
PARSING WITH PRINCIPLES
AND CLASSES OF INFORMA nON

Studies in Linguistics and Philosophy

Volume 63

Managing Editors

GENNARO CRIERCHIA, University of Milan

PAULINE JACOBSON, Brown University

FRANCIS J. PELLETIER, University of Alberta

Editorial Board

JORAN V AN BENTHEM, University of Amsterdam

GREGORY N. CARLSON, University of Rochester

DAVID DOWTY, Ohio State University, Columbus

GERALD GAZDAR, University of Sussex, Brighton

IRENE HElM, MLT., Cambridge

EW AN KLEIN, University of Edinburgh

BILL LADUSA W, University of California at Santa Cruz

TERRENCE PARSONS, University of California, Irvine

PARSING WITH PRINCIPLES
AND

CLASSES OF INFORMATION

by

PAOLA MERLO
University a/Geneva,

Switzerland

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON

A C.I.P. Catalogue record for this book is available from the Library of Congress

ISBN-13: 978-94-010-7265-6 e-TSBN-13: 978-94-009-1708-8
DOT: 10.1007/978-94-009-1708-8

Published by Kluwer Academic Publishers,
P.O. Box 17,3300 AA Dordrecht, The Netherlands.

Kluwer Academic Publishers incorporates
the publishing programmes of

D. Reidel, Martinus Nijhoff, Dr W. Junk and MTP Press.

Sold and distributed in the U.S.A. and Canada
by Kluwer Academic Publishers,

101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed
by Kluwer Academic Publishers Group,

P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved
© 1996 Kluwer Academic Publishers

Softcover reprint of the hardcover I st edition 1996

No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,

including photocopying, recording or by any information storage and
retrieval system, without written permission from the copyright owner.

CONTENTS

PREFACE

1 GRAMMARS AND PARSERS
1.1 Introduction

2

3

4

1.2 On Grammar Parser Relations

1.3 Modularity

1.4 Partial Compilation Based on Information Content

OVERVIEW OF THE PARSER
2.1 Introduction

2.2 An Example

2.3 Related Work

THE PHRASE STRUCTURE COMPONENT
3.1 Introduction

3.2 The Data Structures and The Parsing Algorithms

3.3 Compactness of the Data Structures

3.4 Psycholinguistic Support

THE COMPUTATION OF SYNTACTIC
FEATURES
4.1 Introduction

4.2 The Interleaving of Constraints
4.3 The Assignment of Local Syntactic Features

4.4 Computing Long Distance Dependencies

4.5 Psycholinguistic Support

4.6 Incremental Assignment of Features

VII

1

8

16

23

31

31

38
48

71

71

72

79
88

99
99

102
103
111
125
128

VI PARSING WITH PRINCIPLES AND CLASSES OF INFORMATION

5 LOCALITY 147

5.1 The Linguistic Facts 148
5.2 Related Work 156
5.3 Parameterised Subjacency 162
5.4 Implementation 168

A THE COMPUTATIONAL AND THE
LINGUISTIC FRAMEWORK: A GLOSSARY 173

A.l Levels of Representation

A.2 The Modules
A.3 Parsing Algorithms

B RESULTS

REFERENCES

173

176

200

205

233

PREFACE

The efficient computation of a syntactic representation for a sentence of natural
language is a difficult task. Many different types of information must be brought
to bear which interact in complex ways. The question then arises of how to
separate the different aspects of the computation to make it more efficient and
more manageable.

In the actual development of parsers for syntactic analysis, it is standard prac­
tice to posit two working levels: the grammar, on one hand, and the algorithms,
which produce the analysis of the sentence by using the grammar as the source
of syntactic knowledge, on the other hand. Csually, the grammar is derived
directly from the work of theoretical linguists. The interest in building a parser
which is grounded in a linguistic theory as closely as possible rests on two sets
of reasons: first, theories are developed to account for empirical facts about
language in a concise way: they seek general. abstract, language-independent
explanations for linguistic phenomena; second. current linguistic theories are
supposed to be models of humans' knowledge of language. Parsers that can
use grammars directly are more likely to have wide coverage, and to be valid
for many languages, and they also constitute the most economical model of the
human ability to put knowledge of language to use. Therefore, the postula­
tion of a direct correspondence between the parser and theories of grammar is
usually assumed as a starting point of investigation.

Experimentation with so-called principle-based architectures has shown that
this kind of computation is often inefficient. Inefficiency is a problem that
cannot simply be cast aside. Computationally, it renders the use of linguis­
tic theories impractical, and, empirically, it clashes with the observation that
humans make use of their knowledge of language very effectively.

In the present work I propose a parsing design that is both computationally
and linguistically justified. I start from the observation that linguistic informa­
tion belongs to five main classes. These classes are defined according to their
information content, for example topological properties of the tree or lexical
information. These classes define the information "modules" of the parser. The

Vll

Vlll PARSING WITH PRINCIPLES AND CLASSES OF INFORMATION

data structures and the architecture of the parser mirror the partitioning of lin­
guistic principles according to their information content. Moreover, I observe
that linguistic principles are complex constraints. They can be factored into
simple constraints, which are precompiled off-line. Thus, I address the issue of
how to compute a syntactic representation efficiently by a specific instantiation
of partial precompilation.

Computationally, the ensuing organization of the parser is compact and non­
redundant: the parser is implemented as an LR parser which is encoded in only
a small number of states; information about category and other lexical prop­
erties is encoded in a different table which interacts with the LR table on-line.
Moreover, a complex phenomenon, long-distance dependencies, is computed
efficiently, by making use of information available in the local context of the
application of parsing rules. This design can be easily extended to other lan­
guages: algorithms are provided for long distance, cyclic movement in Italian
and English. Finally, I argue that, psycholinguistically, the proposed design
captures some experimental evidence about the interaction of lexical ambigu­
ity with structural ambiguity.

This work contributes some results to the inYestigation of parsing, both from
a computational and from a cognitive point of view. First, a linguistic clas­
sification of principles according to their content of information is provided,
which is then supported by a a comparison of different compilations of several
linguistically-based grammars. It is shown that the grammar built according
to the assumptions developed in this work is the most compact and least am­
biguous. The proposed distinction between hierarchical and categorialflexical
information is supported by experimental evidence about lexical ambiguity.
Furthermore, algorithms for the computation of long distance dependencies are
discussed, and compared to other algorithms. Finally, a unified, parameter­
ized algorithm is proposed to treat wh-questions in Italian and English, which
improves on previous proposals.

This book is a revised version of my 1992 Ph.D. Dissertation. Some of the
issues discussed here and some ofthe results have been previously presented as a
student paper at the 30th Annual Meeting of the Association for Computational
Linguistics and are forthcoming as an article in Computational Linguistics.

In Chapter 1 I review the debate on the relationship between grammars and
parsers, which has animated much recent literature on processing. I propose to
tackle the issue as a computational problem and I assume a particular type of
partial precompilation of the linguistic principles. The specific hypothesis put

Preface IX

forth in this chapter inspires the design of a parser which is presented in detail
in the rest of the book.

In Chapter 2 I give an overall view of the organization of the parser and a
sample of its parsing capabilities, and I compare it to other parsers in the
literature.

In Chapter 3 the parsing engine, an LR(k) parser, is illustrated. I present
comparative results on the compilation of grammars according to the LR, LL
and LC compilation method. I compare grammar rules that are progressively
more distant from bare X templates by incrementally adding categorial infor­
mation. Interestingly, adding categorial information does not appear to reduce
the nondeterminism in the grammar. The chapter concludes with some psy­
cholinguistic results to support the approach presented.

The assignment of features is discussed in Chapter 4. I distinguish between
features that can be assigned within a maximal projection and features that
do not, and I introduce the algorithms to perform local feature annotation,
and to compute chains. I discuss the issue of incremental parsing in an LR(k)
architecture.

Chapter 5 presents the implementation of the routines that compute locality re­
strictions on wh-movement. It also presents a detailed argumentation in favour
of LR(k) parsing for cross-linguistic variation of restrictions on locality, drawing
evidence from Italian and English.

This work is the result of my interaction with many people who have helped,
encouraged, challenged and criticized me. Their support and their critique have
been equally useful, indeed necessary, and I would like to thank them for taking
the time to listen.

Special thanks to Amy Weinberg, Eric Wehrli and Uli Frauenfelder for getting
me started on this work and for supporting me all along, in many intellectual
and practical ways, enabling me to pursue my research interests in a really
priviledged environment.

Other people have provided me with insightful comments, at different stages of
the work: Michael Brent, Robin Clark, Matthew Crocker, Bonnie Dorr, Paul
Gorrell, Sandiway Fong, Bob Frank, Luigi Rizzi, Graham Russell, Suzanne
Stevenson.

Many thanks to Celine Courtin for setting up the bibliography.

x PARSING WITH PRINCIPLES AND CLASSES OF INFORMATION

My colleagues, friends and family will certainly be happy to know I am finally
finished working on this document. I would like to thank them for bearing with
me. Expecially Suzanne, Graham, Fred, and most of all, my sister Anna.

1
GRAMMARS AND PARSERS

1.1 INTRODUCTION

The efficient understanding of a sentence of natural language is a difficult task,
the solution of which calls into play knowledge derived from several disciplines,
such as linguistics, computer science, and, often, psychology. One of the prin­
cipal sources of difficulty in the solution of the problem is constituted by the
complex interactions between different types of information, such as lexical,
morphological, syntactic, semantic, pragmatics and word knowledge, to which
one can add issues of language use, such as frequency of usage and domain­
dependent terminolgy.

The question then arises of how to separate the different aspects of computing a
representation, to make the computation more efficient and more manageable.
There is shared consensus that the different linguistic levels should be tackled
by different computational means, or at least, explored independently. Within
each level of inquiry the same divide-and-conquer methodology is often adopted,
for scientific and engineering reasons.

In the development of parsers for syntactic analysis, it is standard practice
to posit two working levels: the grammar, on one hand, and the algorithms,
which produce the analysis of the sentence by using the grammar as the source
of syntactic knowledge, on the other hand. Usually, the grammar is derived
directly from the work of theoretical linguists. The interest in building a parser
which is grounded in a linguistic theory as closely as possible rests on two sets
of reasons: first, theories are developed to account for empirical facts about
language in a concise way: they seek general, abstract, language-independent
explanations for lingUIstic phenomena; second, current linguistic theories are

1

2 CHAPTER 1

supposed to be models of humans' knowledge of language. This search for
generality is not unique to Government and Binding theory. Feature-structure
formalisms also use rule schemata to capture similarities among grammar rules.
Reentrancy as a notational device to express common features, moreover, seeks
the same type of representational economy which is expressed by the use of
"traces" in G B theory.

Parsers that can use grammars directly are more likely to have wide coverage,
and to be valid for many languages, and they also constitute the most economi­
cal model of the human ability to put knowledge of language to use. Therefore,
the postulation of a direct correspondence between the parser and theories of
grammar is usually assumed as a starting point of investigation. 1

Experimentation with so-called principle-based architectures has shown that
this kind of computation is often inefficient. Inefficiency is a problem that
cannot simply be cast aside. Computationally, it renders the use of linguis­
tic theories impractical, and, empirically, it clashes with the observation that
humans make use of their knowledge of language very effectively.

In order to understand what is implied in assuming a direct mapping from the
grammar to the parser, as it is currently assumed in principle-based parsing,
let's consider first what it means to parse a sentence.

For instance, a property which is clearly important in English is linear order.
John loves Mary is not equivalent to Mary loves John. Also, the word love
denotes an action, while John, Mary denote the participants in the action, the
agent and the theme. We also notice that the notion of participant in an event,
or thematic relation to a verb, is not the same as that of grammatical function
such as subject, object. A subject agrees in number (plural, singular) with the
verb, both when it is an agent or a patient, as (1) shows.

(1) a. John loves the children
b. The children are loved by John.

These are examples of which pieces of information must be recovered. They
are implicitly stored in a sentence, according to the rules of a grammar. A

1 Throughout the work the Government and Binding framework is assumed. I refer the
reader to Haegeman {1991}. For the reader who is not interested in exploring the details
of the theory, a glossary is provided in Appendix A, where I define the tenninology used
without previous background.

Grammars and Parsers

grammar is a finite depository of explicit information, according to which an
infinite number of sentences can be constructed.

Information can be stored in a grammar in very different ways. Grammatical
theory in the 70s talked about "dative shift" , "topicalization", "passive", and
it meant that each of these constructions was captured in the grammar by a
specific rule. Consequently, rules were not only construction-specific, but also
language-specific, (French, Italian and Spanish, for instance, have no "dative
shift").

The conceptual development in the 80s, which has given rise to GB theory, con­
sists in having identified the unifying principles of many of these construction
specific rules. A new theory is being developed in which a small set of prin­
ciples applies deductively to generate very different constructions. Thus, for
example, all the rules mentioned above included "movement" of some lexical
element. Take, for instance, the raising construction, exemplified in (2).

(2) John seems [IPt to like Bill]

The structure in (2) respects the linear order given by the English string "John
seems to like Bill" , and it has the meaning of "It seems that John likes Bill".
John is both the subject of seem and lzke. Thus John acts as if it were in
two places at a time. This is expressed by saying that John is the subject of
like at one level of representation, and then it moves as the subject of seem
at a different level, leaving behind an empty slot which is indicated as t. This
movement is the same that occurs in passive, as seen above in (1), or also in
questions as (3).

(3) Who do you like t ?

Application of movement alone will overgenerate, producing many incorrect
sentences. e.g. Bill seems t to like t , where Bill is moved from the object of
like to the subject of seems, or The children loves John with the interpretation
of (l)b. Thus, other constraints must be imposed. For example, compare the
sentences in (4).

4 CHAPTER 1

(4) a. It seems that John likes Bill
b.* It believes that John likes Bill
c. Mary believes that John likes Bill

These sentences show that the position occupied by the subject of seem is not
an argument position, as it can contain the pleonastic zt, an element that has
virtually no semantic content, while the subject of believe does not allow this
option, but it requires a semantically contentful element. One restriction on
movement, then, is that the target of movement must not be an argument
position. This constraint correctly rules out Bill seems t to lzke t , with the
meaning of Bill seems to like himself, as the movement of Bzll from object to
subject would violate the constraint I just st.ated.

Consider now

(5) * It seems Mary to like Bill

This sentence shows that At ary, a lexically realized NP, cannot occur as the
subject of the infinitival clause, while t is allowed, as we saw above. In fact, fully
realized NPs can hardly ever occur as the subjects of infinitival clauses, while
they can certainly occur as subjects of finite clauses. The correct restriction is
achieved by assuming that all lexical :\Ps must receive a feature called Case
(case is what distinguishes he from hIm. in English.) This constraint is called
the Case Filter. Infinitival verbs cannot assign Case to their subjects, so lexical
NPs cannot occur in this position.

Going back to our initial raising sentence, notice how these principles apply.
The movement of John to the subject position of seem, from its lower position,
is allowed because the subject position of seem is not an argument position,
and is obligatory because the subject position of an infinitival verb does not
assign any Case, and all lexical NPs must receive Case. These observations are
captured by two principles: the Case Filter and the B-Criterion. The former
requires that all NPs receive Case, while the latter requires that the argument
structure of a verb be saturated, and that all arguments in the sentence enter­
tain at most one thematic relation. The interaction of movement, Case theory
and B-theory, together with the lexical properties of the verb seem, and the
well-formedness principle of structure. called X theory, "generate" the raising
construction without storing a raising rule in the grammar.

Grammars and Parsers 5

Of course, the relevance of this approach lies in the fact that the same principles
that are used for the raising construction are used for many other types of
structure. The process of passivization is very similar to raising, as passive
morphology (in English the -ed ending of the verb) is said to "absorb" the
ability of assigning accusative case to the object and a thematic role to the
subject. Thus, while (6)a is correct, (6)b is not.

(6) a. John likes Bill
b. * John was liked Bill.

Since the grammar, as seen above, employs a movement rule, Bill moves to
subject position, yielding (7)

(7) Bill was liked t (by John)

The process is very much like raising, but again no "passive" rule is mentioned
in the grammar, and the same general principles do all the work.

Principle-based theories are also well equipped to capture generalizations across
languages. For example, consider dependencies that involve more than one
clause. It can be observed that linguistic dependencies involve either material
sitting in two adjacent clauses or material separated by an unbounded number
of intervening clauses. It is never the case that items, let's say 4 clauses apart
and only those, are related by a long-distance dependency. This fact can be
captured quite elegantly by using movement rules that perform a basic step and
an iterative step. The only movement rule, move-a which links elements such as
Who and ti can perform a simple basic step from a clause to an adjacent clause.
Or it can iterate, and as a result, displace linguistic material unboundedly far
away from the source position by a sequence of basic steps. For instance, in
Who do you thmk t' that Mary saw t at the party? Who is a displaced element
that has been moved from the object position, after saw, here indicated by t, to
the position indicated by t', and finally to the first position in the sentence. The
well-formed ness of such long-distance relations is regulated by the Subjacency
Condition, which determines how big a single step can be. The existence of
minimal pairs such as those in (8), shows that the "size" of a basic step is
different from language to language.

6 CHAPTER 1

(8) a. * Who does John wonder when Mary saw ti t j?
b. II ragazzo che mi chiedo quando Maria abbia visto tj tj
"The boy that I wonder when Mary saw"

If long distance dependencies were captured simply by construction-specific
rules, the regularity across languages would be lost, as different rules would
be needed for English and Italian. This kind of cross-linguistic regularity
is captured in current theories by stating a general principle (the Subjacency
Condition) and then also stating a parameter (the size of each movement step),
that can take different values for each language.

Thus, theories based on a small set of general abstract principles are considered
explanatory, because they describe universal properties of language in a succinct
way.

Current linguistic theories, GB in particular, propose themselves as models
of human linguistic knowledge. In other words, they assume that universals
of human language constitute a mental grammar (UG). This assumption is
crucial for solving the problem of language acquisition. Languages are acquired
by children in impoverished circumstances, with no negative feed-back and
limited evidence, nonetheless they are acquired quite speedily and correctly. If
UG is the innate knowledge of language of any human being, then the task
of the child is reduced to acquiring the parameter settings for the language­
dependent parameters. This set of principles and parameters that describes
natural languages is called, as a mental state. competence.

Moreover, linguistic theory assumes that the language faculty is better under­
stood if it is located at two different levels, a purely representational level that
constitutes the competence of the language and an algorithmic level at which
the representational knowledge is put to use, which constitutes the performance
of the language. Competence is the level at which the nature of the problem
is understood; performance is the level at which how to solve the problem is
understood.

By making this (strong) hypothesis, linguistic theories acquire double status, as
they are at the same time typological descriptions of languages and descriptions
of a mental state. It is conceivable, and indeed it has been forcefully argued
(Gazdar, Klein, Pullum, and Sag 1985), that this is not necessary, and that
linguistic phenomena are still the object of justified scientific research even if
viewed only as a formal system. This is certainly a tenable position. Simply, the
goals of these two approaches are different. The requirement of psychological

Grammars and Parsers 7

reality can only be imposed on a system that views grammars as (descriptions
of) mental states.

The problem of parsing, then, becomes syst.ematically ambiguous, as it is at the
same time an investigation of computational and psychological issues. View­
ing parsing as putting a mental grammar to use has often imposed stringent
requirements on the forms of the possible grammars used, mostly requiring
that the grammar proposed by the linguists be used directly. Were the study
of grammar not viewed as the study of a mental system, there would be no
need to have a precise and motivated mapping between the grammar and the
parser. As long as the parser recovers the same structural descriptions that
are assigned by the grammar to the strings in the language, no other stricter
relation would be needed. The parser is subject to time/space constraints that
are irrelevant to the grammar, and these are the only pressuring constraints to
shape the architecture of the parser and the algorithms.

Thus, although it is not a necessity that grammar and parser be in a relation
that captures the nature of the grammar as a mental state, this appears to
be the stronger position, because it makes t.he minimal number of assumptions
about the natural language acquisition system and the processing system. which
both use the same level of representation, the competence grammar. 2

Moreover, by making this assumption the study of natural language processing
can pursue engineering and cognitive goals at the same time, since the human
processor is a very efficient parser, and hence a good, and possibly enlightening
model. On the other hand, engineering endeavours to solve the parsing problem
as efficiently as possible will cast light on mechanisms of information processing
that are relevant for the study of cognition in the computational paradigm.

In this chapter, I develop the argumentation about the relation between the
grammar and the parser. I conclude that a direct correspondence is untenable
and I propose a different organization. In particular:

• The tension between explanatoriness and efficiency for
implementations of modular theories is illustrated and discussed.
I argue that explanatoriness of linguistic theory pulls towards

2 These issues have been debated extensively. I will not repeat the debate here in detail. See
(Chomsky 1957; Chomsky 1965; Chomsky 1980b; Chomsky 1986b; Marr 1982) for arguments
about the competence-performance distinction in linguistics and vision respectively. and see
(Berwick and Weinberg 1983; Berwick and Weinberg 1984; Abney 1987; Van de Koot 1990)
and references therein for the application of these notions to processing issues.

8

•

•

•

1.2

CHAPTER 1

highly modular parsers, which use very general principles and
long deductive chains of computations, but that these designs are
inefficient.

I review experimental results that point towards partial
precompilation of principles as a solution of this tension.

Observations about the structure of principles of linguistic theory
and information contained in linguistic primitives provide
substantiation to the idea of partial precompilation.

A specific formulation of partial precompilation is put forth,
called the Information Content Modularity Hypothesis (ICMH).
This hypothesis is taken as the constraining principle on the
design of the parser. It is tested with an implementation, which is
illustrated in the chapters that follow.

ON GRAMMAR PARSER RELATIONS

The debate on how to draw on linguistic theories to design parsers is long-dated
(Berwick and Weinberg 1984; Abney 1987; Van de Koot 1990). I review it here,
to illustrate the possible relations between grammars and parsers. I follow the
terminology in the cited works: correspondence is the relation between the
function computed by the runtime grammar (the performance level) and the
competence grammar. Equivalence is the relation between the two grammars
directly.3

I/O Correspondence Input/Output correspondence means that the parser
computes exactly the function specified by the grammar. Namely, given the
same set of input strings, it outputs the same grammatical judgments, i.e.
it fails or succeeds on the same sentences. This implies that all grammatical
sentences are parsable and all ungrammatical sentences are unparsable. This

31 have also tried to eliminate what 1 consider confusing terminology. Both Abney (1987)
and Van de Koot (1990) use the terms "covering" and "compiling" interchangeably. I think
they denote different relations between the competence level and the performance level. In
particular, covering is a (possible) relation between the competence grammar (the gra.nunar
off-line) and the performance grammar. Compilation does not imply covering at all. A
grammar could be compiled (e.g. into a table) without any previous covering transformation.
The two processes cannot be considered equi valent as covering is a manipulation of a grammar
that produces a new grammar, while compilation does not. Compilation preserves strong
equivalence of the structural derivations, while covering does not. The two terms can be used
interchangeably only if they are used in the very loose sense of "some process applied to the
grammar off-line" .

Grammars and Parsers 9

theory is too strong. For example, I/O correspondence breaks down in garden
path sentences, which are grammatical but very difficult to parse, such as (9),
or easily parsable sentences that are not fully grammatical, such as those that
violate the grammatical principle of Subjacency, like (10).

(9) The horse raced past the barn fell

(10) This is a plan that I do not know when they will implement.

Because of these discrepancies, a relaxed I/O correspondence is more appropri­
ate to characterize the relation under scrutiny.

Degenerate I/O Correspondence The function computed by the parser can
differ from the function computed by the grammar in two ways: it can assign
a different structure to the sentence, or the competence grammar can assign a
structural description to some sentence to which the parser cannot assign any
structure because of limitations of the hardware, such as memory limitations.
For instance, the sentence in (11) is almost incomprehensible, arguably because
of memory limitations. (Miller and Chomsky 1963; Church 1980).

(11) The cheese the mouse the cat chased ate stinks.

One might also attempt to define the relation between the grammar specified
by the linguist, the competence grammar, and some functional modification of
this grammar which is more apt for computational purposes. Relations between
grammars are called equivalences.

Covering Equivalence

Covering is a relation between two grammars, which maintains weak eqUIva­
lence.

"Informally, one grammar G 1 covers G 2 if (1) both gener­
ate the same language L(Gl)=L(G2) i.e. the grammars are
weakly equivalent and (2) we can find the parses or structural

10 CHAPTER 1

descriptions that G2 assigns to sentences by parsing the sen­
tences using Gland then applying a "simple" or easily com­
puted mapping to the resulting output. (...) That is, if the
parse of a sentence (...) is a string of numbers correspond­
ing to the rules that were applied (...) and some canonical
derivation sequence, then the translation mapping that carries
this string of numbers to a new string corresponding to an­
other parse must be a homomorphism under concatenation."
(Berwick and Weinberg 1984:79)

For instance, consider a covering algorithm to transform a left-recursive gram­
mar into an equivalent non-left-recursive one. Given a grammar G with pro­
ductions P={S --->Aa; A --->Ab; A --->a } I can transform it into a grammar G'
with productions P'={ S ~aA'; A' ~bA'; A' --->a }. We say in this case that
G covers G'. This is then an example of two grammars that are in a covering
relation, one of which could be used by the linguistic representation and the
other could be the grammar actually used by the parser. Covering grammars
might be needed because of a particular parsing algorithm. For example, Ear­
ley's algorithm (Earley 1970) is guaranteed to work only on non-left-recursive
grammars.

Strong Equivalence Another possible relation between the competence gram­
mar and performance grammar is Strong Equivalence. This means that the
two grammars must be isomorphic. This is a stronger relation than covering,
because it prohibits modification of the grammar. In other words, the grammar
used in the parser must be the same as the grammar specified in the theory of
competence.

Given the possible relations between grammars and parsers reviewed above,
which one is the most desirable relation? Of course, this question makes sense
only if the goals of the enterprise are defined. Usually, parsing is studied from
two points of view: cognitive and engineering. As I have mentioned above,
work on the relation between the parser and the grammar is mostly interesting
for cognitive reasons. Researchers that are interested in parsing from a purely
engineering point of view do not find the need to be faithful to a particular
linguistic theory, if this is not practically feasible. In principle, however, the
cognitive and the engineering aspect can cast light on each other because both
address issues of efficiency and typological validity.

Parsers that can use grammars directly are more likely to have wide coverage,
and to be valid for many languages, and they also constitute the most economi-

G1'ammars and Parsers 11

cal model of the human ability to put knowledge of language to use. Therefore,
the postulation of a direct correspondence between the parser and theories of
grammar is, methodologically, the strongest position. Historically, this was the
starting point, but even a very brief look at the several answers to this question
that have appeared in the literature, shows that the restrictions on the required
relation which in the first proposals were rather tight have been progressively
relaxed.

Token Transparency In the early days of generative grammar, it was proposed
that there should be a kind of rather strict token-transparency relation between
the two levels (Miller and Chomsky 1963). This meant that if a derivation
required the application of three transformations, then parsing the output of
such a derivation was supposed to be three times as difficult as parsing the
output of a derivation that required only one transformation. This impliet
that the parser mirrors exactly the derivational steps that are postulated in
the competence grammar. This approach, labelled the Derivational Theory of
Complexity (Fodor, Bever, and Garrett 1974,319), was apparently contradicted
by Slobin (1966)'s results. If the parser mimics exactly the computational steps
of the grammar, then a passive sentence, which is generated by a greater number
of transformations than an active sentence, should be more difficult to process
than the corresponding active. In fact, Slobin (1966) showed, in a picture
verification task, that non-reversible passives were easier (took shorter time;
to process than the corresponding active sentence. Although the experiment
was contradicted (Forster and Olbrei 1973), it led to a more cautious attitudE
towards the Derivational Theory of Complexity.4 Weaker relations between thE
parser and the grammar were explored.

Type Transparency Bresnan (1978) attempts to build a model of grammar that
is also better suited to be a model of language use. She requires a less stringent
relation between the grammar and the parser than token transparency, what
Berwick and Weinberg (1984) call type-transparency. She considers parsin~

4 Non-reversible passives are those sentences where selectional constraints determine th(
logical functions, e.g. subject and object, such as The flowers are watered by the girl. An
example of reversible passive is The girl being watched by the dog. The fact that selectional
restrictions are relevant in parsing was interpreted as supporting the interactive view of sen­
tence processing. Specifically, that semantic information could influence sentence processing.
On the contrary, Forster and Olbrei (1973) show that the constancy hypothesis is supported
by experimental evidence. They show that syntactic processing time tends to hold constant
for sentences of similar syntactic structure, even if they change in meaning. In their own
words: "These facts are interpreted as indicating that the recovery of the underlying struc­
ture of a sentence is controlled by purely syntactic properties of the input." (op.cit.,p.319).

12 CHAPTER 1

theory to be the realisation of competence theory if it is capable of making the
necessary distinctions among types of parsing operations.

"A realistic grammar must be not only psychologically real
(...), but also realizable. That is we should be able to define for
it explicit realization mappings to psychological models of lan­
guage use. These realizations should map distinct grammatical
rules and units into processing operations and informational
units in such a way that different rule types of the grammar
are associated with different processing functions. (...) Clearly,
these are strong conditions to impose on a linguistic grammar."
(Bresnan 1978:3).

Given her model oflanguage, for instance, function-dependent rules and structure­
dependent rules would map onto different types of realisation.

Covering Relations

Berwick and Weinberg (1983) and Berwick and Weinberg (1984) follow this
approach and expand on it. They claim that. the model proposed in the theory
Jf parsing would still be a realisation of the competence level if it models a
grammar that can cover the competence grammar. Thus grammar pairs can be
created other than strongly equivalent grammars in a psychologically realistic
parser.s

The advantage of this approach lies in the fact that in this way the most
natural grammar for each level could be used. For example, if one were to
3.Ssume that the human parser is a top down parser, and to observe that natural
languages have constructions that are naturally described as left-recursive rules,
for example the English genitive, it would still be possible to maintain the left­
recursive formalism at the representational leveL while the parser could actually
use a non-left-recursive, but covering, grammar. (See also example above, of
covering equivalence.)

On the other hand, as a disadvantage of this approach, one more level of in­
directness is introduced between the representation and the algorithm. The

5Two grammars are strongly equi valent ifffor the same string in the language they generate
the same phrase marker. Note that here strongly eqlli,.alent is used in the sense int.roduced
by Chomsky (1965), where it defines a relation between two graInmars. Nothing is said with
respect to the parser.

Grammars and Parsers 13

architecture of the competence grammar is justified by questions concerning
natural language acquisition. But the covering grammar is not justified by
such arguments. Consider, for example, modularity. A modular system is
well-designed to explain data concerning natural language acquisition. This
explanation, however, justifies only the modular architecture of the theory of
representation. But a covering relation between grammars does not guarantee
that the same partitioning of modules will be made in the covering grammar.
In other words, if there are two grammars that are in a covering relation,
there must also be covering rules, or covenng routines, that the speaker pos­
sesses, which are however not justified by acquisition. Therefore, if we want to
maintain an approach where the parser does not use the competence grammar
directly, then we need to give justifications for the covering grammar in terms
other than acquisition. As in the examples above, there could be assumptions
about the algorithms that justify the need for the covering relation.

Principle-based Parsing and Isomorphism

The requirement of strict. isomorphism as propounded by Miller and Chomsky
(1963) is the null hypothesis. This was shown to be empirically incorrect,
however, for the theory of generative grammar, as it was formulated at the
time. One could wonder if things have changed due to the changes in the
theory of grammar. Current G B theory is wry different in some fundamental
aspects from earlier versions of the theory. In particular, the theory of grammar
as expressed by GB is a system of abstract, parameterized principles, called
also modules, that interact in complex ways. so that the setting of one of the
parameters in one of the modules has far-reaching consequences in the entire
system.

Parallel to the shift of linguistic theory from a uniform collection of struc­
tural descriptions and structural transformations to a system of principles and
parameters, parsing theory has developed the so called prznciple-based pars­
ing approach (Barton 1984; Berwick and Fong 1990; Berwick 1991a; Berwick
1991b; Crocker 1995; Stabler 1992). This approach assumes that the principles
are stated as axioms in the theory of grammar and they must be used as ax­
ioms by the parser. This means that the information that must be recovered
by the parser to assign a structure to the input sentence is stored in a set of
very general principles, and the actual structure of each individual sentence
is recovered by "wading" through these principles and applying them to the
input. On the one hand, principle-based parsing is explanatory and directly
related to a theory of grammar. On the other hand, principle-based processing
in its strictest sense prohibits grammar compilation and the use of grammar

14 CHAPTER 1

theorems, so in this sense it goes back to requiring strict isomorphism between
the grammar and the parser.

1.2.1 Principle-based Parsing and
Precompilation

If principle-based parsing, which is naturally implemented as a deduction al­
gorithm, and which is deemed a highly explanatory model of parsing, turned
out to be efficient, then clearly a good answer to the debate would have been
found. However, this is not what has been found empirically. I illustrate the
results of models without precompilation, and models with precompilation.

On-line Computation is Inefficient

Several researchers notice that principle-based parsers that allow no grammar
precompilation are inefficient.

Firstly, it has been noted that, unless particular programming techniques are
adopted, the problem of computing a multi-levelled theory without any precom­
pilation, might not even terminate (Johnson 1989; Van de Koot 1991; Stabler
1990).

Secondly, experimental results show that a totally deductive approach is inef­
ficient. Kashket (1991) discusses a principle-based parser, where no grammar
precompilation is performed, and which parses English and Warlpiri by using
a parameterized theory of grammar. The parsing algorithm is a generate-and­
test, backtracking regime. Kashket (1991) reports, for instance, that a 5-word
sentence in Warlpiri (which can have 5! analyses, given the free word order
of the language) can take up to 40 minutes to parse. He concludes that, al­
though no mathematical analysis for the algorithm is available, the complexity
appears to increase exponentially with the input size. Fong (1991, 123) reports
informal profiling of a parsing algorithm, which shows that an initial version
of the parser, where the phrase structure rules were expressed as a DCG, and
interpreted on-line, spent 80% of total parsing time building structure. In a
later version, where rules were compiled into an LR(l) table, structure-building
constituted 20% of the total parsing time. This same parser includes a module
for the computation of long distance dependencies, which works by generate­
and-test. Fong also finds that this parsing approach is inefficient.

Grammars and Parsers 15

Dorr (1987) notices similar effects in a parser that uses an algorithm more
parallel in spirit (Earley 1970). Dorr notes that a limited amount of precom­
putation of the principles speeds up the parse, otherwise too many incorrect
alternatives are carried along before being eliminated. For example, in her
design, X theory and the other principles are coroutined. She finds that pre­
compiling the principles that license empty categories with the phrase structure
rules reduces considerably the number of structures which are submitted to the
filtering action of the other principles, and thus speeds up the parse.

The source of inefficiency stems from the principle-based design, in the sense
that each principle is formulated in such a way as to be as general as possible.
This "logical" kind of abstraction of each principle from the others causes a lot
of overgeneration, hence inefficiency. According to Ristad (1990, 6), however,
this is not surprising. He says:

" ... as is well-known, a system consisting of computational mod­
ules is necessarily inefficient, both computationally and statis­
tically. (Restricting the amount of information to a module
results in a computational inefficiency because that module is
unable to prune branches in its computational tree as early as
it might otherwise be able to. It results in a statistical ineffi­
ciency because a module might need to examine all available
evidence in order to determine the optimal estimate)"

Too Much Precompilation is Inefficient

A solution to the inefficiency of principle-based parsing is not simply precom­
pilation, though. Experimentation with different amounts of precompilation
shows that off-line precompilation speeds up parsing only up to a certain point,
and that too much precompilation slows down the parser again.

The logic of why this happens is clear. The complexity of a parsing algorithm
is a composite function of the length of the input and the size of the grammar.
The size of the grammar is usually a constant, but for the kind of inputs that
are relevant for natural language it becomes quickly the predominant factor. As
Tomita (1985) points out, input length does not cause a noticeable increase in
running time up to 35/40 input tokens. For sentences of this length, grammar
size becomes a relevant factor for grammars that contain more than 200 rules
approximately, in his algorithm (an LR parser with parallel stacks).

16 CHAPTER 1

Both Dorr (1987) and Tomita (1985) show experimental results that confirm
that that there is a critical point beyond which the parser is slowed down by
the increasing size of the grammar.

Finally, in the Generalized Phrase Structure Grammar (G PSG) formalism
(Gazdar, Klein, Pullum, and Sag 1985), similar experiments have been per­
formed, which confirm this result. Parsers for GPSG are particularly interest­
ing, because they use a formalism which expresses many grammatical gener­
alizations in a uniform context-free format, while in GB the same generaliza­
tions are expressed by a set of heterogeneous principles. Therefore, G PSG is,
practically, more amenable to be processed by known compilation techniques.
Thompson (1982) finds that expanding metarules is advantageous, rather than
computing them on-line, but that instantiating the variables in the expanded
rules is not. Phillips and Thompson (1986) also remark that compiling out
a grammar of 29 phrase-structure rules and four metarules is equivalent to
"several tens of millions of context-free rules." Phillips (1992) proposes a modi­
fication of GPSG that makes it easier to parse, by using propagation rules, but
still notes that variables should not be expanded.

In conclusion, a paradox arises: a parser which mirrors a principle-based theory
of grammar, such as G B theory, must fulfill apparently contradictory demands:
for the parser to be explanatory it must maintain the modularity of the theory,
while for the parser to be efficient, modularization must be minimized so that
all potentially necessary information is available at all times. As a solution
to this paradox, partial compilation of principles of linguistic theory, which
would reduce inefficiency while retaining modularity, can be envisaged, and
is supported by the experiments mentioned above. I attempt to put forth a
precise proposal on the amount of needed precompilation. Since much of the
explanatory power of GB theory resides in its modular structure, I explore the
concept of modularity, to find out where the modularity becomes the source of
explanatoriness and where it is the source of efficiency, if at all.

1.3 MODULARITY

In this section, I start from an intuitive notion of module, according to which
GB theory is modular, in the sense that it is constituted by different subsystems
that define separate, abstract principles of Universal Grammar (UG). I explore
more precisely the properties of a system of modules with respect to explana­
tory power and efficiency. The goal of this section is to investigate whether the

Grammars and Parsers 17

intuitive notion of module, in the sense with which it is used in the linguistic
literature, can be formalized in a way that corresponds to the definition of mod­
ule in computer science, namely that of an informatzonally encapsulated entity.
The result of this investigation is negative. In fact, the subsystems of GB the­
ory are not encapsulated at all, but they interact strongly. The terminological
distinction is substantive, as it is usually assumed that modular systems are
efficient if the modules are encapsulated. Hence, I conclude, since G B theory
has in fact the structure of a strongly connected system, the interaction of all
the modules cannot be efficiently computed. The presentation draws heavily on
Berwick (1982) and Berwick (1985), where an abstract theory of modularity is
developed. I develop the linguistic content for the abstract principles proposed
by Berwick in the next section.

1.3.1 Modularity as a measure of explanatory
power

A guiding belief for the development of the generative framework is that a the­
ory that can derive its descriptions from the interaction of a small set of general
principles is more explanatory than a theory in which the descriptive adequacy
is obtained by the interaction of a greater number of more particular, specific
principles (Chomsky 196.5). This is because the size of the former theory is
smaller. Each principle of the theory is designed to capture a universal gener­
alization. Thus, each principle can generate a set whose encoding would require
a much larger number of bits than the bits needed to encode the principle itself.

An example taken from syntax is the Case Filter. Instead of characterizing
all the environments where a lexical NP can or cannot occur, the Case Filter
states a generalization, since we can paraphrase the Case Filter as saying that
a lexical NP can occur only in the governing domain of a category [_N].6

Competing theories are then ranked according to the following evaluation pred­
icate (adapted from Berwick (1982, 366)):

60n succinctness see also the discussion on evaluation metrics in Chomsky and Halle
(1968) and Rounds (1991).

18 CHAPTER 1

A theory A dominates a theory B for a family of languages
F iff either A is descriptively adequate and B is descriptively
inadequate or A and B are both descriptively adequate and V
languages L E F, the size of the description of L according to
A is smaller than the size of the description of L according to
B.

A modular theory that encodes universal principles has obtained a greater
degree of succinctness than a non-modular theory. Therefore, according to the
evaluation predicate, we consider a modular theory more explanatory than a
non modular one. For the parser to maintain the level of explanatory power of
the theory, it must maintain the generalizations expressed by the theory, hence
its modularity.

According to Berwick (1982, 400ff), GB theory is modular in two ways: it
is a multi-levelled theory, and at each level several independent principles are
active. The former type he calls inter-level modularity. The latter type he calls
intra-level modularzty: separate independent constraints that apply separately
give rise to smaller grammars.

Intra-level Modularity As far as intra-level modularity is concerned it can be
shown formally (Berwick 1982, 403ff) that the size of a cascade of distinct
principles (viewed as machines) is the size of its subparts, while if these same
principles are collapsed the size of the entire system grows multiplicatively.

Berwick argues that principles are filters that operate on a given language
L. We can think of a filter as a list of incorrect strings that must be ruled
out. Such a filter is a regular set and it can be described by a finite state
automaton. Its complement is also a regular set. Then the language accepted
at the output of such a filter P, is the intersection of L and the complement of
P. Let the size of the machine that corresponds to P, Mp, be l. Analogously,
let the size of the machine related to principle Q, M Q , be n. And so on for
all the principles belonging to the theory. The total size of such a family of
independent principles applying to the language L is the sum of its subparts,
0(1 + m + n), for example.

If P and Q above are independent, then the size of the machine required to
accept the intersect language is given by the cross product of the two princi­
ples. If the two principles are viewed as finite automata, then the size of the
machine that represents the compiled principle will have as many states as the
cross product of the states of the two initial machines. For example, if there is

Grammars and Parsers 19

a principle of the grammar that states the format of the rules in the grammar,
such as X theory, and another principle that lists the categories for a given lan­
guage, such as C, I, N, V etc., then the precomputation of these two principles
will be their cross product, namely every rule format can be applied to every
category.

The worst case of this compilation arises when the two principles are totally
independent, while the best case arises when one of the principles can be entirely
derived from the other. In this latter instance however, there is no need to
keep the derived principle in the grammar. A principle that can be entirely
derived from another can be eliminated from the grammar without affecting
the language that can be recognised.

In sum, the maximal gain in using modularity is obtained when the princi­
ples that are compiled are not independent, while "each additional indepen­
dent principle can potentially simplify the grammar by a multiplicative factor
(Berwick 1982, 406)" , if not collapsed.

Inter-level Modularity G B is a theory with several levels of representations,
that are connected by mapping functions. for example, D-structure and S­
structure are connected by the mapping function move-o. Intuitively speaking,
in such a theory, given levels L1 and L2 , L2 can be constructed in two steps,
first construct L1 and then make a second pass on L1 and construct L2 . Results
from the theory of computation show that even with restricted mapping func­
tions such a theory generates quite powerful formalisms (Berwick 1982, 400ff).
(Chomsky 1957,36) claims that the rule of English that describes coordination
in a single rule cannot be stated in a vocabulary available to a context-free
grammar. Rather a grammar that looks at the derivatwnal history of the sen­
tence is required. This is a transformational grammar. Consequently, several
passes of the grammar on the sentence are allowed, first in the set of phrase
structure rules to build the phrase marker and then the set of transformational
rules. Thus the theory of grammar can describe complex phenomena succinctly
by using different, related levels of representation.

1.3.2 Modularity as efficiency

Intuitively, the advantage gained by modularity from the point of view of ex­
planatory power of a theory is paid with inefficiency, if the gain in succinctness
is obtained at the expense of resource complexity. In other words, the reduction
in size of the program is counterbalanced by increased complexity of its compu-

20

Figure 1.1

D-structure

I move-Q

S-structure

/ '" move-a
Phonological Form Logical Form

CHAPTER 1

The Y model of grammar depicting levels of syntactic representation and their
relations

tation. But under certain conditions, this gain is greater than the loss in ease of
computation, therefore modular theories are preferable. These conditions arise
when the system is built by modules that are loosely coupled among themselves.
Loosely coupled modules have a very limited exchange of information, they are
inJormaizonally encapsulated.

Information encapsulation in itself does not guarantee efficiency yet. A modular
system, whose modules are information ally encapsulated is efficient only if the
union of the results of the computations of the modules constitutes the final
result of the computation. If instead, the final result were the mterSfcilOn of
the computations, it is clear that a lot of useless intermediate comput.ation
has been performed. This latter case, however, is precisely what happens in
the computation of a sentence, and it is particularly evident if we look at the
inter-level modularity of GB theory, for instance.

GB theory can be considered modular only at a very high level of abstraction.
Each module "abstracts away" from the computations performed by the other
modules, and finding the structural description of an input string implies finding
a solution that satisfies all the principles simultaneously. As has been noticed
by Johnson (1989) among others, this process, observed from a procedural point
of view, might not even terminate. Consider what goes on in computing the
structure of a correct sentence. GB theory is constituted by several subtheories
which interact with each other. These subtheories are hypothesized to operate
at different levels of representation: D-structure, where elements occupy their
grammatical function position (subject, object); S-structure, where elements
are in different positions from the level of D-structure; the level of phonological
form, PF; and the level of logical form (LF), where operator-variable and quan­
tification are interpreted. This organization of the theory is usually represented
by the "Y model" , shown in Figure 1.1.

Grammars and Parsers 21

Move-a is a very general movement rule, which accounts for the mapping be­
tween levels. Consider the following example.

(12) Who does Mary like?

The sentence in (12) is a question about the ident.ity of some human whom Mary
likes. It could be answered by Mary lzkes John or shortly John. To capture
the fact that who refers to the object of the action of liking, two levels of
representation are postulated, and "connected" by a movement rule. Thus the
D-structure representation and S-structure representation of (12) are (13)a,b
respectively.

(13) a. Mary loves who.
b. W hOi does l\Iary love ti ?

In (13)b who has moved, leaving behind a "gap", called trace, which receives
the thematic role and syntactic feature of an object. Moreover, the fact that
who is an operator, in the sense that it binds the range of interpretation of the
trace, is represented at a different level. the level of logical form.

Thus parsing a sentence by using the modules of the theory amounts to re­
covering a 4-tuple (DS, S5, P F, LF) that satisfies all the principles at the four
different levels of representation of the theory. A hypothetical parse relation
could be expressed as (14), where the argument indicated as PF is going to be
instantiated by the input string.7

(14) parse(DS,SS,LF,PF) ¢} d-structure(DS) 1\

move-a(DS,SS), 1\

s-structure(SS) 1\

move-a(SS,LF) 1\

yield(SS,PF).

A simple-minded generate and test procedure would guess a possible D-structure
and see if it satisfies all the other constraints. This process might take a very

7The label parse might be a misnomer, as this relation is assumed to be reversible, in that
the theory abstracts away from differences between parsing and generation.

22 CHAPTER 1

long time for a correct sentence, and it might not even terminate for incorrect
input, as one more applicat.ion of move-a could always be postulated, in the
attempt to satisfy the relation in (14). This occurs because a principle that
generates structure, such as move-a has been applied without at the same time
applying the principles that constrain the generation of structure, such as the
Empty Category Principle, which regulates the insertion of traces in the phrase
marker. Several proposals have been advanced to solve this problem. Johnson
(1989) suggests using logic programming techniques, su·ch as partial evaluation
and freezing. They consist in evaluating first those conjuncts whose variables
are instantiated. For example, in (14), yield(SS,PF) would be evaluated first:
PF would be instantiated by the input string. In this way, all the solutions
of the possible D-structures would be bound by the length of the input string,
thus the process would at least terminate. Stabler (1990) proposes precom­
puting lemmas from the axiomatized theory and using them to restrict the
parser. Van de Koot (1991) points out that undecidability (i.e. the fact that
the parser might never reach the conclusion t.hat a sentence is ungrammatical)
could be avoided, if the input string were used to determine an upper bound
on the number of phrases in the sentence, and hence on the number of possible
D-structures and S-structures that need to be considered before failing. This
proposal is based on the observation that each verb licenses a limited number
of arguments (subject, object etc.), plus some structure, called funct.ional pro­
jections (words like that in I think that), therefore the number of nodes in a
tree is a (linear) function of the number of verbs. 8 Thus taking into account
an unlimited number of phrase markers is unnecessary.

All the proposed solutions share one characteristic: they interleave the compu­
tation of the different levels of representation. Therefore, they do not mirror
transparently the inter-level modularity of the theory. Maintaining the modu­
larity of the theory leads to inefficiency, because the level at which G B theory
can be considered modular is not the level of computation. In fact, at this level,
GB is quite the opposite, it is a strongly connected system.

8The linearity of the function has been noted by Correa (1991), and it descends from a
property of linguist.ically relevant trees, captured by X theory. Namely, X theory can only
license a little subtree of at most 3 nodes for each lexical token.

Grammars and Parsers 23

1.4 PARTIAL COMPILATION BASED ON
INFORMATION CONTENT

The survey of experimental and theoretical results of the previous sections
leads one to conclude that the apparently conflicting requirements of efficiency
and linguistic perspicuity can only be simoultaneously met by a parsing design
where some linguistic information is compiled for faster access, while some other
is computed on-line.

Two avenues have beeI'l pursued by others, so far, to build efficient GB parsers.
In one case, a "covering grammr" is compiled. which overgenerates, and is
then filtered by constraints. The compilation is done in such a way that the
overgeneration is well-behaved. For instance, the correct distribution of empty
categories is calculated off-line (Dorr 1993). In the other case, all the principles
are applied on line, but they apply only to a portion of the tree, and are
therefore restricted to a local computation (Frank 1992).

I propose to combine these two approaches by compiling the grammar, at least
partially, off-line. Differently from Dorr, where the amount of compilation is
heuristic and based on practical experimentation, I attempt to find a princi­
pled way of doing this. My approach shares frank's intuition t.hat linguistic
principles have a form, which can be exploited in designing the parser. The
design of the parser that I propose is based on some novel observations on the
structure of linguistic principles.

Observation 1

The first observation is that, in a principle-based linguistic theory, the interac­
tion of some of the principles expands the working space of the parser, while
the interaction of other principles restricts the working space of the parser.
For example, the interaction between X theory and categorial information in­
creases the number of phrase structure rules that the parser must consider in
recovering phrase structure, while the interaction between X theory, categorial
information and restrictions on cooccurrence of categories in phrase structure
rules (c-selection) reduces the number of phrase structure rules. This is exem­
plified schematically in Figure 1.2. (See also (Fong 1991; Berwick 1991a) where
principles are partitioned into generators and filters.)

The first conclusion is, then, that in designing an efficient modular parser, the
interaction between multiplying principles should be kept to a minimum, while
the interaction between restrictive principles should be maximized. Moreover,

24 CHAPTER 1

X Rules Instantiated Rules

xl ::= xO y2
xl ::= y2 xO

cl::= cO n2 cl::= cO v2
cl::= n2 cO cl::= v2 cO
cl::= cO i2 cl::= cO p2

... cl::= i2 cO cl::= p2 cO
Categories

C, V ,P,A,INFL,N

/
c_select(c,i)
c_s~lect (i, v)

Restricted Rules

cl::= cO i2
cl::= cO p2

Figure 1.2
Interactions between Principles: Some of the principles interact to generate
structure while some others act as filters

no generating principle should be applied without also applying the correspond­
ing filtering principle. For example, the insertion of traces should not apply if
the Empty Category Principle (ECP, see below) is not also computed. This
is not a truism, as a truly logic approach would treat all the principles in the
same way. (See e.g. Frank (1990), or the discussion of parsing as deduction in
Johnson (1989).) Treating principles all on a par is unnecessary as it overlooks
important computational information. The dependency of modules on each
other and the best way of computing them, in what order, whether on-line/off­
line, are issues that are not explicitly encoded in a grammar. However, they
can be deduced in part from the "form" of the theory.

Observation 2 Second, I observe that each principle can be decomposed into
separate factors. Following a suggestion by Rizzi (1990, 24), one can observe
that principles ofGB theory tend to have the structure shown in (15), in which
the ECP is used as an example.

Grammars and Parsers

(15) The Empty Category Principle
An empty category x is licensed if the 3 following conditions are
satisfied:

1. x is in the domain of a head H
2. the category of H E { A,Agr,N,P,T,V }
3. there is no barrier or head H' that intervenes between H

and x

25

According to Rizzi (1990, 24), the ECP must satisfy conjunctively a configu­
ration condition, namely a condition on the shape of the tree; a substantive
condition, namely a condition on the labelling of the nodes in the tree; and a
locality condition, namely a condition on the subtree available for the compu­
tation of the principle. This is a single filter in the theory of grammar, but in
the parser it can be computed in pieces, so to speak. This occurs because these
conditions do not influence each other, e.g. the configuration is not going to
depend on the categoriallabelling of the head node. Note that these conditions,
as they can be computed separately from each other, are modular within the
little subsystem of a principle. The computation of the principles consists in
checking the conjunctive satisfaction of the three conditions. To recall Berwick
(1982) notion of dependent and zndependent, these separate conditions are inde­
pendent. The precompilations of these conditions would amount to computing
all the possible combinations. Thus, in this case, precomputation would lead
to inefficiency.

Observation 3

My third observation regards the kinds of linguistic information that occur in
the principles of grammar and that can be computed independently of each
other, and it attempts to give linguistic content to the notions of dependent
and independent. Berwick (1982, 400ft") states, as I reviewed above, that com­
putation of the interaction of dependent principles leads to efficiency, while
precomputation of independent principles does not. He provides examples from
formal languages and automata theory. In order to transfer the discussion to
the linguistic level, one must define what it means to be (in)dependent in a lin­
guistic theory. Intuitively, one would like to claim that "modules" of linguistic
theory are independent of each other. But, as I have briefly argued above, the
modules of GB are not independent of each other.

A different solution can be found if one observes that linguistic primitives fall
into different classes, according to their content. If we look at several of the

26 CHAPTER 1

principles of the grammar that are involved in building structure and annotat­
ing the phrase marker, we notice that what has been presented above as the
structure of a principle, giving the ECP as an example, is a consistent form of
internal organization of linguistic principles. e-assignment occurs in the config­
uration of sisterhood, it requires a e-assigning head, and it must occur between
a node and its most local assigner. The same restrictions are imposed on as­
signment of Case to an NP: assignment of Case occurs in the specifier-head
configuration (Chomsky 1988; Chomsky 1992), given a certain lexical property
of the head ([-NJ), and locally, i.e. within the same maximal projection. The
same restriction occurs again for what is called the wh-criterion (Rizzi 1991),
which regulates wh-movement, where the head must have a +wh feature and
occur within a specifier-head configuration. Categorial selection and functional
selection also occur under the same restrictions, in the complement configura­
tion, i.e. between a head and a maximal projection. The licensing of subjects
in the phrase marker, done by predication, must occur in the specifier-head
configuration. The licensing of the empty category pro also requires the in­
flectional head of the sentence to bear the feature Strong Agr, and it occurs
in the specifier-head configuration. The assignment of the feature [±barrier]
depends on L-marking, which in turn requires that the head is lexical, i.e. not
the node INFL or a complementizer such as that, and that marking occurs in
the complement configuration.

Each linguistic principle can be decomposed into factors, which can be classi­
fied according to their content. Linguistic information belongs to 5 different
classes: configurations; lexical features; syntactic features; locality condi­
tions; referential indices.

(16) a. Configurations: sisterhood, c-command, m-command, ±maximal
projection
b. Lexical features: ±N, ±V, ±Funct, ±c-selected ±Strong Agr
c. Syntactic features: ±Case, ±e, ±-(, ±barrier
d. Locality information: minimality, antecedent government
e. Referential information: indices, ±anaphor, ±pronominal, bind­
ing

These I will call Information Content Classes. Notice that the 3 separate con­
ditions that were described in observation 2 fall into different IC Classes. As we
have noticed, the different factors that compose each principle are independent
and they belong to a different IC Class.

Grammar's and Parsers 27

These observations suggest that there is a clear structure internal to the princi­
ples of the theory that can be exploited to minimize overgeneration. I suggest
a parsing design that mirrors the partitioning of information of observations 2
and 3, keeping the data dependencies that were reported in observation 1. In
particular, the design of the parser that I shall discuss in the following chapters
is based on three main assumptions.

No off-line interaction of configurations and categorial information

I propose a parsing design where topological information is kept separate from
categorial, lexical information, in order to maximize the predictive use of lexical­
invariant factors, captured by X theory. The parser uses standard X theory,
compiled into a table off-line. The main parse table, though, does not en­
code any categorial information. Category information, together with other
information of the same class, such as argument structure and subcategory,
can be compiled into a table of categorial cooccurrences. The two tables of
X configurations and category cooccurrence are consulted on-line. I will argue
extensively in chapter 3 that the proposed partitioning of information is supe­
rior to other types of grammmar encodings. because it is more compact and
more general. Moreover, this way of aggregating information is supported by
psycholinguistic evidence on categorial ambiguity.

The restriction on precompilation imposed here is very stringent. It is incom­
patible with the use of standard context-free rules, specified with category, such
as VP --. V NP. It is also not compatible with recent proposals in the spirit of
licensing grammars (Abney 1989; Frank 1992). w·here structural information is
encoded with each lexical item in the lexicon, thus missing generalizations on
configurations. The restriction on compilation proposed here is advantageous
because it keeps the size of the grammar very small. This, in turn, permits the
use of space intensive techniques, such as LR parsing, which are very fast at
run time.

Off-line compilation of packets of syntactic features for chain forma­
tion

The postulation and binding of empty categories involve two different stages at
parsing: first the empty category must be postulated by the structure building
component, and then it must be licensed by the appropriate lexical head, which
assigns features to the category. I will assume that the structural licensing of

28 CHAPTER 1

empty categories in the phrase marker is done by an augmentation in the X
rules, which can be computed locally to the elementary configurations defined
by the X rule; the licensing by the head is done by consulting the appropriate
lexical co-occurrence table. Features are assigned all together, and they interact
with the structure building component to select the right feature assigment.
This leads to an algorithm for chain formation that can detect the links of
a chain locally, and which, compared to algorithms that do not use syntactic
features (Fong 1991) is more efficient, without requiring the precompilation of
the licit positions for empty categories in the phrase marker (Dorr 1993).

Interleaving of principles respects the separation between phrase
structure principles and feature annotation

A problem that must be solved by a modular theory is how to partition the
information in modules, which I have discussed above, and also how to inter­
leave the modules on-line. Given the form of linguistic principles discussed
above, where factors that manipulate tree geometry are separate from lexical
information and from locality restrictions, the minimal hypothesis is that this
same organization is kept in the parser. For example, if certain agreement
annotation, like the one between the subject and the verb, is triggered only
in the specifier configuration, then the on-line annotation and feature checks
for agreement, will not be performed in complement configurations. There are
two consequences to this assumption: the first is that feature assignment is
interleaved in the parser based on configurations; the second is that locality
restrictions are checked independently. In the proposed parser each linguistic
class gives rise to a separate locality domain. and the domains do not interact.
I will discuss this feature of the parser in chapter 5.

The design of the parser is based on a uniform set of assumptions, as all the
design criteria seen so far fall under a general restriction on what linguistic in­
formation can be compiled on-line. I will call this restriction the IC Modularity
Hypothesis (ICMH). In particular, if we look at observation 3, we can hypothe­
size that compilation of features is advantageous if they belong to the same IC
Class, because they do not co-occurr freely, while it is not advantageous across
IC classes as IC Classes are defined as the "factors" of a principle, thus they
describe component of the linguistic description that are more loosely related
to each other. Thus, we want to keep structural information separate from
categorial information, as well as calculating locality restrictions separately for
each type of linguistic entity (assumptions 1 and 3). On the other hand, we
want features that fall in the same class to be used in packets, because only a

Grammars and Parsers 29

subset of the possible co-occurrence of features do actually occur (assumption
2).

I summarise this idea, as a guideline, in the hypothesis below, and I will there­
fore refer to the assumption on which the design of the parser is based as the
ICMH.

IC Modularity Hypothesis (ICMH)
Precompilation within IC Classes improves efficiency.
Precompilation across IC Classes does not.

In the rest of book, I discuss the advantages of storing X information sepa­
rately from lexical information (chapter 3). I show that the computational
advantages are a consequence of the type of grammar being used, and not a
result of the particular compilation method, by showing that the results hold
across compilation methods. I argue, moreover, that this particular partition­
ing of information mirrors some results on the time-course of the interaction of
structural and lexical information in experimental psycholinguistics.

I then turn to the computation of long distance dependencies. I illustrate
several algorithms that are necessary to resolve the correct postulation and
binding of empty categories: I show that a particular use of syntactic feature
information speeds up the parse, and I discuss the plausibility of using algo­
rithms that require strict left to right annotation of the nodes (chapter 4). In
fact, I notice that the algorithm I propose appears to be interestingly correlated
to a gap in the typology of natural languages. I expand then on incrementality
in parsing, and I discuss several techniques to perform the feature annotation
incrementally.

Finally, I discuss locality restrictions, noticing that different local domains are
related to each moved item. This observation is the most natural, given a de­
sign hypothesis such as the ICMH, because structural information, needed to
postulate a trace, is independent of locality information. This idea is imple­
mented by establishing a different local domain for each moved element, in this
particular implementation the local domain are a "family" of stacks.

The parser is tested on a range of simple, complex and multiple movement
cases, exemplified in Figure 1.3. This subset of constructions has been chosen
because it constitutes the crucial test set for principle-based parsers, since it
involves complex interactions of principles over large portions of the tree.

30

1
2
3
4
5
6
7
8
9

10
11

TYPE
Simple Transitive
Simple Intransitive
Simple Passive
Simple Raising
Embedded Transitive
Embedded Intransitive
Embedded Raising
Simple Question
Embedded Question
Embedded Question and Raising
Embedded Wh-Question

Figure 1.3
Types of Sentences

EXAMPLE
john loves mary
john runs
mary was loved
mary seems to like john

CHAPTER 1

john thinks that mary loves bill
john thinks that mary runs
mary thinks that John seems to like bill
who does john love?
who do you think that john likes?
who did you think that john seemed to like?
'" who did you wonder why mary liked?

2
OVERVIEW OF THE PARSER

2.1 INTRODUCTION

This chapter presents an overview of the parser, and provides an example of
how a sentence is run. \Vith at least some high-level knowledge of the current
implementation, I then turn to compare this parser to other principle-based
architectures. The explanation of the technical parsing terms can be found in
the Appendix, section A.3. An overall picture of the organization of the parser
is shown in Figure 2.1.

Input/Output The input to the algorithm is a sentence, represented as an
unannotated sequence of tokens, followed by an end-of-sentence punctuation
mark. For instance, Who did you love? The output consists of two objects:

1. a fully annotated binary tree, which is the parse tree of the
sentence, in list format. Each node of the tree contains an
identification number, the lexical features, and the syntactic
features of the node.

2. a list of two lists: the list of A chains and the list of A chains.
Each chain is a 3-tuple (list-of-id-numbers, lexical-features,
syntactic-features) where the list of numbers is the list of the
nodes in the tree that belong to the chain, each of them identified
by its number; the lexical features are the features of the head of
the chain, and the syntactic features are the features assigned to
the chain, namely Case and B-assignment. Thus, the algorithm
recovers the entire history of movement. By extracting the last
element in the list of identification numbers that belong to each

31

32 CHAPTER 2

Input ____ 1L-_C_h_a_in_s ____ 1

cons r
constr

LR Parsing
Program

A
constr

B
~

Be6c) -
Stack

Co-occurre nce Table

"- II
~ "-

/

--
LR Table

11

\.
Figure 2.1
Organization of the Parser: The data structures (tables, stack and chains) are
represented as rectangles. Operations on feature annotation are performed by
constraints, represented as ovals.

chain, the D-structure position of the head of the chain can be
returned.

Lexicon and Morphological Analyser The main components of the parser are
a lexicon, a morphological analyser, and a syntactic parser. The input stream
is passed to the parser token by token. For each token the parser calls the
morphological analyzer, which segments words into roots and affixes according
to the morphological rules of the language. Roots and affixes are stored in a
lexicon, which consists of a set of records relating various types of linguistic
information. Each record is a triple (Phon, Synt, Morph), where Phon is the
spelling, Synt is a set of syntactic features, J[orph is a set of morphological
features. The spelling field of these records, the lexeme, is used to construct
a trie -or letter tree- (Knuth 1973) which allows fast access to the records.
Figure 2.2 gives examples of the type of syntactic features employed.

Overview of the Parser 33

LEXICAL FEATURES
LABEL RANGE
Case: {nom, acc, dat, gen}
Category: {n,v ,adj ,prep,adv,det,infl,comp}
Gender: {m,f}
Number: {sing,plur}
Person: {1,2,3}
Role: {ag,th,goal,loc,dir,ben,prop}
Tense: {pres,past}

Figure 2.2
Features contained in the syntactic field of each lexical item

For each category (noun, verb, adjective, etc.) a relation scheme is defined
which specifies feature values. A general relation scheme for the lexical cate­
gories Noun, Verb, Adjective, and Adverb is given in (17).

(17) word(Lexeme,
synt(Category, 8-Grid, Type),
morph(Form, Inflections, Morphological- Features))

After the subparts of a word have been retrieved from the lexicon, their fea­
tures are merged by unification and passed on to the syntactic parser. The
unification process works both as an instantiating and a filtering device. If the
subcomponents of the word can unify because their features match, then many
of the fields that constitute the word's lexical entry will be instantiated, while if
the features do not match then the word is probably incorrect and the morpho­
logical analyzer fails. When the morphemes are correctly identified, the word
is passed to the syntax. Before entering the syntax, each token is projected to
its projection node. This means that from then on only the syntactically rele­
vant properties of the word will be used, such as category or subcategorization
frame.

34 CHAPTER 2

X" ---> y" X' specification
X" ---> X' y"
X' ---> X y" complementation
X' ---> y" X
X' ---> y" X' modification
X' ---> X' y"
X" ---> Y" X" adjunction
X" ---> X" Y"
X ---> empty empty heads
X" ---> empty empty Xmaxn

Figure 2.3
Category-neutral grammar used to build the context free backbone of the parse

2.1.1 The Syntactic Analyzer

I have argued in the previous chapter, that both linguistic perspicuity and
computational efficiency, summarized in the ICMH, lead to the assumption that
structural information should be computed separately from lexical-categorial
information. This assumption corresponds to the division of labour between
context-free methods to compute phrase structure and constraints satisfaction
methods to annotate the trees.

The Grammar The full context-free grammar is shown in Figure 2.3. The
X templates, which express the basic information contained in X theory, are
augmented by f rules. The crucial feature of this grammar is that nonterminals
specify only the X projection level, and not the category.

The Parse Cycle The LR algorithm is encoded in a parse predicate, which
establishes a relation between two sets of 5-tuples, as shown in (18).

(18) ti x Si x ai x Ci x pti ---> tj x Sj x aj x Cj x ptj

In (18) tk E T, the set of input tokens, Sk E S, set of states in the LR table,
ak E A the set of attributes associated with each state in the table, Ck E C the
set of chains, i.e. displaced element, and ptk E PT the set of tokens predicted

Overview of the Parser 35

by the co-occurrence table. Three stacks are used, to shift elements that have
been reduced: a stack for the states traversed so far; a stack for the attributes
associated to each of the nodes; a tree stack of partially recovered trees.

Tables

The grammar shown above is compiled into an LALR(1) parse table (Aho and
Ullman 1972) . The LR(k) parsers developed for programming languages are
deterministic. This means that in each state of the parser there is a unique
next state, i.e. the LR table has no conflicts. Modifications are necessary to
treat natural languages with this method. Namely, the LR(k) parser table can
have more than one action for each entry. The parser can handle arbitrary
context-free grammars, but is no longer deterministic. 1

Co-occurrence Table In order to reduce the amount of nondeterminism, some
predictive power has been introduced. The information that belongs to the IC
class lexical features has been compiled into a co-occurence prediction table.

By looking at the current token, at its category label, and at its subcategoriza­
tion frame, the number of choices of possible next states can be restricted. For
example, if the current token is a modal verb,(Io), the next token to be reduced
must contain a V, as the only possible complement of [0 is VP. Or if the current
token is a verb, and the LR table allows the parser either to project one level
up to V', or it requires the creation an empty object NP, then, on consulting
the sub categorization information, the parser can eliminate the second option
as incorrect, if the verb is intransitive. The choice of possible next states is
restricted to one, in most cases, by comparing the multiple options compiled
in the LR table, which are deduced exclusively from the X grammar, to the
possible next token, which is encoded in a co-occurrence table.

2.1.2 Constraints

As a result of using a category-neutral context-free backbone to parse, most
of the feature inheritance and feature annotation that could be encoded in the
nonterminals is performed in this system by conditions on attribute annotation
associated with each context-free rule, the constraints.

1 Several methods have been researched to augment LR(k) parsers, so that they can deal
with natural languages, mainly based on the observation that NLs are close to LR (Tomita
1985). In some cases a graph of parallel stacks is used (Tomita 1985; Tomita 1987). Fong
(1991) adopts a backtracking approach.

36 CHAPTER 2

This is in fact a necessary modification to render the LR method more suitable
for natural language parsing, as it keeps the phrase structure rule set minimal.
Most of the work in parsing consists in constraint checking, rather than manip­
ulating phrase structure rules. Rather, the phrase structure rules constitute a
context-free backbone which serves to anchor a set of grammar constraints, as
shown in (19).2

(19) X -+ Y Z {:} f(X,Y,Z)

The lefthand side is an expression of X theory. The formula f on the righthand
side represents grammatical constraints on the features of the nonterminals
which must be satisfied to license the production. Each rule is associated to a
subset of the universal constraints that form the grammar, as shown in Figure
2.4. The set of constraints must be satisfied for the rule to apply.

Figure 2.5 shows what features are manipulated by each condition, while Fig­
ure 2.6 shows the pool of available constraints. The parser built this way is
compact, because the number of context-free rules needed to parse a language
is small. The separation of X rules and constraints results in a considerable
reduction of grammar size, as can be observed. If all the categories and all the
X structures had been combined, the grammar size could have been equal to
the cross products of the rules and the constraints, in the worst case. Moreover,
since only highly abstract rules are used, language-independence is achieved.

2This division of labour between phrase structure and constraint checking is also found
in many unification-based grammars such as PATR-II (Shieber 1986), which employ only a
minimal context free skeleton, augmented by unification equations.

Overview of the Parser 37

RULE CONSTRAINT
sentence B-criterion

case filter
specifier categorial selection

predication
percolation of features

complement categorial selection
B-marking
case marking
unification with chain
percolation of features

modifier categorial selection
percolation of features

adjunct categorial selection
percolation of features

unary xmax unification with chain
percolation of features

unary head assignment of features to the specifier
percolation of features
complement head selection

empty head categorial selection (ECP)
feature percolation

empty xmax licensing (ECP)
locality condition

Figure 2.4
Interleaving of X Rules and Other Principles

38

Constraint Features
B-role
case

CHAPTER 2

B-criterion
case filter
node labelling
chain select
chain unify

{ AI, AI, AH, AH, AFoot, AFoot}
AA

head feature percolation
feature absorption
B-marked
case-marked
c-select
locality
licensed empty xmax

Figure 2.5

Case. B-role
category { N, V,C,I, ... }
case, B-role, passive
B-role, ±referential
±case
category { N,V,C,I, ... }
±barrier
±'Y

Filtering Principles and their Range of Features

2.2 AN EXAMPLE

I give an example of a parse, in order to illustrate the main characteristics of
the algorithm. Examples of other constructions that are handled by the parser
are given in Appendix B. The LR algorithm is traced step by step by giving the
state name, the next input token, the contents of the stack, and the chain list.
Feature assignment and chain formation are illustrated by showing incremental
feature assignment, the node labelling procedure, and the postulation of empty
categories.

Here below I show the actual output of the algorithm. For the sake of brevity,
only the most relevant states are shown in full and commented.

INPUT TOKENS: who does john seem to like?

state: 5

token: 11'0

stack: (who, 6, m, s (n,[] ,[bar (2), wh]) , fts C, _»
Abar chains:

(who, 0, m, s (n,[],[bar (2), wh]), fts C,_»

A chains:

Overview of the Parser 39

CONSTRAINT FUKCTION
B-criterion checks if all chains in the chain list have

received a B-role
Case filter checks if all chains in the chain list have

Case
node labelling determines what kind of chain link the

current node is: head, intermediate,
foot

chain selection selects chain to unify with current node
chain unification unifies node with selected chain
head feature percolation consults cooccurrence table and deter-

mines cooccurrence restrictions among
heads

B-marked marks node \\'ith available B-role
case marked marks node with available Case
c-select categorial selection
is-a barrier checks if maximal projection is a barrier
license empty head checks features of closest lexical head
licensing head finds a lexical head to license a maximal

projection
locality checks that the maximal projections be-

tween antecedent and empty category
are not barriers

Figure 2.6
The Constraints that are used to decorate the tree

The token who is recognized as a maximal projection. The format
(g-ho, 6, ro, s (n, [] ,[bar (2), g-h]), its (_. _)) indicates the node
whose lexical content is g-ho, the identification number is 6, which is a maximal
projection m, the syntactic field shows the node is a noun with an empty B-grid,
directly projected to a bar 2 level, and which is a wh word. The features related
to its status as a link in a chain are uninstantiated. However, the node is also
recognized as the member of an A chain. The chain has not been assigned any
features yet.

40 CHAPTER 2

state 9

token vO

stack: (j ohn, 9 ,m, s (n, [] , [bar (2) ,proper]) , fts (_, _»

(does,8,h,s(comp,infl,[]),fts(_,_»

(vho,6,m,s(n, [], [bar(2) ,vh]) ,ftsC,_»

Abar chains:

(vho,O,m,s(n, [], [bar(2) ,vh]) ,ftsC,_»

A chains:

(john,2 ,m, s (n, [] , [bar(2) ,proper]) ,fts C, _»

The two words does, John are shifted onto the stack. John is also recognized
as the potential head of an A chain because of its configuration (SpecIP).

state 1

token vO

stack: (seem, 3, h, s (v, [C,nil, th) , C, ext ,nil)] , [rais]) , fts C,_»

C, 10 ,h, s (infl, [] , [empty]) ,fts C,-»

(john,9,m,s(n,[],[bar(2),proper]),ftsC_,_»

(does,8,h,s(comp,infl, []) ,ftsC,_»

(vho,6 ,m, s (n, [] , [bar(2) , vh]) , fts L,-»
Abar chains:

(vho,O,m, s (n, [] , [bar(2) ,vh]) , fts C, _»

A chains:

(john,2 ,m, sen, [] , [bar(2) ,proper]) , fts C, _»

An empty INFL is pushed onto the stack. In contrast to many other parsers
(Macias 1991; Johnson 1989; Frank 1992) this parser does not operate on an­
notated input, or input which is previously decomposed into morphemes. The
fact that a lexically empty INFL node is part of the input must be computed
on-line. (The same is true for empty, base-generated complementizers.) The
word seem is also pushed onto the stack. Its B-grid encodes the fact that raising
verbs do not assign Case to the object, nor a B-role to the subject. Subcatego­
rization properties other than the B-grid are not encoded here, but are predicted
on-line.

Overview of the Parser

state 6

token 110

stack: (seem, 12 ,h, s(v, [C,nil, th) , (d, ext ,nil)] , [rais]) , fts C,-»

c, 10,h,s(infl, [J, [empty]) ,ftsC,_»

(john,9,m,s(n,[],[bar(2),proper]),fts(nil,ext»

(does,8,h,s(comp,infl, []) ,ftsC,_»

(llho,6,m, s (n, [J , [bar(2) ,Ilh]) ,fts C,-»

Abar chains:

(llho,O ,m, s (n, [J , [bar(2) , Ilh]) , fts C,-»

A chains:

(john,2,m,s(n,[],[bar(2),proper]),fts(nil,ext»

41

External case to the word John is assigned structurally, in virtue of the fact that
the verb is tensed, without waiting for a reduction to apply. (See Chapter 4 for
a discussion of this issue.) The 8-grid slot is marked as expended Cd,ext,nil):

this is needed in order to compute one half of the 8-criterion, which checks that
all roles have been assigned. Marking the expended 8-roles is crucial from a
computational point of view, as it guarantees that each node will license at
most a small number of other nodes, some of which possibly empty. From a
computational point of view, a principle like the ECP, which ensures that empty
categories are licensed only in the environment of nonempty 8-assigning heads,
guarantees termination of the parse, as only a number of empt.y categories which
is linearly related to the number of heads in the sentence can be postulated. (I
discuss licensing of empty categories in chapter 4.)

42 CHAPTER 2

state 9

token 110

stack: C, 14,m,s(n, [], [empty]) ,ftsC,_»

(seem, 12,h, s(v, [C,nil, th) , (d,ext ,nil)] , [rais]), fts C,_»

C, 10,h,s(infl, 0, [empty]),ftsC,_»

13

(john,9,m,s(n,[],[bar(2),properJ),fts(nil,ext»

(does,8,h,s(comp,infl, []) ,ftsC,_»

(llho,6,m, s (n, 0 , [bar(2) , llh]) ,fts C,-»

Abar chains:

(llho,O,m,s(n, [], [bar(2) ,llhJ) ,ftsC,_»

A chains:

(john,2,m,s(n,[],[bar(2),proper]),fts(nil,ext»

The co-occurrence prediction of seem states that if the next token is an infini­
tival marker, then an empty maximal projection is expected. The flag 13 is the
sentinel pointer inserted in the stack to delimit the left context related to the
empty category 10. (The fact that 13 relates to 10 is recorded in the database,
where a constraint on locality is posted.) The locality restriction states that
intervening maximal projections between the empty category and the sentinel
cannot be barriers. (See Chapter 5.)

Overview oj the Parser

state 6

token end_oLf ile

stack: (like, 18 ,h,s(v, [C, acc, th) , (d, ext ,ag)] , []) , ftsC, _»

(to, 16 ,h, s (infl, v, [inf]) ,fts C,-»

C, 14,m,s(n, [] , [empty]) ,fts(ag,nil»

(seem, 12,h, s (v, [C,nil, th) , (d, ext ,nil)] , [rais]) , fts C,-»

C, 10,h,s(infl, [], [empty]) ,ftsC,_»

13

(john,9,m,s(n,[],[bar(2),proper]),fts(nil,ext»

(does,8,h,s(comp,infl, [J) ,ftsC,_»

(who,6,m, s (n, 0 , [bar(2) , wh]) , fts C,_»

Abar chains:

(who,O,m,s(n, [], [bar(2) ,wh]) ,ftsC,_»

A chains:

(john,2,m,s(n,[],[bar(2),proper]),fts(nil,ext»

43

The tokens to, like are shifted onto the stack. The subject of to like, the empty
category number 14, receives the B-role agent, but no case, as the subject of an
infinitival is not case marked.

44 CHAPTER 2

state 9

token end_of_file

stack: C, 20 ,m,s(n, [] , [empty]) ,ftsC,_»

(like ,18 ,h, s(v, [C, acc, th) , L,ext, ag)] , []) ,ftsL,_»

(to,16,h,s(infl,v, [inf]) ,ftsL,_»

C,14,m,s(n, [], [empty]) ,fts(ag,niU)

(seem ,12,h,s (v, [C,nil, th) , (d, ext ,nil)] , [rais]) ,fts C,_»

C, 10,h,s(infl, [], [empty]) ,ftsC,_»

13

(john,9,m,s(n,[],[bar(2),proper]),fts(nil,ext»

(does,8,h,s(comp,infl, []) ,ftsC,_»

19

(llho,6,m,s(n, [], [bar(2) ,Ilh]) ,ftsC,_»)

Abar chains:

(Ilho ,O,m,s (n, [] , [bar(2) ,Ilh]) ,fts C,_»

A chains:

(john,2,m,s(n,[],[bar(2),proper]),fts(nil,ext»

Another empty category is postulated and dropped into the stack, and a dif­
ferent left context for locality is set up, indicated by the sentinel 19.

Overview of the Parser

state 4

token end_oLf ile

stack: C,21,p,s(v, [(d,acc,th) ,C,ext,ag)], []) ,ftsL,_»

(to ,16 ,h,s (infl, v, [infJ) ,fts L,_»

C ,14 ,m, s (n, [] , [emptyJ) ,fts (ag ,nil)

(seem,12 ,h, s(v, [C,nil, th) , (d, ext ,nil) J , [raisJ) ,fts C,_»

C,10 ,h, s (infl, [J ,[empty]) ,fts <-,_»
13

(john,9,m,s(n,[J,[bar(2),proper]),fts(nil,ext»

(does,8,h,s(comp,infl, [J) ,ftsC,_»

19

(who, 6 ,m, s (n, [J , [bar(2) ,wh]) ,fts (nil,nil»

Abar chains:

(who, [0 120J ,_, sen, [] , [bar(2) ,wh]) ,fts(th, acc»

A chains:

(john,2,m,s(n,[J ,[bar(2) ,properJ) ,fts(nil,ext»

45

Reductions begin. B-role and Case are assigned to the object of lzke, which is
recognized, since it has Case, as the foot of an A chain. The set of A chains is
searched for a chain to unify. ([0 120J are the indices of the nodes participating
in the chain.) The unification of features generates a completely annotated A
chain.

46 CHAPTER 2

state 8

token end_oLf ile

stack: C, 25 ,m,s(infl, v, [inf]) ,ftsC,_»

(seem, 12,h, s (v, [C,nil, th) , (d, ext ,nil)] , [rais]) , fts C,-»

C, 10 ,h, s(infl, [] , [empty]), fts C,-»

13

(john,9,m,s(n,[],[bar(2),properJ),fts(nil,ext»

(does,8,h,s(comp,infl, [J) ,ftsC,_»

(who,6,m,s(n, [], [bar(2) ,whJ) ,fts(nil,nil»

Abar chains:

(who, [0 120J >-> S (n, [] , [bar(2), wh]) ,fts (th,acc»

A chains:

(john, [2114] ,_, s (n, [] , [bar (2) ,proper]) , fts (ag, ext»

The subject of the infinitival is identified as the foot of an A chain, because
of its features, and unified with the head of the chain (shown by the indices
[2114]).

state 10

token end_oLf ile

stack: C,35 ,m,s(comp, infl, []) ,ftsC,_»

Abar chains:

(who, [0 120J ,_, s (n, [] , [bar (2) ,wh]) ,fts(th, acc»

A chains:

(john, [2114] ,_,sen, [J, [bar (2) ,properJ) ,fts(ag,ext»

After a series of reductions the well-formedness conditions on chains are checked.
All chains are well-formed, as they all have a O-role and Case. The sentence is
accepted with the following tree structure.

Overview of the Parser

Parse Tree

n2

I

n2 compO

I

who compO n2

I I

does n2 inflO

I

john e

Abar chains:

comp2

I

compi

I

inf12

I

vO

I

vO

I

infli

I

vi

inf12

I

n2 infl1

I I

seem e inflO vi

I I

inflO vO n2

I I I

to vO e

like

(who,[OI20],_,s(n,[] ,[bar(2),wh]),fts(th,acc»
A chains:

(john,[2114] ,_,s(n,[],[bar(2),proper]),fts(ag,ext»

47

48 CHAPTER 2

2.3 RELATED WORK

In this section I review some related work, to set the proposed parser in context.
The number of so-called GB parsers is suspiciously small, mainly due to the
rather fluid state of the formalization of the theory, which renders faithful
implementations very difficult. A few researchers have built GB parsers, and
have grounded their proposals rather firmly in linguistic theory. I discuss some
of them here.

2.3.1 Abney 1986, Abney 1989

In Abney (1986), the idea is proposed that syntactic parsing is driven lexically,
based on licensing relations. A licensing parser uses the properties of lexical
items to recover the structural relations of the elements in the sentence. Each
item in the sentence must be licensed to be grammatical. Licensing relations
are triples, (Directzon, Category, Type), attached to the projection of each
lexical item. Direction is the directionality of the licensing relation, Category
is the category of the licensed item, and Type is the type of the licensing
relation: it can range over Subjecthood, FunctIOnal Selection, B-assigment, and
ModificatlOn. 3

The parsing algorithm to scan a sentence is simple.

(20) Proceeding from left to right, examining two words at a time, as­
sign to the words whatever relation can be assigned.

This parsing procedure, supplemented with some heuristics, exhibits the same
preference that human subjects exhibit in parsing locally ambiguous sentences,
such as While she was mending the sock fell off her lap.4.

This algorithm is too simplified, as all arguments of a verb are going to be
represented as sisters to the verb and there is no mechanism to represent long
distance dependencies. Abney (1989) proposes an augmentation by LR states.
The goal of parsing with Licensing Grammars (LS) is to postulate nodes in

3They will be abbreviated to S, F, Theta, and M in the examples below.
4 For instance, in the sentence While Mary was mending the sock fell off her lap, the NP

the sock is usually read as the object of the verb mend, rather that the subject of fell (Frazier
and Rayner 1982; Kimball 1973)

Overview of the Parser 49

a parse tree in an order which is more plausible psycholinguistically than LL
or LR grammars. 5 Since a simple LS parser does not have enough global
knowledge about the grammar, and it would never recover if it made a wrong
choice on ambiguous input, it is augmented by two mechanisms: LR states,
attached to each node, and a set of heuristics that enable the parser to recover
from incorrect analyses.

This proposal is unsatisfactory in two ways: firstly, taken on its own grounds,
this parser fails to fulfil the stated goals of representational parsimony, and it
makes some incorrect psychological predictions. Secondly, it is based on un­
necessarily negative assumptions about other, more efficient, parsing methods.
We illustrate them in turn.

Abney does not discuss how the LR states, to be attached to each node, are to
be constructed, but there are only two choices: either they are projected from
the lexicon, or they are compiled from a global grammar, which the parser
can look up. Clearly, if the LR states were projected from the lexicon, they
would be useless. The LR states are needed to keep track of global information,
to compute if the shifting of the next token could eventually result in a legal
reduction. But this kind of computation can be performed only if the input
token can be compared against some independently stored grammar. Thus, it
must be that Abney means the LR states to be compiled from some grammar
which encodes global information about phrase structure, and which is used to
guide the parse.

If this is true, the LR states reduplicate some of the information about cate­
gory and structural licensing that is stored in each lexical item in the LS. For
example, the representation for a verb phrase will look like the following.

[VP- V NP.j
VP

F I ()

f- V - NP
I
N

5 Abney (1989) argues that LR parsers are illlplausible because they do not start building
nodes until the end of the sentence is reached, in a purely right-branching structure, while
psycholinguistic evidence shows that hUlllans integrate Illaterial from the input as soon as
possible (Frazier and Rayner 1982). Against such a restrictive view of incremental LR parsing,
see Stabler (1991), Shieber and Johnson (1993) and also the discussion below, in this chapter
and chapter 4. LL grallllllars introduce spurious ambiguities, by which hUlllans do not appear
to be bothered. For example, an LL grammar would find it difficult to choose between the
rules VP -+V NP and VP-+V NP PP.

50 CHAPTER 2

Thus, this representation is not parsimonious, and it fails to fulfill one of the
initial goals for the development of LS grammars, namely to eliminate the
redundancy between the lexicon and the phrase structure component (Stowell
1981). It is true however, that it maintains an order of creation of nodes
different from the one in an LR parser, and especially that it does not suffer
from the (supposed) lack ofincrementality on right-branching structures typical
of LR parsing algorithms.

The LR states are also needed to recover from failure, if the parser starts a
false analysis and must backtrack. A particular heuristic is proposed by Abney,
which should account for the difference between strong and weak garden paths.
The heuristic scans the right edge of the built tree in search of an abandoned LR
state that has a possible continuation of the next input item. The parser cannot
keep an agenda of abandoned states, but it is limited to those structurally
available on the right edge of the tree. Weak garden paths are those for which
such a state exists, while strong garden paths are those for which it would have
been necessary to keep track of abandoned states which are no longer on the
right edge of the tree. This is an operation that the parser cannot. perform,
and strong garden paths arise.

For example, take the sentence Mary expected Eric to leave. At the point where
the parser has seen Eric, it is in the following configuration.

IP

/\
Mary VP

/
[VP -l- V • NP VPl Eric

V [-. • NPl

expected

The notation expect ed [-. • NP] means that expected is subcategorized for
a noun phrase, thus it predicts an NP. (Abney calls these LS states.)6

61 have followed Abney's notation, thus instead of IP, we write, simplifying, NP VP. Note,
however, that a more correct characterization of phrase structure rules would require to use
nonterminals such as IP, and subsequently to be able to know that the first token in an IP
can be an NP. Moreover, this appraoch requires translating the grammar given by linguistic
theory into a covering grammar, more suitable for parsing purposes.

Overview of the Parser 51

Attaching the NP to the main verb is preferred, thus the state [VP ~ V •
NP VP] is abandoned. When the next input word is seen no continuation is
possible, thus the parser must backtrack. As there is an available abandoned
state, which has a legal continuation on an input token of label V, the state is
retrieved, and Eric is attached as the subject of the embedded clause. Abney
illustrates the example in (21)b.

According to this mechanism, the following sentences should both be weak
garden paths, and they should be on a par, since in both cases the attach­
ment as complement is chosen first, thus the alternative option of closing a
constituent earlier is abandoned. This in turn results in the abandoned state
being available on the right edge of the rightmost tree, which is the one being
built. However, the judgments appear to be different, in that (21)a does not
cause any processing difficulty. while (21)b is a garden path.

(21) a. Mary expected Eric would leave
b. While she was mending the sock fell off her lap

Abney's parser does not capture correctly the psycholinguistic evidence that
it was designed to handle. With respect to this latter criticism, we note that,
although we do not put forth an independent. theory of garden paths, the model
we propose, an LR parser, is compatible with several deterministic models of
sentence processing, e.g. the minimal committment model in Weinberg (1993).
Moreover, the mechanism for incremental feature assignment discussed below
in chapter 4, makes the LR architecture much more compatible with models
that maximize grammatical relations any given point. in the parse (Gibson 1991;
Pritchett 1992).

Finally, we note that the main motivation for not adopting the central control
of an LR parser, while still using many other compilation mechanisms, might
not be very strong. Several arguments have been proposed against the idea
that LR parsing is not incremental. I advance some ideas here and discussed
them more thoroughly in chapter 4.

First, LR parsers are criticized because they build nodes in a rightmost fash­
ion. But this is not necessary. While the rules of the grammar are traced
in a rightmost derivation, the input is scanned from left to right. A parser
that does not build trees in the standard fashion, namely building nodes only
on rule reduction, could start asserting structural statements, for instance D-

52 CHAPTER 2

theoretical statements (Marcus, Hindle, and Fleck 1983), III an order that is
more in accordance with the input.

Second, LR parsers are criticized because they do not assign features incre­
mentally. Again, this is true only if feature annotation is done exclusively on
reduction. I argue extensively in chapter 4 that this is not necessary. (Stabler
(1991),Shieber and Johnson (1993) also argue that LR parsers are compatible
with incremental interpretation.) Moreover, the stack of an LR parser, in virtue
of tracing a rightmost derivation, encodes c-command. Thus, all the nodes be­
low the top nodes in the stack, those that constitute the internal structure of
the nodes in the stack, are no longer visible, and they can be redirected to a
semantic interpreter (Berwick and Weinberg 1984).

2.3.2 Fong 1991

The main goal of Fong's work is to build a system to explore the computa­
tional properties of principle-based grammatical theories, mainly a tool for the
grammar writer. This system enables the user to specify a grammar which is
automatically compiled into a parser. Fong defines a set of tools, which can be
partitioned in two classes for expository purposes: one set enables the user to
specify the grammar in a highly abstract language, very close to the definitions
used by the linguist; another set of tools automatically compiles the grammar
specifications into a family of parsers, in a way suitable for experimentation. I
describe them in turn.

The Representation of Principles

The first set of tools addresses the issue of what constitutes a transparent rep­
resentation of the theory of grammar. Fong argues in favour of a representation
which is close to the definition of the linguist, is efficiently executable, and ab­
stracts away from choices of control strategy. The representation of linguistic
principles consists of two components, in this system:

1. top-level macros provided to the user to define linguistic
principles;

2. linguistically motivated primitives.

Overview of the Parser 53

Two top-level macros are provided, to expand the definition of principles au­
tomatically: the former is used to encode quantification over tree structures,
while the latter is used to encode operations, which are compositional on trees.

Universal Quantification over Configurations Consider, for instance,
the case Filter, which states that all lexically realized NPs must re­
ceive Case: in a universally quantified configuration, the property
of being a lexical NP and of being Case-marked must hold. The
macro expands this filter into two different forms, depending on
whether the Case Filter is compiled or not, (see below the discus­
sion on interleaving), but these different expansions are transparent
to the grammar writer, who can just ignore implementation issues.

COInpositional Operations on Trees This macro is used in composi­
tional definitions. Certain parser operations establish non-local
structural relations. For instance, the principle of free coindexa­
tion, states that every NP can be coindexcd with any other NP
anywhere in the sentence. The non-local nature of this principle
poses two problems, which are solved automatically and transpar­
ently by this macro: they pose the problem of how to compute
such unbounded relations in a sensible way, namely a way that
emits all indices, but no duplicate indexing; it also poses the prob­
lem of how to compute such unbounded relations incrementally. If
free indexation cannot be computed until the entire tree structure
of the input sentence is recovered, this means that the principle
does not influence the structure building part of the parse at all.
The compositional macro provides a solution to the latter prob­
lem by computing a compositional principle inductively over tree
structure, i.e. independently over each tree substructure.

The Recovery of Phrase Structure

The second set of tools supports different kinds of automatic compilation of the
principles specified by the grammar writer into a family of parsers, in order to
study issues related to control and efficiency.

Fong argues that the mechanism to recover phrase structure must be efficient
because all structural relations are based on phrase structure; because there
could be more than one phrase structure per sentence; and also because opti­
mization of control (principle ordering or interleaving, see below) depends on

54 CHAPTER 2

the optimality of the structure recovery process, namely how fast the parser
can detect an error in the input. For these reasons, Fong adopts an efficient
architecture, an LR(1)parser. LR(1) parsers are deterministic, and they fail as
soon as it is possible to fail on incorrect input. The LR(1) parse table however,
requires modifications, as natural languages are not LR languages. 7 Fong in­
troduces two main modifications: first, each entry in the action table can hold
an indefinite number of actions; second, every clausal node must cover a string
which contains at least one non-null terminal symbol (in order to guarantee
termination).

The parser uses a finite state automaton (FSA) and three stacks as data struc­
tures. The FSA consists of two tables: a transition table and an action table.
The three stacks record the states of the machine, partially constructed con­
stituents, and contextual information.

Principles of the grammar that filter incorrect structure can be applied to
independently recovered phrase structure skeleta or they can be interleaved
with the phrase structure rules, and be applied on reduction of each rule. In
the former case, all the principles are applied at the end of the process which
recovers phrase structure, thus they require ordering. Fong observes that some
issues related to principle ordering arise (p. 162).

(22) a. What effect has principle ordering on parsing a sentence?
b. Are some orderings better than others?
c. Is it possible to predict which the best orderings are?

As an answer to (22)a, one can note that principles of grammars are divided
into filters and generators. Principle ordering can make a relevant difference,
if the ordering is such that overgeneration is minimized. In other words, if an
ordering is chosen that applies filtering principles immediately after the corre­
sponding generating principles, then a speed up will occur. As an answer to
the second question, Fong observes that there cannot be any global optimal or­
dering. An optimal ordering is one that eliminates ill-formed structure as soon

7Tomita 1985 has shown that natural languages are close to LR. Although natural lan­
guages are ambiguous, therefore they are not LR, they do not exhibit many features of CFLs
that would distance them from LR even more than ambiguity: for instance, natural languages
do not exhibit dense ambiguity or infinite recursion. Tomita argues that natural languages
can be parsed by LR parsers, and that LR parsing is the most efficient for practical purposes.
See also Fong (1991) for LR parsing and Pereira and Wright (1991) for fast algorithms for
practical purposes.

Overview of the Parser 55

as possible, thus applies a given principle first. But different sentences violate
different principles, hence there cannot be a global solution to optimizing the
ordering of the principles. Finally, it is possible to predict the optimal ordering
for each sentence by using computationally cheap cues, which infer from the
input which principle is most likely to fail. Different orderings are not going
to have any effect on the parsing time of a correct sentence, because a correct
sentence must pass all the filtering principles, but they are going to make order­
of-magnitude differences in parsing incorrect input. The experiments with this
dynamic control st.rategy are very interesting because they constitute a bench
mark for comparisons for other control strategies. In particular, the princi­
ple ordering problem arises only if an (almost) generate-and-test procedure is
adopted, which is supposed to be very inefficient. Hence, other control strate­
gies can be compared to it, to see that predicted speed-ups really occur. Our
proposal cannot be compared to dynamic control, but rather it is static, and
therefore more similar to the other strategy that Fong explores.

A different control strategy interleaves the principles with the rules that build
the structure, so that filtering constraints are applied as early as possible. The
main question that arises with regards to principle interleaving is how to inter­
leave the principles in a way which is transparent to the theory of grammar.

Fong argues against a naive model, (i.e. a model that applies every principle
every time some structure is built), because many principles are irrelevant
(i.e. vacuously true), but they still require computation to determine that
the premises do not hold. The classes of structures that never satisfy the
preconditions of a given principle can be determined by using information about
the range of possible phrases to which this principle may apply. This range of
phrases is called a type. Fong defines the type of a principle as being the set
of category labels that are associated with a configuration. Once the type
is computed, each principle is interleaved off-line with the appropriate rules,
depending on the category labels on the left side of the rule, by an automatic
interleaver. The task of the interleaver is to r~cast principle definitions into a
series of specialized predicates for each category in the type of the principle.

The experimental results of the performance of the interleaved parser show
that parsing time increases dramatically as more principles are interleaved; the
increase is greater when generators, e.g. Move-a, are interleaved; adding fil­
ters, such as the case Filter, has no relevant effect. This result is surprising, as
one would expect that, by interleaving, the computational burden of the parser
should be reduced. However, the computation added by the interleaved prin­
ciples turns out to be costly, because a lot of work is done to check constraints
on analyses which, in the end, will be discarded.

56 CHAPTER 2

It is interesting to note that Fong's results on faithfulness and transparency to
the grammar are mainly negative. In his experiments with different compila­
tions of the grammar, he explores dynamic ordering and principle interleaving
with rather surprising results. The former results in significant speed-ups if
the right ordering is found, but it is based on totally heuristic cues, which are
external to the grammar, while the latter, which is based on the grammatical
concept of category to interleave principles, does not speed up the parse, not
even when filtering principles are applied, Of course, the first avenue to explore
would be to reformulate the definition of type. In particular, it seems more
natural and more useful to interleave principles based on configurations rather
than category. For example, Fong notices that B-assignment can occur only in
complement configurations of verbs and adjectives, and specifier of NP. Thus,
he concludes, the type is given by the union of all the prime and maximal pro­
jections of all these categories. The filtering principles will then be called by
a "hook" indexed into the category, for instance reduceNP. The experimental
results show that using principles to prune the search space is not effective in
this kind of interleaving.

Our partitioning of IC Classes leads us to a different interleaving model, in
two main respects. First, the "hooks" of the principles into the rules are the
configurations, i.e. filtering principles are interleaved according to X theory,
and according to the co-occurrence table. Hence the search space is restricted
both by category and by configuration. Secondly, Fong applies all the filtering
principles independently, one at a time, without precomputing the interaction
of some of the filtering principles off-line. The result of this design choice is
that interleaving some principles can cause major slow-downs. Consider, for in­
stance, Trace theory: as soon as this principle is interleaved, a major slow down
occurs because many false trace positions are postulated. This is, however, an
artifact of the way Trace theory is implemented, as functional determination,
therefore the incorrect prediction of a trace cannot be detected locally. Our
partitioning of principles into IC Classes, however, points in the direction of
structural computation of empty categories, which can be determined locally.
For example, Case information can be used immediately to postulate a wh-trace
and to start the search for a possible antecedent. If no antecedent is found the
structure can be immediately discarded.

Fong's approach to the relation between the parser and the grammar, and to
what constitutes a principle-based parser is somewhat different from standard,
but well-supported by a sophisticated implementation. The usual interpreta­
tion of the label principle-based parser is that of a parser which encodes the
theory of grammar transparently, and uses the grammar on-line.(Barton 1984;
Abney 1986; Johnson 1989; Frank 1992; Kashket 1991; Berwick and FOll,Q; 1990).

Overview of the Parser 57

In this work, however, Fong takes the stand that a principle-based parser can
operate at two (representational) levels. One level consists of the specifications
of the linguist's grammar, this level is the direct, declarative encoding of the
grammar. To this purpose, tools for the expression of universal quantification
and compositional principles are provided to the grammar writer. The second
level is the compiled version of the grammar that the linguist writes, namely
the parser, in which many techniques of parsing and compiling optimization
are used. Fong, therefore, does not appear to share the belief that a principle­
based approach to parsing forbids grammar compilation. Rather, Fong adopts
the idea that grammar compilation can be used, as long as it is completely auto­
matic and transparent to the user. Such point of view makes sense practically.
It enables the linguist to be a user of such system, without being concerned
with implementation issues. Moreover, it provides a tool to test the theory
in a more formal way. This kind of approach does not address to claims of
psychologzcal reality that have been made for principle-based parsers (Abney
1989; Johnson 1989).

Although this work shows convincingly that G B can be used as the gram­
matical representation for an efficient parser, it often relies on extralinguistic
augmentations. First, the optimal ordering of linguistic principles is based on
extra-linguistic cues, as we have already observed. Clearly, one could wonder
how such cues are learned (by a machine or by humans), and how they are
evaluated, since it is crucial for them to be computationally cheap.

Another mechanism which is not very plausible, cognitiyely and linguistically,
is the use of unbounded look-ahead. The trace licensing mechanism in the
LR table consists in the insertion of a dummy nonterminal (see below, chapter
4), which triggers unbounded lookahead before inserting a trace in the phrase
marker. The result of such a powerful device is that garden paths, which could
be modelled, at least in part, are predicted to cause absolutely no difficulty.
Another case in which Fong's parser is more powerful, arguably, than the hu­
man parser is in processing cyclic movement. Although it has been extensively
argued that an LR parser might exhibit the right architectural features to
account for the existence of cyclic movement (;\farcus 1980; Berwick and Wein­
berg 1984; Berwick and Weinberg 1985), Fang's parser has been augmented in
such a way that it can postulate unboundedly distant dependencies. In fact,
the stack mechanism has been augmented by an environment stack which en­
ables unboundedly distant tokens of the input to communicate. This stack is
equivalent to a HOLD cell in an ATN (Woods 1970; Wanner and Maratsos
1978).

58 CHAPTER 2

Thus, a fully automatic and user-transparent compilation process is not suf­
ficient to be "faithful" to the representation, unless we ignore completely the
supposed cognitive relevance of the competence level. In other words, Fong's
compilation is faithful to the letter, but it fails to capture the content of the
organization of the competence grammar. It might be also be the case that a
transparent compilation is not completely beneficial. Some of Fong's criticism
against manual compilation is unconvincing, because it forces him to implement
a parser which is unnecessarily inefficient, for example, in the instance of struc­
tural computation of empty categories vs. functional determination. Fong's
determination of empty categories is a generate-and-test approach, because he
rejects the insight in Correa (1988) that empty categories can be efficiently
determined if computed on the basis of structural properties. We present in
chapter 4 evidence in favour of using syntactic features to compute chains. For
example, the foot of an A chain can be readily identified by looking at Case
information. Moreover, psycholinguistic experiments show that the human pro­
cessor makes use of syntactic feat ural information to make structural decisions
as soon as possible (De Vincenzi 1991).

Finally, Fong does not address the issue of implementing the LR parser, in a
way that supports incremental interpretation. This lack of incrementality is
certainly a problem for psychological plausibility, but also for practical appli­
cations. In favour of this approach, however, we can point out that Fong has
developed tools that make it possible to use GB, and the large body of linguistic
literature set in this framework, for many practical purposes.

2.3.3 Dorr 1990, 1993

Dorr (1990),Dorr (1993) presents UNITRAN, a bidirectional translation system
for English, Spanish and German, whose syntactic component is based on GB
theory. Translation is done by mapping the syntactic structures created by the
parser onto a universal level of lexical conceptual structure. This same level
provides the input level for generation of the target language. The main feature
of this translation system is its high degree of compositionality and parameter­
ization. Syntactic differences across languages are captured by the interaction
between principles modelled after GB, which are common to all languages, and
parameters, that can acquire distinct values for different languages. Not only is
this representation valid cross-linguistically, but it can also be used for gener­
ation, with small changes, as a result of the compositionality of the approach,
since syntactic and lexical conceptual information are computed separately. I
concentrate on the syntactic parser, which is also described in Dorr (1987).

Overview of the Parse1' 59

The parser produces a syntactic structure for the input sentence of the source
language, which is then passed to a component for the analysis of its lexical­
conceptual structure. The lexical-conceptual structure of the target language is
then determined. The target language sentence is produced from this by means
of the target language lexical selection and syntactic realization rout.ines.

There are two main stages to parsing a sentence: all the phrase structures
compatible with the input are recovered first, and then constraints are applied.

Phrase Structure

The first stage makes use of a phrase structure grammar, which is compiled
off-line by computing the interaction of several modules of GB theory and of
the language-dependent parameters that have been selected for the particular
source language in question. The relevant modules are X theory, Trace theory,
and the language parameters that set constituent order, the choice of category,
and the availability of clitics in the language. These pieces of information are
then compiled into phrase structure rules which have the format shown below,
adapted from Dorr (1990, 39).

In the phrase-structure template, Ctl and Ct2 stand for positions for adjunction
of maximal projections, /31 and /32 are positions for arguments, specifiers and
complements, and 1'1 and 1'2 are positions for head adjuncts, such as clitics. As
can be noticed, this kind of phrase structure rule is more informative than the
typical X template. Dorr (1990, 40) lists several reasons for augmenting the
phrase structure component this way: first, the co-routining mechanism that
was necessary in a previous version (Dorr 1987) is greatly simplified; second,
this schema is reversible, as much of the information that is needed for parsing
or generation is encoded in the phrase structure component; third, it is faster
than less informative rules, because by encoding some of the constraints in the
phrase structure rules, the number of incorrect structures that are going to be
postulated on-line is greatly reduced.

60 CHAPTER 2

The grammar so produced is then consulted by an augmented Earley's algo­
rithm (De Marcken 1990). Earley's algorithm is a tabular parsing method that
consults the grammar directly. Since many parses are pursued in parallel, at
the end of this stage, more than one phrase structure could be compatible with
the grammar and the input.

Constraints

The second stage of the parse consists of the application of the other modules
of the theory: Movement theory, Case theory, Trace theory, Binding theory,
and (j theory.

After the trees compatible with the input have been recovered by the Earley
algorithm, the distance between the landing site of a moved element and its
source position is checked, in accordance with Subjacency. Case theory checks
that all nominal phrases receive abstract Case, which means that they are the
complement of a verb or a preposition, or they are the subjects of a sentence.
Trace theory is parameterized, so that languages like Spanish or Italian, which
allow the subject of a sentence to be understood, can still be parsed by the same
mechanism which would mark such usage as incorrect in German or English.
Finally, Binding theory construes the reference of nominal and pronominal
elements.

(j theory is the module of G B that controls the correct distribution of arguments
of verbs. In Dorr's system it is the interface with the semantic processor. The
interpretation of a sentence, in this system, is performed by reconstructing
the lexical-conceptual structure (Jackendoff 1983; Jackendoff 1990), which is
then used as input to the generation of the sentence in the target language.
The generation process runs through the same modules in reverse. After the
lexical-conceptual structure in the target language has been selected, syntactic
phrases are generated, according to their syntactic canonical realization in the
language, and they are attached to the X template seen above, and finally all the
feature annotation is checked with the same modules that impose constraints
in parsing. Parameters related to constituent order and adjunction procedures
are relevant to this process.

This system encodes GB principles in an indirect way, in that it compiles them
into complex phrase-structure rules off-line. The relation to the theory is main­
tained because the same syntactic structures are produced that the theory pre­
dicts, the algorithms are modularized in a way that strongly resembles the
modules of the theory and parameters are used to capture differences between

Uverview of the ?arser 61

languages. However, there is no principled definition of precompilation, and
parameter specifications and settings do not always reflect linguistic theory
directly.

The two-stage architecture of Dorr's system addresses the issue of prznciple
interleaving by expanding all the possible structures compatible with the rules,
and then applying all the non-local constraints to the forest of trees thus gen­
erated. This approach is sound and complete and it can be practical if the
algorithm to build phrase structure is very fast. Moreover, Fong shows ex­
perimentally that in principle-based parsers of comparable complexity, this
approach, where the non-local constraints are checked last, is more efficient
than a truly interleaved one. However, this solution has some shortcomings.
First, it does not provide principled reasons to precompute only certain pieces
of information and not others. The solution to this problem here is heuristic.
Second, it fails to provide interesting suggestions on how to limit the search
space, when building phrase structure.

The main difference between Dorr's approach and the approach presented here
is that Dorr uses extensively covering grammars off-line. In particular, the
positions where an empty category could occur are precomputed into phrase
structure rules, and so is categorial information. This gives rise to a rather large
grammar. Since Earley's algorithm is used, an even larger number of parsing
states is generated at run time. The space of possible parsing states is then
pruned down by applying filtering principles. On the other hand, the design
proposed here attempts to reduce the space of parsing states much earlier in
the parsing process.

On the other hand, there are also similarities. The definition of IC Classes
and of the ICMH is an attempt to provide a principled explanation for Dorr's
experimental result (Dorr 1987) that only partial precompilation of principles
gives rise to speed ups.

Dorr's model is particularly interesting, as it is the only principle-based system
dealing with cross-linguistic variation by using the parameters envisaged by the
theory in an efficient design. 8

8Kashket (1991) is a parser for English and Warlpiri, which is implemented as a totally
nondeterministic theorem prover. As such, it is designed with different goals and it does not
address the same questions as the present work.

62 CHAPTER 2

2.3.4 Frank 1992

Frank (1992) puts forth an interesting proposal for a GB parser expressed with
the formalism of Tree Adjoining Grammars (TAGs) (Joshi 1985).

Frank observes that all principles in the theory of grammar undergo some
locality restrictions. Therefore, he proposes that locality restrictions are not to
be expressed explicitly, but they are part of the metagrammar and therefore
should be captured by the formalism that is adopted. In particular, he proposes
that these locality restrictions can be captured in the TAG formalism naturally.
All the principles of the grammar should be statable over elementary trees as
defined in TAG. An elementary tree (ET) is, according to Frank, a lexical
element, with its arguments and its functional projections. Thus, for example,
a verb with its arguments and the Inflection and complementizer projection is
an elementary tree. A DP with its argument is another kind of elementary tree.

This proposal is supported with evidence from linguistic theory, by showing that
phenomena that require explicit locality constraints in GB can still be captured
in this framework; with evidence from acquisition, by showing that stages of
language development can be seen as the development of the manipulation of
the elementary trees provided by TAG; and with evidence from parsing, by
showing that TAG provides a formal definition of bounded search and thus GB
theory recast in these terms can be efficiently parsed. I concentrate mainly on
the proposal related to parsing.

Frank claims that his parser is psychologically plausible because it builds syn­
tactic structure and semantic interpretation incrementally; moreover, the parser
is efficient because the representation it uses (TAG) guarantees a bounded work­
ing space.

The design of Frank's parser rests on the observation that G B principles are of
two kinds: those that express relations between adjacent nodes in a graph, and
those that express constraints on the well-formed ness of structures that span
more than two adjacent nodes in a graph. The former is captured by licensing
relations, like Abney's, while the latter by TAG. Structure is built from left to
right while scanning the input, as a result of satisfaction of constraints that are
directly attached to each node. When a node is projected from the input, it is
paired with two sets oflicensing features: a set of gives and a set of needs. Gives
are those feature bundles that can license other nodes in the tree, while needs
are feature bundles that must be satisfied for the projected node to be licensed
and thus incorporated into the structure that is being built. The association

Overview of the Parser 63

of a node to a set of gives is determined lexically while the association with a
set of needs is done by principles of the grammar, depending on the category
of the node. For instance, a node whose label is V is lexically associated with a
set of gives that constitute its thematic grid, whose cardinality determines how
many arguments the verb takes and whose content determines what arguments
it takes. An NP, on the other hand, is associated with a set of needs that
require for the node to receive Case in order to be licensed, as stated by the
Case filter, and to receive a {I-role, as stated by the {I Criterion. The Extended
Projection Principle for instance is encoded as a give of type Subjecthood of an
I node.

In this way, phrase structure is built without context-free rules, by simply re­
quiring that all gives and needs on a node be satisfied when a node is no longer
on the right frontier of the structure that is being built. Those nodes whose
gives and needs are not satisfied at this point are considered to be part of a
chain, and are pushed onto a trace stack. This method for building phrase
structure requires that all empty categories must be explicitly licensed, there­
fore it disallows intermediate traces. Intermediate traces are a by-product of
the assumption in GB that long movement must be successive cyclic. Such an
assumption guarantees that what appears to be unbounded long movement is in
fact a sequence of shorter steps, each of which obeys the standard locality con­
straints on derivations, namely Subjacency. In this framework no need arises
for the Subjacency constraint on movement, and consequently no intermediate
traces, because locality is a primitive in TAG.

Frank observes that constraints in G B are of two types: very local and bounded
non-local. Determining the correct interaction between the local and non-local
constraints is important for the explanatory power and the efficiency of the
parser. It constitutes the problem of principles interleaving that we have men­
tioned in reviewing Fong's work. Frank proposes to perform the interleaving at
the point where each piece of the structure corresponds to an elementary tree,
as defined in TAG. Whenever the parser has built enough structure so that
it constitutes an elementary tree, either auxiliary or initial, it detaches this
piece of structure, by performing reversed licit TAG operations: adjunction
and substitution. The unadjoinedfunsubstituted pieces of structures then un­
dergo well-formedness checks, and if these checks are successful, they are passed
to a semantic module for interpretation. According to Frank, this approach has
two very desirable consequences: it supports incremental semantic interpreta­
tion and it guarantees that the parser will always operate in a working space
of bounded size.

64 CHAPTER 2

The design of this parser solves some of the issues that we are addressing in an
elegant and coherent way. However, some of the claims about it might be too
strong.

First of all, we note that all the necessary augmentation to make the LS gram­
mar work make it equivalent to a phrase structure grammar like X, possibly
with the disadvantage of being procedurally encoded instead of being declar­
atively encoded as a grammar of rewrite rules. For note what happens when
a lexical item is projected from the lexicon. Each item is projected at three
different levels, (which correspond to the three levels of X theory), then each
bar level is coupled with the appropriate gives and needs, which corresponds
to having branching possibilities only at those two levels, and moreover corre­
sponds to binary branching, as only one satisfaction of each give is possible.
As this same procedure is repeated for all lexical items independent of category,
this corresponds to the fact that X captures a cross-categorial generalization.

One disadvantage of LS grammars, which we already reviewed above in dis­
cussing Abney, is that they do not provide enough global knowledge to re­
cover from incorrect analyses. The possible augmentations envisaged by Ab­
ney, which Frank does not consider, are representation ally redundant and do
not correctly model human performance. Frank's parser as it is presented,
could not parse head-final languages, as the parser has no ability to stack argu­
ments while waiting for the head. The augmentation with a stack, is possible,
but then the parser would incur the problem that lead Abney to use LR states.
Namely, in order to parse head-final languages, a "shift" operation must be
added to the current available operations of the parser. As there could always
be a licensing head in the right context, which would license a left-branching
structure, the "shift" operation is always correct. But then, the parser might
reach the end of the input before realizing either that it pursued an incorrect
analysis, in the case of ambiguous input, or that the input is ill-formed. Thus,
this augmented parser could not recognize errors as soon as they are encoun­
tered, in violation of the requirement of incrementality that Frank states at the
onset. On the other hand, the fact that the present version of the parser does
not incur this problem is an artifact of it not being sufficiently general. If both
the stack and the augmentation of the LR states were added, the empirical
coverage could be achieved, but the architecture would be redundant and it
would not fulfill one of the major desideratum of Frank's design, namely to
avoid grammar compilation.

As a third point, it is not clear that the entire array of linguistic facts can be
captured by this parser. It has been shown that the problem of determining
licit coreference in a grammatical theory where the assignment of indices is

Overview of the Parser 6.5

done by free indexation, such as GB is, is NP-hard (Fong 1990). Fong suggests
that binding theory can be seen as the way to limit the domain of possible
coreferring items in the same sentence. This is not true for principle C of the
binding theory which states that an R-expression must be free, which means
not coindexed with any c-commanding elements. It does not appear likely
that Frank's parser can maintain its limitation on the working space and still
compute all the possible coindexations, without assuming, like many other
parsers, that coreference is computed at a different level from the computation
of phrase structure.

Finally, the claim that the parser can work in linear time is based on an analysis
that does not take into account some computations. Several issues are at stake.
First of all, the structure building component of this parser parses a sentence
in O(n 2) time on non-ambiguous input, while other techniques, would parse in
O(n) time. Second, the claim is made that polynomial time can be reduced to
linear time by reducing the size of the work space to the finite bound determined
by an ET defined by TAG. But this computation of the complexity does not
include the actual work to determine that a given substructure is an ET. Since
this checking is done for each attachment and all the nodes in the tree are
checked, then this procedure will have an O(n) best case, which arises when all
attachments are undone as soon as they are done, thus always checking over
a single-node tree. The worst case occurs when no excisions are made and
the final tree corresponds to an elementary tree (this is an actual possibility
in TAGs). In this case the procedure is, again, O(n 2), as the introduction of
ETs has not reduced the work space. More common cases will range between
the two, and they will take linear time, with increasing larger constants for
smaller numbers of elementary trees. Moreover, the claimed linear time of the
algorithm does not take into account the needed computations to determine
whether, at each point of excision, an unadjoining or an unsubstitution must
be performed. Franks does not discuss the mechanism, but from his examples
it is clear that cases can arise when there is ambiguity of choice between the
two operations, and choosing the correct one requires knowledge about the
structure which is going to be built several tokens ahead.

For example, consider the following example Randy seemed to lzke the pizza
yesterday (Frank 1991, 21). Up to the 10 projection of the embedded clause, (
i.e. the expended input is Randy seemed to), the structure built by the parser
is shown in Figure 2.7.

Frank points out that this structure includes two independent ETs, the two I's.
He comments:

66

T1

IP

tns/agr
V
seem

,T2

I' ',' '
I

lp
to

CHAPTER 2

Figure 2.7
Parsing with TAGS

"Hence, we must reduce the structure in some way. There
are two possibilities for how this could be done. We might
undo a substitution of the I' node dominating to or else we can
undo an adjoining of a structure recursive on I'. The problem
with this possibility is that it would give rise to a structure in
which the DP has an unsatisfied theta need, and has no further
possibilities for satisfaction. In the case of the unadjoining, the
DPs become part of the lower clause's elementary tree and can
receive its theta role from there. (Frank 1991,21)"

Since the parser is at a point of excision, this means that the computation
about the ET T1 , the one which is being excised, depends on some features
of T2 , a different ET. Thus the parse working space is not limited to a single
elementary tree. Finally, it is not clear how the recognition of an elementary
tree is performed. In the absence of a compilation procedure on the set of
elementary trees, that could guide the parser, whenever a node is attached and
the tree is checked to see if an elementary tree has been built and needs to
be detached, the entire set of elementary trees must be explored, in the worst
case.9

9 LR parsing techniques for TA GS have been developed (Schabes and Vijay-Shanker 1990).
Frank does not mention them, but their proposal would not comply with Frank's ban on
grammar compilation.

Overview of the Parser 67

2.3.5 Crocker 1995

Crocker (1992), Crocker (1995) describes a principle-based parser, founded on
the tenet that the parsing architecture must maximize incremental interpreta­
tion. The parser is the implementation of the theory of grammar, as directly
as possible, therefore it is modular. Modularity permits distributed concurrent
processing of four modules, which are defined on the basis of the representation
they use: phrase structure, chains, argument structure, and co-reference.

Psycholinguistic research has proposed models that attempt to minimize syn­
tactic complexity of the parse, either by adopting principles of representational
parsimony (Frazier and colleagues), or by assuming a very efficient algorithm
(deterministic parsing.) Crocker suggests instead that the parser does not work
independently of semantic interpretation, and that in fact, incremental inter­
pretation determines the behaviour of the parser. As far as the structures that
the parser builds are concerned, the main consequences is that a fully connected
structure must be built at each step, and that all structure that can be built
must be. This general principle also influences the time course of parsing, as
the parser commits to an analysis a soon as a plausible interpretation is possi­
ble. Thus the syntactic component is not "autonomous", since it is influenced
by semantics and pragmatics. However, the syntactic component is modular,
because each "representational", or "informational" type requires a different,
specialized vocabulary. The modules do not communicate among each other,
and each of them is sensitive only to one particular type of input. (For instance,
the chain building module does not have access to the category and the level
of the chain element).

The Psycho linguistic Model

Each of the representational modules that comprise the parser has a specific
behaviour. Two of these treat information - phrase structure building and
filler-gap dependencies - that have been studied experimentally.

The Phrase Structure (PS) module builds structure based on constituency and
sisterhood relations, and it serves as the basis to compute chains, coreference,
and argument structure. The behaviour of this module must conform to at­
tested psycholingustic evidence. In particular, it assumes minimal lexical in­
formation, supported by experimental results arguing that sub categorization
information is not immediately used by the parser (Mitchell 1987). This mod­
ule also incorporates structural attachment preferences, defined as a preference
for argument attachment (AA) and a preference for base-generated A positions

68 CHAPTER 2

over moved A positions. The former strategy accounts for PP attachment pref­
erences, reduced relative clauses, and the preference for an NP complement
over a clausal complement. The latter strategy is supported by evidence in
verb-final languages. In German, a PP which is ambiguous between attach­
ment to an NP and a verb, is preferentially attached as the modifier of the
noun. If a long adverb intervenes between the PP and the verb, the parser
commits to this analysis. If the sentence turns out to require a complement
analysis of the PP, speakers report a garden path. Crocker correctly notices
that this range of data could not be explained by a model that attempts to sat­
isfy lexical requirements at each step, such as Pritchett (1992). Both strategies
are motivated by the principle of incremental interpretation, as both expand
the interpretable 8-grid as much as possible. They obey the modularity design
because they both operate exclusively on structural information.

The empirical evidence accounted for by the chain module is best described
by Frazier's "Active Filler Strategy": once a filler has been seen, rank a gap
above all other options. In order to interpret this trace-eager behaviour in a
modular parser, Crocker assumes that postulation of traces is performed by the
PS module, which " ... continually attempts to posit traces which are sustained
only if they can be incorporated into a well-formed chain structure. (p.103)"
Interestingly, Crocker observes that filled-gap effects (Crain and Fodor 1985),
as well as some of the attachment phenomena in head-final languages, can be
explained by thinking of traces as belonging to a different "dimension" than
the rest of the string. A trace must be postulated as soon as it can be, but then
overt material can still intervene between the trace and the licenser. Crocker
proposes a strategy that posits traces as soon as the antecedent has been seen,
called the Active Trace Strategy, and connects it immediately to the tree. This
strategy explains effects of VP attachment in verb-final languages, such as
German and Dutch, where verb complements seem to be integrated into the
structure even before finding the base position of the verb, which has moved to
second position in the sentence.

The Computational Model

The properties that the parser must have, make the computational model non­
trivial. In particular, it is interesting to explore solutions for the combined
assumptions of modularity and incrementality, for the assumptions of informa­
tion encapsulation according to representational types, and the direct use of
grammatical principles.

Overview of the Parser 69

Adopting the framework of parsing as deduction (Pereira and Warren 1981),
Crocker assumes that parsing is like theorem proving, and a grammar is a
set of axioms. The crucial property of the deduction system, which makes it
effective, is that the principles of the grammar are defined as conditions on
locally well-formed branches.

In this implementation, each linguistic representation type

" ... is a meta-interpreter, whose task is as follows

1. play the logical role of structure generators,
proposing instances of un instantiated structure for
the particular representation.

2. sustain only those structures that are well-formed
formulae with respect to the 'necessary'
axioms/ constraints.

3. determine the control strategies and preferences,
where multiple structures are licensed in accordance
with performance theory.

(p. 118)

By using the predicate freeze, each word goes through the whole set of modules
at a time, simulating concurrent processing and incrementality.

The PS module is a meta-interpreter for X theory and traces, that implements,
at least in part, the Active Trace Strategy. It uses a left corner algorithm
to combine bottom-up instantiation of structure to top-down postulation of
traces for which an antecedent has already been seen. The Chain module
determines heads, tails, and links of a chain, by using the append relation.
This module does not see the whole tree, but only that part which is visible
for chain building purposes: the trace and the elements that do not occupy
a base-generated position (Spec IP, Spec CP). The Principle of Incremental
Interpretation requires to construct a maximal partial thematic structure as
the input is received.

The parser presented here and Crocker's model are, quite clearly, very similar
as far the relation between the grammar and the parser is concerned. In both
proposals a modular design is adopted that does not conform directly to the
theory, but rather the so-called modules of the theory are recast in compu­
tational terms. In fact, the relevant classes that are defined operate on very

70 CHAPTER 2

similar objects. However, my partitioning does not rely on the particular repre­
sentation used. The spirit of the hypothesis is that linguistic theory is formed
by heterogeneous types of information, and that the representation used to
describe them is a derived concept.

The two parsers differ in their purpose, as Crocker's goal is simulating human
behaviour. Consequently the issues addressed and the model proposed are
actually quite different in the implementation.

First, Crocker adopts a parsing model that might be computationally inefficient,
since he requires incremental interpretation. Admittedly, he adopts a point of
view where global requirements might at time slow down particular components
of the language understanding system. Since solid data on human behaviour are
actually lacking, all positions are in fact justified. I have adopted the opposite
position, since I assume that the correct model is a fast parsing algorithm,
which works autonomously from the semantic interpreter. I find that exploring
the issue of efficiency is crucial to develop models that are at the same time
satisfactory engineering systems and plausible models of human performance.

Secondly, Crocker differs in the solution he proposes for the prznciple interleav­
ing problem, which is done by modifying the fiow of control of the theorem
prover by using the freeze predicate. While this is probably a more plausible
model of human behaviour, as it assumes concurrent processing of indepedent
modules, it raises some computational issues with respect to empty categories.
Empty categories pose a particularly complex problem to the kind of model
that Crocker assumes, as it is not clear how the parser would behave on in­
correct input. Assuming that the parser backtracks when it finds an error,
a free postulation of empty categories might send the parser into an infinite
computation of empty categories if the conditions for the their postulation are
not immediately checked. Crocker does not discuss this point, but indeed his
predicate ps_ec_eval must contain some checking of this sort for the parser to
run. But notice that if this is true, then Crocker is forced to use lexical and
thematic information in his PS module, decreasing the kind of encapsulation
he wants to build in his parser.

This model is very interesting, however, and especially the treatment of empty
categories for verb-final languages and the postulation of the Trace Active Strat­
egy are particularly enlightening, in their separation of the postulation of traces
from the linear recognition of the input.

3
THE PHRASE STRUCTURE

COMPONENT

3.1 INTRODUCTION

In chapter 1, I have presented an hypothesis on how to partition the differ­
ent types of computations that need to be performed to recover the syntactic
structure. I have argued that linguistic theory itself, in particular the content
of the principles, provides a guideline to perform this partitioning.

In the present chapter I substantiate this hypothesis and attempt to test it.
The methodology is computational. A parser has been implemented, and the
size of the data structure and the amount of nondeterminism in the tables will
be used as indices of the effectiveness of the proposed phrase structure building
procedure. The main result is that precompilation of structural configurations
and categorial information increases the size of the grammar without reducing
the ambiguity that has to be resolved on-line. I shall also discuss the literature
on the interaction between syntactic and lexical ambiguity to argue that there
is evidence that, in certain instances, lexical co-occurrence restrictions can be
computed without taking structural information into account, which supports
separating X rules from categorial information, as I suggest.

I assume that the partitioning of the information predicted by the ICMH can
be implemented in an LR(k) architecture. The choice of this type of pars­
ing architecture is independent of the ICMH, although strongly motivated by
parsing factors. First, LR parsers have the valid prefix property, namely they
recognize that a string is not in the language as soon as possible (other pars­
ing methods have this property as well, for instance Schabes (1991). A parser
with this property is incremental, in the sense that it does not perform un­
necessary work, and it fails as soon as an error occurs. Second, the stack of

71

72 CHAPTER 3

XII --+ yll X' specification
XII -+ X' yll
X' ---t X yll complementation
X' ---t y" X
X' --+ y" X' modification
X' --+X/yll

X" --+ y" XII adjunction
X" ---t X" y"
X --+ empty empty heads
X" ---t empty empty xmaxn

Figure 3.1
Category-neutral Grammar

an LR parser encodes the notion of c-command implicitly. This is crucial for
fast computation of chains. Third, LR parsers are the fastest on unambiguous
input.

3.2 THE DATA STRUCTURES AND THE
PARSING ALGORITHMS

3.2.1 The Grammar

In accordance with the definitions of IC Classes, notions such as headedness,
directionality, sisterhood, and maximal projection are compiled and stored off­
line, because these notions belong to the same IC Class, configurations. These
features are compiled into context-free rules in our parser. The full context-free
grammar is shown in Figure 3.1. These X templates express the basic informa­
tion contained in X theory, namely that phrase structure rules are endocentric,
that they encode the notion of maximal projection, and that they are order
independent (see Appendix A for definitionsY Two crucial features of this
grammar are that nonterminals specify only the X projection level, but not the
category, and that rules are binary branching.

1 It is important to note that not any encoding of context-free rules will do the job.
Kornai (1983) has shown that X grammars have formal properties that are different from CF

The Phrase Structure Component 73

The basic X rules are augmented by rules licensed by Trace theory, in particular
by that part of Trace theory that deals with configurations. According to this
module of GB, only heads and maximal projections can be empty categories.
Trace theory does not specify the distribution of empty categories, which is the
result of the interaction of several other modules. Consequently, the possible
positions of empty categories are not restricted off-line in the current parser.
In the absence of other constraining principles, empty categories can occur in
every position where a maximal projection or a head can occur.

Although interested in achieving succinctness of representation, I have not cho­
sen to use an IDjLP representation (Gazdar, Klein, Pullum, and Sag 1985). In
the IDjLP formalism, the righthand side of rules does not encode linear order.
Shieber (1984) shows that Earley's algorithm «Earley 1970) can be applied to
these grammars by applying the dotted items to the rules in multiset notation,
instead of using ordered rules. The saving in grammar size of this formalism
is considerable. For instance, a single unordered rule such as S ~ abc d e
corresponds to 5! = 120 rules in an ordered eFG. The number of state sets is
reduced likewise. This is advantageous because not all linear orders need be
spelled out in advance, since not all of them arise, but they are determined by
a given input. However, the worst case running time of this algorithm is an
exponential function of the number of input tokens, while Earley's algorithm
worst case is proportional to the cube of the input. As Barton (1987, 80ff)
shows, the worst case for CCFGs arises when the grammar is ambiguous and
includes A rules. Natural languages have these properties.

" Informally, the reason why Shieber's algorithm some­
times suffers from combinatorial explosion is that there are
exponentially more possible ways to progress through an un­
ordered rule expansion than an ordered one. When disam­
biguating information is scarce the parser must keep track of
all of them." (Barton 1987, 83)

Barton shows also that the exponential time complexity is inherent in rDjLP
recognition, independent of the choice of algorithm. In other words, IDjLP
recognition suffers from unnecessary combinatorial explosion. (We refer the
reader to Barton, Berwick, and Ristad (1987) for proofs and to Rounds (1991)
for further discussion of the relevance of these results.) Since the main reason to

grammars, hence a parser that uses context-free rules, which do not obey the X convention
explicitly, are not going to capture the exact properties of natural languages.

74 CHAPTER 3

adopt the ID /LP formalism is grammar succinctness, I have not adopted it and
I have pursued succinctness of representation by partitioning the information
usually encoded in a context-free grammar along different lines, specifically by
separating X information from categorial information.

3.2.2 The Parser

Separation of structural from categorial information is obtained by compiling
two tables that the parser consults on-line: an LR table, where X information
about the shape of the tree is stored, and a second table, where information
about the cooccurrence of category and subcategory information is stored. The
LR algorithm takes an unannotated sentence as input and, by consulting these
two tables and other auxiliary data structures, produces an annotated tree as
output.

The LR Table

The grammar is compiled into an LALR(l) parse table. The table can have
more than one action for each table entry, since the grammar is not an LR
grammar. The parser can handle arbitrary context-free grammars, but is no
longer deterministic.

Three stacks are used: a stack for the states traversed so far; a stack for the
attributes associated to each of the nodes in the state stack; a tree stack of
partially recovered trees.

The Parse Cycle

The encoding of the parse cycle, described in Chapter 2 is different from the
standard encoding of an LR parser, as it establishes a relation, while an LR
parser is deterministic, hence it establishes a function from an input pair, a
state and a token, onto a new state. Our parser is more elaborate and less
restrictive, because it imposes conditions on the attributes of the states and
it allows nondeterminism. Nondeterminism is reduced by using the table of
lexical co-occurrences.

Table of Lexical Co-occurrence and Left Corner Prediction

The grammar used in the LR table is a pure X grammar, and it is not instan­
tiated by category. Thus, it is underspecified with respect to the categories in

The Phrase Structure Component 75

the input, and many instances of LR conflicts can be simply teased apart by
consulting knowledge about cooccurrence restrictions, which would be stored
in the rules themselves if ordinary context-free rules were used.

For example, if the current token is an 10 , the next token to be reduced must
contain a V, as the only possible complement of 10 is VP by functional selection.
Or if the current token is an intransitive verb, and the transition table allows
the parser to either project one level up to V' without branching, or it requires
the creation of an empty object NP, then, on consulting the sub categorization
information, the parser can eliminate the second option as incorrect. For in­
stance, consider the standard context-free rules in (23), which are instantiated
by category, which correspond to the three cases mentioned above.

(23) a. V' -+ V NP
b. V' ---> V
c. I' -+ 10 VP

Since our parser uses only X rules, the rules in (23) correspond to (24).

(24) a. X' -+ Xo
b. X' --> Xo YP

Thus, when the parser has scanned the head (Xo), it will be in the followin,g
state. (We use the dotted item notation, illustrated in Appendix A.3.)

(25) a. X' -+ Xo •
b. X' -+ Xo • YP

In an LR parser, this situation is a shift/reduce conflict. According to the
portion of the rule scanned so far, there are two licit next actions: YP could be
shifted onto the stack «25)b) ,or X' --> Xo could be reduced «25)a). The choice
of the correct action depends on the category and subcategory of the current
token. Thus, if the current token is an intransitive verb, then only (24)a can
apply, thus a reduction will be performed. On the other hand, 10 obligatorily
requires that a VP be a continuation in the same rule, thus (24)b can apply.

76 CHAPTER 3

a Cot! peo

"1 v

er or

f

HHi-::t:=+=+-+ (reduce 6, i) :«uce 9, %
~/1.

LR Table \

Co-occurrence Table
Figure 3.2
Interaction between LR Table and Co-occurrence Table

The choice of possible next states is restricted to one, in most cases, by compar­
ing the options compiled in the LR table, which are deduced exclusively from
the X grammar, and the prediction of the co-occurrence table, which depends
on the actual input token. The way this prediction is accessed in the parser
is shown visually in Figure 3.2. Wheneyer necessary, the parser can consult a
table of "compatible next tokens" to decide quickly whether a reduction can be
applied. If no reductions are compatible with the current token and the next,
then the next token is shifted.

To illustrate, figure 3.3 presents several cases of possible continuations in the
context of head movement. They are all triggered by the configuration which
is called unary..head, namely when a head, such as 10 or V 0 moves into the
location of another head. The first case occurs when the infinitival marker, or
a modal verb is the current token, which is directly projected to 10, then the
following category must be a verb, consequently reductions of an empty head
or an empty maximal projection are ruled out. The second case illustrates do
support, e.g. the usage of do in the position of Co in questions, such as Who do
you like? Again, the only possible continuation is an N"P. For declarative main
verbs, we can consult the sub categorization frame of the verb to disambiguate
whether they should be followed by an empty maximal projection, if they are
transitive, or if the following token, which could be a PP, an adverb, or simply
the end of input marker should be shifted onto the stack, because the verb is
intransitive.

The Phrase Structure Component 77

Next Token
x XP NP to+ VV P+N adv $

10
JVo

V

~: NP

Vo

WPntr
PP adv $

t NP NPe NPe NPe

iran

Figure 3.3
Co-occurrence Table for Unary Head Production

78 CHAPTER 3

The co-occurrence table is also useful to reduce nondeterminism, when in need
to encode the type of complement phrase that follows a particular verb. The
category of the sentential complement of a verb cannot be stored in the phrase
structure rules, since only X rules are used.

(26) VP --> V CP
VP --> V IP

Rules such as (26) are needed because some verbs, for instance, raising verbs
such as seem, appear are subcategorized for a CP complement which can op­
tionally be deleted in infinitivals, as is shown in (27).

(27) a. John seems [IPt to like Mary]
b. It seems [cpthat [lpJohn likes Mary]]

Optional CP deletion is a lexical property, whichmany other verbs do not have.
Such verbs, instead, license an empty complementizer, as shown in (28).

(28) a. John thinks that Mary is sick
b. John thinks 0 Mary is sick

Encoding categorial restrictions in the table of co-occurrences enables the parser
not to engage in useless computation. Thus, for example, when parsing the
raising verb seem and the next token is the infinitival marker, then the parser
knows it must insert a trace before shifting the infinitival marker to onto the
stack. In the case of the verb think the empty complementizer is inserted if the
following word is an NP.

The Role of Syntactic Features

It is important to note that, even if a co-occurrence table is used, which en­
codes categorial information, syntactic features such as ±Case still have an
independent role in this parser, as predicted by our classification in IC Classes
above. For example, GB theory analyzes passive sentences as having an empty
category after the verb, from which the passive subject has moved, for instance,

1 'he jJhrase ~tructure Component 79

John is loved t. The co-occurrence table predicts that after a transitive verb
there should be an object, but it does not contain information about Case or
{I-assignment capabilities of verbs, and thus does not use any of this informa­
tion. This information is encoded in the lexicon, and not reduplicated in the
co-occurrence table. It is however necessary, and it is done on line, to determine
the feature assignment of moved elements. For instance, if an empty category
is posited as the object of a verb, then the empty category must be able to
unify with a possible antecedent, with which it shares Case and {I features.

3.3 COMPACTNESS OF THE DATA
STRUCTURES

The organization of the parser presented so far is computationally advanta­
geous. Consider again the X grammar that we use in the parser, shown in
Figure 3.1. One of the crucial features of this grammar is that the nontermi­
nals are specified only for level and headed ness. This version of the grammar
is a recent result. In previous implementations of the parser, the projections of
the head in a rule were instantiated. (See also Berwick (1991a), who suggests a
similar kind of partial instantiation, as a possible way of representing X theory.)

I thought that specifying the category label would reduce nondeterminism in
the compiled parse table, the rationale being that addition of information could
only reduce ambiguity. Such a move was unjustified, however, and contradicted
our definition of efficient compilation as compilation of dependent modules.

In fact, the prediction made by the ICMH is that compiling together X theory
and categorial information is going to increase the size of the grammar without
producing any reduction in the non-determinism contained in the grammar,
because category/subcategory information belong to a different Ie Class than
structural (i.e. X) information. This hypothesis was tested by comparing
indices of ambiguity across different grammars.

3.3.1 Method and Materials

The size of the grammar is measured as the number of rules or number of states
in the LR table. The amount of non-determinism is measured as the average

80 CHAPTER 3

1 s ---+ x2; 9 xl ~ y2 xl;
2 x2 ~ y2 xl; 10 y2 ~x2

3 x2 ~ xl y2; 11 y2 ---+ w2
4 x2 ---+ y2 x2; 12 y2 ---+c
5 x2 ---+ x2 y2; 13 xO ---+ wO
6 xl ---+ xO y2; 14 xO ---+c
7 xl ---+ y2 xO; 15 x2 ~ xl;
8 xl ---+ xl y2; 16 xl ---+ xO;

Figure 3.4
Grammar 1, which encodes X theory directly

number of conflicts (the ratio between the number of actions and the number
of entries in a table.) 2

Three grammars were constructed, constituting (pairwise) a close as possible
approximation to minimal pairs (with respect to IC Classes). They are shown
in Figure 3.4, Figure 3.5, and Figure 3.6. Grammar 1 differs minimally from
Grammar 2, because each head is instantiated by category. The symbol YP
stands for any maximal projection admitted by linguistic theory. Grammar
3 differs minimally from Grammar 2, because it also includes some subcate­
gorization information (such as transitive, intransitive, raising), and some co­
occurrence restrictions and functional selection. Moreover, empty categories
are "moved up", so that they are encountered as high in the tree as possible.
These three grammars are then compiled by the same program (BISON) into
three (LA)LR tables. The results are shown in Table 3.1, which compares some
of the indices of the non-determinism in the grammars to its size, and Table
3.7, which shows the distribution of actions in each of the grammars.

2 The average number of conflicts in the table gi ves a rough measure of the amount of non­
determinism the parser has to face at each step. However, it is only an approximate measure
for at least two reasons: taking the mean of the conflicts abstracts away from the size of
the grammar, which might be a factor, as the search in the table becomes more burdensome
for larger tables; moreover, it does not take into account the fact that some states might be
visited more often than others during an actual parse.

The Phrase Structure Component 81

1 --+ c2 18 a1 -.. aO y2
35 il --+ iO

s
36 v2 --+ vI

2 c2 -.. y2 c1 19 al -.. y2 al
37 vI -.. vO

3 cl --+ cO y2 20 al -.. al y2
38 a2 -.. al

4 cl -.. y2 cl 21 a2 --+ y2 a2
39 al --+ aO

5 cl -+ cl y2 22 p2 -+ y2 pI
40 p2 -.. pI

6 c2 -+ y2 c2 23 pI -+ pO y2
7 i2 --+ y2 il 24 pI -.. y2 pI

41 pI -+ pO
42 d2 -.. dl

8 il --+ iO y2 25 pI -.. pI y2
43 dl -.. dO

9 il -+ y2 il 26 p2 -+ y2 p2
44 y2

10 il --+ i 1 y2 27 d2 -.. y2 dl
-..[

45 Y2 --+ n2
11 i2 -+ y2 i2 28 dl --+ dO y2

46 y2 -+ c2
12 v2 --+ y2 vI 29 dl - y2 dl
13 vI -.. vO y2 30 dl - dl y2

47 y2 --+ i2

14 vI --+ y2 vI 31 d2 -.. y2 d2
48 y2 --+ v2

15 vI -.. vI y2 32 c2 -..cl
49 y2 --+ a2

16 v2 -+ y2 v2 33 c1 -.. cO
50 y2 --+ p2

17 a2 -.. y2 al 34 i2 - il
51 y2 -+ c2
52 y2 --+ d2

Figure 3.5
Grammar 2, where heads are instantiated by lexical categories

NB OF NB OF NB OF AVERAGE

ENTRIES ACTJO~S RULES CONFLICTS

GRAMMAR 1 63 123 16 1.95
GRAMMAR 2 793 1319 51 1.78
GRAMMAR 3 251 962 41 3.83

Table 3.1
Comparison of the 3 grammars (compiled into LR tables)

!'.'UMBER OF ACTIONS
ENTRIES 1 2 3 4 5 6 7 8 9 10 11 12 13 14
GRAMMAR 1 38 6 8 8 1 2
GRAMMAR 2 465 68 168 6 42
GRAMMAR 3 144 43 3 8 5 4 30 14

Table 3.2
Number of actions in the 3 LR tables

82 CHAPTER 3

1 s --4 i2
22 vOint 2 --4 c2

~{

s
23 vI --4 vOt n2

3 c2 --4 y2 c1
24 vOt

4 c2 --4c1
--4 vt

5 c2 25 vOt --4 {
--4 {

26 vI --4 vOrais i2
6 c1 --4 cO i2
7 c1 --4 cO 27 vOrais --4 vralS

8 cO 28 vOrais -+{
~c

29 vI ~ vOint c2
9 cO --> (

30 y2 ~ c2
10 i2 -- y2 il
11 i2 --> il 31 y2 --> i2

12 i2 32 y2 ---+ n2 ---+(
33 y2 - \'2 13 il --> iO v2

14 i1 --> iO 34 y2 ~ p2

15 iO 35 y2 ---+{
--+ 1

36 n2
16 iO

---+n
-->{

37 n2
17 v2 --> y2 vI

--4 {

38 p2 --4 pO y2
18 v2 -->{

39 p2 19 v2 --> vI
-->(

20 vI --4 vOint p2 40 pO -p

21 vOint --> vint 41 pO -->{

Figure 3.6
Grammar 3 contains information about functional selection and co-occurrence
restrictions

The Phrase Structure Component 83

3.3.2 Discussion

Consider Grammar 1 and Grammar 2 in Table 3.1. Grammar 2 has a slightly
smaller average of conflicts, while its number of rules increases 3 times and the
number of entries increases 12 times, compared to Grammar 1. This is the
predicted expansion of the grammar without decrease in non-determinism. As
the number of rules is expanded, but no "filtering" constraint is incorporated in
Grammar 2 with respect to Grammar 1, this result might not seem surprising.

However, the ICMH is also confirmed by the other pairwise comparisons and
by the global results. Grammar 3 has a higher number of average conflicts
than Grammar 2, but it is smaller, both by rules and LR entries, so it is more
compact. Notice that adding information (subcategory, selection, etc.) has a
filtering effect, and the resulting grammar is smaller. However, adding infor­
mation does not reduce non-determinism. Compared to Grammar 1, Grammar
3 does not show any improvement on either dimension. Grammar 3 is both
larger (4 times as many LR entries) and more non-deterministic than Gram­
mar 1. Globally, one can observe that an increase in grammar size, either as
a number of rules or number of LR entries, does not correspond to a parallel
decrease in non-determinism.

As Table 3.2 shows, the distribution of the conflicts in Grammar 3 presents
some gaps. This occurs because certain groups of actions go together. One
mainly observes two patterns of conflicts. In those states that have the highest
number of conflicts, all rules that cover the empty string can apply, while in
those states that have an intermediate number of conflicts, only those rules can
apply that have a certain X projection level, and that cover the empty string
(e.g. all XP's, independent of category, that cover the empty string). An exam­
ple of conflicts is given in Figure 3.7. So, for instance, all Xo projections present
the same (reduce 33), (reduce ,44) conflict. This observation confirms that
categorial information does not reduce non-determinism, but rather it multi­
plies out with structural contgurations. Even introducing "filtering" lexical
information (co-occurrence restrictions and functional complementation) does
not appear to help. In fact, patterns of ambiguities caused by empty categories
occur according to structural partitions.

One can conclude that the qualitative observation supports the numerical re­
sults: Introducing categorial information is not advantageous, because it in­
creases the size of the table without decreasing significantly the average num­
ber of conflicts. Moreover, by using a category-neutral grammar, the number
of rules that are compiled in the LR table is very small. Using LR compila-

84

ytab(l,X,Actions):-ytabl(X,Actions).
ytabl($,[(reduce,33),(reduce,44)]).
ytabl(aO,[(reduce,33),(reduce,44),(shift,5)]).
ytabl(al,[(shift,15)]).
ytabl(a2,[(shift,14)]).
ytabl(cO,[(reduce,33),(reduce,44),(shift,l)]).
ytabl(cl,[(shift,9)]).
ytabl(c2,[(shift,21)]).
ytabl(dO,[(reduce,33),(reduce,44),(shift,6)]).
ytabl(dl,[(shift,19)]).
ytabl(d2,[(shift,18)]).
ytabl(iO,[(reduce,33),(reduce,44),(shift,2)]).
ytabl(il,[(shift,ll)]).
ytabl(i2,[(shift,10)]).
ytabl(n2,[(reduce,33),(reduce,44),(shift,7)]).
ytabl(pO,[(reduce,33),(reduce,44),(shift,4)]).
ytabl(pl,[(shift,17)]).
ytabl(p2,[(shift,16)]).
ytabl(vO,[(reduce,33),(reduce,44),(shift,3)]).
ytabl(vl,[(shift,13)]).
ytabl(v2,[(shift,12)]).
ytabl(y2,[(shift,22)]).
ytabl(_,[(reduce,33)]).

Figure 3.7

CHAPTER 3

Example of Conflicts in the Table compiled from Grammar 2. The table entry for
state 1 is shown (indicated by ytabl). $ as usual indicates end of input. aO, ai, a2
indicate the Xo, XI, X" projections for the category adjective.

tion techniques then becomes feasible. It is well-known that these compilation
techniques can generate parse tables of thousands of states, if applied to an
ordinary context-free grammar, with clear problems for maintenance. From
the linguistic point of view, a parse table with so many states would miss the
generalizations about interleaving of configurations and filtering constraints.

The Phrase Structure Component 85

NB OF NB OF NB OF AVERAGE

ENTRIES ACTIO!':S RULES CONFLICTS

GRAMMAR 1 19 62 16 3.26
GRAMMAR I' 19 46 13 2.42
GRAMMAR 2 112 f)--_0·) 51 2.28
GRAMMAR 3 144 368 41 2.62

Table 3.3
Comparison of the 3 grammars (compiled into LL tables)

3.3.3 Extending the test to other compilation
techniques

The effects discussed in the previous section could be an artifact of the com­
pilation technique. In order to check that this is not the case, the same three
grammars were compiled into LL and Left Corner (LC) Tables. In the LL al­
gorithm, the mother node is recognized top-down before its children, and the
parser builds a leftmost derivation; the LC algorithm combines the bottom-up
recognition of the extended left-corner of each rule to the top-down recognition
of the remaining part of the righthand side of the rule. By comparing the re­
sults obtained in the LR, LL and LC compilations, we can compare the effects
of varying the order in which grammatical and input information is used.

LL compilation: Discussion

Results similar to the LR compilation, although less clear cut, seem to hold also
when one considers the LL compilation method, thus confirming the intuition
that they reflect some structural property of the grammar, and are not an
artifact of the LR compilation.

The results of the compilation of the same grammars into LL tables is shown
in Table 3.3. Grammar I' is a modified yersion of Grammar 1, without adjunc­
tion rules. These figures show that there is no relation between the increased
specialization of the grammar and the decrease of non-determinism. One can
observe that, differently from the compilation in Table 3.1, the LL compilation
does not maintain the paired ran kings of actions and rules. So, for the LL
Table, the co-occurrence of lexical categories does not playa filtering role.

86 CHAPTER 3

Ns OF Ns OF Ns OF AVERAGE
ENTRIES ACTIONS RULES CONFLICTS

GRAMMAR 1 49 136 16 2.77
GRAMMAR 2 1456 4030 51 2.76
GRAMMAR 3 398 610 41 1.53

Table 3.4
Comparison of the 3 grammars (compiled into LC tables)

Globally, there appears to be an inverse relation between the size of the gram­
mars as number of rules and the average number of conflicts: the larger the
grammar the smaller the number of conflicts. This might make one think
that there is after all some sort of relation between grammar size and non­
determinism. However, this is not true if we look at the number of entries
as the relevant measure of size. Moreover, if one looks at Grammar I', which
is smaller than Grammar 1, one can see that the average number of conflicts
decreases quite a bit. This confirms a weaker hypothesis, which is nonetheless
related to the initial one, namely that non-determinism does not vary in an
inverse function to "content of information".

Some qualitative observations might help clarify the sources of ambiguity in the
tables. In all three grammars, the same ambiguities are repeated, for each ter­
minal item. In other words, all columns of the LL table are identical (with the
exception of cell [XO, wp] in Grammar 1.) This suggests that lexical tokens do
not provide any selective information. Moreover, analogously to the LR tables,
projections to the same level have the same pattern of conflicts (multiplied out
by category in Grammar 2, for example.) 3

LC-compilation: Discussion

The same three grammars were compiled in left corner (LC) tables. The result
of the compilation are shown in Table 3.4, and the distribution of the conflicts is
shown in Table 3.5. As can be seen from Table 3.4, Grammar 2 is 3 times larger
than Grammar 1 and it is compiled in a table that has 29 as many entries, but
the average number of conflicts is not significantly smaller.

3In all cases, this is caused by the X form of the grarrunar. Namely, the loci of recursion
and gapping are at both sides of the head, and anything can occur there. Eliminating this
property would be incorrect, as it would amount to eliminating one of the crucial principles
of GB, namely move-O', which says that any maximal projection or head can be gapped.

The Phrase Structure Component 87

NUMBER OF ACTIONS

ENTRIES 1 2 3 4 5 6 7 18 19
GRAMMAR 4 18 15 9 3
GRAMMAR 2 602 702 48 96 8
GRAMMAR 3 282 92 4 4 4 12

Table 3.5
N umber of actions in the 3 compiled LC tables

The interpretation of the LC table derived from Grammar 3 poses a problem
for the ICMH. Compared to Grammar 1, Grammar 3 is bigger, as it contains
category and some co-occurrence information, but its average of conflicts is
smaller. Thus it seems that adding information reduces non-determinism. On
the other hand, compared to Grammar 2, both the table and the average num­
ber of conflicts are smaller. Thus, the ICMH is confirmed only by a global
assessment of the relation between the content of information and the average
conflicts, but not by pairwise comparisons of the grammars. Notice however,
that the difference in the two pairwise comparisons confirms that simple cat­
egorial information does not perform a filtering action on the structure, while
lexical co-occurrence does. This is precisely what I propose to compile in the
lexical co-occurrence table.

The qualitative inspection of the tables confirms the clustering of conflicts
which is suggested by Table 3.5. Grammar 1 and Grammar 2 show the same
patterns of conflicts as the LR and LL tables: conflicting actions cluster with
the bar level of the category. So, for example, in Grammar 2 one finds that
when the left corner is a maximal projection the action is unique, while when
the corner is a bar level projection there are multiple actions and they are the
same, independently of the input token. In Grammar 3 the same patterns of
actions are repeated for each left corner, independently of the goal or of the
input token.

Globally, then, the qualitative inspection of the compiled tables is coherent
across compilation methods and appears to support the ICMH, as the inter­
action of structural and lexical information is the cause of repeated patterns
of conflicts. Quantitatively, the results, which are very suggestive in the LR
compilation, are less clear in the other two methods. However, in no case they
clearly disconfirm the hypothesis. I conclude that categorial information should

88 CHAPTER 3

be factored out of the compiled table and separate data structures should be
used.

3.4 PSYCHOLINGUISTIC SUPPORT

I turn now to discussing the properties of the structure building algorithm
in the light of the known evidence on the interaction between categorial and
structural information.

The parser presented here has the following properties:

• It compiles X information separately from categorial
co-occurrence information

• It consults these two tables on-line, interleaving them at each
input token if necessary

• It uses one token lookahead to compile the LALR table, but it
has no lookahead facility at run-time.

The previous section has shown that efficiency arguments based on compact­
ness of data structure support the separation of structural from co-occurrence
information.

Parsing by using two different parse tables, which contain different types of
information, makes specific predictions about the on-line availability of infor­
mation to the human sentence processor. In particular, it claims first that the
interleaving of structural and categorial (i.e. lexical) information is done at
each input token. Consequently, it predicts that sub categorization information
of verbs is used immediately. In fact, more specifically, subcategory informa­
tion is used to disambiguate otherwise structurally ambiguous input. Second,
the organisation of data structures that we propose predicts that if the LR
table does not have a conflict at a certain point in the parse, there will be no
apparent difficulty. Finally, it predicts that, if necessary, the parser can consult
the co-occurrence table directly.

The Phrase Structure Component 89

On the Use of Subcategory

The token-by-token interleaving of the two tables can be interpreted in the light
of the present debate on the use of sub categorization. Consider the following
sentences (adapted from Frazier and Rayner (1982)):

(29) a. Sherlock Holmes didn't suspect the beautiful young countess.
b. Sherlock Holmes didn't suspect the beautiful young countess
was a fraud.

The verb suspect subcategorizes both for an NP and a clausal complement, thus
an NP following the verb is locally ambiguous as a potential object of the verb,
as in the first sentence, or as the subject of a following clause, in the second
sentence.

This kind of local ambiguity has been studied in several experiments. Con­
tradictory results have been found. Some results support a model of sentence
processing which is driven by the phrase structure rules of the grammar, and,
therefore, does not use word-specific lexical information, but only syntactic in­
formation (Frazier and Rayner 1982; Ferreira and Clifton 1986; 1vIitcheli 1987;
Rayner and Frazier 1987; Ferreira and Henderson 1990). Other results support
a model which assumes that lexical information is used as soon as possible
and that parsing is driven by lexical expectation (Ford, Bresnan, and Kaplan
1982; Mitchell and Holmes 1985; Holmes, Stowe, and Cupples 1989; Trueswell,
Tanenhaus, and Kello 1993).

Three experiments have supported the theory of phrase-structure-driven pro­
cessing (Frazier and Rayner 1982; Ferreira and Henderson 1990; Rayner and
Frazier 1987). They test the hypothesis that the human sentence processor
adopts general parsing strategies, based on economy of syntactic representa­
tion. More precisely, the parser attempts to build the representation with the
smaller number of nodes (Minimal Attachment). When possible alternatives
have the same number of nodes, an overriding strategy of Late Closure oper­
ates, since the parser has the tendency to incorporate incoming material into
existing nodes.

In an eye-tracking study, Frazier and Rayner (1982) find increased reading
times at the disambiguation region for the reduced clauses (b examples above),
which they interpret as evidence of a complexity effect, caused by the garden
path in the conditions where the ambiguous NP is not the object. These re-

90 CHAPTER 3

suits are confirmed by Ferreira and Henderson (1990), where the NP /Clause
ambiguity is studied. Although they explicitly control for the bias of the verbs,
following the norms of Connine, Ferreira, Jones, Clifton, and Frazier (1984),
they still find evidence in favour of a Garden Path model of parsing, namely
no interaction with verb type. Rayner and Frazier (1987) test a corollary of
Minimal Attachment: if the increased reading times are an effect of reanalysis
at the disambiguating region, then the clausal complement with an overt com­
plementizer should be parsed faster since it is not ambiguous, as also Holmes,
Kennedy, and Murray (1987) note. They find a difference in reading times,
with the unambiguous sentence being parsed faster.

The opposite position supports a view where both syntactic class and word­
specific lexical information is used, so that a particular preference for a given
continuation depends on the verb usage. This model, which has been called
the Lexical Guidance Model (Ford, Bresnan, and Kaplan 1982; Mitchell and
Holmes 1985; Holmes, Stowe, and Cupples 1989; Trueswell, Tanenhaus, and
Kello 1993), predicts a tendency to assemble an NP following a verb as the
direct object only if the verb itself is biased for an NP continuation, with
consequent need for reanalysis, if the sentence being parsed is in fact a sentence
with a reduced clausal complement, as (29)b above. On the other hand, if the
verb is biased for a clausal continuation, the analysis of sentences such as (29)b
should not show any disruption.

Two studies have found an interaction between verb type and processing time
(Holmes, Stowe, and Cupples 1989; Trueswell, Tanenhaus, and Kello 1993).
These experiments found an increase in processing times only for NP-bias verbs,
but not for S-bias verbs, thus suggesting that the parser uses lexical information
immediately. The experiments confirm the hypothesis that sub categorisation
becomes available right after the verb is recognized, and that individual lexical
biases of verbs influence structural attachments. 4

In conclusion, it appears that sub categorization is used immediately, although
some of the results need to be refined.(See also Gorrell (1991), that shows that

4 Of course, the results that led to the Garden Path position must be explained. Notice
that a simple frequency account is not tenable. Although it is true that the predictions of
the Garden Path Theory are empirically indistinguishable, in the reported experiments, from
a general preference for direct object attachment of an NP following a verb. Merlo (1994)
discusses corpus counts which show that all experiments were rather well-balanced, with the
possible exception of the Late Closure experiment in Frazier and Rayner (1982). Even in
cases in which the stimuli were strongly biased against a Minimal Attachment continuation,
complexity effects were found. Thus the frequency hypothesis which has been proposed by
the supporters of the Lexical Guidance Model is not tenable in its simplest form, as it would
not explain the findings of the Garden Path experiments.

The Phrase Structure Component 91

the results in Mitchell (1987), that supported an extreme version of the garden
path model, might be an artifact of the experiment.) These experimental results
support the use of lexical information that we suggest.

On the Use of Lookahed

In the present parser a kind of lookahead is used, which might be considered too
powerful in the light of the current psycholinguistic evidence. It is now widely
accepted that humans do not use a lookahead device, otherwise they woud
not experience garden paths in most instances of short strong garden paths.
However, the use of one token lookahead at compile time, when compiling the X
grammar into an LALR(1) is a much weaker mechanism than using one token
of input, and all the information it can provide, as a disambiguating device.

An LALR(l) parsing table is a parsing table that has been compiled by using
one token look-ahead in the grammar, in this instance the X grammar. If the
grammar is not LALR(l), the table entries will have multiple actions.

We can test the adequacy of the particular parser we propose, by constructing
a grammar, and then checking that for the garden path sentences which could
be disambiguated by one token lookahead, the parser presents conflicts at the
same point in which the human sentence processor garden-paths. For example,
in The horse raced past the barn Jell, we want to check that the LALR(l) table
has a conflict in the state which corresponds to the input token raced.

The test is simple. We have constructed an (overdetermined) grammar, in
which all the categories are instantiated, which could parse the three sentences
in (30). The grammar is shown in 3.8. This grammar is then compiled into an
LALR(l) table.

(30) a. Mary expected Eric to leave
b. While she mended the sock fell off her lap
c. The horse raced past the barn fell

Even if the parse table is compiled by using one token look-ahead, the trace of
the parse for these sentences shows that there are conflicts at the state where
the parse must attach Eric and The sock, and when it must decide whether
raced is part of a main sentence or rather of a reduced relative clause. Since no
other look-ahead is used, we can conclude that using an LR table is plausible.

92 CHAPTER 3

1 IP -+NP II 11 NP ~det n
2 IP -+CP IP 12 NP ~n

3 IP -+NP to VP 13 NP ~NPCP

4 II -+10 VP 14 NP ~f.

5 10 -+f. 15 CP -+OP Cl
6 VP -+v PP 16 CP -+Cl
7 VP -+v NP 17 Cl ~CO IP
8 VP ~v 18 CO ~while

9 VP -+v IP 19 CO ~[

10 PP -+p 20 OP ~f.

Figure 3.8
LALR Grammar

3.4.1 On the Interaction between Lexical and
Structural Ambiguity

Categorial Ambiguity with Structural Difference

Experimental evidence on the resolution of categorial ambiguity is naturally ex­
plained if a parser is posited that separates structural from lexical information,
and where information about lexical co-occurrence is organised independently
of structural information and can be accessed directly.

Frazier and Rayner (1987) report on a reading experiment in which they record
eye-movements. The experiment is designed to test what mechanism is used
to resolve categorial ambiguity. Three hypotheses are compared. The first
hypothesis assumes that categorial ambiguity is resolved with a mechanism
similar to the one for syntactic ambiguity, namely by choosing a first analysis,
which is then discarded if it turns out to be wrong, causing backtracking.
The second option would take into account the fact, which has been shown
independently (Seidenberg, Tanenhaus, Leiman, and Bienkowski 1982; Swinney
1979), that in retrieving lexically ambiguous items, all entries of the item are
accessed for a short time. It could be hypothesized that the parser pursues all
analyses in parallel. Finally, a third hypothesis rests on the observation that
lexical ambiguity (unlike syntactic attachment ambiguities) is usually resolved
in a very local environment, within 2 or 3 words. Thus the parser would
delay building structure and look ahead for disambiguating material. A pair

The Phrase Structure Component 93

of locally ambiguous and unambiguous sentences used III the experiment are
shown in (31).5

(31) a. The warehouse FIRES numerous employees each year.
b. This warehouse fires numerous employees each year.

The results of the experiment show that processing times are shorter for the
two ambiguous target words than for the corresponding words in the unambigu­
ous sentences. Moreover, processing time of the disambiguating region in the
ambiguous condition is more than in the unambiguous one, i.e. there is a slow­
down. No main effect due to category difference was observed for ambiguous
conditions, while consistently longer times for the A-N group were found in the
unambiguous conditions. The disambiguating effect was triggered immediately,
when the first non ambiguous token (numerous) was encountered.

These results are compatible only with the delay hypothesis, as the first analysis
hypothesis predicts no processing difference between the unambiguous control
and the preferred reading (the N-V interpretation), while the parallel hypothe­
sis predicts longer processing time in the ambiguous portion. More specifically,
the speed up in the ambiguous portion is predicted by the delay hypothesis be­
cause a costly operation such as structure building is suspended, while the slow
down in the disambiguating portion can be attributed to the fact that struc­
ture building is resumed. The slower processing for the A-N sequence in the
unambiguous sentences is explained by the fact that agreement disambiguates
this sequence earlier than the N-V sequence.

These results show that the parser does not use several tokens of lookahead
(Marcus 1980; Fong 1991), or parallel computation, as such parsers would be
able to solve the ambiguity without disruption. On the other hand, a lexically
driven parser (Frank 1992; Abney 1989) could not recover the necessary infor­
mation to disambiguate the sentence. As structural information is encoded in
the lexicon, these parsers would do an exhaustive search for all the possible
continuations of all the category labels that can be attributed to the current
linguistic item. 6

5The sentences are presented with the addition of typographical conventions which were
not used in presenting the material during the experiment. The ambiguous part is shown in
all capitals and the disambiguating portion is shown in italics. Frazier and Rayner (1987)
also argue that the stress pattern of the sentences with the A-N sequence is such that these
sequences cannot be analysed as a compound noun.

6 Frazier (1989) argues convincingly that these results point away from lexical generation
of syntax, such as categorial grammars or, we add, licensing grammars, would imply. She is

94 CHAPTER 3

A parser that can enter "delay mode" must recognize immediately that a struc­
tural ambiguity has been reached. Thus, as a first property, the parser must
have some facility to distinguish the inability to assign a successful parse be­
cause of structural ambiguity, from, let's say, incorrect feature assignment. The
compilation of X rules into an LR table guarantees that the recognition of con­
flicts will occur at the point of ambiguity, because an LR parser has the valid
prefix property. (See discussion in chapter 5.) Moreover, for the delay parser
not to stall, it must be able to trigger some alternative routines, to suspend
structure building, but continue some other kind of computation that will re­
solve the structural ambiguity.

Consider what happens in parsing the sentence in (31)a. (I assume a slightly
simplified grammar for ease of exposition, where non-binary rules are allowed
in limited circumstances. Nothing in the discussion that follows hinges on it.)
The parser scans the input and builds structure according to the grammar. The
warehouse fires is represented as the two following rules in the grammar.

(32) a. XP ---t Det Y2 Xl
b. XP ~ Det Xl

The parser scans the warehouse and builds the structure indicated before the
e.

(33) a. XP ~ Det • Y2 Xl
b. XP ---t Det • Xl
c. Xl -+ XO •

(33) shows that after scanning warehouse, the parser must decide which rule to
apply. If warehouse is an Adjective, then it must be projected to Y2, and the
rule (33)a will be applied, (yielding the item XP -+ Det Y2 • Xl), which means
that the AP has been scanned but the NP is not yet finished. If warehouse is
a noun, then (33)b will be applied, (yielding the item XP -+ Det Xl •). The

however incorrect, we believe, in concluding that these results cause difficulty for principle­
based grammars, such as GB, and principle-based parsing. She takes X theory to mean that
the properties of a phrase are projected from the head, and that principle-based parsing is
necessarily against grammar compilation. Neither assumption is necessary for a principle­
based parser, but they both are for what Frazier has in mind as an example of principle-based
parsing, namely Abney (1986), which is a lexically driven parser.

The Phrase Structure Component 95

dot at the end of the rule signals that an entire constituent has been seen (the
NP), thus the NP constituent is built, and the parser enters the appropriate
state to build a VP.

In order to choose between one of these two actions, however, a disambiguating
token must be seen. The parser scans ahead: it looks at fires, which does not
provide any disambiguating material, and then it inspects numerous.

When the parser reaches numerous, which is unambiguously an Adjective, the
parser infers, based on co-occurrence knowledge and preference, that an adjec­
tive is a left corner of an NP, which is more often found after a V, hence fires
is a V, and warehouse is a noun. Thus, the parser chooses rule (33)b, it closes
the NP and it starts the VP. Note that while this is being done, the input has
already been scanned past numerous.

This mechanism is simply the reiterated application of consulting co-occurrence
of categories, which are independently encoded, without any information of
configuration. At this point, the disambiguation of the conflict is achieved,
and the portion of input warehouse fires is structured into the appropriate
constituent. This corresponds to the slow down effect observed in the non­
ambiguous region.

In our parser, then. the delay in categorial selection can be simply explained by
saying that the algorithm that is used ordinarily to interleave the LR table with
the co-occurrence table is suspended, and a different procedure is used, trig­
gered by the lexical ambiguity of the input. Thus, no unnecessary redundancy
is introduced, as the data structures and the compilation tables are unaltered.

In a parser that did not separate category from configuration, such table of
cooccurrence would have to be stored, creating a redundancy with the LR
table.

The facts reported in Frazier and Rayner (1987), about delay of categorial
information, show that categorial information and structural information are
not compiled into the same table or data structures, since they can be accessed
at different times on-line. Thus, they support our approach to X parsing,
rather than the interpretation put forth in Dorr (1990) or Fong (1991), where
the phrase structure rules obey the format dictated by X theory, but they
are instantiated by category and then compiled off-line. It also supports the
token-by-token interleaving of the two tables. A more powerful device would
fail to capture the evidence of the delay. For instance, a co-occurrence table
that precomputed sequences of 3 words generates the effect that no temporary

96 CHAPTER 3

ambiguity is detected, which would not account for the speed up w parswg
time. 7

Categorial Am,biguity 'witho'ut Structural Difference

Another piece of evidence that is naturally modelled by our design is lexical
ambiguity which does not entail structural ambiguity. In a parser that is driven
by X configurations, like ours, we expect that sentences such as those in (34),
from Pritchett (1992), should not cause garden path effects, as they do not
correspond to any conflicting actions in the parse table. This is because the only
difference, according to Pritchett, is in the category label, while the structure
is the same: (34)a shows the auxiliary use of HAVE, while (34)b shows its use
as a main verb, No processing breakdown occurs in parsing these sentences.

(34) a. Have the students devoured their dinners?
b. Have the students devoured by the lions

Pritchett (1992) assigns the same X configurations to these sentences as shown
in Figure 3.9.

Thus we correctly predict that these sentences cause no difficulty, even without
use oflookahed, which was instead used by Marcus (1980) to capture these facts.
(Pritchett (1992) also discusses small clause constructions under perception
verbs and causative constructions.)

Apparent counterexamples are cases in which lexical ambiguity does cause pro­
cessing breakdown, such as those shown below. (The garden path effect is noted
by?)

(35) a. ? The prime number few.
b. The prime number seven.

7In a recent paper, MacDonald (1994) argues that the unambiguous condition in Frazier
and Rayner (1987) could have introduced an extra factor of difficulty, as it used a deictic
determiner. If other types of disambigautions are used the speed up in the ambiguous re­
gion for the NN interpretation disappears, while it is still present in the NV interpretation.
MacDonald (1994) provides an alternative explanation of these facts in a constraint-based
framework.

The Phrase Structure Component 97

C'
~

Co IP

~
NP I'

~
10 VP

I
V

V'
~

Vo IP

~
NP I'

~
10 VP

I
V

Figure 3.9
The structural representation of the sentences in (34)

(36) a. ? The old train the young.
b. The old train came into town.

At first sight these cases present the same kind of ambiguity as the warehouse
fires, namely an A-No /N- V ambiguity. Pritchett (1992) however argues convinc­
ingly that there is a basic difference between the two. In particular, the old
which is derived from the adjective old, is a zero-level nominal, i.e. a nominal
that cannot undergo modification, quantification and that must be interpreted
as a generic, as the examples in (37) show.

(37) a.?? The ugly old
b.?? All old/ Some old
c.?? The old from New York

98 CHAPTER 3

As such, Pritchett argues, the old is not listed as an independent item in the
lexicon, and only the categorization as adjective is at first accessed and incor­
porated in the structure, giving [NP the old train]. When the young is accessed
reanalysis must occur. In the instance of the warehouse fires, on the other hand,
a true lexical ambiguity, listed in the lexicon, causes the parser to behave as
described above.8

8Pritchett (1992), it must be noted, does not accept Frazier and Rayner (1987)'s analysis
of such cases. He argues that warehouse fires is a compound nominal, thus warehouse is
uni vocally accessed from the lexicon as an N, and integrated into the structure. The ambiguity
of fires as N or V does not cause any processing breakdown because either interpretation can
be incorporated into the structure without violating the OLLC. As Pritchett assumes that
processing proceeds unimpeded, however, his analysis does not account for the speed up in
the ambiguous region found by Frazier and Rayner. Moreover, it incorrectly predicts anomaly
effects. For instance, if nominal adjectives are categorized as Ns, and they receive a B-role
as soon as they are incorporated into the structure, as Pritchett assumes, then Mary talked
to the basketball, presented as a prefix of Mary talked to the basketball player should cause
an anomaly effect. Intuitive evidence shows that it does not. (I thank Paul Gorrell for this
observation.)

4
THE COMPUTATION OF
SYNTACTIC FEATURES

4.1 INTRODUCTION

In the previous chapter, I have illustrated how configurations and categorial
information are encoded in the parser. They are represented as tables which
are consulted on-line by an LR algorithm. Not all the principles of the grammar,
however, are represented in these tables. In particular the annotation of the
nodes by what I have called syntactzc fwtures, e.g. {;I-role and Case is performed
on-line, while building the tree. Feature assignment. can be strictly local to one
of the configurations defined by X theory, or it might involve sharing features
between distant elements. This kind of feature assignment will be discussed in
the first sections.

Features that are not assigned within the maximal projection of the assigning
head (H-Iocal features) encode relations between elements that are more distant
from each other than the domain delimited by a maximal projection. In section
4 I discuss the H-Iocal features that are encoded in chains, concluding the
discussion of how a parse tree is recovered and annotated, by presenting the
algorithms that resolve long distance dependencies, and by discussing some
interesting problems related to their efficient and incremental computation.
Specifically, this chapter discusses the following issues.

• The method to interleave the structure building rules and the
feature annotation: I propose that feature annotation is indexed
into configurations of the LR Table.

99

100 CHAPTER 4

• The representation of nodes in a tree that support the use of
unification, for efficient feature annotation, and the algorithm to
annotate nodes, within a local portion of the tree.

• The computation of long distance dependencies. Techniques to
assign features efficiently and incrementally in both head-initial
and head-final languages are discussed.

On parsing a sentence, more than the mere hierarchical and linear information,
encoded in the X rules, needs to be recovered. Consider, for example, the pair
in (38).

(38) a. John loves [Mary)
b. John talks [to Mary]

The two bracketed complements of the verb are the recipients of the actions of
loving and talkzng, respectively. However, the speaker's intuition is that they
stand in a different relation to the verb. Mary in (38)a is the patzent of the
action, while in (38)b l'Yfary is less affected by the action. This intuition is
expressed by the notion of thematic relation (t1-role). We say that love assigns
a patzent role to Mary, while talks assigns a goal t1-role to Mary. Moreover,
the syntactic structure is not exactly parallel: loves assigns a t1-role to Mary
directly, while talk assigns its t1-role indirectly, through the preposition to, to
Mary which is an indirect (or oblique) object. Thus, more abstractly, the
relation between a verb and its complement can be captured by assuming that
each verb has a certain number of thematic slots, and that each of its arguments
fills one.

The thematic relations of verbs are expressed by linear order in English, and (39)a
is not equivalent semantically to (39)b.

(39) a. John loves Mary
b. Mary loves John

Other languages, however, grammaticalize thematic relations differently. Thus
in Latin, (40)a and (40)b are equivalent because the 'concepts of agent and
patient are expressed by the case endings -us and -em, respectively.

The Computation of Syntactic Features

(40) a. Caesarem Brutus necavit
b. Brutus Caesarem necavit
"Brutus killed Caesar"

101

The agent receives nominative case, while the patient receives accusative case.
Languages like English, that do not show overt case, are hypothesized to have
abstract Case.

Current GB theory assumes other features too. For example, ±;. Take the
following minimal pair.

(41) a. Who does John say that Mary loves e l ?
b. * Who does John say that ei loves Bob?

In the first sentence the object of the verb love is questioned, while in the second
sentence the subject is questioned. Notice moreover that whatever restriction
rules out the sentence in (41)b, it is syntactic, as the meaning of a hypothetical
correct sentence is quite clear: Who is the person x, such that John says that x
loves Bob? GB theory assumes that, after a series of complex vicissitudes, ej

in (41)a receives [+,] as a feature, while el in (41)b receives [-I]' [-I] means
that the empty category could not occur in that position. The assignment of
[±,] is presided by the Empty Category Principle.

As we see, the parser, besides information related to the configuration of the
parse tree, must recover information that expresses these notions, which are
needed to interpret the sentence. In the current and the following section the
algorithms that are related to feature assignments will be presented. Such
assignments fall into two types: local and non-local. Local constraints are ex­
pressed as functions over very small subtrees, defined by the sisterhood relation.
Non-local constraints span over a bigger portion of the tree.

In both types of assignments, however, another problem must be discussed,
which is the problem of how the phrase structure rules and the constraints
interact. I start the presentation by abstracting away from the actual content
of the constraints, to concentrate on the way they interact with the X rules and
the way they are used to reduce the non determinism of the modified LR table.

102 CHAPTER 4

4.2 THE INTERLEAVING OF
CONSTRAINTS

By factoring out X rules and constraints, one problem arises, which has been
called the principle interleaving problem (Fong 1991): how is the connection
between the rules and the relevant constraints for those rules retained? Three
solutions are possible.

• All possible phrase structure rules are built, constraints are
applied to a forest of trees. This approach is provably correct,
but it is very space intensive, a forest of hundreds of trees can be
built for even small grammars, and it is not very explanatory, in
that the entire search space is visited.

• All constraints apply at every reduction. Such approach is also
provably correct, but it is not explanatory nor efficient, because it
applies many constraints in configurations where they are
vacuously true.

• Only a subset of the constraints applies to every phrase structure
rule.

I adopt the third approach. The parts of GB theory that do not deal with con­
figurational information are implemented in this system as constraints on rule
reduction. This technique is borrowed from standard compilation techniques
for programming languages, and it has been used by other people, notably by
Correa (1988) and Fong (1991). Principles of the theory such as It-assignment,
Case marking, and the formal licensing of empty categories are expressed as
conditions which need to be satisfied for the rule to apply.

This organization embodies one of the observations on the structure of linguistic
principles that was presented in the introduction: linguistic principles can be
seen as conjunctive statements of conditions. I proposed there that the different
conjuncts be satisfied separately. The configuration is encoded separately in
the LR table, and so is the substantive condition, which is encoded in the
co-occurrence table. Since the conditions to build structure are expressed as
a conjunction of constraints of different types, conditions on rule reduction
perform also a restrictive action on the search space of possible configurations,
when more than one rule reduction can be applied. For example, consider the
entry in the LR table shown in (42).

The Computation of Syntactic Features

(42) ytabO(end_of_file, [(reduce, 9), (reduce, 11)]).
ytabO(s, [(shift,10)]).
ytabO(wO,[(shift,1),(reduce,9),(reduce,11)]).
ytabO(w2,[(shift,2),(reduce,9),(reduce,11)]).
ytabO(xO,[(shift,6)]).
ytabO(x1,[(shift,4)]).
ytabO(x2,[(shift,3)]).
ytabO(y2,[(shift,5)]).

103

When the parser is in this state, several rules can reduce. For example, the
first line of (42) shows that the parser is in state 0 and that the input has been
expended. In this configuration, two actions are possible: the parser can reduce
by rule 9, or it can reduce by rule 11.

Each rule is "hooked" to a set of conditions that must be satisfied for the rule
reduction to apply, some of which are shown in Figure 4.1 below. For example,
rule number 9 is labelled complement. This rule requires that several conditions
be satisfied, in order to apply. In particular, the head must assign a 8-role to
the following complement, and the categories of the head and the complement
must be compatible. If these constraints are satisfied, the structure building
rule applies. A side effect of the satisfaction of constraints is that. nodes in the
tree become annotated.

If the constraints are not satisfied, then the rule cannot reduce, and a nondeter­
ministic choice point is eliminated. If more than one rule can reduce, because
more than one set of constraints is satisfied, that means that the sentence is
structurally ambiguous (either globally or locally).

4.3 THE ASSIGNMENT OF LOCAL
SYNTACTIC FEATURES

Syntactic features are those features that annotate a node in a tree as a con­
sequence of a syntactic relation to another node in the tree. Consider, for
instance, the syntactic feature [±barrier). According to Cinque (1990) and
Rizzi (1990) a maximal projection is a barrier, i.e. it receives the feature [+
barrier), ifit is not directly selected by a category non distinct from [+V). Thus
a node, which is projected from the lexicon without any features relative to bar-

104 CHAPTER 4

RULE CONSTRAI~TS

specifier categorial selection
predication
percolation of features

complement categorial selection
ii-marking
case marking
isa-barrier
percolation of features

modifier categorial selection
percolation of features

adjunct categorial selection
percolation of features

unary xmax percolation of features
unary head assignment of features to the specifier

percolation of features
complement head selection

empty head categorial selection (ECP)
feature percolation

empty xmax licensing (ECP)
locality

Figure 4.1
Interleaving of Rules and Constraints

The Computation of Syntactic Features 105

rierhood, is annotated [±barrier], as a consequence of the relation of categorial
selection from a head. For example, in sentence (43)a the maximal projection
IP is directly selected by a node which is not of category [+V] (someone is a
noun), thus it is marked [+barrier], while in (43)b the projection IP is marked
[-barrier].

(43) a. * To whom have you found someone [IPwho would speak t]?
b. To whom do you regret that [I pyou could not speak t] ?

Assignments of features fall into two types: local to a head and not local to a
head. I define them here.

Definition

Inherent Feature

A head H which is the immediate projection from the lexicon of token Winherits
all the lexical features of IV. Such features are called wheT'eni.

I consider XO the immediate projection of a lexical item W, X' the immediate
projection of XO and X" the immediate projection of X'.

Definition

H-Local Assignment

A feature assignment of the feature F is H-local iff it occurs within the maximal
projection of the head which bears F as an inherent feature.

Definition

H-Local Assignment A feature assignment of the feature Fis H-local iff it occurs
outside of the maximal projection of the head which bears F as an inherent
feature.

106

Figure 4.2

X" --+ V" X' specification
X" --+ X' Y"

X' --+ X V" complementation
X' --+ V" X

Case Assignment Configurations

CHAPTER 4

I shall talk of H-local features and H-local features, meaning features that are
assigned in an H-local configuration or features that are assigned in a H-local
configuration, respectively. Examples of H-local features, which are assigned
within the maximal projection in which they are projected from the lexicon, are
O-assignment, Case assignment, and the feature that signals formal licensing of
empty categories, ±~(. Examples of H-local features are types of coindexations,
such as those between empty anaphors (traces of NP-movement, see below)
and their lexical antecedent, or intermediate traces in A chains, or antecedent
government.

The way in which I treat these two classes of assignments separat.es the process
of actual feature assignment from imposing the localziy conditions between
the links of chains that are related to the H-Iocal feature assignments. This
partitioning is mirrored naturally by the LR architecture, as I can use attributed
grammars to perform feature assignment, both local and not local, and I can
further constrain the H-local feature assignment with the appropriate locality
conditions. Attribute grammars are discussed in the next section, while locality
conditions are discussed in chapter 5

4.3.1 The Linguistic Features

Five syntactic features are crucial to perform syntactic analysis: ±Case, ±B­
role, ±Referential, ±barrier, ±,.

Case Case assignment regulates the distribution of NPs in the sentence. A ±
Case feature is necessarily assigned upon reduction of a Case assigning head
with its complement and of an I' with its specifier. The Case assignment con­
figurations are shown in Figure 4.2. There is no need to impose any restrictions

The Computation of Syntactic Features 107

on the categories. The Case assigning ability is determined in the lexicon for
each lexical element, paired with the B-roles.

B-role B-roles are needed to recover the predicate-argument structure of the
sentence. They are assigned in the same configurations in which Case is as­
signed. B-roles are assigned to subjects, if the verb is not unaccusative (Burzio
1986), by percolating the external B-role of the verb to the I head and to its I'
projection. l

Referential [±Referential] is a feature annotating nodes to compute bindin~
(Rizzi 1990) once the tree is built. It is assigned freely at S-structure, but it
becomes part of the computation of the ECP at LF. A referential feature impliei
the existence of a value for the B-role feature. B-roles can be referential and
not referential. Referential B-roles are those that denote the participants in an
event, such as agent, patient, goal. Only verbs that assign a B-role can assign a
Referential B-role feature. It is however a feature that must be explicitly listed
in the lexical entry of the B-role assigner, as it is not clear if there is a systematic
correspondence between the content of the B-role and its referentiality.

Barrier This feature is needed to characterize the domains of extraction. Bar­
rierhood is determined upon reduction of a head with its complement. It ii
a lexical feature for the [±barrier] assigner, since it depends on its [+ V] dis­
tinguishability (Cinque 1990). Hence, a [+V] head assigns [-barrier] to itf
complement, and a [-V] head assigns [+barrier].

, This feature expresses the distribution of empty categories in the phras~
marker. ±, is a feature that determines whether an empty category has been
licensed or not. Some empty categories receive it at S-structure, if they arE
governed by an appropriate head, others receive it at LF (Rizzi 1990).

4.3.2 The Implementation

In our representation, each node is a quintuple of the form (G, Role, Ref, Case, Barrier),
with the meaning and values in (44).

IThis holds if I extend the notion of H-Iocal to features assigned within the maximal
projection and its functional complex, e.g. V +I+C. Or we could alter the hypotheses about
subjects and assume VP internal subjects. I adopt the former hypothesis, but so far, nothing
impinges on it.

108 CHAPTER 4

(44) G is the 'Y feature, which could be either an atomic constant
value or unspecified.

Role is the 8-role assigned to the node, which can be either
an atomic constant taken from a given set of role labels
such as { agent, theme, ... } or unspecified.

Ref is the referential feature, which could be either an atomic
constant or unspecified.

Case is the Case feature, whose value can either be an atomic
constant from a given set of language-specific possible
cases or unspecified.

Barrier is the barrierhood value, which could be either an
atomic constant or unspecified.

Syntactic features are attached to a node when the node is projected from the
lexicon. Each node in the tree has the format (ID, LexicaLFeatures, Syntac­
tic-Features). Thus, each node is a triple (ID,L,S) where ID is an identification
number for each node, L is a quadruple of lexical features, and S is a quintuple
of syntactic features.

At the beginning of the parse, syntactic features are uninstantiated variables.
They acquire values on rule reduction through unification. For instance, 8-roles
can be assigned locally, in a sister relation, as shown in (45).

(45) V' --. V NP { 8-assign(V,NP) }

As was noted in chapter 1, the ICMH is less stringent than the requirement
of strict transparency for principle-based parsers, because structural licensing
information is used as soon as possible, while other types of annotations are
performed later on in the parse. This is particularly convenient when postulat­
ing empty categories. The formulation of the ECP that is found in Rizzi (1990)
only requires proper head government. This condition will be satisfied if the
closest head in the minimal domain imposed by Relativized Minimality satis­
fies a substantive condition, namely a condition on the category label of the
head. This is rather simply encoded, as shown in Figure 4.5. The top routine
some...head_can~icense (Symbol, SStk) is called when attempting to postulate
an empty maximal projection. Moreover, this kind of feature assignment does
not require checking locality conditions, as it is the relation between a head
and a maximal projection in the "minimal domain of the head", i.e. its own
maximal projection. The admissible configurations are already encoded in the

The Computation of Syntactic Features 109

CONSTRAINTS
head feature percolation

feature absorption

B-marked
case marked
c-select
is-a barrier
license empty head
license empty Xmax

Figure 4.3
Local Constraints

CONSTRAINT
head feature percolation
feature absorption
B-marked
case-marked
c-select
licensed empty xmax

Figure 4.4

FCNCTION
consults co-occurrence table and deter-
mmes cooccurrence restrictions among
heads
absorbs Case and B-role if verb IS
passIve
marks node with available B-role
marks node with available Case
categorial selection
checks if maximal projection is a barrier
checks features of closest lexical head
checks features of closest lexical head

FEATURES
category { N,V,C,I, ... }
case, B-role, passive
B- role, ±referential
±case
category { N,V,C,I, ... }
±;

Local Constraints and their Range of Features

X rules that are compiled in the LR table, onto which the H-Iocal conditions
apply. In Figure 4.3 and Figure 4.4 I show the content of the features that are
manipulated and their values.

110

%===
constraintsCempty_xmax,Symbol,SStk,Ne~Stk,Node,C,C):-

some_head_can_licenseCSymbol,SStk),
localityCSStk, Symbol, Ne~Stk).

%===

preceding_head_is_vC[Y2,XOISStkJ,Head},
nodegridCHead,Grid),
available_roleCGrid,_}.

preceding_head_is_not_emptyCSStk,Head},
lexical_nodeCHead),
nodegridCHead,Grid),
available_roleCGrid,_).

preceding_head_is_not_emptyCSStk,Head),
functional_selectionCHead,Headl),
preceding_headCSStk,Headl),
nodegridCHeadl,Grid),
available_role(Grid,_).

lexical_head(Symbol},
nodegrid(Symbol,Grid),
available_role(Grid,_).

Figure 4.5
Algorithm to Compute Proper Head Government

CHAPTER 4

The Computation of Syntactic Features

4.4 COMPUTING LONG DISTANCE
DEPENDENCIES

111

In this section I discuss the linguistic analysis that is assigned to sentences
which contain long distance dependencies, such as questions. Secondly I will
illustrate some computational problems that arise in this computation and the
solutions adopted here, which are supported by observations on the availability
of disambiguating syntactic features, such as Case, in human sentence process­
ing.

4.4.1 Chains: The Linguistic Facts

Informally, a chain is a syntactic object that defines an equivalence class of po­
sitions for the purpose of feature assignments and interpretation. For example,
take the passive sentence in (46).

(46) M arYi was loved ii

The sentence in (46) contains the chain (M ary" ti). Here t, receives a IJ-role
from the verb, but no case, which is absorbed by the passive morphology, while
M arYi, receives nominative case because it is in a structural position that is
inherently case marked, Spec of IP. This position, though, receives no IJ-role,
because of passive morphology again. The set of positions, however, satisfies
the conditions on lexical argument NPs, namely one half of the IJ-criterion and
the Case Filter. \Ve define a chain and the link in a chain as follows.

Definition

Chain

A chain C, (E1' ... , En) for n ~ 1, is a sequence of elements in a phrase marker,
where E1 is the head of the chain and En is the foot of the chain.

112 CHAPTER 4

Definition

Link

A link of a chain L, (Ei: Ei+d is an ordered pair of consecutive elements of the
chain.

It will be useful in what follows to classify the different kinds of chains according
to different criteria.

Type

There are different kinds of chains depending on the syntactic status of the
moved element, whether it is a head or a maximal projection, whether it is an
NP or a wh-element. \,\Te can distinguish at least four types: wh-chains, such
as (47), NP-chains, such as (48), head movement chains: shown in (49), chains
formed by movement of maximal projections, exemplified in (47) and in (48).

(47) W hOi did John love ti?

(48) a. Mary, was loved ti
b .. M arYi seemed e~ to have, been loved ti

(49) Gianni amai t; Maria
"John loves Mary"

Landing Site

Chains can also be classified according to the status of the landing site: A
chains are those that are headed by an element in A (argument) position, shown
in (50); A chains are headed by an element in A (non-argument) position, such
as (51) .

(50) M arYi seemed e; to have been loved t;

The Computation of Syntactic Features 113

(51) Who, did John think e: that Mary loved ti ?

Multiple Chains

More than one chain can occur in a sentence. Multiple chains occurring in the
same sentence can either be disjoint, intersected or composed. Disjoint chains
are'nested, as in (52),

(52) Who, did M arYj seem tJ to like t;

If chains intersect, they share the same index and they have exactly one element
in common. They are always A + A, in this order, as shown in (53),2

(53) Who, did you think e; t, seemed ti to like Mary?

If chains compose they don't have intersecting elements, but they create a new
link: if En is the foot of one chain and E~ is the head of the following chain
then < En, E~ > is a link in the composite chain. This is exemplified in (54).

(54) W hOi did you meet tt Oi without greeting ti ?

4.4.2 The Representation of a Chain

In this parser, a chain is represented as a triple (P,L,S) where

P is a list of the positions in the tree that constitute the chain

2The reverse order would be the trace of improper movement, because one of the interme­
diate traces would be in A position, but bound by the A head of the A chain, thus violating
principle C of binding theory. For instance, "lVho, < seems t, that Mary like t,? is an
example of improper movement.

114 CHAPTER 4

L are the lexical features that belong to the head of the chain and thus to
the whole chain, since only one element in a chain can be lexically
realized.

S are the syntactic features of the chain. In this discussion, only three of
the syntactic features assigned to each node are relevant for chains:
Case, Role, Ref.

This representation captures the restrictive interpretation of a chain a.<; an equiv­
alence class of positions, because conditions can only be imposed on the chain
and not on the single nodes that compose it. As such, it differs from those
representations of chains as linked lists of nodes in a tree structure, where each
node could be independently specified (Clark 1990; Correa 1991). This choice
of representation is parsimounious: by using a triple as the representation of
the chain, it is unnecessary to re-encode precedence information about all the
processed input that is contained in the stack, or structural information that is
contained in the tree. The chain shares elements with the stack of the parser, so
that updates to the stack are propagated to the chain and vice versa. Moreover,
it is more appropriate descriptively, as chains are represented as properties of
a whole sentential phrase marker, and not of a single node (differently from
(Correa 1988; Correa 1991), see below). Each sentence is assigned two lists of
lists, one for A chains and one for A chains, thus, in principle, an unbounded
number of chains for each sentence is possible.

The most typical property of a chain is uniqueness of feature annotation. Only
one B-role and one Case can be assigned to each chain, and only one element
in the chain can be lexical. In order for this uniqueness property to obtain
I define unique term unification as a mechanism for feature assignment. In
unique term unification I require that at most one of the elements involved in
the operation of unification is instantiated. The semantics of the operation is
shown in Figure 4.6.

We can observe that the uniqueness restriction is a kind of derivative encoding.
It encodes that only one assignment can occur for each type of feature to a
given chain, even if the new assignment does not add any new information. In
fact, it is a strict form of information monotonicity, where every assignment
must add information.

It is not clear why it should be so, but uniqueness seems a pervasive modality
of feature assignment. While phrase structure appears to be built under the
monotonicity restriction, feature assignment seems to obey uniqueness. We

The Computation of Syntactic Features

Given two terms A and B, unify(A,B,C) iff A and B are terms
that encode syntactic features attached to a node or attached to a chain,
and C is their most general unifier under unique unificatIOn.

unify(A,B,C) iff A is a variable or B is a variable.

unify(A, B, C) iff unique_unify(case(A), case(B)),
and unique_unify (role (A) • role(B)),
and unique_unify (ref (A), ref (B)).

unique_unify(A,B) iff A is a variable or B is a variable

Figure 4.6
Unique Unification for Syntactic Chains

11.5

also notice that this kind of unification does not maintain the same semantics
as standard unification. In standard unification a common instance of the two
terms that unify is found, where common instance is defined as follows: (i) the
common instance of two constants is the same constant; (ii) a common instance
of a variable and a constant is the same constant; (iii) a common instance of two
variables is a variable In our redefinition of unification, there is no admissible
common instance of two constants. I do not explore the consequences of this
modification here.

The mechanism with which chains are built in our parser is simple. A new
chain is started, whenever a node which could be the head of a chain is found.
Every subsequent empty element which is postulated by the parser must be
able to unify with at least one of the chains.

4.4.3 The Computational Problems

In accordance with the linguistic facts presented above, several problems must
be solved, when building chains. First of all, the parser has to decide whether
to start a new chain or not. It also has to decide whether to start an A or

116 CHAPTER 4

an A chain. Second, on encountering an empty element it has to decide to
which chain it belongs. Third, it must check whether all the chains satisfy
the well-formedness conditions. Finally, if not all the chains satisfy the well­
formedness constraints, the parser can attempt to intersect or compose two or
more chains in order to satisfy the well-formedness conditions. The first and
second decision can be seen as instances of the same problem, which consists
in identifying the type of link in the chain that a given input node can form
(whether head, intermediate or foot). We can describe this sequence of deci­
sions as four problems that must be solved in order to form chains: the Node
Labelling Problem (NLAB), the Chain Selection Problem (CSEL), the Chain
Intersection Problem (CHIN), and the Chain Composition Problem (CHC).

The Node Labelling Problem (NLAB)

The Node Labelling Problem can be informally described as follows.

(55) Given a node N to be inserted in a chain, determine its label L,
where L E {AH, AH, AI, AI, AF, AF, AOp }.

This problem then describes a relation R: N x L, where N belongs to the set
of nodes, and L belongs to the set of labels for the elements of chains. The
algorithm to perform such computation is very simple.

Algorithm

Input: Node, Local Configuration
Output: List of Labels

1. If Node is lexical and [+wh] then Label ;-- AH.

2. If Node is lexical and [-wh] then Label <- AH.

3. If Node is empty and has If-role and has Case then Label ;-- AF.

4. If Node is empty and has If-role and has no Case then Label ;-­
AF.

5. If Node is empty and has no If-role and is in Spec of C then Label
<- AOp or AI.

The Computation of Syntactic Features

6. If Node is empty and has no B-role and is not in Spec of C then
Label <- AI.

The Chain Selection Problem (CSEL)

The Chain Selection Problem can be informally described as follows.

(56) Given a node N of label L, and an ordered list of chains C, return
the chain Ci, possibly none, to which N must unify.

The algorithm to perform this computation is given below.

Algorithm

Input: Label(s), Ordered List of Chains
Output: Chain or empty set

1. if Label = AH then start new chain

2. if Label = AOp then start new chain

3. if Label = AH then start new chain

4. if Label = AF then
choose last element in ordered list of chains which is not
saturated.

5. if Label = AF then choose (nearest) unsaturated chain.3

6. if Label = AI then choose (nearest) unsaturated chain.

7. if Label = AI then
choose last element in ordered list of chains which is not
saturated, unless it is the immediately preceding element
in the stack.

30n ly one A chain at a time is possible (see previous section).

117

118 CHAPTER 4

The complex condition in the last case is necessary to deal with subject-oriented
parasitic gaps. In all other cases of structural indeterminacy between interme­
diate trace and empty operator, the feature unification mechanism will resolve,
since the empty operator is postulated when all other chains are saturated.
This could be thought as being derived from a rather reasonable axiom that
prohibits empty CPs. A theorem that could be derived is that no "vacuous"
Comp to Comp movement could be allowed. The ambiguity between AI and
AOp is then resolved by looking at the previous token in the stack. If it is the
head of an A chain, then a new chain is started. This strategy would handle
sentences such as A man [who [whenever I meet] looks old.]

The Chain Intersection Problem (CHIN)

The Chain Intersection Problem can be informally described as follows.

(57) Given two chains, C 1 and C2 , return the chain C3 (possibly none),
which is the intersection of C 1 and C2 •

The conditions for the intersection of chains are given in (58).

(58) C1 intersects C2 iff
the head of C1 c-commands the head of C2

and C1 and C2 unify in syntactic features
and the head of C2 is an empty category.

This problem is, therefore, simply the intersection of two sets under certain
restricting conditions.4

The Chain Composition Problem (CHC)

The Chain Composition Problem can be informally described as follows.

4 On inspection of the algoritluns, one can notice that c-command is not checked. In the
real implementation each node is given an identification number, which is then computed as
an Huffman code once the tree is built. C-command can be computed as a function of the
Huffman identification number of each node. The only restriction to the use of this technique
is that the tree must be completely built, which is satisfied in this case. We assume that
chains are built separately, and then intersected.

The Computation of Syntactic Features

(59) Given two chains, C 1 and C 2 , return the chain C3 (possibly none),
which is the composition of C 1 and C2 .

The conditions for the composition of chains are given in (60).

(60) C1 composes with C2 iff
the head of C 1 does not c-command the head of C2

and C1 and C2 unify in syntactic features
and the head of C2 is an empty category.

119

Notice that the only distinguishing condition between composition and inter­
section is the c-command requirement. In reality, chains that intersect, belong
to the sets A and A, respectively, while chains that compose are all A chains.

4.4.4 Discussion of the Algorithms

In Figure 4.7 I show schematically how these algorithms build chains. A pseudo­
Prolog notation is used, which is similar to the output of the parser, where
chains are represented as lists enclosed in square brackets. I show the I/O
of the NLAB and CSEL algorithms, given the sentence Who did you think
that John seemed to like?, where a multiple A-chain and an A chain must be
recovered. NLAB takes an input word and outputs a label, while CSEL takes
a triple (Node, Label, Chains) as input, and returns a new chain list.

On Building Chains

This section discusses the problem of how features of chain links are determined
by an efficient algorithm. A basic assumption of the theory presented in (Chom­
sky 1981; Chomsky 1982) about NPs, either lexical or nonlexical, is that they
can be exhaustively partitioned by the features [±pronominal],[±anaphoric).
(See Appendix A for an argument to justify the existence of pro and its fea­
tures [+pronominal,-anaphoric].) Chomsky (1982, 34) notices that trace and
PRO are in (virtually) complementary distribution and that they (virtually)
exhaustively cover the possible positions for NPs. Chomsky argues that this
fact is explained if only one empty category is assumed, which is defined contex­
tually. This is the so called contextual determination of empty categories: there

120 CHAPTER 4

Who did you think el that John seemed e2 to like e3 ?

NLAB who A Head
CSEL who, A Head [(who)]
NLAB you A Head
CSEL you A Head [[(who)][(you)lJ
NLAB el A Intermediate
CSEL el A I [[(who)][(you)]] [[(who,el)](you)]]
NLAB John A Head
CSEL John A Head [[(who,el)][(You)]] [[(who,el)][(you)(John)]]
NLAB e2 A Foot
CSEL e2 A Foot [[(who,el)][(you)(John)]] [[(who,el)][(you) (John,e2)J]
NLAB e3 A Foot
CSEL e3 A Foot ([(who,el)][(you)(John,e2)]] [[(who,el ,e3))][(you) (John,e2)J]

FIgure 4.7
Chain building example

is only one empty category that can take up different functions or occurrences
in different contexts.

Brody (1984),Brody (1985) has shown that this argument is incorrect. Em­
pirically, this interpretation would be supported by derivations where empty
categories can change their status in the course of the derivation. The evidence
for such derivations is unconvincing. (See Appendix A for a more detailed
description of the arguments.) Conceptually, as Brody (1984) points out, the
assumption that there exist only one type of empty category does not entail the
existence of contextual definitions: a random characterisation, which is then
filtered out by independently needed principles, would also work. Brody (1984)
is devoted to showing that contextual definitions are totally redundant and can
be eliminated from the theory without any loss of empirical adequacy and with
gain for the explanatoriness and economy of the theory. Brody proposes to
assign empty categories freely to one type or other, and let the principles of
the grammar rule out incorrect type assignment. In this way the grammar is
minimally redundant.

Brody's argumentation is very convincing, but what is a gain in explanatory
adequacy for the grammar might not be so beneficial for the parser. Both
Chomsky's and Brody's account of the distribution of nonpronominal empty
categories rests on binding theory. The features assigned to empty categories
are not an accidental collection, thus the account is explanatory. From the
point of view of parsing this approach leads to inefficiency.

The Computation of Syntactic Features 121

A strictly princlple-based approach to the functional determination of empty
categories, such as the one in Fong (1991), is bound to be inefficient, because
not only are the properties of the empty categories determined by a random
characterisation, as Brody suggests, which is filtered at a later stage, but it
also rests on free coindexation. Fong (1990) has shown that the problem of
enumerating all possible indexations is NP-hard. Even if some precomputation
were allowed, for example by using Chomsky (1981) definitions directly, still
the property of the empty category would depend on its binder. Since our
initial problem is how to determine the binder of an empty category, the algo­
rithm would have to be nondeterministic, guess a solution and then check its
correctness. Such check would not occur until much later, when binding the­
ory is tested, and unbuilding part of the tree might be required. As one more
piece of evidence pointing towards the idea that functional determination of
empty categories is not performed by the human parser, consider experimental
results about parsing English and Japanese, performed by Fong and Berwick
(1992), with a parser that uses functional determination of empty categories.
They show that functional determination results in Japanese being parsed more
slowly than English. This results is contradicted by human processing.

Correa (1988),Correa (1991) proposes a set of features for the functional clas­
sification of empty categories which is not based on the feature [±pronominal],
[±anaphoric] and the relation to the binder, as proposed in Chomsky (1982),
but rather on more local features, which do not require a potentially unbound
search of the tree. The classification is shown in (61).

A-position Government Case
wh-trace(foot) + + +

(61) wh-trace(intermediate) +
NP-trace + +
PRO +

Quite correctly, Correa points out that, by this classification, the type of a cat­
egory can be determined without hypothesizing in advance to which chain the
category belongs, since the conditions that determine its status are independent
of chain formation.

In Correa's parsing rule, given a sentence structure, where the trace-antecedent
relations are not identified, the interpretive chain rule computes coindexations.
Each NP has an attribute Chain. Upon evaluation, each NP in a chain points
to the next element in the chain (or to nothing if it is the last element, the

122 CHAPTER 4

foot of the chain). Moreover, nodes that can c-command an NP, such as IP, I',
CP, C' , etc. have two pointer-valued attributes: A-Chain and AB-Chain. The
domain of evaluation of all these attributes is limited to a single production in
the grammar. A single production defines, according to Correa, an "elementary'
tree", which is the local domain for feature assignment.

Empty categories are predicted structurally without computing their referent,
i.e. without identifying them. In particular, we only need determine whether
an empty category is properly governed or not, which we have seen can be done
very locally by adopting Rizzi (1990)'s formulation and determine whether it
should unify with the A chain or A chain. If one assumes that Case assignment
is obligatory, then Case is the distinguishing feature of the foot of an A chain
from the foot of an A chain.

On the other hand, the limit of one chain attribute per node, which is imposed
by Correa's encoding, is incorrect. If the single rule is taken as the local domain,
in the sense that all necessary feature assignment must be performed within its
limits and no percolation of features is allowed, no chain could be built. Hence,
this definition is too strict. Correa allows feature percolation. But he shows
that an attribute grammar with unrestricted percolation of attributes corre­
sponds to a type 0 grammar, t.hus it is too powerful. He imposes a single-slot
restriction per type of chain, to limit feature percolation. By attaching only one
AB-Chain slot to each node that could be on the connecting path between the
trace and the antecedent, the attribution rule models some locality restrictions
such as wh-islands and the Complex NP Constraint. These locality restrictions,
though, depend on the language. This attribution rule would not work for less
restrictive languages, such as the British variant of English (Grimshaw 1986)
and Italian (Rizzi 1982), which allow multiple extraction, nor would it work
parasitic gaps.

Restricting the Search Space

As the previous chapter on phrase structure has shown, computing features is
not always profitable, as some features reduce the search space while others do
not. To see that checking features does indeed payoff, the cost of checking
these features must be compared to the benefit of reducing the search space.

This analysis mostly concerns the first algorithm, NLAB, which is constituted
of a series of binary choices. More precisely, recall that the relevant information
is a) whether a node is lexical or not; b) whether it has a theta-role or not;
c) whether it has Case or not; d) whether it is a sister of C (hence it is in

The Computation of Syntactic Features 123

A position) or not (thus counting as an A position). For the chain selection
algorithm there are four main constraints: first, A nodes can only be inserted
in A chains and A nodes can only be inserted in A chains. Second, empty nodes
never start a new chain. Third, the closest head is always chosen as a potential
chain to which unify. Finally, only unsaturated chains are chosen.

Consider what would result if NLAB did not check for all these factors. If b) is
not checked, NLAB' does not distinguish between feet and intermediate traces,
even in the same type of chain, thus it outputs four sets of labels: AH, AH,
{AF, AI}, {AF, AI}. If c) is not checked, NLAB" does not distinguish between
A and A feet, thus it outputs AH, AH, AI, AI, {AF, AF}. If d) is not. checked,
NLAB'" outputs AH, AH, fAI, AI}, AF, AF. If b), c) and d) together are not
checked, NLAB"II outputs AH, AH, {AI, AI, AF, AF}.

In accounting for the growth rate in the space of hypotheses of these modified
algorithms, two factors must be taken into consideration. One factor is the
number of active chain types, namely whether a sentence presents only A or
A chains, or both. This factor encodes the second and third restriction of the
CSEL algorithm, with the consequence that not all combinations are attempted.
The second factor accounts for the growth rate proper, which is reducible to
counting the set of ""-strings over an 7l-sized alphabet, hence nk. Here k is the
number of relevant links in the sentence (for instance, feet in NLAB"), and n is
given by the size of the set of features collapsed by lifting some of these checks,
hence 2,2,2 and 4, respectively.

The hypothesis space in the three algorithms grows in slightly different ways.
In NLAB!, where there is no restriction on the number of active chains, the
growth rate is nk. For NLAB" and NLAB'II the formula is N A Ie, where N A

is the number of active chains. Practically, this amounts to 2k at most, as
the number of active chains is at most 2, because of the restriction on always
selecting the nearest unsaturated chain. For NLAB"" the restriction for active
chains no longer holds, because in this algorithm no features are checked, so it
is impossible to establish if a chain is saturated or not until structure building
ends. Thus the growth factor is a function of the number of heads seen up
to a certain point in the parse, the number of empty categories and also their
respective order in the input. Notice that the different size of the collapsed
feature set, which is larger for NLAB"", is implicitly taken into account by k,
as the number of relevant links varies with the size of the collapsed feature sets.
For the same sentence there are more relevant links if the collapsed feature set
is larger.

124 CHAPTER 4

S TL NLAB I NLAB" I NLAB'" I NLAB""
KL li KL AC li KL AC li KL li

3 2 1 2 1 1 1 - - 1 1 1
4 3 1 2 1 1 1 - - 1 1 1
5 3 - - 0 1 1 - - 1 - -
6 2 - - 0 1 1 - - 1 - -
7 4 1 2 1 1 1 - - 1 1 2
8 3 - - 1 2 2 - - 1 1 2
9 5 - - 1 2 2 1 2 2 2 6
10 6 1 2 2 2 4 1 2 2 3 18

Table 4.1
Growth of Hypotheses Space: S = sentence; TL = Total number of links; RL=
Relevant Links; AC = Number of Active Chains; G = Growth rate

Now, in all cases, the growth is exponential in the number of relevant links,
while the possible gain obtained by not checking the features can be at most
logarithmic in the number of potential empty categories. Since the number
of potential empty categories is at most 21, for f binary features, this gain is
expressed as f. Hence, suppressing feature checks becomes beneficial only if
kf > n k . Now notice that 2 ::; n ::; 21. For n = 2 and f = 3, the inequality
is satisfied for k < 4. This means that for algorithms NLAB" and NLAB"I all
sentences with more than 3 relevant links are computed faster if features are
checked. For n = 4, i.e. algorithm NLAB"" the inequality is never satisfied. 5

The results of some calculations are reported in Table 4.1, which refer to the
type of constructions exemplified in Figure 1.3 (sentence type 1 and 2 are not
considered, because they only contain trivial chains.) If one considers a sentence
such as Who did you say that John thought that Mary seemed to lzke?, with four
gaps and four heads, there are 96 hypotheses about chain formation to explore
using NLAB"". Clearly, checking features and using them for building chains,
and keeping the hypotheses search space small, is beneficial in most cases.

Extensibility

These algorithms deal in detail with the somewhat neglected problem of what
to do when more than one chain has to be constructed. They do not discuss

5Remark that here I am assuming that checking a feature and checking a chain have the
same computational cost, which is an approximation, as a chain cannot be checked with a
single operation.

The Computation of Syntactic Features 125

specifically the issues of adjunction or rightward movement. However, they
could be extended.

In the first place, the postulation and structural licensing of empty categories is
always performed by the same mechanism. According to the ECP as formulated
in Rizzi (1990, 25), Cinque (1990), and Chomsky (1986a), among others, for
an empty category to be licensed, two conditions must be satisfied: the empty
category must be within the maximal projection of a lexical head to be licensed
structurally, and it must be identified by an antecedent. The structural licenser
and the antecedent need not be the same element. In fact, they hardly ever
are. Whether movement is to the left or to the right does not affect structural
licensing (which is here performed by the conditions that apply to the reduction
of an f rule.)

Rightward movement requires an extension of the algorithm to incorporate the
empty category in a chain. An empty category which is the foot of rightward
movement must be licensed structurally, before its antecedent is seen. When
the NP which is the antecedent (head of chain) is found, it starts a new chain,
according to CSEL. Here an extension is needed to check if there are any empty
categories waiting to be identified. This requires computing c-command, to
check that the NP can be the antecedent of the empty category, if one is found.
Explicit computation of c-command was not needed for leftward movement as it
is a property of the stack of an LR parser that it encodes c-command. Thus the
fact that a constituent contains an "orphan" empty category must be recorded,
perhaps by composite categories. If the antecedent follows immediately on the
stack the element that contains the empty category, c-command obtains (as a
consequence of binary branching), and the empty category can be unified to
the antecedent. 6

4.5 PSYCHOLINGUISTIC SUPPORT

In general, the precomputation of syntactic features is supported by experimen­
tal evidence, and in particular, support is provided for using case information
to distinguish the foot of an A chain from an A chain, as predicted by the
ICMH.

6 Alternatively, one could adopt the (linguistically radical) position that rightward move­
ment does not exist (Kayne 1994). Although this generalization seems to be true for head
movement, Kayne's proposal is more controversial for maximal projections. Discussion of
these issues falls completely outside of the topic of the present work.

126 CHAPTER 4

Plenty of work in the experimental psycholinguistic literature has addressed
the question of how filler-gap dependencies are processed (Frazier, Clifton, and
Randall 1983; Clifton, Frazier, and Connine 1984; Fodor 1989; Stowe 1986;
Frazier and Clifton 1989). De Vincenzi (1991) presents psycholinguistic evi­
dence in favour of a parsing strategy to build chains, called the Minimal Chain
Principle (MCP) De Vincenzi (1991, 13))

(62) Avoid postulating unnecessary chain members at S-structure,
but do not delay required chain members.

This general parsing strategy is supported by several experiments. In particu­
lar, experiment 2 is designed to test the cost of the length of chains, where by
length it is meant the number of links in a chain. Of course, if the computation
of chains turned out to be insensitive to length, thus apparently a cost-free
operation, much of the rationale for a parsing strategy as the Mep would van­
ish. De Vincenzi (1991) formulates the hypothesis tested in this experiment as
follows.

(Experiment 2) The parser is sensItIve to syntactic features such as
Case, and it uses them in building chains. Building chains is a
costly operation.

Superficially minimal pairs that vary only in length with the input can be
constructed in Italian by using contrasts between un accusative and unergative
verbs. (See Appendix A for definitions and examples.) In short, since the
inverted subject of an unaccusative verb is base generated, while the inverted
subject of an unergative is moved, sentence (63)b should take longer than (63)a,
according to the MCP.

(63) a. E' arrivato un bimbo.
"A child arrived."
b. Ha esitato un bimbo.
"A child hesitated."

For the result to follow, however, one more crucial assumption about Case
for unaccusatives must be made. Namely, that the parser is sensitive to Case

The Computation of Syntactic Features 127

assignment at this stage of structure building. In fact, according to Belletti
(1988), unaccusative verbs can assign inherent partitive case. Since partitive
Case, though, is incompatible with a definite interpretation, a post verbal def­
inite NP is adjoined to the VP, and it is not in its base generated postverbal
position, otherwise it would not receive Case. Thus, structurally there is a
difference between (64)a and (64)b.

(64) a. E' [v p arrivato un bimbo.]
"A child arrived.
b. E' [v p arrivato [v pil bimbo.]]
"The child arrived."

If the parser did not use information about Case at all at this stage, (but it
used it only in the discourse, see discussion in De Vincenzi (1991, 51ff)), then
it would assume that (64)a does not receive Case, and it would adjoin it to VP,
similarly to (64)b. In this case we would predict longer times in (64)a than in
(64)b. The experimental results confirm the MCP and the use of Case.

The fact that the parser uses Case is an implicit consequence of the MCP, as
shown by experiments 1 and 5 conjunctively. Experiment 1 confirms the follow­
ing hypothesis: the parser obeys the first clause of the MCP by always trying
to interpret elements in their base generated position, i.e. the parser always
tries to build singleton chains. Experiment 5 support this other hypothesis:
the parser obeys the MCP and the principles of the grammar, i.e. the MCP
is not used if it causes a violation of some principle of the grammar, specif­
ically the relevant· one, namely the ECP. If the parser honours the principles
of the grammar (Experiment 5), then when interpreting an NP as a singleton
chain (Experiment 1) it will immediately check that the chain receives Case
and B-role, and therefore is well-formed. This result is also consistent with use
of morphologically realized case to disambiguate locally ambiguous input.

This piece of evidence corroborates the proposed classification of syntactic fea­
tures, and especially the use of Case to distinguish the foot of an A chain from
the foot of an A chain. The use of syntactic features is crucial for the struc­
tural determination of empty categories which we adopt. By using structural
determination, empty categories can be licensed locally, within their maximal
projection.

128 CHAPTER 4

4.6 INCREMENTAL ASSIGNMENT OF
FEATURES

On inspection of the presented algorithms for chain formation and the examples
of input shown in Figure 4.7, one can notice that Case is assigned immediately
upon reducing the NP, thus enabling the chain building algorithms to distin­
guish between different types of chains. In particular, case features must be
assigned to an empty element of the chain immediately, as case is crucially used
by NLAB, to determine if the empty category belongs to an A or an A chain.
In general, feature assignment is performed from left to right, while scanning
the input. One need, therefore, tackle the issue of incrementality in LR parsing.

LR parsers have been criticized as possible models of linguistic performance
because they build mother nodes only after all children are seen, and therefore
they have worst-case behaviour on right-branching structures (Abney 1989;
Steedman 1989).

Evidence for the Incremental Parsing of Correct Input

The most impressive evidence that human parsing is incremental is provided
by Marslen-Wilson's experiments on shadowing Marslen-Wilson (1973). Fast
shadowers are able to restore errors while they shadow speech at one-syllable
distance. This fact is interpreted as evidence that they process speech and that
they perform lexical access as soon as the input signal is received.

Surprise effects in sentence parsing in head final languages provide evidence
that syntactic parsing is performed incrementally even when information is in­
sufficient. In the Japanese sentences in example (65), speakers report a surprise
effect at the word tabeta, which means that they had already started processing
the three arguments, possibly as belonging to a yet unseen predicate.

(65) Bob-ga Mary-ni [tnom/i ringo-wo tabeta] inu-wo ageta
Bob-NOM Mary-DAt apple-ACC eat-PAST dog-ACC give-PAST
'Bob gave Mary the dog which ate the apple'

These two examples show that people integrate incoming material very fast,
and that they start interpreting it before the end of the sentence is reached.
It appears reasonable, for the purpose of investigating syntactic parsing, to
assume that the input is processed word by word.

The Computation oj Syntactic Features 129

Different researchers have interpreted results on incrementality as stemming
from different properties of the processing system. Some researchers require
that each incoming word be attached to one single connected structure (Crocker
1992; Sturt and Crocker 1995; Stevenson 1994; Stabler 1994; Wehrli 1992).

The basic argument for building as fully a connected structure as possible are
based on memory requirements: we know that storing disconnected items is
more costly than storing whole units. In practice, some words have to be
pushed temporarily on a stack. Stabler (1994) argues in favour of assuming a
fixed, small bound for the number of items that can be left on a stack. 7 Other
researchers extend the observation on fast integration of lexical material to an
overarching requirement to maximize intepretation, which would justify the
parser in projecting unseen structure, when it can be safely predicted (Crocker
1992; Crocker 1995). Finally, one should notice that there are advocates of
incremental parsing for engineering goals. Tomita (1986),Wehrli (1992) report
on interactive parsing systems, which require incremental parsing.

Several counterarguments to the supposed lack of incrementality of LR pars­
ing have been constructed. two assumptions underlie the argument that LR
parsing cannot be incremental: the first assumption is that interpretation can­
not start before the completion of a rule in the parser, i.e. that the synt.actic
chunking units must correspond to the interpretation chunking units, a sort
of simplicity arguments; the second assumption is that the crucial source of
information about the history of the parse is the stack. Stabler (1991),Shieber
and Johnson (1993) show that both these assumptions are false. Stabler (1991)
argues that interpretation can start before the end of the right handside of
a rule is reached if a sort of postfix notation is used. This observation is in
the right direction, because it points out that the simplicity argument used by
Steedman is incorrect. Steedman assumes that interpretation corresponds to
building a constituent and integrating it into the syntactic structure, and that
the best parser is the one that does this most "simply", namely with a mini­
mal manipulation of the grammatical representations. Incremental integration
and interpretation of constituents in a bottom-up parser can occur only if the
structure is left-branching. Therefore he argues, syntactic theory should build
left-branching representations, such as those of categorial grammar. This ar­
gument rests on the assumption that syntactic interpretation can occur only
when one constituent has been built; in LR parsing terms, when a rule has
been reduced. This assumption requires synchronization of the parser with

7 Only fully top-down models could build a structure that is fully connected at every step.
Top-down parsers are unattractive, because they are liable to postulate too much structure,
incurring "spurious" ambiguities. Moreover, they do not tenninate on left-recursive input.

130 CHAPTER 4

the interpreter. In fact, asynchronous computation is actually simpler than
synchronous computation Shieber and Johnson (1993).

However, to rebutt the critique completely, one must show that LR parsing can
build a connected structure. Drawing on work by Lang (1974),Lang (1989),
Shieber and Johnson (1993) show that the states of an LR parser contain enough
information to build the structure incrementally. An example of this technique
is provided in Figure 4.12 in the following section.

Since incrementality provides evidence in favour of top-down-like behaviour, it
is important to remember that evidence for bottom-up behaviour comes from
observations on the speed at which language is parsed. Also, universal proper­
ties of human languages, as Hawkins (1990) argues, are more easily interpreted,
if they follow from a requirement to parse languages bottom-up.

Hawkins (1990) argues for a processing explanation for word orders, as one finds
left-right asymmetries in the world languages, with a clear preference for struc­
tures in which an immediate-constituents-to-words ratio is minimized. A pro­
cessing explanation of word orders is based on the assumption that the parser
projects all the structure it can as soon as it has unambiguous evidence for it
(but not before). So for example, if Co is an unambiguous index of a CP, the
whole CP structure will be projected. If parsing did not proceed bottom-up, it
would make no sense to try and minimize the processing window. Analogously,
one can argue that a parser that is fully predictive, i.e. completely top-down,
would have no reason to prefer lower immediate-constituent-to-words ratios.

In general, as Stabler (1994) points out, there seems to be contradictory de­
mands on the parser, to build connected structure to minimize the use of mem­
ory resources, requirement which is maximally satisfied by top-down techniques,
and to build structure only if supported by input evidence, for efficiency and
descriptive reasons, requirement which is maximally satisfied by bottom-up
algorithms.

Evidence for Incremental Parsing of Incorrect Input

Few parsing methods can model the available evidence on incorrect input.
Briefly put, there is evidence from mispronounciation detection experiments
that humans detect an error in the input as soon as they hear it (Cole and
Jakimik 1978).

The Computation of Syntactic Features 131

Cole and J akimik (1978) employed the technique of mispronounciation detec­
tion to show that speech is processes word by word. They presented pairs
of words, opposing pairs in which the second word was highly constrained by
the preceding word (gold nng) to pairs in which the second word was not (old
ring). Subjects pushed a response key whenever they detected a mispronounci­
ation. Reaction times were 180 milliseconds faster for predictable words, than
for non-predictable words. This shows that previous context influences word
processing, and that speech is processed word by word, as the previous word
must have been processed to be able to affect the following word. The average
detection time was around 800 milliseconds, which means that averagely the
mispronounciaton was detected very fast, as it was recognised by the end of
the following word.

Interestingly, early detection of incorrect input is a very discriminating feature
among parsing models. Most parsing models allow the parser to shift a token on
some temporary stack, if no other attachment or action can be performed, thus
often the parser proceeds until the end of the input, or until some threshold
is reached before realising that the parse is incorrect. Since all sentences that
contain an error are incorrect, there is no notion of "local" error, parallel to
the notion of local ambiguity. Thus, only a sufficiently predictive parser could
detect the error and suspend the parse right away, or trigger some recovery
procedure.

In the ligth of the evidence just reviewed, I propose a comprehensive definition
of incrementality, that takes into account the properties of the parser both on
correct and incorrect input.

Definition

Incremental Parsing

A parser is incremental if it has the following properties:

L It has the valid prefix property, namely it does not perform any
unnecessary shifts on incorrect input, because it is able to
recognise incorrect input as soon as possible,

2. At each point in the parse it builds the smallest possible forest.

132 CHAPTER 4

Moreover, I want to impose a requirement that the proposed algorithms be
valid cross-linguistically.

Definition

Cross-linguistic Incrementality

A parser is incremental for all languages, if it uses the same incremental parsing
mechanisms for all languages.

I shall argue that only precompilation of the grammar, with an exhaustive
encoding of all the possible acceptable parses, can make the parser sufficiently
predictive, and thus incremental on both correct and incorrect input.

Other approaches

While most parsers satisfy property 2 above (including LR parsing, as argued
by Shieber and Johnson (1993), and as I will show below in more detail), very
few parsing methods have property 1, and many can be shown not to be valid
cross-linguistically.

Many results on left corner parsing appear to show that it is more apt to
describing evidence on human sentence parsing, especially processing overload
(Abney and Johnson 1991; Gibson 1991), but if one looks at a well-defined
proposal, one can reach the conclusion that the incrementality of the algorithm
depends on the head-initial nature of English, coupled with its rather fixed
word order.

Let's examine in detail the proposal reported in Stabler (1994), which is precise
and well-defined. Stabler presents a variation on left-corner parsing, called Left
Attachment, which has the property of parsing a sentence without ever pushing
more than two elements on the parse stack, thus it maintains what he calls finite
connectivity. Finite connectivity is a relaxed version of incrementality, which,
instead of imposing that the parser always build a connected graph, puts a
limit on the number of elements that can be left unconnected. Incrementality
is a sort of finite connectivity where the limit of unconnected elements is set to
1.

The Computation of Syntactic Features 133

In Stabler's proposal, finite connectivity is achieved by two means: rule com­
position, and the use of a variable trigger function. The first line of Figure 4.8
shows an example of rule composition. The NP can be shifted on the stack,
because it is recognized bottom-up by the sequence of rules NP -+ l\ and
N -+ the - farmer. Using a variable trigger function means that instead of
always using the left corner of the rule to trigger top down prediction, the
portion of the righthand side of the rule that triggers recognition can be of
variable length. In particular, in this proposal, the specifier of a maximal pro­
jection is projected bottom-up up to X', while the XP and the righthand side
sister, down to the X', are predicted. This algorithm is particularly effective
because English is head-initial, so that the head is actually the left corner of
the subtree rooted in X'. In this way the parser can predict the XP based on
left corner information. Because the head is on the left of the X' subtree, it
can be immediately projected to X' and be attached to the predicted X' node.
The parse would be less effective for head-final languages.A language where
the head is final could not exploit rule composition, as the complements would
come first, and complements are not nearly as predictive of the type of projec­
tion being processed as heads are. The variable trigger function would not be
very effective for very similar reasons.

In order to see that this is actually so. consider Figure 4.8 which traces a parse
of the Japanes sentence in (66), a head final language, with phrase structure
that is more or less the mirror image of the structure of the English examples
in Stabler (1994).

(66) Noumin-ga kitune-wo oikaketa
farmer-NOM fox-ACC chased

This parse uses Stabler's predicates, with adaptation for a head final language.
The notation XPshift: NP => the-fox chased means that as a consequence of the
application of the XPshift rule there is an NP on the stack and the-fox chased
is the yet un parsed input. It is easy to see that even if we make adjustments
to the algorithm to optimize for head final languages (for instance, by using
an Xlshift/attach rule), the parser could stack all the complements in a left­
branching structure.

I follow here the notation proposed by Stabler, and of course his axioms and
parsing rules. In the sentence in Figure 4.8, for instance, the parser starts from
the parsing axiom: the empty stack (at the left of the double arrow) and the
input the-farmer the-fox chased. From this configuration and the combination

134 CHAPTER 4

1 ax: ~ the-farmer the-fox chased ~ NP~N ~ N ~ the-farmer

2 XPshift: NP ~ the-fox chased ~ IP ~ NP II

3 Ie: Il IP ~ the-fox chased ~ KP -+ N ~ N -+ the-fox

4 XPshift: NP TI IP ~ chased ~ VP -+ NP V

5 Ie: V VP TI IP ~ chased ~ V ~ chased

6 shiftXO/attach: VP TI IP ~ ~ 11 ~ VP 10 ~ 10 -+ empty

7 shiftXl/attach: IP ~

Figure 4.8
Parsing Japanese with the Left Attachment Algorithm

of rules shown on the first line, the parser can deduce that it can apply an
XPshift action, where an NP is recognized and shifted onto the stack (second
line). From this configuration, in conjuction with the grammar rule IP ~ NPIl
the parser can predict an 11 (the O\'erline means that the nonterminal has been
predicted top-down and needs to be confirmed by the incoming input bottom
up). The result of this operation, the application of the left corner (Ie) rule,
is shown on the third line. Line 4 shows the result of recognizing the second
NP, by the same combination of rules shown before. The NP is shifted on the
stack. Line 5 shows that having II and NP on the stack triggers a left corner
prediction of the upcoming verb (which in japanese is in final position). When
the verb is actually consumed (line 6) it can be immediately attached without
being actually shifted on the stack using an operation that combines predictable
sequences of actions and keeps the stack small. Line 7 shows that the same
predictable sequence of actions can be done at the Xl level, and the sentence
is recognized. It should be noted that even in such a small example the limit of
2 tokens on the stack is already too strict. In this particular parse, the limit of
finite connectivity is overflowed in the deduction step indicated from line 3 to
line 4, when the NP the-fox is recognized. The NP cannot be attached to the I1
directly, because the 11 is only predicted, but it awaits bottom up confirmation.
Thus, it is necessary to explore more powerful parsing techniques, as I illustrate
below.

The Computation of Syntactic FeatU1'es 135

4.6.1 Incremental LR Parsing

Property 1 is a well-known property of LR parsers, and similarly compiled al­
gorithms, for instance Schabes (1991). Properties 2 and cross-linguistic validity
can be achieved if the LR algorithm is augmented with two standard techniques:
the use of marker non-terminals, and the interpretation of the LR states (fol­
lowing the idea in Shieber and Johnson (1993).) I will extend Shieber and
Johnson (1993)'s argument to head-final languages, by showing examples from
Japanese. Differently from them, I will concentrate on showing that feature as­
signment can be performed incrementally, and I will not discuss interpretation.
I consider these as instances of the same parsing problem.

S-attributed and L-attributed Grammars

In order to perform feature assignment incrementally, an LR parser must be
able to assign features at any point in a rule. Compare, for instance, (67)a
and (67)b.

(67) a. IP -+ NP I VP { assign Case to NP, if 1= finite}
b. IP ~ NP I { assign Case to NP, if 1= finite} VP

In a parser that uses rule (67)a, case assignment to the Spec of IP position, i.e.
to the subject, is performed only after the VP is seen, even if no information
about the VP is needed to perform the case-assigning action. This means
that, if IP is the root, Case assignment to the subject is going to occur only
when the entire tree for the sentence is built. A parser that uses rule (67)b,
on the other hand, would assign Case as soon as the necessary information is
available. Although it is literally true that LR parsers can evaluate actions
only on reductions, i.e. they only operate on grammars whose rules have the
form in (67)a, there are simple techniques to transform a rule like (57)b into
a set of rules like (57)a (Aho and Ullman 1977, 282ff).

Stating the problem more precisely, A grammar G with productions of the sort
shown in (57), i.e. a grammar that can perform attribute assignment upon
reduction of a rule is called an attribute grammar.8 An attribute grammar is
S-attributed if all the attribution rules have the form in (68).

SIt was first proposed by Irons (1961) and formalized by Knuth (1968). For a clear example
of how to use attribute grarrunar for natural language, see Correa (1988) ,Correa (1991).

136 CHAPTER 4

(68) A.a -+ B.b C.c { A.a ~ f(B.b, C.c) }

The rule in (68) is called S-attributed because the attribute of the parent node
is a function of the attributes of the offspring. Such attributes are called syn­
thesized attributes. An attribute grammar is L-attributed if all the attribution
rules have the form in (69).

(69) a. A.a -+ ,B.b
b. A.a ~ ,B.b ,.c { ,B.b ;- f(A.a) } { ,.c <- f(,B.b) }

The rules in (69) are called L-attributed because the attribute of a vocabulary
symbol is a function of the attributes of a preceding item in the rule, or of the
parent node. Such attributes are called inherited attributes. An L-attributed
grammar G L can be evaluated by an LR parser, if G L is transformed into a
grammar G 5 such that the actions that perform attribution in G L always occur
at the end of a production in G s.

This transformation can be achieved by two different means, depending on
the situation. One can use the marker non-terminal technique, which simply
consists in adding a "dummy" nonterminal, in order to force rule reduction at
a particular point. This technique can solve the problem of interleaving feature
assignment and structure building in two interesting cases. By putting a marker
non-terminal right after the verb, Case is assigned to the NP as soon as possible
in order to distinguish A from A chains, and enable structural determination
of empty categories. If Case morphology is overt, the marker non-terminal can
be used to assign Case and B-role, so that participants ina predicate where the
verb is final can be interpreted.

The marker nonterminal technique cannot be used if the grammar has rules
where the attributes percolate from right to left, for example in a rule like (70).

(70) A-+BC {B.i <- C.s}

For natural languages this technique does not work for SVO languages to assign
features from the verb to the subject, and for SOY languages to assign the
features of the verb to the arguments.

The Computation of Syntactic Features 137

In the former case, the transformation of an L-attributed grammar into an S­
attributed grammar, can be performed by different means, because in many
cases of L-attribution, the attributes of the tokens on the left are at a fixed
position in the stack. For instance, consider the following example, which is
an adaptation of Aho and Ullman (1977, 310), where they give an example for
programming languages. Let a grammar G, with productions P shown in (71)
be given.

(71) l. DP -t Det Poss NP
2. NP -t NP eN
3. NP -t N
4. N -t { cani, gatti, pulcini, }
5. Det ~ { I, il, la, ... }
6. Poss -t { miel, mia, mia, ... }

Let the input string in (72) be also given.

(72) I miei cani e gatti e pulcini
My dogs and cats and chickens

We assume that agreement is checked on applying the rule (71).l. The sequence
of moves made by an LR parser is shown in Figure 4.9.

On inspection of the parse trace, one can notice that every time N P is reduced,
Pass is the element just below it in the stack. This means that the position of
the element with which the list must agree is known. Case assignment into the
Spec of IP (nominative Case or structural case) can be done in the same way,
as in English structural Case can be assigned as a function of the next token,
or a bounded amount of stack, or both. In English, structural case is assigned
to the Spec ofIP position, by Spec-Head Agreement with a finite Inft.9 Spec of
finite IP can occur both in main and embedded clauses. Moreover, we assume,
that the finite morpheme is always in Inft, either because it is base generated
there, or, as for auxiliaries, it moves to I (Pollock 1989), in English. Finally,

9We are not interested in structural case assignment to object position, i.e. inherent or
partitive Case (Chomsky 1986a; Belletti 1988), as they involve Case assignment to a position
after the head, in English, which can be treated by ordinary S-attribution.

138

STACK

Det
Det miei
Det Poss
Det Poss cani
Det Poss N
Det Poss NP
Det Poss NP e
Det Poss NP e gatti
Det Poss NP e N
Det Poss NP
Det Poss NP e
Det Poss NP e pulcmt
Det Poss NP e N
Det Poss NP
DP

Figure 4.9

INPUT
i miei cani e gatti e pulcini
miei cani e gatti e pulcini
miei cani e gatti e pulcini
cani e gatti e pulcini
cani e gatti e pulcini
e gatti e pulcini
e gatti e pulcini
e gatti e pulcini
gatti e pulcini
e pulcini
e pulcini
e pulcini
pulcini

Example of L-attributed Incremental Parsing

CHAPTER 4

PRODUCTION

Det -+ i

Poss ---+ mzei

N ---+ cani

N -+ gatti
NP -+ NP eN

N ---+ pulcini
NP ---+ NP eN
DP ---+ Det Poss NP

The Computation of Syntactic Features 139

English is head-initial. As a consequence of the interaction of these properties,
Infl is always the next token in the lookahead of the parser, when the reduction
of the NP which is going to occupy the Spec of IP is performed. IO

In other words, structural case is assigned in the rule (73).

(73) IP -+ NP {Case assign, if Infl = +finite } I'

This rule assigns case correctly, only if the attribution is not a function of the
other elements in I'. We notice however, that this is precisely what is meant
by structural case: a case that is assigned independently of the properties of
the main verb, in a given configuration. Thus, the correctness of (73) is a
consequence of (74).

(74) a. XO - \VO
b. Xl -+ XO Y2
c. Xl -+ XO

{ XO.Case <- wO.Case }
{ Xl.Case <- XO.Case }
{ Xl.Case <- XO.Case }

The rules in (74) show that the rules of attribution that transmit case from
the inflectional input token (by which we mean modals, auxiliaries, and finite

10 At first sight, this might appear as a wild overidealization. In fact, there are both
theoretical and empirical reasons to think that this is the right way to idealize the data. A
corpus analysis on 111 occurrences of the verb announce in the Penn Treebank shows that
the subject is followed by an aspectual adverb 11 times, twice by incidental phrases, and 4
times by an apposition. In all other cases the subject and the verb are indeed adjacent. I do
not consider appositions and incidentals as challenging for the general claim: incidentals are
clearly outside of an X structure assigned to the sentence; while appositions are "internal" to
the NP, thus when the verb is reached, the phrase sitting on the stack is indeed the NP subject.
which can therefore receive Case. The treatment of aspectual adverbs is more complex. There
are at least two possible tacks. First, one can notice that adverbs, although they are analysed
as maximal projections because they can be modified, never take a complement, thus they are
usually limited to a very short sequence of words, and they do not have a recursive structure.
A minimum amount of lookahead, even limited to these particular instances of aspectual
adverbs, would solve the problem. Clearly, this is an inelegant solution. A more principled
treatment comes from recent developments in the theory, that have changed somewhat the
representation used for adverbs. Laenzlinger (1993) suggests that all maximal projections
have two specifiers, one A and one X, the higher of the two is the X position which can
be occupied by adverbs, if they are licensed by the appropriate head (the Adv-Criterion).
For these adverbs the appropriate head is Aspo which we find only with finite verbs. The
parser could compile this information and assign case directly, without even waiting to see
the (lexical) verb.

140 CHAPTER 4

verbs), here represented by wO, are copy rules, hence they simply transmit a
lexical property from the input token to the sister of the assigner Xl. Hence
Case can be assigned to the NP directly.

Extension of the Attribution Schema

This technique, which is sufficiently flexible to assign Case to the subject, ex­
tends to other languages with properties different from English, but it seems
to be restrictive enough to provide an explanation of a gap in the typology of
languages.

In verb-final languages like German, the Spec of IP is not string adjacent to
the head of IP, like in English, in embedded clauses. Structural case is assigned
from left to right, since the complementizer, which necessarily marks the left
edge of an IP, is obligatory, and the finite complementizer is always different
from the infinitival complementizer, as shown in (75).

(75) a. Wir wissen, daB Marie das Buch gelesen hat.
"We know that Mary has read the book."

b. Marie ist in die Bibliothek gegangen, urn das Buch zu lesen.
"Mary has gone to the library to read a book."

A language like Japanese, which is head-final and has an optional complemen­
tizer to mark embedded sentences, which comes at the end, and has no relative
marker for relative clauses, seems, at first sight, to constitute a problem. But
in fact it does not, for two reasons: first, Japanese has overt. case marking,
hence nominative case assignment can be detected as it is explicitly marked in
the input; secondly, Japanese is left branching, hence the grammar to describe
Japanese could be evaluated by using exclusively S-attribution. l1

An LR parser could not assign features incrementally in a language with the
characteristics in (76).

11 Weinberg (1993) presents a similar idea for a parameterized deterministic procedure to
parse both English and Japanese. Her main idea is that internal licensing within a phrase
is done by the head in English, and by Case marking in Japanese. She shows that garden
paths effects follow.

The Computation of Syntactic Features 141

(76) 1. no overt case marking
2. no distinct finite complementizer
3. verb final
4. right branching

A first inspection of some of the sources on language typology show that such
language might be very difficult to find. (Steele 1978; Shopen 1985; Comrie
1981). According to Downing (1978), verb final languages usually have prenom­
inal relative clauses, which we take to be a sign that they are left branching.
Only two verb-final languages have postnominal relative clauses, Persian and
Turkish. In Persian the clause boundary is overtly marked by the suffix -i on
the antecedent. Moreover, they both have overt case marking of the subject.
In fact, Downing (1978), noticing this rather strict implicational universal, at­
tempts an explanation in terms of parsing theory by citing Kuno (1974). He
says:"Kuno (1974) has shown that SOV word order with postnominal relative
clauses maximizes center-embedding. which seriously interferes with sentence
processing beyond two degrees of embedding. It is not surprising then to find
that languages with post rather than prenominal relatives provide correlative
structure as an alternative." (Correlative relative clauses are those that have
the syntactic structure of main clauses.) Although this is by no means definite
evidence, at least it suggests that the algorithms for chain formation and fea­
ture assignment that we have presented are not immediately falsified and they
are applicable to a wide variety of languages with different properties.

Interpretation of the LR states for head-final languages

Even if the annotation techniques presented in the previous sections seem to
cover an interesting range of syntactic facts and gaps, one might want to explore
a more powerful technique.

The feature assignments explored above all fall short of one requirement for
incremental parsing: they do not build structure incrementally. In fact, they do
not build structure at all, the reason being that they operate only on the stack.
The stack of an LR parser encodes some interesting linguistic concepts, such
as precedence and c-command explicitly. It encodes structure only implicitly,
as Shieber and Johnson (1993) remark, as it encodes the states the parser has
gone through. However, the complete structural information is there, and can
be used to parse incrementally both head-initial and head-final languages.

142 CHAPTER 4

S' ~S 10 ---+ empty
S ~CP VP ---+ v NP
S ---+ IP VP ---+v
CP ---+ NPwh C1 VP ---+ v IP
C1 ---+ CO IP VP ---+ VP PP
CO ---+ do NP ---+n
CO ---+ empty NP ---+ det n
IP ~ NP 11 NP ---+ NP PP
11 ---+ 10 VP PP ---+ P NP

Figure 4.10
English grammar

Consider a grammar with the set of productions P, shown in Figure 4.10. Its
canonical collection of items, from which the LR finite state machine is derived,
has 28 states. I show the first 6, to illustrate the technique, in Figure 4.11.

These states encode top-down information implicitly. For example, the first
item in 15 constructs an NP as the first daughter of an IP, as the parent of the
node is known by consulting the very same state. The parent of the IP is also
known, as it must be in state 10 , the state preceding 15 in a graph traversal. The
parent of IP in this case is the root of the sentence. That the whole history of
the derivation of a constructed item in an LR graph can be computed becomes
perhaps clearer if one thinks of all the shift operations as the traversal of a
finite state graph, the graph of all the left contexts.

This information could be used as soon as the parser enters into a given state.
Whenever the parser enters in a state, it predicts all the structure that is right
after the. in a rule. This information can be encoded if we think of a tree
structure as an AND/OR graph, where nodes that belong to the same derivation
are AND nodes, while nodes that belong to different derivations are OR nodes
(Lang 1989; Shieber and Johnson 1993). Visually, the nodes that belong to
the same tree are represented as ordinary nodes, while nodes that represent
disjunction are represented as ovals. Figure 4.12 shows a representation of the
state of the parser at states 7,5, and 13, for the input the girl sent.

In the first panel, the parser has seen the determiner the, which is sufficient to
predict that the upcoming phrase is either an NP or an IP, since the nonterminal
Det can only be the first symbol of an KP which in turn is the first symbol of an

The Computation of Syntactic Features

Figure 4.11

S'->. S

S ->. CP

S -> .NPwhC'

IP-> .NP I'

NP-> .n

NP->. det n

NP->.NPPP

I ________ --IP---------"~

NP

IP -> NP. l'

NP->NP.PP

1'->.IO VP

10-> .

pp->. P NP

Canonical Collection of Items for the Grammar in Figure 4.10

143

144 CHAPTER 4

IP. The shaded areas indicate the portion of the tree which has been confirmed
bottom-up. The dotted branch in the figure in the NP projection indicates
only dominance and not immediate dominance, as the grammar employs a left
recursive rule at this point, so more than one ~P could be constructed. The
oval surrounding the two roots indicates that this is an OR node in the graph,
thus the two trees rooted here are competitors analyses for the same input. One
of the two will be discarded by the end of the sentence. The second panel shows
the parser's state after the word flowers, which has been recognized as an NP,
and attached to both subtrees in the AND JOR graph. The NP continuation is
compatible with both analyses, as shown by state I5 in Figure 4.11. The third
panel shows that the NP analysis has been discarded at the processing of the
verb sent, as it is incompatible with a V expansion. On the other hand, the tree
rooted in IP has now an OR node which contains three possible expansions, all
of which are compatible with the portion of input seen so far.

This use of LR states is very powerful, as it amounts to bottom-up parallel
parsing. The extension to head-final languages is straightforward. Consider,
for instance, the little, purely illustrative grammar for a head-final language
given in Figure 4.13. This grammar could generate, for instance, the sentence
in (77). The parse of this sentence would proceed as in Figure 4.14, where the
first steps are illustrated.

(77) Bob-ga Mary-ni inu-wo ageta
Bob-NOM Mary-DAt dog-ACC give-PAST
'Bob gave Mary the dog'

In step 1, the main sentential structure is constructed, on the basis of the
information contained in the first NP. The first NP being nominative, it can
only be the left corner of a sentential node. Step 2 shows that, as soon as an
inflectional node is postulated, all the possible VP expansions are predicted,
as alternative analyses, indicated by the OR node. Step 3 shows that only one
analysis is kept on encountering the dative NP, which is not compatible with
the first and third expansion of the VP indicated in step 2. The parse will
continue successfully, and unambiguously, with the analysis of the NP and of
the verb.

This technique is powerful enough to parse head-initial and head-final languages
incrementally, without losing the valid prefix property, and thus it satisfies the
requirements we have imposed above. Since it is based on the collection of
items, which take the closure of dotted items, it is also guaranteed to terminate

The Computation of Syntactic Features

at stale 1

NP pp :w

~ ~
at state S

j' I
the fWwm

Dei N
j I

the /I .. ,,,,

IP

~
r-~--~NP=----- 11

De, N

NP NP

Figure 4.12
The three initial parsing step for the sentence fragment The girl sent .. usmg a
representation of the sentence as an AND/OR graph

145

146 CHAPTER 4

Figure 4.13

S' -T IP
IP -T NPnom 11
11 -T VP ro
10 -T empty
VP -T NPacc v
VP -T NPdat NPacc v
VP -T IP \'

Example Verb Final Grammar

NPnom

I
Bob-ga

STEP!

Mjdat
Mary-ni

STEP 3

Figure 4.14

NPnom

I IO
Bob-ga

STEP 2

l'I"Pacc v

NPacc v IP

/~
NPnom II

Parsing a head-final sentence with an AND/OR representation

on left recursive grammars, while at the same time having a strongly predic­
tive behaviour, like top-down grammars_ Notice that although a considerable
amount of structure can be predicted, this algorithm cannot postulate struc­
ture beyond the specifier position of an embedded clause, thus immediately
accounting for the surprise effect in sentence (65)_

5
LOCALITY

Move-a, in current GB theory, is the only transformational rule. It is com­
pletely unrestricted, in the sense that it is interpreted as move anything any­

where. The underlying assumption is that this is the most general formulation
of a movement rule, and hence the most explanatory. Thus the single movement
rule of the theory, per se, does not incorporate any restrictions. The correct
empirical description is achieved by imposing restrictions on the elements that
move and on the source and target site of movement. Defining the domain of
operation of move-a is thus crucial, but also complex.

Long distance relations between elements undergo strict locality conditions, as
was noted as early as Ross (1967). ~luch work has been devoted, both in the
linguistic and in the parsing literature, to the discussion of locality conditions
on long distance dependencies.

In this chapter, after setting the theoretical framework (Cinque 1990), some
alternative proposals in the parsing literature are reviewed that make crucial
use ofthe notion oflocality to restrict the amount of computation performed on­
line and establish a strict relation between the parser and the grammar (Marcus
1980; Berwick and Weinberg 1984; Frank 1992). Drawing on their work, I shall
discuss the treatment of cross-linguistic asymmetries. Finally, I shall discuss the
implementation, arguing that preceding attempts to capture locality restriction
in the architecture of the parser Berwick and Weinberg (1984) or Frank (1992))
are not successful, as they only capture one part of locality restrictions, namely
that part that deals with the "minimal recursive subtree". I suggested that
locality restrictions be encoded declaratively by pointers to the available left
context.

147

148 CHAPTER 5

5.1 THE LINGUISTIC FACTS

I shall restrict my attention to long distance dependencies created by wh­
movement. Wh-movement presents two characteristics that are going to be
of interest here: it undergoes locality restrictions, and it is subject to cross­
linguistic variation.

Wh-movement is not unrestricted: extraction from certain constructions (called
islands) gives rise to ungrammatical sentences. Some of the most revealing
islands are exemplified below (Cinque 1990, Iff).

(7S) Subject Island
a. * Which books did [talking about t] become difficult?
b. * How would [to behave t) be inappropriate?

(79) Complex NP island
a. * To whom have you found someone who would speak t ?
b. * How have you found someone who would fix it t ?

(SO) Adjunct Island
a. * To whom did you leave without speaking t ?
b. * How was he fired after behaving t ?

(SI) Wh Island
a. ?? To whom didn't they know when to give their present t?
b. * How did they ask you who behaved t ?

(S2) Negative Island
a. To whom didn't you speak t ?
b. * How didn't you behave t ?

(S3) Factive Island
a. To whom do you regret that you could not speak t?
b. * How do you regret that you behaved t ?

Locality

(84) a. To whom is it time to speak t?
b. * How is it time to behave t?

149

Two facts can be noticed. First, in all cases extraction from islands generates
some ungrammatical wh-movement. Second, sentences (81)-(84)a are gram­
matical, while (81)-(84)b are not. The islands that generate ungrammaticality
in all cases are called strong zslands, while the others are called weak islands.
The fact that (81)-(84)a are grammatical shows that "long" movement is al­
lowed in these cases, i.e. the long distance relation between the wh-word and
the trace can be established. On the other hand, the ungrammaticality of (81)­
(84)b shows that long movement is not available to the type of element that is
being moved. However, movement is available to the same elements if it can
occur in shorter steps, as the contrast in (85)-(87) shows.

(85) a. * How did they ask you who behaved t ?
b. How did they think you behaved t?

(86) a. * How didn't you behave t?
b. How did you behave t?

(87) a. * How do you regret that you behaved t?
b. How do you think that you behaved t?

These facts suggest that long wh-movement is sensitive to strong islands, while
successive cyclic wh-movement is sensitive only to weak islands. Following
Cinque (1990), then, three questions need to be answered with reference to
wh-movement.

1. What classes of elements undergo long and successive cyclic
movement?

2. From what principles of the theory does the existence of long and
successive cyclic movement follow?

3. What is the nature of the locality conditions on long and
successive cyclic wh-movement?

150 CHAPTER 5

In Chomsky (1986a) the answer to the first and second questions is that argu­
ments can undergo long movement, while adjuncts cannot. 1

Refining on this proposal, Rizzi (1990) points out that some B-marked com­
plements, i.e. arguments, most notably measure phrases and NPs in idiom
chunks, cannot undergo long movement, as shown in (88)-(89).

(88) * Quanti chili ti ha chiesto se pesavi?
"How many kilos did (s)he ask you if you weighed?"

(89) * L'attenzione che non ho ancora deciso a chi prestare, e poca.
"The attention that I have not yet decided to whom to pay, 1S

little."

Rizzi (1990), therefore, distinguishes elements that receive a "referential" B-role
from those that receive a non-referential B-role, such as a measure B-role. The
principle governing movement for non-referential elements, adjuncts, measure
phrases and idiom chunks is the ECP, which imposes very local licensing con­
ditions. The principles governing movement of referential elements are jointly
the ECP and binding. The fact that referential elements can be "identified"
by binding accounts for their ability to move longer distances than adjuncts.
An even finer distinction is needed to account for the systematic difference in
acceptability of the extraction of arguments related to a bare quantifier and
extraction of NPs such as tutti-N, as shown in (90)-(91) (Cinque 1990).

(90) a. * Ogni dichiarazione mi chiedo perche abbia ritrattato.
" Every declaration I wonder why he repealed."
b. * Nessun libro mi domando perche abbia comprato.
"No book I wonder why he bought."
c. Tutti i musei, mi chiedo chi possa aver visitato.
"All the museums, I wonder who might have visited."

1 This distinction is derived from a particular formulation of the ECP, such that interme­
diate traces of arguments may be deleted at S-structure: both arguments and adjuncts need
to be antecedent governed, i.e. they can move only by successive short steps; however, in the
case of arguments some of the intermediate traces left behind by these small steps can then
be deleted, "simulating" long movement at the level of LF, while the intermediate traces of
movement of adjuncts cannot be deleted.

Locality

Table 5.1

WHICH-N
referential (D-linked)
binding
long movement

Two types of wh-movemellts

referential (non- D-linked)
antecedent government
successive cyclic movement

(91) a. * Ogni museo, non vuole visitare.
"Every museum, he does not want to visit."
b. * Nessun libro non e' vero che abbia comprato.
"No book it is not true that he bought."
c. Tutti i musei, non ha visitato.
"All the museums, he did not visit."

151

If referentiality is interpreted as D-linking in the sense of Pesetsky (1987), refer­
ential means member of a preestablished set. Then, according to this definition,
a bare wh-operator/variable configuration is not referential, and NP-traces are
not intrinsically referential, if we think of them as elements of a discountinuos
constituent. Cinque (1990) identifies then two kinds of operator/variable con­
figuration, as shown in table 5.1, where the types of NPs that belong to the
two classes, the grammatical principles that perform the identijicatzon of the
empty category, and the type of movement are listed.

Within the Barriers framework, Cinque (1990) proposes to define two slightly
different notions of barrier for long movement and successive cyclic movement. 2

Intuitively, the different definitions must capture the fact that strong islands
are neither 8 nor L-marked, while weak islands are 8-marked. The difference
in the two cases can then be captured by the notion of direct marking, under
sisterhood.

2Chomsky (1986a) proposes that the locality condition on successive cyclic movement is
antecedent government, while the condition on long movement is Subjacency. Cinque (1990)
points out that this proposal is unsatisfactory, since it deals with locality conditions in a way
which is not uniform. Chomsky (1986a) attempts to unify the theory of government and the
theory of bounding by using the same notion of barrier in both theories. Cinque (1990) notes
that the unification is only partial, however, as a different number of barriers is relevant: one
for governrnent and two for bounding. Moreover, two more notions of barrier are needed in
order to capture all the facts: minimality barrier for government and inherited barrier for
Subjacency.

152 CHAPTER 5

Definition

Barrier for Government (Cinque 1990,42) (113)

Every maximal projection that fails to be directly selected by a category nondis­
tinct from [+ V] is a barrier for government.

Definition

Barrier for Binding (Cinque 1990, 42) (114)

Every maximal projection that fails to be (directly or indirectly) selected in
the canonical direction by a category nondistinct from [+ V] is a barrier for
binding.

In sum, the trace of wh-movement must be formally licensed and identified. A
nonpronominal empty category is formally licensed if the ECP, as formulated
in 5.1, is satisfied. If the empty category is referential it is then identified if
binding is satisfied, while a nonreferential nonpronominal empty category is
identified iff antecedent government is satisfied.

Definition

ECP (Cinque 1990, 49)

A non pronominal empty category must be properly head governed by a head
non distinct from [+ V].

As it can be noticed, Cinque's definition of barrier reintroduces substantive no­
tions, related to the feature [+V], which were absent from Chomsky (1986a)'s
definition. The fact that the category label determines barrierhood, however,
makes it impossible to use a parameterized list of bounding nodes. The cross­
linguistic variation discussed in Rizzi (1982) is then basically stipulated. I
review here the linguistic evidence and reinterpret Rizzi's proposal in the frame­
work of the current theories of A movement.

Locality 153

5.1.1 Cross-linguistic Variation

Rizzi (1982, 49ff) notices that some of the evidence that motivated the Subja­
cency condition, namely the existence of wh-islands, does not translate directly
into Italian.3 Specifically, Italian could violate some wh-islands.

An example of long distance movement that is allowed in both languages is
given in (92).

(92) a. [c P W hOi do [I P you think [c P ti that [I P Mary said
[c P ti that [I P Bill saw ti ?]]]]]]

b. [cp Chi; [IP credi [cp ti che [IP Maria abbia detto
[c P ti che [I P Gianni ha visto ti ?])]]])

Both Italian and English, on the other hand, exclude wh-extraction from a
wh-clause which is not the most embedded one, as shown in (93).4

(93) a. * Il mio primo libro, [cp cheJ [IP so [cp a chi, [IP credi [cp t;

che [I P abbia dedicato tj t,)))], mi e sempre state molto caro.

b. * ~1y first book, which I know to whom you believe that I
dedicated, has always been very dear to me.

The next two examples show the kind of configurations in which Italian can
violate wh-islands: if the most embedded clause is a wh-clause, then extraction
is possible and the extracted element can either move higher up the tree or
move to the adjacent clause as shown in (94) and (95).

(94) a. Il mio primo libro, [cp chej [IP credo [cp tj che [IP tu sappia
[cp a chi; [I P ho dedicato tj t;]]]], mi e sempre stato molto caw.

b. * My first book, which I believe that you know to whom
I dedicated, has always been very dear to me.

3The wh-island constraint, as stated in Ross (1967), says that no wh-element can be
displaced out of a wh-constituent.

4These sentences are Rizzi (1982,56) (l8b,a) and 50 (6b), respectively.

154 CHAPTER 5

(95) a. Tuo fratello, [cp a cui; [IP mi domando [cp che storiej
[IP abbiano raccontato tj tt 111], era molto preoccupato.

b. * Your brother, to whom I wonder what stories they told, was
very worried.

In order to account for this cross-linguistic asymmetry, Rizzi reformulates Sub­
jacency as a parameterised condition. In the formulation before Chomsky
(1986a), Subjacency would hold in (96)b given (96)a.

(96) a a ···le ... [6 ... ,11 a ...
b. No rule can relate a and -(in (96)a if two bounding nodes are
intervening.

This restriction also applies to wh-movement. The result is that no single step
in a cyclic application of movement could cross more than one bounding node.
The bounding nodes are constants \\'ith the stipulated values of IP and NP for
English. 5 Rizzi suggests that the value of the clausal bounding nodes can vary
from language to language. He shows that by choosing the bounding node as
CP for Italian the evidence above is easily explained. In no case, more than one
CP bounding node can be crossed in Italian. Cinque (1990) notices however,
that cross-linguistic variation is sensitive to referentiality. Those languages that
allow wh-islands violations do so only with referential wh-phrases, or in relative
clauses. Moreover, given this distinction, languages like English can also violate
wh-islands given the appropriate context. Cinque gives the following examples. 6

(97) (Cinque 1990, 53) (144a.b)
a. A car that I wouldn't know who to ask how to fix t.
b. These are the only vegetables which I don't know where
to find out how to plant t.

In order to capture the cross-linguistic variation a stipulation is needed, which
determines which node is an inherent barrier in a given language, along the lines

5The actual labels used in Rizzi (1982) to refer to sentential nodes are Sand S'. I use here
the terminology introduced by Chomsky (1986a), because it is just a label substitution. No
matter of content is altered. CP = S' and IP = S.

6 Cinque acknowledges that (97)a is from Browning, and (97)b is from Frampton (1990).

Locality 155

• The binder of a non pronominal empty category must be the minimally local
binder.

• The identification of a non pronominal empty category is sensitive to D-linking
properties of the empty category.

• Different locality domains can ensue different referential properties of the empty
category.

• NP-movement generates a non-referential discontinuous constituent. Hence,
nonreferential items and NP-movement must be treated in the same way.

• Cross-linguistic variation is sensitive to referentiality.

Table 5.2
Generalisation about wh-movement

of Chomsky (1986a, 37). Italian would then stipulate that the most embedded
tensed CP is an inherent barrier for binding, while in English IP would count
as an inherent barrier. 7

Table 5.2 summarises the main generalisation about wh-movement

7 This difference in the formulation of the parameter from the formulation preceding Chom­
sky (1986a) is in no way going to affect the validity of our discussion of Marcus (1980) and
Berwick and Weinberg (1984) below, which were developed with a substantive theory of
bounding nodes.

156 CHAPTER 5

5.2 RELATED WORK

From the point of view of efficient parsing, unbounded dependencies pose a
problem, because they require access to a potentially unbounded amount of
left context. However, the theory of grammar, as formulated in GB, provides
a tractable representation: every long distance movement is interpreted as the
sum of a number of shorter steps. A deterministic parser is able to perform
this computation, provided that the amount of material that every step can
encompass is available as left context to the parser. In other words, the parser
needs to know, given a wh-word as a cue of an upcoming trace, where to insert
the trace.

5.2.1 Marcus 1980

Marcus (1980) adopts for his parser a strictly deterministic approach. He claims
that a parser with the features in (98) is a deterministic parser.

(98) 1. No postulated node, no label and no grammatical
feature are cancelled and no attachment is broken.

2. All syntactic structure created for a given input is part
of the output tree.

3. No temporary encoding of syntactic structure is allowed.
4. Only limited lookahead is allowed.

Marcus (1980) uses two main data structures: a buffer, which can contain
upcoming input tokens and assembled const.ituents whose attachment is not
yet clear (thereby serving as lookahead device and temporary storage); and a
look-into stack, which is a stack where elements other than the top one can
be examined (thereby encoding the scanned portion of input to the left of the
current token). The left context is limited to the current cyclic node, namely
the current IP or NP.

The operations on these two data structures are limited by constraints on the
order of insertion and retrieval of constituents, the lowering lemma and the left­
to-right constraint, given in 5.2.1 and 5.2.1 respectively, from Marcus (1980,
141).

Locality

The Lowering Lemma The only reasonable method for lowering a trace
bound to an NP in one clause into a lower clause is to do so im­
plicitly by dropping the trace into the buffer.

The Left-to-Right Constraint The constituents in the buffer are (al­
most always) attached to higher level constituents in left to right
order, i.e. the first constituent in the buffer is (almost always)
attached before the second constituent.

157

The determinism hypothesis forces the parser to be a wait-and-see parser, in
the sense that it cannot afford to make any mistakes, thus it can only postulate
structures and attachments that are certain.

Marcus (1980) claims that it is precisely this hypothesis, coupled with the
restrictions on licit operations, that make the parser obey a linguistic con­
dition like Subjacency. For example. consider the parse of a long distance
wh-movement. At the sight of a wh-word, the parser drops a trace into the
buffer and a new sentential node is postulated. Before attaching the IP node,
the parser builds a Comp node, which is formed by a complementizer word
and trace. Then it attaches the Comp node as the first element of the newly
postulated IP. As a consequence, when all the input is expended, the parser
has built an A-chain where every link in the chain, excluding the foot, sits in a
Comp node. The restrictions on the available left context ensure that this is the
only kind of cyclic movement allowed. Thus, wh-island behaviour is simulated.
If one of the Comps that are encountered while parsing is already filled by a
wh-word, then no trace can be dropped in the same Compo Since the visible
portion of the stack is the current cyclic node, at this point in the parse the
Comp of the current cyclic node will contain no trace. Hence the information
that a wh-word has been seen before is lost. Thus, when the A-position to drop
the trace is finally found, no trace in Comp is available to bind it and yield the
correct interpretation.

If we look at the Marcus parser from the point of view of principle-based parsing
and precompilation which we have pursued so far, we see that the constraints
on movement of the theory of grammar are not directly stated in the parser, but
rather they are folded into complex structure-building actions. This is neces­
sary because by precomputing the interaction between the generator principle
move-Q and the constraints, the parser acts deterministically. However, the effi­
ciency of determinism is bought at the cost of cross-linguistic coverage, or even

158 CHAPTER 5

empirical coverage for English, in those dialects where wh-islands violations are
acceptable (see for instance, Grimshaw (1986)).

The account for Italian is not so straightforward. In the specification for an
algorithm that computes the Italian type of Subjacency, CP constituents belong
to two classes: the class of those CPs that do not contain the trace in A-position
and the class of those that do. This results from choosing CP as a bounding
node. From the parser's point of view this means that a trace must be inserted
in all Comps intervening between the antecedent and the trace, except the
Comp immediately dominating the trace.

For a parser like Marcus (1980) to be able to compute Subjacency for Italian, it
would need to recognise that the upcoming clause is the one that contains the
trace in the base position. If the parser could recognise that it is at this stage
in the parse, then it would know that it need not drop a trace in Compo The
amount of available left context would also vary, depending on the derivational
cycle, to ensure proper binding of the trace. When the Italian-like parser arrives
at the most embedded Comp it might not need to drop a trace, but then it
needs to have access to the previous Comp to bind the trace in A position
properly. Algorithm 1 would be able to capture this state of affairs.

Algorithm 1

1. If most embedded clause then
left context +- from A-trace to closest A-trace

else
left context +- current clause

2. If the left context contains a wh-word or a trace in Comp then
if not most embedded clause then

insert trace.

3. No trace can be inserted in a wh-filled Compo

Algorithm 1 parses Italian, but it would violate both the lowering lemma and
the left-to-right constraint, since, according to the given definition of left con­
text, a constituent could be built before retrieving a trace from the buffer. One
could try to parameterise the Marcus algorithm to capture Italian, but this
attempt would either violate the spirit of Marcus's approach or miss the expla-

Locality 159

nation for English. Consider, for instance, a rather natural parameterization:
the active node stack is parameterised. In Italian the value for the cyclic node
could be CP, in English IP. This choice would reflect rather transparently the
grammatical parameter and be faithful to the parsing design, but it would not
work: as long as the lowering lemma and the left-to-right constraint are active,
only one sentential node can be built when a trace is in the buffer. Basic wh­
island violations in Italian would not be captured. Thus the mechanism would
still be too strong.

On the other hand, if the lowering lemma and the left-to-right constraint were
lifted, empirical problems would result for English: the mechanism would be
too weak. Since the lowering lemma and the left-to-right constraint are crucial
to enforce the Specified Subject Constraint (SSC), it is easy to predict that
some ungrammatical sentences could now be parsed. Consider, for instance,
the case of object raising below.

(99) * Mary seems [IP John to like t]

Object raising is excluded in Marcus (1980) parser because the conjunctive
application of the two lemmas allows extraction only from subject position,
but if the lemmas were lifted, then the trace could be created and bound to
Mary before creating the IP node, and inserted later.

If the two constraints were parameterised, such that English enforces them and
Italian does not, then Comp to Camp movement of wh-traces in Italian would
be totally accidental. But Italian performs cyclic movement as is shown in (93)
above. Thus Marcus (1980) is not easily extensible to capture cross-linguistic
variation.

5.2.2 Berwick and Weinberg 1984

Berwick and Weinberg (1984) develop a two stage parser that consists of a
tree building device and a coindexing procedure. The first stage of the parser,
discussed here, draws on Marcus (1980).

Berwick and Weinberg (1984) claim that the Marcus parser is "an informal
machine version of an LR(k) parser, specifically, a bounded context parser
(p.153)", since it satisfies three defining properties of an LR(k) parser.

160 CHAPTER 5

• It computes left to right a rightmost derivation in reverse.

• It is deterministic, in that it uses a finitely bounded lookahead.

• The parsing rules are stored in a finite control table.

By adopting this point of view, Berwick and Weinberg (1984) are able to offer a
reason why apparently unrelated phenomena of linguistic theory obey the same
constraints. These phenomena form a class for the parsing mechanism. Such
constructions are wh-movement constructions, parasitic gaps and some kinds
of gapping. (Berwick and Weinberg 1984; Berwick and Weinberg 1985; Fodor
1985).

The way their parser provides an analysis for cyclic wh-movement is slightly
different from Marcus (1980)'s. They assume that a trace in an A-position
is postulated depending on the 8-grid of the verb. If an antecedent trace is
present in the left context then coindexation can occur. The antecedent trace
is distinct from that of Marcus (1980), because it does not have to be attached
at the moment the new clausal node is postulated. It can be inserted later, if
no A-trace has been seen, provided it is inserted before the current domain has
not been passed to the second stage device, where it is no longer visible. As a
result, this parser provides the kind of design that can easily accommodate a
parameterised version, because the action that builds the structure (i.e. insert.s
the trace) and the checking of the constraints are not bundled in a complex
operation. We will present below the specification of an algorithm that works
both for English and Italian. We note, however, that. the formal properties of
this parser are not exactly as claimed in Berwick and Weinberg (1984). First,
the Marcus parser is not LR(k), but rather LRRL(k), as proved in Nozohoor­
Farshi (1986). Intuitively, an LR(k) parser can only use terminal symbols as
lookahead, while an LRRL(k), which stands for LR Fully Reduced Lookahead
of k, can also use nonterminals. It is easy to see that the use of the buffer in
the Marcus parser, which can contain fully-built unattached subtrees mimics
an LRRL machine. Also, it is not a bounded context parser since a bounded
context parser BC(m, n), only takes the last m tokens into account, whereas the
Marcus parser uses a packeting mechanism of patt.ern-action rules to encode the
left context. For a more detailed explanation and proofs, see Aho and Ullman
(1972) and Nozohoor-Farshi (1986). Second, as Van de Koot (1990) observes,
the behaviour that mimics Subjacency is actually derived from the fact that a
bound on feature annotation is imposed. In order to keep track of the current
cyclic node, a deterministic parser can encode the information as a feature on
each node. Thus, there is nothing intrinsic in the annotation that prevents to
annotate more than one feature at a time. The parser obeys wh-islands as a

Locality 161

consequence of the limit on feature annotation. Moreover, the only locality
restriction that is derived is A-minimality. However, we show below that the
fact that the constraints are applied separately from structure building can be
used to model cross-linguistic variation.

5.2.3 Frank 1992

Frank (1992) notes that locality restrictions are pervasive in GB theory. Every
principle of the grammar is stated as holding only in a given local environment.
Therefore, Frank argues, locality restrictions should not be stated explicitly,
and redundantly, in the theory of grammar, but rather they should descend
as a property of the grammatical formalism. Thus he proposes to consider
grammatically local environments that can be defined over an elementary tree,
as defined in Tree Adjoining Grammar (TAG). Frank suggests that the parser
incorporates the theory of grammar directly (in fact, he allows no grammar
precompilation), and that by restricting the operations of the parser to those
operations that are defined over an elementary tree, the working space of the
parser is guaranteed to be always parcelled into subtrees of bounded size, since
by definition no recursion is encoded in the ETs. This parser would then
proceed as follows. For every input token, it projects X structure and lexical
information; following the lexical specifications to license phrase structure it at­
tempts to incorporate the projection into the partially constructed tree. When
the structure already built corresponds to an ET, either initial or auxiliary,
then the ET is excised from the structure by an operation which is the reverse
of the two operations defined in TAG to combine trees. Hence, an auxiliary
tree is unadjoined and an initial tree is unsubstituted. The ET is then passed
to a semantic component for interpretation.

Using TAG to define formally the amount of locality over which linguistic prin­
ciples can span is appealing. However, some empirical issues remain to be
settled. There are cases in which the definition of locality given by TAG and
the locality restrictions defined in G B are not coextensive. For instance, ac­
cording to the theory of locality developed at the beginning of this chapter,
there are at least two locality domains for the identification of empty cate­
gories, depending on the content of the empty category: binding for D-linked
expressions and antecedent government for non-D-linked elements. In the case
of "long movement", namely extraction of arguments from weak islands, the
notion of ET and the notion of local domain in G B seem at odds. For instance,
take the example (81)a, repeated here for convenience.

162 CHAPTER 5

(100) ? To whom didn't they know when to give their present?

Here the long binding required to bind the trace spans over a recursive structure.
However, the sentence is at worst marginal. Thus TAG might impose a type of
locality that is descriptively too restrictive, as it fails to provide definitions of
locality for different referential items. The algorithm that uses TAG then suffers
from the same shortcoming as the algorithms seen above. Namely the attempt
to reduce locality to some sort of undoing of recursion is bound to be only
partially successful, unless item-dependent and language-dependent differences
are taken into account.8

In sum, precompilation of locality restrictions into the structure building rou­
tines is only partially successful. TAG might offer a well-formalized theory of
locality domains provided it were enriched with complex symbols, or precom­
piled atomic symbols, that give rise to several different locality domains for
each element type (A, A, head, referential) and also provided that an efficient
algorithm to consult the forest of ETs only at the relevant steps were specified.

5.3 PARAMETERISED SUBJACENCY

As a solution to the shortcomings of the deterministic algorithms seen !'o far, I
propose a parameterised version of Berwick and Weinberg (1984), Ben\ k and
Weinberg (1985). The algorithm is built on the following assumptions:

1. The parser can access only a limited amount of left context,
called >.(x).

2. The amount of left context can acquire different values, (i.e. it is
a parameter).

3. Empty categories are formally licensed by principles of the
grammar, such as the ECP.

4. After being licensed, a trace must be identified by an antecedent.

5. Given Subjacency, the antecedent for a trace must be in >.(x).

8Maybe TAG can be used if complex node labels on trees are used to determine recur­
sive structure. We need then to develop a theory of complex nonterminal symbols and to
investigate the complexity of algorithms that use them.

Locality

AlgorithIIl 2

1. fix bounding node parameter

2. scan sentence:
repeat until end of input
update ..\(x)
if Comp = not c-ommanded by real gap chain then

drop empty operator
if Comp = - wh then

drop trace
bind trace

scan CP

3. scan CP:

Figure 5.1

while trace in IP do
if trace in A-position is licensed then

drop trace
look for antecedent in ..\(x)
if antecedent available then

bind trace
else fail

else fail

Parameterized Algorithm to Compute Subjacency

6. Doubly filled Comps are not allowed.

163

If we fix ..\(x) = adjacent x, and x IP for English, and x CP for Italian,
then the correct array of evidence can be derived. We assume that the execution
of this algorithm is triggered by the detection of a wh-environment, questions
or relative clauses, for instance. At the moment it is also assumed that such
environments are identified by wh-words or relative pronouns.9 The algorithm
is shown in Figure 5.1.

9Thus we assume that an Active Filler Strategy is at work (modulo De Vincenzi (1991),
see chapter 4).

164 CHAPTER 5

5.3.1 Explanation and Comments

Step 1 sets the bounding node parameter for the current language, while Step
2 is the main loop that guarantees that the parsing of multiclausal sentences is
performed as a collection of clausal parses.

Step 3 assumes that traces in A-position are licensed by proper head government
structure. When a trace is postulated it must be identified by an antecedent
contained in >.(x). Since the trace is dropped first and then the left context is
scanned for the binder, at this point the algorithm is going to take advantage
of the possible different value of >.(x) to derive the asymmetry observed in the
data. If >'(x) is the adjacent CP, the Italian value, this means that the trace
in A-position can look at two Comps for its antecedent. As a result, even
if the nearer Comp is filled, the trace can still be bound and the sentence is
grammatical. If >.(x) is the adjacent IP, as in English, then only one Comp
node is available to identify the trace in argument position. Either the Comp
is an eligible identifier or the sentence is excluded.

The condition that drops an empty operator in Comp is needed to parse par­
asitic gaps, and it is based on the discussion in Berwick and Weinberg (1985).
Parasitic gaps are problematic for a deterministic parser because they are in
complementary distribution with overt pronouns, as can be seen in (101).

(101) a. Who did you meet without greeting?
b. Who did you meet without greeting him?

Parasitic gaps are required to be bound by an empty operator and moreover,
they obey Subjacency (Chomsky 1982; Chomsky 1986a). The parser then must
be able to predict a parasitic gap to be able to build a correct chain of A links
to bind the gap. For example, the representation for the sentence in (102) is as
follows.

(102) W hOi did you meet ti OJ without greeting ei ?

The distribution of parasitic gaps obeys conditions that are not completely
clear. Parasitic gaps can be attached either as adjuncts or as subjects, as
exemplified in in (103) and (104) below; they show some island effects, hence
obey subjacency; and they are licensed at S-structure.

Locality

(103) Adjunct Parasitic Gaps
a. What did you file t [before reading e ? 1
b.* Who [IPt met you [before you recognised e? 1

(104) Subject Parasitic Gaps
a. A man who [whenever I meet e 1 [t looks old]
b.* A man who [t looks old [whenewr I meet e 1

165

As mentioned above, according to Chomsky (l982) ,Chomsky (1986a) an empty
operator in the Comp licenses a parasitic gap. Thus two chains are present and
the licensing of parasitic gaps can be reduced to a condition that regulates chain
composition. (See above, chapter 4.) A plausible candidate is anti-c-command.
Anti-c-command requires that the parasitic gap be not c-commanded by ei­
ther the real gap or the real operator. Consider then anti-c-command as the
condition on chain composition. From a parsing point of view it is really not
surprising that chain composition should be subject to this kind of restriction.
If we assume that Subjacency incorporates the notion of c-command, then
whenever an A-chain is being computed and a new not c-commanded struc­
ture is postulated, the parser knows that a new A-chain should be started.1°
The restriction on how much A-chain stacking is possible could be regulated
by the same mechanism that does not allow triple center embedding in natural
languages {cf. :Miller and Isard (1964)).

The parser then can drop the empty operator in Comp when the chain com­
position condition is satisfied, as suggested by Berwick and Weinberg (1985).
Empty operators are not visible to the semantic component unless they bind
an argument position by the time they are passed to the semantic interpreter.
This is because they need to bear a B-role to be visible and to receive a semantic
index. By adopting this algorithm, a deterministic parser is able to be equally
well equipped to parse a parasitic gap or a pronoun.

If the pronoun is in the position of the parasitic gap then the empty operator
never enters a chain and does not receive a B-role, so it is invisible to the
semantic interpreter. Moreover, since the empty operator is in the head of the
adjunct and the parasitic gap must be subjacent to it, an asymmetry between
Italian and English is predicted. The parameterised algorithm must be able
to deal with it and it does. The two following sentences provide the empirical
evidence.

lOFor other reasons to include c-cornmand in the definition of Subjacency, cf. \Veinberg
(1988).

166 CHAPTER 5

STEP STATEMENT SET OF ACTIONS CURRENT STATE OF THE INPUT

l. fix parameter >.(x) <- CP
2. scan sentence Comp - +wh

scan CP ... fc P ehe) [I P credo

3. scan CP no trace in IP
2'. scan sentence Comp - -wh

drop trace in Comp [c P ehe) [J P credo fc p t) che
3'. scan CP no trace in IP

2*. scan sentence Comp = +wh
scan CP

3* scan CP if a trace is licensed then
drop trace
wh, E >.(x)
then available antecedent
bind trace [cP che] [IP credo [cp t] che [IP tu

sappia fc P a chi, [I P ho dedicato t,
scan CP if a trace is licensed then

drop trace
wh] E >.(x)
then available antecedent
bind trace lcp ehe] [IP credo [cp t) che [IP tu

sap pia fc P a chi, [I P ho dedicato t, t)

Figure 5.2
Snapshot of Good Italian Sentence: II mio primo lIbro, che credo che tu sappia a chi
ho dedicato, mi e sempre stato molto cara

(105) ?? Who; did you meet t; [cp 0; before [IP asking John
[c P when [I P Sue would get married to ei ?]]]]

(106) II ragazzoi che Maria ha sposato ti [cp Oi prima che [IP io avessi
tempo di chiedermi [cp se [IP potesse conoscere ei bene.]]]]

We now go through snapshots of the the algorithm to see it work in detail.
A sentence which is good in Italian «81)) and bad in English «94)) and one
which is bad in both languages «93)) is illustrated.

I

Locality 167

STEP STATEMENT SET OF ACTIONS CCRRENT STATE OF THE INPUT

1. fix parameter >.(x) IP
2. scan sentence Comp - +wh

scan CP ... [c P which) [I P I believe

3. scan CP no trace in IP

2'. scan sentence Comp - -wh
drop trace in Comp
scan CP [cp which) [IP I believe [cp t) that

3'. scan CP no trace in IP

2*. scan sentence Comp = +wh
scan CP

3* scan CP jf trace licensed
drop trace
wh, ~),(x)
fail

Figure 5.3
Ungrammatical English Sentence: My first book, which I believe you know to whom I
dedicated, has a/ways been very dear to me

STEP STATEMEi\T SET OF ACTION~ CCRREl'iT STATE OF THE INPUT

l. fix parameter),(x) CP
2. scan sentence Comp = +wh

scan CP [c P che) ...

3. scan CP no trace in IP ... [cp che) [IP so [cp a chi, ..

2'. scan sentence Comp = +wh
scan CP

3'. scan CP no trace in IP [cp ehe) [IP so [cp a chi, [IP credi.

2" . scan sentence Comp = -wh
update >'(x)
drop trace
fail

Figure 5.4
Ungrammatical Italian Sentence: n mio primo libro che so a chi credi che abbia
dedicato, mi e sempre stato molto caro

II

II

II

168 CHAPTER 5

The boundedness of the left context explains why Italian can cross only the
most embedded wh-word and not any Comps in any sentence. The algorithm
is flexible enough, however, to allow double wh-extractions from the most em­
bedded sentence.

Algorithm 3 allows a wider left context than either Marcus (1980) or Berwick
and Weinberg (1984) do, but it maintains the explanation of why that particular
amount of left context is chosen. N aturallanguages do not have counters. This
property is usually given as the explanation for the fact that the adjacent clause
constitutes the relevant left context. The only locality predicate that can be
stated without using counters is adjacency. Algorithm 3 then expands the left
context in a way that captures the data, but still uses predicates that belong
to the vocabulary of natural languages.

5.4 IMPLEMENTATION

The lesson that we draw from the previous discussion is that attempts to derive
locality constraints from the architecture of the parser or from the metagram­
mar need to be refined. It was shown that most proposals can derive rather
elegantly some kind of closest binder requirement, since that is directly related
to the notion of recursion on some linguistic entity. However, they all fail to
capture the totality of the locality requirements. This is because recent de­
velopments of linguistic theory have formulated different locality restrictions
for different input tokens. Thus in the same sentence, several, separate locality
domains can be active. A descriptively adequate parser must be able to express
this fact. We believe that both Berwick and "'einberg (1984) and Frank (1992)
could be adapted. We present here our implementation of locality restrictions,
which is a refinement of Berwick and Weinberg (1984), in that it operates on
the stack of an LR parser.

Since there is no single locality constraint for movement, we propose to think
abstractly of the parsing mechanism as operating on a family of stacks, each of
which is relevant for different types of input tokens. Given the linguistic theory
that we have presented above, two types of barriers are defined and three
different minimality requirements. We summarize them in Figure 5.5. These
locality conditions could be considered a theory of left context delimiters. What
emerges is that the theory takes the content of the delimiter into account.

Locality

PRINCIPLE

Relativized Minimality
Relativized Minimality
Relativized Minimality
Barrier for Government
Barrier for Binding

Figure 5.5
Locality Principles

INPUT TOKEN (TYPE)

A
A
head
non-D-linked
D-linked

169

ISLAND

wh-island
superralstng, superpasslve
that- t
long distance extraction
long distance extraction

This is apparent if we reformulate locality restrictions from the point of view
of the parser. The locality requirement expressed by Relativized Minimality
can be easily abstracted from the type of input, to a general formula (as it is
actually expressed in Rizzi (1990)). We show in (107) one of the possible ways
of specifying it.

(107) The available left context for X is that portion of the tree
from the current input token of type X up to the closest element
of type X (i.e. the maximal nonrecursive subtree on X).

The formulation of relative minimal binder has two properties that differ from
that of barrier. First, the type of the relative minimal binder is determined by
the input, i.e. the definition of left context is a parameterized function. Second,
the parameter is related to heterogeneous notions, according to our IC Classes,
as it distinguishes heads, which are considered a purely configurational notion,
from A and A positions. AI A positions are usually listed exhaustively, and
they depend on the configuration (i.e. all adjoined positions are A), but also
on the categorial status of the head of the maximal projections. For example,
the specifier of I is an A position, while the specifier of C is an A position. On
the other hand, there is no obvious correlation between the definition of barrier
and the elements for which a given barrier functions as left context delimiters.
Given the definitions of barrier for government and barrier for binding above,
we could define the left cont.ext analogues as below.

170 CHAPTER 5

(108) The available left context for X, X non-D-linked, is the portion
of the tree from the current token X, up to the first barrier
for government.

The properties of a barrier for government are that it is a maximal projection
and that it is not directly selected from a category non-distinct from [+V].
Conversely, a non-barrier for government is either a non maximal projection,
or a maximal projection which is a sister to V or I or C, and which is selected
by it. A barrier for binding is defined analogously.

Since the locality restrictions have no functional relation to the architecture
of the parser, we propose that they be stated explicitly in the parser. Since
several types of locality domains need to be checked for each element, we might
want to precompute the licit interactions and eliminate those interactions that
are never going to occur for independent reasons.

Two kinds of restrictions are not going to arise: the conjoined satisfaction of
A-minimality and binding locality and head-minimality and binding locality.
In other words, take the locality conditions to be constraints on movement,
that must be satisfied by an empty category to be identified. They could be
expressed by the following six conjunctive statements.

(109) a. locality +- head-minimality, no-barrier-for-binding.
b. locality +- A-minimality, no-barrier-for-binding.
c. locality +- A-minimality, no-barrier-for-binding.
d. locality +- head-minimality, no-barrier-for-government.
e. locality +- A-minimality, no-barrier-for-government.
f. locality +- A-minimality, no-barrier-for-government.

The first two however will never be relevant, since heads and A-chains are not
referential items in the sense relevant here, namely D-linked. Thus they cannot
be licensed by binding. We are then left with the following locality constraints.

(110) a. locality +- A-minimality, no-barrier-for-binding.
b. locality +- head-minimality, no-barrier-for-government.
c. locality +- A-minimality, no-barrier-for-government.
d. locality +- A-minimality, no-barrier-for-government.

Locality 171

Figure 5.6

Left Conte x

L~ft Conrex
a,_l ...
Left Contex
a t - n ...

input I ai .. ·1 a,1 · .. 1 ···1 al11
+

~m

Am

~·m-l

Am-l

. ...

....

~O

- LR Driver

\
goto

output
•

Family of Stacks for Left Cont.exts

Each of these conditions applies to different elements, as (llO)a applies to
referential(D-linked) A phrases, (llO)b applies to heads, (llO)c applies to
phrases in A position and (llO)d applies to non-referential (non-D-linked) A
positions. Abstractly, we wa, to keep track of a specific locality domain for
each type of element.

The implementation is st:ct,ightforward. A pointer to the relevant portion of
the stack is maintained for each element that triggers the locality constraint.
Whenever an empty category is posited by the LR algorithm, it is then formally
licensed by the ECP, independently of its identification. The locality domain
in which the empty category must be identified is then determined. A sentinel
which is specific to that particular empty category limits the available left
context in the stack. Pictorially, this is shown in Figure 5.6.

Thus, in principle, there is no limit to the number of categories of each type that
are extracted. A limit a priori of the number of possible extractions appears
to be empirically incorrect, as was argued in chapter 4 (contra Berwick and
Weinberg (1984) and Correa (1988)) Locality restrictions are only partially
a function of the type of element that is extracted (because of Relativized
Minimality). They also depend on the feature ±V of the maximal projection
intervening between the antecedent and the trace.

172 CHAPTER 5

In the current implementation, an empty category simply triggers the barrier
module. Now, notice that in an LR parser, when an empty category is pos­
tulated, the maximal projections between the trace and the antecedent have
not been built yet. Therefore, the parser cannot immediately compute whether
there are intervening barriers between the trace and the antecedent. On the
other hand, the maximal non-recursive left context can already be computed.
Hence, locality conditions are checked in two steps: first, the minimal local
binder is found and the relevant left context is identified; then, the barrier con­
straint is posted. This means that new clauses are added dynamically to the
program, which checks that the maximal projections intervening between trace
and antecedent are not barriers. When all the intervening maximal projections
have been built, and none of them is a barrier, then the constraint related to the
licensing of a particular empty category is lifted and the category is identified.

With respect to considerations of a more general nature, this approach then
does not endorse the functional view of the relation between the parser and the
grammar (Berwick and Weinberg 1984); moreowr, it does not impose any limit
on the number of extractions; and finally, it determines dynamically the kind
of computation to perform. In fact, the filtering principles related to traces are
not applied unless traces are postulated in the phrase marker. More generally,
filtering principles apply only if the relative generating principles are triggered.
(See first observation on grammar principles in chapter 1.)

This design implies that the theory of grammar is taken to determine the parser
at compile time, but that the parser at run time can vary depending on the
actual input. Of course, the range of variation is determined by the compile
time setup. This view is not at all dissimilar from the view implied in the
principle-ordering approach of Fong (1991).

From the psycholinguistic point of view this approach obviously makes the
claim that what is used on-line (and measured by experiments) is a dynamically
changing object. Our proposal assumes that the criterion that determines the
way in which the dynamic program is set up is a principle of minimum effort.
Given a highly modular system, only the minimum amount of computation
needed to accept or reject a sentence is performed. So, this approach is not
entirely at odds with the principle-ordering approach, but it differs from it
because the principle-ordering parser of Fong (1991) applies all the constraints
to a grammatical sentence. We propose that not all principles are applied to all
sentences. For instance, the locality principles that regulate the distribution of
empty categories are only applied if there are empty categories in the sentence.

A
THE COMPUTATIONAL AND THE

LINGUISTIC FRAMEWORK: A
GLOSSARY

In this section the terminology is explained that is used in the main body of the
work. The definitions are taken from Haegeman (1991) (abbreviated as H9I),
the page where the original definition appears is given.

A.I LEVELS OF REPRESENTATION

A.1.I The Levels

GB theory consists of several sub theories which interact with each other. These
subtheories are hypothesized to operate at different levels of representation: D­
structure, where elements occupy their grammatical function position (subject,
object); S-structure, where elements are in different positions with respect to
the level of D-structure; the level of phonological form, PF; and the level of
logical form (LF), at which operator-variable and quantification constructions
are interpreted. This organization of the theory is usually represented by the
"Y model", shown in Figure A.I.

Move-a is a movement rule, which accounts for the mapping between levels.
Consider the following example.

(A.I) Who does Mary like?

174

Figure A.1
The Y Model

D-structure

I move-Q

S-structure

/"" mo\'e-Q
Phonological Fonn Logical Fonn

ApPENDIX A

The sentence in A.I is a question about the identity of some human whom
Mary likes. It could be answered by Mary hkes John or shortly John. To
capture the fact that who refers to the object of the action of liking, two levels
of representation are postulated, and "connected" by a movement rule. Thus
the D-structure representation and S-structure representation of A.1 are A.2a,b
respectively.

(A.2) a. Mary loves who.
b. Who does Mary love t;?

In A.2b who has moved, leaving behind an "gap", called trace, which receives
the thematic role and syntactic feature of an object. Moreover, the fact that
who is an operator, in the sense that it binds the range of interpretation of the
trace, is represented at a different level, the level of logical form.

D-structure

D-structure is a representation of lexical properties. D-structure representa­
tions are subject to the B-criterion, which says that all arguments of a predicate
must be present at D-structure.

S-structure

S-structure is related to D-structure by the Extended Projection Principle and
by the rule move-a.

The Computational and the Linguistic Framework: A ULossary175

LEVEL MODCLE

Phonetic Form Stylistic Rules
Logical Form Operator-variable

ECP
Free Indexation
Binding

S-structure Theta Criterion
Control
Subjacency
Case Filter

D-structure Inherent Case
X

Figure A.2
Relation between Modules and Levels

Logical Form

This is the level at which sentences are interpreted. Quantifiers and wh­
questions receive their scope at this level. Lf is related to S-structure by
an "invisible" version of move-a.

Phonetic Form

At this level lexical insertion and stylistic rules takes place.

A.l.2 Mappings between Levels

The Projection Principle

Lexical elements (words) play an important role in determining the structure
of a sentence. Each constituent, e.g. NP, VP, AP, is projected from a head,
a verb, a noun, an adjective respectively. Moreover, the internal structure of
a sentence is in great part dependent on its thematic relations. In sum, the

176 ApPENDIX A

structure of a sentence is projected from the lexicon. This is true at all levels of
representation. Thus, the Projection Principle determines the relation between
the levels of representation.

The Projection Principle (H91:47)
Lexical information is syntactically represented.

The Extended Projection Principle

Sentence structure is mostly lexically determined. However, there is a general
property of all sentences which is not always lexically represented, namely the
fact that all sentences have a subject, whether it is lexically realized or not.
Thus, this general property must be explicitly stated in the grammar.

The Extended Projection Principle (H91:59)
5 -+ NP AUX VP

A.2 THE MODULES

A.2.1 The Lexicon

The lexicon is a database of information related to individual words: for exam­
ple, the category of the word, its argument structure, the way it is pronounced
and its morphological properties. For example, the word love is of category
Verb, it is diadic, i.e. it takes two arguments, an agent and a patient, it takes
the auxiliary have in compound tenses, etc. Not all the information in the
lexicon is completely idiosyncratic, in fact vast regularities have been studied.
Indeed, if this were not the case, the lexicon would be very difficult to learn.

Category Features (H91:33)

Each word in the lexicon belongs to a category class. The category of a
word can be determined by its distribution. The following classes are dis­
tinguished: Verb, Noun, Adjective, Preposition, Adverb, Inflection, Comple­
mentizer, Tense, Negation. Examples of each are: love, dog, beautiful, from,
quickly, -ed, whether, not.

The Computational and the Linguistic Framework: A Glossaryl77

Sub categorization Frame (H91:34)

Besides belonging to the category Verb, verbs can be subdivided into subcate­
gories depending on the complements they take. For example, meet, imitate,
love all take an object, thus they are classified in traditional grammars as tran­
sitive. Verbs such as sleep, die do not take an object: they are intransitive.
Verbs such as believe can take both a nominal object and a sentential object.
These properties are encoded in the lexicon in a schematic way by means of
subcategorization frames. Some examples are given below.

(A.3) a.
b.
c.

C-selection

meet: [_ NPl
sleep: [-l
belzeve: [_ NP ISl

A piece of information that is encoded in a 5ubcategorization frame is what
category the complement of a verb must have. Thus, A.3a says that the com­
plement of the verb meet must be an NP, and therefore * I met to Sally, where
the complement is a PP, is an incorrect sentence. Thus, the verb selects the
category of its complement. In this instance, the complement must be a noun.

Functional Selection

Functional selection is simply a more specialized term for c-selection, which is
used if the selecting head is a functional category. I(nfiection), C(omplementizer),
and D(eterminer) are functional heads. Functional selection is a function, since
I always selects a verb, C always selects I, and D always selects a Noun.

178

A.2.2 Configurations

x Rules (H91:95)

ApPENDIX A

The rewrite rules in the phrase structure component can be described by a
general schema, called the X schema.

(A.4) X" ---. (Spec) X'·
X' ..-. X Comp/*

The notation is rather standard: * is the Kleene operator, for reflexive tran­
sitive closure (i.e. X* means that there could be 0 or more repetitions of X).
Parentheses mean optionality.

This schema encodes the following information:

1. rules are endocentric: they are projected from a lexical head. For
example, a verb phrase must contain a verb, and a noun phrase
must contain a noun.

2. Rules are projections from a head up to a maximum number of
levels. The maximal projection is 2. The level which is projected
from the lexicon is called head, or zero-level projection.

3. Rules are unordered.

This notation is a shorthand for the rewrite rules that could be written for all
categories. Thus X is a variable that ranges over all major categories. A well­
formed phrase structure rule is N P -+ N ' P P, an ill-formed phrase structure
rule is NP -+ V' PP.

Sisterhood

According to the X schema, a complement is sister to the zero-level projection,
and a specifier is sister to the level-one projection of a head. A node is sister
to another node if they are immediately dominated by the same node in the

The Computational and the Linguistic Framework: A Glossary179

tree, their mother. Node A immediately dominates node B in a tree, iff, on the
path from B to t.he root, A is the closest node to B.

C-command (H91:125)

C-command is a configuration which is relevant in linguistic theory, although
it is not primitive from the point of view of structural representation. It was
shown by Reinhart (1976) that c-command, for c(onstituent)-command, is the
relevant way to define coreference domains.

0' c-commands (3 zff 0' does not domznate (3 and every I that dominates 0' also
dominates (3.

In this case I is the first branching node dominating 0'.

M-command (H91:125)

0' c-commands (3 Iff 0' does not doml1late (3 and every I that dominates 0' also
dominates (3.

In this case, I is the first maximal projection dominating 0'.

). Rules

These rules, that are usuallx never explicitly mentioned in the linguistic litera­
ture, are a necessary augmentation of the X schema in order to build the phrase
marker for sentences with empty categories. They simply say that certain non­
terminals can be substituted by the empty string. According to Chomsky
(1986a, 4), only maximal projections and zero-level categories can be moved,
i.e. they can be substituted by the null string at some level of representation.

180 ApPENDIX A

A.2.3 Case Theory

Abstract and Overt Case

Consider the sentences She looked at him, and He looked at her. In the first
sentence, the female subject is expressed by she while in the second sentence
the female actor is expressed by her. Different morphological forms are used
because in one case the word is the subject, while in the second it is the indirect
object of the verb. This process of grammaticalizing the participants in an
action is called Case. In English, case is overt only for pronouns, as one can
see from the following pair. The woman looked at the man, the man looked at the
woman. Other languages however, use this distinction much more extensively:
German, Latin, Finnish, among many others.

For generality, however, it is assumed that ewry NP has a case. If the case is
not overt, it is abstract (denoted by capital letter). The property of having or
not having Case is syntactic as it affects the distribution of NPs in a sentence
(and also of empty categories.)

Case Filter (H91:156)

Every overt NP must be assigned abstract Case.

Structural Case Assignment

A transitive verb or a preposition assigns ACCUSATIVE case, while nouns and
adjectives do not assign Case. This accounts for the following sentences.

(A.5) a. The big ape imitated the man.
b. * He slept them.
c. He stared at the children.
d. The destruction of the city.
e. *The destruction the city.
f. His mother is proud of him.
g. *His mother is proud him.

The Computational and the Linguistic Framework: A Glossary181

The tensed morpheme of a verb assigns NOr.U:\ATIVE case, while an infinitive
verb assigns no Case to its subject.

(A.6) a.
b.

I think that Mary is a fool.
* I think Mary to be a fool.

Inherent Case Assignment (Chomsky I986a, 194)

If A is an inherent case asszgner, then A assigns case to an NP iff A {}-marks
the NP.

This means that the difference between structural and inherent Case assigment
rests on their sensitivity to {}-role assignment.

DATIVE and GENITIVE in German are assumed to be instances of inherent
Case. This difference can be shown by looking at passivisation, which affect
only structural case assigment, as shown by the following paradigms.

(A.7)

(A.8)

(A.9)

(A.IO)

Sie siehl ihn.
she sees him-ACC

Er wird gesehen
*Ihn wird gesehen

He-NOM is seen

Sie hilft him
she helps him-DAT

Ihm wird geholfen
*Er wird geholfen

He-DAT is helped

182 ApPENDIX A

A.2.4 () Theory

(I-roles

Using the idea of a function in formal logic, linguistic theory states that every
predicate has a certain number of arguments. The arguments are the partic­
ipants in an event. For example, in John gave Marya book, there are three
participants in the gzving event: an agent (John), a receiver or goal (Mary) and
the thing given or theme (the book). Notions such as agent, goal and theme are
called thematic roles, or for short, B-roles. The theory of thematic roles consists
of two parts: one part that deals with the content of such roles, and one part
that deals with their distribution and their relation to predicates. The former
part is still very sketchy. The second part constitutes the bulk of (I-theory. Its
main principle is the (I-criterion.

(I-Criterion (H91:46)

Each argument is assigned exactly one (I-role.
Each (I-role is assIgned to exactly one argument.

In other words, the B Criterion is a bijection principle between arguments and
(I-roles. It guarantees that the thematic structure is mapped onto a well-formed
structure. It rules out sentences where there are too many nouns, such as John
loves Mary Lucy, or where there are too few nouns, such as John puts.

A.2.5 Movement Theory

Move a

John loves Mary and Who does John love are related, as the former could be
taken to be the answer to the latter. This means that both sentences have the
same function-argument structure. This fact is expressed by current linguistic
theory by assuming that there is more than one level of representations for
each sentence. In this example two are relevant: one at which the sentences are
similar, and one at which they correspond to the superficial string. The two
sentences receive the following "deeper" representation, where the similarity is
apparent.

The Computational and the Linguistic Framework: A Glossary 183

(A.ll) a.
b.

John loves Mary.
John loves who.

The superficial level will be as shown in A.12.

(A.12) a.
b.

John loves Mary.
Whoi does John love i;?

The fact that Who is the object of the verb is expressed by representing it
both as the first word in the sentence, as is necessary to fit the string, but also
as having the same index i as the empty slot, i, after the verb. We say that
Who has moved. There is a single transformational rule in current G B theory:
move-a.

Move-a Move anything anywhere.

Coindexation

Two elements are coindexed if they are assigned an index and this index IS

identical. See for example, Who does John 10re Y in A.12

Chains

Informally, a chain is a syntactic object that defines an equivalence class of po­
sitions for the purpose of feature assignments and interpretation. For example,
take the passive sentence in A.13.

(A.13) M arYi was loved t;

The sentence in A.13 contains the chain (MarYi, til. Here ti receives a B-role
from the verb, but no case, which is absorbed by the passive morphology, while
M arYi, receives nominative case because it is in a structural position that is
inherently case marked, Spec of IP. This position, though, receives no B-role,
because of passive morphology again. The set of positions, however, satisfies

184 ApPENDIX A

the conditions on lexical argument NPs, namely one half of the B-criterion and
the Case Filter.

Chain A chain C (EI , ... , En) for n ~ 1, is a sequence of elements in a
phrase marker, where EI is the head of the chain and En is the
foot of the chain.

Link A link of a chain L, (Ei' Ei+l) is an ordered pair of consecutive
elements of the chain.

A Chains, A Chains

Chains can be classified according to the status of the landing site: A chains are
those that are headed by an element in A (argument) position, shown in A.14;
A chains are headed by an element in A (non-argument) position, such as A.I5

(A.14) M arYi seemed ei to have been loved ej

(A.15) W hOt did John think ei that Mary loved ej?

Multiple Chains

More than one chain can occur in a sentence. Multiple chains occurring in the
same sentence can either be disjoint, intersected or composed. Disjoint chains
are nested, as in A.16.

(A.I6) Who; did Mary] seem ij to like i,

If chains intersect they share the same index and they have exactly one element
III common.

(A.I7) W hOi did you think ei ii seemed tj to like Mary?

The Computational and the Linguistic Framework: A Glossary185

If chains compose they don't have intersecting elements, but they create a new
link: if En is the foot of one chain and E~ is the head of the following chain
then < En, E~ > is a link in the composite chain. This is exemplified in A.IS.

(A.18) W hOi did you meet it 0, without greeting i, ?

Superindexed Chains

Some languages, for example Italian and Spanish, can postpone the subject to
the end of the sentence. These constructions are usually analysed as involving a
superindexed chain, namely a chain that differs from subindexed chains because
the elements that form it are not generated by movement. vVe discuss here some
of the properties of such chains.

Inverted Subjects In some languages. like Italian, the subject of the sentence
can occur before the verb, or be inverted or be null.

(A.19) Gwnni ha telefonato.
Ha telefonato Gianni.

Gianni has called.

(A.20) pro Ho telefonato a casa.
I called home

Subjects of intransitive verbs belong to two different classes: subjects of unac­
cusatives and subjects of unergatives. Several important pieces of work have
dealt with unaccusative verbs in Italian (Burzio 1986; Belletti and Rizzi 1981;
Belletti 1988). \Ne discuss here very briefly the different structural position of
the two classes of subjects.

Un accusatives The subjects of unaccusative verbs behave like structural ob­
jects in many respects. In Italian they can undergo ne extraction and they
trigger past participle agreement. Both these diagnostics are assumed to indi­
cate movement from structural object position.

186

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

Ne ho visti molti.
of-them I saw many

Ne sono arrivati molti.
of-them arrived many

*Ne hanno telefonato molti.
of-them called many

Li ho comprati.
them have-l-S bought-M-P

I bought them

Mana e arrivata.
Maria is-3-S arrived-F-S

Maria has arrived

*Mana ha telefonata.
Maria has-3-S called-F-S.

Maria has called (F)

ApPENDIX A

Unergatives There is some evidence that the inverted subjects of unergative
verbs are adjoined to VP. The contrastive evidence with unaccusatives shows
that the inverted subject is not in object position, on the other hand there is
reason to think that the moved subject is inside the VP. For instance, moved
subjects do not give rise to that-trace effects, showing that the position from
which the wh-element moves is licensed by the ECP.

(A.27) a.
b.

Chi credi che verra?
* \Vho do you think that will come?

The preverbal subject in this case is arguably pro, which would explain why
null subjects, inverted subjects and lack of that-trace effects usually have been
identified as a cluster of properties that depends on a language-dependent pa­
rameter, called the null subject parameter. This parameter establishes the
restrictions on the distribution of the pronominal empty category pro.

The Computational and the Linguistic Framework: A Glossary187

This pleonastic subject is coindexed with the inverted lexical subject forming
a chain. The reasons for this kind of coindexation are both theoretical and
empirical, and they are drawn from Burzio (1986, 85ft) Firstly, by coindexing
pro and the inverted subject, a parallel can be drawn with pleonastic chains,
like there and zt in English. In pleonastic chains there exist a relationship
between the inverted NP and the pleonastic element

(A.28) a.
b.

There arrived a man.
It seems that John is here.

There only occurs with NPs, while it only occurs with sentences. Coindexation
would explain this fact. Moreover, pleonastic chains show verb agreement. By
coindexation of the inverted subject only one agreement mechanism would be
necessary.

Chomsky (1981, 214) presents some empirical evidence for the coindexation of
pleonastics. Given a condition for the interpretation of anaphors like A.29 and
a restriction on coindexation like A.3D, then the coindexation of an element
with one of its constituents is ruled out.

(A.29)

(A.3D)

An anaphor is to be bound by its antecedent.
This is possible only if there is no closer subject or INFL
than the antecedent.

i-within-i condition *[i ... ai ...]

Given these rules consider the following facts.

(A.31) a.
b.

* TheYi expect that [[each other J; will comeJ.
They; think [51 it is a pity [52 that pictures of
[each other J, are hanging on the wall.]]

The sentence in A.31a is incorrect because the closest binder for each other is
not its antecedent but the INFL of will come. On the other hand, the fact that

188 ApPENDIX A

A.31b is correct shows that the INFL of are hanging is not coindexed with each
other. Under the standard assumption that verbs and subjects are coindexed,
if the verb were coindexed with each other then the anaphor each other would
also, transitively, be coindexed with pictures of each other, violating A.30.
Hence each other is not bound inside S2. However, it is also not bound within
SI, which means that it and S2 are coindexed.

We assume that Italian has a similar sort of chain as chains formed by pleonastic
elements in English. In all these cases the notion of chain as a sequence of
elements that share {I-role and Case is very important, because it permits to
abstract away from the content of the {I-role and the direction of the assignment.

As Chomsky (1980a), Rizzi (1982) and Burzio (1986) all notice, coindexing pro
and the inverted subject causes problems for the binding theory (see below),
since pro binds the lexical NP. Several solutions have been suggested. Chomsky
assumes that a different kind of indexing is involved here, that does not fall
under the binding theory. Rizzi restricts the notion of bound element only to
those elements that are not (I-dependent on their antecedents. Rizzi's solution
fails to capture the similarity between inverted subjects of ergative verbs, which
count as bound, and the other verbs. Burzio notes that Chomsky's solution fails
to account for the locality restriction that apply to inverted subjects. Burzio
suggest to reinterpret the conditions of Binding theory as meaning argument
bound and argument free, so that in the case of an inverted subject, it would
not violate binding theory because it would be bound by a non argument.

In conclusion, sentences with inverted subjects have different representations,
depending on the base position of the wh-word, since venire/verra (come) is
unaccusative, while telefonare/telefonera (call) is not. The chains in A.32
and A.33 represent quite clearly that the element tf belongs to two chains:
(prok, tn and (chii' ti, tn. The element tf receives its Case and {I-role in­
directly, through pro and then these features are transmitted to the A chain
headed by Chi. Thus this chain differs from the other type of intersecting chain
in two respects: first, the common element to the two chains is the rightmost
lowermost element in the tree; second, the two chains share Case and {I-role,
but they do not share coindexing, for the reasons related to binding theory.

(A.32)

(A.33) [cp chii [IP credi [che prOk telefonera/ [vp [vp tjtf lJl]]

The Computational and the Linguistic FramewoTk: A GlossaTY 189

A.2.6 Barriers Theory

Locality Restrictions

This is a collective name for all the restrictions that regulate the application of
the movement rule move-a. They are listed them here under the headings of
subjacency, relativized minimality, antecedent government and condition A of
the binding theory.

Relativized Minimality (Rizzi 1990, 7)

X a-governs Y only if there is no such Z th at
(I) Z is a typIcal potential a-governor for Y,
(12) Z c-commands Y and does not c-command X.

Typical Potential Governor (Rizzi 1990, 7)

Z IS a tYPIcal potential governor for Y Iff
(I) zf Y IS in an A chain and Z is an A-specIfier c-commanding Y
(ii) if Y IS in an A chain and Z is an A-specifier c-commanding Y
(Hi) zf Y IS in a head chain and Z IS a head c-commanding Y

A positions

A positions are positions to which, at least potentially, a 8-role could be as­
signed. In particular, the specifier of IP and ~P are A positions.

A positions

A positions are all those positions that have not been listed as A positions. In
particular, the Specifier of CPo

190 ApPENDIX A

Barrier for Government (Cinque 1990,42) (113)

Every maximal projection that fails to be directly selected by a category nondis­
tinct from [+ V] is a barrier for government.

Barrier for Binding (Cinque 1990,42) (114)

Every maximal projection that fails to be (directly or indirectly) selected in the
canonical direction by a category non distinct from [+ V] is a barrier for binding.

Subjacency

Long distance dependencies created by movement involve either material sitting
in two adjacent clauses or material separated by an unbounded number of
intervening clauses. It is never the case that items, let's say 4 clauses apart and
only those, are related by a long-distance dependency. This fact can be captured
quite elegantly by using rules that perform a basic step and an iterative step.
The rule move-a which links elements such as TV ho and ti can perform a simple
basic step from a clause to an adjacent clause. Or it can iterate, and as a result,
displace linguistic material unboundedly far away from the source position by
a sequence of basic steps. For instance, in Who do you think e' that Mary
saw e at the party? Who is a displaced element that has been moved from
the object position, after saw, here indicated bye. The well-formedness of
such long-distance relations is regulated by the Subjacency Condition, which
basically determines how big a single step can be.

In the formulation before Chomsky (1986a), Subjacency would hold in A.34b
given A.34a.

(A.34) a.
b.

. .. a ···le ... [6 ... ,ll a ...
No rule can relate a and, in A.34a if two bounding
nodes are intervening.

The result is that no single step in a cyclic application of movement could
cross more than one bounding node. The bounding nodes are constants with
the stipulated values of IP and NP for English. In more recent formulations

The Computational and the Linguistic Framework: A Glossary191

(Chomsky 1986a; Cinque 1990) bounding nodes coincide with barriers. (See
presentation of linguistic facts in chapter 5.)

A.2.7 Trace Theory

The Empty Category Principle (ECP)

The Empty Category Principle (ECP) regulates the formal licensing of empty
categories.

ECP (Cinque 1990, 49)

A nonpronominal empty category must be properly head governed by a head
nondistinct form [+ v].

Rizzi (1990) reformulates the Empty Category Principle (ECP), as a conjunc­
tion of conditions instead of the older disjunctive formulations. In previous ver­
sions, most notably Chomsky (1981),Chomsky (1986a) an empty category was
licensed if it was ezther lexically governed or antecedent governed. Rizzi (1990)
reformulates this condition as a conjunction: an empty category is properly
governed if it is head governed and antecedent governed. The two conjuncts
can be satisfied at different levels of represent.ation. Namely, head govern­
ment, which is a formal licensing principle, must be satisfied at S-structure.
Antecedent government, on the other hand, can be satisfied at LF. In fact,
antecedent government reduces to the binding of an anaphor that receives a
referential B-role, and as such it is subject to binding conditions. Thus the
ECP is reduced to the condition above, which applies at S-structure.

Head Government (Rizzi 1990, 6)

X head-governs Y zJJ
(i) X E { A,N, V,P,Agr, T}
(ii) X m-commands Y
(iii) no barrier intervenes
(iv) Relativized Minimality is respected.

192

Antecedent Government (Rizzi 1990, 6)

X antecedent-governs Y iff
(i) X and Yare coindexed
(ii) Xc-commands Y
(Iii) no barrier intervenes
(zv) Relativized Minzmality is respected.

L Marking (Chomsky 19S6a, 15)

ApPENDIX A

n- L-marks (3 iff n- IS a zero-level category that B-marks (3 and n- , /3 are sIsters.

The feature +-(is assigned to an empty category that has been formally licensed
by the ECP.

A.2.8 Binding Theory

±anaphor

An NP bears the feature [+ anaphor] ifit does not have independent reference,
but it must be coindexed with another NP in the sentence to receive an inter­
pretation. Thus, the trace of an NP is an anaphor, but also lexical items such
as himself, oneself, each other.

±pronominal

An NP bears the feature [+ pronominal] if it can have both independent refer­
ence, and it can also be coindexed with another NP in the sentence to receive
an interpretation. Thus, lexical items such as hIm, she, their.

The Computational and the Linguistic Framework: A Glossary19:3

Binding

The following principles, which constitute the core of binding theory, regulate
the coreference of nominal expressions in a sentence.

Principle A (H91:216) An anaphor must be A-bound in its governing
category.

Principle B (H91:216) A pronomznal must be A-free in its governzng
category.

Principle C (H91:216) An R-expression must be A-free.

A-binding (H9l:228)

(}' A-bznds (3 2ff
(I) (}' 25 I n A -posItion
(l!) (} c-commands j3
(iIZ) (} and (3 are cozndexed

Governing Category' (H91:229) The Governzng Category for (} is the
mznlmal domain containing (}, its governor and an accessible SUB­
JECT.

Accessible SUBJECT (H91:229) (} IS an accessible SUBJECT for j3
if the cozndexation of (} and j3 does not violate any grammatical
principle.

Distribution of Empty Categories

According to the conditions of binding theory four types of referential objects
can occur in natural languages, given by the combinatorics of the features
[±anaphoric], [±pronominal]. In overt NPs we find that all the possible com­
binations of these features are attested, as shown below. In the best case the
typology of empty categories should mirror the typology of overt NPs, with the

194

+anaphoric
-anaphoric
-anaphoric
+anaphoric

Table A.1

-pronominal
-pronominal
+pronominal
+pronominal

Typology of empty categories

each other
John
she
impossible

anaphor
referential item
pronouns

ApPENDIX A

no possible governing category
hence Case filter violation

difference that the last case of Table A.l should be possible, since no Case need
be assigned. And this is true, the last case being PRO.

Free Indexation

A basic assumption of the theory presented in Chomsky (1981),Chomsky (1982)
about NPs, either lexical or nonlexical, is that they can be exhaustively par­
titioned by the features [±pronominal],[±anaphoric]. The argument has been
used to justify the existence of pro and its features [+pronominal,-anaphoric].
(See null subjects below.) Chomsky (1982, 34) notices that trace and PRO
are in (virtually) complementary distribution and that they (virtually) exhaus­
tively cover the possible positions for NPs. Chomsky argues that this fact is
explained if only one empty category is assumed, which is defined contextually.
This is the so called contextual determination of empty categories: there is
only one empty category that can take up different functions or occurrences in
different contexts.

Brody (1984),Brody (1985) has shown that this argument is incorrect. Em­
pirically, this interpretation would be supported by derivations where empty
categories can change their status in the course of the derivation. The evidence
for such derivations is unconvincing. Brody (1984, 360 fn 8) points out that
the two typical cases are inverted subjects and parasitic gaps.

(A.35) t; telefonano molte studentesse

In A.35 the trace created by rightward movement of the subject turns into a
pronominal.

The Computational and the Linguistic Framework: A Glossa1'y195

(A.36) Which book did you file t before reading e?

In A.36 the parasitic gap e must be a pronominal at D-structure, since it is
free, but it becomes a variable at S-structure. Conceptually, as Brody (1984)
points out, the assumption that there exist only one type of empty category
does not entail the existence of contextual definitions. He argues that a random
characterisation which is then filtered out by independently needed principles
would also work. Brody (1984) is devoted to showing that contextual definitions
are totally redundant and can be eliminated from the theory without any loss
of empirical adequacy and with gain for the explanatoriness and economy of
the theory. We give a sketch of Brody's line of argument. The contextual
definitions for empty categories are the following (Chomsky 1981).

(A.37) 1.

2.
3.

0' is a pronominal iff
0' = [N P F ,(P)], where P is a phonological matrix
and F C ¢ and either (i) or (ii).
(i) 0' is free
(ii) 0' is locally A-bound by a .6 with an independent
{;I-role.
0' is a variable iff 0' is locally A-bound.
if 0' is an empty category and not a variable, then 0'

is an anaphor.

These definitions assign the correct features to the typology of empty categories,
as can be seen from the table below. (LR means the from left to right and RL
means from right to left).

196 ApPENDIX A

Example Features of ex Definition
Tomx is illegal ex to go there nonpronominal (A.371iiLR)

anaphor (A.373)
non variable (A.372RL)

Tomx hit ex pronominal (A.371iiRL)
anaphor (A.373)
nonvariable (A.372RL)

Itx is illegal ex to go there pronominal (A.371iRL)
anaphor (A.373)
nonvariable (A.372RL)

Tomx tried ex to go there pronominal (A.371iiRL)
anaphor (A.373)
non variable (A.372RL)

Tomx seems ex to go there non pronominal (A.371iiLR)
anaphor (A.373)
non variable (A.372RL)

Itx seems ex to be obvious that S non pronominal (A.371iiLR)
anaphor (A.373)
nonvariable (A.372RL)

W hox did Tom hit ex nonpronominal (A.371iiLR)
variable (A.372LR)

The different parts of the definitions are then shown to be reconducible to
independently needed principles of the grammar.

(A.371iLR)
(A.371iRL)
(A.371iiLR)
(A.371iiRL)
(A.372LR)
(A.372RL)
(A.373)

B Criterion
VEC, ECP, Principle A
B Criterion
VEC, ECP, Principle C
VEC
VEC
identification principle, binding theory (A and B)

The VEC is the V-Element Condition, which states that a non pronominal
nonanaphor empty category must be bound while the identification principles
is whatever property of clitics and 1nft licenses pro.

The Computational and the Linguistic Framework: A Glossary197

Distribution of Null Subjects

I examine here the properties of null subjects. Firstly, one notices that such
elements must exist because of the Extended Projection Principle, and that
they undergo that same binding conditions as pronouns.

(A.38)

(A.39)

Gzanni/lui 0 parla sempre di se stesso.
Gianni/he speaks always of himself

" Gianni always talks about himself."

Gianni/lui 0 diee ehe Maria parla sempre dz
Gianni/he says that Mary speaks always of
lUI / *se stesso.
him/* himself

" G. says that Mary always talks about him/ * himself'

Secondly, we need to establish the interpretation and distribution of the empty
category that can be a null subject. According to Rizzi (1982, 130) (43)

(A.40) l.

2.

A phonetically null subject with "dummy"
interpretation can be found in the local context of a
nominative assigner.
A phonetically null subject with definite pronominal
interpretation can be found in the local context of a
tensed inflection.

Some examples of null subjects in tensed clause are given m A.2.S and null
subjects in infinitival are given in A.2.S.

(A.41) pro Vernl
"He'll come"

(A.42) Credo ehe verra
I think he'll come

198

(A.43)

(A.44)

Essendo piovuto per tutio it pomerigglO
Having rained all afternoon,
non siamo usciti
we did not go out

ApPENDIX A

Suppongo essere molto improbabile che Mano Cl

I-assume it to be very unlikely that Mario us
aiuti.
will help

Riguardo a F., avendo lei combznato questa pasticcio,
Regarding F., her having caused this mess,
sono nei guai fino at colla
I am in deep trouble

The null subjects of null subject languages have the same referential proper­
ties as pronouns. since they have independent reference and they can also be
pleonastic. They differ from the other pronominal empty category PRO. Their
distribution is, in fact, complementary to that of PRO in resumptive pronoun
usage and weak cross over cases. PRO cannot be a resumptive pronouns, while
pro can (Jaeggli and Safir 1989, 16).

(A.45) a.

b.

(A.46) a.

b.

* That's the guy that we didn·t know whether it
was possible PRO to swim
* Questo e il tipo che non sapevamo se era possibile
PRO nuotare

That's the guy that we didn't know whether we
should talk to him
Questo e il tipo che non sapevamo se fosse possibile
parlargli

While A.46 shows that resumptive pronouns are licit both in Italian and En­
glish, A.47 shows that the null subject in the embedded clause is only licit in
Italian, where it is pro. If the empty category in English were an NP trace it
would violate Subjacency.

The Computational and the Linguistic Framework: A Glossary199

(AA7) a.

b.

That's the guy that Mary knows the woman whom
he/* 0 married.
Questo e il tipo che Maria conosce la donna che
?lui/ 0 ha sposato.

Weak Cross Over is exhibited in those sentences, in which it is assumed that
a single operator binds both a pronoun and a gap, as illustrated by AA8. In
these configurations, PRO is licit, while pro is not, as shown in AA9 and A.50.
Thus we can conclude that pro is [+pronominal,-anaphoric).

(AA8) * Who; does his i mother love t;?

(AA9) W hO j did [P ROj washing hisj car) upset tj?

(A.50) * Chi j accuse, la donna con cui] pro; ballava tj tj ?

Finally, according to Jaeggli and Safir (1989). the null subject parameter is
linked to the degree of morphological uniformity of the language.

(A.51)

(A.52)

Null subjects are permitted in those languages with
morphological uniform inflectional paradigm.

An inflectional paradigm P in a language L is
morphologically uniform iff P has either only underived
inflectional forms or only derived inflectional forms.

Thus clearly Chinese allows null subjects because all forms are underived, while
Italian or Spanish exhibit only derived inflectional forms. German, on the other
hand, is not uniform.

200 ApPENDIX A

A.3 PARSING ALGORITHMS

The design of the structure-building component of the parser is based on a shift­
reduce method, the LR(k) method (Knuth 1965). LR(k) stands for Left-to-right
rightmost derivation in Reverse, with k symbols oflookahead. I refer the reader
to a standard text on parsing and compiling for a detailed description of the
relevant concepts that will be used here: shift-reduce parsing, LR(k) parsing,
LALR(k) parsing, for instance Aho and Ullman (1972).

Shift-Reduce

Shift-reduce parsing is a bottom up parsing method, which attempts to con­
struct a parse tree for an input string starting at the leaves. It uses two main
data structures: an input buffer and a stack.

Tokens of the input are shifted onto the stack until a substring of the tokens
on top of the stack matches the right side of a rule of the grammar used by
the parser. When such a substring is found, the substring is popped from the
stack and substituted with the left side of the matching rule. In other words,
the offspring nodes are substituted by their parent node. This process parses
a sentence by tracing a rightmost derivation in reverse. 1

For example, consider the grammar G in A.53.

(A.53) 1
2
3
4
5
6

IP -+NP I'
I' -+IO VP
VP -+V NP
NP -+{ John, Mary}
IO -+{ will }
V -+{ help}

Given G and the input string John will help Mary, a shift-reduce parser would
perform the sequence of steps shown in Figure A.3, by consulting G when
needed.

1 A rightmost derivation is a derivation in which the rightmost nonterm.inal in each sen­
tential form of the derivation is expanded first, e.g. S =?NP VP =?NP V NP =?NP V John
=?NP loves John =?Mary loves John is a rightmost derivation.

The Computational and the Linguistic Framework: A Glossary201

Action
start
shift
reduce by rule 4
shift
reduce by rule 5
shift
reduce by rule 6
shift
reduce by rule 4
reduce by rule 3
reduce by rule 2
reduce by rule 1
accept

Figure A.3

Stack Input
$ John will help Mary
$ John will help Mary
$ NP will help Mary
$ NP will help Mary
$ NP IO help Mary
$ NP IO help :Wary
$ NP IO V Mary
$ NP IO V Mary S
$ NP IO V NP S
$ NP IO VP S
$ NP I' S
$ IP S

Example of parse by the shift reduce method for the sentence John will help Mary. I
use the symbol S to indicate the bottom of the stack and the end of the input string.

As can be noted, the parser can perform one of several actions at each step:
it can shift, reduce or accept, or, if no other action is available, enter a state
of error. Of course, the complex part of this procedure, which we have totally
ignored so far, is how to recognize that the n tokens at the top of the stack
correspond to a rule in the grammar, without performing an exhaustive search
of all the sequences in the stack and all the rules in the grammar. The knowl­
edge of when to shift or reduce and what to do next is contained in a look-up
table, which is compiled off-line.

LR(k) Parsing

LR(k) is a deterministic version of shift-reduce parsing. An LR parser consists
of an input, an output, an LR driver, a got a table and an action table. We show
this schematically in Figure A.4, which is adapted from Aho and Ullman (1977,
217). As Aha and Ullman (1977, 215) point out, LR(k) parsing is attractive
because the LR parsing method is the most general, non-backtracking shift­
reduce parsing method known, yet it can be implemented as efficiently as other
shift-reduce methods; moreover, an LR parser can detect an error as soon as it
is possible to do so on a left-to-right scan of the input.

202 ApPENDIX A

Figure A.4

Input II all··· I a. I··· I · .. 1 an I $11
+

Sm
Xm

Sm-l
X m- 1

....

....

So

Stack

- LR Driver

I \
action goto

Output
~

Model of an LR Parser

The LR driver is the same for all parsers, while the action and go to tables
change according to the grammar. The parsing program uses the state on top
of the stack and the current input symbol as indices to consult the parse table.
It determines the action to take, e.g. shift, and the next state.

A grammar is LR if it can be compiled into an LR table in such a way that each
entry in the table contains a unique action and goto state. If a grammar is not
LR, it is going to have conflicting actions. For example, the same table entry for
such a grammar could contain a shift action and a reduce action (shift/reduce
conflict), or it could contain reduce actions that point to different rules in the
grammar (reduce/reduce conflict).

LALR(k)

LALR, which stands for LookaheadLR, is the most used method in practice, be­
cause it provides the same performance advantages as the canonical LR method,
but it requires tables that are much smaller. For instance, for a typical pro­
gramming language like Pascal, an LALR parse table has hundreds of states,
while an LR parser table has thousands of states. The reduction in size of the
state set is the result of a "collapsing" mechanism. For example, an LR(k)
parser with k = 1 could have the following two states in its canonical collection
of items.

The Computational and the Linguistic Framework: A Glossary203

(A.54) Ii = {L --+id ., $, = }
12 = {L --+id ., $ }

The two items mean that id must be reduced to L, i.e. id has been recognized
as a token of category L, if it is the last input token ($) or if it is followed
by the token =. h is an extensional subset of It. This means that there is
a set of inputs for which the two states are equivalent. States that have this
kind of relation are said to have the same core, and they are reduced to one
state. The only consequence of this collapsing procedure is that, while an LR(k)
parser fails as soon as an error is encountered, an equivalent LALR(k) parser
might perform some unnecessary shift actions before failing. The LALR(k) will
never reduce incorrectly, though. For proofs of strong equivalence of the two
methods and a more detailed explanation see Aho and Ullman (1972), and Aho
and Ullman (1977).

B
RESULTS

In this appendix I show snapshots of the parses of several grammatical con­
structions. In the interest of space, I present only the most relevant steps in
the parse, while the other states are simply shown by showing the state num­
ber. It is to be understood that the output has been formatted. The states in
the parse that are shown in full have not been modified.

This subset of constructions has been chosen as it constitutes the crucial test
set for modular parsers, since it involves complex interactions of modules over
large portions of the tree to compute long distance dependencies. Many other
proposals either do not deal with all types of chains (Frank 1992; Johnson
1989), for instance, or they require extensive backtracking (Fong 1991; Fong
and Berwick 1992).

Simple Transitive

IMPUT TOKEMS: john loves mary

state : 0
state : 2

state : 5
token : 110
stack: (john,3,m,s(n,[],[bar(2),proper]),TtS(_,_»
Abar chains:
A chains:

(john,0,m,s(n,[],[bar(2),proper]),Tts(_,_»

206

state : 6
state : 1

state : 6
token : v2
stack: (love+s.6.h.s(v.[(_3551.acc.th).(d.ext.ag)].[]).fts(_._»

(_.4.h,s(infl,[],[empty]),fts(_,_»
(john,3,m,s(n,[],[bar(2),proper]),fts(ag,ext»

Abar chains:
A chains:

(john ,0 ,m,s(n, [] ,[bar(2) ,proper]) ,fts(ag,ext»

state : 2

state : 9
token : end_of_file
stack: (mary, 7 ,m,s(n, [] • [bar(2) ,proper]) ,ftsC,_»

(love+s,6,h,s(v,[(_3551,acc,th),(d,ext,ag)] ,[]),fts(_,_»
(_,4,h,s(infl,[],[empty),fts(_,_»
(john,3,m,s(n,[] ,[bar(2) ,proper]),fts(ag,ext»

Abar chains:
A chains:

(mary,2,m,s(n,[] ,[bar(2) ,proper]),fts(_,_»
(john,O,m,s(n,[] ,[bar(2) ,proper]),fts(ag,ext»

state: 4
token :
stack:

end_of_file
C ,8 ,p ,s(v, [(d,acc, th), (d,ext ,ag») , 0) ,ftsC ,_»
(_,4,h,s(infl,[] ,[empty]),fts(_,_»
(john,3,m,s(n,[],[bar(2),proper),fts(ag,ext»

Abar chains:
A chains:

state
state
state
state
state

(mary,2,m,s(n,[) ,[bar(2) ,proper]),fts(th,acc»
(john,O,m,s(n,[] ,[bar(2) ,proper),fts(ag,ext»

8
9
7
3
10

accepted

ApPENDIX B

Results

PARSE TREE

Abar chains:
A chains:

n2
I

infl2
I

infl1
I

n2 inflO v1

john e vO n2
I

vO n2
I

love+s mary

(mary,2,m,s(n,[] ,[bar(2) ,proper]),fts(th,acc»
(john,O,m,s(n,[],[bar(2) ,proper]),fts(ag,ext»

207

208

Simple Intransitive

IIPUT TOKEIS: john runs
state : 0
state : 2

state : 5
stack: (john,2,m,s(n,[],[bar(2),proper]),fts(_,_»
Abar chains:
A chains:

(john,O,m,s(n,D, [bar(2) ,proper]) ,ftsC,_)}

state : 6

state : 1

state : 6

token : end_of_file
stack: (run+s,5,h,s(v, [(d,ext,ag)] ,[]) ,ftsC,_»

C ,3 ,h ,s(inIl, [] ,[empty]) ,ftsC ,_»
(john,2,m,s(n,[] ,[bar(2) ,proper]),fts(ag,ext»

Abar chains:
A chains:

(john,O,m,s(n,[] ,[bar(2) ,proper]) ,fts(ag,ext»

state 4
state 8
state 9
state 7
state 3
state 10
accepted

PARSE TREE

Abar chains:

inIl2
I

n2 inn1

I I

n2 inflO vO
I I

john e vO

run+s

A chains:
(john,O,m,s(n,[],[bar(2),proper]),fts(ag,ext»

ApPENDIX B

Results

Simple Passive

INPUT TOKENS: mary was loved

state : 0
state : 2

state : 5
token : wO
stack: (mary ,3 ,m,s(n, [] ,[bar(2) ,proper]) ,ftsC ,_)}
Abar chains:
A chains:

(mary ,0 ,m, s(n, 0 ,[bar(2) ,proper]) ,ftsC ,_»

state 1
state : 6
state : 1

state : 6
token : end_of_file
stack: (loved,6,h,s(v,[(_,nil,th) ,(d,ext,nil)] ,[pass]),fts(_,_»

(was,5,h,s(infl,[(_,nil,pred),(_,ext,_)] ,[aux(s)]),fts(_,_»
(mary,3,m,s(n,[],[bar(2),proper]),fts(nil,ext»

Abar chains:
A chains:

(mary ,0 ,m, s (n, 0 ,[bar(2) ,proper]) ,fts(nil, ext»

state : 9
token : end_of_file
stack: (_,8,m,s(n,[],[empty]),fts(_,_»

(loved,6,h,s(v,[(_,nil,th),(d,ext,nil)],[pass]),fts(_,_»
(was,5,h,s(infl,[(_,nil,pred),(_,ext,_)],[aux(s)]),fts(_,_»

7
(mary,3,m,s(n,[] ,[bar(2),proper]),fts(nil,ext»

Abar chains:
A chains:

(mary,O,m,s(n,O, [bar(2) ,proper]) ,fts(nil,ext»

state : 4
token :
stack:

7

end_of_file
C,9 ,p ,s (v, [(d, nil, th), (d ,ext ,nil)] ,[pass]) ,ftsC ,_»
(was,5,h,s(infl,[(_,nil,pred),(_,ext,_)],[aux(s)]),fts(_,_»

(mary,3,m,s(n,[],[bar(2),proper]),fts(nil,ext»
Abar chains:
A chains:

(mary,[018] ,_,s(n,[] ,[bar(2),proper]),fts(th,ext»

state 8
state 9
state 7
state 3

209

210

state : 10

accepted

PARSE TREE

Abar chains:
A chains:

infl2
I

n2 infl1
I I

n2 inflO vi
I I I

mary inflO vO n2
I I

lias vO e

loved

(mary,[018] ,_,s(n,[],[bar(2),proper]),fts(th,ext»

ApPENDIX B

Results

Simple Raising

IIPUT TOKEIS: mary seems to like john

state °
state 2
state 5
state 6

state :
token : vO
stack: (seem+s,1,h,s(v,[(_3867,nil,th),(_,ext,nil)] ,[rais]) ,£ ts(_,_»

(_,6,h,s(in£1,[],[empty]),£ts(_,_»
(mary,5,m,s(n,[] ,[bar(2) ,proper]) ,£ts(_,_»

Abar chains:
A chains:

(mary,O,m,s(n,[] ,[bar(2) ,proper]) ,£ts(_,_»

state: 6
token : vO
stack: (seem+s,8,h,s(v,[(_,nil,th) ,(d,ext,nil)] ,[rais]) ,£ts(_ ,_»

(_,6,h,s(infl,[],[empty]),fts(_,_»
(mary,5,m,s(n,[],[bar(2),proper]),fts(nil,ext»

Abar chains:
A chains:

(mary,O,m,s(n,[] ,[bar(2) ,proper]) ,fts(nil,ext»

state 9
state
state 6
state
state 6
state 2

state : 9
token : end_of_file
stack: (john,15,m,s(n,O, [bar(2) ,proper]) ,£tsC,_»

(like,14,h,s(v,[(_,acc,th),(_,ext,ag)],O),fts(_,_»
(to,12,h,s(infl,v,[inf]),fts(_,_»

9

C ,10 ,m,s(n, 0 ,[empty]) ,fts(ag,nil»
(seem+s,8,h,s(v,[(_,nil,th),(d,ext,nil)],[rais]),fts(_,_»
(_,6,h,s(infl,[],[empty]),fts(_,_»

(mary,5,m,s(n,[] ,[bar(2) ,proper]),£ts(nil,ext»
Abar chains:
A chains:

(john,4,m,s(n,[],[bar(2),proper]),fts(_,_»
(mary,0,m,s(n,[],[bar(2),proper]),fts(nil,ext»

state : 4
token : end_of_file
stack: (_,16,p,s(v,[(d,acc,th),(_5627,ext,ag)],[]),fts(_,_»

211

212 ApPENDIX B

(to,12,h,s(infl,v,[inf]),fts(_,_»
(_,10,m,s(n,[],[empty]),fts(ag,nil»
(seem+s,8,h,s(v,[(_,nil,th),(d,ext,nil)],[rais]),fts(_,_»)
(_,6,h,s(infl,[],[empty]),fts(_,_»

9

(mary,5,m,s(n,[],[bar(2),proper]),fts(nil,ext»
Abar chains:
A chains:

(john,4,m,s(n,[],[bar(2),proper]),fts(th,acc»
(mary,O,m,s(n,[] ,[bar(2),proper]),fts(nil,ext»

state 8
state : 9
state : 7

state : 8
token : end_of_file
stack: (_,20,m,s(infl,v,[inf]),fts(_,_))

9

(seem+s,8,h,s(v,[(_,nil,th),(d,ext,nil)] ,[rais]),fts(_,_»)
C,6,h, s (infl, [] , [empty]) , fts C ,_)}

(mary,5,m,s(n,[] ,[bar(2),proper]),fts(nil,ext»
Abar chains:
A chains:

state
state
state
state
state
state
state

(john,4,m,s(n,[] ,[bar(2),proper]),fts(th,acc)
(mary, [0110] , _, sen , [] , [bar(2) ,proper]) , fts (ag, ext»

9
4
8
9
7

3
10

accepted

Results

PARSE TREE

Abar chains:
A chains:

n2

n2 inf'lO
I

mary e vO

vO

infl2
I

infli
I

vi

n2

infl2

infl1
I

seem+s e inflO vi

inflO vO n2

I I

to vO n2

like john

(john,4,m,s(n,[] ,[bar(2) ,proper]),fts(th,acc»
(mary,[OI10] ,_,s(n,[J ,[bar(2) ,proper]) ,fts(ag,ext»

213

214

Embedded Transitive

IIPUT TOKENS: john thinks that mary loves bill

state 0
state 2
state 5
state 6

state : 1
token : IiO
stack: (think+s,l,h,s(v,[(_,prop,th),(_,ext,ag)] ,[]),fts(_,_»

C,7 ,h,s<infl, [], [empty]) ,ftsC,_»
(john,6,m,s(n,[],[bar(2),proper]),fts(_,_»

Abar chains:
A chains:

(john,O,m,s(n,[],[bar(2),proper]),fts(_,_»

state : 6
token :
stack:

IiO
(think+s,9,h,s(v,[(_,prop,th),(d,ext,ag)] ,[]),fts(_,_»
(_,7,h,s(infl,[],[empty]),fts(_,_»
(john,6,m,s(n,[],[bar(2),proper]),fts(ag,ext»

Abar chains:
A chains:

(john,O,m,s(n,[] ,[bar(2),proper]),fts(ag,ext»

state 1
state 6
state 2
state 9

state : 6
token : IiO
stack: C, 15,h ,s(infl, [] , [empty]) ,ftsC ,_»

(mary, 14,m ,sen, [] , [bar(2) ,proper]) ,fts C ,_»
(that,13,h,s(comp,infl,[]),fts(_,_»
(think+s,9,h,s(v,[(_,prop,th) ,(d,ext,ag)] ,[]) ,fts(_,_»
(_,7,h,s(infl,[],[empty]),fts(_,_»
(john,6,m,s(n,[],[bar(2),proper]),fts(ag,ext»

Abar chains:
A chains:

(mary,3,m,s(n,[],[bar(2),proper]),fts(_,_»
(john,O,m,s(n,[],[bar(2) ,proper]),fts(ag,ext»

state : 1

state : 6
token : 1i2
stack: (love+s,17,h,s(v,[(_,acc,th),(d,ext,ag)] ,[]),fts(_,_»

C,15,h,s(infl, [], [empty]) ,ftsC,_»
(mary, 14 ,m,s (n, [] ,[bar(2) ,proper]) ,fts(ag ,ext»

ApPENDIX B

Results

(that,13,h,s(comp,infl,[]l,fts(_,_»
(think+s,9,h,s(v,[(_,prop,thl,(d,ext,agl] ,[]l,fts(_,_ll
(_,7,h,s(infl,[],[empty]l,fts(_,_ll
(john,6,m,s(n,[],[bar(2),proper]),fts(ag,ext»

Abar chains:
A chains:

(mary,3,m,s(n,[],[bar(2l,proper]),fts(ag,ext»
(john,O,m,s(n,[],[bar(2),proper]),fts(ag,ext»

state : 2

state : 9
token : end_of_file
stack: (bill,18 ,m, sen, [] , [bar(2) ,proper]) , ftsC,_»

(love+s ,17,h ,s(v, [C ,ace, th), (d ,ext ,ag)] ,D) ,ftsC,_»
(_,15,h,s(infl,[],[empty]),fts(_,_»
(mary,14,m,s(n,[],[bar(2),proper]),fts(ag,ext»
(that,13,h,s(comp,infl,[]),fts(_,_»
(think+s,9,h,s(v,[(_,prop,th),(d,ext,ag)] ,[]),fts(_,_»
C,7,h ,s(infl, [] , [empty]), ftsC ,_)}
(john,6,m,s(n,[] ,[bar(2),proper]),fts(ag,ext»

Abar chains:
A chains:

(bill,S,m,s(n,[],[bar(2l,proper]),fts(_,_»
(mary,3,m,s(n,[],[bar(2),proper]),fts(ag,ext»
(john,O,m,s(n,[] ,[bar(2) ,proper]),fts(ag,ext»

state : 4
token : end_of_file
stack: (_,19,p,s(v,[(d,acc,th),(d,ext,ag)],[]),fts(_,_»

(_,lS,h,s(infl,[] ,[empty]) ,fts(_,_»
(mary,14,m,s(n,[] ,[bar(2),proper]),fts(ag,ext»
(that,13,h,s(comp,infl,[]),fts(_,_»
(think+s,9,h,s(v,[(_,prop,th),(d,ext,ag)] ,[]),fts(_,_»
(_,7,h,s(infl,[],[empty]),fts(_,_»
(john,6,m,s(n,[],[bar(2),proper]),fts(ag,ext»

Abar chains:
A chains:

state
state
state
state
state
state
state
state
state
state

(bill,5,m,s(n,[] ,[bar(2) ,proper]),fts(th,acc»
(mary,3,m,s(n,[] , [bar(2) ,proper]),fts(ag,ext»
(john,O,m,s(n,[],[bar(2) ,proper]),fts(ag,ext»

8
9

7
8
9

4
8
9
4
8

215

216 ApPENDIX B

state 9
state 7
state 3
state 10

accepted

PARSE TREE

n2
I

n2
I

john

inflO
I

e vO
I

vO
I

inf12
I

infl1
I

v1

compO
I

think+s compO n2
I I

that n2
I

mary

compl
I

inf12
I

inflO
I

e

infl1
I

vO
I

vO

v1
I

n2
I

n2

love+s bill

Abar chains:
A chains:

(bill,5,m,s(n,[],[bar(2),proper]),fts(th,acc»
(mary,3,m,s(n,[],[bar(2),proper]),fts(ag,ext»
(john,0,m,s(n,[],[bar(2),proper]),fts(ag,ext»

Results 217

Embedded Intransitive

This construction behaves analogously to the previous one, as far as feature annotation is
concerned. Therefore, I show only the final output, with the correctly annotated chains.

IRPUT TOKERS: john thinks that mary runs

accepted

PARSE TREE:

n2
I

n2

john

inflO
I

e vO

vO
I

infl2
I

infl1
I

compO
I

vi

campi
I

infl2
I

think+s compO n2 infli
I I

that n2 inflO vO
I

mary e

Abar chains:
A chains:

(mary,3,m,s(n,[],[bar(2),proper]),fts(ag,ext»
(john,O,m,s(n,[],[bar(2),proper]),fts(ag,ext»

vO
I

run+s

218

Embedded Raising

IIPUT TOKEIS: mary thinks that john seems to like bill

state : 0
state : 2

state : 5
token : ,,0
stack: (mary,8,m,s(n,[] ,[bar(2) ,proper]) ,fts(_,_»
Abar chains:
A chains:

(mary,O,m,s(n,[] ,[bar(2) ,proper]) ,fts(_,_»

state: 6
state : 1

state : 6
token :
stack:

,,0
(think+s,ll,h,s(v,[(_,prop,th),(d,ext,ag)],[]),fts(_,_))
(_,9,h,s(infl,[],[empty]),fts(_,_»
(mary,8,m,s(n,[],[bar(2),proper]),fts(ag,ext»

Abar chains:
A chains:

(mary,O ,m, s (n, 0 , [bar(2) ,proper]) , fts(ag ,ext»

state
state : 6
state : 2

state : 9
token : ,,0
stack: (john,16,m,s(n,[],[bar(2),proper]),fts(_,_»

(that,15,h,s(comp,infl,[]),fts(_,_»
(think+s, l1,h ,s (v, [C ,prop, th), (d,ext ,ag)] ,D) ,ftsC ,_»
(_,9,h,s(infl,[],[empty]),fts(_,_»
(mary,8,m,s(n,[],[bar(2),proper]),fts(ag,ext»

Abar chains:
A chains:

(john,3,m,s(n,[],[bar(2),proper]),fts(_,_»
(mary,O,m,s(n,[],[bar(2) ,proper]) ,fts(ag,ext»

state: 6
state : 1

state: 6
token : vO

ApPENDIX B

stack: (seem+s,19,h,s(v,[(_8441,nil,th),(d,ext,nil)] ,[rais]),fts(_,_»
C,17 ,h,s(infl, 0, [empty]) ,ftsC,_»
(john ,16 ,m ,sen, 0, [bar(2) ,proper]) , fts (nil ,ext»
(that,15,h,s(comp,infl,[]),fts(_,_»
(think+s,l1,h ,s(v, [C ,prop, th), (d,ext ,ag)] ,D) ,ftsC ,_»

Results

(_,9,h,s(infl,[],[empty]),fts(_,_»
(mary,8,m,s(n,[],[bar(2),proper]),fts(ag,ext»

Abar chains:
A chains:

(john,3,m,s(n,[],[bar(2),proper]),fts(nil,ext»
(mary,O,m,s(n,[] ,[bar(2) ,proper]) ,fts(ag,ext»

state : 9
token : ,,0
stack: C,21,m,s(n, [], [empty]) ,ftsC,_»

(seem+s,19,h,s(v,[(_8441,nil,th),(d,ext,nil)],[rais]),fts(_,_»
C ,17 ,h ,s(infl, 0 ,[empty]) ,ftsC ,_»

20
(john ,16 ,m ,s(n, 0 , [bar(2), proper]) ,fts (nil,ext»
(that,15,h,s(comp,infl,[]),fts(_,_»
(think+s,ll,h,s(v, [C,prop,th) ,(d,ext ,ag)], []) ,ftsC,_»
(_,9,h,s(infl,[],[empty]),fts(_,_»
(mary,8,m,s(n,[],[bar(2),proper]),fts(ag,ext»

Abar chains:
A chains:

(john,3,m,s(n,[],[bar(2),proper]),fts(nil,ext»
(mary,O,m,s(n,[],[bar(2),proper]),fts(ag,ext»

state
state 6
state 1
state 6
state 2

state : 9
token :
stack:

end_of_file
(bill,26,m,s(n,[],[bar(2),proper]),fts(_,_»
(like, 25 ,h ,s(v, [C10189 ,acc, th) ,C10201,ext ,ag)] , []) ,ftsC ,_»
(to,23,h,s(infl,v,[inf]),fts(_,_»
(_,21,m,s(n,[] ,[empty]) ,fts(ag,nil»
(seem+s,19,h,s(v,[(_8441,nil,th),(d,ext,nil)] ,[rais]),fts(_,_»
C ,17 ,h ,sCinfl, [] ,[empty]) ,ftsC ,_»

20
(john ,16 ,m,s(n, 0 ,[bar(2) ,proper]) ,fts(nil, ext»
(that,15,h,s(comp,infl,[]),fts(_,_»
(think+s ,l1,h ,s (v, [C ,prop, th) ,(d,ext ,ag)] ,D) ,ftsC ,_»
(_,9,h,s(infl,[],[empty]),fts(_,_»
(mary,8,m,s(n,[] ,[bar(2) ,proper]),fts(ag,ext»

Abar chains:
A chains:

(bill,7,m,s(n,[],[bar(2),proper]),fts(_,_»
(john,3,m,s(n,[],[bar(2),proper]),fts(nil,ext»
(mary,O,m,s(n,[] ,[bar(2) ,proper]),fts(ag,ext»

state : 4
token : end_of_file
stack: (_,27,p,s(v,[(d,acc,th) ,(_10201 ,ext ,ag)] ,[]),fts(_,_»

219

220 ApPENDIX B

(to,23,h,s(infl,v,[inf]),fts(_,_»
C, 21,m ,s(n, [] , [empty]) , fts (ag,nil)}
(seem+s,19,h,s(v,[(_8441,nil,th),(d,ext,nil)] ,[rais]),fts(_,_»
(_,17,h,s(infl,[],[empty]),fts(_,_»

20
(john,16,m,s(n,[],[bar(2),proper]),fts(nil,ext»
(that,15,h,s(comp,infl,[]),fts(_,_»
(think+s,ll,h,s(v,[(_,prop,th),(d,ext,ag)],[]),fts(_,_»
<-,9,h ,s(infl, [], [empty]), ftsC ,_»
(mary,8,m,s(n,[],[bar(2) ,proper]),fts(ag,ext»

Abar chains:
A chains:

(bill,7,m,s(n,[],[bar(2),proper]),fts(th,acc»
(john,3,m,s(n,[],[bar(2),proper]),fts(nil,ext»
(mary,O,m,s(n,[] , [bar(2) ,proper]),fts(ag,ext»

state 8
state : 9
state : 7

state: 8
token : end_of_file
stack: (_,31,m,s(infl,v,[inf]),fts(_,_»

(seem+s,19,h,s(v,[(_8441,nil,th),(d,ext,nil)] ,[rais]),fts(_,_»
C,17,h ,sCinfl, [] , [empty]) ,ftsC ,_»

20
(john,16,m,s(n,[] ,[bar(2),proper]) ,fts(nil,ext»
(that,15,h,s(comp,infl,[]),fts(_,_»
(think+s ,l1,h, s (v, [C ,prop, th) , (d, ext, ag)] , []) ,ftsC ,_)}
C,9,h ,s(infl, [] , [empty]) ,ftsC ,_»
(mary,8,m,s(n,[],[bar(2),proper]),fts(ag,ext»

Abar chains:
A chains:

state
state
state
state
state
state
state
state
state
state
state
state
state
state
state

(bill,7,m,s(n,[],[bar(2),proper]),fts(th,acc»
(john,[3121] ,_,s(n,[] ,[bar(2),proper]),fts(ag,ext»
(mary,O,m,s(n,[],[bar(2),proper]),fts(ag,ext»

9

4
8
9
7
8
9

4
8
9
4
8
9
7
3

Results

state : 10
accepted

PARSE TREE

n2
I

n2 in:flO
I

mary e

Abar chains:
A chains:

vO

vO compO
I

in:fl2
I

infl1
I

think+s compO n2
I

that n2 inflO
I

john e

vi

compl

vO
I

vO
I

I

inf12
I

infIl
I

n2
I

vi
I

in:fl2
I

infIl
I

seem+s e inflO vi

inflO vO
I

to vO

like

(bill,7,m,s(n,[] ,[bar(2),proper]),fts(th.acc»
(john.[3121] ._.s(n.[].[bar(2),proper]).fts(ag.ext»
(mary.0.m.s(n.[].[bar(2).proper]).fts(ag.ext»

221

n2
I

n2
I

bill

222

Simple Question

IRPUT TOKERS: who does john love ?

state : 0
state : 2

state : 5
token : wO
stack: (who,4,m,s(n,[] ,[bar(2) ,wh]),ftsC,_»
Abar chains:

(who ,0 ,m ,s(n, [] , [bar(2), wh]) ,ftsC ,_})
A chains:

state 1
state : 6
state : 2

state : 9
token : vO
stack: (john,7,m,s(n,[] ,[bar(2),proper]),fts(_,_»

(does,6,h,s(comp,infl,[]),fts(_,_»
(vho ,4,m,s(n, 0, [bar(2) ,vh]) ,ftsC ,_}}

Abar chains:
(who,O,m,s(n,[] ,[bar(2),wh]) ,fts(_,_»

A chains:
(john,2 ,m,s (n, [] , [bar(2) ,proper]) ,ftsC ,_}}

state 6
state : 1
state : 6

state : 9
token:
stack:

end_of_file
C ,12 ,m,s(n, [] ,[empty]) ,ftsC ,_}}
(love ,10 ,h ,5 (v, [C4750,acc, th), (d ,ext ,ag)] ,D) ,ftsC ,_}}
(_,8,h,s(infl,[],[empty]),fts(_,_»
(john,7,m,s(n,[],[bar(2) ,proper]) ,fts(ag,ext»
(does,6,h,s(comp,infl,[]),fts(_,_»

11
(vho ,4 ,m ,s(n, [] , [bar(2) ,vh]), ftsC ,_»

Abar chains:
(who,O,m,s(n,[],[bar(2),wh]),fts(_,_»

A chains:
(john,2,m,s(n,D, [bar(2) ,proper]) ,fts(ag,ext»

state: 4
token : end_of_file
stack: C ,13 ,p ,s(v, [Cd ,acc, th) ,(d ,ext ,ag)] ,[]), ftsC ,_}}

(_,8,h,s(infl,[],[empty]),fts(_,_»
(john,7,m,s(n,[],[bar(2),proper]),fts(ag,ext»
(does,6,h,s(comp,infl,[]),fts(_,_»

ApPENDIX B

Results

11
(vho,4,m,s(n,[] ,[bar(2),vh]),fts(nil,nil»

Abar chains:
(vho, [0112] ,_,s(n,[] ,[bar(2) ,vh]) ,fts(th,acc»

A chains:
(john,2 ,m, s (n, D ,[bar(2) ,proper]) ,fts(ag, ext»

state 8
state 9
state 7
state 8
state 9
state 7
state 3
state 10
accepted
PARSE TREE

comp2
1

n2 comp1
1 1

n2 compO infl2
1 1

.. ho compO n2 infll
1 1

does n2 inflO vi
1 1 1

john e vO n2
1

vO e

love

Abar chains:
(vho,[0112] ,_,s(n,[] ,[bar(2),vh]),fts(th,acc»

A chains:
(john,2 ,m,s (n, D ,[bar(2) ,proper]) ,fts(ag,ext»

223

224

Embedded Question

INPUT TOKENS: ~ho do you think that john likes ?

n2
I

n2 compO
I I

~ho compO n2
I I

do n2 inf'lO
I I

you e vO

vO

comp2
I

compl
I

n2
I

infl2
I

inf'll
I

vi
I

think e compO
I

compO n2
I

that n2
I

john

comp2
I

compl
I

infl2
I

inf'l1
I

inflO
I

e vO
I

vO
I

vi

like+s
Abar chains:

(~ho, [[0123] 115] ,_ ,s(n, 0, [bar(2) ,vh]), t'ts(th ,acc»

A chains:
(john,5,m,s(n,[],[bar(2),proper]),f'ts(ag,ext»
(you,2 ,m,s (n, [] ,[bar(2)]) ,f'ts (ag,ext»

ApPENDIX B

n2
I
e

Results

Embedded Question and Raising

INPUT TOKENS: who did you think that john seemed to like ?

state 0
state 2
state 5
state 1
state 6
state 2

state : 9
token : wO
stack: (you,12,m.s(n.[],[bar(2)]),rts(_._»

(did,11,h,s(comp,inrl,[]),rts(_,_)1
(who,9,m,s(n,O , [bar(21 ,wh]),rtsC,_}}

Abar chains:
(who,O,m,s(n,[] ,[bar(2I,wh]1 ,rts(_._11

A chains:
(you,2,m,s(n,[],[bar(2)]I,rts(_,_»

state : 6
state : 1

state : 6
token : wO
stack: (think,15,h,s(v,[(_5854,prop,th),(d,ext,ag)],[]I,fts(_,_I)

C, 13,h, sOnfl, [] , [empty]) , ftsC ,_)}
(you.12,m,s(n,[],[bar(21]I,rts(ag,ext»
(did,ll,h,s(comp,infl,[]I,fts(_,_11
(who,9,m,s(n,[] ,[bar(2) ,wh]),fts(_,_)1

Abar chains:
(who,O,m,s(n,[],[bar(21,wh]l,rts(_,_11

A chains:
(you,2,m ,sen, [] , [bar(2)]) ,fts(ag,ext}}

state 9
state : 1
state : 6

state : 2
token : wO
stack: (john,5,m,s(n,[] , [bar(21 ,proper]l,rts(_,_11

(that,19,h,s(comp,inrl,[]I,rts(_,_11
C,17 ,m,s(n, [], [empty] I ,rtsC,_}}
(think,15,h,s(v,[(_5854,prop,thl,(d,ext,agl],[]I,fts(_,_II
C,13,h,s(inIl,O, [empty] I ,ftsC,_»
(you,12,m,s(n,[] ,[bar(21]I,fts(ag,extll
(did,11,h,s(comp,infl,[]I,fts(_,_11

16
(who,9,m, s(n, 0 , [bar(21 , wh] I, fts C,_}}

Abar chains:

225

226

(llho ,0 ,m ,s(n, [] ,[bar(2) ,llh]) ,ftsC ,_»
A chains:

(you,2,m,s(n,[],[bar(2)]),fts(ag,ext»

state : 9

state : 6
token :
stack:

110
C,21 ,h,s(infl, [], [empty]) ,ftsC,_»
(john, 20 ,m,s (n, [] ,[bar(2) ,proper]) ,fts C,_»
(that,19,h,s(comp,infl,[]) ,fts(_,_»

ApPENDIX B

C, 17 ,m,s(n, [], [empty]) ,fts L ,_»
(think,15,h,s(v,[(_5854,prop,th),(d,ext,ag)],[]),fts(_,_»
(_,13,h,s(infl,[] ,[empty]) ,fts(_,_»
(you,12,m,s(n,[],[bar(2)]),fts(ag,ext»
(did,ll,h,s(comp,infl,[]),fts(_,_»

16
(llho ,9 ,m ,s(n, [] ,[bar(2) ,llh]) ,fts L ,_»

Abar chains:
(llho,O,m,s(n,[] ,[bar(2) ,llh]),fts(_,_»

A chains:
(john,5,m,s(n,[],[bar(2),proper]),fts(_,_»
(you,2,m,s(n,[] ,[bar(2)]),fts(ag,ext»

state : 1

state : 6
token : 110
stack: (seem+ed,23,h,s(v,[(_,nil,th),(d,ext,nil)],[rais]),fts(_,_»

C, 21 ,h ,s(infl, [] , [empty]) ,ftsC ,_»
(john,20,m,s(n,[] ,[bar(2),proper]),fts(nil,ext»
(that,19,h,s(comp,infl,[]),fts(_,_»
(_,17,m,s(n,[] ,[empty]) ,fts(_,_»
(think,15,h,s(v,[(_5854,prop,th),(d,ext,ag)],[]),fts(_,_»
(_,13,h,s(infl,[] ,[empty]) ,fts(_,_»
(you,12,m,s(n,[],[bar(2)]),fts(ag,ext»
(did,ll,h,s(comp,infl,[]),fts(_,_»

16
(llho ,9 ,m,s(n, 0, [bar(2) ,llh]), fts L ,_»

Abar chains:
(llho ,0 ,m ,s (n, 0 ,[bar(2) ,llh]) ,ftsL ,_»

A chains:

state
state
state
state
state
state

(john,5,m,s(n,[] ,[bar(2),proper]),fts(nil,ext»
(you,2 ,m ,5 (n, [] • [bar(2)]), fts (ag ,ext»

9

1
6
1

6
9

Results

state : 4
token : end_of_file
stack: (_,32,p,s(v,[(d,acc,th),(_12860,ext,ag)] ,[]),fts(_,_»

(to,27,h,s(infl,v,[inf]),fts(_,_»
30

("ho, 25,m ,s(n, [] , [empty]) , fts(ag ,nil»
(seem+ed,23,h,s(v,[(_,nil,th),Cd,ext,nil)],[rais]),fts(_,_»
(_,21,h,s(infl,D ,[empty]),fts(_,_»

24
(john,20,m,s(n,[], [bar(2),proper]) ,fts(nil,ext»
(that,19,h,s(comp,infl,[]),fts(_,_»
(_,17,m,s(n,[],[empty]),fts(_,_»
(think,15,h,s(v,[(_5854,prop,th),(d,ext,ag)],[]),fts(_,_»
C, 13 ,h ,s(infl, [] , [empty]) , ftsC,_»
(you,12,m,s(n,[] ,[bar(2)]),fts(ag,ext»
(did,11,h,s(comp,infl,[]),fts(_,_»

16
("ho,9,m,s (n, [] , [bar(2) ,Ilh]) , fts(nil ,nil»

Abar chains:
("ho, [0131] ,_,sen, [], [bar(2) ,,,h]) ,fts(th,acc»

A chains:
(john,5,m,s(n,[] ,[bar(2),proper]),fts(nil,ext»
(you,2,m,s(n,[] ,[bar(2)]),fts(ag,ext»

state : 8
token : end_of_file
stack: (_,33,m,s(v,[(d,acc,th),(_12860,ext,ag)],[]),fts(_,_»

(to,27,h,s(infl,v,[inf]),fts(_,_»
30

(llho,25,m,s(n,[],[empty]),fts(ag,nil»
(seem+ed,23,h,s(v,[C_,nil,th),(d,ext,nil)],[rais]),ftsC_,_»
C, 21,h ,sCinfl, 0, [empty]) ,ftsC ,_»

24
(john,20,m,s(n,[] ,[bar(2),proper]),ftsCnil,ext»
(that,19,h,sCcomp,infl,[]),fts(_;_»
C_,17,m,s(n,D,[empty]),ftsC_,_»
(think,15,h,s(v,[(_5854,prop,th),(d,ext,ag)],[]),fts(_,_»
C,13,h,sCinfl,D, [empty]) ,ftsC,_»
(you,12,m,s(n,[],[bar(2)]),fts(ag,ext»
(did,ll,h,s(comp,infl,[]),fts(_,_»

16
C"ho,9,m, s (n, 0 , [bar(2) , Ilh]) , fts(nil ,nil»

Abar chains:
("ho, [0131] ,_ ,s(n, [] , [bar(2) ,Ilh]) ,fts(th ,acc»

A chains:
(john,5,m,s(n,[],[bar(2),proper]),fts(nil,ext»
(you,2,m,s(n,[] ,[bar(2)]),fts(ag,ext»

state : 9
state : 7

227

228 ApPENDIX B

state : 8
token : end_of_file
stack: (_,36,m,s(infl,v,[inf]),fts(_,_»

(seem+ed,23,h,s(v,[(_,nil,th) ,(d,ext,nil)],[rais]),fts(_,_»
(_,21,h,sCinfl,[],[empty]),fts(_,_»

24
(john, 20,m ,s (n, 0, [bar(2) ,proper]) ,fts (nil,ext»
(that,19,h,s(comp,infl,[]),fts(_,_»
C_,17,m,sCn,[],[empty]) ,fts(_,_»
(think,15,h,s(v,[(_5854,prop,th),(d,ext,ag)],[]),fts(_,_»
(_,13,h,s(infl,[] ,[empty]),fts(_,_»
(you,12,m,s(n,D,[bar(2)]),fts(ag,ext»
(did,11,h,s(comp,infl,[]),fts(_,_»

16
(liho,9 ,m, s(n, [] , [bar(2) , lih]), fts(nil ,nil»

Abar chains:
(liho,[0!31] ,_,s(n,[] ,[bar(2),lih]),fts(th,acc»

A chains:

state
state
state
state
state
state
state
state
state
state
state
state
state
state
state
state
state
state
state

(john,[5!25] ,_,s(n,[] ,[bar(2) ,proper]) ,fts(ag,ext»
(you,2,m,s(n,[],[barC2)]),fts(ag,ext»

9
4
8
9
7
8
9
7
8
9
4
8
9
7
8
9
7
3
10

accepted

Results

PARSE TREE :

n2
I

n2 compO
I !

llho compO n2
I

did n2
I

you

inflO
I

e

comp2
!

compi
I

inr12

inrll
I

vi

vO
I

vO
I

n2
I

think e compO
I

compO n2
I I

that n2 inrlO
I

john e

I

comp2
I

compi
I

vO

vO

inr12
I

inrll
I

n2
I

vi

inr12
!

229

inrll
I

seem+ed e inrlO vi

Abar chains:
(llho,[[OI3i)117),_,s(n,[),[bar(2),llh),rts(th,acc»

A chains:
(john,[5!25) ,_,s(n,[) ,[bar(2),proper),rts(ag,ext»
(you,2,m,s(n,O , [bar(2»)) ,Its(ag,ext»

inflO
I

to

vO

vO
I

like

n2
!

e

230

Embedded Wh-Question

IRPUT TOKERS: vho did you vonder vhy mary liked ?

state : 0
state : 2

state : 5
token : vO
stack: (vho,7,m,s(n,[] ,[bar(2) ,vh]),ftsC,_»
Abar chains:

(vho,O,m,s(n, [] ,[bar(2) ,vh]) ,ftsC,_»
A chains:

state 1
state : 6
state : 2

state : 9
token : vO
stack: (you,10,m,s(n,[],[bar(2)]),fts(_,_»

(did,9,h,s(comp,infl,[]),fts(_,_»
(vho ,7 ,m, s (n, [] , [bar(2) ,vh]) ,fts C ,_»

Abar chains:
(who,O,m,s(n,[],[bar(2),wh]),fts(_,_»

A chains:
(you,2,m,s(n,[],[bar(2)]) ,fts(_,_»

state 6
state : 1
state : 6

state : 2
token : v2

ApPENDIX B

stack: (why,4,m,s(adv, [], [bar(2) ,vh]) ,ftsC,_»
(vonder,13,h,s(v,[(_5666,prop,nil),(d,ext,ag)],[]),fts(_,_»
C,11 ,h ,s(infl, [) ,[empty]) ,ftsC ,_»
(you,10,m,s(n, [], [bar(2)]) ,fts(ag,ext»
(did ,9 ,h, s (comp ,infl, [) ,ftsC ,_»
(who,7 ,m,s(n, 0, [bar(2) ,vh]) ,ftsC ,_»

Abar chains:
(vho,O,m,s(n,[],[bar(2),vh]),fts(_,_»

A chains:
(you,2,m,s(n,[],[bar(2)]),fts(ag,ext»

state 9
state 6
state 2
state 9

state 6
token : vO

Results

stack: C ,17 ,h ,sCinIl, [] ,[empty]) ,ftsC ,_»
(mary,16,m,s(n,[] ,[bar(2),proper]),fts(_,_»
(_,15,h,s(comp,[] ,[empty]),fts(_,_»
(ghy,14,m,s(adv,[] ,[bar(2),gh]),fts(_,_»
(gonder,13,h,s(v,[(_5666,prop,nil),(d,ext,ag)] ,[]),fts(_,_»
C,l1,h,s(infl,O, [empty]) ,ftsC,_»
(you ,10 ,m, s(n, [] ,[bar(2)]) ,fts(ag ,ext»
(did,9,h,s(comp,infl,[]),fts(_,_»
(gho,7 ,m ,s(n, 0 ,[bar(2) ,gh]), fts C ,_»

Abar chains:
(gho ,O,m,s(n, [], [bar(2) ,llh]) ,ftsC ,_»

A chains:
(mary,5,m,s(n,[] ,[bar(2) ,proper]),fts(_,_»
(you,2 ,m, 5 (n, 0 ,[barO)]) ,fts(ag ,ext»

state : 1

state : 6
token : end_of_file
stack: (like+d,19,h,s(v,[(_9314,acc,th),(d,ext,ag)] ,[]) ,fts(_ ,_»

C ,17 ,h ,s(inIl, 0 , [empty]) ,ftsC ,_»
(mary,16,m,s(n,[] ,[bar(2) ,proper]) ,fts(ag,ext»
(_,15,h,s(comp,[] ,[empty]) ,fts(_,_»
(ghy,14,m,s(adv,[] ,[bar(2) ,llh]) ,fts(_,_»
(llonder,13,h,s(v,[(_5666,prop,nil),(d,ext,ag)],[]),fts(_,_»
C ,11 ,h ,s (infl, [] , [empty]) ,fts C ,_»
(you,10,m,s(n,[],[bar(2)]),fts(ag,ext»
(did,9,h,s(comp,infl,[]),fts(_,_»
(llho,7,m,s(n,[] ,[bar(2) ,llh]),fts(_,_»

Abar chains:
(llho,O,m,s(n,[] ,[bar(2),llh]),fts(_,_»

A chains:
(mary,5,m,s(n,[] ,[bar(2) ,proper),fts(ag,ext»
(you,2 ,m ,s (n, [) ,[barO)]), fts(ag ,ext»

backtracking

PARSE FAILED

231

REFERENCES

Abney, S. (1986). Licensing and parsing. In Proceedings of NELS 17, Cambridge, MA,
pp. 1-15.

Abney, S. (1987). On the notion of GB parsing and psychological reality. MIT Parsing
Volume, 1-18.

Abney, S. (1989). A computational model of human parsing. Journal of Psycholinguistic
Research 18,129-144.

Abney, S. and M. Johnson (1991). ~!emory requirements and local ambiguities of parsing
strategies. Journal of Psycholinguistic Research 20, 233-2.50.

Aho, A. V. and J. D. lillman (1972). The Theory of Parsing, TranslatIOn and Compiling.
Englewood CEffs, :'\'J: Prentice-Hall.

Aho, A. V. R. S. and J. D. Ullman (1977). Compilers: Principles, Techniques and Tools.
Reading, MA: Addison-Wesley PubEs rung Company.

Barton, E. (1984). Towards a principle-based parser. Technical Report 788, MIT AI Lab.

Barton, E. (1987). The ComputatIOnal Structure of Satuml Language. Ph. D. thesis, MIT,
Cambridge, MA.

Barton, E., R. Berwick, and E. Ristad (1987). Computational Complexity and Natural
Language. Cambridge, MA: MIT Press.

Belletti, A. (1988). The case of unaccusatives. Linguistic Inquiry 19(1),1-34.

Belletti, A. and L. Rizzi (1981). The syntax of ne: Some theoretical implications. The
Linguistic Review 1 (2), 117-154.

Berwick, R. (1982). Locality Principles and the Acquisition of Syntactic I{nowledge. Ph.
D. thesis, MIT, Cambridge, MA.

Berwick, R. (1985). The Acquisition of Syntactic [(nowledge. Cambridge, MA: MIT Press.

Berwick, R. (1991a). Principle-based parsing. In P. Sells, S. M. Shieber, and T. Wasow
(Eds.), Foundational Issues in Natural Language Processing, pp. 115-226. Cambridge,
MA: MIT Press.

Berwick, R. (1991b). Principle-based parsing. In R. Berwick, S. Abney, and C. Tenny
(Eds.), Principle-Based Parsing: Computation and Psycholinguistics, pp. 1-38. Kluwer
Academic PubEshers.

Berwick, R. and S. Fong (1990). Principle-based parsing. In Wilson (Ed.), Artificial
Intelligence at MIT. Cambridge, MA: ;-"'lIT Press.

Berwick, R. and A. Weinberg (1983). The role of grammars as components of language
use. Cognition 13, 1-61.

Berwick, R. and A. Weinberg (1984). The Grammatical Basis of Linguistic Performance.
Cambridge, MA: MIT Press.

233

234 PARSING WITH PRINCIPLES AND CLASSES OF INFORMATION

Berwick, R. and A. Weinberg (1985). Deterministic parsing and linguistic explanation.
Language and Cognitive Processes 1 (2), 109-134.

Bresnan, J. (1978). A realistic transformational grammar. In M. Halle, J. Bresnan, and
M. George (Eds.), Linguistic Theory and Psychological Reality, pp. 1-59. Cambridge,MA:
MIT Press.

Brody, M. (1984). On contextual definitions and the role of chains. Linguistic In­
quiry 15(3),355-380.

Brody, M. (1985). On the complementary distribution of empty categories. Linguistic
Inquiry 16(4), 505-546.

Burzio, L. (1986). Italian Syntax. Dordrecht: Kluwer Academic Publishers.

Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.

Chomsky, N. (1965) . . 4spects of the Theory of Syntax. Cambridge, MA: MIT Press.

Chomsky, N. (1980a). On binding. Linguistic Inquiry 11 (1), 1-46.

Chomsky, N. (1980b). Rules and Representation. Oxford: Basil Blackwell.

Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht: Foris.

Chomsky, N. (1982). Some Concepts and Consequences of the Theory of Government and
Binding. Cambridge, MA: MIT Press.

Chomsky, N. (1986a). Barriers. Cambridge, MA: :-'!IT Press.

Chomsky, N. (1986b). Knowledge of Language: Its :Vature, Origin and Use. New York:
Praeger.

Chomsky, N. (1988). Some notes on economy of derivation and representation. MIT
Working Papers in Linguistics 10,43-74.

Chomsky, N. (1992). A minimalist program for linguistic theory. Occasional MIT Working
Papers in LingUIstics 1. (also appeared in The V,ew from Building 20, edited by Ken
Hale and Jay S. Keyser. ;YUT Press, Cambridge, MA, 1993,1-52.).

Chomsky, K. and M. Halle (1968). The Sound Pattern of English. New York: Harper and
Row.

Church, K. (1980). On memory limitations in natural language processing. Technical
Report TR 245, MIT/LCS.

Cinque, G. (1990). Types of A Dependencies. Cambridge, MA: MIT Press.

Clark, R. (1990). Chain formation. University of Geneva.

Clifton, C., L. Frazier, and C. Connine (1984). The use of syntactic information in filling
gaps. Journal of Verbal Learning and Verbal Behaviour 23,696-708.

Cole, R. and J. Jakimik (1978). Understanding speech. In G. Underwood (Ed.), Strategies
of Information Processing. London: Academic Press.

Comrie, B. (1981). Language Universals and Linguistic Typology. Oxford: Basil Blackwell.

Connine, C. M., F. Ferreira, C. Jones, C. Clifton, and L. Frazier (1984). Verb frame
preferences: Descriptive norms. Journal of Psycholinguistics Research 13, 307-319.

Correa, N. (1988). Syntactic Analysis of English with Respect to Government-Binding
Theory. Ph. D. thesis, Syracuse University, Syracuse, NY.

Correa, N. (1991). Empty categories, chain binding and parsing. In R. Berwick, S. Abney,
and C. Tenny (Eds.), Principle-Based Parsing: Computation and Psycholinguistics, pp.
83-122. Dordrecht: Kluwer Academic Publishers.

REFERENCES 235

Crain, S. and J. D. Fodor (1985). How can grammars help parsers? In D. Dowty, L. Kar­
tunnen, and A. Zwicky (Eds.), Natural Language Parsing: Psychological, Computational
and Theoretical Perspectives, pp. 94-128. Cambridge: Cambridge University Press.

Crocker, M. (1992). A Logical Model of Competence and Performance in the Human
Sentence Processor. Ph. D. thesis, University of Edinburgh, Edinburgh, Scotland.

Crocker, M. (1995). Computational Psycho linguistics: A Interdisciplinary Perspective.
Dordrecht: Kluwer Academic Publishers.

De Marcken, C. (1990). Parsing the LOB corpus. In Proceedings of the 28th Meeting of
the Association for Computational Linguistics, Pittsburgh, PA, pp. 243-25l.

De Vincenzi, M. (1991). Syntactic Parsing Strategies in Italian. Dordrecht: Kluwer
Academic Publishers.

Dorr, B. J. (1987). UNITRAN: a principle-based approach to machine translation. Tech­
nical Report 100, AI Lab, MIT, Cambridge, MA.

Dorr, B. J. (1990). Lexical Conceptual Structure and Machine Translation. Ph. D. thesis,
MIT, Cambridge, MA.

Dorr, B. J. (1993). Machine Translation: A View from the Lexicon. Cambridge, MA:
MIT Press.

Downing, B. T. (1978). Some universals of relative clause structure. In G. J. H. (Ed.),
Universals of Human Language, pp. 375-418. Stanford, CA: Stanford University press.

Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the
Association for Computing Machinery 14,453-460.

Ferreira, F. and C. Clifton (1986). The independence of syntactic processing. Journal of
IIfemory and Language 25, 348-368.

Ferreira, F. and J. M. Henderson (1990). The use of verb information in syntactic pars­
ing: A comparison of evidence from eye-movements and word-by-word self-paced reading.
Journal of Experimental Psychology: Learning, Jlfemc,ry and Cognition 16, 555-568.

Fodor, J. A., T. Bever, and M. Garrett (1974). The Psychology of Language: A n Intro­
duction to Psycho linguistics and Generative Grammar. New York: McGraw-Hill.

Fodor, J. D. (1985). Detenninistic parsing and subjacency. Language and Cognitive
Processes 1 (1), 3-42.

Fodor, J. D. (1989). Empty categories in sentence processing. Language and Cognitive
Processes 3-4, SI, 155-209.

Fong, S. (1990). Free indexation: Combinatorial analysis and a compositional algorithm.
Proceedings of the 28th Meeting of the Association for Computational Linguistics, 105-
110.

Fong, S. (1991). Computational Properties of Principle-based Grammatical Theories. Ph.
D. thesis, MIT, Cambridge, MA.

Fong, S. and R. Berwick (1992). Isolating cross-linguistic parsing complexity with a
principle-and parameters parser: a case study of Japanese and English. In Proceedings
of COLING 92, Nantes, pp. 631-637.

Ford, M., J. Bresnan, and R. Kaplan (1982). A competence-based theory of syntactic
closure. In J. Bresnan (Ed.). The Mental Representations of Grammatical Relations, pp.
727-796. Cambridge, MA: MIT Press.

Forster, K. and 1. Olbrei (1973). Semantic heuristics and syntactic analysis. Cognition 2(3),
319-347.

236 PARSING WITH PRINCIPLES AND CLASSES OF INFORMATION

Frampton, J. (1990). Parasitic gaps and the theory of wh-chains. Linguistic Inquiry 21 (1),
49-77.

Frank, R. (1990). Licensing and tree adjoining grammar in GB parsing. In Proceedings of
the 28th Meeting of the Association for Computational Linguistics, Pittsburgh, PA, pp.
111-117.

Frank, R. (1991). Two types of locality in government and binding parsing. manuscript,
University of Pennsylvania, Philadeplhia, PA.

Frank, R. (1992). Syntactic Locality and Tree Adjoining Grammar: Grammatical, Acquisi­
tion and Processing Perspectives. Ph. D. thesis, University of Pennsylvania, Philadelphia,
PA.

Frazier, L. (1989). Against lexical generation of syntax. In W. Marslen-Wilson (Ed.),
Lexical Representation and Processes, pp. 505-528. Cambridge, MA: MIT Press.

Frazier, L. and C. Clifton (1989). Successive cyclicity in the grammar and the parser.
Language and Cognitive Processes 4, 93-126.

Frazier, L., C. Clifton, and J. Randall (1983). Filling gaps: Decision principle and structure
in sentence comprehension. Cognition IS, 187-222.

Frazier, L. and K. Rayner (1982). Making and correcting errors during sentence compre­
hension: Eye-movements in the analysis of structurally ambiguous sentences. Cognitive
Psychology 14, 178-210.

Frazier, L. and K. Rayner (1987). Resolution of syntactic category ambiguities: Eye
movements in parsing lexically ambiguous sentences. Journal of Memory and Language 26,
505-526.

Gazdar, G., E. Klein, G. Pullum, and 1. Sag (198.5). Generalized Phrase Structure Gram­
mar. Oxford: Blackwell.

Gibson, E. (1991). A Computational Theory of Human Linguistic Processing: JI,(emory
LimitatIOns and Processing Breakdown. Ph. D. thesis, Carnegie Mellon University, Pitts­
burgh, PA.

Gorrell, P. (1991). Sub categorization and sentence processing. In R. Berwick, S. Abney,
and C. Tenny (Eds.), Principle-Based Parsing: Computation and Psycholinguistics, pp.
279-300. Cambridge, MA: MIT Press.

Grimshaw, J. (1986). Subjacencyand the SIS' parameter. Linguistic Inquiry 17(2),
364-369.

Haegeman, L. (1991). Introduction to Government and Binding. Oxford: Basil Blackwell.

Hawkins, J. (1990). Word order universals. Linguistic Inquiry 21(2),223-261.

Holmes, V. M., A. Kennedy, and W. Murray (1987). Syntactic structure and the garden
path. The Quarterly Journal of Experimental Psychology 39A, 277-293.

Holmes, V. M., L. Stowe, and L. Cupples (1989). Lexical expectations in parsing
complement-verb sentences. Journal of Memory and Language 28,668-689.

Irons, E. (1961). A syntax directed compiler for ALGOL 60. Commmunications of the
Association for Computing Machinery 4,51-55.

Jackendoff, R. (1983). Semantics and Cognition. Cambridge, MA: MIT Press.

Jackendoff, R. (1990). Semantic Structures. Cambridge, MA: MIT Press.

Jaeggli, o. and K. Safir (1989). The Null Subject Parameter. Kluwer Academic Publishers.

Johnson, M. (1989). The use of knowledge of language. Journal of Psycholinguistic
Research 18.1,105-129.

REFERENCES 237

Joshi, A. (1985). How much context-sensitivity is required to provide reasonable struc­
tural descriptions: Tree adjoining grammars. In Z. Dowty and Kartunnen (Eds.), Natural
Language Processing: Psycho linguistic, Computational and Theoretical Perspectives, pp.
206-250. Cambridge, MA: Cambridge University Press.

Kashket, M. (1991). A Parameterized Parser for English and Warlpiri. Ph. D. thesis,
MIT, Cambridge, MA.

Kayne, R. (1994). The Antisymmetry of Syntax. Cambridge, MA: MIT Press.

Kimball, J. (1973). Seven principles of surface structure parsing in natural language.
Cognition 2(1), 1.5-47.

Knuth, D. E. (1965). On the translation of languages from left to right. Information and
Control 8, 607-639.

Knuth, D. E. (1968). Semantics of context-free languages. "{athematical Systems Theory 2,
127-145.

Knuth, D. E. (1973). The Art of Computer Programming, Volume 3. Menlo Park, CA:
Addison-Wesley Publishers.

Kornai, A. (1983). X grammars. In S. J. Bolyai (Ed.), Algebra, Combinatorics and Logic
In Computer Science, pp. 523-536. Gyor, Hungary: Colloquia Mathematica.

Kuno, S. (1974). The position of relative clauses and conjunction. Linguistic Inquiry 5,
117-136.

Laenzlinger, C. (1993). Principles for a formal account of adverb syntax. Geneva Gener­
ative Papers 1 (2), 47-,.5.

Lang. B. (1974). Deterrrunistic techniques for efficient nondeterministic parsers. In Proceed­
ings of the Second Colloquium on Automata, Languages and Programming, pp. 255-269.

Lang, B. (1989). Towards a uniform formal framework for parsing. In M. Tomita (Ed.),
CUTrent Issues In Parsing Technologies, pp. 153-1,2. Dordrecht: Kluwer Academic Pub­
lishers.

MacDonald, M. (1994). Probabilistic constraints and syntactic ambiguity resolution. Lan·
guage and Cognitive Processes 9(2), 157-201.

Macias, B. (1991). An Incremental Parser for Government Binding Theory. Ph. D. thesis,
Cambridge University, Cambridge, MA.

Marcus, M. (1980). A Theory of Syntactic Recognition for Natural Language. Cambridge,
MA: MIT Press.

Marcus, M., D. Hindle, and M. Fleck (1983). D-theory: Talking about talking about
trees. In Proceedings of the 21st Meeting of the Association for Computational Linguistics,
Morristown, NJ, pp. 129-136.

Marr, D. (1982). Vision. S.Francisco, CA: W.H.Freeman.

Marslen-Wilson, V •. (1973). Linguistic structure and speech shadowing at very short
latencies. Nature 244, 522-523.

Merlo, P. (1994). A corpus-based analysis of verb continuation frequencies. Journal of
Psycho linguistics Research 23(6), 435-457.

Miller, G. and N. Chomsky (1963). Finitary models of language users. In R. R.Luce and
E.Galanter (Eds.), Handbook of Mathematical Psychology, Volume 2, pp. 419-491. New
York.

Miller, G. A. and S. Isard (1964). Free recall of self-embedded english sentences. Informa­
tion and Control 7, 292-303.

238 PARSING WITH PRINCIPLES AND CLASSES OF INFORMATION

Mitchell, D. (1987). Lexical guidance in human parsing: Locus and processing characteris­
tics. In M. Coltheart (Ed.), Attention and Performance XII: The Psychology of Reading,
pp. 601-618. Hillsdale, NJ: Erlbaum.

Mitchell, D. and V. Holmes (1985). The role of specific information about the verb in
parsing sentences with local structural ambiguity. Journal of Memory and Language 24,
542-559.

Nozohoor-Farshi, R. (1986). On formalizations of the marcus's parser. In Proceedings of
COLING 86, Bonn, pp. 533-535.

Pereira, F. and D. Warren (1981). Parsing as deduction. In Proceedings of the 19th Meeting
of the Association for Computational Linguistics.

Pereira, F. and R. Wright (1991). Finite state approximation of phrase structure grammars.
In Proceedings of the 29th Meeting of the ACL, Berkeley, CA, pp. 246-255.

Pesetsky, D. (1987). Wh in situ: Movement and unselective binding. In E. Reuland and
A. ter Meulen (Eds.), The Representation of (In)definiteness. Cambridge, MA: MIT Press.

Phillips, J. (1992). A computational representation for Generalized Phrase Structure
Grammars. Linguistics and Philosophy 15(3), 255-287.

Phillips, J. and H. Thompson (1986). GPSGP: A parser for Generalized Phrase Structure
Grammars. Linguistics 23.

Pollock, J.-Y. (1989). Verb movement, universal grammar and the structure of IP. Lin­
guistic Inquiry 20(3), 365-424.

Pritchett, B. (1992). Linguistic Competence and Parsmg Performance. Chicago, IL:
University of Chicago Press.

Rayner, K. and L. Frazier (1987). Parsing temporarily ambiguous complements. The
Quarterly Journal of Experimental Psychology 39A. 657-673.

Reinhart, T. (1976). The Syntactic Domain of Anaphora. Ph. D. thesis, MIT, Cambridge,
MA.

Ristad, E. (1990). Computational structure of human language. Technical Report 1260,
MIT AI Lab, Cambridge, MA.

Rizzi, L. (1982). Issues in Italian Syntax. Dordrecht: Foris.

Rizzi, L. (1990). Relativized Minimality. Cambridge, MA: MIT Press.

Rizzi, L. (1991). Residual verb second and the wh-criterion. Technical Report 2, University
of Geneva. Technical Reports in Formal and Computational Linguistics.

Ross, J. (1967). Constraints on Variables in Syntax. Ph. D. thesis, MIT.

Rounds, W. (1991). The relevance of computational complexity theory to natural language
processing. In P. Sells, S. M. Shieber, and T. Wasow (Eds.), Foundational Issues in Natural
Language Processing, pp. 9-30. Cambridge, MA: MIT Press.

Schabes, Y. (1991). Polynomial time and space shift-reduce parsing of arbitrary context­
free grammars. In Proceedings of the 29th Meeting of the ACL, Berkeley, CA, pp. 106-113.

Schabes, Y. and K. Vijay-Shanker (1990). Deterministic left to right parsing of tree ad­
joining languages. In Proceedings of the 28th Meeting of the ACL, Pittsburgh, PA., pp.
276-283.

Seidenberg, M., M. Tanenhaus, J. Leiman, and M. Bienkowski (1982). Automatic access
of the meaning of ambiguous words in context: Some limitations of knowledge- based
processing. Cognitive Psychology 14, 489-537.

REFERENCES

Shieber, S. M. (1984). Direct parsing with ID/LP grammars. Linguistics and Philoso­
phy 7(2), 135-154.

Shieber, S. M. (1986). A simple reconstruction of GPSG. In Proceedings of COLING 86,
pp.211-215.

Shieber, S. M. and M. Johnson (1993). Variations on incremental interpretations. Journal
of Psycholinguistic Research 22(2), 287-319.

Shopen, E. T. (1985). Language Typology and Syntactic Description. Cambridge, MA:
Cambridge University Press.

Slobin, D. I. (1966). Grammatical transformations and sentence comprehension in child­
hood and adulthood. Journal of Verbal Learning and Verbal Behaviour 5, 219-227.

Stabler, E. (1990). Relaxation techniques for principle-based parsing. Talk given at the
Workshop on GB Parsing, University of Geneva.

Stabler, E. (1991). Avoid the pedestrian's paradox. In R. Berwick, S. Abney, and C. Tenny
(Eds.), Principle-based Parsing: Computation and Psycholinguistics, pp. 199-238. Dor­
drecht: Kluwer Academic Publishers.

Stabler, E. (1992). The Logical Approach to Syntax. Cambridge, MA: MIT Press.

Stabler, E. (1994). Left corner parsing for incremental interpretation. manuscript, UCLA.

Steedman, M. (1989). Grammar, interpretation and processing from the lexicon. In
W. Marslen-Wilson (Ed.), Lexical Representation and Processes, pp. 463-504. Cambridge,
MA: MIT Press.

Steele, S. (1978). 'Nord order variation. In G. J. H. (Ed.), Universals of Human Language,
pp. 585-623. Stanford, CA: Stanford University Press.

Stevenson, s. (1994). A Competitive Attachment Model for resolving Syntactic Ambiguities
in Natural Language Parsing. Ph. D. thesis, University of Maryland at College Park. also
available as RuCCs TR 18, Rutgers Center for Cognitive Science.

Stowe, L. (1986). Evidence for on-line gap location. Language and Cognitive Processes 1,
227-245.

Stowell, T. (1981). Origins of Phrase Structure. Ph. D. thesis, MIT, Cambridge, MA.

Sturt, P. and M. Crocker (1995). Incremental parsing. CUNY Conference, Tucson, Arizona.

Swinney, D. (1979). Lexical access during sentence comprehension. Journal of Verbal
Learning and Verbal Behaviour 18, 645-660.

Thompson, H. (1982). Handling metarules in a parser for GPSG. Technical Report 175,
Department of Artificial Intelligence, University of Edinburgh.

Tomita, M. (1985). Efficient Parsing for Natural Language. Hingham, MA: Kluwer.

Tomita, M. (1986). Efficient Parsing of Natural Language. Dordrecht: Kluwer Academic
Publishers.

Tomita, M. (1987). An efficient augmented context-free parsing algorithm. Computational
Linguistics 13(1-2), 31-46.

Trueswell, J., M. Tanenhaus, and C. Kello (1993). Verb specific constraints in sentence
processing: Separating effects of lexical preference from garden-paths. Journal of Experi­
mental Psychology: Learning, Memory and Cognition 19,528-553.

Van de Koot, H. (1990). Essay on the Grammar-Parser Relation. Dordrecht: Foris.

Van de Koot, H. (1991). Parsing with principles: on constraining derivations. UCL
Working Papers in Linguistics, 369-396.

240 PARSING WITH PRINCIPLES AND CLASSES OF INFORMATION

Wanner, E. and M. Maratsos (1978). An atn approach to comprehension. In H. Morris,
J. Bresnan, and G. Miller (Eds.), Linguistic Theory and Psychological Reality, pp. 119-161.
Cambridge, MA: MIT Press.

Wehrli, E. (1992). The IPS system. In Proceedings of the 14th International Conference
on Computational Linguistics (COLING-92), pp. 870-874.

Weinberg, A. (1988). Locality Principles in Syntax and in Parsing. Ph. D. thesis, MIT,
Cambridge, MA.

Weinberg, A. (1993). Parameters of the theory of sentence processing: Minimal committ­
ment theory goes east. Journal of Psycho linguistics Research 22(3), 339-363.

Woods, W. (1970). Transition network grammars for natural language analysis. Commu­
nications of the Association Jor Computing Machinery 13, 591-606.

Abney, S., 7-8, 48-51, 57, 62, 64, 93-94,
128, 132

Aho, A., 35,135,137,160,200-201,203
Barton, E., 13, 57, 73
Belletti, A., 127, 137, 185
Berwick, R., 7-8,11-13,17-19,23,25,

52,57,73,79,121,147,155,
159-160, 162,164-165, 168,
171-172, 205

Bever, T., 11
Bienkowski, M., 92
Bresnan, J., 11,89-90
Brody, M., 120,194-195
Burzio, L., 107, 185, 187-188
Chomsky, ;\'.,7,9,11-13,17,19,119,

121,125,137,150-151,153-1.55,
164-165, 179,181,187-188,
190-192, 194-195

Church, K., 9
Cinque, G., 103, 107, 125, 147-155,

190-191
Clark, R., 114
Clifton, C., 89-90, 126
Cole, R., 130-131
Comrie, B., 141
Connine, C., 90, 126
Correa, N., 22, 58,102,114,121,135,

171
Crain, S., 68
Crocker, M., 13, 67, 129
Cupples, L., 89-90
De Marcken, C., 60
De Vincenzi, M., 58, 126-127, 163
Dorr, B., 1.5-16, .58-59, 61,9.5
Downing, B., 141
Earley, J., 10, 15,73
Ferreira, F., 89-90
Fleck, M., 52
Fodor, Janet, 68,126
Fodor, Jerry, 11
Fong, S., 13-14, 35, 54, 57, 65, 93, 95,

102, 121, 172,205
Ford, M., 89-90
Forster, K., 11

INDEX

Frampton, J., 155
Frank, R., 40, 57, 62, 65-66, 93, 147,

161, 168, 205
Frazier, L., 48-49, 89-90, 92-93, 95-96,

98, 126
Garrett, M., 11
GazdaI', G., 6, 16, 73
Gibson, E., 51, 132
Gorrell, P., 90
Grimshaw, J., 122, 158
Haegeman, L., 2, 173
Halle, M., 17
Hawkins, J., 130
Henderson, J., 89
Hindle, D., 52
Holmes, V., 89-90
Irons, E., 135
Isard, S., 165
Jackendoff, R., 60
Jaeggli, 0., 198-199
Jakimik, J., 130-131
Johnson, M., 14, 20, 22, 40, 49, 52, 57,

129-130, 132, 13.5, 141-142, 205
Jones, C., 90
Joshi, A., 62
Kaplan, R., 89-90
Kashket, M., 14, 57, 61
Kayne, R., 125
Kello, C., 89-90
Kennedy, A., 90
Kimball, J., 48
Klein, E., 6, 16, 73
Knuth, D., 32, 135, 200
Kornai, A., 72
Kuno, S., 141
Laenzlinger, C., 139
Lang, B., 130, 142
Leiman, J., 92
MacDonald, M., 96
Macias, B., 40
Maratsos, M., .57
Marcus, M., 52,57,93,96, 147, 155-160,

168
Marr, D., 7

242 PARSING WITH PRINCIPLES AND CLASSES OF INFORMATION

Marslen-Wilson, W., 128
Merlo, P., 90
Miller, G., 9, 11, 13, 165
Mitchell, D., 67, 89-90
Murray, W., 90
Nozohoor-Farshi, R., 160
Olbrei, I., 11
Pereira, F., 54, 69
Pesetzky, D., 151
Phillips, J., 16
Pollock, J-Y., 137
Pritchett, B., 51, 68,96-98
Pullum, G., 6, 16, 73
Randall, J., 126
Rayner, K., 48-49, 89-90, 92-93, 95-96,

98
Reinhart, T., 179
Ristad, E., 15, 73
Rizzi, L., 103,107-108, 122,125,150,

153-154, 169,185, 188-189,
191-192, 197

Ross, J., 147, 153
Rounds, W., 17,73
Safir, K., 198-199
Sag, I., 6, 16, 73
Schabes, Y., 66, 71, 135
Sethi, R., 35, 135, 137, 201, 203
Shieber, S., 36, 49, 52, 73, 129-130, 132,

135, 141-142
Shopen, T., 141
Slobin, D., 11
Stabler, E., 13-14, 22,49, 52, 129-130,

132-133
Steedman, M., 128
Steele, S., 141
Stevenson, S., 129
Stowe, L., 89-90, 126
Stowell, T., 50
Sturt, P., 129
Tanenhaus, M., 89-90,92
Thompson, H., 16
Tomita, M., 15-16,35, 129
Trueswell, J., 89-90
Ullman, J., 35, 135,137, 160,200-201,

203
Van de Koot, H., 7-8, 14, 22, 160
Vijay-Schanker, K., 66
Wanner, E., 57
Warren, D., 69
Wehrli, E., 129

Weinberg, A., 7-8, 11-12, 51-52, .57, 140,
147, 155,159-160, 162, 164-16.5,
168, 171-172

Woods, W., 57
Wright, R., 54
Ambiguity

categorial and co-occurrence table, 95
categorial and compilation, 93
categorial and delay model, 93
categorial with structural difference, 92
categorial without structural

difference, 96
lexical, 88
psycholinguistics results on, 88

Anti-c-command,165
Attachment

ambiguity, 88
preference, 89-90

Attribute annotation, 36
Attribute grammars, 106, 122

L-attributed, 135
S-attributed, 135
marker nonterminal technique, 136

Barrier
for binding, 152, 190
for government, 152, 189

Barriers theory, 189
definitions of barrier, 189
relativized minimality, 189
subjacency, 190

Binding theory, 192
A-binding, 193
accessible subject, 193
anaphor, 192
distribution of empty categories, 193
free indexation, 194
governing category, 193
principles, 193
pronominal, 192
weak cross over, 198

C-command, 52,118-119, 122, 125, 141,
165,179,189,192-193

Case theory, 180
Case filter, 180
abstract and overt Case, 180
inherent Case assignment, 181
structural Case assignment, 180

Categorial information, 27
Categorial selection, 177
Category

ambiguity, 27
Chain formation, 28

Index

Chains, 111
computational problems, 115

Chain Composition Problem, 118
Chain Intersection Problem, 118
Chain Selection Problem, 117
Node Labelling Problem, 116

definition, 111
feat ure assignment, 114
feature unification, 114
landing sites, 112
multiple, 113
psycholinguistic evidence, 125
representation of, 113
types, 112

NP-chains, 112
head movement chains, 112
wh-chains, 112

Co-occurence prediction table., 35
Competence vs performance, 6
Compilation, 8, 13-16, 19, 51,53,56-58,

60-61, 64, 66, 71, 79, 84-87,
94-95, 102, 132

LL tables, 85
LR tables, 79
compactness, 79
phrase structure rules, 72
LC tables, 86
and efficiency, 14-1.5
and principle-based parsing, 14
partial, 8, 16

Configurations, 108, 178
c-command, 179
m-command, 179
sisterhood, 178

Conflicts, 74, 80-81, 83, 85-86, 102
Connectivity, 129-130

finite, 132, 134
Constraints, 36

satisfaction of, 103
Context-free grammar, 34
Correspondence, 8

1/0,8-9
degenerate I/O, 9
direct, 11

Covering grammar, 10, 23
Covering relations, 12
Cross-linguistic regularity, 6
D-linking, 151
Determination of empty categories, 119

efficiency, 122
functional,120
structural, 121-122

Determinism, 157
Deterministic parsing

LRRL,160
and LR parsing, 159-160
and subjacency, 157
assumptions, 156
the left-to-right constraint, 157
the lowering lemma, 156

Empty category principle, 22, 24-25, 108
Equivalence, 8-9
Extended projection principle, 176
Features, 101

assignment of, 109-11 0
category, 176
incremental assignment, 128
inherent, 105
interleaving of, 109-110, 136
local,105
nonlocal, 105
subcategory, 177
syntactic, 103
assignment of, 101
lexical,31
psycholinguistic evidence, 127
syntactic, 29, 31

Case, 106-107
barrier, 106-107
gamma, 106-107
referential, 106-107
theta-role, 106-107

Filler-gap dependencies, 67, 126
Filters, 23
Functional selection, 177
Garden path, 9, 50-51, 57, 68, 89-91, 96
Generators, 23
Grammar,3

and parser relation . .52
category neutral, 79
and parser relation, 7-8, 10, 13, 55, 60
and psychological reality, 6, 11

IC :-'Iodularity Hypothesis (ICMH),
28-29

Incremental parsing, 128
A~D/OR graph, 144
LA parsing, 133
and LR parsing, 134, 140
by left corner, 132
definition, 131
language typology, 141
on incorrect input, 130
psycholinguistic evidence, 128
using LR states, 141

244 PARSING WITH PRINCIPLES AND CLASSES OF INFORMATION

verb-final languages, 140-141, 144
and LR parsing, 129

Incrementality, 50-53, 58,62-64,67-70,
128-13~ 140-141, 144

Information Content Classes, 26, 56, 61
lexical features, 26
referential indices, 26
syntactic features, 26
configurations, 26
locality conditions, 26

Islands, 148
wh-island violations, 153
Complex NP, 148
adjuncts, 148
extraposition, 149
factive, 148
negative, 148
strong, 149-151
subject, 148
weak, 149-151
wh, 148

Languages
English, 153, 157
Italian, 1.53, 158
German, 140
Japanese, 128, 140, 144

Levels of representation, 173
D-structure, 174
Logical Form, 175
Phonetic Form, 175
S-structure, 174
mapping between, 175
the Projection Principle, 175

Lexical features, 35
Lexical

ambiguity, 92
preferences, 92

Licensing grammars, 27
Locality conditions, 62, 147

compilation, 169-170
cross-linguistic evidence, 153
deterministic parsing, 156
functional explanation, 160
implementation, 168, 171
in Tree Adjoining Grammar, 161
in parsing, 147
iterative formulation, 156
linguistic evidence, 148
parameterised algorithms, 162, 164,

166-167
subjacency, 154

Long distance dependencies, 29, 147

Lookahead
and LR parsing, 91
use of, 93
deterministic parsing, 156
unbounded,57

Machine translation system, 58
Minimal Chain Principle, 126
Modularity, 8, 13, 16-20, 22, 67-68

and efficiency, 19
and explanatory power, 17
inter-level, 19
intra-level, 18
of principle-based theories, 16

Move alpha, 147
Movement theory, 182

chains, 183
A chains, 184
A-bar chains, 184
multiple chains, 184
superindexed chains, 185

coindexation, 183
move alpha, 182

Non-determinism, 35, 71, 74, 78-80, 83,
85-87, 101

and co-occurrence table, 76
J\'ull subjects, 197
Overgeneration, 14

and free indexing, 14
PATR-II,36
Parasitic gaps, 164

licensing conditions, 165
Parsing algorithms, 199

LALR, 35, 202
LR, 35, 201
shift-reduce, 200

Parsing
Garden Path Model of, 89
Lexical Guidance Model of, 90
LR,53
as deduction, 69
as licensing, 48, 62, 64
augmented licensing, 49
preferences, 48

Partition, 28
Passive, 5
Pleonastic subject, 186
Post verbal subject, 185
Principle interleaving problem, 102
Principle interleaving, 28, 55-56, 61, 63,

70
Principle ordering, 54
Principle-based parsing, 13

Principles
as conjunction of constraints, 24, 102

Raising, 3
Referentiality, 151
Relativized Minimality, 108
Representation

ID/LP,73
succinctness, 73

Rule-based vs. principle-based,3
Subcategorization infonnation

use of, 88
Subjacency, 154

bounding nodes, 154
in parasitic gaps, 164
parameters for, 154

Table
LR,74
lexical co-occurrence, 74
parsing, 74

Theta theory, 182
theta criterion, 182
theta roles, 182
theta-grid, 100

Trace theory, 191
empty category principle, 191
L-marking, 192
antecedent government, 192
head government, 191

Transparency
token. 11
type, 11

Tree Adjoining Grammar, 62
and parsing, 62

Unaccusatives, 185
Unergatives, 186
Unification, 33
Wh-movement, 148. 154
Xbar Theory, 19, 22-23, 27, 36, 64, 69,

72,74,86,91,94-95,99,139,
178-179

as generator, 4
coroutining, 15
information, 29
rules, 28,34-36,71-72, 75-76, 78,94,

96, 100-102, 109
information, 74, 88

245

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.3

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Perceptual

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /sRGB

 /DoThumbnails true

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 150

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 150

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 600

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>

 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>

 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>

 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>

 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>

 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>

 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>

 >>

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [595.276 841.890]

>> setpagedevice

