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PREFACE 

The efficient computation of a syntactic representation for a sentence of natural 
language is a difficult task. Many different types of information must be brought 
to bear which interact in complex ways. The question then arises of how to 
separate the different aspects of the computation to make it more efficient and 
more manageable. 

In the actual development of parsers for syntactic analysis, it is standard prac­
tice to posit two working levels: the grammar, on one hand, and the algorithms, 
which produce the analysis of the sentence by using the grammar as the source 
of syntactic knowledge, on the other hand. Csually, the grammar is derived 
directly from the work of theoretical linguists. The interest in building a parser 
which is grounded in a linguistic theory as closely as possible rests on two sets 
of reasons: first, theories are developed to account for empirical facts about 
language in a concise way: they seek general. abstract, language-independent 
explanations for linguistic phenomena; second. current linguistic theories are 
supposed to be models of humans' knowledge of language. Parsers that can 
use grammars directly are more likely to have wide coverage, and to be valid 
for many languages, and they also constitute the most economical model of the 
human ability to put knowledge of language to use. Therefore, the postula­
tion of a direct correspondence between the parser and theories of grammar is 
usually assumed as a starting point of investigation. 

Experimentation with so-called principle-based architectures has shown that 
this kind of computation is often inefficient. Inefficiency is a problem that 
cannot simply be cast aside. Computationally, it renders the use of linguis­
tic theories impractical, and, empirically, it clashes with the observation that 
humans make use of their knowledge of language very effectively. 

In the present work I propose a parsing design that is both computationally 
and linguistically justified. I start from the observation that linguistic informa­
tion belongs to five main classes. These classes are defined according to their 
information content, for example topological properties of the tree or lexical 
information. These classes define the information "modules" of the parser. The 

Vll 



Vlll PARSING WITH PRINCIPLES AND CLASSES OF INFORMATION 

data structures and the architecture of the parser mirror the partitioning of lin­
guistic principles according to their information content. Moreover, I observe 
that linguistic principles are complex constraints. They can be factored into 
simple constraints, which are precompiled off-line. Thus, I address the issue of 
how to compute a syntactic representation efficiently by a specific instantiation 
of partial precompilation. 

Computationally, the ensuing organization of the parser is compact and non­
redundant: the parser is implemented as an LR parser which is encoded in only 
a small number of states; information about category and other lexical prop­
erties is encoded in a different table which interacts with the LR table on-line. 
Moreover, a complex phenomenon, long-distance dependencies, is computed 
efficiently, by making use of information available in the local context of the 
application of parsing rules. This design can be easily extended to other lan­
guages: algorithms are provided for long distance, cyclic movement in Italian 
and English. Finally, I argue that, psycholinguistically, the proposed design 
captures some experimental evidence about the interaction of lexical ambigu­
ity with structural ambiguity. 

This work contributes some results to the inYestigation of parsing, both from 
a computational and from a cognitive point of view. First, a linguistic clas­
sification of principles according to their content of information is provided, 
which is then supported by a a comparison of different compilations of several 
linguistically-based grammars. It is shown that the grammar built according 
to the assumptions developed in this work is the most compact and least am­
biguous. The proposed distinction between hierarchical and categorialflexical 
information is supported by experimental evidence about lexical ambiguity. 
Furthermore, algorithms for the computation of long distance dependencies are 
discussed, and compared to other algorithms. Finally, a unified, parameter­
ized algorithm is proposed to treat wh-questions in Italian and English, which 
improves on previous proposals. 

This book is a revised version of my 1992 Ph.D. Dissertation. Some of the 
issues discussed here and some ofthe results have been previously presented as a 
student paper at the 30th Annual Meeting of the Association for Computational 
Linguistics and are forthcoming as an article in Computational Linguistics. 

In Chapter 1 I review the debate on the relationship between grammars and 
parsers, which has animated much recent literature on processing. I propose to 
tackle the issue as a computational problem and I assume a particular type of 
partial precompilation of the linguistic principles. The specific hypothesis put 
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forth in this chapter inspires the design of a parser which is presented in detail 
in the rest of the book. 

In Chapter 2 I give an overall view of the organization of the parser and a 
sample of its parsing capabilities, and I compare it to other parsers in the 
literature. 

In Chapter 3 the parsing engine, an LR(k) parser, is illustrated. I present 
comparative results on the compilation of grammars according to the LR, LL 
and LC compilation method. I compare grammar rules that are progressively 
more distant from bare X templates by incrementally adding categorial infor­
mation. Interestingly, adding categorial information does not appear to reduce 
the nondeterminism in the grammar. The chapter concludes with some psy­
cholinguistic results to support the approach presented. 

The assignment of features is discussed in Chapter 4. I distinguish between 
features that can be assigned within a maximal projection and features that 
do not, and I introduce the algorithms to perform local feature annotation, 
and to compute chains. I discuss the issue of incremental parsing in an LR(k) 
architecture. 

Chapter 5 presents the implementation of the routines that compute locality re­
strictions on wh-movement. It also presents a detailed argumentation in favour 
of LR(k) parsing for cross-linguistic variation of restrictions on locality, drawing 
evidence from Italian and English. 

This work is the result of my interaction with many people who have helped, 
encouraged, challenged and criticized me. Their support and their critique have 
been equally useful, indeed necessary, and I would like to thank them for taking 
the time to listen. 

Special thanks to Amy Weinberg, Eric Wehrli and Uli Frauenfelder for getting 
me started on this work and for supporting me all along, in many intellectual 
and practical ways, enabling me to pursue my research interests in a really 
priviledged environment. 

Other people have provided me with insightful comments, at different stages of 
the work: Michael Brent, Robin Clark, Matthew Crocker, Bonnie Dorr, Paul 
Gorrell, Sandiway Fong, Bob Frank, Luigi Rizzi, Graham Russell, Suzanne 
Stevenson. 

Many thanks to Celine Courtin for setting up the bibliography. 
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My colleagues, friends and family will certainly be happy to know I am finally 
finished working on this document. I would like to thank them for bearing with 
me. Expecially Suzanne, Graham, Fred, and most of all, my sister Anna. 



1 
GRAMMARS AND PARSERS 

1.1 INTRODUCTION 

The efficient understanding of a sentence of natural language is a difficult task, 
the solution of which calls into play knowledge derived from several disciplines, 
such as linguistics, computer science, and, often, psychology. One of the prin­
cipal sources of difficulty in the solution of the problem is constituted by the 
complex interactions between different types of information, such as lexical, 
morphological, syntactic, semantic, pragmatics and word knowledge, to which 
one can add issues of language use, such as frequency of usage and domain­
dependent terminolgy. 

The question then arises of how to separate the different aspects of computing a 
representation, to make the computation more efficient and more manageable. 
There is shared consensus that the different linguistic levels should be tackled 
by different computational means, or at least, explored independently. Within 
each level of inquiry the same divide-and-conquer methodology is often adopted, 
for scientific and engineering reasons. 

In the development of parsers for syntactic analysis, it is standard practice 
to posit two working levels: the grammar, on one hand, and the algorithms, 
which produce the analysis of the sentence by using the grammar as the source 
of syntactic knowledge, on the other hand. Usually, the grammar is derived 
directly from the work of theoretical linguists. The interest in building a parser 
which is grounded in a linguistic theory as closely as possible rests on two sets 
of reasons: first, theories are developed to account for empirical facts about 
language in a concise way: they seek general, abstract, language-independent 
explanations for lingUIstic phenomena; second, current linguistic theories are 

1 



2 CHAPTER 1 

supposed to be models of humans' knowledge of language. This search for 
generality is not unique to Government and Binding theory. Feature-structure 
formalisms also use rule schemata to capture similarities among grammar rules. 
Reentrancy as a notational device to express common features, moreover, seeks 
the same type of representational economy which is expressed by the use of 
"traces" in G B theory. 

Parsers that can use grammars directly are more likely to have wide coverage, 
and to be valid for many languages, and they also constitute the most economi­
cal model of the human ability to put knowledge of language to use. Therefore, 
the postulation of a direct correspondence between the parser and theories of 
grammar is usually assumed as a starting point of investigation. 1 

Experimentation with so-called principle-based architectures has shown that 
this kind of computation is often inefficient. Inefficiency is a problem that 
cannot simply be cast aside. Computationally, it renders the use of linguis­
tic theories impractical, and, empirically, it clashes with the observation that 
humans make use of their knowledge of language very effectively. 

In order to understand what is implied in assuming a direct mapping from the 
grammar to the parser, as it is currently assumed in principle-based parsing, 
let's consider first what it means to parse a sentence. 

For instance, a property which is clearly important in English is linear order. 
John loves Mary is not equivalent to Mary loves John. Also, the word love 
denotes an action, while John, Mary denote the participants in the action, the 
agent and the theme. We also notice that the notion of participant in an event, 
or thematic relation to a verb, is not the same as that of grammatical function 
such as subject, object. A subject agrees in number (plural, singular) with the 
verb, both when it is an agent or a patient, as (1) shows. 

(1) a. John loves the children 
b. The children are loved by John. 

These are examples of which pieces of information must be recovered. They 
are implicitly stored in a sentence, according to the rules of a grammar. A 

1 Throughout the work the Government and Binding framework is assumed. I refer the 
reader to Haegeman {1991}. For the reader who is not interested in exploring the details 
of the theory, a glossary is provided in Appendix A, where I define the tenninology used 
without previous background. 
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grammar is a finite depository of explicit information, according to which an 
infinite number of sentences can be constructed. 

Information can be stored in a grammar in very different ways. Grammatical 
theory in the 70s talked about "dative shift" , "topicalization", "passive", and 
it meant that each of these constructions was captured in the grammar by a 
specific rule. Consequently, rules were not only construction-specific, but also 
language-specific, (French, Italian and Spanish, for instance, have no "dative 
shift"). 

The conceptual development in the 80s, which has given rise to GB theory, con­
sists in having identified the unifying principles of many of these construction 
specific rules. A new theory is being developed in which a small set of prin­
ciples applies deductively to generate very different constructions. Thus, for 
example, all the rules mentioned above included "movement" of some lexical 
element. Take, for instance, the raising construction, exemplified in (2). 

(2) John seems [IPt to like Bill] 

The structure in (2) respects the linear order given by the English string "John 
seems to like Bill" , and it has the meaning of "It seems that John likes Bill". 
John is both the subject of seem and lzke. Thus John acts as if it were in 
two places at a time. This is expressed by saying that John is the subject of 
like at one level of representation, and then it moves as the subject of seem 
at a different level, leaving behind an empty slot which is indicated as t. This 
movement is the same that occurs in passive, as seen above in (1), or also in 
questions as (3). 

(3) Who do you like t ? 

Application of movement alone will overgenerate, producing many incorrect 
sentences. e.g. Bill seems t to like t , where Bill is moved from the object of 
like to the subject of seems, or The children loves John with the interpretation 
of (l)b. Thus, other constraints must be imposed. For example, compare the 
sentences in (4). 
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(4) a. It seems that John likes Bill 
b.* It believes that John likes Bill 
c. Mary believes that John likes Bill 

These sentences show that the position occupied by the subject of seem is not 
an argument position, as it can contain the pleonastic zt, an element that has 
virtually no semantic content, while the subject of believe does not allow this 
option, but it requires a semantically contentful element. One restriction on 
movement, then, is that the target of movement must not be an argument 
position. This constraint correctly rules out Bill seems t to lzke t , with the 
meaning of Bill seems to like himself, as the movement of Bzll from object to 
subject would violate the constraint I just st.ated. 

Consider now 

(5) * It seems Mary to like Bill 

This sentence shows that At ary, a lexically realized NP, cannot occur as the 
subject of the infinitival clause, while t is allowed, as we saw above. In fact, fully 
realized NPs can hardly ever occur as the subjects of infinitival clauses, while 
they can certainly occur as subjects of finite clauses. The correct restriction is 
achieved by assuming that all lexical :\Ps must receive a feature called Case 
(case is what distinguishes he from hIm. in English.) This constraint is called 
the Case Filter. Infinitival verbs cannot assign Case to their subjects, so lexical 
NPs cannot occur in this position. 

Going back to our initial raising sentence, notice how these principles apply. 
The movement of John to the subject position of seem, from its lower position, 
is allowed because the subject position of seem is not an argument position, 
and is obligatory because the subject position of an infinitival verb does not 
assign any Case, and all lexical NPs must receive Case. These observations are 
captured by two principles: the Case Filter and the B-Criterion. The former 
requires that all NPs receive Case, while the latter requires that the argument 
structure of a verb be saturated, and that all arguments in the sentence enter­
tain at most one thematic relation. The interaction of movement, Case theory 
and B-theory, together with the lexical properties of the verb seem, and the 
well-formedness principle of structure. called X theory, "generate" the raising 
construction without storing a raising rule in the grammar. 
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Of course, the relevance of this approach lies in the fact that the same principles 
that are used for the raising construction are used for many other types of 
structure. The process of passivization is very similar to raising, as passive 
morphology (in English the -ed ending of the verb) is said to "absorb" the 
ability of assigning accusative case to the object and a thematic role to the 
subject. Thus, while (6)a is correct, (6)b is not. 

(6) a. John likes Bill 
b. * John was liked Bill. 

Since the grammar, as seen above, employs a movement rule, Bill moves to 
subject position, yielding (7) 

(7) Bill was liked t (by John) 

The process is very much like raising, but again no "passive" rule is mentioned 
in the grammar, and the same general principles do all the work. 

Principle-based theories are also well equipped to capture generalizations across 
languages. For example, consider dependencies that involve more than one 
clause. It can be observed that linguistic dependencies involve either material 
sitting in two adjacent clauses or material separated by an unbounded number 
of intervening clauses. It is never the case that items, let's say 4 clauses apart 
and only those, are related by a long-distance dependency. This fact can be 
captured quite elegantly by using movement rules that perform a basic step and 
an iterative step. The only movement rule, move-a which links elements such as 
Who and ti can perform a simple basic step from a clause to an adjacent clause. 
Or it can iterate, and as a result, displace linguistic material unboundedly far 
away from the source position by a sequence of basic steps. For instance, in 
Who do you thmk t' that Mary saw t at the party? Who is a displaced element 
that has been moved from the object position, after saw, here indicated by t, to 
the position indicated by t', and finally to the first position in the sentence. The 
well-formed ness of such long-distance relations is regulated by the Subjacency 
Condition, which determines how big a single step can be. The existence of 
minimal pairs such as those in (8), shows that the "size" of a basic step is 
different from language to language. 
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(8) a. * Who does John wonder when Mary saw ti t j? 
b. II ragazzo che mi chiedo quando Maria abbia visto tj tj 
"The boy that I wonder when Mary saw" 

If long distance dependencies were captured simply by construction-specific 
rules, the regularity across languages would be lost, as different rules would 
be needed for English and Italian. This kind of cross-linguistic regularity 
is captured in current theories by stating a general principle (the Subjacency 
Condition) and then also stating a parameter (the size of each movement step), 
that can take different values for each language. 

Thus, theories based on a small set of general abstract principles are considered 
explanatory, because they describe universal properties of language in a succinct 
way. 

Current linguistic theories, GB in particular, propose themselves as models 
of human linguistic knowledge. In other words, they assume that universals 
of human language constitute a mental grammar (UG). This assumption is 
crucial for solving the problem of language acquisition. Languages are acquired 
by children in impoverished circumstances, with no negative feed-back and 
limited evidence, nonetheless they are acquired quite speedily and correctly. If 
UG is the innate knowledge of language of any human being, then the task 
of the child is reduced to acquiring the parameter settings for the language­
dependent parameters. This set of principles and parameters that describes 
natural languages is called, as a mental state. competence. 

Moreover, linguistic theory assumes that the language faculty is better under­
stood if it is located at two different levels, a purely representational level that 
constitutes the competence of the language and an algorithmic level at which 
the representational knowledge is put to use, which constitutes the performance 
of the language. Competence is the level at which the nature of the problem 
is understood; performance is the level at which how to solve the problem is 
understood. 

By making this (strong) hypothesis, linguistic theories acquire double status, as 
they are at the same time typological descriptions of languages and descriptions 
of a mental state. It is conceivable, and indeed it has been forcefully argued 
(Gazdar, Klein, Pullum, and Sag 1985), that this is not necessary, and that 
linguistic phenomena are still the object of justified scientific research even if 
viewed only as a formal system. This is certainly a tenable position. Simply, the 
goals of these two approaches are different. The requirement of psychological 
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reality can only be imposed on a system that views grammars as (descriptions 
of) mental states. 

The problem of parsing, then, becomes syst.ematically ambiguous, as it is at the 
same time an investigation of computational and psychological issues. View­
ing parsing as putting a mental grammar to use has often imposed stringent 
requirements on the forms of the possible grammars used, mostly requiring 
that the grammar proposed by the linguists be used directly. Were the study 
of grammar not viewed as the study of a mental system, there would be no 
need to have a precise and motivated mapping between the grammar and the 
parser. As long as the parser recovers the same structural descriptions that 
are assigned by the grammar to the strings in the language, no other stricter 
relation would be needed. The parser is subject to time/space constraints that 
are irrelevant to the grammar, and these are the only pressuring constraints to 
shape the architecture of the parser and the algorithms. 

Thus, although it is not a necessity that grammar and parser be in a relation 
that captures the nature of the grammar as a mental state, this appears to 
be the stronger position, because it makes t.he minimal number of assumptions 
about the natural language acquisition system and the processing system. which 
both use the same level of representation, the competence grammar. 2 

Moreover, by making this assumption the study of natural language processing 
can pursue engineering and cognitive goals at the same time, since the human 
processor is a very efficient parser, and hence a good, and possibly enlightening 
model. On the other hand, engineering endeavours to solve the parsing problem 
as efficiently as possible will cast light on mechanisms of information processing 
that are relevant for the study of cognition in the computational paradigm. 

In this chapter, I develop the argumentation about the relation between the 
grammar and the parser. I conclude that a direct correspondence is untenable 
and I propose a different organization. In particular: 

• The tension between explanatoriness and efficiency for 
implementations of modular theories is illustrated and discussed. 
I argue that explanatoriness of linguistic theory pulls towards 

2 These issues have been debated extensively. I will not repeat the debate here in detail. See 
(Chomsky 1957; Chomsky 1965; Chomsky 1980b; Chomsky 1986b; Marr 1982) for arguments 
about the competence-performance distinction in linguistics and vision respectively. and see 
(Berwick and Weinberg 1983; Berwick and Weinberg 1984; Abney 1987; Van de Koot 1990) 
and references therein for the application of these notions to processing issues. 
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• 

• 

• 

1.2 

CHAPTER 1 

highly modular parsers, which use very general principles and 
long deductive chains of computations, but that these designs are 
inefficient. 

I review experimental results that point towards partial 
precompilation of principles as a solution of this tension. 

Observations about the structure of principles of linguistic theory 
and information contained in linguistic primitives provide 
substantiation to the idea of partial precompilation. 

A specific formulation of partial precompilation is put forth, 
called the Information Content Modularity Hypothesis (ICMH). 
This hypothesis is taken as the constraining principle on the 
design of the parser. It is tested with an implementation, which is 
illustrated in the chapters that follow. 

ON GRAMMAR PARSER RELATIONS 

The debate on how to draw on linguistic theories to design parsers is long-dated 
(Berwick and Weinberg 1984; Abney 1987; Van de Koot 1990). I review it here, 
to illustrate the possible relations between grammars and parsers. I follow the 
terminology in the cited works: correspondence is the relation between the 
function computed by the runtime grammar (the performance level) and the 
competence grammar. Equivalence is the relation between the two grammars 
directly.3 

I/O Correspondence Input/Output correspondence means that the parser 
computes exactly the function specified by the grammar. Namely, given the 
same set of input strings, it outputs the same grammatical judgments, i.e. 
it fails or succeeds on the same sentences. This implies that all grammatical 
sentences are parsable and all ungrammatical sentences are unparsable. This 

31 have also tried to eliminate what 1 consider confusing terminology. Both Abney (1987) 
and Van de Koot (1990) use the terms "covering" and "compiling" interchangeably. I think 
they denote different relations between the competence level and the performance level. In 
particular, covering is a (possible) relation between the competence grammar (the gra.nunar 
off-line) and the performance grammar. Compilation does not imply covering at all. A 
grammar could be compiled ( e.g. into a table) without any previous covering transformation. 
The two processes cannot be considered equi valent as covering is a manipulation of a grammar 
that produces a new grammar, while compilation does not. Compilation preserves strong 
equivalence of the structural derivations, while covering does not. The two terms can be used 
interchangeably only if they are used in the very loose sense of "some process applied to the 
grammar off-line" . 
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theory is too strong. For example, I/O correspondence breaks down in garden 
path sentences, which are grammatical but very difficult to parse, such as (9), 
or easily parsable sentences that are not fully grammatical, such as those that 
violate the grammatical principle of Subjacency, like (10). 

(9) The horse raced past the barn fell 

(10) This is a plan that I do not know when they will implement. 

Because of these discrepancies, a relaxed I/O correspondence is more appropri­
ate to characterize the relation under scrutiny. 

Degenerate I/O Correspondence The function computed by the parser can 
differ from the function computed by the grammar in two ways: it can assign 
a different structure to the sentence, or the competence grammar can assign a 
structural description to some sentence to which the parser cannot assign any 
structure because of limitations of the hardware, such as memory limitations. 
For instance, the sentence in (11) is almost incomprehensible, arguably because 
of memory limitations. (Miller and Chomsky 1963; Church 1980). 

(11) The cheese the mouse the cat chased ate stinks. 

One might also attempt to define the relation between the grammar specified 
by the linguist, the competence grammar, and some functional modification of 
this grammar which is more apt for computational purposes. Relations between 
grammars are called equivalences. 

Covering Equivalence 

Covering is a relation between two grammars, which maintains weak eqUIva­
lence. 

"Informally, one grammar G 1 covers G 2 if (1) both gener­
ate the same language L(Gl)=L(G2) i.e. the grammars are 
weakly equivalent and (2) we can find the parses or structural 
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descriptions that G2 assigns to sentences by parsing the sen­
tences using Gland then applying a "simple" or easily com­
puted mapping to the resulting output. ( ... ) That is, if the 
parse of a sentence ( ... ) is a string of numbers correspond­
ing to the rules that were applied ( ... ) and some canonical 
derivation sequence, then the translation mapping that carries 
this string of numbers to a new string corresponding to an­
other parse must be a homomorphism under concatenation." 
(Berwick and Weinberg 1984:79) 

For instance, consider a covering algorithm to transform a left-recursive gram­
mar into an equivalent non-left-recursive one. Given a grammar G with pro­
ductions P={S --->Aa; A --->Ab; A --->a } I can transform it into a grammar G' 
with productions P'={ S ~aA'; A' ~bA'; A' --->a }. We say in this case that 
G covers G'. This is then an example of two grammars that are in a covering 
relation, one of which could be used by the linguistic representation and the 
other could be the grammar actually used by the parser. Covering grammars 
might be needed because of a particular parsing algorithm. For example, Ear­
ley's algorithm (Earley 1970) is guaranteed to work only on non-left-recursive 
grammars. 

Strong Equivalence Another possible relation between the competence gram­
mar and performance grammar is Strong Equivalence. This means that the 
two grammars must be isomorphic. This is a stronger relation than covering, 
because it prohibits modification of the grammar. In other words, the grammar 
used in the parser must be the same as the grammar specified in the theory of 
competence. 

Given the possible relations between grammars and parsers reviewed above, 
which one is the most desirable relation? Of course, this question makes sense 
only if the goals of the enterprise are defined. Usually, parsing is studied from 
two points of view: cognitive and engineering. As I have mentioned above, 
work on the relation between the parser and the grammar is mostly interesting 
for cognitive reasons. Researchers that are interested in parsing from a purely 
engineering point of view do not find the need to be faithful to a particular 
linguistic theory, if this is not practically feasible. In principle, however, the 
cognitive and the engineering aspect can cast light on each other because both 
address issues of efficiency and typological validity. 

Parsers that can use grammars directly are more likely to have wide coverage, 
and to be valid for many languages, and they also constitute the most economi-
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cal model of the human ability to put knowledge of language to use. Therefore, 
the postulation of a direct correspondence between the parser and theories of 
grammar is, methodologically, the strongest position. Historically, this was the 
starting point, but even a very brief look at the several answers to this question 
that have appeared in the literature, shows that the restrictions on the required 
relation which in the first proposals were rather tight have been progressively 
relaxed. 

Token Transparency In the early days of generative grammar, it was proposed 
that there should be a kind of rather strict token-transparency relation between 
the two levels (Miller and Chomsky 1963). This meant that if a derivation 
required the application of three transformations, then parsing the output of 
such a derivation was supposed to be three times as difficult as parsing the 
output of a derivation that required only one transformation. This impliet 
that the parser mirrors exactly the derivational steps that are postulated in 
the competence grammar. This approach, labelled the Derivational Theory of 
Complexity (Fodor, Bever, and Garrett 1974,319), was apparently contradicted 
by Slobin (1966)'s results. If the parser mimics exactly the computational steps 
of the grammar, then a passive sentence, which is generated by a greater number 
of transformations than an active sentence, should be more difficult to process 
than the corresponding active. In fact, Slobin (1966) showed, in a picture 
verification task, that non-reversible passives were easier (took shorter time; 
to process than the corresponding active sentence. Although the experiment 
was contradicted (Forster and Olbrei 1973), it led to a more cautious attitudE 
towards the Derivational Theory of Complexity.4 Weaker relations between thE 
parser and the grammar were explored. 

Type Transparency Bresnan (1978) attempts to build a model of grammar that 
is also better suited to be a model of language use. She requires a less stringent 
relation between the grammar and the parser than token transparency, what 
Berwick and Weinberg (1984) call type-transparency. She considers parsin~ 

4 Non-reversible passives are those sentences where selectional constraints determine th( 
logical functions, e.g. subject and object, such as The flowers are watered by the girl. An 
example of reversible passive is The girl being watched by the dog. The fact that selectional 
restrictions are relevant in parsing was interpreted as supporting the interactive view of sen­
tence processing. Specifically, that semantic information could influence sentence processing. 
On the contrary, Forster and Olbrei (1973) show that the constancy hypothesis is supported 
by experimental evidence. They show that syntactic processing time tends to hold constant 
for sentences of similar syntactic structure, even if they change in meaning. In their own 
words: "These facts are interpreted as indicating that the recovery of the underlying struc­
ture of a sentence is controlled by purely syntactic properties of the input." (op.cit.,p.319). 
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theory to be the realisation of competence theory if it is capable of making the 
necessary distinctions among types of parsing operations. 

"A realistic grammar must be not only psychologically real 
( ... ), but also realizable. That is we should be able to define for 
it explicit realization mappings to psychological models of lan­
guage use. These realizations should map distinct grammatical 
rules and units into processing operations and informational 
units in such a way that different rule types of the grammar 
are associated with different processing functions. ( ... ) Clearly, 
these are strong conditions to impose on a linguistic grammar." 
(Bresnan 1978:3). 

Given her model oflanguage, for instance, function-dependent rules and structure­
dependent rules would map onto different types of realisation. 

Covering Relations 

Berwick and Weinberg (1983) and Berwick and Weinberg (1984) follow this 
approach and expand on it. They claim that. the model proposed in the theory 
Jf parsing would still be a realisation of the competence level if it models a 
grammar that can cover the competence grammar. Thus grammar pairs can be 
created other than strongly equivalent grammars in a psychologically realistic 
parser.s 

The advantage of this approach lies in the fact that in this way the most 
natural grammar for each level could be used. For example, if one were to 
3.Ssume that the human parser is a top down parser, and to observe that natural 
languages have constructions that are naturally described as left-recursive rules, 
for example the English genitive, it would still be possible to maintain the left­
recursive formalism at the representational leveL while the parser could actually 
use a non-left-recursive, but covering, grammar. (See also example above, of 
covering equivalence.) 

On the other hand, as a disadvantage of this approach, one more level of in­
directness is introduced between the representation and the algorithm. The 

5Two grammars are strongly equi valent ifffor the same string in the language they generate 
the same phrase marker. Note that here strongly eqlli,.alent is used in the sense int.roduced 
by Chomsky (1965), where it defines a relation between two graInmars. Nothing is said with 
respect to the parser. 
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architecture of the competence grammar is justified by questions concerning 
natural language acquisition. But the covering grammar is not justified by 
such arguments. Consider, for example, modularity. A modular system is 
well-designed to explain data concerning natural language acquisition. This 
explanation, however, justifies only the modular architecture of the theory of 
representation. But a covering relation between grammars does not guarantee 
that the same partitioning of modules will be made in the covering grammar. 
In other words, if there are two grammars that are in a covering relation, 
there must also be covering rules, or covenng routines, that the speaker pos­
sesses, which are however not justified by acquisition. Therefore, if we want to 
maintain an approach where the parser does not use the competence grammar 
directly, then we need to give justifications for the covering grammar in terms 
other than acquisition. As in the examples above, there could be assumptions 
about the algorithms that justify the need for the covering relation. 

Principle-based Parsing and Isomorphism 

The requirement of strict. isomorphism as propounded by Miller and Chomsky 
(1963) is the null hypothesis. This was shown to be empirically incorrect, 
however, for the theory of generative grammar, as it was formulated at the 
time. One could wonder if things have changed due to the changes in the 
theory of grammar. Current G B theory is wry different in some fundamental 
aspects from earlier versions of the theory. In particular, the theory of grammar 
as expressed by GB is a system of abstract, parameterized principles, called 
also modules, that interact in complex ways. so that the setting of one of the 
parameters in one of the modules has far-reaching consequences in the entire 
system. 

Parallel to the shift of linguistic theory from a uniform collection of struc­
tural descriptions and structural transformations to a system of principles and 
parameters, parsing theory has developed the so called prznciple-based pars­
ing approach (Barton 1984; Berwick and Fong 1990; Berwick 1991a; Berwick 
1991b; Crocker 1995; Stabler 1992). This approach assumes that the principles 
are stated as axioms in the theory of grammar and they must be used as ax­
ioms by the parser. This means that the information that must be recovered 
by the parser to assign a structure to the input sentence is stored in a set of 
very general principles, and the actual structure of each individual sentence 
is recovered by "wading" through these principles and applying them to the 
input. On the one hand, principle-based parsing is explanatory and directly 
related to a theory of grammar. On the other hand, principle-based processing 
in its strictest sense prohibits grammar compilation and the use of grammar 
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theorems, so in this sense it goes back to requiring strict isomorphism between 
the grammar and the parser. 

1.2.1 Principle-based Parsing and 
Precompilation 

If principle-based parsing, which is naturally implemented as a deduction al­
gorithm, and which is deemed a highly explanatory model of parsing, turned 
out to be efficient, then clearly a good answer to the debate would have been 
found. However, this is not what has been found empirically. I illustrate the 
results of models without precompilation, and models with precompilation. 

On-line Computation is Inefficient 

Several researchers notice that principle-based parsers that allow no grammar 
precompilation are inefficient. 

Firstly, it has been noted that, unless particular programming techniques are 
adopted, the problem of computing a multi-levelled theory without any precom­
pilation, might not even terminate (Johnson 1989; Van de Koot 1991; Stabler 
1990). 

Secondly, experimental results show that a totally deductive approach is inef­
ficient. Kashket (1991) discusses a principle-based parser, where no grammar 
precompilation is performed, and which parses English and Warlpiri by using 
a parameterized theory of grammar. The parsing algorithm is a generate-and­
test, backtracking regime. Kashket (1991) reports, for instance, that a 5-word 
sentence in Warlpiri (which can have 5! analyses, given the free word order 
of the language) can take up to 40 minutes to parse. He concludes that, al­
though no mathematical analysis for the algorithm is available, the complexity 
appears to increase exponentially with the input size. Fong (1991, 123) reports 
informal profiling of a parsing algorithm, which shows that an initial version 
of the parser, where the phrase structure rules were expressed as a DCG, and 
interpreted on-line, spent 80% of total parsing time building structure. In a 
later version, where rules were compiled into an LR(l) table, structure-building 
constituted 20% of the total parsing time. This same parser includes a module 
for the computation of long distance dependencies, which works by generate­
and-test. Fong also finds that this parsing approach is inefficient. 
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Dorr (1987) notices similar effects in a parser that uses an algorithm more 
parallel in spirit (Earley 1970). Dorr notes that a limited amount of precom­
putation of the principles speeds up the parse, otherwise too many incorrect 
alternatives are carried along before being eliminated. For example, in her 
design, X theory and the other principles are coroutined. She finds that pre­
compiling the principles that license empty categories with the phrase structure 
rules reduces considerably the number of structures which are submitted to the 
filtering action of the other principles, and thus speeds up the parse. 

The source of inefficiency stems from the principle-based design, in the sense 
that each principle is formulated in such a way as to be as general as possible. 
This "logical" kind of abstraction of each principle from the others causes a lot 
of overgeneration, hence inefficiency. According to Ristad (1990, 6), however, 
this is not surprising. He says: 

" ... as is well-known, a system consisting of computational mod­
ules is necessarily inefficient, both computationally and statis­
tically. (Restricting the amount of information to a module 
results in a computational inefficiency because that module is 
unable to prune branches in its computational tree as early as 
it might otherwise be able to. It results in a statistical ineffi­
ciency because a module might need to examine all available 
evidence in order to determine the optimal estimate .... )" 

Too Much Precompilation is Inefficient 

A solution to the inefficiency of principle-based parsing is not simply precom­
pilation, though. Experimentation with different amounts of precompilation 
shows that off-line precompilation speeds up parsing only up to a certain point, 
and that too much precompilation slows down the parser again. 

The logic of why this happens is clear. The complexity of a parsing algorithm 
is a composite function of the length of the input and the size of the grammar. 
The size of the grammar is usually a constant, but for the kind of inputs that 
are relevant for natural language it becomes quickly the predominant factor. As 
Tomita (1985) points out, input length does not cause a noticeable increase in 
running time up to 35/40 input tokens. For sentences of this length, grammar 
size becomes a relevant factor for grammars that contain more than 200 rules 
approximately, in his algorithm (an LR parser with parallel stacks). 
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Both Dorr (1987) and Tomita (1985) show experimental results that confirm 
that that there is a critical point beyond which the parser is slowed down by 
the increasing size of the grammar. 

Finally, in the Generalized Phrase Structure Grammar (G PSG) formalism 
(Gazdar, Klein, Pullum, and Sag 1985), similar experiments have been per­
formed, which confirm this result. Parsers for GPSG are particularly interest­
ing, because they use a formalism which expresses many grammatical gener­
alizations in a uniform context-free format, while in GB the same generaliza­
tions are expressed by a set of heterogeneous principles. Therefore, G PSG is, 
practically, more amenable to be processed by known compilation techniques. 
Thompson (1982) finds that expanding metarules is advantageous, rather than 
computing them on-line, but that instantiating the variables in the expanded 
rules is not. Phillips and Thompson (1986) also remark that compiling out 
a grammar of 29 phrase-structure rules and four metarules is equivalent to 
"several tens of millions of context-free rules." Phillips (1992) proposes a modi­
fication of GPSG that makes it easier to parse, by using propagation rules, but 
still notes that variables should not be expanded. 

In conclusion, a paradox arises: a parser which mirrors a principle-based theory 
of grammar, such as G B theory, must fulfill apparently contradictory demands: 
for the parser to be explanatory it must maintain the modularity of the theory, 
while for the parser to be efficient, modularization must be minimized so that 
all potentially necessary information is available at all times. As a solution 
to this paradox, partial compilation of principles of linguistic theory, which 
would reduce inefficiency while retaining modularity, can be envisaged, and 
is supported by the experiments mentioned above. I attempt to put forth a 
precise proposal on the amount of needed precompilation. Since much of the 
explanatory power of GB theory resides in its modular structure, I explore the 
concept of modularity, to find out where the modularity becomes the source of 
explanatoriness and where it is the source of efficiency, if at all. 

1.3 MODULARITY 

In this section, I start from an intuitive notion of module, according to which 
GB theory is modular, in the sense that it is constituted by different subsystems 
that define separate, abstract principles of Universal Grammar (UG). I explore 
more precisely the properties of a system of modules with respect to explana­
tory power and efficiency. The goal of this section is to investigate whether the 
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intuitive notion of module, in the sense with which it is used in the linguistic 
literature, can be formalized in a way that corresponds to the definition of mod­
ule in computer science, namely that of an informatzonally encapsulated entity. 
The result of this investigation is negative. In fact, the subsystems of GB the­
ory are not encapsulated at all, but they interact strongly. The terminological 
distinction is substantive, as it is usually assumed that modular systems are 
efficient if the modules are encapsulated. Hence, I conclude, since G B theory 
has in fact the structure of a strongly connected system, the interaction of all 
the modules cannot be efficiently computed. The presentation draws heavily on 
Berwick (1982) and Berwick (1985), where an abstract theory of modularity is 
developed. I develop the linguistic content for the abstract principles proposed 
by Berwick in the next section. 

1.3.1 Modularity as a measure of explanatory 
power 

A guiding belief for the development of the generative framework is that a the­
ory that can derive its descriptions from the interaction of a small set of general 
principles is more explanatory than a theory in which the descriptive adequacy 
is obtained by the interaction of a greater number of more particular, specific 
principles (Chomsky 196.5). This is because the size of the former theory is 
smaller. Each principle of the theory is designed to capture a universal gener­
alization. Thus, each principle can generate a set whose encoding would require 
a much larger number of bits than the bits needed to encode the principle itself. 

An example taken from syntax is the Case Filter. Instead of characterizing 
all the environments where a lexical NP can or cannot occur, the Case Filter 
states a generalization, since we can paraphrase the Case Filter as saying that 
a lexical NP can occur only in the governing domain of a category [_N].6 

Competing theories are then ranked according to the following evaluation pred­
icate (adapted from Berwick (1982, 366)): 

60n succinctness see also the discussion on evaluation metrics in Chomsky and Halle 
(1968) and Rounds (1991). 
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A theory A dominates a theory B for a family of languages 
F iff either A is descriptively adequate and B is descriptively 
inadequate or A and B are both descriptively adequate and V 
languages L E F, the size of the description of L according to 
A is smaller than the size of the description of L according to 
B. 

A modular theory that encodes universal principles has obtained a greater 
degree of succinctness than a non-modular theory. Therefore, according to the 
evaluation predicate, we consider a modular theory more explanatory than a 
non modular one. For the parser to maintain the level of explanatory power of 
the theory, it must maintain the generalizations expressed by the theory, hence 
its modularity. 

According to Berwick (1982, 400ff), GB theory is modular in two ways: it 
is a multi-levelled theory, and at each level several independent principles are 
active. The former type he calls inter-level modularity. The latter type he calls 
intra-level modularzty: separate independent constraints that apply separately 
give rise to smaller grammars. 

Intra-level Modularity As far as intra-level modularity is concerned it can be 
shown formally (Berwick 1982, 403ff) that the size of a cascade of distinct 
principles (viewed as machines) is the size of its subparts, while if these same 
principles are collapsed the size of the entire system grows multiplicatively. 

Berwick argues that principles are filters that operate on a given language 
L. We can think of a filter as a list of incorrect strings that must be ruled 
out. Such a filter is a regular set and it can be described by a finite state 
automaton. Its complement is also a regular set. Then the language accepted 
at the output of such a filter P, is the intersection of L and the complement of 
P. Let the size of the machine that corresponds to P, Mp, be l. Analogously, 
let the size of the machine related to principle Q, M Q , be n. And so on for 
all the principles belonging to the theory. The total size of such a family of 
independent principles applying to the language L is the sum of its subparts, 
0(1 + m + n), for example. 

If P and Q above are independent, then the size of the machine required to 
accept the intersect language is given by the cross product of the two princi­
ples. If the two principles are viewed as finite automata, then the size of the 
machine that represents the compiled principle will have as many states as the 
cross product of the states of the two initial machines. For example, if there is 



Grammars and Parsers 19 

a principle of the grammar that states the format of the rules in the grammar, 
such as X theory, and another principle that lists the categories for a given lan­
guage, such as C, I, N, V etc., then the precomputation of these two principles 
will be their cross product, namely every rule format can be applied to every 
category. 

The worst case of this compilation arises when the two principles are totally 
independent, while the best case arises when one of the principles can be entirely 
derived from the other. In this latter instance however, there is no need to 
keep the derived principle in the grammar. A principle that can be entirely 
derived from another can be eliminated from the grammar without affecting 
the language that can be recognised. 

In sum, the maximal gain in using modularity is obtained when the princi­
ples that are compiled are not independent, while "each additional indepen­
dent principle can potentially simplify the grammar by a multiplicative factor 
(Berwick 1982, 406)" , if not collapsed. 

Inter-level Modularity G B is a theory with several levels of representations, 
that are connected by mapping functions. for example, D-structure and S­
structure are connected by the mapping function move-o. Intuitively speaking, 
in such a theory, given levels L1 and L2 , L2 can be constructed in two steps, 
first construct L1 and then make a second pass on L1 and construct L2 . Results 
from the theory of computation show that even with restricted mapping func­
tions such a theory generates quite powerful formalisms (Berwick 1982, 400ff). 
(Chomsky 1957,36) claims that the rule of English that describes coordination 
in a single rule cannot be stated in a vocabulary available to a context-free 
grammar. Rather a grammar that looks at the derivatwnal history of the sen­
tence is required. This is a transformational grammar. Consequently, several 
passes of the grammar on the sentence are allowed, first in the set of phrase 
structure rules to build the phrase marker and then the set of transformational 
rules. Thus the theory of grammar can describe complex phenomena succinctly 
by using different, related levels of representation. 

1.3.2 Modularity as efficiency 

Intuitively, the advantage gained by modularity from the point of view of ex­
planatory power of a theory is paid with inefficiency, if the gain in succinctness 
is obtained at the expense of resource complexity. In other words, the reduction 
in size of the program is counterbalanced by increased complexity of its compu-
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Figure 1.1 
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CHAPTER 1 

The Y model of grammar depicting levels of syntactic representation and their 
relations 

tation. But under certain conditions, this gain is greater than the loss in ease of 
computation, therefore modular theories are preferable. These conditions arise 
when the system is built by modules that are loosely coupled among themselves. 
Loosely coupled modules have a very limited exchange of information, they are 
inJormaizonally encapsulated. 

Information encapsulation in itself does not guarantee efficiency yet. A modular 
system, whose modules are information ally encapsulated is efficient only if the 
union of the results of the computations of the modules constitutes the final 
result of the computation. If instead, the final result were the mterSfcilOn of 
the computations, it is clear that a lot of useless intermediate comput.ation 
has been performed. This latter case, however, is precisely what happens in 
the computation of a sentence, and it is particularly evident if we look at the 
inter-level modularity of GB theory, for instance. 

GB theory can be considered modular only at a very high level of abstraction. 
Each module "abstracts away" from the computations performed by the other 
modules, and finding the structural description of an input string implies finding 
a solution that satisfies all the principles simultaneously. As has been noticed 
by Johnson (1989) among others, this process, observed from a procedural point 
of view, might not even terminate. Consider what goes on in computing the 
structure of a correct sentence. GB theory is constituted by several subtheories 
which interact with each other. These subtheories are hypothesized to operate 
at different levels of representation: D-structure, where elements occupy their 
grammatical function position (subject, object); S-structure, where elements 
are in different positions from the level of D-structure; the level of phonological 
form, PF; and the level of logical form (LF), where operator-variable and quan­
tification are interpreted. This organization of the theory is usually represented 
by the "Y model" , shown in Figure 1.1. 
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Move-a is a very general movement rule, which accounts for the mapping be­
tween levels. Consider the following example. 

(12) Who does Mary like? 

The sentence in (12) is a question about the ident.ity of some human whom Mary 
likes. It could be answered by Mary lzkes John or shortly John. To capture 
the fact that who refers to the object of the action of liking, two levels of 
representation are postulated, and "connected" by a movement rule. Thus the 
D-structure representation and S-structure representation of (12) are (13)a,b 
respectively. 

(13) a. Mary loves who. 
b. W hOi does l\Iary love ti ? 

In (13)b who has moved, leaving behind a "gap", called trace, which receives 
the thematic role and syntactic feature of an object. Moreover, the fact that 
who is an operator, in the sense that it binds the range of interpretation of the 
trace, is represented at a different level. the level of logical form. 

Thus parsing a sentence by using the modules of the theory amounts to re­
covering a 4-tuple (DS, S5, P F, LF) that satisfies all the principles at the four 
different levels of representation of the theory. A hypothetical parse relation 
could be expressed as (14), where the argument indicated as PF is going to be 
instantiated by the input string.7 

(14) parse(DS,SS,LF,PF) ¢} d-structure(DS) 1\ 

move-a(DS,SS), 1\ 

s-structure(SS) 1\ 

move-a(SS,LF) 1\ 

yield(SS,PF). 

A simple-minded generate and test procedure would guess a possible D-structure 
and see if it satisfies all the other constraints. This process might take a very 

7The label parse might be a misnomer, as this relation is assumed to be reversible, in that 
the theory abstracts away from differences between parsing and generation. 
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long time for a correct sentence, and it might not even terminate for incorrect 
input, as one more applicat.ion of move-a could always be postulated, in the 
attempt to satisfy the relation in (14). This occurs because a principle that 
generates structure, such as move-a has been applied without at the same time 
applying the principles that constrain the generation of structure, such as the 
Empty Category Principle, which regulates the insertion of traces in the phrase 
marker. Several proposals have been advanced to solve this problem. Johnson 
(1989) suggests using logic programming techniques, su·ch as partial evaluation 
and freezing. They consist in evaluating first those conjuncts whose variables 
are instantiated. For example, in (14), yield(SS,PF) would be evaluated first: 
PF would be instantiated by the input string. In this way, all the solutions 
of the possible D-structures would be bound by the length of the input string, 
thus the process would at least terminate. Stabler (1990) proposes precom­
puting lemmas from the axiomatized theory and using them to restrict the 
parser. Van de Koot (1991) points out that undecidability ( i.e. the fact that 
the parser might never reach the conclusion t.hat a sentence is ungrammatical) 
could be avoided, if the input string were used to determine an upper bound 
on the number of phrases in the sentence, and hence on the number of possible 
D-structures and S-structures that need to be considered before failing. This 
proposal is based on the observation that each verb licenses a limited number 
of arguments (subject, object etc.), plus some structure, called funct.ional pro­
jections (words like that in I think that), therefore the number of nodes in a 
tree is a (linear) function of the number of verbs. 8 Thus taking into account 
an unlimited number of phrase markers is unnecessary. 

All the proposed solutions share one characteristic: they interleave the compu­
tation of the different levels of representation. Therefore, they do not mirror 
transparently the inter-level modularity of the theory. Maintaining the modu­
larity of the theory leads to inefficiency, because the level at which G B theory 
can be considered modular is not the level of computation. In fact, at this level, 
GB is quite the opposite, it is a strongly connected system. 

8The linearity of the function has been noted by Correa (1991), and it descends from a 
property of linguist.ically relevant trees, captured by X theory. Namely, X theory can only 
license a little subtree of at most 3 nodes for each lexical token. 
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1.4 PARTIAL COMPILATION BASED ON 
INFORMATION CONTENT 

The survey of experimental and theoretical results of the previous sections 
leads one to conclude that the apparently conflicting requirements of efficiency 
and linguistic perspicuity can only be simoultaneously met by a parsing design 
where some linguistic information is compiled for faster access, while some other 
is computed on-line. 

Two avenues have beeI'l pursued by others, so far, to build efficient GB parsers. 
In one case, a "covering grammr" is compiled. which overgenerates, and is 
then filtered by constraints. The compilation is done in such a way that the 
overgeneration is well-behaved. For instance, the correct distribution of empty 
categories is calculated off-line (Dorr 1993). In the other case, all the principles 
are applied on line, but they apply only to a portion of the tree, and are 
therefore restricted to a local computation (Frank 1992). 

I propose to combine these two approaches by compiling the grammar, at least 
partially, off-line. Differently from Dorr, where the amount of compilation is 
heuristic and based on practical experimentation, I attempt to find a princi­
pled way of doing this. My approach shares frank's intuition t.hat linguistic 
principles have a form, which can be exploited in designing the parser. The 
design of the parser that I propose is based on some novel observations on the 
structure of linguistic principles. 

Observation 1 

The first observation is that, in a principle-based linguistic theory, the interac­
tion of some of the principles expands the working space of the parser, while 
the interaction of other principles restricts the working space of the parser. 
For example, the interaction between X theory and categorial information in­
creases the number of phrase structure rules that the parser must consider in 
recovering phrase structure, while the interaction between X theory, categorial 
information and restrictions on cooccurrence of categories in phrase structure 
rules (c-selection) reduces the number of phrase structure rules. This is exem­
plified schematically in Figure 1.2. (See also (Fong 1991; Berwick 1991a) where 
principles are partitioned into generators and filters.) 

The first conclusion is, then, that in designing an efficient modular parser, the 
interaction between multiplying principles should be kept to a minimum, while 
the interaction between restrictive principles should be maximized. Moreover, 
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X Rules Instantiated Rules 

xl ::= xO y2 
xl ::= y2 xO 

cl::= cO n2 cl::= cO v2 
cl::= n2 cO cl::= v2 cO 
cl::= cO i2 cl::= cO p2 

... cl::= i2 cO cl::= p2 cO 
Categories 

C, V ,P,A,INFL,N ..... 

/ 
c_select(c,i) 
c_s~lect (i, v) 

Restricted Rules 

cl::= cO i2 
cl::= cO p2 

Figure 1.2 
Interactions between Principles: Some of the principles interact to generate 
structure while some others act as filters 

no generating principle should be applied without also applying the correspond­
ing filtering principle. For example, the insertion of traces should not apply if 
the Empty Category Principle (ECP, see below) is not also computed. This 
is not a truism, as a truly logic approach would treat all the principles in the 
same way. (See e.g. Frank (1990), or the discussion of parsing as deduction in 
Johnson (1989).) Treating principles all on a par is unnecessary as it overlooks 
important computational information. The dependency of modules on each 
other and the best way of computing them, in what order, whether on-line/off­
line, are issues that are not explicitly encoded in a grammar. However, they 
can be deduced in part from the "form" of the theory. 

Observation 2 Second, I observe that each principle can be decomposed into 
separate factors. Following a suggestion by Rizzi (1990, 24), one can observe 
that principles ofGB theory tend to have the structure shown in (15), in which 
the ECP is used as an example. 
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(15) The Empty Category Principle 
An empty category x is licensed if the 3 following conditions are 
satisfied: 

1. x is in the domain of a head H 
2. the category of H E { A,Agr,N,P,T,V } 
3. there is no barrier or head H' that intervenes between H 

and x 

25 

According to Rizzi (1990, 24), the ECP must satisfy conjunctively a configu­
ration condition, namely a condition on the shape of the tree; a substantive 
condition, namely a condition on the labelling of the nodes in the tree; and a 
locality condition, namely a condition on the subtree available for the compu­
tation of the principle. This is a single filter in the theory of grammar, but in 
the parser it can be computed in pieces, so to speak. This occurs because these 
conditions do not influence each other, e.g. the configuration is not going to 
depend on the categoriallabelling of the head node. Note that these conditions, 
as they can be computed separately from each other, are modular within the 
little subsystem of a principle. The computation of the principles consists in 
checking the conjunctive satisfaction of the three conditions. To recall Berwick 
(1982) notion of dependent and zndependent, these separate conditions are inde­
pendent. The precompilations of these conditions would amount to computing 
all the possible combinations. Thus, in this case, precomputation would lead 
to inefficiency. 

Observation 3 

My third observation regards the kinds of linguistic information that occur in 
the principles of grammar and that can be computed independently of each 
other, and it attempts to give linguistic content to the notions of dependent 
and independent. Berwick (1982, 400ft") states, as I reviewed above, that com­
putation of the interaction of dependent principles leads to efficiency, while 
precomputation of independent principles does not. He provides examples from 
formal languages and automata theory. In order to transfer the discussion to 
the linguistic level, one must define what it means to be (in)dependent in a lin­
guistic theory. Intuitively, one would like to claim that "modules" of linguistic 
theory are independent of each other. But, as I have briefly argued above, the 
modules of GB are not independent of each other. 

A different solution can be found if one observes that linguistic primitives fall 
into different classes, according to their content. If we look at several of the 
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principles of the grammar that are involved in building structure and annotat­
ing the phrase marker, we notice that what has been presented above as the 
structure of a principle, giving the ECP as an example, is a consistent form of 
internal organization of linguistic principles. e-assignment occurs in the config­
uration of sisterhood, it requires a e-assigning head, and it must occur between 
a node and its most local assigner. The same restrictions are imposed on as­
signment of Case to an NP: assignment of Case occurs in the specifier-head 
configuration (Chomsky 1988; Chomsky 1992), given a certain lexical property 
of the head ([-NJ), and locally, i.e. within the same maximal projection. The 
same restriction occurs again for what is called the wh-criterion (Rizzi 1991), 
which regulates wh-movement, where the head must have a +wh feature and 
occur within a specifier-head configuration. Categorial selection and functional 
selection also occur under the same restrictions, in the complement configura­
tion, i.e. between a head and a maximal projection. The licensing of subjects 
in the phrase marker, done by predication, must occur in the specifier-head 
configuration. The licensing of the empty category pro also requires the in­
flectional head of the sentence to bear the feature Strong Agr, and it occurs 
in the specifier-head configuration. The assignment of the feature [±barrier] 
depends on L-marking, which in turn requires that the head is lexical, i.e. not 
the node INFL or a complementizer such as that, and that marking occurs in 
the complement configuration. 

Each linguistic principle can be decomposed into factors, which can be classi­
fied according to their content. Linguistic information belongs to 5 different 
classes: configurations; lexical features; syntactic features; locality condi­
tions; referential indices. 

(16) a. Configurations: sisterhood, c-command, m-command, ±maximal 
projection 
b. Lexical features: ±N, ±V, ±Funct, ±c-selected ±Strong Agr 
c. Syntactic features: ±Case, ±e, ±-(, ±barrier 
d. Locality information: minimality, antecedent government 
e. Referential information: indices, ±anaphor, ±pronominal, bind­
ing 

These I will call Information Content Classes. Notice that the 3 separate con­
ditions that were described in observation 2 fall into different IC Classes. As we 
have noticed, the different factors that compose each principle are independent 
and they belong to a different IC Class. 
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These observations suggest that there is a clear structure internal to the princi­
ples of the theory that can be exploited to minimize overgeneration. I suggest 
a parsing design that mirrors the partitioning of information of observations 2 
and 3, keeping the data dependencies that were reported in observation 1. In 
particular, the design of the parser that I shall discuss in the following chapters 
is based on three main assumptions. 

No off-line interaction of configurations and categorial information 

I propose a parsing design where topological information is kept separate from 
categorial, lexical information, in order to maximize the predictive use of lexical­
invariant factors, captured by X theory. The parser uses standard X theory, 
compiled into a table off-line. The main parse table, though, does not en­
code any categorial information. Category information, together with other 
information of the same class, such as argument structure and subcategory, 
can be compiled into a table of categorial cooccurrences. The two tables of 
X configurations and category cooccurrence are consulted on-line. I will argue 
extensively in chapter 3 that the proposed partitioning of information is supe­
rior to other types of grammmar encodings. because it is more compact and 
more general. Moreover, this way of aggregating information is supported by 
psycholinguistic evidence on categorial ambiguity. 

The restriction on precompilation imposed here is very stringent. It is incom­
patible with the use of standard context-free rules, specified with category, such 
as VP --. V NP. It is also not compatible with recent proposals in the spirit of 
licensing grammars (Abney 1989; Frank 1992). w·here structural information is 
encoded with each lexical item in the lexicon, thus missing generalizations on 
configurations. The restriction on compilation proposed here is advantageous 
because it keeps the size of the grammar very small. This, in turn, permits the 
use of space intensive techniques, such as LR parsing, which are very fast at 
run time. 

Off-line compilation of packets of syntactic features for chain forma­
tion 

The postulation and binding of empty categories involve two different stages at 
parsing: first the empty category must be postulated by the structure building 
component, and then it must be licensed by the appropriate lexical head, which 
assigns features to the category. I will assume that the structural licensing of 
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empty categories in the phrase marker is done by an augmentation in the X 
rules, which can be computed locally to the elementary configurations defined 
by the X rule; the licensing by the head is done by consulting the appropriate 
lexical co-occurrence table. Features are assigned all together, and they interact 
with the structure building component to select the right feature assigment. 
This leads to an algorithm for chain formation that can detect the links of 
a chain locally, and which, compared to algorithms that do not use syntactic 
features (Fong 1991) is more efficient, without requiring the precompilation of 
the licit positions for empty categories in the phrase marker (Dorr 1993). 

Interleaving of principles respects the separation between phrase 
structure principles and feature annotation 

A problem that must be solved by a modular theory is how to partition the 
information in modules, which I have discussed above, and also how to inter­
leave the modules on-line. Given the form of linguistic principles discussed 
above, where factors that manipulate tree geometry are separate from lexical 
information and from locality restrictions, the minimal hypothesis is that this 
same organization is kept in the parser. For example, if certain agreement 
annotation, like the one between the subject and the verb, is triggered only 
in the specifier configuration, then the on-line annotation and feature checks 
for agreement, will not be performed in complement configurations. There are 
two consequences to this assumption: the first is that feature assignment is 
interleaved in the parser based on configurations; the second is that locality 
restrictions are checked independently. In the proposed parser each linguistic 
class gives rise to a separate locality domain. and the domains do not interact. 
I will discuss this feature of the parser in chapter 5. 

The design of the parser is based on a uniform set of assumptions, as all the 
design criteria seen so far fall under a general restriction on what linguistic in­
formation can be compiled on-line. I will call this restriction the IC Modularity 
Hypothesis (ICMH). In particular, if we look at observation 3, we can hypothe­
size that compilation of features is advantageous if they belong to the same IC 
Class, because they do not co-occurr freely, while it is not advantageous across 
IC classes as IC Classes are defined as the "factors" of a principle, thus they 
describe component of the linguistic description that are more loosely related 
to each other. Thus, we want to keep structural information separate from 
categorial information, as well as calculating locality restrictions separately for 
each type of linguistic entity (assumptions 1 and 3). On the other hand, we 
want features that fall in the same class to be used in packets, because only a 
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subset of the possible co-occurrence of features do actually occur (assumption 
2). 

I summarise this idea, as a guideline, in the hypothesis below, and I will there­
fore refer to the assumption on which the design of the parser is based as the 
ICMH. 

IC Modularity Hypothesis (ICMH) 
Precompilation within IC Classes improves efficiency. 
Precompilation across IC Classes does not. 

In the rest of book, I discuss the advantages of storing X information sepa­
rately from lexical information (chapter 3). I show that the computational 
advantages are a consequence of the type of grammar being used, and not a 
result of the particular compilation method, by showing that the results hold 
across compilation methods. I argue, moreover, that this particular partition­
ing of information mirrors some results on the time-course of the interaction of 
structural and lexical information in experimental psycholinguistics. 

I then turn to the computation of long distance dependencies. I illustrate 
several algorithms that are necessary to resolve the correct postulation and 
binding of empty categories: I show that a particular use of syntactic feature 
information speeds up the parse, and I discuss the plausibility of using algo­
rithms that require strict left to right annotation of the nodes (chapter 4). In 
fact, I notice that the algorithm I propose appears to be interestingly correlated 
to a gap in the typology of natural languages. I expand then on incrementality 
in parsing, and I discuss several techniques to perform the feature annotation 
incrementally. 

Finally, I discuss locality restrictions, noticing that different local domains are 
related to each moved item. This observation is the most natural, given a de­
sign hypothesis such as the ICMH, because structural information, needed to 
postulate a trace, is independent of locality information. This idea is imple­
mented by establishing a different local domain for each moved element, in this 
particular implementation the local domain are a "family" of stacks. 

The parser is tested on a range of simple, complex and multiple movement 
cases, exemplified in Figure 1.3. This subset of constructions has been chosen 
because it constitutes the crucial test set for principle-based parsers, since it 
involves complex interactions of principles over large portions of the tree. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

TYPE 
Simple Transitive 
Simple Intransitive 
Simple Passive 
Simple Raising 
Embedded Transitive 
Embedded Intransitive 
Embedded Raising 
Simple Question 
Embedded Question 
Embedded Question and Raising 
Embedded Wh-Question 

Figure 1.3 
Types of Sentences 

EXAMPLE 
john loves mary 
john runs 
mary was loved 
mary seems to like john 

CHAPTER 1 

john thinks that mary loves bill 
john thinks that mary runs 
mary thinks that John seems to like bill 
who does john love? 
who do you think that john likes? 
who did you think that john seemed to like? 
'" who did you wonder why mary liked? 



2 
OVERVIEW OF THE PARSER 

2.1 INTRODUCTION 

This chapter presents an overview of the parser, and provides an example of 
how a sentence is run. \Vith at least some high-level knowledge of the current 
implementation, I then turn to compare this parser to other principle-based 
architectures. The explanation of the technical parsing terms can be found in 
the Appendix, section A.3. An overall picture of the organization of the parser 
is shown in Figure 2.1. 

Input/Output The input to the algorithm is a sentence, represented as an 
unannotated sequence of tokens, followed by an end-of-sentence punctuation 
mark. For instance, Who did you love? The output consists of two objects: 

1. a fully annotated binary tree, which is the parse tree of the 
sentence, in list format. Each node of the tree contains an 
identification number, the lexical features, and the syntactic 
features of the node. 

2. a list of two lists: the list of A chains and the list of A chains. 
Each chain is a 3-tuple (list-of-id-numbers, lexical-features, 
syntactic-features) where the list of numbers is the list of the 
nodes in the tree that belong to the chain, each of them identified 
by its number; the lexical features are the features of the head of 
the chain, and the syntactic features are the features assigned to 
the chain, namely Case and B-assignment. Thus, the algorithm 
recovers the entire history of movement. By extracting the last 
element in the list of identification numbers that belong to each 
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11 

\. 
Figure 2.1 
Organization of the Parser: The data structures (tables, stack and chains) are 
represented as rectangles. Operations on feature annotation are performed by 
constraints, represented as ovals. 

chain, the D-structure position of the head of the chain can be 
returned. 

Lexicon and Morphological Analyser The main components of the parser are 
a lexicon, a morphological analyser, and a syntactic parser. The input stream 
is passed to the parser token by token. For each token the parser calls the 
morphological analyzer, which segments words into roots and affixes according 
to the morphological rules of the language. Roots and affixes are stored in a 
lexicon, which consists of a set of records relating various types of linguistic 
information. Each record is a triple (Phon, Synt, Morph), where Phon is the 
spelling, Synt is a set of syntactic features, J[ orph is a set of morphological 
features. The spelling field of these records, the lexeme, is used to construct 
a trie -or letter tree- (Knuth 1973) which allows fast access to the records. 
Figure 2.2 gives examples of the type of syntactic features employed. 
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LEXICAL FEATURES 
LABEL RANGE 
Case: {nom, acc, dat, gen} 
Category: {n,v ,adj ,prep,adv,det,infl,comp} 
Gender: {m,f} 
Number: {sing,plur} 
Person: {1,2,3} 
Role: {ag,th,goal,loc,dir,ben,prop} 
Tense: {pres,past} 

Figure 2.2 
Features contained in the syntactic field of each lexical item 

For each category (noun, verb, adjective, etc.) a relation scheme is defined 
which specifies feature values. A general relation scheme for the lexical cate­
gories Noun, Verb, Adjective, and Adverb is given in (17). 

(17) word( Lexeme, 
synt(Category, 8-Grid, Type), 
morph(Form, Inflections, Morphological- Features)) 

After the subparts of a word have been retrieved from the lexicon, their fea­
tures are merged by unification and passed on to the syntactic parser. The 
unification process works both as an instantiating and a filtering device. If the 
subcomponents of the word can unify because their features match, then many 
of the fields that constitute the word's lexical entry will be instantiated, while if 
the features do not match then the word is probably incorrect and the morpho­
logical analyzer fails. When the morphemes are correctly identified, the word 
is passed to the syntax. Before entering the syntax, each token is projected to 
its projection node. This means that from then on only the syntactically rele­
vant properties of the word will be used, such as category or subcategorization 
frame. 
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X" ---> y" X' specification 
X" ---> X' y" 
X' ---> X y" complementation 
X' ---> y" X 
X' ---> y" X' modification 
X' ---> X' y" 
X" ---> Y" X" adjunction 
X" ---> X" Y" 
X ---> empty empty heads 
X" ---> empty empty Xmaxn 

Figure 2.3 
Category-neutral grammar used to build the context free backbone of the parse 

2.1.1 The Syntactic Analyzer 

I have argued in the previous chapter, that both linguistic perspicuity and 
computational efficiency, summarized in the ICMH, lead to the assumption that 
structural information should be computed separately from lexical-categorial 
information. This assumption corresponds to the division of labour between 
context-free methods to compute phrase structure and constraints satisfaction 
methods to annotate the trees. 

The Grammar The full context-free grammar is shown in Figure 2.3. The 
X templates, which express the basic information contained in X theory, are 
augmented by f rules. The crucial feature of this grammar is that nonterminals 
specify only the X projection level, and not the category. 

The Parse Cycle The LR algorithm is encoded in a parse predicate, which 
establishes a relation between two sets of 5-tuples, as shown in (18). 

(18) ti x Si x ai x Ci x pti ---> tj x Sj x aj x Cj x ptj 

In (18) tk E T, the set of input tokens, Sk E S, set of states in the LR table, 
ak E A the set of attributes associated with each state in the table, Ck E C the 
set of chains, i.e. displaced element, and ptk E PT the set of tokens predicted 
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by the co-occurrence table. Three stacks are used, to shift elements that have 
been reduced: a stack for the states traversed so far; a stack for the attributes 
associated to each of the nodes; a tree stack of partially recovered trees. 

Tables 

The grammar shown above is compiled into an LALR( 1) parse table (Aho and 
Ullman 1972) . The LR(k) parsers developed for programming languages are 
deterministic. This means that in each state of the parser there is a unique 
next state, i.e. the LR table has no conflicts. Modifications are necessary to 
treat natural languages with this method. Namely, the LR(k) parser table can 
have more than one action for each entry. The parser can handle arbitrary 
context-free grammars, but is no longer deterministic. 1 

Co-occurrence Table In order to reduce the amount of nondeterminism, some 
predictive power has been introduced. The information that belongs to the IC 
class lexical features has been compiled into a co-occurence prediction table. 

By looking at the current token, at its category label, and at its subcategoriza­
tion frame, the number of choices of possible next states can be restricted. For 
example, if the current token is a modal verb,(Io), the next token to be reduced 
must contain a V, as the only possible complement of [0 is VP. Or if the current 
token is a verb, and the LR table allows the parser either to project one level 
up to V', or it requires the creation an empty object NP, then, on consulting 
the sub categorization information, the parser can eliminate the second option 
as incorrect, if the verb is intransitive. The choice of possible next states is 
restricted to one, in most cases, by comparing the multiple options compiled 
in the LR table, which are deduced exclusively from the X grammar, to the 
possible next token, which is encoded in a co-occurrence table. 

2.1.2 Constraints 

As a result of using a category-neutral context-free backbone to parse, most 
of the feature inheritance and feature annotation that could be encoded in the 
nonterminals is performed in this system by conditions on attribute annotation 
associated with each context-free rule, the constraints. 

1 Several methods have been researched to augment LR(k) parsers, so that they can deal 
with natural languages, mainly based on the observation that NLs are close to LR (Tomita 
1985). In some cases a graph of parallel stacks is used (Tomita 1985; Tomita 1987). Fong 
(1991) adopts a backtracking approach. 
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This is in fact a necessary modification to render the LR method more suitable 
for natural language parsing, as it keeps the phrase structure rule set minimal. 
Most of the work in parsing consists in constraint checking, rather than manip­
ulating phrase structure rules. Rather, the phrase structure rules constitute a 
context-free backbone which serves to anchor a set of grammar constraints, as 
shown in (19).2 

(19) X -+ Y Z {:} f(X,Y,Z) 

The lefthand side is an expression of X theory. The formula f on the righthand 
side represents grammatical constraints on the features of the nonterminals 
which must be satisfied to license the production. Each rule is associated to a 
subset of the universal constraints that form the grammar, as shown in Figure 
2.4. The set of constraints must be satisfied for the rule to apply. 

Figure 2.5 shows what features are manipulated by each condition, while Fig­
ure 2.6 shows the pool of available constraints. The parser built this way is 
compact, because the number of context-free rules needed to parse a language 
is small. The separation of X rules and constraints results in a considerable 
reduction of grammar size, as can be observed. If all the categories and all the 
X structures had been combined, the grammar size could have been equal to 
the cross products of the rules and the constraints, in the worst case. Moreover, 
since only highly abstract rules are used, language-independence is achieved. 

2This division of labour between phrase structure and constraint checking is also found 
in many unification-based grammars such as PATR-II (Shieber 1986), which employ only a 
minimal context free skeleton, augmented by unification equations. 
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RULE CONSTRAINT 
sentence B-criterion 

case filter 
specifier categorial selection 

predication 
percolation of features 

complement categorial selection 
B-marking 
case marking 
unification with chain 
percolation of features 

modifier categorial selection 
percolation of features 

adjunct categorial selection 
percolation of features 

unary xmax unification with chain 
percolation of features 

unary head assignment of features to the specifier 
percolation of features 
complement head selection 

empty head categorial selection (ECP) 
feature percolation 

empty xmax licensing (ECP) 
locality condition 

Figure 2.4 
Interleaving of X Rules and Other Principles 
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Constraint Features 
B-role 
case 

CHAPTER 2 

B-criterion 
case filter 
node labelling 
chain select 
chain unify 

{ AI, AI, AH, AH, AFoot, AFoot} 
AA 

head feature percolation 
feature absorption 
B-marked 
case-marked 
c-select 
locality 
licensed empty xmax 

Figure 2.5 

Case. B-role 
category { N, V,C,I, ... } 
case, B-role, passive 
B-role, ±referential 
±case 
category { N,V,C,I, ... } 
±barrier 
±'Y 

Filtering Principles and their Range of Features 

2.2 AN EXAMPLE 

I give an example of a parse, in order to illustrate the main characteristics of 
the algorithm. Examples of other constructions that are handled by the parser 
are given in Appendix B. The LR algorithm is traced step by step by giving the 
state name, the next input token, the contents of the stack, and the chain list. 
Feature assignment and chain formation are illustrated by showing incremental 
feature assignment, the node labelling procedure, and the postulation of empty 
categories. 

Here below I show the actual output of the algorithm. For the sake of brevity, 
only the most relevant states are shown in full and commented. 

INPUT TOKENS: who does john seem to like? 

state: 5 

token: 11'0 

stack: (who, 6, m, s (n,[] ,[bar (2), wh]) , fts C, _» 
Abar chains: 

(who, 0, m, s (n,[],[bar (2), wh]), fts C,_» 

A chains: 
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CONSTRAINT FUKCTION 
B-criterion checks if all chains in the chain list have 

received a B-role 
Case filter checks if all chains in the chain list have 

Case 
node labelling determines what kind of chain link the 

current node is: head, intermediate, 
foot 

chain selection selects chain to unify with current node 
chain unification unifies node with selected chain 
head feature percolation consults cooccurrence table and deter-

mines cooccurrence restrictions among 
heads 

B-marked marks node \\'ith available B-role 
case marked marks node with available Case 
c-select categorial selection 
is-a barrier checks if maximal projection is a barrier 
license empty head checks features of closest lexical head 
licensing head finds a lexical head to license a maximal 

projection 
locality checks that the maximal projections be-

tween antecedent and empty category 
are not barriers 

Figure 2.6 
The Constraints that are used to decorate the tree 

The token who is recognized as a maximal projection. The format 
(g-ho, 6, ro, s (n, [] ,[bar (2), g-h]), its (\_. \_)) indicates the node 
whose lexical content is g-ho, the identification number is 6, which is a maximal 
projection m, the syntactic field shows the node is a noun with an empty B-grid, 
directly projected to a bar 2 level, and which is a wh word. The features related 
to its status as a link in a chain are uninstantiated. However, the node is also 
recognized as the member of an A chain. The chain has not been assigned any 
features yet. 
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state 9 

token vO 

stack: (j ohn, 9 ,m, s (n, [] , [bar (2) ,proper] ) , fts (_, _» 

(does,8,h,s(comp,infl,[]),fts(_,_» 

(vho,6,m,s(n, [], [bar(2) ,vh]) ,ftsC,_» 

Abar chains: 

(vho,O,m,s(n, [], [bar(2) ,vh]) ,ftsC,_» 

A chains: 

(john,2 ,m, s (n, [] , [bar(2) ,proper]) ,fts C, _» 

The two words does, John are shifted onto the stack. John is also recognized 
as the potential head of an A chain because of its configuration (SpecIP). 

state 1 

token vO 

stack: (seem, 3, h, s (v, [C,nil, th) , C, ext ,nil)] , [rais] ) , fts C,_» 

C, 10 ,h, s (infl, [] , [empty] ) ,fts C,-» 

(john,9,m,s(n,[],[bar(2),proper]),ftsC_,_» 

(does,8,h,s(comp,infl, []) ,ftsC,_» 

(vho,6 ,m, s (n, [] , [bar(2) , vh]) , fts L,-» 
Abar chains: 

(vho,O,m, s (n, [] , [bar(2) ,vh]) , fts C, _» 

A chains: 

(john,2 ,m, sen, [] , [bar(2) ,proper] ) , fts C, _» 

An empty INFL is pushed onto the stack. In contrast to many other parsers 
(Macias 1991; Johnson 1989; Frank 1992) this parser does not operate on an­
notated input, or input which is previously decomposed into morphemes. The 
fact that a lexically empty INFL node is part of the input must be computed 
on-line. (The same is true for empty, base-generated complementizers.) The 
word seem is also pushed onto the stack. Its B-grid encodes the fact that raising 
verbs do not assign Case to the object, nor a B-role to the subject. Subcatego­
rization properties other than the B-grid are not encoded here, but are predicted 
on-line. 
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state 6 

token 110 

stack: (seem, 12 ,h, s(v, [C,nil, th) , (d, ext ,nil)] , [rais] ) , fts C,-» 

c, 10,h,s(infl, [J, [empty]) ,ftsC,_» 

(john,9,m,s(n,[],[bar(2),proper]),fts(nil,ext» 

(does,8,h,s(comp,infl, []) ,ftsC,_» 

(llho,6,m, s (n, [J , [bar(2) ,Ilh]) ,fts C,-» 

Abar chains: 

(llho,O ,m, s (n, [J , [bar(2) , Ilh]) , fts C,-» 

A chains: 

(john,2,m,s(n,[],[bar(2),proper]),fts(nil,ext» 

41 

External case to the word John is assigned structurally, in virtue of the fact that 
the verb is tensed, without waiting for a reduction to apply. (See Chapter 4 for 
a discussion of this issue.) The 8-grid slot is marked as expended Cd,ext,nil): 

this is needed in order to compute one half of the 8-criterion, which checks that 
all roles have been assigned. Marking the expended 8-roles is crucial from a 
computational point of view, as it guarantees that each node will license at 
most a small number of other nodes, some of which possibly empty. From a 
computational point of view, a principle like the ECP, which ensures that empty 
categories are licensed only in the environment of nonempty 8-assigning heads, 
guarantees termination of the parse, as only a number of empt.y categories which 
is linearly related to the number of heads in the sentence can be postulated. (I 
discuss licensing of empty categories in chapter 4.) 
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state 9 

token 110 

stack: C, 14,m,s(n, [], [empty]) ,ftsC,_» 

(seem, 12,h, s(v, [C,nil, th) , (d,ext ,nil)] , [rais]), fts C,_» 

C, 10,h,s(infl, 0, [empty] ),ftsC,_» 

13 

(john,9,m,s(n,[],[bar(2),properJ),fts(nil,ext» 

(does,8,h,s(comp,infl, []) ,ftsC,_» 

(llho,6,m, s (n, 0 , [bar(2) , llh]) ,fts C,-» 

Abar chains: 

(llho,O,m,s(n, [], [bar(2) ,llhJ) ,ftsC,_» 

A chains: 

(john,2,m,s(n,[],[bar(2),proper]),fts(nil,ext» 

The co-occurrence prediction of seem states that if the next token is an infini­
tival marker, then an empty maximal projection is expected. The flag 13 is the 
sentinel pointer inserted in the stack to delimit the left context related to the 
empty category 10. (The fact that 13 relates to 10 is recorded in the database, 
where a constraint on locality is posted.) The locality restriction states that 
intervening maximal projections between the empty category and the sentinel 
cannot be barriers. (See Chapter 5.) 
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state 6 

token end_oLf ile 

stack: (like, 18 ,h,s(v, [C, acc, th) , (d, ext ,ag)] , []) , ftsC, _» 

(to, 16 ,h, s (infl, v, [inf]) ,fts C,-» 

C, 14,m,s(n, [] , [empty]) ,fts(ag,nil» 

(seem, 12,h, s (v, [C,nil, th) , (d, ext ,nil)] , [rais] ) , fts C,-» 

C, 10,h,s(infl, [], [empty]) ,ftsC,_» 

13 

(john,9,m,s(n,[],[bar(2),proper]),fts(nil,ext» 

(does,8,h,s(comp,infl, [J) ,ftsC,_» 

(who,6,m, s (n, 0 , [bar(2) , wh]) , fts C,_» 

Abar chains: 

(who,O,m,s(n, [], [bar(2) ,wh]) ,ftsC,_» 

A chains: 

(john,2,m,s(n,[],[bar(2),proper]),fts(nil,ext» 

43 

The tokens to, like are shifted onto the stack. The subject of to like, the empty 
category number 14, receives the B-role agent, but no case, as the subject of an 
infinitival is not case marked. 
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state 9 

token end_of_file 

stack: C, 20 ,m,s(n, [] , [empty]) ,ftsC,_» 

(like ,18 ,h, s(v, [C, acc, th) , L,ext, ag)] , []) ,ftsL,_» 

(to,16,h,s(infl,v, [inf]) ,ftsL,_» 

C,14,m,s(n, [], [empty]) ,fts(ag,niU) 

(seem ,12,h,s (v, [C,nil, th) , (d, ext ,nil)] , [rais]) ,fts C,_» 

C, 10,h,s(infl, [], [empty]) ,ftsC,_» 

13 

(john,9,m,s(n,[],[bar(2),proper]),fts(nil,ext» 

(does,8,h,s(comp,infl, []) ,ftsC,_» 

19 

(llho,6,m,s(n, [], [bar(2) ,Ilh]) ,ftsC,_») 

Abar chains: 

(Ilho ,O,m,s (n, [] , [bar(2) ,Ilh]) ,fts C,_» 

A chains: 

(john,2,m,s(n,[],[bar(2),proper]),fts(nil,ext» 

Another empty category is postulated and dropped into the stack, and a dif­
ferent left context for locality is set up, indicated by the sentinel 19. 
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state 4 

token end_oLf ile 

stack: C,21,p,s(v, [(d,acc,th) ,C,ext,ag)], []) ,ftsL,_» 

(to ,16 ,h,s (infl, v, [infJ) ,fts L,_» 

C ,14 ,m, s (n, [] , [emptyJ) ,fts (ag ,nil) 

(seem,12 ,h, s(v, [C,nil, th) , (d, ext ,nil) J , [raisJ ) ,fts C,_» 

C,10 ,h, s (infl, [J ,[empty]) ,fts <-,_» 
13 

(john,9,m,s(n,[J,[bar(2),proper]),fts(nil,ext» 

(does,8,h,s(comp,infl, [J) ,ftsC,_» 

19 

(who, 6 ,m, s (n, [J , [bar(2) ,wh]) ,fts (nil,nil» 

Abar chains: 

(who, [0 120J ,_, sen, [] , [bar(2) ,wh]) ,fts(th, acc» 

A chains: 

(john,2,m,s(n,[J ,[bar(2) ,properJ) ,fts(nil,ext» 

45 

Reductions begin. B-role and Case are assigned to the object of lzke, which is 
recognized, since it has Case, as the foot of an A chain. The set of A chains is 
searched for a chain to unify. ([0 120J are the indices of the nodes participating 
in the chain.) The unification of features generates a completely annotated A 
chain. 
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state 8 

token end_oLf ile 

stack: C, 25 ,m,s(infl, v, [inf]) ,ftsC,_» 

(seem, 12,h, s (v, [C,nil, th) , (d, ext ,nil)] , [rais] ) , fts C,-» 

C, 10 ,h, s(infl, [] , [empty]), fts C,-» 

13 

(john,9,m,s(n,[],[bar(2),properJ),fts(nil,ext» 

(does,8,h,s(comp,infl, [J) ,ftsC,_» 

(who,6,m,s(n, [], [bar(2) ,whJ) ,fts(nil,nil» 

Abar chains: 

(who, [0 120J >-> S (n, [] , [bar(2), wh]) ,fts (th,acc» 

A chains: 

(john, [2114] ,_, s (n, [] , [bar (2) ,proper]) , fts (ag, ext» 

The subject of the infinitival is identified as the foot of an A chain, because 
of its features, and unified with the head of the chain (shown by the indices 
[2114] ). 

state 10 

token end_oLf ile 

stack: C,35 ,m,s(comp, infl, []) ,ftsC,_» 

Abar chains: 

(who, [0 120J ,_, s (n, [] , [bar (2) ,wh]) ,fts( th, acc» 

A chains: 

(john, [2114] ,_,sen, [J, [bar (2) ,properJ) ,fts(ag,ext» 

After a series of reductions the well-formedness conditions on chains are checked. 
All chains are well-formed, as they all have a O-role and Case. The sentence is 
accepted with the following tree structure. 
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Parse Tree 

n2 

I 

n2 compO 

I 

who compO n2 

I I 

does n2 inflO 

I 

john e 

Abar chains: 

comp2 

I 

compi 

I 

inf12 

I 

vO 

I 

vO 

I 

infli 

I 

vi 

inf12 

I 
---------

n2 infl1 

I I 
--------

seem e inflO vi 

I I 

inflO vO n2 

I I I 

to vO e 

like 

(who,[OI20],_,s(n,[] ,[bar(2),wh]),fts(th,acc» 
A chains: 

(john,[2114] ,_,s(n,[],[bar(2),proper]),fts(ag,ext» 
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2.3 RELATED WORK 

In this section I review some related work, to set the proposed parser in context. 
The number of so-called GB parsers is suspiciously small, mainly due to the 
rather fluid state of the formalization of the theory, which renders faithful 
implementations very difficult. A few researchers have built GB parsers, and 
have grounded their proposals rather firmly in linguistic theory. I discuss some 
of them here. 

2.3.1 Abney 1986, Abney 1989 

In Abney (1986), the idea is proposed that syntactic parsing is driven lexically, 
based on licensing relations. A licensing parser uses the properties of lexical 
items to recover the structural relations of the elements in the sentence. Each 
item in the sentence must be licensed to be grammatical. Licensing relations 
are triples, (Directzon, Category, Type), attached to the projection of each 
lexical item. Direction is the directionality of the licensing relation, Category 
is the category of the licensed item, and Type is the type of the licensing 
relation: it can range over Subjecthood, FunctIOnal Selection, B-assigment, and 
ModificatlOn. 3 

The parsing algorithm to scan a sentence is simple. 

(20) Proceeding from left to right, examining two words at a time, as­
sign to the words whatever relation can be assigned. 

This parsing procedure, supplemented with some heuristics, exhibits the same 
preference that human subjects exhibit in parsing locally ambiguous sentences, 
such as While she was mending the sock fell off her lap.4. 

This algorithm is too simplified, as all arguments of a verb are going to be 
represented as sisters to the verb and there is no mechanism to represent long 
distance dependencies. Abney (1989) proposes an augmentation by LR states. 
The goal of parsing with Licensing Grammars (LS) is to postulate nodes in 

3They will be abbreviated to S, F, Theta, and M in the examples below. 
4 For instance, in the sentence While Mary was mending the sock fell off her lap, the NP 

the sock is usually read as the object of the verb mend, rather that the subject of fell (Frazier 
and Rayner 1982; Kimball 1973) 
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a parse tree in an order which is more plausible psycholinguistically than LL 
or LR grammars. 5 Since a simple LS parser does not have enough global 
knowledge about the grammar, and it would never recover if it made a wrong 
choice on ambiguous input, it is augmented by two mechanisms: LR states, 
attached to each node, and a set of heuristics that enable the parser to recover 
from incorrect analyses. 

This proposal is unsatisfactory in two ways: firstly, taken on its own grounds, 
this parser fails to fulfil the stated goals of representational parsimony, and it 
makes some incorrect psychological predictions. Secondly, it is based on un­
necessarily negative assumptions about other, more efficient, parsing methods. 
We illustrate them in turn. 

Abney does not discuss how the LR states, to be attached to each node, are to 
be constructed, but there are only two choices: either they are projected from 
the lexicon, or they are compiled from a global grammar, which the parser 
can look up. Clearly, if the LR states were projected from the lexicon, they 
would be useless. The LR states are needed to keep track of global information, 
to compute if the shifting of the next token could eventually result in a legal 
reduction. But this kind of computation can be performed only if the input 
token can be compared against some independently stored grammar. Thus, it 
must be that Abney means the LR states to be compiled from some grammar 
which encodes global information about phrase structure, and which is used to 
guide the parse. 

If this is true, the LR states reduplicate some of the information about cate­
gory and structural licensing that is stored in each lexical item in the LS. For 
example, the representation for a verb phrase will look like the following. 

[VP- V NP.j 
VP 

F I () 

f- V - NP 
I 
N 

5 Abney (1989) argues that LR parsers are illlplausible because they do not start building 
nodes until the end of the sentence is reached, in a purely right-branching structure, while 
psycholinguistic evidence shows that hUlllans integrate Illaterial from the input as soon as 
possible (Frazier and Rayner 1982). Against such a restrictive view of incremental LR parsing, 
see Stabler (1991), Shieber and Johnson (1993) and also the discussion below, in this chapter 
and chapter 4. LL grallllllars introduce spurious ambiguities, by which hUlllans do not appear 
to be bothered. For example, an LL grammar would find it difficult to choose between the 
rules VP -+V NP and VP-+V NP PP. 
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Thus, this representation is not parsimonious, and it fails to fulfill one of the 
initial goals for the development of LS grammars, namely to eliminate the 
redundancy between the lexicon and the phrase structure component (Stowell 
1981). It is true however, that it maintains an order of creation of nodes 
different from the one in an LR parser, and especially that it does not suffer 
from the (supposed) lack ofincrementality on right-branching structures typical 
of LR parsing algorithms. 

The LR states are also needed to recover from failure, if the parser starts a 
false analysis and must backtrack. A particular heuristic is proposed by Abney, 
which should account for the difference between strong and weak garden paths. 
The heuristic scans the right edge of the built tree in search of an abandoned LR 
state that has a possible continuation of the next input item. The parser cannot 
keep an agenda of abandoned states, but it is limited to those structurally 
available on the right edge of the tree. Weak garden paths are those for which 
such a state exists, while strong garden paths are those for which it would have 
been necessary to keep track of abandoned states which are no longer on the 
right edge of the tree. This is an operation that the parser cannot. perform, 
and strong garden paths arise. 

For example, take the sentence Mary expected Eric to leave. At the point where 
the parser has seen Eric, it is in the following configuration. 

IP 

/\ 
Mary VP 

/ 
[VP -l- V • NP VPl Eric 

V [-. • NPl 

expected 

The notation expect ed [-. • NP] means that expected is subcategorized for 
a noun phrase, thus it predicts an NP. (Abney calls these LS states.)6 

61 have followed Abney's notation, thus instead of IP, we write, simplifying, NP VP. Note, 
however, that a more correct characterization of phrase structure rules would require to use 
nonterminals such as IP, and subsequently to be able to know that the first token in an IP 
can be an NP. Moreover, this appraoch requires translating the grammar given by linguistic 
theory into a covering grammar, more suitable for parsing purposes. 
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Attaching the NP to the main verb is preferred, thus the state [VP ~ V • 
NP VP ] is abandoned. When the next input word is seen no continuation is 
possible, thus the parser must backtrack. As there is an available abandoned 
state, which has a legal continuation on an input token of label V, the state is 
retrieved, and Eric is attached as the subject of the embedded clause. Abney 
illustrates the example in (21)b. 

According to this mechanism, the following sentences should both be weak 
garden paths, and they should be on a par, since in both cases the attach­
ment as complement is chosen first, thus the alternative option of closing a 
constituent earlier is abandoned. This in turn results in the abandoned state 
being available on the right edge of the rightmost tree, which is the one being 
built. However, the judgments appear to be different, in that (21)a does not 
cause any processing difficulty. while (21)b is a garden path. 

(21) a. Mary expected Eric would leave 
b. While she was mending the sock fell off her lap 

Abney's parser does not capture correctly the psycholinguistic evidence that 
it was designed to handle. With respect to this latter criticism, we note that, 
although we do not put forth an independent. theory of garden paths, the model 
we propose, an LR parser, is compatible with several deterministic models of 
sentence processing, e.g. the minimal committment model in Weinberg (1993). 
Moreover, the mechanism for incremental feature assignment discussed below 
in chapter 4, makes the LR architecture much more compatible with models 
that maximize grammatical relations any given point. in the parse (Gibson 1991; 
Pritchett 1992). 

Finally, we note that the main motivation for not adopting the central control 
of an LR parser, while still using many other compilation mechanisms, might 
not be very strong. Several arguments have been proposed against the idea 
that LR parsing is not incremental. I advance some ideas here and discussed 
them more thoroughly in chapter 4. 

First, LR parsers are criticized because they build nodes in a rightmost fash­
ion. But this is not necessary. While the rules of the grammar are traced 
in a rightmost derivation, the input is scanned from left to right. A parser 
that does not build trees in the standard fashion, namely building nodes only 
on rule reduction, could start asserting structural statements, for instance D-
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theoretical statements (Marcus, Hindle, and Fleck 1983), III an order that is 
more in accordance with the input. 

Second, LR parsers are criticized because they do not assign features incre­
mentally. Again, this is true only if feature annotation is done exclusively on 
reduction. I argue extensively in chapter 4 that this is not necessary. (Stabler 
(1991),Shieber and Johnson (1993) also argue that LR parsers are compatible 
with incremental interpretation.) Moreover, the stack of an LR parser, in virtue 
of tracing a rightmost derivation, encodes c-command. Thus, all the nodes be­
low the top nodes in the stack, those that constitute the internal structure of 
the nodes in the stack, are no longer visible, and they can be redirected to a 
semantic interpreter (Berwick and Weinberg 1984). 

2.3.2 Fong 1991 

The main goal of Fong's work is to build a system to explore the computa­
tional properties of principle-based grammatical theories, mainly a tool for the 
grammar writer. This system enables the user to specify a grammar which is 
automatically compiled into a parser. Fong defines a set of tools, which can be 
partitioned in two classes for expository purposes: one set enables the user to 
specify the grammar in a highly abstract language, very close to the definitions 
used by the linguist; another set of tools automatically compiles the grammar 
specifications into a family of parsers, in a way suitable for experimentation. I 
describe them in turn. 

The Representation of Principles 

The first set of tools addresses the issue of what constitutes a transparent rep­
resentation of the theory of grammar. Fong argues in favour of a representation 
which is close to the definition of the linguist, is efficiently executable, and ab­
stracts away from choices of control strategy. The representation of linguistic 
principles consists of two components, in this system: 

1. top-level macros provided to the user to define linguistic 
principles; 

2. linguistically motivated primitives. 
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Two top-level macros are provided, to expand the definition of principles au­
tomatically: the former is used to encode quantification over tree structures, 
while the latter is used to encode operations, which are compositional on trees. 

Universal Quantification over Configurations Consider, for instance, 
the case Filter, which states that all lexically realized NPs must re­
ceive Case: in a universally quantified configuration, the property 
of being a lexical NP and of being Case-marked must hold. The 
macro expands this filter into two different forms, depending on 
whether the Case Filter is compiled or not, (see below the discus­
sion on interleaving), but these different expansions are transparent 
to the grammar writer, who can just ignore implementation issues. 

COInpositional Operations on Trees This macro is used in composi­
tional definitions. Certain parser operations establish non-local 
structural relations. For instance, the principle of free coindexa­
tion, states that every NP can be coindexcd with any other NP 
anywhere in the sentence. The non-local nature of this principle 
poses two problems, which are solved automatically and transpar­
ently by this macro: they pose the problem of how to compute 
such unbounded relations in a sensible way, namely a way that 
emits all indices, but no duplicate indexing; it also poses the prob­
lem of how to compute such unbounded relations incrementally. If 
free indexation cannot be computed until the entire tree structure 
of the input sentence is recovered, this means that the principle 
does not influence the structure building part of the parse at all. 
The compositional macro provides a solution to the latter prob­
lem by computing a compositional principle inductively over tree 
structure, i.e. independently over each tree substructure. 

The Recovery of Phrase Structure 

The second set of tools supports different kinds of automatic compilation of the 
principles specified by the grammar writer into a family of parsers, in order to 
study issues related to control and efficiency. 

Fong argues that the mechanism to recover phrase structure must be efficient 
because all structural relations are based on phrase structure; because there 
could be more than one phrase structure per sentence; and also because opti­
mization of control (principle ordering or interleaving, see below) depends on 
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the optimality of the structure recovery process, namely how fast the parser 
can detect an error in the input. For these reasons, Fong adopts an efficient 
architecture, an LR( 1 )parser. LR( 1) parsers are deterministic, and they fail as 
soon as it is possible to fail on incorrect input. The LR(1) parse table however, 
requires modifications, as natural languages are not LR languages. 7 Fong in­
troduces two main modifications: first, each entry in the action table can hold 
an indefinite number of actions; second, every clausal node must cover a string 
which contains at least one non-null terminal symbol (in order to guarantee 
termination). 

The parser uses a finite state automaton (FSA) and three stacks as data struc­
tures. The FSA consists of two tables: a transition table and an action table. 
The three stacks record the states of the machine, partially constructed con­
stituents, and contextual information. 

Principles of the grammar that filter incorrect structure can be applied to 
independently recovered phrase structure skeleta or they can be interleaved 
with the phrase structure rules, and be applied on reduction of each rule. In 
the former case, all the principles are applied at the end of the process which 
recovers phrase structure, thus they require ordering. Fong observes that some 
issues related to principle ordering arise (p. 162). 

(22) a. What effect has principle ordering on parsing a sentence? 
b. Are some orderings better than others? 
c. Is it possible to predict which the best orderings are? 

As an answer to (22)a, one can note that principles of grammars are divided 
into filters and generators. Principle ordering can make a relevant difference, 
if the ordering is such that overgeneration is minimized. In other words, if an 
ordering is chosen that applies filtering principles immediately after the corre­
sponding generating principles, then a speed up will occur. As an answer to 
the second question, Fong observes that there cannot be any global optimal or­
dering. An optimal ordering is one that eliminates ill-formed structure as soon 

7Tomita 1985 has shown that natural languages are close to LR. Although natural lan­
guages are ambiguous, therefore they are not LR, they do not exhibit many features of CFLs 
that would distance them from LR even more than ambiguity: for instance, natural languages 
do not exhibit dense ambiguity or infinite recursion. Tomita argues that natural languages 
can be parsed by LR parsers, and that LR parsing is the most efficient for practical purposes. 
See also Fong (1991) for LR parsing and Pereira and Wright (1991) for fast algorithms for 
practical purposes. 
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as possible, thus applies a given principle first. But different sentences violate 
different principles, hence there cannot be a global solution to optimizing the 
ordering of the principles. Finally, it is possible to predict the optimal ordering 
for each sentence by using computationally cheap cues, which infer from the 
input which principle is most likely to fail. Different orderings are not going 
to have any effect on the parsing time of a correct sentence, because a correct 
sentence must pass all the filtering principles, but they are going to make order­
of-magnitude differences in parsing incorrect input. The experiments with this 
dynamic control st.rategy are very interesting because they constitute a bench 
mark for comparisons for other control strategies. In particular, the princi­
ple ordering problem arises only if an (almost) generate-and-test procedure is 
adopted, which is supposed to be very inefficient. Hence, other control strate­
gies can be compared to it, to see that predicted speed-ups really occur. Our 
proposal cannot be compared to dynamic control, but rather it is static, and 
therefore more similar to the other strategy that Fong explores. 

A different control strategy interleaves the principles with the rules that build 
the structure, so that filtering constraints are applied as early as possible. The 
main question that arises with regards to principle interleaving is how to inter­
leave the principles in a way which is transparent to the theory of grammar. 

Fong argues against a naive model, ( i.e. a model that applies every principle 
every time some structure is built), because many principles are irrelevant 
( i.e. vacuously true), but they still require computation to determine that 
the premises do not hold. The classes of structures that never satisfy the 
preconditions of a given principle can be determined by using information about 
the range of possible phrases to which this principle may apply. This range of 
phrases is called a type. Fong defines the type of a principle as being the set 
of category labels that are associated with a configuration. Once the type 
is computed, each principle is interleaved off-line with the appropriate rules, 
depending on the category labels on the left side of the rule, by an automatic 
interleaver. The task of the interleaver is to r~cast principle definitions into a 
series of specialized predicates for each category in the type of the principle. 

The experimental results of the performance of the interleaved parser show 
that parsing time increases dramatically as more principles are interleaved; the 
increase is greater when generators, e.g. Move-a, are interleaved; adding fil­
ters, such as the case Filter, has no relevant effect. This result is surprising, as 
one would expect that, by interleaving, the computational burden of the parser 
should be reduced. However, the computation added by the interleaved prin­
ciples turns out to be costly, because a lot of work is done to check constraints 
on analyses which, in the end, will be discarded. 
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It is interesting to note that Fong's results on faithfulness and transparency to 
the grammar are mainly negative. In his experiments with different compila­
tions of the grammar, he explores dynamic ordering and principle interleaving 
with rather surprising results. The former results in significant speed-ups if 
the right ordering is found, but it is based on totally heuristic cues, which are 
external to the grammar, while the latter, which is based on the grammatical 
concept of category to interleave principles, does not speed up the parse, not 
even when filtering principles are applied, Of course, the first avenue to explore 
would be to reformulate the definition of type. In particular, it seems more 
natural and more useful to interleave principles based on configurations rather 
than category. For example, Fong notices that B-assignment can occur only in 
complement configurations of verbs and adjectives, and specifier of NP. Thus, 
he concludes, the type is given by the union of all the prime and maximal pro­
jections of all these categories. The filtering principles will then be called by 
a "hook" indexed into the category, for instance reduceNP. The experimental 
results show that using principles to prune the search space is not effective in 
this kind of interleaving. 

Our partitioning of IC Classes leads us to a different interleaving model, in 
two main respects. First, the "hooks" of the principles into the rules are the 
configurations, i.e. filtering principles are interleaved according to X theory, 
and according to the co-occurrence table. Hence the search space is restricted 
both by category and by configuration. Secondly, Fong applies all the filtering 
principles independently, one at a time, without precomputing the interaction 
of some of the filtering principles off-line. The result of this design choice is 
that interleaving some principles can cause major slow-downs. Consider, for in­
stance, Trace theory: as soon as this principle is interleaved, a major slow down 
occurs because many false trace positions are postulated. This is, however, an 
artifact of the way Trace theory is implemented, as functional determination, 
therefore the incorrect prediction of a trace cannot be detected locally. Our 
partitioning of principles into IC Classes, however, points in the direction of 
structural computation of empty categories, which can be determined locally. 
For example, Case information can be used immediately to postulate a wh-trace 
and to start the search for a possible antecedent. If no antecedent is found the 
structure can be immediately discarded. 

Fong's approach to the relation between the parser and the grammar, and to 
what constitutes a principle-based parser is somewhat different from standard, 
but well-supported by a sophisticated implementation. The usual interpreta­
tion of the label principle-based parser is that of a parser which encodes the 
theory of grammar transparently, and uses the grammar on-line.(Barton 1984; 
Abney 1986; Johnson 1989; Frank 1992; Kashket 1991; Berwick and FOll,Q; 1990). 
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In this work, however, Fong takes the stand that a principle-based parser can 
operate at two (representational) levels. One level consists of the specifications 
of the linguist's grammar, this level is the direct, declarative encoding of the 
grammar. To this purpose, tools for the expression of universal quantification 
and compositional principles are provided to the grammar writer. The second 
level is the compiled version of the grammar that the linguist writes, namely 
the parser, in which many techniques of parsing and compiling optimization 
are used. Fong, therefore, does not appear to share the belief that a principle­
based approach to parsing forbids grammar compilation. Rather, Fong adopts 
the idea that grammar compilation can be used, as long as it is completely auto­
matic and transparent to the user. Such point of view makes sense practically. 
It enables the linguist to be a user of such system, without being concerned 
with implementation issues. Moreover, it provides a tool to test the theory 
in a more formal way. This kind of approach does not address to claims of 
psychologzcal reality that have been made for principle-based parsers (Abney 
1989; Johnson 1989). 

Although this work shows convincingly that G B can be used as the gram­
matical representation for an efficient parser, it often relies on extralinguistic 
augmentations. First, the optimal ordering of linguistic principles is based on 
extra-linguistic cues, as we have already observed. Clearly, one could wonder 
how such cues are learned (by a machine or by humans), and how they are 
evaluated, since it is crucial for them to be computationally cheap. 

Another mechanism which is not very plausible, cognitiyely and linguistically, 
is the use of unbounded look-ahead. The trace licensing mechanism in the 
LR table consists in the insertion of a dummy nonterminal (see below, chapter 
4), which triggers unbounded lookahead before inserting a trace in the phrase 
marker. The result of such a powerful device is that garden paths, which could 
be modelled, at least in part, are predicted to cause absolutely no difficulty. 
Another case in which Fong's parser is more powerful, arguably, than the hu­
man parser is in processing cyclic movement. Although it has been extensively 
argued that an LR parser might exhibit the right architectural features to 
account for the existence of cyclic movement (;\farcus 1980; Berwick and Wein­
berg 1984; Berwick and Weinberg 1985), Fang's parser has been augmented in 
such a way that it can postulate unboundedly distant dependencies. In fact, 
the stack mechanism has been augmented by an environment stack which en­
ables unboundedly distant tokens of the input to communicate. This stack is 
equivalent to a HOLD cell in an ATN (Woods 1970; Wanner and Maratsos 
1978). 
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Thus, a fully automatic and user-transparent compilation process is not suf­
ficient to be "faithful" to the representation, unless we ignore completely the 
supposed cognitive relevance of the competence level. In other words, Fong's 
compilation is faithful to the letter, but it fails to capture the content of the 
organization of the competence grammar. It might be also be the case that a 
transparent compilation is not completely beneficial. Some of Fong's criticism 
against manual compilation is unconvincing, because it forces him to implement 
a parser which is unnecessarily inefficient, for example, in the instance of struc­
tural computation of empty categories vs. functional determination. Fong's 
determination of empty categories is a generate-and-test approach, because he 
rejects the insight in Correa (1988) that empty categories can be efficiently 
determined if computed on the basis of structural properties. We present in 
chapter 4 evidence in favour of using syntactic features to compute chains. For 
example, the foot of an A chain can be readily identified by looking at Case 
information. Moreover, psycholinguistic experiments show that the human pro­
cessor makes use of syntactic feat ural information to make structural decisions 
as soon as possible (De Vincenzi 1991). 

Finally, Fong does not address the issue of implementing the LR parser, in a 
way that supports incremental interpretation. This lack of incrementality is 
certainly a problem for psychological plausibility, but also for practical appli­
cations. In favour of this approach, however, we can point out that Fong has 
developed tools that make it possible to use GB, and the large body of linguistic 
literature set in this framework, for many practical purposes. 

2.3.3 Dorr 1990, 1993 

Dorr (1990),Dorr (1993) presents UNITRAN, a bidirectional translation system 
for English, Spanish and German, whose syntactic component is based on GB 
theory. Translation is done by mapping the syntactic structures created by the 
parser onto a universal level of lexical conceptual structure. This same level 
provides the input level for generation of the target language. The main feature 
of this translation system is its high degree of compositionality and parameter­
ization. Syntactic differences across languages are captured by the interaction 
between principles modelled after GB, which are common to all languages, and 
parameters, that can acquire distinct values for different languages. Not only is 
this representation valid cross-linguistically, but it can also be used for gener­
ation, with small changes, as a result of the compositionality of the approach, 
since syntactic and lexical conceptual information are computed separately. I 
concentrate on the syntactic parser, which is also described in Dorr (1987). 
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The parser produces a syntactic structure for the input sentence of the source 
language, which is then passed to a component for the analysis of its lexical­
conceptual structure. The lexical-conceptual structure of the target language is 
then determined. The target language sentence is produced from this by means 
of the target language lexical selection and syntactic realization rout.ines. 

There are two main stages to parsing a sentence: all the phrase structures 
compatible with the input are recovered first, and then constraints are applied. 

Phrase Structure 

The first stage makes use of a phrase structure grammar, which is compiled 
off-line by computing the interaction of several modules of GB theory and of 
the language-dependent parameters that have been selected for the particular 
source language in question. The relevant modules are X theory, Trace theory, 
and the language parameters that set constituent order, the choice of category, 
and the availability of clitics in the language. These pieces of information are 
then compiled into phrase structure rules which have the format shown below, 
adapted from Dorr (1990, 39). 

In the phrase-structure template, Ctl and Ct2 stand for positions for adjunction 
of maximal projections, /31 and /32 are positions for arguments, specifiers and 
complements, and 1'1 and 1'2 are positions for head adjuncts, such as clitics. As 
can be noticed, this kind of phrase structure rule is more informative than the 
typical X template. Dorr (1990, 40) lists several reasons for augmenting the 
phrase structure component this way: first, the co-routining mechanism that 
was necessary in a previous version (Dorr 1987) is greatly simplified; second, 
this schema is reversible, as much of the information that is needed for parsing 
or generation is encoded in the phrase structure component; third, it is faster 
than less informative rules, because by encoding some of the constraints in the 
phrase structure rules, the number of incorrect structures that are going to be 
postulated on-line is greatly reduced. 
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The grammar so produced is then consulted by an augmented Earley's algo­
rithm (De Marcken 1990). Earley's algorithm is a tabular parsing method that 
consults the grammar directly. Since many parses are pursued in parallel, at 
the end of this stage, more than one phrase structure could be compatible with 
the grammar and the input. 

Constraints 

The second stage of the parse consists of the application of the other modules 
of the theory: Movement theory, Case theory, Trace theory, Binding theory, 
and (j theory. 

After the trees compatible with the input have been recovered by the Earley 
algorithm, the distance between the landing site of a moved element and its 
source position is checked, in accordance with Subjacency. Case theory checks 
that all nominal phrases receive abstract Case, which means that they are the 
complement of a verb or a preposition, or they are the subjects of a sentence. 
Trace theory is parameterized, so that languages like Spanish or Italian, which 
allow the subject of a sentence to be understood, can still be parsed by the same 
mechanism which would mark such usage as incorrect in German or English. 
Finally, Binding theory construes the reference of nominal and pronominal 
elements. 

(j theory is the module of G B that controls the correct distribution of arguments 
of verbs. In Dorr's system it is the interface with the semantic processor. The 
interpretation of a sentence, in this system, is performed by reconstructing 
the lexical-conceptual structure (Jackendoff 1983; Jackendoff 1990), which is 
then used as input to the generation of the sentence in the target language. 
The generation process runs through the same modules in reverse. After the 
lexical-conceptual structure in the target language has been selected, syntactic 
phrases are generated, according to their syntactic canonical realization in the 
language, and they are attached to the X template seen above, and finally all the 
feature annotation is checked with the same modules that impose constraints 
in parsing. Parameters related to constituent order and adjunction procedures 
are relevant to this process. 

This system encodes GB principles in an indirect way, in that it compiles them 
into complex phrase-structure rules off-line. The relation to the theory is main­
tained because the same syntactic structures are produced that the theory pre­
dicts, the algorithms are modularized in a way that strongly resembles the 
modules of the theory and parameters are used to capture differences between 
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languages. However, there is no principled definition of precompilation, and 
parameter specifications and settings do not always reflect linguistic theory 
directly. 

The two-stage architecture of Dorr's system addresses the issue of prznciple 
interleaving by expanding all the possible structures compatible with the rules, 
and then applying all the non-local constraints to the forest of trees thus gen­
erated. This approach is sound and complete and it can be practical if the 
algorithm to build phrase structure is very fast. Moreover, Fong shows ex­
perimentally that in principle-based parsers of comparable complexity, this 
approach, where the non-local constraints are checked last, is more efficient 
than a truly interleaved one. However, this solution has some shortcomings. 
First, it does not provide principled reasons to precompute only certain pieces 
of information and not others. The solution to this problem here is heuristic. 
Second, it fails to provide interesting suggestions on how to limit the search 
space, when building phrase structure. 

The main difference between Dorr's approach and the approach presented here 
is that Dorr uses extensively covering grammars off-line. In particular, the 
positions where an empty category could occur are precomputed into phrase 
structure rules, and so is categorial information. This gives rise to a rather large 
grammar. Since Earley's algorithm is used, an even larger number of parsing 
states is generated at run time. The space of possible parsing states is then 
pruned down by applying filtering principles. On the other hand, the design 
proposed here attempts to reduce the space of parsing states much earlier in 
the parsing process. 

On the other hand, there are also similarities. The definition of IC Classes 
and of the ICMH is an attempt to provide a principled explanation for Dorr's 
experimental result (Dorr 1987) that only partial precompilation of principles 
gives rise to speed ups. 

Dorr's model is particularly interesting, as it is the only principle-based system 
dealing with cross-linguistic variation by using the parameters envisaged by the 
theory in an efficient design. 8 

8Kashket (1991) is a parser for English and Warlpiri, which is implemented as a totally 
nondeterministic theorem prover. As such, it is designed with different goals and it does not 
address the same questions as the present work. 
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2.3.4 Frank 1992 

Frank (1992) puts forth an interesting proposal for a GB parser expressed with 
the formalism of Tree Adjoining Grammars (TAGs) (Joshi 1985). 

Frank observes that all principles in the theory of grammar undergo some 
locality restrictions. Therefore, he proposes that locality restrictions are not to 
be expressed explicitly, but they are part of the metagrammar and therefore 
should be captured by the formalism that is adopted. In particular, he proposes 
that these locality restrictions can be captured in the TAG formalism naturally. 
All the principles of the grammar should be statable over elementary trees as 
defined in TAG. An elementary tree (ET) is, according to Frank, a lexical 
element, with its arguments and its functional projections. Thus, for example, 
a verb with its arguments and the Inflection and complementizer projection is 
an elementary tree. A DP with its argument is another kind of elementary tree. 

This proposal is supported with evidence from linguistic theory, by showing that 
phenomena that require explicit locality constraints in GB can still be captured 
in this framework; with evidence from acquisition, by showing that stages of 
language development can be seen as the development of the manipulation of 
the elementary trees provided by TAG; and with evidence from parsing, by 
showing that TAG provides a formal definition of bounded search and thus GB 
theory recast in these terms can be efficiently parsed. I concentrate mainly on 
the proposal related to parsing. 

Frank claims that his parser is psychologically plausible because it builds syn­
tactic structure and semantic interpretation incrementally; moreover, the parser 
is efficient because the representation it uses (TAG) guarantees a bounded work­
ing space. 

The design of Frank's parser rests on the observation that G B principles are of 
two kinds: those that express relations between adjacent nodes in a graph, and 
those that express constraints on the well-formed ness of structures that span 
more than two adjacent nodes in a graph. The former is captured by licensing 
relations, like Abney's, while the latter by TAG. Structure is built from left to 
right while scanning the input, as a result of satisfaction of constraints that are 
directly attached to each node. When a node is projected from the input, it is 
paired with two sets oflicensing features: a set of gives and a set of needs. Gives 
are those feature bundles that can license other nodes in the tree, while needs 
are feature bundles that must be satisfied for the projected node to be licensed 
and thus incorporated into the structure that is being built. The association 
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of a node to a set of gives is determined lexically while the association with a 
set of needs is done by principles of the grammar, depending on the category 
of the node. For instance, a node whose label is V is lexically associated with a 
set of gives that constitute its thematic grid, whose cardinality determines how 
many arguments the verb takes and whose content determines what arguments 
it takes. An NP, on the other hand, is associated with a set of needs that 
require for the node to receive Case in order to be licensed, as stated by the 
Case filter, and to receive a {I-role, as stated by the {I Criterion. The Extended 
Projection Principle for instance is encoded as a give of type Subjecthood of an 
I node. 

In this way, phrase structure is built without context-free rules, by simply re­
quiring that all gives and needs on a node be satisfied when a node is no longer 
on the right frontier of the structure that is being built. Those nodes whose 
gives and needs are not satisfied at this point are considered to be part of a 
chain, and are pushed onto a trace stack. This method for building phrase 
structure requires that all empty categories must be explicitly licensed, there­
fore it disallows intermediate traces. Intermediate traces are a by-product of 
the assumption in GB that long movement must be successive cyclic. Such an 
assumption guarantees that what appears to be unbounded long movement is in 
fact a sequence of shorter steps, each of which obeys the standard locality con­
straints on derivations, namely Subjacency. In this framework no need arises 
for the Subjacency constraint on movement, and consequently no intermediate 
traces, because locality is a primitive in TAG. 

Frank observes that constraints in G B are of two types: very local and bounded 
non-local. Determining the correct interaction between the local and non-local 
constraints is important for the explanatory power and the efficiency of the 
parser. It constitutes the problem of principles interleaving that we have men­
tioned in reviewing Fong's work. Frank proposes to perform the interleaving at 
the point where each piece of the structure corresponds to an elementary tree, 
as defined in TAG. Whenever the parser has built enough structure so that 
it constitutes an elementary tree, either auxiliary or initial, it detaches this 
piece of structure, by performing reversed licit TAG operations: adjunction 
and substitution. The unadjoinedfunsubstituted pieces of structures then un­
dergo well-formedness checks, and if these checks are successful, they are passed 
to a semantic module for interpretation. According to Frank, this approach has 
two very desirable consequences: it supports incremental semantic interpreta­
tion and it guarantees that the parser will always operate in a working space 
of bounded size. 
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The design of this parser solves some of the issues that we are addressing in an 
elegant and coherent way. However, some of the claims about it might be too 
strong. 

First of all, we note that all the necessary augmentation to make the LS gram­
mar work make it equivalent to a phrase structure grammar like X, possibly 
with the disadvantage of being procedurally encoded instead of being declar­
atively encoded as a grammar of rewrite rules. For note what happens when 
a lexical item is projected from the lexicon. Each item is projected at three 
different levels, (which correspond to the three levels of X theory), then each 
bar level is coupled with the appropriate gives and needs, which corresponds 
to having branching possibilities only at those two levels, and moreover corre­
sponds to binary branching, as only one satisfaction of each give is possible. 
As this same procedure is repeated for all lexical items independent of category, 
this corresponds to the fact that X captures a cross-categorial generalization. 

One disadvantage of LS grammars, which we already reviewed above in dis­
cussing Abney, is that they do not provide enough global knowledge to re­
cover from incorrect analyses. The possible augmentations envisaged by Ab­
ney, which Frank does not consider, are representation ally redundant and do 
not correctly model human performance. Frank's parser as it is presented, 
could not parse head-final languages, as the parser has no ability to stack argu­
ments while waiting for the head. The augmentation with a stack, is possible, 
but then the parser would incur the problem that lead Abney to use LR states. 
Namely, in order to parse head-final languages, a "shift" operation must be 
added to the current available operations of the parser. As there could always 
be a licensing head in the right context, which would license a left-branching 
structure, the "shift" operation is always correct. But then, the parser might 
reach the end of the input before realizing either that it pursued an incorrect 
analysis, in the case of ambiguous input, or that the input is ill-formed. Thus, 
this augmented parser could not recognize errors as soon as they are encoun­
tered, in violation of the requirement of incrementality that Frank states at the 
onset. On the other hand, the fact that the present version of the parser does 
not incur this problem is an artifact of it not being sufficiently general. If both 
the stack and the augmentation of the LR states were added, the empirical 
coverage could be achieved, but the architecture would be redundant and it 
would not fulfill one of the major desideratum of Frank's design, namely to 
avoid grammar compilation. 

As a third point, it is not clear that the entire array of linguistic facts can be 
captured by this parser. It has been shown that the problem of determining 
licit coreference in a grammatical theory where the assignment of indices is 
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done by free indexation, such as GB is, is NP-hard (Fong 1990). Fong suggests 
that binding theory can be seen as the way to limit the domain of possible 
coreferring items in the same sentence. This is not true for principle C of the 
binding theory which states that an R-expression must be free, which means 
not coindexed with any c-commanding elements. It does not appear likely 
that Frank's parser can maintain its limitation on the working space and still 
compute all the possible coindexations, without assuming, like many other 
parsers, that coreference is computed at a different level from the computation 
of phrase structure. 

Finally, the claim that the parser can work in linear time is based on an analysis 
that does not take into account some computations. Several issues are at stake. 
First of all, the structure building component of this parser parses a sentence 
in O( n 2 ) time on non-ambiguous input, while other techniques, would parse in 
O( n) time. Second, the claim is made that polynomial time can be reduced to 
linear time by reducing the size of the work space to the finite bound determined 
by an ET defined by TAG. But this computation of the complexity does not 
include the actual work to determine that a given substructure is an ET. Since 
this checking is done for each attachment and all the nodes in the tree are 
checked, then this procedure will have an O( n) best case, which arises when all 
attachments are undone as soon as they are done, thus always checking over 
a single-node tree. The worst case occurs when no excisions are made and 
the final tree corresponds to an elementary tree (this is an actual possibility 
in TAGs). In this case the procedure is, again, O(n 2 ), as the introduction of 
ETs has not reduced the work space. More common cases will range between 
the two, and they will take linear time, with increasing larger constants for 
smaller numbers of elementary trees. Moreover, the claimed linear time of the 
algorithm does not take into account the needed computations to determine 
whether, at each point of excision, an unadjoining or an unsubstitution must 
be performed. Franks does not discuss the mechanism, but from his examples 
it is clear that cases can arise when there is ambiguity of choice between the 
two operations, and choosing the correct one requires knowledge about the 
structure which is going to be built several tokens ahead. 

For example, consider the following example Randy seemed to lzke the pizza 
yesterday (Frank 1991, 21). Up to the 10 projection of the embedded clause, ( 
i.e. the expended input is Randy seemed to), the structure built by the parser 
is shown in Figure 2.7. 

Frank points out that this structure includes two independent ETs, the two I's. 
He comments: 
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Figure 2.7 
Parsing with TAGS 

"Hence, we must reduce the structure in some way. There 
are two possibilities for how this could be done. We might 
undo a substitution of the I' node dominating to or else we can 
undo an adjoining of a structure recursive on I'. The problem 
with this possibility is that it would give rise to a structure in 
which the DP has an unsatisfied theta need, and has no further 
possibilities for satisfaction. In the case of the unadjoining, the 
DPs become part of the lower clause's elementary tree and can 
receive its theta role from there. (Frank 1991,21)" 

Since the parser is at a point of excision, this means that the computation 
about the ET T1 , the one which is being excised, depends on some features 
of T2 , a different ET. Thus the parse working space is not limited to a single 
elementary tree. Finally, it is not clear how the recognition of an elementary 
tree is performed. In the absence of a compilation procedure on the set of 
elementary trees, that could guide the parser, whenever a node is attached and 
the tree is checked to see if an elementary tree has been built and needs to 
be detached, the entire set of elementary trees must be explored, in the worst 
case.9 

9 LR parsing techniques for TA GS have been developed (Schabes and Vijay-Shanker 1990). 
Frank does not mention them, but their proposal would not comply with Frank's ban on 
grammar compilation. 
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2.3.5 Crocker 1995 

Crocker (1992), Crocker (1995) describes a principle-based parser, founded on 
the tenet that the parsing architecture must maximize incremental interpreta­
tion. The parser is the implementation of the theory of grammar, as directly 
as possible, therefore it is modular. Modularity permits distributed concurrent 
processing of four modules, which are defined on the basis of the representation 
they use: phrase structure, chains, argument structure, and co-reference. 

Psycholinguistic research has proposed models that attempt to minimize syn­
tactic complexity of the parse, either by adopting principles of representational 
parsimony (Frazier and colleagues), or by assuming a very efficient algorithm 
(deterministic parsing.) Crocker suggests instead that the parser does not work 
independently of semantic interpretation, and that in fact, incremental inter­
pretation determines the behaviour of the parser. As far as the structures that 
the parser builds are concerned, the main consequences is that a fully connected 
structure must be built at each step, and that all structure that can be built 
must be. This general principle also influences the time course of parsing, as 
the parser commits to an analysis a soon as a plausible interpretation is possi­
ble. Thus the syntactic component is not "autonomous", since it is influenced 
by semantics and pragmatics. However, the syntactic component is modular, 
because each "representational", or "informational" type requires a different, 
specialized vocabulary. The modules do not communicate among each other, 
and each of them is sensitive only to one particular type of input. (For instance, 
the chain building module does not have access to the category and the level 
of the chain element). 

The Psycho linguistic Model 

Each of the representational modules that comprise the parser has a specific 
behaviour. Two of these treat information - phrase structure building and 
filler-gap dependencies - that have been studied experimentally. 

The Phrase Structure (PS) module builds structure based on constituency and 
sisterhood relations, and it serves as the basis to compute chains, coreference, 
and argument structure. The behaviour of this module must conform to at­
tested psycholingustic evidence. In particular, it assumes minimal lexical in­
formation, supported by experimental results arguing that sub categorization 
information is not immediately used by the parser (Mitchell 1987). This mod­
ule also incorporates structural attachment preferences, defined as a preference 
for argument attachment (AA) and a preference for base-generated A positions 
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over moved A positions. The former strategy accounts for PP attachment pref­
erences, reduced relative clauses, and the preference for an NP complement 
over a clausal complement. The latter strategy is supported by evidence in 
verb-final languages. In German, a PP which is ambiguous between attach­
ment to an NP and a verb, is preferentially attached as the modifier of the 
noun. If a long adverb intervenes between the PP and the verb, the parser 
commits to this analysis. If the sentence turns out to require a complement 
analysis of the PP, speakers report a garden path. Crocker correctly notices 
that this range of data could not be explained by a model that attempts to sat­
isfy lexical requirements at each step, such as Pritchett (1992). Both strategies 
are motivated by the principle of incremental interpretation, as both expand 
the interpretable 8-grid as much as possible. They obey the modularity design 
because they both operate exclusively on structural information. 

The empirical evidence accounted for by the chain module is best described 
by Frazier's "Active Filler Strategy": once a filler has been seen, rank a gap 
above all other options. In order to interpret this trace-eager behaviour in a 
modular parser, Crocker assumes that postulation of traces is performed by the 
PS module, which " ... continually attempts to posit traces which are sustained 
only if they can be incorporated into a well-formed chain structure. (p.103)" 
Interestingly, Crocker observes that filled-gap effects (Crain and Fodor 1985), 
as well as some of the attachment phenomena in head-final languages, can be 
explained by thinking of traces as belonging to a different "dimension" than 
the rest of the string. A trace must be postulated as soon as it can be, but then 
overt material can still intervene between the trace and the licenser. Crocker 
proposes a strategy that posits traces as soon as the antecedent has been seen, 
called the Active Trace Strategy, and connects it immediately to the tree. This 
strategy explains effects of VP attachment in verb-final languages, such as 
German and Dutch, where verb complements seem to be integrated into the 
structure even before finding the base position of the verb, which has moved to 
second position in the sentence. 

The Computational Model 

The properties that the parser must have, make the computational model non­
trivial. In particular, it is interesting to explore solutions for the combined 
assumptions of modularity and incrementality, for the assumptions of informa­
tion encapsulation according to representational types, and the direct use of 
grammatical principles. 
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Adopting the framework of parsing as deduction (Pereira and Warren 1981), 
Crocker assumes that parsing is like theorem proving, and a grammar is a 
set of axioms. The crucial property of the deduction system, which makes it 
effective, is that the principles of the grammar are defined as conditions on 
locally well-formed branches. 

In this implementation, each linguistic representation type 

" ... is a meta-interpreter, whose task is as follows 

1. play the logical role of structure generators, 
proposing instances of un instantiated structure for 
the particular representation. 

2. sustain only those structures that are well-formed 
formulae with respect to the 'necessary' 
axioms/ constraints. 

3. determine the control strategies and preferences, 
where multiple structures are licensed in accordance 
with performance theory. 

(p. 118) 

By using the predicate freeze, each word goes through the whole set of modules 
at a time, simulating concurrent processing and incrementality. 

The PS module is a meta-interpreter for X theory and traces, that implements, 
at least in part, the Active Trace Strategy. It uses a left corner algorithm 
to combine bottom-up instantiation of structure to top-down postulation of 
traces for which an antecedent has already been seen. The Chain module 
determines heads, tails, and links of a chain, by using the append relation. 
This module does not see the whole tree, but only that part which is visible 
for chain building purposes: the trace and the elements that do not occupy 
a base-generated position (Spec IP, Spec CP). The Principle of Incremental 
Interpretation requires to construct a maximal partial thematic structure as 
the input is received. 

The parser presented here and Crocker's model are, quite clearly, very similar 
as far the relation between the grammar and the parser is concerned. In both 
proposals a modular design is adopted that does not conform directly to the 
theory, but rather the so-called modules of the theory are recast in compu­
tational terms. In fact, the relevant classes that are defined operate on very 
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similar objects. However, my partitioning does not rely on the particular repre­
sentation used. The spirit of the hypothesis is that linguistic theory is formed 
by heterogeneous types of information, and that the representation used to 
describe them is a derived concept. 

The two parsers differ in their purpose, as Crocker's goal is simulating human 
behaviour. Consequently the issues addressed and the model proposed are 
actually quite different in the implementation. 

First, Crocker adopts a parsing model that might be computationally inefficient, 
since he requires incremental interpretation. Admittedly, he adopts a point of 
view where global requirements might at time slow down particular components 
of the language understanding system. Since solid data on human behaviour are 
actually lacking, all positions are in fact justified. I have adopted the opposite 
position, since I assume that the correct model is a fast parsing algorithm, 
which works autonomously from the semantic interpreter. I find that exploring 
the issue of efficiency is crucial to develop models that are at the same time 
satisfactory engineering systems and plausible models of human performance. 

Secondly, Crocker differs in the solution he proposes for the prznciple interleav­
ing problem, which is done by modifying the fiow of control of the theorem 
prover by using the freeze predicate. While this is probably a more plausible 
model of human behaviour, as it assumes concurrent processing of indepedent 
modules, it raises some computational issues with respect to empty categories. 
Empty categories pose a particularly complex problem to the kind of model 
that Crocker assumes, as it is not clear how the parser would behave on in­
correct input. Assuming that the parser backtracks when it finds an error, 
a free postulation of empty categories might send the parser into an infinite 
computation of empty categories if the conditions for the their postulation are 
not immediately checked. Crocker does not discuss this point, but indeed his 
predicate ps_ec_eval must contain some checking of this sort for the parser to 
run. But notice that if this is true, then Crocker is forced to use lexical and 
thematic information in his PS module, decreasing the kind of encapsulation 
he wants to build in his parser. 

This model is very interesting, however, and especially the treatment of empty 
categories for verb-final languages and the postulation of the Trace Active Strat­
egy are particularly enlightening, in their separation of the postulation of traces 
from the linear recognition of the input. 



3 
THE PHRASE STRUCTURE 

COMPONENT 

3.1 INTRODUCTION 

In chapter 1, I have presented an hypothesis on how to partition the differ­
ent types of computations that need to be performed to recover the syntactic 
structure. I have argued that linguistic theory itself, in particular the content 
of the principles, provides a guideline to perform this partitioning. 

In the present chapter I substantiate this hypothesis and attempt to test it. 
The methodology is computational. A parser has been implemented, and the 
size of the data structure and the amount of nondeterminism in the tables will 
be used as indices of the effectiveness of the proposed phrase structure building 
procedure. The main result is that precompilation of structural configurations 
and categorial information increases the size of the grammar without reducing 
the ambiguity that has to be resolved on-line. I shall also discuss the literature 
on the interaction between syntactic and lexical ambiguity to argue that there 
is evidence that, in certain instances, lexical co-occurrence restrictions can be 
computed without taking structural information into account, which supports 
separating X rules from categorial information, as I suggest. 

I assume that the partitioning of the information predicted by the ICMH can 
be implemented in an LR(k) architecture. The choice of this type of pars­
ing architecture is independent of the ICMH, although strongly motivated by 
parsing factors. First, LR parsers have the valid prefix property, namely they 
recognize that a string is not in the language as soon as possible (other pars­
ing methods have this property as well, for instance Schabes (1991). A parser 
with this property is incremental, in the sense that it does not perform un­
necessary work, and it fails as soon as an error occurs. Second, the stack of 
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XII --+ yll X' specification 
XII -+ X' yll 
X' ---t X yll complementation 
X' ---t y" X 
X' --+ y" X' modification 
X' --+X/yll 

X" --+ y" XII adjunction 
X" ---t X" y" 
X --+ empty empty heads 
X" ---t empty empty xmaxn 

Figure 3.1 
Category-neutral Grammar 

an LR parser encodes the notion of c-command implicitly. This is crucial for 
fast computation of chains. Third, LR parsers are the fastest on unambiguous 
input. 

3.2 THE DATA STRUCTURES AND THE 
PARSING ALGORITHMS 

3.2.1 The Grammar 

In accordance with the definitions of IC Classes, notions such as headedness, 
directionality, sisterhood, and maximal projection are compiled and stored off­
line, because these notions belong to the same IC Class, configurations. These 
features are compiled into context-free rules in our parser. The full context-free 
grammar is shown in Figure 3.1. These X templates express the basic informa­
tion contained in X theory, namely that phrase structure rules are endocentric, 
that they encode the notion of maximal projection, and that they are order 
independent (see Appendix A for definitionsY Two crucial features of this 
grammar are that nonterminals specify only the X projection level, but not the 
category, and that rules are binary branching. 

1 It is important to note that not any encoding of context-free rules will do the job. 
Kornai (1983) has shown that X grammars have formal properties that are different from CF 
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The basic X rules are augmented by rules licensed by Trace theory, in particular 
by that part of Trace theory that deals with configurations. According to this 
module of GB, only heads and maximal projections can be empty categories. 
Trace theory does not specify the distribution of empty categories, which is the 
result of the interaction of several other modules. Consequently, the possible 
positions of empty categories are not restricted off-line in the current parser. 
In the absence of other constraining principles, empty categories can occur in 
every position where a maximal projection or a head can occur. 

Although interested in achieving succinctness of representation, I have not cho­
sen to use an IDjLP representation (Gazdar, Klein, Pullum, and Sag 1985). In 
the IDjLP formalism, the righthand side of rules does not encode linear order. 
Shieber (1984) shows that Earley's algorithm «Earley 1970) can be applied to 
these grammars by applying the dotted items to the rules in multiset notation, 
instead of using ordered rules. The saving in grammar size of this formalism 
is considerable. For instance, a single unordered rule such as S ~ abc d e 
corresponds to 5! = 120 rules in an ordered eFG. The number of state sets is 
reduced likewise. This is advantageous because not all linear orders need be 
spelled out in advance, since not all of them arise, but they are determined by 
a given input. However, the worst case running time of this algorithm is an 
exponential function of the number of input tokens, while Earley's algorithm 
worst case is proportional to the cube of the input. As Barton (1987, 80ff) 
shows, the worst case for CCFGs arises when the grammar is ambiguous and 
includes A rules. Natural languages have these properties. 

" Informally, the reason why Shieber's algorithm some­
times suffers from combinatorial explosion is that there are 
exponentially more possible ways to progress through an un­
ordered rule expansion than an ordered one. When disam­
biguating information is scarce the parser must keep track of 
all of them." (Barton 1987, 83) 

Barton shows also that the exponential time complexity is inherent in rDjLP 
recognition, independent of the choice of algorithm. In other words, IDjLP 
recognition suffers from unnecessary combinatorial explosion. (We refer the 
reader to Barton, Berwick, and Ristad (1987) for proofs and to Rounds (1991) 
for further discussion of the relevance of these results.) Since the main reason to 

grammars, hence a parser that uses context-free rules, which do not obey the X convention 
explicitly, are not going to capture the exact properties of natural languages. 
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adopt the ID /LP formalism is grammar succinctness, I have not adopted it and 
I have pursued succinctness of representation by partitioning the information 
usually encoded in a context-free grammar along different lines, specifically by 
separating X information from categorial information. 

3.2.2 The Parser 

Separation of structural from categorial information is obtained by compiling 
two tables that the parser consults on-line: an LR table, where X information 
about the shape of the tree is stored, and a second table, where information 
about the cooccurrence of category and subcategory information is stored. The 
LR algorithm takes an unannotated sentence as input and, by consulting these 
two tables and other auxiliary data structures, produces an annotated tree as 
output. 

The LR Table 

The grammar is compiled into an LALR(l) parse table. The table can have 
more than one action for each table entry, since the grammar is not an LR 
grammar. The parser can handle arbitrary context-free grammars, but is no 
longer deterministic. 

Three stacks are used: a stack for the states traversed so far; a stack for the 
attributes associated to each of the nodes in the state stack; a tree stack of 
partially recovered trees. 

The Parse Cycle 

The encoding of the parse cycle, described in Chapter 2 is different from the 
standard encoding of an LR parser, as it establishes a relation, while an LR 
parser is deterministic, hence it establishes a function from an input pair, a 
state and a token, onto a new state. Our parser is more elaborate and less 
restrictive, because it imposes conditions on the attributes of the states and 
it allows nondeterminism. Nondeterminism is reduced by using the table of 
lexical co-occurrences. 

Table of Lexical Co-occurrence and Left Corner Prediction 

The grammar used in the LR table is a pure X grammar, and it is not instan­
tiated by category. Thus, it is underspecified with respect to the categories in 
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the input, and many instances of LR conflicts can be simply teased apart by 
consulting knowledge about cooccurrence restrictions, which would be stored 
in the rules themselves if ordinary context-free rules were used. 

For example, if the current token is an 10 , the next token to be reduced must 
contain a V, as the only possible complement of 10 is VP by functional selection. 
Or if the current token is an intransitive verb, and the transition table allows 
the parser to either project one level up to V' without branching, or it requires 
the creation of an empty object NP, then, on consulting the sub categorization 
information, the parser can eliminate the second option as incorrect. For in­
stance, consider the standard context-free rules in (23), which are instantiated 
by category, which correspond to the three cases mentioned above. 

(23) a. V' -+ V NP 
b. V' ---> V 
c. I' -+ 10 VP 

Since our parser uses only X rules, the rules in (23) correspond to (24). 

(24) a. X' -+ Xo 
b. X' --> Xo YP 

Thus, when the parser has scanned the head (Xo), it will be in the followin,g 
state. (We use the dotted item notation, illustrated in Appendix A.3.) 

(25) a. X' -+ Xo • 
b. X' -+ Xo • YP 

In an LR parser, this situation is a shift/reduce conflict. According to the 
portion of the rule scanned so far, there are two licit next actions: YP could be 
shifted onto the stack «25)b) ,or X' --> Xo could be reduced «25)a). The choice 
of the correct action depends on the category and subcategory of the current 
token. Thus, if the current token is an intransitive verb, then only (24)a can 
apply, thus a reduction will be performed. On the other hand, 10 obligatorily 
requires that a VP be a continuation in the same rule, thus (24)b can apply. 
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a Cot! peo 
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HHi-::t:=+=+-+ (reduce 6, i) :«uce 9, % 
~/1. 

LR Table \ 

Co-occurrence Table 
Figure 3.2 
Interaction between LR Table and Co-occurrence Table 

The choice of possible next states is restricted to one, in most cases, by compar­
ing the options compiled in the LR table, which are deduced exclusively from 
the X grammar, and the prediction of the co-occurrence table, which depends 
on the actual input token. The way this prediction is accessed in the parser 
is shown visually in Figure 3.2. Wheneyer necessary, the parser can consult a 
table of "compatible next tokens" to decide quickly whether a reduction can be 
applied. If no reductions are compatible with the current token and the next, 
then the next token is shifted. 

To illustrate, figure 3.3 presents several cases of possible continuations in the 
context of head movement. They are all triggered by the configuration which 
is called unary..head, namely when a head, such as 10 or V 0 moves into the 
location of another head. The first case occurs when the infinitival marker, or 
a modal verb is the current token, which is directly projected to 10, then the 
following category must be a verb, consequently reductions of an empty head 
or an empty maximal projection are ruled out. The second case illustrates do 
support, e.g. the usage of do in the position of Co in questions, such as Who do 
you like? Again, the only possible continuation is an N"P. For declarative main 
verbs, we can consult the sub categorization frame of the verb to disambiguate 
whether they should be followed by an empty maximal projection, if they are 
transitive, or if the following token, which could be a PP, an adverb, or simply 
the end of input marker should be shifted onto the stack, because the verb is 
intransitive. 
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Next Token 
x XP NP to+ VV P+N adv $ 

10 
JVo 

V 

~: NP 

Vo 

WPntr 
PP adv $ 

t NP NPe NPe NPe 

iran 

Figure 3.3 
Co-occurrence Table for Unary Head Production 
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The co-occurrence table is also useful to reduce nondeterminism, when in need 
to encode the type of complement phrase that follows a particular verb. The 
category of the sentential complement of a verb cannot be stored in the phrase 
structure rules, since only X rules are used. 

(26) VP --> V CP 
VP --> V IP 

Rules such as (26) are needed because some verbs, for instance, raising verbs 
such as seem, appear are subcategorized for a CP complement which can op­
tionally be deleted in infinitivals, as is shown in (27). 

(27) a. John seems [IPt to like Mary] 
b. It seems [cpthat [lpJohn likes Mary]] 

Optional CP deletion is a lexical property, whichmany other verbs do not have. 
Such verbs, instead, license an empty complementizer, as shown in (28). 

(28) a. John thinks that Mary is sick 
b. John thinks 0 Mary is sick 

Encoding categorial restrictions in the table of co-occurrences enables the parser 
not to engage in useless computation. Thus, for example, when parsing the 
raising verb seem and the next token is the infinitival marker, then the parser 
knows it must insert a trace before shifting the infinitival marker to onto the 
stack. In the case of the verb think the empty complementizer is inserted if the 
following word is an NP. 

The Role of Syntactic Features 

It is important to note that, even if a co-occurrence table is used, which en­
codes categorial information, syntactic features such as ±Case still have an 
independent role in this parser, as predicted by our classification in IC Classes 
above. For example, GB theory analyzes passive sentences as having an empty 
category after the verb, from which the passive subject has moved, for instance, 
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John is loved t. The co-occurrence table predicts that after a transitive verb 
there should be an object, but it does not contain information about Case or 
{I-assignment capabilities of verbs, and thus does not use any of this informa­
tion. This information is encoded in the lexicon, and not reduplicated in the 
co-occurrence table. It is however necessary, and it is done on line, to determine 
the feature assignment of moved elements. For instance, if an empty category 
is posited as the object of a verb, then the empty category must be able to 
unify with a possible antecedent, with which it shares Case and {I features. 

3.3 COMPACTNESS OF THE DATA 
STRUCTURES 

The organization of the parser presented so far is computationally advanta­
geous. Consider again the X grammar that we use in the parser, shown in 
Figure 3.1. One of the crucial features of this grammar is that the nontermi­
nals are specified only for level and headed ness. This version of the grammar 
is a recent result. In previous implementations of the parser, the projections of 
the head in a rule were instantiated. (See also Berwick (1991a), who suggests a 
similar kind of partial instantiation, as a possible way of representing X theory.) 

I thought that specifying the category label would reduce nondeterminism in 
the compiled parse table, the rationale being that addition of information could 
only reduce ambiguity. Such a move was unjustified, however, and contradicted 
our definition of efficient compilation as compilation of dependent modules. 

In fact, the prediction made by the ICMH is that compiling together X theory 
and categorial information is going to increase the size of the grammar without 
producing any reduction in the non-determinism contained in the grammar, 
because category/subcategory information belong to a different Ie Class than 
structural (i.e. X) information. This hypothesis was tested by comparing 
indices of ambiguity across different grammars. 

3.3.1 Method and Materials 

The size of the grammar is measured as the number of rules or number of states 
in the LR table. The amount of non-determinism is measured as the average 
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1 s ---+ x2; 9 xl ~ y2 xl; 
2 x2 ~ y2 xl; 10 y2 ~x2 

3 x2 ~ xl y2; 11 y2 ---+ w2 
4 x2 ---+ y2 x2; 12 y2 ---+c 
5 x2 ---+ x2 y2; 13 xO ---+ wO 
6 xl ---+ xO y2; 14 xO ---+c 
7 xl ---+ y2 xO; 15 x2 ~ xl; 
8 xl ---+ xl y2; 16 xl ---+ xO; 

Figure 3.4 
Grammar 1, which encodes X theory directly 

number of conflicts (the ratio between the number of actions and the number 
of entries in a table.) 2 

Three grammars were constructed, constituting (pairwise) a close as possible 
approximation to minimal pairs (with respect to IC Classes). They are shown 
in Figure 3.4, Figure 3.5, and Figure 3.6. Grammar 1 differs minimally from 
Grammar 2, because each head is instantiated by category. The symbol YP 
stands for any maximal projection admitted by linguistic theory. Grammar 
3 differs minimally from Grammar 2, because it also includes some subcate­
gorization information (such as transitive, intransitive, raising), and some co­
occurrence restrictions and functional selection. Moreover, empty categories 
are "moved up", so that they are encountered as high in the tree as possible. 
These three grammars are then compiled by the same program (BISON) into 
three (LA)LR tables. The results are shown in Table 3.1, which compares some 
of the indices of the non-determinism in the grammars to its size, and Table 
3.7, which shows the distribution of actions in each of the grammars. 

2 The average number of conflicts in the table gi ves a rough measure of the amount of non­
determinism the parser has to face at each step. However, it is only an approximate measure 
for at least two reasons: taking the mean of the conflicts abstracts away from the size of 
the grammar, which might be a factor, as the search in the table becomes more burdensome 
for larger tables; moreover, it does not take into account the fact that some states might be 
visited more often than others during an actual parse. 
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1 --+ c2 18 a1 -.. aO y2 
35 il --+ iO 

s 
36 v2 --+ vI 

2 c2 -.. y2 c1 19 al -.. y2 al 
37 vI -.. vO 

3 cl --+ cO y2 20 al -.. al y2 
38 a2 -.. al 

4 cl -.. y2 cl 21 a2 --+ y2 a2 
39 al --+ aO 

5 cl -+ cl y2 22 p2 -+ y2 pI 
40 p2 -.. pI 

6 c2 -+ y2 c2 23 pI -+ pO y2 
7 i2 --+ y2 il 24 pI -.. y2 pI 

41 pI -+ pO 
42 d2 -.. dl 

8 il --+ iO y2 25 pI -.. pI y2 
43 dl -.. dO 

9 il -+ y2 il 26 p2 -+ y2 p2 
44 y2 

10 il --+ i 1 y2 27 d2 -.. y2 dl 
-..[ 

45 Y2 --+ n2 
11 i2 -+ y2 i2 28 dl --+ dO y2 

46 y2 -+ c2 
12 v2 --+ y2 vI 29 dl - y2 dl 
13 vI -.. vO y2 30 dl - dl y2 

47 y2 --+ i2 

14 vI --+ y2 vI 31 d2 -.. y2 d2 
48 y2 --+ v2 

15 vI -.. vI y2 32 c2 -..cl 
49 y2 --+ a2 

16 v2 -+ y2 v2 33 c1 -.. cO 
50 y2 --+ p2 

17 a2 -.. y2 al 34 i2 - il 
51 y2 -+ c2 
52 y2 --+ d2 

Figure 3.5 
Grammar 2, where heads are instantiated by lexical categories 

NB OF NB OF NB OF AVERAGE 

ENTRIES ACTJO~S RULES CONFLICTS 

GRAMMAR 1 63 123 16 1.95 
GRAMMAR 2 793 1319 51 1.78 
GRAMMAR 3 251 962 41 3.83 

Table 3.1 
Comparison of the 3 grammars (compiled into LR tables) 

!'.'UMBER OF ACTIONS 
ENTRIES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
GRAMMAR 1 38 6 8 8 1 2 
GRAMMAR 2 465 68 168 6 42 
GRAMMAR 3 144 43 3 8 5 4 30 14 

Table 3.2 
Number of actions in the 3 LR tables 
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1 s --4 i2 
22 vOint 2 --4 c2 

~{ 

s 
23 vI --4 vOt n2 

3 c2 --4 y2 c1 
24 vOt 

4 c2 --4c1 
--4 vt 

5 c2 25 vOt --4 { 
--4 { 

26 vI --4 vOrais i2 
6 c1 --4 cO i2 
7 c1 --4 cO 27 vOrais --4 vralS 

8 cO 28 vOrais -+{ 
~c 

29 vI ~ vOint c2 
9 cO --> ( 

30 y2 ~ c2 
10 i2 -- y2 il 
11 i2 --> il 31 y2 --> i2 

12 i2 32 y2 ---+ n2 ---+( 
33 y2 - \'2 13 il --> iO v2 

14 i1 --> iO 34 y2 ~ p2 

15 iO 35 y2 ---+{ 
--+ 1 

36 n2 
16 iO 

---+n 
-->{ 

37 n2 
17 v2 --> y2 vI 

--4 { 

38 p2 --4 pO y2 
18 v2 -->{ 

39 p2 19 v2 --> vI 
-->( 

20 vI --4 vOint p2 40 pO -p 

21 vOint --> vint 41 pO -->{ 

Figure 3.6 
Grammar 3 contains information about functional selection and co-occurrence 
restrictions 
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3.3.2 Discussion 

Consider Grammar 1 and Grammar 2 in Table 3.1. Grammar 2 has a slightly 
smaller average of conflicts, while its number of rules increases 3 times and the 
number of entries increases 12 times, compared to Grammar 1. This is the 
predicted expansion of the grammar without decrease in non-determinism. As 
the number of rules is expanded, but no "filtering" constraint is incorporated in 
Grammar 2 with respect to Grammar 1, this result might not seem surprising. 

However, the ICMH is also confirmed by the other pairwise comparisons and 
by the global results. Grammar 3 has a higher number of average conflicts 
than Grammar 2, but it is smaller, both by rules and LR entries, so it is more 
compact. Notice that adding information (subcategory, selection, etc.) has a 
filtering effect, and the resulting grammar is smaller. However, adding infor­
mation does not reduce non-determinism. Compared to Grammar 1, Grammar 
3 does not show any improvement on either dimension. Grammar 3 is both 
larger (4 times as many LR entries) and more non-deterministic than Gram­
mar 1. Globally, one can observe that an increase in grammar size, either as 
a number of rules or number of LR entries, does not correspond to a parallel 
decrease in non-determinism. 

As Table 3.2 shows, the distribution of the conflicts in Grammar 3 presents 
some gaps. This occurs because certain groups of actions go together. One 
mainly observes two patterns of conflicts. In those states that have the highest 
number of conflicts, all rules that cover the empty string can apply, while in 
those states that have an intermediate number of conflicts, only those rules can 
apply that have a certain X projection level, and that cover the empty string 
(e.g. all XP's, independent of category, that cover the empty string). An exam­
ple of conflicts is given in Figure 3.7. So, for instance, all Xo projections present 
the same (reduce 33), (reduce ,44) conflict. This observation confirms that 
categorial information does not reduce non-determinism, but rather it multi­
plies out with structural contgurations. Even introducing "filtering" lexical 
information (co-occurrence restrictions and functional complementation) does 
not appear to help. In fact, patterns of ambiguities caused by empty categories 
occur according to structural partitions. 

One can conclude that the qualitative observation supports the numerical re­
sults: Introducing categorial information is not advantageous, because it in­
creases the size of the table without decreasing significantly the average num­
ber of conflicts. Moreover, by using a category-neutral grammar, the number 
of rules that are compiled in the LR table is very small. Using LR compila-
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ytab(l,X,Actions):-ytabl(X,Actions). 
ytabl($,[(reduce,33),(reduce,44)]). 
ytabl(aO,[(reduce,33),(reduce,44),(shift,5)]). 
ytabl(al,[(shift,15)]). 
ytabl(a2,[(shift,14)]). 
ytabl(cO,[(reduce,33),(reduce,44),(shift,l)]). 
ytabl(cl,[(shift,9)]). 
ytabl(c2,[(shift,21)]). 
ytabl(dO,[(reduce,33),(reduce,44),(shift,6)]). 
ytabl(dl,[(shift,19)]). 
ytabl(d2,[(shift,18)]). 
ytabl(iO,[(reduce,33),(reduce,44),(shift,2)]). 
ytabl(il,[(shift,ll)]). 
ytabl(i2,[(shift,10)]). 
ytabl(n2,[(reduce,33),(reduce,44),(shift,7)]). 
ytabl(pO,[(reduce,33),(reduce,44),(shift,4)]). 
ytabl(pl,[(shift,17)]). 
ytabl(p2,[(shift,16)]). 
ytabl(vO,[(reduce,33),(reduce,44),(shift,3)]). 
ytabl(vl,[(shift,13)]). 
ytabl(v2,[(shift,12)]). 
ytabl(y2,[(shift,22)]). 
ytabl(_,[(reduce,33)]). 

Figure 3.7 

CHAPTER 3 

Example of Conflicts in the Table compiled from Grammar 2. The table entry for 
state 1 is shown (indicated by ytabl). $ as usual indicates end of input. aO, ai, a2 
indicate the Xo, XI, X" projections for the category adjective. 

tion techniques then becomes feasible. It is well-known that these compilation 
techniques can generate parse tables of thousands of states, if applied to an 
ordinary context-free grammar, with clear problems for maintenance. From 
the linguistic point of view, a parse table with so many states would miss the 
generalizations about interleaving of configurations and filtering constraints. 
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NB OF NB OF NB OF AVERAGE 

ENTRIES ACTIO!':S RULES CONFLICTS 

GRAMMAR 1 19 62 16 3.26 
GRAMMAR I' 19 46 13 2.42 
GRAMMAR 2 112 f)--_0·) 51 2.28 
GRAMMAR 3 144 368 41 2.62 

Table 3.3 
Comparison of the 3 grammars (compiled into LL tables) 

3.3.3 Extending the test to other compilation 
techniques 

The effects discussed in the previous section could be an artifact of the com­
pilation technique. In order to check that this is not the case, the same three 
grammars were compiled into LL and Left Corner (LC) Tables. In the LL al­
gorithm, the mother node is recognized top-down before its children, and the 
parser builds a leftmost derivation; the LC algorithm combines the bottom-up 
recognition of the extended left-corner of each rule to the top-down recognition 
of the remaining part of the righthand side of the rule. By comparing the re­
sults obtained in the LR, LL and LC compilations, we can compare the effects 
of varying the order in which grammatical and input information is used. 

LL compilation: Discussion 

Results similar to the LR compilation, although less clear cut, seem to hold also 
when one considers the LL compilation method, thus confirming the intuition 
that they reflect some structural property of the grammar, and are not an 
artifact of the LR compilation. 

The results of the compilation of the same grammars into LL tables is shown 
in Table 3.3. Grammar I' is a modified yersion of Grammar 1, without adjunc­
tion rules. These figures show that there is no relation between the increased 
specialization of the grammar and the decrease of non-determinism. One can 
observe that, differently from the compilation in Table 3.1, the LL compilation 
does not maintain the paired ran kings of actions and rules. So, for the LL 
Table, the co-occurrence of lexical categories does not playa filtering role. 
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Ns OF Ns OF Ns OF AVERAGE 
ENTRIES ACTIONS RULES CONFLICTS 

GRAMMAR 1 49 136 16 2.77 
GRAMMAR 2 1456 4030 51 2.76 
GRAMMAR 3 398 610 41 1.53 

Table 3.4 
Comparison of the 3 grammars (compiled into LC tables) 

Globally, there appears to be an inverse relation between the size of the gram­
mars as number of rules and the average number of conflicts: the larger the 
grammar the smaller the number of conflicts. This might make one think 
that there is after all some sort of relation between grammar size and non­
determinism. However, this is not true if we look at the number of entries 
as the relevant measure of size. Moreover, if one looks at Grammar I', which 
is smaller than Grammar 1, one can see that the average number of conflicts 
decreases quite a bit. This confirms a weaker hypothesis, which is nonetheless 
related to the initial one, namely that non-determinism does not vary in an 
inverse function to "content of information". 

Some qualitative observations might help clarify the sources of ambiguity in the 
tables. In all three grammars, the same ambiguities are repeated, for each ter­
minal item. In other words, all columns of the LL table are identical (with the 
exception of cell [XO, wp] in Grammar 1.) This suggests that lexical tokens do 
not provide any selective information. Moreover, analogously to the LR tables, 
projections to the same level have the same pattern of conflicts (multiplied out 
by category in Grammar 2, for example.) 3 

LC-compilation: Discussion 

The same three grammars were compiled in left corner (LC) tables. The result 
of the compilation are shown in Table 3.4, and the distribution of the conflicts is 
shown in Table 3.5. As can be seen from Table 3.4, Grammar 2 is 3 times larger 
than Grammar 1 and it is compiled in a table that has 29 as many entries, but 
the average number of conflicts is not significantly smaller. 

3In all cases, this is caused by the X form of the grarrunar. Namely, the loci of recursion 
and gapping are at both sides of the head, and anything can occur there. Eliminating this 
property would be incorrect, as it would amount to eliminating one of the crucial principles 
of GB, namely move-O', which says that any maximal projection or head can be gapped. 
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NUMBER OF ACTIONS 

ENTRIES 1 2 3 4 5 6 7 18 19 
GRAMMAR 4 18 15 9 3 
GRAMMAR 2 602 702 48 96 8 
GRAMMAR 3 282 92 4 4 4 12 

Table 3.5 
N umber of actions in the 3 compiled LC tables 

The interpretation of the LC table derived from Grammar 3 poses a problem 
for the ICMH. Compared to Grammar 1, Grammar 3 is bigger, as it contains 
category and some co-occurrence information, but its average of conflicts is 
smaller. Thus it seems that adding information reduces non-determinism. On 
the other hand, compared to Grammar 2, both the table and the average num­
ber of conflicts are smaller. Thus, the ICMH is confirmed only by a global 
assessment of the relation between the content of information and the average 
conflicts, but not by pairwise comparisons of the grammars. Notice however, 
that the difference in the two pairwise comparisons confirms that simple cat­
egorial information does not perform a filtering action on the structure, while 
lexical co-occurrence does. This is precisely what I propose to compile in the 
lexical co-occurrence table. 

The qualitative inspection of the tables confirms the clustering of conflicts 
which is suggested by Table 3.5. Grammar 1 and Grammar 2 show the same 
patterns of conflicts as the LR and LL tables: conflicting actions cluster with 
the bar level of the category. So, for example, in Grammar 2 one finds that 
when the left corner is a maximal projection the action is unique, while when 
the corner is a bar level projection there are multiple actions and they are the 
same, independently of the input token. In Grammar 3 the same patterns of 
actions are repeated for each left corner, independently of the goal or of the 
input token. 

Globally, then, the qualitative inspection of the compiled tables is coherent 
across compilation methods and appears to support the ICMH, as the inter­
action of structural and lexical information is the cause of repeated patterns 
of conflicts. Quantitatively, the results, which are very suggestive in the LR 
compilation, are less clear in the other two methods. However, in no case they 
clearly disconfirm the hypothesis. I conclude that categorial information should 
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be factored out of the compiled table and separate data structures should be 
used. 

3.4 PSYCHOLINGUISTIC SUPPORT 

I turn now to discussing the properties of the structure building algorithm 
in the light of the known evidence on the interaction between categorial and 
structural information. 

The parser presented here has the following properties: 

• It compiles X information separately from categorial 
co-occurrence information 

• It consults these two tables on-line, interleaving them at each 
input token if necessary 

• It uses one token lookahead to compile the LALR table, but it 
has no lookahead facility at run-time. 

The previous section has shown that efficiency arguments based on compact­
ness of data structure support the separation of structural from co-occurrence 
information. 

Parsing by using two different parse tables, which contain different types of 
information, makes specific predictions about the on-line availability of infor­
mation to the human sentence processor. In particular, it claims first that the 
interleaving of structural and categorial (i.e. lexical) information is done at 
each input token. Consequently, it predicts that sub categorization information 
of verbs is used immediately. In fact, more specifically, subcategory informa­
tion is used to disambiguate otherwise structurally ambiguous input. Second, 
the organisation of data structures that we propose predicts that if the LR 
table does not have a conflict at a certain point in the parse, there will be no 
apparent difficulty. Finally, it predicts that, if necessary, the parser can consult 
the co-occurrence table directly. 
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On the Use of Subcategory 

The token-by-token interleaving of the two tables can be interpreted in the light 
of the present debate on the use of sub categorization. Consider the following 
sentences (adapted from Frazier and Rayner (1982)): 

(29) a. Sherlock Holmes didn't suspect the beautiful young countess. 
b. Sherlock Holmes didn't suspect the beautiful young countess 
was a fraud. 

The verb suspect subcategorizes both for an NP and a clausal complement, thus 
an NP following the verb is locally ambiguous as a potential object of the verb, 
as in the first sentence, or as the subject of a following clause, in the second 
sentence. 

This kind of local ambiguity has been studied in several experiments. Con­
tradictory results have been found. Some results support a model of sentence 
processing which is driven by the phrase structure rules of the grammar, and, 
therefore, does not use word-specific lexical information, but only syntactic in­
formation (Frazier and Rayner 1982; Ferreira and Clifton 1986; 1vIitcheli 1987; 
Rayner and Frazier 1987; Ferreira and Henderson 1990). Other results support 
a model which assumes that lexical information is used as soon as possible 
and that parsing is driven by lexical expectation (Ford, Bresnan, and Kaplan 
1982; Mitchell and Holmes 1985; Holmes, Stowe, and Cupples 1989; Trueswell, 
Tanenhaus, and Kello 1993). 

Three experiments have supported the theory of phrase-structure-driven pro­
cessing (Frazier and Rayner 1982; Ferreira and Henderson 1990; Rayner and 
Frazier 1987). They test the hypothesis that the human sentence processor 
adopts general parsing strategies, based on economy of syntactic representa­
tion. More precisely, the parser attempts to build the representation with the 
smaller number of nodes (Minimal Attachment). When possible alternatives 
have the same number of nodes, an overriding strategy of Late Closure oper­
ates, since the parser has the tendency to incorporate incoming material into 
existing nodes. 

In an eye-tracking study, Frazier and Rayner (1982) find increased reading 
times at the disambiguation region for the reduced clauses (b examples above), 
which they interpret as evidence of a complexity effect, caused by the garden 
path in the conditions where the ambiguous NP is not the object. These re-
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suits are confirmed by Ferreira and Henderson (1990), where the NP /Clause 
ambiguity is studied. Although they explicitly control for the bias of the verbs, 
following the norms of Connine, Ferreira, Jones, Clifton, and Frazier (1984), 
they still find evidence in favour of a Garden Path model of parsing, namely 
no interaction with verb type. Rayner and Frazier (1987) test a corollary of 
Minimal Attachment: if the increased reading times are an effect of reanalysis 
at the disambiguating region, then the clausal complement with an overt com­
plementizer should be parsed faster since it is not ambiguous, as also Holmes, 
Kennedy, and Murray (1987) note. They find a difference in reading times, 
with the unambiguous sentence being parsed faster. 

The opposite position supports a view where both syntactic class and word­
specific lexical information is used, so that a particular preference for a given 
continuation depends on the verb usage. This model, which has been called 
the Lexical Guidance Model (Ford, Bresnan, and Kaplan 1982; Mitchell and 
Holmes 1985; Holmes, Stowe, and Cupples 1989; Trueswell, Tanenhaus, and 
Kello 1993), predicts a tendency to assemble an NP following a verb as the 
direct object only if the verb itself is biased for an NP continuation, with 
consequent need for reanalysis, if the sentence being parsed is in fact a sentence 
with a reduced clausal complement, as (29)b above. On the other hand, if the 
verb is biased for a clausal continuation, the analysis of sentences such as (29)b 
should not show any disruption. 

Two studies have found an interaction between verb type and processing time 
(Holmes, Stowe, and Cupples 1989; Trueswell, Tanenhaus, and Kello 1993). 
These experiments found an increase in processing times only for NP-bias verbs, 
but not for S-bias verbs, thus suggesting that the parser uses lexical information 
immediately. The experiments confirm the hypothesis that sub categorisation 
becomes available right after the verb is recognized, and that individual lexical 
biases of verbs influence structural attachments. 4 

In conclusion, it appears that sub categorization is used immediately, although 
some of the results need to be refined.(See also Gorrell (1991), that shows that 

4 Of course, the results that led to the Garden Path position must be explained. Notice 
that a simple frequency account is not tenable. Although it is true that the predictions of 
the Garden Path Theory are empirically indistinguishable, in the reported experiments, from 
a general preference for direct object attachment of an NP following a verb. Merlo (1994) 
discusses corpus counts which show that all experiments were rather well-balanced, with the 
possible exception of the Late Closure experiment in Frazier and Rayner (1982). Even in 
cases in which the stimuli were strongly biased against a Minimal Attachment continuation, 
complexity effects were found. Thus the frequency hypothesis which has been proposed by 
the supporters of the Lexical Guidance Model is not tenable in its simplest form, as it would 
not explain the findings of the Garden Path experiments. 
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the results in Mitchell (1987), that supported an extreme version of the garden 
path model, might be an artifact of the experiment.) These experimental results 
support the use of lexical information that we suggest. 

On the Use of Lookahed 

In the present parser a kind of lookahead is used, which might be considered too 
powerful in the light of the current psycholinguistic evidence. It is now widely 
accepted that humans do not use a lookahead device, otherwise they woud 
not experience garden paths in most instances of short strong garden paths. 
However, the use of one token lookahead at compile time, when compiling the X 
grammar into an LALR( 1) is a much weaker mechanism than using one token 
of input, and all the information it can provide, as a disambiguating device. 

An LALR(l) parsing table is a parsing table that has been compiled by using 
one token look-ahead in the grammar, in this instance the X grammar. If the 
grammar is not LALR(l), the table entries will have multiple actions. 

We can test the adequacy of the particular parser we propose, by constructing 
a grammar, and then checking that for the garden path sentences which could 
be disambiguated by one token lookahead, the parser presents conflicts at the 
same point in which the human sentence processor garden-paths. For example, 
in The horse raced past the barn Jell, we want to check that the LALR(l) table 
has a conflict in the state which corresponds to the input token raced. 

The test is simple. We have constructed an (overdetermined) grammar, in 
which all the categories are instantiated, which could parse the three sentences 
in (30). The grammar is shown in 3.8. This grammar is then compiled into an 
LALR(l) table. 

(30) a. Mary expected Eric to leave 
b. While she mended the sock fell off her lap 
c. The horse raced past the barn fell 

Even if the parse table is compiled by using one token look-ahead, the trace of 
the parse for these sentences shows that there are conflicts at the state where 
the parse must attach Eric and The sock, and when it must decide whether 
raced is part of a main sentence or rather of a reduced relative clause. Since no 
other look-ahead is used, we can conclude that using an LR table is plausible. 
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1 IP -+NP II 11 NP ~det n 
2 IP -+CP IP 12 NP ~n 

3 IP -+NP to VP 13 NP ~NPCP 

4 II -+10 VP 14 NP ~f. 

5 10 -+f. 15 CP -+OP Cl 
6 VP -+v PP 16 CP -+Cl 
7 VP -+v NP 17 Cl ~CO IP 
8 VP ~v 18 CO ~while 

9 VP -+v IP 19 CO ~[ 

10 PP -+p 20 OP ~f. 

Figure 3.8 
LALR Grammar 

3.4.1 On the Interaction between Lexical and 
Structural Ambiguity 

Categorial Ambiguity with Structural Difference 

Experimental evidence on the resolution of categorial ambiguity is naturally ex­
plained if a parser is posited that separates structural from lexical information, 
and where information about lexical co-occurrence is organised independently 
of structural information and can be accessed directly. 

Frazier and Rayner (1987) report on a reading experiment in which they record 
eye-movements. The experiment is designed to test what mechanism is used 
to resolve categorial ambiguity. Three hypotheses are compared. The first 
hypothesis assumes that categorial ambiguity is resolved with a mechanism 
similar to the one for syntactic ambiguity, namely by choosing a first analysis, 
which is then discarded if it turns out to be wrong, causing backtracking. 
The second option would take into account the fact, which has been shown 
independently (Seidenberg, Tanenhaus, Leiman, and Bienkowski 1982; Swinney 
1979), that in retrieving lexically ambiguous items, all entries of the item are 
accessed for a short time. It could be hypothesized that the parser pursues all 
analyses in parallel. Finally, a third hypothesis rests on the observation that 
lexical ambiguity (unlike syntactic attachment ambiguities) is usually resolved 
in a very local environment, within 2 or 3 words. Thus the parser would 
delay building structure and look ahead for disambiguating material. A pair 
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of locally ambiguous and unambiguous sentences used III the experiment are 
shown in (31).5 

(31) a. The warehouse FIRES numerous employees each year. 
b. This warehouse fires numerous employees each year. 

The results of the experiment show that processing times are shorter for the 
two ambiguous target words than for the corresponding words in the unambigu­
ous sentences. Moreover, processing time of the disambiguating region in the 
ambiguous condition is more than in the unambiguous one, i.e. there is a slow­
down. No main effect due to category difference was observed for ambiguous 
conditions, while consistently longer times for the A-N group were found in the 
unambiguous conditions. The disambiguating effect was triggered immediately, 
when the first non ambiguous token (numerous) was encountered. 

These results are compatible only with the delay hypothesis, as the first analysis 
hypothesis predicts no processing difference between the unambiguous control 
and the preferred reading (the N-V interpretation), while the parallel hypothe­
sis predicts longer processing time in the ambiguous portion. More specifically, 
the speed up in the ambiguous portion is predicted by the delay hypothesis be­
cause a costly operation such as structure building is suspended, while the slow 
down in the disambiguating portion can be attributed to the fact that struc­
ture building is resumed. The slower processing for the A-N sequence in the 
unambiguous sentences is explained by the fact that agreement disambiguates 
this sequence earlier than the N-V sequence. 

These results show that the parser does not use several tokens of lookahead 
(Marcus 1980; Fong 1991), or parallel computation, as such parsers would be 
able to solve the ambiguity without disruption. On the other hand, a lexically 
driven parser (Frank 1992; Abney 1989) could not recover the necessary infor­
mation to disambiguate the sentence. As structural information is encoded in 
the lexicon, these parsers would do an exhaustive search for all the possible 
continuations of all the category labels that can be attributed to the current 
linguistic item. 6 

5The sentences are presented with the addition of typographical conventions which were 
not used in presenting the material during the experiment. The ambiguous part is shown in 
all capitals and the disambiguating portion is shown in italics. Frazier and Rayner (1987) 
also argue that the stress pattern of the sentences with the A-N sequence is such that these 
sequences cannot be analysed as a compound noun. 

6 Frazier (1989) argues convincingly that these results point away from lexical generation 
of syntax, such as categorial grammars or, we add, licensing grammars, would imply. She is 
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A parser that can enter "delay mode" must recognize immediately that a struc­
tural ambiguity has been reached. Thus, as a first property, the parser must 
have some facility to distinguish the inability to assign a successful parse be­
cause of structural ambiguity, from, let's say, incorrect feature assignment. The 
compilation of X rules into an LR table guarantees that the recognition of con­
flicts will occur at the point of ambiguity, because an LR parser has the valid 
prefix property. (See discussion in chapter 5.) Moreover, for the delay parser 
not to stall, it must be able to trigger some alternative routines, to suspend 
structure building, but continue some other kind of computation that will re­
solve the structural ambiguity. 

Consider what happens in parsing the sentence in (31 )a. (I assume a slightly 
simplified grammar for ease of exposition, where non-binary rules are allowed 
in limited circumstances. Nothing in the discussion that follows hinges on it.) 
The parser scans the input and builds structure according to the grammar. The 
warehouse fires is represented as the two following rules in the grammar. 

(32) a. XP ---t Det Y2 Xl 
b. XP ~ Det Xl 

The parser scans the warehouse and builds the structure indicated before the 
e. 

(33) a. XP ~ Det • Y2 Xl 
b. XP ---t Det • Xl 
c. Xl -+ XO • 

(33) shows that after scanning warehouse, the parser must decide which rule to 
apply. If warehouse is an Adjective, then it must be projected to Y2, and the 
rule (33)a will be applied, (yielding the item XP -+ Det Y2 • Xl), which means 
that the AP has been scanned but the NP is not yet finished. If warehouse is 
a noun, then (33)b will be applied, (yielding the item XP -+ Det Xl • ). The 

however incorrect, we believe, in concluding that these results cause difficulty for principle­
based grammars, such as GB, and principle-based parsing. She takes X theory to mean that 
the properties of a phrase are projected from the head, and that principle-based parsing is 
necessarily against grammar compilation. Neither assumption is necessary for a principle­
based parser, but they both are for what Frazier has in mind as an example of principle-based 
parsing, namely Abney (1986), which is a lexically driven parser. 
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dot at the end of the rule signals that an entire constituent has been seen (the 
NP), thus the NP constituent is built, and the parser enters the appropriate 
state to build a VP. 

In order to choose between one of these two actions, however, a disambiguating 
token must be seen. The parser scans ahead: it looks at fires, which does not 
provide any disambiguating material, and then it inspects numerous. 

When the parser reaches numerous, which is unambiguously an Adjective, the 
parser infers, based on co-occurrence knowledge and preference, that an adjec­
tive is a left corner of an NP, which is more often found after a V, hence fires 
is a V, and warehouse is a noun. Thus, the parser chooses rule (33)b, it closes 
the NP and it starts the VP. Note that while this is being done, the input has 
already been scanned past numerous. 

This mechanism is simply the reiterated application of consulting co-occurrence 
of categories, which are independently encoded, without any information of 
configuration. At this point, the disambiguation of the conflict is achieved, 
and the portion of input warehouse fires is structured into the appropriate 
constituent. This corresponds to the slow down effect observed in the non­
ambiguous region. 

In our parser, then. the delay in categorial selection can be simply explained by 
saying that the algorithm that is used ordinarily to interleave the LR table with 
the co-occurrence table is suspended, and a different procedure is used, trig­
gered by the lexical ambiguity of the input. Thus, no unnecessary redundancy 
is introduced, as the data structures and the compilation tables are unaltered. 

In a parser that did not separate category from configuration, such table of 
cooccurrence would have to be stored, creating a redundancy with the LR 
table. 

The facts reported in Frazier and Rayner (1987), about delay of categorial 
information, show that categorial information and structural information are 
not compiled into the same table or data structures, since they can be accessed 
at different times on-line. Thus, they support our approach to X parsing, 
rather than the interpretation put forth in Dorr (1990) or Fong (1991), where 
the phrase structure rules obey the format dictated by X theory, but they 
are instantiated by category and then compiled off-line. It also supports the 
token-by-token interleaving of the two tables. A more powerful device would 
fail to capture the evidence of the delay. For instance, a co-occurrence table 
that precomputed sequences of 3 words generates the effect that no temporary 
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ambiguity is detected, which would not account for the speed up w parswg 
time. 7 

Categorial Am,biguity 'witho'ut Structural Difference 

Another piece of evidence that is naturally modelled by our design is lexical 
ambiguity which does not entail structural ambiguity. In a parser that is driven 
by X configurations, like ours, we expect that sentences such as those in (34), 
from Pritchett (1992), should not cause garden path effects, as they do not 
correspond to any conflicting actions in the parse table. This is because the only 
difference, according to Pritchett, is in the category label, while the structure 
is the same: (34)a shows the auxiliary use of HAVE, while (34)b shows its use 
as a main verb, No processing breakdown occurs in parsing these sentences. 

(34) a. Have the students devoured their dinners? 
b. Have the students devoured by the lions 

Pritchett (1992) assigns the same X configurations to these sentences as shown 
in Figure 3.9. 

Thus we correctly predict that these sentences cause no difficulty, even without 
use oflookahed, which was instead used by Marcus (1980) to capture these facts. 
(Pritchett (1992) also discusses small clause constructions under perception 
verbs and causative constructions.) 

Apparent counterexamples are cases in which lexical ambiguity does cause pro­
cessing breakdown, such as those shown below. (The garden path effect is noted 
by?) 

(35) a. ? The prime number few. 
b. The prime number seven. 

7In a recent paper, MacDonald (1994) argues that the unambiguous condition in Frazier 
and Rayner (1987) could have introduced an extra factor of difficulty, as it used a deictic 
determiner. If other types of disambigautions are used the speed up in the ambiguous re­
gion for the NN interpretation disappears, while it is still present in the NV interpretation. 
MacDonald (1994) provides an alternative explanation of these facts in a constraint-based 
framework. 
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C' 
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~ 
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V 

V' 
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~ 
10 VP 

I 
V 

Figure 3.9 
The structural representation of the sentences in (34) 

(36) a. ? The old train the young. 
b. The old train came into town. 

At first sight these cases present the same kind of ambiguity as the warehouse 
fires, namely an A-No /N- V ambiguity. Pritchett (1992) however argues convinc­
ingly that there is a basic difference between the two. In particular, the old 
which is derived from the adjective old, is a zero-level nominal, i.e. a nominal 
that cannot undergo modification, quantification and that must be interpreted 
as a generic, as the examples in (37) show. 

(37) a.?? The ugly old 
b.?? All old/ Some old 
c.?? The old from New York 
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As such, Pritchett argues, the old is not listed as an independent item in the 
lexicon, and only the categorization as adjective is at first accessed and incor­
porated in the structure, giving [NP the old train]. When the young is accessed 
reanalysis must occur. In the instance of the warehouse fires, on the other hand, 
a true lexical ambiguity, listed in the lexicon, causes the parser to behave as 
described above.8 

8Pritchett (1992), it must be noted, does not accept Frazier and Rayner (1987)'s analysis 
of such cases. He argues that warehouse fires is a compound nominal, thus warehouse is 
uni vocally accessed from the lexicon as an N, and integrated into the structure. The ambiguity 
of fires as N or V does not cause any processing breakdown because either interpretation can 
be incorporated into the structure without violating the OLLC. As Pritchett assumes that 
processing proceeds unimpeded, however, his analysis does not account for the speed up in 
the ambiguous region found by Frazier and Rayner. Moreover, it incorrectly predicts anomaly 
effects. For instance, if nominal adjectives are categorized as Ns, and they receive a B-role 
as soon as they are incorporated into the structure, as Pritchett assumes, then Mary talked 
to the basketball, presented as a prefix of Mary talked to the basketball player should cause 
an anomaly effect. Intuitive evidence shows that it does not. (I thank Paul Gorrell for this 
observation. ) 



4 
THE COMPUTATION OF 
SYNTACTIC FEATURES 

4.1 INTRODUCTION 

In the previous chapter, I have illustrated how configurations and categorial 
information are encoded in the parser. They are represented as tables which 
are consulted on-line by an LR algorithm. Not all the principles of the grammar, 
however, are represented in these tables. In particular the annotation of the 
nodes by what I have called syntactzc fwtures, e.g. {;I-role and Case is performed 
on-line, while building the tree. Feature assignment. can be strictly local to one 
of the configurations defined by X theory, or it might involve sharing features 
between distant elements. This kind of feature assignment will be discussed in 
the first sections. 

Features that are not assigned within the maximal projection of the assigning 
head (H-Iocal features) encode relations between elements that are more distant 
from each other than the domain delimited by a maximal projection. In section 
4 I discuss the H-Iocal features that are encoded in chains, concluding the 
discussion of how a parse tree is recovered and annotated, by presenting the 
algorithms that resolve long distance dependencies, and by discussing some 
interesting problems related to their efficient and incremental computation. 
Specifically, this chapter discusses the following issues. 

• The method to interleave the structure building rules and the 
feature annotation: I propose that feature annotation is indexed 
into configurations of the LR Table. 

99 
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• The representation of nodes in a tree that support the use of 
unification, for efficient feature annotation, and the algorithm to 
annotate nodes, within a local portion of the tree. 

• The computation of long distance dependencies. Techniques to 
assign features efficiently and incrementally in both head-initial 
and head-final languages are discussed. 

On parsing a sentence, more than the mere hierarchical and linear information, 
encoded in the X rules, needs to be recovered. Consider, for example, the pair 
in (38). 

(38) a. John loves [Mary) 
b. John talks [to Mary] 

The two bracketed complements of the verb are the recipients of the actions of 
loving and talkzng, respectively. However, the speaker's intuition is that they 
stand in a different relation to the verb. Mary in (38)a is the patzent of the 
action, while in (38)b l'Yfary is less affected by the action. This intuition is 
expressed by the notion of thematic relation (t1-role). We say that love assigns 
a patzent role to Mary, while talks assigns a goal t1-role to Mary. Moreover, 
the syntactic structure is not exactly parallel: loves assigns a t1-role to Mary 
directly, while talk assigns its t1-role indirectly, through the preposition to, to 
Mary which is an indirect (or oblique) object. Thus, more abstractly, the 
relation between a verb and its complement can be captured by assuming that 
each verb has a certain number of thematic slots, and that each of its arguments 
fills one. 

The thematic relations of verbs are expressed by linear order in English, and (39)a 
is not equivalent semantically to (39)b. 

(39) a. John loves Mary 
b. Mary loves John 

Other languages, however, grammaticalize thematic relations differently. Thus 
in Latin, (40)a and (40)b are equivalent because the 'concepts of agent and 
patient are expressed by the case endings -us and -em, respectively. 
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(40) a. Caesarem Brutus necavit 
b. Brutus Caesarem necavit 
"Brutus killed Caesar" 
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The agent receives nominative case, while the patient receives accusative case. 
Languages like English, that do not show overt case, are hypothesized to have 
abstract Case. 

Current GB theory assumes other features too. For example, ±;. Take the 
following minimal pair. 

(41) a. Who does John say that Mary loves e l ? 
b. * Who does John say that ei loves Bob? 

In the first sentence the object of the verb love is questioned, while in the second 
sentence the subject is questioned. Notice moreover that whatever restriction 
rules out the sentence in (41)b, it is syntactic, as the meaning of a hypothetical 
correct sentence is quite clear: Who is the person x, such that John says that x 
loves Bob? GB theory assumes that, after a series of complex vicissitudes, ej 

in (41)a receives [+,] as a feature, while el in (41)b receives [-I]' [-I] means 
that the empty category could not occur in that position. The assignment of 
[±,] is presided by the Empty Category Principle. 

As we see, the parser, besides information related to the configuration of the 
parse tree, must recover information that expresses these notions, which are 
needed to interpret the sentence. In the current and the following section the 
algorithms that are related to feature assignments will be presented. Such 
assignments fall into two types: local and non-local. Local constraints are ex­
pressed as functions over very small subtrees, defined by the sisterhood relation. 
Non-local constraints span over a bigger portion of the tree. 

In both types of assignments, however, another problem must be discussed, 
which is the problem of how the phrase structure rules and the constraints 
interact. I start the presentation by abstracting away from the actual content 
of the constraints, to concentrate on the way they interact with the X rules and 
the way they are used to reduce the non determinism of the modified LR table. 
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4.2 THE INTERLEAVING OF 
CONSTRAINTS 

By factoring out X rules and constraints, one problem arises, which has been 
called the principle interleaving problem (Fong 1991): how is the connection 
between the rules and the relevant constraints for those rules retained? Three 
solutions are possible. 

• All possible phrase structure rules are built, constraints are 
applied to a forest of trees. This approach is provably correct, 
but it is very space intensive, a forest of hundreds of trees can be 
built for even small grammars, and it is not very explanatory, in 
that the entire search space is visited. 

• All constraints apply at every reduction. Such approach is also 
provably correct, but it is not explanatory nor efficient, because it 
applies many constraints in configurations where they are 
vacuously true. 

• Only a subset of the constraints applies to every phrase structure 
rule. 

I adopt the third approach. The parts of GB theory that do not deal with con­
figurational information are implemented in this system as constraints on rule 
reduction. This technique is borrowed from standard compilation techniques 
for programming languages, and it has been used by other people, notably by 
Correa (1988) and Fong (1991). Principles of the theory such as It-assignment, 
Case marking, and the formal licensing of empty categories are expressed as 
conditions which need to be satisfied for the rule to apply. 

This organization embodies one of the observations on the structure of linguistic 
principles that was presented in the introduction: linguistic principles can be 
seen as conjunctive statements of conditions. I proposed there that the different 
conjuncts be satisfied separately. The configuration is encoded separately in 
the LR table, and so is the substantive condition, which is encoded in the 
co-occurrence table. Since the conditions to build structure are expressed as 
a conjunction of constraints of different types, conditions on rule reduction 
perform also a restrictive action on the search space of possible configurations, 
when more than one rule reduction can be applied. For example, consider the 
entry in the LR table shown in (42). 
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(42) ytabO(end_of_file, [(reduce, 9), (reduce, 11)]). 
ytabO(s, [(shift,10)]). 
ytabO(wO,[(shift,1),(reduce,9),(reduce,11)]). 
ytabO(w2,[(shift,2),(reduce,9),(reduce,11)]). 
ytabO(xO,[(shift,6)]). 
ytabO(x1,[(shift,4)]). 
ytabO(x2,[(shift,3)]). 
ytabO(y2,[(shift,5)]). 
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When the parser is in this state, several rules can reduce. For example, the 
first line of (42) shows that the parser is in state 0 and that the input has been 
expended. In this configuration, two actions are possible: the parser can reduce 
by rule 9, or it can reduce by rule 11. 

Each rule is "hooked" to a set of conditions that must be satisfied for the rule 
reduction to apply, some of which are shown in Figure 4.1 below. For example, 
rule number 9 is labelled complement. This rule requires that several conditions 
be satisfied, in order to apply. In particular, the head must assign a 8-role to 
the following complement, and the categories of the head and the complement 
must be compatible. If these constraints are satisfied, the structure building 
rule applies. A side effect of the satisfaction of constraints is that. nodes in the 
tree become annotated. 

If the constraints are not satisfied, then the rule cannot reduce, and a nondeter­
ministic choice point is eliminated. If more than one rule can reduce, because 
more than one set of constraints is satisfied, that means that the sentence is 
structurally ambiguous (either globally or locally). 

4.3 THE ASSIGNMENT OF LOCAL 
SYNTACTIC FEATURES 

Syntactic features are those features that annotate a node in a tree as a con­
sequence of a syntactic relation to another node in the tree. Consider, for 
instance, the syntactic feature [±barrier). According to Cinque (1990) and 
Rizzi (1990) a maximal projection is a barrier, i.e. it receives the feature [+ 
barrier), ifit is not directly selected by a category non distinct from [+V). Thus 
a node, which is projected from the lexicon without any features relative to bar-
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RULE CONSTRAI~TS 

specifier categorial selection 
predication 
percolation of features 

complement categorial selection 
ii-marking 
case marking 
isa-barrier 
percolation of features 

modifier categorial selection 
percolation of features 

adjunct categorial selection 
percolation of features 

unary xmax percolation of features 
unary head assignment of features to the specifier 

percolation of features 
complement head selection 

empty head categorial selection (ECP) 
feature percolation 

empty xmax licensing (ECP) 
locality 

Figure 4.1 
Interleaving of Rules and Constraints 
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rierhood, is annotated [±barrier], as a consequence of the relation of categorial 
selection from a head. For example, in sentence (43)a the maximal projection 
IP is directly selected by a node which is not of category [+V] (someone is a 
noun), thus it is marked [+barrier], while in (43)b the projection IP is marked 
[-barrier]. 

(43) a. * To whom have you found someone [IPwho would speak t ]? 
b. To whom do you regret that [I pyou could not speak t ] ? 

Assignments of features fall into two types: local to a head and not local to a 
head. I define them here. 

Definition 

Inherent Feature 

A head H which is the immediate projection from the lexicon of token Winherits 
all the lexical features of IV. Such features are called wheT'eni. 

I consider XO the immediate projection of a lexical item W, X' the immediate 
projection of XO and X" the immediate projection of X'. 

Definition 

H-Local Assignment 

A feature assignment of the feature F is H-local iff it occurs within the maximal 
projection of the head which bears F as an inherent feature. 

Definition 

H-Local Assignment A feature assignment of the feature Fis H-local iff it occurs 
outside of the maximal projection of the head which bears F as an inherent 
feature. 
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Figure 4.2 

X" --+ V" X' specification 
X" --+ X' Y" 

X' --+ X V" complementation 
X' --+ V" X 

Case Assignment Configurations 

CHAPTER 4 

I shall talk of H-local features and H-local features, meaning features that are 
assigned in an H-local configuration or features that are assigned in a H-local 
configuration, respectively. Examples of H-local features, which are assigned 
within the maximal projection in which they are projected from the lexicon, are 
O-assignment, Case assignment, and the feature that signals formal licensing of 
empty categories, ±~(. Examples of H-local features are types of coindexations, 
such as those between empty anaphors (traces of NP-movement, see below) 
and their lexical antecedent, or intermediate traces in A chains, or antecedent 
government. 

The way in which I treat these two classes of assignments separat.es the process 
of actual feature assignment from imposing the localziy conditions between 
the links of chains that are related to the H-Iocal feature assignments. This 
partitioning is mirrored naturally by the LR architecture, as I can use attributed 
grammars to perform feature assignment, both local and not local, and I can 
further constrain the H-local feature assignment with the appropriate locality 
conditions. Attribute grammars are discussed in the next section, while locality 
conditions are discussed in chapter 5 

4.3.1 The Linguistic Features 

Five syntactic features are crucial to perform syntactic analysis: ±Case, ±B­
role, ±Referential, ±barrier, ±,. 

Case Case assignment regulates the distribution of NPs in the sentence. A ± 
Case feature is necessarily assigned upon reduction of a Case assigning head 
with its complement and of an I' with its specifier. The Case assignment con­
figurations are shown in Figure 4.2. There is no need to impose any restrictions 
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on the categories. The Case assigning ability is determined in the lexicon for 
each lexical element, paired with the B-roles. 

B-role B-roles are needed to recover the predicate-argument structure of the 
sentence. They are assigned in the same configurations in which Case is as­
signed. B-roles are assigned to subjects, if the verb is not unaccusative (Burzio 
1986), by percolating the external B-role of the verb to the I head and to its I' 
projection. l 

Referential [±Referential] is a feature annotating nodes to compute bindin~ 
(Rizzi 1990) once the tree is built. It is assigned freely at S-structure, but it 
becomes part of the computation of the ECP at LF. A referential feature impliei 
the existence of a value for the B-role feature. B-roles can be referential and 
not referential. Referential B-roles are those that denote the participants in an 
event, such as agent, patient, goal. Only verbs that assign a B-role can assign a 
Referential B-role feature. It is however a feature that must be explicitly listed 
in the lexical entry of the B-role assigner, as it is not clear if there is a systematic 
correspondence between the content of the B-role and its referentiality. 

Barrier This feature is needed to characterize the domains of extraction. Bar­
rierhood is determined upon reduction of a head with its complement. It ii 
a lexical feature for the [±barrier ] assigner, since it depends on its [+ V] dis­
tinguishability (Cinque 1990). Hence, a [+V] head assigns [-barrier] to itf 
complement, and a [-V] head assigns [+barrier]. 

, This feature expresses the distribution of empty categories in the phras~ 
marker. ±, is a feature that determines whether an empty category has been 
licensed or not. Some empty categories receive it at S-structure, if they arE 
governed by an appropriate head, others receive it at LF (Rizzi 1990). 

4.3.2 The Implementation 

In our representation, each node is a quintuple of the form (G, Role, Ref, Case, Barrier), 
with the meaning and values in (44). 

IThis holds if I extend the notion of H-Iocal to features assigned within the maximal 
projection and its functional complex, e.g. V +I+C. Or we could alter the hypotheses about 
subjects and assume VP internal subjects. I adopt the former hypothesis, but so far, nothing 
impinges on it. 
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(44) G is the 'Y feature, which could be either an atomic constant 
value or unspecified. 

Role is the 8-role assigned to the node, which can be either 
an atomic constant taken from a given set of role labels 
such as { agent, theme, ... } or unspecified. 

Ref is the referential feature, which could be either an atomic 
constant or unspecified. 

Case is the Case feature, whose value can either be an atomic 
constant from a given set of language-specific possible 
cases or unspecified. 

Barrier is the barrierhood value, which could be either an 
atomic constant or unspecified. 

Syntactic features are attached to a node when the node is projected from the 
lexicon. Each node in the tree has the format (ID, LexicaLFeatures, Syntac­
tic-Features). Thus, each node is a triple (ID,L,S) where ID is an identification 
number for each node, L is a quadruple of lexical features, and S is a quintuple 
of syntactic features. 

At the beginning of the parse, syntactic features are uninstantiated variables. 
They acquire values on rule reduction through unification. For instance, 8-roles 
can be assigned locally, in a sister relation, as shown in (45). 

( 45) V' --. V NP { 8-assign(V,NP) } 

As was noted in chapter 1, the ICMH is less stringent than the requirement 
of strict transparency for principle-based parsers, because structural licensing 
information is used as soon as possible, while other types of annotations are 
performed later on in the parse. This is particularly convenient when postulat­
ing empty categories. The formulation of the ECP that is found in Rizzi (1990) 
only requires proper head government. This condition will be satisfied if the 
closest head in the minimal domain imposed by Relativized Minimality satis­
fies a substantive condition, namely a condition on the category label of the 
head. This is rather simply encoded, as shown in Figure 4.5. The top routine 
some...head_can~icense (Symbol, SStk) is called when attempting to postulate 
an empty maximal projection. Moreover, this kind of feature assignment does 
not require checking locality conditions, as it is the relation between a head 
and a maximal projection in the "minimal domain of the head", i.e. its own 
maximal projection. The admissible configurations are already encoded in the 
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CONSTRAINTS 
head feature percolation 

feature absorption 

B-marked 
case marked 
c-select 
is-a barrier 
license empty head 
license empty Xmax 

Figure 4.3 
Local Constraints 

CONSTRAINT 
head feature percolation 
feature absorption 
B-marked 
case-marked 
c-select 
licensed empty xmax 

Figure 4.4 

FCNCTION 
consults co-occurrence table and deter-
mmes cooccurrence restrictions among 
heads 
absorbs Case and B-role if verb IS 
passIve 
marks node with available B-role 
marks node with available Case 
categorial selection 
checks if maximal projection is a barrier 
checks features of closest lexical head 
checks features of closest lexical head 

FEATURES 
category { N,V,C,I, ... } 
case, B-role, passive 
B- role, ±referential 
±case 
category { N,V,C,I, ... } 
±; 

Local Constraints and their Range of Features 

X rules that are compiled in the LR table, onto which the H-Iocal conditions 
apply. In Figure 4.3 and Figure 4.4 I show the content of the features that are 
manipulated and their values. 
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%===================================================== 
constraintsCempty_xmax,Symbol,SStk,Ne~Stk,Node,C,C):-

some_head_can_licenseCSymbol,SStk), 
localityCSStk, Symbol, Ne~Stk). 

%===================================================== 

preceding_head_is_vC[Y2,XOISStkJ,Head}, 
nodegridCHead,Grid), 
available_roleCGrid,_}. 

preceding_head_is_not_emptyCSStk,Head}, 
lexical_nodeCHead), 
nodegridCHead,Grid), 
available_roleCGrid,_). 

preceding_head_is_not_emptyCSStk,Head), 
functional_selectionCHead,Headl), 
preceding_headCSStk,Headl), 
nodegridCHeadl,Grid), 
available_role(Grid,_). 

lexical_head(Symbol}, 
nodegrid(Symbol,Grid), 
available_role(Grid,_). 

Figure 4.5 
Algorithm to Compute Proper Head Government 

CHAPTER 4 
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4.4 COMPUTING LONG DISTANCE 
DEPENDENCIES 
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In this section I discuss the linguistic analysis that is assigned to sentences 
which contain long distance dependencies, such as questions. Secondly I will 
illustrate some computational problems that arise in this computation and the 
solutions adopted here, which are supported by observations on the availability 
of disambiguating syntactic features, such as Case, in human sentence process­
ing. 

4.4.1 Chains: The Linguistic Facts 

Informally, a chain is a syntactic object that defines an equivalence class of po­
sitions for the purpose of feature assignments and interpretation. For example, 
take the passive sentence in (46). 

(46) M arYi was loved ii 

The sentence in (46) contains the chain (M ary" ti). Here t, receives a IJ-role 
from the verb, but no case, which is absorbed by the passive morphology, while 
M arYi, receives nominative case because it is in a structural position that is 
inherently case marked, Spec of IP. This position, though, receives no IJ-role, 
because of passive morphology again. The set of positions, however, satisfies 
the conditions on lexical argument NPs, namely one half of the IJ-criterion and 
the Case Filter. \Ve define a chain and the link in a chain as follows. 

Definition 

Chain 

A chain C, (E1' ... , En) for n ~ 1, is a sequence of elements in a phrase marker, 
where E1 is the head of the chain and En is the foot of the chain. 
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Definition 

Link 

A link of a chain L, (Ei: Ei+d is an ordered pair of consecutive elements of the 
chain. 

It will be useful in what follows to classify the different kinds of chains according 
to different criteria. 

Type 

There are different kinds of chains depending on the syntactic status of the 
moved element, whether it is a head or a maximal projection, whether it is an 
NP or a wh-element. \,\Te can distinguish at least four types: wh-chains, such 
as (47), NP-chains, such as (48), head movement chains: shown in (49), chains 
formed by movement of maximal projections, exemplified in (47) and in (48). 

(47) W hOi did John love ti? 

(48) a. Mary, was loved ti 
b .. M arYi seemed e~ to have, been loved ti 

(49) Gianni amai t; Maria 
"John loves Mary" 

Landing Site 

Chains can also be classified according to the status of the landing site: A 
chains are those that are headed by an element in A (argument) position, shown 
in (50); A chains are headed by an element in A (non-argument) position, such 
as (51) . 

(50) M arYi seemed e; to have been loved t; 
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(51) Who, did John think e: that Mary loved ti ? 

Multiple Chains 

More than one chain can occur in a sentence. Multiple chains occurring in the 
same sentence can either be disjoint, intersected or composed. Disjoint chains 
are'nested, as in (52), 

(52) Who, did M arYj seem tJ to like t; 

If chains intersect, they share the same index and they have exactly one element 
in common. They are always A + A, in this order, as shown in (53),2 

(53) Who, did you think e; t, seemed ti to like Mary? 

If chains compose they don't have intersecting elements, but they create a new 
link: if En is the foot of one chain and E~ is the head of the following chain 
then < En, E~ > is a link in the composite chain. This is exemplified in (54). 

(54) W hOi did you meet tt Oi without greeting ti ? 

4.4.2 The Representation of a Chain 

In this parser, a chain is represented as a triple (P,L,S) where 

P is a list of the positions in the tree that constitute the chain 

2The reverse order would be the trace of improper movement, because one of the interme­
diate traces would be in A position, but bound by the A head of the A chain, thus violating 
principle C of binding theory. For instance, "lVho, < seems t, that Mary like t,? is an 
example of improper movement. 
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L are the lexical features that belong to the head of the chain and thus to 
the whole chain, since only one element in a chain can be lexically 
realized. 

S are the syntactic features of the chain. In this discussion, only three of 
the syntactic features assigned to each node are relevant for chains: 
Case, Role, Ref. 

This representation captures the restrictive interpretation of a chain a.<; an equiv­
alence class of positions, because conditions can only be imposed on the chain 
and not on the single nodes that compose it. As such, it differs from those 
representations of chains as linked lists of nodes in a tree structure, where each 
node could be independently specified (Clark 1990; Correa 1991). This choice 
of representation is parsimounious: by using a triple as the representation of 
the chain, it is unnecessary to re-encode precedence information about all the 
processed input that is contained in the stack, or structural information that is 
contained in the tree. The chain shares elements with the stack of the parser, so 
that updates to the stack are propagated to the chain and vice versa. Moreover, 
it is more appropriate descriptively, as chains are represented as properties of 
a whole sentential phrase marker, and not of a single node (differently from 
(Correa 1988; Correa 1991), see below). Each sentence is assigned two lists of 
lists, one for A chains and one for A chains, thus, in principle, an unbounded 
number of chains for each sentence is possible. 

The most typical property of a chain is uniqueness of feature annotation. Only 
one B-role and one Case can be assigned to each chain, and only one element 
in the chain can be lexical. In order for this uniqueness property to obtain 
I define unique term unification as a mechanism for feature assignment. In 
unique term unification I require that at most one of the elements involved in 
the operation of unification is instantiated. The semantics of the operation is 
shown in Figure 4.6. 

We can observe that the uniqueness restriction is a kind of derivative encoding. 
It encodes that only one assignment can occur for each type of feature to a 
given chain, even if the new assignment does not add any new information. In 
fact, it is a strict form of information monotonicity, where every assignment 
must add information. 

It is not clear why it should be so, but uniqueness seems a pervasive modality 
of feature assignment. While phrase structure appears to be built under the 
monotonicity restriction, feature assignment seems to obey uniqueness. We 
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Given two terms A and B, unify(A,B,C) iff A and B are terms 
that encode syntactic features attached to a node or attached to a chain, 
and C is their most general unifier under unique unificatIOn. 

unify(A,B,C) iff A is a variable or B is a variable. 

unify(A, B, C) iff unique_unify(case(A), case(B)), 
and unique_unify (role (A) • role(B)), 
and unique_unify (ref (A), ref (B)). 

unique_unify(A,B) iff A is a variable or B is a variable 

Figure 4.6 
Unique Unification for Syntactic Chains 

11.5 

also notice that this kind of unification does not maintain the same semantics 
as standard unification. In standard unification a common instance of the two 
terms that unify is found, where common instance is defined as follows: (i) the 
common instance of two constants is the same constant; (ii) a common instance 
of a variable and a constant is the same constant; (iii) a common instance of two 
variables is a variable In our redefinition of unification, there is no admissible 
common instance of two constants. I do not explore the consequences of this 
modification here. 

The mechanism with which chains are built in our parser is simple. A new 
chain is started, whenever a node which could be the head of a chain is found. 
Every subsequent empty element which is postulated by the parser must be 
able to unify with at least one of the chains. 

4.4.3 The Computational Problems 

In accordance with the linguistic facts presented above, several problems must 
be solved, when building chains. First of all, the parser has to decide whether 
to start a new chain or not. It also has to decide whether to start an A or 
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an A chain. Second, on encountering an empty element it has to decide to 
which chain it belongs. Third, it must check whether all the chains satisfy 
the well-formedness conditions. Finally, if not all the chains satisfy the well­
formedness constraints, the parser can attempt to intersect or compose two or 
more chains in order to satisfy the well-formedness conditions. The first and 
second decision can be seen as instances of the same problem, which consists 
in identifying the type of link in the chain that a given input node can form 
(whether head, intermediate or foot). We can describe this sequence of deci­
sions as four problems that must be solved in order to form chains: the Node 
Labelling Problem (NLAB), the Chain Selection Problem (CSEL), the Chain 
Intersection Problem (CHIN), and the Chain Composition Problem (CHC). 

The Node Labelling Problem (NLAB) 

The Node Labelling Problem can be informally described as follows. 

(55) Given a node N to be inserted in a chain, determine its label L, 
where L E {AH, AH, AI, AI, AF, AF, AOp }. 

This problem then describes a relation R: N x L, where N belongs to the set 
of nodes, and L belongs to the set of labels for the elements of chains. The 
algorithm to perform such computation is very simple. 

Algorithm 

Input: Node, Local Configuration 
Output: List of Labels 

1. If Node is lexical and [+wh] then Label ;-- AH. 

2. If Node is lexical and [-wh] then Label <- AH. 

3. If Node is empty and has If-role and has Case then Label ;-- AF. 

4. If Node is empty and has If-role and has no Case then Label ;-­
AF. 

5. If Node is empty and has no If-role and is in Spec of C then Label 
<- AOp or AI. 
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6. If Node is empty and has no B-role and is not in Spec of C then 
Label <- AI. 

The Chain Selection Problem (CSEL) 

The Chain Selection Problem can be informally described as follows. 

(56) Given a node N of label L, and an ordered list of chains C, return 
the chain Ci, possibly none, to which N must unify. 

The algorithm to perform this computation is given below. 

Algorithm 

Input: Label(s), Ordered List of Chains 
Output: Chain or empty set 

1. if Label = AH then start new chain 

2. if Label = AOp then start new chain 

3. if Label = AH then start new chain 

4. if Label = AF then 
choose last element in ordered list of chains which is not 
saturated. 

5. if Label = AF then choose (nearest) unsaturated chain.3 

6. if Label = AI then choose (nearest) unsaturated chain. 

7. if Label = AI then 
choose last element in ordered list of chains which is not 
saturated, unless it is the immediately preceding element 
in the stack. 

30n ly one A chain at a time is possible (see previous section). 

117 
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The complex condition in the last case is necessary to deal with subject-oriented 
parasitic gaps. In all other cases of structural indeterminacy between interme­
diate trace and empty operator, the feature unification mechanism will resolve, 
since the empty operator is postulated when all other chains are saturated. 
This could be thought as being derived from a rather reasonable axiom that 
prohibits empty CPs. A theorem that could be derived is that no "vacuous" 
Comp to Comp movement could be allowed. The ambiguity between AI and 
AOp is then resolved by looking at the previous token in the stack. If it is the 
head of an A chain, then a new chain is started. This strategy would handle 
sentences such as A man [ who [ whenever I meet] looks old.] 

The Chain Intersection Problem (CHIN) 

The Chain Intersection Problem can be informally described as follows. 

(57) Given two chains, C 1 and C2 , return the chain C3 (possibly none), 
which is the intersection of C 1 and C2 • 

The conditions for the intersection of chains are given in (58). 

(58) C1 intersects C2 iff 
the head of C1 c-commands the head of C2 

and C1 and C2 unify in syntactic features 
and the head of C2 is an empty category. 

This problem is, therefore, simply the intersection of two sets under certain 
restricting conditions.4 

The Chain Composition Problem (CHC) 

The Chain Composition Problem can be informally described as follows. 

4 On inspection of the algoritluns, one can notice that c-command is not checked. In the 
real implementation each node is given an identification number, which is then computed as 
an Huffman code once the tree is built. C-command can be computed as a function of the 
Huffman identification number of each node. The only restriction to the use of this technique 
is that the tree must be completely built, which is satisfied in this case. We assume that 
chains are built separately, and then intersected. 
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(59) Given two chains, C 1 and C 2 , return the chain C3 (possibly none), 
which is the composition of C 1 and C2 . 

The conditions for the composition of chains are given in (60). 

(60) C1 composes with C2 iff 
the head of C 1 does not c-command the head of C2 

and C1 and C2 unify in syntactic features 
and the head of C2 is an empty category. 
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Notice that the only distinguishing condition between composition and inter­
section is the c-command requirement. In reality, chains that intersect, belong 
to the sets A and A, respectively, while chains that compose are all A chains. 

4.4.4 Discussion of the Algorithms 

In Figure 4.7 I show schematically how these algorithms build chains. A pseudo­
Prolog notation is used, which is similar to the output of the parser, where 
chains are represented as lists enclosed in square brackets. I show the I/O 
of the NLAB and CSEL algorithms, given the sentence Who did you think 
that John seemed to like?, where a multiple A-chain and an A chain must be 
recovered. NLAB takes an input word and outputs a label, while CSEL takes 
a triple (Node, Label, Chains) as input, and returns a new chain list. 

On Building Chains 

This section discusses the problem of how features of chain links are determined 
by an efficient algorithm. A basic assumption of the theory presented in (Chom­
sky 1981; Chomsky 1982) about NPs, either lexical or nonlexical, is that they 
can be exhaustively partitioned by the features [±pronominal],[±anaphoric). 
(See Appendix A for an argument to justify the existence of pro and its fea­
tures [+pronominal,-anaphoric].) Chomsky (1982, 34) notices that trace and 
PRO are in (virtually) complementary distribution and that they (virtually) 
exhaustively cover the possible positions for NPs. Chomsky argues that this 
fact is explained if only one empty category is assumed, which is defined contex­
tually. This is the so called contextual determination of empty categories: there 
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Who did you think el that John seemed e2 to like e3 ? 

NLAB who A Head 
CSEL who, A Head [(who)] 
NLAB you A Head 
CSEL you A Head [[(who)][(you)lJ 
NLAB el A Intermediate 
CSEL el A I [[(who)][(you)]] [[(who,el )](you)]] 
NLAB John A Head 
CSEL John A Head [[(who,el)][(You)]] [[( who,el )][(you)( John)]] 
NLAB e2 A Foot 
CSEL e2 A Foot [[(who,el)][(you)(John)]] [[(who,el )][(you) (John,e2)J] 
NLAB e3 A Foot 
CSEL e3 A Foot ([(who,el)][(you)(John,e2)]] [[( who,el ,e3))][ (you) (John,e2)J] 

FIgure 4.7 
Chain building example 

is only one empty category that can take up different functions or occurrences 
in different contexts. 

Brody (1984),Brody (1985) has shown that this argument is incorrect. Em­
pirically, this interpretation would be supported by derivations where empty 
categories can change their status in the course of the derivation. The evidence 
for such derivations is unconvincing. (See Appendix A for a more detailed 
description of the arguments.) Conceptually, as Brody (1984) points out, the 
assumption that there exist only one type of empty category does not entail the 
existence of contextual definitions: a random characterisation, which is then 
filtered out by independently needed principles, would also work. Brody (1984) 
is devoted to showing that contextual definitions are totally redundant and can 
be eliminated from the theory without any loss of empirical adequacy and with 
gain for the explanatoriness and economy of the theory. Brody proposes to 
assign empty categories freely to one type or other, and let the principles of 
the grammar rule out incorrect type assignment. In this way the grammar is 
minimally redundant. 

Brody's argumentation is very convincing, but what is a gain in explanatory 
adequacy for the grammar might not be so beneficial for the parser. Both 
Chomsky's and Brody's account of the distribution of nonpronominal empty 
categories rests on binding theory. The features assigned to empty categories 
are not an accidental collection, thus the account is explanatory. From the 
point of view of parsing this approach leads to inefficiency. 
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A strictly princlple-based approach to the functional determination of empty 
categories, such as the one in Fong (1991), is bound to be inefficient, because 
not only are the properties of the empty categories determined by a random 
characterisation, as Brody suggests, which is filtered at a later stage, but it 
also rests on free coindexation. Fong (1990) has shown that the problem of 
enumerating all possible indexations is NP-hard. Even if some precomputation 
were allowed, for example by using Chomsky (1981) definitions directly, still 
the property of the empty category would depend on its binder. Since our 
initial problem is how to determine the binder of an empty category, the algo­
rithm would have to be nondeterministic, guess a solution and then check its 
correctness. Such check would not occur until much later, when binding the­
ory is tested, and unbuilding part of the tree might be required. As one more 
piece of evidence pointing towards the idea that functional determination of 
empty categories is not performed by the human parser, consider experimental 
results about parsing English and Japanese, performed by Fong and Berwick 
(1992), with a parser that uses functional determination of empty categories. 
They show that functional determination results in Japanese being parsed more 
slowly than English. This results is contradicted by human processing. 

Correa (1988),Correa (1991) proposes a set of features for the functional clas­
sification of empty categories which is not based on the feature [±pronominal], 
[±anaphoric] and the relation to the binder, as proposed in Chomsky (1982), 
but rather on more local features, which do not require a potentially unbound 
search of the tree. The classification is shown in (61). 

A-position Government Case 
wh-trace(foot) + + + 

(61) wh-trace(intermediate) + 
NP-trace + + 
PRO + 

Quite correctly, Correa points out that, by this classification, the type of a cat­
egory can be determined without hypothesizing in advance to which chain the 
category belongs, since the conditions that determine its status are independent 
of chain formation. 

In Correa's parsing rule, given a sentence structure, where the trace-antecedent 
relations are not identified, the interpretive chain rule computes coindexations. 
Each NP has an attribute Chain. Upon evaluation, each NP in a chain points 
to the next element in the chain (or to nothing if it is the last element, the 
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foot of the chain). Moreover, nodes that can c-command an NP, such as IP, I', 
CP, C' , etc. have two pointer-valued attributes: A-Chain and AB-Chain. The 
domain of evaluation of all these attributes is limited to a single production in 
the grammar. A single production defines, according to Correa, an "elementary' 
tree", which is the local domain for feature assignment. 

Empty categories are predicted structurally without computing their referent, 
i.e. without identifying them. In particular, we only need determine whether 
an empty category is properly governed or not, which we have seen can be done 
very locally by adopting Rizzi (1990)'s formulation and determine whether it 
should unify with the A chain or A chain. If one assumes that Case assignment 
is obligatory, then Case is the distinguishing feature of the foot of an A chain 
from the foot of an A chain. 

On the other hand, the limit of one chain attribute per node, which is imposed 
by Correa's encoding, is incorrect. If the single rule is taken as the local domain, 
in the sense that all necessary feature assignment must be performed within its 
limits and no percolation of features is allowed, no chain could be built. Hence, 
this definition is too strict. Correa allows feature percolation. But he shows 
that an attribute grammar with unrestricted percolation of attributes corre­
sponds to a type 0 grammar, t.hus it is too powerful. He imposes a single-slot 
restriction per type of chain, to limit feature percolation. By attaching only one 
AB-Chain slot to each node that could be on the connecting path between the 
trace and the antecedent, the attribution rule models some locality restrictions 
such as wh-islands and the Complex NP Constraint. These locality restrictions, 
though, depend on the language. This attribution rule would not work for less 
restrictive languages, such as the British variant of English (Grimshaw 1986) 
and Italian (Rizzi 1982), which allow multiple extraction, nor would it work 
parasitic gaps. 

Restricting the Search Space 

As the previous chapter on phrase structure has shown, computing features is 
not always profitable, as some features reduce the search space while others do 
not. To see that checking features does indeed payoff, the cost of checking 
these features must be compared to the benefit of reducing the search space. 

This analysis mostly concerns the first algorithm, NLAB, which is constituted 
of a series of binary choices. More precisely, recall that the relevant information 
is a) whether a node is lexical or not; b) whether it has a theta-role or not; 
c) whether it has Case or not; d) whether it is a sister of C (hence it is in 
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A position) or not (thus counting as an A position). For the chain selection 
algorithm there are four main constraints: first, A nodes can only be inserted 
in A chains and A nodes can only be inserted in A chains. Second, empty nodes 
never start a new chain. Third, the closest head is always chosen as a potential 
chain to which unify. Finally, only unsaturated chains are chosen. 

Consider what would result if NLAB did not check for all these factors. If b) is 
not checked, NLAB' does not distinguish between feet and intermediate traces, 
even in the same type of chain, thus it outputs four sets of labels: AH, AH, 
{AF, AI}, {AF, AI}. If c) is not checked, NLAB" does not distinguish between 
A and A feet, thus it outputs AH, AH, AI, AI, {AF, AF}. If d) is not. checked, 
NLAB'" outputs AH, AH, fAI, AI}, AF, AF. If b), c) and d) together are not 
checked, NLAB"II outputs AH, AH, {AI, AI, AF, AF}. 

In accounting for the growth rate in the space of hypotheses of these modified 
algorithms, two factors must be taken into consideration. One factor is the 
number of active chain types, namely whether a sentence presents only A or 
A chains, or both. This factor encodes the second and third restriction of the 
CSEL algorithm, with the consequence that not all combinations are attempted. 
The second factor accounts for the growth rate proper, which is reducible to 
counting the set of ""-strings over an 7l-sized alphabet, hence nk. Here k is the 
number of relevant links in the sentence (for instance, feet in NLAB"), and n is 
given by the size of the set of features collapsed by lifting some of these checks, 
hence 2,2,2 and 4, respectively. 

The hypothesis space in the three algorithms grows in slightly different ways. 
In NLAB!, where there is no restriction on the number of active chains, the 
growth rate is nk. For NLAB" and NLAB'II the formula is N A Ie, where N A 

is the number of active chains. Practically, this amounts to 2k at most, as 
the number of active chains is at most 2, because of the restriction on always 
selecting the nearest unsaturated chain. For NLAB"" the restriction for active 
chains no longer holds, because in this algorithm no features are checked, so it 
is impossible to establish if a chain is saturated or not until structure building 
ends. Thus the growth factor is a function of the number of heads seen up 
to a certain point in the parse, the number of empty categories and also their 
respective order in the input. Notice that the different size of the collapsed 
feature set, which is larger for NLAB"", is implicitly taken into account by k, 
as the number of relevant links varies with the size of the collapsed feature sets. 
For the same sentence there are more relevant links if the collapsed feature set 
is larger. 
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S TL NLAB I NLAB" I NLAB'" I NLAB"" 
KL li KL AC li KL AC li KL li 

3 2 1 2 1 1 1 - - 1 1 1 
4 3 1 2 1 1 1 - - 1 1 1 
5 3 - - 0 1 1 - - 1 - -
6 2 - - 0 1 1 - - 1 - -
7 4 1 2 1 1 1 - - 1 1 2 
8 3 - - 1 2 2 - - 1 1 2 
9 5 - - 1 2 2 1 2 2 2 6 
10 6 1 2 2 2 4 1 2 2 3 18 

Table 4.1 
Growth of Hypotheses Space: S = sentence; TL = Total number of links; RL= 
Relevant Links; AC = Number of Active Chains; G = Growth rate 

Now, in all cases, the growth is exponential in the number of relevant links, 
while the possible gain obtained by not checking the features can be at most 
logarithmic in the number of potential empty categories. Since the number 
of potential empty categories is at most 21, for f binary features, this gain is 
expressed as f. Hence, suppressing feature checks becomes beneficial only if 
kf > n k . Now notice that 2 ::; n ::; 21. For n = 2 and f = 3, the inequality 
is satisfied for k < 4. This means that for algorithms NLAB" and NLAB"I all 
sentences with more than 3 relevant links are computed faster if features are 
checked. For n = 4, i.e. algorithm NLAB"" the inequality is never satisfied. 5 

The results of some calculations are reported in Table 4.1, which refer to the 
type of constructions exemplified in Figure 1.3 (sentence type 1 and 2 are not 
considered, because they only contain trivial chains.) If one considers a sentence 
such as Who did you say that John thought that Mary seemed to lzke?, with four 
gaps and four heads, there are 96 hypotheses about chain formation to explore 
using NLAB"". Clearly, checking features and using them for building chains, 
and keeping the hypotheses search space small, is beneficial in most cases. 

Extensibility 

These algorithms deal in detail with the somewhat neglected problem of what 
to do when more than one chain has to be constructed. They do not discuss 

5Remark that here I am assuming that checking a feature and checking a chain have the 
same computational cost, which is an approximation, as a chain cannot be checked with a 
single operation. 
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specifically the issues of adjunction or rightward movement. However, they 
could be extended. 

In the first place, the postulation and structural licensing of empty categories is 
always performed by the same mechanism. According to the ECP as formulated 
in Rizzi (1990, 25), Cinque (1990), and Chomsky (1986a), among others, for 
an empty category to be licensed, two conditions must be satisfied: the empty 
category must be within the maximal projection of a lexical head to be licensed 
structurally, and it must be identified by an antecedent. The structural licenser 
and the antecedent need not be the same element. In fact, they hardly ever 
are. Whether movement is to the left or to the right does not affect structural 
licensing (which is here performed by the conditions that apply to the reduction 
of an f rule.) 

Rightward movement requires an extension of the algorithm to incorporate the 
empty category in a chain. An empty category which is the foot of rightward 
movement must be licensed structurally, before its antecedent is seen. When 
the NP which is the antecedent (head of chain) is found, it starts a new chain, 
according to CSEL. Here an extension is needed to check if there are any empty 
categories waiting to be identified. This requires computing c-command, to 
check that the NP can be the antecedent of the empty category, if one is found. 
Explicit computation of c-command was not needed for leftward movement as it 
is a property of the stack of an LR parser that it encodes c-command. Thus the 
fact that a constituent contains an "orphan" empty category must be recorded, 
perhaps by composite categories. If the antecedent follows immediately on the 
stack the element that contains the empty category, c-command obtains (as a 
consequence of binary branching), and the empty category can be unified to 
the antecedent. 6 

4.5 PSYCHOLINGUISTIC SUPPORT 

In general, the precomputation of syntactic features is supported by experimen­
tal evidence, and in particular, support is provided for using case information 
to distinguish the foot of an A chain from an A chain, as predicted by the 
ICMH. 

6 Alternatively, one could adopt the (linguistically radical) position that rightward move­
ment does not exist (Kayne 1994). Although this generalization seems to be true for head 
movement, Kayne's proposal is more controversial for maximal projections. Discussion of 
these issues falls completely outside of the topic of the present work. 
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Plenty of work in the experimental psycholinguistic literature has addressed 
the question of how filler-gap dependencies are processed (Frazier, Clifton, and 
Randall 1983; Clifton, Frazier, and Connine 1984; Fodor 1989; Stowe 1986; 
Frazier and Clifton 1989). De Vincenzi (1991) presents psycholinguistic evi­
dence in favour of a parsing strategy to build chains, called the Minimal Chain 
Principle (MCP) De Vincenzi (1991, 13)) 

(62) Avoid postulating unnecessary chain members at S-structure, 
but do not delay required chain members. 

This general parsing strategy is supported by several experiments. In particu­
lar, experiment 2 is designed to test the cost of the length of chains, where by 
length it is meant the number of links in a chain. Of course, if the computation 
of chains turned out to be insensitive to length, thus apparently a cost-free 
operation, much of the rationale for a parsing strategy as the Mep would van­
ish. De Vincenzi (1991) formulates the hypothesis tested in this experiment as 
follows. 

(Experiment 2) The parser is sensItIve to syntactic features such as 
Case, and it uses them in building chains. Building chains is a 
costly operation. 

Superficially minimal pairs that vary only in length with the input can be 
constructed in Italian by using contrasts between un accusative and unergative 
verbs. (See Appendix A for definitions and examples.) In short, since the 
inverted subject of an unaccusative verb is base generated, while the inverted 
subject of an unergative is moved, sentence (63)b should take longer than (63)a, 
according to the MCP. 

(63) a. E' arrivato un bimbo. 
"A child arrived." 
b. Ha esitato un bimbo. 
"A child hesitated." 

For the result to follow, however, one more crucial assumption about Case 
for unaccusatives must be made. Namely, that the parser is sensitive to Case 
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assignment at this stage of structure building. In fact, according to Belletti 
(1988), unaccusative verbs can assign inherent partitive case. Since partitive 
Case, though, is incompatible with a definite interpretation, a post verbal def­
inite NP is adjoined to the VP, and it is not in its base generated postverbal 
position, otherwise it would not receive Case. Thus, structurally there is a 
difference between (64)a and (64)b. 

(64) a. E' [v p arrivato un bimbo.] 
"A child arrived. 
b. E' [v p arrivato [v pil bimbo. ]] 
"The child arrived." 

If the parser did not use information about Case at all at this stage, (but it 
used it only in the discourse, see discussion in De Vincenzi (1991, 51ff)), then 
it would assume that (64)a does not receive Case, and it would adjoin it to VP, 
similarly to (64)b. In this case we would predict longer times in (64)a than in 
(64)b. The experimental results confirm the MCP and the use of Case. 

The fact that the parser uses Case is an implicit consequence of the MCP, as 
shown by experiments 1 and 5 conjunctively. Experiment 1 confirms the follow­
ing hypothesis: the parser obeys the first clause of the MCP by always trying 
to interpret elements in their base generated position, i.e. the parser always 
tries to build singleton chains. Experiment 5 support this other hypothesis: 
the parser obeys the MCP and the principles of the grammar, i.e. the MCP 
is not used if it causes a violation of some principle of the grammar, specif­
ically the relevant· one, namely the ECP. If the parser honours the principles 
of the grammar (Experiment 5), then when interpreting an NP as a singleton 
chain (Experiment 1) it will immediately check that the chain receives Case 
and B-role, and therefore is well-formed. This result is also consistent with use 
of morphologically realized case to disambiguate locally ambiguous input. 

This piece of evidence corroborates the proposed classification of syntactic fea­
tures, and especially the use of Case to distinguish the foot of an A chain from 
the foot of an A chain. The use of syntactic features is crucial for the struc­
tural determination of empty categories which we adopt. By using structural 
determination, empty categories can be licensed locally, within their maximal 
projection. 
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4.6 INCREMENTAL ASSIGNMENT OF 
FEATURES 

On inspection of the presented algorithms for chain formation and the examples 
of input shown in Figure 4.7, one can notice that Case is assigned immediately 
upon reducing the NP, thus enabling the chain building algorithms to distin­
guish between different types of chains. In particular, case features must be 
assigned to an empty element of the chain immediately, as case is crucially used 
by NLAB, to determine if the empty category belongs to an A or an A chain. 
In general, feature assignment is performed from left to right, while scanning 
the input. One need, therefore, tackle the issue of incrementality in LR parsing. 

LR parsers have been criticized as possible models of linguistic performance 
because they build mother nodes only after all children are seen, and therefore 
they have worst-case behaviour on right-branching structures (Abney 1989; 
Steedman 1989). 

Evidence for the Incremental Parsing of Correct Input 

The most impressive evidence that human parsing is incremental is provided 
by Marslen-Wilson's experiments on shadowing Marslen-Wilson (1973). Fast 
shadowers are able to restore errors while they shadow speech at one-syllable 
distance. This fact is interpreted as evidence that they process speech and that 
they perform lexical access as soon as the input signal is received. 

Surprise effects in sentence parsing in head final languages provide evidence 
that syntactic parsing is performed incrementally even when information is in­
sufficient. In the Japanese sentences in example (65), speakers report a surprise 
effect at the word tabeta, which means that they had already started processing 
the three arguments, possibly as belonging to a yet unseen predicate. 

(65) Bob-ga Mary-ni [ tnom/i ringo-wo tabeta] inu-wo ageta 
Bob-NOM Mary-DAt apple-ACC eat-PAST dog-ACC give-PAST 
'Bob gave Mary the dog which ate the apple' 

These two examples show that people integrate incoming material very fast, 
and that they start interpreting it before the end of the sentence is reached. 
It appears reasonable, for the purpose of investigating syntactic parsing, to 
assume that the input is processed word by word. 
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Different researchers have interpreted results on incrementality as stemming 
from different properties of the processing system. Some researchers require 
that each incoming word be attached to one single connected structure (Crocker 
1992; Sturt and Crocker 1995; Stevenson 1994; Stabler 1994; Wehrli 1992). 

The basic argument for building as fully a connected structure as possible are 
based on memory requirements: we know that storing disconnected items is 
more costly than storing whole units. In practice, some words have to be 
pushed temporarily on a stack. Stabler (1994) argues in favour of assuming a 
fixed, small bound for the number of items that can be left on a stack. 7 Other 
researchers extend the observation on fast integration of lexical material to an 
overarching requirement to maximize intepretation, which would justify the 
parser in projecting unseen structure, when it can be safely predicted (Crocker 
1992; Crocker 1995). Finally, one should notice that there are advocates of 
incremental parsing for engineering goals. Tomita (1986),Wehrli (1992) report 
on interactive parsing systems, which require incremental parsing. 

Several counterarguments to the supposed lack of incrementality of LR pars­
ing have been constructed. two assumptions underlie the argument that LR 
parsing cannot be incremental: the first assumption is that interpretation can­
not start before the completion of a rule in the parser, i.e. that the synt.actic 
chunking units must correspond to the interpretation chunking units, a sort 
of simplicity arguments; the second assumption is that the crucial source of 
information about the history of the parse is the stack. Stabler (1991),Shieber 
and Johnson (1993) show that both these assumptions are false. Stabler (1991) 
argues that interpretation can start before the end of the right handside of 
a rule is reached if a sort of postfix notation is used. This observation is in 
the right direction, because it points out that the simplicity argument used by 
Steedman is incorrect. Steedman assumes that interpretation corresponds to 
building a constituent and integrating it into the syntactic structure, and that 
the best parser is the one that does this most "simply", namely with a mini­
mal manipulation of the grammatical representations. Incremental integration 
and interpretation of constituents in a bottom-up parser can occur only if the 
structure is left-branching. Therefore he argues, syntactic theory should build 
left-branching representations, such as those of categorial grammar. This ar­
gument rests on the assumption that syntactic interpretation can occur only 
when one constituent has been built; in LR parsing terms, when a rule has 
been reduced. This assumption requires synchronization of the parser with 

7 Only fully top-down models could build a structure that is fully connected at every step. 
Top-down parsers are unattractive, because they are liable to postulate too much structure, 
incurring "spurious" ambiguities. Moreover, they do not tenninate on left-recursive input. 
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the interpreter. In fact, asynchronous computation is actually simpler than 
synchronous computation Shieber and Johnson (1993). 

However, to rebutt the critique completely, one must show that LR parsing can 
build a connected structure. Drawing on work by Lang (1974),Lang (1989), 
Shieber and Johnson (1993) show that the states of an LR parser contain enough 
information to build the structure incrementally. An example of this technique 
is provided in Figure 4.12 in the following section. 

Since incrementality provides evidence in favour of top-down-like behaviour, it 
is important to remember that evidence for bottom-up behaviour comes from 
observations on the speed at which language is parsed. Also, universal proper­
ties of human languages, as Hawkins (1990) argues, are more easily interpreted, 
if they follow from a requirement to parse languages bottom-up. 

Hawkins (1990) argues for a processing explanation for word orders, as one finds 
left-right asymmetries in the world languages, with a clear preference for struc­
tures in which an immediate-constituents-to-words ratio is minimized. A pro­
cessing explanation of word orders is based on the assumption that the parser 
projects all the structure it can as soon as it has unambiguous evidence for it 
(but not before). So for example, if Co is an unambiguous index of a CP, the 
whole CP structure will be projected. If parsing did not proceed bottom-up, it 
would make no sense to try and minimize the processing window. Analogously, 
one can argue that a parser that is fully predictive, i.e. completely top-down, 
would have no reason to prefer lower immediate-constituent-to-words ratios. 

In general, as Stabler (1994) points out, there seems to be contradictory de­
mands on the parser, to build connected structure to minimize the use of mem­
ory resources, requirement which is maximally satisfied by top-down techniques, 
and to build structure only if supported by input evidence, for efficiency and 
descriptive reasons, requirement which is maximally satisfied by bottom-up 
algorithms. 

Evidence for Incremental Parsing of Incorrect Input 

Few parsing methods can model the available evidence on incorrect input. 
Briefly put, there is evidence from mispronounciation detection experiments 
that humans detect an error in the input as soon as they hear it (Cole and 
Jakimik 1978). 
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Cole and J akimik (1978) employed the technique of mispronounciation detec­
tion to show that speech is processes word by word. They presented pairs 
of words, opposing pairs in which the second word was highly constrained by 
the preceding word (gold nng) to pairs in which the second word was not (old 
ring). Subjects pushed a response key whenever they detected a mispronounci­
ation. Reaction times were 180 milliseconds faster for predictable words, than 
for non-predictable words. This shows that previous context influences word 
processing, and that speech is processed word by word, as the previous word 
must have been processed to be able to affect the following word. The average 
detection time was around 800 milliseconds, which means that averagely the 
mispronounciaton was detected very fast, as it was recognised by the end of 
the following word. 

Interestingly, early detection of incorrect input is a very discriminating feature 
among parsing models. Most parsing models allow the parser to shift a token on 
some temporary stack, if no other attachment or action can be performed, thus 
often the parser proceeds until the end of the input, or until some threshold 
is reached before realising that the parse is incorrect. Since all sentences that 
contain an error are incorrect, there is no notion of "local" error, parallel to 
the notion of local ambiguity. Thus, only a sufficiently predictive parser could 
detect the error and suspend the parse right away, or trigger some recovery 
procedure. 

In the ligth of the evidence just reviewed, I propose a comprehensive definition 
of incrementality, that takes into account the properties of the parser both on 
correct and incorrect input. 

Definition 

Incremental Parsing 

A parser is incremental if it has the following properties: 

L It has the valid prefix property, namely it does not perform any 
unnecessary shifts on incorrect input, because it is able to 
recognise incorrect input as soon as possible, 

2. At each point in the parse it builds the smallest possible forest. 
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Moreover, I want to impose a requirement that the proposed algorithms be 
valid cross-linguistically. 

Definition 

Cross-linguistic Incrementality 

A parser is incremental for all languages, if it uses the same incremental parsing 
mechanisms for all languages. 

I shall argue that only precompilation of the grammar, with an exhaustive 
encoding of all the possible acceptable parses, can make the parser sufficiently 
predictive, and thus incremental on both correct and incorrect input. 

Other approaches 

While most parsers satisfy property 2 above (including LR parsing, as argued 
by Shieber and Johnson (1993), and as I will show below in more detail), very 
few parsing methods have property 1, and many can be shown not to be valid 
cross-linguistically. 

Many results on left corner parsing appear to show that it is more apt to 
describing evidence on human sentence parsing, especially processing overload 
(Abney and Johnson 1991; Gibson 1991), but if one looks at a well-defined 
proposal, one can reach the conclusion that the incrementality of the algorithm 
depends on the head-initial nature of English, coupled with its rather fixed 
word order. 

Let's examine in detail the proposal reported in Stabler (1994), which is precise 
and well-defined. Stabler presents a variation on left-corner parsing, called Left 
Attachment, which has the property of parsing a sentence without ever pushing 
more than two elements on the parse stack, thus it maintains what he calls finite 
connectivity. Finite connectivity is a relaxed version of incrementality, which, 
instead of imposing that the parser always build a connected graph, puts a 
limit on the number of elements that can be left unconnected. Incrementality 
is a sort of finite connectivity where the limit of unconnected elements is set to 
1. 
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In Stabler's proposal, finite connectivity is achieved by two means: rule com­
position, and the use of a variable trigger function. The first line of Figure 4.8 
shows an example of rule composition. The NP can be shifted on the stack, 
because it is recognized bottom-up by the sequence of rules NP -+ l\ and 
N -+ the - farmer. Using a variable trigger function means that instead of 
always using the left corner of the rule to trigger top down prediction, the 
portion of the righthand side of the rule that triggers recognition can be of 
variable length. In particular, in this proposal, the specifier of a maximal pro­
jection is projected bottom-up up to X', while the XP and the righthand side 
sister, down to the X', are predicted. This algorithm is particularly effective 
because English is head-initial, so that the head is actually the left corner of 
the subtree rooted in X'. In this way the parser can predict the XP based on 
left corner information. Because the head is on the left of the X' subtree, it 
can be immediately projected to X' and be attached to the predicted X' node. 
The parse would be less effective for head-final languages.A language where 
the head is final could not exploit rule composition, as the complements would 
come first, and complements are not nearly as predictive of the type of projec­
tion being processed as heads are. The variable trigger function would not be 
very effective for very similar reasons. 

In order to see that this is actually so. consider Figure 4.8 which traces a parse 
of the Japanes sentence in (66), a head final language, with phrase structure 
that is more or less the mirror image of the structure of the English examples 
in Stabler (1994). 

(66) Noumin-ga kitune-wo oikaketa 
farmer-NOM fox-ACC chased 

This parse uses Stabler's predicates, with adaptation for a head final language. 
The notation XPshift: NP => the-fox chased means that as a consequence of the 
application of the XPshift rule there is an NP on the stack and the-fox chased 
is the yet un parsed input. It is easy to see that even if we make adjustments 
to the algorithm to optimize for head final languages (for instance, by using 
an Xlshift/attach rule), the parser could stack all the complements in a left­
branching structure. 

I follow here the notation proposed by Stabler, and of course his axioms and 
parsing rules. In the sentence in Figure 4.8, for instance, the parser starts from 
the parsing axiom: the empty stack (at the left of the double arrow) and the 
input the-farmer the-fox chased. From this configuration and the combination 
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1 ax: ~ the-farmer the-fox chased ~ NP~N ~ N ~ the-farmer 

2 XPshift: NP ~ the-fox chased ~ IP ~ NP II 

3 Ie: Il IP ~ the-fox chased ~ KP -+ N ~ N -+ the-fox 

4 XPshift: NP TI IP ~ chased ~ VP -+ NP V 

5 Ie: V VP TI IP ~ chased ~ V ~ chased 

6 shiftXO/attach: VP TI IP ~ ~ 11 ~ VP 10 ~ 10 -+ empty 

7 shiftXl/attach: IP ~ 

Figure 4.8 
Parsing Japanese with the Left Attachment Algorithm 

of rules shown on the first line, the parser can deduce that it can apply an 
XPshift action, where an NP is recognized and shifted onto the stack (second 
line). From this configuration, in conjuction with the grammar rule IP ~ NPIl 
the parser can predict an 11 (the O\'erline means that the nonterminal has been 
predicted top-down and needs to be confirmed by the incoming input bottom 
up). The result of this operation, the application of the left corner (Ie) rule, 
is shown on the third line. Line 4 shows the result of recognizing the second 
NP, by the same combination of rules shown before. The NP is shifted on the 
stack. Line 5 shows that having II and NP on the stack triggers a left corner 
prediction of the upcoming verb (which in japanese is in final position). When 
the verb is actually consumed (line 6) it can be immediately attached without 
being actually shifted on the stack using an operation that combines predictable 
sequences of actions and keeps the stack small. Line 7 shows that the same 
predictable sequence of actions can be done at the Xl level, and the sentence 
is recognized. It should be noted that even in such a small example the limit of 
2 tokens on the stack is already too strict. In this particular parse, the limit of 
finite connectivity is overflowed in the deduction step indicated from line 3 to 
line 4, when the NP the-fox is recognized. The NP cannot be attached to the I1 
directly, because the 11 is only predicted, but it awaits bottom up confirmation. 
Thus, it is necessary to explore more powerful parsing techniques, as I illustrate 
below. 
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4.6.1 Incremental LR Parsing 

Property 1 is a well-known property of LR parsers, and similarly compiled al­
gorithms, for instance Schabes (1991). Properties 2 and cross-linguistic validity 
can be achieved if the LR algorithm is augmented with two standard techniques: 
the use of marker non-terminals, and the interpretation of the LR states (fol­
lowing the idea in Shieber and Johnson (1993).) I will extend Shieber and 
Johnson (1993)'s argument to head-final languages, by showing examples from 
Japanese. Differently from them, I will concentrate on showing that feature as­
signment can be performed incrementally, and I will not discuss interpretation. 
I consider these as instances of the same parsing problem. 

S-attributed and L-attributed Grammars 

In order to perform feature assignment incrementally, an LR parser must be 
able to assign features at any point in a rule. Compare, for instance, (67)a 
and (67)b. 

(67) a. IP -+ NP I VP { assign Case to NP, if 1= finite} 
b. IP ~ NP I { assign Case to NP, if 1= finite} VP 

In a parser that uses rule (67)a, case assignment to the Spec of IP position, i.e. 
to the subject, is performed only after the VP is seen, even if no information 
about the VP is needed to perform the case-assigning action. This means 
that, if IP is the root, Case assignment to the subject is going to occur only 
when the entire tree for the sentence is built. A parser that uses rule (67)b, 
on the other hand, would assign Case as soon as the necessary information is 
available. Although it is literally true that LR parsers can evaluate actions 
only on reductions, i.e. they only operate on grammars whose rules have the 
form in (67)a, there are simple techniques to transform a rule like (57)b into 
a set of rules like (57)a (Aho and Ullman 1977, 282ff). 

Stating the problem more precisely, A grammar G with productions of the sort 
shown in (57), i.e. a grammar that can perform attribute assignment upon 
reduction of a rule is called an attribute grammar.8 An attribute grammar is 
S-attributed if all the attribution rules have the form in (68). 

SIt was first proposed by Irons (1961) and formalized by Knuth (1968). For a clear example 
of how to use attribute grarrunar for natural language, see Correa (1988) ,Correa (1991). 
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(68) A.a -+ B.b C.c { A.a ~ f(B.b, C.c) } 

The rule in (68) is called S-attributed because the attribute of the parent node 
is a function of the attributes of the offspring. Such attributes are called syn­
thesized attributes. An attribute grammar is L-attributed if all the attribution 
rules have the form in (69). 

(69) a. A.a -+ ,B.b 
b. A.a ~ ,B.b ,.c { ,B.b ;- f(A.a) } { ,.c <- f(,B.b) } 

The rules in (69) are called L-attributed because the attribute of a vocabulary 
symbol is a function of the attributes of a preceding item in the rule, or of the 
parent node. Such attributes are called inherited attributes. An L-attributed 
grammar G L can be evaluated by an LR parser, if G L is transformed into a 
grammar G 5 such that the actions that perform attribution in G L always occur 
at the end of a production in G s. 

This transformation can be achieved by two different means, depending on 
the situation. One can use the marker non-terminal technique, which simply 
consists in adding a "dummy" nonterminal, in order to force rule reduction at 
a particular point. This technique can solve the problem of interleaving feature 
assignment and structure building in two interesting cases. By putting a marker 
non-terminal right after the verb, Case is assigned to the NP as soon as possible 
in order to distinguish A from A chains, and enable structural determination 
of empty categories. If Case morphology is overt, the marker non-terminal can 
be used to assign Case and B-role, so that participants ina predicate where the 
verb is final can be interpreted. 

The marker nonterminal technique cannot be used if the grammar has rules 
where the attributes percolate from right to left, for example in a rule like (70). 

(70) A-+BC {B.i <- C.s} 

For natural languages this technique does not work for SVO languages to assign 
features from the verb to the subject, and for SOY languages to assign the 
features of the verb to the arguments. 
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In the former case, the transformation of an L-attributed grammar into an S­
attributed grammar, can be performed by different means, because in many 
cases of L-attribution, the attributes of the tokens on the left are at a fixed 
position in the stack. For instance, consider the following example, which is 
an adaptation of Aho and Ullman (1977, 310), where they give an example for 
programming languages. Let a grammar G, with productions P shown in (71) 
be given. 

(71) l. DP -t Det Poss NP 
2. NP -t NP eN 
3. NP -t N 
4. N -t { cani, gatti, pulcini, } 
5. Det ~ { I, il, la, ... } 
6. Poss -t { miel, mia, mia, ... } 

Let the input string in (72) be also given. 

(72) I miei cani e gatti e pulcini 
My dogs and cats and chickens 

We assume that agreement is checked on applying the rule (71).l. The sequence 
of moves made by an LR parser is shown in Figure 4.9. 

On inspection of the parse trace, one can notice that every time N P is reduced, 
Pass is the element just below it in the stack. This means that the position of 
the element with which the list must agree is known. Case assignment into the 
Spec of IP (nominative Case or structural case) can be done in the same way, 
as in English structural Case can be assigned as a function of the next token, 
or a bounded amount of stack, or both. In English, structural case is assigned 
to the Spec ofIP position, by Spec-Head Agreement with a finite Inft.9 Spec of 
finite IP can occur both in main and embedded clauses. Moreover, we assume, 
that the finite morpheme is always in Inft, either because it is base generated 
there, or, as for auxiliaries, it moves to I (Pollock 1989), in English. Finally, 

9We are not interested in structural case assignment to object position, i.e. inherent or 
partitive Case (Chomsky 1986a; Belletti 1988), as they involve Case assignment to a position 
after the head, in English, which can be treated by ordinary S-attribution. 
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STACK 

Det 
Det miei 
Det Poss 
Det Poss cani 
Det Poss N 
Det Poss NP 
Det Poss NP e 
Det Poss NP e gatti 
Det Poss NP e N 
Det Poss NP 
Det Poss NP e 
Det Poss NP e pulcmt 
Det Poss NP e N 
Det Poss NP 
DP 

Figure 4.9 

INPUT 
i miei cani e gatti e pulcini 
miei cani e gatti e pulcini 
miei cani e gatti e pulcini 
cani e gatti e pulcini 
cani e gatti e pulcini 
e gatti e pulcini 
e gatti e pulcini 
e gatti e pulcini 
gatti e pulcini 
e pulcini 
e pulcini 
e pulcini 
pulcini 

Example of L-attributed Incremental Parsing 

CHAPTER 4 

PRODUCTION 

Det -+ i 

Poss ---+ mzei 

N ---+ cani 

N -+ gatti 
NP -+ NP eN 

N ---+ pulcini 
NP ---+ NP eN 
DP ---+ Det Poss NP 
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English is head-initial. As a consequence of the interaction of these properties, 
Infl is always the next token in the lookahead of the parser, when the reduction 
of the NP which is going to occupy the Spec of IP is performed. IO 

In other words, structural case is assigned in the rule (73). 

(73) IP -+ NP {Case assign, if Infl = +finite } I' 

This rule assigns case correctly, only if the attribution is not a function of the 
other elements in I'. We notice however, that this is precisely what is meant 
by structural case: a case that is assigned independently of the properties of 
the main verb, in a given configuration. Thus, the correctness of (73) is a 
consequence of (74). 

(74) a. XO - \VO 
b. Xl -+ XO Y2 
c. Xl -+ XO 

{ XO.Case <- wO.Case } 
{ Xl.Case <- XO.Case } 
{ Xl.Case <- XO.Case } 

The rules in (74) show that the rules of attribution that transmit case from 
the inflectional input token (by which we mean modals, auxiliaries, and finite 

10 At first sight, this might appear as a wild overidealization. In fact, there are both 
theoretical and empirical reasons to think that this is the right way to idealize the data. A 
corpus analysis on 111 occurrences of the verb announce in the Penn Treebank shows that 
the subject is followed by an aspectual adverb 11 times, twice by incidental phrases, and 4 
times by an apposition. In all other cases the subject and the verb are indeed adjacent. I do 
not consider appositions and incidentals as challenging for the general claim: incidentals are 
clearly outside of an X structure assigned to the sentence; while appositions are "internal" to 
the NP, thus when the verb is reached, the phrase sitting on the stack is indeed the NP subject. 
which can therefore receive Case. The treatment of aspectual adverbs is more complex. There 
are at least two possible tacks. First, one can notice that adverbs, although they are analysed 
as maximal projections because they can be modified, never take a complement, thus they are 
usually limited to a very short sequence of words, and they do not have a recursive structure. 
A minimum amount of lookahead, even limited to these particular instances of aspectual 
adverbs, would solve the problem. Clearly, this is an inelegant solution. A more principled 
treatment comes from recent developments in the theory, that have changed somewhat the 
representation used for adverbs. Laenzlinger (1993) suggests that all maximal projections 
have two specifiers, one A and one X, the higher of the two is the X position which can 
be occupied by adverbs, if they are licensed by the appropriate head (the Adv-Criterion). 
For these adverbs the appropriate head is Aspo which we find only with finite verbs. The 
parser could compile this information and assign case directly, without even waiting to see 
the (lexical) verb. 
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verbs), here represented by wO, are copy rules, hence they simply transmit a 
lexical property from the input token to the sister of the assigner Xl. Hence 
Case can be assigned to the NP directly. 

Extension of the Attribution Schema 

This technique, which is sufficiently flexible to assign Case to the subject, ex­
tends to other languages with properties different from English, but it seems 
to be restrictive enough to provide an explanation of a gap in the typology of 
languages. 

In verb-final languages like German, the Spec of IP is not string adjacent to 
the head of IP, like in English, in embedded clauses. Structural case is assigned 
from left to right, since the complementizer, which necessarily marks the left 
edge of an IP, is obligatory, and the finite complementizer is always different 
from the infinitival complementizer, as shown in (75). 

(75) a. Wir wissen, daB Marie das Buch gelesen hat. 
"We know that Mary has read the book." 

b. Marie ist in die Bibliothek gegangen, urn das Buch zu lesen. 
"Mary has gone to the library to read a book." 

A language like Japanese, which is head-final and has an optional complemen­
tizer to mark embedded sentences, which comes at the end, and has no relative 
marker for relative clauses, seems, at first sight, to constitute a problem. But 
in fact it does not, for two reasons: first, Japanese has overt. case marking, 
hence nominative case assignment can be detected as it is explicitly marked in 
the input; secondly, Japanese is left branching, hence the grammar to describe 
Japanese could be evaluated by using exclusively S-attribution. l1 

An LR parser could not assign features incrementally in a language with the 
characteristics in (76). 

11 Weinberg (1993) presents a similar idea for a parameterized deterministic procedure to 
parse both English and Japanese. Her main idea is that internal licensing within a phrase 
is done by the head in English, and by Case marking in Japanese. She shows that garden 
paths effects follow. 
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(76) 1. no overt case marking 
2. no distinct finite complementizer 
3. verb final 
4. right branching 

A first inspection of some of the sources on language typology show that such 
language might be very difficult to find. (Steele 1978; Shopen 1985; Comrie 
1981). According to Downing (1978), verb final languages usually have prenom­
inal relative clauses, which we take to be a sign that they are left branching. 
Only two verb-final languages have postnominal relative clauses, Persian and 
Turkish. In Persian the clause boundary is overtly marked by the suffix -i on 
the antecedent. Moreover, they both have overt case marking of the subject. 
In fact, Downing (1978), noticing this rather strict implicational universal, at­
tempts an explanation in terms of parsing theory by citing Kuno (1974). He 
says:"Kuno (1974) has shown that SOV word order with postnominal relative 
clauses maximizes center-embedding. which seriously interferes with sentence 
processing beyond two degrees of embedding. It is not surprising then to find 
that languages with post rather than prenominal relatives provide correlative 
structure as an alternative." (Correlative relative clauses are those that have 
the syntactic structure of main clauses.) Although this is by no means definite 
evidence, at least it suggests that the algorithms for chain formation and fea­
ture assignment that we have presented are not immediately falsified and they 
are applicable to a wide variety of languages with different properties. 

Interpretation of the LR states for head-final languages 

Even if the annotation techniques presented in the previous sections seem to 
cover an interesting range of syntactic facts and gaps, one might want to explore 
a more powerful technique. 

The feature assignments explored above all fall short of one requirement for 
incremental parsing: they do not build structure incrementally. In fact, they do 
not build structure at all, the reason being that they operate only on the stack. 
The stack of an LR parser encodes some interesting linguistic concepts, such 
as precedence and c-command explicitly. It encodes structure only implicitly, 
as Shieber and Johnson (1993) remark, as it encodes the states the parser has 
gone through. However, the complete structural information is there, and can 
be used to parse incrementally both head-initial and head-final languages. 
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S' ~S 10 ---+ empty 
S ~CP VP ---+ v NP 
S ---+ IP VP ---+v 
CP ---+ NPwh C1 VP ---+ v IP 
C1 ---+ CO IP VP ---+ VP PP 
CO ---+ do NP ---+n 
CO ---+ empty NP ---+ det n 
IP ~ NP 11 NP ---+ NP PP 
11 ---+ 10 VP PP ---+ P NP 

Figure 4.10 
English grammar 

Consider a grammar with the set of productions P, shown in Figure 4.10. Its 
canonical collection of items, from which the LR finite state machine is derived, 
has 28 states. I show the first 6, to illustrate the technique, in Figure 4.11. 

These states encode top-down information implicitly. For example, the first 
item in 15 constructs an NP as the first daughter of an IP, as the parent of the 
node is known by consulting the very same state. The parent of the IP is also 
known, as it must be in state 10 , the state preceding 15 in a graph traversal. The 
parent of IP in this case is the root of the sentence. That the whole history of 
the derivation of a constructed item in an LR graph can be computed becomes 
perhaps clearer if one thinks of all the shift operations as the traversal of a 
finite state graph, the graph of all the left contexts. 

This information could be used as soon as the parser enters into a given state. 
Whenever the parser enters in a state, it predicts all the structure that is right 
after the. in a rule. This information can be encoded if we think of a tree 
structure as an AND/OR graph, where nodes that belong to the same derivation 
are AND nodes, while nodes that belong to different derivations are OR nodes 
(Lang 1989; Shieber and Johnson 1993). Visually, the nodes that belong to 
the same tree are represented as ordinary nodes, while nodes that represent 
disjunction are represented as ovals. Figure 4.12 shows a representation of the 
state of the parser at states 7,5, and 13, for the input the girl sent. 

In the first panel, the parser has seen the determiner the, which is sufficient to 
predict that the upcoming phrase is either an NP or an IP, since the nonterminal 
Det can only be the first symbol of an KP which in turn is the first symbol of an 
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Figure 4.11 

S'->. S 

S ->. CP 

S -> .NPwhC' 

IP-> .NP I' 

NP-> .n 

NP->. det n 

NP->.NPPP 

I ________ --IP---------"~ 

NP 

IP -> NP. l' 

NP->NP.PP 

1'->.IO VP 

10-> . 

pp->. P NP 

Canonical Collection of Items for the Grammar in Figure 4.10 
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IP. The shaded areas indicate the portion of the tree which has been confirmed 
bottom-up. The dotted branch in the figure in the NP projection indicates 
only dominance and not immediate dominance, as the grammar employs a left 
recursive rule at this point, so more than one ~P could be constructed. The 
oval surrounding the two roots indicates that this is an OR node in the graph, 
thus the two trees rooted here are competitors analyses for the same input. One 
of the two will be discarded by the end of the sentence. The second panel shows 
the parser's state after the word flowers, which has been recognized as an NP, 
and attached to both subtrees in the AND JOR graph. The NP continuation is 
compatible with both analyses, as shown by state I5 in Figure 4.11. The third 
panel shows that the NP analysis has been discarded at the processing of the 
verb sent, as it is incompatible with a V expansion. On the other hand, the tree 
rooted in IP has now an OR node which contains three possible expansions, all 
of which are compatible with the portion of input seen so far. 

This use of LR states is very powerful, as it amounts to bottom-up parallel 
parsing. The extension to head-final languages is straightforward. Consider, 
for instance, the little, purely illustrative grammar for a head-final language 
given in Figure 4.13. This grammar could generate, for instance, the sentence 
in (77). The parse of this sentence would proceed as in Figure 4.14, where the 
first steps are illustrated. 

(77) Bob-ga Mary-ni inu-wo ageta 
Bob-NOM Mary-DAt dog-ACC give-PAST 
'Bob gave Mary the dog' 

In step 1, the main sentential structure is constructed, on the basis of the 
information contained in the first NP. The first NP being nominative, it can 
only be the left corner of a sentential node. Step 2 shows that, as soon as an 
inflectional node is postulated, all the possible VP expansions are predicted, 
as alternative analyses, indicated by the OR node. Step 3 shows that only one 
analysis is kept on encountering the dative NP, which is not compatible with 
the first and third expansion of the VP indicated in step 2. The parse will 
continue successfully, and unambiguously, with the analysis of the NP and of 
the verb. 

This technique is powerful enough to parse head-initial and head-final languages 
incrementally, without losing the valid prefix property, and thus it satisfies the 
requirements we have imposed above. Since it is based on the collection of 
items, which take the closure of dotted items, it is also guaranteed to terminate 
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at stale 1 

NP pp :w 

~ ~ 
at state S 

j' I 
the fWwm 

Dei N 
j I 

the /I .. ,,,, 

IP 

~ 
r-~--~NP=----- 11 

De, N 

NP NP 

Figure 4.12 
The three initial parsing step for the sentence fragment The girl sent .. usmg a 
representation of the sentence as an AND/OR graph 
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Figure 4.13 

S' -T IP 
IP -T NPnom 11 
11 -T VP ro 
10 -T empty 
VP -T NPacc v 
VP -T NPdat NPacc v 
VP -T IP \' 

Example Verb Final Grammar 

NPnom 

I 
Bob-ga 

STEP! 

Mjdat 
Mary-ni 

STEP 3 

Figure 4.14 

NPnom 

I IO 
Bob-ga 

STEP 2 

l'I"Pacc v 

NPacc v IP 

/~ 
NPnom II 

Parsing a head-final sentence with an AND/OR representation 

on left recursive grammars, while at the same time having a strongly predic­
tive behaviour, like top-down grammars_ Notice that although a considerable 
amount of structure can be predicted, this algorithm cannot postulate struc­
ture beyond the specifier position of an embedded clause, thus immediately 
accounting for the surprise effect in sentence (65)_ 



5 
LOCALITY 

Move-a, in current GB theory, is the only transformational rule. It is com­
pletely unrestricted, in the sense that it is interpreted as move anything any­

where. The underlying assumption is that this is the most general formulation 
of a movement rule, and hence the most explanatory. Thus the single movement 
rule of the theory, per se, does not incorporate any restrictions. The correct 
empirical description is achieved by imposing restrictions on the elements that 
move and on the source and target site of movement. Defining the domain of 
operation of move-a is thus crucial, but also complex. 

Long distance relations between elements undergo strict locality conditions, as 
was noted as early as Ross (1967). ~luch work has been devoted, both in the 
linguistic and in the parsing literature, to the discussion of locality conditions 
on long distance dependencies. 

In this chapter, after setting the theoretical framework (Cinque 1990), some 
alternative proposals in the parsing literature are reviewed that make crucial 
use ofthe notion oflocality to restrict the amount of computation performed on­
line and establish a strict relation between the parser and the grammar (Marcus 
1980; Berwick and Weinberg 1984; Frank 1992). Drawing on their work, I shall 
discuss the treatment of cross-linguistic asymmetries. Finally, I shall discuss the 
implementation, arguing that preceding attempts to capture locality restriction 
in the architecture of the parser Berwick and Weinberg (1984) or Frank (1992)) 
are not successful, as they only capture one part of locality restrictions, namely 
that part that deals with the "minimal recursive subtree". I suggested that 
locality restrictions be encoded declaratively by pointers to the available left 
context. 
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5.1 THE LINGUISTIC FACTS 

I shall restrict my attention to long distance dependencies created by wh­
movement. Wh-movement presents two characteristics that are going to be 
of interest here: it undergoes locality restrictions, and it is subject to cross­
linguistic variation. 

Wh-movement is not unrestricted: extraction from certain constructions (called 
islands) gives rise to ungrammatical sentences. Some of the most revealing 
islands are exemplified below (Cinque 1990, Iff). 

(7S) Subject Island 
a. * Which books did [ talking about t] become difficult? 
b. * How would [to behave t) be inappropriate? 

(79) Complex NP island 
a. * To whom have you found someone who would speak t ? 
b. * How have you found someone who would fix it t ? 

(SO) Adjunct Island 
a. * To whom did you leave without speaking t ? 
b. * How was he fired after behaving t ? 

(SI) Wh Island 
a. ?? To whom didn't they know when to give their present t? 
b. * How did they ask you who behaved t ? 

(S2) Negative Island 
a. To whom didn't you speak t ? 
b. * How didn't you behave t ? 

(S3) Factive Island 
a. To whom do you regret that you could not speak t? 
b. * How do you regret that you behaved t ? 
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(84) a. To whom is it time to speak t? 
b. * How is it time to behave t? 
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Two facts can be noticed. First, in all cases extraction from islands generates 
some ungrammatical wh-movement. Second, sentences (81)-(84)a are gram­
matical, while (81 )-(84)b are not. The islands that generate ungrammaticality 
in all cases are called strong zslands, while the others are called weak islands. 
The fact that (81 )-(84)a are grammatical shows that "long" movement is al­
lowed in these cases, i.e. the long distance relation between the wh-word and 
the trace can be established. On the other hand, the ungrammaticality of (81)­
(84)b shows that long movement is not available to the type of element that is 
being moved. However, movement is available to the same elements if it can 
occur in shorter steps, as the contrast in (85 )-( 87) shows. 

(85) a. * How did they ask you who behaved t ? 
b. How did they think you behaved t? 

(86) a. * How didn't you behave t? 
b. How did you behave t? 

(87) a. * How do you regret that you behaved t? 
b. How do you think that you behaved t? 

These facts suggest that long wh-movement is sensitive to strong islands, while 
successive cyclic wh-movement is sensitive only to weak islands. Following 
Cinque (1990), then, three questions need to be answered with reference to 
wh-movement. 

1. What classes of elements undergo long and successive cyclic 
movement? 

2. From what principles of the theory does the existence of long and 
successive cyclic movement follow? 

3. What is the nature of the locality conditions on long and 
successive cyclic wh-movement? 



150 CHAPTER 5 

In Chomsky (1986a) the answer to the first and second questions is that argu­
ments can undergo long movement, while adjuncts cannot. 1 

Refining on this proposal, Rizzi (1990) points out that some B-marked com­
plements, i.e. arguments, most notably measure phrases and NPs in idiom 
chunks, cannot undergo long movement, as shown in (88)-(89). 

(88) * Quanti chili ti ha chiesto se pesavi? 
"How many kilos did (s)he ask you if you weighed?" 

(89) * L'attenzione che non ho ancora deciso a chi prestare, e poca. 
"The attention that I have not yet decided to whom to pay, 1S 

little." 

Rizzi (1990), therefore, distinguishes elements that receive a "referential" B-role 
from those that receive a non-referential B-role, such as a measure B-role. The 
principle governing movement for non-referential elements, adjuncts, measure 
phrases and idiom chunks is the ECP, which imposes very local licensing con­
ditions. The principles governing movement of referential elements are jointly 
the ECP and binding. The fact that referential elements can be "identified" 
by binding accounts for their ability to move longer distances than adjuncts. 
An even finer distinction is needed to account for the systematic difference in 
acceptability of the extraction of arguments related to a bare quantifier and 
extraction of NPs such as tutti-N, as shown in (90)-(91) (Cinque 1990). 

(90) a. * Ogni dichiarazione mi chiedo perche abbia ritrattato. 
" Every declaration I wonder why he repealed." 
b. * Nessun libro mi domando perche abbia comprato. 
"No book I wonder why he bought." 
c. Tutti i musei, mi chiedo chi possa aver visitato. 
"All the museums, I wonder who might have visited." 

1 This distinction is derived from a particular formulation of the ECP, such that interme­
diate traces of arguments may be deleted at S-structure: both arguments and adjuncts need 
to be antecedent governed, i.e. they can move only by successive short steps; however, in the 
case of arguments some of the intermediate traces left behind by these small steps can then 
be deleted, "simulating" long movement at the level of LF, while the intermediate traces of 
movement of adjuncts cannot be deleted. 
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Table 5.1 

WHICH-N 
referential (D-linked) 
binding 
long movement 

Two types of wh-movemellts 

referential (non- D-linked) 
antecedent government 
successive cyclic movement 

(91) a. * Ogni museo, non vuole visitare. 
"Every museum, he does not want to visit." 
b. * Nessun libro non e' vero che abbia comprato. 
"No book it is not true that he bought." 
c. Tutti i musei, non ha visitato. 
"All the museums, he did not visit." 
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If referentiality is interpreted as D-linking in the sense of Pesetsky (1987), refer­
ential means member of a preestablished set. Then, according to this definition, 
a bare wh-operator/variable configuration is not referential, and NP-traces are 
not intrinsically referential, if we think of them as elements of a discountinuos 
constituent. Cinque (1990) identifies then two kinds of operator/variable con­
figuration, as shown in table 5.1, where the types of NPs that belong to the 
two classes, the grammatical principles that perform the identijicatzon of the 
empty category, and the type of movement are listed. 

Within the Barriers framework, Cinque (1990) proposes to define two slightly 
different notions of barrier for long movement and successive cyclic movement. 2 

Intuitively, the different definitions must capture the fact that strong islands 
are neither 8 nor L-marked, while weak islands are 8-marked. The difference 
in the two cases can then be captured by the notion of direct marking, under 
sisterhood. 

2Chomsky (1986a) proposes that the locality condition on successive cyclic movement is 
antecedent government, while the condition on long movement is Subjacency. Cinque (1990) 
points out that this proposal is unsatisfactory, since it deals with locality conditions in a way 
which is not uniform. Chomsky (1986a) attempts to unify the theory of government and the 
theory of bounding by using the same notion of barrier in both theories. Cinque (1990) notes 
that the unification is only partial, however, as a different number of barriers is relevant: one 
for governrnent and two for bounding. Moreover, two more notions of barrier are needed in 
order to capture all the facts: minimality barrier for government and inherited barrier for 
Subjacency. 
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Definition 

Barrier for Government (Cinque 1990,42) (113) 

Every maximal projection that fails to be directly selected by a category nondis­
tinct from [+ V] is a barrier for government. 

Definition 

Barrier for Binding (Cinque 1990, 42) (114) 

Every maximal projection that fails to be (directly or indirectly) selected in 
the canonical direction by a category nondistinct from [+ V] is a barrier for 
binding. 

In sum, the trace of wh-movement must be formally licensed and identified. A 
nonpronominal empty category is formally licensed if the ECP, as formulated 
in 5.1, is satisfied. If the empty category is referential it is then identified if 
binding is satisfied, while a nonreferential nonpronominal empty category is 
identified iff antecedent government is satisfied. 

Definition 

ECP (Cinque 1990, 49) 

A non pronominal empty category must be properly head governed by a head 
non distinct from [+ V]. 

As it can be noticed, Cinque's definition of barrier reintroduces substantive no­
tions, related to the feature [+V], which were absent from Chomsky (1986a)'s 
definition. The fact that the category label determines barrierhood, however, 
makes it impossible to use a parameterized list of bounding nodes. The cross­
linguistic variation discussed in Rizzi (1982) is then basically stipulated. I 
review here the linguistic evidence and reinterpret Rizzi's proposal in the frame­
work of the current theories of A movement. 
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5.1.1 Cross-linguistic Variation 

Rizzi (1982, 49ff) notices that some of the evidence that motivated the Subja­
cency condition, namely the existence of wh-islands, does not translate directly 
into Italian.3 Specifically, Italian could violate some wh-islands. 

An example of long distance movement that is allowed in both languages is 
given in (92). 

(92) a. [c P W hOi do [I P you think [c P ti that [I P Mary said 
[c P ti that [I P Bill saw ti ? ]]]]]] 

b. [cp Chi; [IP credi [cp ti che [IP Maria abbia detto 
[c P ti che [I P Gianni ha visto ti ? ])]]]) 

Both Italian and English, on the other hand, exclude wh-extraction from a 
wh-clause which is not the most embedded one, as shown in (93).4 

(93) a. * Il mio primo libro, [cp cheJ [IP so [cp a chi, [IP credi [cp t; 

che [I P abbia dedicato tj t, )))], mi e sempre state molto caro. 

b. * ~1y first book, which I know to whom you believe that I 
dedicated, has always been very dear to me. 

The next two examples show the kind of configurations in which Italian can 
violate wh-islands: if the most embedded clause is a wh-clause, then extraction 
is possible and the extracted element can either move higher up the tree or 
move to the adjacent clause as shown in (94) and (95). 

(94) a. Il mio primo libro, [cp chej [IP credo [cp tj che [IP tu sappia 
[cp a chi; [I P ho dedicato tj t; ]]]], mi e sempre stato molto caw. 

b. * My first book, which I believe that you know to whom 
I dedicated, has always been very dear to me. 

3The wh-island constraint, as stated in Ross (1967), says that no wh-element can be 
displaced out of a wh-constituent. 

4These sentences are Rizzi (1982,56) (l8b,a) and 50 (6b), respectively. 
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(95) a. Tuo fratello, [cp a cui; [IP mi domando [cp che storiej 
[IP abbiano raccontato tj tt 111], era molto preoccupato. 

b. * Your brother, to whom I wonder what stories they told, was 
very worried. 

In order to account for this cross-linguistic asymmetry, Rizzi reformulates Sub­
jacency as a parameterised condition. In the formulation before Chomsky 
(1986a), Subjacency would hold in (96)b given (96)a. 

(96) a .... a ···le ... [6 ... ,11 a ... 
b. No rule can relate a and -( in (96)a if two bounding nodes are 
intervening. 

This restriction also applies to wh-movement. The result is that no single step 
in a cyclic application of movement could cross more than one bounding node. 
The bounding nodes are constants \\'ith the stipulated values of IP and NP for 
English. 5 Rizzi suggests that the value of the clausal bounding nodes can vary 
from language to language. He shows that by choosing the bounding node as 
CP for Italian the evidence above is easily explained. In no case, more than one 
CP bounding node can be crossed in Italian. Cinque (1990) notices however, 
that cross-linguistic variation is sensitive to referentiality. Those languages that 
allow wh-islands violations do so only with referential wh-phrases, or in relative 
clauses. Moreover, given this distinction, languages like English can also violate 
wh-islands given the appropriate context. Cinque gives the following examples. 6 

(97) (Cinque 1990, 53) (144a.b) 
a. A car that I wouldn't know who to ask how to fix t. 
b. These are the only vegetables which I don't know where 
to find out how to plant t. 

In order to capture the cross-linguistic variation a stipulation is needed, which 
determines which node is an inherent barrier in a given language, along the lines 

5The actual labels used in Rizzi (1982) to refer to sentential nodes are Sand S'. I use here 
the terminology introduced by Chomsky (1986a), because it is just a label substitution. No 
matter of content is altered. CP = S' and IP = S. 

6 Cinque acknowledges that (97)a is from Browning, and (97)b is from Frampton (1990). 
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• The binder of a non pronominal empty category must be the minimally local 
binder. 

• The identification of a non pronominal empty category is sensitive to D-linking 
properties of the empty category. 

• Different locality domains can ensue different referential properties of the empty 
category. 

• NP-movement generates a non-referential discontinuous constituent. Hence, 
nonreferential items and NP-movement must be treated in the same way. 

• Cross-linguistic variation is sensitive to referentiality. 

Table 5.2 
Generalisation about wh-movement 

of Chomsky (1986a, 37). Italian would then stipulate that the most embedded 
tensed CP is an inherent barrier for binding, while in English IP would count 
as an inherent barrier. 7 

Table 5.2 summarises the main generalisation about wh-movement 

7 This difference in the formulation of the parameter from the formulation preceding Chom­
sky (1986a) is in no way going to affect the validity of our discussion of Marcus (1980) and 
Berwick and Weinberg (1984) below, which were developed with a substantive theory of 
bounding nodes. 
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5.2 RELATED WORK 

From the point of view of efficient parsing, unbounded dependencies pose a 
problem, because they require access to a potentially unbounded amount of 
left context. However, the theory of grammar, as formulated in GB, provides 
a tractable representation: every long distance movement is interpreted as the 
sum of a number of shorter steps. A deterministic parser is able to perform 
this computation, provided that the amount of material that every step can 
encompass is available as left context to the parser. In other words, the parser 
needs to know, given a wh-word as a cue of an upcoming trace, where to insert 
the trace. 

5.2.1 Marcus 1980 

Marcus (1980) adopts for his parser a strictly deterministic approach. He claims 
that a parser with the features in (98) is a deterministic parser. 

(98) 1. No postulated node, no label and no grammatical 
feature are cancelled and no attachment is broken. 

2. All syntactic structure created for a given input is part 
of the output tree. 

3. No temporary encoding of syntactic structure is allowed. 
4. Only limited lookahead is allowed. 

Marcus (1980) uses two main data structures: a buffer, which can contain 
upcoming input tokens and assembled const.ituents whose attachment is not 
yet clear (thereby serving as lookahead device and temporary storage); and a 
look-into stack, which is a stack where elements other than the top one can 
be examined (thereby encoding the scanned portion of input to the left of the 
current token). The left context is limited to the current cyclic node, namely 
the current IP or NP. 

The operations on these two data structures are limited by constraints on the 
order of insertion and retrieval of constituents, the lowering lemma and the left­
to-right constraint, given in 5.2.1 and 5.2.1 respectively, from Marcus (1980, 
141). 
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The Lowering Lemma The only reasonable method for lowering a trace 
bound to an NP in one clause into a lower clause is to do so im­
plicitly by dropping the trace into the buffer. 

The Left-to-Right Constraint The constituents in the buffer are (al­
most always) attached to higher level constituents in left to right 
order, i.e. the first constituent in the buffer is (almost always) 
attached before the second constituent. 
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The determinism hypothesis forces the parser to be a wait-and-see parser, in 
the sense that it cannot afford to make any mistakes, thus it can only postulate 
structures and attachments that are certain. 

Marcus (1980) claims that it is precisely this hypothesis, coupled with the 
restrictions on licit operations, that make the parser obey a linguistic con­
dition like Subjacency. For example. consider the parse of a long distance 
wh-movement. At the sight of a wh-word, the parser drops a trace into the 
buffer and a new sentential node is postulated. Before attaching the IP node, 
the parser builds a Comp node, which is formed by a complementizer word 
and trace. Then it attaches the Comp node as the first element of the newly 
postulated IP. As a consequence, when all the input is expended, the parser 
has built an A-chain where every link in the chain, excluding the foot, sits in a 
Comp node. The restrictions on the available left context ensure that this is the 
only kind of cyclic movement allowed. Thus, wh-island behaviour is simulated. 
If one of the Comps that are encountered while parsing is already filled by a 
wh-word, then no trace can be dropped in the same Compo Since the visible 
portion of the stack is the current cyclic node, at this point in the parse the 
Comp of the current cyclic node will contain no trace. Hence the information 
that a wh-word has been seen before is lost. Thus, when the A-position to drop 
the trace is finally found, no trace in Comp is available to bind it and yield the 
correct interpretation. 

If we look at the Marcus parser from the point of view of principle-based parsing 
and precompilation which we have pursued so far, we see that the constraints 
on movement of the theory of grammar are not directly stated in the parser, but 
rather they are folded into complex structure-building actions. This is neces­
sary because by precomputing the interaction between the generator principle 
move-Q and the constraints, the parser acts deterministically. However, the effi­
ciency of determinism is bought at the cost of cross-linguistic coverage, or even 
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empirical coverage for English, in those dialects where wh-islands violations are 
acceptable (see for instance, Grimshaw (1986)). 

The account for Italian is not so straightforward. In the specification for an 
algorithm that computes the Italian type of Subjacency, CP constituents belong 
to two classes: the class of those CPs that do not contain the trace in A-position 
and the class of those that do. This results from choosing CP as a bounding 
node. From the parser's point of view this means that a trace must be inserted 
in all Comps intervening between the antecedent and the trace, except the 
Comp immediately dominating the trace. 

For a parser like Marcus (1980) to be able to compute Subjacency for Italian, it 
would need to recognise that the upcoming clause is the one that contains the 
trace in the base position. If the parser could recognise that it is at this stage 
in the parse, then it would know that it need not drop a trace in Compo The 
amount of available left context would also vary, depending on the derivational 
cycle, to ensure proper binding of the trace. When the Italian-like parser arrives 
at the most embedded Comp it might not need to drop a trace, but then it 
needs to have access to the previous Comp to bind the trace in A position 
properly. Algorithm 1 would be able to capture this state of affairs. 

Algorithm 1 

1. If most embedded clause then 
left context +- from A-trace to closest A-trace 

else 
left context +- current clause 

2. If the left context contains a wh-word or a trace in Comp then 
if not most embedded clause then 

insert trace. 

3. No trace can be inserted in a wh-filled Compo 

Algorithm 1 parses Italian, but it would violate both the lowering lemma and 
the left-to-right constraint, since, according to the given definition of left con­
text, a constituent could be built before retrieving a trace from the buffer. One 
could try to parameterise the Marcus algorithm to capture Italian, but this 
attempt would either violate the spirit of Marcus's approach or miss the expla-
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nation for English. Consider, for instance, a rather natural parameterization: 
the active node stack is parameterised. In Italian the value for the cyclic node 
could be CP, in English IP. This choice would reflect rather transparently the 
grammatical parameter and be faithful to the parsing design, but it would not 
work: as long as the lowering lemma and the left-to-right constraint are active, 
only one sentential node can be built when a trace is in the buffer. Basic wh­
island violations in Italian would not be captured. Thus the mechanism would 
still be too strong. 

On the other hand, if the lowering lemma and the left-to-right constraint were 
lifted, empirical problems would result for English: the mechanism would be 
too weak. Since the lowering lemma and the left-to-right constraint are crucial 
to enforce the Specified Subject Constraint (SSC), it is easy to predict that 
some ungrammatical sentences could now be parsed. Consider, for instance, 
the case of object raising below. 

(99) * Mary seems [IP John to like t ] 

Object raising is excluded in Marcus (1980) parser because the conjunctive 
application of the two lemmas allows extraction only from subject position, 
but if the lemmas were lifted, then the trace could be created and bound to 
Mary before creating the IP node, and inserted later. 

If the two constraints were parameterised, such that English enforces them and 
Italian does not, then Comp to Camp movement of wh-traces in Italian would 
be totally accidental. But Italian performs cyclic movement as is shown in (93) 
above. Thus Marcus (1980) is not easily extensible to capture cross-linguistic 
variation. 

5.2.2 Berwick and Weinberg 1984 

Berwick and Weinberg (1984) develop a two stage parser that consists of a 
tree building device and a coindexing procedure. The first stage of the parser, 
discussed here, draws on Marcus (1980). 

Berwick and Weinberg (1984) claim that the Marcus parser is "an informal 
machine version of an LR(k) parser, specifically, a bounded context parser 
(p.153)", since it satisfies three defining properties of an LR(k) parser. 
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• It computes left to right a rightmost derivation in reverse. 

• It is deterministic, in that it uses a finitely bounded lookahead. 

• The parsing rules are stored in a finite control table. 

By adopting this point of view, Berwick and Weinberg (1984) are able to offer a 
reason why apparently unrelated phenomena of linguistic theory obey the same 
constraints. These phenomena form a class for the parsing mechanism. Such 
constructions are wh-movement constructions, parasitic gaps and some kinds 
of gapping. (Berwick and Weinberg 1984; Berwick and Weinberg 1985; Fodor 
1985). 

The way their parser provides an analysis for cyclic wh-movement is slightly 
different from Marcus (1980)'s. They assume that a trace in an A-position 
is postulated depending on the 8-grid of the verb. If an antecedent trace is 
present in the left context then coindexation can occur. The antecedent trace 
is distinct from that of Marcus (1980), because it does not have to be attached 
at the moment the new clausal node is postulated. It can be inserted later, if 
no A-trace has been seen, provided it is inserted before the current domain has 
not been passed to the second stage device, where it is no longer visible. As a 
result, this parser provides the kind of design that can easily accommodate a 
parameterised version, because the action that builds the structure ( i.e. insert.s 
the trace) and the checking of the constraints are not bundled in a complex 
operation. We will present below the specification of an algorithm that works 
both for English and Italian. We note, however, that. the formal properties of 
this parser are not exactly as claimed in Berwick and Weinberg (1984). First, 
the Marcus parser is not LR(k), but rather LRRL(k), as proved in Nozohoor­
Farshi (1986). Intuitively, an LR(k) parser can only use terminal symbols as 
lookahead, while an LRRL(k), which stands for LR Fully Reduced Lookahead 
of k, can also use nonterminals. It is easy to see that the use of the buffer in 
the Marcus parser, which can contain fully-built unattached subtrees mimics 
an LRRL machine. Also, it is not a bounded context parser since a bounded 
context parser BC(m, n), only takes the last m tokens into account, whereas the 
Marcus parser uses a packeting mechanism of patt.ern-action rules to encode the 
left context. For a more detailed explanation and proofs, see Aho and Ullman 
(1972) and Nozohoor-Farshi (1986). Second, as Van de Koot (1990) observes, 
the behaviour that mimics Subjacency is actually derived from the fact that a 
bound on feature annotation is imposed. In order to keep track of the current 
cyclic node, a deterministic parser can encode the information as a feature on 
each node. Thus, there is nothing intrinsic in the annotation that prevents to 
annotate more than one feature at a time. The parser obeys wh-islands as a 
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consequence of the limit on feature annotation. Moreover, the only locality 
restriction that is derived is A-minimality. However, we show below that the 
fact that the constraints are applied separately from structure building can be 
used to model cross-linguistic variation. 

5.2.3 Frank 1992 

Frank (1992) notes that locality restrictions are pervasive in GB theory. Every 
principle of the grammar is stated as holding only in a given local environment. 
Therefore, Frank argues, locality restrictions should not be stated explicitly, 
and redundantly, in the theory of grammar, but rather they should descend 
as a property of the grammatical formalism. Thus he proposes to consider 
grammatically local environments that can be defined over an elementary tree, 
as defined in Tree Adjoining Grammar (TAG). Frank suggests that the parser 
incorporates the theory of grammar directly (in fact, he allows no grammar 
precompilation), and that by restricting the operations of the parser to those 
operations that are defined over an elementary tree, the working space of the 
parser is guaranteed to be always parcelled into subtrees of bounded size, since 
by definition no recursion is encoded in the ETs. This parser would then 
proceed as follows. For every input token, it projects X structure and lexical 
information; following the lexical specifications to license phrase structure it at­
tempts to incorporate the projection into the partially constructed tree. When 
the structure already built corresponds to an ET, either initial or auxiliary, 
then the ET is excised from the structure by an operation which is the reverse 
of the two operations defined in TAG to combine trees. Hence, an auxiliary 
tree is unadjoined and an initial tree is unsubstituted. The ET is then passed 
to a semantic component for interpretation. 

Using TAG to define formally the amount of locality over which linguistic prin­
ciples can span is appealing. However, some empirical issues remain to be 
settled. There are cases in which the definition of locality given by TAG and 
the locality restrictions defined in G B are not coextensive. For instance, ac­
cording to the theory of locality developed at the beginning of this chapter, 
there are at least two locality domains for the identification of empty cate­
gories, depending on the content of the empty category: binding for D-linked 
expressions and antecedent government for non-D-linked elements. In the case 
of "long movement", namely extraction of arguments from weak islands, the 
notion of ET and the notion of local domain in G B seem at odds. For instance, 
take the example (81 )a, repeated here for convenience. 
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(100) ? To whom didn't they know when to give their present? 

Here the long binding required to bind the trace spans over a recursive structure. 
However, the sentence is at worst marginal. Thus TAG might impose a type of 
locality that is descriptively too restrictive, as it fails to provide definitions of 
locality for different referential items. The algorithm that uses TAG then suffers 
from the same shortcoming as the algorithms seen above. Namely the attempt 
to reduce locality to some sort of undoing of recursion is bound to be only 
partially successful, unless item-dependent and language-dependent differences 
are taken into account.8 

In sum, precompilation of locality restrictions into the structure building rou­
tines is only partially successful. TAG might offer a well-formalized theory of 
locality domains provided it were enriched with complex symbols, or precom­
piled atomic symbols, that give rise to several different locality domains for 
each element type (A, A, head, referential) and also provided that an efficient 
algorithm to consult the forest of ETs only at the relevant steps were specified. 

5.3 PARAMETERISED SUBJACENCY 

As a solution to the shortcomings of the deterministic algorithms seen !'o far, I 
propose a parameterised version of Berwick and Weinberg (1984), Ben\ k and 
Weinberg (1985). The algorithm is built on the following assumptions: 

1. The parser can access only a limited amount of left context, 
called >.( x). 

2. The amount of left context can acquire different values, (i.e. it is 
a parameter). 

3. Empty categories are formally licensed by principles of the 
grammar, such as the ECP. 

4. After being licensed, a trace must be identified by an antecedent. 

5. Given Subjacency, the antecedent for a trace must be in >.(x). 

8Maybe TAG can be used if complex node labels on trees are used to determine recur­
sive structure. We need then to develop a theory of complex nonterminal symbols and to 
investigate the complexity of algorithms that use them. 
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AlgorithIIl 2 

1. fix bounding node parameter 

2. scan sentence: 
repeat until end of input 
update ..\(x) 
if Comp = not c-ommanded by real gap chain then 

drop empty operator 
if Comp = - wh then 

drop trace 
bind trace 

scan CP 

3. scan CP: 

Figure 5.1 

while trace in IP do 
if trace in A-position is licensed then 

drop trace 
look for antecedent in ..\( x) 
if antecedent available then 

bind trace 
else fail 

else fail 

Parameterized Algorithm to Compute Subjacency 

6. Doubly filled Comps are not allowed. 
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If we fix ..\(x) = adjacent x, and x ..... IP for English, and x ..... CP for Italian, 
then the correct array of evidence can be derived. We assume that the execution 
of this algorithm is triggered by the detection of a wh-environment, questions 
or relative clauses, for instance. At the moment it is also assumed that such 
environments are identified by wh-words or relative pronouns.9 The algorithm 
is shown in Figure 5.1. 

9Thus we assume that an Active Filler Strategy is at work (modulo De Vincenzi (1991), 
see chapter 4). 
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5.3.1 Explanation and Comments 

Step 1 sets the bounding node parameter for the current language, while Step 
2 is the main loop that guarantees that the parsing of multiclausal sentences is 
performed as a collection of clausal parses. 

Step 3 assumes that traces in A-position are licensed by proper head government 
structure. When a trace is postulated it must be identified by an antecedent 
contained in >.( x). Since the trace is dropped first and then the left context is 
scanned for the binder, at this point the algorithm is going to take advantage 
of the possible different value of >.( x) to derive the asymmetry observed in the 
data. If >'(x) is the adjacent CP, the Italian value, this means that the trace 
in A-position can look at two Comps for its antecedent. As a result, even 
if the nearer Comp is filled, the trace can still be bound and the sentence is 
grammatical. If >.( x) is the adjacent IP, as in English, then only one Comp 
node is available to identify the trace in argument position. Either the Comp 
is an eligible identifier or the sentence is excluded. 

The condition that drops an empty operator in Comp is needed to parse par­
asitic gaps, and it is based on the discussion in Berwick and Weinberg (1985). 
Parasitic gaps are problematic for a deterministic parser because they are in 
complementary distribution with overt pronouns, as can be seen in (101). 

(101) a. Who did you meet without greeting? 
b. Who did you meet without greeting him? 

Parasitic gaps are required to be bound by an empty operator and moreover, 
they obey Subjacency (Chomsky 1982; Chomsky 1986a). The parser then must 
be able to predict a parasitic gap to be able to build a correct chain of A links 
to bind the gap. For example, the representation for the sentence in (102) is as 
follows. 

(102) W hOi did you meet ti OJ without greeting ei ? 

The distribution of parasitic gaps obeys conditions that are not completely 
clear. Parasitic gaps can be attached either as adjuncts or as subjects, as 
exemplified in in (103) and (104) below; they show some island effects, hence 
obey subjacency; and they are licensed at S-structure. 
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(103) Adjunct Parasitic Gaps 
a. What did you file t [ before reading e ? 1 
b.* Who [IPt met you [before you recognised e? 1 

(104) Subject Parasitic Gaps 
a. A man who [ whenever I meet e 1 [ t looks old] 
b.* A man who [ t looks old [ whenewr I meet e 1 
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As mentioned above, according to Chomsky (l982) ,Chomsky (1986a) an empty 
operator in the Comp licenses a parasitic gap. Thus two chains are present and 
the licensing of parasitic gaps can be reduced to a condition that regulates chain 
composition. (See above, chapter 4.) A plausible candidate is anti-c-command. 
Anti-c-command requires that the parasitic gap be not c-commanded by ei­
ther the real gap or the real operator. Consider then anti-c-command as the 
condition on chain composition. From a parsing point of view it is really not 
surprising that chain composition should be subject to this kind of restriction. 
If we assume that Subjacency incorporates the notion of c-command, then 
whenever an A-chain is being computed and a new not c-commanded struc­
ture is postulated, the parser knows that a new A-chain should be started.1° 
The restriction on how much A-chain stacking is possible could be regulated 
by the same mechanism that does not allow triple center embedding in natural 
languages {cf. :Miller and Isard (1964)). 

The parser then can drop the empty operator in Comp when the chain com­
position condition is satisfied, as suggested by Berwick and Weinberg (1985). 
Empty operators are not visible to the semantic component unless they bind 
an argument position by the time they are passed to the semantic interpreter. 
This is because they need to bear a B-role to be visible and to receive a semantic 
index. By adopting this algorithm, a deterministic parser is able to be equally 
well equipped to parse a parasitic gap or a pronoun. 

If the pronoun is in the position of the parasitic gap then the empty operator 
never enters a chain and does not receive a B-role, so it is invisible to the 
semantic interpreter. Moreover, since the empty operator is in the head of the 
adjunct and the parasitic gap must be subjacent to it, an asymmetry between 
Italian and English is predicted. The parameterised algorithm must be able 
to deal with it and it does. The two following sentences provide the empirical 
evidence. 

lOFor other reasons to include c-cornmand in the definition of Subjacency, cf. \Veinberg 
(1988). 
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STEP STATEMENT SET OF ACTIONS CURRENT STATE OF THE INPUT 

l. fix parameter >.(x) <- CP 
2. scan sentence Comp - +wh 

scan CP ... fc P ehe) [I P credo 

3. scan CP no trace in IP 
2'. scan sentence Comp - -wh 

drop trace in Comp [c P ehe) [J P credo fc p t) che 
3'. scan CP no trace in IP 

2*. scan sentence Comp = +wh 
scan CP 

3* scan CP if a trace is licensed then 
drop trace 
wh, E >.(x) 
then available antecedent 
bind trace [cP che] [IP credo [cp t] che [IP tu 

sappia fc P a chi, [I P ho dedicato t, 
scan CP if a trace is licensed then 

drop trace 
wh] E >.(x) 
then available antecedent 
bind trace lcp ehe] [IP credo [cp t) che [IP tu 

sap pia fc P a chi, [I P ho dedicato t, t) 

Figure 5.2 
Snapshot of Good Italian Sentence: II mio primo lIbro, che credo che tu sappia a chi 
ho dedicato, mi e sempre stato molto cara 

(105) ?? Who; did you meet t; [cp 0; before [IP asking John 
[c P when [I P Sue would get married to ei ? ]]]] 

(106) II ragazzoi che Maria ha sposato ti [cp Oi prima che [IP io avessi 
tempo di chiedermi [cp se [IP potesse conoscere ei bene. ]]]] 

We now go through snapshots of the the algorithm to see it work in detail. 
A sentence which is good in Italian «81)) and bad in English «94)) and one 
which is bad in both languages «93)) is illustrated. 

I 
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STEP STATEMENT SET OF ACTIONS CCRRENT STATE OF THE INPUT 

1. fix parameter >.(x) ...... IP 
2. scan sentence Comp - +wh 

scan CP ... [c P which) [I P I believe 

3. scan CP no trace in IP 

2'. scan sentence Comp - -wh 
drop trace in Comp 
scan CP [cp which) [IP I believe [cp t) that 

3'. scan CP no trace in IP 

2*. scan sentence Comp = +wh 
scan CP 

3* scan CP jf trace licensed 
drop trace 
wh, ~ ),(x) 
fail 

Figure 5.3 
Ungrammatical English Sentence: My first book, which I believe you know to whom I 
dedicated, has a/ways been very dear to me 

STEP STATEMEi\T SET OF ACTION~ CCRREl'iT STATE OF THE INPUT 

l. fix parameter ),(x) ...... CP 
2. scan sentence Comp = +wh 

scan CP .... [c P che) ... 

3. scan CP no trace in IP ... [cp che) [IP so [cp a chi, .. 

2'. scan sentence Comp = +wh 
scan CP 

3'. scan CP no trace in IP ..... [cp ehe) [IP so [cp a chi, [IP credi. 

2" . scan sentence Comp = -wh 
update >'(x) 
drop trace 
fail 

Figure 5.4 
Ungrammatical Italian Sentence: n mio primo libro che so a chi credi che abbia 
dedicato, mi e sempre stato molto caro 

II 

II 

II 
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The boundedness of the left context explains why Italian can cross only the 
most embedded wh-word and not any Comps in any sentence. The algorithm 
is flexible enough, however, to allow double wh-extractions from the most em­
bedded sentence. 

Algorithm 3 allows a wider left context than either Marcus (1980) or Berwick 
and Weinberg (1984) do, but it maintains the explanation of why that particular 
amount of left context is chosen. N aturallanguages do not have counters. This 
property is usually given as the explanation for the fact that the adjacent clause 
constitutes the relevant left context. The only locality predicate that can be 
stated without using counters is adjacency. Algorithm 3 then expands the left 
context in a way that captures the data, but still uses predicates that belong 
to the vocabulary of natural languages. 

5.4 IMPLEMENTATION 

The lesson that we draw from the previous discussion is that attempts to derive 
locality constraints from the architecture of the parser or from the metagram­
mar need to be refined. It was shown that most proposals can derive rather 
elegantly some kind of closest binder requirement, since that is directly related 
to the notion of recursion on some linguistic entity. However, they all fail to 
capture the totality of the locality requirements. This is because recent de­
velopments of linguistic theory have formulated different locality restrictions 
for different input tokens. Thus in the same sentence, several, separate locality 
domains can be active. A descriptively adequate parser must be able to express 
this fact. We believe that both Berwick and "'einberg (1984) and Frank (1992) 
could be adapted. We present here our implementation of locality restrictions, 
which is a refinement of Berwick and Weinberg (1984), in that it operates on 
the stack of an LR parser. 

Since there is no single locality constraint for movement, we propose to think 
abstractly of the parsing mechanism as operating on a family of stacks, each of 
which is relevant for different types of input tokens. Given the linguistic theory 
that we have presented above, two types of barriers are defined and three 
different minimality requirements. We summarize them in Figure 5.5. These 
locality conditions could be considered a theory of left context delimiters. What 
emerges is that the theory takes the content of the delimiter into account. 
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This is apparent if we reformulate locality restrictions from the point of view 
of the parser. The locality requirement expressed by Relativized Minimality 
can be easily abstracted from the type of input, to a general formula (as it is 
actually expressed in Rizzi (1990)). We show in (107) one of the possible ways 
of specifying it. 

(107) The available left context for X is that portion of the tree 
from the current input token of type X up to the closest element 
of type X ( i.e. the maximal nonrecursive subtree on X). 

The formulation of relative minimal binder has two properties that differ from 
that of barrier. First, the type of the relative minimal binder is determined by 
the input, i.e. the definition of left context is a parameterized function. Second, 
the parameter is related to heterogeneous notions, according to our IC Classes, 
as it distinguishes heads, which are considered a purely configurational notion, 
from A and A positions. AI A positions are usually listed exhaustively, and 
they depend on the configuration ( i.e. all adjoined positions are A), but also 
on the categorial status of the head of the maximal projections. For example, 
the specifier of I is an A position, while the specifier of C is an A position. On 
the other hand, there is no obvious correlation between the definition of barrier 
and the elements for which a given barrier functions as left context delimiters. 
Given the definitions of barrier for government and barrier for binding above, 
we could define the left cont.ext analogues as below. 
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(108) The available left context for X, X non-D-linked, is the portion 
of the tree from the current token X, up to the first barrier 
for government. 

The properties of a barrier for government are that it is a maximal projection 
and that it is not directly selected from a category non-distinct from [+V]. 
Conversely, a non-barrier for government is either a non maximal projection, 
or a maximal projection which is a sister to V or I or C, and which is selected 
by it. A barrier for binding is defined analogously. 

Since the locality restrictions have no functional relation to the architecture 
of the parser, we propose that they be stated explicitly in the parser. Since 
several types of locality domains need to be checked for each element, we might 
want to precompute the licit interactions and eliminate those interactions that 
are never going to occur for independent reasons. 

Two kinds of restrictions are not going to arise: the conjoined satisfaction of 
A-minimality and binding locality and head-minimality and binding locality. 
In other words, take the locality conditions to be constraints on movement, 
that must be satisfied by an empty category to be identified. They could be 
expressed by the following six conjunctive statements. 

(109) a. locality +- head-minimality, no-barrier-for-binding. 
b. locality +- A-minimality, no-barrier-for-binding. 
c. locality +- A-minimality, no-barrier-for-binding. 
d. locality +- head-minimality, no-barrier-for-government. 
e. locality +- A-minimality, no-barrier-for-government. 
f. locality +- A-minimality, no-barrier-for-government. 

The first two however will never be relevant, since heads and A-chains are not 
referential items in the sense relevant here, namely D-linked. Thus they cannot 
be licensed by binding. We are then left with the following locality constraints. 

(110) a. locality +- A-minimality, no-barrier-for-binding. 
b. locality +- head-minimality, no-barrier-for-government. 
c. locality +- A-minimality, no-barrier-for-government. 
d. locality +- A-minimality, no-barrier-for-government. 
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Family of Stacks for Left Cont.exts 

Each of these conditions applies to different elements, as (llO)a applies to 
referential(D-linked) A phrases, (llO)b applies to heads, (llO)c applies to 
phrases in A position and (llO)d applies to non-referential (non-D-linked) A 
positions. Abstractly, we wa, to keep track of a specific locality domain for 
each type of element. 

The implementation is st:ct,ightforward. A pointer to the relevant portion of 
the stack is maintained for each element that triggers the locality constraint. 
Whenever an empty category is posited by the LR algorithm, it is then formally 
licensed by the ECP, independently of its identification. The locality domain 
in which the empty category must be identified is then determined. A sentinel 
which is specific to that particular empty category limits the available left 
context in the stack. Pictorially, this is shown in Figure 5.6. 

Thus, in principle, there is no limit to the number of categories of each type that 
are extracted. A limit a priori of the number of possible extractions appears 
to be empirically incorrect, as was argued in chapter 4 (contra Berwick and 
Weinberg (1984) and Correa (1988)) Locality restrictions are only partially 
a function of the type of element that is extracted (because of Relativized 
Minimality). They also depend on the feature ±V of the maximal projection 
intervening between the antecedent and the trace. 
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In the current implementation, an empty category simply triggers the barrier 
module. Now, notice that in an LR parser, when an empty category is pos­
tulated, the maximal projections between the trace and the antecedent have 
not been built yet. Therefore, the parser cannot immediately compute whether 
there are intervening barriers between the trace and the antecedent. On the 
other hand, the maximal non-recursive left context can already be computed. 
Hence, locality conditions are checked in two steps: first, the minimal local 
binder is found and the relevant left context is identified; then, the barrier con­
straint is posted. This means that new clauses are added dynamically to the 
program, which checks that the maximal projections intervening between trace 
and antecedent are not barriers. When all the intervening maximal projections 
have been built, and none of them is a barrier, then the constraint related to the 
licensing of a particular empty category is lifted and the category is identified. 

With respect to considerations of a more general nature, this approach then 
does not endorse the functional view of the relation between the parser and the 
grammar (Berwick and Weinberg 1984); moreowr, it does not impose any limit 
on the number of extractions; and finally, it determines dynamically the kind 
of computation to perform. In fact, the filtering principles related to traces are 
not applied unless traces are postulated in the phrase marker. More generally, 
filtering principles apply only if the relative generating principles are triggered. 
(See first observation on grammar principles in chapter 1.) 

This design implies that the theory of grammar is taken to determine the parser 
at compile time, but that the parser at run time can vary depending on the 
actual input. Of course, the range of variation is determined by the compile 
time setup. This view is not at all dissimilar from the view implied in the 
principle-ordering approach of Fong (1991). 

From the psycholinguistic point of view this approach obviously makes the 
claim that what is used on-line (and measured by experiments) is a dynamically 
changing object. Our proposal assumes that the criterion that determines the 
way in which the dynamic program is set up is a principle of minimum effort. 
Given a highly modular system, only the minimum amount of computation 
needed to accept or reject a sentence is performed. So, this approach is not 
entirely at odds with the principle-ordering approach, but it differs from it 
because the principle-ordering parser of Fong (1991) applies all the constraints 
to a grammatical sentence. We propose that not all principles are applied to all 
sentences. For instance, the locality principles that regulate the distribution of 
empty categories are only applied if there are empty categories in the sentence. 
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LINGUISTIC FRAMEWORK: A 
GLOSSARY 

In this section the terminology is explained that is used in the main body of the 
work. The definitions are taken from Haegeman (1991) (abbreviated as H9I), 
the page where the original definition appears is given. 

A.I LEVELS OF REPRESENTATION 

A.1.I The Levels 

GB theory consists of several sub theories which interact with each other. These 
subtheories are hypothesized to operate at different levels of representation: D­
structure, where elements occupy their grammatical function position (subject, 
object); S-structure, where elements are in different positions with respect to 
the level of D-structure; the level of phonological form, PF; and the level of 
logical form (LF), at which operator-variable and quantification constructions 
are interpreted. This organization of the theory is usually represented by the 
"Y model", shown in Figure A.I. 

Move-a is a movement rule, which accounts for the mapping between levels. 
Consider the following example. 

(A.I) Who does Mary like? 



174 

Figure A.1 
The Y Model 
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ApPENDIX A 

The sentence in A.I is a question about the identity of some human whom 
Mary likes. It could be answered by Mary hkes John or shortly John. To 
capture the fact that who refers to the object of the action of liking, two levels 
of representation are postulated, and "connected" by a movement rule. Thus 
the D-structure representation and S-structure representation of A.1 are A.2a,b 
respectively. 

(A.2) a. Mary loves who. 
b. Who does Mary love t;? 

In A.2b who has moved, leaving behind an "gap", called trace, which receives 
the thematic role and syntactic feature of an object. Moreover, the fact that 
who is an operator, in the sense that it binds the range of interpretation of the 
trace, is represented at a different level, the level of logical form. 

D-structure 

D-structure is a representation of lexical properties. D-structure representa­
tions are subject to the B-criterion, which says that all arguments of a predicate 
must be present at D-structure. 

S-structure 

S-structure is related to D-structure by the Extended Projection Principle and 
by the rule move-a. 
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LEVEL MODCLE 

Phonetic Form Stylistic Rules 
Logical Form Operator-variable 

ECP 
Free Indexation 
Binding 

S-structure Theta Criterion 
Control 
Subjacency 
Case Filter 

D-structure Inherent Case 
X 

Figure A.2 
Relation between Modules and Levels 

Logical Form 

This is the level at which sentences are interpreted. Quantifiers and wh­
questions receive their scope at this level. Lf is related to S-structure by 
an "invisible" version of move-a. 

Phonetic Form 

At this level lexical insertion and stylistic rules takes place. 

A.l.2 Mappings between Levels 

The Projection Principle 

Lexical elements (words) play an important role in determining the structure 
of a sentence. Each constituent, e.g. NP, VP, AP, is projected from a head, 
a verb, a noun, an adjective respectively. Moreover, the internal structure of 
a sentence is in great part dependent on its thematic relations. In sum, the 
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structure of a sentence is projected from the lexicon. This is true at all levels of 
representation. Thus, the Projection Principle determines the relation between 
the levels of representation. 

The Projection Principle (H91:47) 
Lexical information is syntactically represented. 

The Extended Projection Principle 

Sentence structure is mostly lexically determined. However, there is a general 
property of all sentences which is not always lexically represented, namely the 
fact that all sentences have a subject, whether it is lexically realized or not. 
Thus, this general property must be explicitly stated in the grammar. 

The Extended Projection Principle (H91:59) 
5 -+ NP AUX VP 

A.2 THE MODULES 

A.2.1 The Lexicon 

The lexicon is a database of information related to individual words: for exam­
ple, the category of the word, its argument structure, the way it is pronounced 
and its morphological properties. For example, the word love is of category 
Verb, it is diadic, i.e. it takes two arguments, an agent and a patient, it takes 
the auxiliary have in compound tenses, etc. Not all the information in the 
lexicon is completely idiosyncratic, in fact vast regularities have been studied. 
Indeed, if this were not the case, the lexicon would be very difficult to learn. 

Category Features (H91:33) 

Each word in the lexicon belongs to a category class. The category of a 
word can be determined by its distribution. The following classes are dis­
tinguished: Verb, Noun, Adjective, Preposition, Adverb, Inflection, Comple­
mentizer, Tense, Negation. Examples of each are: love, dog, beautiful, from, 
quickly, -ed, whether, not. 
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Sub categorization Frame (H91:34) 

Besides belonging to the category Verb, verbs can be subdivided into subcate­
gories depending on the complements they take. For example, meet, imitate, 
love all take an object, thus they are classified in traditional grammars as tran­
sitive. Verbs such as sleep, die do not take an object: they are intransitive. 
Verbs such as believe can take both a nominal object and a sentential object. 
These properties are encoded in the lexicon in a schematic way by means of 
subcategorization frames. Some examples are given below. 

(A.3) a. 
b. 
c. 

C-selection 

meet: [_ NPl 
sleep: [-l 
belzeve: [_ NP ISl 

A piece of information that is encoded in a 5ubcategorization frame is what 
category the complement of a verb must have. Thus, A.3a says that the com­
plement of the verb meet must be an NP, and therefore * I met to Sally, where 
the complement is a PP, is an incorrect sentence. Thus, the verb selects the 
category of its complement. In this instance, the complement must be a noun. 

Functional Selection 

Functional selection is simply a more specialized term for c-selection, which is 
used if the selecting head is a functional category. I( nfiection), C( omplementizer), 
and D(eterminer) are functional heads. Functional selection is a function, since 
I always selects a verb, C always selects I, and D always selects a Noun. 
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A.2.2 Configurations 

x Rules (H91:95) 

ApPENDIX A 

The rewrite rules in the phrase structure component can be described by a 
general schema, called the X schema. 

(A.4) X" ---. (Spec) X'· 
X' ..-. X Comp/* 

The notation is rather standard: * is the Kleene operator, for reflexive tran­
sitive closure ( i.e. X* means that there could be 0 or more repetitions of X). 
Parentheses mean optionality. 

This schema encodes the following information: 

1. rules are endocentric: they are projected from a lexical head. For 
example, a verb phrase must contain a verb, and a noun phrase 
must contain a noun. 

2. Rules are projections from a head up to a maximum number of 
levels. The maximal projection is 2. The level which is projected 
from the lexicon is called head, or zero-level projection. 

3. Rules are unordered. 

This notation is a shorthand for the rewrite rules that could be written for all 
categories. Thus X is a variable that ranges over all major categories. A well­
formed phrase structure rule is N P -+ N ' P P, an ill-formed phrase structure 
rule is NP -+ V' PP. 

Sisterhood 

According to the X schema, a complement is sister to the zero-level projection, 
and a specifier is sister to the level-one projection of a head. A node is sister 
to another node if they are immediately dominated by the same node in the 



The Computational and the Linguistic Framework: A Glossary179 

tree, their mother. Node A immediately dominates node B in a tree, iff, on the 
path from B to t.he root, A is the closest node to B. 

C-command (H91:125) 

C-command is a configuration which is relevant in linguistic theory, although 
it is not primitive from the point of view of structural representation. It was 
shown by Reinhart (1976) that c-command, for c(onstituent)-command, is the 
relevant way to define coreference domains. 

0' c-commands (3 zff 0' does not domznate (3 and every I that dominates 0' also 
dominates (3. 

In this case I is the first branching node dominating 0'. 

M-command (H91:125) 

0' c-commands (3 Iff 0' does not doml1late (3 and every I that dominates 0' also 
dominates (3. 

In this case, I is the first maximal projection dominating 0'. 

). Rules 

These rules, that are usuallx never explicitly mentioned in the linguistic litera­
ture, are a necessary augmentation of the X schema in order to build the phrase 
marker for sentences with empty categories. They simply say that certain non­
terminals can be substituted by the empty string. According to Chomsky 
(1986a, 4), only maximal projections and zero-level categories can be moved, 
i.e. they can be substituted by the null string at some level of representation. 
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A.2.3 Case Theory 

Abstract and Overt Case 

Consider the sentences She looked at him, and He looked at her. In the first 
sentence, the female subject is expressed by she while in the second sentence 
the female actor is expressed by her. Different morphological forms are used 
because in one case the word is the subject, while in the second it is the indirect 
object of the verb. This process of grammaticalizing the participants in an 
action is called Case. In English, case is overt only for pronouns, as one can 
see from the following pair. The woman looked at the man, the man looked at the 
woman. Other languages however, use this distinction much more extensively: 
German, Latin, Finnish, among many others. 

For generality, however, it is assumed that ewry NP has a case. If the case is 
not overt, it is abstract (denoted by capital letter). The property of having or 
not having Case is syntactic as it affects the distribution of NPs in a sentence 
(and also of empty categories.) 

Case Filter (H91:156) 

Every overt NP must be assigned abstract Case. 

Structural Case Assignment 

A transitive verb or a preposition assigns ACCUSATIVE case, while nouns and 
adjectives do not assign Case. This accounts for the following sentences. 

(A.5) a. The big ape imitated the man. 
b. * He slept them. 
c. He stared at the children. 
d. The destruction of the city. 
e. *The destruction the city. 
f. His mother is proud of him. 
g. *His mother is proud him. 
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The tensed morpheme of a verb assigns NOr.U:\ATIVE case, while an infinitive 
verb assigns no Case to its subject. 

(A.6) a. 
b. 

I think that Mary is a fool. 
* I think Mary to be a fool. 

Inherent Case Assignment (Chomsky I986a, 194) 

If A is an inherent case asszgner, then A assigns case to an NP iff A {}-marks 
the NP. 

This means that the difference between structural and inherent Case assigment 
rests on their sensitivity to {}-role assignment. 

DATIVE and GENITIVE in German are assumed to be instances of inherent 
Case. This difference can be shown by looking at passivisation, which affect 
only structural case assigment, as shown by the following paradigms. 

(A.7) 

(A.8) 

(A.9) 

(A.IO) 

Sie siehl ihn. 
she sees him-ACC 

Er wird gesehen 
*Ihn wird gesehen 

He-NOM is seen 

Sie hilft him 
she helps him-DAT 

Ihm wird geholfen 
*Er wird geholfen 

He-DAT is helped 
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A.2.4 () Theory 

(I-roles 

Using the idea of a function in formal logic, linguistic theory states that every 
predicate has a certain number of arguments. The arguments are the partic­
ipants in an event. For example, in John gave Marya book, there are three 
participants in the gzving event: an agent (John), a receiver or goal (Mary) and 
the thing given or theme (the book). Notions such as agent, goal and theme are 
called thematic roles, or for short, B-roles. The theory of thematic roles consists 
of two parts: one part that deals with the content of such roles, and one part 
that deals with their distribution and their relation to predicates. The former 
part is still very sketchy. The second part constitutes the bulk of (I-theory. Its 
main principle is the (I-criterion. 

(I-Criterion (H91:46) 

Each argument is assigned exactly one (I-role. 
Each (I-role is assIgned to exactly one argument. 

In other words, the B Criterion is a bijection principle between arguments and 
(I-roles. It guarantees that the thematic structure is mapped onto a well-formed 
structure. It rules out sentences where there are too many nouns, such as John 
loves Mary Lucy, or where there are too few nouns, such as John puts. 

A.2.5 Movement Theory 

Move a 

John loves Mary and Who does John love are related, as the former could be 
taken to be the answer to the latter. This means that both sentences have the 
same function-argument structure. This fact is expressed by current linguistic 
theory by assuming that there is more than one level of representations for 
each sentence. In this example two are relevant: one at which the sentences are 
similar, and one at which they correspond to the superficial string. The two 
sentences receive the following "deeper" representation, where the similarity is 
apparent. 
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(A.ll) a. 
b. 

John loves Mary. 
John loves who. 

The superficial level will be as shown in A.12. 

(A.12) a. 
b. 

John loves Mary. 
Whoi does John love i;? 

The fact that Who is the object of the verb is expressed by representing it 
both as the first word in the sentence, as is necessary to fit the string, but also 
as having the same index i as the empty slot, i, after the verb. We say that 
Who has moved. There is a single transformational rule in current G B theory: 
move-a. 

Move-a Move anything anywhere. 

Coindexation 

Two elements are coindexed if they are assigned an index and this index IS 

identical. See for example, Who does John 10re Y in A.12 

Chains 

Informally, a chain is a syntactic object that defines an equivalence class of po­
sitions for the purpose of feature assignments and interpretation. For example, 
take the passive sentence in A.13. 

(A.13) M arYi was loved t; 

The sentence in A.13 contains the chain (MarYi, til. Here ti receives a B-role 
from the verb, but no case, which is absorbed by the passive morphology, while 
M arYi, receives nominative case because it is in a structural position that is 
inherently case marked, Spec of IP. This position, though, receives no B-role, 
because of passive morphology again. The set of positions, however, satisfies 
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the conditions on lexical argument NPs, namely one half of the B-criterion and 
the Case Filter. 

Chain A chain C (EI , ... , En) for n ~ 1, is a sequence of elements in a 
phrase marker, where EI is the head of the chain and En is the 
foot of the chain. 

Link A link of a chain L, (Ei' Ei+l ) is an ordered pair of consecutive 
elements of the chain. 

A Chains, A Chains 

Chains can be classified according to the status of the landing site: A chains are 
those that are headed by an element in A (argument) position, shown in A.14; 
A chains are headed by an element in A (non-argument) position, such as A.I5 

(A.14) M arYi seemed ei to have been loved ej 

(A.15) W hOt did John think ei that Mary loved ej? 

Multiple Chains 

More than one chain can occur in a sentence. Multiple chains occurring in the 
same sentence can either be disjoint, intersected or composed. Disjoint chains 
are nested, as in A.16. 

(A.I6) Who; did Mary] seem ij to like i, 

If chains intersect they share the same index and they have exactly one element 
III common. 

(A.I7) W hOi did you think ei ii seemed tj to like Mary? 
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If chains compose they don't have intersecting elements, but they create a new 
link: if En is the foot of one chain and E~ is the head of the following chain 
then < En, E~ > is a link in the composite chain. This is exemplified in A.IS. 

(A.18) W hOi did you meet it 0, without greeting i, ? 

Superindexed Chains 

Some languages, for example Italian and Spanish, can postpone the subject to 
the end of the sentence. These constructions are usually analysed as involving a 
superindexed chain, namely a chain that differs from subindexed chains because 
the elements that form it are not generated by movement. vVe discuss here some 
of the properties of such chains. 

Inverted Subjects In some languages. like Italian, the subject of the sentence 
can occur before the verb, or be inverted or be null. 

(A.19) Gwnni ha telefonato. 
Ha telefonato Gianni. 

Gianni has called. 

(A.20) pro Ho telefonato a casa. 
I called home 

Subjects of intransitive verbs belong to two different classes: subjects of unac­
cusatives and subjects of unergatives. Several important pieces of work have 
dealt with unaccusative verbs in Italian (Burzio 1986; Belletti and Rizzi 1981; 
Belletti 1988). \Ne discuss here very briefly the different structural position of 
the two classes of subjects. 

Un accusatives The subjects of unaccusative verbs behave like structural ob­
jects in many respects. In Italian they can undergo ne extraction and they 
trigger past participle agreement. Both these diagnostics are assumed to indi­
cate movement from structural object position. 
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(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

Ne ho visti molti. 
of-them I saw many 

Ne sono arrivati molti. 
of-them arrived many 

*Ne hanno telefonato molti. 
of-them called many 

Li ho comprati. 
them have-l-S bought-M-P 

I bought them 

Mana e arrivata. 
Maria is-3-S arrived-F-S 

Maria has arrived 

*Mana ha telefonata. 
Maria has-3-S called-F-S. 

Maria has called (F) 

ApPENDIX A 

Unergatives There is some evidence that the inverted subjects of unergative 
verbs are adjoined to VP. The contrastive evidence with unaccusatives shows 
that the inverted subject is not in object position, on the other hand there is 
reason to think that the moved subject is inside the VP. For instance, moved 
subjects do not give rise to that-trace effects, showing that the position from 
which the wh-element moves is licensed by the ECP. 

(A.27) a. 
b. 

Chi credi che verra? 
* \Vho do you think that will come? 

The preverbal subject in this case is arguably pro, which would explain why 
null subjects, inverted subjects and lack of that-trace effects usually have been 
identified as a cluster of properties that depends on a language-dependent pa­
rameter, called the null subject parameter. This parameter establishes the 
restrictions on the distribution of the pronominal empty category pro. 
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This pleonastic subject is coindexed with the inverted lexical subject forming 
a chain. The reasons for this kind of coindexation are both theoretical and 
empirical, and they are drawn from Burzio (1986, 85ft) Firstly, by coindexing 
pro and the inverted subject, a parallel can be drawn with pleonastic chains, 
like there and zt in English. In pleonastic chains there exist a relationship 
between the inverted NP and the pleonastic element 

(A.28) a. 
b. 

There arrived a man. 
It seems that John is here. 

There only occurs with NPs, while it only occurs with sentences. Coindexation 
would explain this fact. Moreover, pleonastic chains show verb agreement. By 
coindexation of the inverted subject only one agreement mechanism would be 
necessary. 

Chomsky (1981, 214) presents some empirical evidence for the coindexation of 
pleonastics. Given a condition for the interpretation of anaphors like A.29 and 
a restriction on coindexation like A.3D, then the coindexation of an element 
with one of its constituents is ruled out. 

(A.29) 

(A.3D) 

An anaphor is to be bound by its antecedent. 
This is possible only if there is no closer subject or INFL 
than the antecedent. 

i-within-i condition *[i ... ai ... ] 

Given these rules consider the following facts. 

(A.31) a. 
b. 

* TheYi expect that [[ each other J; will comeJ. 
They; think [51 it is a pity [52 that pictures of 
[each other J, are hanging on the wall.]] 

The sentence in A.31a is incorrect because the closest binder for each other is 
not its antecedent but the INFL of will come. On the other hand, the fact that 



188 ApPENDIX A 

A.31b is correct shows that the INFL of are hanging is not coindexed with each 
other. Under the standard assumption that verbs and subjects are coindexed, 
if the verb were coindexed with each other then the anaphor each other would 
also, transitively, be coindexed with pictures of each other, violating A.30. 
Hence each other is not bound inside S2. However, it is also not bound within 
SI, which means that it and S2 are coindexed. 

We assume that Italian has a similar sort of chain as chains formed by pleonastic 
elements in English. In all these cases the notion of chain as a sequence of 
elements that share {I-role and Case is very important, because it permits to 
abstract away from the content of the {I-role and the direction of the assignment. 

As Chomsky (1980a), Rizzi (1982) and Burzio (1986) all notice, coindexing pro 
and the inverted subject causes problems for the binding theory (see below), 
since pro binds the lexical NP. Several solutions have been suggested. Chomsky 
assumes that a different kind of indexing is involved here, that does not fall 
under the binding theory. Rizzi restricts the notion of bound element only to 
those elements that are not (I-dependent on their antecedents. Rizzi's solution 
fails to capture the similarity between inverted subjects of ergative verbs, which 
count as bound, and the other verbs. Burzio notes that Chomsky's solution fails 
to account for the locality restriction that apply to inverted subjects. Burzio 
suggest to reinterpret the conditions of Binding theory as meaning argument 
bound and argument free, so that in the case of an inverted subject, it would 
not violate binding theory because it would be bound by a non argument. 

In conclusion, sentences with inverted subjects have different representations, 
depending on the base position of the wh-word, since venire/verra (come) is 
unaccusative, while telefonare/telefonera (call) is not. The chains in A.32 
and A.33 represent quite clearly that the element tf belongs to two chains: 
(prok, tn and (chii' ti, tn. The element tf receives its Case and {I-role in­
directly, through pro and then these features are transmitted to the A chain 
headed by Chi. Thus this chain differs from the other type of intersecting chain 
in two respects: first, the common element to the two chains is the rightmost 
lowermost element in the tree; second, the two chains share Case and {I-role, 
but they do not share coindexing, for the reasons related to binding theory. 

(A.32) 

(A.33) [cp chii [IP credi [che prOk telefonera/ [vp [vp tjtf lJl]] 
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A.2.6 Barriers Theory 

Locality Restrictions 

This is a collective name for all the restrictions that regulate the application of 
the movement rule move-a. They are listed them here under the headings of 
subjacency, relativized minimality, antecedent government and condition A of 
the binding theory. 

Relativized Minimality (Rizzi 1990, 7) 

X a-governs Y only if there is no such Z th at 
(I) Z is a typIcal potential a-governor for Y, 
(12) Z c-commands Y and does not c-command X. 

Typical Potential Governor (Rizzi 1990, 7) 

Z IS a tYPIcal potential governor for Y Iff 
(I) zf Y IS in an A chain and Z is an A-specIfier c-commanding Y 
(ii) if Y IS in an A chain and Z is an A-specifier c-commanding Y 
(Hi) zf Y IS in a head chain and Z IS a head c-commanding Y 

A positions 

A positions are positions to which, at least potentially, a 8-role could be as­
signed. In particular, the specifier of IP and ~P are A positions. 

A positions 

A positions are all those positions that have not been listed as A positions. In 
particular, the Specifier of CPo 
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Barrier for Government (Cinque 1990,42) (113) 

Every maximal projection that fails to be directly selected by a category nondis­
tinct from [+ V] is a barrier for government. 

Barrier for Binding (Cinque 1990,42) (114) 

Every maximal projection that fails to be (directly or indirectly) selected in the 
canonical direction by a category non distinct from [+ V] is a barrier for binding. 

Subjacency 

Long distance dependencies created by movement involve either material sitting 
in two adjacent clauses or material separated by an unbounded number of 
intervening clauses. It is never the case that items, let's say 4 clauses apart and 
only those, are related by a long-distance dependency. This fact can be captured 
quite elegantly by using rules that perform a basic step and an iterative step. 
The rule move-a which links elements such as TV ho and ti can perform a simple 
basic step from a clause to an adjacent clause. Or it can iterate, and as a result, 
displace linguistic material unboundedly far away from the source position by 
a sequence of basic steps. For instance, in Who do you think e' that Mary 
saw e at the party? Who is a displaced element that has been moved from 
the object position, after saw, here indicated bye. The well-formedness of 
such long-distance relations is regulated by the Subjacency Condition, which 
basically determines how big a single step can be. 

In the formulation before Chomsky (1986a), Subjacency would hold in A.34b 
given A.34a. 

(A.34) a. 
b. 

. .. a ···le ... [6 ... ,ll a ... 
No rule can relate a and, in A.34a if two bounding 
nodes are intervening. 

The result is that no single step in a cyclic application of movement could 
cross more than one bounding node. The bounding nodes are constants with 
the stipulated values of IP and NP for English. In more recent formulations 
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(Chomsky 1986a; Cinque 1990) bounding nodes coincide with barriers. (See 
presentation of linguistic facts in chapter 5.) 

A.2.7 Trace Theory 

The Empty Category Principle (ECP) 

The Empty Category Principle (ECP) regulates the formal licensing of empty 
categories. 

ECP (Cinque 1990, 49) 

A nonpronominal empty category must be properly head governed by a head 
nondistinct form [+ v]. 

Rizzi (1990) reformulates the Empty Category Principle (ECP), as a conjunc­
tion of conditions instead of the older disjunctive formulations. In previous ver­
sions, most notably Chomsky (1981),Chomsky (1986a) an empty category was 
licensed if it was ezther lexically governed or antecedent governed. Rizzi (1990) 
reformulates this condition as a conjunction: an empty category is properly 
governed if it is head governed and antecedent governed. The two conjuncts 
can be satisfied at different levels of represent.ation. Namely, head govern­
ment, which is a formal licensing principle, must be satisfied at S-structure. 
Antecedent government, on the other hand, can be satisfied at LF. In fact, 
antecedent government reduces to the binding of an anaphor that receives a 
referential B-role, and as such it is subject to binding conditions. Thus the 
ECP is reduced to the condition above, which applies at S-structure. 

Head Government (Rizzi 1990, 6) 

X head-governs Y zJJ 
(i) X E { A,N, V,P,Agr, T} 
(ii) X m-commands Y 
(iii) no barrier intervenes 
(iv) Relativized Minimality is respected. 
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Antecedent Government (Rizzi 1990, 6) 

X antecedent-governs Y iff 
(i) X and Yare coindexed 
(ii) Xc-commands Y 
(Iii) no barrier intervenes 
(zv) Relativized Minzmality is respected. 

L Marking (Chomsky 19S6a, 15) 

ApPENDIX A 

n- L-marks (3 iff n- IS a zero-level category that B-marks (3 and n- , /3 are sIsters. 

The feature +-( is assigned to an empty category that has been formally licensed 
by the ECP. 

A.2.8 Binding Theory 

±anaphor 

An NP bears the feature [+ anaphor] ifit does not have independent reference, 
but it must be coindexed with another NP in the sentence to receive an inter­
pretation. Thus, the trace of an NP is an anaphor, but also lexical items such 
as himself, oneself, each other. 

±pronominal 

An NP bears the feature [+ pronominal] if it can have both independent refer­
ence, and it can also be coindexed with another NP in the sentence to receive 
an interpretation. Thus, lexical items such as hIm, she, their. 
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Binding 

The following principles, which constitute the core of binding theory, regulate 
the coreference of nominal expressions in a sentence. 

Principle A (H91:216) An anaphor must be A-bound in its governing 
category. 

Principle B (H91:216) A pronomznal must be A-free in its governzng 
category. 

Principle C (H91:216) An R-expression must be A-free. 

A-binding (H9l:228) 

(}' A-bznds (3 2ff 
(I) (}' 25 I n A -posItion 
(l!) (} c-commands j3 
(iIZ) (} and (3 are cozndexed 

Governing Category' (H91:229) The Governzng Category for (} is the 
mznlmal domain containing (}, its governor and an accessible SUB­
JECT. 

Accessible SUBJECT (H91:229) (} IS an accessible SUBJECT for j3 
if the cozndexation of (} and j3 does not violate any grammatical 
principle. 

Distribution of Empty Categories 

According to the conditions of binding theory four types of referential objects 
can occur in natural languages, given by the combinatorics of the features 
[±anaphoric], [±pronominal]. In overt NPs we find that all the possible com­
binations of these features are attested, as shown below. In the best case the 
typology of empty categories should mirror the typology of overt NPs, with the 
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+anaphoric 
-anaphoric 
-anaphoric 
+anaphoric 

Table A.1 

-pronominal 
-pronominal 
+pronominal 
+pronominal 

Typology of empty categories 

each other 
John 
she 
impossible 

anaphor 
referential item 
pronouns 

ApPENDIX A 

no possible governing category 
hence Case filter violation 

difference that the last case of Table A.l should be possible, since no Case need 
be assigned. And this is true, the last case being PRO. 

Free Indexation 

A basic assumption of the theory presented in Chomsky (1981),Chomsky (1982) 
about NPs, either lexical or nonlexical, is that they can be exhaustively par­
titioned by the features [±pronominal],[±anaphoric]. The argument has been 
used to justify the existence of pro and its features [+pronominal,-anaphoric]. 
(See null subjects below.) Chomsky (1982, 34) notices that trace and PRO 
are in (virtually) complementary distribution and that they (virtually) exhaus­
tively cover the possible positions for NPs. Chomsky argues that this fact is 
explained if only one empty category is assumed, which is defined contextually. 
This is the so called contextual determination of empty categories: there is 
only one empty category that can take up different functions or occurrences in 
different contexts. 

Brody (1984),Brody (1985) has shown that this argument is incorrect. Em­
pirically, this interpretation would be supported by derivations where empty 
categories can change their status in the course of the derivation. The evidence 
for such derivations is unconvincing. Brody (1984, 360 fn 8) points out that 
the two typical cases are inverted subjects and parasitic gaps. 

(A.35) t; telefonano molte studentesse 

In A.35 the trace created by rightward movement of the subject turns into a 
pronominal. 
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(A.36) Which book did you file t before reading e? 

In A.36 the parasitic gap e must be a pronominal at D-structure, since it is 
free, but it becomes a variable at S-structure. Conceptually, as Brody (1984) 
points out, the assumption that there exist only one type of empty category 
does not entail the existence of contextual definitions. He argues that a random 
characterisation which is then filtered out by independently needed principles 
would also work. Brody (1984) is devoted to showing that contextual definitions 
are totally redundant and can be eliminated from the theory without any loss 
of empirical adequacy and with gain for the explanatoriness and economy of 
the theory. We give a sketch of Brody's line of argument. The contextual 
definitions for empty categories are the following (Chomsky 1981). 

(A.37) 1. 

2. 
3. 

0' is a pronominal iff 
0' = [N P F ,(P)], where P is a phonological matrix 
and F C ¢ and either (i) or (ii). 
(i) 0' is free 
(ii) 0' is locally A-bound by a .6 with an independent 
{;I-role. 
0' is a variable iff 0' is locally A-bound. 
if 0' is an empty category and not a variable, then 0' 

is an anaphor. 

These definitions assign the correct features to the typology of empty categories, 
as can be seen from the table below. (LR means the from left to right and RL 
means from right to left). 
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Example Features of ex Definition 
Tomx is illegal ex to go there nonpronominal (A.371iiLR) 

anaphor (A.373) 
non variable (A.372RL) 

Tomx hit ex pronominal (A.371iiRL) 
anaphor (A.373) 
nonvariable (A.372RL) 

Itx is illegal ex to go there pronominal (A.371iRL) 
anaphor (A.373) 
nonvariable (A.372RL) 

Tomx tried ex to go there pronominal (A.371iiRL) 
anaphor (A.373) 
non variable (A.372RL) 

Tomx seems ex to go there non pronominal (A.371iiLR) 
anaphor (A.373) 
non variable (A.372RL) 

Itx seems ex to be obvious that S non pronominal (A.371iiLR) 
anaphor (A.373) 
nonvariable (A.372RL) 

W hox did Tom hit ex nonpronominal (A.371iiLR) 
variable (A.372LR) 

The different parts of the definitions are then shown to be reconducible to 
independently needed principles of the grammar. 

(A.371iLR) 
(A.371iRL) 
(A.371iiLR) 
(A.371iiRL) 
(A.372LR) 
(A.372RL) 
(A.373) 

B Criterion 
VEC, ECP, Principle A 
B Criterion 
VEC, ECP, Principle C 
VEC 
VEC 
identification principle, binding theory (A and B) 

The VEC is the V-Element Condition, which states that a non pronominal 
nonanaphor empty category must be bound while the identification principles 
is whatever property of clitics and 1nft licenses pro. 
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Distribution of Null Subjects 

I examine here the properties of null subjects. Firstly, one notices that such 
elements must exist because of the Extended Projection Principle, and that 
they undergo that same binding conditions as pronouns. 

(A.38) 

(A.39) 

Gzanni/lui 0 parla sempre di se stesso. 
Gianni/he speaks always of himself 

" Gianni always talks about himself." 

Gianni/lui 0 diee ehe Maria parla sempre dz 
Gianni/he says that Mary speaks always of 
lUI / *se stesso. 
him/* himself 

" G. says that Mary always talks about him/ * himself' 

Secondly, we need to establish the interpretation and distribution of the empty 
category that can be a null subject. According to Rizzi (1982, 130) (43) 

(A.40) l. 

2. 

A phonetically null subject with "dummy" 
interpretation can be found in the local context of a 
nominative assigner. 
A phonetically null subject with definite pronominal 
interpretation can be found in the local context of a 
tensed inflection. 

Some examples of null subjects in tensed clause are given m A.2.S and null 
subjects in infinitival are given in A.2.S. 

(A.41) pro Vernl 
"He'll come" 

(A.42) Credo ehe verra 
I think he'll come 
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(A.43) 

(A.44) 

Essendo piovuto per tutio it pomerigglO 
Having rained all afternoon, 
non siamo usciti 
we did not go out 

ApPENDIX A 

Suppongo essere molto improbabile che Mano Cl 

I-assume it to be very unlikely that Mario us 
aiuti. 
will help 

Riguardo a F., avendo lei combznato questa pasticcio, 
Regarding F., her having caused this mess, 
sono nei guai fino at colla 
I am in deep trouble 

The null subjects of null subject languages have the same referential proper­
ties as pronouns. since they have independent reference and they can also be 
pleonastic. They differ from the other pronominal empty category PRO. Their 
distribution is, in fact, complementary to that of PRO in resumptive pronoun 
usage and weak cross over cases. PRO cannot be a resumptive pronouns, while 
pro can (Jaeggli and Safir 1989, 16). 

(A.45) a. 

b. 

(A.46) a. 

b. 

* That's the guy that we didn·t know whether it 
was possible PRO to swim 
* Questo e il tipo che non sapevamo se era possibile 
PRO nuotare 

That's the guy that we didn't know whether we 
should talk to him 
Questo e il tipo che non sapevamo se fosse possibile 
parlargli 

While A.46 shows that resumptive pronouns are licit both in Italian and En­
glish, A.47 shows that the null subject in the embedded clause is only licit in 
Italian, where it is pro. If the empty category in English were an NP trace it 
would violate Subjacency. 
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(AA7) a. 

b. 

That's the guy that Mary knows the woman whom 
he/* 0 married. 
Questo e il tipo che Maria conosce la donna che 
?lui/ 0 ha sposato. 

Weak Cross Over is exhibited in those sentences, in which it is assumed that 
a single operator binds both a pronoun and a gap, as illustrated by AA8. In 
these configurations, PRO is licit, while pro is not, as shown in AA9 and A.50. 
Thus we can conclude that pro is [+pronominal,-anaphoric). 

(AA8) * Who; does his i mother love t;? 

(AA9) W hO j did [ P ROj washing hisj car) upset tj? 

(A.50) * Chi j accuse, la donna con cui] pro; ballava tj tj ? 

Finally, according to Jaeggli and Safir (1989). the null subject parameter is 
linked to the degree of morphological uniformity of the language. 

(A.51) 

(A.52) 

Null subjects are permitted in those languages with 
morphological uniform inflectional paradigm. 

An inflectional paradigm P in a language L is 
morphologically uniform iff P has either only underived 
inflectional forms or only derived inflectional forms. 

Thus clearly Chinese allows null subjects because all forms are underived, while 
Italian or Spanish exhibit only derived inflectional forms. German, on the other 
hand, is not uniform. 
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A.3 PARSING ALGORITHMS 

The design of the structure-building component of the parser is based on a shift­
reduce method, the LR(k) method (Knuth 1965). LR(k) stands for Left-to-right 
rightmost derivation in Reverse, with k symbols oflookahead. I refer the reader 
to a standard text on parsing and compiling for a detailed description of the 
relevant concepts that will be used here: shift-reduce parsing, LR(k) parsing, 
LALR(k) parsing, for instance Aho and Ullman (1972). 

Shift-Reduce 

Shift-reduce parsing is a bottom up parsing method, which attempts to con­
struct a parse tree for an input string starting at the leaves. It uses two main 
data structures: an input buffer and a stack. 

Tokens of the input are shifted onto the stack until a substring of the tokens 
on top of the stack matches the right side of a rule of the grammar used by 
the parser. When such a substring is found, the substring is popped from the 
stack and substituted with the left side of the matching rule. In other words, 
the offspring nodes are substituted by their parent node. This process parses 
a sentence by tracing a rightmost derivation in reverse. 1 

For example, consider the grammar G in A.53. 

(A.53) 1 
2 
3 
4 
5 
6 

IP -+NP I' 
I' -+IO VP 
VP -+V NP 
NP -+{ John, Mary} 
IO -+{ will } 
V -+{ help} 

Given G and the input string John will help Mary, a shift-reduce parser would 
perform the sequence of steps shown in Figure A.3, by consulting G when 
needed. 

1 A rightmost derivation is a derivation in which the rightmost nonterm.inal in each sen­
tential form of the derivation is expanded first, e.g. S =?NP VP =?NP V NP =?NP V John 
=?NP loves John =?Mary loves John is a rightmost derivation. 
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Action 
start 
shift 
reduce by rule 4 
shift 
reduce by rule 5 
shift 
reduce by rule 6 
shift 
reduce by rule 4 
reduce by rule 3 
reduce by rule 2 
reduce by rule 1 
accept 

Figure A.3 

Stack Input 
$ John will help Mary 
$ John will help Mary 
$ NP will help Mary 
$ NP will help Mary 
$ NP IO help Mary 
$ NP IO help :Wary 
$ NP IO V Mary 
$ NP IO V Mary S 
$ NP IO V NP S 
$ NP IO VP S 
$ NP I' S 
$ IP S 

Example of parse by the shift reduce method for the sentence John will help Mary. I 
use the symbol S to indicate the bottom of the stack and the end of the input string. 

As can be noted, the parser can perform one of several actions at each step: 
it can shift, reduce or accept, or, if no other action is available, enter a state 
of error. Of course, the complex part of this procedure, which we have totally 
ignored so far, is how to recognize that the n tokens at the top of the stack 
correspond to a rule in the grammar, without performing an exhaustive search 
of all the sequences in the stack and all the rules in the grammar. The knowl­
edge of when to shift or reduce and what to do next is contained in a look-up 
table, which is compiled off-line. 

LR(k) Parsing 

LR(k) is a deterministic version of shift-reduce parsing. An LR parser consists 
of an input, an output, an LR driver, a got a table and an action table. We show 
this schematically in Figure A.4, which is adapted from Aho and Ullman (1977, 
217). As Aha and Ullman (1977, 215) point out, LR(k) parsing is attractive 
because the LR parsing method is the most general, non-backtracking shift­
reduce parsing method known, yet it can be implemented as efficiently as other 
shift-reduce methods; moreover, an LR parser can detect an error as soon as it 
is possible to do so on a left-to-right scan of the input. 
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Figure A.4 

Input II all··· I a. I··· I · .. 1 an I $11 
+ 

Sm 
Xm 

Sm-l 
X m- 1 

.... 

.... 

So 

Stack 

- LR Driver 

I \ 
action goto 

Output 
~ 

Model of an LR Parser 

The LR driver is the same for all parsers, while the action and go to tables 
change according to the grammar. The parsing program uses the state on top 
of the stack and the current input symbol as indices to consult the parse table. 
It determines the action to take, e.g. shift, and the next state. 

A grammar is LR if it can be compiled into an LR table in such a way that each 
entry in the table contains a unique action and goto state. If a grammar is not 
LR, it is going to have conflicting actions. For example, the same table entry for 
such a grammar could contain a shift action and a reduce action (shift/reduce 
conflict), or it could contain reduce actions that point to different rules in the 
grammar (reduce/reduce conflict). 

LALR(k) 

LALR, which stands for LookaheadLR, is the most used method in practice, be­
cause it provides the same performance advantages as the canonical LR method, 
but it requires tables that are much smaller. For instance, for a typical pro­
gramming language like Pascal, an LALR parse table has hundreds of states, 
while an LR parser table has thousands of states. The reduction in size of the 
state set is the result of a "collapsing" mechanism. For example, an LR(k) 
parser with k = 1 could have the following two states in its canonical collection 
of items. 
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(A.54) Ii = {L --+id ., $, = } 
12 = {L --+id ., $ } 

The two items mean that id must be reduced to L, i.e. id has been recognized 
as a token of category L, if it is the last input token ($ ) or if it is followed 
by the token =. h is an extensional subset of It. This means that there is 
a set of inputs for which the two states are equivalent. States that have this 
kind of relation are said to have the same core, and they are reduced to one 
state. The only consequence of this collapsing procedure is that, while an LR(k) 
parser fails as soon as an error is encountered, an equivalent LALR(k) parser 
might perform some unnecessary shift actions before failing. The LALR(k) will 
never reduce incorrectly, though. For proofs of strong equivalence of the two 
methods and a more detailed explanation see Aho and Ullman (1972), and Aho 
and Ullman (1977). 



B 
RESULTS 

In this appendix I show snapshots of the parses of several grammatical con­
structions. In the interest of space, I present only the most relevant steps in 
the parse, while the other states are simply shown by showing the state num­
ber. It is to be understood that the output has been formatted. The states in 
the parse that are shown in full have not been modified. 

This subset of constructions has been chosen as it constitutes the crucial test 
set for modular parsers, since it involves complex interactions of modules over 
large portions of the tree to compute long distance dependencies. Many other 
proposals either do not deal with all types of chains (Frank 1992; Johnson 
1989), for instance, or they require extensive backtracking (Fong 1991; Fong 
and Berwick 1992). 

Simple Transitive 

IMPUT TOKEMS: john loves mary 

state : 0 
state : 2 

state : 5 
token : 110 
stack: (john,3,m,s(n,[],[bar(2),proper]),TtS(_,_» 
Abar chains: 
A chains: 

(john,0,m,s(n,[],[bar(2),proper]),Tts(_,_» 
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state : 6 
state : 1 

state : 6 
token : v2 
stack: (love+s.6.h.s(v.[(_3551.acc.th).(d.ext.ag)].[]).fts(_._» 

(_.4.h,s(infl,[],[empty]),fts(_,_» 
(john,3,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(john ,0 ,m,s(n, [] ,[bar(2) ,proper]) ,fts(ag,ext» 

state : 2 

state : 9 
token : end_of_file 
stack: (mary, 7 ,m,s(n, [] • [bar(2) ,proper]) ,ftsC,_» 

(love+s,6,h,s(v,[(_3551,acc,th),(d,ext,ag)] ,[]),fts(_,_» 
(_,4,h,s(infl,[],[empty),fts(_,_» 
(john,3,m,s(n,[] ,[bar(2) ,proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(mary,2,m,s(n,[] ,[bar(2) ,proper]),fts(_,_» 
(john,O,m,s(n,[] ,[bar(2) ,proper]),fts(ag,ext» 

state: 4 
token : 
stack: 

end_of_file 
C ,8 ,p ,s(v, [(d,acc, th), (d,ext ,ag») , 0) ,ftsC ,_» 
(_,4,h,s(infl,[] ,[empty]),fts(_,_» 
(john,3,m,s(n,[],[bar(2),proper),fts(ag,ext» 

Abar chains: 
A chains: 

state 
state 
state 
state 
state 

(mary,2,m,s(n,[) ,[bar(2) ,proper]),fts(th,acc» 
(john,O,m,s(n,[] ,[bar(2) ,proper),fts(ag,ext» 

8 
9 
7 
3 
10 

accepted 

ApPENDIX B 



Results 

PARSE TREE 

Abar chains: 
A chains: 

n2 
I 

infl2 
I 

infl1 
I 

n2 inflO v1 

john e vO n2 
I 

vO n2 
I 

love+s mary 

(mary,2,m,s(n,[] ,[bar(2) ,proper]),fts(th,acc» 
(john,O,m,s(n,[],[bar(2) ,proper]),fts(ag,ext» 
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Simple Intransitive 

IIPUT TOKEIS: john runs 
state : 0 
state : 2 

state : 5 
stack: (john,2,m,s(n,[],[bar(2),proper]),fts(_,_» 
Abar chains: 
A chains: 

(john,O,m,s(n,D, [bar(2) ,proper]) ,ftsC,_)} 

state : 6 

state : 1 

state : 6 

token : end_of_file 
stack: (run+s,5,h,s(v, [(d,ext,ag)] ,[]) ,ftsC,_» 

C ,3 ,h ,s(inIl, [] ,[empty]) ,ftsC ,_» 
(john,2,m,s(n,[] ,[bar(2) ,proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(john,O,m,s(n,[] ,[bar(2) ,proper]) ,fts(ag,ext» 

state 4 
state 8 
state 9 
state 7 
state 3 
state 10 
accepted 

PARSE TREE 

Abar chains: 

inIl2 
I 

n2 inn1 

I I 

n2 inflO vO 
I I 

john e vO 

run+s 

A chains: 
(john,O,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

ApPENDIX B 
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Simple Passive 

INPUT TOKENS: mary was loved 

state : 0 
state : 2 

state : 5 
token : wO 
stack: (mary ,3 ,m,s(n, [] ,[bar(2) ,proper]) ,ftsC ,_)} 
Abar chains: 
A chains: 

(mary ,0 ,m, s(n, 0 ,[bar(2) ,proper]) ,ftsC ,_» 

state 1 
state : 6 
state : 1 

state : 6 
token : end_of_file 
stack: (loved,6,h,s(v,[(_,nil,th) ,(d,ext,nil)] ,[pass]),fts(_,_» 

(was,5,h,s(infl,[(_,nil,pred),(_,ext,_)] ,[aux(s)]),fts(_,_» 
(mary,3,m,s(n,[],[bar(2),proper]),fts(nil,ext» 

Abar chains: 
A chains: 

(mary ,0 ,m, s (n, 0 ,[bar(2) ,proper]) ,fts(nil, ext» 

state : 9 
token : end_of_file 
stack: (_,8,m,s(n,[],[empty]),fts(_,_» 

(loved,6,h,s(v,[(_,nil,th),(d,ext,nil)],[pass]),fts(_,_» 
(was,5,h,s(infl,[(_,nil,pred),(_,ext,_)],[aux(s)]),fts(_,_» 

7 
(mary,3,m,s(n,[] ,[bar(2),proper]),fts(nil,ext» 

Abar chains: 
A chains: 

(mary,O,m,s(n,O, [bar(2) ,proper]) ,fts(nil,ext» 

state : 4 
token : 
stack: 

7 

end_of_file 
C,9 ,p ,s (v, [(d, nil, th), (d ,ext ,nil)] ,[pass]) ,ftsC ,_» 
(was,5,h,s(infl,[(_,nil,pred),(_,ext,_)],[aux(s)]),fts(_,_» 

(mary,3,m,s(n,[],[bar(2),proper]),fts(nil,ext» 
Abar chains: 
A chains: 

(mary,[018] ,_,s(n,[] ,[bar(2),proper]),fts(th,ext» 

state 8 
state 9 
state 7 
state 3 
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state : 10 

accepted 

PARSE TREE 

Abar chains: 
A chains: 

infl2 
I 

n2 infl1 
I I 

n2 inflO vi 
I I I 

mary inflO vO n2 
I I 

lias vO e 

loved 

(mary,[018] ,_,s(n,[],[bar(2),proper]),fts(th,ext» 

ApPENDIX B 



Results 

Simple Raising 

IIPUT TOKEIS: mary seems to like john 

state ° 
state 2 
state 5 
state 6 

state : 
token : vO 
stack: (seem+s,1,h,s(v,[(_3867,nil,th),(_,ext,nil)] ,[rais]) ,£ ts(_,_» 

(_,6,h,s(in£1,[],[empty]),£ts(_,_» 
(mary,5,m,s(n,[] ,[bar(2) ,proper]) ,£ts(_,_» 

Abar chains: 
A chains: 

(mary,O,m,s(n,[] ,[bar(2) ,proper]) ,£ts(_,_» 

state: 6 
token : vO 
stack: (seem+s,8,h,s(v,[(_,nil,th) ,(d,ext,nil)] ,[rais]) ,£ts(_ ,_» 

(_,6,h,s(infl,[],[empty]),fts(_,_» 
(mary,5,m,s(n,[],[bar(2),proper]),fts(nil,ext» 

Abar chains: 
A chains: 

(mary,O,m,s(n,[] ,[bar(2) ,proper]) ,fts(nil,ext» 

state 9 
state 
state 6 
state 
state 6 
state 2 

state : 9 
token : end_of_file 
stack: (john,15,m,s(n,O, [bar(2) ,proper]) ,£tsC,_» 

(like,14,h,s(v,[(_,acc,th),(_,ext,ag)],O),fts(_,_» 
(to,12,h,s(infl,v,[inf]),fts(_,_» 

9 

C ,10 ,m,s(n, 0 ,[empty]) ,fts(ag,nil» 
(seem+s,8,h,s(v,[(_,nil,th),(d,ext,nil)],[rais]),fts(_,_» 
(_,6,h,s(infl,[],[empty]),fts(_,_» 

(mary,5,m,s(n,[] ,[bar(2) ,proper]),£ts(nil,ext» 
Abar chains: 
A chains: 

(john,4,m,s(n,[],[bar(2),proper]),fts(_,_» 
(mary,0,m,s(n,[],[bar(2),proper]),fts(nil,ext» 

state : 4 
token : end_of_file 
stack: (_,16,p,s(v,[(d,acc,th),(_5627,ext,ag)],[]),fts(_,_» 
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(to,12,h,s(infl,v,[inf]),fts(_,_» 
(_,10,m,s(n,[],[empty]),fts(ag,nil» 
(seem+s,8,h,s(v,[(_,nil,th),(d,ext,nil)],[rais]),fts(_,_») 
(_,6,h,s(infl,[],[empty]),fts(_,_» 

9 

(mary,5,m,s(n,[],[bar(2),proper]),fts(nil,ext» 
Abar chains: 
A chains: 

(john,4,m,s(n,[],[bar(2),proper]),fts(th,acc» 
(mary,O,m,s(n,[] ,[bar(2),proper]),fts(nil,ext» 

state 8 
state : 9 
state : 7 

state : 8 
token : end_of_file 
stack: (_,20,m,s(infl,v,[inf]),fts(_,_)) 

9 

(seem+s,8,h,s(v,[(_,nil,th),(d,ext,nil)] ,[rais]),fts(_,_») 
C,6,h, s (infl, [] , [empty]) , fts C ,_)} 

(mary,5,m,s(n,[] ,[bar(2),proper]),fts(nil,ext» 
Abar chains: 
A chains: 

state 
state 
state 
state 
state 
state 
state 

(john,4,m,s(n,[] ,[bar(2),proper]),fts(th,acc) 
(mary, [0110] , _, sen , [] , [bar(2) ,proper] ) , fts (ag, ext» 

9 
4 
8 
9 
7 

3 
10 

accepted 



Results 

PARSE TREE 

Abar chains: 
A chains: 

n2 

n2 inf'lO 
I 

mary e vO 

vO 

infl2 
I 

infli 
I 

vi 

n2 

infl2 

infl1 
I 

seem+s e inflO vi 

inflO vO n2 

I I 

to vO n2 

like john 

(john,4,m,s(n,[] ,[bar(2) ,proper]),fts(th,acc» 
(mary,[OI10] ,_,s(n,[J ,[bar(2) ,proper]) ,fts(ag,ext» 
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Embedded Transitive 

IIPUT TOKENS: john thinks that mary loves bill 

state 0 
state 2 
state 5 
state 6 

state : 1 
token : IiO 
stack: (think+s,l,h,s(v,[(_,prop,th),(_,ext,ag)] ,[]),fts(_,_» 

C,7 ,h,s<infl, [], [empty]) ,ftsC,_» 
(john,6,m,s(n,[],[bar(2),proper]),fts(_,_» 

Abar chains: 
A chains: 

(john,O,m,s(n,[],[bar(2),proper]),fts(_,_» 

state : 6 
token : 
stack: 

IiO 
(think+s,9,h,s(v,[(_,prop,th),(d,ext,ag)] ,[]),fts(_,_» 
(_,7,h,s(infl,[],[empty]),fts(_,_» 
(john,6,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(john,O,m,s(n,[] ,[bar(2),proper]),fts(ag,ext» 

state 1 
state 6 
state 2 
state 9 

state : 6 
token : IiO 
stack: C, 15,h ,s(infl, [] , [empty]) ,ftsC ,_» 

(mary, 14,m ,sen, [] , [bar(2) ,proper]) ,fts C ,_» 
(that,13,h,s(comp,infl,[]),fts(_,_» 
(think+s,9,h,s(v,[(_,prop,th) ,(d,ext,ag)] ,[]) ,fts(_,_» 
(_,7,h,s(infl,[],[empty]),fts(_,_» 
(john,6,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(mary,3,m,s(n,[],[bar(2),proper]),fts(_,_» 
(john,O,m,s(n,[],[bar(2) ,proper]),fts(ag,ext» 

state : 1 

state : 6 
token : 1i2 
stack: (love+s,17,h,s(v,[(_,acc,th),(d,ext,ag)] ,[]),fts(_,_» 

C,15,h,s(infl, [], [empty]) ,ftsC,_» 
(mary, 14 ,m,s (n, [] ,[bar(2) ,proper]) ,fts(ag ,ext» 

ApPENDIX B 
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(that,13,h,s(comp,infl,[]l,fts(_,_» 
(think+s,9,h,s(v,[(_,prop,thl,(d,ext,agl] ,[]l,fts(_,_ll 
(_,7,h,s(infl,[],[empty]l,fts(_,_ll 
(john,6,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(mary,3,m,s(n,[],[bar(2l,proper]),fts(ag,ext» 
(john,O,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

state : 2 

state : 9 
token : end_of_file 
stack: (bill,18 ,m, sen, [] , [bar(2) ,proper]) , ftsC,_» 

(love+s ,17,h ,s(v, [C ,ace, th), (d ,ext ,ag)] ,D) ,ftsC,_» 
(_,15,h,s(infl,[],[empty]),fts(_,_» 
(mary,14,m,s(n,[],[bar(2),proper]),fts(ag,ext» 
(that,13,h,s(comp,infl,[]),fts(_,_» 
(think+s,9,h,s(v,[(_,prop,th),(d,ext,ag)] ,[]),fts(_,_» 
C,7,h ,s(infl, [] , [empty]), ftsC ,_)} 
(john,6,m,s(n,[] ,[bar(2),proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(bill,S,m,s(n,[],[bar(2l,proper]),fts(_,_» 
(mary,3,m,s(n,[],[bar(2),proper]),fts(ag,ext» 
(john,O,m,s(n,[] ,[bar(2) ,proper]),fts(ag,ext» 

state : 4 
token : end_of_file 
stack: (_,19,p,s(v,[(d,acc,th),(d,ext,ag)],[]),fts(_,_» 

(_,lS,h,s(infl,[] ,[empty]) ,fts(_,_» 
(mary,14,m,s(n,[] ,[bar(2),proper]),fts(ag,ext» 
(that,13,h,s(comp,infl,[]),fts(_,_» 
(think+s,9,h,s(v,[(_,prop,th),(d,ext,ag)] ,[]),fts(_,_» 
(_,7,h,s(infl,[],[empty]),fts(_,_» 
(john,6,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

Abar chains: 
A chains: 

state 
state 
state 
state 
state 
state 
state 
state 
state 
state 

(bill,5,m,s(n,[] ,[bar(2) ,proper]),fts(th,acc» 
(mary,3,m,s(n,[] , [bar(2) ,proper]),fts(ag,ext» 
(john,O,m,s(n,[],[bar(2) ,proper]),fts(ag,ext» 

8 
9 

7 
8 
9 

4 
8 
9 
4 
8 
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state 9 
state 7 
state 3 
state 10 

accepted 

PARSE TREE 

n2 
I 

n2 
I 

john 

inflO 
I 

e vO 
I 

vO 
I 

inf12 
I 

infl1 
I 

v1 

compO 
I 

think+s compO n2 
I I 

that n2 
I 

mary 

compl 
I 

inf12 
I 

inflO 
I 

e 

infl1 
I 

vO 
I 

vO 

v1 
I 

n2 
I 

n2 

love+s bill 

Abar chains: 
A chains: 

(bill,5,m,s(n,[],[bar(2),proper]),fts(th,acc» 
(mary,3,m,s(n,[],[bar(2),proper]),fts(ag,ext» 
(john,0,m,s(n,[],[bar(2),proper]),fts(ag,ext» 
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Embedded Intransitive 

This construction behaves analogously to the previous one, as far as feature annotation is 
concerned. Therefore, I show only the final output, with the correctly annotated chains. 

IRPUT TOKERS: john thinks that mary runs 

accepted 

PARSE TREE: 

n2 
I 

n2 

john 

inflO 
I 

e vO 

vO 
I 

infl2 
I 

infl1 
I 

compO 
I 

vi 

campi 
I 

infl2 
I 

---------

think+s compO n2 infli 
I I 

that n2 inflO vO 
I 

mary e 

Abar chains: 
A chains: 

(mary,3,m,s(n,[],[bar(2),proper]),fts(ag,ext» 
(john,O,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

vO 
I 

run+s 
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Embedded Raising 

IIPUT TOKEIS: mary thinks that john seems to like bill 

state : 0 
state : 2 

state : 5 
token : ,,0 
stack: (mary,8,m,s(n,[] ,[bar(2) ,proper]) ,fts(_,_» 
Abar chains: 
A chains: 

(mary,O,m,s(n,[] ,[bar(2) ,proper]) ,fts(_,_» 

state: 6 
state : 1 

state : 6 
token : 
stack: 

,,0 
(think+s,ll,h,s(v,[(_,prop,th),(d,ext,ag)],[]),fts(_,_)) 
(_,9,h,s(infl,[],[empty]),fts(_,_» 
(mary,8,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(mary,O ,m, s (n, 0 , [bar(2) ,proper]) , fts(ag ,ext» 

state 
state : 6 
state : 2 

state : 9 
token : ,,0 
stack: (john,16,m,s(n,[],[bar(2),proper]),fts(_,_» 

(that,15,h,s(comp,infl,[]),fts(_,_» 
(think+s, l1,h ,s (v, [C ,prop, th), (d,ext ,ag)] ,D) ,ftsC ,_» 
(_,9,h,s(infl,[],[empty]),fts(_,_» 
(mary,8,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(john,3,m,s(n,[],[bar(2),proper]),fts(_,_» 
(mary,O,m,s(n,[],[bar(2) ,proper]) ,fts(ag,ext» 

state: 6 
state : 1 

state: 6 
token : vO 

ApPENDIX B 

stack: (seem+s,19,h,s(v,[(_8441,nil,th),(d,ext,nil)] ,[rais]),fts(_,_» 
C,17 ,h,s(infl, 0, [empty]) ,ftsC,_» 
(john ,16 ,m ,sen, 0, [bar(2) ,proper]) , fts (nil ,ext» 
(that,15,h,s(comp,infl,[]),fts(_,_» 
(think+s,l1,h ,s(v, [C ,prop, th), (d,ext ,ag)] ,D) ,ftsC ,_» 
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(_,9,h,s(infl,[],[empty]),fts(_,_» 
(mary,8,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(john,3,m,s(n,[],[bar(2),proper]),fts(nil,ext» 
(mary,O,m,s(n,[] ,[bar(2) ,proper]) ,fts(ag,ext» 

state : 9 
token : ,,0 
stack: C,21,m,s(n, [], [empty]) ,ftsC,_» 

(seem+s,19,h,s(v,[(_8441,nil,th),(d,ext,nil)],[rais]),fts(_,_» 
C ,17 ,h ,s(infl, 0 ,[empty]) ,ftsC ,_» 

20 
(john ,16 ,m ,s(n, 0 , [bar(2), proper]) ,fts (nil,ext» 
(that,15,h,s(comp,infl,[]),fts(_,_» 
(think+s,ll,h,s(v, [C,prop,th) ,(d,ext ,ag)], []) ,ftsC,_» 
(_,9,h,s(infl,[],[empty]),fts(_,_» 
(mary,8,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(john,3,m,s(n,[],[bar(2),proper]),fts(nil,ext» 
(mary,O,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

state 
state 6 
state 1 
state 6 
state 2 

state : 9 
token : 
stack: 

end_of_file 
(bill,26,m,s(n,[],[bar(2),proper]),fts(_,_» 
(like, 25 ,h ,s(v, [C10189 ,acc, th) ,C10201,ext ,ag)] , []) ,ftsC ,_» 
(to,23,h,s(infl,v,[inf]),fts(_,_» 
(_,21,m,s(n,[] ,[empty]) ,fts(ag,nil» 
(seem+s,19,h,s(v,[(_8441,nil,th),(d,ext,nil)] ,[rais]),fts(_,_» 
C ,17 ,h ,sCinfl, [] ,[empty]) ,ftsC ,_» 

20 
(john ,16 ,m,s(n, 0 ,[bar(2) ,proper]) ,fts(nil, ext» 
(that,15,h,s(comp,infl,[]),fts(_,_» 
(think+s ,l1,h ,s (v, [C ,prop, th) ,(d,ext ,ag)] ,D) ,ftsC ,_» 
(_,9,h,s(infl,[],[empty]),fts(_,_» 
(mary,8,m,s(n,[] ,[bar(2) ,proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(bill,7,m,s(n,[],[bar(2),proper]),fts(_,_» 
(john,3,m,s(n,[],[bar(2),proper]),fts(nil,ext» 
(mary,O,m,s(n,[] ,[bar(2) ,proper]),fts(ag,ext» 

state : 4 
token : end_of_file 
stack: (_,27,p,s(v,[(d,acc,th) ,(_10201 ,ext ,ag)] ,[]),fts(_,_» 
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(to,23,h,s(infl,v,[inf]),fts(_,_» 
C, 21,m ,s(n, [] , [empty]) , fts (ag,nil)} 
(seem+s,19,h,s(v,[(_8441,nil,th),(d,ext,nil)] ,[rais]),fts(_,_» 
(_,17,h,s(infl,[],[empty]),fts(_,_» 

20 
(john,16,m,s(n,[],[bar(2),proper]),fts(nil,ext» 
(that,15,h,s(comp,infl,[]),fts(_,_» 
(think+s,ll,h,s(v,[(_,prop,th),(d,ext,ag)],[]),fts(_,_» 
<-,9,h ,s(infl, [], [empty]), ftsC ,_» 
(mary,8,m,s(n,[],[bar(2) ,proper]),fts(ag,ext» 

Abar chains: 
A chains: 

(bill,7,m,s(n,[],[bar(2),proper]),fts(th,acc» 
(john,3,m,s(n,[],[bar(2),proper]),fts(nil,ext» 
(mary,O,m,s(n,[] , [bar(2) ,proper]),fts(ag,ext» 

state 8 
state : 9 
state : 7 

state: 8 
token : end_of_file 
stack: (_,31,m,s(infl,v,[inf]),fts(_,_» 

(seem+s,19,h,s(v,[(_8441,nil,th),(d,ext,nil)] ,[rais]),fts(_,_» 
C,17,h ,sCinfl, [] , [empty]) ,ftsC ,_» 

20 
(john,16,m,s(n,[] ,[bar(2),proper]) ,fts(nil,ext» 
(that,15,h,s(comp,infl,[]),fts(_,_» 
(think+s ,l1,h, s (v, [C ,prop, th) , (d, ext, ag)] , []) ,ftsC ,_)} 
C,9,h ,s(infl, [] , [empty]) ,ftsC ,_» 
(mary,8,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

Abar chains: 
A chains: 

state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 

(bill,7,m,s(n,[],[bar(2),proper]),fts(th,acc» 
(john,[3121] ,_,s(n,[] ,[bar(2),proper]),fts(ag,ext» 
(mary,O,m,s(n,[],[bar(2),proper]),fts(ag,ext» 

9 

4 
8 
9 
7 
8 
9 

4 
8 
9 
4 
8 
9 
7 
3 
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state : 10 
accepted 

PARSE TREE 

n2 
I 

n2 in:flO 
I 

mary e 

Abar chains: 
A chains: 

vO 

vO compO 
I 

in:fl2 
I 

infl1 
I 

think+s compO n2 
I 

that n2 inflO 
I 

john e 

vi 

compl 

vO 
I 

vO 
I 

I 

inf12 
I 

infIl 
I 

n2 
I 

vi 
I 

in:fl2 
I 

infIl 
I 

seem+s e inflO vi 

inflO vO 
I 

to vO 

like 

(bill,7,m,s(n,[] ,[bar(2),proper]),fts(th.acc» 
(john.[3121] ._.s(n.[].[bar(2),proper]).fts(ag.ext» 
(mary.0.m.s(n.[].[bar(2).proper]).fts(ag.ext» 
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n2 
I 

n2 
I 

bill 
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Simple Question 

IRPUT TOKERS: who does john love ? 

state : 0 
state : 2 

state : 5 
token : wO 
stack: (who,4,m,s(n,[] ,[bar(2) ,wh]),ftsC,_» 
Abar chains: 

(who ,0 ,m ,s(n, [] , [bar(2), wh]) ,ftsC ,_}) 
A chains: 

state 1 
state : 6 
state : 2 

state : 9 
token : vO 
stack: (john,7,m,s(n,[] ,[bar(2),proper]),fts(_,_» 

(does,6,h,s(comp,infl,[]),fts(_,_» 
(vho ,4,m,s(n, 0, [bar(2) ,vh]) ,ftsC ,_}} 

Abar chains: 
(who,O,m,s(n,[] ,[bar(2),wh]) ,fts(_,_» 

A chains: 
(john,2 ,m,s (n, [] , [bar(2) ,proper]) ,ftsC ,_}} 

state 6 
state : 1 
state : 6 

state : 9 
token: 
stack: 

end_of_file 
C ,12 ,m,s(n, [] ,[empty]) ,ftsC ,_}} 
(love ,10 ,h ,5 (v, [C4750,acc, th), (d ,ext ,ag)] ,D) ,ftsC ,_}} 
(_,8,h,s(infl,[],[empty]),fts(_,_» 
(john,7,m,s(n,[],[bar(2) ,proper]) ,fts(ag,ext» 
(does,6,h,s(comp,infl,[]),fts(_,_» 

11 
(vho ,4 ,m ,s(n, [] , [bar(2) ,vh]), ftsC ,_» 

Abar chains: 
(who,O,m,s(n,[],[bar(2),wh]),fts(_,_» 

A chains: 
(john,2,m,s(n,D, [bar(2) ,proper]) ,fts(ag,ext» 

state: 4 
token : end_of_file 
stack: C ,13 ,p ,s(v, [Cd ,acc, th) ,(d ,ext ,ag)] ,[]), ftsC ,_}} 

(_,8,h,s(infl,[],[empty]),fts(_,_» 
(john,7,m,s(n,[],[bar(2),proper]),fts(ag,ext» 
(does,6,h,s(comp,infl,[]),fts(_,_» 

ApPENDIX B 



Results 

11 
(vho,4,m,s(n,[] ,[bar(2),vh]),fts(nil,nil» 

Abar chains: 
(vho, [0112] ,_,s(n,[] ,[bar(2) ,vh]) ,fts(th,acc» 

A chains: 
(john,2 ,m, s (n, D ,[bar(2) ,proper]) ,fts(ag, ext» 

state 8 
state 9 
state 7 
state 8 
state 9 
state 7 
state 3 
state 10 
accepted 
PARSE TREE 

comp2 
1 

n2 comp1 
1 1 

n2 compO infl2 
1 1 

----------

.. ho compO n2 infll 
1 1 

--------

does n2 inflO vi 
1 1 1 

john e vO n2 
1 

vO e 

love 

Abar chains: 
(vho,[0112] ,_,s(n,[] ,[bar(2),vh]),fts(th,acc» 

A chains: 
(john,2 ,m,s (n, D ,[bar(2) ,proper]) ,fts(ag,ext» 
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Embedded Question 

INPUT TOKENS: ~ho do you think that john likes ? 

n2 
I 

n2 compO 
I I 

~ho compO n2 
I I 

do n2 inf'lO 
I I 

you e vO 

vO 

comp2 
I 

compl 
I 

n2 
I 

infl2 
I 

inf'll 
I 

vi 
I 

think e compO 
I 

compO n2 
I 

that n2 
I 

john 

comp2 
I 

compl 
I 

infl2 
I 

inf'l1 
I 

inflO 
I 

e vO 
I 

vO 
I 

vi 

like+s 
Abar chains: 

(~ho, [[0123] 115] ,_ ,s(n, 0, [bar(2) ,vh]), t'ts(th ,acc» 

A chains: 
(john,5,m,s(n,[],[bar(2),proper]),f'ts(ag,ext» 
(you,2 ,m,s (n, [] ,[bar(2)]) ,f'ts (ag,ext» 

ApPENDIX B 

n2 
I 
e 



Results 

Embedded Question and Raising 

INPUT TOKENS: who did you think that john seemed to like ? 

state 0 
state 2 
state 5 
state 1 
state 6 
state 2 

state : 9 
token : wO 
stack: (you,12,m.s(n.[],[bar(2)]),rts(_._» 

(did,11,h,s(comp,inrl,[]),rts(_,_)1 
(who,9,m,s(n,O , [bar(21 ,wh]),rtsC,_}} 

Abar chains: 
(who,O,m,s(n,[] ,[bar(2I,wh]1 ,rts(_._11 

A chains: 
(you,2,m,s(n,[],[bar(2)]I,rts(_,_» 

state : 6 
state : 1 

state : 6 
token : wO 
stack: (think,15,h,s(v,[(_5854,prop,th),(d,ext,ag)],[]I,fts(_,_I) 

C, 13,h, sOnfl, [] , [empty]) , ftsC ,_)} 
(you.12,m,s(n,[],[bar(21]I,rts(ag,ext» 
(did,ll,h,s(comp,infl,[]I,fts(_,_11 
(who,9,m,s(n,[] ,[bar(2) ,wh]),fts(_,_)1 

Abar chains: 
(who,O,m,s(n,[],[bar(21,wh]l,rts(_,_11 

A chains: 
(you,2,m ,sen, [] , [bar(2)]) ,fts(ag,ext}} 

state 9 
state : 1 
state : 6 

state : 2 
token : wO 
stack: (john,5,m,s(n,[] , [bar(21 ,proper]l,rts(_,_11 

(that,19,h,s(comp,inrl,[]I,rts(_,_11 
C,17 ,m,s(n, [], [empty] I ,rtsC,_}} 
(think,15,h,s(v,[(_5854,prop,thl,(d,ext,agl],[]I,fts(_,_II 
C,13,h,s(inIl,O, [empty] I ,ftsC,_» 
(you,12,m,s(n,[] ,[bar(21]I,fts(ag,extll 
(did,11,h,s(comp,infl,[]I,fts(_,_11 

16 
(who,9,m, s(n, 0 , [bar(21 , wh] I, fts C,_}} 

Abar chains: 
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(llho ,0 ,m ,s(n, [] ,[bar(2) ,llh]) ,ftsC ,_» 
A chains: 

(you,2,m,s(n,[],[bar(2)]),fts(ag,ext» 

state : 9 

state : 6 
token : 
stack: 

110 
C,21 ,h,s(infl, [], [empty]) ,ftsC,_» 
(john, 20 ,m,s (n, [] ,[bar(2) ,proper]) ,fts C,_» 
(that,19,h,s(comp,infl,[]) ,fts(_,_» 

ApPENDIX B 

C, 17 ,m,s(n, [], [empty]) ,fts L ,_» 
(think,15,h,s(v,[(_5854,prop,th),(d,ext,ag)],[]),fts(_,_» 
(_,13,h,s(infl,[] ,[empty]) ,fts(_,_» 
(you,12,m,s(n,[],[bar(2)]),fts(ag,ext» 
(did,ll,h,s(comp,infl,[]),fts(_,_» 

16 
(llho ,9 ,m ,s(n, [] ,[bar(2) ,llh]) ,fts L ,_» 

Abar chains: 
(llho,O,m,s(n,[] ,[bar(2) ,llh]),fts(_,_» 

A chains: 
(john,5,m,s(n,[],[bar(2),proper]),fts(_,_» 
(you,2,m,s(n,[] ,[bar(2)]),fts(ag,ext» 

state : 1 

state : 6 
token : 110 
stack: (seem+ed,23,h,s(v,[(_,nil,th),(d,ext,nil)],[rais]),fts(_,_» 

C, 21 ,h ,s(infl, [] , [empty]) ,ftsC ,_» 
(john,20,m,s(n,[] ,[bar(2),proper]),fts(nil,ext» 
(that,19,h,s(comp,infl,[]),fts(_,_» 
(_,17,m,s(n,[] ,[empty]) ,fts(_,_» 
(think,15,h,s(v,[(_5854,prop,th),(d,ext,ag)],[]),fts(_,_» 
(_,13,h,s(infl,[] ,[empty]) ,fts(_,_» 
(you,12,m,s(n,[],[bar(2)]),fts(ag,ext» 
(did,ll,h,s(comp,infl,[]),fts(_,_» 

16 
(llho ,9 ,m,s(n, 0, [bar(2) ,llh]), fts L ,_» 

Abar chains: 
(llho ,0 ,m ,s (n, 0 ,[bar(2) ,llh]) ,ftsL ,_» 

A chains: 

state 
state 
state 
state 
state 
state 

(john,5,m,s(n,[] ,[bar(2),proper]),fts(nil,ext» 
(you,2 ,m ,5 (n, [] • [bar(2)]), fts (ag ,ext» 

9 

1 
6 
1 

6 
9 
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state : 4 
token : end_of_file 
stack: (_,32,p,s(v,[(d,acc,th),(_12860,ext,ag)] ,[]),fts(_,_» 

(to,27,h,s(infl,v,[inf]),fts(_,_» 
30 

("ho, 25,m ,s(n, [] , [empty]) , fts(ag ,nil» 
(seem+ed,23,h,s(v,[(_,nil,th),Cd,ext,nil)],[rais]),fts(_,_» 
(_,21,h,s(infl,D ,[empty]),fts(_,_» 

24 
(john,20,m,s(n,[], [bar(2),proper]) ,fts(nil,ext» 
(that,19,h,s(comp,infl,[]),fts(_,_» 
(_,17,m,s(n,[],[empty]),fts(_,_» 
(think,15,h,s(v,[(_5854,prop,th),(d,ext,ag)],[]),fts(_,_» 
C, 13 ,h ,s(infl, [] , [empty]) , ftsC,_» 
(you,12,m,s(n,[] ,[bar(2)]),fts(ag,ext» 
(did,11,h,s(comp,infl,[]),fts(_,_» 

16 
("ho,9,m,s (n, [] , [bar(2) ,Ilh] ) , fts(nil ,nil» 

Abar chains: 
("ho, [0131] ,_,sen, [], [bar(2) ,,,h]) ,fts(th,acc» 

A chains: 
(john,5,m,s(n,[] ,[bar(2),proper]),fts(nil,ext» 
(you,2,m,s(n,[] ,[bar(2)]),fts(ag,ext» 

state : 8 
token : end_of_file 
stack: (_,33,m,s(v,[(d,acc,th),(_12860,ext,ag)],[]),fts(_,_» 

(to,27,h,s(infl,v,[inf]),fts(_,_» 
30 

(llho,25,m,s(n,[],[empty]),fts(ag,nil» 
(seem+ed,23,h,s(v,[C_,nil,th),(d,ext,nil)],[rais]),ftsC_,_» 
C, 21,h ,sCinfl, 0, [empty]) ,ftsC ,_» 

24 
(john,20,m,s(n,[] ,[bar(2),proper]),ftsCnil,ext» 
(that,19,h,sCcomp,infl,[]),fts(_;_» 
C_,17,m,s(n,D,[empty]),ftsC_,_» 
(think,15,h,s(v,[(_5854,prop,th),(d,ext,ag)],[]),fts(_,_» 
C,13,h,sCinfl,D, [empty]) ,ftsC,_» 
(you,12,m,s(n,[],[bar(2)]),fts(ag,ext» 
(did,ll,h,s(comp,infl,[]),fts(_,_» 

16 
C"ho,9,m, s (n, 0 , [bar(2) , Ilh]) , fts(nil ,nil» 

Abar chains: 
("ho, [0131] ,_ ,s(n, [] , [bar(2) ,Ilh]) ,fts(th ,acc» 

A chains: 
(john,5,m,s(n,[],[bar(2),proper]),fts(nil,ext» 
(you,2,m,s(n,[] ,[bar(2)]),fts(ag,ext» 

state : 9 
state : 7 
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state : 8 
token : end_of_file 
stack: (_,36,m,s(infl,v,[inf]),fts(_,_» 

(seem+ed,23,h,s(v,[(_,nil,th) ,(d,ext,nil)],[rais]),fts(_,_» 
(_,21,h,sCinfl,[],[empty]),fts(_,_» 

24 
(john, 20,m ,s (n, 0, [bar(2) ,proper]) ,fts (nil,ext» 
(that,19,h,s(comp,infl,[]),fts(_,_» 
C_,17,m,sCn,[],[empty]) ,fts(_,_» 
(think,15,h,s(v,[(_5854,prop,th),(d,ext,ag)],[]),fts(_,_» 
(_,13,h,s(infl,[] ,[empty]),fts(_,_» 
(you,12,m,s(n,D,[bar(2)]),fts(ag,ext» 
(did,11,h,s(comp,infl,[]),fts(_,_» 

16 
(liho,9 ,m, s(n, [] , [bar(2) , lih]), fts(nil ,nil» 

Abar chains: 
(liho,[0!31] ,_,s(n,[] ,[bar(2),lih]),fts(th,acc» 

A chains: 

state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 

(john,[5!25] ,_,s(n,[] ,[bar(2) ,proper]) ,fts(ag,ext» 
(you,2,m,s(n,[],[barC2)]),fts(ag,ext» 

9 
4 
8 
9 
7 
8 
9 
7 
8 
9 
4 
8 
9 
7 
8 
9 
7 
3 
10 

accepted 



Results 

PARSE TREE : 

n2 
I 

n2 compO 
I ! 

llho compO n2 
I 

did n2 
I 

you 

inflO 
I 

e 

comp2 
! 

compi 
I 

inr12 

inrll 
I 

vi 

vO 
I 

vO 
I 

n2 
I 

think e compO 
I 

compO n2 
I I 

that n2 inrlO 
I 

john e 

I 

comp2 
I 

compi 
I 

vO 

vO 

inr12 
I 

inrll 
I 

n2 
I 

vi 

inr12 
! 

229 

inrll 
I 

seem+ed e inrlO vi 

Abar chains: 
(llho,[[OI3i)117),_,s(n,[),[bar(2),llh),rts(th,acc» 

A chains: 
(john,[5!25) ,_,s(n,[) ,[bar(2),proper),rts(ag,ext» 
(you,2,m,s(n,O , [bar(2») ) ,Its(ag,ext» 

inflO 
I 

to 

vO 

vO 
I 

like 

n2 
! 

e 
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Embedded Wh-Question 

IRPUT TOKERS: vho did you vonder vhy mary liked ? 

state : 0 
state : 2 

state : 5 
token : vO 
stack: (vho,7,m,s(n,[] ,[bar(2) ,vh]),ftsC,_» 
Abar chains: 

(vho,O,m,s(n, [] ,[bar(2) ,vh]) ,ftsC,_» 
A chains: 

state 1 
state : 6 
state : 2 

state : 9 
token : vO 
stack: (you,10,m,s(n,[],[bar(2)]),fts(_,_» 

(did,9,h,s(comp,infl,[]),fts(_,_» 
(vho ,7 ,m, s (n, [] , [bar(2) ,vh] ) ,fts C ,_» 

Abar chains: 
(who,O,m,s(n,[],[bar(2),wh]),fts(_,_» 

A chains: 
(you,2,m,s(n,[],[bar(2)]) ,fts(_,_» 

state 6 
state : 1 
state : 6 

state : 2 
token : v2 

ApPENDIX B 

stack: (why,4,m,s(adv, [], [bar(2) ,vh]) ,ftsC,_» 
(vonder,13,h,s(v,[(_5666,prop,nil),(d,ext,ag)],[]),fts(_,_» 
C,11 ,h ,s(infl, [) ,[empty]) ,ftsC ,_» 
(you,10,m,s(n, [], [bar(2)]) ,fts(ag,ext» 
(did ,9 ,h, s (comp ,infl, [) ,ftsC ,_» 
(who,7 ,m,s(n, 0, [bar(2) ,vh]) ,ftsC ,_» 

Abar chains: 
(vho,O,m,s(n,[],[bar(2),vh]),fts(_,_» 

A chains: 
(you,2,m,s(n,[],[bar(2)]),fts(ag,ext» 

state 9 
state 6 
state 2 
state 9 

state 6 
token : vO 



Results 

stack: C ,17 ,h ,sCinIl, [] ,[empty]) ,ftsC ,_» 
(mary,16,m,s(n,[] ,[bar(2),proper]),fts(_,_» 
(_,15,h,s(comp,[] ,[empty]),fts(_,_» 
(ghy,14,m,s(adv,[] ,[bar(2),gh]),fts(_,_» 
(gonder,13,h,s(v,[(_5666,prop,nil),(d,ext,ag)] ,[]),fts(_,_» 
C,l1,h,s(infl,O, [empty]) ,ftsC,_» 
(you ,10 ,m, s(n, [] ,[bar(2)]) ,fts(ag ,ext» 
(did,9,h,s(comp,infl,[]),fts(_,_» 
(gho,7 ,m ,s(n, 0 ,[bar(2) ,gh]), fts C ,_» 

Abar chains: 
(gho ,O,m,s(n, [], [bar(2) ,llh]) ,ftsC ,_» 

A chains: 
(mary,5,m,s(n,[] ,[bar(2) ,proper]),fts(_,_» 
(you,2 ,m, 5 (n, 0 ,[barO)]) ,fts(ag ,ext» 

state : 1 

state : 6 
token : end_of_file 
stack: (like+d,19,h,s(v,[(_9314,acc,th),(d,ext,ag)] ,[]) ,fts(_ ,_» 

C ,17 ,h ,s( inIl, 0 , [empty]) ,ftsC ,_» 
(mary,16,m,s(n,[] ,[bar(2) ,proper]) ,fts(ag,ext» 
(_,15,h,s(comp,[] ,[empty]) ,fts(_,_» 
(ghy,14,m,s(adv,[] ,[bar(2) ,llh]) ,fts(_,_» 
(llonder,13,h,s(v,[(_5666,prop,nil),(d,ext,ag)],[]),fts(_,_» 
C ,11 ,h ,s (infl, [] , [empty]) ,fts C ,_» 
(you,10,m,s(n,[],[bar(2)]),fts(ag,ext» 
(did,9,h,s(comp,infl,[]),fts(_,_» 
(llho,7,m,s(n,[] ,[bar(2) ,llh]),fts(_,_» 

Abar chains: 
(llho,O,m,s(n,[] ,[bar(2),llh]),fts(_,_» 

A chains: 
(mary,5,m,s(n,[] ,[bar(2) ,proper),fts(ag,ext» 
(you,2 ,m ,s (n, [) ,[barO)]), fts(ag ,ext» 

backtracking 

PARSE FAILED 
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Transparency 
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Tree Adjoining Grammar, 62 
and parsing, 62 

Unaccusatives, 185 
Unergatives, 186 
Unification, 33 
Wh-movement, 148. 154 
Xbar Theory, 19, 22-23, 27, 36, 64, 69, 

72,74,86,91,94-95,99,139, 
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information, 29 
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