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Series Editors' Foreword

The topics of control engineering and signal processing continue to flourish and
develop. In common with general scientific investigation, new ideas, concepts and
interpretations emerge quite spontaneously and these are then discussed, used,
discarded or subsumed into the prevailing subject paradigm. Sometimes these
innovative concepts coalesce into a new sub-discipline within the broad subject
tapestry of control and signal processing. This preliminary battle between old and
new usually takes place at conferences, through the Internet and in the journals of
the discipline. After a little more maturity has been acquired by the new concepts
then archival publication as a scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when
sufficient material has evolved for the topic to be taught as a specialised tutorial
workshop or as a course to undergraduate, graduates or industrial engineers.
Advanced Textbooks in Control and Signal Processing are designed as a vehicle
for the systematic presentation of course material for both popular and innovative
topics in the discipline. It is hoped that prospective authors will welcome the
opportunity to publish a structured and systematic presentation of some of the
newer emerging control and signal processing technologies.

The essentials for any advanced course on control include a thorough
understanding of state-space systems, both continuous- and discrete-time, the
concepts of stochastic systems and insights into their optimal control systems. This
textbook on Discrete-time Stochastic Systems by Torsten Soderstrom provides an
invaluable introduction to these topics. It is a revised edition of an earlier Prentice
Hall textbook which has benefited from a decade of classroom experience with
Professor Soderstrom's course at Uppsala University, Sweden.

Apart from being used to support a full course, the text also has some
interesting and useful features for the individual reader. The chapters are
exceptionally well structured and can be used in a reference book fashion to
instruct or review different technical topics, for example, spectral factorization.
Unlike many linear stochastic control textbooks, Professor SOderstrom has given
both time-domain and polynomial methods, proofs and techniques for topics like
linear filtering and stochastic control systems. There are strong and fascinating
links between these two approaches and it is invaluable to have them presented
together in a single course textbook.

Every course lecturer likes to point their students to some topics which are a
little more challenging and which might lead on to an interest deepening into



viii Series Editors' Foreword

research. Professor SOderstrom has included a chapter on nonlinear filtering which
demonstrates how linear methods can be extended to deal with the more difficult
nonlinear system problems. Each chapter is also accompanied by a bibliographical
list of books and references to further reading for the interested reader.

The Advanced Textbook in Control and Signal Processing series seeks to create
a set of books that are essential to a fundamental knowledge of the control and
signal processing area. Professor SOderstrom's text is a welcome complement to
other books in the series like Kamen and Su's Introduction to Optimal Control
(ISBN 1-85233-133-X) and Williamson's Discrete Time Signal Processing (ISBN
1-85233-161-5) and we hope you will add Discrete-time Stochastic Systems to your
library.

MJ. Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, U.K.

April,2002



Preface

This book has been written for graduate courses in stochastic dynamic sys­
tems. It has emerged from various lecture notes (in Swedish and in English)
that I have compiled and used in different courses at Uppsala University since
1978.

The current text is a second edition of a book originally published by
Prentice Hall International in 1994. All chapters have been revised. A number
of typographical and other errors have been corrected. Various new material
and results, including further problems, have been added.

The reader is assumed to be somewhat familiar with dynamic systems
and stochastic processes. In particular, it is assumed that the reader has a
working knowledge of the following areas (or is prepared to re-examine this
background elsewhere, should it be necessary):

• Fundamentals of linear discrete-time systems (such as state space mod­
els and their relationships with transfer function operators and weighting
functions) .

• Fundamentals of probability theory (including Gaussian distributed ran­
dom vectors and conditional probabilities).

• Fundamentals of linear algebra and matrix calculations.
• Fundamentals of stochastic processes (such as the concepts of covariance

function and spectral density, particularly in discrete time).

In compiling the manuscript, I have taken inspiration from various sources,
including other books. Some parts reflect my own findings and derivations.
The bibliographical notes at the end of each chapter give hints for further
reading. These notes have intentionally been kept brief and there is no am­
bition to supply comprehensive lists of references. The cited references do
contain, in many cases, extensive publication lists. Many books deal with
the fundamentals of linear stochastic systems, using analysis of state space
models leading to the celebrated Kalman filter. Treatments using polyno­
mial methods, as presented here, seem much less frequent in the literature.
The same comment applies to extensions to nonlinear cases and higher-order
statistics.

Most of the chapters contain problems to be treated as exercises by the
reader. Many of these are of pen-and-pencil type, while others require nu­
merical computation using computer programs. Some problems are straight-
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forward illustrations of the results in the text. Several problems, however, are
designed to present extensions and to give further insight. To achieve knowl­
edge and understanding of the estimation and control of stochastic systems,
it is of great importance that the user gains experience by his or her own
work. I hope that the problem sections will stimulate the reader to gain such
experience. When using the text for graduate courses I have let the students
work with some of the problems as an integral part of the course examination.

The structure of the book is as follows.
Chapter 2 begins by giving a short review of probability theory. Some

useful properties of conditional probabilities and densities, and of Gaussian
variables are stated. One section is devoted to complex-valued Gaussian vari­
ables.

Various model descriptions of stochastic dynamic systems are illustrated
in Chapter 3. Some basic definitions are reviewed briefly. The important
concepts of a Markov process and a state vector in a stochastic setting are
discussed. Properties of covariance functions, spectra, and higher-order mo­
ments are also presented.

Chapter 4 covers the analysis of linear stochastic systems, with an em­
phasis on second-order properties such as the propagation of the covariance
function and the spectral density in a system. Spectral factorization, which is
a very fundamental topic, is also treated. It is concerned with how to proceed
from a specified spectrum to a filter description of a signal, so constructed
that optimal prediction and control can be derived easily from that filter
model.

The topic of Chapter 5 is optimal estimation, where "optimal" refers to
mean square optimality (i. e. the estimation error variance is minimized).
Under certain conditions more general performance measures are also min­
imized. The general theory is given, showing that the optimal estimate can
often be described by a conditional expectation.

The celebrated Kalman filter is derived in Chapter 6, using the results
of the previous chapter. Optimal prediction and smoothing algorithms (as­
suming that future data are available) are presented for a general linear state
space model.

Optimal prediction for processes given in filter or polynomial form is pre­
sented in Chapter 7. The basic relations for Wiener filtering are also derived.
A general (single input, single output) estimation problem is solved by ap­
plying the Wiener filter technique and using a polynomial formalism. Where
a time-invariant input-output perspective is sufficient, this gives a conve­
nient and interesting alternative to the state space methodology based on
the Kalman filter. The solution is naturally the same in the time-invariant
case using either approach.

Chapter 8 is devoted to an example in which a detailed treatment using
both the state space and the polynomial approaches is examined. The optimal
filters, error variances, frequency characteristics, and so on, are examined,
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and it is shown how they are influenced by the measurement noise, etc. The
calculations illustrate the close connections between the polynomial and the
state space approaches.

Many systems are inherently nonlinear. In Chapter 9, some nonlinear
filters and nonlinear effects such as quantization are dealt with. The greater
part of the chapter deals with the extended Kalman filter and some variants
thereof.

The topic of Chapter 10 is the control of stochastic systems. It is first
shown that the way in which uncertainties are introduced can make a distinct
difference to the way in which the system should be optimally controlled.
Next, the general optimal control problem is handled by using the principle of
dynamic programming. As this approach, while theoretically very interesting,
requires extreme amounts of computation, some suboptimal schemes are also
discussed.

Finally, optimal control for linear systems that are perturbed by process
and measurement noise is the topic of Chapter 11. This problem, known
as linear quadratic Gaussian control, has an elegant solution based on the
so-called separation theorem, and this is also described. Also, the use of
polynomial formalism to derive some simple optimal controllers and some
comparisons with state space formalism are included.

It is worth stressing here that the Glossary (pp. xiii-xv) contains items
that appear frequently in the book.

Several people have contributed directly or indirectly to these lecture
notes. As mentioned above, I have been teaching stochastic systems regu­
larly in Uppsala and elsewhere for more than a decade. The feedback I have
received from the many students over the years has been very valuable in
compiling the manuscript. For the second edition I thank all those who have
pointed out unclear points and errors in the first version. Special thanks go to
Fredrik Sandquist, who detected a tricky mistake, to Dr Erik G. Larsson who
pointed out a flaw in a proof, and to Professor Torbj6rn Wigren who gave
many suggestions for improving the chapter on nonlinear estimation and also
provided some further exercises. Dr Egil Sviestins and Dr Niclas Bergman
have contributed with valuable comments on nonlinear estimation.

Several students who recently used the text in a graduate course have
pointed out various typos or unclear points. I am grateful to Emad Abd­
ElRady, Richard Abrahamsson, Bharath Bhikkaji, Hong Cui, Mats Ekman,
Kjartan Halvorsen, Bengt Johansson, Erik K. Larsson, Kaushik Mahata,
Hans Norlander and Erik Ohlander for numerous valuable comments. Need­
less to say, the responsibility for any remaining errors rests upon me.

Last, but not least, I also acknowledge the nice and smooth cooperation
with Springer-Verlag, and the persons who in some way or another have
been involved in the production of this book: Professor Michael Grimble,
Professor Michael Johnson, Ms. Catherine Drury, Mr Frank Holzwarth, Mr
Oliver Jackson and Mr Peter Lewis.
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To all the above people I express my sincere thanks.
In control, feedback is an essential concept. This is also true for writing

books. I welcome comments by the readers, and can be reached by the email
address ts@syscon.uu.se.

Torsten Soderstrom
Department of Systems and Control

Uppsala University
POBox 337, SE 751 05 Uppsala

Sweden
Spring 2002
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Notation

C
CN
E
e(t)
G(q)
H(q)
h
hk
I
In
i
K
Kr
Kp

L
£:
(min)
N(m,P)

n
P
P
P(t)

P
p(xly)
q
q-l

R
r(t, s)
r(-T)
ryu(T)
S(t)
AT

complex plane
complex Gaussian distribution
expectation operator
white noise (a sequence of independent random variables)
transfer function operator
transfer function operator, noise shaping filter
sampling interval
weighting function coefficient, H(q) = L:~o hkq-k
identity matrix
(nln) identity matrix
imaginary unit
optimal predictor gain (in Kalman filter)
optimal filter gain (in Kalman filter)
optimal predictor gain (in Kalman filter)
optimal feedback gain
Laplace transform
matrix is m by n
normal (Gaussian) distribution of mean value m and

covariance matrix P
model order
probability
transition matrix for a Markov chain
covariance matrix of state or state prediction error
differentiation operator
conditional probability of x given y
shift operator, qx(t) = x(t + 1)
backward shift operator, q-1x(t) = x(t - 1)
real axis
covariance function
covariance function
cross-covariance function between y(t) and u(t)
solution to Riccati equation for optimal control
transpose of the matrix A
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t
tr
u(t)
V
v(t)
x(t)
yt

y(t)
y(tjt-1)
y( t)
Z
')'(x; m, P)

L1
8t ,s

8(m,n)
8(7)
c(t)
A
.\2

P
<P
<Pel (z)
<Pol (z)
<p(z)
<p(w)
<Pu (w)
~yu(W)

<P
cp(w)
7

W

time variable (integer-valued for discrete-time models)
trace (of a matrix)
input signal (possibly vector-valued)
loss function, performance index
white noise (a sequence of independent random variables)
state vector
all available output measurements at time t,

yt = {y(t),y(t -1) ...}
output signal (possibly vector-valued)
optimal one-step predictor of y(t)
prediction error, innovation
z transform
pdf of normal (Gaussian) distribution of mean value m
and covariance matrix P
difference
Kronecker delta (=1 if s = t, else = 0)
extended Kronecker delta (=1 if m = n = 0, else = 0)
Dirac function
prediction error
covariance matrix of innovations
variance of white noise
control weighting
Euler matrix
closed loop characteristic polynomial
open loop characteristic polynomial
spectrum
spectral density
spectral density of the signal u(t)
cross-spectral density between the signals y(t) and u(t)
positive real part of spectrum
characteristic function
time lag (in covariance function)
angular frequency

Abbreviations

AR
AR(n)
ARE
ARMA
ARMA(n,m)

ARMAX
cov
deg

autoregressive
AR of order n
algebraic Riccati equation
autoregressive moving average
ARMA where AR and MA parts have orders nand m

respectively
autoregressive moving average with exogenous input
covariance matrix
degree



FIR
GMV
GPC
iid
IIR
IMM
LLMS
LQG
LTR
MA
MA(n)
ML
pdf
SISa
tr

finite impulse response
generalized minimum variance
generalized predictive control
independent and identically distributed
infinite impulse response
interacting multi models
linear least mean square
linear quadratic Gaussian
loop transfer recovery
moving average
MA of order n
maximum likelihood
probability density function
single input, single output
trace (of a matrix)

Glossary xv

Notational Conventions

H- 1 (q)
xT(t)
A-T

A2B
A>B
[;,

[H(q)t 1

[x(t)jT
[A-1]T
the difference matrix A - B nonnegative definite
the difference matrix A - B positive definite

defined as
distributed as
causal part of a transfer function
complex conjugate of w
transpose of w
conjugate transpose of w, w* =wT

(w-1)* = (W*)-l

Conventions for Polynomials

A(z) = zn + alzn- 1 + ... + an
A*(z) = [A(z)]* = z*n + aiz*(n-l) + ... + a~
A*(z-*) = z-n + aiz-(n-l) + + a~
A(Z-l) = z-n + alz-(n-l) + + an

If A(z) has real-valued coefficients

A*(z-*) = A(Z-l)

On the unit circle

z* = Z-l, A*(z) = A*(z-*)
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1. Introduction

1.1 What is a Stochastic System?

A "stochastic system" is understood here as a dynamic system that has some
kind of uncertainty. The type of uncertainty will be specified in a precise
mathematical sense when dealing with methods of analysis and design. At
this point, it is sufficient to say that the uncertainty will include disturbances
acting on the system, sensor errors and other measurement errors, as well as
partly unknown dynamics of the system. The uncertainties will be modelled
in a probabilistic way using random variables and stochastic processes as
important tools.

Theories of stochastic systems are very useful in many areas of systems
science and information technology, such as controller design, filtering tech­
niques, signal processing and communications. They give systematic tech­
niques on how to model and handle random phenomena in dynamic systems.

Some typical illustrations of the usefulness of stochastic systems are given
later in this chapter. They show that the concepts of stochastic dynamic
systems can be useful for forecasting (Example 1.1), control under uncertainty
(Example 1.2) and the design of filters (Example 1.3).

This book is aimed as an introduction to the properties of stochastic
dynamic systems in discrete time. There are several reasons why the emphasis
is on discrete-time systems only. One is that, today, processing equipment
for filtering and control is very often based on digital hardware, so data are
available only in discrete time. Another reason is that discrete-time stochastic
processes are much easier to handle than their continuous-time counterparts,
which have certain mathematical subtleties that are far from trivial to handle
in a stringent way. Nevertheless, continuous-time processes will occasionally
be discussed, especially as far as sampling is concerned.

Most of the material centres around the treatment of linear systems us­
ing variance criteria as measurements of performance. This is no doubt very
useful in many areas of application. The combination of linear dynamics and
quadratic performance criteria also leads to neat mathematical analysis. One
should, however, remember that aspects other than low variance may some­
times be of importance. There can also be strong nonlinear effects to consider.
Such aspects are only discussed briefly in the book, and the mathematics then

T. Söderström, Discrete-time Stochastic Systems
© Springer-Verlag London 2002
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Fig. 1.1. Electric power consumption for a period of 120 h

no longer show the neat character of the linear quadratic case. Both input­
output models and state space formalisms will be used extensively in the
book. In the linear case, there are always close links between these two ways
of treating dynamics, and it is fruitful to see how any concept appears in
both types of model.

For illustration of the theories of stochastic systems that can be used, a
few examples are in order.

Example 1.1 The consumption of electrical energy in an area varies consid­
erably over time. A typical pattern is shown in Figure 1.1.

The energy consumption shows a regular variation through the day and
decays to low values at night. There is also a random effect that adds to
the regular effect. This random effect has several causes: effect of weather,
special needs in industry, popular TV programs, etc. In order to generate the
amount of power that is needed for every time instant, it is important to be
able to forecast the demand a few hours ahead. The regular component of
the consumption may be known, but there is a need to describe (i.e. model)
the random contribution, and use that description to find good forecasts or
predictions of its future value using currently available measurements. D

Example 1.2 In the processing industry, there are many examples of pro­
duction of paper, pulp, concrete, chemicals, etc., where variations in raw
material, temperature and several other effects produce random variations
in the final product. For several reasons, the producer may want to reduce
such variations. One reason could be the quality requirements of the cus­
tomers. Another could be the need for more efficient saving of energy and
raw material. A third could be that smaller variations allow a more econom­
ical setpoint. This is illustrated in Figure 1.2, which shows how a reduced
variation can allow the setpoint to be chosen closer to a critical level.
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+

y(t) S z(t)

Fig. 1.3. Block diagram for a simple radio communication

To achieve efficient control of the process, it is often necessary to have
a stochastic model of how the output is influenced both by the inputs (the
control variables) and by disturbances. Such a model can then be the basis
for the design of regulators, which seek to minimize the influence of the dis­
turbances. 0

Example 1.3 As yet another illustration, consider mobile radio communica­
tion, which in a very simplified form can be described as follows. The message
to be transmitted is digitized. In this example it is represented as a binary
signal, u(t) = ±1; see Figure 1.3.

The channel refers to the "system" or "filter" that describes how the
signal is distorted before it arrives at the receiver. A typical reason for such
distortions is that the signal propagates along several paths to the receiver.
Signals that arrive after reflection travel a longer distance than direct signals
and introduce a delay. There is often also noise, for example sensor noise in the
receiver, e(t), that adds to the signal, x(t), so that the actual measurement is
y(t). A simple approach to reconstructing the transmitted signal is to take the
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sign of y(t) to form a binary signal z(t). It should resemble the transmitted
signal x(t) for a good communication system. The procedure for determining
z(t) from the measurements y(t) is called equalizing. The transmission causes
a distortion of the transmitted signal, which is called intersymbol interference.
A good equalizer will include a dynamic filter operating on y(t) and not only
the sign operator. To design such a filter, it is important to have a good
description (i.e. a model) of the channel, and the statistical properties of
the transmitted signal x(t) and the disturbance e(t). The "best" equalizer
is a compromise between different objectives. Should there be no noise and
the channel model be invertible, it is, of course, optimal to filter y(t) by
the inverse of the channel model. However, the inverse is often not stable,
which makes the design more complicated. Another difficulty is how to take
appropriate consideration of the noise. In the extreme case, when only the
effect of the noise is considered, a filter giving zero as output would be ideal.
In the general case, the filter must be a compromise between damping the
noise and trying to "invert" the channel by a stable filter.

Figure 1.4 illustrates, by simulation for a simple case, what the signal
u(t), x(t), y(t) and z(t) may look like.
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This example can also illustrate the concept of smoothing. In order to
reconstruct the transmitted signal x(t) as efficiently as possible, it seems per­
tinent to allow the output z(t) to depend not only on y(s), s :S t, but also
on future data, y(s), s :S t + T. Such a principle would introduce a delay in
the received message, so that ideally z(t) = u(t - T). However, such a (small)
delay can often be accepted, especially if it improves the quality of the out­
come. 0

In various communication systems, such as radar, sonar and radio com­
munications, it is convenient to describe the signals as being complex-valued.
For example, in radar, the amplitude of the echo (response) is a measure of
the effective size of the target, and the phase (due to Doppler shift in the
carrier frequency) is a measure of the target's radial velocity towards the
radar. In many parts of the book, complex-valued signals and processes are
treated in order to make the treatment as general as possible. In other parts,
though, the more traditional approach of considering only real-valued signals
is employed.

The need for complex-valued signal models can be heuristically motivated
in various ways.

• The signals are often of the narrow-band type, meaning that they have their
energy concentrated in a small frequency region. The signals can therefore
be (approximately) characterized as sinewaves. Interesting information is
contained in the amplitude and the phase. To model amplitudes, phases
and how they are affected by linear filtering, it is convenient to introduce
complex-valued modelling of the signal.

• A radio communication signal contains a low-frequency message that is
modulated using a carrier signal of high frequency. The transmitted signal
then has a frequency content that is varied slightly around the carrier
frequency. Distortion affects this frequency content. After demodulation,
when retrieving the low-frequency message, it turns out that the frequency
content is not symmetric. This can be viewed as a sign that a complex­
valued description of the signal is needed.

Not only may the signal be complex-valued, but the dynamic system itself
may also be complex-valued. Section 3.A gives a brief account of complex­
valued models of narrow-band signals and the properties of linear dynamic
complex-valued systems.
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2. Some Probability Theory

2.1 Introduction

Some fundamentals of probability theory are reviewed in this chapter. These
concepts will be instrumental in describing random phenomena and prop­
erties of stochastic dynamic systems. The presentation will be intentionally
brief, assuming that the reader already has some familiarity with the subject,
and is intended mainly as a refresher chapter. The emphasis will be on mul­
tivariable random variables, Gaussian distributions, conditional distributions
and complex-valued random variables.

2.2 Random Variables and Distributions

2.2.1 Basic Concepts

A random variable ~ is a function from an "event space" n to R. Its "out­
comes" (or realizations, or observed values) will be denoted by x. There is
a probability measure associated with ~ so that subsets of n are assigned
a probability p(n). There is a distribution function F~(x) and a probability
density function (pdf) p~ (x) defined as

F~(x) = P(~ ~ x) ,

p~(x) = dFdx ) .
dx

The distribution function has the following properties:

• F(x) is increasing.
• limx---+ooF(x) = 1.
• limx---+_ oo F(x) = O.

The pdf has the properties

• p~(x) 2: o.
• J~oo pdx) dx = 1.

• P(a < ~ ~ b) = J:pe(x)dx.

(2.1)

(2.2)

T. Söderström, Discrete-time Stochastic System
© Springer-Verlag London 2002
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Fig. 2.1. Pdfs (dashed lines) and distribution functions (solid lines) for Gaussian
and uniform distributions

Example 2.1 A Gaussian, or normal, distribution is characterized by

1 (._m)2

p{(x) =--e-~ (0" > 0, x E R) ,
V2ic0"

whereas a uniform distribution is given by

(x) = { b~a a < x ::; b (b > a),
p{ 0 elsewhere.

These pdfs and associated distribution functions are illustrated in Figure 2.1.
o

Next consider random vectors. The previous development must be ex­
tended to multivariate ~ and x. Consider first the two-dimensional case, as
generalization to an arbitrary dimension is straightforward.

Let the random variables ~ and 'fJ be characterized by a joint distribution
function

F{,T/(x,y) = P(~::; x,'fJ::; y)

and the associated (joint) pdf

( )
_ 82FCT/(x, y)

p{,T/ x, Y - 8x8y .

These functions have the following properties:

• F{,T/(x,y) is increasing in x and in y.
• F{,T/(x,y) --+ 1 as x --+ 00 and y --+ 00.

• FCT/(x,y) --+ 0 as x --+ -00 and y --+ -00.

• P((~,'fJ) E A) = f fAPCT/(x,y)dxdy.
• F{,T/(x, y) = f~(x,f~ooP{,T/(x', y') dx' dy'.

(2.3)

(2.4)
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The relations to the marginal pdf pdx) and the distribution function
F{ (x) are as follows:

• F{(x) = limy-+oo F{,11(X,y).
• p{(x) = f~oo Pc 11 (x, y) dy.

Example 2.2 Consider the joint pdf

6 2
P{,11 (x, y) = "7 (x + y) , 0 :::; x :::; 1, 0:::; Y :::; 1 ,

for which the distribution function can be derived as follows:

F{,11 (x, y) = l x l Y

~(x' + yl)2 dx' dy'

= x: (2x2+ 3xy + 2y2) , 0 :::; x :::; 1, 0:::; y :::; 1 .

The marginal pdf and the distribution functions of ~ and 'T/ are equal and
are given by

x
Fdx) = F{,11(X, 1) = "7(2x2 +3x + 2) ,

2
p{(x) = "7(3x2+ 3x + 1) .

These functions are illustrated in Figure 2.2. o

(2.5)

The expected value of a random variable, or its mean value, is

E~ = [: xp{(x)dx.

More generally, the expected value of a function of ~, say g(~), is

E g(~) =[: g(x)pdx) dx . (2.6)

When g(~) is a power of ~ (such as g(~) = ~, e, etc.) the expected value is
called a moment of ~.

Let ~ be a random vector. Then its mean value is often denoted as

m = E ~ =[: xP{ (x) dx .

The covariance matrix of ~ is defined as

cov(~) = E (~- m)(~ - mf
=E~e-mmT.

(2.7)

(2.8)

The following result will be used repeatedly in the book. It will be useful
when evaluating various performance criteria.
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Fig. 2.2. Joint and marginal pdfs and distribution functions for Example 2.2. Joint
pdfs and joint distributions given as mesh plots and with contour levels

Lemma 2.1 Let x be a stochastic vector with mean m and covariance matrix
P, and S a quadratic matrix. Then

I ExTSx~mTSm+t'(SP).
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Proof Using straightforward calculations and properties of the trace opera­
tor:

E XTSX = E tr (SxxT ) = tr (SE [(x - m)(x - mf + mmT])
= tr (S[P +mmT ])

= tr ([mTSm +SP])
= mTSm + tr (SP) . •

In subsequent chapters the same notation for random variables (such as
~) and their outcomes (such as x) will often be used for simplicity.

2.2.2 Gaussian Distributions

Let m be an n-vector and P a symmetric positive definite (P > 0) nln matrix.
The random vector is said to be normal or Gaussian distributed as

~ 'V N(m,P) ,

if its pdf is

pdx) = "((x; m, P)

~ (27T)nI2(~etP)112exp (-~(x - m)TP- 1(x - m))
(2.10)

Note how this generalizes from the scalar case; see Example 2.1. The Gaussian
pdf will be used repeatedly in the book. The specific notation "((x; m, P) is
reserved for it.

There are several reasons why it is of particular interest to study the
Gaussian distribution:

• Owing to the central limit theorem, the sum of many independent and
equally distributed random variables can be well approximated by a Gaus­
sian distribution. If disturbances are assumed to be due to the effects of
many independent physical causes, it should therefore be relevant to model
the total effect as Gaussian distributed random variables.

• Gaussian random variables have attractive mathematical properties; see
below. In particular, linear transformations of Gaussian variables are still
Gaussian distributed.

• For Gaussian distributed random variables, optimal estimates have a sim­
ple form. In contrast, in most other cases, it is very complicated to calculate
optimal estimates explicitly.

The Gaussian distribution has the following properties:

• If ~ 'V N(m,P) then E~ = m.
• If ~ 'V N(m, P) then cov(~) = P.
• If ~ 'V N(m, P) is a random n-vector, A an rln matrix of rank r :S n

and b an r vector, then TJ = A~ + b is also Gaussian distributed, TJ '"
N(Am + b,APAT ).
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The third property mentioned above is very important. Gaussian distri­
butions are preserved under linear transformations. As an implication, linear
filtering of a Gaussian distributed input signal will produce a Gaussian dis­
tributed output.

One important implication of the first two properties is that the distribu­
tion is fully determined by the mean vector and the covariance matrix.

2.2.3 Correlation and Dependence

Let ~ and T} be two random vectors with mean values m{ and m1J respectively.
The vectors are said to be uncorrelated if

E (~ - m{) (T} - m1Jf = 0 .

The vectors are said to be independent if

P{,1J(x,y) =P{(x)P1J(Y) .

The following results hold:

• ~,T} independent ===> ~,T} uncorrelated.
• ~,T} uncorrelated and Gaussian ===> ~,T} independent.

2.3 Conditional Distributions

(2.11)

(2.12)

Let ~ and T} be two correlated random variables (possibly vector-valued). As­
sume that T} is observed or measured to have an outcome y. This information
is to be used to infer something about ~. Given T} = y, the pdf of ~ should
take the form

p{I1J=Y(x) = CP{,1J(x,y) ,

where c is a normalizing constant. Recall that P{,1J(x, y) dx dy is the proba­
bility P(x < ~ ::; x + dx, y < T} ::; y + dy). As

1 =i: p{I1J=Y(x) dx = ci: P{,1J(x, y) dx = cP1J(Y)

it follows that c = 1/P1J (y), and the conditional pdf is

I P<I,o,lx) = p,~:\~)y) . (2.13)

In a more strict sense, (2.13) is often taken as the definition of the conditional
pdf. One could possibly start with Bayes' rule

P(AIB) = P(AB)
P(B)



2.3 Conditional Distributions 13

~

'oint df ~ cond df of x when =05 .,
~

~
0.8

;:"

~., 0.6
0 ""....

0.4
S
~ 0.2.,

-5 "" 0....
-5 0 5 -5 0 5

x x
~

~

~
cond df of x when ~ cond df of x when =3.,

r1j
.,

r1j
~ 0.8 I ~

0.8
~ ~.,

0.6 l £: 0.6
"".... I ""

1 ....
~ 0.4

~
0.4...... M

~ 0.2 ~ 0.2
':: '::"".... 0 "" 0....

-5 0 5 -5 0 5
x x
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for events A and B. There is, though, a difficulty with such an approach for
"deriving" (2.13), as P(1] = y) = 0 for a continuous random variable.

Using the relation between the joint and the marginal distributions, one
finds

p~(x) = JP{,1'f(x, y) dy = JP~I7)=Y(x, Y)P7)(Y) dy , (2.14)

which will be useful later.

Example 2.3 Let ~ and 1] be jointly Gaussian distributed:

The joint pdf P{,7)(x,y) and the conditional pdf P~I7)=Y(x) are illustrated in
Figure 2.3. 0

The following lemma gives an important result concerning expectation
and conditional expectation.



14 2. Some Probability Theory

Lemma 2.2

(2.15)

holds, where E1J denotes expectation with respect to ".,.

Proof The left-hand side of (2.15) can be written as

E~ = / / XP{,1J(x,y)dxdy,

while the inner part of the right-hand side of (2.15) can be rearranged first
as

E [~I".,] = / xp{I1J=y(x) dx = / xP{~:~:)y) dx ,

from which it follows that

E1J{E [~I".,]} = / [/ xP{~:~:)y) dX] P1J(Y) dy ,

which coincides with the left-hand side.

2.4 The Conditional Mean for Gaussian Variables

•

This section treats the case of Gaussian distributed random variables. It turns
out that, for this case, the conditional pdf is Gaussian as well. The conditional
mean is identical to the so-called linear least mean squares (LLMS) estimate,
which will be derived in Section 5.3. The detailed result is given here as a
lemma.

Lemma 2.3 Let x and y be two real-valued, jointly Gaussian random vari­
ables

(2.16)

(2.17)

Assume that the covariance matrix of the distribution is positive definite.
Then the conditional pdf p(xly) is Gaussian as well:

I p(xly) - N(m,P) ,

with

m = x=E [xly] = mx + RxyR;l(y - my) ,

P =cov[xly] =Rx - RxyR";;t Ryx .
(2.18)
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Proof Recall that the pdf of a Gaussian distribution N(m, P) is given by

p(x) = (27t)n/2(~etP)l/2 exp (-~(x - mfp-l(x - m)) ,
where n = dimx. Now set nx = dimx, ny = dimy and R = (Rx Rxy)Ryx Ry .

Consider first the ratio of the determinants:

det R = det ( Rx Rxy )
Ryx Ry

= det [ (10, -R;:~;l) (~xx ~: ) ( -R~~'Ryx I~y) ]
= det (~ ~y) = det P det Ry

holds. Hence

(2.19)

(det Ry )1/2

(detR)l/2
1

(det P)l/2 . (2.20)

Proceed to examine the quadratic form in the exponent. It is first established
that

(
p-l _p-l R R-1 )

R -1 = xy Y
_R-1R p-l R-1+ R-1R p-lR R-1 .Y yx Y Y yx xy y

This can be verified by direct multiplication (alternatively, use the hint of
Exercise 3.4):

(
R R ) (P-l -P-1R R-1 )
R:x i: -R;l RYXp-l R;l + R;l Ry:P-tRxyR;l

= (PP-l -RXP-1RxyR;1 + RxyR;l + RxyR;lRyxP-IRxyR;l)
o RyR;l

= (In, RxyR;l - PP-1RxyR;1) =I
o I ~+~.

n y

Hence the quadratic form can be written as, skipping a factor - ~:
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(xT -m~ yT -m~)R-l (~=::) -(y-my)TR;l(y_my)

=(x - mxfp-l(X - mx) - (x - mxfp-lRXyR;l(y - my)

-(y - myfR;l RYXp-l(X - mx)

+(y - my)T{R;lRyxp-l RxyR;l}(y - my)

= (x - xfp-l(X - x) . (2.21)

Inserting (2.20) and (2.21) into (2.19), it is found that

p(xly) "'" N(m,P) ,

which is the stated result. •
Note that, for Gaussian variables, the conditional mean x becomes iden­

tical to the so-called LLMS estimate XLLMS. See Section 5.3.
In fact little more can be said about the optimal estimate xof a vector x

when a correlated vector y is observed. It is easy to show (as in Section 5.3)
that x - x and yare uncorrelated. It will also be shown that they are jointly
Gaussian distributed and therefore independent. In fact:

This shows that x - x and yare jointly Gaussian. Further, as can also be
predicted from the previous calculation:

E (x-x) ((x-x)T (y-myf)y-my

which demonstrates that the estimation error x - x is uncorrelated and in­
dependent of the measurement y.

There is another useful result dealing with the case when y can be split
into two uncorrelated parts.

LelDlDa 2.4 Let y = (;~) with Yl and yz uncorrelated and let (~) be

jointly Gaussian distributed. Then

E [xly] = E [XjYl] + E [XjY2] - E [x] . (2.22)
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Proof Straightforward calculation, using Lemma 2.3

E [xly] = mx + Rxy R;l(y - my)

=m x + (RXYl RXY2 ) (ROYl R
O

) -1 (Y1 =m
yl

)
Y2 Y2 mY2

= mx + RXYl R;/ (Y1 - m yl ) + RXY2 R;21(Y2 - m y2 )
= E [XIY1] + E [XIY2] - mx .

2.5 Complex-Valued Gaussian Variables

•

Complex-valued Gaussian variables are treated in this section. The scalar
case, which is relatively straightforward, is analyzed first. The multivariable
case, which contains some technicalities, is treated next. Finally, the distri­
butions of the norms of complex Gaussian variables are discussed.

2.5.1 The Scalar Case

Let x and Y be zero mean Gaussian distributed random variables and set
W = x + iy. Then define the variance of w as

E ww = E Iwl 2 = E (x + iy)(x - iy) = E x2 + E y2. (2.23)

Assume for simplicity that x and yare independent and have equal variance,
say E x2 = E y2 = a2/2. Then E Iwl2 = a2 and

w ,...., CN(O, a2
) (2.24)

is said to be complex Gaussian distributed with zero mean and variance a2 .

Note that in such a case

E w2 = E (x + iy)2 = E x2 - E y2 + 2iE xy = °.
The pdf for w can be derived from

Note that

and therefore

(2.25)
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Pw(w) = (27t)2/2J~et(u21/2) exp ( -!(x

= 27tiU2 exp (-(X y) (~) /(
2)

__1_ _(x2+y2)/<12
- e .

7tU2

y)(;2 I)-I (~))

(2.26)

Next examine linear transformations of complex Gaussian variables. Let
<P = <PR + i<PI E C, w = x + iy ,...., CN(O, ( 2), and set m = <pw. Clearly:

Em=O,
var(m) = E m = E <pww<p = u21<p12 .

(2.27)

Moreover, the real and imaginary parts of m can be examined by rewriting
it as

m = mR + imI = (<PR + i<pI)(X + iy) ,

giving

mR = <PRX - <PlY,

mI = <PRY + <PIX,

or

( mR) = (<PR -<PI) (X).
mI <PI <PR Y

This implies that

E (:7) (mR mI) = (~7 ~~I) E (~) (x y) (~;I ;~)

= (~7 ~~I) (U
2
j2 U20/2) (~;I ;~)

As

obviously holds, one can conclude that

m,...., CN(O,u2j<p12) .

(2.28)

(2.29)
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2.5.2 The Multivariable Case

Before coping with the multivariable case, some technical results are needed,
such as a convention for splitting up a complex-valued matrix, or vector, into
real and imaginary parts.

In Section 2.5.1 it was shown how the scalar linear relationship

m = tpW

could be split up into real and imaginary parts as

(2.30)

(2.31)

This simple example gives some guidelines on how to link a complex-valued
representation to a real-valued one.

In this section, let f(w) denote the real-valued variable associated with
w. In the above example, f(w) and f(tp) are given by

f (w) = (:~ ) , f (tp) = (~~ ~~I ) .

Next, this idea is formalized.

Convention 2.1 Let

w = (WI .. .wn)T

be a complex-valued vector. Then define

f(w) ~ (WlR Wu WZR WZI··· WnR wnlf,

where WjR = Re(wj), Wjl = Im(wj). Similarly, if A is an (min) matrix,
introduce the matrix f(A) of dimension (2mI2n) as

I(A) =C::~J

and where

aJ.LvR = Re(aJ.LV ), aJ.Lvl = Im(aJ.Lv) . o

Some results showing how transformations of A and W can be described
equivalently by f(A) and f(w) will be needed later. A number of lemmas are
now presented with this in mind.
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Lemma 2.5 The transformation A -7 f(A) is unique and invertible in the
sense that

A = B ¢:::::} f(A) = f(B) .

Proof Obvious.

Lemma 2.6 Let A and B be two complex-valued matrices. Then

f(AB) = f(A) x f(B) .

(2.32)

•

(2.33)

Proof Evaluate the /Lv-block of each side:

(f(AB))JLv = feL aJLkbkv) = f(~)aJLkR + iaJLkI) (bkvR + ibkllI))
k k

=L f([aJLkRbkIlR - aJLkIbkllI] + i[aJLkRbkllI + aJLkIbkllR])
k

_ L (aJLkRbkllR - aJLkIbkllI -aJLkRbkllI - aJLkIbkvR)
- aJLkRbkllI + aJLkIbkllR aJLkRbkllR - aJLkIbkvI .

k

(f(A) X f(B))JLII = L(f(A))JLk(f(B)hv
k

=L (aJL kR -aJL kI ) (bkllR -bkVI ) .
aJLkI aJLkR bkllI bkllR

k

Hence both sides of (2.33) are equal.

Lemma 2.1 Let A be invertible. Then

•

(2.34)

Proof Apparently f(I) = I. (More exactly, f(In) = 12n .) Using Lemma 2.6
with B = A-I, one easily obtains

1= f(I) = f(A) X f(A- I
) ,

which proves (2.34).

Lemma 2.8

f(A*) = (f(A))T.

•

(2.35)
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Proof By straightforward calculations,

•
Lemma 2.9 Let A be a quadratic matrix. Then

A unitary {:=::} f(A) orthogonal. (2.36)

Proof A unitary {:=::} A-I = A* {:=::} f(A- I ) = f(A*) {:=::} (f(A))-1
(f (A)) T {:=::} f (A) orthogonal. •

Lemma 2.10 Let A be Hermitian with eigenvalues AI, ... , An. The matrix
f(A) has eigenvalues AI,AI,A2,A2, ... ,An, An.

Proof As A is Hermitian, it can be diagonalized as A = U* DU, with U
unitary and D diagonal and real-valued elements. By Lemmas 2.6 and 2.8,
f(A) = f(U*)f(D)f(U) = (f(U)f f(D)f(U). Apparently, f(D) is diagonal.
The matrix A has the same eigenvalues as

_ (AI. 0)D- '. ,

o An

and f(A) has the same eigenvalues as

Al 0
Al

f(D) =
•

o
Lemma 2.11 Let A be Hermitian. Then

det[f(A)] = [det A]2 . (2.37)

Proof Following Lemma 2.10, det[f(A)] = AiA§ ... A; = (AIA2 ... An )2 =
[det(A)j2. •

Lemma 2.12 Let A be a Hermitian matrix and w a vector. Then

w* Aw = (f(w)f f(A)f(w) . (2.38)
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Proof As A is Hermitian, ajkR =akjR, ajkI = -akjI' Hence

w* Aw = L WjajkWk = L Wkakkwk
j,k k

+ L WjajkWk + L WjajkWk
j<k k<j

= L akkR(w%R + W%I)
k

+ L {(WjR - iWjI)(ajkR + iajkI)(wkR + iWkI)
j<k

+(WkR - iWkI)(akjR + iakjI) (WjR + iWjI)}

=L akkR(w%R + W%I)
k

+ L[(ajkR + iajkI)
j<k

X{(WjRWkR + WjlwkI) + i(WjRWkI - WjIWkR)}

+(ajkR - iajkI){(WjRWkR + WjlwkI) + i(WkRWjI - WkIWjR)}]

=L akkR(w%R + W%I)
k

+2 L {ajkR(WjRWkR + WjlwkI) - ajkI(WjRWkI - WjIWkR)} .
j<k

Moreover:

(f(W))T f(A)f(w) = L(f(w))J(f(A))jdf(w))k
j,k

= '"'(W'R w'I) (ajkR -ajkI ) (WkR)
L.J J J a'kI a'kR WkIhk J J

=L {ajkR(WjRWkR +WjIWkI)
j,k

+ajkI(WjIWkR - WjRwkI)} ,

which proves the lemma. •
After all these lemmas, the scene is finally ready to cope with the mul­

tivariable complex Gaussian distribution. A very important special case will
be treated. It can be viewed as a linear transformation of independent scalar
CN(O,l) variables. Compare this with filtering white, real-valued noise to
obtain a general class of stationary stochastic processes.

Theorem 2.1 Let

W = (WI,. ,wn)T,
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where WI, ... ,Wn are independent and CN(O, 1) and set

s=Aw,

where A is a complex-valued nln matrix. Then

E ss* = AA * ~ Ps ,

and

S rv CN(O, Ps ) ,

which means that

ps(s) = d
1

P exp(-s*Ps-ls) .
T[n et s

Proof

j(s) = j(A)j(w), j(w) rv N(O,I /2)

clearly holds, and hence

j(s) rv N(O, j(A)(j(A))T /2) .

Therefore:

(2.39)

(2.40)

(2.41)

1

ps(s) = (J27[)2nJdet[j(A)(j(A))T /2J

x exp (-~(j(S))T[j(A)(j(A))T/2r l j(S))

1
= T[n Jdet(j(A) (j(A) )T) exp (-(j(s)f[j(A)(j(AT))J-I j(s)) .

(2.42)

Note, using Lemma 2.11 and (2.40):

det[j(A)(j(A)fJ = [det j(AW = [det(AW

= [det(A) det(A*)J2 = [det psf

From Lemmas 2.8 and 2.12, and (2.40), it further follows that

(j(s))T[j(A)(j(A)fr l j(s) = (j(s)f[j(A)j(A*)J-I j(s)

=(j(s)f[j(AA*)r l j(s)

=(j(s)f[j(Ps)r l j(s)
=(j(s))T j(Ps-1 )j(s) = s* Ps-

IS .

Inserting these expressions into (2.42) gives

1 'p-lps(s) = e- s , s
T[n det Ps

which is (2.41). •
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0.6

r

Fig. 2.4. The Rayleigh pdf

2.5.3 The Rayleigh Distribution

In the case where w = x+iy, where x and yare independent Gaussian random
variables with zero mean and equal variance, the magnitude Iwl is said to have
a Rayleigh distribution. This distribution is described and studied next.

Lemma 2.13 Let x and y be independent and N(O, (12) distributed. Set w =
J x 2 + y2. Then the probability density function of w is

f ( ) -!...- _r2 /2(j 2

w r - 2 e .(1

Proof First calculate the distribution function Fw(r) = J; fw(t) dt as follows:

Fw(r) = P(w :::; r) = P(x2 + y2 :::; r2
)

=I r ~e_x
2

/217
2e_y2 /217

2 dx dy
JX2+y2~r2 271:(1

jr 1 2/2 2 2/2 2= 271:p--e-P 17 dp = 1 - e-r 17.
o 271:(12

The pdf is then easily found as

f ( ) - d () _ r _r2 /2(j 2
•

w r - -dFw r - 2 e .r (1

The pdf fw(r) is illustrated in Figure 2.4.

Remark The squared and normalized value, w2 /(12, is X2(2) distributed. A
x2 (n) distributed random variable is obtained as a sum of n independent
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squared Gaussian random variables of zero mean and unit variance. Its pdf
is given by

_ 1 n/2-1 -x/2
P((x)-2n / 2r(n/2)x e ,

where r(·) is the r function (for n an integer it holds that r(n) = n!). In
particular, for X2 (2) distributed random variables:

1
p((x) = 2e-X/2 .

Some properties of the Rayleigh distribution are given next.

o

Lemma 2.14 Let w be a Rayleigh distributed random variable, with the pdf
given by (2.43). Then

1. fw(r) has its maximum for r = (7.

2. E w = J7i(7 ~ 1.25(7.

3. var(w) = (2- ~)(72 ~0.43(72.

Proof Setting Jrfw(r) = 0 easily gives

_r2/2a2 2r _r2/2a2 0e -r-e =
2(72 '

from which it is concluded that the maximum of fw(r) occurs for r = (7.
The mean value is derived by the following calculation:

Ew = ['Xi rfw(r)dr = roo r: e-r2/2a2 dr
Jo Jo (7

= [-r e-r2 /2a
2
]~ +100

e- r2 /2a
2

cir = V; (7 .

Further:

and hence

var(w) = Ew2 - (Ew)2 = (2 -~) (72. •
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Exercises

Exercise 2.1 Consider a random variable f

(a) Let ~ be uniformly distributed in the interval (-a, a). Derive its moments
E~k for k = 1,2,3,4.

(b) Let ~ be Gaussian distributed, ~ '" N(m, (12). Derive its moments E ~k

for k = 1,2,3,4.

Exercise 2.2 Consider the joint pdf of Example 2.2:

6 2
P~,1) = 7(X + y), 0 :S x :S 1 , O:S y :S 1.

Derive the mean and the covariance matrix of the random vector (~ 71f.

Exercise 2.3 Let ~ and 71 be jointly Gaussian

(a) Under what conditions on p is the covariance matrix positive definite?
(b) Sketch the contour levels of the joint pdf. Show that if p ~ -1, then

(with high probability)

71 ~ 4 - 2~.

(c) What is the conditional pdf p1)I~=Ay)? Compare this with the findings
of (b).

Exercise 2.4 Let v and e be two random vectors of zero mean that are
jointly Gaussian. Let e have a positive definite covariance matrix. Show that
there exists a unique matrix B, such that

v = Be+w

with e and w being independent.

Exercise 2.5 Consider two random variables ~ and 71.

(a) Assume that ~ and 71 are independent with pdfs p~(x) and P1)(Y) respec­
tively. Set ( = ~ + 71. Derive the pdf P«(z).

(b) Assume in particular that ~ and 71 are both uniformly distributed over
the interval (a, b). Give pdz) in an explicit form.

Exercise 2.6 Let ~, 71 and ( be random variables. Prove the relation

p~I(=Ax) =JP~I1)=y,(=z(x)p1)I(=Ay) dy .
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Exercise 2.7 Consider a sinewave of the form

~(t) = Acos(wt+<p) ,

where the amplitude A is Gaussian, A ,...., N(m, a) and the phase <p is uni­
formly distributed over (0, 2n). The random variables A and <p are indepen­
dent, w is a deterministic angular frequency and t denotes time. Consider
also a phase-shifted variant of the signal

ry(t) = Asin(wt + <p) .

(a) Show that E ~(t) = 0, E ry(t) = °and derive the covariance elements
E e(t), E ry2(t), E ~(t)ry(t).

(b) Set m = 0. Introduce the random variable

( = ~ + iry .

Find the moments E(, E 1(1, E(2, E 1(1 2.
(c) Set m = 0. Will ( be complex Gaussian distributed?

Hint. Examine the ratio (E 1(12)/(E 1(1)2.
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3. Models

3.1 Introduction

Some basic models and concepts are introduced in this chapter.
Stochastic processes are fundamental when describing random effects in

dynamic systems and analyzing filtering. A very brief review of the funda­
mentals of stochastic processes is given in Section 3.2. Section 3.3 is devoted
to a short discussion on Markov processes and how the important concept
of a state vector appears for stochastic systems. Stationary stochastic pro­
cesses are considered in Section 3.4, and some fundamental properties of the
covariance function and the spectral density are established.

In some situations, moments of order higher than two (the covariance
function) are useful for describing and analyzing stochastic processes. Section
3.5 gives a short introduction to bispectra, which constitute the simplest class
of higher-order statistics.

Two appendices (Sections 3.A and 3.B) contain supplementary material
on complex-valued models of signals and systems, and of Markov chains.

Note at this stage that noise models in terms of stochastic processes can
be used in various ways.

• One possibility is to let the noise models describe random disturbances
that are assumed to be present. Sensor noise and the effects of unmodelled
sources are typical interpretations of such descriptions.

• Another aspect is to use the noise model as a means for expressing model
uncertainties. If the model description relating input and output variables
is uncertain, then the uncertainties can be incorporated in a noise model. In
such a way one may, for example, design filters, predictors, or controllers,
which have some robustness against modelling errors. Some ideas along
this line will be presented in Section 7.5.

• A third possibility is to regard the noise model from a more pragmatic
point of view. It may be interpreted as tuning variables by a user when
constructing a filter. By changing the noise model parameters, the user
can change the frequency properties of, say, an associated optimal filter.
This idea will be illustrated in Section 6.7.

T. Söderström, Discrete-time Stochastic System
© Springer-Verlag London 2002
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• Another illustration is given in Section 11.5.3, where a particular noise
model is used as a means for achieving certain robustness properties of a
feedback system designed by stochastic control theory.

3.2 Stochastic Processes

A very brief account on the fundamentals of stochastic processes is given in
this section. The real-valued case is treated, and some extensions to complex­
valued processes are relatively straightforward; see Sections 2.5 and 3.4.

Definition 3.1 A stochastic process x(t) is a family of (possibly vector­
valued) random variables {x(t)}, where the time t belongs to an index set.
(In discrete time, the index set is mostly N, the natural numbers, or Z, the
integers.) D

In order to describe the properties of a stochastic process fully, its distri­
bution function

(3.1)

(3.2)

is needed for arbitrary k, Xl,... ,Xk, tl,... , tk. In many cases, it is too
cumbersome to use the whole distribution function and one resorts to using
moments, often only first-order (the mean value) and second-order moments
(the covariance function).

In the special case, where x(t) is a Gaussian process, the distribution func­
tion is (multivariable) Gaussian. It will remain Gaussian after linear transfor­
mations and it will be completely characterized by its first- and second-order
moments.

Next define the first- and second-order moments.

Definition 3.2 Let x(t) and y(t) be vector-valued stochastic processes, not
necessarily of the same dimension. The mean of x(t) is defined as

I m(t) ~ m.(t) ~ E x(t) .

The covariance function of x(t) (autocovariance function) is

r(t, s) = rx(t, s) ~ E [x(t) - mx(t)][x(s) - mx(s)f, (3.3)
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(which is a square matrix). The cross-covariance function of x(t) and y(t) is

rXy(t, s) = E [x(t) - mx(t)][y(s) - my(s)]T . (3.4)

o

Stationary processes are mostly used in the book. There are several con­
cepts of stationarity.

Definition 3.3 The stochastic process x(t) is strictly stationary if its distri­
bution is invariant to time shifts, that is:

P(X(tl + T) ~ Xl , ... ,x(tk + T) ~ Xk)

does not depend on T. It is weakly stationary if the mean and the covariance
functions are invariant to time shifts, that is:

m(t + T) = m(t)
r(t + T ,s + T) = r(t, s)

(all T). (3.5)

o

A strict stationary process is also weakly stationary, but the converse is
not generally true. An important exception is Gaussian processes, for which
the two concepts are equivalent. In what follows, it will not always be specified
what type of stationarity is needed. In the case x(t) is weakly stationary,
the mean is apparently a constant (vector). Further, the covariance function
depends only on the difference between its time arguments. It is therefore
very common to denote the covariance function of stationary processes as

r(T) ~E [x(t + T) - m][x(t) - mf .
Some further concepts will be useful.

(3.6)

Definition 3.4 A sequence of independent and identically distributed (iid)
random variables is called white noise. Mostly, it is assumed that the mean
value is zero. 0

Remark In many cases the random variables in a white noise sequence are
not only independent but also identically distributed. In such a case one
sometimes refer to iid random variables. 0

Next, an important class of random processes, obtained by linear filtering
of white noise, is introduced.
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Definition 3.5 Consider the stochastic process y(t), given as the solution to
the difference equation

y(t)+aly(t-1)+ ...+any(t-n) = e(t)+cle(t-1)+ ...+cme(t-m) ,(3.7)

where e(t) is white noise of zero mean. Such a process is called an autore­
gressive moving average (ARMA) process. To indicate the number of terms in
(3.7), it is sometimes denoted as an ARMA(n, m) process. An ARMA(n, 0)
process is called an autoregressive, AR or AR(n), process. An ARMA(O, m)
process is called a moving average, MA or MA(m), process. 0

Introduce the polynomials

A(z) = zn + alzn- 1 + + an,
C(z) = zm + C1Zm - 1 + + Cm ,

and the shift operator q, qx(t) = x(t + 1). The ARMA model (3.7) can then
be written compactly as

A(q)y(t - n) = C(q)e(t - m) . (3.9)

As the white noise can be "relabelled" without changing the statistical prop­
erties of y(t), (3.7) is much more frequently written in the form

A(q)y(t) = C(q)e'(t) . (3.10)

where e'(t) = e(t +n - m) is a "relabelled" white noise sequence.
Some illustrations of ARMA processes will be given in Example 3.2.

ARMA processes will also be used in many subsequent examples.

Remark 1 As an alternative, one can work primarily with the backward shift
operator q-l. An ARMA model would then be written as

A(q-l)y(t) = C(q-l)e(t) ,

where the polynomials are

A(q-l) = 1 + alq-l + + anq-n ,

C(q-l) = 1 + clq-l + + cmq-m .

The advantage of using the q-formalism is that stability corresponds to the
"natural" condition Izi < 1. The advantage of the alternative q-l formalism
is that causality considerations become easier to handle. The q formalism is
used in this book. 0

Remark 2 It is usually assumed that the ARMA model is stationary. This
means that the polynomial A(z) has all zeros strictly inside the unit circle. In
some situations, such as modelling a drifting disturbance, it is appropriate to
allow A(z) to have zeros on or even outside the unit circle. Then the process
will not be stationary and should only be considered for a finite period of
time. A drifting disturbance is obtained when A(z) has a zero at z = 1. The
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special simple case A(z) = z - 1, C(z) = z is known as a random walk. That
particular model:

y(t) - y(t - 1) = e(t)

can easily be iterated to obtain

t

y(t) = y(O) + L e(s) .
5=1

The name "random walk" refers to a walk along a straight line where the
increments e(t) for each time step are independent. 0

Remark 3 One might add an input signal term to (3.8) in order to obtain
an ARMA with eXogenous input (ARMAX) model:

A(q)y(t) = B(q)u(t) + C(q)e(t) . (3.11)

The system must be causal, which means that y(t) is not allowed to depend
on future values of the input u(t + 7), 7 > O. Hence it is required that
degA 2: degB. Otherwise y(t) would depend on future input values. 0

3.3 Markov Processes and the Concept of State

The concept of states is fundamental for deterministic dynamic systems. The
state vector, usually denoted by x(t), and its associated state equation, have
the property that they contain all information about the history of the system
that has any impact on its future behaviour. Phrased differently, to compute
the system response at times tl > t, it is sufficient to know x(t) and external
input signals in the interval [t,tl]'

This notation of state does not directly carryover to stochastic systems,
as such systems contain random elements or signals. A Markov process is
defined to begin with.

Definition 3.6 Let tl < t2 < ... < tk < t. The process x(t) is said to be a
Markov process if the conditional pdf satisfies

p(x(t)lx(td,··· X(tk)) = p(x(t)IX(tk)) . (3.12)

o

Hence, if several old values of the process are known, only the most recent
one has any influence on the future behaviour of the process.

If the process x( t) only takes a finite number of values it is called a Markov
chain. Markov chains are described and analyzed in Section 3.B.
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The statistical properties of a Markov process can be calculated once
the distribution for an initial time to is known as well as the transition pdfs
p(x(t + 1)lx(t)). This is so as by Bayes' rule, for example:

p(x(to + 2),x(to + 1)) =p(x(to + 2)lx(to + l))p(x(to + 1))

=p(x(to + 2)lx(to + 1))i: p(x(to + 1)lx(to))p(x(to)) dx(to) .(3.13)

Next, consider an important and general class of discrete-time processes
that satisfy the Markov property. Let the sampling interval be one time unit.
The conditional pdf, p(x(t + 1)lx(t)), for how the process propagates from
one time step to the next one, is important for describing the updating of
x(t). In particular, the new state, x(t+ 1), will be modelled as the conditional
mean

g(x(t), t) ~ E [x(t + 1)lx(t)]

=i: x(t + l)p(x(t + 1)lx(t)) dx(t + 1) .

Thus consider processes of the form

(3.14)

(3.15)x(t + 1) = g(x(t), t) + v(x(t), t) ,

where v(t) is a random disturbance. Assume, further, that

• {v(x(t), t)} is white noise, that is v(x(h), t1) and V(X(t2), t2) are indepen­
dent for t 1 i- t2 •

• g(x(t), t) does not depend on older values of x(t - T).

Then the process is a Markov process. The vector x(t) is called the state
vector, as, owing to (3.13) and (3.14), x(t) contains everything about the
past that has any impact on the future behaviour of the process. The future
behaviour will also be influenced by the process noise v(·). Note, though, that
future values of v(·) will be independent of x(t). Under the above assumptions,
(3.15) is often called a stochastic difference equation. The conditional pdf
p(x(t + 1)lx(t)) is sometimes called the hyperstate of the process. In order to
obtain a full description of the process, the hyperstate must be known. In
the special case of linear systems with additive Gaussian process noise, the
hyperstate turns out to be given by a Gaussian distribution. It can thus be
characterized fully by the mean and the covariance.

In order to obtain a more complete model, (3.15) should be complemented
by describing the outputs or measurements. These are often given in the form

y(t) = h(x(t),e(t)) , (3.16)

where e(t) is a random term called measurement noise. It is often assumed
that e(t) is white noise. (Then e(td and e(t2) are independent if h i- t2')

In most cases, one further assumes that v(td and e(t2) are independent
for all t 1 and h.
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Regarding systems equipped with a measurement equation, the notation
of state sometimes requires that

p(x(t + l)lx(t),y(t)) =p(x(t + l)/x(t)) . (3.17)

For this to hold for the model (3.15) and (3.16), one must generally require
v(t) and e(t) to be independent. Otherwise, loosely speaking, y(t) contains,
through e(t) and therefore through v(t), additional information about x(t+1).

It is often possible to transform a model where v(t) and e(t) are depen­
dent into another one where the process noise and measurement noise are
independent. The trick is to augment the state vector. The idea is illustrated
by an example.

Example 3.1 Consider a process of the form

x(t + 1) = g(x(t)) +g2(X(t))v(t) ,

y(t) = h(x(t)) + e(t) ,

where v(t) and e(t) are mutually correlated, zero mean white noise sequences
with covariance matrices

Ev(t)vT(s) = R1bt,s,

Ee(t)eT(s) = R2bt,s,

Ev(t)eT(s) = R12 bt,s,

and bt,s is the Kronecker delta (bt,s = 1 if t = s, and 0 elsewhere). Assume
that one can find a matrix B so that

v(t) = Be(t) + w(t) ,

and where e(t) and w(t) are independent. See Exercise 2.4. Then set

-(t) _ (x(t))x - e(t) ,
_ (W(t))
v(t)= e(t+1) .

Clearly, v(t) will be a white noise sequence. Then it holds that

-(t 1) = (X(t + 1)) = (g(x(t)) + g2(x(t))(Be(t) + w(t)))
x + e(t+1) e(t+1)

/';.
= g(x(t)) +g2(X(t))v(t) ,

y(t) = h(x(t)) + e(t) @li(x(t)) .

In particular, for the linear model

x(t + 1) = Fx(t) + v(t) ,

y(t) = Hx(t) + e(t) ,

one obtains
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x(t + 1) = ( Fx(t) ~(~:(~)+ W(t)) = ( ~ ~) x(t) + v(t) ,

y(t) = Hx(t) + e(t) = (H I)x(t).

D

Remark One may question if it is reasonable to allow the process noise
v(t) and the measurement noise e(t) to be correlated, that is R12 :j:. O. If
v(t) and e(t) really correspond to a model where the states have physical
interpretations, it is likely that v(t) and e(t) are uncorrelated. However, state
space models may also be obtained in other ways. For example, assume that
the second-order AR process

y(t) + aly(t - 1) + a2y(t - 2) =e(t) ,

is to be represented in state space form. There is no unique solution. One
possibility is

x(t + 1) = (-t -;2)x(t) + v(t) ,

y(t) = (1 O)x(t) ,

with R1 = (~2 ~). Note that R2 = 0, R12 0 in this case. Another

possibility is to choose

x(t + 1) = ( =:~ ~)x(t) + v(t) ,

y(t) = (1 O)x(t) + e(t) ,

with

R1 = ,\2 ( ai al~2) ,
ala2 a2

for which apparently R12 :j:. O. D

(3.18)

3.4 Covariance Function and Spectrum

Properties of the covariance function and the spectrum are examined in this
section. In order to make the treatment general, the stochastic processes are
allowed to be complex-valued.

Definition 3.7 Let x(t) be a stationary, zero mean, possibly complex-valued,
stochastic process. Its covariance function is defined as

I r(r)i::Ex(t + T)X'(t) .
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The process has an associated covariance matrix

R(m) =
(

r(O) r(l) ... r(m -1))
r(-I) r(O)

r(-~ + 1) r(O)

(3.19)

o

Remark 1 To emphasize the connection to the process x(t), the notations
rx(T) and Rx(m) will frequently be used. 0

Remark 2 If x(t) instead has a nonzero (constant) mean value m, the co­
variance function is

r(T) ~E [x(t + T) - m][x(t) - m]* . (3.20)

o

(3.21)

Definition 3.8 Let x(t) and y(t) be stationary processes with zero mean.
Then the cross-covariance function is defined as

I',,(T) ~ E x(t +T)Y' (t) .

o

Next, the spectrum of a stationary process is defined.

Definition 3.9 Let x( t) be a (discrete-time) stationary process with covari­
ance function r(T). Then its spectrum is defined as

00

¢(z) ~ L r(n)z-n.
n=-oo

(3.22)

o

Remark The series of (3.22) converges at least in a circle strip R1 < Izi < R2 ,

o< R1 < 1, 1 < R2 < 00. 0

Definition 3.10 The spectrum considered at the unit circle, ¢(eiw
), is called

the spectral density. It is a periodic function of w, and is mostly studied for
Iwl s 7[, 0
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Remark 1 When a discrete-time model is sampled from a continuous-time
model, it is often valuable to emphasize the influence of the sampling interval
h. (In other situations, it is common practice to consider a normalized time
scale and set h = 1.) In such a case, the definition ofthe spectrum is modified
to

00

¢(z) = h L r(nh)z-n
n=-oo

and the spectral density is ¢(eiwh ), Iwl :S 1r/h.

(3.23)

o

Remark 2 Many results for stationary processes do also apply for a wider
class of signals. In a control context it is common to treat the input as a de­
terministic signal and model the effect of various disturbances as a stationary
process with an underlying model of the form

y(t) = G(q)u(t) + v(t)

where G(q) is a transfer function operator describing the input-output rela­
tion, and v(t) is the total disturbance acting on the output.

The concept of quasi-stationary signals is often useful when characterizing
deterministic and stochastic signals jointly. A signal y(t) is said to be quasi­
stationary if the limit

1 N
lim N" y(t +T)y*(t) = R(T)
N~oo L...J

t=l

exists for all T. This is the case for ergodic stochastic processes, where the
right-hand side is precisely the covariance function. For other signals, one
may denote the operation in the left-hand side by

E y(t + T)y*(t)

and maintain the notation of "covariance function". Once a covariance func­
tion is introduced, one can continue to use the concept of spectrum as in
Definition 3.9.

There are quite a number of different types of quasi-stationary signal.
Transient phenomena in dynamic systems is one example. Another is periodic
signals, which leads to covariance functions being periodic too, and to spectra
being composed of a number of weighted delta functions.

As many of the results for stochastic processes described in this book are
based on the representations in terms of covariance function and spectrum,
they can potentially be extended to the wider class of quasi-stationary sig­
nals. Note in this context that by using spectral factorization, see Section
4.3, one can also derive time domain models of the signal itself. 0



3.4 Covariance Function and Spectrum 39

Definition 3.11 The cross-spectrum between two zero mean stationary pro­
cesses x(t) and y(t) is defined as

00

¢Xy(z) = L rxy(n)z-n.
n=-oo

(3.24)

o

It is easy to set up the inverse relation, which for a given spectrum, pro­
duces the covariance function. This is done as follows (f denotes integration
around the unit circle counterclockwise):

00

1 f () m dz 1 f ~ () -n m dz-. ¢zz -=-. ~ rnz z -
2nl z 2nl z

n=-oo

- ~ () 1 f -n+m dz
-~rn- z -

2ni z
n=-oo

00

= L r(n)c5n,m = r(m) .
n=-oo

(3.25)

Definition 3.12 Let x(t) be a stationary stochastic process with covariance
function r(T). The positive real part of the spectrum is defined as

_ 1 00

¢(z) = 2r (O) + L r(n)z-n .
n=l

(3.26)

o

The term "positive real part" will be explained later (see Section 4.6).
Note that ¢(z) has a close connection to the z-transform of {r(n)}~=o' In
fact:

- 1
¢(z) = R(z) - 2r(O) ,

where
00

R(z) = L r(n)z-n = Z( {r(n)})
n=O

(3.27)

(3.28)

is the z-transform of the covariance function (for positive lags).
The connections between model representation, realization, covariance

function and spectral density are illustrated in the following example.
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Example 3.2 Consider an ARMA process

A(q)y(t) = C(q)e(t) .

The coefficients of the A(q) and C(q) polynomials determine the properties
of the process. In particular, the zeros of A(z), which are called the poles,
determine the frequency contents of the process. The closer the poles are lo­
cated towards the unit circle, the slower or more oscillating the process will
be. Figure 3.1 illustrates the connections between the A and C coefficients,
realizations of processes and their second-order moments as expressed by co­
variance function and spectral density. 0

Some useful properties of the covariance function r(7) and the spectrum
are presented in the following two lemmas.

Lemma 3.1 Let x(t) be a stationary process. Its covariance function has the
following properties:

(i) r(7) is generally complex-valued, r(O) has real-valued and positive diag­
onal elements.

(ii) r( -7) = r*(7) . (3.29)
(iii) R(m) is a Hermitian matrix (i.e. R*(m) = R(m)).
(iv) {r(7)} is a nonnegative definite sequence, that is, the matrix R(m) is

nonnegative definite for any m (i.e. w* R(m)w ~ 0 for all w).

Proof It is no restriction to assume that x(t) has zero mean. Part (i) is
obvious. Note that

rii(O) = EXi(t)xi(t) = E IXi(t)12 ~ O.

Part (ii) follows from

r( -7) = E x(t - 7)X*(t) = E x(t)x* (t + 7)

= [E x(t + 7)X*(t)]* = r;(7) .

Part (iii) is immediate from part (ii). Finally, consider part (iv). Introduce
the vectors u and <p(t) as

* (* * *)U = u1 , u2 ... um ,

<p(t) = (x*(t - 1) x*(t - 2) ... x*(t - m))*

where Ul, U2, etc., have the same dimensions as x(t). Then

u'Ru = (ui u; ... u;,,) E ~(t)~'(t) (i)
m m m

= E [L u'kx(t - kmL x*(t - k)Uk] =ElL u'kx(t - k)1 2 ~ 0 .
k=l k=l k=l
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Fig. 3.1. Illustration of some ARMA processes_
Process I: A(q) = q2 - l.5q + 0,8, C(q) = l.
Process II: A(q) = l - l.Oq + 0.3, C(q) = l.
Process III: A(q) = l - 0.5q + 0.8, C(q) = l.
Process IV: A(q) = l- l.Oq + 0.8, C(q) = l- 0.5q + 0.9.
First four plots show realizations of processes I-IV. Last two plots show covari­
ance functions and spectral densities: Processes I (solid lines), II (dashed lines), III
(dotted lines), IV (dash-dotted lines)

Since this holds for arbitrary vectors u and arbitrary m, it can be seen that
part (iv) holds. •
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Remark. Note that R has a (block) Toeplitz structure. Recall also that a
Hermitian matrix (defined by the requirement R = R*) can be diagonalized
as

R =UDU*,

where U is a unitary matrix (U*U = I) with the columns being the eigenvec­
tors of R, and D is a real-valued diagonal matrix containing the eigenvalues.
As R is nonnegative definite, all eigenvalues are positive (~ 0). 0

Lemma 3.2 The spectrum ¢(z) of a stationary process satisfies the following
relations:

(i) ¢* (z) = ¢(z-*) . (3.30)

(ii) The spectral density matrix ¢(eiw ) is nonnegative definite.
(iii) The diagonal elements of ¢(eiw ) are real-valued and positive.
(iv) In the scalar case ¢(eiw ) is, in general, not symmetric. If the real and

imaginary parts of x(t) are uncorrelated, then ¢(eiw ) is symmetric in
the sense that

(3.31)

Proof To prove part (i), note that

¢*(z) = :L r*(n)(z-n)* = :L r(-n)(z-*t
n n

(3.32)

n

To prove part (ii), assume, for simplicity, that the covariance function
decays exponentially with Ikl as

II r(k) II::; Ca lkl , for 0 < a < 1 .

Let u be an arbitrary vector and set z =eiw . By Lemma 3.1, part (iv), it
follows that, N being arbitrary:

1
0::; N (u* u*z ... u*zN-l )

X ( :r~1) ~~~l r(N - 1)) ( u:-1 )

r( -N + 1) r(O) uz-(N-l)

1 N

= N [Nu*r(O)u + 2)N -Ikl)[u*r(k)uz-k + u*r( -k)uzk]]
k=l

N 1 N
=u*( :L r(k)z-k)u - N :L Iklu*r(k)uz- k .

k=-N k=-N
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The second term in (3.32) can asymptotically be neglected as

1 N 1 N

I N L Iklu*r(k)uz-kl ~ N II U 11
2 L IklCa1kl

k=-N k=-N

2C N
= Ii II U 11

2 L kak -+ 0 as N-+ 00 .

k=l

By letting N tend to infinity in (3.32):
00

o~ u*( L r(k)z-k)u = u*cP(z)u ,
k=-oo

which proves part (ii). Part (iii) follows directly from part (ii).
Finally, consider part (iv). Write the process as w(t) = x(t) + iy(t) and

let x(t) and y(t) be independent real-valued processes. Then

rw(T) = E [x(t + T) + iy(t + T)][X(t) - iy(t)]

=[rx(T) + ry(T)] + i[-rxy(T) + ryx(T)]

=rx(T) + ry(T) .

Hence cPw(w) = cPx(w) + cPy(w). However, for a real-valued process, such as
x(t), rx(T) is real-valued and

00 00

cPx(e- iw
) = L rx(n) einw = L rx(-n) einw

n=-oo n=-oo

00

= L rx(n) e- inw = cPx(eiw
) ,

n=-oo

from which the statement follows. •
Remark It is a consequence of part (i) that the spectral density matrix
cP(eiw ) is Hermitian. 0

Corollary Let x(t) and y(t) be stationary processes with zero mean. Then

cP:y(z) = cPyx(z-*)

holds.

Proof Set

w(t) = (:~~n
This implies that

cP (z) - (cPx(z) cPxy(z))
w - cPyx(z) cPy(z)

(3.33)
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Now use the relation in (3.30) to see that

,J.,* (z) = (4);(z) 4>;x(z))
'l'w 4>;y(z) 4>;(z) ,

,J., (z-*) = (4)x(z-*) 4>xy(z-*))
'l'w 4>yx(z-*) 4>y(z-*)

Equating the lower left blocks gives the desired equality.

The next lemma establishes a relation between 4>(z) and 4>(z).

Lemma 3.3

holds.

Proof By Definitions 3.9 and 3.12, and (3.29):

_ 1 -1

4>(z) = 4>(z) + 2r (0) + L r(n)z-n
n=-oo

1 00

=4>(z) + 2r *(0) + L r*(n)zn
n=l

~ 1>(.) + [~r(o) +~ r(n)(.-,)-n] ' ~ 1>(.) +1>'(.-') .

Corollary

4>(eiw
) = 4>(eiw

) + 4>* (eiw
) ,

and in the scalar case

4>(eiw
) = 2Re 4>(eiw

)

hold.

Proof Immediate by the substitution z -t eiw .

•

(3.34)

•
(3.35)

(3.36)

•
A specific feature of complex-valued processes is that the spectral density

is no longer symmetric; see Lemma 3.2, part (iv). This is illustrated in the
following example.

Example 3.3 Let e(t) be a scalar, complex-valued white noise satisfying

E e(t)e*(s) =8t ,8 ,

and set
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x(t) =e(t) + ipe(t - 1) ,

ip = a + ib being a complex constant. One easily obtains

rx(O) = E x(t)x*(t) = 1 + ip<p = 1 + lipl2,

r x(1) = E x(t + l)x*(t) = ip ,

r x(-I) = Ex(t)x*(t + 1) = <p,

rx(T) =0, ITI>I,

and hence

¢x(eiw ) = [1 + ip<p + ipe- iw + <peiw ]

= [1 + lipl2 + 2 Re(ipe- iw )]

= (1 + ipe- iW )(1 + <peiw ) = 11 + ipe- iw j2 ,

which illustrates that ¢(eiw ) is real-valued and positive. Further,

¢x(eiw ) = 1 + a2 + b2 + (a + ib) e- iw + (a - ib) eiw

= 1 + a2 + b2 + 2acosw + 2bsinw .

The spectral density is not symmetric unless b = 0, which corresponds to ip
being real-valued. 0

The next lemma gives a relation between the extrema of the spectral
density ¢(eiw ) and the covariance matrix R(m), (3.19).

Lemma 3.4 The maximal and minimal eigenvalues of R(m) satisfy

Amax(R(m + 1)) 2: Amax(R(m)) , (3.37)

Amin(R(m + 1)) S; Amin(R(m)) , (3.38)

. u*¢(eiw)u iw
hm Amax(R(m)) 2: sup sup * = sup Amax[¢(e )], (3.39)

m-too w U U U w

lim Amin(R(m)) S; infinf u*¢(eiw)u = inf Amin[¢(eiw )] . (3.40)
m-too w u u*u w

Proof The maximal eigenvalue, Amax(R(m)), satisfies

\ (R( 1)) _ x* R(m + l)x v* R(m + l)v
"'max m + - sup > ,

x x*x - v*v

Consider, in particular, vectors v of the form

v = (~)
Then

for any v .

(v* O)R(m + 1) (~)
Amax(R(m + 1)) 2: -----,---,----''-'­

v*v
v* R(m)v

v*v
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As this relation holds for any V, one can conclude that

v* R(m)v
Amax(R(m + 1)) ~ sup _ _ = Amax(R(m)) .

v v*v

The relation (3.38) is proved analogously.
Consider next a vector of the form

x* = (u* u*z ... u*zm-l) ,

where z = eiw . Then

Amax(R(m)) ~ x*R(m)x
x*x
1 m

= -- " (m -Ikl)u*r(k)uz-k
mu*u L...J

k=-m
1 m 1 m

= -u*{ " r(k)z-k}u - -- " Iklu*r(k)uz-k .
u*u L...J mu*u L...Jk=-m k=-m

Now let m tend to infinity. The last sum will tend to zero, just as in the
proof of Lemma 3.2. Thus

1 .
lim Amax(R(m)) ~ -u*¢(e1W)u .

m-H'O u*u

As this inequality holds for any u and w, the inequality part of (3.39) follows.
Then the equality follows, as for a general Hermitian matrix A

x*Ax
sup -- = Amax(A)
x;fO x*x

where the right-hand side denotes the maximum eigenvalue of A. The rela­
tions in (3.40) are proved by similar arguments. •

Remark Under weak stationarity assumptions, the inequalities in (3.39) and
(3.40) can be replaced by equalities. It is, for example, sufficient to let x(t)
be filtered white noise. 0

3.5 Bispectrum

The bispectrum is a special case of higher-order spectra that generalizes the
usual second-order spectrum. The bispectrum is the simplest form of higher­
order spectra. Such spectra are useful tools for the following:

• extracting information due to deviations from a Gaussian distribution,
• estimating the phase of a non-Gaussian process,
• detecting and characterizing nonlinear mechanisms in time series.
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It should be mentioned that bispectra are useful only for signals that do not
have a pdf that is symmetric around its mean value. For signals with such a
symmetry, spectra of higher order (such as fourth order) are needed.

In order to simplify the development here, it is generally assumed that
signals have zero mean. This can also be stated as that only deviations of the
signals from an operating point (given by the mean values) are considered.

Let x(t) be a scalar stationary, real-valued process. Define its third-order
moment sequence, R(m, n), as

R(m, n) = E x(t)x(t + m)x(t + n) ,

and its bispectrum as
00 00

B(Zl,Z2) = L L R(m,n)zlm z2n.

m=-oo n=-oo

(3.41)

(3.42)

The third-order moment sequence satisfies a number of symmetry relations.

Lemma 3.5 For a stationary process

R(m,n) = R(n,m)

=R(-n,m - n)

=R(n - m,-m)

=R(m-n,-n)

=R(-m,n - m)

holds.

Proof The equalities are easy to verify. In fact:

R(n, m) = E x(t)x(t + n)x(t + m) = R(m, n) .
R(-n, m - n) = E x(t)x(t - n)x(t + m - n)

= E x(t +n)x(t)x(t + m) = R(m, n) .
R(n - m, -m) = E x(t)x(t + n - m)x(t - m)

= E x(t + m)x(t + n)x(t) = R(m, n) .
R(m - n, -n) = E x(t)x(t + m - n)x(t - n)

= E x(t +n)x(t + m)x(t) = R(m, n) .
R( -m, n - m) = E x(t)x(t - m)x(t + n - m)

= E xU + m)x(t)x(t + n) = R(m, n) .

(3.43)

•

Similarly, the bispectrum satisfies a number of symmetry relations and
properties.

Lemma 3.6 For a stationary process

(i) B(eiW1
, eiW2

) is in general complex-valued. (3.44)
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(ii)

B(ei(Wl +2n) ,ei(W2+2n)) = B(ei(Wl+2n) , eiW2)

=B(eiWl,ei(W2+2n)) = B(eiwl,eiw2). (3.45)

(iii)

(3.46)

hold.

Proof Property (i) is trivial. Property (ii) is immediate from the definition
in (3.42). It follows that

B(Z2' Zl) = I:m I:nR(m, n)z2mzl n

= I:m I:n R(n, m)zlnz2m = B(Zl' Z2) .
B*(zi, zi) = (I:mI:nR(m, n)z;-mz;-n)*

= I:m I:n R(m, n)zlmz2n = B(Zl' Z2) .
B(zll Z2l,Z2) = I:m I:n R(m, n)(zllz2l)-mz2n

= I:m I:nR(-m, n - m)(zrz;(n-m))
= I:k I:l R(k, £) zl kz2l = B(Zl' Z2) .

B(zl
l z2 l ,zd = I:mI:nR(m,n)(zllz2l)-mzln

= I:m I:nR(n - m, -m)zr-nzf
= Lk Li R(k, £)z-;kZ2i = B(Zl' Z2) . •

3.A Appendix. Linear Complex-Valued Signals and
Systems

3.A.l Complex-Valued Model of a Narrow-Band Signal

A simple mathematical treatment may be as follows. Let the narrow-band signal
be described as

s(t) = A(t)cos(wct + rp(t)) . (3.47)

(3.48)

Here the amplitude A(t) and the phase rp(t) are slowly time-varying. The signal
can then also be described by a complex-valued representation as

s(t) = Re[s(t)] ,
s(t) = A(t) ei(wct+'I'(t» .

The amplitude A(t) and the phase rp(t) are easy to find in this representation.
Next, consider a time-delayed version of the signal. Assume that for the delay

r, the amplitude and phase remain unchanged (A(t) = A(t - r), rp(t) = rp(t - r)).
Then
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s(t - T) = s(t)e- iWCT
•

In particular, specialize to a delay of 90 degrees phase shift, that is T = nj(2we),
to obtain

s(t - nj2we) = A(t) sin(wet + rp(t))

and hence the following connection between the real-valued and the complex-valued
representation of narrow-band signals:

s(t) = s(t) + is(t - nj2we) (3.49)

has been established.
The construction of s(t) from discrete-time measurements is called quadrature

sampling. The component s(t) = Re[s(t)] is called the in-phase component, and
Im[s(t)] = s(t - nj(2we)) is the quadrature component.

3.A.2 Linear Complex-Valued Systems

Most properties of linear systems continue to hold without change in the complex­
valued case. The following standard representations:

state space form

x(t + 1) = Fx(t) + Gu(t) ,
y(t) = Hx(t) + Du(t) ,

transfer function operator

y(t) = H(q)u(t) = ~~:~ u(t) ,

weighting function
00

y(t) = L hkU(t - k) ,
k=O

(3.50)

(3.51)

(3.52)

can, for example, all be used. Note that these representations (the matrices
F, G, H, D, the polynomial coefficients of A(q) and B(q), or the weighting function
coefficients {hk}) are now generally complex-valued. The usual relations between
them apply, such as

H(q) = H(qI - F)-IG + D = H(I - Fq-I)-IGq-l + D,
00

H(q) = Lhkq-k,
k=O

h(k) = HFk-lG , k > 0; h(O) = D .

Further, the usual canonical forms of state space realizations apply, and can be
used for transforming transfer function operators into state space forms.

Poles and zeros are defined in the usual way as the poles and zeros of the
analytical function H(z). More specifically, the poles are the solutions of A(z) = 0,
and the zeros solve B(z) = O. The poles can also be found as the eigenvalues of F.

Stability (or, in a strict sense, asymptotic stability) is defined in the usual
way. The system is said to be asymptotically stable if, for zero input, the output
converges to zero for arbitrary initial values. The system will be asymptotically
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Fig. 3.2. The behaviour of x(t), x(t + 1) = fx(t), f = 0.ge4i
, x(O) = 1.

(a) Re(x(t)), (b) Im(x(t», (c) Ix(t)l, (d) Re(x(t» versus Im(x(t))

stable if and only if all poles lie strictly inside the unit circle. In such a case, the
weighting function coefficients {hk} will decay exponentially to zero.

A system with all zeros inside the unit circle is called minimum-phase. Minimum­
phase models will playa key role in many places; see Sections 4.3 and 7.2.

One difference from the real-valued case is that it is no longer necessary that
the poles appear in complex conjugate pairs. As a matter of fact, oscillatory modes
can be obtained with a single pole (in contrast to the real-valued case, where two
poles are required), as illustrated in the following example.

Example 3.4 Consider a first-order system

x(t + 1) = fx(t) , x(O) = XQ .

In Figures 3.2 and 3.3, the behaviour of x(t) for f = 0.9 e4i and f = 0.9 e- 4i
, XQ = 1

is shown. 0
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3.B Appendix. Markov Chains

In this appendix, Markov chains are introduced and briefly analyzed. Such a process
attains only discrete values and satisfies the Markov property in (3.12). Let the
possible states of the chain be denoted by {Sk}. The Markov property then reads

P(x(t) = xtlx(t - 1) = Xt-I,··. x(O) = xo)

=P(x(t) = xtlx(t - 1) = Xt-I). (3.53)

In loose terms, only the most recent value of the state (Le. x( t - 1)) is of importance
for the future behaviour of the process.

Introduce the probabilities

pi(t) = P(x(t) in Si) ,

and the transition probabilities (which are assumed not to depend on t)

Pij = P(x(t + 1) in Sjlx(t) in Si).

(3.54)

(3.55)

Using vector and matrix notation:

p(t) = (pi(t)), P = (pij) ,

where P will be called the transition matrix, Bayes' rule gives
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pj(t + 1) = P(X(t + 1) in Sj)

= L P(x(t + 1) in Sjlx(t) in Si)P(X(t) in Si)

or, in compact form:

p(t + 1) = p(t)P . (3.56)

Transitions over a larger interval can be obtained by iteration of (3.56). Apparently,
one can make the interpretation

(pk)ij = P(x(t + k) in Sj Ix(t) in Sd .

In what follows, assume that x(t) is a regular Markov chain, in that it has a
stationary distribution

p = lim p(t) = lim p(O)pt
. (3.57)

t--+oo t----too

Note from (3.56) that such a distribution can be obtained as a left eigenvector to
P associated with an eigenvalue A= 1:

p=pP.

It is, further, easy to see that P always has an eigenvalue A= 1. Set

e = (1. .. If .
Then

(Pe)i = LPijej = LPij
j j

= LP(x(t+ 1) in Sjlx(t) in Si)
j

= 1.

(3.58)

(3.59)

As the elements of P are probabilities, and the elements of each row sum to 1, it is
shown next that P cannot have any eigenvalue with magnitude larger than 1. The

relation Px = AX, with max IXil ~ m, implies that

IAlm = maxl(Ax)il = maxl(Px)il
i i

= maxi LPijXjl
t

j

::; max LPijm
t

j

=m,

and hence that IAI ::; 1.
Next, assume that all eigenvalues except A= 1 lie strictly inside the unit circle,

which will guarantee the existence of the limiting distribution in (3.57).
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Example 3.5 Consider a binary Markov chain with

(
I-a a )

P = /3 1 - /3 ' 0::; a ::; 1, 0::; /3 ::; 1 .

The eigenvalues are easily found to be Al = 1 and A2 = 1 - a - /3. The only cases
when A2 will be located on the unit circle are the following.

I: a = /3 = O. Then P = I and p(t) = p(O). A stationary distribution exists, but
it depends on the initial distribution.

II: a = /3 = 1. Then P = (~ ~) and no stationary distribution exists. The pro-

cess will (for sure) jump between the two states at every time step. 0

In what follows, the mean value and the covariance function for a stationary
Markov chain will be derived. Assume that the effect of the initial distribution has
decayed and can be neglected. For this purpose, it will be convenient to introduce

(

81 0 )
S - .- .

o 8 n

(3.60)

where 8i is the value assigned to x(t) when it is in stage Si. Further, make an
eigendecomposition of P as

PU= UA.

As it is known that e is an eigenvector with associated eigenvalue A
possible to write (3.61) in partitioned form as

P(e U2) = (e U2) 0~) ,

(3.61 )

1, it is

(3.62)

where the matrix F has all eigenvalues strictly inside the unit circle. (If the eigen­
values are distinct, F can be chosen diagonal; otherwise it can be chosen in Jordan
canonical form.) P has, similarly, a set of left eigenvectors

(3.63)

Note that the first row of (3.63) is nothing other than (3.58). The eigenvectors are
assumed to be normalized in such a way that

(3.64)

It is easy to obtain the (stationary) mean

m = E x(t) = L 8i P (X(t) = 8i)

= pSe. (3.65)

Let k be a nonnegative integer. The covariance function of x(t) can be found as
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(3.67)

o
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~ 2r(k) = E X(t + k)x(t) - m

= L L SiSjP(X(t + k) = Si,X(t) = Sj) - m 2

= L L SiSjP(X(t + k) = sdx(t) = Sj )P(X(t) = Sj) - m
2

= L LPjSj(pk)jiSi - m 2

j

= pSpkSe _ m 2 •

Using the eigendecomposition of (3.61) results in

p k = (UAV)k = UAkV

=(e U2)G;k ) (C2) ,
which gives, with (3.66),

r(k) = pS(e U2) (~ ;k) ( C2) Se - m
2

= (pSe)2 + pSU2 p kV2Se - m 2

= (PSU2)pk(V2Se) . (3.68)

The square matrix P has dimension n - 1. Now compare the expression in (3.68)
with (4.21). It can be seen that

the covariance function of the Markov chain will have the same form as that of a
linear dynamic system of order n - 1. The associated spectrum is thus a rational
junction, just as is the spectrum of an ARMA process.

Example 3.6 Reconsider the binary Markov chain of Example 3.4 and assume that
o< a + (3 < 1. The eigendecomposition of (3.61) turns out to be

P=I-a-(3,

U = (i ~(3) ,

V = (~ ~1 ) a: (3 .

One obtains from (3.65)

1
m = --(3 «(3S1 + aS2) ,a+

and from (3.68)

k a(3 2
r(k) = (1 - a - (3) (a + (3)2 (S1 - S2), k ~ 0 .

The associated spectrum can be found directly from Example 4.1:

r(O)(1 - p 2
)

¢>(z) = (z _ P)(z-, - P) .
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Exercises

Exercise 3.1 Consider a system given by

q + 0.5 q + 0.7
y(t) = 2 _ 1 5 0 7u(t) + ---=--08c(t) ,q . q + . q.

where c(t) is white noise of zero mean and unit variance. Convert it into an
ARMAX model. Also represent it in a state space model of the form

x(t + 1) = Fx(t) + Gu(t) + v(t) ,

y(t) = Hx(t) + Du(t) + e(t) ,

where v(t) and e(t) are white noise sequences with zero mean and covariance
matrices

E (v(t)) (vT(t) eT(t)) = (Rl R12) .
e(t) R21 R2

Give R1, R12 and R2. Can the system be represented in such a state space
form with R12 = O?

Exercise 3.2 Consider a real-valued moving average process

y(t) = e(t) + cle(t -1) + ... + cne(t - n), Ee(t) = 0, Ee2(t) =.\2.

Show that the covariance function r(T) of y(t) satisfies

r(O) = .\2(1 + ci + ... + c~) ,

r(T) = .\2(Cr + CICr+l + ... Cn-rCn) , T = 1, ... ,n - 1 ,

r(n) = .\2cn ,

r(T) = 0 , T > n ,
r( -T) = r(T) .

Exercise 3.3 Examine the bounds in (3.37), (3.38), (3.39) and (3.40) by
some numerical examples. Are the bounds crude or sharp?

Exercise 3.4 Consider the system

x(t + 1) = Fx(t) + v(t) ,

y(t) = Hx(t) + e(t) ,

where v(t) and e(t) are jointly Gaussian white noise sequences with zero mean
and covariance matrices

Ev(t)vT(t) = R1 ,

E v(t)eT(t) = R12 ,

Ee(t)eT(t) = R2 ·

The initial value x(to) is assumed to be Gaussian distributed, x(to) ,....,
N(mo, Ro), and independent of the noise sources.
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(a) Derive the conditional pdfs p(x(t + l)lx(t)) and p(x(t + l)lx(t),y(t)).
When do they coincide?

Hint. If A, D and the matrix below are invertible:

(~~) -1 = (A;1~) + (-A;1B) (D-CA-1B)-1
x(-CA- 1 I).

holds.
(b) In case the two conditional pdfs differ, show that one can use

x(t) = (~m)
as a state vector. Show that it satisfies

x(t + 1) = Fx(t) + v(t)

with v(t) white noise, and give explicit expressions for F and R1

E v(t)vT(t).

Exercise 3.5 Consider the following simplified model of amplitude modula­
tion:

x(t) = a(t) sin(wot + cp) ,

where a(t) is a stationary stochastic process with zero mean, covariance func­
tion TaCT) and spectrum <Pa(z), and cp is a random variable that is uniformly
distributed over [0,27£] and independent of a(t).

Show that x(t) is a stationary stochastic process with covariance function

1
Tx(T) = 2'Ta(T)COSWOT,

and spectrum

1 ·1·
<Px(z) = 4<Pa(ze- 1WO ) + 4<pa(ze1WO ) .

Remark The spectral density of x(t) thus satisfies

<px(eiw ) = ~<pa(ei(W-WO)) + ~<pa(ei(W+WO)) .

If a(t) has a lowpass character (i.e. <pa(eiw ) has most of its energy around
W = 0), x(t) will therefore have a bandpass character (¢>x(eiw ) most of its
energy around W = ±wo).
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w

1

<px(eiW )

1-
-Wo W o

w

0

Exercise 3.6 Examine various "symmetries" of the third-order moment se­
quence and the bispectrum.

(a) Show that if a third order moment sequence is known in any of the six
sectors below, it can easily be determined for all arguments:

n

2
3

1
m

4

5

6

(b) Show that if the bispectrum is known in any of the 12 sectors below, then
it can easily be determined for all arguments:
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12

The bispectrum can be considered for arguments Zk = eiWk
, k = 1,2.

This is sufficient since B(Zl,Z2) is analytic. Note that the angles of the
sectors are not 22.5 degrees.
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4. Analysis

4.1 Introduction

In this chapter stochastic models are analyzed in various ways. The following
issues will be treated.

• Linear filtering and its effect on the spectrum. Complex-valued signals will
be allowed (Section 4.2).

• Spectral factorization (Section 4.3), permitting complex-valued signals.
• A review of linear continuous-time models and their properties (Section

4.4), and sampling of such models (Section 4.5).
• Some aspects on the positive real part of the spectrum (Section 4.6).
• Properties of the bispectrum when stochastic signals are filtered (Section

4.7).
• Algorithms for covariance calculations based on finite-order models (Sec­

tion 4.8).

4.2 Linear Filtering

In this section we examine how linear filtering influences spectral densities.
The cases of transfer function models and state space models are treated in
separate subsections.

4.2.1 Transfer Function Models

For transfer function models, the following result holds.

Lemma 4.1 Let u(t) be a stationary process with mean mu and covariance
function r u(T) and spectrum <Pu (z). Let

00

y(t) = G(q)u(t) = L gkU(t - k) ,
k=O

where G(q) is an asymptotically stable filter.

(4.1)

T. Söderström, Discrete-time Stochastic System
© Springer-Verlag London 2002
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Then y(t) is a stationary process with mean my = G(l)mu and spectra

(4.2)

(4.3)

Proof Applying the expectation operator to both sides of (4.1), one obtains
directly

00 00

Ey(t) = E LgkU(t - k) = Lgkmu =G(l)mu .
k=O k=O

Next introduce the deviations y(t), u(t) from the mean values as

y(t) = y(t) - my , u(t) = u(t) - mu .

It is easy to see that
00 00

y(t) = L gdu(t - k) + muj- my = L gkU(t - k) .
k=O k=O

Hence u(t) propagates to y(t) in the same way as u(t) to y(t). Therefore, one
can assume, when coping with the covariance functions, that the signals have
zero mean. (Alternatively, it may be said that the notation - is dropped in
the following part of the proof.) By direct calculation:

00 00

ry(t + r , t) = E y(t + r)y* (t) = E [L gkU(t + r - k)][L glU(t - £)j*
k=O l=O

00 00

=LLgkEu(t+r-k)u*(t-£)ge
k=Ol=O

=L LgkrU(r - k + £)ge .
k l

As this expression does not depend on t, it is concluded that y(t) is a sta­
tionary stochastic process. Now proceed to derive the spectrum of y(t):

00

n=-oo
00 00 00

= L LLgkru(n-k+£)gez-(n-kH)z-kzl
n=-oo k=O l=O

00 00 00

=[Lgkz-kj[ L ru(m)z-mj[Lgez1j
k=O m=-oo l=O



4.2 Linear Filtering 61

which is (4.2). Similarly, for the cross-covariance function and the cross­
spectrum:

00

ryu(r) = E y(t + r)u*(t) = E [L gkU(t + r - k)]u*(t)
k=O

00

=LgkrU(r - k) ,
k=O

00 00

¢yu(z) = L L gkru(n - k)z-(n-k) z-k
n=-oo k=O

00 00

=[L gkz-k][ L ru(m)z-m] = G(z)¢u(z) .
k=O m=-oo

•
The following corollary is a form of Parseval's relation. By specializing

the matrix case to various elements several special cases can be derived.

Corollary Assume that u(t) is an uncorrelated sequence with covariance
matrix E u(t)u*(t) = A. Then

00 1 f dE y(t)y*(t) = L gkAgk = -2' G(z)AG*(z)~ ,
nl z

k=O

where the integration is counterclockwise around the unit circle.

Proof When u(t) is an uncorrelated sequence

(4.4)

00 00 00

Ey(t)y*(t) = ry(O) = LLgkALkH,Og; = LgkAgk
k=Of=O k=O

1 f dz 1 f * dz= -. ¢ (z)- = -. G(z)AG (z)-
2nl y z 2nl z

holds. In the last equation, (4.2) and the fact that z-* = z on the unit circle
have been used. •

4.2.2 State Space Models

Next turn to the analysis of state space models.

Lemma 4.2 Consider the system

x(t + 1) = Fx(t) + v(t) ,
y(t) = Hx(t) + e(t) ,

(4.5)
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where v(t) and e(t) are complex-valued uncorrelated sequences with zero mean
and

(
v(t)) * * (Rl R12)E e(t) (v (s) e (s)) = R21 R2 8t ,s· (4.6)

Let the initial value x(to) be a random vector with mean mo and covariance
matrix Ro, and be independent of v(t) and e(t) for all t ~ to. Then the mean,
mx(t), and the covariance function, Rx(t, s), of the state vector satisfy

Im.(t + 1) = Fm.(t) = F'+>-'"mo , (4.7)

IR,,(t + T, t) ~ r P(t) , T '" 0, (4.8)

IP(t +I) = FP(t)F' + R, , P(t,,) = R" . (4.9)

Proof Equation (4.7) is immediate from (4.5). Set P(t) = Rx(t, t)
= E [x(t) - mx(t)][x(t) - mx(t)]* and let T > o. Then by straightforward
calculation:

Rx(t + T ,t) = E [x(t + T) - mx(t + T)][X(t) - mx(t)]*

= E [Fx(t + T - 1) + v(t + T - 1) - Fmx(t + T - 1)]

x [x(t) - mx(t)]*

=FRx(t + T - 1, t) .

Equation (4.8) is obtained by iteration. In order to obtain (4.9), proceed as
follows (note that, by construction, x(t) is uncorrelated with v(s) for t ~ s):

P(t + 1) = E [x(t + 1) - mx(t + l)][x(t + 1) - mx(t + 1)]*
= E [Fx(t) + v(t) - Fmx(t)][Fx(t) + v(t) - Fmx(t)]*
= E F[x(t) - mx(t)][x(t) - mx(t)]* F* + E v(t)v(t)*
=FP(t)F* + R1 . •

Remark 1 Equation (4.9) is called a Lyapunov equation. The matrix P(t) is
apparently precisely the covariance matrix of the state vector x(t):

P(t) = cov[x(t)] = E [x(t) - mx(t)][x(t) - mx(t)]* . (4.10)

o
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Remark 2 If the system contains a deterministic input and reads

x(t + 1) = Fx(t) + Gu(t) + v(t) ,
y(t) = Hx(t) + e(t) ,

instead of (4.5), the mean value mx(t) is modified to

mx(t + 1) = Fmx(t) +Gu(t) ,
mx(to) = mo ,

and the covariance properties are not changed.

(4.11)

(4.12)

o

Remark 3 The results extend easily to time-varying systems. In principle, F
and H and the covariance matrices are used with the current time index in­
stead of being treated as time-invariant factors. To be more specific, consider
the system

x(t + 1) = F(t)x(t) + v(t) , (4.13)
y(t) = H(t)x(t) + e(t) ,

(
V(t))(* *)) (Rl(t) R12(t))E e(t) v (s) e (s = R21 (t) R2(t) Ot,s. (4.14)

Then, (4.7)-(4.9) are modified to (use the convention n~:~ F(s) = 1)
t

mx(t + 1) = F(t)mx(t) = II F(s)mo , (4.15)
s=to

Rx(t + 7, t) = F(t + 7 - l)Rx(t + 7 - 1, t) (4.16)

P(t + 1) = F(t)P(t)F*(t) + R1(t) ,

t+r-l

= II F(s)P(t) ,
s=t

7 ~ 0,

P(to) = Ro .

(4.17)

(4.18)

In what follows, it is mostly assumed that the system is time-invariant. Sev­
eral results for optimal estimation and control can also be easily extended to
the time-varying case, though. 0

Corollary 1 The output mean and covariance functions satisfy

Imy(t) = Hm.(t) ,

I Ry(t, t) =HP(t)H' + R, ,

(4.19)

(4.20)

Ry(t + 7, t) = HFr-1[FP(t)H* + Ru] , 7> o. (4.21)
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Proof Equation (4.19) is immediate. So is (4.20), as

y(t) - my(t) = H[x(t) - mx(t)] + e(t) .

Let r > O. Then (recall that y(t) is uncorrelated with v(s) and e(s), t < s)

Ry(t + r ,t) = E [y(t + r) - my(t + r)][y(t) - my(t)]*

= E [H{x(t + r) - mx(t + rn + e(t + r)][y(t) - my(t)]*

=HE [P{x(t + r - 1) - mx(t + r - In + v(t + r - 1)]

x [y(t) - my(t)]*

= HPE [x(t + r -1) - mx(t + r - l)][y(t) - my(t)]*

= ... = HpT
-

1E [P{x(t) - mx(tn + v(t)][y(t) - my(t)]*

=HpT
-

1E [P{x(t) - mx(t)}{H[x(t) - mx(t)]}*

+v(t)e(t)*]

=HpT
-

1[PP(t)H* + R12 ] ,

which is (4.21). •

(4.23)

Corollary 2 Assume, further, that the system is asymptotically stable. Then:

(i) The solution P(t) to (4.9) converges to a solution of the Lyapunov equa­
tion

I P ~ FPF' + R, , (4.22)

as t-to-t 00. The Lyapunov equation has a unique solution (for P having
all eigenvalues strictly inside the unit circle). The solution is Hermitian
and nonnegative definite.

(ii) The processes x(t) and y(t) are asymptotically stationary (as t-to-t 00).

Proof By straightforward iteration of (4.9):

t-1
P(t) = pt-to RoF*(t-to) + L p t- 1- sR1P*(t-1-s)

s=to
t-to-1

=pt-to Rop*(t-to) + L pj R1P*j .
j=O

When the matrix P has all eigenvalues strictly inside the unit circle, the
above expression will converge, as t - to-t 00, to

00

P = LPjR1P*j ,
j=O

which satisfies (4.22) by inspection.

(4.24)
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The sum in (4.24) is convergent, which can be seen as follows. Assume first
that F is diagonalizable, and write F = SDS- I

, where the diagonal matrix
D contains the eigenvalues Aj, j = 1, ... , n. Then each matrix element of
(4.24) will consist of sums

n 00

L L AtA~jCIt,1I .
1t,1I==1 j==O

Such sums are convergent as all eigenvalues of F lie strictly inside the unit
circle for an asymptotically stable system. In the case there are multiple
eigenvalues, the sums will rather take the form

00

L LPIt,II(j)A~A~j
It,ll j==O

where PIt,1I (j) is a polynomial, whose degree corresponds to the multiplicity
of the repeated eigenvalue. The conclusion about convergence of the sum
remains.

In order to show uniqueness of the solution, assume that Hand P2 are
solutions to (4.22) and set X = PI - P2 . It is then easy to derive the
equality X = F X F*. By successive iterations, one obtains X = FkX F*k
for any positive k. Considering the limiting case in particular gives X =
limk-+oo Fk X F*k = 0, which completes the proof of uniqueness.

From part (i) it follows easily that asymptotically (as t - to-7 00) P(t)
can be replaced by P and that mx(t) and my(t) both tend to zero. Hence
the covariance functions depend only on the difference between the time ar­
guments, and the processes are stationary. •

Remark In the stationary case, the spectrum of y(t) becomes

1>y(z) = H(zI - F)-I RI (z-*1- F)-* H* + R2

+H(zI - F)-l R I2 + R2dz-*1- F)-* H* . (4.25)

This can be proved by applying the definition of the spectrum to equations
(4.19)-(4.21) for the covariance function. It can be derived more conveniently
from (4.2) and (4.5). Set

u(t) = (~~~j)
Then

y(t) = [H(qI - F)-l I]u(t)

holds. By the identification

G(q) = [H(qI - F)-l I],

1>u(z) = Ru = (~11 ~22) ,
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and (4.2), (4.25) follows easily.

The results are illustrated by three examples.

Example 4.1 Consider the first-order real-valued process

o

x(t + 1) = ax(t) + v(t) , (4.26)

observed from t = -00. It is then stationary. Its variance P is the unique
solution to the Lyapunov equation

P = a2 P + A2
,

giving P = A2 /(1 - a2 ). Note that this is consistent with (4.24). The covari­
ance function is, according to (4.21):

A2
rx(-r) = aT P = aT__ , 7 ~ 0, (4.27)

1- a2

and the spectrum

A2

¢x (z) = ( )(-1 ).z-a z -a
(4.28)

As a further illustration, note that expression in (4.28) for the spectrum
follows directly by applying Lemma 4.1 to the model of (4.26). One may then
apply (3.25) and residue calculus to find the covariance function. Let 7 ~ O.
Then

1 f dzr(7) = -2' ¢(Z)ZT-
7t1 Z

1 f A
2

T dz
= 27ti (z - a)(z-1 _ a) z ~

1 f A
2

Z
T

= 27ti (z - a)(l _ az) dz

A2aT

- 1- a2 •

In the above calculations f denotes integration counterclockwise around the
unit circle. The result is in full agreement with (4.27). The last equality fol­
lows as the pole z = a is within the unit circle, whereas the other pole z = l/a
is not. 0

Example 4.2 Consider the first-order ARMA process

y(t) + ay(t - 1) = e(t) + ce(t - 1) , lal < 1,

where e(t) is white noise of zero mean and variance A2 • The stationary vari­
ance of y(t) is sought. This variance can be calculated in many ways. Here
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it is chosen to derive it through a state space formalism. First, represent the
system as

x(t + 1) = ( ~a ~) x(t) + (~) v(t) ,

y(t) = (1 O)x(t).

In this case, v(t) = e(t + 1), again white noise of zero mean and variance ,\2.

The "relabelling" of the time index in the noise sequence will not change its
statistical properties. The steady state covariance matrix P can be found by
solving the Lyapunov equation of (4.22). Set

P = (Pll P12) ,
P12 P22

which gives

(
Pll P12) = (-a 1) (Pll P12 )
P12 P22 0 0 P12 P22

When reformulating this as a system of equations, note that, owing to sym­
metry, the 12 element and the 21 element of the equation will give the same
information. Equating the elements gives

Pll = a2pll - 2ap12 + P22 + ,\2 ,

P12 = ,\2 C ,

P22 = ,\2 C2 .

The solution is now readily obtained:

(
1) 2 1+ c2

- 2ac
var[y(t)] = (1 O)P 0 =Pll = ,\ 1 _ a2 . o

Example 4.3 As an illustration of the transient effects that can be modelled
by the state space technique, consider a first-order model

x(t + 1) = ax(t) + v(t) ,

with Gaussian distributed noise and initial state x(to). Figure 4.1 illustrates
how the pdf propagates with time. 0

4.2.3 Yule-Walker Equations

In this subsection, the so-called Yule-Walker equations for a real-valued
ARMA process, and their possible role in determining a covariance function,
are examined.

Consider first the case of an AR process

y(t) + aly(t - 1) + ... + any(t - n) = e(t) , (4.29)
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p(x(t))
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Fig. 4.1. Propagation of the pdf of x(t) as a function of t, Example 4.3. Parameters:
a = 0.75, mo = 3, Ro = 0.25, ,\2 = 0.04. The values of met) are denoted by circles

Note that yet) can be viewed as a linear combination of all old values of
the noise, that is {e(s)};=_oo. By multiplying yet) by a delayed value of the
process, say yet - r), r 2: 0, and applying the expectation operator, one
obtains

E yet - r)[y(t) + aly(t - 1) + ... + any(t - n)] =E yet - r)e(t) ,

or

r(r)+alr(r-l)+ ... +anr(r-n)={~< ~~~: (4.30)

which is called a Yule-Walker equation. Note in passing that it can be written
as

A( )r(t) = { 0, t > -n ,
q ,\2, t = -n.

By using (4.30) for T = 0, ... ,n, one can construct the following system
of equations for determining the covariance elements reO), r(I), ... ,r(n):
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(4.31)

o(
1 1".0)
:: an~l 1 +

(
;,1 :'a, a:o') (r(~)) (~')
an an-l 1 r(n) 0

The matrix appearing in (4.31) can be written as

oal ... an
oa2 an 0

Once r(O), ... ,r(n) are known, (4.30) can be iterated (for r
n + 2, ... ) to find further covariance elements.

n + 1,

Example 4.4 Apply the Yule-Walker equations for computing the covariance
function of a first-order AR process

y(t) - ay(t - 1) = e(t) ,

The system of equations of (4.31) becomes

(
I-a) (r(o)) = (,\2)

-a 1 r(l) 0'

giving

,\2
r(O) = -1-2 '-a

a,\2
r(l) = --2 .

I-a
Next, it is found from (4.30) that

r(r) - ar(r - 1) = 0 , r > 0,

which implies that

,\2
r(r) = aT

_-
2

' r 2: O.
I-a

This expression coincides with the previous findings in (4.27). o

Consider next a full ARMA process

y(t) + aly(t - 1) + ... + any(t - n)

= e(t) + cle(t - 1) + ... + cme(t - m) ,

E e2(t) = ,\2. (4.32)

Now the cross-covariance function between y(t) and e(t) must be involved as
an intermediate step. Multiplying (4.32) by y(t - r), r 2: 0, and applying the
expectation operator, gives
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ry(r) + alry(r - 1) + ... + anry(r - n)

=rey(r) + Clrey(r - 1) + ... + cmrey(r - m) . (4.33)

In order to obtain the output covariance function ry(r), the cross-covariance
function rey(r) must first be found. This is done by multiplying (4.32) by
e(t - r), and applying the expectation operator, which leads to

rey (-r) + alrey (-r + 1) + + anrey (-r + n)

= .x2 [8T ,o + c18T - 1,o + + cm 8T - m ,o] . (4.34)

As y(t) is a linear combination of {e(s)};=_oo' it is found that rey(r) = 0 for
r > O. Hence (4.33) gives

r>m. (4.35)

The use of (4.29)-(4.35) to derive the autocovariance function is illustrated
next by applying them to a first-order ARMA process.

Example 4.5 Consider the ARMA process

y(t) + ay(t - 1) = e(t) + ce(t - 1) ,

In this case n = 1, m = 1. Equation (4.35) gives

ry(r) + ary(r - 1) = 0 , r > 1 .

Using (4.33) for r = 0 and 1 gives

(~ ~) (~:~~n = (~~) (r::(~i))
Now consider (4.34) for r = 0 and 1, which gives

(10) ( rey(O) ) =.x2 (1) .
a 1 rey (-1) C

By straightforward calculations, it is found that

rey(O) = .x2
,

rey (-1) = .x2 (c - a) ,

.x2

ry(O) = -1-2 (1 + c2
- 2ac) ,

-a
.x2

ry(l) = 1 _ a2 (c - a)(l - ac) ,

and finally:

.x2

ry(r) = 1 _ a2 (c - a)(l - ac)( -aV-1
, r ~ 1 .



(4.36)

(4.37)
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The expression above for ry(O) coincides with the former results for the vari­
ance in Example 4.2. D

4.3 Spectral Factorization

We now discuss how the concept of spectral factorization applies for complex­
valued processes. Its role is instrumental in deriving (parametric) time­
domain models from a spectrum representation.

4.3.1 Transfer Function Models

The key tool for the analysis will be Lemma 4.6 in Section 4.A. The lemma
is applied to finite-order spectra in the following theorem.

Theorem 4.1 Let ¢(z) be a scalar spectrum that is rational in z, that is it
can be written as

¢(z) = Llkl<m fJk
Z

: .

Llkl::;n D:k Z

Then there are two polynomials:

A(z) = zn + alzn- 1 + + an ,
C(z) = zm + C1Zm

-
1 + + Cm ,

and a positive real number ,\2 so that

(i) A(z) has all zeros inside the unit circle,
(ii) C (z) has all zeros inside or on the unit circle,

(iii) (4.38)

In the case where ¢(eiw ) > 0, V w, C(z) will have no zeros on the circle.

Proof The statement is immediate from Lemma 4.6. •
Remark 1 Any continuous spectrum can be arbitrarily well approximated
by a rational function in z as in (4.36), provided that m and n are appro­
priately chosen. Hence, the assumptions of the theorem are not restrictive,
but the results are applicable, at least with a small approximation error, to
a very wide class of stochastic processes. D
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Remark 2 An important implication of Theorem 4.1 is that (as far as second­
order moments are concerned) the underlying stochastic process can be re­
garded as generated by filtering white noise, that is as the ARMA process

A(q)y(t) = C(q)e(t) ,
E e(t)e*(t) = A2 .

(4.39)

This means, in particular, that for describing stochastic processes (as long
as they have a rational spectral density), it is no restriction to assume the
input signal to be white noise. It thus also gives a rationale for the state
space model in (4.5) and the assumption that v(t) and e(t) are white noise
sequences therein. Note that any linear state space model driven by corre­
lated noise can be converted into the form of (4.5) by introducing additional
state variables. In the representation in (4.39), the sequence {e(tn is called
the output innovations. 0

Remark 3 Spectral factorization can also be viewed as a form of aggregation
of noise sources. Assume, for example, that an ARMA process

A(q)x(t) =C(q)v(t)

is observed in measurement noise

y(t) = x(t) + e(t) ,

(4.40)

(4.41)

and that v(t) and e(t) are uncorrelated white noise sequences of zero mean
and variances A~ and A; respectively. As far as the second-order properties
(such as the spectrum or the covariance function) are concerned, y(t) can be
viewed as generated from one single noise source as

A(q)y(t) = D(q)€(t) . (4.42)

(4.43)

The polynomial D and the noise variance A; are derived as follows. The
spectrum is, according to (4.40) and (4.41):

2 C(z)C*(z-*) 2
¢y(Z) = ¢x(z) + ¢e(z) = Av A(z)A*(z-*) + Ae ,

while (4.42) gives

2 D(z)D* (z-*)
¢y(z) = Ae A(z)A*(z-*) .

Equating these two expressions gives

A;D(z)D*(z-*) == A~C(Z)C*(z-*) + A;A(z)A*(z-*) .

The two representations given by (4.40) and (4.41), and by (4.42) of the
processes y(t), are displayed schematically in Figure 4.2. 0

Remark 4 The theorem can be extended to the multivariable case. Assume
that the spectral density ¢(eiw ) is rational and nonsingular. Then there is
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v(t) c(t)

I
D(q)

• A(q)
I y(t)

Fig. 4.2. Two representations of an ARMA process with noisy observations

a finite-dimensional filter H(q) and a Hermitian positive definite matrix A,
such that H(q) and H-l(q) are asymptotically stable, H(oo) = I, and

(4.44)

(4.45)

The condition H (00) = I simply corresponds in the scalar case to the condi­
tion that A(z) and C(z) in (4.37) are monic polynomials, that is they have
a leading coefficient equal to one. 0

Example 4.6 As an illustration of the spectral factorization considered in
Remark 3 above, consider an AR(2) process observed in some additional
noise. In this case we take

A(q-l) = 1 + alq-l + a2q-2 ,

with

al = -1.5 , a2 = 0.8 .

The measurements can be described as an ARMA(2,2) model; see (4.42):

D(q-l)
y(t) = A(q-l) c(t) .

Now set

S = >..;/ >..~ .
The value of S describes the amount of measurement noise. The zeros of the
ARMA process in (4.45) varies from the origin when S = 0 to the positions
of the zeros of A(z) (in this case more precisely to z = 0.75 ± iO.487) when S
tends to infinity. How the zero locations vary with S are displayed in Figure
4.3.

The spectral density of y(t) is, of course, also influenced by S. When S
is close to zero, y(t) is (almost) the AR process l/A(q-l)v(t), which has a
high peak in its spectrum. On the other hand, when S tends to infinity, y(t)
becomes more and more like white noise with a flat spectrum. The spectral
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Fig. 4.3. (a) Zero locations for the ARMA process given by (4.45), as a function
of the parameter S. (b) Normalized spectral densities, ¢(eiW )!4>(l), for some values
of S

density is displayed in part Figure 4.3 (b) for a few S values. To facilitate
comparisons, the normalized spectral density, </J(eiW )!4>(I) is plotted versus
the angular frequency w. It is clear that the spectral density gradually be­
comes increasingly fiat as the amount of measurement noise increases.

4.3.2 State Space Models

For state space models, the following result holds.

Theorem 4.2 Consider the asymptotically stable system

x(t + 1) = Fx(t) + v(t) ,
y(t) = Hx(t) + e(t) ,

(4.46)

where {v(t)}, {e(t)} are zero mean white noise sequences with

E (~~g) (v*(s) e*(s)) = (~ll ~:)8t ,8 • (4.47)

Assume that P is a Hermitian, positive definite solution to the algebraic
Riccati equation (ARE):
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P = FPF* + R1 - (FPH* + R12 ) (4.48)
x (HPH* + R2)-1(HPF* + R21 ) .

Set

H(q) = 1+ H(qI - F)-l K , A = HPH* + R2 , (4.49)

where

Then

(i)
(ii)

(iii)

(iv)

H(oo) = I and H(q) is asymptotically stable.
H-1(q) =1- H(qI - F + KH)-l K .
H- 1(q) is stable.

(4.50)

(4.51)

(4.52)

Proof Part (i) is trivial by construction of H(q). Equation (4.51) for H-1(q)
is verified by direct multiplication:

H(q) x [I - H(qI - F + KH)-l K]

= 1+ H(qI - F)-l K - H(qI - F + KH)-l K
-H(qI - F)-l KH(qI - F + KH)-l K

= 1+ H(qI - F)-l[(qI - F + KH) - (qI - F) - (KH)]
x(qI - F + KH)-l K

= I.

In order to prove (iii), it must be shown that F - K H has all eigenvalues
inside (or on) the unit circle. For this purpose, consider the system

z(t + 1) = (F - KH)*z(t) , (4.53)

and prove that it is stable by using the Lyapunov function V(z) = z* Pz.
Obviously, V(z) 2: 0 with equality if and only if z = O.

If it can be proved that

~V(t) ~ V(z(t + 1)) - V(z(t))

is nonpositive (~V(t) ~ 0), then it follows that V(t) is nonincreasing, and

V(z(t)) :s V(z(O)) .
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One can then conclude that

II z(t) II:::; C II z(O) II
for some constant C. [In fact, the tightest C is the condition number of P,
C = Amax(P)/Amin(P).J Hence the system in (4.51) is stable.

When LlV(t) :::; 0, it holds that V(z(t)) is monotonically decreasing and
bounded from below. Hence V(z(t)) is then convergent. If it further can
be shown that the limit is V = 0 (or equivalently, limt-too z(t) = 0), we
have established asymptotic stability. (A sufficient condition would be that
LlV(t) = -z*(t)Qz(t) with Q positive definite.)

Straightforward calculation gives

LlV(t) = z*(t)[(F - KH)P(F - KH)* - PJz(t) .

However, using (4.48):

(F - KH)P(F - KH)* - P = FPF* - KHPF* - FPH*K*

+KHPH*K* -P

=-R1+ K(HPH* + R2)K* - KHPF* - FPH*K* + KHPH*K*

=-R1+ K(2HPH* + R2)K* - K[(HPH* + R2)K* - R21 J

-[K(HPH* + R2) - RdK*

=-R1 - KR2K* + KR21 + R12K*

= -(1 -K) (~ll ~~) (_~*) :::; O. (4.55)

Hence V(z(t)) is nonincreasing with time, which proves stability.
Consider, finally, part (iv). Straightforward calculation gives,

<py(z) - H(z)AH*(z-*)
=H(zI - F)-lR1(z-*1- F)-*H* + R2+ H(zI - F)-lR12

+R21 (z-*1- F)-*H* - A - H(zI - F)-l KA
-AK*(z-*1- F)-* H* - H(zI - F)-lK AK*(z-*1- F)-* H*

=H(zI - F)-l[Rl - (zI - F)P(z-*1- F)* - FP(z-*1- F)*
-(zI - F)PF* - KAK*J(z-*1- F)-*H*

=H(zI - F)-l[Rl - P - FPF* + FPF* + FPF* - KAK*J
x (z-*1- F)-*H*

= O. •

Remark 1 The theorem implies that (as far as second order moments are
concerned) the output can be represented equivalently as

y(t) = H(q)iJ(t) , EiJ(t)iJ*(s) = A8t ,8' (4.56)

The white noise sequence {iJ(t)} are the (output) innovations. They appear as
the sequence {e(t)} in (4.39). A state space representation of (4.56) is readily
found:



xo(t + 1) = Fxo(t) + Ky(t) ,
y(t) = Hxo(t) +y(t) .
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(4.57)

Both forms, (4.56) and (4.57), are called the innovations form or innovations
representation. The states xo(t) can be shown to be the optimal one-step
prediction of the original states. Compare Section 6.4. 0

Remark 2 It can be proved that the Riccati equation has at most one positive
definite solution. See Exercise 6.11. Sometimes it has additional nonnegative
definite solutions. If no positive definite solution exists, the innovations form
will often be found by taking the "largest" nonnegative definite solution.
More precisely, denote the solution to the Riccati equation that corresponds
to the innovation form by P*. Then, for any other symmetric solution P to
the Riccati equation, it holds that

P* - P ~ 0 (4.58)

meaning that P* - P is nonnegative definite. See Exercise 4.25 for an illus­
tration. 0

Remark 3 Note that it is a consequence of (4.51) that the zeros of the in­
novations form are given by the eigenvalues of F - KH. 0

Corollary Let the assumptions of the theorem be satisfied. Assume further
that R2 is positive definite, and introduce

- -1! = F - R12R2-{l , (4.59)
Rl =Rl - R12R2 R2l ,

and factorize the matrix Rl as

HI = BB*. (4.60)

Assume that the pair (F, B) to be stabilizable. Then the filter H-l(q), (4.51),
is asymptotically stable.

Proof The result follows if the following implication

LlV(t) = 0 'lit :::} z(t) = 0 'lit,

can be proved. Here we get from (4.54) and (4.55):

LlV(t) = z*(t)[(F - KH)P(F - KH)* - P]z(t)

= -z*(t)[Rl - KR21 - R12K* +KR2K*]z(t)

= -z*(t)[BB* +R12R:;1 R2l - KR21 - R12K* + KR2K*]z(t)

= - II B*z(t) II -z*(t)[K - R12R:;1]R2[K - R12R:;1]*Z(t) .

Hence,

{
B*z(t) =0

.1V(t)=O => (K-R12R:;1)*Z(t) =0. (4.61)
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As (F, B) is stabilizable, there exists some feedback L such that F ~ F - BL
has all eigenvalues strictly inside the unit circle. The dynamics of the system
in (4.53) become

z(t + 1) = (F - K H)*z(t)

= [(F + R12R21H)* - H*K*]z(t)

= [F* + H* R21R21 - H*R21R2dz(t)

=F*z(t)

= [F + BL]*z(t)

=F* z(t) ,

which is asymptotically stable. Note that in the above calculations we used
(4.59) and (4.61). Hence the only possible limit point is z = 0, which proves
asymptotic stability of (4.51) and (4.53). •

Remark 1 As F was considered asymptotically stable in Theorem 4.2, in
the case R12 = 0 it directly holds that (F, B) is stabilizable. 0

Remark 2 The stability result of the corollary can be extended to unsta­
ble systems (F not necessarily asymptotically stable). The condition (F, B)
being stabilizable essentially means that all unstable modes of the system in
(4.46) must be controllable from the "input" v(t). 0

4.3.3 An Example

As an illustration, a simple spectral factorization problem will be solved using
both the transfer function approach and the state space approach.

Reconsider Example 3.3, but now start with the spectral density (a, b
being real-valued)

¢(eiw ) = 1 + a2 + b2 + 2acosw + 2bsinw .

Introducing <p = a + ib, it can also be written as

¢(eiw ) = [1 + <p~ + <pe- iw + ~eiw] .

The transfer function approach is now used to find e and ,\2, such that

1 + <p~ + <pe- iw + ~eiw = ,\2(eiw + e)(e- iw + c) ,

subject to

e complex, lei::; 1 ,
,\2 real, ,\2 > 0 .

Equating the powers of eiw gives the following two equations:
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{
I + tpVJ = .\2(1 + cc) ,
tp = .\2C.

There are two solutions.

Solution 1 c = tp,.\2 = 1. This solution is the one sought, provided that
Itpl :S 1.

Solution 2 c = I/VJ,.\2 = tpVJ. This solution is the one sought, if Itpl ~ 1.

Note that the two solutions correspond to reflected zero positions. The
zero in the first case is Zl = -tp, whereas in the second it is Z2 = -I/VJ = l/z1.

Next, consider the state space approach and choose first to represent the
system as

x(t + 1) = (~~) x(t) + v(t) ,

y(t) = (1 O)x(t) ,

E v(t)v*(s) = (~:VJ) Ot,s .

It is straightforward to verify that y(t) will then have the given spectral
density. Let the ARE have a solution

p = (~~~ ~~~) .
(Note that PI 1 and P22 are real.) Writing the Riccati equation explicitly:

(~~~~~~) = (~~) (~~~~~~) (~~) + (~~)

- (~~) (~~~~~~) (~) (Pll)-l(1 0) (~~~~~~) (~~)
Evaluating the various matrix elements gives the following equations:

Element 11:
Element 12:
Element 21:
Element 22:

which gives

1 + - tpVJ
Pll = tptp - - ,

Pll

with the two solutions Pll
corresponding matrices are

Pll =P22 + 1 - P12Pldpll ,
P12 = VJ ,
P12 = tp ,
P22 = tpVJ ,

1 and PI 1 = tpVJ. Thus it is found that the
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p(1) = (~~) = (~) (1 45),
p(2) = (<P45 ~) .

<P <P<P

It is easy to verify that p(1) is positive semidefinite. The matrix p(2) is posi­
tive definite if l<pl > 1, indefinite if l<pl < 1 and coincides with p(1) if l<pl = 1.
The solution sought is therefore given by p(1) for l<pl ~ 1 and by p(2) for
l<pl 2: 1. Next, compute the corresponding values of K, H(q) and A.

Case 1 l<pl ~ 1. Simple calculations give

K = (P12~Pll ) = (b) ,
H(q) = 1 + (1 0) ( 6~1 ) -1 (b) =1 + <pq-1, A =Pll =1.

Case 2 l<pl 2: 1. By similar means:

K= (P12~Pll) = (1~45) ,
1

H(q) = 1 + =q-1 ,
<p

A =Pll = 'P45 .
Note that the solution is, of course, the same as the one previously ob­

tained using the transfer function approach. Also, note that for the case where
l<pl ~ 1, no positive definite solution exists for the Riccati equation but that
the (only) nonnegative definite solution leads to the correct innovations form.

4.4 Continuous-time Models

This section illustrates how some of the properties of discrete-time stochas­
tic systems appear in analogue form for continuous-time models. However,
some mathematical problems occur as well. White noise leads to considerable
difficulties that must be solved in a mathematically rigorous way.

4.4.1 Covariance Function and Spectra

In continuous time, the covariance function of a process y(t) is still defined
as (compare (3.18)):

r(r) = E y(t + r)y*(t) , (4.62)

assuming for simplicity that y(t) has zero mean. The spectrum will now be
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I¢(s) ~ i: r(7).-" d7, (4.63)

and the spectral density will be

</>(iw) =i: r(T) e- iWT dT . (4.64)

The inverse relation to (4.63) is

r(T) = 2~i J</>(s) eST ds , (4.65)

where integration is along the whole imaginary axis. One can therefore alter­
natively write

1 /00 .
r(T) = 27C -00 </>(iw) e

1WT
dw .

By setting T = 0 in (4.66), the usual interpretation is obtained: the spectral
density describes how the variance or power is distributed over the frequency
range.

The positive real part of the spectrum is defined as

4>(s) = 100
r(T) e-

ST dT . (4.67)

It is thus precisely the ordinary Laplace transform of the covariance function.

The continuous-time variant of the results of Lemma 3.2 is as follows:

• </>*(s) = </>(-"8).
• </>(iw) is nonnegative definite.
• The diagonal elements of </>(iw) are real-valued and positive.
• In the scalar case </>(iw) = </>( -iw) if and only if the real and imaginary

parts of the process are uncorrelated.
• </>;y(s) = </>yx(-"8).
• </>(s) = 4>(s) + 4>*( -"8).

4.4.2 Spectral Factorization

Consider a stationary stochastic process described by a spectral density </>(iw)
that is a rational function of iw. For simplicity, assume that the process is
scalar and real-valued. Then, by pure analogy with the discrete-time case
(Theorem 4.1), it is found that

</>(iw) = B(iw)B( -iw) (4.68)
A(iw)A(-iw) ,

where the polynomials
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A(P) = pn + alpn-l + ... + an,
B(P) = b1pn-l + ... + bn ,

(4.69)

have all zeros in the left half plane (i. e. in the stability area). Here p is an
arbitrary polynomial argument, but it will subsequently denote the differen­
tiation operator (py(t) = yet)).

The effect of filtering a stationary process, say u(t), with an asymptoti­
cally stable filter, say H (p), can be easily phrased using the spectra. Let the
filtering be described by

Then

yet) = H(P)u(t) .

1Jy (s) = H(s)1Ju(s)H*( -8) ,

(4.70)

(4.71)

again paralleling the discrete-time case (Lemma 4.1). As a consequence, one
can interpret any process with a rational spectral density given by (4.68) as
having been generated by filtering as in (4.70) by using

B(p)
H(p) = A(p) . (4.72)

(4.73)

The signal u(t) would then have a constant spectral density, 1Ju(iw) == 1. As
for the discrete-time case, such a process is called white noise.

4.4.3 White Noise

From (4.66) it can immediately be seen that white noise, if meaningful at all,
leads to mathematical difficulties. For such a case, it must follow that

1 JOO 1 JOOreO) = -2 1J(iw) x 1dw = -2 1dw = 00.
7C -00 7C -00

Continuous-time white noise thus has infinite variance. Generalizing the
discrete-time case, one would also expect white noise to be uncorrelated for
different time arguments, which would require

r(T)=O, (4.74)

In attempting to comply with the requirements of (4.73) and (4.74), it is
necessary to step outside the space of integrable functions and use distribu­
tions (generalized functions) instead. As an attempt, let

reT) = roJ(T) ,

where J(T) is Dirac's J-function. Then (4.63) gives

1J(s) =i: roJ(T) e- ST dT

= ro ,

(4.75)

(4.76)
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which has the desired form (i. e. it is constant as a function of s).
For practical purposes, with some care in the calculations, one can use

the concept of continuous-time white noise and proceed as one would expect.
To be more stringent, though, note that it is far from trivial that differential
equations such as

B(p)
y(t) = A(p) e(t) ,

that is

A(p)y(t) = B(p)e(t) ,

(4.77)

(4.78)

(4.79)

where e(t) is white noise, have reasonable meaning or well-defined solutions.
Those who are mathematically inclined often choose to cope with this prob­
lem by using Wiener processes, which can be regarded as integrated white
noise.

4.4.4 Wiener Processes

Introduce, in a heuristic way, an integrated white noise process for t > 0:

w(t) =it e(s) ds ,

where e(t) is assumed to have zero mean and covariance function rot5(r).

Remark Note that the discrete-time correspondence to a Wiener process is
a random walk process y(t) given by y(O) = 0, and

y(t) = y(t - 1) +v(t) ,
t

= 2: v(s) ,
8=1

where {v(s)} is discrete-time white noise.

(4.80)

o

Some properties of Wiener processes are now analyzed. In a stringent
analysis it is necessary to establish that the integral is well defined and that
integration and expectation can commute. A more heuristic analysis is per­
formed here.

First note that, by its construction, increments of a Wiener process over
disjoint intervals are uncorrelated. If t1 < t2 < t3 < t4 it is obvious that

and
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are uncorrelated.
Next consider the covariance function of w(t). The Wiener process is not

a stationary process. Let T > 0, t > o. Then

r(t+T ,t) = EW(t+T)W*(t)

= E [w(t + T) - w(t) + w(t)]w* (t)

= E w(t)w* (t)

= E I t

e(s') ds'I t

e*(s") ds"

= I t I t

E e(s')e*(s") ds' ds"

= I tI t

ro15(s' - sIt) ds' ds"

= I t

rods

= rot.

In particular:

E [w(t + Llt) - w(t)][w(t + Llt) - w(t)]*

= E w(t + Llt)w* (t + Llt) - E w(t + Llt)w* (t)

-E w(t)w*(t + Llt) + E w(t)w*(t)

=ro(t + Llt) - rot - rot + rot = roLlt .

In the limiting case, this can be written as

E dwdw* = rodt.

(4.82)

(4.83)

It can be stated informally that white noise is the derivative of a Wiener
process:

dw(t)
~=e,

c/. (4.79).

4.4.5 State Space Models

(4.84)

(4.85)

Differential equation models with white noise e as input can be written in
state space form as

I±~Ax+Be.
In a more stringent analysis, (4.85) is "multiplied by" dt and written in the
form
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dx = Axdt + Bdw, (4.86)

which is called a stochastic differential equation. Here dw = edt is the incre­
ment of a Wiener process w(t).

For practical use, the more intuitive form, (4.85), can be used. Forms
where the white noise term appears under an integral sign are "safer" to use
than others.

Next, the covariance function of x(t) in (4.85) is examined in order to
find the continuous-time correspondence to Lemma 4.2. The solution to the
differential equation in (4.85) can be written in the usual way:

x(t) =eA(t-to)x(to) + it eA(t-s) Be(s) ds . (4.87)
to

Assume that e has covariance function Ro<5(r). Assume, further, that the
initial state x(to) has zero mean and covariance matrix Po and is independent
of e(s). It is easily found that x(t) has zero mean:

E x(t) =eA(t-to) E x(to) + it eA(t-s) BE e(s) ds =0 . (4.88)
to

The covariance matrix of x(t), say P(t), can be evaluated as follows. The two
terms in (4.87) are apparently uncorrelated. Therefore,

P(t) = E x(t)x"(t) = eA(t-to) P(to) eA*(t-to)

+E [it eA(t-s') Be(s') ds/Hi
t

eA(t-s") Be(s") ds"]"
to to

=eA(t-to) P(to) eA*(t-to)

+ it it eA(t-s') BRo<5(s' - s")B" eA*(t-s") ds' ds"
to to

= eA(t-to) P(to) eA*(t-to)

+ it eA(t-s) BRoB" eA*(t-s) ds . (4.89)
to

By straightforward differentiation of (4.89), it is found that P(t) satisfies the
differential equation (of Lyapunov type)

F(t) = AP(t) + P(t)A" + BRoB" . (4.90)

(4.91)

Assume that A is asymptotically stable. It follows that, in the limit as
t - to -+ 00, the covariance matrix P is the unique (and nonnegative defi­
nite) solution to

I 0 = AP +P A' +BRoB' .

This is a continuous-time Lyapunov equation.
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Note from (4.89) that P can also be represented in the integral form, cf
(4.24):

P = [too eA(t-s) BRoB* eA*(t-s) ds

=100

eAt BRoB* eA*t dt . (4.92)

It is also possible to evaluate the covariance function of x(t). Let r > O. Then

Rx(t+r,t) = Ex(t+r)x*(t)

= E [eAr x(t) + It+r eA(t+r- s)Be(S)dS] x*(t)

=eAr P(t) . (4.93)

Hence x(t) is a stationary process when to -+ -00. Its spectral density can
be found by applying the definition to the equation (4.93) for R(r). It can
also be derived more simply by noting that

x(t) = [pI - At1Be(t) ,

giving, with (4.71):

<Px(s) = lsi - At1BRoB*[-SI - At* .

(4.94)

(4.95)

Finally, note that (in the stationary case) the covariance function R(r) satis­
fies the Yule- Walker equation, that is R(r) satisfies the following differential
equation:

r > 0, (4.96)

where

pn + alpn-l + ... + an = det(pI - A) = 0 (4.97)

is the characteristic equation of the matrix A.
This follows from the Cayley-Hamilton theorem (which states that every

square matrix satisfies its own characteristic equation):

(pn + alpn-l + ... + an)R(r) = (pn + alpn-l + + an) eAr P

=(An + a1An- 1+ + anI) eAr P

= 0 . (4.98)

4.5 Sampling Stochastic Models

4.5.1 Introduction

There are many interesting features in sampling a stochastic process. Note
that, in this form of sampling, only the output values at the sampling events
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are used. The output values have, of course, the same statistical properties
before and after sampling. Hence, the output covariance function must be
retained. This form of sampling differs from sampling a deterministic control
system, in which case the sampling is characterized by the input being kept
constant over the sampling intervals. As a side comment, recall that in filter
design still another form of sampling is used, namely approximation of the
continuous-time frequency function. There is no unique way in which such
an approximation must be performed. Also note that some further results on
sampling will appear in Section 4.8.4.

4.5.2 State Space Models

Consider a continuous-time model

x=Ax+v, (4.99)

where v is white noise with covariance function rv(T) = Rc8(T). Now sample
this process by considering it for times t = 0, h, 2h, .... Then (k being an
integer)

l

kh+h
x(kh + h) = e Ah x(kh) + eA(kh+h-s) v(s) ds

kh

~ Fx(kh) + e(kh) ,

where

(4.100)

(4.101)
F = eAh ,

e(kh) = f::+
h

eA(kh+h-s) v(s) ds .

By its construction, it follows that e(kh) is (discrete-time) white noise. Note
that (4.100) is therefore a standard discrete-time stochastic state space model.
When dealing exclusively with discrete-time models, the time scale is usually
normalized by using the sampling interval as the time unit. This would imply
that, in such a case, (4.100) can be rewritten in the simplified form

x(k + 1) = Fx(k) +e(k) . (4.102)

In order to emphasize the relation to continuous time, it may be useful to
keep the notation h explicitly in the time argument.

The covariance matrix of the white noise sequence e(kh) in (4.101) can
be evaluated as follows:

Rd ~ E e(kh)e*(kh)

l

kh+h lkh+h
= E eA(kh+h-s' ) V(S')V*(S") eA*(kh+h-s") ds' ds"

kh kh

l

kh+ h lkh+h
= eA(kh+h-s' ) R c8(s' - s") eA*(kh+h-s") ds' ds"

kh kh
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l
kh+h

= eA(kh+h-s) Rc eA*(kh+h-s) ds
kh

= lheAsRceA*sds. (4.103)

Remark. Note that even if Rc is singular (say of rank 1), the covariance
matrix R<t of the sampled noise process will mostly (say, generically) be non­
singular (and hence positive definite). 0

4.5.3 Aliasing

In this section, the aliasing or folding effect when sampling a continuous-time
stochastic process is investigated.

Consider a continuous-time process with covariance function r(r) and
spectral density

<Pc(iw) = i: r(r) e-iTW dr.

Then

1 /00 .r(r) = -2 <pc(iw)e1Twdw.
1£ -00

Now sample this signal. The covariance sequence is then

rk = r(kh) , k = 0, ±1, ...

and the associated discrete-time spectral density is
00

<Pd(eiwh ) = h L rk e-ikwh ,
k=-oo

(4.106)

which is defined for Iwl ::; 1£lh.
Next derive a relation between <Pc and <Pd. The key tool is Lemma 4.7,

given in Section 4.A.
This gives

00
<Pd(eiWh ) = h L r(kh) e-ikwh

k=-oo

=.!!:... f: e-ikwh /00 <Pc (iw') eikhw' dw'
21£ _

k=-oo 00
= .!!:... /00 <Pc(iw') [ f: e-ik(W-W1)h] dw'

21£ -00 k=-oo

h /00 00= - <pc(iw')21£ L r5(w'h - wh - 21£j) dw'
21£ -00 .3=-00
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=i: q)c(iw') jJ;oo 0 (W' - W- 2; j) dw' ,

and, in final form:

q)ct(eiWh
) =I: q)c (i(W+ j2;)) .

)=-00

(4.107)

The geometric interpretation of this result is that the spectral density is
folded at w = ±2J:,±4J:,... into the interval (-nlh,nlh) and that all con­
tributions are added.

Remark Equation (4.107) also illustrates the sampling theorem. Assume
that the signal has no energy above the Nyquist frequency WN = nih. Then
q)c(iw) will vanish as soon as Iwl > WN, and (4.107) simplifies to

q)ct(eiwh
) = q)c(iw) . (4.108)

Under such circumstances, it seems plausible that there is "no loss of in­
formation" due to the sampling. In fact, one can prove (and this is what
Shannon's sampling theorem is about) that for such a band-limited signal
one can reconstruct its value at any time from the discrete-time measure­
ment {y(kh)}~_oo' The reconstruction happens to be given by

00 sin n t - kh

f(t) = L f(kh) t-kZ
k=-oo n-h -

Example 4.7 Consider a first-order model given by

(p + a)y(t) =av(t) ,

(4.109)

o

where v(t) is white noise with covariance function o(t). Its continuous-time
spectral density is readily obtained from (4.71):

a2

q)c(iw) = 2 2
W +a

The sampled form of y(t) is readily obtained from (4.100) and (4.101) as

y(kh + h) - e-ahy(kh) = e(kh) ,

where the discrete-time white noise e(kh) has variance

E e2 (kh) = >.2 = ~(1 _ e-2ah )2 .

The discrete-time spectral density is
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Fig. 4.4. Fre~uency folding when sampling a stochastic process with spectral den­
sity 4>c(w) = a /(w2+a2). The solid line shows 4>c(w); the dotted lines show 4>d(e1Wh )
for some different sampling intervals h

\2h ah 1 - e-2ah 7t
( iWh) A I I

<Pd e = leiwh _ e-ah l2 = 21 + e-2ah _ 2e-ah coswh' w :::; h .

By straightforward calculation, it can be shown that for fixed w, <Pd(eiwh ) de­
creases monotonously to <Pc (iw) as h tends to zero. The relation between the
continuous-time and discrete-time spectral densities is illustrated in Figure
4.4. 0

4.6 The Positive Real Part of the Spectrum

In this section, it will be shown how the positive real part of the spectrum
can be conveniently found for finite-order models. The relations derived can
be used for algorithmic purposes, as explained in Section 4.8. The case of
real-valued processes is considered.

4.6.1 ARMA Processes

A detailed analysis of ¢(z) for ARMA processes will be useful. The following
lemma turns out to be useful.



4.6 The Positive Real Part of the Spectrum 91

Lemma 4.3 Consider the identity

(4.110)

where

A(z) = zn + alzn- 1+ + an ,

C(z) = Zn + CIZn- 1+ + en , (4.111)

D(z) = doz n + d1zn- 1+ ... + dn .

Assume that the polynomial A(z) is known and has all zeros strictly inside
the unit circle.

(i) Assume that >.2 and C(z) are given. Then there exists a unique D(z)
satisfying (4.110).

(ii) Assume that D(z) is given. Then there are >.2 and C(z) satisfying
(4.110), if and only if D(z)/A(z) is positive real, that is:

D(eiw )
Re A(eiw ) ~ 0 Vw. (4.112)

If (4·112) is satisfied, C(z) can be chosen with all zeros inside or on the
unit circle. If strict inequality holds in (4.112), then C(z) can be chosen
with all zeros strictly inside the unit circle.

Remark Equation (4.110) is an example of a Diophantine equation (in poly­
nomials). Diophantine equations are generally of the form

A(z)X(z) + B(z)Y(z) = C(z) , (4.113)

where A(z), B(z), C(z) are given polynomials of z, and X(z) and Y(z) are
unknown polynomials. In order to obtain a solution, one must require that
A(z) and B(z) are coprime (or that a common factor also appears in C(z);
in such a case, it can be cancelled) and that X(z) and Y(z) are allowed to
have appropriate degrees. Diophantine equations of such a form also appear
very naturally in polynomial pole placement of control systems. They will
appear repeatedly in simplified form in this book in the treatment of predic­
tion problems. D

Proof Consider first part (i). Note that (4.110) is a Diophantine equation,
but with some symmetry constraints. The key property to use is that A(z) and
A(Z-l) are coprime. More specifically, the identity can easily be reformulated
as a system of linear equations in the unknowns do, . .. ,dn. Hence a unique
solution exists if and only if

D(z)A(z-l) + A(z)D(z-l) =0

implies D(z) = O. However, (4.114) easily gives

(4.114)
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D(z)A(z-l) == -A(z)D(z-l) .

Noting that both sides must have the same zeros and that A(z) and A(Z-I)
do not have any common zero, it follows that D(z) must be a multiple of A(z).
However, inserting D(z) =o:A(z) into (4.114) gives 20:A(z)A(z-l) == 0, from
which it is concluded that 0: = 0 and D(z) = O.

The proof of part (ii) relies on spectral factorization. Clearly, solutions
with respect to .x2 and C(z) exist if and only if

D(eiw)A(e-iw ) + A(eiw)D(e-iw ) ~ 0, Vw.

After division by A(eiw)A(e-iw ), this is written equivalently as

D(eiw ) D(e-iw ) D(eiw )
o~ A(eiw ) + A(e-iw ) = 2 Re A(eiw ) .

Hence, it has been proved that (4.112) is a necessary and sufficient condition
for the existence of a solution. That C(z) can be chosen with all zeros inside
or on the unit circle (strictly inside if all inequalities are strict) follows from
the properties of spectral factorization. See Section 4.3. •

Remark Note that the identity in (4.110) can be written as

.x2 C(Z)C(Z-I) == D(z) + D(Z-I) .
A(z)A(z-l) A(z) A(Z-I)

(4.115)

The situation dealt with in part (i) of the lemma can thus be interpreted as a
partial fraction decomposition. To be more precise, let A(z) have zeros {pd,
and assume them to be distinct and nonzero for simplicity. A partial fraction
decomposition ofthe left-hand side of (4.115) can then be written, using the
symmetry in the problem, as

\ 2 C(z )C(Z-I) _ f3 Ln
( f3i f3i)

A --'--'--'----:1,-'- - 0 + -- + 1 .
A(z)A(z- ) i=1 z - Pi Z- - Pi

It is possible to merge f30/2 and the fractions with poles in {pd as

f30 ~ f3i D(z)
2"+ {;;;tZ-Pi = A(z)'

o

The function ¢(z) can now be characterized. The result is formulated as
a lemma.

Lemma 4.4 Consider the ARMA process

A(q)y(t) = C(q)e(t) . (4.116)

Then ¢(z), the positive real part of the spectrum, as defined by (3.26), satisfies
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1

- D(z) (4.117)
¢(z) = A(z) ,

where D(z) is the solution of (4.110).

Proof The covariance function r(k) satisfies the Yule- Walker equations, see
Section 4.2.3:

r(k) + alr(k - 1) + ... + anr(k - n) = 0 , k> n. (4.118)

Using the properties of z-transforms, this implies that

A(z)R(z) = Fo(z) ,

where
00

R(z) =L: r(k)z-k
k=O

is the z-transform of the covariance function and Fo(z) is a polynomial of
degree n that depends on the initial conditions of (4.118). Now, using (3.27):

- [ 1] 1A(z)¢(z) = A(z) R(z) - 2r(0) = Fo(z) - 2r(0)A(z)

=F(z) ,

where F(z) is a polynomial of degree n. Using the relation in (3.35):

¢(eiw ) = ¢(eiW ) + ¢*(eiw ) = 2Re ¢(eiw ) ,

which gives

C(eiw)C(e-iw ) F(eiw ) F(e- iw )
A

2

A(eiw)A(e-iw ) = A(eiw ) + A(e-iw ) ,

or

A2C(Z)C(Z-1) = F(z)A(z-l) + F(Z-l)A(z).

Hence, F(z) is nothing other than D(z), cf. (4.110). This proves (4.117).•

Remark lOne can alternatively proceed as follows to prove Lemma 4.4.
Invoking Lemma 4.3, the spectrum of y(t) can be written as

(4.119)

The series above can be viewed as a Laurent series. It will converge in a strip
including the unit circle.

However, the spectrum can also be written as (3.22)
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00 [1 00 ]4>(z) = n~oo r(n)z-n = 2r(0) +~ r(n)z-n

+ [~r(O) +ntr(nvn]
b. - -= 4>(z) + 4>(Z-l) .

which also converges on the unit circle. As the Laurent series expansion is
unique, it can be concluded that (4.117) is true. This idea is closely related
to the concepts of splitting a general filter into a causal and an anticausal
part, which will be discussed in Section 7.3.3. 0

Remark 2 D(z)/A(z) is positive real. This is easy to see, since for any w

o

Example 4.8 For illustration, compute ¢(z) for a first-order ARMA process

y(t) + ay(t - 1) =e(t) + ce(t - 1) , E e2(t) =,\2 . (4.120)

First, to recapitulate from Example 4.5:

,\2
r(O) =-12 (1 + c2

- 2ac) ,
-a
,\2

r(T) = 1 _ a2(c - a)(1 - ac)(-aV-1 ,

Direct use of Definition 3.12 now gives
00

¢(z) = 0.5r(0) + L r(n)z-n
n=l

1 ,\2
= ---(1 + c2

- 2ac)
21- a2

,\2 00

+--(c - a)(1 - ac) "'(-at-1z-n
1- a2 L..J

n=l

=~2 [~(1 + c2-2ac) + (c - a)(1 - ac) Z-l -1]
1- a 2 1 + az

= ~2 _1_ [~(z + a)(1 + c2
- 2ac) + (c - a)(I- ac)]

I-a z+a 2
(4.121)

Next consider the identity in (4.110), which gives

>.2(Z + C)(z-l + c) == (doz + d1)(Z-1 + a) + (z + a)(doz-1+ dd ,
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or, after equating the powers of z:

(~ 2t) (:~) = ( A2(~~ C

2

)) ,

with the solution

1 A2

do = - --(1 + c2
- 2ac) ,

2 1- a2

1 A2

d1 = - --(-a-ac2 +2c).
2 1- a2

By Lemma 4.4:

¢(z) = doz+d1 ,

z+a

which coincides with the direct calculations above.

4.6.2 State Space Models

In this section, a standard state space model

x(t + 1) = Fx(t) + v(t) ,
y(t) = Hx(t) + e(t) ,

o

(4.122)

is considered, where v(t) and e(t) are mutually independent, white noise
sequences of zero mean and covariances R1 and R2 respectively. A state space
representation of ¢(z), the positive real part of the spectrum, is sought. The
solution is given in the following lemma.

Lemma 4.5 Consider the system in (4.122). Then

I~(z) ~ J + H(zl- F)-' FPH' ,

where

J = (HPH* + R2 )/2,

P=FPF*+R1 .

(4.123)

(4.124)

(4.125)

Proof The proof is by direct verification. From (4.123), it is clear that ¢(z)
can be interpreted as a weighted sum of negative powers of z. By straight­
forward calculation

¢(z) +¢*(z-*)

= J + H(zJ - F)-lFPH* + J* + HPF*(Z-l J - F*)-lH*

= J + J* + H(zJ - F)-l[FP(z-lJ - F*) + (zJ - F)PF*]
x(z-l1- F*)-l H*
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= Rz + H(zI - F)-l[(zI - F)P(z-lI - F*) + FP(Z-l1- F*)

+(zI - F)PF*](Z-l1- F*)-lH*

= Rz + H(zI - F)-l[p - FPF*](Z-l1- F*)-l H*

= Rz + H(zI - F)-lR1(z-11- F*)-l H* = ¢(z) .

Referring to Lemma 3.3, the proof is thus completed. •
Remark 1 Note that (4.125) is the standard Lyapunov equation for de­
termining the state covariance matrix P. Furthermore, it can be seen that
2J = ry(O). 0

Remark 2 Making a series expansion of (4.123):

~(z) = J + H(zI - F)-lFPH*

=J + z-lH(I - z-lF)-l FPH*
00

= J +z-lHLz-iFiFPH*
i=O

00

= J +HLz-kFkpH*,
k=l

and, comparison with Definition 3.12:

_ 1 00

¢(z) = 2r(O) + L r(n)z-n ,
n=l

gives by identifying coefficients

r(O) = 2J = H P H* + Rz ,
r(k) = HFkpH*, k ~ 1,

which is perfectly in agreement with (4.20) and (4.21). o

Example 4.9 As an illustration, reconsider Example 4.8, but use the state
space formalism. First, represent the ARMA model

y(t) + ay(t - 1) = e(t) + ce(t - 1)

in state space form as

x(t + 1) = ( ~a ~ ) x(t) + (~) v(t) ,

y(t) = (1 O)x(t).

See Example 4.2. From that example, recall that

P _ AZ (1±t~-;;?aC c)
- c cZ •
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Now, (4.124) implies

1 ,X Z 1 + CZ - 2ac
J = 2"(pu +0) = "2 1 _ aZ

and (4.123) finally gives

¢(z) = P~l + (1 0) ( z ~ a ~1 ) -1 ( ~a ~)

x (:~~ :~~) (~)
Pu 1= - + --(-apu + P1Z)
2 z+a

(Pu/2)z + (-apu/2 + P1Z)

z+a

As

-apu/2 + P1Z = 2(1~ aZ) [-a(l + C
Z

- 2ac) + 2c(1 - a
Z

)]

,XZ
2(1 _ aZ)[2c- a - ac

Z
] ,

it is finally seen that
_ ,XZ

¢(z) = 2(1 _ aZ)
(1 + C

Z
- 2ac)z + (2c - a - acZ

)

z+a

which is in agreement with the result of Example 4.8. o

A related problem concerns the conditions under which a "state space
representation"

(4.126)

is positive real. In terms of stochastic systems, this would mean that ¢(z)
is the positive real part of a spectrum. The answer to the above question is
given by the Kalman-Yakubovich lemma, also called the positive real lemma.
It states that ¢(z) is positive real if and only if there exists a positive definite
Hermitian matrix P and matrices L and W such that

P=P*PP+LL*,
P* PC = H* - LW ,
WoW = J + J* - C* PC.

(4.127)

It is straightforward to demonstrate sufficiency (the "if part"). Using (4.126):
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¢(z) + ¢*(z-*) = J + H(zI - F)-IG + J* + G*(Z-I1- F*)-IH*

= W*W + G* PG + (W* L* + G* PF)(zI - F)-IG + G*(Z-I1- F*)-I

x(F*PG + LW)
= [W* +G*(Z-I1- F*)-IL][W + L*(zI - F)-IG]

+G*(Z-I1- F*)-I[(Z-I1- F*)P(zI - F) + (Z-I1- F*)PF

+F*P(zI - F) - LL*](zI - F)-IG

= [W* + G*(Z-I1- F*)-IL][W + L*(zI - F)-IG]

+G*(Z-I1- F*)-I[p - F* PF - LL*](zI - F)-IG

= [W + L*(z-*1- F)-IG]*[W + L*(zI - F)-IG] ,

which has the form of a spectrum in factorized form. For proofs of the neces­
sity of (4.127), see the literature, cited in the Bibliography section.

The condition in (4.127) can also be formulated as

(
P - F* PF H* - F*PG) (L) *
H-G*PFJ+J*-G*PG = W* (L W)2:0. (4.128)

The left-hand side of (4.128) must thus be positive semidefinite. As an equa­
tion in P, this condition must have a positive definite solution.

4.6.3 Continuous-time Processes

Some results analogous to those in Section 4.6.1, but for (asymptotically
stable) continuous-time processes, will now be developed. Consider, therefore,
processes of the form

B(p)
y(t) = F(P) e(t) ,

B(p) = bIpn-1 + ... + bn , (4.129)

F(p) = pn + ftpn-I + ... + In ,

with e(t) being continuous-time white noise, E e(t)e(s) = 6(t - s).
Let r(r) be the covariance function of y(t) and R(s) = ¢(s) its Laplace

transform; see (4.67). Noting that r(r) satisfies the Yule-Walker equation
(see (4.96))

(pn + ftpn-I + ... + In)r(r) = 0 , (4.130)

it is found that
- 1)(s)
<jJ(s) = R(s) = F(s) (4.131)

for some polynomial

1)(s) = dlsn -
1 + ... + dn , (4.132)

which accounts for the initial values of (4.130). Note that do = 0 due to the
variance r(O) being finite. As explained in Section 4.4:
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¢(iw) = 4>(iw) + 4>( -iw) = 2 Re 4>(iw) (4.133)

holds, which implies

B(iw)B( -iw) D(iw) D(-iw)
F(iw)F( -iw) = F(iw) + F( -iw) ,

and finally:

B(s)B( -s) = D(s)F( -s) + D(-s)F(s) .

It is immediate from (4.133) that D(iw)/F(iw) is positive real.

4.7 Effect of Linear Filtering on the Bispectrum

This section deals with how the bispectrum is affected by linear filtering.
Some preliminary results are first established.

Gaussian processes

Let x(t) be zero mean Gaussian. Then

R(m,n)=O, (4.135)

Non-Gaussian white noise

Let x(t) be non-Gaussian white noise, so that x(t) and x(s) are independent
for t :p s, E x(t) = 0, E x2 (t) = (12, E x3 (t) = (3. Then

R(m, n) = E x(t)x(t + m)x(t + n) = (3c5(m, n) . (4.136)

Here the usual Kronecker delta notation has been extended, in the sense that

c5( ) {I, m = n = °,
m, n = 0, elsewhere.

The bispectrum becomes a constant:

B(Zl,Z2) = (3.

Effect of linear filtering

(4.137)

(4.138)

After these preludes, consider now a linear, asymptotically stable filter of the
form

00

y(t) = L hku(t - k) ,
k=O

and set
00

H(z) =L hkz-k .
k=O

(4.139)

(4.140)
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Both u(t) and y(t) are assumed to be scalar signals. Let u(t) be a station­
ary process with zero mean, third-moment sequence Ru(m, n) and bispec­
trum Bu(Zl' Z2). The corresponding quantities Ry(m, n) and By(Zl' Z2) for
the output y(t) are sought. By straightforward calculations

Ry(m, n) = E y(t)y(t + m)y(t + n)
00 00 00

= L L L hihjhkE u(t - i)u(t + m - j)u(t + n - k)
i=O j=O k=O
00 00 00

=LLLhihjhkRu(m + i - j,n +i - k),
i=O j=O k=O

00 00

By(Zl' Z2) = L L Ry(m, n)zlmz2n
m=-oon=-oo

00 00 00 00 00

= L L LLLhihjhk
m=-oo n=-oo i=O j=O k=O

xRu(m + i - j,n + i - k) zlmz2n
00 00 00 00 00

= LLLhihjhk L L Ru(m+i-j,n+i-k)
i=O j=O k=O m=-oo n=-oo

-(m+i-j) -(n+i-k) i-j i-k
XZ1 Z2 Zl Z2
00 00 00

=2: 2: 2: hihjhkz~-j z~-k Bu(Zl' Z2)
i=O j=O k=O

=H(zll Z21 )H(zdH(Z2)Bu(Zl' Z2) .

The result in (4.141) is a generalization of (4.2), which applies for the usual
(second-order) spectrum. It is well known that the spectral density (the power
spectrum) does not carry information about the phase properties of a filter.
In contrast to this, phase properties can be recovered from the bispectrum
when it exists. This point is illustrated by a simple example.

Example 4.10 Let e(t) be non-Gaussian white noise with

E e(t) =0 , E e2(t) = 1 , E e3 (t) = 13 i- 0 . (4.142)

(4.143)

Let a and b be two real-valued parameters in the interval (-1,1) and consider
the following processes:

Yl (t) = (1 + aq-l )(1 + bq-l )e(t)

=e(t) + (a + b)e(t - 1) + abe(t - 2) .
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= be(t) + (ab + l)e(t - 1) + ae(t - 2) . (4.144)

Y3(t) = (a + q-l )(b +q-l )e(t)

= abe(t) + (a + b)e(t - 1) + e(t - 2) . (4.145)

Note that Yl (t) is obtained with a minimum-phase filter, Y3(t) with a maxi­
mum-phase filter and Y2(t) with a mixed-phase filter.

The power spectra for the three processes are identical, since they have
identical autocovariance functions. In fact:

rY1 (0) = 1 + (a + b)2 + a2b2 =1 + a2+ b2+ 2ab + a2b2 ,

rY1 (1) = (a + b)(1 + ab) ,

rY1 (2) = ab ,

r Yl ("T) = 0 , "T > 2 .

ry2 (0) = b2 + (ab + 1)2 + a2 = rY1 (0) ,

rY2 (1) = (ab + l)(a + b) = rY1 (1) ,

ry2 (2) =ab=ry1 (2) ,

r Y2 ("T) =0 , "T > 2 .

rya(O) = a2b2+ (a + b)2 + 1 = rY1 (0) ,

r Ya (1) = (ab + 1) (a + b) = r Yl (1) ,

rya (2) = ab = rY1 (2) ,

r Ya ("T) = 0 , "T > 2 .

As Yl(t), Yz(t), and Y3(t) have identical covariance functions, their spectra
will coincide as well.

Next calculate the third-moment sequences for the processes and con­
sider only the nonzero elements of these sequences. In order to make the
calculations general, write the processes in the jointly valid form

y(t) = hoe(t) + h1e(t - 1) + h2e(t - 2) ,

which covers all the three processes Yl(t), Y2(t), Y3(t). Note first that it is
sufficient to consider the elements R(m, n) with 0 ::; n ::; m ::; 2. This gives

R(O,O) = E y3(t) = jJ[h~ + hr + h~J ,

R(I,O) = E y(t + l)y2(t) = E [hoe(t + 1) + h1e(t) + hze(t - I)J

x [hoe(t) + h1e(t - 1) + h2e(t - 2W
= jJ[h1h5 + hzhiJ ,

R(I, 1) = E y2(t + l)y(t)

= ;3[hiho + h~hd ,
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Table 4.1. Third-moment sequence elements for some MA(2) models

R(m,n)!f3 Yl Y2 Y3
m n (minimum-phase) (mixed-phase) (maximum-phase)

0 0 1 + (a + b)3 + a3b3 b3+ (ab+ 1)3 +a3 a3b3 + (a + b)3 + 1
1 0 (a + b) + ab(a + b)2 b2(ab + 1) + a(ab + 1)2 (a + b)a2b2+ (a + b)2
1 1 (a +W+ a2b2(a + b) (ab + 1)2b + a2(ab + 1) (a + b)2ab+ (a + b)
2 0 ab ab2 a2b2

2 1 ab(a + b) ab(l + ab) ab(a + b)
2 2 a2b2 a2b ab

R(2,0) = E y(t + 2)y2(t) = E [hoe(t + 2) + h1e(t + 1) + h2e(t)]

x [hoe(t) + h1e(t - 1) + h2e(t - 2W
=(3h2h~ ,

R(2, 1) = E y(t + 2)y(t + l)y(t)

=(3h2h1ho ,

R(2, 2) = E y2(t + 2)y(t)

=(3h~ho .

When applying these calculations to the particular processes in (4.143)­
(4.145), the results shown in Table 4.1 are obtained.

Apparently, the three processes have different third-moment sequences,
and hence also different bispectra. 0

One would expect that for a given process, the same type of filter repre­
sentation will appear for the power spectrum and for the bispectrum. This is
not so in general, as illustrated by the following example.

Example 4.11 Consider a process consisting of summing two independent and
real-valued AR processes

1 1
y(t) = A(q) e(t) + C(q) v(t) , (4.146)

(4.147)

e(t) being Gaussian white noise and v(t) non-Gaussian white noise. Both
sequences are assumed to have unit variance, and E v3 (t) = 1.

The Gaussian process will not contribute to the bispectrum. FUrther,
Bv (Zl,Z2) == 1, and, according to (4.141), the bispectrum will be

By(Zl' Z2) = H(z1 1Z:;l )H(zdH(Z2)Bv (Zl' Z2)
1 1 1

- C(z1 1Z:;l) C(Zl) C(Z2) ,

so

H(z) = 1jC(z) (4.148)
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is the relevant filter representation as far as the bispectrum is concerned.
However, the power spectrum becomes

1 1
¢(z) = A(z)A(r1) + C(z)C(r1) ,

and in this case it will have a spectral factor of the form

B(z)
H(z) = A(z)C(z) ,

where

B(z)B(z-l) == A(z)A(z-l) +C(Z)C(Z-l)

(4.149)

(4.150)

(4.151)

due to the spectral factorization. Clearly, the two filter representations of
(4.148) and (4.150) differ. 0

4.8 Algorithms for Covariance Calculations and
Sampling

In this section some algorithms, most of which are based on the positive
real part of the spectrum, are given. They will be useful for determining the
covariance function. Another one can be used for sampling a continuous-time
model. In the last section, algorithms for solving the Lyapunov equation are
discussed. The case of real-valued processes is considered.

4.8.1 ARMA Covariance Function

Consider an ARMA process (scalar case)

A(q)y(t) = C(q)e(t) , (4.152)
Ee2(t) =.\2,

and the problem of finding the covariance function r(k) = E y(t+ k)y(t). It is
solved here by means of the positive real part of the spectrum. First compute
D(z) from (4.110):

.\2C(Z)C(Z-1) == D(z)A(z-l) + A(z)D(z-l) . (4.153)

Then, by (4.117), (3.27) and (3.28):

- D(z) ~ -k 1
¢(z) = A(z) =~ r(k)z + "2 r (O) . (4.154)

k=l

Setting Z-l = 0 easily gives

do = r(0)j2 . (4.155)
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By multiplication in (4.154) by A(z):

(dozn + d1zn- 1+ ... + dn) = do(zn + alzn- 1+ ... + an)

00

+ (zn + alzn- 1+ ... + an) L r(k)z-k .
k=l

By equating the different powers of z, the covariance elements are found as

{

r(l) = d1 - dOal ,
r(2) = d2 - dOa2 - alr(l) ,

(4.157)

r(n) ~ dn - doan - alr(n - 1) - a2r(n - 2) ... - an-lr(l) ,

and (the Yule-Walker equations!)
n

r(k) = - Lair(k - i),
i=l

k >n. (4.158)

Alternatively, from (4.154) it can be seen that, except for k = 0, r(k) is
precisely the impulse response of the filter D(z)jA(z). This may be a more
convenient formulation of the relations in (4.157) for some forms of computer
implementation.

Example 4.12 Consider a first-order ARMA process

y(t) + ay(t - 1) = e(t) + ce(t - 1) , E e2 (t) = >.2 .

According to Example 4.8:

1 >.2
do = -2 --2(1 + c2

- 2ac) ,
I-a

1 >.2
d1 = - --(2c-a-ac2).

2 1- a2

Therefore, from (4.155):

>.2
r(O) = 2do = 1 _ a2 (1 + c2

- 2ac) .

Next, (4.157) implies that

>.2
r(l) = d1 - ado = -1-2(c - a)(1 - ac) ,

-a

and from (4.158) one finally obtains

>.2
r(k) = (_a)k-l 1 _ a2(c - a)(1 - ac) .

Recall that the same results were established in Example 4.5. o
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4.8.2 ARMA Cross-Covariance Function

Consider the following situation. Assume that two (real-valued) ARMA pro­
cesses are given:

and

A(q)y(t) = B(q)e(t) ,

A() n n-lq =q +alq + +an ,

B(q) = boqn + b1qn-l + + bn ,

(4.159)

C(q)w(t) = D(q)e(t) ,

C(q) = qm + clqm-l + ... + Cm , (4.160)

D(q) = doqm + d1qm-l + ... + dm .

Assume that e(t) is the same in (4.159) and (4.160) and that it is white noise
of zero mean and unit variance. Find the covariance elements

r(k) = E y(t + k)w(t) (4.161)

for a number of arguments k. The cross-covariance function r(k) is related
to the cross-spectrum cPyw(z) as (see (3.24) and (4.3))

00

cPyw(z) = L r(k)z-k
k=-oo

B(z) D*(z-*)

A(z) C*(z-*)
B(z) D(Z-l)
A(z) C(Z-l) .

Introduce the two polynomials

F(z) = lozn + fIzn-l + ... + In ,
G(Z-l) = goz-m + glZ-(m-l) + ... + gm_l z- 1 ,

through

B(z) D(Z-l) _ F(z) G(Z-l)
-- = -- + z -::-,---,,-'-
A(z) C(Z-l) A(z) C(Z-l) ,

or, equivalently:

(4.162)

(4.163)

(4.164)

(4.165)

Since A(z) and C(Z-l) are coprime, (4.165) has a unique solution. Note that,
as a linear system of equations, (4.165) has n+m+ 1 equations and the same
number of unknowns. The coprimeness condition ensures that the matrix
appearing in the system of equations has full rank. Equations (4.162) and
(4.164) now give
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(4.166)

The two terms in the right-hand side of (4.166) can be identified with each
part of the sum. In fact:

F(z) ~ -k
A(z) = L.J r(k)z ,

k=O

ZG(Z-1) -1 -k
C(Z-1) = k~OO r(k)z .

From (4.167), one obtains
00

F(z) == A(z) L r(k)z-k .
k=O

Equating the powers of z gives

ryw(O) = 10 ,
r yw (1) = ft - a1 r (0) ,

ryw(k) = !k - 2:~=1 ajr(k - j) , (2 ::; k ::; n) ,
ryw(k) = - 2:7=1 ajr(k - j) , (k > n) .

Note that the last part of (4.170) is a Yule-Walker type of equation.
Similarly, from (4.168):

-1

zG(Z-1) == C(Z-1) L r(k)z-k,
k=-oo

and

(4.167)

(4.168)

(4.169)

(4.170)

(4.171)

(2 ::; k ::; m) ,
(k > m) .

(4.172)

o

Example 4.13 Consider again a first-order ARMA process

y(t) + ay(t - 1) = e(t) + ce(t - 1) , E e2 (t) = 1 .

In this case the autocovariance function is sought. Hence choose z(t) == y(t)
and thus A(q) = q+a, B(q) = q+c, C(q) = q+a, D(q) = q+c. The identity
in (4.165) becomes

(z + C)(Z-1 + c) == (foz + ft)(Z-1 +a) + z(z +a)(goz-1) .
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Equating the powers of z leads to

The solution of this system is easily found to be

I _ 1 + c2
- 2ac (c - a)(1 - ac)

JO - 1 _ a2 ' Ii = c , go = 1 _ a2

Hence (4.170) implies that

r(O) = 10 = 1 + c
2

- 2ac ,
1 - a2

(1) - I _ (0) _ (c - a)(l - ac)
r - 1 ar - 1 _ a2 '

r(k) = (_a)k-l r (l) , k 2': 1 .

while (4.172) gives

r (-1) = go = (c - ;)(1 ; ac) ,
-a

r( -k) = (_a)k-l r (-1) , k 2': 1 .

Needless to say, these expressions for the covariance function are the same as
those derived in previous examples. 0

4.8.3 Continuous-Time Covariance Function

In order to compute the covariance function in continuous time, the procedure
is a little different than in the discrete-time case. Assume that a model of the
form

B(p)
y(t) = F(p) e(t) ,

B(p) = b1pn-l + ... + bn ,

F(p) = pn + liPP-l + ... + In,

where e(t) is continuous-time white noise, E e(t)e(s) = c5(t-s), is given. Find
the covariance function r(r) of y(t). First compute D(s) by solving (4.134):

B(s)B(-s) = D(s)F( -s) + D( -s)F(s)

with respect to

D(s) = d1sn- 1+ ... +dn .

From (4.131):

(4.174)
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- D(s)
4J(s) = £r(t) = F(s) ,

where £ denotes the Laplace transform.
Next choose H, Fe and Xo so that

-1 D(s)
H(sI - Fe) Xo = F(s) . (4.176)

This can be done, for example, by using any canonical form. Using

£r(t) = H(sI - Fc)-I XO , (4.177)

a state space model governing the covariance function is readily obtained:

x(O) = Xo ,x= Fcx,
r = Hx.

Hence the covariance function can be written as

(4.178)

t ~ O. (4.179)

It should be emphasized that the state space approach outlined above
may be useful for computer implementation. For hand calculations, it seems
more feasible to use £r(t) = D(s)/F(s) and a table of Laplace transforms in
order to find the covariance function r(t).

4.8.4 Sampling

Assume that a continuous-time process is given in the form

A(p)y(t) = B(p)e(t) ,

where

(4.180)

A(p) = pn + a1pn-l + ... + an ,

B(P) = b1pn-l + ... + bn ,

E e(t)e(s) = c5(t - s) .

Find the sampled form of the model of (4.180). The following algorithm is
an alternative to the state space approach described in Section 4.5.2.

Step 1 Compute ¢c(s) = D(s)/A(s) where

D(s) = d1sn- 1+ ... + dn

by solving (4.134):

B(s)B(-s) == D(s)A(-s) + D(-s)A(s) .

Step 2 Next use the relations (see (4.131) and (3.27))

(4.181)
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(4.182)

(4.183)

¢c(s) = £{r(t)} ,

¢d(Z) = [Z{r(kh)} - ~r(O)]

to compute ¢d(Z) as a fraction:

- Dd(Z)
<Pd(Z) = h Ad(z) . (4.184)

The details of this step are dealt with after the description of Step 3.

Step 3 Finally, perform a spectral factorization

tX2C(Z)C(Z-1) = Dd(z)Ad(z-l) + Ad(z)Dd(z-l) ,

to find tX2 and C(z). This gives the ARMA model

Ad(q-l)y(t) = C(q-l)V(t),
E v(t)v(s) = tX2 c5t ,8 •

(4.185)

(4.186)

o

In order to complete the algorithm, a procedure for Step 2 on how to
go from a Laplace transform to the corresponding z-transform is needed.
Fortunately, this is easy for a function that is a sum of exponentials. Such a
function f(t) can always be expressed as the solution to

:i; = Fx , x(O) = Xo ,

f =Hx,

giving

f(t) = H eFtxo ,

.c{f(t)} = H[sI - F]-lXO .

The z-transform of the discretized function is easily obtained as

f(kh) = H eFkh
Xo ,

Z{J(kh)} = H(I - Z-l eFh)-lxo ,

x(kh + h) = eFh x(kh) , x(O) = Xo ,

f(kh) = Hx(kh) .

(4.187)

(4.188)

(4.189)

(4.190)

(4.191)

One can regard f(t) as the impulse response of the system in (4.187), while
f(kh) is the impulse response of the discrete-time system in (4.191).

When applying this idea to Step 2, represent ¢c(s) =D(s)jA(s) in (some)
state space form as (4.188). Then (4.191) can easily be calculated, and its
impulse response evaluated as in (4.189). In this way the representation in
(4.184) can be calculated.
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4.8.5 Solving the Lyapunov Equation

When the solution to the Lyapunov equation

P(t + 1) = FP(t)FT + RI , (4.192)

is needed for all t, it has to be iterated. In many cases, it is enough to seek
the stationary solution, which, of course, satisfies

(4.193)

It is usually a bad idea to iterate (4.192) to convergence. An alternative is
to convert (4.193) into an explicit set of linear equations. This will, however,
often give rise to a high-order problem, as the number of unknowns will be
n(n + 1)/2, taking the symmetry of P into account. The specific structure of
the problem can be taken into account by some such algorithm.

There are several numerically efficient algorithms for solving the Lya­
punov equation of (4.192). An acceleration algorithm is presented here. The
idea is to compute the solution of (4.192) with increasing steps, more pre­
cisely at times t = 1,2,4,8,16 .... As the time interval between the points is
doubled repeatedly, the convergence is fast.

Assume that P(2 k ) is known, and let P(O) = O. Then (see (4.23)):

2k +1 _1

p(2kH ) = L Fj RIFTi

j=O

2 k+1 _1

=P(2k) + I: Fj RIFTi

j=2 k

2k (2-I)-1

= P(2k) + F(2k)[ L Fj RIFTijFT(2k)
j=O

( k) (2 k )=P(2k) + F 2 P(2k)FT .

This gives the following algorithm.

(4.194)

Step 1 Set Po = R I , Fo =F.

Step 2 Iterate

PkH = FkPkF[ + Pk ,
Fk+I =Ff ,

until convergence.

(4.195)

o
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40A Appendixo Auxiliary Lemmas

Lemma 4.6 Consider the scalar function

I(z) = L /kzk ,
Ikl$n

Uk} being complex-valued coefficients. Assume that I(eiw ) is real-valued and non­
negative (? 0) lor all w. Then

(i) There exists a real-valued, strictly positive constant C and a monic polynomial

g(z) = zn + glzn-I + ... + gn ,

with all zeros inside or on the unit circle, such that

I(z) = Cg(z)gO(z-O) . (4.197)

(ii) In the case where f(e iw ) > 0, 'Vw, g(z) has no zeros on the unit circle.
(iii) In the case where I (e iw ) == f (e- iW), the coefficients {gj} are real-valued.

Proof The constraint that f(e iw ) is real-valued for all w implies

0== Imf(eiW ) = 1m [fO + t(fk e
ikw + f-k e- ikW )] ,

k=1

and hence 1m (fo) = 0, and

Im[fk eikw + f -k e-ikwj == 0 ,

giving f-k = Ik· Let Zl be a zero of I(z). Then Zl i= O. Further:

f(--I) "f --k "I-k
Zl = ~ kZI = ~ -kZI

Ikl$n Ikl$n

= L f-kZ~ = L /kz~ = f(zI) = 0 .
Ikl$n Ikl$n

Hence Z~I is also a zero. As f(z) has 2n zeros, it follows that they can be charac­
terized as Zl ... Zn fulfilling 0 < IZil ~ 1 and Zn+i =Z;I satisfying 1 ~ IZn+il < 00,

i = 1, . .. ,n. Set
n

g(z) = Il(z - z;),
i=1

Th·· O( -e) nn (-* ) nn (-I -) dIS gIves 9 z = i=1 Z - Zi = i=1 Z - Zi an

n n n
f(z)-Cg(z)g*(z-*)=z-n L fkzk+n-cIl(z-zi)Il(z-I-Zj)

k=-n i=1 j=1

= z-n fn IT(z - Zi)(Z - Z;I) - h~~ni; IT(z - Zi)Z-n IT(1 - ZZj)
i=1 .-1 .=1 J=I
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This proves the relation in (4.197). Next, consider the identity for z = eiw
. By

assumption f(e iw
) is real-valued and nonnegative. Further:

g(eiw)g(eiw ) = Ig(eiw )1 2 ~ 0 .

It thus follows that C is real-valued and positive.
To prove part (ii), note simply that in this case

f(e iw ) =Clg(eiw )1 2 > 0 , V w .

Finally, consider part (iii). The symmetry condition f(e iw ) == f(e- iw ) implies not
only that f-k = Ik but that the Uk} are real-valued. Hence the zeros Zj are real­
valued or appear in complex conjugated pairs. Therefore, g(z) will have real-valued
coefficients. •

Lemma 4.7 The following holds (in a distribution sense):

o:5 x :5 27t ,

00 00

L eikx = 27t L <5(x - 27tj) .
k=-oo j=-oo

Proof Introduce a periodic function f (x) through

~ 1 2
f(x) = 6" - 2(x -7t) ,

f(x + 27t) = f(x) .

The function f(x) is displayed in Figure 4.5.
As f(x) is periodic, it can be developed in a Fourier series

00

n=-oo

The Fourier coefficients {en} are given by

1
27t

1 -in'"
Cn = 27t 0 f(x)e dx.

By straightforward computing,

1 127t
[7t

2
1 2]Co = - - - -(x-7t) dx

27t 0 6 2

= 7t
2

_ -.!.. [(X - 7t)3] 27t = 0
6 47t 3 0 '

and for n =1= 0:

(4.198)
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Fig. 4.5. The function f(x) and its derivative f(x)

en = J...1271

[71

2

- ~(x - 71)2] einx dx = -J...1271

(X _71)2e-inx dx
271 0 6 2 471 0

= _J... ([(X _71)2 e-:
nX

] 271 _1271

2(x _71)e-~nx dX)
471 -In 0 0 -In

= __1._1271

(x - 71) e- inx dx
271In 0

= __1. ([(X _71) e-~nX] 271 _1271
e-~nx dX)

271 In -In 0 0 -In

= - 2:in (~: -0) = - ~2 .

The Fourier series is uniformly convergent. Hence write

f(x) = f :; e
inx

.

n=-oo
n#O

By termwise differentiation,

00

J'(x) = L
n#O

00

i inx--e
n

f"(x) = L einx
.

n=-oo
n#O
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The following also holds:

f'(x) = -(x - 7t) ,
f"(x) = -1 ,
f" (x) = 27to(x) ,

or, more precisely:
00

0< x < 27t,
o< x < 27t, 27t < X < 47t ,
X =0, ±27t, ±47t, etc.,

f"(x) = -1 + L 27to(x - 27tj) .

j=-oo

Combining the two expressions for f"(x) gives (4.198).

Exercises

(4.199)

•

Exercise 4.1 Give a simple example of two stochastic processes having the
same first- and second-order moments but distinctly different realizations.

Exercise 4.2 Consider the transfer function operator

H (q) = I + H (qI - F) -1 K ,

and represent it in state space form as

x(t + 1) = Fx(t) + Ku(t) ,
y(t) = Hx(t) + u(t) .

Show that the inverse system from y(t) to u(t) can be represented as

x(t + 1) = (F - KH)x(t) + Ky(t) ,
u(t) = -Hx(t) + y(t) ,

and obtain (4.51), that is

H- 1(q) = 1- H(qI - F + KH)-1 K .

Exercise 4.3 Consider an ARMA process observed in uncorrelated noise:

q+0.5
y(t) = q _ 0.8 v(t) + e(t) ,

where v(t) and e(t) are uncorrelated white noise sequences with variances

Find the innovations form of y(t).

Exercise 4.4 Consider a first-order model

(p+a)y = e, E e(t)e(s) = rt5(t - s) .

Determine the variance of y in two ways:
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(a) by integrating the spectral density,
(b) by solving the Lyapunov equation.

Exercise 4.5 Consider the sampling of a state space model. Let the sampled
system be characterized by the state transition matrix F(h) and the noise
covariance matrix Rd(h) where h is the sampling interval. Prove the doubling
algorithm

F(2h) = F2 (h) ,

Rd(2h) = Rd(h) + F(h)Rd(h)FT(h) .

Exercise 4.6 Show that the following is a simple (but not necessarily com­
putationally efficient) way to compute a sampled system on state space form.
Set

A = (~ _~T) ,
Prove that

F = Fl1 ,

Exercise 4.7 Consider the continuous-time Lyapunov equation (4.91):

O=AP+PAT +Rc . (4.200)

(a) Show that the bilinear transformation (a is an arbitrary positive scalar)

F = (a1 - A)-I(A + aI) ,
Rd = 2a(a1 - A)-1 Rc(a1 - AT)-1

converts it into the discrete-time Lyapunov equation

P = FPFT + Rd,

that is, (4.200) and (4.202) have the same solution P.
(b) Verify that the inverse transformation (4.201) is given by

A = a(F - I) (1 + F)-I,

Rc = 2a(F + I)-I Rd(FT + I)-I.

(4.201)

(4.202)

Exercise 4.8 Consider a function

¢(z) = doz+d1 ,

z+a

where lal < 1. Determine for what values of do and d1 the function ¢(z) is
positive real.

(a) Use the methodology outlined in Section 4.6.1.
(b) Use the methodology outlined in Section 4.6.2.
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Exercise 4.9 Let y(t) be an AR(p) process

y(t) + a1y(t - 1) + ... + apy(t - p) = e(t) .

Assume that e(t) is zero mean, non-Gaussian white noise with E e3(t) = {3.
Show that the third-moment sequence of y(t), Ry(m, n), satisfies

p

Ry(-k, -l) +:L aiRy(i - k, i -l) = {3o(k, l)
i=1

for k ~ 0, l ~ O.

Exercise 4.10 Let y(t) be a stationary process with zero mean and bispec­
trum B(Z1, Z2). Prove that

1 f dZ2
27ti B(Z1,Z2)~ = tPy,y2(zd ,

where the integration is counterclockwise around the unit circle and tPy,y2(Z)
denotes the cross-spectrum between y(t) and y2(t).

Exercise 4.11 Consider an AR(2) process

y(t) + a1y(t - 1) + a2y(t - 2) =e(t), E e2(t) =,\2 .

(a) Determine its covariance function r(r) for r = 0,1,2 using the algorithm
of Section 4.8.1.

(b) Determine the same covariance elements by using the Yule-Walker equa­
tions in (4.30).

(c) Determine the same covariance elements by representing the process in
state space form and solving the Lyapunov equation.

Exercise 4.12 Use the algorithm of Section 4.8.2 to compute the cross­
covariance function between the two AR processes

1
y(t) = 1 1 e(t) ,

+aq-
1

w(t) = 1 e(t) .
1 +cq-

Exercise 4.13 Consider the second-order model

(p+a1)(p+a2)y(t) = e(t),

E e(t)e(s) = o(t - s) ,

where a1 :f. a2, a1 > 0, a2 > 0 .

(a) Represent the model in state space form.
(b) Determine its covariance function using the algorithm of Section 4.8.3.
(c) Use the state space form to determine its covariance function.
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Exercise 4.14 Consider the sampling of a first-order model

y+ ay =e -t y(t) + fy(t - h) =v(t) ,

E e(t)e(s) = rctS(t - s) E v2(t) = ,\2 .

(a) Determine f and ,\2 as functions of a and rc by using the state space
approach. Also find explicit forms for the spectral densities 4>c(w) and
4>d (eiw

).

(b) Determine f and ,\2 by using the algorithm of Section 4.8.4. Also deter­
mine ~c (s) and ~d (z) and verify the relations

2 Re ~c(iw) = 4>c(w) ,
2 Re ~d(eiWh) = 4>d(eiwh ) .

Exercise 4.15 Consider the acceleration algorithm (4.195) for solving the
Lyapunovequation (4.192). Introduce the error

Ek = P - Pk.

(a) Show that

Ek = p2
k
P(pTt .

(b) Show that Pk essentially converges quadratically in the sense that

II Ek II~ ek ,

where

c being a constant that depends on the original Lyapunov equation.

Exercise 4.16 Consider a state space model

x(t + 1) = Ax(t) + v(t) , (4.203)

where A E C, E v(t)v*(s) = RtSt,s, R E R, E v(t)vT(s) = O. Introduce the
vector

-(t) _ (Re X(t))
x - 1m x(t) .

Derive a stochastic real-valued state space model for x(t) of the form

x(t + 1) = Ax(t) + v(t) . (4.204)

Establish the links between the models in (4.203) and (4.204). Show how the
Lyapunov equations giving the state covariance matrices P = E x(t)x*(t)
and P = E x(t)x*(t) are related. Derive the Lyapunov equation for P from
the Lyapunov equation for P.
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Exercise 4.17 Consider the process

1 ( q2 - 2q q )
y(t) = q2 _ 0.5q + 0.5 -0.5q + 1 q2 _ 0.5q v(t) ,

where v(t) is white noise of zero mean and covariance matrix

Ev(t)vT(t) = (~~) .

(a) Show that the filter above is stable but that its inverse is unstable.
(b) Show that the system can be represented in state space form as

x(t + 1) = ( ~O~5 ~) x(t) + ( =~:~ ~) v(t) ,

y(t) = (~~) x(t) + (~~) v(t).

(c) Determine the innovations form for y(t).

Hint. The solution to the Riccati equation for the representation in (b)
has the form

P= (b~) .
Remark Reasons for the solution to have this form are asked for in Ex­
ercise 6.9. 0

Exercise 4.18 Consider the sampling of a state space model

x= Ax + e ~ x(t + h) = Fx(t) + v(t) ,
E e(t)eT(s) = Rco(t - s) E v(t)vT(s) = RdOt,s .

Consider the following approach for determining ~. The state covariance
matrix, P = E x(t)xT(t), must remain unchanged after the sampling. Then
first determine P by solving

AP+PAT +Rc=O.

with respect to P. Next determine Rd from

P=FPFT +~.

Is this a sound approach? In particular, examine what numerical accuracy
can be achieved.

Exercise 4.19 It is sometimes convenient to work with models where the
cross-covariance matrix R12 = O. It may under certain circumstances be
possible to convert a model



R(1) -I- 012 I ,

x(1)(t + 1) = p(1)x(1)(t) + v(1)(t) ,

y(t) = H(1)x(1)(t) +e(1)(t) ,

(
V(1)(t)) (R(1)R(1))

cov e(1)(t) = Rh) R~r) ,

into another model
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(4.205)

(4.206)

X(2)(t + 1) = p(2)X(2)(t) +V(2)(t) ,

y(t) = H(2)X(2)(t) + e(2)(t) ,

(
V(2)(t)) (R(2) 0 )

cov e(2)(t) = ~ R~2) .

(a) Take X(2)(t) as an extension of x(1)(t); more precisely

x(2)(t) = (x(1)(t)).
e(1)(t)

Show that this leads to a model of the form in (4.206) and give p(2), H(Z),

R~2), R~Z), V(2)(t), e(2)(t).

(b) Consider a scalar case (n = 1) with

p(1) = 0.8, H(1) = 1, R~I) = 0.25, R~~) = 0.5, R~I) = 1 .

Show by construction that there exists a first-order model of the form in
(4.206) that preserves the spectrum [in the sense <py(l)(z) == <Py(2) (z)].

(c) Consider an MA(l) process

y(t) = e(t) +ce(t - 1) ,

which may be represented in the form in (4.205) with

p(l) = 0, H(1) = 1, R~I) = c2, RW = c, R~I) = 1 .

Show that there does not exist any first-order model of the form in (4.206)
that can represent the process.

Exercise 4.20 Consider a sequence {r(k)}~o satisfying r(k) = (-a)k-I r(l),
k 2 1, lal < 1. Under what conditions on r(O) and r(l) will {r(k)}k'=o be a
covariance sequence?

Exercise 4.21 Reconsider Example 4.10. Assume that the third-order se­
quence elements R(m, n) are given for 0 :S n :S m :S 2. Is it possible to derive
uniquely from these elements the model parameters ho, hI, hz, (3 of the model

y(t) = hoe(t) + hIe(t - 1) + hze(t - 2) ,

Ee3(t)=(3?

If not, explain what ambiguity remains. It can be assumed that y(t) is gen­
erated by such an MA(2) process, with unknown parameters.



(4.207)
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Exercise 4.22 Consider the filtering
00

y(t) = LgkU(t - k) ,
k=O

where u(t) is a stationary process and G(q) = Ego gkq-k is an asymptotically
stable filter. It is a priori not obvious that the infinite sum in (4.207) exists.
Use convergence in mean square and set

n

Yn(t) = L gkU(t - k) .
k=O

It is said that Yn(t) -t y(t) in mean square if E II Yn(t) - y(t) 11 2-t 0 as
n-t 00. It can be proved that this is the case if Yn(t) is a Cauchy sequence,
that is, if it satisfies

E II Yn(t) - Ym(t) 11 2 -t 0, as min(m, n)-t 00 . (4.208)

Prove that under the given assumptions the condition in (4.208) is satisfied.

Exercise 4.23 Consider the AR process

y(t) - ay(t - 1) =e(t) , lal < 1,

where {e(t)} forms a sequence of independent random variables with zero
mean and moments E [e(t)]k = 13k, 133 :f; 0:

(a) Find the third-order moment

R(-f.L , -v) = E y(t)y(t - f.L)y(t - v)

for 0 ~ f.L ~ v, f.L + v> O.
(b) Prove explicitly that (cf. Exercise 4.9)

R( -f.L ,-v) - aR(1 - f.L ,1 - v) =0 .

(c) Consider the estimation of a from "measured" data y(I), ... ,y(N) by
the Yule-Walker equation

r(f.L) - ar(f.L - 1) = 0 , f.L > 0 ,

where

1 N
r(f.L) = N Ly(t)y(t + f.L) .

t=l

Determine the asymptotic variance of a as N -t 00. How is the result
influenced by f.L? In particular, how should f.L be chosen to make the vari­
ance small?

Hint. It holds that r(f.L) -t r(f.L), as N -t 00. Hence:
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a_a = f (J.t) _ a ::::J -.:f(:.:....J.t:...-)_-_a-.:f(:.:....J.t,.--_1....:..)
f(J.t-1) r(J.t-1)

lIN
= r( - 1) N 2: e(t)y(t - J.t) .

J.t t=l

(d) Consider the estimation of a using the equation, cf. (b):

Here

R( -J.t ,-1/) - aR(l - J.t, 1 - 1/) = 0 , (0 < J.t S 1/) .

1 N
R( -J.t ,-1/) = N 2: y(t)y(t + J.t)y(t - 1/) .

t=l

Determine the asymptotic (N -+ 00) variance of a. How is it influenced
by J.t and I/? In particular, how should J.t and 1/ be chosen to make the
variance small?

Hint. It holds that R( -J.t ,-1/) -+ R(-J.t, -1/) as N -+ 00.

(e) Compare the variances achieved in parts (c) and (d). Is one of them
uniformly better than the other?

Exercise 4.24 Examine the possibilities to extend the Yule-Walker equa­
tion approach to compute the covariance function of a complex-valued AR
process.

Exercise 4.25 Consider the ARE with

(
-a 1)

F = 0 0 '

H=(10),

where c2 :j:. 1.

(a) Determine all symmetric solutions.
(b) Show that one solution (which one?) is largest in the sense expressed in

(4.58).
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5. Optimal Estimation

5.1 Introduction

In this chapter, the basis for optimal estimation methods is presented. By
an optimal estimate we mean one that gives as small an error as possible. In
many cases it is appropriate to measure the goodness of an estimate by the
estimation error variance.

The initial sections cope with the problem of how to extract information
about one stochastic variable, say x, when only another variable, say y, that
is correlated with x, is available. In Secton 5.4 we discuss how the approaches
and results can be used for estimating the states of a dynamic system when
only, possibly noisy, measurements of the output are available. The case of
Gaussian distributions is dealt with in much more detail in Chapter 6. The
reason is twofold. First, it is often relevant to assume that errors are Gaussian
distributed. Secondly, the assumption of Gaussian distributed disturbance
eases the computational burden considerably in finding the optimal estimate.

More detailed results on the optimal estimation of dynamic systems will
be given in the following two chapters. Chapter 6 deals with state space
models, and transfer function models are treated in Chapter 7 using polyno­
mial methods. Some comparisons are offered in Chapter 8, and suboptimal
solutions and approaches are presented in Chapter 9.

5.2 The Conditional Mean

In this section, we address the problem of how to estimate the value of a
vector x when another vector y, correlated to x, is observed. Both x and y
are assumed to be real-valued. In Section 2.3 it was shown that the conditional
mean is a natural estimate. In fact, under weak conditions, the best (Le. the
optimal) estimate is the conditional (or a posteriori) mean

(5.1)

Recall that this is given by

T. Söderström, Discrete-time Stochastic System
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E [xly] = i: xp(xly) dx

= !Xp(X,y) dx
p(y)

f xp(x,y) dx
- fp(x,y)dx '

where p(xly) is the conditional pdf of x, given Yi p(x, y) is the joint pdf of x
and Yj and p(y) is the pdf of y.

In order to formulate the optimization problem, consider the following,
matrix-valued, criterion:

Q(f(y)) = E [(x - f(y)) (x - f(y))T Iy] , (5.3)

where f(y) is an arbitrary estimate of x. It is, of course, a function of the
observation y. It apparently holds that

E [f(y)ly] = f(y) . (5.4)

By an optimal estimate of x is meant a function f (y) that makes the crite­
rion Q "as small as possible". What is meant by this for the matrix-valued
criterion Q is stated in the following lemma.

Lemma 5.1 The optimal estimate that minimizes any scalar-valued, mono­
tonically increasing function of Q (5.3) is the conditional mean x = E [xly].

Proof We find, using (5.1)

Q(f(y)) = E [xxT - f(y)xT - xfT(y) + f(y)fT(y)ly]

= E [xxTly] - f(y)xT - xfT(y) + f(y)fT(y)

= E [(x - x)(x - xfly] + (x - f(y))(x - f(y)f

=Q(x) + (x - f(y))(x - f(y)f 2: Q(x) . (5.5)

Hence, it can be concluded that the conditional mean x is the optimal esti­
m~~ •

Remark Examples of "scalar-valued, monotonically increasing functions of
Q" are det(Q), tr (Q), and tr (WQ) with W a positive definite weighting ma­
trix. 0

The conditional mean turns out to be optimal even under partly weaker
conditions than those in Lemma 5.1.

Lemma 5.2 Consider the criterion of the form

Q(f(y)) = E [i(x - f(y))ly] . (5.6)
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and make the following assumptions:

(a) The function f(x) is symmetric (f( -x) = f(x)) and increasing for x> O.
(b) The conditional pdf p(xly) is symmetric around the conditional mean

x =Jxp(xly) dx .

(c) The conditional pdf p(xly) is decreasing for x> X.

Then the conditional mean x is optimal in the sense that it minimizes the
criterion in (5.6).

Proof In order to prove this statement, Lemma 5.4 of the appendix (Section
5.A) will be used. Take

h(x) =p(x + xly) , g(x) = f(x) ,

which gives (set t = x - x)

Q(f(y)) = E [f(x - f(y))ly] =i: f(x - f(y))p(xly) dx

=i: f(t + x - f(y))p(t + xly) dt

=i: g(t + x - f(y))h(t) dt

~ i: g(t)h(t) dt =i: f(x - x)p(xly) dx = Q(x) .

The minimum of the criterion given in (5.6) is hence achieved by the condi­
tional mean of (5.1). •

Recall that, in Section 2.4 it was shown that for jointly Gaussian dis­
tributed random variables the conditional mean is also Gaussian distributed.

An example is now presented where the assumptions of the two lemmas
are violated, and x happens not to be the optimal estimate.

Example 5.1 Let x be a scalar and consider the criterion

Q(f(y)) = E [Ix - f(y)lIy] .

Find the estimate f(y) that minimizes this function. Apparently:

Q(f(y)) =i: Ix - f(y)lp(xly) dx

= rf(Y) [/(y) _ x]p(xly) dx + /00 [x - f(y)]p(xly) dx .
J-00 f(y)

Now, recall the formula (Leibnitz' rule)

(5.7)
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Applying this formula gives

dQ jf(y) JOO
df = p(xly) dx - p(xly) dx ,

-00 f(y)

d2Q
dJ2 = 2p(f(y)ly) > 0 .

Hence the optimal estimate is characterized by

j f(Y) JOO
p(xly) dx = p(xly) dx ,

-00 f(y)

which means that f(y), the optimal estimate of x, is the median of the condi­
tional pdf p(xly). If this pdf is nonsymmetric, the conditional median differs
from the conditional mean x. 0

Note that the result is not in conflict with Lemmas 5.1 and 5.2. The
criterion in (5.7) differs from that of Lemma 5.1. Condition (b) of Lemma
5.2 is violated in this example.

5.3 The Linear Least Mean Square Estimate

As shown in Section 5.2, the conditional mean is, under weak assumptions,
the mean square optimal estimate. It is fairly complicated to use for dy­
namic systems, as will be shown later in Section 5.4. There is an important
exception, however: linear systems with Gaussian distributed disturbances.

There is thus a motivation for some simpler estimates. Restricting the
analysis to consider linear estimates, the problem becomes much easier to
handle. The corresponding estimate is sometimes called the linear least mean
square (LLMS) estimate. It turns out to be identical to the conditional mean
for Gaussian random variables.

The LLMS estimate is easy to derive. Let x and y be complex-valued.
Postulate an estimate of x to be affine, that is, of the form

x = Ay+b, (5.8)

and find the matrix A and the vector b so as to minimize any appropriate
scalar measure of the error covariance matrix. Note that xwill then no longer
(except for special cases) denote the conditional mean, but, rather, just some
estimate.
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Lemma 5.3 Assume that x and yare correlated and

E x = mx , E y = my ,

E (: =::)(x* - m; y* - m;) = (;yXX ~: ) ,
with Ry being nonsingular. The linear estimate of the form

x= Ay + b,

that minimizes

J = E (x - x)(x - x)* ,

(5.9)

(5.10)

in the sense J - Jrnin nonnegative definite, is given by

I hLMS =m. + R.,R;'(y ~ my) . (5.11)

The minimal value is

min J = Rx - RxyR;l Ryx . (5.12)

The estimation error x - XLLMS is orthogonal to y in the sense that

E (x - XLLMS)Y* = 0 . (5.13)

Proof Using standard rules for the expected value of a quadratic form, one
obtains

J = E (x - Ay - b)(x - Ay - b)*

=(mx - Amy - b)(mx - Amy - b)*

+(1 _A)(RxRxy)(_I*)
Ryx Ry A

= (mx - Amy - b)(mx - Amy - b)*

+(Rx - ARyx - RxyA* + ARyA*)

= (mx - Amy - b)(mx - Amy - b)*

+(A - RxyR;l)Ry(A - RxyR;l)*

+(Rx - RxyR;l R yx ) .

We find that

J ~ Rx - RxyR;l R yx ,

and that J is minimized by the choice A = RxyR1/, b = mx - Amy. Hence
the LLMS estimate is

hLMS = mx + RxyR;l(y - my) ,
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x Ii

XLLMS Y

Fig. 5.1. Geometrical illustration of the LLMS estimate

which is (5.11). The estimation error x= x - XLLMS is uncorrelated to "the
measurements" y, as the following calculations show:

E [x - XLLMS]Y* = E [(x - mx) - Rxy R;l(y - my)]Y*

=Rxy - RxyR;l Ry = 0 ,

which proves (5.13). •
The geometric interpretation is that the best estimate of x given Y is the

orthogonal projection of x on y. The random variables are then regarded as
elements of a Hilbert space. The scalar product of x and Y is then chosen as

<xly>= E (x - mx)*(Y - my) .

Hence, two variables are orthogonal precisely when they are uncorrelated.
The optimal linear estimate of x is illustrated in Figure 5.1.
Intuitively, it is clear that the estimation error x has minimum amplitude

J<xlx> = JE II x 11 2 precisely when it is perpendicular (i.e. orthogonal)
to the vector y.

5.4 Propagation of the Conditional Probability Density
Function

Consider a nonlinear stochastic system of the form

x(t + 1) = f(x(t), v(t)) ,

y(t) = h(x(t» + e(t) ,

(5.14)

(5.15)

where v(t) and e(t) are mutually independent white noise sequences of zero
mean. From Section 5.2 it is known that, under mild conditions, the mean
square optimal state estimate is
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x(t) = E [x(t)lYt] , (5.16)

where yt denotes all the available measurements at time t, that is:

(5.17)

It is desirable to find some recursive formula for the state estimate of
(5.16). For that purpose, it is first necessary to find a recursion for the con­
ditional pdf p(x(t)lYt). Using Bayes' rule, one finds that

p(x(t + 1), y(t + l)lYt) =p(x(t + 1)ly(t + 1), yt)p(y(t + l)lyt) (5.18)

=p(y(t + l)lx(t + 1), yt)p(x(t + l)lyt) . (5.19)

As (5.15) is free from any dynamics and e(t + 1) is white, and in particular
independent of yt, it is found that

p(y(t + 1)lx(t + 1), yt) = p(y(t + l)lx(t + 1)) , (5.20)

and hence, by (5.18) and (5.19)

p(x(t + l)lY t+l) = p(y(t + l)lx(t + 1)) p(x(t + l)lyt) . (5.21)
p(y(t + l)lyt)

Now recall (2.14), which is rewritten in the form

p(x(t + 1)) =f p(x(t + l)lx(t))p(x(t)) dx(t) . (5.22)

All the pdfs in (5.22) can be conditioned on yt, see Exercise 2.6. Hence,
owing to (5.14) and the fact that v(t) is white:

p(x(t + l)lyt) =f p(x(t + 1)lx(t), yt)p(x(t)lyt) dx(t)

=f p(x(t + 1)lx(t))p(x(t)lyt) dx(t) . (5.23)

Combining (5.21) and (5.23) gives

p(x(t + 1)lyt+l) = p(y(t + 1)lx(t + 1))
p(y(t + 1)lyt) (5.24)

xf p(x(t + 1) Ix(t))p(x(t)IYt)dx(t) .

Note that (5.24) gives a relation for how the conditional pdf propagates from
p(x(t)lYt) to p(x(t + l)lyHl). The properties of the state equation Ie" )
enters through the factor p(x(t+ l)lx(t)), and p(y(t+ l)lx(t+ 1)) reflects the
measurement function h('). Finally, the denominator p(y(t + l)lyt) can be
viewed as a normalizing factor that ensures the left-hand side of (5.24) is a
pdf (and integrates to unity).

The denominator of (5.24) can be written as (use Bayes' rule and recall
the assumption that v(t) is white)
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p(y(t + 1)lyt) = !!p(y(t + 1)lx(t + 1), x(t), yt)p(x(t + 1)lx(t), yt)

xp(x(t)lyt) dx(t) dx(t + 1)

=! ! p(y(t + 1)lx(t + 1))p(x(t + 1)lx(t))

xp(x(t)lyt) dx(t) dx(t + 1) . (5.25)

To summarize so far, it has been found that the conditional pdf propagates
as

p(x(t + 1)lytH)

f p(y(t + 1)lx(t + 1))p(x(t + 1)lx(t))p(x(t)lYt) dx(t)
f f p(y(t + 1)lx(t + 1))p(x(t + 1)lx(t))p(x(t)lyt) dx(t) dx(t + 1) . (5.26)

Equation (5.26), or, equivalently, (5.24), describes how p(x(t)lyt) propa­
gates to p(x(t + 1)lyt+l) as time increases from t to t + 1. As it stands, it
is not very practical. To evaluate all the pdfs involved in (5.26) requires a
huge amount of computation. One therefore has to resort to special cases or
approximations.

For linear systems with Gaussian disturbances

x(t + 1) = Fx(t) + v(t) ,
y(t) = Hx(t) + e(t) ,

(5.27)

the propagation equations have a much simpler form. All the conditional
pdfs will then be Gaussian. As will be seen in Section 6.3, the conditional
mean and covariance matrix then propagates according to the Kalman filter
equations.

5.5 Relation to Maximum Likelihood Estimation

The maximum likelihood (ML) principle is a powerful statistical tool. ML
estimates have strong statistical properties under mild conditions, such as
minimal variance and consistency (convergence to the "true" values when
the number of observations grows to infinity).

Let y be a stochastic variable whose distribution depends on an unknown
vector O. Assume that y is observed. The likelihood function L(O) is the pdf
of y given 0, evaluated using the observations

L(O) = p(yIO) . (5.28)

The ML estimate of 0 is the argument that maximizes the likelihood function

OML = argmaxL(O) .
()

(5.29)

Hence, OML is the 0 value that makes the a posteriori probability (likelihood)
of the observations as large as possible.
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ML estimates are often difficult to calculate analytically in non-Gaussian
cases. In the Gaussian case, though, the problem often becomes more tractable
for linear systems.

Consider the special case of a linear dynamic system

x(t + 1) = Fx(t) + v(t) ,
y(t) = Hx(t) + e(t) ,

where x(O), v(t) and e(t) are independent Gaussian random vectors with
means mo, 0 and 0, respectively, and covariance matrices Ro, R1 and R2

respectively. Assume, for simplicity, that all these covariance matrices are
positive definite.

Consider the problem of estimating the states

X N= (X~O) )
x(N)

from the measurements

The ML estimate of X N given Y N is maximizing the pdf

(yNIXN) = p(yN,X
N

)
P p(XN)

In case the denominator p(X N ) can be neglected here, we should maximize
the joint pdf p(yN , X N). This is otherwise an approximation of the (true)
ML estimate.

Another interpretation of maximizing p(X N , Y N) is to consider the max­
imum a posteriori (MAP) estimate, which is defined as the maximizing ar­
gument of the conditional pdf p(XNIYN). Note that

XraAP = arg maxp(XNIYN )
XN

p(XN, yN)
= arg ~~ p(yN)

= arg maxp(X N
, yN) , (5.31)

XN

as the marginal pdf p(yN) does not depend on XN. In what follows we will
examine the estimate in (5.31) more closely.

First, note that there are transformations

yN f----+ X N, EN ,

X N
f----+ x(O), V N

,
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where

V N = (V~l) )
v(N)

Noting that x(O), V N and EN are independent:

p(yN,XN) =p(x(O))p(VN)p(EN) . (5.32)

It is therefore found that the MAP state estimates should maximize

J = 1(X(0); mo, 110) [IT 1(V(t);x(. + 1) - Fx('), RI)]

x [y 1(e(t);y(t) - HX(.),R2)] , (5.33)

where ')'(x; m, P) is the pdf of a vector-valued Gaussian random variable

( 1 (1 T -1 ])')'x;m,P)= (27t)n/2(detP)l/2exp -2[x-m] P [x-m .(5.34)

Hence,
1 _

logJ = -2[x(O) - mofRO 1[x(O) - mol

-~I:[x(t + 1) - Fx(t)fR11 [x(t + 1) - Fx(t)]
t=O

1 N
-2 I)y(t) - Hx(t)fR21[y(t) - Hx(t)]

t=1

1
-2Iog[(27t)n det Ro]

N N
-2Iog[(27tt det Rd - 2Iog[(27t)ny det R2 ] . (5.35)

To maximize the function J with respect to {x(O), . .. , x(N)} is thus the same
as minimizing the criterion

1
VN = 2[x(O) - mofR01 [x(O) - mol

1 N-1

+2 L [x(t + 1) - Fx(t)]TR11 [x(t +1) - Fx(t)]
t=o

1 N
+2 L[y(t) - Hx(t)]TR21[y(t) - Hx(t)] . (5.36)

t=1

This minimization problem will be examined in some detail in Section 6.6.
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5.A Appendix. A Lemma for Optimality of the
Conditional Mean

Lemma 5.4 Let g(x) and h(x) be two integrable, real-valued, positive symmetric
functions, such that g(x) increases for x ~ 0, h(x) decreases for x ~ o. ThenI: g(x+a)h(x)dx ~ I: g(x)h(x)dx,

provided the integrals exist.

Proof Assume that the integrals exist, and that a > O. ThenI: [g(x + a)h(x) - g(x)h(x)]dx

= 1:/2[g(X + a) - g(x)]h(x)dx + 1~/2[g(X + a) - g(x)]h(x)dx

= joo[g(X _ a) _ g(x)]h(x)dx + joo[g(X) - g(x - a)]h(x - a)dx
a/2 a/2

= joo [g(x) _ g(x _ a)][h(x - a) - h(x)) dx .
a/2

For a/2 S x Sa, g(x) - g(x - a) =g(x) - g(a - x) ~ O.
For x ~ a , g(x) - g(x - a) ~ 0 .
For x~a/2, h(x-a)-h(x)~O.

(5.37)

Hence, the integrand above is positive, which proves the lemma for the case where
a> O.

To complete the proof that (5.37) also holds for negative a, let a > 0 and make
the substitutions

gl(Y) = -h(y) ,

These functions satisfy the assumptions. Further:

l:g(x-a)h(x)dx= l:g(x)h(x+a)dx= I: h1(y)gl(y+a)dy

~ I: h1(y)gl(y)dy

= I: g(x)h(x)dx. •
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Exercises

Exercise 5.1 Let x '" N(mx , Rx ) and e '" N(O, Re ) be independent Gaus­
sian random vectors. Suppose one observes

y =Cx+e.

Determine the mean square optimal estimate of x based on the observation
y. What is the variance of the estimate?

Exercise 5.2 Let x and v be random vectors and jointly Gaussian dis­
tributed:

and set

y=Ax+v.

Assume that dim y ~ dim x and that A has full (column) rank.

(a) What is the conditional distribution of (xly)? Find the conditional mean
x and the conditional covariance matrix P.

(b) Suppose Rv = .x21 and that the a priori information of x is inaccurate, so
that Rx / .x2 -+ 00 (or .x2R;1 -+ 0). What expressions are then obtained
for x and P?

(c) Generalize the situation in (b) to correlated v (Rv nondiagonal) but
R;l -+ O.

Hint. For rectangular matrices of compatible dimensions

A(I + BA)-l = (1 + AB)-l A

holds.
(d) Apply the result of (b) to the following situation. Consider the first-order

system

x(t + 1) = ax(t) + bu(t) + v(t) ,

where a is known, x(t) is measurable, and v(t) is Gaussian white noise of
zero mean and variance .x2 . Let b be Gaussian but let its variance tend
to infinity. Find

E [bIX t
] and var[bIX t

].

Compare with the theory of linear regression.

Exercise 5.3 Let x be a uniformly distributed random variable, with pdf

f() {
l,O<X<l,

x x = 0, eh;wh-;re.
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(a) Assume that neither measurements nor any further information are avail­
able. What is the best estimate of x in a mean square sense? (That is,
determine a number XMS so that E (XMS - x)2 is minimal.)

In what follows assume that a noisy measurement is available as

y=x+v,

where v is noise with a uniform distribution:

f (v) = { 1/(2r) , Ivl:S r ,
v 0 , elsewhere.

The variables x and v are independent, and 0 < r :S 0.5.

(b) Find the conditional mean E [xly].
(c) Find the LLMS estimate of x.
(d) Illustrate graphically how the estimates in (a)-(c) depend on y and r.
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6. Optimal State Estimation for Linear
Systems

6.1 Introduction

The general state estimation problem for linear systems is formulated and
discussed in this section.

Consider the state space model

x(t + 1) = Fx(t) + Gu(t) + v(t) ,
y(t) = Hx(t) + e(t) ,

(6.1)

(6.2)

where v(t) and e(t) are white noise sequences with zero mean and covariance
matrix

E (~m) (v*(s) e*(s)) = (~ll !J;22) bt,s .

At time t, the available information is

yt = {yT(t), uT(t), yT(t -1),uT(t -1), ... ,yT(to),uT(tO)}T .

Now find the optimal state estimate of x(t) given the measurements ys.
Based on the relations between t and s, one can distinguish three cases:

• If t > s, it is a prediction problem.
• If t = s, it is a jiltering problem.
• If t < s, it is a smoothing (or interpolation) problem.

The optimal estimate of x(t) will be denoted by x(tls). The covariance
matrix of the estimation error will be denoted by

P(tls) = E [x(t) - x(tls)](x(t) - x(tls)]* . (6.3)

Assume that the input signal to the system is either a known deterministic
signal, or that it is determined by a feedback in such a way that u(t) is
completely determined from ys.

The optimal state estimation can be derived under some additional as­
sumptions. Two different approaches will be considered:

• Section 6.2 is devoted to a study of the linear least mean square (LLMS)
filter. Then the system is allowed to be complex-valued. Lemma 5.3 will
be an important tool in the derivation.

T. Söderström, Discrete-time Stochastic System
© Springer-Verlag London 2002
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• In Section 6.3, it will be assumed that the state space model is real-valued
and that the noise sequences are Gaussian. It is known from Lemmas 5.1
and 5.2 that the optimal estimate is the conditional mean

x(tls) = E [x(t)IY S
] •

The results of Sections 5.3 and 5.4 will be used to derive the optimal state
estimates.

The two approaches will lead to the same filter, known as the Kalman
filter. This is not surprising, as it is already known from Chapter 5 that the
LLMS estimate coincides with the conditional mean for Gaussian distributed
data.

Some further results related to the prediction and filtering cases will be
given in Section 6.4, and smoothing is discussed in Section 6.5.

6.2 The Linear Least Mean Square One-Step Prediction
and Filter Estimates

Consider now the system of (6.1) for the one-step prediction case, that is,
t = s + 1. Find the LLMS estimate. Assume that an initial state estimate
x(tolto - 1) and its covariance matrix

R(to) = E [x(to) - x(tolto - l)][x(to) - x(tolto - 1)]*

are available, and that x(tolto-l) is independent of the noise sequences {e(tn,
{v(tn. The initial estimate and its covariance may be chosen as the mean, if
known, of the initial value x(to) and its covariance matrix respectively.

Introduce the output innovations {y(tn as the one-step prediction errors

I y(t) = y(t) - y(tlt - 1) .

The term "innovation" reflects that y(t) is the new piece of information in
y(t) that was not known at time t - 1. It follows from Lemma 5.3 that the
{Y(t)} is a sequence of uncorrelated random variables. It can also be noted
that there is a 1-1 transformation between {y(t)} and {y(t)}. Utilizing this
transformation, the conditional expectations E [x(t)lyt] and E [x(t)IYt] will,
therefore, be the same.

As e(t) is uncorrelated with yt-l,

y(tlt - 1) = Hx(tlt - 1) .

Now set

A(t)~Ey(t)y*(t) .

(6.5)

(6.6)
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In what follows, notation such as Rx(t)Yt will be used to denote the co­
variance matrix between the state x(t) and the collected observations yt.
This will follow the notational conventions of Chapter 2 and Section 5.3.

The input signal u(t) will be regarded as known and deterministic. It will
then playa role corresponding to the mean values of Section 5.3. Further, the
observation that {y(t)} and {y(t)} have the same span can be reformulated
as that there exists a nonsingular matrix Qo and a vector ql such that

t - tY = QoY +ql, (6.7)

where

(6.8)

The vector ql will be the mean value of yt. See also Exercise 6.18 for more
details.

It may be said that yt carries the same information as yt and hence one
can equivalently base the estimate of x( t + 1) on yt instead of yt. The main
advantage of using yt is that the components (the individual y(t) values)
are uncorrelated. Hence, Ryt will be block-diagonal, which will simplify the
final results considerably. In order to see the details, apply Lemma 5.3. The
deterministic input will give the mean value contribution. Proceeding in this
way:

x(t + lit) = E x(t + 1) + Rx(t+!)ytRy;[yt - E yt)

= E x(t + 1)

+cov[x(t + 1), Qoyt + ql)[E {QoytyhQ(j}r 1[Qoyt)

= E x(t + 1) + cov[x(t + 1), yt)[E ytyt*r1yt
t

= E x(t + 1) + L [E x(t + I)y*(s)]A- 1(s)y(s) . (6.9)
8=tO

Next, set

K(t) ~ RX (t+l)!i(t)A- 1 (t) ,

and observe that

1. E x(t + 1) = FE x(t) + Gu(t) .
2. v(t) is uncorrelated with y(s) for s < t.

This gives

x(t + lit) = FE x(t) + Gu(t) + K(t)y(t)
t-l

+ ~)E x(t + I)y*(s))A- 1(s)Y(s)
8=to

=FE x(t) + Gu(t) + K(t)y(t)

(6.10)
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t-l

+ L E ([Fx(t) + Gu(t) + V(t)]Y*(s)}A-1(s)y(S)
s=to

= GU(t) + K(t)y(t)
t-l

+F[E x(t) + L [E x(t)Y*(S)]A-l (s)y(s)]
s=to

=Fx(tlt - 1) + Gu(t) + K(t)[y(t) - Hx(tlt - 1)] . (6.11)

Set

x(t) = x(t) - x(tlt - 1) .

Hence (see (6.3)),

P(tlt - 1) = E x(t)x* (t) .

As

yet) = yet) - y(tlt - 1)

=Hx(t) + e(t) - Hx(tlt - 1)

=Hx(t) + e(t) ,

and x(t) and e(t) are uncorrelated, it follows that

A(t) = H P(tlt - I)H* + R2 .

(6.12)

(6.13)

(6.14)

Next the remaining part of the gain K(t) must be evaluated. Recall from
Lemma 5.3 that x(t) and x(tlt - 1) are uncorrelated. Hence

E x(t + l)y*(t) = E [Fx(t) + Gu(t) + v(t)][x*(t)H* + e*(t)]

= E [Fx(t)x*(t)H*] + E [v(t)e*(t)]

= E F[x(t) + x(tlt - 1)]x*(t)H* + R12
=FP(tlt - I)H* + R12 . (6.15)

It remains to derive an equation for the state prediction error covariance
matrix P(tlt - 1). To do so, first establish a difference equation for the error
x(t):

x(t + 1) = Fx(t) + Gu(t) + vet) - [Fx(tlt - 1) + Gu(t) + K(t)y(t)]

= Fx(t) + vet) - K(t)y(t) . (6.16)

Next, observe

Ex(t)v*(t) = 0,

E x(t)jj*(t) = E x(t)[x*(t)H* + e*(t)] = P(tlt - I)H* , (6.17)
Ev(t)Y*(t) = Ev(t)[x*(t)H* +e*(t)] = R12 ,

from which one obtains
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P(t + lit) = E x(t + l)x*(t + 1)

= E [Fx(t) +v(t) - K(t)y(t)][Fx(t) +v(t) - K(t)y(t)]*

=FP(tlt -l)F* - FP(tlt -l)H*K*(t) + R1
-R12K*(t) - K(t)HP(tlt - l)F* - K(t)R21
+K(t)A(t)K*(t)

=FP(tlt - l)F* +R1 - [FP(tlt - l)H* +R12 ]K*(t)

-K(t)[HP(tlt - l)F* +R2d +K(t)A(t)K*(t) .

Inserting (6.10), (6.14) and (6.15) finally gives the Riccati equation

P(t + lit) = FP(t\t - l)F* + R1 - [FP(tlt - l)H* +R12 ]

x[HP(tlt - l)H* + R2t 1[HP(tlt - l)F* + R21 ] . (6.18)

The predictor is to be initialized at time to. An initial estimate x(to Ito -1)
was assumed available. Further, P(tolto - 1) =R(to).

Next, the LLMS filter estimate of x(t) given yt is derived. One can pro­
ceed along the same lines as before and obtain

x(tlt) = E x(t) + Rx(t)ytRyUyt - E yt]

= E x(t) + cov[x(t), Qoyt +q1][QoE ytyhQ(jt1Qoyt
t

= E x(t) + L [E x(t)y*(s)]A-1(s)Y(s)
s=to

t-1

= E x(t) + L [E x(t)Y*(s)]A-1(s)y(s)
s=to

+[E x(t)y* (t)]A -1 (t)y( t)

~ x(tlt - 1) + Kr(t)y(t)

= x(tlt - 1) + Kf(t)[y(t) - Hx(tlt - 1)] ,

where the filter gain Kr(t) can be evaluated as follows:

Kr(t) = Ex(t)y*(t)A-1(t)

= [E {x(t) + x(tlt - l)}{Hx(t) + e(t)}*]A-1(t)

=P(tlt - l)H* A-1(t) . (6.20)

It remains to find the filter covariance P(tlt). Note that, from (6.19):

x(t) - x(tlt) = x(t) - Kr(t)y(t) ,

and (6.17) gives the correlation between x(t) and y(t). Hence:

P(tlt) = E [x(t) - x(tlt)][x(t) - x(tlt)]*

=P(tlt - 1) +Kr(t)A(t)K;(t)

-P(tlt - l)H* K;(t) - Kr(t)HP(tlt -1)
= P(tlt - 1) - P(tlt - 1)H*A-I H P(tlt - 1)
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= P(tlt - 1)

-P(tlt - I)H*[HP(tlt - I)H* + R2t 1HP(tlt - 1) . (6.21)

Summing up, the following result has been derived.

Lemma 6.1 Consider the state space model

x(t + 1) = Fx(t) +Gu(t) +v(t) ,
y(t) = Hx(t) + e(t) ,

E (~~~D (v*(s) e*(s)) = (~ll ~22 )6t ,8

E x(to) = mo , cov(x(to)) = Ro .

The LLMB prediction estimate is

x(t + lit) = Fx(tlt - 1) +Gu(t)
+K(t)[y(t) - Hx(tlt - 1)] ,

x(tolto - 1) = mo ,

and the LLMB filter estimate is

x(tlt) = x(tlt - 1) + Kf(t)[y(t) - Hx(tlt - 1)].

The predictor and the filter gains are

K(t) = [FP(tlt - I)H* + RdA-l(t) ,
Kf(t) = P(tlt - I)H* A-1(t) ,

where

A(t) = HP{tlt - l)H* + R2 ,
P{t + lit) = FP{tlt - I)F* + R1

-K(t)[R21 + HP{tlt -I)F*] ,
P(tolto - 1) = Ro .

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

These matrices relate to the accuracy of the estimates in the following way:

cov[i(t + lit)] = P(t + lit) ,

cov[i(tlt)] = P(tlt - 1) - Kf(t)HP(tlt - 1) , (6.27)

cov[y(t) - Hx(tlt - 1)] = A(t) .

•
The optimal state estimators are now illustrated by two simple examples.
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Example 6.1 Consider the estimation of a constant from noisy and indepen­
dent measurements. The following model is used to describe this situation:

x(t + 1) = x(t) , [= x(O)]

y(t) = x(t) + e(t) , E e2(t) = r2 .

Suppose the a priori information about x(O) is given as an N(xo, Ro) distri­
bution. Find the optimal estimate of x(O) given the measurements y(O), ... ,
y(t). As the state is constant, identical results are obtained whether one looks
for the optimal predictor x(t + lit) or the optimal filter estimate x(tlt).

The Riccati equation (6.18) simplifies in this case to

P(OI-I) = Ro .

p 2 (tJt - 1)
P(t + lit) = P(tlt - 1) - P( I 1)t t - + r2

_ P(tlt - I)r2
- P(tlt-I)+r2'

Inverting this gives a linear relationship

1
P- 1(t + lit) = - + p-1(tlt - 1) ,

r2

Ro
(t+I)Ro+r2'

The optimal predictor estimate can now be written as (see (6.23))

x(t + lit) = x(tlt - 1) + (I~ [y(t) - x(tlt - 1)] .
t + 0 + r2

which is easy to solve. It can readily be found that

P- 1(tlt _ 1) =~ +P-1 (OI-I) = tRo + r2 ,
r2 r2Ro

so (6.25) implies that

K t _ P(tlt - 1)
()- P(tlt-I)+r2

To simplify this recursion, introduce

z(t) ~ (tRo + r2)x(tlt - 1) .

Then

z(t + 1) = z(t) + Roy(t) ,

and hence

z(t + 1) = z(O) + Ro[y(O) + ... + y(t)] .

Backsubstitution finally gives

x(t + lit) = ( )~ z(t + 1)
t + 1 + r2

1 t

= ( I)Ro [RoLy(s)+r2 x(OI-1)].
t + + r2 8=0
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Note that this result shows explicitly how the optimal estimate is a weighted
average of the arithmetic mean of the observations t~l L~=o y(s) and the
a priori estimate x(OI-l). In particular, if the a priori estimate becomes very
uncertain (Ro -t 00), the optimal estimate will converge to the arithmetic
mean of the observations. 0

Example 6.2 Consider the estimation of an exponential decay from noisy
measurements. This is modelled as

x(t + 1) = fx(t) ,

y(t) = x(t) + e(t) .

Applying (6.23) it is found that the optimal prediction estimate will be

x(t + lit) = fx(tlt - 1) + K(t)[y(t) - fx(tlt - l)J ,

K(t) _ f P(tlt - 1)
- P(tlt - 1) + r2 '

2 PP2(tlt - 1)
P(t + lit) = f P(tlt - 1) - P( I 1) ,

t t - + r2

x(OI - 1) = Xo ,

P(OI- 1) = Ro .
The performance of the above filter may be compared with one with a con­
stant gain:

x(t + 1) = fx(t) + K[y(t) - x(tlt - l)J .

Such a filter is of course simpler but may have a degraded performance. It is
instructive to compare the behaviour of the estimation error x(t) = x(t) -x(t)
of such a filter with the Kalman filter. It is easy to derive

x(t + 1) = fx(t) - K[x(t) + e(t)J

=(J - K)x(t) - Ke(t) .

The choice of the gain K should meet two conflicting objectives.

• One objective is to have the error x(t) converge rapidly, which requires
f - K to be "small". In some sense this means that K should be "large" .

• Another objective is that x(t) should have a small steady state variance.
This variance turns out to be

[-( )J K2r2
var x t = 1 _ (J _ K)2 .

It will hence be small when K is small.

With a time-invariant filter, both objectives cannot be met simultane­
ously. The Kalman predictor makes the optimal trade-off between the objec­
tives by minimizing the time-varying mean square error. When t is small, the
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gain K(t) is "large" in order to obtain a fast decay of the transient, whereas
K(t) decreases with time so that the variance contribution is small as well.

The optimal and the time-invariant estimators are illustrated in Figure
6.1. In this case, the parameters are

x(O) = 1 ,
x(OI-l) = 0,

f = 0.9,

Ro = 1,

r2 = 0.04. o

6.3 The Conditional Mean

In this section the optimal state estimate will be derived based on the results
given in Section 5.4 on the propagation of the conditional mean.

The result is formulated as a theorem.

Theorem 6.1 Consider the system

x(t + 1) = Fx(t) + Gu(t) + v(t) ,
y(t) = Hx(t) + e(t) ,

(6.28)

where v(t) and e(t) are mutually independent Gaussian white noise sequences
with zero means and

E (~~~~) (vT(s) eT(s)) = (~l ~2) 8t,s . (6.29)

Assume that the initial state x(to) is Gaussian distributed, x(to) '" N(mo, Ro),
and independent of the noise sequences. Recall that the input signal is as­
sumed to be either deterministic or determined by a feedback such that u(t)
is completely known from yt-l .

Then the conditional distributions of the state are given as

p(x(t)tyt) '" N(x(tlt), P(tlt)) ,
p(x(t + l)lyt) '" N(x(t + lit), P(t + lit)) .

The conditional means and covariances are propagating as

(6.30)

(6.32)

(6.33)

x(t + lit) = Fx(tlt - 1) + Gu(t) + Kp(t)[y(t) - Hx(tlt - 1)), (631)
x(t + lit + 1) = x(t + lit) + Kr(t + l)[y(t + 1) - Hx(t + lit)), .

Kp(t) = FP(tlt - l)HT[HP(tlt - l)HT + R2t 1
,

Kr(t) = P(tlt - l)HT[HP(tlt - l)HT + R2t 1 ,

P(t + lit) = FP(tlt)FT + R1 ,
P(tlt) = P(tlt - 1) - P(tlt - l)HT

x[HP(tlt-1)HT +R2t1HP(tlt-1).
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Fig. 6.1. Illustration of optimal and time-invariant estimators; Example 6.2. Top:
exponential decay x(t) (solid line); measurements y(t) (dotted line). Middle: esti­
mates based on time-invariant gains K = 0.05 (solid line); 0.1 (dashed line); 0.2
(dotted line); 0.4 (dash-dotted line). Bottom: Optimal estimate x(t+1It) (solid line);
optimal time-varying gain K(t) (dashed line)

The initial values are

x(tolto - 1) = mo , P(tolto - 1) = Ro .

Proof It follows from Lemma 2.3 that the LLMS estimate and its error
covariance are in fact also the mean value and the covariance matrix, respec­
tively, of the conditioned pdf. The stated results then follow from Section
6.2.
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In Section 6.A.2, a more direct proof based on the developments of Chap-
ter 5 is presented. It consists of lengthy calculations. •

Remark 1 Note that Kf(t) in (6.32) is the filter gain and Kp(t) is the pre­
dictor gain. 0

Remark 2 Note that the equation for P(t+ lit) and P(tlt) can be combined
to give the Riccati equation

P(t + lit) = FP(t\t - l)FT + R1

-FP(tlt - l)HT [HP(tlt -l)HT + R2t 1HP(tlt - l)FT
. (6.34)

o

6.4 Optimal Filtering and Prediction

Reconsider the system of (6.28) with the additional assumptions stated in
Theorem 6.1. In particular let R12 = 0. The present aim is first to establish
some further links between the estimates x(t + lit) and x(tlt). In the second
half of this section, the optimal general predictor x(t + kit), k > 0, will be
derived.

We first note from (6.32) that

Kp(t) = FKf(t) .

As a consequence:

(6.35)

x(t + lit) = Fx(tlt) + Gu(t) (6.36)

(see (6.31)).
One can establish a direct difference equation for x(tlt), as is shown next.

Lemma 6.2 The optimal filter estimate x(tlt) satisfies

x(t + lit + 1) = [I - Kr(t + l)H]Fx(tlt)

+[1 - Kf(t + l)H]Gu(t) + Kf(t + l)y(t + 1). (6.37)

Proof By direct calculation from (6.19) and (6.36):

x(t + lit + 1) = [I - Kr(t + l)H]x(t + lit) + Kf(t + l)y(t + 1)

= [I - Kr(t + l)H][Fx(tlt) + Gu(t)] + Kf(t + l)y(t + 1) .

•
Then consider the general prediction problem of estimating x(t + k) from

yt, k > 0. Recall that the future input values u(s), t + 1 ~ s, that appear in
the following expressions are assumed to be known at time t. For k 2: 1:



148 6. Optimal State Estimation for Linear Systems

x(t + k) = Fx(t + k - 1) + Gu(t + k - 1) + v(t + k - 1) . (6.38)

Therefore, since v(t + k - 1) is uncorrelated with yt,

x(t + kit) = E [x(t + k)lyt]

= FE [x(t + k - l)lYt]+ GE [u(t + k - l)lyt]

+E [v(t + k - l)lYt
]

=Fx(t + k - lit) + Gu(t + k - 1) . (6.39)

Equation (6.39) can be iterated to give

t+k-l
x(t + kit) = Fk-1x(t + lit) + L Ft+k-1-SGu(s)

s=t+l
or

t+k-l
x(t + kit) = Fkx(tlt) + L Ft+k-1-SGu(s).

s=t
(6.40)

It is also of interest to evaluate the conditional covariance matrix. Straight­
forward calculation gives

P(t + kit) = E [x(t + k) - x(t + klt)][x(t + k) - x(t + klt)]*

= E [F{x(t + k - 1) - x(t + k - lit)} + v(t + k - 1)]

x [F{x(t + k -1) - x(t + k -lit)} + v(t + k -1)]*

= FP(t + k - 1It)F* + R1 . (6.41)

This equation can be iterated to yield
k-l

P(t + kit) = FkP(tlt)F*k + L FSR1F*' .
s=o

6.5 Smoothing

(6.42)

Consider again a discrete-time stochastic system (6.28). For simplicity, drop
the input term.

x(t + 1) = Fx(t) + v(t) ,
y(t) = Hx(t) + e(t) ,

(6.43)

where x(t) is the state vector and v(t) and e(t) are white noise sequences
with covariance matrices

Ev(t)v*(t) = R1 , Ev(t)e*(t) =0, Ee(t)e*(t) = R2 . (6.44)

The smoothing estimate of x(t) is x(tls) where s > t. In this section we
will treat two different situations:

• Fixed point smoothing. Then t is fixed, while s is changing.
• Fixed lag smoothing. In this case the time difference s - t is kept fixed.
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6.5.1 Fixed Point Smoothing

(6.45)(
X(to))

z(to) = x(to) ,

We modify the notation slightly as follows. The purpose is to compute the
optimal fixed point smoothing estimate x(tolt), t > to. Note that here to
denotes an arbitrary fixed time, not the initial time. Consider the following
augmented system, where Xto (t) = x(to):

z(t) ~ ( x(t) ), t? to ,
Xto (t)

z(t + 1) = (~~) z(t) + (v~)) ,

y(t) = (H O)z(t) + e(t) .

By applying a standard Kalman filter to this system, one can obtain the
optimal estimate z(t + lit). The lower half of this vector is precisely x(tolt).

In order to obtain a more detailed algorithm, it is necessary to partition
the Kalman filter for z(t + lit). The Riccati equation associated with (6.45)
can be written as

(
Pll(t + lit) P12 (t + lit))
Pt2(t + lit) P22 (t + lit)

= (~~) (~~*:~:l: =~~ ~~~~::: =~~) (~*~) + (~l~)
_ (Kl(t)) (H 0) (Pll(tlt -1) P12 (tlt -1)) (F* 0) (6.46)

K2(t) Pt2(tlt - 1) P22 (t!t - 1) 0 I '

where the Kalman (predictor) gain is

(
Kl(t)) _ (F 0) (Pll(tlt -1) P12 (tlt -1))
K2(t) - °I Pt2(tlt - 1) P22 (tlt - 1)

x ( ~*) (H Pll (tit - I)H* + R2)-1 . (6.47)

Examining the equations for Pll(tlt -1) and K1(t), it can easily be seen
that they are precisely (as they should be!) the standard equations for the
one-step optimal predictor. Hence Pll(t + lit) = P(t + lit). Equating the
other blocks of the Riccati equation gives

P12 (t + lit) = [F - K1(t)H]P12 (tlt - 1) , (6.48)

P22 (t + lit) = P22 (tlt - 1) - K2(t)HP12 (tlt -1)

=P22 (tlt - 1) - Pt2(tlt - I)H*

X [HPll (tIt - I)H* + R2r 1HP12 (tlt -1) . (6.49)

As

(
X(to) )

z(to) = x(to) , (6.50)
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it is concluded that the initial values for (6.48) and (6049) are given by

P12 (tolto - 1) = P22 (tolto -1) = Pll(tolto -1) = P(tolto -1). (6.51)

The gain K 2 (t) is given by

K2(t) = Pt2(tlt - I)H*[HPll (tit - I)H* + R2t1 . (6.52)

The fixed point smoothing estimate will thus be

x(tolt) = x(tolt - 1) + K 2(t)[y(t) - Hx(tlt - 1)] .

This equation can be iterated to give

(6.53)

t

x(tolt) = x(tolto) + L K2(s)[y(s) - Hx(sls - 1)] . (6.54)
8=to+1

Equation (6.54) demonstrates how the smoothing estimate of x(to) based on
yt (t > to) is equal to the filter estimate x(tolto) plus a weighted sum of the
future output innovations y(s), s = to + 1, ... ,t.

6.5.2 Fixed Lag Smoothing

We set for convenience

m=s-t

and seek the smoothing estimate

x(tlt + m) .

(6.55)

(6.56)

The solution can be derived in different ways. One possibility is to start
with the fixed point smoothing estimate. Here, we will follow another route,
and use an extended state space, partly as in (6.45). As a consequence, we
will get not only the estimate in (6.56), but also

x(tlt + i), i = 0, ... ,m . (6.57)

Introduce the extended state vector

z(t) = ( xit) ).

x(t - m)

Then it is easily seen that

z(t + 1) = Fz(t) + v(t)
y(t) = Hz(t) + e(t)

with

(6.58)

(6.59)
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R1 o ... 0

0

0 0

(6.60)

(6.61 )

(6.63)

H=(HO ... O).

Further, the filter estimate of z(t) must be

A ( x(~~I~lt) )
z(tlt) = . ,

x(t - mit)

and updating z(tlt) thus provides all the smoothing estimates in (6.57). The
estimate in (6.57) can be updated according to Lemma 6.2 as

z(tlt) =Fz(t - lit - 1) + Kr(t)[y(t) - HFz(t - lit - 1)] , (6.62)

and the gain matrix Kr(t) will be written in partioned form as

_ (K(O)(t) )
Kr(t) = : .

K(m)(t)

Spelling out the details, (6.62) and (6.63) mean

x(tlt) = Fx(t - lit - 1) + K(O)(t)[y(t) - HFx(t - lit - 1)], (6.64)

x(t - ilt) = x(t - iIt - 1) + K(i)(t)[y(t) - HFx(t - lit -1)] ,

i = 1, ... ,m . (6.65)

Note that (6.64) is nothing but the usual filter update, so K(O)(t) = Kr(t)
must hold. Further note that

y(t) - HFx(t - lit - 1) = y(t) - Hx(tlt -1) (6.66)

is the usual innovation or prediction error y( t) at time t.
Note the similarity between (6.54) and (6.65). Both formulas show how

the smoothing estimate x(t - ilt) is a linear combination of the filter estimate
x(t - iIt - i) and the future output innovations y(t - i + 1), ,y(t).

It remains to find expressions for the gains K(i)(t), i = 1, ,m. Natu-
rally, Kr(t) is linked to the solution of a Riccati equation as

Kr(t) = P(t)HT[HP(t)H
T + Rzt1

, (6.67)

P(t + 1) = H1 + F [P(t) - P(t)HT[HP(t)H
T + Rzt1H P(t)] F

T
.

(6.68)
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To proceed, we partition also P(t) as

(

p(OO)(t) p(Ol)(t) p(Om)(t) )
_ p(10)(t) p(ll)(t) .
P(t) = . .

p(mo)(t) p(m1)(t) ... p(mm)(t)

Spelling out (6.67) we have

K(O) = p(OO) (t)HT[HP(OO) (t)HT + R2t 1 ,
K(i) = p(iO) (t)HT[H p(OO) (t)HT + R2]-1, i =1, ... ,m.

The first block of the Riccati equation in (6.68) becomes

p(OO)(t + 1) = R1+ F [p(OO)(t) - p(OO) (t)HT
X {HP(OO)(t)HT + R2 } -1 H p(OO) (t)] FT

which indeed shows that

p(OO)(t) =P(tlt - 1), K(O)(t) =Kr(t)

(6.69)

(6.70)

(6.71)

(6.72)

as already known, as the first block of z(tlt) is x(tlt). In what follows we will
use the abbreviated notation

P(t) = P(tlt - 1) . (6.73)

Equating (6.68) for blocks (0, i) with i = 1, ... ,m gives

p(Oi)(t + 1) = FP(O,i-1)(t) - FP(t)HT

X [HP(t)HT + R2t 1HP(O,i-1)(t) (6.74)

and for blocks (i,j), i,j = 1, ... ,m

p(ij)(t + 1) = p(i-l,j-l)(t) _ p(i-l,O)(t)HT

X [HP(t)HT + R2t1H p(O,j-l)(t) . (6.75)

Equations (6.74) and (6.75) indicate how the block components of P(t) are
updated from blocks of similar or lower indices i, j.

The initial values for the Riccati equation in (6.69) and the state estimator
are

_ (~~ ... 0)
P(O) = '. ,

. .

° 0

2(01-1) ~ (I) ,
(6.76)

(6.77)
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where N(mo, Ro) is the a priori distribution of the initial state vector x(O).
The associated initial value of the filter estimate in (6.61) is

2(010) =n)
with

(6.78)

6.6 Maximum a posteriori Estimates

In Section 5.5 it was stated that the MAP state estimates of x(O), ... x(N),
given the measurements y(1), ... ,y(N), are the minimizing elements of the
criterion

1 T 1
VN = 2[x(0) - mol Rr; [x(O) - mol

1 N-1

+2 L [x(t +1) - Fx(t)fR1
1 [x(t +1) - Fx(t)]

t=o

1 N
+2 L[y(t) - Hx(t)fR21 [y(t) - Hx(t)] . (6.80)

t=l

According to the previous findings in this chapter, the optimal estimates must
be the smoothing estimates x(tIN), t = 0, ... ,N, as given in Section 6.5.
The aim of the present analysis is to show that the smoothing estimates do
in fact minimize the criterion in (6.80).

As a starting point, the derivatives of VN with respect to the state vari­
ables are evaluated. Straightforward calculation gives

z(O) ~ (:;~)) T = Rr;l [x(O) - mol - pTR1
1[x(l) - Px(O)] , (6.81)

( )

T[:,. aVN -1
z(N) = ax(N) =R1 [x(N) - Fx(N - 1)]

_HT R21[y(N) - Hx(N)] .

and for t = 1, ... N - 1

(6.82)

(
av )T

z(t) ~ axt) = R1
1 [x(t) - Fx(t - 1)] - F T R1

1 [x(t + 1) - Fx(t)]

_HT R21[y(t) - Hx(t)] . (6.83)



154 6. Optimal State Estimation for Linear Systems

The minimizing elements {x(t)}f::o of VN correspond to z(t) = 0, for
t = 0, ... , N given all the measurements, that is YN. By taking conditional
expectations of both sides of (6.81) - 6.83), we see that replacing x(t) with the
conditional expection E [X(t)lyN], t = 0, ... , N will make both sides equal to
zero, if

t=O, ... ,N. (6.84)

This, in turn, is equivalent to

or yet

E [z(t)ly(s)] = 0 ,

E z(t)yT(s) = 0 ,

t =0, ... ,Nj s =1, ... ,N .

t=O, ... ,Nj s=l, ... ,N.

(6.85)

(6.86)

(6.87)

(6.88)

(6.89)

In order to verify (6.86), a first step is to rewrite z(t) using the nominal
model. This gives

z(O) = ROI [x(O) - mol - FTRI
lv(O) ,

z(N) = RI
lv(N -1) - HTK/e(N) ,

z(t) = RI
lv(t - 1) - FTRI

lv(t) - HTR2le(t) ,

(t = 1, ... ,N - 1) .

As, by construction, y(s) is a (linear) function of e(s), v(s -1), e(s -1), ... ,
v(O), e(O), x(O), it is directly seen that (6.86) is satisfied at least as soon as
s:=;t-l.

Consider next the case where t = N, s = N. Then

E z(N)yT(N) = E [RI
lv(N - 1) - HTR2le(N)][Hx(N) + e(N)f

= RI
1[Ev(N -l)xT(N))HT - HTR21R2

= RIlE v(N - l)[Fx(N - 1) + v(N - l)]THT - HT

= RI
I R1HT - HT

= O.

Secondly, consider the case where t = 0, s > t. In this case

E Z(O)yT(s) = E [R01(x(0) - mo) - FTRI
lv(O)J[Hx(s) + e(s)f

= E [RO
I (x(O) - mo) - FTRI

lv(O)][FSx(O) + Fs-lv(O)
s-l

+ L FS-l-jv(j)]T HT

j=l

= E [RO
I (x(O) - mo) - FTRI

lv(O)]

X [xT(O)FT + vT(O))FT'-
l
HT

= [ROI RoFT - FTRI
I Rl]FT·-

1
HT

=0.

As the third and last case, let t = 1, ... ,N. If s = t:
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E z(t)yT (t) = E [R1lv(t - 1) - pTR1lv(t) - HTR2le(t)]

x [Hx(t) + e(t)f

= E [R1lv(t - l)xT(t)]HT - HTR;/R2

= R1lEv(t -l)[Px(t -1) +v(t -l)fHT - HT

=R11RlHT - HT

= 0,

and s > t implies that

E z(t)yT(s) = E [R1lv(t - 1) - pTR1lv(t) - HTR2le(t)]

x [Hx(s) + e(s)f

= E [R1lv(t - 1) - pTR1lv(t) - HTR2le(t)]
8-t-l

x [P8-t X (t) + ps-t-lV(t) + L p8-t-l- j V(t + j)fHT

j=l

= E [R1lv(t - 1) - pTR1lv(t) - HTR2le(t)]

x[Px(t) + v(t)jPT
s
-
t
-

1
HT

=[R1lEv(t -l)xT(t)FT _pTRIlEv(t)vT(t)]pTs-t-lHT

= [RIlE v(t - l)[Px(t - 1) +v(t - l)fpT - pTRI
I RI]

xpTs- t
-

1 HT

= [RI
I RlpT _ pTjPTs- t

-
1 HT

= o.
Thus (6.86) has been established, which means that the conditional means
{x(tIN)}~o minimize the criterion VN (6.80). In other words, the optimal
state estimates can also be interpreted as maximum a posteriori estimates.

6.7 The Stationary Case

The stationary case is studied in this section. Let to --+ -00, so that an infinite
set of data is available. Under weak conditions, the optimal state estimators
will then be time-invariant. The following result holds, but will not be proved
here (for a comprehensive treatment see the book edited by Bittanti et ai.
(1991) listed in the Bibliography section at the end of this chapter.

Theorem 6.2 Consider the Riccati equation

P(t + lit) = PP(tlt - l)pT + R l

-PP(tlt - l)HT[HP(tlt - l)HT + R2t l HP(tlt - l)pT .

(6.90)
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Assume that R2 is positive definite and that the nonnegative definite matrix
R 1 is factorized as

R 1 = BBT
.

Assume, jurther, that the pair (F, B) is stabilizable, and that the pair (F, H) is
detectable. Then the solution to (6.90) converges, as t - to-+ 00, to a positive
definite matrix P that satisfies the ARE

P = FPFT + R 1 - FPHT(HPHT + R2)-1 HPFT . (6.91)

•
As a further consideration, the following lemma holds.

Lemma 6.3 Consider the ARE

P = FPFT + R 1 - FPHT(HPHT + R2)-1 HPFT , (6.92)

and let it have a positive definite solution P. Let

K = FPHT(HPHT + R2)-1 . (6.93)

Assume that (F, B) is controllable, where R 1 = BBT and R2 is nonsingular.
(We may, as an alternative to these two assumptions, assume that R 1 is
positive definite.) Then the matrix

F=F-KH (6.94)

has all its eigenvalues strictly inside the unit circle.

Proof (The proof will follow the path given in Theorem 4.2.) Examine the
stability properties of the system

x(t + 1) = F Tx(t)

by means of the candidate Lyapunov function

V(x(t)) = xT(t)Px(t) .

Clearly, V(x(t)) 2 o. Further:

.1V(x) ~ V(x(t + 1)) - V(x(t))

= xT(t)[FPFT - P]x(t)

= xT(t)[FPFT - KHPFT - FPHTKT

+KHPHTKT - P]x(t)

= -xT(t)[R1 + KR2K T]x(t) ~ 0 .

It remains to show that .1V(x) = o:::::} x(t) = O.
However:

.1V(x(t)) = 0 ===> R1x(t) = 0, K Tx(t) = O.

Hence, B T x(t) = 0 and the dynamics become

(6.95)

(6.96)
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x(t + 1) = (FT - HTKT)x(t) =FTX(t) . (6.97)

If (6.96) and (6.97) hold for any t, it is required that

(
B~~ ) x(O) = 0 .

BT(FT)n-l

As (F, B) is controllable, the pair (FT, BT) is observable. This implies that
x(O) = 0 and hence that x(t) == O. This completes the proof that P is asymp­
totically stable. •

It is appropriate to recapitulate briefly the optimal state estimator for the
stationary case, assuming that the solution to the Riccati equation converges
to P. The Kalman prediction gain is given by (6.93). The optimal one-step
predictor is

x(t + lit) = Fx(tlt - 1) + Gu(t) + K[y(t) - Hx(tlt - 1)] , (6.98)

which can also be written as

x(tlt - 1) = [qI - (F - KH)r1[Gu(t) + Ky(t)] , (6.99)

where it is emphasized how the predictor depends on all the available past
data points. The optimal filter estimate can be written as (see (6.37))

x(t + lit + 1) = [I - KfH]Fx(tlt) + [I - KfH]GU(t) + Kfy(t + 1) ,

or

x(tlt) = [qI - (F - KfHF)r1[(I - KfH)Gu(t) + Kfy(t + 1)]. (6.100)

In another form, using (6.36) and (6.99), the filter estimate can be written
as

x(tlt) = (I - KfH)X(tlt - 1) +Kfy(t)

=(I - KfH)[qI - (F - KH)r1

x [Gu(t) + Ky(t)] + Kfy(t) . (6.101)

Here Kf = PHT(HPHT + R2)-1 is the stationary filter gain.
Consider also the fixed point smoothing estimate. From (6.48),

Pt2(tlt - 1) = (F - K H)t-toP12 (tolto - 1) .

Note, however, that

P12 (tolto - 1) = cov[x(to)lyto-l] = P .

Hence

Pt2(tlt - 1) = (F - K H)t-toP . (6.102)
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and the gains become (see (6.52)),

K2 (t) = P(F - KHf'-'o HT[HPHT + R2]-1 . (6.103)

The accuracy of the smoothing estimate can be expressed by P22 (t). In
the stationary case, (6.49) and (6.102) give

P22 (t + lit) = P22 (tlt - 1) - P(F - KHf'-'o

xHT(HPHT +R2 )-lH(F-KH)t-toP. (6.104)

The initial value is the predictor accuracy

(6.105)

Equation (6.104) shows the successive improvement in accuracy when a new
piece of data is used for the smoothing estimate. By iterating (6.104),

t-to-1
P22 (tlt -1) = P - P L (F - KH)T

s
HT(HPHT + R2 )-1

s=o
xH(F - KH)SP. (6.106)

(6.107)

The matrices {P22 (tlt-l)}, t ~ to, form a bounded and decreasing sequence.
They therefore converge. Next, examine the limit as t -+ 00. The limit will
be the covariance matrix obtainable when estimating the stable x(to) from
data ranging from t = -00 to t = 00. Set

t
Q(t) = L(F - KH)T

s
HT(HPHT + R2)-1 H(F - KH)8 .

8=0

Apparently:

P22 (tlt - 1) = P - PQ(t - to - I)P . (6.108)

The matrix Q(t) obeys the Lyapunov equation

Q(t+l) = (F-KHfQ(t)(F-KH)+HT(HPHT +R2 )-lH .(6.109)

As the matrix F - KH has all its eigenvalues inside the unit circle, Q(t) will
converge as t -+ 00 (see Corollary 2 of Lemma 4.2). The limit, say Q, satisfies
the algebraic Lyapunov equation

The ultimate smoothing accuracy is

P22 = lim P22 (tlt - 1) = P - PQP .
t-too

(6.110)

(6.111)

This section ends with a discussion of the role of the noise model, notably
the covariance matrices R1 and R2 on the filter performance. One possibility
is to regard R1 and R2 just as the user's tuning knobs for achieving certain
filters. By adjusting these matrices, the bandwidth and the shape of the
filters, etc., can be changed.
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It can be seen from the ARE that it is the relation between R l and R2

that plays a role, not the absolute values of these matrices. More precisely,
if R l and R2 are changed into aRl , aR2 (a being a scaling factor), then P
will change into aP but the predictor gain K will remain unchanged. In the
scalar output case, it is thus the normalized covariance matrix RtfR2 that
will have an impact on the filter. In general terms, when RtfR2 is increased,
the measurements are given larger weights and the filter bandwidth will in­
crease. The idea is illustrated by the following example.

Example 6.3 Consider an AR(2) process with measurement noise, modelled
as

(
-al 1) (1)x(t + 1) = -a2 0 x(t) + 0 v(t) ,

y(t) = (1 O)x(t) + e(t) .

In this case, set

and regard r as a tuning variable. The filter for estimating the undisturbed
AR process from the current measurements turns out to be (cf. (6.100))

xl(tlt) = Hq[qI-(F-KrHF)tlKcY(t)

~ G(q)y(t) .

The frequency properties of G(q) are illustrated graphically in Figure 6.2.
D

6.8 Algorithms for Solving the Algebraic Riccati
Equation

6.8.1 Introduction

An important aspect when finding the optimal filter in steady state is solving
the ARE. This section is devoted to discussing that problem and to providing
an algorithm in Section 6.8.2. See also Exercises 6.11, 6.12, 6.21-6.24.

First, it is shown that the general problem with Rl2 # 0 can be reduced
to the somewhat simpler case where Rl2 = O.
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Fig. 6.2. Frequency function G(eiw
), Example 6.3, al = -1.5, a2 = 0.7, with r as

a parameter

Lemma 6.4 Consider the Riccati equation

P(t + 1) = FP(t)FT + R1 - [FP(t)HT + R12 ]

X [HP(t)HT + R2r 1 [HP(t)FT + R21 ] .

Set
- -1F = F - R12R2 H,

- -1RI = R1 - R12 R2 R21 ·

Then P(t) satisfies

- -T ­
P(t + 1) = FP(t)F + RI

-FP(t)HT[HP(t)HT + R2r 1HP(t)F
T

.

(6.112)

(6.113)

(6.114)

ProofIt is apparently sufficient to show that the right-hand sides of (6.112)
and (6.114) are identical for any P(t). Set P = P(t), Q = HP(t)HT + R2 ,

W = PH TQ-l H P. The difference between the right-hand sides can then be
evaluated as
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pppT + Rl - [PPHT + Rd[HPHT + R2t l [HPpT + R21 j
_FPpT _ Hl +PPHT[HPHT + R2j-lHPpT

=pppT + Rl - PWpT - Rl2Q-l HPpT - PPHTQ- l R21
-Rl2Q-lR21 - [pppT - R12R2

1HPpT - PPHTR21R2l
+Rl2 R2

1(Q - R2)R2
1R2d

-[Rl - Rl2 R2
l R2d

+[PWpT - Rl2 R2
1HWpT - PWHTR2

l R21
+Rl2 R2

l HWHTR2
l R2d

=P[P - W - P +WlFT

+p[_PHTQ-l + PHTR2
l - WHTR2ljR21

+Rl2 [-Q-lHP + R2
1HP - R2

l HWjpT
+Rd-Q-l - R2

1QR2
1+R2

1+R2
l + R21HWHTR2ljR2l

=PPHTQ-l[-R2+ Q - HPHTjR21R2l
+R12R2l[-R2 + Q - HPHTjQ-1HPpT
+Rl2R2l[-R2Q-lR2 - Q + 2R2+ HPHTQ-1HPHTjR2

1R2l

= O. •

When the time-varying problem is to be solved, a straightforward ap­
proach is to iterate the Riccati equation in (6.112) successively. However,
such an attempt is not numerically sound, as rounding errors may accumu­
late in an uncontrollable fashion and destroy the result. In extreme cases the
computed P(t) matrix may even be indefinite. In such cases, the Kalman
filter will deteriorate considerably. Instead, one should use square-root types
of algorithm such as the U- D algorithm. The idea is that a positive definite
covariance matrix P(t) can be written as

P(t) = U(t)D(t)UT(t) , (6.115)

where D(t) is diagonal and U(t) is lower triangular with unit diagonal el­
ements. Instead of directly updating P(t), the factors U(t) and D(t) are
updated. In this way, the rounding errors are kept under control. By con­
struction, P(t) in (6.115) is constrained to be nonnegative definite.

6.8.2 An Algorithm Based on the Euler Matrix

It will first be shown how the Riccati equation is closely tied to a 2n­
dimensional linear system. In order not to complicate the analysis, the case
of nonsingular P and R2 is considered.
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Lemma 6.5 Consider the Riccati equation

P(t + 1) = FP(t)FT + Rl - FP(t)HT[HP(t)HT + R2t l

xHP(t)FT ,
P(O) = Po.

Assume that F and R2 are invertible. Consider also the system

(6.116)

(
Y(t+1)) _ (F-T F-THTR"ilH ) (Y(t))
Z(t+1) - RlF-T F+RlF-THTR"ilH Z(t) , (6.117)

with the initial condition

Then

Y(O) = I , Z(O) = Po. (6.118)

P(t) = Z(t)y-l(t) .

Remark The matrix

t::, (F-T F-THTR-lH )
</J= RlF-T F+RlF-TJlTR2lH

appearing in (6.117) is called the Euler matrix.

(6.119)

(6.120)

o

•

Proof Equation (6.119) is proved by induction. Apparently, it is true for
t = O. Assume that it is true for time t. Set P = P(t). Using the matrix
inversion lemma (Lemma 6.7), it is found that

Z(t + l)y- l (t + 1)
=[RlF-TY(t) + {F + RlF-THTR"ilH}PY(t)]

x [F-TY(t) + F-THTR"il HPY(t)t l

=[RlF-T + {F + RlF-THTR"il H}P][I + HTR"il HPtlFT

=[RlF-T + {F + RlF-TH TR"il H}P]

xli - H T(R2 + HPHT)-l HP]FT

=R l + FPFT + RlF-THTR"ilHPFT

-[RlF-T + {F + RlF-THTR"ilH}P]HT(R2 + HPHT)-lHPFT

=R l + FPFT - FPHT(R2 + HPHT)-l HPFT + RlF-THT

X [R"i l - (R2 + HPHT)-l - R"il HPHT(R2 + HPHT)-l]HPFT

=P(t + 1) + RlF-THTR"il[(R2 + HPHT )

-R2 - HPHT](R2 + HPHT)-l HPFT

=P(t + 1) .

Apparently, the solution to the ARE is closely tied to the properties of the
system of (6.117) and the Euler matrix. In order to proceed, some properties
of the Euler matrix are first investigated.
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(6.121)

Lemma 6.6 Consider the Euler matrix

1:::. (F-T F-THTR-IH )
¢= RIF-T F+RIF-TH2TR2IH

(a) Set R I = GGT, A(z) = det(zl - F) and H(zl - F)-IG = B(z)/A(z).
The characteristic polynomial of ¢ can be written as

(_z)n -I [ BT(z-l) -I B(Z)]
det[zl - ¢] = det F A(z)A(z ) det 1 + A(Z-I) R2 A(z) . (6.122)

(b) Let.x be a nonzero eigenvalue of ¢. Then A-I is also an eigenvalue of ¢.

Proof In order to prove part (a), apply Lemma 6.8, which gives

(
zl-F-T -F-THTR-IH )

det(zl - ¢) = det -GGTF-T zl _ F _ GGTF- f HTR
2

1H

= det(zl - F-T)det[zl - F - GGTF-THTR2
1H

-GGTF-T(zl - F-T)-I F-THTR2
1H]

= det(F- I)det(zFT - 1)

x det[zl - F - GGTF-T(zl - F-T)-I zHTR2
1H]

= (-z)n A(Z-I)A(z)
detF
x det[1 - (zl - F)-IGGTF-T(z1 - F-T)-I zHTR2

1H]

= (_z)n A(Z-I )A(z)
detF
x det[1 - GT(FT - Z-I I)-IHTR2

1H(z1 - F)-IG]

(_z)n -I [BT(Z-I) -I B(Z)]
= detFA(z )A(z)det 1+ A(Z-I)R2 A(z) ,

which is (6.122). In the penultimate equality, Lemma 6.9 was applied. Part
(b) is immediate from part (a). •

As

(Y(t)) = ¢t (Y(O)) = ¢t ( 1)
Z(t) Z(O) Po'

it can be seen that the asymptotic (as t---+ 00) properties of the solution
to (6.117) and to the ARE are determined by the modes associated with
eigenvalues with magnitude larger than one. Let

(
Ul1 U12 )
U21 U22

denote a 2nl2n matrix, whose columns contain the eigenvectors of ¢ sorted
so that the associated eigenvalues are decreasing.
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As a consequence of Lemma 6.6, the modes associated with eigenvalues
with magnitude larger than one constitute the matrix

(~~~) .

Assume that Un is invertible. It then follows from Lemma 6.5 that the solu­
tion to the Riccati equation converges to

P = U21 Uli1
. (6.123)

The development so far has given a basis for the following algorithm.

Algorithm for solving the ARE

1. Compute the Euler matrix and perform an eigendecomposition. Collect
the n eigenvectors associated with the eigenvalues of largest modulus in
the matrix

(~~~) .

2. Assuming that the inverse exists, set

P = U21 Uli1
. (6.124)

o

See also Exercise 6.21 for some further details on the connection between
the Euler matrix and the ARE.

The algorithm sketched above is limited in the sense that it is constrained
to the case with both F and R2 being nonsingular.

Standard software for solving the ARE is rather based on a generalized
eigenvalue problem. Assume R2 to be nonsingular but allow F to be arbitrary.
Consider the matrix pencil

AL-M

where

_(I HTR"21H) ( FT 0)
L - OF' M = -R

1
I .

Then determine orthogonal matrices U and V such that

V(AL - M)U = At - it

(6.125)

(6.126)

(6.127)

with t and it being quasi-upper triangular (triangular if all eigenvalues are
real-valued; complex-valued eigenvalues leads to 2 x 2 real-valued blocks on
the diagonal). This is a standard step when solving generalized eigenvalue
problems numerically.
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Assume further that the generalized eigenvalues of (6.125) are sorted so
that those inside the unit circle are in the upper block. Decompose the matrix
Uas

U = (~~~ ~~~) . (6.128)

Then the sought solution of the ARE is

P = U21Ul11 . (6.129)

Note the similarity with (6.124). Further, the corresponding generalized
eigenvalues of the pencil (6.125) are precisely the eigenvalues of F - K H.

Remark There are techniques to handle the case of a singular R2 matrix.
One then starts with the pencil

(
I 0 0) (F 0 H

T

)A 0 F 0 - -R1 I 0
o-H 0 0 0 R2

and proceed by first compressing it to an "equivalent" matrix pencil of order
(2n)I(2n). 0

6.A Appendix. Proofs

6.A.! The Matrix Inversion Lemma

The following lemma is a useful tool in linear system and estimation theory.

Lemma 6.7 Assuming that the involved matrices have compatible dimensions and
that the indicated inverses exist:

(A + BCD)-l = A-I _ A-I B(C- l + DA- 1B)-l DA- 1

holds.

Proof By direct calculations:

(A + BCD)[A- 1 - A-I B(C- l + DA- 1B)-I DA- 1]

= 1+ BCDA- 1 - B(C- l + DA- 1B)-l DA- 1

-BCDA-1B(C- 1 + DA- 1B)-I DA- 1

= 1+ B[C(C- 1 + DA- 1B) - I - CDA- 1 B]

x(C- 1 + DA- 1 B)-l DA- 1

= I,

which verifies (6.130).

(6.130)

•
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6.A.2 Proof of Theorem 6.1

That the conditional pdfs are Gaussian is proved by induction. According to the
assumptions, this is at least true for t = to. In that case:

x(tolto) = m , P(tolto) = Ro . (6.131)

Assuming that (6.30) holds for a particular value of t, it will be seen that it holds
for t + 1 as well. Recursions for the conditional means x(tlt), x(t + lit) and the
conditional covariance matrices P(tlt), P(t + lit) are derived. Recall that if x is
Gaussian distributed, x '" N(m, P), then the notation

p(x) = ,(xjm,P)

is used.

Time update

Consider first the time update, that is, examine p(x(t + 1)lyt). In order to do so,
the results of Section 5.4 will be used.

First note that

p(x(t + 1)lx(t)) =Pv(t)(x(t + 1) - Fx(t) - Gu(t))
=,(x(t + 1); Fx(t) + Gu(t) ,Rt} .

Hence, according to (5.23):

p(x(t + 1)lyt) =! p(x(t + 1)lx(t))p(x(t)lyt) dx(t)

=! (27t)n/2(~et RI)I/2

exp ( -i[x(t + 1) - Fx - Gu(tWR11[x(t + 1) - Fx + Gu(t)l)

x (27t)n/2(de~p(tlt))1/2 exp ( -i[x - x(tltWP-I(tlt)[x - x(tlt)l)dx .(6.132)

This relation can be rewritten as

t 1
p(x(t + 1)IY ) = (27t)n(detRt}I/2(detP(tlt))1/2

x! exp (-i[XTQ-1x - xTb - bTx + cl) dx,

where

(6.133)

(6.134)

Q-I = P-I(tlt) + FTR1
1F ,

b = FTR11(x(t + 1) - Gu(t)) + P-I(tlt)x(tlt) ,

c = (xT(t + 1) - uT(t)GT)R11(x(t + 1) - Gu(t))

+xT (tlt)P- 1(tlt)x(tlt) .

Recalling the form of the Gaussian pdf, the integral in (6.133) can be evaluated
as follows:

! exp (-i[XTQ-1X - xTb - bTx + cl) dx
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- ( )n/2(d Q)I/2J 1
- 2n et (2n)n/2 (det Q)1/2

x exp (-~[x - QbfQ-I[X - Qb]) dxexp G(bTQb - c))

= (2nt/2(det Q)I/2 exp G(bTQb - c)) . (6.135)

For the particular case given by (6.132), one obtains using (6.134) and (6.135):

t _ (detQ)I/2 !(bTQb-c)

p(x(t + l)IY ) - (2n)n/2(detRdl/2(detP(t\t))1/2e .

In this case

detRI :e:;tP(tlt) = detRI x detP(tlt) x det (p-l(tlt) + pTR1l p )

= det R1det (I + P(t/t)pTR11 p)

= det R1det (I + P P(tlt)pTR11
)

= det (pP(t\t)pT + RI)

= det P(t + lit) (6.137)

also holds, where

(6.138)

was introduced. It is also true that

bTQb - c

=[(xT(t + 1) - uT(t)GT)R1
1 P + xT(tlt)P- 1(tlt)][P-I(tlt) + pTRIPr l

x[pT R11(x(t + 1) - Gu(t)) + P-l(tlt)x(t\t)]

_(xT(t + 1) - uT(t)GT)R1
1(x(t + 1) - Gu(t)) - xT(tlt)P-I(tlt)x(tlt)

= (x(t + 1) - GU(t))T {R11p[p-l (tit) + pTR11pr l

XpT R11
- R11}(x(t + 1) - Gu(t))

+(x(t + 1) - Gu(t)fR11 P[P-l(tlt) + pTR11pr l P-l(tlt)x(tlt)

+xT(t\t)P-I(tlt)[P-l(tjt) + pTR1
1pr l pTR11(x(t + 1) - Gu(t))

+xT(tlt){P-I(tlt)[P-I(tlt) + pTR1Ipr l P-l(tlt) - P-l(tlt)}x(tlt) .

Next evaluate the matrices of the above quadratic forms, using the matrix
inversion lemma (Lemma 6.7) repeatedly:

R1
1P[P-l(tlt) + pT R1

1pr l pT R1
1 - R11

= -(R1+ PP(tlt)pT)-1

= -p-l(t + 11t)R1
1P[P-l(tlt) + pTR1Pr i P-l(tlt)

= R11 P[1 + P(tlt)pTR11pr l

= [I + RllpP(t/t)pTrIRllp

=p- l (t + 11t)Pp- l (tlt)[P- J (tit) + pTR11pr lP-l(tlt) _ P-l(tlt)

= [P(tlt) + P(tlt)pTR11 PP(tltW I - P-l(tlt)
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=-pT [R I + PP(tlt)pT r l P

=_pT P- 1(t + 11t)P .

Thus

bT Qb - c = -[x(t + 1) - Gu(t) - Px(tltWp-1(t + lit)
x[x(t + 1) - Gu(t) - Px(tlt)). (6.139)

Now, using (6.137), (6.138) and (6.139) in (6.136) gives

t 1 1
p(x(t + l)IY ) = (2n)n/2 (detP(t + 1It))I/2

x exp (-~[x(t + 1) - x(t + 11tWP- 1(t + 1It)[x(t + 1) - x(t + lit)))

= ,(x(t + 1); x(t + lit), P(t + lit)) , (6.140)

where

x(t + lit) = Px(tlt) + Gu(t) .

Measurement update

(6.141)

(6.143)

The measurement update must be considered next, that is, how to find
p(x(t + l)lyt+l). To do this, (5.21), rather than (5.26), will be used, as p(x(t + l)lyt)
is known. In fact, all the conditional pdfs appearing in (5.21) are known:

{

p(y(t + l)lx(t + 1)) = ,(y(t + 1); Hx(t + 1), R2) ,
p(y(t + l)lyt) = ,(y(t + 1); Hx(t + lit), HP(t + 1It)HT + R2) ,
p(x(t + l)lyt) = ,(x(t + l);x(t + lit), P(t + lit)) .

(6.142)

Inserting the explicit expressions for the pdfs, gives

HI 1
p(x(t + l)IY ) = (2n)nY/2(det R2)

x exp ( -~[y(t + 1) - Hx(t + 1WRZ1[y(t + 1) - Hx(t + 1)))

(2n)nY /2(det[HP(t + 1It)HT + R2))1/2
X D

1
x ..,..-..,........,-:-:---,--.,...,....,.~

(2n)n/2(det P(t + 1It))I/2

x exp ( -~[x(t + 1) - x(t + 11tWP- 1(t + 1It)[x(t + 1) - x(t + lit))) ,

where the denominator factor D is given by

D = exp ( -~[y(t + 1) - Hx(t + 1ItW[HP(t + 1It)HT + R2r1

x [y(t + 1) - Hx(t + lit)))

Now introduce, as in (6.30)-(6.33),
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{

x(t + lit + 1) = x(t + lit) + K(t)[y(t + 1) - Hx(t + lit)] ,
K(t) = P(t + llt)HT[HP(t + llt)HT + R2t

1
, (6.144)

P(t + lit + 1) = P(t + lit) - P(t + lit)
xHT[HP(t + llt)HT + R2t l HP(t + lit) .

The "nonexponential factor" of (6.143) is examined first. Using (6.144), it is found
that

det[P(t + lit + 1)] = det(P(t + lit))

x det[I - HT(HP(t + 1It)HT + R2)-1 HP(t + lit)]

=det(P(t + lit))

x det[I - HP(t + 1It)HT{HP(t + 1It)HT + R2} -I]
det(P(t + lit)) det(R2)

det(HP(t + 1It)HT + R2)

Thus the "nonexponential factor" of (6.143) is precisely

1 1
(27t)n/2 (det P(t + lit + 1))1/2 .

Next, the exponential factors are considered. For brevity, the notation

K = K(t) ,

Q = HP(t + 1It)HT + R2 ,

P = P(t + lit) ,

x = x(t + lit) .

is used. The total exponent appearing in (6.143), save for the factor -1/2, can be
written as

[y(t + 1) - Hx(t + 1)fR;l[y(t + 1) - Hx(t + 1)]

-[y(t + 1) - HxfQ-I[y(t + 1) - Hx] + [x(t + 1) - X]T P-1[x(t + 1) - x]

= xT(t + l)[HTR;I H + P-I]x(t + 1) - xT(t + l)[HTn;ly(t + 1) + P-Ix]

+[HTR;ly(t + 1) + p-1xfx(t + 1)

+{yT(t + l)R;ly(t + 1) - [y(t + 1) - Hx]TQ-I[y(t + 1) - Hx]

+xTP-1x} . (6.145)

Applying the matrix inversion lemma to P(t + lit + 1) in (6.144) gives

P-I(t + lit + 1) = p- 1 + HTR;I H . (6.146)

The right-hand side in this relation appears in the first term of the right-hand side
of (6.145). To examine the second and third terms of (6.145), write

HTR;ly(t + 1) + p-1x

=P-I(t + lit + I)[P - PHTQ-I HP][HTR;ly(t + 1) + P-Ix]

=P-I(t + lit + 1)

X [PHT(I - Q-IHPHT)R;ly(t+ 1) + (I - PHTQ-IH)X]

=P-I(t + lit + I)[PHTQ-I(Q - HPHT)R;ly(t + 1) + x - KHx]

=P-I(t + lit + I)[Ky(t + 1) + x - KHx]

=P-I(t + lit + l)x(t + lit + 1).
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Finally, the last term of (6.145) is investigated. It can be written as

yT (t + I)R2
1y(t + 1) - [y(t + 1) - HX]TQ-l[y(t + 1) - Hx] + XTp-1X

=yT(t + I)[R2
1 - Q-l]y(t + 1) + yT(t + I)Q-l Hx + XTH TQ-l y (t + 1)

+XT [p-l _ H TQ-l H]x . (6.147)

Now compare this expression with what is expected, namely:

xT(t + lit + I)P- 1(t + lit + l)xT(t + lit + 1)

= [Ky(t + 1) + (I - KH)x]T[p-l + H TR 2
1H][Ky(t + 1) + (I - KH)x] .

(6.148)

It has to be shown that (6.147) and (6.148) are identical. To do so, examine
the difference of the matrices in the quadratic forms. For the quadratic forms in
y(t + 1):

K T (P- 1+ H T R 2
1H)K _ R 2

1 + Q-l

= Q-l HP(P- 1+ H T R 2
1H)PHTQ-l _ R21 + Q-l

=Q-l[HPHT + HPHTR 2
1HPHT _ QR21Q + Q]Q-l

=Q-l[(Q _ R2) + (Q _ R2)R2 \Q - R2) _ QR2
1Q + Q]Q-l

= O.

For the quadratic form in x:
(I - H T K T )(p-1+ H TR 2

1H)(1 _ KH) _ p- 1+ H TQ-l H

=p- 1+ H TR 2
1H _ H TQ-I H _ H TQ-l HPHTR2

1H

_HTQ-I H _ HTR21HPHTQ-IH +HTQ-1HPHTQ-I H

+HTQ-IHPHTR:;IHPHTQ-IH _ p- 1+ H TQ-I H

=H TQ-l[QR2
1Q _ HPHTR 2

1Q - Q - QR2
1HPHT

+HPHT + HPHTR21HPHT]Q-IH

= H TQ-l[QR2
1Q - (Q - R2)R2

1Q - Q - QR2
1(Q - R2)

+(Q - R2) + (Q - R2)R2
1 (Q - R2)]Q-l H

= O.

Similarly, for the mixed form:

KT(p-l + H T R 2
1H)(1 - KH) _ Q-l H

=Q-l[HP(P- 1+ H TR 2
1H _ H TQ-I H _ H T R 2

1HPHTQ-l H) - H]

= Q-l[1 + HPHTR 2
1 - HPHTQ-l - HPHTR 2

1HPHTQ-l - 1]H

=Q-1HPHT[R2
1 _ Q-l _ R 2

1(Q - R2)Q-l]H

= O.

Thus it has been established that the expressions in (6.147) and (6.148) are iden­
tical. Inserting the expressions found into (6.143), it can be seen that

p(x(t + 1)lyt+l) = ,(x(t + 1); x(t + lit + 1), P(t + lit + 1)) , (6.149)

where the conditional mean x(t + lit + 1) and the conditional covariance matrix
P(t + lit + 1) are given by (6.144).

This concludes the whole proof of the theorem. •
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6.A.3 Two Determinant Results

This section presents two results related to the determinant of a partitioned matrix.

Lemma 6.8 Let A and D be square matrices and assume that A is invertible. Then

det ( ~ g) = det(A) det(D - CA- 1B) .

Proof The result follows by straightforward calculation as follows:

(
A B) (A B) (I -A-

1
B)det C D = det C D 0 I

= det ( ~ D _ ~A-IB )

= det(A)det(D-CA- 1B).

Lemma 6.9 Let A be an (nip) matrix and B an (PIn) matrix. Then

det(In + AB) = det(Ip + BA) .

Proof Simple calculation gives

det ( ~B ~) = det [( ~B ~) (~ Z)] = det (In ~AB ~)

= det(In + AB) det Ip = det(In + AB) .

However,

det ( ~B ~) = det [ ( ~ Z) (~B ~ )] = det (10BA~ Ip
)

= det In det(BA + I p ) = det(Ip + BA)

also holds.

Exercises

(6.150)

(6.151)

•

(6.152)

•

Exercise 6.1 Consider a stochastic system with noise-free measurements

xU + 1) = Fx(t) + v(t) ,

y(t) = Hx(t) ,

v(t) being white noise and dimy < dimx. Show explicitly that

y(tlt) = Hx(tjt) = y(t) .
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Exercise 6.2 Prove the inequality

HP(tlt)HT
:::; R2

and give an interpretation. Under what conditions does equality hold?

Hint. One can show that for A, B symmetric and nonnegative definite

A - A(A + B)-l A :::; B .

Exercise 6.3 Consider the system

x=Ax+e,
y= ex,

where

Ee(t)eT(s) = R8(t - s) .

Determine the LLMS optimal predictor fj(t + rlt), r > 0, of y(t + r) given
the state vector up to time t.

Exercise 6.4 Consider the following very simplified problem of estimating
the probability of the rendezvous of two vehicles. Both vehicles move in the x­
y plane. One vehicle is known to move along the x-axis according to x(t) = t,
y(t) = O. The movement of the other vehicle is a bit uncertain and is modelled
as

(

1100)0100
z(t + 1) = 00 1 1 z(t) + v(t) ,

0001

(
X(t)) (1000)y(t) = 00 1 0 z(t) + e(t) ,

where v(t) and e(t) are white noise sequences of zero mean and covariance
matrices

(

0000)0100
R1 =Ta 0000 '

0001

Simulate the system for t = 0,1, ... ,N. At each time t compute the estimates
z(slt), s = t, t + 1, ... ,N and assess the risk that the two vehicles will meet.
Try, for example, the numerical values N =15, Ta =0.001, Te =1

Ez(O) = (1~) , cov(z(O)) = 10 x I .
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Exercise 6.5 Show algebraically that the following two representations of
the stationary optimal filter are equivalent. Assume that R12 = 0:

(i) x(tlt) = [qI - (F - KfHF)t1[(I - KfH)GU(t) + Kfy(t + 1)] .

(ii) x(tlt) = (I - KfH)[qI - (F - KH)t1[Gu(t) + Ky(t)] + Kfy(t) .

Exercise 6.6 Consider the system

x(t + 1) = ( -~ ~) x(t) + (~) v(t) ,

y(t) = (1 0) x(t) ,

where c2 t 1.

(a) Determine all symmetric solutions to the ARE. Determine which solution
is related to optimal prediction!

Hint. One can first show that

p=(I+ q C)c c2 ,

and then derive a nonlinear equation in the scalar variable q.
(b) Assume that the Riccati equation

P(t + 1) = FP(t)FT + R1 - FP(t)HT[HP(t)HTt l HP(t)FT ,

P(O) = Po ~ 0

is iterated until convergence. What are the stability properties for the
stationary solutions?

Hint. Show first that all solutions have the form

P(t) = C+cq(t) 2)' t ~ 1 ,

where q(t) satisfies a certain nonlinear difference equation, say q(t + 1) =
f(q(t)). Assume that q(t) = q is a stationary solution. Its stability prop­
erties are determined by the stability properties of the linearized model

q(t + 1) - q = afa(q) (q(t) - q) .
q !q=q

Exercise 6.7 In many cases measurement devices contain a bias. As an il­
lustration of how to handle this, consider the system

x(t + 1) = Fx(t) + v(t) ,

y(t) = Hx(t) +m + e(t) ,

where m denotes the measurement bias and v(t) and e(t) are uncorrelated
white noise sequences of zero mean.
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(a) Assume that m is unknown. Show that mean square optimal estimates
of the states and m can be obtained by introducing an enlarged model
using

x(t) = (x~»)

as state vector.
(b) Consider explicitly the scalar case

F= -a,

H = 1,

e(t) == 0 ,

E VZ(t) = r .

Describe the uncertainty of m as a random walk:

met + 1) = met) + vm(t) ,

where vm(t) is white noise of zero mean and variance rb.

Show that optimal estimates of x(t) and met) can be obtained in the
stationary phase as

x(t + lit) = -a(I - a)(q - 1) yet) ,
q + (aa -1 + a)

'(I) (I-a)(q-I) ()xtt= yt,
q + (aa - 1 + a)

met + lit) = m(tlt) = tq
+~) )y(t) ,

q+ aa- +a
where a is a parameter. Show also how a depends on the model param­
eters a and rb/r. What are the static gains of the filters?

(c) Compute numerically the frequency functions of the filters in part (b).
Examine how the model parameters a and rb/r influence the behaviour.

Exercise 6.8 Consider the usual state estimation problem for

x(t + 1) = Fx(t) + vet) ,

yet) = Hx(t) + e(t) ,

where vet) and e(t) are uncorrelated. In stationarity,

x(t + lit) = Gp(q)y(t) ,
x(tlt) = Gc(q)y(t) .

Show how the transfer functions Gp(q) and Gc(q) depend on the model and
the filter gain Kc = PHT(HPHT + RZ)-l. Also prove the relation

Gp(q) = FGc(q) .
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Exercise 6.9 Reconsider Exercise 4.17, where the ARE was shown to have
a positive semidefinite, and hence singular, solution. Find out why a positive
definite solution as guaranteed in Theorem 6.2 does not exist in this case.

Hint. The transformation in (6.113) may be useful as a first step.

Exercise 6.10 Consider fixed lag smoothing in the the stationary case. Find
explicit expressions for Kr (6.63) and P (6.69).

Exercise 6.11 Consider the ARE

p=pppT +R1 -PPHT(HPHT +R2 )-IHPpT.

Assume that there are two positive definite solutions, PI and P2 , such that

(i=1,2)

has all eigenvalues strictly inside the unit circle.

(a) Prove that

- -T
PI (PI - P2 ) p 2 = (PI - P2 ) .

(b) Use the result of (a) to prove that PI = P2 , that is, there exists at most
one positive definite solution to the ARE.

Exercise 6.12 Consider the system

x(t + 1) = Px(t) ,

y(t) = Hx(t) + e(t) ,

where e(t) is white noise of zero mean and covariance R2 • Assume that all
eigenvalues of P satisfy

Show that the solution to the associated Riccati equation can be written

t-l
P(t) = p t[P-l(O) + L(FT)jHTR21HPjtl(pT)t,

j=O

and that P(t) -+ 0 as t -+ 00.

Hint. One can first derive a linear difference equation for P-1(t).

Exercise 6.13 Consider the continuous-time system

x=Ax+v,

E v(t)vT(s) = Rc r5(t - s) ,

with discrete-time measurements (e and v being independent)
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y(kh) = Hx(kh) + e(kh) (k integer),

E e(kh)eT(jh) = R28k,j .

Derive the "continuous-discrete" Kalman filter, that is, the optimal state
estimate of x(t) based on all available measurements of y(kh) available at
time t (i. e. all k < t/ h) .

Examine, for the stationary, time-invariant case, how the covariance ma­
trix of the optimal state estimate varies over the sampling interval.

Exercise 6.14 It seems intuitively reasonable that a prediction k-steps
ahead should have worse accuracy than a prediction (k - I)-steps ahead.
Consider the statements

• x(t + kIt) has worse accuracy than x(t + kit + 1) (i.e. P(t + kit) >
P(t+k-t+I)).

• x(t + kit) has worse accuracy than x(t + k - lit) (i.e. P(t + kit) >
P(t+k-I-t)).

For each statement, either prove it or construct a counterexample.

Exercise 6.15 Consider the dynamic system

x(t + 1) = (~ ~ ) x(t) + (~) v(t) ,

y(t) = (1 O)x(t) ,

where v(t) is Gaussian white noise. Determine the optimal state estimates
x(tlt - 1) and x(tlt) for arbitrary values of t.

Hint. When solving the Riccati equation, it is useful to introduce the
scalar

a(t) = P22(t) - pr2(t)/PU(t) .

Exercise 6.16 Consider the output prediction errors {y(t)}, (6.4). Prove
that they are white, in the sense that they are uncorrelated

Ey(t+k)y(t) =0, for k > O.

Exercise 6.11 Consider a scalar system

x(t + 1) = 0.8x(t) + v(t) ,
y(t) = x(t) + e(t) ,

with Tl = E v2(t) = 0.68, T2 = E e2(t) = 1.

(a) Determine the signal-to-noise ratio (SNR) = E x2(t)/E e2(t).
(b) Determine the innovations form.
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(c) Assume that a smoothing estimate x(tlt + m), m > 0 is sought. Show
that it can be written as

00

x(tlt +m) = L hjy(t - j)
j=-m

where y(t) is the innovation at time t. Determine the weighting coeffi­
cients {hj }. At what rate does {hj } decay when j -t 00, and what is the
rate when j -t -m?

(d) Show that the smoothing estimate in part (c) can be written as
00

x(tlt + m) = L gjy(t - j)
j=-m

and determine the weighting coefficients {gj}.

Exercise 6.18 Consider the system

x(t + 1) = Fx(t) + v(t) ,

y(t) = Hx(t) + e(t) ,

where v(t) and e(t) are mutually independent and Gaussian distributed white
noise sequences with zero mean and covariances R1 and R2 respectively. The
initial value, x(O), is assumed to be Gaussian distributed, x(O) ,...., N(mo, Ro),
and independent of the noise sequences.

In the basic formulation of the optimal state estimation, the covariance
matrix of total data vector

(

y(O))
y(t)

yt= .

y(t)

has an important role.

(a) Show that

yt = (ffF) x(O) + (e(o)) + ( :F H0 )

HF t e(t) . .
HF t - 1 H 0

and hence

( v~O)) ,
v(t)
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+(3:, H ... :Jc... ~J
oH T F T H T ... F Tt

-
1
H T

o HT

x

o
(b) Show using the Kalman filter and the innovations {Y(t)} that

y(t) = y(t) + HK(t -I)y(t -1) + HFK(t - 2)y(t - 2)

+... + HFt- 1K(O)y(O) + HFtx(OI - 1)

and hence that

o ) (Y~O»)
I y(t)

HK(t -1)1

(c) Prove, by explicit algebraic calculations, that the covariance matrix of
yt as expressed in (b) coincides with R as given in (a).

Remark The result in (b) gives a triangularization of the covariance matrix
R. As this admits rewriting R as R = LDLT with L lower triangular and D
block diagonal, the inversion of R is highly facilitated. In fact, the result can
also be viewed as a time-varying generalization of spectral factorization. Note
that the representation in (b) is in principle the same as that given implicitly
in (6.7). 0

Exercise 6.19 Consider the system

x(t + 1) = Fx(t) +v(t) ,

y(t) = Hx(t) + e(t) ,

where v(t) '" N(O, Rt} and e(s) '" N(O, R2 ) are mutually independent for all
t and s. Show that

p(x(t + I)lyt) = p(x(t + I)lx(t + lit» .
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Remark This means that the conditional mean x(t + lit) in this example is
a sufficient statistic. D

Exercise 6.20 Consider the tracking of a moving object from discrete-time
position measurements. Model this as

x = (~~) x + (~) w,

y = (1 O)x,
Ew(t)w(s) = <5(t - s).

(a) Sample the model. Let the sampling interval be h.
(b) Determine the stationary optimal predictor x(t + hit) and filter x(tlt).

Show that they can be written as

A 1 (q(I+hjJ)-I)
x(t + hit) = q + (hjJ _ 1) jJ(q _ 1) y(t),

A ( y(t) )
x(tlt) = q+(h1f3_1}jJ(q - I)y(t) ,

for some parameter 13. Also determine the covariance matrices P(t + hit)
and P(tlt) of these estimates.

(c) Assume that one wishes to estimate the state vector between the mea­
surements. Let a ~ T < h. Determine the optimal estimate x(t + Tit)
(t being a sampling instant) and its covariance matrix P(t+Tlt). Exam­
ine how P(t + Tit) varies with T. Is x(t +Tit) always inferior to x(tlt)?

(d) Discuss the result and compare with simple heuristic ways of estimating
the derivative X2(t) = f;(t).

Exercise 6.21 Consider the ARE

P =FPFT + R1 - FPHT(HPHT + R2)-1 HPFT .

Assume that F and R2 are invertible. Introduce the Euler matrix

(
F-T F-THTR-1H )

</>= R1F-T F+R1F-TH
2T

R:;lH .

This problem establishes some links between the ARE and the Euler matrix.

(a) Assume that el ... en are eigenvectors to </>. Set

(el ... en) = (~) ,

and assume P to be invertible. Show that X = RP- 1 will be a solution
to the ARE.
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(b) Let X be an arbitrary symmetric solution to the ARE. Show that the
eigenvalues of F - FX HT(HX HT + R2)-1 H are also eigenvalues of the
Euler matrix ¢.

Exercise 6.22 Consider the matrix pencil given by (6.125) and (6.126):

>'L- M

where

_(1 HTR;lH) _ ( F
T 0)

L - OF' M - -R
1

1 .

and the algorithm given by (6.127)-(6.129) for solving the ARE.

(a) Show that P as defined in (6.129) is a solution to the ARE.
(b) Consider the scalar case. Find U and V. Show that the upper left part

of the pencil (6.127) vanishes, that is

>'£11 - 11111 = °
gives precisely

>. =F - KH, K =FPHT(HPHT + R2)-1 .

c) For the scalar case derive the equation in >. for the generalized eigenval­
ues. Show that, in general, if >'1 is a solution, then so is >'11. Under what
conditions will only one finite solution exist? Under what conditions will
there be no solution strictly inside the unit circle?

Exercise 6.23 Consider the ARE

P=FPFT +R1 -FPHT(HPHT +R2)-lHPFT .

Assume that Pk is an approximate solution. Seek an improved solution of the
form P = Pk + !::J.P. We derive an update equation for !::J.P by dropping all
terms higher than linear in !::J.P. Set

Kk = FPkHT(HPkHT + R2)-1 ,
Pk+l = Pk + !::J.P .

(a) Show that

PHI = (F - KkH)Pk+l (F - KkH)T + (R1+ KkR2K[) .

(b) Set

K = FPHT(HPHT + R2)-1 .

Show that

(Pk - PHd - (F - KkH)(Pk - PHd(F - KkH)T

= (Kk - Kk_1)(HPkHT + R2)(Kk - Kk-1f
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and

(PHI - P) - (F - KkH)(PkH - P)(F - KkHf

= (Kk - K)(HPHT +R2 )(Kk - Kf·

(c) Assume that F - KkH has all eigenvalues strictly inside the unit circle.
Show that

Pk ~ PkH ~ P.

(d) Factorize RI as RI =GGT. Assume that (F,G) is controllable and that
R2 and Pk are positive definite. Show that F - KkH has all eigenvalues
strictly inside the unit circle.
Hint. Study the stability properties of the system

x(t + 1) = (F - KkHfx(t)

by means of the Lyapunov function V(x) = XTPkX.
(e) Let {Pk } be a sequence of symmetric matrices and P a symmetric matrix

satisfying

Po ~ PI ~ P2 ~ .•. ~ Pn ~ PnH ~ ... ~ P .

Show that the sequence {Pd is convergent.
(f) Assume that the ARE has a (unique) symmetric positive definite solution

P. Factorize RI as RI =GGT and assume (F, G) to be controllable and
that R2 is positive definite. Let Po be symmetric and positive definite
and assume that F - KoH has all eigenvalues inside the unit circle. Use
the previous parts of the problem to show that the sequence {Pk } is
decreasing and converges to P.

Exercise 6.24 Derive an acceleration algorithm for computing ¢(2
k
), where

the Euler matrix ¢ is defined in (6.120). Set

¢(2k) ~ ( a;l a;1 (3k )
- 'Yka;l 15k + 'Yk a ; 1(3k '

where ak, (3k, 'Yk, 15k are all (nln) matrices. The initial values are readily
found:

-FTao - , 'Yo = R1 , 150 = F .

Derive the following recursions:

akH = ak(I + (3k'Yk)-lak ,

(3Hl = (3k + ak(I + (3k'Yk)-l(3k t5k ,

'YkH = 'Yk + t5k'Yk(I + (3k'Yk)-lak ,

t5kH = t5k(I + 'Yk(3k)- lt5k .
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Remark In fact, it holds for the given initial values that Ok = aT, 13k and 'Yk
are symmetric. These relations can be used to simplify the algorithm further.

o

Exercise 6.25 Consider fixed lag smoothing, as described in Section 6.5.2.
Assume that m = 2, and examine the stationary case. Let P be a positive
definite solution to the Riccati equation

P = pppT + R1 - PPHT(HPHT + RZ)-l HPpT .

Determine the stationary values of the covariance matrix P(t) (6.69) and the
filter gain Kf(t) (6.63).
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7. Optimal Estimation for Linear Systems by
Polynomial Methods

7.1 Introduction

Many estimation and control problems can be phrased using either a state
space approach or a transfer function framework.

The state space methodology is more complete, in the sense that it gives a
more detailed view of what happens to individual state variables. It is also the
preferable choice when transient phenomena are to be studied. As derived in
Chapter 6, the optimal state estimate is governed by a time-varying Kalman
filter. Only in stationary cases where there is a sufficiently long data record
will a time-invariant filter give optimal performance.

On the other hand, in many cases the state variables are not interesting
per se, but merely as a step for describing the input-output behaviour. If
the system is operating in a stationary mode and transient effects can be
dispensed with, it is appropriate to use a transfer function formalism, since
it is simpler than a state space approach.

A rational transfer function can be written as a ratio of polynomials in the
scalar case. In the multivariable case, one can use two polynomial matrices to
form a matrix fraction decomposition. Hence, it is relevant to call the transfer
function formalism a polynomial approach.

As a prelude, in this chapter the optimal (in a mean square sense) pre­
dictor of a time series is studied (Section 7.2). Then, the Wiener filtering
techniques are developed in Section 7.3 and applied to a general estimation
problem (Section 7.4). Section 7.5 shows how the techniques developed can
be modified to take uncertainties in the model description into account, thus
achieving a form of robust filter.

It is worth noting that many estimation problems can be phrased and
solved with either a state space or a polynomial approach. An extensive
example to illustrate both approaches is given in Chapter 8.

7.2 Optimal Prediction

7.2.1 Introduction

Consider a stationary stochastic process described by a state space model
T. Söderström, Discrete-time Stochastic System
© Springer-Verlag London 2002
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x(t + 1) = Fx(t) + v(t) ,
y(t) = Hx(t) + e(t) ,

(7.1)

where v(t) and e(t) are mutually uncorrelated white noise sequences with
zero mean and covariances R1 and R2 respectively. Assume that data have
been available since the infinite past (i. e. the initial time to -+ -00). The
optimal (in the mean square sense) k-step predictor of the signal y(t) is then
given by (6.40) and (6.99):

y(t + kit) = Hx(t + kit)
= HFk

-
1X(t + lit)

=HFk
-

1[I - Fq-1 + KHq- 1r 1Ky(t) , (7.2)

where K denotes the stationary predictor gain. Obviously, (7.2) can be rewrit­
ten as

y(t + kit) = G(q)y(t) ,

where the filter G(q) is given by

G(q) = HFk
-

1[I - (F - KH)q-1r 1K .

(7.3)

(7.4)

The purpose of this section is to derive optimal predictors of the form of (7.3)
using a polynomial formalism instead of the state space methodology.

As a starting point, consider a simple but illustrative example.

Example 7.1 Consider one-step prediction of a first-order ARMA process

y(t) + ay(t - 1) = e(t) + ee(t - 1) ,

lal < 1, lei < 1 ,

(7.5)

(7.6)

where e(t) is white noise of zero mean and variance ,X2. The predictor
y(t + lit) should be a function of the data available at time t, that is, of
yt. It is instructive to examine the quantity y(t + 1) to be predicted. First,
write y(t + 1) as a weighted sum of old noise values:

1 + c -1
y(t + 1) = q-1 e(t + 1)

1 +aq
= (1 + cq-1 )[1 - aq-1 + a2q-2 + ... (-a)i q-i + .. .]e(t + 1)

=e(t + 1) + [(c - a)e(t) - a(c - a)e(t - 1) +... (7.7)

+(-a)i(c - a)e(t - j) + ...] . (7.8)

Here, the first term, e(t + 1), will be uncorrelated with all available data,
yt. At best, one can possibly hope to reconstruct the second part (in the
brackets). For this purpose, invert the underlying process description, which
gives

1 + aq-l
e(t) = -1 y(t) .

1 + cq
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Note that, to do so, it is crucial that the assumption lei < 1 is satisfied.
Proceeding with the details, it is found that

[(c - a)e(t) - a(c - a)e(t - 1) + + (-a)j (c - a)e(t - j) + ...]

= (c - a)[l - aq-1 + a2q-2 + + (-a)jq-j + .. .]e(t)

1 1 + aq-1
= (c - a) 1 +aq-1 1 + cq-1 y(t)

c-a
1+Cq-1 y(t) .

Hence
c-a

y(t + 1) = e(t + 1) + 1 + cq-1 y(t) . (7.9)

Here, it can clearly be seen that the first part, that is, e(t + 1), cannot be
computed from data, whereas the second part certainly can. The optimal
predictor is thus

c-a
f)(t + lit) = -1 y(t) . (7.10)

1+ cq

It will apparently be a weighted sum of all old output values:

f)(t + lit) = (c - a)y(t) - c(c - a)y(t - 1) + ...
+( -c)i(c - a)y(t - j) + ....

For implementation, however, it is more feasible to use the form in (7.10) of
the optimal predictor or to rewrite it as a difference equation

f)(t + lit) = -cf)(tlt - 1) + (c - a)y(t) .

7.2.2 Optimal Prediction of ARMA Processes

Consider a complex-valued ARMA process:

(7.11)

o

A(q)y(t) = C(q)e(t) , (7.12)

where

A() n n-1q =q +a1q + +an ,
C(q) = qn + c1qn-1 + +Cn ,

have all zeros inside the unit circle.
The clue to finding the optimal k-step predictor is similar to the method

used in Example 7.1, namely to rewrite y(t + k) in two terms. The first term
is a weighted sum of future noise values, {e(t + j) }j=l' As it is uncorrelated
to all available data, it cannot be reconstructed in any way. The other term
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is a weighted sum of past noise values {e( t - s)}~o' By inverting the pro­
cess model, this term can be written as a weighted sum of output values,
{yet - s)}~o' Hence, the second term can be computed exactly from data.

In order to proceed, introduce the predictor identity

IZ·-lC(Z) '" A(z)F(z) + L(z) ,

where

F(z) = zk-l + fI zk-2 + + /k-l ,

L(z) = foz n
-

1 + f 1zn -
2 + + f n - 1 •

Then

yet + k) = ~i:~ e(t + k)

k-lC( )= q q e(t + 1)
A(q)

= A(q)F(q) + L(q) e(t + 1)
A(q)

=F(q)e(t + 1) + ~(~qi e(t)

qL(q) A(q)
=F(q)e(t + 1) + A(q) C(q) yet)

qL(q)
=F(q)e(t + 1) + C(q) yet) .

(7.14)

(7.15)

(7.16)

Note that F(q)e(t + 1) is precisely the first term mentioned above. It is a
weighted sum of future noise values, and qL(q)jC(q)y(t) is a weighted sum
of available measurements yt.

Now, let yet + k) be an arbitrary predictor of yet + k). As it is a function
of yt, the prediction error variance will be

E Iy(t + k) - yet + kW = E IF(q)e(t + 1) + ~(~i yet) - yet + k)r

= E IF(q)e(t + 1W + E I~(~i yet) - yet + k)1
2

;::: E IF(q)e(t + 1W . (7.17)

Hence the mean square optimal predictor is given by

I
' qL(q)
yet + kit) = C(q) yet) , (7.18)
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and the associated prediction error is

y(t + k) = F(q)e(t + 1) (7.19)
= e(t + k) + he(t + k - 1) + ... + !k-le(t + 1) ,

and has variance

(7.20)

It is illustrative to compare the above derivation with that obtained by
treating the problem in a state space setting. In order to simplify, consider
only one-step prediction.

Example 7.2 Consider the ARMA process

A(q)y(t) = C(q)e(t) .

and represent it in state space form as

(

-all 0) (1)
x(t + 1) = _: '.. x(t) + C:l v(t),

an 0 1 .
o 0 cn

y(t) = (1 0 ... O)x(t) ,

which is written in brief as

x(t + 1) = Fx(t) + Cv(t) ,

y(t) = Hx(t) .

Here, v(t) = e(t + 1).
The associated ARE is

P = FPFT + >..2CCT - FPHT(HPHT)-l HPFT .

The solution turns out to be P = >..2CCT. (It is easy to show that this is a
solution. It is more difficult to show that it is the solution required for the
estimation problem.) The filter gain is

Kf = PHT(HPHT)-l =C.

The Kalman one-step predictor becomes

x(t + lit) = (F - FKfH)x(tlt - 1) + FKfy(t) .

Now:
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and

F-FKrH =

(

-Cl 1 )

x(t + lit) = : ". x(tlt - 1)
-Cn 1
o 0

(

Cl - a1)
+ : y(t) .

Cn - an

o

0 ... 0)

Noting that this model is in observable canonical form, it is found that

y(tlt - 1) = xl(tlt -1) = C(q~(q~(q) y(t) .

Next, the output innovations are computed as

y(t) = y(t) - Hx(tlt - 1) = y(t) - xl(tlt - 1)
A(q)

= C(q) y(t) [= e(t)] ,

which is in perfect agreement with what is easily obtained with the polyno­
mial formalism. 0

One can give several interpretations of the predictor identity (7.13).

1. The predictor identity can be regarded as a Diophantine equation. Recall
that A(z) and C(z) are known and that F(z) and L(z) are to be com­
puted. When the Diophantine equation is reformulated as a set of linear
equations in the unknown polynomial equations, this gives the triangular
system of equations
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1 0 I II Cl - al
al 1 I 0 C2 - a2

I ik-l
an 1 I - --- Cn - an (7.21)

al 11 f o 0

0 10
an I 1 f n - 1 0

It can easily be seen that this system of equations (with n + k - 1 equa­
tions and the same number of unknowns) always has a unique solution.
As the matrix is triangular, it is straightforward to solve the equations
successively from top to bottom.

2. It can be seen as a form of polynomial division. Rewrite the predictor
identity as

Zk-1C(Z) = F() L(z)
A(z) z + A(z) . (7.22)

The interpretation is then that zk-1C(z) is divided by A(z). The quotient
is then the polynomial F(z) of degree k - 1 and there is a remainder
polynomial L(z).

3. Closely related to the above interpretation is the view of the predictor
identity as a truncation of the weighting function. See (7.26) below. In
fact, if the transfer function C(z)jA(z) is transformed to a weighting
function, one obtains

C(z)_h h -1 h -2 -~h.-j
A(z) - 0 + lZ + 2Z + ... - ~ JZ .

The sum can be truncated after k terms, to give

",k-l h -j - l-kF()L..j=o jZ - Z Z,
l:~k hjz- j = Zl-kL(z)jA(z) .

7.2.3 A General Case

Consider the system

(7.23)

y(t) = G(q)u(t) + H(q)e(t) , (7.24)

where e(t) is zero mean complex white noise, H(oo) I, and H-1(q) is
asymptotically stable. This means that {e(t)} are the output innovations;
see Section 4.3. The best k-step predictor in a mean square sense is sought,
that is, a function f(t) of yt, such that

v = E [y(t + k) - f(t)]* P[y(t + k) - f(t)] , (7.25)
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where P is a positive definite Hermitian weighting matrix. Assume that all
future input values, that is, u(t + 1), ... ,u(t + k), are known at time t.

In order to solve this problem, rewrite the noise filter as
00

H(q) = L hjq-j , (ho = I)
j=O

and split it into two parts

k-l 00

H(q) = [L hjq-j] +q-k[L hk+jq-j] .
j=O j=O--.........-.-' ...

~ q-k+l Ho(q) q-k Hl(q) (7.26)

Note that Ho(q) so defined will be a polynomial, of degree k-1, in q. Rewrite
the signal to predict as

y(t + k) = G(q)u(t + k) + H(q)e(t + k)
= G(q)u(t + k) + [q-k+l Ho(q) + q-k Hl (q)]e(t + k)

= G(q)u(t + k) + Ho(q)e(t + 1) + Hl(q)e(t)

= G(q)u(t + k) + Ho(q)e(t + 1)
+Hl(q)H-l(q)[y(t) - G(q)u(t)]

= [Ho(q)e(t + 1)] + [Hl(q)H-l(q)y(t)
+{H(q)qk - Hl(q)}H- l (q)G(q)u(t)]

= [Ho(q)e(t + 1)]
+[Hl(q)H-l(q)y(t) + Ho(q)H-l(q)G(q)u(t + 1)]

~ c:(t + 1) + z(t) . (7.27)

Next, note the following:

• The term c:(t + 1) = e(t + k) + hle(t + k - 1) + ... + hk-le(t + 1) depends
only on future values of the white noise e(t). Hence c(t + 1) is uncorrelated
with yt .

• The term z(t) is a function of yt (and possibly future input variables), and
is known at time t.

Thus

v = E [c(t + 1) + z(t) - f(t)]* P[c(t + 1) + z(t) - f(t)]

= E [c*(t + l)Pc(t + 1)] + E [z(t) - f(t)]* P[z(t) - f(t)]

~ Ec:*(t + l)Pc:(t + 1) . (7.28)

The term E c:*(t+ l)Pc(t+ 1) is something that can in no sense be affected by
the choice of predictor f(t). Therefore, the best predictor (in a mean square
sense) is the choice f(t) = z(t). The optimal predictor is denoted as follows:
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f)(t + kit) = H1 (q)H- 1 (q)y(t) + Ho(q)H- 1(q)G(q)U(t + 1) . (7.29)

The prediction error is apparently

y(t + k) ~ y(t + k) - f)(t + kit) = Ho(q)e(t + 1) .

and the minimal value of the criterion becomes

min V = E €*(t + l)P€(t + 1)
k-l

=L E e*(t + k - j)hjPhje(t + k - j)
j=O

k-l

= Ltr [hjPhjE e(t)e*(t)] .
j=O

Remark For a scalar ARMA process (7.12):

(7.30)

(7.31)

Ho(q) = F(q) ,

and

H ( )H-1( ) = qL(q) A(q) = qL(q)
1 q q A(q) C(q) C(q) ,

which coincides with the previous findings.

7.2.4 Prediction of Nonstationary Processes

o

Some comments on the optimal prediction of nonstationary processes can be
given. Consider an ARMA process

A(q)y(t) = C(q)e(t) , (7.32)

where A(z) is allowed to have zeros on or outside the unit circle. By spectral
factorization applied to the right-hand side of (7.32), it can be assumed that
C(z) has all zeros inside the unit circle. The true optimal predictor for such
a nonstationary situation is given by the Kalman filter. One could, however,
apply the predictor in (7.18), although it would not be optimal in the tran­
sient phase. If the process is perfectly known, after a transient period the
optimal prediction is obtained. The situation is depicted in Figure 7.1.

In the nonstationary case, a small prediction error, €(t + k), is still ob­
tained, but it is the difference between two nonstationary processes, and
hence is most sensitive to small rounding errors or other imperfections in the
calculations. In fact, let the predictor be based on the model in (7.32), while
the true process is described by

Ao(q)y(t) = Co(q)e(t) .

The prediction error becomes

(7.33)
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e(t) y(t) fj(t + kit)

y(t + k)

€(t + k)

Fig. 7.1. Prediction of an ARMA process

c(t+k) = y(t+k) -y(t+klt)

= [qk _ qL(q)] y(t)
C(q)

= qA(q)F(q) Co(q) e(t) . (7.34)
C(q) Ao(q)

In the ideal case when A = Ao, C = Co, one obtains dt + k) = qF(q)e(t)
as before. As soon as the unstable part of Ao deviates from that of A, the
prediction error will have a variance that grows exponentially with time.

7.3 Wiener Filters

The steady-state linear least mean square estimate is derived in this section.

1.3.1 Statement of the Problem

Let y(t) and s(t) be two, possibly complex-valued, correlated and stationary
stochastic processes, possibly multivariable. Assume that y(t) is measured
and find a causal, asymptotically stable filter G(q) such that G(q)y(t) is a
good estimate of s(t). More precisely, it should be the optimal (linear) mean
square estimator, that is, it should minimize the criterion

v = E Ils(t) - G(q)y(t)W . (7.35)

The analysis of the problem and the derivation of the optimal filter will be
done in the frequency domain.

This implies, in particular, that data are assumed to be available since
the infinite past t = -00.

Introduce the estimation error

s(t) = s(t) - G(q)y(t) . (7.36)



The criterion V (7.35) can be rewritten as

V = E Ils(t)11 2 =E s*(t)s(t)

= E tr s*(t)s(t) = E tr s(t)s*(t)

= tr E s(t)s*(t) = tr rs(O)1! dz=tr-. cPs(z)-.
2m z

Next, note that
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(7.37)

cPs(z) = cPs(z)-G(z)cPys(z)-cPsy(z)G*(z-*)+G(z)cPy(z)G*(z-*) .(7.38)

Now let G(q) be the optimal filter and Gl(q) any causal filter. Replace G(q)
in (7.35) by G(q) + €G l (q). As a function of €, V can then be written as

V =Vo + €V l + €2V 2 . (7.39)

For G(q) to be the optimal filter it is required that

V 2': Vo for all € , (7.40)

that is:

€V l + €2V 2 2': 0 for all € . (7.41)

This equation means that, for any arbitrary and small deviation from the
optimal filter, the criterion V will not decrease. Let € be small enough. Then
the first term in (7.41) dominates. Phrased differently, €V l 2': O. As this result
holds for both positive and negative values of €, it is concluded that Vl = O.
This means that

0= tr 2~i ![-Gl(Z)cPyS(z) - cPsy(z)G~(z-*)
dz

+G(z)cPy(z)G~(z-*)+ Gl(z)cPy(z)G*(z-*)]-
z

= tr 2~i ![-Gl(z)cPys(z) - cPSy(z)G~(z)

+G(z)cPy(z)G~(z) + Gl (z)cPy(z)G*(z)] dz . (7.42)
z

This relation must hold for any causal and stable filter Gl(q). It can be
expected that it will define the optimal filter G(q) uniquely.

The condition in (7.42) can be simplified using some symmetry rela­
tions. Using (3.33), (7.38) and (7.42), and for tr (AB) real-valued, tr (AB) =
tr (AB)* = tr B* A*, gives

0= tr 2~i ![-cP;s(Z)G~(Z)- cPsy(z)G~(z)
dz

+G(z)cPy(z)G~(z)+ G(z)cP;(z)G~(z)l-
z

= 2 tr -2
1

. ![G(Z)c/>y(Z) - c/>sy(z)]Gi(z) dz . (7.43)
nl z
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It is possible to give an interpretation and alternative view of (7.43). Consider
the original estimation problem. For the optimal filter, the estimation error
s(t) should be uncorrelated with all past measurements, {y(t - j)}~o' Oth­
erwise there would be another linear combination of the past measurements
giving smaller estimation error variance. Compare also the fact that x - x
and yare uncorrelatedj see Section 5.3. Hence

or

E s(t)y*(t - j) = 0 , all j~O, (7.44)

E s(t)[G l (q)y(t)]* = 0 for any stable and causal G l (q) . (7.45)

This can be rewritten as

o= E [s(t) - G(q)y(t)][G l (q)y(t)]*

= -2
1

. ![¢Sy(z) - G(z)¢y(z)]Gi(z) dz ,
7fl Z

which is precisely (7.43), except that the trace operator is omitted.

7.3.2 The Unrealizable Wiener Filter

From (7.43), one easily finds the unrealizable Wiener filter. Set

G(z)¢y(z) = ¢sy(z) ,

giving

IG(z) = ¢.,(z)¢;'(z) .

(7.46)

(7.47)

The filter is unrealizable since it relies (except in very degenerated cases) on
all future data points of y(t). Expressed differently: let G(z) be expanded as
a Laurent series (with a convergence region covering the unit circle)

00

G(z) = L gjZ-j.

j=-oo

(7.48)

A causal filter must satisfy gj = 0, all j < O. However, the filter of (7.47)
has mostly gj f:. 0 for all j, as is illustrated next.

Example 7.3 As an illustration of the above claim, consider the case of filter­
ing (k = 0) a first-order AR process in white noise:

1
s(t) = -v(t),

q+a

for which

y(t) = s(t) + e(t),
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-\~ \2 \2 (Z+C)(Z-1+ C)
<P (z) - + 1\ - 1\
Y - (z + a)(z-1 + a) e - e (z + a)(z-1 + a)

holds by spectral factorization, and

-\2
<PSy(z) = <Ps(z) = (z + a)(;-1 + a)

Hence, (7.47) implies

-\2 1 -\2 00 (-c)ljl .
G(z) - -.£. - -.£. " --z-J

- -\~ (z + C)(Z-1 + c) - -\~ jf::oo 1 - c2 '

where the last expression gives the Laurent series. It clearly has all coeffi­
cients nonzero. 0

Note, though, that when "deriving" (7.47) from (7.43), it was effectively
required that (7.43) holds for any G1(z). However, it is only required that
(7.43) holds for any causal and stable G1 (z). Such an attempt will eventually
lead to the optimal realizable filter.

7.3.3 The Realizable Wiener Filter

To proceed, assume that the process y(t) has an innovations representation

y(t) = H(q)e(t) ,
E e(t)e*(s) = A8t ,s ,

H(O) = I ,
(7.49)

with H(q) and H- 1 (q) asymptotically stable. Then, in particular, on the unit
circle

<py(z) = H(z)AH*(z) .

Further, introduce the causal part of an analytical function. Let
00

G(z) = 2: 9jZ-
j

,

j=-oo

(7.50)

(7.51)

where the series converges in a strip that includes the unit circle. Then the
causal part of G(z) is defined as

00

[G(z)]+ = 2: 9jZ-
j

.

j=O

The anticausal part is the complementary part of the sum:

-1

[G(z)l- = L gjZ-j =G(z) - [G(z)l+ .
j=-oo

(7.52)

(7.53)
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It is important to note that the term goz-O in (7.51) appears in the causal
part, [G(z)]+.

In order to proceed, the following result will be useful.

Lemma 7.1 The anticausal part [G(z)]_ of a transfer function G(z) has no
poles inside or on the unit circle.

Proof As the series in (7.51) is such that it converges on the unit circle, it
is found that

-1 00

[G(z)]_ = L gjZ-j = L g_kzk .
j=-oo k=1

Therefore, inside and on the unit circle
00 00

I[G(z)]-1 = IL g_kzkl :::; L Ig-kl < 00

k=1 k=1
holds, implying that the function [G(z)]_ lacks poles in this region. •

Note also that a filter G(z) is causal if and only if

G(z) = [G(z)]+ . (7.54)

Using (7.50) and the conventions in (7.52) and (7.53), the optimality
condition (7.43) can be formulated as

0= tr-
2
1

. !{G(Z)H(z)AH*(Z) - 4>sy(z)}Gr(z) dz
nl z

=tr-
2
1

. !{G(Z)H(Z) - 4>sy (z){H* (z)} -1 A-I }AH*(z)Gr(z) dz
nl z

= tr2:i!{G(z)H(z) - [4>sy (z){H* (z)} -1 A-1]+

-[4>sy(z){H*(z)} -1 A-1]_ }AH*(z)G]'(z) dz . (7.55)
z

Next, note that the stability requirements imply that the function H* (z)Gr (z)
=H(Z-1 )G1(Z-I) does not have any poles inside the unit circle. By construc­
tion, the same is true for [4>sy(z){H*(Z)}-IA-l]_. The latter function has a
zero in z = O. Hence, by the residue theorem:

-2
1

. ![4>sy(Z){H*(Z)} -1 A-1]_AH*(z)G]'(z) dz = O. (7.56)
nl z

The optimal condition of (7.55) is therefore satisfied if

(7.57)

This is the realizable Wiener filter. It is clear by its construction that it is a
causal and asymptotically stable filter.
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7.3.4 Illustration

The Wiener filter will be illustrated in two simple cases. In both cases the
model is real-valued.

Example 7.4 Let y(t) be a scalar ARMA process

A(q)y(t) = C(q)e(t) ,

o

and set s(t) = y(t - j), j 2 O. Then the optimal filter should, of course,
be G(q) = q-j! The problem is in this case trivial, but is included here for
illustration only. In this case

C(z)
H(z) = A(z) , A = ,\2 ,

<PSy(z) = z-j<py(z) .

The unrealizable Wiener filter (7.47) becomes

G(z) = z-j¢y(Z)(f;l (z) = z-j ,

which is the expected result.
In order to derive the realizable Wiener filter, note that (on the unit circle)

__j 2 C(z) C*(z)
¢Sy(z) - z ,\ A(z) A*(z) .

Hence, using (7.57), the filter becomes

G(z) = [Z-j,\2 C(z) C*(z) A*(z) 2.] A(z)
A(z) A*(z) C*(z),\2 + C(z)

= [z - j C(z)] A(z) = z - j C(z) A(z) = z - j

A(z) + C(z) A(z) C(z) .

In both cases the filter will thus be (as it should)

s(t) = q-jy(t) = y(t - j) .

Example 7.5 Consider the same process as in Example 7.4, but treat the
prediction problem

s(t)=y(t+k) , k > O.

As before, the unrealizable filter (7.47) becomes

G(z) = Zk¢y(Z)¢;l(Z) = zk ,

meaning that
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s(t) = y(t + k) .

Note that it is noncausal, but in this sense it is a perfect estimate since it is
without error!

Next, the realizable filter is calculated. Similar to the calculations of Ex­
ample 7.4:

G(z) = [zk,\2 C(Z) C*(z) A*(z) 2-] A(z)
A(z) A*(z) C*(z),\2 + C(z)

= [zkC(Z)] A(z).
A(z) + C(z)

To proceed, let A(z) and C(z) have degree n, and introduce the polynomial
F(z) of degree k -1 and the polynomial L(z) of degree n -1 by the predictor
identity (7.13):

zk-1C(z) =A(z)F(z) + L(z) .

This gives

G(z) = [ZA(Z)F(Z) + ZL(Z)] A(z)
A(z) + C(z)

zL(z) A(z) zL(z)
= A(z) C(z) = C(z) .

The optimal predictor, therefore, has the form

s(t) = y(t + kit) = ~(~i y(t) .

7.3.5 Algorithmic Aspects

o

A convenient procedure for deriving Wiener filters for a given problem for­
mulation can now be described. Another approach will be outlined in Section
7.3.6. The method considered here is based on the following three facts:

1. The optimal filter G(q) satisfies (7.43) for any stable and causal G1(q).
2. The spectral factorization of the spectrum <Py(z) was instrumental in

finding the solution.
3. For the optimal Wiener filter (7.57) the integrand of (7.56) becomes

[<Psy(z){H*(z)} -l]_H*(z)Gi(z)! .
z

It lacks poles inside the unit circle.

The derivation procedure is then as follows:

(a) Introduce the spectral factor of <Py(z).
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(b) Manipulate the integrand of (7.56) so that all stable poles (i.e. poles
inside the unit circle) are cancelled by zeros.

The procedure may be best understood when illustrated by an example.

Example 7.6 Continue with the prediction of an ARMA process, as dealt
with in Examples 7.4 and 7.5. As before (again on the unit circle):

<P ( ) = C(z)C*(z) ,\2
Y z A(z)A*(z) , (k > 0) .

(7.60)

According to the principle, it is required that the following function has no
poles inside the unit circle:

1
f(z) = [G(z)H(z)AH*(z) - <PSy(z)]-

z
=[G(z) _ Zk],\2 C(z)C*(z) 1 .

A(z)A*(z) z

Now set

G( ) = Mo(z)
z N(z) ,

where Mo and N are coprime polynomials. Apparently:

f(z) = Mo(z) - zkN(z) ,\2 C(Z)C(Z-1) 1 .
N(z) A(z)A(z-l) Z

As all poles inside the unit circle must be cancelled by zeros, it can be con­
cluded that

N(z) is a factor of C(z) ,

zA(z) is a factor of Mo(z) - zkN(z) .

Now choose

N(z) = C(z) ,

which gives

Mo(z) - zkN(z) = zA(z)P(z)

(7.61)

(7.62)

for some polynomial P(z). Setting z = 0 in (7.62) leads to Mo(O) = 0, so
Mo(z) = zM(z) for some polynomial M(z). Thus from (7.61) and (7.62),
after cancelling a factor of z:

Zk-1C(Z) = M(z) - A(z)P(z) . (7.63)

This can be recognized as the predictor identity (7.13) after the substitutions

M(z) --+ L(z) ,

P(z) --+ -F(z) .
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The optimal predictor filter (7.57) becomes

G(z) = zM(z) = zM(z) = zL(z)
N(z) C(z) C(z) ,

which coincides with (7.59). o

7.3.6 The Causal Part of a Filter, Partial Fraction Decomposition
and a Diophantine Equation

When computing the Wiener filter as in (7.57), a systematic method of com­
puting the causal part of a filter is required. As will be shown in this section,
this problem is closely tied to partial fraction decomposition and a Diophan­
tine equation.

The following situation will be examined as an archetypical case. Consider
evaluation of

I(z) = [D~;;~:}l)L '
where

(7.64)

l

G(z, Z-l) = L gjzj , p ~ 0, f ~ °,
j=-p

D(z) = Zll + d1z ll- 1 + ... dll , v 2:: °,
F(Z-l) = z-I' + hz-I'+l + ... + II' , J.L ~ 0.

It is no restriction to assume that p ~ 0, f ~ 0. Otherwise one can augment
G with some zero coefficients. Assume that D(z) has all zeros strictly inside
the unit circle and zl'F(Z-l) all zeros strictly outside.

Now consider the Diophantine equation

G(z, Z-l) == ZO F(Z-l )R(z) + z13D(z )L(Z-l) , (7.65)

where a and f3 are integers, yet to be determined, R(z) is a polynomial in
z of degree dR = v - a ~ 0, and L(Z-l) is a polynomial in Z-l of degree
dL = J.L + f3 - 1 ~ 0. From (7.65), one obtains, due to the degree conditions
and pole locations:

[
G(Z,Z-l)] = [ZOR(Z)] + [Z13L(Z-l)]

D(z)F(z-l) + D(z) + F(Z-l) +
_ zOR(z)
- D(z) . (7.66)

Equation (7.66) shows, in essence, that the problem stated can be solved by
making a partial fraction decomposition of Gj(DF) and retaining the terms
with poles inside the unit circle.
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It remains to find the appropriate choices of the integers 0: and 13. These
numbers must be selected so that (7.65), interpreted as a system of linear
equations, has the same number of unknowns as the number of equations.
Further, it is of course required that (7.65) has a unique solution. It is pos­
tulated that the appropriate choice is

0: = min(O, J-t - p) ,
13 = max(O, £ - v) .

As a verification, the number of unknowns in (7.65) becomes

# unknowns = (dR + 1) + (dL + 1)

=v+J-t+1-0:+j3

= v + J-t + 1 + max(O,p - J-t) + max(O, £ - v)

= 1 + max(J-t ,p) + max(v,£) . (7.68)

This is to be compared with the number of equations, which is determined
by the number of powers zi appearing in (7.65). The highest power is

n max = max(£ ,0: + dR, 13 + v)

= max(£ ,v, v, £ - v + v)

= max(£ ,v) .

The smallest power of zi turns out to be

nmin = min(-p,o: - J-t ,13 - dL)

= min( -p, -J-t ,-p, -J-t + 1)

= min( -p, -J-t)

= - max(p, J-t) .

Hence the total number of equations becomes

# equations = n max - nmin + 1

= max(£ ,v) + max(p, J-t) + 1

= # unknowns . (7.69)

As for the compatibility of (7.65), it can be seen from the above investigation
that all the powers of zi appear possibly in the left-hand side and definitely
in the right-hand side. Hence, there will be no superfluous equations without
any unknowns.

Finally, to examine the uniqueness properties of the solution, it is conve­
nient to rewrite (7.65) as a pure polynomial identity, involving only positive
powers of z. Multiplying both sides by z-nm;n = zmax(p,JL) gives

zmax(p,JL)G(z, Z-l) == z",+max(p,JL) F(Z-l )R(z)

+zi3+max(p,JL) D(z )L(Z-l)

== [zJL F(z-l )]R(z) + [ZJL+I3-1 L(z-l )][zHmax(p-JL ,0) D(z)] . (7.70)
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However, by construction, the polynomials zl-' F(Z-l) and zl+max(p-I-' ,0) D(z)
are coprime. Owing to the general properties of Diophantine equations, it can
be concluded that equations (7.65) and (7.70) have a unique solution, with
the stated polynomial degrees.

The findings are illustrated in an example by reconsidering optimal pre­
diction of an ARMA process.

Example 7.7 Consider the ARMA model

A(q)y(t) = C(q)e(t) ,

where

(7.71)

(7.73)

(7.72)

A(q) = qn + alqn-l + + an ,

C(q) = qn + clqn-l + + Cn

have all zeros inside the unit circle.
Find the optimal k-steps ahead prediction. Then one must compute

j(z) = [zk~~;~L .

See Example 7.5. Hence, in this case:

G(z, Z-l) = zkC(z) ,
D(z) = A(z) ,
F(z) = 1,
P = 0, f = k + n, v = n, f.L = 0 .

From (7.67):

a: =min(O,O) =0,

13 =max(O, k + n - n) = k ,

and the polynomial degrees

dR = v - a: =n,

dL = 13 - 1 = k - 1 .

The Diophantine equation (7.65) gives

zkC(z) == R(z) +zkA(z)L(z-l). (7.74)

As L(Z-l) is of degree k - 1, it holds that zk-l L(Z-l) is a polynomial in z.
Therefore, a factor z can be cancelled in (7.74), which implies that

R(z) = zR1(z) ,

with degR1(z) =dR - 1 =n - 1. Summarizing, one obtains

Zk-1C(Z) == R1(z) + zk-l A(z)L(z-l) , (7.75)
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e(t)

M(q)
N(q)

v(t) C(q)
A(q)

s(t) s(t - m)

(7.76)

Fig. 7.2. Setup for a polynomial estimation problem

which is recognized as the predictor identity (7.13). The causal part (7.72) is
found as (see (7.66))

f( ) = zOR(z) = zR1(z)
Z A(z) A(z) ,

which coincides with the findings in (7.59). 0

7.4 Minimum Variance Filters

7.4.1 Introduction

Many estimation problems for filtering, prediction and smoothing can be
solved by polynomial methods. Here, one typical example is analyzed. Con­
sider the measurement of a random signal s(t) in additive noise w(t). This
noise source need not be white, but it is assumed to be uncorrelated with the
signal s(t). Model s(t) and w(t) as ARMA processes; see Figure 7.2. Thus

y(t) = s(t) +w(t) ,
C(q)

s(t) = A(q) v(t) ,

M(q)
w(t) = N(q) e(t) ,



(7.77)

(7.78)
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Ev(t)v(s) = A~8t,s,

Ee(t)e(s) = A;8t ,s,

E e(t)v(s) = 0 .

The polynomials in the model of (7.76) are

C(q) = qn + Clqn-l + + Cn ,
A(q) = qn + alqn-l + + an ,

M(q) = qr + mlqr-l + + m r ,
N(q) = qr + nlqr-l + + n r .

Assume that all four polynomials have all zeros inside the unit circle.
The problem to be treated is to estimate s(t - m) from {y(t - j)}~o,

where m is an integer. (Apparently, m = 0 gives filtering, m > 0 smoothing
and m < 0 prediction.)

7.4.2 Solution

The problem is solved using the Wiener filtering techniques of Section 7.3.
First, perform a spectral factorization of the output spectrum. Let Izl = 1.
Then

<P (z) = A2C(z)C*(z) + A2 M(z)M*(z)
Y v A(z)A*(z) e N(z)N*(z)

= ,X2 B(z)B*(z) ( )
- £ A(z)N(z)A*(z)N*(z) , 7.79

requiring that B(z) is a monic polynomial (that is, it has a leading 1 coef­
ficient) of degree n + r, and that it has all zeros inside the unit circle. The
polynomial B(z) is therefore uniquely given by the identity

'x~B(z)B*(z) == A~C(z)C*(z)N(z)N*(z)

+'x;A(z)A*(z)M(z)M*(z) .
(7.80)

Hence, in terms of Section 7.3:

B(z) -m 2 C(z)C*(z)
H(z) = A(z)N(z) ' A = A;, <PSy(z) = z Av A(z)A*(z) . (7.81)

According to Section 7.3 (7.57) the optimal filter becomes

G(z) = [z-m,X2 C(Z)C*(z) A*(Z)N*(Z)~] A(z)N(z)
v A(z)A*(z) B*(z) A~ + B(z)

= ,x~ [z-m C(Z)C*(Z)N*(Z)] A(z)N(z) (7.82)
A~ A(z)B*(z) + B(z)

In order to proceed, it is necessary to find the causal part [ ]+ in (7.82).
Apply the technique of Section 7.3.6, and identify the quantities as
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G(Z,Z-l) = z-mC(z)C*(z)N*(z) ,
D(z) = A(z) ,
F(Z-l) = B(Z-l) , (7.83)
p = m +n + r, £ = n - m ,
v = n,J-l = n +r.

This approach gives, from (7.67):

0: = min(O, n + r - m - n - r) = min(O, -m) ,

(3 = max(O, n - m - n) = max(O, -m) .

The Diophantine equation (7.65) becomes

z-mC(z)C*(z)N*(z) == zmin(o,-mlB*(z)R(z)

+zmax(O,-ml A(z)L*(z) ,

where the unknown polynomials have degrees

dR = n - min(O, -m) ,
dL = n + r - 1 + max(O, -m) .

(7.84)

(7.85)

Note that the "-1" that appears in dL has no direct correspondence in dR.
The reason is that the direct term goz-O in (7.51) is associated with the
causal part of G(z).

The optimal filter is readily found from (7.66). It gives

>.~ zmin(O,-m) R(z) A(z)N(z)
G(z) = >.~ A(z) B(z)

or

_ >.~ zmin(O,-m) R(z)N(z)
G(z) - >.~ B(z) . (7.86)

It is worth checking the causality of the filter in (7.86) for illustration. This
is done by examining the degrees:

deg[zmin(O,-m) R(z)N(z)] = min(O, -m) + n - min(O, -m) + r

=n + r = deg[B(z)] .

The filter is causal as its numerator and denominator have the same degrees.

7.4.3 The Estimation Error

An expression for the estimation error spectrum is now derived.
For ease of notation, drop the argument z in the derivation; so, in what

follows, S = S(z), S* = S*(z), etc.
The estimation error can be written as



(7.88)

(7.87)
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s(t) = s(t - m) - s(t - mit)

= s(t - m) - Gy(t)

=q-m C(q) V(t) _ A~ qmin(O,-m) R(q)N(q) [C(q) v(t) + M(q) e(t)]
A(q) A~ B(q) A(q) N(q)

= C(q) [q-m B(q) _ A~ qmin(O,-m)R(q)N(q)] v(t)
A(q)B(q) A~

_ A~ qmin(O,-m) R(q)M(q) e(t)
A~ B(q)'

As e(t) and v(t) are independent, one can write the spectrum of s(t) as (all
polynomials having argument z)

"'-(z) = A2 CC* [zmB* - A~ z- min(O,-m) R*N*]
'1'8 V AA*BB* A2

e

[
-mB _ A~ min(O,-m)RN] A~A~ RR* M M*

x Z A2z + A4 BB*
e e

This implies that

A2BB*AA*"'-(z) = A2CC* [A2BB* _ A2z-m-min(O,-m)R*N*Be '1'8 v e v

- A2 Zm+min(O,-m) B*RN + A~ RR*N N*]
v A~

+ Ai;~ RR*M M* AA* .
e

Next, recall that (7.84) can be written as

z-mCC* N* = zmin(O,-m)B*R + zmax(O,-m) AL· ,

and that (7.80) can be rephrased as

A~BB· = A;CC*N N* + A;AA* M M* .

Using these relations repeatedly gives

A~BB* AA·¢Js(z)

=A2CC*[A2CC* N N· + A2 AA* M M*jv v e

-A~Z- min(O,-m) R* B[zmin(O,-m) B*R + zmax(O,-m) AL*j
_A~zmin(O,-m) RB*[z-min(O,-m) BR* + z-max(O,-m) A*Lj

+ A~ RR*[A2BB. - A2AA* M M*j + A~A~ RR*MM·AA*
A~ e e A~

= A~[zmin(O,-m)B*R + zmax(O,-m) AL*J
x[z-min(O,-m)BR* + z-max(O,-m) A* Lj + A;A;CC*AA*MM*

-A: [RR*BB* + zmax(O,-m)-min(O,-m) R*BAL·

+zmin(O,-m)-max(O,-m) RB* A*L]
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='\~'\~CC*AA*M M* + '\~AA*LL* .

Hence

(7.89)

Note that the smoothing lag m does not appear explicitly in this equation.
It only influences the polynomial L *. The first term in (7.89) gives a lower
bound on the minimal error spectrum that can be obtained. In fact, when
m-+ 00 (smoothing with a lag tending to infinity), L will tend to zero. The
first term in (7.89) corresponds to the minimal loss when the estimate is
based on an infinite amount of future data points.

It is possible to give still further interpretations of (7.89). Consider the
unrealizable Wiener filter. In the present case,

2 B(z)B*(z)
cPy(z) = ,\e A(z)N(z)A*(z)N*(z) , (7.90)

2 -m C(z)C*(z)
cPsy(z) = ,\vz A(z)A*(z)· (7.91)

Hence the unrealizable Wiener filter becomes

G( ) = -m'\~ C(z)N(z)C*(z)N*(z) (7.92)
z z,\~ B(z)B*(z) .

The error spectrum is, in the general case, given by (7.38). Inserting the
unrealizable Wiener filter gives

cPs(z) = cPs(z) - cPSy(Z)cP;l(Z)cPys(z)

_ 2CC* ,\~ (CC*)2 AA*NN*
- ,\V AA* - ,\~ (AA*)2 BB*

,\~ CC* [,\2 BB* _ ,\2CC*N N*]
,\~ AA*BB* e v

=,\~ CC* ,\2AA*MM*
,\~ AA*BB* e

,\2,\2 CC*MM*
- >,2 e BB* (7.93)

e

This expression is the same as that in the first term of (7.89). Phrased differ­
ently, the error spectrum obtained with the unrealizable Wiener filter gives
a point-wise lower bound for the error spectrum achievable for a realizable
filter.

7.4.4 Extensions

The problem considered in this section can be extended in several ways. The
principal approach to solution remains the same. Here are some examples of
extensions:
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1. Multivariable processes.
2. Estimation of a signal different from, but correlated with, s(t). One may,

for example, want to estimate some internal variable in the dynamics,
say C(q)jA(q)v(t).

3. Prefiltering of the criterion; that is, the optimal filter should minimize

v = E [P(q)S(t)]2 ,

where s(t) is the estimation error

s(t) = s(t - m) - G(q)y(t) ,

(7.94)

(7.95)

and P(q) is a given rational filter. The idea is, of course, that by using
P(q) the frequency contents of the estimation error s(t) can be influenced.
For example, if it is required that s(t) should have little energy in a certain
frequency band, one should make P(eiw ) large in that band.

4. Drifting signals and disturbances (i.e. A(q) or N(q) has zeros on the unit
circle). This case can be handled with the approach presented. Compare
how the prediction of nonstationary processes was explained in Section
7.2.4.

Another, more indirect, extension is Hoo filtering. Such filters are based, in
analogy with (robust) HOO controller design, on not minimizing the variance
f cPs (z) dz j z of the estimation error. Instead, they are based on a min-max
approach. The filter minimizing sUPlzl=llcPs(z)1 is sought. The filter design
treated in this section can be used with a prefiltered criterion to design some
classes of such filters.

The third extension above will be considered in some detail. Set the
weighting filter to

F(q)
P(q) = H(q) , (7.96)

where F(q) and H(q) are assumed to be coprime, of the same degree, and
have all zeros strictly inside the unit circle.

The filtered estimation error can be rewritten as
_ F(q)

P(q)s(t) = H(q) [s(t - m) - G(q)y(t)]

F(q)C(q)
= H(q)A(q) v(t - m)

F(q) C(q) M(q)
-G(q) H(q) [A(q) v(t) + N(q) e(t)] . (7.97)

It can be seen that this can be interpreted as the estimation error of an
original problem with polynomials C(q), A(q), M(q), N(q) as



C=FC,
A=HA,
M=FM,
N=HN.
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(7.98)

(7.99)

Proceed as before to obtain the solution. The spectral factorization of
(7.80) gives in this case

A;13(Z)13*(z) == A~C(z)C*(z)N(z)N*(z)

+A;M(z)M*(z)A(z)A*(z) .

Using (7.98), it is straightforward to see that

13(z) = B(z)F(z)H(z) , (7.100)

where B(z) is defined by (7.80). Next consider the Diophantine equation
(7.84) to find the optimal filter. The equation becomes

z-mFCF*C* H* N* == zmin(O,-m) B* F* H* R+zmax(O,-m) HAi/ .(7.101)

Noting that F*(z)H*(z) is a factor of the left-hand side and of the first term
of the right-hand side, it can be concluded that it must be a factor of L*(z) as
well. (Owing to the stability constraint, it must be coprime with H(z)A(z).)
Thus set

L*(z) = F*(z)H*(z)L~(z) .

Cancelling the factor F*(z)H*(z) gives, from (7.101):

z-mFCC* N* == zmin(O.-m) B* R + zmax(O,-m) HAL~ .

The optimal filter then becomes (see (7.86))

_ A~ zmin(O.-m)R(z)N(z)
G(z) - \ 2 -----::;-----'---'---'-

"'E B(z)

A~ zmin(O,-m) R(z)N(z)

A~ B(z)F(z)

7.4.5 Illustrations

(7.102)

(7.103)

(7.104)

For illustration, we now apply the general filter derived in Section 7.4.2 to
some simple cases.

Example 7.8 Consider the k-step prediction of an ARMA process:

A(q)y(t) =C(q)v(t) . (7.105)

Then M = 1 N = 1 A2 = 0 m = -k This gives B = C A2 = A2 from, 'e" '£ v'
(7.80). The Diophantine equation (7.84) becomes
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zkC(z)C*(z) == zmin(O,k)C*(z)R(z) + Zmax(O,k) A(z)L*(z)

== C*(z)R(z) + Zk A(z)L*(z) .

Hence

(7.106)

o

degR =n - min(O,k) =n,

deg L * = n +°-1 + max(0, k) = n - 1 + k .

As C*(z) is a factor of the left-hand side and the first term of the right-hand
side of (7.106), it must be a factor of L*(z) as well. Therefore, one can set
L*(z) = C*(z)Lo(z), where degLo= k - 1. Similarly, z must be a factor of
R, so R =zRo, degRo =n - 1. Cancelling the factor zC*(z) gives

zk-1C(z) == Ro(z) + zk-l A(z)L~(z)

=A(z)[zk-l Lo(z)] + Ro(z) ,

which is the predictor identity (7.13) that was derived earlier. The optimal
predictor becomes, according to (7.86):

A~ zmin(O,k)R(z) zRo(z)
G(z) = A~ B(z) = C(z) ,

which is consistent with our previous findings.

Example 7.9 Consider k-step prediction of an ARMA process observed in
white noise. Using for a moment the techniques of Chapter 6, it is concluded
that

s(t + klyt) = E [s(t + k)lyt]

= E [y(t + k)\yt] - E [e(t + k)lYt]

=fj(t + kit) .

In this example, M = N = 1, m = -k. The spectral factorization (7.80)
gives

A;B(z)B*(z) == A~C(Z)C*(z) + A;A(z)A*(z) .

The Diophantine equation (7.84) becomes

zkC(z)C*(z) == B*(z)R(z) + zkA(z)L*(z) ,

and the optimal predictor is found, from (7.86), to be

'( kl) A~ R(q) ()
s t + t = A~ B(q) Y t .

As a further illustration, recall that the measurements y(t) can be expressed
as the ARMA model

A(q)y(t) = B(q)c(t) .
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According to Example 7.8:

y(t + kit) = q~~~) y(t) ,

where

Zk-l B = Ro + zk-l AL(j .

Thus s(t + kit) and y(t + kit) are identical if and only if

,\2
zRo(z) = ,\~ R(z)

c

kB_ kAL* _ '\~zkCC* -zkAL*
{:::::> z z 0 - ,\2 B*

e

~ ,\2 BB* - ,\2B* AL* = ,\2CC* _,\2 AL*
r---r e e 0 v v

~ ,\2 AA* - ,\2B* AL* = _,\2 AL*r---r e e 0 v

~ ,\2 A* - ,\2B*L * = _,\2 L *
r---r e c 0 v'

which can be fulfilled by a pertinent polynomial L. Phrased differently,
L* = '\;/'\~B*Lo - '\;/'\~A* is the polynomial of the right structure.

D

Example 7.10 Consider also the smoothing of an ARMA process, observed
in white noise. Then

M= 1, N= 1, m > O.

The spectral factorization is again

,A2 BB* = ,A2CC* +,A2AA*e - v e'

and the Diophantine equation (7.84) becomes (deg R =n+m, degL* =n-l)

z-mCC* == z-mB* R + AL* .

The optimal smoothing is given by (see (7.86))

A ,\~ q-mR(q)
s(t - mit) =,\~ B(q) y(t). D

Example 7.11 Reconsider the smoothing problem of the previous example,
but it will now be treated in a time domain format, using also some of the re­
sults of Chapter 6. Assume that the noise sequences are Gaussian distributed.

The measured signal can be written as an equivalent ARMA model

B(q)
y(t) = A(q) c(t) , (7.107)
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where c(t) is the output innovation at time t. The optimal smoothing estimate
is given by the conditional mean

s(t - mit) = E [s(t - m)lyt]

= E [y(t - m) - e(t - m)ly(t),y(t - 1), ...]

= y(t - m)
-E [e(t - m)lc(t), c(t - 1), ... c(t - m), yt-m-l]

=y(t - m) - f[E e(t - m)c(t - i)] ;2C(t - i) . (7.108)
i=O e

To proceed, introduce polynomials F(z) and G(z) by

zm A(z) = B(z)F(z) + G(z) ,

F(z) = zm + hzm- 1 + ... + 1m, (7.109)

G(z) = gozn-l + ... + gn .

For i = 0, ... ,m, (fo ~ 1)

E e(t - m)c(t - i) = E e(t - m) ~~~~ y(t - i)

= E e(t - m) A(q) e(t - i)
B(q)

= E e(t - m) [B(q)F(q) + G(q) q-me(t - i)]
B(q)

= E e(t) [F(q)e(t - i) + ~~:~ e(t - i)]
=>";Im-i (7.110)

holds. (Note that degG < degB; hence e(t) and G(q)/B(q)e(t - i) are un­
correlated.) Using (7.107) and (7.110) in (7.108), one obtains the following
explicit form for the smoothing estimate:

'( I ) ( ) ~ >..; f A(q) ( .)s t - m t = Y t - m - ~ >..2 m-i B( ) y t - t
i=O e q

[
-m >..; ~ I -i A(q)] ()= q - >..2 ~ m-iq B() Y t

e ~=O q

_ [-m >";F( _l)A(q)] ()
- q - >..~ q B(q) Y t . (7.111)

o



(7.112)

(7.113)
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7.5 Robustness Against Modelling Errors

So far, it has been assumed in this book that exact models are available. This
is, of course, an idealization. It is of considerable importance to know how
sensitive the derived filters and predictors are to modelling errors, and also to
derive schemes that are robust (i. e. have low sensitivity) to modelling errors.

As a starting point, consider a simple example.

Example 7.12 Consider an MA(I) process observed in white noise. It will be
of interest to examine the one-step predictor and its prediction error variance.

Assume that the nominal model (i.e. the model used for computing the
predictor) is

s(t) = (I+eoq-1)V(t) ,
y(t) = s(t) + e(t) ,

where v(t) and e(t) are mutually uncorrelated white noise sequences of vari­
ances .\~ and .\~ respectively. Assume first that .\~ = O. By using the results
of Section 7.2.2 one obtains

f)(t + lit) = Co -1 y(t) .
1 + coq

Assume, further, that the true process is given by

y(t) = (1 + cq-1 )v(t) ,

where c may differ from Co. The prediction error variance becomes

Vnom = E [y(t + 1) - f)(t + IltW
= E [(q - Co -1 )(1 + cq-1 )v(t)]2

1 + eoq

=E [I+Cq~\V(t+I)]2
1 + coq

=.\2[[1+ (C-CO)2] .
v 1 - C6 (7.114)

As a function of c, the error variance V has a minimum for c = eo, which
was expected (this means that the nominal model happens to be equal to
the true process). If Co is grossly in error (deviates considerably from c), the
increase in the prediction error variance may be substantial.

Now examine a robustified predictor also, which is less sensitive to devi­
ation of Co from c. Assume that the nominal model is

y(t) = [1 + (co + C)q-1]V(t) ,

where Cis a random variable of zero mean, variance (72, and independent of
the noise sequence {v(t)}. It describes the confidence in the nominal "mean
value" Co. Taking expectation over both Cand v(t) gives
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E y2(t) = E [v(t) + (eo + c)v(t - 1)]2

= A~ + A~(~ + CT2) ,

E y(t)y(t - 1) = CoA~ ,

E y(t)y(t - r) = 0 , r > 1 .

It is thus found that y(t) has the covariance "structure" of a first-order MA
process. As far as its second-order properties are concerned, it can be mod­
elled as

y(t) = [1 + eq-l]c(t) , Icl < 1.

The values of c and A; = E £2 (t) can be found by spectral factorization. The
governing equations become

A~[l + c~ + CT2
] = A;[l + c2

] ,

A2eo = A2cv e'

which uniquely define A; and c as functions of A~, eo and CT. Note that, from
(7.112), y(t) can be interpreted as consisting of the nominal mean signal
model s(t) = (1 + eoq-l )v(t) and an additive white noise of variance A~CT2.

The corresponding nominal predictor, taking "the uncertainty parameter" CT
into account, is now given by

fj(t + lit) = 1 +~-l y(t) . (7.116)

It is easy to see that the true prediction error variance now modifies from
(7.114) to

~ob = A~ [1 + (c - =~2] . (7.117)
1-c

The sensitivities of the prediction error variances, with respect to variations
of c, for the nominal design (given by (7.114)) and for the robustified design
(given by (7.117)), are illustrated in Figure 7.3.

It can be seen that for very small deviations (c being very close to eo), the
nominal design gives the best behaviour and close to optimal value V = 1.
However, for moderate or large deviations of c from eo, the robustified design
gives the best performance. Its error variance is not as sensitive as the nom­
inal error variance to large errors. 0

After this example, which was examined in quite some detail, a brief in­
dication of how the same type of idea can be used in a more general setting
is given. The idea can be formulated as follows:

Introduce stochastic descriptions of the parameter uncertainties. Evaluate the
output covariance elements. Rewrite the output using a second-order equiva­
lent model transferring the parameter uncertainties to a virtual noise source.
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Fig. 7.3. Prediction error variance Vasa function of the true C parameter. Nominal
design with Co = 0.8 (solid line); robustified design with Co = 0.8, a = 0.5 (dashed
line); no prediction (f) == 0) (dash-dotted line)

Consider the basic setup of Section 7.4.1. Assume that

C(q) Co(q) C(q)
--=--+--,
A(q) Ao(q) A1(q)

AI(q) AIo(q) A/(q)
--=--+--.
N(q) No(q) N1(q)

(7.118)

(7.119)

Here, Co/Ao and AIo/No are nominal models and A1 and N1 are fixed poly­
nomials. Further:

C(q) = clqn-l + + cn ,

A/(q) = mlqr-l + + mr ,

account for the uncertainties. Assume that the polynomial coefficients {cd,
{mj} have zero mean and given covariances.

The covariance of the perturbed output can be computed. Its spectrum
will be (E denotes expectation with respect to the polynomial coefficients
{cd, {mj}):

( ) _ E [C(Z) C*(z-*) ,\2 AI(z) AI*(z-*) ,\2]
¢y Z - A(z) A*(r*) v + N(z) N*(r*) e

= ,\2 [Co(z) Co(z-*) + E C(Z)C*(Z-*)]
v Ao(z) Ao(r*) A1(z)Ai(r*)
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(7.120)

Next, note that
n n

E C(z)C*(z-*) =ELL (\zn-iCj(z-n+j )*
i=1 j=1

n

= L (E CiCj)zn-i(z-n+j )*
i,j=1

has precisely the same structure (as a function of z) as the spectrum of a
noisy moving average process of order n - 1. As a consequence, the four
terms of (7.120) can be interpreted as follows. The first is the spectrum
of the nominal signal model, with no consideration of model uncertainties.
Similarly, the third term is the spectrum of the nominal noise model. The
second and the fourth terms both have the algebraic structures of additional
noise spectra. In fact, the basic model has been rewritten so that the effect
of model parameter uncertainties has been transformed into an equivalent
noise model (or noise spectrum). By applying spectral factorization, the sum
of the last three terms in (7.120) can be written as

,\2 [E C(Z)c*(z-*)] ,\2 [Mo(z) Mo(z-*) EM(Z)M*(Z-*)]
v AI(z)Ai(r*) + e No(z) No(r*) + NI(z)Ni(r*)

=,\;M(z)M**(z-*) (7.121)
N(z)N (r*)

for a positive scalar ,\~ and some stable and monic polynomials M and N.
Thus it can be seen that estimation problems can be solved using the standard
setup of Section 7.4.1 with a modified noise model (replacing M, N, '\; by
M, N, '\~). Note that for this trick to work it has to be assumed that the
uncertainties lie in the numerator polynomials only. The polynomials Al and
N1 are assumed to be fixed, but they are not required to coincide with A and
N respectively.

Exercises

Exercise 7.1 Determine the optimal one-step and two-step predictors for
the process

y(t) - 0.8y(t - 1) = e(t) + 2e(t - 1) ,

where e(t) is white noise of zero mean and unit variance. Also, determine the
prediction error variances.
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Exercise 7.2 Modify the expression (7.89) of the error spectrum cPs(z) when
the filter minimizes a prefiltered error, as in (7.94).

Exercise 7.3 Consider the filtering problem of Section 7.4.1 for the scalar
case

C(q) = q2 ,

A(q) = q2 - 1.5q + 0.7,

M(q) = q2 - 1.0q + 0.2,

N(q) = q2 ,

A; = A~ = 1.

(a) Compute and plot the signal spectral density cPs(eiw ) and the spectral
density cPw(eiw ) of the disturbance.

(b) Compute the optimal filter G(q) and plot the frequency function for m =
0,1,2,5, -1, - 2, -5. Also compute and plot the error spectral density
cPs(eiw

).

Exercise 7.4 Reconsider Exercise 7.3 for the filtering case (m = 0). Try to
design a prefilter of the estimation error so that the unfiltered error becomes
less resonant.

Exercise 7.5 Let A and B be square matrices (not necessarily of the same
dimension) with all eigenvalues strictly inside the unit circle. Let k be a
positive integer and C a matrix. Prove that

[zk(zI - A)-IC(z-11- B)]+ = Akz(zI - A)-Ia = z(zI - A)-I Aka,

where a and f3 are solutions to the linear system

{
C = a - Af3,
0= -aB + f3.

Exercise 7.6 Consider the dynamic system

x(t + 1) = Fx(t) + v(t) ,

y(t) = Hx(t) + e(t) ,

where v(t) and e(t) are mutually white noise sequences of zero mean and
covariance matrices R1 and R2 respectively. Derive the mean square optimal
k-step predictor x(t + kit) using the Wiener filter with the polynomial for­
malism. Compare the result with what can be derived with the state space
formalism.

Hint. The result of Exercise 7.5 is useful.
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Exercise 7.7 One might believe from Section 7.4.3 that the error spectrum
decreases monotonically as m increases. Examine this conjecture. (Prove it,
or find a counterexample.)

Exercise 7.8 Consider the estimation problem defined in Section 7.4. As­
sume that a prefilter P(q) = F(q)jH(q) is used, and that this prefilter has
a sharp resonance at W = woo Show, by setting H(e iwo ) = 0, that the error
spectrum obtained achieves the lower bound (7.93) at w =woo

Exercise 7.9 Wiener filters give the optimal structure as well as the optimal
filter parameters. In most cases it is not possible to give closed form solutions
to the optimal filters of a fixed structure. Finite impulse response (FIR) filters
(filters with all poles in the origin) are exceptions. The reason is that in this
case the filtered signal depends linearly on the filter parameters. Assume that

n

s(t) = G(q)y(t) =L gjy(t - j) ,
j=O

6-
= <p(t)g ,

where

<p(t) = (y(t) y(t - n)) ,

9 = (go gn)T.

(a) Show that the filter minimizing the estimation error variance

E Is(t) - s(tW ,

with respect to the filter parameter vector g, is given by

9 = [E <p*(t)<p(t)t1[E s(t)<p*(t)] .

(b) Consider the particular case of one-step prediction of an ARMA(1,1)
process

y(t) + ay(t - 1) = e(t) + ce(t - 1) .

Derive the one-step optimal predictor using an FIR filter with n = O.
Compare with the mean square optimal filter.

(c) Consider the case of k-steps prediction of an ARMA(nl,n2) process.
When will an FIR filter of order n be identical to the mean square optimal
predictor?
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(8.1)

(8.2)

8. Illustration of Optimal Linear Estimation

8.1 Introduction

In this chapter, a simple example is analyzed in detail. Both the state space
and the polynomial approaches are used.

The system to be considered is a random walk with noisy measurements.
The process is modelled as

x(t + 1) = x(t) + v(t) ,
y(t) = x(t) + e(t) ,

where {v(t)} and {e(t)} are mutually independent, Gaussian white noise
sequences of zero mean and with variances A; and A; respectively.

Introduce the parameter (3 through

(3 = ~[Jl + 4AVA~ - 1] .
2

Clearly, (3 ~ 0, which is a number describing the amount of measurement
noise. If A; / A; is small, then (3 ~ A; / A;, whereas for large A; / A;, (3 ~

JAVA~. The parameter (3 will be convenient for use in the forthcoming
calculations.

Note that (8.2) is equivalent to

A; = A~(3((3 + 1) . (8.3)

The optimal state estimate x(tlt+m) will be examined and its error variance
evaluated. All the cases of prediction, filtering and smoothing will be treated.
Apparently, m > 0 refers to smoothing. For the prediction case (m < 0) the
notation

k~ - m > 0

will be used.

8.2 Spectral Factorization

(8.4)

As stated earlier, spectral factorization plays a central role in coping with
the optimal estimation problem. It is the first step in finding the optimal
estimates.

T. Söderström, Discrete-time Stochastic System
© Springer-Verlag London 2002
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For the state space approach, the spectral factorization hinges upon the
ARE. For the example being studied, the ARE reads

p 2

p =P + >.; - P + >.~ , (8.5)

giving

p2 _ P>'; _ >.~~(~ + 1) = 0 ,

with the solution (the unfeasible solution is P = -~>.~)

P = (1 + ~)>.; .

The Kalman predictor gain becomes

K = P / (P + >.;) = 1~ ~ .

The innovations form, therefore, becomes

x(t + lit) = x(tlt - 1) + Ky(t) ,
y(t) = x(tlt - 1) + y(t) ,

from which one obtains

(8.7)

(8.8)

y(t) = [1 + (qI - 1)-1K]fj(t)
q_L
-..::....:l+1...::..{3 y(t) . (8.9)
q-

In particular, this means that F - KH = /3/(1 + (3). Note that this quantity
lies between zero and one. For small measurement noise, ~ is small and so is
F - K H. Similarly, if the noise level is high, ~ is large and F - K H approaches
(me.

For the polynomial approach, the spectral factorization follows from the
treatment given in Section 7.4, with the identification C(q) =q, A(q) =q-1,
M = 1, N = 1. Here the noise v(t) has been "relabelled", as otherwise
C(q) = 1. It is, however, convenient to let A(z) and C(z) be of the same
degree.

The spectral factorization (7.80) becomes

>';(Z)(Z-l) + >.;(z - l)(z-l - 1) == >.;(z + b)(Z-l + b) . (8.10)

Equating the powers of z gives the following equations, with band >.; as
unknowns:

{
>.~ + 2>'; = >';(1 + b2

) ,

->.; = >.;b .
After division, and using (8.3):

b /3(~ + 1)
1 + b2 = - 1 + 2~ + 2~2 .
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The solutions are
(3

b=-(3+1' (8.11)

and b = - ((3 + 1) / (3, which is a false one, since in this case Ibl > 1.
Further, from (8.10):

A; = A~ (1 + (3)2 . (8.12)

The innovations form is therefore found to be
f3

y(t) = q + b
1

y(t) = q - ~ y(t) , E y2(t) = A~(1 + (3)2 . (8.13)
q- q-

This is, of course, the same model as appeared before in (8.6) and (8.9).

8.3 Optimal Prediction

The state space approach is used first. The one-step optimal predictor of x(t)
is

x(t + lit) = x(tlt - 1) + K[y(t) - x(tlt - 1)] ,

that is:
1

• qK q 1+13
x(t + lit) = _ (1- K)y(t) = _ JL y(t) .

q q 1+13

The prediction error variance is P = A~(1 + (3).
The general k-step predictor is found from (6.40) and is given by

x(t + kit) = F k- 1X(t + lit)
q_l_

= x(t + lit) = 1+~ y(t). (8.15)
q - 1+f3

The prediction error variance can be evaluated from (6.41) and (6.42) as

k-2
P(t + kit) = Fk- 1P(t + 1It)FTk -

1 + L F S RIFTs
8=0

=P + (k - I)R1

= A~[1 + (3 + k - 1] = A~[k + (3] . (8.16)

In this case all the predictors (k = 1,2, ...) are identical. Further, the predic­
tion error variance grows linearly in k. Both these properties are due to the in­
tegrator in the system in (8.1). For a system of the form x(H1) = fx(t)+v(t),
the predictors are related as x(t + kit) = fk-l X(t + lit), and the prediction
error variance grows at an exponential rate as 12k .
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Next, use the polynomial approach. The Diophantine equation (7.84) will,
for k-step prediction, be

zk == (Z-I + b) (roz + rd + zk(z - 1)(£oz-k + ... + £k) , (8.17)

or

Zk = (Z-I + b)(roz + rl) + (z - 1)(£0 + £IZ + ... + £kzk) .

Equating the different powers of z gives

£k = 0,
£i = 1 , i = 1, .. , ,k - 1 ,
£0 = ro = I~b = /3 + 1 ,
rl = O.

Hence, according to (7.86), the optimal k-steps predictor is

A ( kl ) A~ qro ()
x t+ t = A~(I+/3)2q+bY t ,

I
q1+(3= 1- y(t) ,

q - 1+(3

which is identical to the previous solution (8.14).
As an alternative way of finding the predictor, note that

x(t + kit) = y(t + kit) .

Noting from (8.9) that y(t) is an ARMA process

y(t) - y(t - 1) = fi(t) - ~/3fi(t - 1) ,
1+

(8.18)

(8.19)

(8.20)

(8.21)

one can use the predictor identity (7.13) to find the predictor:

zk-I (z - 1 ~ (3) == (z - 1)(zk-1 + itzk- 2 + ... + Ik-d + £0' (8.22)

Equating powers of z gives

/3 1it = h = ... = Ik-I = £0 = 1 - -- =-- . (8.23)
1+/3 1+/3

The predictor, according to (7.18), (8.20) and (8.22), is

x(t + kit) = y(t + kit) = q£~ y(t)
q - 1+(3

I
ql+(3= (3 y(t) , (8.24)

q - 1+(3

which is identical to the previous finding (cf. (8.14)).
The prediction error spectrum can be evaluated from (7.89). It reads in

this case
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>'~>'~(3((3 + 1) 1 >.~
rPs(z) = >'~((3 + 1)2 (z + b)(Z-l + b) + >'~((3 + 1)2

((3 + 1)zk + zk-l + ... + z
X -"-----'------:-------::-,-------

(z + b)
((3 + 1)z-k + z-(k-l) + ... + Z-l

X (z-l + b) (8.25)

The prediction error variance could be evaluated by integrating (8.25), but a
direct approach is easier:

E [xl' + k) - x(' + kl')] ~ E [X(' + k) - : ll~y(')l'

= E [X(' +k) - : 'l~ xC')l' + E [:'l~e(tll'

= E [{v(' + kl + .+ v(' + I)} + { xC') - : ll~xi')}l'
>.2 1

+(1 +e(3)2 1 - b2

= >.2k + E [q(1- m) + bx(t)] 2 + >'~(3 (1 + (3)2
v q + b 1 + (3 1 + 2(3

= >.2 k + b2E [q - 1_
q_V (t)] 2 + >'~(3(1 + (3)

v q + b q - 1 1 + 2(3

= )..2k ~)..2 >'~(3(1 + (3)
v + 1 _ b2 v + 1 + 2(3

= >.2 [k +~ + (3(1 + (3)] = >.2(k + (3) . (8.26)
v 1 + 2(3 1 + 2(3 v

This is, as expected, the same result as derived in (8.16) using the state space
approach.

8.4 Optimal Filtering

Using the state space approach, one obtains

x(tlt) = x(tlt - 1) + K[y(t) - x(tlt - 1)) .

Note that the predictor gain and the filter gain are both equal to K in this
case as F = I. Hence, from (8.14):

x(tlt) = (1 - K)x(tjt - 1) + Ky(t)
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[
K(I-K)] Kq

= q _ (1- K) + K y(t) = q _ (1- K)y(t)

1

= q~y(t).
q - 1+;3

The filter error variance is
p2

E [X(t) - X(t/t)]2 =P - P + A~ = A~(3 .

(8.27)

(8.28)

It can seen that the previous results (8.15) and (8.16) for the prediction case
remain valid in this example if one sets m = O.

For the polynomial approach, the Diophantine equation (7.84) becomes

-b
10=I+b'

1 == (z-l + b)(roz + rl) + (z - 1)10 ,

which has the solution

1
ro = 1 + b ' rl =0 ,

The filter will be (see (7.86))

x(tlt) = A~ q(1 + (3) y(t) = qm y(t) ,
Ae q + b q _..JL

1+;3

(8.29)

(8.30)

(8.31)

which coincides with (8.27).
A direct calculation gives the error variance as follows:

E [x(t) - x(tlt)] = E [X(t) _ ~ {x(t) + e(tn]2

q 1+;3

= E [~~q~1) X(t)]

2

+E [ ~~ e(t+ 1)]2
q 1+;3 q 1+13

(
(3 ) 2 [1 ] 2 A

2
1

= 1 + (3 E q _ ..JL v(t) + (1 +e(3)2 1 _ (..JL )2
1+;3 1+;3

2 (32 2 1 A~ [2 ] 2
= Av 1 + 2(3 + Ae 1 + 2(3 = 1 + 2(3 (3 + (3((3 + 1) =Av(3 . (8.32)

This result coincides with (8.28), again illustrating that the state space and
polynomial approaches give identical results.

8.5 Optimal Smoothing

According to the state space approach the optimal smoothing estimate is; see
(6.54)
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t+m

x(tlt + m) = x(tlt) + 2: K 2 (s)[y(S) - x(sls - 1)) ,
s=t+l

229

(8.33)

(8.34)

(8.37)

P 1 ( f3 ) s-t
K2 (s) = p+>..~(F-KH)S-t=l+f3 1+f3

The estimation error variance, from (6.106), becomes

p2 m

E [x(t) - x(tlt + mW = P - P >..2 2:(F - KH)2 j

+ e . 0J=

= >..~ (1 + (3) - >..~ f (1 ~ f3 ) 2j
J=O

2 [ 1 - (f3 / (1 + (3))2(mH)]
= >"v 1 + f3 - 1 _ (f3/(1 + (3))2 . (8.35)

In the limiting case, with an infinite smoothing lag:

2!Too E [x(t) - x(tlt + m))2 = >..~ [1 + f3 - 1 _ (f3/t1 + (3))2 ]

= >..2 f3(f3 + 1) . (8.36)
v 2f3 + 1

This result can also be derived using the analysis of Section 6.7. The Lya­
punov equation (6.110) for Q in this case reads

(
f3 )2 1

Q = 1 + f3 Q + (1 + (3)2 >..~ ,

which gives the solution

1 1
Q = 2f3 + 1 >..~ .

The asymptotic error variance is (cf. (6.111))

lim E [x(t) - x(tlt +mW = P - PQP = f3~~ + (3) >..~ . (8.38)
m~oo +1

Next, use the polynomial approach. The Diophantine equation (7.84) now
becomes

z-m == z-m(z-l + b)(rozmH + ... + rm+d + (z - l)fo . (8.39)

It has the solution

rj = (_b)m- j
, j = 1, ... ,m, rmH = 0 ,

(8.40)
(_b)m

ro = b+T'
(_b)mH

f o = b+ 1
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Following (7.86), the optimal smoother is

,\2 -mR()
x(tlt+m) = ,~q b

q
y(t+m)

"0 q +
1 roq + rl + r2q-l + ... + rmHq-m ( )

(/3 + 1)2 q + b Y t + m .

(8.41)

It is interesting to evaluate the first part of the estimation error spectrum
(7.89). It is easy to see that

,\2,\2 1
1Js(z) 2: ~~ v B(z)B*(z)

Hence,

E [S2(t)] > '\~/3 _1_ = ,\2/3(1 + /3) .
- /3 + 1 1 - b2 v 1 + 2/3

Compare with (8.36). The first part of the error spectrum is therefore not
only a lower bound, it is also achievable in the limit as m-+ 00. This can
also be understood in another way. From the solution it follows that L = £0
goes to zero exponentially as m-+ 00. Hence, the second term of the error
spectrum in (7.89) vanishes asymptotically. In fact, the contribution of the
second term to the error variance, for finite m, in this example, is

,\4 £2 ,\2 (/3) 2m+2 1
,\~ 1 _0b2 = (1 +v/3)2 1 + /3 (1 + /3)2 1 - (/3/(1 + /3))2

/32m+2 1= ,\2 -:-:'-~::-:-;:-_
v (1 + /3)2m 1 + 2/3 '

which is perfectly in accordance with the expression in (8.35) based on the
state space approach.

The alternative polynomial approach, outlined in Example 7.11, is also
worth illustrating. In this case, the polynomial identity (7.109) will be

zm(z - 1) = (z + b)(zm + !Izm-l + ... + 1m) + go , (8.42)

giving

Ii = -(b + 1)(-W-1
, (j =1, ... ,m) , (8.43)

go = -(b + 1)(-b)m .

The smoothing estimate is (set 10 = 1), (see (7.111))

[

,\2 m . _ 1]
x(tlt + m) = q-m - ,; (L Im-iq-t)!-b y(t + m)

"0 i=O q +

=y(t) - /3 ~ 1 [1m + Im_lq-l

-m+l -m]q - 1+ ... + !Iq + q 1 + by(t + m) . (8.44)
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It is instructive to compare the different forms of the solution. As they are

written in different ways, the quantity w(t) ~ (q +b)x(tlt +m) is now exam­
ined.

For the state space approach, using (8.33), (8.34) and (8.27):

w(t) = (q + b)x(tlt)

t+m 1 ( (3 ) s-t
+ L 1+(3 1+(3 (q+b)[y(s)-x(sls-1)]

s=t+l
1

=q1+(3y(t)

t+m 1 ( (3 ) s-t [ 1]
+ L 1+(3 1+(3 (q+b)y(s)-q1+(3y(s-1)

s=t+l
1

= 1+(3y(t+1)

t+m 1 ( (3 )S-t
+ L -1(3 -1(3 [y(s + 1) - y(s)]

s=t+l + +

=y( t + 1) [1 ~ (3 - 1 ~ (3 1 ~ (3 ]

+y(t+2) [I~P C~p) -I~P (I~S]

[
1 ( (3 ) m-l 1 ( (3 ) m]

+ ... +y(t+m) 1+(3 1+(3 -1+(3 1+(3

1 ( (3 )m
+y(t+m+1)1+(3 1+(3

1 (3
=y(t+1)(1+(3)2 +y(t+2)(1+(3)3 + ...

(3m-l (3m
+y(t + m) (1 + (3)m+l + y(t + m + 1) (1 + (3)m+l .

For the solution (8.41) using the polynomial approach:

w(t) = (q + b)x(tlt + m)
1

= ((3 + 1)2 [rmy(t + 1) + rm-ly(t + 2)

+ ... + rly(t + m) + roy(t + m + 1)]

~ (1:P)2 [y(t + I) + 1~ Py(t + 2)
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(
(3 )m-l (3m ]

+... + 1 + (3 y(t + m) + (1 + (3)m-1 y(t + m + 1)

The solution (8.44) based on the alternative polynomial approach gives

w(t) = (q + b)x(tlt + m)

= (q + b)y(t)

- (3 ~ 1(q - l)[/my(t + m) + Im-Iy(t + m - 1)

+... + Ity(t + 1) + y(t)]

=y(t) [b+ (3~1] +y(t+1) [1- (3~1 +1t(3~1]
(3 (3

+y(t + 2) (3 + 1 [12 - It] + ... + y(t + m) (3 + 1[1m - 1m-I]

(3
-y(t + m + 1) (3 + 11m

= y(t+ 1)(1 :P)2 - y(t +2) (P: 1)' [C ~p)' -1] + ...

(3 [( (3 )m-l ((3 )m-2]
-y(t + m) ((3 + 1)2 1 + (3 - 1 + (3

(3 ((3 )m-l
+y(t+m+1)(,8+1)21+,8

1 (3
= y(t + 1) (1 + (3)2 + y(t + 2) (1 + (3)3 + ...

(3m-1 (3m
+y(t + m) (1 + (3)m+l + y(t + m + 1) (1 + (3)m+l .

It is thus found, as expected, that all three expressions for the optimal
smoothing estimate are in fact equivalent.

8.6 Estimation Error Variance

The optimal prediction, filter and smoothing estimates have now been de­
rived. The variance of the estimation error

Vm = E [x(tlt + m) - x(tW (8.45)

has also been found. See, for example, (8.16), (8.28) and (8.35). Some further
illustration of how Vm varies with m and (3 is given next. For this purpose,
the expression for Vm is repeated:
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102 ,-----,-----,---,-------,----,--------,----.-----------,--,-----:J

101

10°

10.1

f1= 10

f1=1

f1= 0.1
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m

Fig. 8.1. Vm = E [x(tlt +m) - x(tW as a function of m with f1 as parameter. Note
the logarithmic scale

{

A~[-m + (1] ,

V
m= A2 [/3(1+/3) + (1+/3)2 (-L)2m+2]

v 1+2,8 1+2,8 1+,8

m~O,

, m 2: o.
(8.46)

Clearly, Vm is a decreasing sequence (as m increases). This is also obvious
by construction. When more data/information is used, then a more accurate
estimate can be found. The variance Vm is plotted as a function of m with (1
as a parameter in Figure 8.l.

It is clear from Figure 8.1 that Vm is, for fixed m, increasing with increas­
ing (1. This is fairly natural. An increased noise level in the measurements
should lead to less accurate estimates. One can also see that when the noise
level is small or modest (say (1 < 1), then the accuracy of the smoothing
estimate is only marginally better than the filtering estimate. This means
that it does not pay to apply smoothing (compared with filtering) when the
data are of good quality (measurement noise has small variance).

In general, Vm converges at an exponential rate both when m tends to
-00 and to 00. The convergence when m tends to infinity is determined by
the eigenvalues of F - KH (or, equivalently, B(z)). In the example, this
eigenvalue is 13/(1 + (3). Note that for small and modest values of A;/A~ this
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eigenvalue becomes rather small, and hence the convergence should then be
quick. For /3 = 10, however, it pays to apply smoothing and to apply it for
several lags (say m = 5-10). The convergence of Vm as m tends to -00 is
determined by the eigenvalues of F (i.e. the zeros of A(z)). In the present
example, this eigenvalue is one. The system is not asymptotically stable and
Vm does not converge as m --t -00. In fact, the variance of the prediction
error grows linearly with -m.

8.7 Weighting Pattern

In order to obtain still further insight, consider also how the various data
points are used in the state estimates. Since all the estimates are linear func­
tions of the data, write them in the form

00

x(tlt + m) = L hjy(t - j) .
j=-m

(8.47)

(8.48)

(8.49)

The sequence {hj }~-m will be called a weighting pattern. The coefficient
hj determines how much the data point y(t - j) is used when forming the
estimate of x(t). Needless to say, the numerical values of the weighting pattern
coefficients depend on the lag parameter m.

For the case where m ~ 0, the weighting pattern is easily derived from
(8.14) and (8.27). In fact:

1

x(tlt + m) = q~ y(t + m)
q - 1+,6

1 00 ( /3 )i .
=1+/3~ 1+/3 q-Zy(t+m).

Comparison with (8.47) gives

hj = { 1~,6 C~,6r+m

, ~ ~ -m ,
0, J < -m.

Consider the smoothing case, m > O. Then use the form in (8.41) of the
solution and write it as

( I ) 1 roq + rl + ... + rm+l q-m ( )
x t t + m (1 + /3)2 q + b Y t + m

~ [(h_ m + h_m+lq-l + ... + hoq-m) + :q;:] y(t + m) .

(8.50)

By comparing both representations:
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(1: (3)2 (roq + rl + ... + rm+lq-m)

= (q + b)(Lm + Lm+lq-I + ... + hoq-m) + aq-m . (8.51)

Equating the powers of q gives

h - I r - rr
-m - (1+$)2 0 - (1+$)m+l ,

j = 0, ... ,m -1, (8.52)

a = -bho .

Iterating these equations gives

1 ((3)i [ ((3 )2m-2i+1]
h_i = (2(3 + 1) 1 + (3 1 + 1 + (3 ,

i = 0, ... ,m. (8.53)

(8.54)

We also have that hI = a = -bho, and, more generally, for j > 0,
h j = -bh j - I , that is:

. ((3) j 1 [ ((3) 2m+l]
h j = (-b)3 ho = 1 + (3 (1 + 2(3) 1 + 1 + (3 ,

(j ~ 0) .

The weighting pattern is displayed in Figures 8.2 and 8.3.
Several properties are illustrated in these figures:

• For small (3 (little measurement noise) ho is large. This means that the
measurement y(t) = x(t) + e(t) is given high confidence.

• When m is increasing the weights are decreasing. The explanation is that
when more data are available, it is possible to use the new information and
rely slightly less on the old information compared with cases with smaller
values of m.

• When (3 is small (the measurement noise has small variance) the weighting
pattern is close to its asymptotic (m-+ 00) value already for very small m.
In this case, with good quality data, it does not pay to use more than a
few lags (if any) in a smoother.

• When m becomes "large", one obtains approximately hj = h_ j ; that is,
the weighting pattern becomes symmetric. This also follows analytically
from (8.53) and (8.54). The relation also holds approximately for small
and moderate values of m.

8.8 Frequency Characteristics

It is also illustrative to examine the optimal estimates in the frequency do­
main.



236 8. Illustration of Optimal Linear Estimation

m =-2

0.9 0.9

h·
0.8

hj
0.8

J
0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 + 0.1
+.,++-+++

0
~.... +++++++-++

0
.\0 0 10 20 .\0

j

m=2

o

m=O

\0

j

m=lQ

20

0.9

hj
0.8

0.7

0.6

0.5

0.4

0.3 l
0.2

•0.1
+ + \

0
+t:++++++++++++

.\0 0 10 20

j

0.9

h·
0.8

J
0.7

0.6

0.5

0.4

0.3 ..
0.2

0.1 i \
++++++,']'+ + ~',+++++o .4'! \.. +++++

-10 0 10 20

j

Fig. 8.2. The weighting pattern {hj} for various m and {3 = 0.1 (solid lines, 0),
{3 =1 (dashed lines, *), {3 = 10 (dotted lines, +)

Note from (8.19) that the optimal prediction estimate can be written as
(recall that m < 0 for prediction)

q_l_
x(tlt + m) = l+~ y(t + m)

q _ ....L.
l+~
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q_l_
= 1+~ qmy(t)

q - 1+/3

6 H«~)(q)y(t) . (8.55)

The frequency characteristics and the pole-zero configuration of H[::;) (q) for
m = -2 and for various values of (3 are plotted in Figure 8.4.

The filter clearly has a lowpass character. The static gain is one, which
is also clearly seen from (8.55). When the SNR decreases ((3 increases), the
gain and the bandwidth of the filter decrease. This is in perfect agreement
with intuition. When the SNR is low, the measurements are less reliable and
less confidence should be placed in the high-frequency contents in the signal.
Note that the decrease of the phase from 0 to -360° is due to the delay q-2.

Repeat the consideration for the filter case, for which (see (8.31))
1

x(tlt) = q~ y(t) ~ H(f)(q)y(t) . (8.56)
q - 1+/3

The frequency characteristics and the pole-zero configuration are given in
Figure 8.5. As is obvious, the only difference from Figure 8.4 is that of the
phase curve. Now there is no effect of any additional delay. Instead, there is
an intermediate phase drop due to the pole (as there is a lag filter). The drop
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(except for qm). The pole migrates from the origin towards z = 1 as j3 increases
from 0 to 00

is more pronounced when the bandwidth is low (the pole is close to z = 1,
i. e. f3 is large).

Finally, consider the smoothing case. Equation (8.41) gives (now m > 0)



8.8 Frequency Characteristics 239

0

-10

~

3
-20.~

...
~ -30

bO...
~

-40

-50

-60

'I
,

-70
10' 10-' 10-' 10° 10'

w

10°10-'

w

~
i

10-2i,---"-~~~~~~~
10-2

0.8

0.6

-0.6

0.5o

-0.8

-IL~__-=~~=-----~ _
-I -0.5

Re

Fig. 8.5. Frequency characteristics (upper part) of H(f)(q); (3 = 0.1 (solid line), 1
(dashed line), 10 (dotted line). Pole-zero configuration of H(f)(q). The pole migrates
from the origin towards z = 1 as (3 increases from 0 to 00

(I ) 1 roq+rl+._.+rm+lq-m m ()

xtt+m (,8+1)2 q-,8j(l+,8) q yt

6 Hf~)(q)y(t) . (8.57)
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The frequency curves and the pole-zero configuration are displayed in Figure
8.6 for m =2 and in Figure 8.7 for m =5.
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line), 1 (dashed line), 10 (dotted line). Pole-zero configuration of Hg~(q) (except
for q2). The pole migrates from the origin towards z = 1 as f3 increases from 0 to
00. The zeros move inside the unit circle as f3 increases
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Again, note that the filter has a lowpass character, and a static gain
equal to one, and that the gain is reduced for high frequencies when the SNR
decreases ({3 increases). The phase curves sometimes go up to 180m degrees
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(due to the factor qm in the filter). For small values of 13, though, all zeros
lie outside the unit circle and the filter becomes nonminimum phase, causing
the phase to be close to 0° for all frequencies.

It seems from Figures 8.6 and 8.7 that the zero locations of the optimal
smoother have only a marginal effect on the performance. Compared with a
first-order filter, as in the filtering case (Figure 8.5), it is found that they give
marginal adjustments of the frequency curve for high frequencies, where the
gain is small anyway. From these diagrams, one can therefore expect that,
for this example, it does not pay to use a smoother instead of a filter. This is
at least partly true, as was seen in Figure 8.1. When 13 = 10, there is indeed
a significant decrease in the error variance when m is increased from m = 0
to, say, m = 5.

Exercises

Exercise 8.1 Consider the weighting pattern in Section 8.7.

(a) Show that hj ~ 0 and E;:-m hj = 1.

(b) Show that hj > L j , -m S j < 0 and, for fixed j,

lim [hj - h_j ] = 0 .
m--+oo

Exercise 8.2 Repeat the computations of Sections 8.4-8.6, but numerically,
for some second-order processes of the form

1
s(t) = 1 + alq-l + a2q-2 v(t) ,

y(t) = s(t) +e(t).

Present the results in diagrams such as Figures 8.2-8.7. Study the effect of
varying the pole locations as well as the SNR = E s2(t)/E e2(t).

Exercise 8.3 Prediction of ARMA processes can be computed in state space
form. Consider an MA(l) process

y(t) = e(t) + ee(t - 1) , lei s 1,

with e(t) being white noise of zero mean and variance >.2. It can be repres­
ented in state space form as

x(t+ 1) = (~~) x(t) + (~) v(t) ,

y(t) = (1 O)x(t).

Determine the (time-varying) Kalman filter, x(t + lit), and compare with
the time-invariant predictor derived by the polynomial approach. Examine
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the Kalman gain K(t). How does it behave when to -+ -oo? Give specific
attention to the case where lei = 1.



9. Nonlinear Filtering

9.1 Introduction

Some various approaches to state estimation for nonlinear stochastic systems
are presented in this chapter. Typically, systems of the form

x(t + 1) = j(x(t)) +v(t) ,
y(t) = h(x(t)) +e(t) ,

(9.1)

are treated, where v(t) and e(t) are mutually independent white noise se­
quences. Recall, from Chapter 5, that the optimal state estimate is given by
the conditional mean, E [x(t)lyt]. To compute the optimal state estimate,
it is also necessary to compute recursively the conditional pdfs p(x(t)lyt).
As explained in Section 5.4, in most cases this will require a huge amount of
computation, so suboptimal schemes are of practical interest. We also present
a numerical scheme based on Monte Carlo simulations for numerically evalu­
ating how the conditional pdfs are propagating. In another section we present
a practically important suboptimal algorithm, called the interacting multiple
model (IMM) approach. The basic idea is to let the dynamics jump between
a fixed number of linear models. Some other nonlinear estimation problems,
such as median filters and quantization effects, are also discussed in this
chapter.

9.2 Extended Kalman Filters

9.2.1 The Basic Algorithm

The idea of the extended Kalman filter (EKF) is to use the ideas of Kalman
filtering for a nonlinear problem. The filter gain is computed by linearizing the
nonlinear model. The EKF, in contrast to the Kalman filter for linear systems,
is not an optimal filter, since its derivation is based on approximations.

Consider the nonlinear model

x(t + 1) = j(t,x(t)) +g(t,x(t))v(t) ,
y(t) = h(t,x(t)) + e(t) ,

(9.2)

T. Söderström, Discrete-time Stochastic System
© Springer-Verlag London 2002
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where v(t) and e(t) are mutually independent Gaussian white noise sequences
with zero means and covariances R1(t) and R2 (t) respectively. The model is
expanded in first-order Taylor series around estimates of x(t). The function
j(t,x(t)) is expanded around the most recent estimate, that is, x(tlt). The
output function is expanded around the predicted state x(tlt -1). The reason
is that the measurement y(t) has to be compared with its predicted value to
obtain a correction term to the filter. The linearizations are thus as follows:

j(t,x(t)) ~ j(t,x(tlt)) + F(t)(x(t) - x(tlt)) ,

g(t,x(t)) ~ G(t) ,

h(t, x(t)) ~ h(t, x(tlt - 1)) + H(t)(x(t) - x(tlt - 1)) ,

where

(9.3)

(9.4)

(9.5)

F(t) = aj(t,x) I '
ax x=x(tlt)

G(t) = g(t,x)lx=x(tlt) ,

H(t) = ah(t,x) I .
ax x=x(tlt-l)

Using the approximation in (9.3), the system becomes linear and can be
written as

x(t + 1) = F(t)x(t) + G(t)v(t) + u(t) ,
y(t) = H(t)x(t) + e(t) + w(t) ,
u(t) = j(t, x(tlt)) - F(t)x(tlt) ,
w(t) = h(t, x(tlt - 1)) - H(t)x(tlt - 1) .

Now apply the standard Kalman filter to the system of (9.5), treating the
terms u(t) and w(t) as known functions. Note that the system is time-varying.
The state estimates can be written in the following form, which gives the
"predicted" estimates x(t + lit) as well as the "filtered" states x(tlt) (see
Theorem 6.1):

x(tlt) = x(tlt - 1) + K(t)[y(t) - H(t)x(tlt - 1) - w(t)] ,
x(t + lit) = F(t)x(tlt) + u(t) ,

K(t) = P(tlt - I)HT(t)[H(t)P(tlt - I)HT(t) + R2 (t)t 1 ,

P(tlt) = P(tlt - 1) - P(tlt - I)HT(t)
x [H(t)P(tlt - I)HT(t) + R2(t)]-1 H(t)P(tlt - 1) ,

P(t + lit) = F(t)P(tlt)FT(t) + G(t)R1(t)GT(t) .

Using (9.5) the "approximate output innovations" can be rewritten as

(9.6)

(9.7)

(9.8)

y(t) - H(t)x(tlt - 1) - w(t) = y(t) - H(t)x(tlt - 1) - h(t, x(tlt - 1))

+H(t)x(tlt - 1)

=y(t) - h(t, x(tlt - 1)) . (9.9)
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The second part of (9.6) can be rewritten, using (9.5), as

x(t + lit) = F(t)x(tlt) + u(t) = f(t,x(tlt)) . (9.10)

Thus (9.6) can be replaced by a more enlightening form. The whole algorithm
can be summarized as follows:

H(t) = ah(t,x) I '
ax x=x(tlt-l)

K(t) = P(tlt - I)HT(t)
x[H(t)P(tlt - I)HT(t) + R2 (t)t 1 ,

x(tlt) = x(tlt - 1) + K(t)[y(t) - h(t,x(tlt -1))] ,
P(tlt) = P(tlt - 1) - K(t)H(t)P(tlt - 1) , (9.11)

x(t + lit) = j(t,x(tjt)) ,
F(t) = a/(t,x) I '

ax x=x(tlt)
G(t) = g(t, x)lx=x(tlt) ,

P(t + lit) = F(t)P(tlt)FT(t) +G(t)R1(t)GT(t) .

Remark 1 Note that the EKF is not an optimal filter. The estimates x(tlt),
x(t + lit) are not conditional means. This is in contrast to the linear case.

D

Remark 2 Another contrast to the linear case is that the filter gains {K (t)}
cannot be precomputed. It is apparent that they depend on data (outcome)
through (9.4). D

Remark 3 Note that in the general case, there is no guarantee that the filter
"converges" or gives an estimate that is close to optimal. D

Remark 4 The filter equations can be modified to account for the effect of
an input signal, as in the linear case. Assume that the dynamics is changed
to

x(t + 1) = f(t,x(t),u(t)) + g(t,x(t))v(t) .

Then the EKF equations (9.11) remain unchanged with the exception of

x(t + lit) = j(t,x(tlt),u(t)) .

9.2.2 An Iterated Extended Kalman Filter

D

It is a priori not obvious what the relevant linearization point is when com­
puting the filter gain K(t). There are many varieties of the basic EKF. The
idea of the version of this section is to iterate over the measurement equation.
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The iteration means that the linearization point is changed, and hopefully
an improved approximation is achieved.

The algorithm runs as follows. For every t, let i run from 0 to i max , which
should be a relatively small integer.

K(i)(t) = P(tlt - I)H(i)T(t)

X [H(i)(t)P(tlt - I)H(i)T(t) + R2(t)t1 ,

x(i) (tIt) = x(tlt - 1) + K(i) (t)[y(t) - h(t, x(tlt - 1))] ,

where

H(O)(t) = ah(t,x) I '
ax x=z(tlt-l)

H(i)(t) = ah(t,x) I (i ~ 1) .
ax X=Z(i-l)(tlt)

Then set

x(tlt) = x(imax) (tit) ,

P(tlt) = P(tlt - 1) - K(imax) (t)H(imax) (t)P(tlt - 1) ,

and compute the prediction estimate as

x(t + lit) = f(t, x(tlt)) ,
P(t + lit) = F(t)P(tlt)FT(t) + G(t)R1(t)GT(t) ,

where

F(t) = af(t, x) I '
ax x=z(tlt)

G(t) = ag(t, x) I .
ax x=x(tlt)

(9.14)

(9.15)

(9.16)

(9.17)

(9.18)

(9.19)

(9.20)

After this calculation (for fixed t) a new data point can be measured, t in­
creased and the computation cycle repeated.

9.2.3 A Second-order Extended Kalman Filter

Another variant of the EKF also copes with second-order terms in the Taylor
series expansions of f (x) and h(x). One then obtains terms that are quadratic
forms in x(t) - x(t). Replace such quadratic forms with their "expected val­
ues". In this case, set

f(t,x(t)) ~ f(t,x(tlt)) + F(t)(x(t) - x(tlt)) + ](t) ,
g(t, x(t)) ~ G(t) , (9.21)

h(t,x(t)) ~ h(t,x(tlt - 1)) + H(t)(x(t) - x(tlt -1)) + h(t) ,

where F(t), G(t), H(t) are as before; see (9.4). In (9.21) the quantities ](t)
and h(t) are vectors with components
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(9.22)
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(J(t)h = ~(x(t) - x(tlt)f ~~k I (x - x(tlt))
x x=x(tlt)

~ ~tr [P(t1t) ~~k I ] ,
x x=x(tlt)

(li(t)h = ~(x(t) - x(tlt - l)f ~h2k I (x - x(tlt - 1))
x x=x(tlt-l)

1 [ [Ph I ]~ 2tr P(tlt-1) a 2
k

.
x x=x(tlt-l)

Comparing with the previous model equations of (9.5), it can be seen that
these are still applicable provided the modifications

u(t) = f(t,x(tlt)) - F(t)x(tlt) + ](t) ,
w(t) = h(t,x(tlt - 1)) - H(t)x(tlt - 1) + h(t) ,

(9.24)

are made. It is possible, therefore, to retain the filter equations in (9.6), (9.7)
and (9.8). In this case:

x(t + lit) = f(t, x(tlt)) + ](t) ,
y(t) - H(t)x(tlt -1) - w(t) = y(t) - h(t,x(tlt -1)) - h(t).

To summarize, the second-order algorithm becomes

H(t) = ah(t, x) I '
ax x=x(tlt-l)

K(t) = P(tlt - l)HT(t)[H(t)P(tlt - l)HT(t) + R2(t)r1 ,

(h(t)h = ~tr [P(tlt _ 1) a{)2~k I ] ,
X x=i:(tlt-l)

x(tlt) = x(tlt -1) + K(t)[y(t) - h(t,x(tlt -1)) - h(t)] ,

(J(t))k = ~tr [P(tlt) ~~k I ] ,
2 x x=i:(tlt)

x(t + lit) = f(t,x(tlt)) + ](t) ,

P(tlt) = P(tlt - 1) - K(t)H(t)P(tlt - 1) ,

F(t) = af(t,x) I '
ax x=x(tlt)

G(t) = g(t, x)lx=x(tlt) ,

P(t + lit) = F(t)P(tlt)FT(t) + G(t)R1(t)GT(t) .

(9.25)

(9.26)

Example 9.1 As an illustration of ](t), consider an (artificial) second order
system characterized by
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f(t,x) = (:~;;;) ~ (~~~~D
By straightforward differentiation,

F = ~~ = (: :) = (::;2 -Xl~-X2)
&Xl &X2

In order to obtain F(t), this matrix must be evaluated for x = x(tlt). In this
case

where

o

9.2.4 An Example

As a simple illustration of the differences between the variants of extended
Kalman filtering and optimal filtering, consider the simple nonlinear system

x(t + 1) = x2 (t), t = 0 ,
y(t) = x(t) + e(t) . (9.27)

The initial state x(O) is assumed to be uniformly distributed over [-a, a]. The
measurement noise e(O) is assumed to be uniformly distributed over [-b, b],
and to be independent of x(O).

In order to simplify the notation, set

x = x(O), z = x(l), y = y(O), e = e(O).

The problem to be examined is the estimation of x and z from y.
It is readily derived that x and e have zero means and variances a2 /3 and

b2/3 respectively.
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Standard EKF

When applying the EKF, the appropriate initial values are

x(OI- 1) = Ex(O) = 0 , P(OI- 1) = var[x(O)] = a2/3 .

Straightforward use of (9.6)-(9.8) gives

a2 /3
K(O) = a2 /3 + b2 /3 '

a2

X = a2 + b2Y ,

P(OIO) = a
2
b

2
/3

a2 + b2 '

a4

i = x
2 = (a2 + b2 )2 y

2
.

Second-order EKF

(9.28)

(9.29)

(9.30)

(9.31)

When applying the algorithm (9.26), the previous estimate x, as well as
P(OIO), is obtained. The prediction differs, however. In this case:

](0) = ~P(010)2 = a
2

b
2

/~ .
2 a2 + b2

Hence, the predicted state estimate is now

, ,2 -1(0) a
4

2 a
2
b

2
/3

z = x + = (a2 + b2 )2 Y + a2 + b2 .

Optimal estimates

According to the development in Section 5.2, the mean square optimal esti­
mates of x and z are the conditional means

x = E [xly] =Jxp(xly) dx ,

i = E [x2 Iy] = Jx2p(xly) dx .

(9.32)

(9.33)

In order to evaluate these expectations, the conditional pdf p(xly) must be
found. For this, recall that

( I ) - p(x, y)
p x y - p(y) , (9.34)

and that p(x,y) is uniformly distributed in the area displayed in Figure 9.1.
The corners of the area have the coordinates (a, a +b), (a, a - b), (-a, -a - b)
and (-a, -a + b).

In order to find the conditional pdf p(xly), one can then use (9.34). Let
y be fixed. Apparently, p(xly) will be uniformly distributed over an interval.
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(a,a+b)

x

(a,a-b)

y(a,a+b)

(-a, -a + b)
(a,a-b)

y

-~:"'--+---r--_X

(-a,-a+b)

(-a, -a - b)
(-a, -a - b)

Fig. 9.1. The joint pdf p(x, y) is uniformly distributed in the areas shown. Left:
a ~ b. Right: a::; b. The coordinates of the corners are displayed

Note that p(y), the denominator in (9.34), acts solely as a scaling factor to
make p(xly) a pdf.

Proceeding in this way, the following result is obtained:

Case 1 a 2 b

-a - b ::; y ::; -a + b => p(xly) uniform over (-a, y + b)

-a + b ::; y ::; a - b :::} p(xly) uniform over (y - b, y + b) (9.35)

a - b::; y::; a + b => p(xly) uniform over (y - b,a)

Case 2 a::; b

-a - b ::; y ::; a - b => p(xly) uniform over (-a, y + b)

a - b ::; y ::; -a + b => p(xly) uniform over (-a, a) (9.36)

-a + b::; y ::; a + b => p(xly) uniform over (y - b,a)

Using (9.35) and (9.36), the conditional means (9.32) and (9.33) can be
evaluated. The case where a 2 b, -a - b ::; y ::; -a + b is considered in some
detail. Then, p(xly) is uniform over an interval oflength y+b-( -a) = y+a+b.
Hence, in this particular case,

p(xly) = { l/(y + a + b), -a::; x ::; y + b ,
o, elsewhere ,

and therefore,

j Y+b 1 1x = xp(xly) dx = b -2 [(y + b)2 - (_a)2]
-a y + a +
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y+b-a
2

j Y+b 1 1
2 = x2p(xly) dx = b -3 [(y + b)3 - (_a)3]

-a y + a +
1= 3[(y + b)2 - a(y + b) + a2] .
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(9.37)

(9.38)

Proceeding similarly for the other intervals, the following results are obtained:

Case 1 a?: b

{

[y + b - a]/2, -a - b ~ y ~ -a + b ,
x = y -a + b ~ y ~ a - b ,

[y + a ~ b]/2, a - b ~ y ~ a + b ,

{

[(y + b)2 - a(y + b) + a2]/3, -a - b ~ y ~ -a + b ,
2 = y2 + b2/3 , -a + b ~ y ~ a - b ,

[(y - b)2 + a(y - b) + a2]/3, a - b ~ y ~ a + b .

(9.39)

(9.40)

(9.41)

(9.42)

Case 2 a ~ b

{

[y + b - a]/2, -a - b ~ y ~ a - b ,
x - 0 a - b ~ y ~ -a + b ,

- [y - b+' a]/2, -a + b ~ y ~ a + b ,

{

[(y + b)2 - a(y + b) + a2]/3, -a - b ~ y ~ a - b ,
2 = a2/3 , a - b ~ y ~ -a + b ,

[(y - b)2 + a(y - b) + a2]/3, -a + b ~ y ~ a + b .

The estimates have now been derived. They are displayed, as functions of
the observed variable y, in Figure 9.2. Observe that in the optimal estimates
the a priori information is used in particular so that the constraints Ixl ~ a,
o~ 2 ~ a2 , are automatically satisfied.

It can be seen from the diagram that the estimates of x look relatively
similar, whereas the differences are more apparent for the estimates of z.

To evaluate the statistical performance of the estimates would require
straightforward, but occasionally very tedious, calculations to compute the
expected mean square errors (MSEs), E [x - xj2 and E [2 - zj2, in the var­
ious cases. (See Exercise 9.13.) Instead, results of Monte Carlo simulations
are shown in Table 9.1. In each case, N = 10000 trials were used and the
MSE evaluated as -k L~l (Xi - Xi)2 and -k L~l (2i - Zi)2 respectively. The
parameter a was chosen as 1, and can be viewed as a simple scaling factor.
The numerical results give the same picture as does Figure 9.2. The quality
of the estimates xdoes not differ very much. The EKF estimate of z is clearly
inferior to the other estimates of z. The mean square optimal estimates give
the smallest MSEs.
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b/a =0.3 b/a =0.3

-I 0
y/a

b/a =0.7

~lr;:::a
o

-I 0 1
y/a

b/a =0.7

-I 0
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o

-I 0 1

b/a =2

b/a = 5
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-2 0 2
y/a
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Fig. 9.2. Left: Comparisons of the EKF estimate of x (9.28); (solid line), and the
optimal estimate (9.39) and (9.41); (dashed line). Right: Comparisons of the EKF
estimate of z, (9.30); (solid line), the second-order EKF estimate (9.31); (dotted
line) and the optimal estimate (9.40) and (9.42); (dashed line)

Table 9.1. Performance evaluation by Monte Carlo simulations of estimators

Method b 0.3 0.7 2 5
EKF MSE(x) 0.027 0.108 0.27 0.32

MSE(z) 0.031 0.085 0.16 0.19
Second-order EKF MSE(x) 0.027 0.108 0.27 0.32

MSE(z) 0.030 0.075 0.087 0.088
Optimal estimate MSE(x) 0.025 0.105 0.25 0.30

MSE(z) 0.024 0.064 0.081 0.085

9.3 Gaussian Sum Estimators

It was seen previously, in Section 5.2, that the optimal state estimate is
often given by the conditional mean. To compute it, one needs to calculate
the conditional pdf p(x(t)lYt ) recursively, which can often be a formidable
task; see Section 5.4. Linear systems with Gaussian disturbances are the clear
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exception. Gaussian sum estimators are constructed as a reasonable way of
approximating the recursive computation of the conditional pdfs. The basic
underlying idea is to approximate an arbitrary pdf, say p(x), by a weighted
sum of Gaussian distributions, such as

m

p(x) ~ L Qi'}'(x; mi, Pi) ,
i=1

(9.43)

(9.45)

where Qi 2 0, 2:::1 Qi = 1 and ')'(x; m, P) is the pdf of an n-dimensional
N(m, P) random vector

1 ( 1 T -I )')'(x;m,P) = (27t)n/Z(detP)l/Zexp -2(x-m) P (x-m) .(9.44)

In fact, it can be shown that by selecting m, {Qd, {md and {Pd appropri­
ately, the approximation in (9.43) can be made arbitrarily good.

Now apply this idea to the computation of the conditional pdfs for a
nonlinear system of the form

x(t + 1) = f(x(t)) + g(x(t))v(t) ,

y(t) = h(x(t)) + e(t) ,

Ev(t)vT(t) = R1 , Ee(t)eT(t) = Rz ,

where v(t) and e(t) are mutually independent white noise sequences of zero
mean. Assume that the approximation

m

p(x(t)lyt ) ~ L Qi(t)')'(X(t); mi(t), Pi(t))
i=1

(9.46)

is available. Then the conditional mean and its covariance matrix can easily
be found using Lemma 2.1. This gives

x(tlt) =! x(t)p(x(t)lyt) dx(t)

= f Qi(t)! x(t)')'(x(t); mi(t), Pi(t)) dx(t)
i=]
m

= L Qi(t)mi(t) ,
i=]

P(tlt) = E [x(t) - x(tlt)][x(t) - x(tlt)f

=f Qi(t) ![X(t) - x(tlt)][x(t) - x(tlt)]T
i=1

x')'(x(t); mi(t), Pi(t)) dx(t)
m

(9.47)

= L Qi(t)[Pi(t) + (mi(t) - x(tlt))(mi(t) - x(tlt)f] . (9.48)
i=1
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The updating consists of m parallel EKFs to find {mi(t), Pi(t)}.
Consider first the measurement update, which concerns how to update

to

m

p(x(t)lyt- 1) ~ I>:l(i(t - l)')'(x(t)j mi(t), Pi(t))
i=l

m

p(x(t)lyt) ~ LQi(t)')'(X(t)jmi(t),Pi(t)).
i=l

(9.49)

(9.50)

(9.51)

Proceed by applying an EKF for each term in the sum. Note that if the
system is linear and there is just one term, then the standard Kalman filter
is used. As in Sections 6.4 and 9.2.1, this gives the updating

mi(t) = mi(t) + Ki(t)[y(t) - h(mi(t))] ,

Si(t) = Hi(t)Pi(t)HT(t) + R2 ,

Pi(t) = Pi(t) - Pi (t)H'[(t)S;l (t)Hi(t)Pi(t) ,
Ki(t) = Pi(t)H'[(t)Si-1(t) ,

Hi(t) = ohI .
ax x=mi(t)

The weights of the individual pdfs are updated as

Qi(t) = ::i(t - l)')'(y(t)j h(mi(t)), Si(t)) . (9.52)
Li=l Qi(t - l)')'(y(t)j h(mi(t)), Si(t))

This means that Qi(t) will be influenced by how well the corresponding pdf
can explain the prediction error yet) - h(mi(t)).

Next deal with the time update, which concerns how to update

to

m

p(x(t)lYt) ~ L Qi(t)')'(X(t)j mi(t), Pi(t))
i=l

(9.53)

m

p(x(t + l)lyt) ~ L Qi(t)')'(X(t + l)j mi(t + 1), Pi(t + 1)) . (9.54)
i=l

Apply m parallel EKFs again:

mi(t + 1) = f(mi(t)) ,

Pi(t + 1) = Fi(t)Pi(t)Fi(t) + Gi(t)R1Gf(t) ,

Fi(t) = af(x) I '
ax x=mi(t)

Gi(t) = g(x)lx=mi(t) ,
m

x(t + lit) = L Qi(t)mi(t + 1) ,
i=l

(9.55)
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P(t + lit) = E [x(t + 1) - x(t + Ilt)][x(t + 1) - x(t + Ilt)f
m

=L ai(t)[Pi(t + 1)
i=l

+(mi(t + 1) - x(t + Ilt))(mi(t + 1) - x(t + Ilt))T] .

Note that the weights {ai(t)} are the same in (9.53) and (9.54).
The Gaussian sum estimator has now been described. In most practical

cases, it is required that m, the number of filters used, is chosen large, so
that the "individual" covariance matrices Pi(t) and Pi(t) can be small.

9.4 The Multiple Model Approach

9.4.1 Introduction

The multiple model approach accounts for techniques, where the underlying
dynamics are linear, but can follow one of several linear models. further­
more, it is not known a priori, which of these linear models applies. It is also
possible that the system is switching over time between the different linear
models. The technique has been used frequently within navigation, tracking
and surveillance of aircraft traffic, with both civilian and military applica­
tions. The different linear models can then correspond to different types of
manoeuvre, such as

• constant speed and altitude
• acceleration in one direction
• a turn.

9.4.2 Fixed Models

We consider first the case when there are r different and constant modes. The
different modes, or linear models of the usual state-space types, are denoted

{Mj}j=l'

The associated linear model M j can be described as

x(j)(t + 1) = Fjx(j)(t) + v(j)(t) ,

y(t) = Hjx(j)(t) +e(j)(t), j = 1, ... ,r. (9.57)

EV(j)(t)v&)(t) = R1,j, Ee(j)(t)e&)(t) = R2,j.

Note that the model order (the dimension of the state vector x(j) (t)) can be
allowed to differ between the different models.

We assume that the prior probability that the system is in mode M j is
known, and that this is expressed as
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j = 1, ... ,r. (9.58)

Consider the case when the mode is fixed over time. This means that j
is constant, but unknown. The basic idea in the multiple model approach is
then to run r different linear Kalman filters, each corresponding to a separate
model, in parallel. In addition, based on the observations, the likelihood for
the system to follow each model is assessed, and a weighted sum of the a
posteriori pdfs of the individual filters can be applied for finding the most
appropriate model, and state estimate.

The a posteriori probability that model Mj is correct, given data up to
time t, can be evaluated using Bayes' rule. It is recursively given by

/-lj(t) = P(Mjlyt) = P(Mj ly(t),yt- 1)
p(y(t)lyt-1, Mj )P(Mj lyt-1)

p(y(t)IYt-1 )

p(y(t)lYt- 1, Mj )
= L~=1 p(y(t)lyt-1 ,Mi)/-li(t _ 1) /-lj(t - 1), j = 1, ... , r . (9.59)

We note that in (9.59) the quantity in the numerator, p(y(t)lYt-\Mj ),
is the likelihood that the output at time t follows the linear model Mj . This
is given by the Gaussian distribution for the innovation at time t:

(9.60)

(9.61)

Here, Y(j)(t) denotes the innovation at time t using model Mj , Aj(t) is its
covariance matrix, and ,,(.; ".) is the pdf of a Gaussian distributed random
vector.

Each separate mode (j = 1, ... ,r) gives a mode-conditioned state estimate
x(j) (tit).

The latest mode probabilities /-lj(t) can be used to combine the mode­
conditioned estimates and covariances. This is possible only in the case that
the different linear models are all of the same order. In fact, under the as­
sumptions:

• the r linear models are of the same order,
• the true dynamics are among one of the r models,
• the true dynamics are constant over time, and do not jump between the

models,

the pdf of the state will be a Gaussian mixture (that is, a Gaussian sum)
r

P(x(t)lyt) = L/-lj(t)')'(x(t);x(j)(tlt),Pj(tlt)) ,
j=1

where estimation using model Mj gives the state estimate x(j) (tit) and the
associated covariance matrix Pj ( tit) .

From the distribution (9.61) one can readily compute the optimal state
estimate as
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r

X( tit) = L J.lj (t)x(j) (tit) , (9.62)
j=l

which has the covariance matrix
r

P(tit) = L J.lj (t) [Pj (tit) + [x(j) (tit) - x(tlt)][x(j) (tit) - x(tlt)fJ . (9.63)
j=l

If the set of linear models includes the true dynamics, and no jump oc­
curs, then the probability of the correct mode will converge to unity as time
increases. This means that for a large time span we will, with a probability
approaching one, know which of the linear models is correct.

9.4.3 Switching Models

We consider now the case when there can be switches between the differ­
ent models. More precisely, we assume that the jump process between the
different models is a Markov chain, with known transition probabilities

(9.64)

We assume that these transition probabilities are time-invariant and inde­
pendent of the model states {x (j) (t)}. This leads to the switches forming a
homogeneous Markov chain. In practice, the matrix P, defined in (9.64), of­
ten has diagonal elements that are close to one, meaning that the probability
is high that there is no switch. The matrix P is an example of a stochastic
matrix: all its elements are positive, and the row sums are all equal to one.

The total system, with the r models and the switching between them,
is an example of a hidden Markov model. The state of the Markov chain is
hidden, as it is not directly measurable. What can be observed is only the
output variable y(t).

The conditional probability of the state x(t) given the observations yt
is still a Gaussian mixture. However, noting that at each time instant the
Markov chain can take r different values, and there can be a switch at each
time step, we find that over the interval [1, t] there are in fact rt different
possible paths for the switching Markov chain. Hence we have in this case

r'

p(x(t)lyt) = LP(x(t)\M(k), yt)p(M(k)lYt ) ,
k=l

(9.65)

where we let M(k) denote the whole time history of the switching models.
The mean value of the conditional distribution in (9.65) will be the opti­

mal state estimate. However, owing to the exponentially increasing number
of terms it is not practical to use, and suboptimal approximations are needed.
The IMM algorithm to be presented in Section 9.4.4, is based on using only
r filters operating in parallel.
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9.4.4 Interacting Multiple Models Algorithm

A basic idea of the IMM algorithm is to limit the amount of possible com­
bination of models. Assume here that the state vectors of all the r models
have the same dimension. At each time step, only r different models are
used. Before the time update, the current estimates are mixed with weight­
ings (probabilities) that are also updated. For each of the parallel r filters,
the conditional pdf is assumed to be a mixture of r Gaussian pdfs, and they
are then approximated via moment matching to a single Gaussian pdf (with
details given later on).

The r different models will be subject to switches, and we adopt the
time-varying notation {Mj(t)}j=l to account for this.

Using Bayes' rule, we get
r

p(x(t)lyt) = LP(x(t)IMj(t), yt)p(Mj(t)lyt)
j=l

r

=LP(x(t)IMj(t),y(t), yt-l)JLj(t) .
j=l

(9.66)

Further, we have

p(x(t)IMo(t) y(t) yt-l) = p(y(t)IMj(t),x(t))
J " p(y(t)IMj(t), yt-l)

xp(x(t)IMj(t), yt-l) . (9.67)

The last factor of (9.67) is evaluated, with some approximation, using the
expression for the total probability:

p(x(t)IMj(t), yt-l)
r

= LP(x(t)IMj(t), Mi(t - 1), yt-l )P(Mi(t - I)IMj(t), yt-l)
i=l

r

~ LP(x(t)IMj(t), Mi(t - I),x(i)(t - lit - 1), Pi(t - lit - 1))
i=l

XJLilj(t - lit -1) . (9.68)

Here, JLilj (t -lit -1) denotes the probability of a switch from model M i(t - 1)
to Mj (t), and the state estimate and its covariance matrix for model M i (t - 1)
are denoted by X(i)(t - lit - 1) and Pi(t - lit - 1), respectively.

Apparently, (9.68) is a mixture of r Gaussian pdfs, (assuming that each
state estimate is Gaussian). We next replace the sum by one single Gaussian,
using moment matching (further details are given later, see Step 2).

p(x(t)IMj(t), yt-l) = -y(x(t);x?j)(t -lit -I),PJ(t -lit-I)). (9.69)

The whole IMM algorithm runs us follows. We describe below the updat­
ing of the filter quantities from time t - 1 t-o time t.
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1. Calculation of the mixing probabilities The probability that we
have a switch from Mi(t - 1) to Mj(t), conditioned on the observations
yt-l is

J.tilj(t -lit -1) ~ P(Mi(t - 1)IMj(t), yt-l)

= ! P(Mj(t)IMi(t - 1), yt-l )P(Mi(t _ 1)lyt-l)
Cj

1
~PijJ.ti(t - 1) . (9.70)
Cj

Here the left-hand side signifies the mixing probabilities, and the denom­
inator Cj is just the normalizing constant,

r

Cj=LPijJ.ti(t-l), j=I, ... ,r.
i=l

(9.71)

2. Mixing Starting with the state estimates {x(i)(t-1It-1)}i=1' one com­
putes the mixed "initial condition" for the filter Mj(t) using (9.68)

r

X~j)(t - lit - 1) = L J.tilj(t - lit - l)x(i)(t - lit - 1) ,
i=l

j = 1, ... ,r.

The associated covariance matrix reads
r

pJ(t - lit - 1) = L J.ti/j(t - lit - 1) {P(t - lit - 1)
i=l

+[X(i)(t - lit - 1) - X~j)(t - lit - I)J

X[X(i)(t -lit - 1) - x(j)(t -lit _1)]T} ,

j=I, ... ,r.

(9.72)

(9.73)

3. Mode-matched filters The state estimate (9.72) and the covariance
matrix (9.73) are used as inputs to the filter Mj(t). With the new out­
put measurement y(t) available, the new filter state estimate x(j) (tit) is
computed using the standard Kalman update. Further, an updated fil­
ter covariance matrix Pj(tlt) is computed as well. These calculations are
carried out for the r different filters (j = 1, ... ,r). The details are as
follows. The "initial values" are X~j) (t - lit - 1) and PJ (t - lit - 1). The
predictor of the state vector is

x(j)(tlt - 1) = Fjx~j)(t - lit -1) + Gu(t - 1) ,

and of the output

Y(j)(tlt - 1) = Hjx(j) (tit - 1) .

The associated update of the Riccati equation becomes

(9.74)

(9.75)
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Pj(tlt - 1) = FjPJ(t - lit - l)FT + R1,j .

The filter estimate of the state vector is

(9.76)

x(j)(tlt) = x(j)(tlt - 1) + Kj (y(t) - Hjx(j) (tit -1)) (9.77)

where the filter gain is

Kj(t) = Pj(tlt - l)HJ (HjPj(tlt - l)HJ + R2,j) -1.

Finally, the covariance matrix of the filter error is

Pj(tlt) = Pj(tlt - 1) - Kj(t)HjPj(tlt - 1) .

(9.78)

(9.79)

In addition, the likelihood that the filter Mj(t) is applicable is expressed
using the Gaussian pdf implied by (9.72) and (9.73), as

Sj(t) = p(y(t)IMj(t), yt-1) . (9.80)

Using the model Mj and the assumption of Gaussian distributed data,
y(t) conditioned on yt-1 has mean value Y(j) (tIt - 1) and covariance
matrix HjPj(tlt - l)HJ + R2,j. Hence

Sj = ,(y(t); Hjx(j) (tIt - 1), HjPj (tit - l)HJ + R2,j) . (9.81)

4. Mode probability update Here we update the probabilities {Jlj(t)}j=1
as follows:

J1,j(t) ~ P(Mj(t)lyt)

= ~p(y(t)IMj(t), yt-1)P(Mj(t)lyt-1)
c

= ~Sj(t) t P(Mj(t)IMi(t - 1), yt-1)P(Mi(t - 1)lYt - 1 )

c i=1
1 r

= -Sj(t) LPijJ1,i(t - 1) , j = 1, ... , r . (9.82)
c i=1

or, in brief:

(9.83)

Above, Cj is given in (9.71), and the normalizing denominator factor c is
given by

r

C = L Sj(t)Cj .
i=1

(9.84)

5. Estimate and covariance combination It is enough to carry out the
above calculations per each time step. When explicit state estimates and
covariance matrices are needed as well, the following weighted combina­
tions can be computed:



r

x(tlt) = Lflj(t)x{j)(tlt) ,
j=l

r

P(tlt) = L flj(t) {Pj(tlt)
j=l
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(9.85)

(9.86)

(9.88)

(9.87)

The computations for processing the IMM algorithm in one time step are
displayed in Figure 9.3.

The IMM algorithm is next illustrated in a simple example.

Example 9.2 To make the example simple, but still illustrative, we consider
the case of shifting between two first-order systems with different time con­
stants and different static gains. The two models are

M . {X(t + 1) = 0.95x(t) + 0.05u(t) + O.lv(t)
1 . y(t) = x(t) +0.5e(t)

M . {x(t + 1) = 0.5x(t) + 2u(t) + 0.3v(t)
2 . y(t) = x(t) +0.5e(t)

where v(t) and e(t) are uncorrelated white noise sequences of zero mean and
unit variance. The system starts in M 1 with zero initial conditions. The input
is a square wave of unit amplitude and period 80 sampling intervals. There
is a switch to M2 at t = 100, back to M1 at t = 175, and again to M2 at
t = 311. The simulated data are shown in Figure 9.4.

Some different estimators of the state x(t) were tested. In all cases, the
initial estimate was set to £(01 - 1) = 5, with a given accuracy of P(O) = 1.
As a reference, we first consider a Kalman filter that utilizes full information
about which of the two models is operating. This would give a lower bound
of what performance can be achieved. The results obtained using this type
of Kalman filter are displayed in Figure 9.5. It can be seen that the estimate
follows the actual state quite accurately.

Next, we test Kalman filters using only model M1 or model M 2 . The
results are shown in Figures 9.6 and 9.7. Not surprisingly, the filters perform
well when the model is valid, and detoriate strongly in periods when a wrong
model is used.

Finally, we tried the IMM algorithm. In this case the initial probabilities
for the two models were each set as 0.5. Further, the transition matrix for
shifts between the models was set to

(
0.980.02)
0.020.98

meaning that at each time point the probability of a model change is 0.02.
The state estimates obtained are displayed in Figure 9.8. It turns out that the
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Update model probabilities
(9.70)

J-tilj(t - lit - 1)

IMM mixing (9.72 )

xm(t -lit -1)

PjO(t - lit - 1)

Observations Update filter estimates
y(t) and likelihoods, (9.77) and ( 9.80)

q-l

x(j)(tlt)

Pj(tlt)
Sj(t)

-----. Update mode probabilities Update estimate and
(9.82 ) covariance combination

( 9.85) and (9.86)

Iq-l
J-tj (t)

x(tlt)
P(tlt)

Fig. 9.3. Flowchart of the IMM algorithm

performance is much superior to the use of one single model. It has a quality
close to that shown in Figure 9.5, despite the fact that here it is not known
which of the two models is in operation. In Figure 9.9 we show the estimated



9.5 Monte Carlo Methods for Propagating the Conditional PDFs 265

Slate
6

4

2

-2

-4

-6
0 50 100 150 200 250 300 350 400

Output

Fig. 9.4. Generated state variable and output signal, Example 9.2

probability for model MI. Over most of the experiment, it has been possible

9.5 Monte Carlo Methods for Propagating the
Conditional Probability Density Functions

It was found in Chapter 5 that the conditional pdfs, which are needed to
evaluate the optimal state estimates in the general case, are propagating
according to (see (5.24))

( ( 1)
t+l) _ p(y(t + 1)lx(t + 1))

p x t + IY - p(y(t + 1)lyt)

x! p(x(t + 1)lx(t))p(x(t)lyt) dx(t) . (9.89)

Further, the conditional mean filter estimate will be

x(t) ~ x(tlyt) = ! x(t)p(x(t)lyt) dx(t) , (9.90)

and it has the (conditional, or a posteriori) covariance matrix

P(t) = E [x(t) - x(t)][x(t) - x(t)f

=f [x(t) - x(t)][x(t) - x(t)fp(x(t)lyt) dx(t) . (9.91)
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TIme-varying model: estimates
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Fig. 9.5. State estimate using a Kalman filter with information of the current
model, Example 9.2: (upper part, solid line) state estimate, (upper part, dashed
line) true state, (lower part) estimation error

Assume now that the dynamics of the system are given as in (9.1):

x(t + 1) = f(x(t)) + v(t) ,
y(t) = h(x(t)) + e(t) .

(9.92)

The Monte Carlo based methods for evaluating the conditional pdfs and
the optimal estimate (9.90) are based on the assumptions:

• A prior estimation of x(OIYO) is known (or assumed to be given).
• The conditional pdf p(y(t)lx(t)) has a known functional form. This corre­

sponds to knowing the pdf of the measurement noise e(t).
• The pdf of the process noise p(v(t)) is known, and is available for sampling.

The basic algorithm runs as follows. Set t = O.

1. Assume that the conditional pdf p(x(t)lyt-l) is known, and that we
have been able to generate M independent samples, {Xn~l' from it.
The number of samples M is taken as a relatively large number (say, at
least M = 103-104 ). This means that we approximate the conditional
pdf as

1 M .
p(x(t)lyt-l) ~ M L 8(x(t) - xD . (9.93)

i=l
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Fig. 9.6. State estimate using a Kalman filter with model 1 as a fixed model,
Example 9.2: (u.pper part, solid line) state estimate, (u.pper part, dashed line) true
state, (lower part) estimation error

Set M = rN, with r an integer (take at least r ~ 10).
2. Next we compare and assess these values using the available output at

time t, that is y(t), and assign a normalized weight to each sample x~:

W' _ p(y(t)lxD
t - M . ,

Ei=l p(y(t)lxD
i = 1, ... ,M. (9.94)

3. Generate a new set {x~· }~l by resampling with replacement N times
from the discrete set {X{}~l' where

(9.95)

The resampling is actually done as follows.
For i = 1.... N: take Ui as a sample from a uniform distribution over the
interval (0,1]. Find an M such that

M-l M

L Wj < Ui ~ L Wj ,

j=O j=O

where the convention Wo =0 is used. Then take

(9.96)

Xi. - x M
t - t (9.97)
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Model 2: estimates
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Fig. 9.7. State estimate using a Kalman filter with model 2 as a fixed model,
Example 9.2: (upper part, solid line) state estimate, (upper part, dashed line) true
state, (lower part) estimation error

4. Predict each of the resampled states independently, r times. Thus, gen­
erate {xi+! }~l as

x~~-;'l)r+k "J p(x(t + 1)lx(t) = x;*) ,

i = 1, ... , N, k = 1, ... , r . (9.98)

5. Replace t by t + 1 and go to Step 2.

In addition to the above propagation of the conditional pdfs, we find that
the conditional mean and its covariance matrix are then readily approximated
using (9.93) as

x(t) = E x(t)p(x(t)lyt-l) dx(t)

!
1 N

= N L X(t)Wi 8(X(t) - xD dx(t)
i=l

1 N .

= N LX~Wi'
i=l

(9.99)

Similarly:

1 N. .
P(t) = N L wdx~ - x(t)][x~ - x(t)f·

i=l

(9.100)
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IMM: estimates
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Fig. 9.8. State estimate using the IMM algorithm, Example 9.2: (upper part, solid
line) state estimate, (upper part, dashed line) true state, (lower part) estimation
error

9.6 Quantized Measurements

In many cases, data are quantized in amplitude. This can, for example, be
due to analogue to digital conversion. The quantized data may have slightly
different properties from the original one. In this section, the influence of
amplitude quantization on the variance is examined briefly, as this is an
important dispersion measure.

Let x be a continuously distributed random variables and let xQ be its
quantized value, in the following way:

(9.101)XQ =j L1, 'f . A L1 . A L1
1 JU--<X<Ju+-.2 - 2

A simplified approach would be to regard xQ as a measurement of
x, disturbed by a noise that is uniformly distributed over the interval
(- L1/2, L1/2). This would mean

XQ = x + e.

Assuming that x and e are independent:

var(xQ) = var(x) + var(e)

= var(x) + L12 /12 .

(9.102)

(9.103)
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Estimated probability of model 1

350 400

Fig. 9.9. Estimate of the probability of model Ml being in operation, Example
9.2. The dotted lines show the time points when there was a shift between M1 and
M2

This is the so-called Sheppard correction.
To examine the validity of the Sheppard correction, a detailed analysis

invoking the characteristic function <t'x(w) of x is needed. The function <t'x(w)
is the Fourier transform of the pdf of x:

<t'x(w) =i: eiwx p(x) dx = E [eiwx ] . (9.104)

The details of the analysis are given in Section 9.A.I. Explicit correction
terms for (9.103) are derived. In particular, it is shown that the Sheppard
correction is exact if the characteristic function has a bounded support so
that (for any small €)

27t
<t'x(w) == 0 , Iwl ~ .1 - € •

Note that this also gives an upper bound for the quantization level .1.

9.7 Median Filters

9.7.1 Introduction

Median filters form a special class of simple nonlinear filters. The idea is
simple. Let
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Fig. 9.10. Step responses for median filter (solid line) and mean filter (dashed
line), n = 7 (m = 3). The step (dotted line) is applied at time t = 2

n =2m+ 1 (9.105)

be an odd integer. Then the output y(t) of the filter is the median of the last
n input values: u(t - n + 1), u(t - n + 2), ... ,u(t). In the following, some
properties of median filters are derived. It is pertinent to compare this with
the arithmetic mean value. Taking the mean corresponds to a linear filter of
the form

1
H(q) = -[1 + q-l + ... + q-nH] .

n
(9.106)

This filter is said to be of FIR type, and all its poles lie at the origin.

9.7.2 Step Response

Both the median filter and the mean filter give a phase lag. However, they
differ significantly when applied to a step signal. The step shape is retained
for the median filter, whereas the mean filter yields a more smoothed result
(in fact a ramp). These properties are illustrated in Figure 9.10.

It is easy to verify that the output of the median filter rises from zero to
one with a lag of m steps. In contrast, the output of the mean filter increases
linearly from zero to one during n steps. It can sometimes be of interest to
filter out noise but to retain the original shape of the input signal. This can
be the case in image processing. For such situations, median filters may be
of interest. It is worth noting that, of course, other forms of step response
can be obtained with other filters. For example, linear filters with poles not
at the origin (so-called infinite impulse response (IIR) filters) give a response
that tends to unity exponentially.
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9.7.3 Response to Sinusoids

By considering sinusoids as the input signal, it is possible to form a frequency
function, although the concept is not really relevant for nonlinear filters.
Assume that the input signal is

u(t) = sinwt ,

and that

(9.107)

(9.111)

wn < 1,

which means that a minor part of one period is used for the filtering.
When all the data points lie between two peak values of the input, it is

obvious that the effect of the median filter is a pure delay of m samples.
When the data include the peak value, the situation is a little different. It
will, of course, never be possible to reach the peak value (i. e. one). Instead,
the filter output settles at a fixed value for some time.

To investigate this maximum value, it is convenient to consider the input

u(t) =coswt , t =0, ±1,... (9.108)

It is straightforward to find the maximum value of the output. Consider first
the case when m is an even integer. Then

m
ly(t)1 ~ cosw"2 . (9.109)

Moreover, for the input (9.108), equality holds in (9.109) for t = 0, ±1, ... ,
±m/2. The output thus reaches its extreme value for a period of m + 1
samples. Similarly, for the case when m is an odd integer:

m+1
ly(t)1 ~ cosw-

2
- , (9.110)

and this extreme value is reached for t = 0, ±1, . .. ,±mil. The output
achieves its extreme for m + 2 time points.

The effect of the median filter on a sine wave is illustrated in Figure 9.11.
For an arithmetic mean filter, the frequency function can easily be calcu­

lated, which becomes

. 1 1 - e-iwn 1 eiwn/2 _ e-iwn/2 .
H(e1W) = _ = _ e-1w(n-l)/2

n 1 - eiw n eiw/2 - e-iw/2

1 . wn
= _ sm 2 e-iw(n-l)/2

n sin~

Hence there is a phase shift corresponding to a delay of (n - 1)/2 = m
samples. This is the same shift as is obtained for the median filters when step
functions or the flanks of a sinusoid are considered. For the arithmetic mean
filter, the amplitude is reduced by the factor

IH(eiW)1 = .! si~ w2n . (9.112)
n sm~
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Fig. 9.11. Effect of the median filter on a sine wave: original sine wave u(t) (solid
line, 0), filtered sine wave y(t) (dashed line, x), n = 7 (m = 3)

It is of some interest to note that this gain is somewhat smaller than the
extreme values (9.109), (9.110), at least for low frequencies and n not too
large. In fact, for small w

1 wn 1 (wn)3
IH(eiw)1 ~ - :: - f :­

n "2 - 6("2)3
1 - ..l.w2n2 1_ 2\ ~1--w2(n2-1).

1 - 24w2 24

In contrast, the bound in (9.109) becomes

wm 1 (wm) 2 1 2 2
cos 2 ~ 1 - 2 2 = 1 - 32 w (n - 1) ,

and (9.110) gives

w(m + 1) ~ 1 _ ~ (w(m + 1)) 2 = 1 _ -.!... 2( 1)2
cos 2 2 2 32w n + ,

which implies the above statement.

9.7.4 Effect on Noise

In order to study this situation, assume that the input data are zero mean
white noise. Then use Lemma 9.1 in Section 9.A.2, where the pdf for the
median is derived. For further reference, the pdfs for the maximum and min­
imum values are also derived.
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One might expect that, in the present case, the median will not differ very
much from the mean value. To examine whether this can be a reasonable
approximation, resort to numerical evaluations for the case of a Gaussian
distribution. Then u(t) is assumed to consist of independent N(O, 1) variables.
The pdfs are shown in Figure 9.12.
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Fig. 9.12. Pdfs for various values of n. Minimum of {u(t)} (solid line); maximum
of {u(t)} (dashed line); mean of {u(t)} (dotted line); median of {u(t)} (dash-dotted
line)
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Moments: Gaussian case
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Fig. 9.13. Moments, for the Gaussian case, as a function of n. Lower curves: stan­
dard deviation of the mean (solid line); standard deviation of the median (dashed
line). Upper curves: mean of maximum value (solid line); mean plus one standard
deviation of maximum value (dashed line); mean minus one standard deviation of
maximum value (dashed-dotted line)

It can be seen from Figure 9.12 that the mean and the median do not
differ very much. The pdfs in both cases are "well centred" around zero. It is
also interesting to note that the maximum and minimum values of the pdfs
change very slowly with increasing n.

Some mean and standard deviations were also computed numerically.
These are displayed in Figure 9.13.

As a further illustration, the above calculations were repeated with a
uniform distribution of the inputs. These have the pdf

f(u) = { 1/2 , lui < 1 ,
o, elsewhere.

The results are given in Figures 9.14 and 9.15.
In this case, there is a more pronounced difference between the mean and

the median variables. Compare Figures 9.13 and 9.15.
The median filter is well suited to handling data with "impulsive" noise.

It is often applied in image processing, where one aim may be to sharpen
contours in noisy images. An important class of such "impulsive noise" is the
Bernoulli-Gaussian process, which can be modelled as
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Fig. 9.14. Pdfs for various values of n (uniform distribution). Minimum of {u(t)}
(solid line); maximum of {u(t)} (dashed line); mean of {u(t)} (dotted line); median
of {u(t)} (dash-dotted line)

y(t) = q(t)e(t) ,
e(t) Gaussian, (9.114)
q(t) = {~ with prob A,

with prob 1 - A ,

e(t) and q(t) being independent, and A normally small.
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Moments: uniform case
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Fig. 9.15. Moments, for the uniform distribution, as a function of n. Lower curves:
Standard deviation of the mean (solid line); standard deviation of the median
(dashed line). Upper curves: mean of maximum value (solid line); mean plus one
standard deviation of maximum value (dashed line); mean minus one standard de­
viation of maximum value (dashed-dotted line)

9.A Appendix. Auxiliary results

9.A.l Analysis of the Sheppard Correction

Recall that the characteristic function rpx (w) is given by

rp(w) = E [e
iwx

] =i: e
iwx

p(x) dx .

By expanding both sides of (9.115) in a Taylor series, it is easily found that

rp(O) = 1 ,

Ex = -irp~(O) ,

E x2 = -rp~(O) .

Next, the relations between the characteristic functions of x and XQ are examined.
The pdf of XQ is discrete and is defined as

where

( )_{Pi, Y= j .::1, j = 0, ±1, ±2, ... ,
pXQ Y - 0, elsewhere . (9.117)
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jjtJ.+tJ./2
Pj = p(x)dx.

jtJ.-tJ./2

Using the inverse transformation to (9.115), namely

1 joo .p(x) = 27f -00 e-IWX rp(w) dw ,

one obtains
00

rpQ(w) = 2::: eiwjtJ. Pj

j=-oo

Now set

F( ) ~ 2:::00

sin(~ + 7fk) ( k 27f )
W - A rp w+ A

~ +k7f .'-l
k=-oo 2

(9.118)

(9.119)

(9.120)

(9.121)

(9.122)

The purpose is to show that rpQ(w) = F(w). As a first step it can be seen that
rpQ(w) and F(w) are both periodic, with period 27f/ .1, since

rpQ (w + 2~) = rpQ(w) ,

F (W + 2~) = f: sin~~ +7f+7fk) rp (W + 2~ + k2~) = F(w) .
.'-l k=-oo -f + 7f + k7f .'-l.'-l

Hence rpQ(w) and F(w) can be developed in Fourier series:

rpQ(w) = l::=ocneinwtJ.,

F(w) = ,",,00 f einwtJ.LJn=o n ,

where

C - A r27f/tJ. In (w) e-inwtJ. dw
n - 27f Jo rQ ,

f = A r27f/tJ. F( ) -inwtJ. dw
n 27f Jo we.

(9.123)

To prove that rpQ(w) = F(w), it can be shown equivalently that Cn= In, for all n.
From the above expression (9.120) for rpQ (w ):

joo . (~)
1 -intJ.y Sill 2 () d

Cn =- e rpy y,
7f -00 Y

whereas (using the substitution y = w + k 2
;;)
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1 - .1127t
/fJ. -inwfJ. ~ sin(~ + 7tk) ( k 27t ) d

n - 2 e LJ fJ.w cP W + A W
7t 0 k=-oo -2- + k7t ~

00 kqf+27t . ~
.1 L 1 <1 _inCy_k 27t )fJ. Sm( 2) ( )= -2 e <1 fJ. cP Y dy
7t 27t ElL

k=-oo k-;r- 2

00 l Ck+J)qf . ~
_ 1 '""' _inyfJ.

sm
2 ()d- - LJ e --cP y Y

7t k=-oo k qf Y

_ 1 foo -inyfJ. sin~ ( ) d- - e --cP y Y
7t -00 Y

= en·

To summarize so far, this proves that

() Loo sin( ";w + 7tk) ( 27t)
CPQ W = fJ. cP W + k A

~ +k7t ~
k=O 2

00

~ L/k(W)CP(W+k
2
;) ,

k=O

where

sin( fJ.w +7tk) (-l)k sin fJ.w

1 (W) - 2 - 2
k - fJ.w + k7t - fJ.w + k7t

2 2

Straightforward differentiation of (9.125) gives

CPQ(w) = L [/~(w)cp (W + k 2;) + /k(w)cp' (W + k 2;)] ,
k

"() '""' [ "( ( 27t) , , ( 27t)CPQ W = LJ A w)cp W+ k Li + 2fk(W)CP W+ k Li
k

+/k(w)cp" (w+k
2
;)] .

The function lo(w) can be expanded as

sin fJ.w 1 ( .1W) 2
fo(w) = fJ.} ~ 1 - (; -2- + ... ,

2

showing that

(9.124)

(9.125)

(9.126)

(9.127)

(9.128)

10(0) = 1 , I~(O) = 0 , I~'(O) = _ .12

.
12

(9.129)

From (9.126) it is easily seen that

/k(0) = 0 for k =I- 0 .

Using (9.116), one now obtains

(9.130)
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var(xQ) = -<PQ(O)

=- fg (0) - <P" (0) - L [ff (O)<p (k 2~) + 2f~(0)<p' (k 2~)]
k>O

=var(x) + ~22 - L[f~/(0)<p(k2~)+2f~(0)<pI(k2~)] . (9.131)
k>O

The sum (Lk>O"') in (9.131) is the modification that would be needed for the
Sheppard correction (9.103) to be exact.

There is an important special case. Assume that <pew) has bounded support so
that, for any small 10:

27t
<pew) == 0, when Iwl ~ Li - 10 • (9.132)

Then the modification sum cancels and the Sheppard correction holds true exactly.
Note that (9.132) gives an upper bound for the quantization level ..1.

9.A.2 Some Probability Density Functions

Lemma 9.1 Let Xl, •.. ,X2n+l be iid random variables, with mean m, variance
17

2
, pdf f(x), and distribution function

F(x) =[~f(y) dy .

Set

Zl = min{xi} ,,
Z2 = maxix;} ,,
za = median of {Xi}'

The pdfs of these variables are

b(z) = (2n + l)f(z)[l - F(z)]2n ,

h(z) = (2n + 1)f(z)[F(z)]2n ,

fa(z) = (2n til)! f(z)[F(z)t[l - F(z)t .
n.n.

Proof By straightforward calculation for Zl:

Fl(Z) = P(min{x;} < z) =1- P(min{x;} > z) = 1- P(Xi > z 'Vi)
2n+l

= 1 - [II P(Xi > z)] =1 - [1 - P(Xi < z)]2n+l
i=l

= 1 - [1 - F(z)]2n+l .

Differentiation gives

b (z) = :zF l (z) = (2n + l)f(z)[l - F(z)]2n ,

(9.133)

(9.134)

(9.135)

(9.136)
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which is (9.134). Similarly, for Z2:

F2(z) = P(max{x;} < z) = P(Xi < z all i)
2n+1

= IT F(z) = [F(z)]2n+1 ,
i=1

h(z) = :z F2(Z) = (2n + 1)f(z)[F(z)]2n .

To derive h(z), note that

h(z) dz = P(z ~ Z3 < Z + dz)

=P(n of {x;} < z, n of {x;} > z + dz, 1 of {Xi} E (z, z + dz))

= (2n ~,1)! [F(z)t[1 _ F(z)t f(z) dz,
n.n.

from which (9.136) follows. •

Exercises

Exercise 9.1 Consider the following simplified model of a surveillance radar
tracking an aircraft and estimating its position and velocity:

y

(x, fi)

r

x

Consider two dimensions only. The position of the aircraft is (x, y) in Carte­
sian coordinates. The following model is to be employed for the filter design.
Set
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Then set

X=
(

0100) (00)0000 10 X e
o0 0 1 x + 0 0 ( Ye) ,
0000 01

E (::f~~) (xe(s) Ye(S)) = (rOr~) 8(t - s) .

where the noise variances rx and ry are set to zero, the state model describes
a movement with constant velocity. Inclusion of the noise variances may fa­
cilitate the estimation problem when the aircraft makes some manoeuvres.

As measurements must be taken in discrete time, a sampled form of the
model will be needed. For the sampling interval h the model above becomes

(
lhOO)
0100

x(t + h) = 0 0 1 h x(t) + v(t) ,

0001

where

(

rx h
3
/3 rx h

2
/2 0 0)

T rxh2/2 rxh 0 0
E v(t)v (t) =~ = 0 0 ryh3 /3 ryh2/2

o 0 ryh2/2 ryh

The radar measures the distance r and the angle <po Both measurements are
contaminated by white noise. The measurement equations then appear in the
following nonlinear form:

(r) _(V?iP + rP ) ( er )
<p - atan(x/y) + e<p ,

E (::~~~) (er(s) e<p(s)) = (aJ :~) 8t ,s •

Consider the following filter algorithms.

Fl : A standard EKF.
F2 : "Solve" the measurement equation and write it in the form

( ;~) = (;) + (:~) ,

where e has a state dependent covariance matrix. Apply an EKF to this
model.

F3 : The iterated EKF.
F4 : The second-order EKF.
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The user choices in the filters are the noise variances rx and ry, and the
initial values x(OI - 1), P(Oj - 1). Assume the measurement inaccuracies a;
and a~ to be known.

(a) Examine the behaviour of the filters for the case of an aircraft flying with
constant velocity. Try the numerical values

(

-5000 m)
(0) = 200 mls

x 1000 m '

omls

r x = 0, r y = 0, a r = 50 m, a<p = 0.01 rad, h = 0.5 s, and generate 100
data points. What is the effect of the user choices? You may present your
results in diagrams displaying
(i) y(t) versus x(t) , y(t) versus ~(t), etc.

(ii) :i:(t) versus t, :i:(t) versus t, etc.

(iii) y(t) versus t, y(t) versus t, etc.
(b) Repeat the examination for the case where the aircraft is making a turn.

The trajectory is assumed to satisfy

x(t) = Xo + vxt + axe12,
y(t) = Yo + vyt + ayt2 / 2 .

Try the numerical values Xo = -5000 m, Yo = 1000 m, V x = 300 mis,
ax = -1 m/s2 , vy = -30 mis, ay = 0.5 m/s2

, 200 data points.

Exercise 9.2 Consider the nonlinear system

1
x(t+l) = () +v(t) ,

l+xt

y(t) = x(t) + e(t) ,

where v(t) and e(t) are mutually independent Gaussian white noise sequences
with zero mean and variances rl and r2 respectively. Examine by simulations
an EKF and a Gaussian sum filter for estimating the state for the output
measurements. Try, for example, the numerical values rl = 1/3, r2 = 1,
t :::; 100, X(O) = 0, cov[x(t)] = 10 x r2. For the Gaussian sum filter, let it start
with a non-Gaussian distribution.
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Exercise 9.3 Consider the following simplified model of a servo where the
output 8(t) is an angle, which is measured with resolvers giving sin(8(t)) and
cos(8(t)):

The dynamics of the system are in continuous time G(8) = 1/(8(8 + 1)),
which after sampling gives H(q) = (b1q + b2)/(q2 + alq + a2) with (h is the
sampling interval)

1 -hal = - - e ,
-ha2 = e ,

b1 = h - 1 + e-h
,

b2 = -he-h + 1 - e-h .

The measurement noise sources, el(t) and e2(t), are assumed to be white,
mutually independent, of zero mean and variance reo Examine numerically
how the closed loop system behaves when the reference signal is a square
wave. Try the numerical values h =0.3, k =0.4, re =0.05 and full period of
r(t) 8D-100. Try different values of the square wave amplitude. (Values around
n are of particular interest!) The block labelled "Est." is an estimator whose
output 8(t) should resemble the true output 8(t). Consider the following cases:

(a) The idealized case with 8(t) == 8(t).
(b) The simple estimate

8(t) = atan (~:~~~) .

If the computations are done in Matlab use the command atan2, which
gives the angle in the interval (-n, n).

(c) An EKF using Yl(t) and Y2(t) as measurements.

Examine, for example, the behaviour of the system by plotting r(t), 8(t)
and 8(t).
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Exercise 9.4 Consider a uniform distribution over the interval (-1, 1):

(x) - { ~, Ixl:S 1 ,
p - 0, elsewhere.

Try to approximate p(x) by a weighted sum of Gaussian pdfs. Use your own
approach for selecting the parameters, or use the following one. Let Xl ... X m

be equidistantly spaced in (-1, 1) with Xi+! - Xi = ,1. Choose a number k
and take the approximation as

m 1
PA(X) = L -')'(x;xi,k,12).

i=l m

Exercise 9.5 Consider the estimation of a constant from noisy measure­
ments, modelled as

X(t + 1) = x(t) ,

y(t) = x(t) + e(t) ,

where {e(t)} is a white noise sequence of random variables, uniformly dis­
tributed over (-1, 1). Examine by simulation the following approaches for
recursively estimating the state. Also illustrate the uncertainty (say stan­
dard deviations) of the approaches:

(a) the standard Kalman filter.
(b) the conditional mean E [x(t)lyt].
(c) a Gaussian sum estimate.

Exercise 9.6 Examine, by means of numerical computations, the validity of
the Sheppard correction

var(xQ) ~ var(x) +,12/12

for Gaussian distributed data and for uniformly distributed data.

Exercise 9.1 Let u(t) be white noise with mean value m. Assume that the
pdf of u(t) is symmetric around m.

(a) Show that the expected value of the median of {u(t)};~tl is m.
(b) Let h [12] be the pdf of the maximum [minimum] value of {u(t)};~tl.

Show that h(m + z) = h(m - z).

Exercise 9.8 Consider a signal s(t) of the form

0, 0:st:S50,
1 , 51 :s t :s 100 ,

s(t) = 0 , 101 :s t :s 150,
(t -150)/50, 151:S t:s 200,

1 , 201 :s t :s 350 .
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Assume that set) is observed with white Gaussian noise of unit variance.
Simulate the signal and the measurements and try to recover set) from the
measurements using various filters:

(a) a median filter,
(b) a linear IIR filter,
(c) a mean filter,
(d) a Kalman filter (try to set up a state space model that can be relevant

for describing the properties of the signal; you may also allow its noise
characteristics in terms of the matrices R i , R i 2, R2 to be time-varying).

Test various filter parameters. Examine to some extent what a priori
information is useful when tuning the filters.

Exercise 9.9 EKFs can be used in order to derive recursive parameter es­
timation algorithms. Consider a linear model

x(t + 1) = A(O)x(t) + B(O)u(t) + vet) ,

yet) = C(O)x(t) + e(t) ,

E (v(t)) ( T() T()) (Ri(O) 0 ) 8e(t) v s e s = 0 R2(O) t,s ,

where 0 is a parameter vector.

(a) Show that an EKF, applied to a model for

x(t) = Cc~t)) ,

can be used to derive a recursive identification algorithm for estimating
the parameter vector O.

(b) Derive explicitly such an EKF for estimating the parameter a in the
AR(I) model

yet) + ay(y - 1) = vet) .

The noise variance .\2 = E v2 (t) can be assumed to be known.

Exercise 9.10 Consider the problem of estimating a constant from noisy
measurements. Model the situation as

x(t + 1) = x(t) ,
yet) = x(t) + e(t) .

t = 1,2, ... ,N.

(a) Assume that X(O), {e(t)} are independent Gaussian random variables
with zero mean and E X2(O) = TO, E e2(t) = T2. Determine the condi­
tional mean x(NIN). What happens when there is no a priori informa­
tion, that is TO -+ oo?
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(b) Consider the case as above and let ro -+ 00. Let x(NIN) be the estimate
of the constant. What is the (unconditional) variance of that estimate?

(c) Assume that there is no a priori information and that the {e(t)} are
independently and uniformly distributed in the interval (-a, a). Deter­
mine the conditional pdf of (x(N)lyN). What is the conditional mean
E [x(N)lyN]?

Hint. Show first that p(x(t)lyt) is a uniform distribution.

(d) Let the conditional mean derived in (a) be denoted by xa and that derived
in (c) be denoted by xc. Show that these two estimates differ in general.
Evaluate their (unconditional) variances under the assumption that the
{e(t)} are uniformly distributed in (-a,a).

Exercise 9.11 Consider the following (very simplified) model for the re­
entry of a satellite into the atmosphere:

y

r
mg

e

x

The satellite is affected by gravity and by the atmosphere. The latter
gives a contribution to the velocity and can be written as

where P is the density of the atmosphere, Cd is a ballistic constant and (x iff
is the velocity vector of the satellite. The density is assumed to vary with the
height as (the barometer formula)

p(y) = Po e- ky
,
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where k is a constant and Po is the density of air at sea level. The gravity

force is (0 -mg )T, where m is the mass of the satellite. Newton's laws give
the equation

x = - -.!....POCd e-ky (x2+ y2)1/2 X+ ax ,
2m

jj = _ -l-POCd e-ky (x2 + y2)1/2 y - g + a y ,
2m

where ax and a y are variations in the accelerations due to unmodelled effects.
Measurements of the satellite's position are assumed to be made by a tracking
radar, giving distance and elevation as (see the diagram above)

r = Jx2+ y2 + ilR ,
8 = tan- 1(xjy) + il8 ,

where ilR and il8 can be assumed to be uncorrelated sensor noise.
Construct and simulate an EKF with discrete-time measurements, esti­

mating the velocity and position of the satellite, using the state vector

Also test the iterated EKF. Use any pertinent integration method for solv­
ing the differential equation. Use the following parameters. Assume that the
sensor noise is Gaussian.

m = 103 kg,

g = 10 mjs2 ,

Po = 1.3 kgjm3
,

k = 10-4 m-1 ,

Cd = 0.6 m2 ,

E a; = (10 mji)2 ,

E a; = (10 mjs2)2 ,

E (ilR)2 = (200 m)2 ,

E (il8)2 = (2 X 10-3 rad)2.

Let the sampling frequency be Is = 20 Hz. Choose the following initial
conditions:

x(O) = -75 km ,

y(O) = 45 km,

X(O) = 5000 mjs ,
y(O) = -2000 mjs ,
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x(OI-l) = 0 km,

y(OI-l) = 25 km ,

i(OI-l) = 0 mis,

y(OI-l) = -2500 mis,
E Llx(01-1)2 = (50 km)2 ,

E Lly(01-1)2 = (25 km)2 ,

ELli(01-1)2 = (5000 m/s)2,

ELly(01-1)2 = (2500 m/s)2 .

Simulate the system until y < 5000 m. Also study what happens if Cd is in­
creased or ax, ay are increased (say by of factor 2-4). Illustrate the simulation
results and study the accuracy of the filter by plotting the estimation error
versus time, and the square roots of the diagonal elements of P(t). Also try
to apply the filter without using any information about the velocity, except
that the maximal velocity at re-entry is 7 km/s. Hence, in this case, modify
the following initial values:

i(OI-l) = -lOOmis,

y(OI-l) = -100 mis,

E Lli(01-1)2 = (7000 m/s)2,

E Lly(01-1)2 = (7000 m/s)2 .

Remark The initial estimates of the velocities are chosen differently from
zero in the last case, as

i(01-1)2 +y(01-1)2 > 0

is a necessary condition for F to exist. o

Exercise 9.12 Consider one-step prediction of the following simple time­
varying process:

y(t + 1) = a(t)y(t) + v(t) ,

where v(t) is white noise of zero mean and unit variance. The parameter a(t)
shifts between two levels, ao and al' The probability that a(t) differs from
a(t - 1) is p (for all t), and shifts at different time instants are independent.

Simulate the system and compute some estimates y(t + lit); see below.
Evaluate and compare the behaviour by computing and plotting

t t

V(t) = Lc2(s) = L[Y(s) - y(sls - 1)]2 .
8=1 8=1

Try the numerical values ao = 0.49, al = 0.99, p = 0.03 and use a data set
of 500 points.
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(a) Assume that a(t) is known. Then y(sls - 1) =a(s - l)y(s - 1).
(b) A simple robustified estimator would be to use the mean value of a(t) to

obtain a time-invariant estimator, that is:

y(t + lit) = ay(t) ,
ao +ala= -'---=-

2

(c) A more sophisticated estimator can be designed using the ideas of Section
7.5. Replace a(t) by a +ii, where ii is a "small" variable. Then make the
approximation (linearization in ii)

q
y(t) = (_ _) v(t)

q- a+a
q qii

~-_v(t)+( )2V(t).q-a q-a

Now regard ii as a random variable of zero mean and variance
t(ao - al)2. Further, examining

z(t) ~ (q - a)2 y(t) = q(q - a)v(t) + qiiv(t) ,

it is found that z(t) has a covariance function as an MA(I) process, as

1
E z2(t) = 1 + a2 + 4(ao - al)2 ,

E z(t)z(t - 1) = -a,

E z(t)z(t - 7) = 0 , 7 2: 2 .

By spectral factorization one can then derive an "equivalent" model:

q+c
y(t) = ( -)2 €(t) ,q-a

for which the optimal predictor is

y(t + lit) = (c + 2a)q - a
2

y(t) .
q+c

(d) A further possibility is to use a nonlinear extended model

'-(t) _ (x(t»)
x - a(t) ,

x(t + 1) = ( a(t)x(t) ) + (v1(t»)
aa(t) + m V2(t) ,

and apply an EKF. Show also that pertinent values a, m, A~2 of such a
model are

a = 1- 2p,

m =p(ao + al) ,

A;2 = p(I - p)(al - ao)2 .
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Exercise 9.13 Consider the example analyzed in Section 9.2.4. Derive the
theoretical MSEs in the following cases.

(a) MSE(x) when the EKF is used.
(b) MSE(z) when the EKF is used.
(c) MSE(z) when the second-order EKF is used.
(d) MSE(x) when the optimal estimator is used.

Compare with the results obtained by Monte Carlo simulations.

Exercise 9.14 Let u(t), t = 1... 2n + 1 = N be independent uniformly
distributed random variables:

f(u) = { 1/2 , lui :S 1 ,
0, elsewhere.

(a) Show that the median of {u(t)} has variance 2n~3'

Hint. It holds that

(2n + I)! n ( n ) (-1) i 1
22nn!n! L i 3 + 2i = 2n + 3 .

t=O

(b) Let y be the maximum value of {u(t)}. Show that

N-1
EY=N+1'

4N
var(y) = (N + 1)2(N + 2) .

Exercise 9.15 This problem illustrates an alternative approach to the non­
linear filtering problem, namely the use of a partial differential equation to
describe the evolution of the pdf of the state probability vector in between
measurement instances. Heuristically, this method looks on the pdf as a rep­
resentation of a flow of probability with the constraint that the integral of
the pdf over its support always equals one, and hence probability cannot
be destroyed. The above fact lends itself to arguments similar to those used
when deriving partial differential equations, e.g. for heat flow with continu­
ity equation arguments. In the probabilistic case, however, the mathematics
is difficult, and here only the major result is reproduced. This is the cel­
ebrated Fokker-Planck equation or the forward Kolmogorov equation. The
formulation is as follows.

Consider the n-dimensional stochastic differential equation

dx(t) = f(x(t)) dt + G(x(t)) d,B(t) ,

x(to) = Xo ,

E d,B(t) d,BT (t) = Q dt ,
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where d,8(t) is a Brownian motion process independent of the initial state
xo(t). Then the pdf p(x, t) propagates according to the Fokker-Planck equa­
tion

Op(x, t) = _t 0 (p(x, t)Ii(x)) + ~ t 02 (p(x, t)(G(x)QG(x)Tkj) ,
ot . OXi 2 . . OXiOXj

t=l t,J=1

p(x,O) = Po(x) .

Now consider the system

. (01)x = 00 x

(
(10)X(kh))

y(kh) = L1round L1

which describes e.g. constant altitude velocity flight, where the altitude is
reported as mode C altitude returns, quantized in steps of L1 = 100 f. For the
state variables all uncertainties are due to the unknown intitial values. The
measurements are assumed to occur in discrete-time with sampling interval
h. The "round" operator gives the integer value closest to the argument.
The measurement is to be processed and differentiated so that the velocity
determined is accurate enough to allow prediction, say 2 min ahead. Such
predictions are used in collision avoidance systems for air traffic control sys­
tems. In this case the prediction error is not Gaussian, and it turns out that
Kalman filters do not give high enough accuracy for the problem in question.
For this reason an algorithm that accounts optimally for the quantization is
to be derived here.

(a) Write the Fokker-Planck equation for the constant altitude velocity prob­
lem.

(b) Solve the Fokker-Planck equation with the initial condition at time to

P(XI' X2, to) =Po(XI, X2)

and show that the solution has the form

P(XI' X2, t) = Po (Xl - X2(t - to), X2) .

Hint. Introduce new variables according to

U= Xl - X2(t - to) ,
t'=t-to.

Make a change of variables in the Fokker-Planck equation, solve it and
transform back.

(c) Assume that the initial pdf is uniform with support of a convex polygon
with n corners. Prove also that the pdf after propagation is uniform, with
support of a convex polygon with n corners.
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Hint. Uniformity follows from (b). To prove convexity take two points
that are within the final polygon. Use the propagation result of (b) to
transform the line between the points to the initial time, where convexity
holds. Use the fact that linearity preserves convexity and the transfor­
mation to draw conclusions about convexity after propagation.

(d) Use a geometric argument to explain why the pdf after update with a
quantized measurement at time t = kh preserves uniformity as well as
support by a convex polygon, albeit possibly with a different number of
corners.

Hint. Draw a figure indicating the restriction of the measurement when
acting upon the propagated polygon.

(e) Derive the optimal state estimate by a computation of the conditional
mean.

Hint. Divide the polygon into a set of disjoint triangles, and compute the
contribution to the mean from its triangle. In particular, for a triangle
with one corner in the origin, and the other two apprearing in arbitrary
positions, show that the area of the triangle is

Y

x

1
A = 2"V(X1Y2 - x2yd2 ,

and that the centre of mass is

i (:) dA = A~ (:~ : :: )

(f) Compute the covariance of the optimal state estimate using techniques
similar to that of part (e).
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(g) The conclusion of the previous parts of the exercise is that the conditional
pdf given the quantized measurements is uniform, and is nonzero precisely
on a convex polygon. Hence an algorithm for optimal state estimation can
be constructed by propagation and update of only the corners of a convex
polygon (as a convex polygon is completely determined by its corners).
The number of corners may of course change in the update step. Write
Matlab code for such an algorithm and compare it with the Kalman filter
using the scenarios in the paper by Sviestins and Wigren (2001).

Remark The reference mentioned above describes many aspects of the topic
of this problem. The estimation method is used practically. It is in operation
at Swedish major air traffic control centres.
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10. Introduction to Optimal Stochastic Control

10.1 Introduction

Some optimal control problems for stochastic systems are studied in this
chapter. As demonstrated in Section 10.2, the randomness of the system can
be introduced in various ways, which leads to different types of solution. A
basic principle, dynamic programming, for deriving and describing optimal
stochastic controllers is presented in Section 10.4. As this principle, although
of fundamental importance for the theory, requires a huge amount of com­
putation for even very simple examples, we also need to consider suboptimal
schemes. Some aspects of such controllers are provided in Section 10.5.

10.2 Some Simple Examples

10.2.1 Introduction

In this section, some typical properties of optimal control for stochastic sys­
tems are studied by means of simple examples. The systems are all varieties
of the first-order model

t =0, ... ,N - 1 ,x(t + 1) = ax(t) + bu(t) ,
y(t) = x(t) .

Stochastic aspects can be attributed in several ways, such as

• process noise,
• measurement noise,
• a and/or b being random parameters.

The criterion to optimize is the variance of the final state

J = Ex2(N).

10.2.2 Deterministic System

(10.1)

(10.2)

Consider the system of (10.1). Assume that a and bare known, and that x(t) is
exactly observable. This is a fully deterministic problem and the expectation
operator in the criterion of (10.2) can be skipped. Obviously:
T. Söderström, Discrete-time Stochastic System
© Springer-Verlag London 2002
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(10.5)
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x2(N) = [ax(N - 1) + bu(N - l)f .

Hence the absolute minimum J = 0 is achieved by the choice
a

u(N - 1) = -bx(N - 1) ,

u(0), ... u(N-2) arbitrary.

To comply with forthcoming cases, study in particular the (time-invariant)
dead-beat regulator

a
u(t) = -bx(t), t =0, ... ,N -1, (lOA)

which clearly satisfies (10.3). In the absence of any disturbances, it forces the
state to zero at time t = 1.

10.2.3 Random Time Constant

Now consider the system

x(t + 1) = a(t)x(t) + bu(t) ,

y(t) = x(t) ,

x(O) given,

where {a(t)} is a sequence of iid random numbers with mean m and variance
(12. Assume that m and (12 are known. The criterion is still given by (10.2).

To evaluate the criterion J = E x 2 (N), use the following general result
(see Lemma 2.2):

Ex = Ey{E [xly]} , (10.6)

where E y denotes expectation with respect to y. This trick will be used
repeatedly in this chapter when deriving optimal controllers.

It is thus possible to rewrite the criterion as

(10.7)

where the outer expectation is with respect to

X N
-

1 = {x(O), ... x(N -I)}.

As u(t) will be a causal feedback from the states, it follows that Ut - 1 =
{u(O) ... u(t - I)} must be a function of X t- 1 for t = 1, ... , N. Now it is
easy to see that

E [x2(N)IX N - 1 , UN - 1] = E [a(N - l)x(N - 1) + bu(N - 1)]2

=[mx(N - 1) + bu(N - lW + (12 x2(N - 1) .

(10.8)

(Recall that, owing to the problem formulation, a(N - 1) is independent of
X N - 1.) The optimal value of u(N -1) is therefore
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m
u(N - 1) = -bx(N - 1) , (10.9)

which gives

(10.10)

Comparing (10.10) and (10.2), one can repeat the procedure successively to
determine all input values. The optimal control law becomes

and

t = 0, ... ,N -1, (10.11)

(10.12)

The optimal control law of (10.11) is an example of the certainty equiva­
lence principle. If, for the system of (10.5), the stochastic variables (in this
case a(t)) are replaced by their expected values, a deterministic system is
obtained. The certainty equivalence principle is based on the hypothesis that
the solution to the deterministic system so obtained is in fact also an optimal
solution for the original, stochastic system. It has thus been found that the
certainty equivalence principle holds in this example. Another case where it
is applicable is linear quadratic Gaussian control, as will be shown in Section
11.2. Later, cases where it does not apply will also be presented.

10.2.4 Noisy Observations

Let the system now be

x(t + 1) = ax(t) + bu(t) ,
y(t) = x(t) + e(t) ,

(10.13)

with a and b known, e(t) being white Gaussian noise of zero mean and known
variance r2. In this case, the control law is required to be a causal function
of the available measurements,

Introduce the conditional mean of the states as

m(t) = E [x(t)lyt] ,

and let their precision be expressed as

a2(t) = var[x(t)lyt] = E [{x(t) - m(t)}2IYt ] .

It is now possible to write

J = E x2(N) = E [E [x2(N)lyN-l]] ,

where the outer expectation is with respect to yN-l.

(10.14)

(10.15)

(10.16)

(10.17)
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E [x2(N)lyN-I) = E [{ax(N -1) + bu(N _ 1)}2IyN-I]

= [am(N - 1) + bu(N - lW + a2a2(N - 1) (10.18)

holds. Hence it is found, as in Section 10.2.2, that the optimal input at time
t=N-lis

a
u(N - 1) = -"bm(N - 1) . (10.19)

In order to complete the derivation of the regulator, the conditional mean
m(t) and its variance a2(t) must be found. These quantities are given precisely
by the Kalman filter (see Section 6.3).

10.2.5 Process Noise

Let the system be

x(t + 1) = ax(t) + bu(t) + v(t) ,
y(t) = x(t) ,

(10.20)

(10.22)

with x(O) given, a and b known, v(t) white noise with zero mean and known
variance rl. As in previous cases:

J = E [E [x2(N)jXN- 1
)) ,

E [x2(N)jXN- 1
) = E [{ax(N - 1) + bu(N - 1) + v(N - 1)}2IXN- 1

)

= [ax(N - 1) + bu(N - lW + rl . (10.21)

The optimal control at time t = N - 1 becomes
a

u(N - 1) = -"bx(N - 1)

as in (10.4).

10.2.6 Unknown Time Constants and Measurement Noise

This case is a combination of the situations given in Sections 10.2.3 and
10.2.4. Consider the system

x(t + 1) = ax(t) + bu(t) ,
y(t) = x(t) + e(t) ,

(10.23)

where a is a random variable with known mean E a m and variance
E (a - m)2 = a2 , b is known, and e(t) is white noise of zero mean and variance
r2·

As there is measurement noise in the system, it is not possible to determine
a exactly from measurements.

One might conjecture, from Sections 10.2.3 and 10.2.4, that the optimal
regulator would be

u(N - 1) = _ m(N - 1) x(N - 1) ,
b

(10.24)
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where

m(N - 1) = E [alyN-lj ,
x(N - 1) = E [x(N - l)lyN-Ij . (10.25)

The regulator (10.24) would be obtained by applying the certainty equiva­
lence principle. As it turns out, the control (10.24) is not optimal.

Rewrite the criterion as

J = Ex2(N)
= E [E [x2 (N)lyN-I]] .

In this case:

E [x2(N)lyN-Ij = E [{ax(N - 1) + bu(N _ 1)}2IyN-Ij

= [ax(N - 1) + bu(N - 1W + E(N - 1) ,

where

ax(N - 1) = E [ax(N - l)IYN - I j ,
E(N - 1) = var[ax(N - l)lyN-Ij .

The optimal control is apparently

u(N - 1) = -~ax(N - 1) .
b

However, in general:

ax(N - 1) = E [ax(N - l)lyN-Ij .

:f. m(N - l)x(N - 1)
= E [alyN-ljE [x(N - l)lyN-Ij

(10.26)

(10.27)

(10.28)

(10.29)

(10.30)

holds, which illustrates that the certainty equivalence principle does not give
optimal control in this case. See also Exercise 10.1.

10.2.7 Unknown Gain

Consider now the system

x(t + 1) = ax(t) + bu(t) + v(t) ,
y(t) = x(t) ,

(10.31)

where x(O) is given, a is known, b is a random variable with nonzero mean
and finite variance, v(t) is white Gaussian noise of zero mean and variance
rl·

If one were to try the certainty equivalence principle, it would be relevant
to consider the deterministic system

x(t + 1) =ax(t) + j3(t)u(t) ,

where

(10.32)
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Also introduce

p(N - 1) = var[bIXN-1j

= E [{b - f3(N - 1)}2jXN - 1j .

(10.33)

(10.34)

As derived earlier, in Section 10.2.2, the optimal control law of (10.32)
would then be

a
u(t) = - f3(t) x(t) . (10.35)

(10.36)

This will not be the optimal regulator for the system of (10.31). Phrased
differently, the certainty equivalence principle does not give optimality for
this case. In order to prove this assertion, first evaluate the criterion for the
regulator (10.35). The contribution from the last stage turns out to be

E [x2(N)IX N
-

1 j

= E [{ax(N - I) - fJ(N
ba

_ I) x(N -I) + v(N -I)rIXN
-

1
]

{
ax(N _1)}2

=p(N - 1) f3(N _ 1) + rl .

Now try another regulator, namely:

f3( t)
u(t) = -a f32(t) + p(t) x(t) . (10.37)

Compared with (10.35), the regulator gain has been reduced so as to take the
uncertainty in f3(t) into account. When the estimate f3(t) is uncertain (i.e.
p(t) is large), the gain is reduced significantly. For the regulator of (10.37),
the contribution to the loss function will be

E [x2(N)IX N - 1]]

=E[{ax(N-I)

baf3(N - 1) }2 N-l]
- f32(N -1) + p(N _l)x(N -1) + v(N -1) IX

{
af32(N - 1) }2

= ax(N - 1) - f32(N _ 1) + p(N _ 1) x(N - 1)

{
af3(N - 1) } 2 2

+p(N - 1) f32(N _ 1) + p(N _ 1) x (N - 1) + rl

{ax(N - 1)}2
=p(N - 1) f32(N _ 1) + p(N _ 1) + rl . (10.38)
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This is apparently smaller than the corresponding expression in (10.36),
which shows that the regulator (10.35) cannot be optimal.

Note that the regulator of (10.37) is sometimes called a cautious controller.
One can, in fact, show that it is the optimal regulator for the system of (10.31)
in the case where N = 1.

10.3 Mathematical Preliminaries

Some of the mathematical tools needed to derive optimal control of a stochas­
tic system are introduced in this section. In Section 10.2 it was shown that
it is common for a conditional expectation to be minimized.

It turns out that it is crucial to specify the information that is needed at
time t to determine the input signal u(t).

In order to develop a more formal treatment, let x and y be two stochastic
variables and let u be a decision variable. Also define a criterion function
£(x,y,u). The expected loss is

V=E£(x,Y,u), (10.39)

where expectation is with respect to x and y.
Now examine the optimization of V with respect to u. It is important to

distinguish between the case when u is a function of both x and y ("complete
state information") and the case when u is a function of y only ("incomplete
state information").

Lemma 10.1 Assume that the junction £(x, y, u) has a unique mmzmum
with respect to u jor all x and y, and denote it by UO (x, y). Then

min E£(x,y,u) = E£(x,y,uO(x,y)) = E min£(x,y,u). (10.40)
u(x,y) u

Remark. The minimization in the left-hand side is over all junctions of x
and y. The minimization in the right-hand side is over all variables u. The
lemma means that the minimization and expectation operators commute.

D

Proof Apparently, for any u:

£(x,y,u) 2 £(x,y,UO(x,y)) = min£(x,y,u) ,
u

and hence

E£(x,y,u) 2 E min£(x,y,u).
u

Here, the right-hand side is a constant. The left-hand side depends on u. If
the left-hand side is minimized over all functions u(x,y), this gives



304 10. Introduction to Optimal Stochastic Control

min El(x,y,u) ~ E minl(x,y,u)
u(x,y) u

= El(x,y,uO(x,y)). (10.41)

However, as UO(x,y) is a permitted control function, it also holds that

min E l(x, y, u) ~ E l(x, y, u)!u=UO(x,y)
u(x,y)

=El(x,y,uO(x,y)) . (10.42)

Combining (10.41) and (10.42) gives exactly (10.40). •

Next, consider the case when V is to be minimized by functions of y only.

Lemma 10.2 Assume that the function

f(y, u) ~ E [l(x, y, u)ly]

has a unique minimum, say UO(y), for all y. Then

minEl(x,y,u) = Ey{minE [l(x,y,u)ly]} ,
u(y) u

where E y denotes expectation with respect to y.

Proof Apparently:

f(y, u) ~ f(y, UO(y)) = min f(y, u) ,
u

and hence

E l(x, y, u) = Eyf(y, u) ~ E ymin f(y, u) = Eyf(y, UO(y))
u

(10.43)

(10.44)

for any u. As the right-hand side is a constant, the inequality is maintained
if the left-hand side is minimized:

minEl(x,y,u) ~ Ey{minf(y,u)}.
u(y) u

As UO(y) is a possible decision law, it is also true that

minEl(x,y,u) ~ E (l(x,y,uO(y)) = Ey{minf(y,u)}.
u(y) u

Combining (10.45) and (10.46) now gives (10.44).

10.4 Dynamic Programming

(10.45)

(10.46)

•

In this section, the optimal control of a stochastic dynamic system is studied.
The treatment will be based on the principle of dynamic programming. For
didactic reasons, the simpler case of optimal control of a deterministic system
is treated first.
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10.4.1 Deterministic Systems

Consider a nonlinear system in state space form:

I x(t + I) ~ f(x(t), u(t)) , (10.47)

and assume that its performance can be measured with the loss function, or
performance index

I

N-I
J =~ £(X(t), U(t)) . (10.48)

The optimal control problem is to determine a feedback u(t) as a function of
the current state x(t), so that J becomes as small as possible. This, of course,
requires that noise-free measurements of the full state vector are available.

In the dynamic programming approach for solving this optimal control
problem, the optimization is done recursively backwards in time.

Lemma 10.3 Consider the system of (10.47) and the performance index
J (10.48), which is to be optimized over all functions u(t) = u(x(t)). The
optimal control is given by the functional equation

V(x(t),t) = min [£(x(t),u(t)) + V(f(x(t),u(t)),t+ 1)] ,
u(t)

(10.49)

(10.50)

where the minimization is over all functions u(t) = u(x(t)). The function
V(x(t), t) is the minimal loss when the system starts at time t in the state
x(t).

Proof Consider first the situation at time t = N - 1. Then, obviously, the
only influence of the control action u(N -1) is on the term £(x(N -1),u(N­
1)) in the performance index, and hence

u(N - 1) = arg min £(x(N - 1), u(N - 1)) .
u(N-I)

Note that this will give u(N - 1) as a function of x(N - 1). Assume for a
moment that all optimal control actions u(t + 1), ... ,u(N - 1) have been
found, and seek u(t). Introduce

N-I
V(z, t) = min L £(x(k), u(k))lx(t)=z

u(t), ... ,u(N-I) k=t

as the minimal loss from time t onwards, starting with x(t) = z. One then
finds that
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V(z, t) = min { min [f(X(t), u(t))
u(t) u(t+l), ... ,u(N-1)

+ I: f(x(k), U(k))] }
k=t+l jx(t)=z

Of the control variables, only u(t) will influence the term f(x(t), u(t)). Hence,

V(z, t) = minu(t) [f(x(t), u(t))

+ minu(t+I), ... ,u(N-I) L~=~~I f(x(k),u(k))] Ix(t)=z

= minu(t) [f(x(t), u(t)) + V(x(t + 1), t + 1)]lx(t)=z

= minu(t) [f(x(t), u(t)) + V(J(x(t), u(t)), t + 1)]lx(t)=z •

Remark Note that (10.49) is a recursion for finding the optimal control. Its
continuous-time counterpart is often called the Hamilton-Jacobi(-Bellman)
equation, whereas in stochastic contexts it is referred to as the Bellman equa­
tion. It looks misleadingly simple. In most cases, it cannot be solved analyt­
ically. For numerical solutions, one has to discretize the state space and the
control variable, and also the size of the problems becomes very large for very
simple problems.

In an implicit form, (10.49) also expresses the principle of optimality. As­
sume that the optimal way of controlling the system starting at x(t + 1) = x
has been found. When optimizing u(t) in (10.49), the control action u(t) will
have an influence on the whole future behaviour of the system. However, for
any alternative where x(t + 1) = x, we already know how to proceed with
future control actions from time t + 1 onwards in an optimal way. 0

10.4.2 Stochastic Systems

For an optimal control problem in the stochastic case, it becomes crucial to
specify the available information; that is, what variables are accessible when
the control action u(t) is to be determined.

Consider first the case of complete state information. Assume that the
system dynamics is given by

Ix(t + 1) = t(x(t), u(t)) + vet) ,

where v(t) is a white noise sequence, and f(x, u) is a nonlinear function. It is
assumed that the full state vector x(t) is measurable. The performance index
of (10.48) has to be modified. In its previous form it is a random variable,
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taking a value that depends on the noise realization. A natural extension of
(10.48) to the case of stochastic systems is to minimize the expected loss, that
is:

I

N-l

J = E ~ £(x(t), u(t)) .

In this case the following lemma holds.

(10.52)

Lemma 10.4 Consider the system of (10.51), where v(t) is white noise,
and the performance index J (10.52) is to be optimized over all functions
u(t) = u(x(t)). The optimal control is given by the functional equation

V(x(t), t) = minuet) E [£(x(t), u(t))

+V(x(t + 1) ,t + 1)lx(t)]
(10.53)

In (10.53) the minimization is over all such functions and E ['Ix(t)] denotes
conditional expectation.

ProofWhen minimizing this J, Lemma 10.1 will be useful. The minimization
is rewritten as

N-l

minJ = minE L £(x(k),u(k))
u(t) u(t) k=O

= min Ex(t) (E [£1 £(x(k),u(k)) X(t)]) ,
u(t) k=O

where the inner expectation is conditioned on x(t) and the outer expectation
is taken with respect to x(t) (see Lemma 2.2). Applying Lemma 10.1 next
gives

minJ = Ex(t) (minE [I: £(x(k),u(k)) !X(t)]) .
u(t) u(t) k=O

Obviously, u(t) will only influence the future behaviour of the system. It thus
follows that u(t) at time t can be determined as

u(t) = argminE [I: £(x(k),u(k)) !X(t)]
u(t) k=t

To proceed, introduce the "loss-to-go":

[

N-l ]
V(z, t) = min E L £(x(k), u(k)) Ix(t) = z

u(t), ... ,u(N-l) k=t
(10.54)
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As with the development for deterministic systems, one now has

V(z, t) = minu(t) minu(t+l) u(N-l) E [Lf=~ll(x(k), u(k)) Ix(t)]

= minu(t) {minU(t+l) u(N-l) E [l(x(t), u(t))

+ Lf~~ll(x(k), u(k))lx(t)]}

= minu(t) {E [l(x(t), u(t)) Ix(t)]

+ minu(t+1) .... .u(N-1) E [Lf~~ll(x(k), u(k)) Ix(t)]}
= minu(t) {E [l(x(t), u(t))lx(t)] + E [V(x(t + 1), t + l)lx(t)]}
= minu(t) E [l(x(t), u(t)) + V(x(t + 1), t + l)lx(t)]. •

Equation (10.53) is the Bellman equation, which defines the optimal con­
trol for a stochastic system. Note that the computational complexity has
increased even further compared with the deterministic case. Now, the con­
ditional pdf p(x(t + l)lx(t)) also has to be computed in order to evaluate
the conditional expectation in (10.53). How this can be done recursively was
explained in Section 5.4.

The case of incomplete state information will be briefly discussed next.
Assume that the dynamics are

x(t + 1) = f(x(t), u(t)) + v(t) ,
y(t) = h(x(t)) + e(t) , (10.55)

and that the control action must be a function of available output measure­
ments. The noise sequences {v(t)} and {e(t)} are assumed to be white and
mutually independent. Compared with the previous case of complete state in­
formation, the present case becomes more difficult in that y(t) is normally of
smaller dimension than the full state vector x(t) and in addition is perturbed
by noise. Assume that the control action is constrained to be a function of
previous outputs, so that u(t) = F(yt-1).

In a similar way to the treatment of complete state information, one can
find that in this case (see also Lemma 10.2)

[
N-1 ]

u(t) = argmin E L l(x(k), u(k)) IYt- 1 .
u(t) k=t

Introduce

(10.56)

(10.57)V(~(t), t) = min E [~l(X(k), u(k)) lyt- 1] ,
u(t) .....u(N -1) k=t

where ~(t) is the hyperstate of the system. In the most general case, the
hyperstate is the full conditional pdf p(x(t)lYt - 1). As is known from Chapter
6, in the linear and Gaussian cases, this conditional pdf will be Gaussian, and
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it will then be sufficient to include its mean and covariance in the hyperstate
~(t).

The generalization of the Bellman equation (10.53) to the case of incom­
plete state information Can be shown to give

V(~(t), t) = minE [£(x(t), u(t)) + V(~(t + 1), t + I)!yt-l] .
u(t)

(10.58)

The following example illustrates the computational complexity of the Bell­
man equation (10.53). In order to describe the problem in some detail, a
discretized example is chosen.

Example 10.1 Consider the system

x(t + 1) = x(t) + u(t) + v(t) ,

where the possible control actionS are u(t) = 0, ±l. Further, v(t) is white
noise with a discrete pdf:

P(v(t) = -1) = 0.3 ,
P(v(t) = 1) =0.7 .

The initial value is a random variable that takes One of the values -1, 0 or 1.
The state x(t) is assumed to be available at time t; that is, this is a problem
with complete state information. The performance index is chosen as

J = E [x2 (2) + u2 (I) + u2 (0)] .

In the first phase, the control action u(I) must be determined as a function
of x(I). In addition, the minimalloss-to-go, V(x(I), 1), will be computed.

Owing to the specifications On possible values of x(O), u(I) and v(O), it
is found that the state x(l) can take any of the values -3, -2, -1, 0, 1, 2
and 3. All these cases have to be evaluated separately. Introduce, further, the
notation

J l = [x2 (2) + u2(1)] ,

J l = E [x2 (2) + u2(1)] ,

where expectation is with respect to v(l).
Consider first the case when x(l) = -3. The results of different outcomes

are summarized in Table 10.1.
The optimal COntrol actions u(1), assuming x(1) = -3, is the one giving

the smallest value ofJ l (see (10.56)). In this case, it is apparent that u(1) = 1
is optimal if x(1) = -3, and V( -3,1) =min([14.8, 7.6,4.4]) = 4.4.

The above procedure must be repeated for all possible values of x(1). The
calculations are presented in Table 10.2.

For each value of x(1), it is nOW straightforward to find the value of u(1)
that gives the smallest value of the cost-to-go, J 1, as well as this minimum
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Table 10.1. Evaluation of control actions at t =1, for x(l) =-3

u(l) v(l) x(2) p(x(2)) JI J 1

-1 -1 -5 0.3 (_5)2 + (_1)2 = 26 0.3 x 26 + 0.7 x 10 = 14.8
1 -3 0.7 (_3)2 + (_1)2 = 10

0 -1 -4 0.3 (_4)2 + (O? = 16 0.3 x 16 + 0.7 x 4 = 7.6
1 -2 0.7 (_2)2 + (O? = 4

1 -1 -3 0.3 (_3)2 + 12 = 10 0.3 x 10 + 0.7 x 2 = 4.4
1 -1 0.7 (_1)2+12 =2

value of J 1. The findings are summarized in Table 10.3, which also describes
the feedback of u(1) as a function of x(1).

One single time step of the Bellman equation has now been completed!
In this example, there are only two time steps (i.e. N = 2), and the

remaining one must be considered as well. In that stage, the control action
u(O) is to be found as a function of x(O). One can then proceed analogously
to the previous calculations. There will be fewer cases to consider as the
constraint x(O) = -1,0 or 1 is imposed. When evaluating the minimal loss
J~, the contribution J~ must be included. The calculations are summarized
in Table 10.4, where

2 -*Jo = u (0) + J1 ,

J~ = E [u2(0) + J~] .
The optimal control actions at time t = 0 are then easily found, as well

as the minimal loss (see Table 10.5).
To summarize so far, the optimal control law is given, in tabulated form,

in Tables 10.3 and 10.5. These tables describe how u(t) is a function of the
current state, x(t). 0

It should be clear from the above example that the use of dynamic pro-­
gramming requires a huge amount of computation. In more realistic examples,
it is necessary to use much finer grids of possible u and x values. If N is chosen
large, the computational burden will increase still further. It is exceptional for
the optimal regulator to be found in an analytical form. One important such
case is linear systems with Gaussian distributed disturbances and quadratic
criteria. This will be treated in Chapter 11 (although a somewhat different
route will be taken in order to derive the optimal controller; also see Exercise
10.4).
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Table 10.2. Evaluation of control actions at t = 1

x(l) u(l) v(l) x(2) p(x(2) ) h ]1

-2 -1 -1 -4 0.3 (-4? + (_1)2 = 17 0.3 x 17 + 0.7 x 5
1 -2 0.7 (_2)2 + (_1)2 = 5 = 8.6

0 -1 -3 0.3 (_3)2 + 02 = 9 0.3 x 9 + 0.7 x 1
1 -1 0.7 (_1)2 + 02 = 1 = 3.4

1 -1 -2 0.3 (-2?+12 =5 0.3 x 5 + 0.7 x 1
1 0 0.7 02 + 12 = 1 = 2.2

-1 -1 -1 -3 0.3 (_3)2 + (_1)2 = 10 0.3 x 10 + 0.7 x 2
1 -1 0.7 (_1)2 + (_1)2 = 2 = 4.4

0 -1 -2 0.3 (_2)2 + 02 = 4 0.3 x 4 + 0.7 x 0
1 0 0.7 02 + 02 = 0 = 1.2

1 -1 -1 0.3 (_1)2+12 =2 0.3 x 2 + 0.7 x 2
1 1 0.7 12 +12 =2 = 2.0

0 -1 -1 -2 0.3 (_2)2 + (_1)2 = 5 0.3 x 5 + 0.7 x 1
1 0 0.7 02 +(_1)2=1 = 2.2

0 -1 -1 0.3 (_1)2 +02 = 1 0.3 x 1 + 0.7 x 1
1 1 0.7 12 + 02 = 1 = 1.0

1 -1 0 0.3 02 + 12 = 1 0.3 x 1 + 0.7 x 5
1 2 0.7 22 + 12 = 5 = 3.8

1 -1 -1 -1 0.3 (_1)2 + (_1)2 = 2 0.3 x 2 + 0.7 x 2
1 1 0.7 12 +(_1)2=2 = 2.0

0 -1 0 0.3 02 + 02 = 0 0.3 x 0 + 0.7 x 4
1 2 0.7 22 + 02 = 4 = 2.8

1 -1 1 0.3 12 +12 =2 0.3 x 2 + 0.7 x 10
1 3 0.7 32 +12 =10 = 7.6

2 -1 -1 0 0.3 02 + (_1)2 = 1 0.3 x 1 + 0.7 x 5
1 2 0.7 22 +(-1)2=5 = 3.8

0 -1 1 0.3 12 + 02 = 1 0.3 x 1 + 0.7 x 9
1 3 0.7 32 + 02 = 9 = 6.6

1 -1 2 0.3 22 + 12 = 5 0.3 x 5+0.7 x 17
1 4 0.7 42 +1 2 =17 = 13.4

3 -1 -1 1 0.3 12 +(-1)2=2 0.3 x 2 + 0.7 x 10
1 3 0.7 32 +(_1)2=10 = 7.6

0 -1 2 0.3 22 + 02 = 4 0.3 x 4 + 0.7 x 16
1 4 0.7 42 + 02 = 16 = 12.4

1 -1 3 0.3 32 + 12 = 10 0.3 x 10 + 0.7 x 26
1 5 0.7 52 +12 =26 = 21.2

10.5 Some Stochastic Controllers

By using the principle of optimality, it was shown in Section 10.4.2 how an
optimal control law can, in principle, be found using the Bellman equation.
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Table 10.3. Optimal control actions at t =1

x(l) u(l) ~
-3 1 4.4
-2 1 2.2
-1 0 1.2
o 0 1.0
1 -1 2.0
2 -1 3.8
3 -1 7.6

Table 10.4. Evaluation of control actions at t = 0

x(O) u(O) v(O) x(l) p(x(l)) J~ Jo Jo
-1 -1 -1 -3 0.3 4.4 5.4 0.3 x 5.4 + 0.7 x 2.2 = 3.16

1 -1 0.7 1.2 2.2
0 -1 -2 0.3 2.2 2.2 0.3 x 2.2 + 0.7 x 1.0 - 1.36

1 0 0.7 1.0 1.0
1 -1 -1 0.3 1.2 2.2 0.3 x 2.2 + 0.7 x 3.0 - 2.76

1 1 0.7 2.0 3.0
0 -1 -1 -2 0.3 2.2 3.2 0.3 x 3.2 + 0.7 x 2.0 = 2.36

1 0 0.7 1.0 2.0
0 -1 -1 0.3 1.2 1.2 0.3 x 1.2 + 0.7 x 2.0 - 1.76

1 1 0.7 2.0 2.0
1 -1 0 0.3 1.0 2.0 0.3 x 2.0 + 0.7 x 4.8 = 3.96

1 2 0.7 3.8 4.8
1 -1 -1 -1 0.3 1.2 2.2 0.3 x 2.2 +0.7 x 3.0 - 2.76

1 1 0.7 2.0 3.0
0 -1 0 0.3 1.0 1.0 0.3 x 1.0 + 0.7 x 3.8 = 2.96

1 2 0.7 3.8 3.8
1 -1 1 0.3 2.0 3.0 0.3 x 3.0 + 0.7 x 8.6 = 6.92

1 3 0.7 7.6 8.6

Table 10.5. Optimal control actions at t = 0

x(O) u(O) J~
-1 0 1.36

0 0 1.76
1 -1 2.76

As this approach requires a tremendous amount of computation for realistic
problems, it is also of interest to consider some suboptimal schemes. The
purpose of this section is to indicate some approaches and aspects of this
kind.



10.5 Some Stochastic Controllers 313

It is generally assumed here that there is incomplete state information.
The system dynamics are

x(t + 1) = f(x(t), u(t)) +v(t) ,
y(t) = h(x(t)) + e(t) ,

while the criterion is
N-l

J = E L £(x(t), u(t)) .
t=o

10.5.1 Dual Control

(10.59)

(10.60)

In the case of incomplete state information, the control action has two effects,
with contradictory aims.

• On the one hand, u(t) should be chosen to render E £(x(t), u(t)) small, as
well as the future terms E £(x(t + k), u(t + k)), k > 0, in the performance
index. This may often imply that u(t) should be "small" .

• On the other hand, there is also a reason for choosing u(t) "large", since
then it may dominate over the disturbances and it may be possible to
obtain more precise information about the states. Such information is, in
principle, collected in the conditional pdf p(x(t)lyt) and may be used in
the form of the conditional mean E [x(t)lyt). This effect of the input is
sometimes called probing.

The concept of "dual control" concerns this double role of the input. It is
interesting and useful to regard this double objective of the control law. It is
worth mentioning that only in extreme cases can the explicit optimal control
law be found by reasonable effort.

10.5.2 Certainty Equivalence Control

The concept of certainty equivalence was mentioned in Section 10.2.3. The
basic idea is that the estimation and control problems are decoupled. The
certainty equivalence principle can be formulated in alternative ways. The
following is chosen here. The unknown states are estimated, for example,
with an EKF, giving x(t + lit), t = 0,1, .... Then, a deterministic optimal
control problem is formulated, replacing true state vectors by state estimates;
that is, the problem controlling the system

x(t + lit) = f(x(tlt - 1), u(t)) ,

such that the criterion
N-l

j = L £(x(tlt - 1), u(t))
t=o

(10.61)

(10.62)



314 10. Introduction to Optimal Stochastic Control

is minimized, is sought.
As was shown in Section 10.2, there are cases where the certainty equiv­

alence principle gives optimal control and other cases where it does not. The
normal situation is that it gives only a suboptimal performance. An impor­
tant exception, when the principle leads to truly optimal control, is the case
of a linear system, a quadratic performance index and Gaussian distributed
disturbances (see Chapter 11).

10.5.3 Cautious Control

A simple example of a cautious controller was examined in Section 10.2.7.
Here, a somewhat more general case is treated. The system to be controlled
is assumed to have some unknown parameters. These are modelled as ran­
dom variables with known means and covariances. Replacing the unknown
variables by the mean values would lead to a certainty equivalence control,
whereas also taking the covariance (i. e. the uncertainty of the mean values
as parameter estimates) into account will give a cautious controller.

Consider a system with random and time-varying parameters, modelled
as

y(t) + al(t -1)y(t -1) + ... + an(t -1)y(t - n)

=bl(t - l)u(t - 1) + ... + bn(t - l)u(t - n) + e(t) , (10.63)

where e(t) is white Gaussian noise of zero mean and variance ,,\2. The model
can also be written as a time-varying linear regression

y(t) = rpT(t)B(t -1) + e(t) ,

where

rpT(t) = [-y(t - 1) - y(t - n) u(t -1) u(t - n)] ,
BT(t -1) = [al(t -1) an(t -1) bl(t -1) bn(t -1)].

(10.64)

(10.65)

The parameter vector is assumed to vary according to the Markov model

B(t + 1) = FB(t) + v(t) , (10.66)

where v(t) is Gaussian, white, of zero mean and covariance R1 . As a control
objective, it is assumed that a known reference signal should be followed in
the sense that

(10.67)

is to be minimized by the control actions at time t. For known parameters,
this is a so-called minimal variance regulator problem, which will be dealt
with in more detail in Section 11.5.2.

It turns out that the mean square optimal estimate of the unknown pa­
rameters is given by the standard Kalman filter (with (10.66) representing
the system dynamics and (10.64) the measurement model), and in fact
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p(B(t)ly t
) = "((B;8(t),P(t)) , (10.68)

where "((x; m, P) is the pdf of a Gaussian distributed random vector x with
mean m and covariance matrix P, and 8(t) is the usual state estimator.

The criterion J (10.67) can now be rewritten as follows, using the fact
that e(t + 1) is white, Lemma 2.1, and that <p(t + 1) is known once yt is
available:

J = E [{<pT(t + l)B(t) + e(t + 1) - r(t)}2Iyt]

=,.\2 +E [{<pT(t + l)B(t) - r(t)}2IY t ]

=,.\2 + [<pT(t + 1)8(t) - r(tW + <pT(t + l)P(t)<p(t + 1) . (10.69)

(10.70)

(10.71)

This expression is now to be minimized with respect to u(t), which appears
as component n + 1 of <p(t + 1). The criterion J depends in an easy way on
u(t) and the minimization can be done analytically.

In the simplified case, when the parameters are known (or treated as
known - the certainty equivalence principle!), the last term of (10.69) is
neglected and the control law is in an implicit form given by

<pT(t + 1)8(t) = r(t) .

Assuming that bi (t) i 0, spelling out this relation yields

u(t) = r(t) + 0,1 (t)y(t) + ~ .. + an(t)y(t - n + 1)
bi (t)

b2(t)u(t - 1) + ... + bn(t)u(t - n + 1)

bi (t)

In order to treat the general case of minimizing J in (10.69), it is convenient
to rewrite the <p(t + 1) vector as

<p(t + 1) = <p(t + 1) + cu(t) . (10.72)

Here, <p(t + 1) is obtained from <p(t + 1) by replacing u(t) with zero, while 10

is a unit vector with a one at the position n + 1. Using (10.69), the criterion
is rewritten as

J =,.\2 + [<pT(t + 1)8(t) + u(t)eT8(t) - r(tW

+[<pT(t + l)P(t)<p(t + 1) + 2u(t)eTP(t)<p(t + 1) + u2(t)eTP(t)c] .

(10.73)

Minimization of J with respect to u(t) gives

u(t) = _ eT8(t) [<pT(t + 1)~(t) - r(t)] + lOTP(t)<p(t + 1) . (10.74)
[eTB(t)]2 + lOTP(t)c

Note that eT8(t) = bi (t), lOTP(t)e = var(b i (t)). It is worth adding that there
is no guarantee that the regulator (10.74) always yields a stable closed loop
system.
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Exercises

Exercise 10.1 As an illustration of (10.30), consider the following case
(t = 1):

x = axo, Xo = 1,

y=x+e.

Let a and e be jointly Gaussian

Find E [alyJ = E [xlyJ and E [axlyJ·

Exercise 10.2 Consider (10.74) for the cautious controller. Verify that it
simplifies to (10.37) for the case treated in Section 10.2.7.

Exercise 10.3 Consider the cautious controller in (10.74). Assume that the
coefficient hI (t) of B(t) is completely known. Show that the cautious controller
coincides with the certainty equivalence regulator in this case.

Exercise lOA Consider the one-dimensional system

x(t + 1) = x(t) + u(t) + v(t) ,

where v(t) is white noise of zero mean and unit variance. Assume that the
system is to be controlled such that the criterion

3

J = E 2)x2 (t) + u2 (t)]
t=o

is minimized. Use the dynamic programming approach to derive the optimal
feedback law.

Exercise 10.5 Consider the system

x(t + 1) = ax(t) + bu(t) + v(t) ,

t = 0,1, ...

yet) = x(t) .

Assume that

• a is a known constant,
• b is an unknown random variable with nonzero mean,
• v(t) is white noise, of zero mean and variance T2, independent of b.
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Consider the criterion

to be minimized over all regulators of the form

u(t) = f(x(t)) .

Find the optimal regulator.
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11. Linear Quadratic Gaussian Control

11.1 Introduction

The problem to be coped with in this chapter will lead to the celebrated
separation theorem. The basic setup has three essential ingredients:

• the system is linear
• the criterion is quadratic
• the disturbances are Gaussian.

The problem is often referred to as linear quadratic Gaussian control or LQG
control.

To be specific, let the system be given by

x(t + 1) = Fx(t) + Gu(t) + v(t) ,
y(t) = Hx(t) + e(t) ,

(11.1)

where v(t) and e(t) are jointly Gaussian, white noise sequences of zero mean
and

(11.2)

The covariance matrix in (11.2) is symmetric, so it must hold that R21 = R[2'
Further, assume that R2 > O.

The criterion function, or performance index, is

where the weighting matrices satisfy

Qo ~ 0 , Q2 > 0 , (8211~122 ) ~ 0 . (11.4)

Without restrictions we let the three matrices in (11.4) be symmetric, which
in particular implies Q2l = Q[2'

The initial value x(to) is assumed to be Gaussian distributed

T. Söderström, Discrete-time Stochastic System
© Springer-Verlag London 2002
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x(to) '" N(m, Ro) , (11.5)

and independent of the noise sequences {vet)} and {e(t)}.
The regulator that minimizes the expected loss, E £, will be derived in

the following three cases:

• Deterministic systems. (No noise sources at all are present.)
• Complete state information. (At time t, x(t) is fully available. Phrased

differently, e(t) == 0, H = I.)
• Incomplete state information. (The problem as stated above.)

These three situations will be treated in the following section.

11.2 The Optimal Controllers

11.2.1 Optimal Control of Deterministic Systems

Consider now the situation of no disturbances present in the system. The
problem is then often referred to as linear quadratic (LQ) control. A full
derivation of the optimal regulator will not be given here, but rather it will
be postulated that it can be found through the solution of a certain Ric­
cati equation, and this statement will be proved in detail. In Section l1.A,
however, we do provide a derivation of the optimal regulator and the Riccati
equation for the case of complete state information (no measurement noise),
using the Hamilton-Jacobi-Bellman equation (10.53) of Lemma 10.4.

Lemma 11.1 Consider the system of (11.1). Assume that the difference
equation

Set) = FTSet + l)F + Ql - (FTSet + l)G + Q12]

x [GTSet + l)G + Q2t1[GTSet + l)F + Q2d , (11.6)

SeN) = Qo·

has a nonnegative definite solution for to ~ t ~ N. Introduce

L(t) = [GTS(t + l)G + Q2t1 [GTSet + l)F + Q2d .

Then

(11.7)

£ = xT(to)S(to)x(to)
N-l

+ 2: [u(t) + L(t)x(t)jT[GTSet + l)G + Q2][U(t) + L(t)x(t)]
t=to
N-l

+ 2: (2vT(t)S(t + l)[Fx(t) + Gu(t)] + vT(t)S(t + l)v(t)) . (11.8)
t=to
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Proof Start with the identity

xT(N)Qox(N) = xT(N)S(N)x(N) = xT(to)S(to)x(to)
N-1

+ I: [xT(t + 1)S(t + 1)x(t + 1) - xT(t)S(t)x(t)] .
t=to

(11.9)

Now note that

xT(t + 1)S(t + 1)x(t + 1) = [Fx(t) + Gu(t) + v(t)]TS(t + 1)

x [Fx(t) + Gu(t) + v(t)] ,

xT(t)S(t)x(t) = xT(t)[FTS(t + 1)F + Q1

-LT(t)(Q2 + GTS(t + 1)G)L(t)]x(t) .

Using these expressions in (11.9) gives

xT(N)Qox(N) = xT(to)S(to)x(to)
N-l

+ I: (2vT(t)S(t + 1)[Fx(t) + Gu(t)]
t=to

+vT(t)S(t + 1)v(t)

+xT(t)[-Ql + LT(t){Q2 + GTS(t + 1)G}L(t)]x(t)

+2xT(t)FTS(t + 1)Gu(t) + uT(t)GTS(t + 1)Gu(t)) .

Hence set
N-l

e= xT(to)S(to)x(to) + I: (2vT(t)S(t + 1)[Fx(t) + Gu(t)]
t=to

+vT(t)S(t + 1)v(t))
N-l

+ I: (xT(t)LT(t)[Q2 + GTS(t + 1)G]L(t)x(t)
t=to

+2xT(t)[Q12 + FTS(t + 1)G]u(t) + uT(t)[Q2 + GTS(t + 1)G]u(t))
N-1

= xT(to)S(to)x(to) + I: (2vT(t)S(t + 1)[Fx(t) + Gu(t)]
t=to

+vT(t)S(t + 1)v(t))
N-1

+ I: [u(t) + L(t)X(t)]T[Q2 + GTS(t + 1)G][u(t) + L(t)x(t)] ,
t=to

which is (11.8). •
When dealing with stochastic systems, it is useful to evaluate the expected

value of the criterion function. This is dealt with in the following lemma.
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Lemma 11.2 Consider the system in (11.1) and the criterion function £,
(11.3). Assume that either

(i) u(t) is a function of the current state x(t)

or

(ii) u(t) is a function of yt-k, k 2:: 0, all output values up to including time
t - k. Further, in case k = 0, assume that R12 = 0.

Then the expected value of the criterion function fulfils

N-l

E£ = E {xT(to)S(to)x(to)} + E L {vT(t)S(t + l)v(t)}
t=to

+E (~[U(I)+ L(I)x(I»)T[Q, + GTS(I + 1)GlIu(t) + L(I)X(t)J)

N-l

=mTS(to)m + tr S(to)Ro + L tr S(t + 1)R1

t=to

+E (~[U(I) + L(t)X(I)]'[Q, + GTS(I + 1)GlIu(t) + L(I)X(I)I)

(11.10)

Proof The expected value of xT(to)S(to)x(to) is evaluated using Lemma 2.1.

It remains to show that v(t) is uncorrelated with z(t) ~ Fx(t) + Gu(t).
In case (i), u(t) is apparently a function of x(t), and hence by the system

equation a function of v(s) for s ::; t - 1, which is uncorrelated with v(t).
In case (ii) it follows as above that x(t) is uncorrelated with v(t). If k > 0,

then u(t) is a function of yt-k, and hence a function of X t - k and V t - k , both
of which are uncorrelated with v(t). If k =°and R12 = 0, then u(t) is a func­
tion of X t and Et. Noting that e(t) in this case is uncorrelated with v(t), the
desired statement follows. •

In what follows in this section, assume that the assumptions of Lemma
11.1 are satisfied. Next, consider optimal control of deterministic systems.

Theorem 11.1 Consider the system of (11.1) with no process noise (v(t) =
0) and complete state information (y(t) =x(t)). Let possible controllers be of
the form u(t) = f(x(t)). Then the optimal controller is a linear time-varying
feedback

I u(l) = - L(I)x(t) , (11.11)
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where L(t) is given by (11.7). The minimum value of the criterion is given
by

(11.12)

with S(t) being given by (11.6).

Proof Using Lemma 11.1:

V = E£ = E [xT(to)S(to)x(to)]
N-l

+ L E [u(t) + L(t)x(t)]T[GTS(t + l)G + Q2][U(t) + L(t)x(t)] .
t=to

Owing to the assumptions:

GTS(t + l)G + Q2 >°
holds. Hence all terms in the sum are positive. It follows from Lemma 10.1
that the optimal control is given by (11.11). The expression in (11.12) for
min V next follows easily from Lemma 2.1. •

Remark It is no restriction to consider controllers of the form u(t) = f(x(t)).
As x(t) is the state variable, it includes all information about the past trajec­
tories that are of any importance for the future. The most general controller
is therefore a function of the current state vector. D

Under the given assumptions, in particular Q2 > 0, the Riccati equation
of (11.6) has a unique solution. It is shown in Section 11.3 that it is dual
to the Riccati equation associated with the optimal state estimation. Hence,
results such as those of Section 6.7 can be derived for the stationary case (now
corresponding to N -+ 00). In particular, S (t) will converge, as N - t -+ 00,
to a constant, positive definite matrix, if

• Q2 > °
• (F, G) is stabilizable
• (F, C) is detectable, where Ql is factorized as Ql = CTC.

11.2.2 Optimal Control with Complete State Information

In this case, allow process noise but maintain the assumption that all state
variables are measurable.

Theorem 11.2 Consider the system of (11.1) and assume that y(t) =x(t).
Let possible controllers be of the form u(t) = f(x(t)). The optimal regulator
is then
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I u(') ~ -L(t)x(') .

The minimum value of the criterion is given by

N-l

min E i = m TS(to)m + tr S(to)~+ L tr S(t + I)R1 .

t=to

The matrices L(t) and S(t) are given by Lemma 11.1.

Proof Using Lemma 11.2 it follows directly that

N-l

E i = m TS(to)m + tr S(to)~+ L tr S(t + I)R1

t=to

(11.13)

(11.14)

(11.15)

+ E (~IU(t) + L(')x(tWIQ2 + aTS(' + 1)G](u(t) + L(t)X(t)])

The first three terms are independent of the control. Each term in the final
sum is positive. It thus follows from Lemma 10.1 that the optimal regulator is
given by (11.13). The expression (11.14) for the minimal loss is then trivial.•

Remark In Section I1.A we derive the results (11.13) and (11.14), rather
than proving them. 0

11.2.3 Optimal Control with Incomplete State Information

Now the scene is set to cope with the general case when the input is to be
determined from noisy output measurements only.

Theorem 11.3 (The separation theorem) Consider the system in (11.1).
Let possible controllers be of the form u(t) = f(yt-k) where k ~ 0, yt =
[y(tof, ... , y(t)TjT. If k = 0 assume further that R 12 = O. The optimal
regulator is

I u(t) = -L(t);;(tl' - k) ,

and the minimal value of the criterion is
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min E e= mTS(to)m + tr S(to)Ro
N-l

+ L tr S(t + 1)R1

t=to

N-l

+ L tr {P(tlt - k)LT(t)
t=to

X [GTS(t + l)G + Q2]L(t)} ,
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(11.16)

(11.18)

P(tlt - k) = E [x(t) - x(tlt - k)][x(t) - x(tlt - k)]T . (11.17)

The matrices L(t) and S(t) are given by (11.6) and (11.7). In (11.15),
x(tlt - k) is the optimal k-step predictor, as given by (6.39).

Proof The expected value of ecan be rewritten as (11.10). However, the
last term can no longer be brought to zero. Use of Lemma 10.2 will give

N-l

min E L [u(t) + L(t)x(t)f[Q2 + GTS(t + l)G][u(t) + L(t)x(t)]
u(t)=!(y'-k)

t=to

=E y ( min E {~ [u(t) + L(t)x(t)]T
u(t)=!(y'-k)

t=to

X [Q2 + GTS(t + l)G][u(t) + L(t)X(t)lIyt- k
})

=E y ( min E {~[U(t) + L(t)x(tlt - k)f
u(t)=!(Y'-k) L..J

t=to

X [Q2 + GTS(t + l)G][u(t) + L(t)x(tlt - k)]} }

+~ t, LT (tJlQ, + aTS(t + 1)G]L(t)P(tit - k))

(Recall that x(tlt - k) and x(t) - x(tlt - k) are uncorrelated.) The second sum
in (11.18) does not depend on the control. The first sum in (11.18) is brought
to zero by the control (11.15), which is thus proved to be optimal. The min­
imal value (11.16) of the criterion then follows directly from (11.18). •
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Remark 1 The theorem is called the separation theorem because it is al­
lowed to separate control and estimation. Note that the same feedback vector
L(t) is used as when x(t) is known; see (11.11). In the case of incomplete state
information, optimal performance is obtained by substituting the exact state
vector by the optimal state estimate. 0

Remark 2 The regulator (11.15) has been shown to be the optimal one in the
linear quadratic case for Gaussian distributed disturbances. It has another
optimality property as well. Let the assumption on Gaussian distributions be
relaxed, so that arbitrarily distributed disturbances are considered. Assume
that the regulator is constrained to be linear. Under these assumptions, the
regulator (11.15) is still optimal. Conceptually, this statement is closely re­
lated to the fact that the Kalman filter (i. e. the conditional mean) and the
LLMS filter coincide. 0

11.3 Duality Between Estimation and Control

It has been shown that the solutions to both optimal linear control and
optimal state estimation are given by the solutions to the Riccati equations.
See Sections 11.2.1 and 6.4. The connection between these two problems and
their solutions is now established.

It is appropriate first to repeat the estimation problem and its solution.
Consider the system

x(t + 1) = Px(t) + v(t) ,
y(t) = Hx(t) + e(t) ,

where x(to) E N(m, Ro) is independent of the white noise sequence

(~~:D E N ( (~) , (~ll Jig)) .
The optimal state estimator x(tlt - 1) is given by

x(t + lit) = Px(tlt - 1) + K(t)[y(t) - Hx(tlt - 1)] ,

K(t) = [PP(t)HT + Rd[HP(t)HT + R2t 1
,

P(t + 1) = PP(t)pT + R1 - K(t)[HP(t)pT + R2d ,
x(tolto - 1) = m ,

P(to) = Ro .

Now introduce the system

x(I + 1) = FX(I) + Gu(I) ,

where

(11.19)

(11.20)

(11.21)

(11.22)
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I = to + N - t,

F = FT
, (11.23)

C=HT
.

Introduce, further, the performance index

£ =x
T

(N)Qox(N) +~ (x
T

(t) u
T

(I)) (g2\ ~122 ) (~~iD ' (11.24)
t=to

with

Qo = Ro ,
Q1 = R1 ,

Q12 = R12 ,
Q2 = R2 .

The control law that minimizes E £ is given by (see Theorem 11.1)

u(l) = - L(I)x(l) ,

with

L(I) = [Q2 + CTS(I + 1)ct1[C
T

S(1 + l)F + Q21] ,

S(t) =FTS(I + l)F + Q1 - L(lf[cTS(1 + l)F + Q21] ,

S(N) =Qo'

Now introduce

P*(t) =S(t) ,

K*(t) = LT(I -1).

Then from (11.23), (11.25) and (11.27):

P*(to) = S(N) = Qo = Ro = P(to) ,

(11.25)

(11.26)

(11.27)

(11.28)

(11.29)

P*(t + 1) = S(I - 1) = FTS(I)F + Q1

-[Q21 + CTS(I)Ff[CTs(t)c + Q2t1[C
T

S(I)F + Q2d
=FP*(t)FT + R1 - [R21 + HP*(t)FTf

X [HP*(t)HT + R2t 1[R21 + HP*(t)FT] , (11.30)

K*(t) = [FTS(I)C + Qd[CTS(I)C + Q2t1

= [FP*(t)HT + Ru][HP*(t)HT + R2t 1 . (11.31)

Hence it is found that P*(t), K*(t) coincide fully with P(t), K(t) (see
(11.21)). This shows that the estimation and control problems are dual. In
loose terms, one can go from one of the problems to the other by transposing
the matrices and reversing the time direction (see (11.23)). In particular, it is
possible to apply the analysis of Section 6.7 to determine the time-invariant
controllers corresponding to the limiting case N -+ 00.
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11.4 Closed Loop System Properties

Some fundamental properties of the closed loop system under LQG control
are examined in this section. The time-invariant case only will be considered,
implying that to -* -00, N -* 00.

11.4.1 Representations of the Regulator

It was found in Section 11.2.3 that the optimal regulator is

u(t) = -Lx(tlt - k) , (11.32)

where the state estimate x(tlt - k) is given in Section 6.4. In practice, one
would choose k =0, or possibly k =1, if the computation of the new control
value u(t) takes a noticeable part of a sampling interval. The state estimate
in (11.32) is implicitly a function of old input and output values. Hence, it
must be possible to find a representation for the regulator in "usual" forms
also, such as a state space representation or a transfer function.

Lemma 11.3 Consider the regulator

u(t) = -Lx(tlt - k) ,

x(t + lit) = Fx(tlt - 1) + Gu(t) + Kp[y(t) - Hx(tlt - 1)] ,

x(tlt) = x(tlt - 1) + Kr[y(t) - Hx(tlt - 1)] .

For k = 1, the regulator can be represented as

x(t + lit) = (F - KpH - GL)x(tlt - 1) + Kpy(t) ,
u(t) = -Lx(tlt - 1) .

The corresponding transfer function becomes

G(z) = -L[zI - F + KpH + GLr1 K p .

For k = 0, the regulator can be written as

x(t + lit) = [F - GL - (Kp - GLKr)H]x(tlt - 1)

+(Kp - GLKr)y(t) ,

u(t) = -L(I - KrH)x(tlt - 1) - LKry(t) ,

(11.33)

(11.34)

(11.35)

(11.36)

and the associated transfer function is

G(z) = -LKr - L(I - KrH)[zI - F + GL + (Kp - GLKr)Hr1

x[Kp - GLKr] . (11.37)

Proof Equations (11.32) and (11.33) give (11.34) directly, and (11.35) is
then trivial. For k = 0, it is possible to write
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x(t + lit) = (F - KpH)x(tlt - 1) + Kpy(t)

-GL[(1 - KfH)X(tlt - 1) + Kfy(t)]

= [F - GL - (Kp - GLKr)H]x(tlt - 1) + (Kp - GLKr)y(t) ,

u(t) = -Lx(tlt) = -L[(1 - KfH)X(tlt - 1) + Kfy(t)] ,

which is (11.36). Then (11.37) follows directly. •
Remark 1 Note that no condition has been imposed on the true dynamics
of the system. Only the structure in (11.33) of the regulator has been postu­
lated. It is not required that x(tlt - 1) is the optimal state estimate. 0

Remark 2 Assume that K p = FKf holds. This is a relatively mild assump­
tion. (For example, assume that the regulator is obtained by applying the
LQG problem to a nominal model with uncorrelated process and measure­
ment noise, so that R12 = 0.) Under this assumption, (11.36) can be simplified
to

x(t + lit) = (F - GL)(1 - KfH)X(tlt - 1) + (F - GL)Kfy(t) ,
u(t) = -L(1 - KfH)X(tlt - 1) - LKfy(t) . (11.38)

o

11.4.2 Representations of the Closed Loop System

The following lemma characterizes the closed loop system.

Lemma 11.4 Consider the system

x(t + 1) = Fx(t) + Gu(t) + v(t) ,
y(t) = Hx(t) + e(t) .

Assume that the system is controlled as

(11.39)

u(t) = -Lx(tjt - k) + ur(t) , with k = 0 or 1 ,

x(t + lit) = Fx(tlt - 1) + Gu(t) + Kp[y(t) - Hx(tlt - 1)] , (11.40)

x(tlt) = x(tlt - 1) +Kr[y(t) - Hx(tlt - 1)] .

Introduce the one-step prediction error

x(tlt - 1) = x(t) - x(tlt - 1) .

For k = 1, the closed loop system can be written as

(
X(t+l)) (F-GL GL )( x(t) )

x(t + lit) 0 F - KpH x(tlt - 1)

(G) (I 0 ) (v(t))+ 0 ur(t) + I -Kp e(t) .

(11.41)

(11.42)
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For k = 0:

(
X(t+l))_(F-GLGL(I-KrH))( x(t) )

x(t + lit) - 0 F - KpH x(tlt - 1)

( G) (t) (I -GLKr) (v(t))+ 0 U r + I -Kp e(t)

holds.

(11.43)

Proof Independently of k, the prediction error satisfies

x(t + lit) = x(t + 1) - x(t + lit) = Fx(t) + Gu(t) + v(t)
-Fx(tlt - 1) - Gu(t) - Kp[Hx(t) + e(t) - Hx(tlt - 1)]

=(F - KpH)x(tlt - 1) + v(t) - Kpe(t) .

This is the second block row of (11.42) and (11.43). For k = 1, it is also found
that

x(t + 1) = Fx(t) - GLx(tlt - 1) + Gur(t) + v(t)

=Fx(t) - GL[x(t) - x(tlt - 1)] + Gur(t) + v(t)

=(F - GL)x(t) + GLx(tlt - 1) + Gur(t) + v(t) ,

and k =0 gives

x(t + 1) = Fx(t) - GLx(tlt) + Gur(t) + v(t)

=Fx(t) - GL[(I - KrH){x(t) - x(tlt - In
+Kr{Hx(t) + e(tn] + Gur(t) + v(t)

=(F - GL)x(t) + GL(I - KrH)x(tlt - 1)

+Gur(t) + v(t) - GLKre(t) . •
Remark 1 There is no assumption on the noise sources v(t) and e(t). Further,
the result is purely algebraic, starting with the representations in (11.39) and
(11.40). There is no requirement that the regulator should be the solution to
an LQG problem. 0

Remark 2 The transfer function from the reference signal ur(t) to the output
y(t) is readily found. For (11.42)

H(z) = (H 0) (ZI - (F - GL) -GL ) -1 (G)
o zI - (F - KpH) 0

= H[zI - (F - GL)t1G . (11.44)

holds. The same result is obtained for (11.43). Note that this is exactly the
result that would be obtained if the full state could be measured, and the
feedback u(t) = -Lx(t) was applied. Replacing x(t) in the feedback law
by an estimate will thus not change the closed loop transfer function. It is
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not difficult to see that the states x(tlt-1) are not controllable from ur(t). 0

Corollary Both for k = 0 and for k = 1, the closed loop poles are given by
the eigenvalues of the matrices F - GL and F - KpH.

Proof Immediate from (11.42) and (11.43). •

(11.45)

Note that in case the regulator of (11.40) really is the solution to an
LQG problem for the system of (11.39), then the closed loop system will
be asymptotically stable. In Lemma 6.3 it was proved that F - KpH has
all eigenvalues inside the unit circle under weak assumptions. The similar
property of F - GL follows from the duality results of Section 11.3.

11.4.3 The Closed Loop Poles

Introduce some notation for the characteristic polynomials of the open loop
and the closed loop systems:

[;,
<Pol(Z) = det[zI - F] ,

<pcl(Z) ~ det[zI - (F - GL)] .

The two polynomials are connected as follows.

Lemma 11.5 The relation

<pcl(Z) = <Pol(Z) det[I + L(zI - F)-lG]

holds.

Proof Simple calculations give

<pcl(Z) = det[(zI - F){I + (zI - F)-lGL}]

=det[zI - F] det[I + (zI - F)-lGL]

=<Pol(Z) det[I + L(zI - F)-lG] .

In the last line, Lemma 6.9 was used.

(11.46)

•
Note that (11.46) does not imply that <Pol(Z) is a factor of <pcl(Z). In other

words, the open loop poles are not a subset of the closed loop poles.
A more useful result can be derived by assuming that the feedback vector

L originates from an LQ(G) problem.

Lemma 11.6 Assume that

S = FTSF + Q1 - (FTSG + Q12)(GT SG + Q2)-1

X(Q21 + GTSF) ,
L = (GTSG +Q2)-1(Q21 +GTSF).

(11.47)

(11.48)
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Then

[I + L(zI - F)-IGf[GTSG + Q2][I + L(z-I I - F)-IG]
=Q2 + GT(zI - FT)-IQI (Z-I I - F)-IG

+GT(zI - FT)-IQI2 + Q21(Z-1 I - F)-IG . (11.49)

Proof Straightforward, but somewhat tedious, calculations give

[I + L(zI - F)-IG]T[GTSG + Q2][I + L(Z-I I - F)-IG]
=GTSG + Q2 + GT(zI - FT)-I(Q2I + GTSFf

+(Q2I + GTSF)(Z-l1- F)-lG
+GT(zI - FT)-1(Q21 + GTSFf(GTSG + Q2)-1

X(Q21 + GTSF)(Z-l I - F)-lG
=Q2 + GT(zI - FT)-IQ12 + Q21 (Z-I I - F)-lG

+GT(zI - FT)-I [(zI - FT)S(Z-l I - F) + FTS(Z-l I - F)
+ (zI - FT)SF + Ql - S + FTSF] (Z-l I - F)-lG

=Q2 + GT(zI - FT)-lQ12 + Q21 (Z-l I - F)-IG
+GT(zI - FT)-lQl (Z-l I - F)-lG . •

Remark Using the duality results of Section 11.3, it is possible to give an
interpretation of (11.49) in the light of Theorem 4.2. The left-hand side is the
spectrum of the output derived from the innovation form, whereas the right­
hand side is the spectrum from an arbitrary (given) form. Compare with the
last part of the proof of Theorem 4.2. 0

Lemmas 11.5 and 11.6 can be combined to give insight into how the
weighting matrices Ql, Q12 and Q2 influence the closed loop pole positions.
In fact, (11.46) and (11.48) give

det[Q2 + GT(zI - FT)-lQI (z-l I - F)-lG

+GT(zI - FT)-lQ12 + Q21 (Z-l I - F)-lG]

=det[GTSG + Q2] ¢cl(Z)¢cl(Z-:) . (11.50)
¢ol(Z)¢ol(Z- )

Note that the left-hand side is given by the system description and the weight­
ing matrices only. Further, the determinant appearing in the right-hand side
works simply as a scaling factor.

11.5 Linear Quadratic Gaussian Design by Polynomial
Methods

11.5.1 Problem Formulation

Assuming that an LQG criterion as in (11.3) penalizes a weighted sum of
output and input variances, it is possible to handle the LQG problem using
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polynomial methods. This is much in parallel with how polynomial methods
were used in Chapter 7 for treating the problems of general state estimation
in Chapter 6 when only a particular signal was to be estimated. Further
paralleling Chapter 7, we will treat the stationary case. The system will be
an ARMAX model

A(q)y(t) = B(q)u(t) +C(q)e(t)

where

A() n n-1q = q + a1 q + ... + an ,
B(q) = boqm + b1qm-1 + ... + bm,

C() n n-1q = q + C1 q + ... + Cn ,

and

k=n-m>O

bo¥O,

(11.51)

(11.52)

(11.53)

(11.55)

is the pole excess. Assume that e(t) is zero mean white noise of variance ,\2 and
that B(z) and C(z) have all zeros strictly inside the unit circle. Apparently,
there is a delay of k sampling intervals from the input to the output.

The general criterion to be treated is

. 1 N-1

V = hm NE '" [y2(t) + pu2(t)] . (11.54)
N~oo L...J

t=o

In terms of Section 11.1, this means that

Q1 = HTH,
Q12 = 0,
Q2 = p,
N ----+ 00,

and that the case of incomplete state information is treated.
The specific case of p = 0 is often referred to as minimum variance control,

and is a bit easier to handle than the general case. We will start by treating
this special case, for minimal, finite, and infinite N.

11.5.2 Minimum Variance Control

In treating the minimal variance control, let us first consider the case of only
one term in the criterion. Recall that the system (11.51) is assumed to have
a delay of k samples. Hence it makes sense to determine the input u(t) as
time t so that the output variance at time t + k, that is

(11.56)

is minimized.
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(11.58)
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When dealing with this problem we will, for the time being, assume that
the system is minimum phase, that is the polynomial B(z) has all zeros
strictly inside the unit circle.

The optimal regulator will be strongly tied to the optimal prediction.
In fact, it is known from Section 5.3 that the predictor y(t + kit) and the
prediction error y(t + k) = y(t + k) - f)(t + kit) are uncorrelated. Hence

V = E [Y(t + kit) + y(t + kW

= E [f)(t + kltW + E [jj(t + k)]2

~ E [jj(t + kW . (11.57)

Now, recall Section 7.2.2, where the optimal predictor of an ARMA process
was derived. In the present case, it is sufficient to modify the derivation to
take care of the (known) contribution from the input signal. Similar to Section
7.2.2, introduce the polynomials

F(z) = zk-l + !I zk-2 + ... + fk-l ,
L(z) = foz n - 1+ ... + f n - 1 ,

from the predictor identity

zk-1G(z) == A(z)F(z) + L(z) .

Then
B(q) G(q)

y(t + k) = A(q) u(t + k) + A(q) e(t + k)

= B(q) u(t + k) + A(q)F(q) + L(q) e(t + k)
A(q) qk-l A(q)
B(q) qL(q)

= A(q) u(t + k) + F(q)e(t + 1) + A(q) e(t)

=F(q)e(t + 1) + ~i:j u(t + k)

qL(q) 1
+ A(q) G(q) {A(q)y(t) - B(q)u(t)}

qL(q) B(q) k
=F(q)e(t + 1) + G(q) y(t) + A(q)G(q) [q G(q) - qL(q)]u(t)

= F(q)e(t + 1) + qL(q) y(t) + qB(q)F(q) u(t) . (11.60)
G(q) G(q)

Noting that

deg[qL] =1+ (n - 1) =degG ,

deg[qBF] = 1 + m + (k -1) = n =degG ,

it can be seen that

f)(t + kit) = [qL(q)]/[G(q)]y(t) + [qB(q)F(q)]/[G(q)]u(t) ,
y(t + k) = F(q)e(t + 1) .

(11.61)
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It is obvious from (11.57) that the best one can hope for is to obtain the
prediction y(t + kit) equal to zero. This idea would give the regulator

L(q)
u(t) = - B(q)F(q) y(t) , (11.62)

which is the minimum variance regulator.
It is also instructive to compute the closed loop system. In order to fa­

cilitate a sensitivity analysis, assume that the regulator design is based on a
nominal model (11.51) but that the true open loop system is given by

Ao(q)y(t) = Bo(q)u(t) + Co (q)e(t) , (11.63)

and is subject to the degree conditions (11.52) and (11.53). The closed loop
system is readily found from straightforward calculations. By successive sim­
plification,

Bo(q)L(q)
Ao(q)y(t) + B(q)F(q) y(t) = Co(q)e(t) ,

[Ao(q)B(q)F(q) + Bo(q)L(q)Jy(t) = B(q)F(q)Co(q)e(t) ,

[{Ao(q)B(q) - A(q)Bo(q)}F(q) + l-l Bo(q)C(q)Jy(t)

=B(q)F(q)Co(q)e(t) . (11.64)

Hence it can be seen that, when the nominal model coincides with the true
system, this gives

B(q)C(q)y(t) = B(q)C(q)F(q)e(t - k + 1) . (11.65)

(11.66)

As it was assumed that both B(z) and C(z) have all zeros inside the unit
circle, these poles and zeros can be cancelled to give finally

y(t) = F(q)e(t - k + 1)

=e(t) + he(t - 1) + ... + Ik-le(t - k + 1) ,

E y2(t) = A2(1 + If + ... + ILl) .
It is worth stressing that the assumption of a minimum phase system is

crucial for the derived regulator to be meaningful. Otherwise, if B(z) has any
zero outside the unit circle, an unstable closed loop system would result.

Remark 1 The derivation can be generalized to a multivariable system

y(t) =G(q)u(t) + H(q)e(t)

in innovations form, with a G(q) having a delay of k steps, and being mini­
mum phase, in the sense that [q-kG(q)J- 1 is asymptotically stable. The key
point is still to require that the k-step predictor y(t + kit) vanishes. 0

Remark 2 If the system is nonminimum phase, the optimal regulator be­
comes more complicated. Here, only the result is given, and a formal deriva­
tion is delayed until Section 11.5.3, where we treat the more general situation
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with minimizing a weighted sum of input and output variances. First factorize
B(z) as

B(z) = B+(z)B_(z) , (11.67)

where B+ has all zeros inside and B_ has all zeros outside the unit circle.
Let B_ have degree r. Next solve the Diophantine equation

(11.68)

with respect to R(z) and P(z), where degR = k + r - 1, deg P = n - 1. The
optimal regulator is then given by

P(q)
u(t) = - R(q)B+(q) y(t) . (11.69)

o

The variance criterion that has been minimized is E y2(t + k) at time t.
It gives a "one-step optimal control". It is a remarkable fact that the same
regulator also minimizes future output variances, as is now shown.

Lemma 11.7 Consider the system

A(q)y(t) = B(q)u(t) + C(q)e(t)

under the previous assumptions. The criteria

VI = E y2(t + k)
M-I

V2(M) = E ~ L y2(t+k+s)
8=0

(M a positive integer) are minimized by the same regulator.

(11.70)

(11.71)

(11.72)

Proof The optimal regulator for VI was derived previously in this section,
with the optimal regulator being given by (11.62). Set

Q = E y2(t + k) = ,\2(1 + 11 + ... + ILl) .
Using the optimality principle of dynamic programming gives

min V2(M) = min [E ~ 1=2 y2(t + k + s)
u(t), ... ,u(t+M-I) u(t), ... ,u(t+M-2) M 8=0

+ min E M
1

y2 (t + k + M - 1)]
u(t+M-I)

. [M - l u (M-I) 1 Q]= mm --V2 +-
u(t), ... ,u(t+M-2) M M

M - 1 min V
2
(M-I) +~Q. (11.73)

M u(t), ... ,u(t+M-2) M
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Note that Q is completely independent of the control actions, u(t) ... u(t +
M -2). By iterating (11.73), it is found that the minimum variance regulator
minimizes both VI and V2( M) . •

Remark Note that it is crucial in the above lemma that the output variance
only is penalized. For a general linear quadratic criterion, the corresponding
one-step minimal loss Q will depend on previous control actions. Hence, the
lemma can no longer hold under such conditions. 0

11.5.3 The General Case

Recall that the system considered is

A(q)y(t) = B(q)u(t) + C(q)e(t)

where we make the assumptions

deg A = deg C = n, deg B = m, k = n - m > 0
C(z) has all zeros strictly inside the unit circle
A(z) and B(z) are coprime (have no common factors)

and the criterion is

(11.74)

(11.75)
N-l

V = lim N
1

E "[y2(t) + pu2(t)] .
N--+oo L...J

t=O

We will derive the optimal regulator relying on the state space methodology
of Section 11.2.

We first note that the optimal regulator is given by

u(t) = -Lx(tlt) (11. 76)

according to Theorem 11.3, and due to Lemma 11.3 it is an nth-order linear
system from y(t) to u(t). We can hence postulate that the optimal regulator
has the form

S(q)
u(t) = - R(q)y(t)

where

(11.77)

(11.78)
R(q) = qn + r1qn-l + ... + rn
S( ) n n-l .q = 80q + 81 q + ... + 8n

To find the polynomials R(q) and S(q), we proceed in an indirect fashion.
We first utilize the results of Section 11.4.2 to get the closed loop characteris­
tics polynomial. Next, we compare with the polynomial implied by the open
loop system (11.51) and the regulator (11.77). Equating the two expressions
will eventually lead to a full determination of the regulator polynomials R(q)
and S(q).
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The first step is hence to characterize the closed loop poles. According to
Lemma 11.4 they are the eigenvalues of F - GL and F - KpH. When the
criterion (11.75) is minimized, the closed loop poles are, in fact, independent
of the state space representation that would be selected for representating
the system in (11.51). Let

P(z) = det(zI - (F - GL)). (11.79)

Then the result (11.50) tells us that P(z) can in fact be determined from the
following spectral factorization

B(z) B(Z-l) _ P(z) P(Z-l)
P+ A(z) A(Z-l) = r A(z) A(Z-l)

which we rewrite as

r P(z )p(Z-l) == pA(z)A(Z-l) + B(z)B(Z-l) .

We make the assumption that

an = A(O) f 0

(11.80)

(11.81)

(11.82)

which guarantees that the degree of the polynomial P(z) is indeed n, that is
Pn = P(O) f O.

The polynomial P(z) gives "half" of the closed loop characteristic poly­
nomial. The characteristic polynomial of F - KpH is easy to find. It was
derived in Example 7.2 that

det(zI - (F - KpH)) = C(z) . (11.83)

Next we derive the closed loop system when the system in (11.51) is
combined with the regulator in (11.77). We easily get

A(q)y(t) = -B(q) ~~:~y(t)+ C(q)e(t)

and

[A(q)R(q) + B(q)S(q)]y(t) = R(q)C(q)e(t) . (11.84)

Summing up the expressions derived for the closed loop poles, we thus
have

A(z)R(z) + B(z)S(z) == C(z)P(z) . (11.85)

Note that this is a Diophantine equation of a similar type to (7.65). When
converting (11.85) to a linear system of equations, there will be 2n equations,
as both sides are polynomials of degree 2n. The number of unknowns is,
however, 2n + 1 (n coefficients for R(z) and n + 1 coefficients for S(z)). We
thus have to find one more condition for determining the regulator. To do so,
we make use of the following result.

Lemma 11.8 Assume that an = A(O) f O. Then it holds that Sn = S(O) = o.
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Proof We will have to show that the transfer function (11.77) of the regulator
has a zero in z = O.

According to Lemma 11.3, the regulator can be represented in state space
form with R12 = 0, leading to Kp =FKf, see (6.35), as

where

z(t + 1) = Frz(t) + Gry(t)
u(t) = -Hrz(t) - Jry(t) ,

(11.86)

(11.87)

Fr = F - GL + GLKfH + KpH = (F - GL)(I - KfH) ,
Gr = Kp - GLKf = (F - GL)Kf ,
Hr = L - LKfH =L(I - KfH) ,
Jr = LKf.

To prove the lemma it is enough to examine the transfer function for
argument z = 0:

Gr(O) = [Jr + Hr(zI - Fr)-lGr]lz=o

= Jr - HrFr-1G r

= LKf - L(I - KfH)[(F - GL)(I - KfH)t1

x(F-GL)Kf=O,

which ends the proof.

(11.88)

•
To sum up, we have found that in the case an :f 0, we can conclude that

Sn = O. In this case the Diophantine equation has a unique solution with the
given degrees.

Remark If an = 0, the computation of the optimal regulator gets more
complicated and requires the solution of two coupled Diophantine equations.

o

To summarize so far, the optimal regulator is found by solving the Dio­
phantine equation (11.85), in the case an :f O. The polynomial P(z) is first
to be determined by solving the spectral factorization (11.81).

As illustrations of the procedure for determining the optimal regulator,
let us reconsider the minimal variance regulator of Section 11.5.2.

Example 11.1 Consider first the case of a minimum phase system. Then we
can conclude from (11.81) that P(z) coincides with B(z), save for a normal­
izing factor, and a factor zn-m that adjusts the degree. Hence

P(z) = B(z)zn-m jbo .

The Diophantine equation (11.85) gives

A(z)R(z) + B(z)S(z) == C(z)B(z)zn-m jbo .



340 11. Linear Quadratic Gaussian Control

As the second term and the right-hand side contain the factor B(z), and
this factor has no common zero with A(z), we conclude that B(z) must be a
factor of R(z). Hence we can write

R(z) = B(z)R1(z)jbo ,

where the division with bo is made to keep the coefficient of zn equal to one,
and the degree of R1 (z) is k = n - m. Inserting this into the Diophantine
equation and cancelling the factor B(z)jbo gives

A(z)R1(z) + boS(z) == C(z)zn-m .

As Sn = 0, we can write S(z) = Sl(Z)Z with deg Sl(Z) = n - 1. Then
it follows that a factor z can be cancelled, so that R1(z) = zR2 (z), with
deg R2 (z) = k - 1. After cancelling the factor z, the Diophantine equation
becomes

AR2 (z) + bOS1(z) == C(z)zk-l ,

which coincides with the predictor identity (11.59). o

Example 11.2 Next we consider the case with an arbitrary B(z) polynomial,
which we split as

where B+ has all zeros inside, and B_ all zeros outside the unit circle. Let
B_ have degree e. The spectral factorization (11.81) gives in this case

P(z) = B+(z)zeB_(Z-l)zkjbo ,

and the Diophantine equation becomes

A(z)R(z) + B+(z)B_(z)S(z) == B+(z)B_(Z-l)zkHC(z)jbo .

As before, we have S(z) = ZSl(Z) with deg Sl(Z) = n - 1. In this case we
conclude that zB+(z) must be a factor of R(z). Hence

R(z) = zB+(z)R1(z)jbo ,

where deg R1(z) =n - 1- (m - £) = k + £ - 1. The adjusted Diophantine
equation becomes

A(z)R1(z) + B_(z)S(z)jbo == B_(z-l)C(z)zk+e-l ,

which is precisely what we achieved with somewhat other notations in (11.68).
o
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Example 11.3 As a further illustration, we consider minimizing

J = E y2(t) + 2E u2(t)

for the first-order system

y(t) - y(t - 1) = u(t - 1) + e(t) + ee(t - 1) , lei < 1.

We first solve the problem of using the polynomial formalism. The spectral
factorization (11.81) becomes

r(z + p)(Z-l + p) == 2(z - l)(z-l - 1) + 1

leading to

zo : r(l +p2) = 5
Zl : rp = -2,

with the solution r = 4, p = -0.5. The Diophantine equation (11.85) will
hence be

(z -l)(z +rl) + 1 x soz == (z - 0.5)(z +e),

leading to

zO : -rl = -0.5e
Zl : -1 + rl + So = -0.5 + e ,

with the solution rl =0.5e, So = 0.5(1 +e). Hence the optimal regulator will
be

( )
_ 0.5(1 + e)q ()

ut-- 05 yt.
q + . e

For illustration, the problem is also treated using the state space formal­
ism. As there will be no delay in the regulator, it is convenient to choose
a state space model with R12 = 0; compare with Theorem 11.3. One such
possibility is

x(t + 1) = (~~) x(t) + (~) u(t) + v(t) ,

y(t) = (1 O)x(t) ,

with

R12 =0,

Set

p = (PH P12) .
P12 P22
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The Riccati equation for P becomes

P=Rl +F[P-PHT(HPHT)-lHPJFT .

Here,

P - PHT(HPHT)-l HPJ

= (;~~ ~~) - (;~~) (Pl1 P12) /Pl1

=(~~)JL'
where

2
JL =P22 - P12 .

Pl1

The Riccati equation gives

P = R l + (~ ~) (~~) JL ( ~ ~) = R l + (~ ~) ,

and one finds that

_ .x2 2 _ (.x2
C)2

JL - C .x2 + JL '

which has solutions JLl =°and JL2 = c2
- 1. As JL2 < 0, we conclude that the

pertinent solution is JL = 0, and

P = .x2 (~~ ) ,

Kf = (;~~) P~l = (~) ,

Kp=FKf=(C~l).

The Riccati equation for S is solved in a similar way:

with

f3=811-~=~'
811 + 2 811 + 2
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The scalar /3 is next to be found:

/3 = 2(1 + (3)
1+/3+2 '

with solutions /31 = 1 and /32 = -2. As /31 > 0, it is the relevant solution,
and one gets

s=(i~), L=~(ll).

We finally apply (11.37) of Lemma 11.3 to get the optimal feedback. In this
case we have

1
LKf = 2(1+c),

1 1
L(I - KfH) = 2 (1 1) - 2(1 + c) (10)

1= - (-c 1) ,
2

F - GL - (Kp + GLKr)H = (F - GL)(I - KfH)

= (1/21/2) ( 0 0)o 0 -c 1

= ~ (~c ~) ,
K p - GLKf = (F - GL)Kf

= C~21~2) (~)

_~(l+C)
- 2 0 .

From the above expressions we can form the optimal regulator as

G(z) = ~(1 + c) + ~ (-c 1) ( Z+Oc/2 - ~/2) -1 (1/2(~ + c) )

= ~(l+C) [l+~(-Cl) (~) Z(Z:C/2)]

_ ~ ( ) Z + c/2 - c/2
- 2 1 + c Z + c/2

1 z
= 2(1 + c) Z + c/2 '

which coincides with our previous finding. o
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11.6 Controller Design by Linear Quadratic Gaussian
Theory

11.6.1 Introduction

Some aspects of the use of LQG theory for the design of a regulator are
presented in this section.

It is seldom that the performance index is a priori given for the plant
to be controlled. Instead, the weighting matrices Qo, Q1 and Q2, as well as
N, the horizon, which together shape up the performance index, should be
regarded as user design or tuning variables. There are several design rules for
the selection of these user variables.

• The absolute values of Qo, Q1 and Q2 are not of importance, but their rela­
tive values are. In particular, the choices (Qo; Q1; Q2) and (aQo; aQ1; aQ2),
with a an arbitrary scalar, give the same feedback vector L. As a conse­
quence, one of the matrix elements is often set to a fixed value without
causing any restriction.

• In most cases the asymptotic case of N -+ 00 is considered. Then Qo be­
comes obsolete, as the optimal gain L depends on the solution to the ARE
(11.47).

• In the case where N -+ 00, the optimal regulator can be written as a linear
time-invariant feedback. It can be interpreted as a form of pole-placement
algorithm. The positions of the closed loop poles are affected by the choice
of the weighting matrices Q1 and Q2.

• The weights Q1 and Q2 can be selected by a more pragmatic procedure.
For ease of discussion, assume that the system has one input and that Q1
is chosen diagonal. Then the stationary criterion can be written as

n

V = LQli,iEx;(t) +Q2Eu2(t).
i=1

Initially, Qli\ and Q:;1 should be chosen as the acceptable variances of Xi(t)
and u(t) respectively. With the controller so designed, the variances E x;(t)
and E u2(t) are evaluated for the closed loop system. If any variance is
deemed to be too large, its corresponding weight in the criterion is increased
and the design procedure is repeated.

• A special case of applying LQG is called generalized predictive control
(GPC). One then has a finite N (often quite small) in the criterion. The
feedback gain computed for the initial time is then used throughout; that
is, the regulator will be

u(t) = -L(to)x(tlt) , all t 2: to,

where the gain L(to) is computed from (11.6) and (11.7), and x(tlt) denotes
the optimal state estimate given by (6.37). The GPC is often described in a
slightly different fashion, with a receding horizon of the criterion. Assume
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that at time to an LQG problem is solved for the interval (to, to + N). It
results in an input sequence u(to), ... u(to+ N - 1). Only u(to) is applied.
The procedure is repeated for the interval (to +1, to +N +1), and u( to +1)
is determined. The procedure is repeated, shifting the interval one unit at a
time. Assuming that the system, as well as the criterion, is time-invariant,
this leads to the stated controller.

• The previous procedure can be extended to have different numbers of terms
of xTQ1 x and uTQ2U in the criterion. It is also possible to introduce con­
straints, for example requiring that the input u(t) as well as the state
variables are restricted to lie in specified intervals. The resulting controller
will then become nonlinear, though. With such extensions the procedure
is often called model predictive control (MPC).

As illustrations of the above design rules, three examples are offered.
They are all based on simple dynamic models, but illustrate the impact of
the weighting matrices.

Example 11.4 As a simple illustration of the effect of the weighting matrices
Q1 and Q2, consider a sampled double integrator

x(t + 1) = (~7) x(t) + (h2f2) u(t) +v(t) ,

y(t) = (1 O)x(t) + e(t) .

The process noise v(t) is assumed to have the covariance matrix

(
h2 /3 h2 /2)R 1 =Ev(t)vT(t)=rv h2 /2 h .

The numerical values used are h = 0.5, rv = 10-3 , and re = Ee2 (t) = 10-3 .

The system is controlled by the regulator

u(t) = -Lx(tlt) + Mr(t) ,

where r(t) is an external reference signal, L is the optimal feedback gain, and
M is designed to give a unity static gain from r(t) to y(t). See Example 11.6
for details on the design of M.

Some different weighting matrices Q1 and Q2 are applied, and the closed
loop system is simulated for r(t) being a square wave. As initial values, x(O) =
(1 1)T, x(OI-I) = (0 O)T are chosen. The results obtained are shown in
Figure 11.1.

According to Lemma 11.4.2, the closed loop poles are determined by the
eigenvalues of F - GL ("the controller poles") and the eigenvalues of F - K H
("the estimator poles"). The estimator poles do not vary with Q1 and Q2,
and are, in this example, given by z = 0.60 ± iO.27.

In case (a) in Figure 11.1, the weighting matrices are
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Fig. 11.1. Closed loop behaviour for some different cases, Example 11.4. Left:
output signal (solid lines) and reference signal (dotted lines). Right: input signal

Q2 = 0.1,

giving controller poles in z = 0.27 and z = 0.58.
In case (b), the weighting of the input variable is increased and now

giving controller poles in z = 0.63 ± iO.16. Compared with case (a), the
increased penalty on u has given a smaller control variable and a somewhat
slower step response.

In case (c), the weighting of the first state (the output variable) is in­
creased:

(
100)

Q1 = 0 1 '

leading to controller poles in z =0.43 ± iO.28. It can easily be seen in the dia­
gram that the increased penalty on y(t) has resulted in a faster step response.
The closed loop poles have also moved closer to the origin.
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Finally, in case (d), the weighting on the second state (the derivative of
the output) has been increased compared with case (b):

Ql = (~20) ,
giving controller poles in z = 0.24 and z = 0.85. The behaviour of the system
is, of course, not satisfactory in this case. The plots show clearly, however,
that a large penalty of iJ leads to outputs that change their trend (i. e. iJ) very
slowly. 0

Example 11.5 The purpose of this example is to illustrate the impact of the
weighting matrices Ql and Q2 on the variances of u(t) and y(t). Consider the
system

x(t + 1) = (!O~7 ~) x(t) + (~:~) u(t) + v(t) ,

y(t) = (1 O)x(t) ,

where

Ev(t)vT(t) = (~~) .

The weighting matrices are chosen as

so the criterion to be minimized is in fact

The relative weight p is varied. The specific value p = 0 corresponds to so­
called minimal variance control, which was analyzed in Section 11.5.2. It can
be shown that, in this case, E y2(t) = 1, E u2(t) = 5.05. The other extreme
case, p-+ 00, corresponds to open loop operation, which in this example gives
E y2(t) = 8.85, E u2(t) = o.

The optimal regulator, u(t) = -Lx(tlt), is computed for a number of
p-values. The closed loop system has the form

(
X(t+1)) = (F-CL CL(I-KfH)) (x(t))
x(t+1) 0 F-KpH x(t)

+ (~) v(t) ,

(~~~D - (~ L - ~KfH) (~~~D '
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Fig. 11.2. Output variance versus input variance, Example 11.5, with p as a pa­
rameter. The values obtained for p = 10-6 ,1,102 and 106 are marked

where K f is the filter gain and K p = F Kf the predictor gain. The input and
output variances can be found by first computing the covariance matrix of
the extended state vector (xT(t) xT(t))T, solving a Lyapunov equation.

The closed loop system was simulated as well for some values of p. Some
numerical results are shown in Figures 11.2 and 11.3. 0

Example 11.6 In practice, it is often important to include integral action in
a regulator, at least if the process to be controlled is not integrating. This
can be done in several ways. This example illustrates one way in which it can
be used in order to avoid stationary errors when tracking a reference signal.

In order to simplify the illustration, a deterministic problem is treated,
thus avoiding random effects. Consider a sampled representation of the har­
monic oscillator given by the transfer function G(s) = w5/(s2 +w5). Using y
and y, scaled by w5, as state variables leads to the sampled-data model

x(t + 1) = ( cos,:oh (Sin(woh))/Wo) x(t)
-wo smwoh coswoh

(
(1- COSwoh)/W5) (t)

+ (sin(woh))/wo U ,

y(t) = (w5 O)x(t).
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(11.89)

Fig. 11.3. Input and output realizations, Example 11.5, for some values of p: (a)
p = 10-6

, (b) P = 1, (c) P = 102
, (d) p = 106

For the numerical values Wo = 1, h = 0.5, it is found that the penalty matrices
Q1 = I, Q2 = 1 give a satisfactory result.

Consider the case when a reference signal r(t) should be followed without
any static error. Assume that the feedback law is set as

u(t) = -Lx(t) + Mr(t) .

The closed loop system becomes

x(t + 1) = (F - GL)x(t) + GMr(t) ,

y(t) = Hx(t) .

The static gain from r(t) to y(t) is apparently

H(I - F + GL)-lGM ,

and hence the appropriate value of M is

M = [H(I - F +GL)-lGt1 .

The input and output responses of the system using this feedback law are
shown in Figure 11.4.
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Fig. 11.4. Closed loop response, Example 11.6, using the feedback law (11.89)

Static errors can also be avoided by using integral feedback. As a way of
achieving this, an augmented state model is introduced. The additional state,
z(t), is, in essence, the integral of the error y(t) - r(t). The augmented model
reads

x(t + 1) = (~ ~) x(t) + (~) u(t) + (~I) r(t) , (11.90)

where x(t) = (xT(t) zT(t)f and z(t) = l:~:~[y(s) - r(s)].
The design of an LQ regulator for the system of (11.90), neglecting the

r(t) term, and using the penalty matrices Q2 and

Ql = (~1 ~3) ,
will result in a linear feedback law

u(t) = -Lx(t)

~ -L1x(t) - L 2 z(t)
t-l

-L 1x(t) - L 2 L[y(s) - r(s)] .
8=0

(11.91)

The size of the penalty matrix Q3 will affect the strength of the integrating
term in the controller.

To obtain a faster servo response on changes of the reference signal, the
feedback can be modified to include a direct term from r(t) as well. It is
reasonable to use the regulator

t-l

u(t) = -L1x(t) - L 2 L[y(s) - r(s)] + L2r(t) .
8=0

The behaviour of the system for some various values of Q3 is displayed in
Figure 11.5.

It can clearly be seen from the diagram that a small value of Q3 results
in a very slow system. When Q3 is increased, it becomes increasingly "im­
portant" to minimize the stationary error, and the response becomes faster.
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Fig. 11.5. Closed loop response, Example 11.6, using the state feedback with
integral action (11.91). Left: output signal (solid lines) and reference signal (dotted
lines). Right: input signal

When Q3 is very large, the input tends to be quite spiky. Note that, in con­
trast to the regulator (11.89), no explicit information about the static gain
is "given" to the controller in this case. 0

11.6.2 Choice of Observer Poles

In this section, some aspects of the choice of observer poles will be consid­
ered. As is known from Lemma 11.4, the observer or state estimator intro­
duces additional states in the closed loop system. The associated dynamics
is characterized by the eigenvalues of the matrix F - KpH.

In many cases, the "true" noise covariance matrices R1 and R2 may be
unknown. There are several ways to use the LQG theory in such cases for
regulator design also, and still retain the general regulator structure described
in Section 11.4.1.

• One possibility would be to substitute the Kalman filter approach with
a direct pole-placement technique. Then the gain Kr is chosen such that
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F - KpH = F - FKrH has eigenvalues in a desired region. In loose terms,
it is often appropriate that these "error dynamics" are somewhat faster
than the poles obtained by state feedback, that is the eigenvalues of F-GL.

• A variant of the above can be to use an indirect pole placement. The noise
covariance matrices R1 and R2 are varied until the error dynamics obtains
acceptable eigenvalues. The matrices R1 and R2 are thus regarded as user
variables in the design.

• One particular method is based on so-called loop transfer recovery. As
will be shown below, it corresponds to a particular choice of R1 and R2 •

Although this design method is based on robustness issues, it must be used
with great care, as it can introduce high gains and poorly damped modes
in the closed loop system.

Needless to say, controller design is an iterative and interactive procedure.
The regulators obtained must be tested, at least by simulation. When exam­
ining the behaviour of the closed loop system, it may be necessary to modify
the design.

When designing a regulator, the user has to take several objectives into
account, such as:

• Good servo properties; that is, the output should follow its external refer­
ence signal.

• Damping of disturbances and insensitivity to sensor noise.
• Robustness to modelling errors (performance and stability properties

should be insensitive to variations in the underlying nominal model).

To be more specific, consider the control system of Figure 11.6. To simplify
and focus on the system properties, we let u(t) be a feedback of the control
error, u(t) = -GR(q)[y(t) - r(t)), in Figure 11.6. For LQG design, one would
rather have u(t) = -GR(q)y(t) - GF(q)r(t). However, the simplified form of
Figure 11.6 can be used when studying system properties such as those listed
in points 1-4 below.

The loop gain is defined as

(11.92)

In case the system is single-input, single-output the loop gain can also be
written as

(11.93)

In the multivariable case, equations (11.92) and (11.93) differ in general, but
both definitions are useful. In what follows next the form of (11.92) will be
used. The closed loop system is readily found to be

y(t) = [1 + Go(q)r1v(t) + [1 +Go(q)r1Go(q)r(t) . (11.94)

The control objectives can now be phrased in terms of the loop gain.
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vet)

yet)

Fig. 11.6. Block diagram of a control system, Gs(q) = system to be controlled,
GR(q) = regulator; u(t) = input signal, yet) = output signal, vet) = disturbance,
ret) = reference signal

1. Servo properties. The transfer function from r(t) to yet) should be close
to f. This implies that

[f + GO(q)t1GO(q) - f = -[f + GO(q)t1

must be small. This should be interpreted as

[f + Go(eiw)t 1 small (11.95)

for the dominating frequency band of r(t).
2. Damping of disturbances. The transfer function from v(t) to y(t) should

be small. This again leads to the condition in (11.95), but now for the
dominating frequency band of vet).

3. Stability robustness. For stability of the closed loop system, Go(z) + f
must not have zeros outside the unit circle. This is often examined by
drawing and inspecting the Nyquist curve; that is, plotting the loop gain
Go(eiw ) as a function of w in the complex plane. Assuming that the
open loop system is stable, the requirement is that the Nyquist curve
must not encircle the point z = -1. (This is a simplified formulation; for
unstable open loop systems the criterion is more involved. For multivari­
able systems, one considers det (I +Go (eiW )) .) As the open loop system
may include some unmodelled dynamics, it is relevant to require that
the Nyquist curve stay well away from z = -1. In continuous-time LQ
problems it always holds that IGo(eiw ) + 11 ~ 1. Such a condition is no
longer guaranteed when an observer is included, or a discrete-time LQ(G)
problem is treated. It illustrates, however, an attractive form of stability
robustness.

4. Sensitivity. Consider a single-input, single-output system. The closed loop
transfer function is
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r(t)
+

u(t)
(qI - F)-lG

X(t)

-L

Fig. 11.7. State feedback of a deterministic system

Gc(q) = GR(q)GS(q) .
1 + GR(q)GS(q)

Assume that the open loop system Gs(q) is uncertain or includes unmod­
elled dynamics. It is then relevant to require that the following sensitivity
function is small:

S(q) = dGc(q)/Gc(q) = 1
dGs(q)/Gs(q) 1 + Go(q)

(11.96)

Again, such a condition should be interpreted at the appropriate fre­
quency band.

Objectives such as those above can be contradictory. It is good practice
to characterize the behaviour of the closed loop system by the frequency
properties of the loop gain Go(eiw ). Roughly speaking, one normally requires
the loop gain to be high for low frequencies in order to achieve insensitivity
against modelling errors and good servo properties, and low for high frequen­
cies to dampen noise and broadband disturbances, and to obtain stability
robustness with respect to unmodelled high-frequency dynamics.

Consider now a deterministic linear system

x(t + 1) = Fx(t) + Gu(t) ,

controlled by a linear state feedback

u(t) = -Lx(t) + r(t) ,

(11.97)

(11.98)

as depicted in Figure 11.7.
The feedback (11.98) is assumed to be chosen so that the closed loop

system has good properties. The feedback vector L may be designed by using
linear quadratic theory or applying a pole-placement technique. The loop
gain (breaking the loop at u) is
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Go(q) = L(q/ - F)-IG . (11.99)

In many circumstances, all state variables cannot be measured. If the state
feedback (11.98) is replaced by feedback from reconstructed states, using an
observer or LQG theory, the performance will in general become worse. The
idea with loop transfer recovery (LTR) is to design the state estimator so
that the loop gain Go is recovered to a large extent when exact states are not
available. It turns out, as will be seen, that for discrete-time systems, exact
loop transfer recovery is possible under some assumptions. The Kalman filter
theory will be used as a method of designing a state estimator.

Let the output be given by

y(t) = Hx(t) ,

so the transfer function from u to y becomes

Gs(q) ~ H(q/ - F)-IG .

(11.100)

(11.101)

Now make the following assumptions:

• The system has the same number of inputs and outputs, and the matrix
HG is invertible. (The case of an additional number of outputs can be
handled.)

• The system is minimum phase, meaning that GSI(q) is asymptotically
stable.

Next, consider a regulator of the form

u(t) = -Lx(tlt) , (11.102)

where x(tlt) is the mean square optimal filter estimate designed as developed
in Chapter 6. The regulator can now be described in state space form as (see
(11.38)), K denoting the filter gain:

x(t + lit) = (F - GL)(/ - KH)x(tlt - 1) + (F - GL)Ky(t) , (11103)
u(t) = -L(I - KH)x(tlt - 1) - LKy(t) . .

By using the matrix inversion lemma (Lemma 6.7), one can find the transfer
function of the regulator. The regulator will be u(t) = -GR(q)y(t), where

GR(q) = LK + L(I - KH)[q/ - (F - GL)(I - KH)t 1(F - GL)K

=L{I + (I - KH)[q/ - (F - GL)(I - KH)tl(F - GL)}K

=L{/ - (I - KH)q-I(F - GL)}-I K

= qL[q/ - (I - KH)(F - GL)tIK. (11.104)

The loop gain for the system will now be GR(q)Gs(q) (see Figure 11.8).
Now make the following specific choice for designing the state estimator:

R I = GGT
, R2 = 0 . (11.105)

The ARE becomes
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r(t) + u(t)
Gs(q)

y(t)

-GR(q)

Fig. 11.8. Loop gain for the system with the regulator (11.104)

P = GGT + F[P - PHT(HPHT)-lHPjFT ,

which, under the given assumptions, has the solution

P=GGT .

The corresponding filter gain will be

K = PHT(HPHT)-I

= GGTHT(HGGTHT)-I

= G(HG)-I .

(11.106)

(11.107)

(11.108)

Note that the assumption of HG being invertible is essential at this stage.
The following result holds.

Lemma 11.9 Consider the system of (11.97) with K given by (11.108). Un­
der the given assumptions, there will be full loop transfer recovery in the sense
that

GR(q)GS(q) = Go(q) ,

with Go(q) given by (11.99).

Proof First note that for the particular filter gain of (11.108)

(I - K H)G =G - G = 0 .

Hence

(11.109)

(11.110)

GR(q)GS(q) - Go(q)

=qL[q1 - (I - KH)Ft IKH(q1 - F)-IG - L(q1 - F)-IG

=L[q1 - (1 - KH)FtI{qKH - [q1 - (1 - KH)F]}(q1 - F)-IG

=-L[q1 - (1 - KH)Ft I{(1 - KH)(q1 - F)}(q1 - F)-IG

=-L[q1 - (I - KH)FtI(I - KH)G

= o.
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In the second last equality, the assumption of a minimum phase system was
used, and (11.110) was applied to establish the last equality. •

Example 11.7 As an illustration of LTR and alternative approaches for the
design of the observer poles, consider control of the system

x(t + 1) = ( cos~woh) (Sin(woh))/Wo) x(t)
-wo sm(woh) cos(woh)

(
(1 - cos(woh))/W5) (t)

+ (sin(woh))/wo U ,

y(t) = (w5 O)x(t),

with the parameter values being Wo = 0.2 and h = 0.5. The feedback gain L
is designed using standard LQ theory. Using the parameters Q1 = I, Q2 = 1
gives

L = (0.651 1.314).

The behaviour of the closed loop system for state feedback control is illus­
trated in Figure 11.9.

Next, LTR is applied. The behaviour of the closed loop system is not ac­
ceptable in this case. It turns out that the output follows the reference value
almost as for a true state feedback. However, the input oscillates fiercely. It
can be expected that a system so designed will be very sensitive to distur­
bances. It is instructive to compute the observer eigenvalues in this case. Set
for simplicity

s = sin(woh) ,

Then one obtains

e = cos(woh) .

F - FKH = F[I - G(HG)-l H]

(
e s/wo) ( 0 0)

- -wos e -wos/(1 - e) 1

1 (_s2 s(1 - e)/wo )
= l-e -wose e(l-e) ,

which has eigenvalues A1 =0 and A2 = -1. It is the second eigenvalue that
accounts for the severe input oscillations. In a more general setting, it can be
shown that, for LTR, the observer dynamics have some poles in the origin
and also at all zero positions of the open loop system. Compare with Exercise
11.8.

As a way of making the system less sensitive, a small R2 matrix can be
used instead of R2 = O. Case (c) in Figure 11.9 corresponds to the case where

R1 = eeT
, R2 = 10-3

.
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Fig. 11.9. Behaviour of the closed loop system, Example 11.7. Left: output signal
(solid lines) and reference signal (dotted lines). Right: input signal. Cases: (a) state
feedback, (b) LTR, (c) modified LTR

Compared with case (b), the oscillations are now damped while the output
still follows the reference signal almost as previously. This idea, to use a
modified LTR with R2 being "a small matrix" instead of zero, is a general
procedure when employing LTR for controller design.

For comparison, some other ways of choosing R1 and R2 were selected as
well. In order to obtain a normalization, R1 = I was chosen fixed and the
scalar R2 was varied. Figure 11.10 displays the behaviour for the values 1,
102 and 104 of R2 . It can be seen, in these cases, that the output behaves
similarly to that where state feedback is used, while the input signal has a
much smoother behaviour than in the LTR cases. For very large values of R2 ,

the transient phase before the output reasonably follows the reference signal
tends to be quite long.

The closed loop poles for the different cases are listed in Table 11.1. Note
that the controller poles (the eigenvalues of F - GL) are the same in all cases.

As a further illustration, the Nyquist curves of the loop gain for the dif­
ferent cases are plotted in Figure 11.11.

It can be seen from the diagram that LTR gives no change in the loop
gain. The regulator based on the modified LTR gives an insignificant change
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Fig. 11.10. Behaviour of the closed loop system, Example 11.7. Left: output signal
(solid lines) and reference signal (dotted lines). Right: input signal. Cases: (d) R2 =
1, (e) R2 = 102

, (f) R2 = 104

Table 11.1. Closed loop poles, Example 11.7

Controller poles
Observer poles
LTR
Approx LTR
R 1 = I, R2 = 1
Rl = I, R2 = 100
R 1 = I, R2 = 10000

0.63 ± iO.16

-1, 0
-0.57, -0.02
0.50,0.50
0.84 ± iO.13
0.95 ± iO.05

of the loop gain. Finally, cases (d) and (e) give a somewhat decreased sta­
bility margin, as the Nyquist curves in these cases move towards the point
z = -1. D

When applied in continuous-time, a possible drawback of the exact LTR
approach is that the loop gain will be forced to have a "roll-off" as a pure
integrator for high frequencies, as its pole excess will be one. If the open loop
system has a larger pole excess than one, this implies that the regulator will
have very high gain for large frequencies. Measurement errors at the output
will then be amplified considerably at the input.
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Fig. 11.11. Nyquist plots of the loop gain, Example 11.7. Left: state feedback and
LTR (solid line), modified LTR (dashed line). Right: state feedback (solid line),
case (d) (dashed line), case (e) (dash-dotted line), case (f) (dotted line). The point
s = -1 is marked "x"

To summarize, the following rule of thumb may be given:

• First design an observer/state estimator by means of pole placement or the
like. Check its robustness and sensitivity properties. If the Nyquist curve
of the loop gain does not pass "close" to the point z = -1, then the design
should be accepted from such a perspective.

• If the Nyquist curve of the loop gain passes close to z = -1, try a modified
LTR design to improve the robustness and sensitivity properties.

11.A Appendix. Derivation of the Optimal Linear
Quadratic Gaussian Feedback and the Riccati Equation
from the Bellman Equation

(11.111)

In this section we will derive the optimal feedback result of Theorem 11.2 for com­
plete state information, and therefore also the result of Theorem 11.1 for determin­
istic systems.

We will use the Bellman equation, see (10.53), which in this case reads

V(x(t), t) = min E txT (t)QIX(t) + xT(t)Q12U(t) + uT(t)Q21X(t)
u(t)

+uT(t)Q2U(t) + V(x(t + 1), t + l)lx(t)] .

Considering the loss-to-go, V(x(t), t), at time t = N we find

V(x(N), N) = xT(N)Qox(N) . (11.112)

We next postulate that the general solution to the Bellman equation (11.111)
will take the form
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V(x(t), t) = xT(t)S(t)x(t) + a(t) , (11.113)

where S(t) is some nonnegative definite matrix, and a(t) is a nonnegative scalar.
This is apparently true at least for t = N:

S(N) = Qo, a(N) = 0 , (11.114)

and we will prove by induction (going backward in time) that it holds for any value
of t. Further, the optimal feedback will be a linear time-varying one:

u(t) = -L(t)x(t) . (11.115)

Assume now that the postulated solution (11.113) is true for time t+ 1. Inserting
it into the Bellman equation (11.111) and making use of the system dynamics

x(t + 1) = Px(t) + Gu(t) + v(t)

we get

(11.116)

V(x(t),t) = E [minXT(t)Q1X(t) + XT(t)Q12U(t)
,,(t)

+uT(t)Q21 X(t) + uT(t)Q2U(t)

+(Px(t) + Gu(t) + v(t)fS(t + l)(Px(t) + Gu(t) + v(t))lx(t)]

+a(t + 1)

= minE [xT(t)(Ql + pTS(t + l)P)x(t)
,,(t)

+xT(t)(pTS(t + l)G + Q12)U(t)

+uT(t)(GTS(t + l)P + Q2dx(t)

+uT(t)(Q2 + GTS(t + l)G)u(t) + tr R1S(t + 1)]
+a(t+1). (11.117)

As the right-hand side is a quadratic function of u(t), the optimal feedback is readily
found to be

u(t) = -L(t)x(t) ,

L(t) = (Q2+GTS(t+1)Gr
1

(GTS(t+1)P+Q21)

(11.118)

(11.119)

Inserting the expression (11.118) for u(t) into the Bellman equation (11.117) then
verifies that the solution can indeed be written as in (11.113) with

a(t) = a(t + 1) + tr (S(t + l)Rl)

S(t) = Ql + p TS(t + l)P - (pTS(t + l)G + Q12)

X(Q2 + GTS(t + l)G)-l(GTS(t + l)P + Q2d .

(11.120)

(11.121)

(11.122)

Finally, the minimal loss, min E f., will be obtained by evaluating the expected
value of V(x(to), to):

min E f. = E V(x(to), to)

= m TS(to)m + tr (S(to)Ro) + a(to)
N-l

= mTS(to)m + tr (S(to)Ro) + L tr (S(t + l)Rl) .
t=to
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In this calculation we used Lemma 2.1. The derived result (11.122) is precisely
(11.14).

Exercises

Exercise 11.1 Consider the regulator

u(t) = -Lx(tlt - 2) ,

where x(tlt - 2) is the stationary optimal two-step predictor. Rewrite the
regulator in state space form, using y(t) as the input to the regulator and
u(t) as the output.

Exercise 11.2 Verify that, for Example 11.5, E u2(t) = 5.05 when p =°
and E y2(t) = 8.85 when p-+ 00.

Exercise 11.3 Consider the minimum phase system

A(q)y(t) = B(q)u(t) + C(q)e(t) ,

where deg A - deg B = k > 0, and C(z) has all zeros inside the unit circle.
Suppose that the output variance is to be minimized but that the hardware
to be used is slow compared with the sampling rate, so that u(t) must be a
function of u(t -1), u(t - 2), ... ,y(t - f), y(t - f -1), .... Find the minimum
variance regulator.

Exercise 11.4 Consider the system

y(t) - 0.8y(t - 1) = 2.0u(t - 3) + v(t) - 2v(t - 1) ,

where v(t) is white noise of zero mean and unit variance. Find the regu­
lator that minimizes the stationary output variance. What is that minimal
variance?

Exercise 11.5 Consider the system

A(q)y(t) = B(q)u(t) + C(q)e(t)

with

A( ) n n-lq = q + alq + ... + an ,

B(q) =boqm + ... + bm , bo =J 0, k =n - m >°,
C() n n-lq = q + Cl q + ... + Cn .

Assume that C(z) has all zeros strictly inside the unit circle, so that the
system is given in the innovations form. Find a regulator that, at time t,
minimizes
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(a) Show that the regulator minimizing V is given by

[boqB(q)F(q) + pC(q)]u(t) = -boqL(q)y(t) .

Hint. Show first that the criterion can be written as

V = E [F(q)e(t + 1)]2 + [~(~) y(t) + qB~~~(q) U(t)] 2 + pU2 (t) ,

where the usual predictor identity

zk-1C(z) == A(z)F(z) + L(z)

has been invoked.
(b) Show that the closed loop system satisfies

[bOqk B(q) + pA(q)]y(t) = [boqB(q)F(q) + pC(q)]e(t) .

Remark. Note that even if the open loop system is nonminimum phase
(so that B(z) has any zeros outside the unit circle) the closed loop system
may become asymptotically stable by an appropriate choice of the control
weighting p. 0

Exercise 11.6 Consider the unstable system

x(t + 1) = 2x(t) + u(t) + v(t) ,

E v(t)v(s) = bt,B ,

and the criterion

v ~ E ~ [QO X2
(N) +~ q2.2(1)]

Determine the optimal control law explicitly. Assume the state to be exactly
measurable. What is the limit S = limN-+oo S(t)? What is the corresponding
feedback gain? Also examine the closed loop poles and the set of solutions to
the ARE.

Exercise 11.7 Consider the system

y(t) - 2y(t - 1) = u(t - 1) - O.5u(t - 2) + e(t) ,

and the criterion

1 N.
V = lim NE L[y2(t) + pu2(t)] .

N-+oo
t=l

Determine the optimal regulator when u(t) depends on the available output
data yt. Also determine the closed loop poles. What is the influence of the
control weighting p? What happens if a further time delay is included in the
system?



364 11. Linear Quadratic Gaussian Control

Exercise 11.8 Consider the observer dynamics using the LTR approach:

Fc = F - FG(HG)-l H

(a) Show that Fc has at least one eigenvalue in the origin.
(b) Let z :f 0 be a zero of the open loop transfer function (and assume that it

is not also a pole). Show that z will also be an eigenvalue of the observer
dynamics. Phrased differently, prove the implication

det[H(zI - F)-lG] =0 ~ det[zI - Fc] = 0 .

Hint. In the matrix manipulations needed, Lemma 6.9 is useful.
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Answers to Selected Exercises

2.1. (a) E ~ = 0, E e = a2 /3, E e = 0, E ~4 = a4 /5.
(b) E ~ = m, E e = m 2 + a2

, E e = m 3 + 3ma2
,

E~4 =m 4 + 6m2a 2 + 3a4
.

( ~) 9 (1) (~) (199/2940 -5/588 )
2.2. E TJ = 14 l' COy 1] = -5/588 199/2940 .
2.3. (a) Ipl < 1.

(c) P1JI~=x(Y) '" N(2 - 2p + 2py, 4 - 4p2).
2.4. B = Rve R;l.
2.5. (a) P«(z) =Jp~(x)P1J(z - x) dx.

{

~z - 2a)/(b - a)2 ;a~2~ < a + b
(b) p«(z) = (2b _ z)/(b - a)2 a + b ~ z < 2b .

o 2b < z
2.7. (a) E e(t) = E TJ2(t) = (m2 + a2)/2, E {(t)1](t) = O.

(b) E (= 0, E (2 = 0, E '(1 2 = a2
, E '(I = 2a/v"iic.

3.1. (q3 - 2.3q2+ 1.9q - 0.56)y(t) = (q2 - 0.3q - O.4)u(t)
+ (q3 _ 0.8q2 - 0.35q +0.49)e(t).

3.4. (a) p(x(t + 1)lx(t)) = I'(x(t + 1); Fx(t), Rd,
p(x(t + l)lx(t),y(t)) = I'(x(t + l);m,P),
m = Fx(t) + R12 R:;l(y(t) - Hx(t)), P = R1 - R 12 R:;1 R21 .
The distributions coincide iff R12 = O.

(b) For example:

- (F- BH B)
F = H(F - BH) H B '

Rl = (~) (R1 - R12 R:;lR21 )(I H
T

) + (~~2)'
where B = Rl2 R:;l.

4.3. y(t) = (q - 0.5)/(q - 0.8)E(t), E E2(t) = 182.
4.4. E y2(t) = r/(2a).
4.8. do > 0, Id1 1 < do.

4.11.
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4.12.

4.13.
4.14.
4.16.

4.19. (a)

4.17.

1 (q2 - 0.5q 0.25q )
y(t) = q2 _ 0.5q + 0.5 -0.5q + 0.25 q2 - 0.5q + 0.375 e(t) ,

Ec(t)cT(t) = (2i5;).
(

F(l) R(l) R(l)-l)
F(2) = 12 2

00'

(

R(l) _ R(l) R(l)-lR(l) 0 )
R(2) _ 1 12 2 21

1 - 0 ml)'

H(2) = (H(1) 0) , R~2) =0 .

(b) F = 0.8, H = 1, Rl = 0.475, R2 = 0.375.
4.20. r(O) > 0, -0.5(a + 1) :::; r(I)lr(O) :::; 0.5(1 - a).
4.21. There is a lack of uniqueness caused by an undetermined scaling factor.
4.23. (a) R( -IL, -v) = /33a2v-P. 1(1 - a3).

( ) ( ~ ) 1 l-a2
•• I I: 1c var a - a = N a 2(!'-1), mlmma lor IL = .

(d)
~ 1 /32 (1 - a3)2

var(a - a) = N /3~ a2(2v-p.-l)

x [ /3~ (1 + 2a2v- 2p.) + /34 - 3/3~ a2V- 2p.]
(1 - a2 )2 1 - a4 '

minimal for IL = v = 1.
5.1. (xly) rv N(x,P), x =mx + RxCT(CRxCT + Re)-l(y - Cmx),

P = Rx - RxCT(CRxCT + Re)-lCRx.
5.2. (a) (xly) rv N(x, P), x = m + RxAT(ARxAT + Rv)-l(y - Am),

P = (R;l + ATR;l A)-I.
(c) x-t(ATR;lA)-lATR;ly, asR;l -to.

P -t (ATR;l A)-I, as R;l -t O.

(d) E [bIX t ] = L u(t)[x(t + 1) - ax(t)] [bIX t ] A
2

L u2 (t) ,var = L u2 (t)'
5.3. (a) XMS = 0.5.
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{

(y + r) /2, -r < y ;:; r,
E [xly] = y, r < y ;:; 1 - r,

(1 +Y - r)/2, 1 - r < y ;:; 1 + r.
(c) XLLMS =0.5 + (y - 0.5)/(1 +4r2

).

6.3. y(t+rlt) = CeATx(t).

6.6. (a) qi = 0, PI = (~ 2) semidefinite.

q2 =c2
- 1, P2 = ( c; 2) positive definite if c2 > 1, indefinite if

c2 < 1.

(b) q(t + 1) = c2q(t)/[1 + q(t)].

(

I )(F-KHf
Kf = P : HT(HPHT + R2)-1

(F - KH)T
m

where P is the solution to the standard ARE, and
K = FPHT(HPHT + R2)-1 ,

p(O,i) = (F - KH)ip, i 2: 0,

[

k-I

p(k,f) = I - ~ P(F - KHf" HT(HPHT + R 2 )-1

H(F - KH)lL] (F - KH)f-k P, £ 2: k 2: 1.

6.13. x(kh + rlkh) = eAT x(khlkh), 0;:; r < h,
P(kh + rlkh) = eAT P(khlkh)eATT + J; eAsRc eATs ds.

6.14. P(t + kit) 2: P(t + kit + 1) is always true.
P(t + kit) 2: P(t + k - lit) does not always hold.

6.15. ( ( ( )), 2y t) - Y t - 1
x(t + lit) = (y(t) _ y(t - l))/h '

, ( y(t) )
x(tlt) = (y(t) - y(t - l))/h .

6.17. (a) SNR = 1.889.
(b)

x(t + lit = 0.8x(tlt - 1) + O.4y(t)

y(t) = x(tlt - 1) + y(t)
(c)

6.20. (a)

{

ho = 0.5,
hj = 0.4(0.8)j-1, j > 0
hj = 0.5(0.4)-j, -m;:; j < O.

(
1 h) (h

3
/3 h

2
/2)

F = 0 l' R 1 = h2 /2 h '
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(b)
(J=(3-V3)/h,

1 (h3 (2 + V3) h2 (3 + V3))
P(t + hit) = 6 h2(3 + V3) h(6 + V3) ,

1 (0 0 )P(tlt) = 6 0 hV3 .

6.25.

(c)
A(t+ It)= 1 ((1+T(J)q+(h(J-T(J-1)) (t)
x T q + (h(J _ 1) (J(q - 1) y,

h (T
2

T) (T
3
/3 T

2
/2)P(t + Tit) = VI2 T 1 + T2/2 T .

(

P (F - KH)P (F - KH)2P)
P= P(F-KH)T P-PWP [523 ,

( T)2 -T -P (F - KH) P23 P33

where

W = HT(HPHT + R2)-1 H ,

P23 = (I - PW)(F - KH)P,
- TP 33 =P-PWP-P(F-KH) W(F-KH)P.

The stationary filter gain is

(

FPHT(HPHT + R2)-1 )
K = P(F - KHfHT(HPHT + R2)-1

P ((F - KH)T)2 HT(HPHT + R2)-1

7.1.

7.2.

y(t + lit) = 1.3
0
q

y(t),
q+ .5

A ( I ) 1.04q ()Y t + 2 t = -05Y t ,q+ .
E y2(t + 21t) = 10.76.

7.3. (b) G(q) = Nm(q)/D(q),
D(q) = q4 - 1.0738q3+ 0.6832q2 - 0.2128q + 0.0248
No(q) = 0.5631q4 - 0.1905q3
N1(q) =0.2721q4+ 0.1549q3
N2(q) = 0.0321q4+ 0.2240q3 + O.1774q2
Ns(q) = O.0012q4-0.0312q3-0.0029q2+0.0833q+O.1905 +0.1774q-l
N_1(q) = O.6542q4 - O.3942q3
N_2(q) = O.5871q4 - 0.4579q3

N-s(q) = O.0387q4 - O.1562q3
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'( I) (c-a)(l-ac) ()yt+lt = 2 2 yt,
l+c - ac

[
c2(c a)2]

E[Y(t+ll t )-y(t+lW=A2 1+
1

2- 2 .+c - ac
(c) nl::; n+ 1, n2 = O.

8.3.

(1) A2
C

K(t) = 0 A2+a(t) ,

9.9. (b)

-I 1 -I 1
a (t) = c2(t-to) a (to) + A2C2

-I -I t - to
a (t) = a (to) +~ .

1 - c-2(t-to)

1- c-2

&(t) = &(t - 1) + k(t)c:(t),

c:(t) = y(t) + &(t - l)y(t - 1),
-y(t - l)r(t - 1)

k(t) - -:---'----'-,,--,---:........,;---,--:........,;-
- A2 +y2(t-l)r(t-l)'

r-I(t + 1) = r- I (t) + y:~t).

9.10. (a) x(tjt) = fro L~=l y(s) + r2x(010))/(r2 + tro)·
(b) var[t L~=I y(s)) = rz/t.
(c) p(x(t)lyt ) is uniformly distributed over

(maxl<s<t y(s) - a, minl<s<t y(s) + a).

(d) var [t~~=l y(s)] = ~:' - -
var[E (x(t)lyt)) = (t+~)(:+2)'

10.5. u(t) = -(abo)/(rb + b5)x(t), with bo = E b, rb = var(b).
11.1. For example,

x(t + 1) = (F~L~H -~G) x(t) + (~) y(t) ,

u(t) = (0 I)x(t).

11.3. u(t) = -L(q)/[B(q)F(q))y(t) , where zk+H1C(z) =A(z)F(z) + L(z).
11.4. u(t) = -0.096y(t) - 0.3u(t - 1) - 0.24u(t - 2).
11.6.

[
1 4N - t _l]-1

S(t) = 4N- tqo + 3q24N- t '

2
L(t) - ----,------,­

-1+q2S- I(t+l) .
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S = lim S(t) = 3q2 , L = 1.5 .
N-too

Closed loop pole in z = 0.5.
11.7. L is independent of p. L = (2 1), if an observable canonical state space

representation is chosen.
Closed loop poles in z = 0 (multiple pole) and z = 0.5.
An increased delay introduces further poles in z = o.



Index

H OO filtering, 210
U-D algorithm, 161
z-transform, 39, 93, 108
a posteriori mean, 123, see also

conditional mean

acceleration algorithm, 110, 181
aggregation, 72
algebraic Riccati equation (ARE), 74,

77, 118, 156, 159, 224, 355
algorithms, 103, 110, 159, 161
aliasing, 88
amplitude modulation, 56
anticausal part, 197
asymptotically stable, 49, 59, 85, 99
autocovariance function, 30
autoregressive (AR) process, 32, 36, 67,

116
autoregressive moving average (ARMA)

process, 32, 40, 67, 69, 72, 90, 94,
103-106, 116, 186, 193, 199, 201, 204,
205, 211-213

bandpass signal, 56
Bayes' rule, 12, 51, 129
Bellman equation, 306, 308, 360
Bernoulli-Gaussian process, 275
bias, 173
bilinear transformation, 115
bispectrum, 46, 57, 99

Cauchy sequence, 120
causal filter, 196
causal part, 94, 197, 202
causal system, 33
cautious control, 314
cautious controller, 303
Cayley-Hamilton theorem, 86
certainty equivalence, 313
certainty equivalence principle, 299, 301
characteristic function, 270, 277
characteristic polynomial, 163

closed loop poles, 331
closed loop system, 328, 335
complete state information, 303, 323
complex Gaussian distribution, 17
complex-valued variable, 17,49
conditional distribution, 12
conditional mean, 34, 123, 145, 166
conditional pdf, 12, 33, 125, 128, 255
continuous-time process, 80, 98, 107
controllable, 181
controllable system, 156, 181
controlled autoregressive moving

average (ARMAX) process, 33
coprime, 91
correlation, 12, 36
covariance function, 30, 36, 59, 62, 80,

85, 87, 103, 107
covariance matrix, 9, 87, 118
criterion, 124, 132, 153, 194
cross-covariance function, 31, 37, 69,

105
cross-spectrum, 39

detectable system, 156
differential equation, 85
Diophantine equation, 91, 190, 202,

207, 211, 226, 228, 229, 336
distribution, 112
distribution function, 7
doubling algorithm, 115
drift, 32
dual control, 313
duality, 326
dynamic programming, 304, 360

eigenvalues, 45
error spectrum, 226
error variance, 232
estimation error, 194, 207
Euler matrix, 162
expected value, 9
extended Kalman filter, 245
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filter gain, 147
filtering, see linear filtering, see optimal

filtering
finite impulse response (FIR), 220, 271
fixed lag smoothing, 150
fixed point smoothing, 149, 157
Fokker-Planck equation, 291
folding effect, 88
Fourier series, 112

Gaussian, 8, 11, 14, 17, 30, 31, 46, 99,
130, 131, 145, 166, 246, 254, 319, 326

Gaussian sum estimators, 254, 258
generalized predictive control (GPC),

344
generalized eigenvalue problem, 164

Hermitian matrix, 40
hidden Markov model, 259
Hilbert space, 128
hyperstate, 34

iid,31
impulse response, 49
incomplete state information, 303, 324
independent random variables, 12, 16
infinite impulse response (IIR), 271
information, 137
innovation, see output innovations
innovations form, 77, 114, 118, 197, 362
interacting multiple model (IMM), 260
iterated extended Kalman filter, 247

joint distribution function, 8
joint pdf, 8

Kalman filter, 149
Kalman-Yakubovich lemma, 97
Kolmogorov equation, 291

Laplace transform, 81, 98, 108
Laurent series, 93, 196
likelihood function, 130
linear filtering, 31, 59, 99
linear least mean square (LLMS)

estimate, 14, 126, 138
linear quadratic control, 320
linear quadratic Gaussian (LQG)

control, 319, 328, 344
linear systems, 49
linear time-varying feedback, 322
linear transformation, 18
loop gain, 352, 354
loop transfer recovery, 352, 355

loss function, 305
Lyapunov equation, 62, 85, 110,

115-117,158
Lyapunov function, 75, 156, 181

MAP, 131
Markov chain, 33, 259
Markov process, 33
matrix inversion lemma, 162, 165, 167,

169,355
matrix pencil, 164
maximum likelihood, 130, 153
maximum a posteriori estimate, 131,

153
mean, 9, 30
measurement noise, 34
measurement update, 168
median, 126
median filters, 270
minimization, 303
minimum phase, 50, 100, 355
minimum phase systems, 334
minimum variance control, 333
minimum variance filters, 205
minimum variance regulator, 335
mode-conditioned, 258
model predictive control (MPC), 345
model uncertainties, 29
modelling errors, 215, 352
modes, 163
moment, 9
Monte Carlo, 266
moving average (MA) process, 32, 215,

218

noise models, 29
nominal model, 215
non-Gaussian process, 99
nonlinear filtering, 245
nonlinear system, 46, 128
nonminimum phase, 100, 335
nonnegative definite, 40
nonstationary processes, 193
normal distribution, 8, see Gaussian

observable canonical form, 190
observable system, 156
optimal control, 297
optimal estimation, 123
optimal filter, 207
optimal filtering, 137, 147, 206, 227
optimal prediction, 2, 77, 137, 147, 199,

206, 211, 212, 225



optimal smoothing, 5, 137, 148, 157,
206, 213, 228

optimal state estimation, 137, 326
optimality principle, 336
output innovations, 72, 76, 138, 190,

191

Parseval's relation, 61
partial fraction decomposition, 92, 202
particle filters, 266
pdf, see probability density function
performance index, 305, 344
phase properties, 100
pole excess, 333
poles, 40, 49
polynomial approach, 185, 332
positive definite matrix, 74, 80, 156,

181
positive real part of the spectrum, 39,

44,90, 103
prediction, see optimal prediction
predictor gain, 147, 157
predictor identity, 188, 200, 205, 334
prefiltering of the criterion, 210
principle of optimality, 306
probability density function, 7
probability theory, 7

quantized measurements, 269
quasi-stationary signals, 38

random time constant, 298
random variable, 7
random walk, 33
rational function, 71, 81
Rayleigh distribution, 24
realizable Wiener filter, 197
realization, 39
regulator representation, 328
resampling, 267
Riccati equation, 147, 149, 155, 320,

360
robustness, 215, 352

sampling, 38, 86, 103, 108
sampling interval, 38
sampling theorem, 89
second-order extended Kalman filter,

248
sensitivity, 215
sensitivity analysis, 193, 335
sensitivity function, 354
separation theorem, 319, 324
Shannon's sampling theorem, 89
Sheppard correction, 270

Index 375

shift operator, 32
singular matrix, 88
smoothing, see optimal smoothing
spectral density, 37, 59, 81, 86, 88
spectral factorization, 71, 81, 92, 178,

206, 223
spectrum, 36, 59, 65, 80
square-root algorithm, 161
stability, 49, 75
stabilizable system, 77, 156
state estimation, 137, 245
state space model, 49, 61, 74, 79, 84, 87
state vector, 33, 35
stationary case, 155
stationary process, 31, 59, 64, 86
stochastic control, 297
stochastic difference equation, 34
stochastic differential equation, 85
stochastic process, 30, 86
strictly stationary process, 31
sufficient statistic, 179
symmetric pdf, 125
symmetry relations, 47

third-order moment, 47, 57, 100, 119
time update, 166
time-varying systems, 63
Toeplitz matrix, 42
transfer function, 49, 59, 71, 78
transient, 144
transient effects, 67
transition matrix, 51
transition pdf, 34
triangularization, 178
tuning variables, 29, 158, 344

uncorrelated random variables, 12
unknown gain, 301
unknown time constant, 300
unrealizable Wiener filter, 196
user design variables, 352

weakly stationary process, 31
weighting function, 49
weighting matrix, 192
weighting pattern, 234
white noise, 31, 82, 84
Wiener filter, 194, 206
Wiener process, 83, 85

Yule-Walker equation, 67, 86, 93, 98,
104, 106, 116

zeros, 49


