(P"'+H"R,'H - H"Q'H- H'R,'"HPH"Q 'H) - H|

=Q ![I+ HPHTR;' -HPHTQ ' - HPH"R;'HPH" Q™' —I|H

=Q'HPH'[R;' - Q™' - R;(Q - R:)Q'|H

=0.
Thus it has been established that the expressions in (6.147) and (6.148) are iden-
tical. Inserting the expressions found into (6.143), it can be seen that

p(xt+ DY) =y +1);2¢ + 1)t + 1), P+ 1|t + 1)), (6.149)

where the conditional mean Z(t + 1|t + 1) and the conditional covariance matrix
P(t + 1|t + 1) are given by (6.144).
This concludes the whole proof of the theorem. [ |
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6.A.3 Two Determinant Results

This section presents two results related to the determinant of a partitioned matrix.

Lemma 6.8 Let A and D be square matrices and assume that A is invertible. Then
det (A B) = det(A)det(D — CA™'B) . (6.150)

Proof The result follows by straightforward calculation as follows:

AB AB I-A"'B
det(CD>=det(CD) (0 I )

A0
= det (c D—CA-lB)

= det(A) det(D — CA™'B). (6.151)

Lemma 6.9 Let A be an (n|p) matriz and B an (p|n) matriz. Then
det(I, + AB) = det(I, + BA) . (6.152)

Proof Simple calculation gives

I, AY _ I, A\ (I, 0\] _ I.+AB A
()=o) (55 =0 ("572)

= det(I, + AB)det I, = det(I, + AB) .

However,

I, AY _ I, 0 I, A\] _ I, A
w(50) = |(52) (52)] -0 (bits)

= det I, det(BA + Ip,) = det(I, + BA)
also holds. |

Exercises

Exercise 6.1 Consider a stochastic system with noise-free measurements
z(t+1) = Fz(t) +v(t) ,
y(t) = Hz(t)
v(t) being white noise and dimy < dim z. Show explicitly that
§(tlt) = Ha(tlt) = y(t) .
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Exercise 6.2 Prove the inequality
HP(t{)HT < R,

and give an interpretation. Under what conditions does equality hold?

Hint. One can show that for A, B symmetric and nonnegative definite

A-A(A+B)'A<B.

Exercise 6.3 Consider the system
z=Az+e,
y=Cz,

where
Ee(t)e?(s) = Ro(t —s) .

Determine the LLMS optimal predictor §(t + 7|t), 7 > 0, of y(¢t + ) given
the state vector up to time ¢.

Exercise 6.4 Consider the following very simplified problem of estimating
the probability of the rendezvous of two vehicles. Both vehicles move in the z-
y plane. One vehicle is known to move along the z-axis according to z(t) = ¢,
y(t) = 0. The movement of the other vehicle is a bit uncertain and is modelled
as

1100
0100
0011
0001

z(t)y _ (1000
(y(t)) - (0 01 0) Z(t) +€(t) ’
where v(t) and e(t) are white noise sequences of zero mean and covariance
matrices

zt+1) = 2(t) +v(t),

0000
0100 10
RBi=ralgggo|> HRe=re (01) '
0001
Simulate the system fort = 0,1,... , N. At each time ¢ compute the estimates

2(s|t), s=t,t+1,... ,N and assess the risk that the two vehicles will meet.
Try, for example, the numerical values N = 15, r, = 0.001, r, =1

0
Ex0)=| 4o |, cov(z(0)=10x1.

-1



Exercises 173

Exercise 6.5 Show algebraically that the following two representations of
the stationary optimal filter are equivalent. Assume that Ri2 = 0:

(i) &(¢lt) = [qf - (F ~ KeHF)]7'[(I - KeH)Gu(t) + Key(t +1)] -

() &(tlt) = (I - KeH)lal - (F — KH)| ™ [Gu(t) + Ky(t)] + Key(t) -
Exercise 6.6 Consider the system
z(t+1) = (_g (1)> z(t) + (i) v(t), Eov(t)v(s)=06s,
y(®) = (10) (),

where ¢? # 1.

(a) Determine all symmetric solutions to the ARE. Determine which solution
is related to optimal prediction!

Hint. One can first show that

P___(H—q 02) ,
C C

and then derive a nonlinear equation in the scalar variable q.
(b) Assume that the Riccati equation

P(t+1)=FP@#)FT + R, - FP(t)HT[HP(t)HT]"'HP(t)FT ,
P(0) =Py >0

is iterated until convergence. What are the stability properties for the
stationary solutions?

Hint. Show first that all solutions have the form

P(t) = (”‘I(t) ‘é) Lot

C C

where ¢(t) satisfies a certain nonlinear difference equation, say ¢(t + 1) =
f(g(t)). Assume that ¢(t) = g is a stationary solution. Its stability prop-
erties are determined by the stability properties of the linearized model

Exercise 6.7 In many cases measurement devices contain a bias. As an il-
lustration of how to handle this, consider the system

z(t+1) = Fz(t) + v(t) ,
y(t) = Ha(t) + m +e(t) ,

where m denotes the measurement bias and v(t) and e(t) are uncorrelated
white noise sequences of zero mean.
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(a) Assume that m is unknown. Show that mean square optimal estimates
of the states and m can be obtained by introducing an enlarged model
using

as state vector.
(b) Consider explicitly the scalar case

F=—-a,
H=1,
e(t) =0,
Ev(t)=r.

Describe the uncertainty of m as a random walk:
m(t + 1) = m(t) + vn(t),
where v, (¢) is white noise of zero mean and variance 7.

Show that optimal estimates of z(t) and m(t) can be obtained in the
stationary phase as

. _ —a(l-a)(g-1)
sy = -9V _ )

g+ (aa—1+a)

alg+a
) y(®)

g+ (aa—1+a)
where « is a parameter. Show also how a depends on the model param-
eters ¢ and rp/r. What are the static gains of the filters?

(c) Compute numerically the frequency functions of the filters in part (b).
Examine how the model parameters a and 7, /r influence the behaviour.

m(t + 1|t) = m(tt) =

Exercise 6.8 Consider the usual state estimation problem for
z(t+1) = Fz(t) +v(t) ,
y(t) = Hz(t) + e(t)
where v(t) and e(t) are uncorrelated. In stationarity,
2(t+1]t) = Gp(g)y(1) ,
£(tlt) = Gela)y(?) .

Show how the transfer functions G(g) and G¢(g) depend on the model and
the filter gain Ky = PHT(HPHT + R;)™!. Also prove the relation

Gp(q) = FGi(q) -
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Exercise 6.9 Reconsider Exercise 4.17, where the ARE was shown to have
a positive semidefinite, and hence singular, solution. Find out why a positive
definite solution as guaranteed in Theorem 6.2 does not exist in this case.

Hint. The transformation in (6.113) may be useful as a first step.

Exercise 6.10 Consider fixed lag smoothing in the the stationary case. Find
explicit expressions for Ky (6.63) and P (6.69).
Exercise 6.11 Consider the ARE
P=FPFT + R — FPHT(HPH" + Ry))"'HPFT .
Assume that there are two positive definite solutions, P, and P», such that
F,=F-FPH"(HPH" + R)"'H (i=1,2)
has all eigenvalues strictly inside the unit circle.
(a) Prove that
Fi(PL— P)F, = (P — Py).
(b) Use the result of (a) to prove that P, = P, that is, there exists at most
one positive definite solution to the ARE.
Exercise 6.12 Consider the system
z(t+ 1) = Fz(t) ,
y(t) = Hz(t) +e(t)

where e(t) is white noise of zero mean and covariance Ry. Assume that all
eigenvalues of F' satisfy

0<N(F) <.

Show that the solution to the associated Riccati equation can be written

P(t) = F{(P-1(0) + S (FT) HT Ry HFI| ™ (FTY!

j=0

and that P(t) - 0 as t = 0.
Hint. One can first derive a linear difference equation for P~1(t).

Exercise 6.13 Consider the continuous-time system
r=Ax+v,
Ev(t)vT(s) = Ro(t —s) ,

with discrete-time measurements (e and v being independent)
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y(kh) = Hz(kh) + e(kh)  (k integer) ,
E e(kh)eT(Jh) = Rz(sk,j .
Derive the “continuous—discrete” Kalman filter, that is, the optimal state
estimate of z(t) based on all available measurements of y(kh) available at
time ¢ (i.e. all k < t/h).

Examine, for the stationary, time-invariant case, how the covariance ma-
trix of the optimal state estimate varies over the sampling interval.

Exercise 6.14 It seems intuitively reasonable that a prediction k-steps
ahead should have worse accuracy than a prediction (k — 1)-steps ahead.
Consider the statements

e Z(t + k|t) has worse accuracy than Z(¢t + k|t + 1) (i.e. P(t + k|t) >
P(t+k—t+1)).

e Z(t + k|t) has worse accuracy than Z(t + k — 1|t) (i.e. P(t + klt) >
P(t+k-1—t)).

For each statement, either prove it or construct a counterexample.

Exercise 6.15 Consider the dynamic system

2t +1) = ((1) ’ll) (t) + ((1’) ol(t)

y(t) = (1 0)=(t),
where v(t) is Gaussian white noise. Determine the optimal state estimates

Z(t|t — 1) and £(tft) for arbitrary values of .

Hint. When solving the Riccati equation, it is useful to introduce the
scalar

a(t) = pa2(t) — pla(t)/p11(t) -

Exercise 6.16 Consider the output prediction errors {§(t)}, (6.4). Prove
that they are white, in the sense that they are uncorrelated

Ejt+k)jt)=0, fork>0.

Exercise 6.17 Consider a scalar system

z(t+1) = 08z(t) + v(t),
y(t) = z(t) +e()
with r; = Ev?(t) = 0.68, ro = E€?(t) = 1.

(a) Determine the signal-to-noise ratio (SNR) = E z2(t)/E e2(t).
(b) Determine the innovations form.
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(c) Assume that a smoothing estimate &(t|t + m), m > 0 is sought. Show
that it can be written as

#(t|t +m) = Z h;ig(t — §)

j=—m

where §(t) is the innovation at time ¢. Determine the weighting coeffi-
cients {h;}. At what rate does {h;} decay when j — oo, and what is the
rate when j = —m?

(d) Show that the smoothing estimate in part (c) can be written as

(|t +m) = Zg]yt—

j=-m

and determine the weighting coefficients {g;}.

Exercise 6.18 Consider the system
z(t+1) = Fz(t) + v(t) ,
y(t) = Ha(t) +e(t)
where v(t) and e(t) are mutually independent and Gaussian distributed white
noise sequences with zero mean and covariances R; and Ry respectively. The
initial value, z(0), is assumed to be Gaussian distributed, z(0) ~ N(mq, Rp),
and independent of the noise sequences.

In the basic formulation of the optimal state estimation, the covariance
matrix of total data vector

y(0)
vt y(t)
y(t)
has an important role.

(a) Show that

H 0
HF e(0) H 0 v(0)
¢ HF H
YVi= : z(0) + : + : ,
it e(t) : v(t)
HE HF"? HO
and hence
H
HF RZ 0
T
REEYY  =| . |R(H"...F"'HT)+ ,
0 R;
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0
H 0 Rl 0
| HF H
: .. 0 R
HFt! HO
/0 HT FTHT . FT'HT
0 HT
X
HT

\ 0 0
(b) Show using the Kalman filter and the innovations {§(t)} that
y@) =g() + HK(t - 1)§(t - 1) + HFK(t - 2)j(t — 2)
+...+ HF'""'K(0)5(0) + HF'£(0 — 1)

and hence that

I
HK(0) I 0 (0)
Y= : :
I §(t)
HF'"™'K(0) HK(t—1) I
H
HF
+| 0 fa0-1).
HF*

(c) Prove, by explicit algebraic calculations, that the covariance matrix of
Y? as expressed in (b) coincides with R as given in (a).

Remark The result in (b) gives a triangularization of the covariance matrix
R. As this admits rewriting R as R = LDLT with L lower triangular and D
block diagonal, the inversion of R is highly facilitated. In fact, the result can
also be viewed as a time-varying generalization of spectral factorization. Note
that the representation in (b) is in principle the same as that given implicitly
in (6.7). a

Exercise 6.19 Consider the system
z(t+1) = Fz(t) + v(t) ,
y(t) = Hz(t) +e(t)

where v(t) ~ N(0, R;) and e(s) ~ N(0, R;) are mutually independent for all
t and s. Show that

p(z(t + DY) = p(z(t + 1)|2(t + 1]t)) .
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Remark This means that the conditional mean &(t + 1|t) in this example is
a sufficient statistic. m|

Exercise 6.20 Consider the tracking of a moving object from discrete-time
position measurements. Model this as

. 01 0
T = (00>x+ <1>w,
Y= (1 O)Ia
E w(t)w(s) = §(t - s).
(a) Sample the model. Let the sampling interval be h.

(b) Determine the stationary optimal predictor &(t + h|t) and filter Z(t|t).
Show that they can be written as

. B 1 g1+ hB) -1
E(t+hlt) = Py ( Blg—1) )y(t),

L y(t)
#ie) = (————H(;ﬁ,nﬂ(q 1)

for some parameter (. Also determine the covariance matrices P(t + hlt)
and P(t|t) of these estimates.

(c) Assume that one wishes to estimate the state vector between the mea-
surements. Let 0 < 7 < h. Determine the optimal estimate &(¢ + 7|t)
(t being a sampling instant) and its covariance matrix P(t + 7|t). Exam-
ine how P(t + 7|t) varies with 7. Is Z(t + 7|t) always inferior to &(t|t)?

(d) Discuss the result and compare with simple heuristic ways of estimating
the derivative z2(t) = y(t).

Exercise 6.21 Consider the ARE
P=FPFT + R, — FPHT(HPH” + R,) 'HPFT .

Assume that F' and R, are invertible. Introduce the Euler matrix

o= F-T F-THTR;'H
" \RFTF+RFTHTR;'H

This problem establishes some links between the ARE and the Euler matrix.

(a) Assume that e; ...e, are eigenvectors to ¢. Set

(61...en):(g> ,

and assume P to be invertible. Show that X = RP~! will be a solution
to the ARE.
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(b) Let X be an arbitrary symmetric solution to the ARE. Show that the
eigenvalues of F — FXHT(HXHT + R,)~' H are also eigenvalues of the
Euler matrix ¢.

Exercise 6.22 Consider the matrix pencil given by (6.125) and (6.126):

AL - M

where
_(IHTRJ'H _(FTo
L“(o F )0 M=\-r1)-

and the algorithm given by (6.127)—(6.129) for solving the ARE.

(a) Show that P as defined in (6.129) is a solution to the ARE.
(b) Consider the scalar case. Find U and V. Show that the upper left part
of the pencil (6.127) vanishes, that is

Ay — My =0
gives precisely
A=F—KH, K=FPHTYHPHT +Ry)™".
¢) For the scalar case derive the equation in A for the generalized eigenval-
ues. Show that, in general, if A; is a solution, then so is /\1_1. Under what
conditions will only one finite solution exist? Under what conditions will
there be no solution strictly inside the unit circle?
Exercise 6.23 Consider the ARE
P=FPF" + Ry~ FPH"(HPH" + Ry) 'HPF" .

Assume that P; is an approximate solution. Seek an improved solution of the
form P = P + AP. We derive an update equation for AP by dropping all
terms higher than linear in AP. Set

Ky = FP.HT(HP,HT + Ry)™ !,
Piy1 =P, +AP.

(a) Show that
Piy1 = (F = Ky H)Piyr (F — K H)T + (Ry + Ky RoKT) .
(b) Set
K = FPHT(HPHT + Ry)™! .
Show that
(P — Pey1) = (F ~ Ky H)(Px — Peya)(F - Ky H)T
= (K — Kx_1)(HP.HT + Ry)(K}, — Ky _1)T
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and
(Pi+1 = P) = (F = K¢H)(Piy1 — P)(F — KH)T
= (K, - K)(HPH" + R,)(K; — K)T.

(c) Assume that F — K H has all eigenvalues strictly inside the unit circle.
Show that

Py > Pgp1 2 P

(d) Factorize R; as R, = GGT. Assume that (F,G) is controllable and that
Ry and Py are positive definite. Show that F — K H has all eigenvalues
strictly inside the unit circle.

Hint. Study the stability properties of the system

z(t+1) = (F - KeH)Tz(t)

by means of the Lyapunov function V(z) = wTsz;

(e) Let {Px} be a sequence of symmetric matrices and P a symmetric matrix

satisfying
B>P>P>...2P,>Py1>...2P.
Show that the sequence { Py} is convergent.

(f) Assume that the ARE has a (unique) symmetric positive definite solution
P. Factorize R; as R; = GGT and assume (F,G) to be controllable and
that Rs is positive definite. Let Py be symmetric and positive definite
and assume that F' — KoH has all eigenvalues inside the unit circle. Use

the previous parts of the problem to show that the sequence {P:} is
decreasing and converges to P.

Exercise 6.24 Derive an acceleration algorithm for computing ¢(2k), where
the Euler matrix ¢ is defined in (6.120). Set

o (o a; ' B
¢ ~1 —1 )
Yo Ok + Yoy B

where ag, Bk, vk, Ok are all (n|n) matrices. The initial values are readily
found:

ao=FT, By=HTR;'H, =R, 6&=F.
Derive the following recursions:

ok = ar(l + Brve) o
Brrr = Br + ar (I + Brye) ™" Bdi »
Yer1 = Ve + Ox vk (L + Brve) o,
Skt1 = Ok (I + yeBr) "0k .
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Remark In fact, it holds for the given initial values that 6x = af, B and 7k
are symmetric. These relations can be used to simplify the algorithm further.
a

Exercise 6.25 Consider fixed lag smoothing, as described in Section 6.5.2.
Assume that m = 2, and examine the stationary case. Let P be a positive
definite solution to the Riccati equation

P=FPFT + R, - FPHY(HPH” + Ry)"'HPFT .

Determine the stationary values of the covariance matrix P(t) (6.69) and the
filter gain K (t) (6.63).
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7. Optimal Estimation for Linear Systems by
Polynomial Methods

7.1 Introduction

Many estimation and control problems can be phrased using either a state
space approach or a transfer function framework.

The state space methodology is more complete, in the sense that it gives a
more detailed view of what happens to individual state variables. It is also the
preferable choice when transient phenomena are to be studied. As derived in
Chapter 6, the optimal state estimate is governed by a time-varying Kalman
filter. Only in stationary cases where there is a sufficiently long data record
will a time-invariant filter give optimal performance.

On the other hand, in many cases the state variables are not interesting
per se, but merely as a step for describing the input-output behaviour. If
the system is operating in a stationary mode and transient effects can be
dispensed with, it is appropriate to use a transfer function formalism, since
it is simpler than a state space approach.

A rational transfer function can be written as a ratio of polynomials in the
scalar case. In the multivariable case, one can use two polynomial matrices to
form a matrix fraction decomposition. Hence, it is relevant to call the transfer
function formalism a polynomial approach.

As a prelude, in this chapter the optimal (in a mean square sense) pre-
dictor of a time series is studied (Section 7.2). Then, the Wiener filtering
techniques are developed in Section 7.3 and applied to a general estimation
problem (Section 7.4). Section 7.5 shows how the techniques developed can
be modified to take uncertainties in the model description into account, thus
achieving a form of robust filter.

It is worth noting that many estimation problems can be phrased and
solved with either a state space or a polynomial approach. An extensive
example to illustrate both approaches is given in Chapter 8.

7.2 Optimal Prediction

7.2.1 Introduction

Consider a stationary stochastic process described by a state space model

T. Soderstrom, Discrete-time Stochastic System

© Springer-Verlag London 2002
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z(t+1) = Fz(t) +v(t) ,
y(t) = Ha(t) +e(t)
where v(t) and e(t) are mutually uncorrelated white noise sequences with
zero mean and covariances R; and Ry respectively. Assume that data have
been available since the infinite past (i.e. the initial time t¢ = —00). The
optimal (in the mean square sense) k-step predictor of the signal y(t) is then
given by (6.40) and (6.99):
§(t + k|t) = HE(t + k[t)
= HFF 1 (t + 1]t)
=HF* I -F¢ '+ KHq ' Ky(t) (7.2)
where K denotes the stationary predictor gain. Obviously, (7.2) can be rewrit-
ten as

(7.1)

gt +klt) = Glgy (D) , (7.3)
where the filter G(q) is given by
G(q) = HF* Y[ - (F - KH)q"'|"'K . (7.4)

The purpose of this section is to derive optimal predictors of the form of (7.3)
using a polynomial formalism instead of the state space methodology.
As a starting point, consider a simple but illustrative example.

Ezample 7.1 Consider one-step prediction of a first-order ARMA process

y() +ay(t—1) = e(t) + ce(t — 1), (7.5)

la] <1, || <1, (7.6)
where e(t) is white noise of zero mean and variance A%. The predictor
g(t + 1jt) should be a function of the data available at time ¢, that is, of

Y. It is instructive to examine the quantity y(¢ + 1) to be predicted. First,
write y(t + 1) as a weighted sum of old noise values:

1+cq?

y(t+1)=1+aq e(t+1)
=(14+ecg )1 —ag ' +a’¢ 2 +...(—a)iqg 7 + .. Je(t + 1)
=e(t+1)+[(c—a)e(t)—alc—a)e(t—1)+... (7.7
+(-a)(c—a)e(t—j)+..]. (7.8)

Here, the first term, e(t + 1), will be uncorrelated with all available data,
Y. At best, one can possibly hope to reconstruct the second part (in the
brackets). For this purpose, invert the underlying process description, which
gives

1 -1
eft) =~

1+cq“1 y(®) -
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Note that, to do so, it is crucial that the assumption |c| < 1 is satisfied.
Proceeding with the details, it is found that

[(c=a)e(t) —alc—a)e(t — 1)+ ...+ (—a) (c—a)e(t — j) + .. ]

=(c—a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>