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Introduction

Colorectal cancer (CRC) is among the most common cancers in western  populations 
and indeed, increasingly, all over the world. There are several known modifiable 
risk factors for CRC and, for a number of well-characterized inherited syndromes 
where the phenotype includes CRC, germline genetic mutations are known. 
Polyps with varying histology (but mostly adenomas) are established preneoplastic 
lesions, the accessibility of which, to endoscopy, allows, simultaneously, effective 
screening, early diagnosis, and treatment. Endoscopy and histopathology have also 
facilitated the emergence of an increasingly clear picture of the molecular steps to 
cancer down several paths.

This volume is focused on the current picture of genetics in CRC – both inherited 
and acquired – and the ways in which the inherited lesions influence risk directly, 
as well as how they interact with the environment; the ways in which molecular 
progression occurs; and the possible insights into prevention, early diagnosis, and 
treatment that the knowledge of genetics provides.

The book is divided into four parts. In the first section, we describe the epide-
miology of CRC, paying particular attention to what is known about behavioral, 
dietary, and host-related risk factors, and we examine the murine models of CRC 
which provide useful insights into prevention, progression, and potential therapy.

In Sect. 2, we present overviews of the molecular pathways to CRC, describ-
ing in detail the major pathways: the chromosomal-instability pathway involving 
mutations in the APC gene, the DNA-methylation pathway involving widespread 
epigenetic alterations, and the DNA mismatch repair pathway with its signature 
microsatellite instability. Chapter 3 in this section describes, in detail, the relation-
ships between the pathways to progression and pathology.

The third section provides a detailed discussion of the known major and minor 
CRC syndromes, not only familial adenomatous polyposis and Lynch syndrome, 
but also MUTYH-associated polyposis (MAP), familial CRC type X, serrated 
neoplasia of the colon, Peutz–Jeghers syndrome, juvenile polyposis, germline 
mutations in p53, and BLM-related CRC. The recent association studies involving 
chromosomes 8q24 and 9p24 are also highlighted.

The final section presents what is known about interactions between poly-
morphisms in several metabolic and nutrition-related pathways and established 
environmental risk and protection factors for CRC. Specific chapters focus on 
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folate-mediated one-carbon metabolism, on genetic variability in NSAID targets 
and NSAID-metabolizing enzymes, on biotransformation of chemical carcinogens, 
and on calcium and vitamin D.

CRC continues to provide enormous challenges because of its high incidence 
and its important contribution to cancer mortality. However, it also contrasts with 
a number of the other common cancers, inasmuch as we know that early detection, 
particularly via colonoscopy, reduces incidence considerably. Finally, we also know 
a great deal about the roles of genetics and the environment in causing and protect-
ing against CRC.
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Chapter 1
Colorectal Cancer: Epidemiology

John D. Potter and David Hunter

Introduction

Cancers of the colon and rectum are among the most common in western  populations; 
there are several known risk factors that are potentially modifiable. Polyps of sev-
eral histologic subtypes are established preneoplastic lesions; their accessibility by 
endoscopy has allowed a detailed picture to emerge of many of the molecular steps 
in several progression pathways. Determining and quantifying the factors – both 
genetic and environmental – that facilitate and deter progression is now a fundamen-
tal challenge for nutritional, environmental, molecular, and genetic epidemiology.

Adenomas are precursors of colorectal cancers. There is increasing evidence 
that hyperplastic polyps can give rise to serrated polyps and subsequently to cancer. 
Colorectal cancers have been distinguished mostly by their varying anatomic loca-
tions, but molecular classification that is based on the presence of genomic instability 
versus chromosomal instability has been increasingly used more recently. The 
pathogenesis and molecular analysis of subtypes is described in Section II.

Descriptive Epidemiology

At the end of the twentieth century, almost one million cases of colorectal cancer 
occurred worldwide each year, about 9.5% of all new cases of cancer (Stewart et al. 
2003). Colorectal cancer is the third most common incident cancer in the United 
States and the second most common cause of cancer death (ACS 2006). Incidence 
rates vary more than 20-fold around the world, with the lowest rates in India and 
the highest in Japan. Rates increase sharply with age. Colon cancer occurs with 
approximately equal frequency between the sexes, but rectal cancer can be up to 
twice as common in men as in women.

J.D. Potter (�) 
Cancer Prevention Research Program, Division of Public Health Sciences, Fred Hutchinson 
Cancer Research Center
e-mail: jpotter@fhcrc.org

DOI: 10.1007/978-0-387-09568-4_2,
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International variation and migrant data demonstrate clearly that colorectal 
cancer is highly sensitive to changes in environment. For immigrants and their 
descendants, incidence rates rapidly reach those of the host country (Haenszel 
1961; McMichael and Giles 1988). Diet, exercise, and other lifestyle differences 
may explain most of the international variation in rates. The highest rates in the 
world are now seen among Japanese in Japan – long noted as a developed country 
with low rates; rates among Japanese men are now higher than those in the United 
States and, among women, they are higher than in many European countries.

Genetic and Molecular Events in Colorectal Cancer

The somatic genetic events in progression are better understood for colorectal 
 cancer than for most other cancers. Probably less than 5% of colorectal cancer 
occurs in the context of the familial syndromes discussed in Chaps. 6–8. However, 
these syndromes are crucial to understanding this cancer because, unlike several 
other common cancers, each of the pathways in those with inherited genetic 
predisposition has a counterpart in the much more common nonfamilial disease. 
Specific genetic variation modifies the effects of lifestyle factors, such as diet and 
smoking, as well as specific preventive agents such as NSAIDs. These interac-
tions provide further insight into pathogenesis and prevention and are discussed 
in Chaps. 9–12. In this chapter, we will focus on the known environmental causes 
of colorectal cancer.

The adenoma-carcinoma hypothesis was developed in the 1970s (Hill et al. 
1978), stimulated by several observations: (1) early cancers arise in adenomatous 
polyps; (2) persons with unresected polyps are at higher risk of colorectal cancer; 
and (3) individuals with syndromes characterized by multiple colorectal polyps are 
at very high risk of colorectal cancer. The current version of the adenoma-carcinoma 
sequence proposes that benign adenomas arise from proliferation of abnormal colonic 
crypt cells that result in aberrant crypt foci and microadenomas. Macroscopic polyps 
grow in size and undergo neoplastic transformation. See Chap. 5 for details.

Tissues at each stage of this process are accessible to colonoscopy or surgery, 
which allowed Vogelstein and others to study the molecular events at each stage, 
from normal epithelium to cancer (Fearon and Vogelstein 1990). They identified 
several genes that tend to mutate early (especially mutation or loss of APC), later 
(mutations in KRAS), and very late in the sequence (loss of p53), providing a clear 
demonstration in humans of the multihit theory, accurately predicting that humans 
born with germline mutations in relevant genes – in colorectal cancer, APC (see 
Chap. 3) – are at higher risk at an earlier age. There are other pathways to colorectal 
cancer, the most important of which has both an inherited and an acquired mani-
festation: individuals with an inherited defect in DNA mismatch-repair genes are 
at elevated risk of colorectal cancer (see Chap. 4). Other pathways and phenotypes 
have also been described (see Chap. 5).
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Environmental Risk Factors

Diet

Studies correlating the international variation in per capita consumption of specific 
foods and nutrients with colorectal cancer incidence and mortality rates resulted in 
numerous hypotheses about an adverse influence of high red meat and fat intake, 
and beneficial effects of fruit, vegetable, and fiber intakes. Subsequent evidence 
from case-control and cohort studies is somewhat mixed (Potter et al. 1993; 
Steinmetz and Potter 1996; WCRF Panel 1997).

Vegetables, Fruits, Fiber, and Micronutrients

A number of prospective studies of the role of vegetable and fruit consumption 
in colon cancer have reported modest, and somewhat inconsistent, findings of 
lower risk with higher consumption (Potter et al. 1993; Steinmetz and Potter 1996; 
WCRF Panel 1997). More recently, several cohort studies have also been inconsist-
ent: in Seventh-day Adventists, a lower risk of colorectal cancer was observed with 
higher intake of a variety of plant foods, but this was statistically significant only 
for legumes (Singh and Fraser 1998); A follow-up study of 61,463 Swedish women 
showed that low fruit and vegetable consumption (<1.5 servings per day) was asso-
ciated with a relative risk of 1.65, due largely to low fruit intake (Terry et al. 2001); 
in contrast, in a prospective study of 88,776 women and 47,325 men, no relation 
was apparent with intake of vegetables or fruit (Michels et al. 2000).

Almost all case-control studies of vegetables and fruit have shown some degree 
of lower risk of colon cancer with higher consumption of at least one category of 
these exposures (Potter et al. 1993; WCRF Panel 1997); the results are particularly 
consistent for raw, green, and cruciferous vegetables. A meta-analysis of six case-
control studies of vegetables (Trock et al. 1990) produced a relative risk of 0.48 
for highest versus lowest quintiles. For about half of the studies of rectal cancer, 
an inverse association was observed for at least one vegetable or fruit category, 
most consistently for cruciferous vegetables. Five case-control studies of adenomas 
found an inverse association, not always statistically significant, for vegetables 
(Potter et al. 1993; WCRF Panel 1997). A recent cohort study noted that any ben-
eficial effects of fruit may be confined to those colon tumors not expressing MLH1 
protein product (Wark et al. 2005). The Nurses’ Health Study suggested that fruit 
and legumes may be associated with a lower risk of polyps (Michels et al. 2006). 
Neither of these studies found associations with vegetables.

Plant foods contain an extensive variety of compounds: both micronutrients, 
such as carotenoids, folate, and ascorbate, as well as other bioactive compounds 
with multiple anticarcinogenic properties, such as phenols, flavonoids, isothio-
cyanates, and indoles (Wattenberg 1978; Steinmetz and Potter 1991). In 1997, 
a comprehensive overview concluded: “the evidence that diets rich in vegetables 
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protect against cancers of the colon and rectum is convincing” (WCRF Panel 
1997). The much smaller, or even absent, inverse associations seen in cohort studies 
published subsequent to that overview are troubling. The results suggest that the 
association with vegetable and fruit intake may be limited to specific foods, may 
be nonlinear, may be part of a more complex dietary pattern, rather than a simple 
function of fruit and vegetable intake, or, perhaps, suggest that some aspects of 
vegetables themselves are changing (Potter 2005).

The relationship of dietary fiber to risk of colorectal cancer is inconsistent, 
 probably both because of the heterogeneous nature of fiber itself, and inconsisten-
cies in the way that its intake is measured (WCRF Panel 1997; Potter 1999b). That 
dietary fiber – derived from vegetables as well as grains – might reduce the risk of 
colon cancer was proposed originally by Dennis Burkitt (Burkitt 1969). Cohort stud-
ies are only weakly supportive of the fiber hypothesis, with two studies finding no 
association and two, a weak inverse association; a large cohort study of total dietary 
fiber reported no association with either incident carcinoma or adenoma in women 
(Fuchs et al. 1999). Only one prospective study has provided data on rectal cancer, 
with little evidence of an association. In contrast, a combined analysis of 13 case-
control studies found a reduction in colorectal cancer risk with increasing intake of 
dietary fiber (Howe et al. 1992) as did a meta-analysis of 16 case-control studies 
(Trock et al. 1990). A high intake of fiber from vegetables and cereals was associ-
ated with a halving of the risk for adenomas in a prospective study (Giovannucci 
et al. 1992). Inverse associations with total fiber, fiber from cereals, and fiber from 
vegetables and fruits have been seen in case-control studies (WCRF Panel 1997). 
The most recent cohort results on dietary fiber do not resolve the inconsistencies: 
the PLCO cohort found that those in the highest quintile of dietary fiber intake had 
a 27% lower risk of distal colonic (but not rectal) adenoma than those in the low-
est quintile of intake (Peters et al. 2003), and the EPIC study of approximately 
2 million person years and more than 1,000 cases of colorectal cancer in Europe 
reported that dietary fiber was associated with a 25% reduction in risk from lowest 
to highest quintile, with the strongest association in the left colon and the weakest in 
the rectum (very similar to the PLCO findings) (Bingham et al. 2003). However, in a 
comparable study (1.8 million person years; approximately 1,000 cases) in the US, 
a similar analysis to that of the EPIC study showed a hazard ratio of 0.91 (0.87–95) 
and, after adjusting for additional confounders (including folate, red meat, proc-
essed meat, and glycemic load), this association disappeared (Michels et al. 2005). 
Dietary methods and the differences in food supply in the United States and Europe 
may both be important to the differences in findings. In a pooled analysis of 13, 
largely United States, cohort studies with 8,081 cases, findings were similar to the 
US cohort: an inverse association with dietary fiber intake was no longer statisti-
cally significant after adjusting for other risk factors (Park et al. 2005).

Intervention studies are much less consistent with the hypotheses that vegetables 
and/or dietary fiber reduce risk. Three randomized trials have examined the subse-
quent development of adenomas in patients with a prior adenoma. In Australia, no 
reduction in metachronous adenoma incidence was seen after 4 years; however, the 
risk of large adenomas was reduced among those in the low-fat-plus-wheat-bran arm 
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(MacLennan et al. 1995). In Arizona, the relative risk of metachronous  adenomas 
in the high-fiber group was not reduced (Alberts et al. 2000). In the largest study, 
about 2,000 men and women were randomized either to a low-fat, high-fiber, 
increased-fruit-and-vegetables-diet or to usual diet; after 4 years, the relative risk 
of having one or more metachronous adenomas was 1.0 (Schatzkin et al. 2000). 
Thus, short-term interventions with increased fiber or vegetables and fruit do not 
reduce the occurrence of metachronous adenomas. The multihit theory of colorectal 
cancer hypothesizes the accumulation of widespread damage in multiple genes over 
decades; beginning an intervention in individuals who already have many colonic 
epithelial cells well advanced toward adenoma is not as good a test of that particular 
hypothesis as is one applied early in life for a longer period.

Interpretability of the randomized studies is somewhat limited; nonetheless, it 
seems unlikely that studies large enough and of long enough duration to test the 
influence of fruits, vegetables, and/or fiber on cancer risk will ever be designed and 
conducted. The Women’s Health Initiative clinical trial assessed the effects of a 
low-fat diet on breast-cancer risk among about 48,000 women; these women were 
specifically counseled to increase fruit and vegetable intake. The results of this trial 
showed no benefit for colorectal cancer (Beresford et al. 2006).

Other nutrients have been invoked to explain the possibly reduced risk associ-
ated with vegetables (Steinmetz and Potter 1991, 1996). Freudenheim, who first 
proposed a role for folate in colorectal cancer, reported lower risks of both colon 
and rectal cancer with high folate intakes in her case-control study (Freudenheim 
et al. 1991). Folate was not associated with risk of colon cancer in a cohort of men 
(Giovannucci et al. 1995c); nonetheless, the risk of colon cancer and adenoma was 
increased in men with, simultaneously, low folate, low methionine, and high alco-
hol (Giovannucci et al. 1993b). Slattery et al. (1997b) found no association between 
folate and other methyl-group micronutrients and colon cancer. Sanjoaquin cau-
tiously concluded that folate from foods (but not supplements) may be associ-
ated with a reduced risk of colorectal cancer in a meta-analysis of cohort studies 
(Sanjoaquin et al. 2005). Most recently, a randomized trial of folic acid supplemen-
tation showed no overall benefit for colorectal adenomas and statistically significant 
increases in the occurrence of large polyps and multiple polyps, both phenotypes 
that incur higher risk of colorectal cancer (Cole et al. 2007). It is increasingly clear 
that folate may prevent polyps and cancer if it is present at sufficient levels prior 
to the appearance of the earliest changes, but may accelerate the growth of preexist-
ing abnormal cells (Ulrich and Potter 2007). The role of genetic variability in one-
carbon (methyl-group) metabolism is discussed in Chap. 9.

Long-term use of multivitamin supplements has been associated with a halving 
of the risk of colorectal cancer in two cohort studies (White et al. 1997; Giovannucci 
et al. 1998), the second of which also showed a lower risk with vitamin E supplement 
use. In an observational study of metachronous adenoma, multivitamin, vitamin E, 
and calcium supplements (Whelan et al. 1999) all were associated with about a halv-
ing of risk of metachronous adenomas. In the ACS Cancer Prevention Study II (of 
about 150,000 men and women), regular multivitamin use at baseline was not asso-
ciated with reduced risk; however, reported use 10 years earlier showed a relative 
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risk of 0.71 (95% CI: 0.57–0.89) (Jacobs et al. 2003). Harvard cohort studies showed 
a lower risk for men, but not women, who took vitamin E supplements (Wu et al. 
2002). Satia-Abouta showed that several micronutrients (including vitamin E) were 
higher in controls than colon cancer cases; most of the differences were explained by 
supplements (Satia-Abouta et al. 2003). Higher serum selenium has been associated 
with a lower risk of polyps (Connelly-Frost et al. 2006). How much these data help 
explain the plant-food associations with colorectal cancer is not clear.

Meat

The overall evidence suggests that meat eating is associated with an elevated risk 
of colorectal cancer, though that evidence is not entirely consistent. Women who 
consumed red meat frequently versus rarely had a 2.5-fold increase in the risk of 
colon cancer in the Nurses’ Health Study (Willett et al. 1990). Male health profes-
sionals showed a similar pattern (Giovannucci et al. 1994b). Two cohort studies 
were focused on meat intake in low-consuming populations: one found no asso-
ciation (Key et al. 1998), and the other an elevated risk with higher consumption 
(Singh and Fraser 1998). In contrast, the Cancer Prevention Study II of the ACS 
showed no difference in the risk of colorectal cancer death in men or women in the 
uppermost versus lowest quintiles of meat consumption (Thun et al. 1992). Two 
cohorts in Europe and one in Iowa, USA (WCRF Panel 1997), were similarly null. 
The most recent cohort data, however, from Europe (Norat et al. 2005), Australia 
(English et al. 2004), and the US (Chao et al. 2005) suggest that fresh and processed 
meat are each associated with elevated risk. Other studies have shown that higher 
consumption of processed meat is associated with higher risk of colorectal cancer 
(WCRF Panel 1997) and adenoma (Robertson et al. 2005). Nonetheless, reduction 
of meat consumption in a randomized trial did not modify the incidence of meta-
chronous adenomas (Mathew et al. 2004).

As with the cohort studies, almost all risk estimates in the case-control studies 
are increased or null for higher meat intake; however, the largest case-control study 
found no association with meat (Kampman et al. 1999). A Swedish case-control 
study found a relative risk of 2.7 for colon cancer and 6.0 for rectal cancer among 
heavy consumers of fried meat with a markedly browned surface (Gerhardsson de 
Verdier et al. 1991). Schiffman and Felton (1990) found similarly elevated risks 
among those preferring well-done meat, a finding repeated in two case-control 
studies of adenomas (Probst-Hensch et al. 1997; Sinha et al. 1999) and in a large 
U.S. case-control study of cancer (Kampman et al. 1999). A later study in Sweden 
failed to observe an association with cooking or with a heterocyclic-amine 
consumption (Augustsson et al. 1999). Heterocyclic amines and PAHs had been 
proposed earlier as possible causal agents in meat (Sugimura and Sato 1983); more 
recently, heme and nitrosation (Bingham et al. 2002; Cross et al. 2003) and O

6
 

carboxymethyl guanine have also been suggested (Lewin et al. 2006) as explanatory 
agents of the meat association. For related, detailed discussion of the genetics of 
carcinogen metabolism and risk, see Chap. 11.
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Total Dietary Fat

Epidemiologic studies focused on individual behavior, in contrast to the interna-
tional ecologic correlation studies, have failed to find evidence for an association 
with dietary fat. Most cohort studies found no association with total fat (WCRF 
Panel 1997), although total-fat consumption in the highest versus the lowest quin-
tile of intake was associated with a twofold increased risk in the Nurses’ Health 
Study (Willett et al. 1990). In contrast, the large majority of case-control studies 
reported increased risks in association with higher intakes of fat, with relative 
risks from 1.3 to 2.2 (WCRF Panel 1997). Nonetheless, in a combined analysis 
of 13 case-control studies across populations with different diets and cancer risks, 
dietary fat was not associated with risk after adjustment for total energy intake 
(Howe et al. 1997).

Animal or Saturated Fat

In the Nurses’ Health Study, risk associated with the highest intakes of animal fat 
was almost twofold greater than that with the lowest intakes (Willett et al. 1990). 
A small increase in the risk of colon cancer was seen among women alone in the 
Netherlands cohort (Goldbohm et al. 1994), and no associations were seen in two 
other cohort studies (WCRF Panel 1997). The results of the case-control studies 
of animal fat or saturated fat are inconsistent (WCRF Panel 1997). Overall, about 
half of all studies, irrespective of design, show some evidence of elevated risk with 
higher intakes of saturated fat or animal fat, and no study shows the opposite, some-
what more consistent than the pattern for total fat. Giovannucci and Goldin (1997) 
concluded that the association with red meat does not appear to be explained by 
its fat content. The protein and iron content of red meat also are not strong candi-
dates (WCRF Panel 1997). Reducing dietary fat in the Women’s Health Initiative 
 randomized trial did not reduce colorectal cancer rates (Beresford et al. 2006).

The data suggest a stronger association with meat than with any of its constituent 
nutrients; neither total fat nor total protein seems to play a major role. The  public 
health recommendation has been made clearly: “If eaten at all, limit intake of red 
meat to less than three ounces daily” (WCRF Panel 1997).

Calcium and Vitamin D

Calcium and dairy foods have been studied for their association with colorectal 
neoplasia (Potter et al. 1993; WCRF Panel 1997). Most of these earlier studies 
suggested a reduced risk or no association. One large case-control study showed 
an adjusted relative risk for highest versus lowest quintile of dietary calcium of 0.6 
(Kampman et al. 2000). Calcium was shown to reduce proliferation in the upper 
part of colonic crypts (Bostick et al. 1995), and observational data were consistent 
with a reduced risk of metachronous adenomas (Hyman et al. 1998).
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A double-blind, randomized trial of 1,200 mg of elemental calcium per day 
 versus placebo reported a statistically significant 15–20% reduction in meta-
chronous colorectal adenomas (Baron et al. 1999). Subsequent analyses of these 
data revealed that the calcium-associated reduction of risk of metachronous 
adenoma was seen only among those with baseline 25-(OH) vitamin D levels in 
serum above the median. Further, those with high serum vitamin D levels had a 
reduced risk of adenoma only if they received calcium supplements (Grau et al. 
2003). Thus, it is an interaction between vitamin D and calcium that alters adenoma 
risk. Other studies have added further data: two observational cohort studies within 
intervention studies showed that higher calcium and vitamin D (Hartman et al. 
2005) or calcium alone (Peters et al. 2004) were associated with reduced risk of 
adenoma; a pooled analysis of cohort studies (Cho et al. 2004a) and three other 
cohort studies (Terry et al. 2002; Flood et al. 2005; Lin et al. 2005) each showed 
reduced risk of colorectal cancer with calcium; the WHI Calcium plus Vitamin D 
Supplementation Trial, with a low level of supplementation, showed no reduction 
in risk of colorectal cancer over 7 years (Wactawski-Wende et al. 2006). The major-
ity of the calcium studies are reviewed in Chia and Newcomb (2004). Overall, the 
data are consistent with a reduced risk for, especially, the combination of a calcium 
source and vitamin D. More detail, as well as the role of genetics in modifying the 
protective effects of calcium and vitamin D, is presented in Chap. 12.

Physical Activity and Anthropometry

Physical activity is highly consistently associated with a reduced risk of colon cancer, 
as seen in studies of occupational activity, leisure activity, and total activity (Potter 
et al. 1993; WCRF Panel 1997). Of nine cohort studies, only two have reported no 
substantial association. Case-control studies are also very consistent. Individuals 
with high levels of activity throughout life are at lowest risk. Rectal cancer risk does 
not seem to be modified by physical activity. Two recent reviews (Lee 2003; Slattery 
2004) and a meta-analysis (Samad et al. 2005) provide useful summaries.

Physical activity stimulates colon peristalsis, which should decrease the time 
that the fecal stream is in contact with the epithelium; however, transit time is not 
a risk factor for colon neoplasia. Exercise has both acute and persistent hormonal 
effects, as well as favorable effects on the immune system. Higher physical activity, 
especially in subjects with a low body mass, is associated with a metabolic milieu 
(lower insulin, other growth factors, glucose, and triacylglycerol levels), less favora-
ble to the growth of cancer generally, and, perhaps, colon cancer in  particular 
(McMichael and Potter 1980, 1985; McKeown-Eyssen 1994; Giovannucci 1995a; 
WCRF Panel 1997).

Obesity probably increases the risk of colon cancer, particularly in men, but, as 
with physical activity, probably not of rectal cancer. Most epidemiologic studies 
have found that obese men (the highest quintile for body mass) have as much as 
a twofold increased risk of colon cancer (Potter et al. 1993; WCRF Panel 1997; 
Singh and Fraser 1998); nonetheless, some studies have shown no association with 
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body mass (Potter et al. 1993; WCRF Panel 1997). Data on women are much less 
consistent: two cohort studies found no association between body mass and color-
ectal cancer (WCRF Panel 1997); however, in the Iowa Women’s Health Study, in 
contrast, subjects in the highest quintile of BMI had a statistically significant 40% 
higher risk than those in the lowest (Bostick et al. 1994). Three case-control studies 
reported inconsistent findings for women (WCRF Panel 1997), and a prospective 
study in Japan suggested that obesity and weight gain are associated with colon 
cancer in women, but not men (Tamakoshi et al. 2004).

Although body mass was not associated with elevated risk at high levels of 
long-term vigorous physical activity in a large case-control study, at lower levels 
of activity, risk was related both to total energy intake and to obesity. Those who, 
simultaneously, were the least active, had the highest energy intake, and had the 
largest BMI were at 3.4 times the risk of those at the opposite extremes, an associa-
tion explained entirely by findings for men, in whom the odds ratio for a comparison 
of extremes was 7.2; there was little association in women (Slattery et al. 1997a). 
A high waist/hip ratio, a measure of intra-abdominal fat, has been reported to be 
associated with increased risk in men (Giovannucci et al. 1995a), but not women 
(Bostick et al. 1994). Framingham Study data showed that waist circumference was 
a better predictor of lifetime colon cancer risk than body mass, and, unlike that with 
BMI, this association was similar between the sexes (Moore et al. 2004).

Alcohol

Of five general population cohort studies of colon cancer, four have shown statisti-
cally significant elevated risk for alcohol consumption, as did each of the three 
studies that explored rectal cancer risk and two of the three studies that reported on 
colorectal cancer as a single entity (WCRF Panel 1997). A pooled cohort analysis 
showed an elevated risk for colon and rectum, a dose–response relationship, no 
heterogeneity by study or sex, and no differences by particular alcoholic beverage 
(Cho et al. 2004b). Alcohol has also been associated with an increased risk of colon 
and rectal cancer in about half of the case-control studies (WCRF Panel 1997), 
and almost no inverse associations have been reported. Acetaldehyde (a metabolite 
of alcohol) forms DNA adducts. Alcohol also inhibits DNA repair (Farinati et al. 
1985). Finally, alcohol may also exert its effect through associated deficiencies in 
nutrients, particularly folate (Garro and Lieber 1990; Giovannucci et al. 1995c). The 
WCRF report concluded that “high alcohol consumption probably increases the risk of 
cancers of the colon and rectum” and that the association is likely to be “related to 
total ethanol intake, irrespective of the type of drink” (WCRF Panel 1997).

Tobacco

Tobacco was originally not associated with an elevated risk of colorectal cancer, 
although associations with cigar and pipe smoking have been reported (Wynder and 
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Shigematsu 1967; Slattery et al. 1990). Some more recent studies have described 
an increased risk of colon cancer with both an early onset and a long history of 
smoking cigarettes (Giovannucci et al. 1994a), although no associations were seen 
in two European studies (Tavani et al. 1998). The most recent data suggest that 
smoking is largely associated with microsatellite unstable (MSI-H) colorectal can-
cer (Slattery et al. 2000) and, relatedly, in tumors with loss of MLH1 expression 
(Lüchtenborg et al. 2005). Hyperplastic polyps and serrated adenomas, rather than 
APC truncation-mutation, probably define the progression pathway (Morimoto 
et al. 2002). See Chap. 5 for further discussion.

There are many carcinogens in tobacco smoke, including polycyclic  hydrocarbons, 
heterocyclic amines, and nitrosamines, all plausible blood-borne carcinogens. Rat 
models show that heterocyclic amines cause specific APC mutations (Kakiuchi et al. 
1995), although this is not seen in humans. NSAIDs generally reduce the risk of 
colorectal neoplasia (see below and Chapter 10), but they may not be effective in 
heavy smokers and especially against MSI-H tumors (Chia et al. 2006). For detailed 
 discussion of the genetics of carcinogen metabolism in relation to risk, see Chap. 11.

Reproductive Factors

In 1969, Fraumeni et al. reported that, among nuns, there was an excess, not only of 
known reproductive and hormonal cancers, but also of colon cancer (Fraumeni et al. 
1969). Case-control studies in the 1970s and 1980s noted a higher risk of colon 
cancer among the nulliparous. This association was initially postulated to be due 
to changes in lipids and bile acids that occur with changes in steroid hormone 
profiles (McMichael and Potter 1980). That estrogen-receptor expression in the 
colonic epithelium declines with age may also be important to the role of hormones 
in colon cancer (Issa et al. 1994; Potter et al. 1996). More than 20 epidemiologic 
studies have now reported on the relationships with reproductive history in women. 
Overall, age at first birth is not associated with colon cancer risk. The parity data 
seem also to be null, especially given that none of the cohort studies shows an 
association (Potter et al. 1993). Nevertheless, two caveats remain: the differences 
between the findings of the cohort and population-based case-control studies are not 
well explained and the original observations applied to excess risk among more eld-
erly women (Slattery et al. 1994). See later for a discussion of the role of exogenous 
hormones in colon cancer, where associations are more markedly more consistent.

Infection

A few ecologic and case-control studies suggest that infection with Schistosoma 
japonicum is associated with increased risk of colorectal cancer, perhaps particu-
larly rectal cancer (Xu and Su 1984). JC Virus has been associated with colorectal 
cancers (Laghi et al. 1999; Enam et al. 2002), but not consistently (Newcomb et al. 
2004). It has been proposed that the infection triggers the classical  chromosomal 
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instability pathway (Niv et al. 2005). Helicobacter pylori has been proposed as 
a risk factor for colorectal adenoma (Breuer-Katschinski et al. 1999) and cancer 
(Talley et al. 1991); a recent meta-analysis suggested a small elevation in risk 
(Zumkeller et al. 2006). Mucosa-associated lymphoid tissue (MALT) lymphoma 
in the colon regresses with antibiotic therapy (Raderer et al. 2000) as does its gas-
tric counterpart, where the causal agent is known to be H. pylori.

Occupation

Colon cancer risk is elevated in white-collar occupations, probably due to lower 
physical activity (Chow et al. 1994). Asbestos exposure has been observed inter-
mittently as a risk factor (Kang et al. 1997). The Shanghai Textile Workers Cohort 
suggests that there may be an elevated risk in women exposed to dyes and metals 
but a reduced risk associated with exposure to cotton and cotton dust (De Roos 
et al. 2005).

Medical Conditions

Inflammatory Bowel Disease

Ulcerative colitis and Crohn disease increase risk of colorectal cancer (Ekbom et al. 
1990a, b); up to 5% of all colorectal cancers in patients under the age of 50 occur 
in individuals with these inflammatory diseases. In those with ulcerative colitis, 
younger age of onset, longer duration, and greater extent of disease, as well as 
the additional complication of primary sclerosing cholangitis, each increases risk 
(Broome et al. 1992). In those with Crohn disease, involvement of the colon and 
younger age at onset are established risk factors for cancer. A recent decline in risk 
of colorectal cancer among inflammatory bowel disease (IBD) patients has been 
tentatively ascribed to greater use of anti-inflammatory agents to control the disease 
(Moody et al. 1996). The diseases may increase risk because of the loss of the intes-
tinal brush border, thus bringing proliferating stem cells into contact with the fecal 
stream without requiring prior adenoma formation (Potter 1999a). Reactive oxygen 
and nitrogen species, as well as the processes associated with inflammation, may 
be involved (Munkholm 2003; Itzkowitz and Yio 2004).

Diabetes Mellitus

There is an elevated risk of colorectal cancer among those with diabetes mellitus 
(Hu et al. 1999). Both colon and rectal cancer incidence in men and women are 
increased by 30–40% with a comparable, if more heterogeneous, association 
with mortality (Larsson et al. 2005). See above for a related discussion on the 
role of obesity.
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Cholecystectomy

Studies of risk associated with cholecystectomy (which alters bile flow into the 
intestinal tract) show both strong positive associations and null associations; most of 
the positive associations are seen in case-control studies, where selection bias among 
controls is of concern. The largest case-control study showed a 30% elevation in the 
risk of proximal colon cancer and a statistically nonsignificant inverse association 
with distal colon cancer; thus, overall risk is essentially unchanged (Todoroki et al. 
1999). Two large cohort studies (Ekbom et al. 1993; Johansen et al. 1996) and 
two meta-analyses (Giovannucci et al. 1993a; Reid et al. 1996) showed a 10–30% 
increased risk of proximal colon cancer after 15 or more years. Another Swedish 
study (Lagergren et al. 2001) examined the risk of both small and large bowel cancer 
and reported a gradient of decreasing risk from duodenum to distal colon, consist-
ent with the hypothesis that higher concentrations of bile acids are associated with a 
higher risk, which declines as bile acids become absorbed and diluted.

Medications

NSAIDs

Aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) are consistently 
associated with a reduced risk of colorectal neoplasia. Most case-control studies 
(Kune et al. 1988; Rosenberg et al. 1991; Suh et al. 1993; Muscat et al. 1994; Peleg 
et al. 1994; La Vecchia et al. 1997; Rosenberg et al. 1998; Bigler et al. 2001) and 
cohort studies (Thun et al. 1991; Schreinemachers and Everson 1994; Giovannucci 
et al. 1994c, 1995b; Chan et al. 2005) of aspirin have reported a lower risk of color-
ectal cancer incidence or mortality. Similar findings have been reported for adeno-
mas (Greenberg et al. 1993; Logan et al. 1993; Suh et al. 1993; Giovannucci et al. 
1994c). Sulindac induces regression of adenomas in patients with FAP (Giardiello 
et al. 1993). There are a few null studies (Paganini-Hill et al. 1989; Gann et al. 
1993; Stürmer et al. 1998). In rodent studies, aspirin (Craven and DeRubertis 
1992), indomethacin (Pollard and Luckert 1980; Narisawa et al. 1981), sulindac 
(Moorghen et al. 1988), piroxicam (Reddy et al. 1987), and celecoxib (a specific 
COX-2 inhibitor) (Kawamori et al. 1998) inhibit carcinogenesis.

Metachronous adenomas occur at lower frequency in randomized trials of 
aspirin versus placebo in those who have had a prior cancer (Sandler et al. 2003) 
or adenoma (Baron et al. 2003). Specific COX-2 inhibitors are also effective in 
clinical trials (Arber et al. 2006; Bertagnolli et al. 2006); however, the increased 
heart-disease risk associated with COX inhibitors essentially precludes their use in 
cancer prevention other than in persons at very high risk of colorectal cancer (Psaty 
and Potter 2006).

A more detailed discussion of the role of NSAIDs, the cyclooxgenase enzymes, and 
the genetics of both metabolism and downstream signaling is presented in Chap. 10.
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Postmenopausal Hormone Use

In 1981, the first investigation of postmenopausal hormones (PMH) and colorectal 
cancer found no association (Weiss et al. 1981). A statistically significantly lower 
risk of colon cancer was reported 2 years later in association with use of the high-
estrogen oral contraceptives (OCs), but not with PMH (Potter and McMichael 
1983). Findings across the many studies since this time are not entirely consistent, 
although, of the studies that provided separate data on colon cancer, about half 
showed a statistically significant lower risk with PMH or a less well-specified 
hormone variable (Chute et al. 1991; Gerhardsson de Verdier and London 1992; 
Jacobs et al. 1994; Calle et al. 1995; Newcomb and Storer 1995; Kampman et al. 
1997; Fernandez et al. 1998), two showed a statistically nonsignificantly lower 
risk (Potter and McMichael 1983; Bostick et al. 1994), two were null (Peters et al. 
1990; Risch and Howe 1995), and one showed an elevated risk (Wu-Williams 
et al. 1991). Consistent with some other observations, several recent investigations 
report an approximate halving of risk with recent PMH use (Newcomb and Storer 
1995; Kampman et al. 1997), a degree of risk reduction that is maintained for about 
10 years after cessation. Longer use is probably associated with lower risk. A simi-
lar pattern of association exists for adenomatous polyps of both colon and rectum 
(Jacobson et al. 1995; Potter et al. 1996).

In 2004, the WHI Estrogen plus Progestin (E + P) Intervention Trial showed 
that those on estrogen and progestin (but not on estrogen alone) had a considerably 
reduced risk of colorectal cancer than those on the placebo arm (Anderson et al. 
2004; Chlebowski et al. 2004). The most recent data suggest that estrogen plus 
progestin is associated with MSI-low and microsatellite-stable colorectal cancer, 
but not MSI-H cancer (Newcomb et al. 2007).

Estrogen receptor hypermethylation increases with age and is a central feature of 
colon cancer, initially suggesting that declining levels of estrogen may be important 
(Issa et al. 1994); the protective role of PMH against both polyps and cancer may 
be a consequence of replacing these declining endogenous estrogen levels, thus 
reducing the likelihood that the estrogen-receptor gene will be silenced by meth-
ylation (Potter 1995). However, the WHI evidence and the case-control evidence 
(Newcomb et al. 2007), that progestin is crucial, complicate the picture further. 
Identifying the hormone-responsive targets that are involved in colorectal carcino-
genesis is important to designing better targeted prevention modalities.

Conclusion

There are several risk factors for which evidence of a causal association with 
colorectal cancer risk is strong. Obesity among men and a sedentary lifestyle in 
both sexes are strongly implicated. The exact dietary constituents or patterns that 
increase risk are less clear, but higher red meat consumption and lower intake of 
plant foods and calcium are probably important. Aspirin and NSAIDs, as well as 
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postmenopausal hormones, reduce risk. However, many of the known risk  factors 
have not been explored in relation to molecularly defined cancers and, where 
they have, differences have emerged, smoking being the most obvious example. 
Because there is a known precursor lesion (the polyp), that is detectable at endos-
copy, screening and early detection are feasible and effective. This knowledge and 
a much better recent understanding of the genetics, as described in the follow-
ing chapters, make colorectal neoplasia one of the most preventable, screenable, 
detectable, and manageable of all cancers. However, colorectal cancer remains a 
formidable cause of morbidity and mortality.
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Chapter 2
Mouse Models of Intestinal Cancer

Erin M. Perchiniak and Joanna Groden

Introduction 

Intestinal cancers are a category of heterogeneous tumors that occur sporadically or 
through inherited susceptibility, each characterized by genetic alterations affecting a 
number of molecular pathways. As a result of this complexity, numerous genetically 
engineered mice (GEM) have been generated to model different genetic,  morphologic, 
or clinical features of intestinal cancer. Mouse models of intestinal cancer can be 
broadly divided into six groups based on the underlying signaling pathway disrupted 
or by the means with which tumors were induced: Wnt-related GEM; GEM associated 
with alterations in TGF-beta (β) signaling; mismatch repair-deficient GEM; immune-
deficient mice; carcinogen-treated mice; and others that do not neatly fit into the 
aforementioned categories. Although differences have been noted in lesions arising 
in these broadly grouped genetic and other models, some characteristics are shared. 
Adenomas are the most common lesion in mouse models of intestinal cancer. Unlike 
humans, lesions can be present throughout the intestinal tract, with no  predilection 
for the colon. Invasion and metastasis occur rarely. This chapter will summarize the 
findings from most of the available mouse models of intestinal cancer.

GEM and the Wnt Signaling Pathway

Min/+ and Related Mice

The APC gene was initially identified by positional cloning as the disease gene 
for familial adenomatous polyposis coli (FAP) and was subsequently found to 
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be mutated in the majority of sporadic colorectal tumors (Groden et al. 1991; 
Kinzler et al. 1991). As a result of these initial findings, research has focused on 
 understanding the cellular pathways in which APC participates and how deregulation 
of these pathways can lead to tumorigenesis. Although APC has many roles in the 
cell, regulation of the protein β-catenin is the primary function. APC is part of a 
protein complex that phosphorylates β-catenin, marking it for ubiquitination and 
proteolytic degradation. In the absence of APC or in the presence of a Wnt signal, 
β-catenin is stabilized and shuttled to the nucleus where it can transcriptionally alter 
the expression of downstream Wnt target genes. Therefore, when APC is disabled 
by mutations, the Wnt signaling pathway is constitutively activated, allowing for 
uncontrolled growth and tumor progression. Many APC mutants have been identified 
in persons with FAP, in whom genotype/phenotype correlations are well known 
(reviewed by Nieuwenhuis and Vasen 2007). APC mutations in the first or last third 
of the gene are associated with an attenuated polyposis, characterized by late onset 
and a small number of adenomas. Conversely, mutations in the central region of the 
gene correlate with a severe phenotype with thousands of adenomas developing at a 
young age. To investigate these observations more closely and to gain insight into the 
mechanism of disease onset, several mutant Apc mouse models have been created.

Perhaps the most widely used GEM model of gastrointestinal (GI) tumorigenesis 
is the ApcMin/+ mouse. Thus, it has become the basis of comparison for other GI 
cancer mouse models (Moser et al. 1990). The ApcMin (multiple intestinal neoplasia) 
allele carries an ethylnitrosourea (ENU)-induced nonsense mutation at codon 850 
(Su et al. 1992), which leads to embryonic lethality in homozygote animals. Most 
studies use the heterozygote mice, ApcMin/+, which typically live 4 months (Moser 
et al. 1990). Mice carrying the ApcMin allele on the C57BL/6 background develop 
an average of 24 polyps per mouse in the small intestine and five per mouse in 
the colon by 4 months of age. Most polyps are adenomas, with none progressing 
to invasive adenocarcinoma and, as expected for adenomas, tumors in the ApcMin/+ 
have been found not to metastasize.

Given the advances in gene-knockout technologies, several other Apc mutant 
mice have been created. The importance of their study stems from the knowledge 
that several mutations have been detected within the APC gene in human tumor 
samples and in persons with FAP, which may underlie variations in disease progres-
sion among patients; the results from these subsequent mouse models indicate that, 
indeed, not all Apc mutations are equivalent. The precise location and the type of 
mutation within Apc dictate the degree of tumor susceptibility, which is probably 
the result of the multifunctional nature of Apc and its contribution to various 
cellular pathways.

Apc716/+ mice harbor a truncating mutation at codon 716 and, like ApcMin/+ mice, 
develop polyps mainly in the small intestine (Oshima et al. 1995); they develop an 
average of 300 polyps as early as 3 weeks of age (Oshima et al. 1995), and typi-
cally have a reduced lifespan compared to ApcMin/+ mice, even on the same C57BL /6 
background. Apc1309/+ mice have a truncating mutation at codon 1309 (Quesada 
et al. 1998). These mice typically develop an average of 34 adenomas by 14 weeks 
of age, a slightly higher incidence of polyp formation than the ApcMin/+ mouse, and 
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a lower incidence than the Apc716/+ mouse. Again, these polyps are predominantly 
found in the small intestine. This GEM is particularly interesting because codon 
1309 is the most frequently mutated residue in persons with FAP with severe poly-
posis (Nagase and Nakamura 1993). A 5-base-pair deletion results in truncation of 
APC three codons downstream from the mutation.

Apc1638/+ mice carry an allele with a mutation at codon 1638 resulting in trunca-
tion of Apc; these mice also develop polyps mainly in the small intestine (Fodde 
et al. 1994; Oshima et al. 1995). However, Apc1638/+ mice form only 3–5 tumors by 
3.5 months of age and typically live 1 year (Yang et al. 1997). A modification to the 
Apc1638 allele design was engineered to produce a stable Apc protein (Smits et al. 
1999). This allele, Apc1638T, still encodes some of the β-catenin-binding motifs but 
lacks the C-terminal portion of Apc necessary for its interaction with other proteins 
important for growth control. On a mixed background, B6/129Ola, homozygos-
ity for the Apc1638T mutation does not result in embryonic lethality but leads to a 
number of phenotypic abnormalities in adult animals, including growth retarda-
tion and nipple-associated cysts. The same mutation on a B6 background leads to 
reduced postnatal survival. Heterozygous Apc1638T mice are normal.

Given the predilection for intestinal tumors to form in the mouse models, 
conditional Apc mutant mice have been developed to investigate the initiation 
stage of intestinal adenoma formation (Shibata et al. 1997). Apc580/+ mutant mice, 
on a mixed 129/BL6 background, carry an allele with loxP (or flox) sites flanking 
exon 14. Colonic introduction of a recombinant adenovirus expressing Cre recom-
binase, driven by the SR-alpha promoter into Apc580/+ mice, induces a frameshift 
mutation at codon 580. Over 80% of homozygous animals (20 of 24 animals) have an 
average of 6.7 colonic adenomas 4 weeks after infection. No tumors were detected 
in either heterozygous or wild-type animals. Five of six homozygous mutants 
allowed to live after adenoviral infection survived over 1 year. Analysis of these 
animals showed invasion into the submucosal layer by tumor cells and hence pro-
gression to adenocarcinoma. Recent studies have used colon-specific promoters to 
drive Cre expression and generate colon tumors in the mouse, rather than the small 
intestinal distributions seen in the more established models.

Hypomorphic Apc mice were created in a study by Li et al. whereby the expres-
sion level of Apc was reduced to 10–20% of the wild-type Apc (Li et al. 2005). 
Polyp formation was reduced compared to the Apc716/+ mice. These results argue 
that there is a threshold level (15% of wild type) of Apc expression that is required 
for proper growth control.

More recent studies have focused on conditionally inactivating Apc in order to 
understand the precise mechanism by which Wnt activation leads to polyps. Two 
mouse models have been generated, both making use of the loxP system. Apc is 
modified by an inducible Cyp1A-Cre transgene (Sansom et al. 2003) in one model, 
whereas the other uses a tamoxifen-regulated intestinal-specific Villin-CreER 
transgene (Andreu et al. 2005). Both studies reported that inactivation of Apc led 
to the rapid translocation of β-catenin to the nucleus and subsequent changes in 
the appearance of enterocytes and intestinal crypts. Following Apc loss, many 
of the epithelial cells along the crypt-villus axis enter S-phase. These studies 
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establish that a single event, loss of Apc, is enough to promote early phenotypic 
changes in the crypt.

b-Catenin Transgenic Mice

β-Catenin is a multifunctional protein component of the Wnt signal transduction 
pathway (Sheng et al. 1998). It is also a mediator of cell adhesion through its inter-
action with cadherins. It is known that β-catenin rapidly translocates to the nucleus 
upon loss of APC, resulting in transcriptional alteration of downstream target genes 
involved with proliferation, apoptosis, and cell-cycle regulation. Therefore, over-
expressed β-catenin is considered oncogenic, resulting from either a nonfunctional 
APC gene or a gain of function mutation within β-catenin. The finding of mutations 
in the β-catenin gene (CTNNB1) in human colon cancer cell lines, with no detect-
able mutations in APC, has led to the hypothesis that β-catenin acts as an oncogene 
in the development of intestinal neoplasia (Iwao et al. 1998; Morin et al. 1997; 
Sparks et al. 1998). Several groups have investigated the role of activated β-catenin 
using in vivo mouse models.

Wong et al. designed a transgenic mouse expressing a human β-catenin N-terminal 
truncation mutant (N89β-catenin) in the intestine driven by the fatty acid-binding 
protein gene (Fabp1) promoter (Wong et al. 1998). The absence of GSK-3β phos-
phorylation sites, normally targeting degradation of β-catenin, was associated with 
a longer half-life than wild-type β-catenin in cell culture studies (Aberle et al. 1997; 
Cadigan and Nusse 1997; Miller and Moon 1996; Munemitsu et al. 1996; Yost et al. 
1996). The deletion of these amino acids did not affect the ability of β-catenin to 
interact with E-cadherin, α-catenin, or Tcf (Wong et al. 1998). Although there 
were some changes in the architecture of the villi and an increase in the rate of cell 
division within undifferentiated cells in the crypts of Liberkühn, no dysplasia was 
detected in the transgenic mice.

Romagnolo et al. generated a similar β-catenin transgenic mouse, but had 
 dramatically different results (Romagnolo et al. 1999). This transgenic mouse 
expressed activated β-catenin in the epithelial cells of the intestine using a trans-
gene with an N-terminal truncation, N131β-catenin, lacking both the GSK-3β 
phosphorylation site, important for protein stabilization, and the α-catenin-binding 
site, necessary for adhesive properties of β-catenin (Barth et al. 1997; Hulsken et al. 
1994). A  calbindin-D9K promoter and its regulatory sequences, active in differen-
tiated epithelial cells of the villi and the kidney (Colnot et al. 1998; Romagnolo 
et al. 1996), and the enhancer of the adolase B gene were used to drive expression. 
Overexpression of N131β-catenin resulted in small intestine adenomas by 3–4 weeks 
of age. The intestines were characterized by multifocal dysplastic lesions and a 3- to 
4-fold higher number of apoptotic cells than in nontransgenic mice. Further analysis 
of these animals was inhibited by mortality from polycystic kidney disease.

A third β-catenin GEM was generated in which exon 3 could be deleted by 
inducible homologous recombination using loxP sites (Harada et al. 1999). The loss 
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of exon 3 does not alter the frame of the RNA. In this model, nearly 3,000  adenomas 
develop by 3 weeks of age, primarily in the duodenum and jejunum and with little 
involvement of the ileum, cecum, or colon. Fabp1 regulatory regions were used 
to express Cre, resulting in a mutant β-catenin driven by its own enhancer and 
promoter. Differences in promoters, transgene copy numbers or locations, mouse 
strains, and or different types of dominant mutations may explain the dramatic 
differences in these three mouse models. Each, however, underscores the importance 
of the Wnt signaling pathway in mouse GI tumorigenesis.

Genes that Modify the Wnt Pathway

Cyclo-oxygenases (Cox) 1 and 2 are the key enzymes in prostanoid production and 
are the targets of nonsteroidal anti-inflammatory drugs (NSAIDs) and aspirin (Vane 
1971, 1994). Both Cox-1 and Cox-2 enzymes convert arachidonic acid to pros-
taglandin G2 and then to prostaglandin H2 (DeWitt and Smith 1988; Hemler and 
Lands 1976; Miyamoto et al. 1976). Cox-1 is constitutively expressed in several 
mammalian tissues, whereas the distribution of Cox-2 expression is restricted 
to  inflammatory cells such as monocytes and macrophages upon stimulation by 
cytokines, mitogens, serum, and endotoxins (Lee et al. 1992; Maier et al. 1990; 
O’Banion et al. 1992; O’Neill and Ford-Hutchinson 1993) Cyclo-oxygenase-2 
(Cox-2) is expressed at early stages of adenoma formation, suggesting its impor-
tance as a therapeutic target. Cox-1 seems to work with Cox-2 in adenoma develop-
ment by producing prostaglandin E2 (PGE

2
) and stimulating angiogenesis (Takeda 

et al. 2003). Introduction of a Cox-2 deletion onto the ApcMin/+ background dra-
matically decreases tumor number (Oshima et al. 1996). The combination of Cox-2 
deletion with the Apc716/+ mutation also leads to a dramatic decrease in the number 
and size of tumors. Not surprisingly, introduction of a Cox-1 mutation to the ApcMin/+ 
mouse reduces the number and size of tumors to about 80% of the reduction seen 
in Cox-2;Apc mutant mice (Chulada et al. 2000). As might be predicted, treatment 
of ApcMin/+ mice with PGE

2
 increases the number and size of intestinal adenomas 

(Wang et al. 2004). Clinical trials are ongoing to investigate Cox-2 inhibitors in 
FAP (Higuchi et al. 2003; Steinbach et al. 2000). See also Chap. 5.

To probe the arachidonic acid cascade for its contribution to intestinal tumori-
genesis, several other compound mice were developed. Cytosolic phospholipase A

2
 

(cPLA
2
) is one of the key enzymes responsible for cleavage of arachidonic acid, 

a substrate of Cox, from membrane phospholipids. Knockout of cPla
2
 in Apc716/+ 

mice reduces tumor number (Takaku et al. 2000). Additional studies have investi-
gated the role of the G-protein coupled receptor Ep

2
, which binds PGE

2
, in tumor 

formation in ApcMin/+ mice. Double heterozygotes displayed a marked reduction of 
tumor number (Sonoshita et al. 2001). PGE

2
 indirectly transactivates peroxisome-

proliferator activity receptor delta (PPARδ) through PI3K/Akt signaling. Deletion 
of PPARd in ApcMin/+ mice treated with PGE

2
 negated the increase of intestinal 

adenomas found with treatment of PGE
2
 alone (Wang et al. 2004).
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Methylation contributes to the silencing of many genes which, in turn, leads 
to deleterious phenotypic changes depending on which genes have been affected. 
DNA methyltransferase 1 (DNMT1) is one of the enzymes responsible for methyl-
ating cytidine residues within genes. Mutations in the Dnmt1 gene, in combination 
with an enzyme inhibitor, reduced the tumor number in ApcMin/+ mice from one 
hundred to two or less (Laird et al. 1995). Mutation in the Mbd2 gene, encoding a 
methyl-CpG-binding repressor, also reduced tumor numbers in ApcMin/+ mice (Laird 
et al. 1995; Sansom et al. 2003). These results suggest a role for methylation in the 
development of intestinal polyposis.

Other modifier genes include the reqQ-like DNA helicase gene, BLM, which, 
when mutated, is responsible for the development of Bloom syndrome. When 
Blm heterozygous mice were bred to ApcMin/+ mice, an increase in adenomas was 
observed as well as a change in the degree of tumor dysplasia (Goss et al. 2002; 
Luo et al. 2000). Mutation of the gene encoding the matrix metalloproteinases 
matrilysin (Mmp7), implicated in cancer invasion and metastasis, also reduces 
tumor number in ApcMin/+ mice (Wilson et al. 1997).

GEM and the TGFb Signaling Pathway

TGFb1−/− and Related Mice

The transforming growth factor β (TGFβ) pathway plays an important role in both 
human and murine colon cancer. TGFβ controls cell growth, regulates epithelial 
cell differentiation and cell matrix interaction, and protects the epithelium from 
genetic damage caused by inflammatory cells (Brandes et al. 1991; Kulkarni et al. 
1993; Roberts et al. 1992; Shull et al. 1992; Wahl et al. 1987). The multifunctional 
nature of the TGFβ family suggests several mechanisms by which defects in TGFβ 
signaling can lead to initiation, promotion, or progression of cancer. This hypoth-
esis is supported by evidence from tumor-derived human colon cancer cell lines 
which are frequently resistant to the growth-inhibitory effects of TGFβ1 (Manning 
et al. 1991; Mulder et al. 1988). Mutations have been detected in TGFbR2 in 
both sporadic and inherited colon cancers (Markowitz et al. 1995; Parsons et al. 
1995). Additionally, inactivating mutations in SMAD2 and SMAD4, two members 
of the family of intracellular proteins responsible for transducing signals from the 
activated TGFβ receptors, are present in many human colon cancers (Eppert et al. 
1996; Takagi et al. 1996; Thiagalingam et al. 1996).

Inactivation of Tgfβ1 in mice results in autoimmune disease and death before 
1 month of age. In order to study the role of Tgfβ1 in the development and progres-
sion of GI cancer, the Tgfb1−/− mouse strain was crossed onto the immunodeficient 
Rag2−/− (Engle et al. 1999). Tgfβ1 deficiency (+/− or −/−) on the Rag2−/− back-
ground leads to cecal and colonic neoplasms (Engle et al. 1999). A marked increase 
in tumor incidence and severity was observed in the Tgfb1−/− mice: adenomas are 
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detectable at 2 months of age and carcinomas are detectable at 3–6 months with 
100% penetrance. The carcinomas show no mutations of Apc, Ras, or Ctnnb1, 
which suggests that the tumor-suppressive function of Tgfβ is independent of other 
known signaling pathways disrupted in intestinal cancers. Notably, many of the 
tumors have a mucinous histopathology.

Smad−/− Mice

Signaling by Tgfβ family ligands is mediated by the Smad family of intracellular 
proteins (Graff et al. 1996). The Smad proteins are the core of the Tgfβ pathway 
through their translation of cellular signals into responses. There are eight Smad 
proteins encoded by the human and mouse genomes, five of which act as substrates 
for the Tgfβ family of receptors (Massague 1998). Smads 1, 2, 3, 5, and 8 are 
commonly referred to as receptor-regulated Smads (RSmads). Smad4, also called 
Co-Smad, serves as a common partner for all Smads. Smads 6 and 7 are inhibitory 
and serve as decoys by interfering with Smad-receptor and Smad-Smad interactions. 
Smads undergo a continuous nuclear-cytoplasmic shuttling cycle. Phosphorylation 
leads to nuclear accumulation by destabilizing the RSmad interaction with cyto-
plasmic anchors and increases their affinity for nuclear factors (Shi and Massague 
2003; Xu and Massague 2004). This then allows Smads to transcriptionally regulate 
Tgfβ downstream targets. Dephosphorylation has the opposite effect, sequestering 
Smads to the cytoplasm (Inman et al. 2002). Because Tgfβ signaling affects cell 
division, differentiation, migration, adhesion, organization, and death, and because 
Smads are the translators of these signals, Smad deregulation could have many 
deleterious cellular affects. Therefore, several Smad GEM models have been gene-
rated, some of which have developed intestinal tract tumors.

Smad2 is 91% homologous to Smad3; however, it differs biologically. Unlike 
Smad3 and 4, Smad2 does not bind directly to DNA and has a unique thirty amino 
acid region absent from other Smad proteins (Dennler et al. 1998; Jonk et al. 
1998; Kim et al. 1997; Labbe et al. 1998; Yingling et al. 1997; Zawel et al. 1998). 
Pertinent to human GI tumors, SMAD2 is the only RSMAD for which mutations 
have been associated with colorectal cancer (Eppert et al. 1996). To investigate 
whether Smad2 can act as a tumor suppressor, knockout mice were generated. 
Homozygous deletion of Smad2 results in embryonic lethality at day 8.5 (Heyer 
et al. 1999; Nomura and Li 1998; Waldrip et al. 1998; Weinstein et al. 1998). 
Heterozygous mice (Smad2+/−) had no abnormalities when aged to 1.5 years. 
Hamamoto et al. generated double heterozygous mice that carried Apc and Smad2 
null alleles (Hamamoto et al. 2002). Inactivation of Smad2 in heterozygous Apc 
mutant mice did not change the total number of intestinal tumors but decreased 
the time to death from intestinal obstruction due to extremely large tumors. 
Additionally, these mice developed multiple invasive cancers not observed in Apc 
heterozygotes. These results suggest that deletion of Smad2 alone does not initiate 
tumor formation, but accelerates progression of tumors initiated by loss of Apc.
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Unlike other Tgfβ-family null mice, Smad3 null mice are viable and reasonably 
healthy. They develop intestinal adenomas that sometimes progress to adenocarci-
noma (Zhu et al. 1998). The Smad3 mutant allele was generated by homologous 
recombination and established in both 129/Sv and 129/Sv C57BL/6 mixed back-
ground mice. Most tumors are mucinous. Metastatic spread (uncommon in mouse 
models) was detected in a small number of animals. There was great variability in 
the time-course of disease, but tumors were smaller and less aggressive in mixed 
background mice. These in vivo studies have defined a new role for Smad3 as a 
tumor suppressor protein in the intestine. Smad3 mutant mice display many of the 
histopathological stages observed in human colon cancer progression; to date, no 
SMAD3 mutations have been detected in human colorectal cancers.

SMAD4 was initially cloned as a tumor suppressor that is mutated in more than 
50% of human pancreatic cancers (Hahn et al. 1996). SMAD4 is also mutated in 
more than 30% of human sporadic colon cancers; germline mutations are associ-
ated with familial juvenile polyposis (Friedl et al. 1999; Nagatake et al. 1996). 
Smad4 null mice die at embryonic day 6.5; therefore, Smad4+/− mice are often 
used for tumorigenesis studies (Sirard et al. 1998; Yang et al. 1998). Polyps can be 
detected in the fundus and antrum of the stomach of Smad4+/− mice; polyps found 
in the antrum can develop into adenocarcinoma with aging (Xu et al. 2000). Polyps 
can also be found in the duodenum and cecum, albeit at a lower frequency. From 
these studies, it seems reasonable to infer that Smad4 is particularly important for 
tumor suppression in the stomach. Smad4+/− mice have also been bred with Apc+/− 
mice; double heterozygotes develop intestinal adenocarcinomas that lack wild-type 
alleles at both loci (Takaku et al. 1998).

GEM and DNA Mismatch Repair

Individuals with Lynch Syndrome (see Chap. 6) carry heterozygous germline muta-
tions in one of six DNA mismatch repair (MMR) genes. Tumors that arise have 
typically lost the wild-type copy of the gene through somatic events and are char-
acterized by microsatellite instability (MSI). The mammalian MMR system detects 
and repairs base substitution or small nucleotide insertion/deletion mutations, 
sends apoptotic signals in response to DNA damage, and suppresses incorrect 
homologous recombination events. In eukaryotes, initiation of the repair process 
requires three different MutS yeast homologs: MSH2, MSH3, and MSH6. MSH2 
and MSH6 form a heterodimeric complex that initiates base-base mispairing as 
well as single base insertion/deletion mispairs. The MSH2-MSH3 heterodimeric 
complex repairs larger insertion/deletion mispairs of 2–4 bases. Both complexes 
require interaction with eukaryotic MutL homologs to activate subsequent repair 
events. The four MutL homologs are: MLH1, PMS1, PMS2, and MLH3. Three 
heterodimeric complexes form: MLH1–PMS2 to provide the primary function for 
mitotic MMR, MLH1–PMS1, and MLH1–MLH3. The MLH1–PMS2 complex 
also interacts with the two MutS complexes. The majority of Lynch Syndrome 
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 mutations occur in three MMR genes, MLH1, MSH2, or MSH6, although in rare 
cases  mutation in other MMR genes have been identified. Mouse lines carrying 
mutations all of the MutS and MutL genes have been generated, some of which have 
resulted in phenotypes similar to Lynch Syndrome.

Deletion of Msh2, Msh6, or Mlh1 results in intestinal tumors, although there is great 
variation of the phenotypes. Given that Msh2 participates in two “MutS”  complexes, it 
is not surprising that the Msh2−/− mice have a severe phenotype (de Wind et al. 1995; 
Reitmair et al. 1995). Fifty percent of Msh2−/− mice die by 6 months and all animals 
by 1 year. Mice develop adenomas of the small  intestine and, after 6 months, 
adenocarcinoma (Reitmair et al. 1996b). Msh3−/− mice develop tumors very late in 
life, with an overall tumor spectrum somewhat similar to wild-type animals. This mild 
phenotype may be the result of only moderate repair defects being caused by deletion 
of Msh3, or by compensation by intact Msh2 and Msh6. These data are reminiscent 
of the absence of detectable MSH3 mutations in Lynch Syndrome families. Msh6−/− 
mice develop a similar tumor spectrum of intestinal adenomas and  adenocarcinomas 
as the Msh2−/− mice but with a delayed onset and subsequent increased survival (up 
to 16 months of age) (Edelmann et al. 1997). This delayed onset of tumor formation 
is attributed to the impairment of the repair of base-base mismatches, but retention 
of the 2- to 4-base-pair insertion/deletion repair. Also, as a result of this retention of 
2- to 4-base-pair insertion/deletion repair, the MSI phenotype in tumors is absent (de 
Wind et al. 1999; Edelmann et al. 2000). Given the redundancy in function between 
MMR genes,  compound-knockout mice have also been generated. Inactivation of 
both Msh3 and Msh6 in mice is associated with adenocarcinoma of the small 
intestine and decreased survival compared to the single-gene-inactivation controls. 
These phenotypes are more similar to Msh2−/− mice.

Mutation of Mlh1 results in a severe phenotype and a markedly reduced lifespan 
(6 months) similar to Msh2−/− mice (Baker et al. 1996; Edelmann et al. 1996, 1999; 
Prolla et al. 1998). Intestinal adenocarcinoma, skin tumors, and T-cell lymphomas 
have also been detected. As a result of the complete ablation of repair mechanisms 
in Mlh1−/− mice, MSI is a characteristic of their tumors.

Because the lifespan of many homozygous MMR mice is markedly shortened 
by aggressive lymphomas, studies of spontaneous intestinal tumors are more 
complicated. To circumvent this, intestinal tumorigenesis can be accelerated by 
breeding homozygous mutant MMR mice to carry an Apc mutation. Msh3, Msh6, 
Mlh1, Pms2, and Msh3/Msh6 deficient mice have all been bred with mutant Apc 
mice (Baker et al. 1998; Edelmann et al. 1999; Kuraguchi et al. 2001; Reitmair 
et al. 1996a; Wei et al. 2002). In each case, there is a significant increase in tumor 
number and a consequent decreased lifespan compared to controls.

More recent studies of the role of MMR genes in intestinal tumor formation 
have shifted to knock-in allele designs, to analyze individual Lynch Syndrome 
mutations. Often these are missense mutations, which have quite different outcomes 
than gene deletions. The first of the knock-in MMR mice, Msh2GA, carries a mutation 
at codon 674 (glycine to alanine) in the Msh2 coding region (Lin et al. 2004). 
This mutation affects a conserved ATPase domain of Msh2 that is crucial for 
initiation of repair by MutS homologs (Alani et al. 1997; Drotschmann et al. 1999; 
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Wu and Marinus 1994). Analysis of cells from Msh2GA/GA mice showed that, 
although apoptotic responses were comparable to wild-type cells, ATP-mediated 
mismatch release was impaired, similar to Msh2−/− cells. This repair defect results 
in cancer predisposition in vivo that is similar to Msh2−/− mice: all Msh2GA/GA mice 
succumb to lymphoid or intestinal tumors by 1 year. The delayed onset of cancer 
in MshGA/GA mice compared to Msh2−/− mice indicates that the remaining functional 
apoptotic response can stall the onset of tumorigenesis.

Another knock-in mouse model carries a mutation at codon 1217 (threonine to 
aspartate) in the Msh6 gene (Yang et al. 2004). The Msh6TD mutation impairs ATP-
binding or its processing steps in the repair process (Hess et al. 2002). Studies from 
mutant cell extracts found that the DNA damage response and mismatch-binding 
capacity was not impaired; however, cells were deficient in ATP-induced mismatch 
release. Msh6TD/TD cell extracts were deficient in repair of both base substitutions 
and dinucleotide insertion/deletion loops, in contrast to Msh6−/− cell extracts that 
were not. Msh6TD/TD mice had a cancer phenotype similar to Msh6−/− mice, although 
they were characterized by a delayed tumor onset.

Two additional genes involved with DNA MMR, Flap endonuclease 1 (Fen1) 
and exonuclease 1 (Exo1) have been studied to determine their potential contribu-
tion in GI tumors. Fen1 was found to promote tumor progression when combined 
with Apc1638N/+ (Kucherlapati et al. 2002). Exo1 in combination with Apc1638N/+ 
showed a moderate increase in tumor incidence and multiplicity when compared 
to Apc1638N/+ siblings (Kucherlapati et al. 2007). These mice have decreased median 
survival, which is due to infections resulting from an impaired immune response. 
Triple mutant mice Apc1638N/+ Exo1Fen1 mice survive longer and display invasive 
GI tumors with MSI.

Immune-Deficient GEM

Inflammatory bowel disease (IBD) in humans has been divided into two major 
forms, ulcerative colitis (UC) and Crohn’s disease (Podolsky 1991). Although the 
underlying mechanisms of IBD development are not fully understood, it certainly 
involves an immune response to intestinal bacterial and subsequent inflammation. 
IBD very markedly increases the risk of GI cancer above that of the general popula-
tion (Eaden et al. 2001; Itzkowitz 1997). The risk of colitis-associated colon cancer 
(CACC) among patients is related to the severity of colitis. Although the pathogen-
esis of CACC remains unclear, it is characterized by an increased rate of epithelial 
proliferation associated with repetitive cycles of inflammation, tissue damage, and 
regeneration. Various immune-deficient mouse models have been generated to model 
IBD and are commonly characterized by inflammation of the large bowel with pro-
liferative lesions that occasionally progress to adenocarcinoma. Many of these mod-
els, when rederived in a germ-free (bacteria-free and virus-free) environment, have 
a less severe phenotype than those maintained under normal conditions, suggesting 
roles for both pathogens and inflammatory responses in tumor susceptibility.
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Cytokine-Deficient Mice

Il-2 was initially believed critical for the proliferation of T-cells in vitro; however, in 
vivo studies indicate that this is not the case (Hatakeyama et al. 1989). More recent 
studies point to a newly defined role for Il-2 in the development and  homeostasis 
of regulatory T-cells (Burchill et al. 2007). Il-2−/− mice develops  symptoms of UC 
(Sadlack et al. 1993). Half of the mice die within 9 weeks from severe anemia while 
the rest die within 6 months due to wasting. None of these mice develop GI cancer. 
When Il2−/− mice are crossed with b2-microglobulin null mice, 32% develop colonic 
adenocarcinoma between 6 and 12 months of age (Simpson et al. 1995; Sohn et al. 
2001). The late onset of adenocarcinoma suggests that prolonged chronic inflam-
mation may be required for tumorigenesis. All tumors from these compound mice 
carry mutations in Apc; more than half carry p53 mutations. Il10−/− mice develop 
symptoms characteristic of Crohn’s disease; 60% of mice develop colonic adeno-
carcinoma (Berg et al. 1996; Kuhn et al. 1993). These adenocarcinomas are not 
associated with mutations in genes typical of GI cancer, such as p53, Apc, Msh2, 
or K-ras. Gαi2-knockout mice develop inflammation limited to the colon; 31% 
develop neoplasms throughout the colon anywhere from 15 to 36 weeks (Rudolph 
et al. 1995). A recent study by Edwards et al. (2008) found that the Gi2-α−/− colonic 
epithelium is hyperproliferative even before the onset of colitis and resistant to 
induction of apoptosis. They concluded from their study that Gi2α is a direct nega-
tive regulator of colonic epithelium. Seventy-five percent of these mice die by 28 
weeks, preventing long-term studies. Recent work by Ko et al. (2008) investigated 
the effect of deletion of IL-4Ra gene on AOM-induced aberrant crypt foci number 
and size in Balb/c mice. IL-4Rα-dependent signaling was found to have a protec-
tive, anti-neoplastic role during the post-initiation phase of AOM-induced colorec-
tal carcinogenesis in Balb/c mice. Deletion of the IL-4Ra gene led to high serum 
levels of IL-4. Additionally IL-13, which can signal through the IL-4Rα receptor 
normally, instead signals via the IL-13Rα2 receptor leading to induction of TGFβ, 
which has pro-tumororigenic activity at early stages of intestinal tumorigenesis.

Mucin-Deficient Mice

Mucins are highly glycosylated proteins that are the major component of the mucus 
that lubricates and protects underlying intestinal epithelium (Gendler and Spicer 
1995). Alterations of mucin expression and glycosylation have been detected in 
human colon cancer, but their role in tumorigenesis is not well understood (Kim 
et al. 1996). MUC2 is the most abundant secreted gastrointestinal apomucin 
(Kim and Gum 1995; van Klinken et al. 1999). Muc2-deficient GEM were gen-
erated by replacing exons 2–4 of Muc2 with a PGK-neo cassette (Velcich et al. 
2002). The resultant Muc2−/− mice were characterized by the absence of recogniz-
able  goblet cells throughout the intestine. By 12 months, 65% of Muc2−/− mice 
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had developed adenomas with an average of >1.5 tumors per mouse. Adenomas 
occurred in the small and large intestine, as well as the rectum. In older mice, 
adenomas spontaneously progressed to adenocarcinoma. The formation of rectal 
tumors distinguishes the Muc2−/− mouse from many of the other mice presented 
here and may reflect the disorganized inflammatory processes occurring in 
response to the loss of normal mucins. To understand the impact of the MUC2 and 
APC interaction on tumorigenesis, Yang et al. (2008) crossed Muc2−/− mice with 
both the Apc1638N/+ and ApcMin/+ mice respectively. They found that introduction of 
Muc2 into Apc1638N/+ and ApcMin/+ greatly increased transformation induced by the 
Apc mutation and significantly shifted tumor development toward the colon as a 
function of Muc2 gene dosage.

MUC1 is an epithelial cell glycoprotein overexpressed and hypoglycosylated 
in the majority of human adenocarcinomas; its expression is also increased in IBD 
(Vlad et al. 2004; Campbell et al. 2001; Rhodes 1996). Il10−/− mice display some of 
the characteristics of human IBD; however, this mouse model lacks Muc1 expres-
sion. To explore the importance of MUC1 in IBD, Beatty et al. (2007) introduced 
the human MUC1 molecule into the Il10−/− mouse model. These mice develop IBD, 
but the disease is characterized by an earlier age of onset, greater inflammation, and 
higher number of colon cancers than Il10−/− controls.

Carcinogen-Induced Models of Intestinal Tumorigenesis

Intestinal tumors can be induced in rodents by a number of carcinogens including 
N-methyl-N′-nitro-N-nitrosoguanidine (Schoental and Bensted 1969), N-ethyl-N′-
nitro-N-nitrosoguanidine, 1,2-dimethylhydrazine (Colussi et al. 2001), 2-amino-3,4-
dimethylimidazo[4,5-f]quinoline (Fujita et al. 1999), and N-methyl-N-nitrosourea 
(Qin et al. 2000). Azoxymethane (AOM), a metabolite of 1,2-dimethylhydrazine 
(DMH), is the most widely used compound and offers a number of advantages over 
the parent compound including enhanced potency and chemical stability. In AOM-
treated rodents, most intestinal tumors arise in the colon and form grossly visible 
exophytic polypoid or plaque-like growths. The microscopic appearance of low-
grade lesions in these models is similar to human colonic adenomas. There is also 
evidence that AOM-treated mice may be a useful model for studying metastatic 
colorectal cancer (Ochiai et al. 2001). Studies of AOM-treated mice have identi-
fied some of the molecular abnormalities associated with these tumors and suggest 
that in many ways they are indistinguishable from tumors initiated by activation 
of Wnt signaling (Perantoni and Rice 1999; Takahashi et al. 2000; Kaiser et al. 
2007). The dramatic differences in tumor number and penetrance associated with 
AOM-treatment in different mouse strains also highlight the ability of the mouse 
to model the complexities of genetic background and possibly environment (e.g., 
intestinal bacteria) and their effects on tumor susceptibility and eventual response 
to therapy in the human.
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Other GEM Models of Intestinal Cancer

RbMI/MI Mice

In addition to mouse models engineered to perturb known pathways in the develop-
ment of GI cancer, interesting findings have emerged from mouse models target-
ing pathways not associated with GI cancer. One of these is the RbMI/MI mouse, 
which carries a knock-in mutation that eliminates the C-terminal caspase-cleavage 
site of the retinoblastoma (Rb) protein, a known regulator of cell proliferation 
and cell death (Chau et al. 2002). Apoptosis was attenuated in the intestine of the 
RbMI/MI mice following endotoxic shock; embryo-derived fibroblasts were resist-
ant to apoptosis induced by the type I receptor for tumor necrosis factor (TNFRI) 
(Chau et al. 2002). These results suggested that caspase cleavage of Rb is required 
for TNFRI-induced cell death and that the antiapoptotic function of the RbMI/MI 
allele might promote tumor formation when tumor suppression function is altered. 
Borges et al. (2005) explored this hypothesis by combining the RbMI/MI allele with 
a p53-null background. Introduction of RbMI/MI statistically significantly increased 
the incidence of colonic adenomas as well as lymphoma. Colonic tumors are a rare 
phenotype in p53-null mice (Donehower et al. 1995; Jacks et al. 1994); 26% of 
RbMI/MI;p53−/− mice developed colonic tumors versus 3% of p53−/− mice (Borges 
et al. 2005). In recent studies by Kucherlapati et al. (2008), mice were generated 
with an Apc(1638N) allele, Rb(tm2brn) floxed alleles, and a villin-cre transgene 
(RBVCA) to examine the role of Rb1 in GI tumors. RBVCA mice were found to 
have reduced median survival due to increased tumor incidence and multiplicity in 
the cecum and proximal colon. These results indicate that Rb1 may influence the 
location of the tumor within the GI tract, and that both cecal and duodenal tumors 
initiate through inactivation of Apc.

PI(3)K-Deficient Mice

Phosphoinositide-3-OH kinases (PI(3)Ks) constitute a family of evolutionarily 
conserved lipid kinases that regulate numerous fundamental cellular responses, 
including proliferation, transformation, differentiation, and protection from 
apoptosis (Leevers et al. 1999; Toker and Cantley 1997). Homozygous gene-tar-
geted deletion of the p110g catalytic subunit of PI(3)K leads to the development 
of invasive colorectal adenocarcinomas in mice (Sasaki et al. 2000). Epithelial 
tumors were detected in the colon and represented all stages of histopathol-
ogy, including tubular and villous adenomas and invasive adenocarcinoma. The 
large carcinomas demonstrated transmural, local invasion, and metastasis into 
the peritoneal cavity. No tumors were found in the small intestine, stomach, or 
other tissues.
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Cdx2−/− Mice

Cdx2, one of the mouse homologs of the Drosophila melanogaster protein, caudal 
(Mlodzik and Gehring 1987), is a key transcription factor for intestinal develop-
ment and differentiation (Beck et al. 1995; Lorentz et al. 1997; Traber and Silberg 
1996). Homozygous knockout of the Cdx2 gene in mice results in embryonic 
lethality (Chawengsaksophak et al. 1997; Tamai et al. 1999). Ninety percent of 
Cdx2+/− mice develop multiple (up to ten) intestinal adenomas by 3 months of age; 
these adenomas primarily occur in the proximal colon. To test whether reduced 
expression of Cdx2 may be responsible for colon tumor progression, the Cdx2-
knockout allele was introduced into the Apc716/+ background to generate double 
heterozygote mice, Apc716/+;Cdx2+/− (Aoki et al. 2003). These mice develop colonic 
adenomas that are characterized by loss of heterozygosity (LOH) at the Apc locus. 
Apc716/+; Cdx2+/− mice rarely survive more than 30 weeks, preventing the study of 
malignant progression.

Dominant Negative N-Cadherin Mice

Cadherins are transmembrane glycoproteins that mediate homophilic adhesive 
interactions between cells (Kemler 1993; Ranscht 1994). Their conserved cyto-
plasmic domains interact directly with β-catenin or plakoglobin and are essential 
for linkage to the actin cytoskeleton and for productive cell–cell adhesion (Hinck 
et al. 1994; Nathke et al. 1994). Control of cell adhesion is important during 
 embryogenesis, and perturbations of cell adhesion are associated with tumor  invasion 
and  metastasis. To understand the role of cadherins in intestinal tumorigenesis, 
Hermiston and Gordon (1995) generated a transgenic mouse line on the 129SV/
B6 background that expresses dominant negative N-cadherin in the crypt-villus 
epithelium of the small intestine using a Fabp promoter. By 3 months of age, the 
mice developed features of Crohn’s disease; by 6 months, adenomas; this suggested 
relationships among the structural integrity of the intestinal epithelium, inflammatory 
responses, and, ultimately, tumor initiation.

Conclusions

This chapter highlights many of the mouse models currently in use that allow us 
to learn about the initiation and progression of intestinal cancers. It is important to 
highlight some considerations concerning mouse models while thinking about such 
studies. Species, strain, and sex of the mice may affect experimental outcomes. 
The same gene mutated in two mouse strains may lead to dramatically different 
pheno types, with great variation in expressivity and penetrance. Male mice are 
more susceptible to gastric and hepatic cancers; therefore, studies without male 
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mice may under-represent these tumors (Rogers and Fox 2004). Additionally, 
the environment in which mice are bred and housed can affect experimental out-
comes. Microbial populations most certainly differ between facilities and perhaps 
even across rooms and cages and, as described earlier, can affect inflammatory 
responses and subsequent gastrointestinal disease. Dietary differences also affect 
tumor susceptibility. However, despite the variables affecting outcome in these 
long-term in vivo experiments, the ability to simulate the complex germline and 
somatic alterations that occur in intestinal tumor formation is very powerful. The 
effects of aging and environmental exposures can also be queried in these complex 
in vivo systems in order to model human cancer.
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Chapter 3
The Chromosomal-Instability 
Pathway and APC Gene Mutation 
in Colorectal Cancer

Robert Gryfe

Introduction

Cancer is fundamentally a disease in which the clonal accumulation of genetic 
alterations by the cell allows uncontrolled growth, evasion of cell death, local 
invasiveness, and metastatic potential (Fearon and Vogelstein 1990; Nowell 1976; 
Vogelstein and Kinzler 2004; Vogelstein et al. 1988). No cancer better exemplifies 
our current knowledge of the molecular genetic basis of neoplasia than cancer of 
colon and rectum. The progressive accumulation of point mutations in genes such 
as APC, K-Ras, and p53, in addition to larger genetic losses in chromosome arms 
5q, 17p, and 18q not only elucidates specifically the adenoma to carcinoma path-
way of colorectal cancer (Vogelstein et al. 1988), but also serves as a model for the 
generalized cancer concepts of genomic instability and the somatic evolution of 
neoplasia. In this chapter, we will discuss one form of proposed genomic instability 
observed in colorectal cancer, chromosomal instability, with specific emphasis on 
the relationship of Adenomatous Polyposis Coli (APC) gene mutation and function 
with this instability pathway.

It is widely accepted that a significant number of genetic alterations are required 
for cancer initiation and progression (Delattre et al. 1989; Fearon and Vogelstein 
1990; Vogelstein et al. 1988). In a general sense, genetic alterations in cancer have 
been observed to occur “macroscopically” as alterations in chromosome number and 
structure (Boveri 1914; Law et al. 1988; Vogelstein et al. 1989) and “microscopi-
cally” as nucleotide changes involving individual genes (Bos et al. 1987; Forrester 
et al. 1987). Similarly, both macro- and microepigenetic alterations have been 
observed in human cancers (Goelz et al. 1985; Greger et al. 1989). Basal mutation 
rates appear to be insufficient to account for the 6,000–11,000 somatic alterations 
experimentally estimated to be present in a colon-cancer cell genome (Stoler et al. 
1999; Wang et al. 2002) and has prompted the hypothesis that  widespread genomic 
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(or epigenomic) instability is an essential early step in carcinogenesis (Loeb 1991; 
Loeb et al. 1974). The proposed inherent defect that makes cancer cells suscep-
tible to genomic instability is often referred to as the mutator phenotype. There 
now appear to be at least three distinct mutator-phenotype pathways in colorectal 
and other cancers – the microsatellite instability (MSI) and CpG island methyla-
tor (CIMP) pathways, covered in other chapters, and the chromosomal-instability 
pathway, reviewed here.

Evidence for the Existence of a Chromosomal-Instability 
Pathway

Chromosomal instability is defined as an increased rate of loss or gain of 
large portions of chromosomes, or whole chromosomes in cancer (Rajagopalan 
et al. 2003). The majority of colorectal cancers are aneuploid, consistent with a 
chromosomal-instability pathway (Goh and Jass 1986). Colorectal cancers have 
long been known to harbor both widespread and frequent allelic losses at numer-
ous chromosomal arms, most notably 5q, 17p, and 18q (Fearon and Vogelstein 
1990; Vogelstein et al. 1988, 1989). Although abnormal chromosome number or 
content may be observed as the end result of chromosomal instability, the frequent 
observation of cancer-cell aneuploidy itself does not prove the existence of a 
chromosomal-instability pathway. Aneuploidy could theoretically arise by mecha-
nisms other than chromosomal instability. In contrast to a dynamic, rate defined, 
chromosomal-instability mechanism, aneuploidy could arise from clonal selection 
and expansion of cells with a normal baseline rate of chromosomal changes, but an 
increased rate of replication (Rajagopalan et al. 2003) or, alternatively, as a result 
of exposure of cells to either an endogenous or exogenous force that creates a 
stable, but abnormal chromosomal content at a single point in time (Li et al. 2000). 
Furthermore, aneuploidy could result from a basal rate of chromosomal alteration 
that, in a normal cell, leads to cell death but is tolerated and clonally expanded in a 
cancer cell (Rajagopalan et al. 2003).

To date, only a limited number of studies have documented an increased dynamic 
rate of chromosomal alteration in aneuploid human colon-cancer cells (Lengauer 
et al. 1997; Phear et al. 1996). For the APRT locus on chromosome 16q, Phear et al. 
(1996) observed loss of heterozygosity (LOH) at a rate ten times higher (∼6 × 10−6) 
in the aneuploid SW460 human colon-cancer cell line than that in the near-diploid 
DLD1 colon-cancer cell line (∼6 × 10−7) (Phear et al. 1996). Furthermore, new LOH 
events observed in aneuploid SW460 cells involved most, or all, of chromosome 
16q compared to smaller losses of 16q heterozygosity in DLD1 cells. Similarly, 
using fluorescent in situ hybridization (FISH) detection of centrosome probes on 
ten different chromosomes, Lengauer et al. (1997) established a chromosomal gain 
or loss rate of 0.01 per chromosome per generation in four aneuploid human colon-
cancer cell lines (HT29, SW480, SW837, LoVo), whereas the rate of chromosomal 
instability in four near-diploid human colorectal-cancer cell lines (HCT116, 
DLD1, RKO, SW48) was too low to be measured accurately (Lengauer et al. 
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1997). Fusion of aneuploid HT29 cells with near-diploid DLD1 colorectal-cancer 
cells corrected the rate of microsatellite instability inherent in the DLD1 cells, but 
not the chromosomal instability inherent in the HT29 cells. Thus, in comparison 
to a recessive cellular predisposition to microsatellite instability, the underlying 
cause of  chromosomal instability appeared to be dominant. Furthermore, fusion 
of two  near-diploid colorectal-cancer cell lines (i.e., HCT116 × HCT116, DLD1 × 
DLD1 and HCT116 × DLD1) did not produce chromosomal instability. Similarly, 
transfection of an extra chromosome 3, alone, into HCT116 cells did not produce 
chromosomal instability, implying that abnormal chromosomal content by itself is 
not the cause of chromosomal instability (Lengauer et al. 1997).

Chromosomal instability is thought to arise early in colorectal neoplastic 
progression. Consistent with this hypothesis, LOH has been observed in dysplastic 
human colorectal aberrant crypt foci (ACF) and minute adenomatous polyps (Luo 
et al. 2006; Vogelstein et al. 1988). In older studies using flow cytometry, 6–27% of 
colorectal adenomas were classified as aneuploid (Goh and Jass 1986; Quirke et al. 
1986; van den Ingh et al. 1985). In more recent studies, using the combination of more 
sensitive molecular techniques and microdissected or laser-captured specimens, a 
number of investigators have demonstrated that more than 85% of adenomatous 
polyps display insertions and deletions of genetic material ranging in size from 
hundreds of bases to entire chromosomal arms (Cardoso et al. 2006; Shih et al. 2001; 
Stoler et al. 1999). In a study by Shih et al. (2001), 88% of 1- to 3-mm sporadic 
adenomas with low-grade dysplasia showed allelic imbalance at 1–2 of five chromo-
some arms (5q, 1p, 8p, 15q, 18q) analyzed, consistent with chromosomal instability as 
a very early event in tumorigenesis (Shih et al. 2001). After excluding gains or losses 
surrounding the APC gene (on 5q), 66% of adenomas displayed allelic imbalance 
involving other loci. Similarly, Cardoso et al. (2006) used genome-wide detection 
with array comparative genomic hybridization (CGH) in analyzing 80 adenomas 
with low-grade dysplasia retrieved from 8 individuals with familial adenomatous 
polyposis (FAP) and 5 patients with MYH-associated polyposis (MAP) (Cardoso 
et al. 2006): genomic imbalances were observed in 53% of adenomas from patients 
with FAP and 92% from those with MAP. FAP adenomas were observed to have 
an average of 8.2 chromosomal losses or gains, including 2.7 complete chro-
mosomal arm aberrations, whereas MAP adenomas displayed an average of 13.4 
chromosomal alterations, including 5.9 whole-arm events. Chromosomal instability 
was also detected by array CGH in a small number of histologically normal colonic 
epithelial samples adjacent to adenomas, but not in nonadjacent, normal samples.

Although aneuploidy was detected in a substantial number of early adenomas 
in some studies (Goh and Jass 1986; Quirke et al. 1986; van den Ingh et al. 1985), 
not all recent analyses have demonstrated similar results (Haigis et al. 2002; 
Sieber et al. 2002). In a study by Sieber et al. (2002) evidence for chromosomal 
instability was sought in 55 adenomas from 18 patients with FAP using a combi-
nation of flow cytometry, LOH microsatellite marker analysis, and/or fluorescent 
CGH (Sieber et al. 2002). Whereas chromosome 5q LOH was detected in 60% 
of samples, other forms of chromosomal losses or gains were observed in only 
a small proportion of adenomas − 3/20 by flow cytometry, 2/49 by chromosome 
15q LOH, 1/20 by chromosome 1p LOH, and 0/5 by CGH. Similarly, Haigis et al. 
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(2002) did not detect tumor chromosomal instability using FISH analysis of two 
chromosomes (chromosomes 7 and 18) in six human adenomas with paired normal 
tissue (Haigis et al. 2002). It is important to note that, compared to studies in which 
 chromosomal alterations were detected in small adenomas (Cardoso et al. 2006; 
Shih et al. 2001; Stoler et al. 1999), neither of these studies (Haigis et al. 2002; 
Sieber et al. 2002) studied microdissected tissues, and thus the presence of normal 
cells could have hindered detection of aneuploidy.

The use of mathematical models that include mutational data provides further 
theoretical evidence for the existence of a chromosomal-instability pathway 
(Komarova and Wodarz 2004; Michor et al. 2005; Nowak et al. 2002). Allelic loss 
not only affords a cancer cell a potentially advantageous mechanism for losing a 
copy of a tumor-suppressor gene, but may lead to cell death by loss of genetic 
content essential to cell viability. Models that considered both beneficial and 
deleterious possibilities of chromosomal loss have concluded that:

1. The observed chromosomal gain or loss rate of 0.01 per chromosome per 
generation (Lengauer et al. 1997) closely mirrors the optimal theoretical allelic 
loss rate of tumor-suppressor genes (Komarova and Wodarz 2004).

2. Chromosomal instability probably follows point mutation inactivation of the 
first allele of a cancer-initiating tumor-suppressor gene, such as APC, and leads 
to loss of the second allele if there is significant selective cost to the chromo-
somal-instability pathway (Nowak et al. 2002).

3. Chromosomal instability may precede inactivation of either copy of a cancer-
 initiating tumor-suppressor gene, such as APC, if the chromosomal-instability 
pathway is effectively neutral or beneficial for cell viability (Nowak et al. 2002).

4. Chromosomal instability is probably required to initiate carcinogenesis in most cir-
cumstances unless mutation of a single copy of an initiating tumor-suppressor gene, 
such as APC, is sufficient to increase cellular proliferation (Michor et al. 2005).

5. Chromosomal instability is probably required to initiate carcinogenesis if allelic 
loss of two or more tumor-suppressor loci such as 5q, 17p, and 18q are rate 
limiting in cancer formation (Michor et al. 2005).

The Genetic Basis of the Chromosomal-Instability Pathway

In comparison to the microsatellite instability pathway, where a deficiency in DNA 
mismatch repair has been firmly established as an underlying mechanism (Gryfe 2006) 
(and see Chap. 6), the cause of chromosomal instability in colorectal cancer remains 
enigmatic. Analyses of both inherited cancer syndromes and nonfamilial cancers 
have been undertaken to investigate the genetic basis of chromosomal  instability. 
Numerous mechanisms could theoretically contribute to  chromosomal instability, 
including deregulation of: mitotic and cell-cycle  checkpoints, telomere shortening 
and telomerase expression, centrosome number, double-strand break repair, kineto-
chore function, and chromatid separation (Lengauer et al. 1997; Wang et al. 2004).
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The molecular basis of a number of inherited cancer syndromes associated with 
chromosomal instability has been identified (Table 3.1) (Eyfjord and Bodvarsdottir 
2005; Heinen et al. 2002). However, with the possible exception of Bloom syn-
drome (where there is an impairment in sister-chromatid exchange and chromo-
some breakage resulting from mutations in the BLM gene encoding a rec-Q DNA 
helicase), colorectal neoplasia is not a feature of inherited  chromosomal-instability 
cancer syndromes (Eyfjord and Bodvarsdottir 2005; Lowy et al. 2001). Furthermore, 
with the exception of the familial breast cancer associated with inherited truncation 
mutations in BRCA1 and BRCA2 (both double-strand break repair genes), these 
syndromes are very rare and have not yet served to elucidate a common mechanism 
of chromosomal instability in nonfamilial cancer.

As described later, there is now increasing evidence that somatic mutations 
present in colorectal cancers may play a causative role in chromosomal instability 
(Table 3.2). The basis for most plausible causes of colorectal cancer chromosomal 
instability appears to involve direct disruption of regulation of the mitotic spin-
dle. The mitotic spindle is part of the eukaryotic cell cytoskeleton that aligns and 
separates replicated chromosomes (sister chromatids) into daughter cells during 

Table 3.1 Inherited cancer syndromes with chromosomal instability (Adapted from Eyfjord 
and Bodvarsdottir 2005; Heinen et al. 2002)

Syndrome Gene Repair deficiency
Primary cancer 
predisposition

Ataxia telangectasia ATM Double-strand break repair Lymphoma, 
leukemia

Bloom BLM Homologous recombination, sister-
chromatid exchange

Many, including 
colorectal

Familial breast 
cancer

BRCA2 Homologous recombination, 
repair of crosslinks

Breast

Familial breast-
ovarian cancer

BRCA1 Homologous recombination Breast, ovary

Fanconi anemia FANC-A, 
-C, -G

Repair of crosslinks, homologous 
recombination

Leukemia

Li Fraumeni p53 Multiple DNA damage responses Sarcoma, breast
Nijmegen breakage NBS1 Double-strand break repair Lymphoma
Werner WRN Homologous recombination, sister 

chromatid exchange
Many

Gene Function

BUB1 Mitotic-spindle checkpoint
MAD2 Mitotic-spindle checkpoint
CDC4 cyclin E regulator
Aurora-A Mitotic-spindle checkpoint
APC Mitotic-spindle assembly, 

  mitotic-spindle checkpoint

Table 3.2 Proposed genetic causes of colorectal cancer 
chromosomal instability (see text for details)
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mitosis (Fig. 3.1). Mitotic-spindle arrest, due to abnormal chromosomal alignment, 
is dependent on the activity of a number of kinetochore-associated proteins includ-
ing BUB1, BUB3, and MAD2 (Orr-Weaver and Weinberg 1998). Nocodazole is a 
microtubule-polymerizing agent that leads to microtubule disruption, subsequent 
chromosomal misalignment, and ultimately mitotic-spindle arrest. Nocodazole-
treated aneuploid colon-cancer cell lines have been observed to be defective in 
this mitotic-spindle checkpoint arrest, whereas near-diploid cancer cell lines arrest 
appropriately (Cahill et al. 1998). Correspondingly, heterozygous splice-site muta-
tions of the mitotic-spindle assembly checkpoint gene, BUB1, have been observed 
in a small number (2/19) of aneuploid colorectal-cancer cell lines and result in 
expression of a truncated, as well as a wild-type, protein (Cahill et al. 1998). 
BUBR1, a BUB1 homolog, was observed to be mutated in an additional 2/19 color-
ectal cancers with chromosomal instability. Expression of either of the two identi-
fied BUB1 mutants, in near-diploid colon-cancer cells (HCT116 or DLD1) that had 
wild-type BUB1 expression, disrupted mitotic checkpoint arrest, consistent with a 
dominant effect. Similar involvement of somatic BUB1 defects in a small propor-
tion of colon cancers has been observed by others (Shichiri et al. 2002).

Similar to BUB1, loss of the MAD2 mitotic-spindle checkpoint gene has been 
shown experimentally to cause chromosomal instability in colon-cancer cells 
(Michel et al. 2001). Michel et al. (2001) generated MAD2+/− HCT116 colon-cancer 

Fig. 3.1 The mitotic spindle
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cells and observed that they did not undergo mitotic-spindle checkpoint arrest with 
nocodazole treatment. Haploinsufficient MAD2+/− HCT116 cells showed an 80% 
increase in aneuploid metaphases and a 100% increase in chromosomal loss rate 
compared to wild-type cells. Similar results were observed for murine embryonic 
fibroblasts derived from Mad2+/− mice and these mice developed lung cancers. 
However, despite these results, the role of MAD2 in colorectal cancer remains 
ambiguous as no mutations of this gene have been observed in colorectal cancer 
and expression appears to be significantly increased, not decreased, in many colo-
rectal cancers (Cahill et al. 1999; Li et al. 2003).

The cyclin E regulator, CDC4 (also known as Fbw7) gene, has been observed 
to be somatically mutated in cancer (Akhoondi et al. 2007; Rajagopalan et al. 
2004). Normally, CDC4 participates in ubiquitin-mediated proteolysis of cyclin E 
and regulation of the G1-S cell-cycle checkpoint. CDC4 is somatically mutated in 
6–10% of colorectal cancers, a similar proportion of adenomas (Akhoondi et al. 
2007; Kemp et al. 2005; Rajagopalan et al. 2004), and a number of other malignan-
cies, including T-cell acute lymphocytic leukemia (31%) and cancers of the bile 
duct (35%), stomach (15%), pancreas (9%), and endometrium (9%) (Akhoondi 
et al. 2007). Furthermore, the majority of CDC4 mutations identified to date have 
involved specific hotspots (Arg465, 479, 224, 278, and 393 and Ser582). These commonly 
mutated hotspot amino acids are key to normal CDC4 function. The majority of 
these mutations are C to T, or G to A transitions, the same CpG island sites that are 
prone to methylation. Frequent methylation of Arg479 has been observed in cancer, 
raising the possibility that epigenetic disruption of CDC4 function may also 
contribute to chromosomal instability (Akhoondi et al. 2007).

From a functional standpoint, biallelic CDC4 knockout experiments on near-
diploid HCT116 and DLD1 colon-cancer cells resulted in accumulation of cyclin E, 
nuclear atypia (micronuclei), and aneuploidy (Rajagopalan et al. 2004). Concurrent 
cyclin E knockdown in CDC4−/− cells abrogated chromosomal instability, whereas 
overexpression of cyclin E in the presence of normal CDC4 recapitulated the 
CDC4−/− chromosomal-instability phenotype, implying an essential role for cyclin 
E in CDC4-deficient chromosomal instability. However, some authors have chal-
lenged the role of CDC4 as an important cause of chromosomal instability as the 
majority of mutations reported to date appear to involve only a single CDC4 allele 
(Kemp et al. 2005), whereas experimental evidence appears to require biallelic 
inactivation of this gene (Rajagopalan et al. 2004). Nonetheless, recent experiments 
may support a functionally dominant role for CDC4 mutation as coexpression of 
both mutant and wild-type CDC4 in chromosomally stable HCT116 colon-cancer 
cells resulted in marked accumulation of cyclin E compared to wild-type cells 
(Akhoondi et al. 2007). While the effects of CDC4 mutation on cyclin E accumula-
tion appeared to act dominantly in these experiments, the authors did not report any 
direct evidence that they had generated chromosomal instability in these HCT116 
cells with both mutant and wild-type CDC4 expression.

Aurora-A (also known as Aurora2 and STK15), another mitotic-spindle check-
point gene, has been observed to be amplified in 30–50% of colorectal cancers 
as well as in other neoplasms such as cancers of breast, ovary, pancreas, prostate, 
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head and neck, and cervix and chondrosarcoma (Bischoff et al. 1998; Nishida et al. 
2007; Zhou et al. 1998). Amplification of the Aurora-A gene has been observed 
to be associated with overexpression of both m-RNA and protein (Bischoff et al. 
1998; Zhou et al. 1998). By immunofluorescence microscopy, Aurora-A was seen 
to localize to the mitotic-spindle centrosome in HeLa cells (Zhou et al. 1998) and 
overexpression of human Aurora-A in Rat1 (rat embryo) and NIH 3T3 (mouse 
embryonic) fibroblasts caused malignant transformation as assessed by growth 
in soft agar and nude mice (Bischoff et al. 1998; Zhou et al. 1998). Transient 
Aurora-A overexpression in near-diploid MCF10A human breast-cancer cells leads 
to centromere-number and -distribution abnormalities as well as aneuploidy (Zhou 
et al. 1998). Although amplification of the Aurora-A gene is common in colorectal 
and other cancers and appears to lead to chromosomal instability, the underlying 
mechanism that accounts for genetic amplification in cancer remains unclear.

In addition to these examples, mutational analyses of a large number of putative 
instability genes characterized in model systems have revealed other possible human 
colorectal-cancer chromosomal-instability genes. Wang et al. (2004) sequenced the 
open reading frame of 100 candidate genes in 24 colorectal cancers and matched 
normal tissue (Wang et al. 2004). Genes found to harbor somatic mutations were 
analyzed in an additional 168 colorectal cancers. The DNA double-strand-break 
gene, MRE11, and a putative anaphase inhibitor gene, Ding, were mutated in 
approximately 4% of colon cancers each, whereas mutations in three putative spin-
dle checkpoint genes (ZW10, ZWILCH, and ROD) were observed in a total of 2% 
of samples. Further studies will be required to establish the functional importance 
of these observations in colorectal-cancer chromosomal instability.

The p53 transcription factor has been called the “guardian of the genome,” 
and inactivation of p53 would appear to be an excellent candidate as the cause 
of chromosomal instability in colorectal and other cancers (Lane 1992). p53 is 
the most frequently mutated tumor-suppressor gene in all cancers, including 
colorectal cancers (Vogelstein and Kinzler 2004). Inactivation of p53 leads to 
 cell-cycle checkpoint failure and evasion of apoptosis in the presence of DNA 
damage (Duensing and Duensing 2005). However, whereas p53 mutations are 
common in aneuploid cancers, loss of p53 probably plays an important role in 
tolerating (as opposed to generating) DNA damage, including chromosomal insta-
bility (Duensing and Duensing 2005). Furthermore, p53 mutation and chromosome 
17p allelic loss have consistently been observed to be later events in the colorectal 
adenoma-to- carcinoma sequence and are therefore unlikely to be the primary cause 
of chromosomal instability (Fearon and Vogelstein 1990; Vogelstein et al. 1988).

APC Mutation and Chromosomal Instability

Truncating germline mutations of the APC tumor-suppressor gene on chromosome 
5q are responsible for FAP (Groden et al. 1991; Kinzler et al. 1991a), and somatic 
mutations of this gene are believed to initiate the majority of sporadic colorectal 
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adenomas and carcinomas (Kinzler et al. 1991b; Miyaki et al. 1994; Miyoshi et al. 
1992; Powell et al. 1992). This has led researchers to dub APC as the “gatekeeper” 
of colorectal neoplasia (Kinzler and Vogelstein 1996). Whereas the most firmly 
established role of APC mutation in colorectal neoplasia relates to its involvement 
in β-catenin stabilization and upregulation of canonical WNT signaling (reviewed 
in (Polakis 1997, 2007) ), recent work has intriguingly pointed to APC as a “care-
taker” gene probably playing a central mechanistic role in chromosomal instability 
(Pellman 2001).

Both indirect and direct scientific evidence have emerged to link APC muta-
tion with chromosomal instability in colorectal cancer. As described later, indirect 
evidence for this association can be drawn from studies elucidating the functional 
domains of the APC protein in addition to mutational analyses of both APC and 
CTNNB1 (which encodes β-catenin). More recently, reverse-genetic approaches, in 
both human and model organism cell systems, have provided more direct evidence for 
APC mutation as a causative factor in colorectal cancer chromosomal instability.

Early clues to possible APC involvement in chromosomal instability came from 
elucidating the many functional domains of the APC gene. The C terminus of APC 
possesses three cytoskeletal-interacting domains (Fig. 3.2):

1. MT (microtubule)-binding domain (Munemitsu et al. 1994; Smith et al. 1994)
2. EB1 (microtubule end-binding protein)-binding domain (Su et al. 1995)
3. DLG (discs large gene)-binding domain (Matsumine et al. 1996)

The vast majority of APC mutations, in both FAP and nonfamilial neoplasia, are 
predicted to be truncating and cluster between codons 1286 and 1513 and thus lead 
to loss of these C terminus cytoskeletal-interacting domains (Miyaki et al. 1994; 
Miyoshi et al. 1992). Given the importance of microtubules and other cytoskel-
etal structures in normal mitosis and chromosomal integrity maintenance, loss of 
the MT-, EB1-, or DLG-binding domains all serve as reasonable candidates for 
 chromosomal instability from an ontological standpoint. In early experiments, 

Fig. 3.2 Functional domains of the APC gene
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wild-type, but not truncated, APC was observed to colocalize with microtubules to 
form a filamentous network with cell cytoplasm in vivo (Munemitsu et al. 1994; 
Smith et al. 1994). Furthermore, inhibition of microtubules by nocodazole resulted 
in wild-type APC becoming diffusely cytoplasmic (Smith et al. 1994). Furthermore, 
C terminus, but not N terminus APC protein fragments, promoted microtubule 
assembly in vitro (Munemitsu et al. 1994). Further, early experiments established 
the APC C terminus binding partner, EB1, as a mitotic-spindle checkpoint gene 
in yeast (Muhua et al. 1998). EB1 was shown to localize to spindle microtubules, 
and mutation of EB1 resulted in failure of cell-cycle arrest in the presence of a 
misaligned mitotic spindles.

In accordance with Knudson’s two-hit hypothesis, the majority of early colo-
rectal neoplasms have been observed to harbor inactivating mutations of both 
APC alleles (Albuquerque et al. 2002; Lamlum et al. 1999; Miyaki et al. 1994; 
Miyoshi et al. 1992; Rowan et al. 2000). According to Knudson’s hypothesis, these 
two events should be independent of one another with the end result being loss of 
tumor-suppressor function. However, data from both FAP and sporadic tumors indi-
cate that APC genetic alterations are nonrandom in nature (Albuquerque et al. 2002; 
Lamlum et al. 1999; Rowan et al. 2000; Smits et al. 2000). The nonrandom nature 
of these genetic alterations appears to be related to loss or retention of specific 
numbers of the seven 20-amino acid (aa) repeats that act as  β-catenin-binding 
domains in the APC protein (Fig. 3.2). These 20-aa repeats are critical to wild-type 
APC-mediated degradation of β-catenin (Munemitsu et al. 1995). When the 20-aa 
repeats are lost with typical truncating APC mutations, β-catenin stabilization and 
accumulation occurs. Furthermore, the nature of the first APC mutation appears to 
dictate both the nature and the type of second APC “hit” (Albuquerque et al. 2002; 
Lamlum et al. 1999; Rowan et al. 2000): specifically, truncating APC mutations 
between codons 1,194 and 1,392 have been associated with loss of the entire second 
APC allele (LOH), whereas mutations that are either 5' or 3' to these codons were 
accompanied by frameshift mutations that incorporated specific numbers of 20-aa 
repeats. This observed APC mutation scheme has been referred to as the “just-right” 
signaling model and is summarized in Table 3.3.

Much of the focus of this “just right” hypothesis is based on the plausible role 
of the specific APC truncation plus retention of one 20-aa repeat optimizing canonical 
WNT signaling for neoplastic initiation and/or progression (Albuquerque et al. 
2002). However, because mutations near codon 1300 are specifically and nonran-
domly accompanied by second-allele loss rather than second-allele mutation, it 
remains entirely plausible that specific APC mutation plays a critical role in initiating 
chromosomal instability in colorectal tumors.

Table 3.3 “Just-right” signaling: the link between the first and second APC hits

APC mutation Second APC hit

Retention of none of the 20-aa repeats Mutation with retention of one 20-aa repeat
Retention of one 20-aa repeats Loss of heterozygosity
Retention of two or more 20-aa repeats Mutation removing all 20-aa repeats



3 The Chromosomal-Instability Pathway and APC Gene Mutation in Colorectal Cancer 63

Similar to the nonrandom relationship of first and second hits in APC, the 
 nonrandom association of WNT pathway deregulation with the mutator phenotype 
serves to provide a further potential link between APC and chromosomal instabil-
ity. Approximately 85% of colorectal neoplasms harbor truncating APC mutations, 
and approximately half of the remainder display oncogenic exon 3 CTNNB1 gene 
mutations that results in β-catenin stabilization and constitutive overexpression in 
the absence of an APC loss-of-function mutation (Huang et al. 1996; Sparks et al. 
1998). APC and CTNNB1 mutations appear to be mutually exclusive and, further-
more, there are significant correlations between APC mutations and aneuploidy, 
whereas CTNNB1 mutations appear to be exclusively associated with near-diploid 
cancer status (Gayet et al. 2001; Sparks et al. 1998). Furthermore, the APC muta-
tions identified in a subset of near-diploid colorectal cancers are genetically distinct 
from those observed in aneuploid cancers and therefore may also be functionally 
distinct (Huang et al. 1996). Taken together, these results provide circumstantial 
evidence that canonical WNT pathway overexpression, through either APC or 
CTNNB1 mutation, acts as the gatekeeper to colorectal neoplasia, whereas APC 
mutation with retention of one 20-aa repeat specifically plays a caretaker role in 
initiating chromosomal instability.

Although earlier experiments had raised the possibility, clearer realization 
that APC mutation was mechanistically linked to chromosomal instability came 
from two laboratories in 2001, a decade after APC was initially cloned (Fodde 
et al. 2001; Kaplan et al. 2001). Both Kaplan et al. (2001) and Fodde et al. (2001) 
observed a high rate of karyotypic abnormalities in Min (Apc+/−) mouse embryonic 
stem (ES) cells, but not in wild-type Apc+/+ cells (Fodde et al. 2001; Kaplan et al. 
2001). Similarly, using human HeLa, mouse ES, or marsupial PtK cells, both 
groups showed that wild-type APC associated with the plus-end of microtubules 
and colocalized with the mitotic-spindle kinetochore and, further, that this associa-
tion was disrupted by nocodazole or colcemid, indicating that microtubules were 
required for APC-kinetochore interaction.

In relation to mitotic-checkpoint dynamics, Kaplan et al. (2001) observed that wild-
type APC-microtubule colocalization occurred adjacent to the mitotic- checkpoint 
protein, Bub3, and APC coimmunoprecipitated with Bub1 and Bub3 in mitotically 
arrested cells (Kaplan et al. 2001). Moreover, recombinant experiments provided 
 evidence that Bub1–Bub3 kinase complexes specifically phosphorylated APC in vitro 
and that APC, phosphorylated by its protein kinase partner, GSK3β, provided a better 
substrate for Bub1–Bub3 phosphorylation than unphosphorylated APC.

In contrast to this association of wild-type APC with mitotic-spindle microtu-
bules, Fodde et al. (2001) observed that in Apc+/− ES mouse cells, mutant APC no 
longer localized to the kinetochore and that staining with antibodies against tubulin 
or EB1 demonstrated randomly projected microtubules (Fodde et al. 2001). Similar 
to earlier experiments establishing the dominant phenotype of chromosomal-
instability experiments (Akhoondi et al. 2007; Cahill et al. 1998; Lengauer et al. 
1997; Michel et al. 2001), Fodde et al. (2001) stably transfected the near-diploid, 
APC wild-type, HCT116 human colorectal-cancer cell line with an inducible, trun-
cated APC construct and observed that induction caused a 2.5- to 5-fold increase in 
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numerical chromosomal aberrations (Fodde et al. 2001). Because HCT116 colon-
cancer cells harbor an oncogenic CTNNB1 alteration and not an APC mutation 
(Sparks et al. 1998), these results provide genetic evidence that truncating APC 
mutations specifically, but not canonical WNT overexpression in general, lead to 
chromosomal instability. Taken together, these studies by Kaplan et al. (2001) and 
Fodde et al. (2001) established an association between wild-type APC, plus-end 
microtubules of the mitotic-spindle kinetochore, EB1, and the mitotic checkpoint 
proteins BUB1 and BUB3. Truncating APC mutations appeared to lead to inter-
ruption of mitotic-spindle dynamics and resulted in chromosomal abnormalities 
(Fodde et al. 2001; Kaplan et al. 2001).

Following initial observations of APC-mitotic spindle interactions, several more 
recent experiments have provided further insight into the relationship of APC muta-
tion, the mitotic spindle, and chromosomal instability. Dikovskaya et al. (2004) 
studied mitotic-spindle formation in Xenopus (frog) egg extracts (Dikovskaya et al. 
2004). Cytostatic factor (CSF) Xenopus egg extracts are arrested in metaphase 
of meiosis II. APC depletion in CSF Xenopus egg extracts resulted in decreased 
mitotic microtubule density and an abnormal distribution of microtubules 
compared to identical non-APC-depleted Xenopus egg extracts, suggesting that 
spindles formed in the absence of APC contain decreased amounts of inappropri-
ately distributed tubulin. Similar to previous experiments, wild-type APC localized 
to the kinetochore in Xenopus egg extracts; results of this study suggested that 
APC specifically controlled centrosome-directed spindle formation. The abnormal 
spindle phenotype of APC-depleted CSF Xenopus egg extracts could be rescued by 
the endogenous expression, or the exogenous addition, of full-length APC, but not 
N-terminally truncated APC fragments that lacked the microtubule (MT)-binding 
site, indicating that this APC domain is required for correct spindle formation.

Using quantitative immunofluorescent microscopy, Green and Kaplan carefully 
characterized the mitotic spindle in APC-mutant colon-cancer cells with chromo-
somal instability (SW480, HT29, Caco, LoVo), and APC-wild-type colon-cancer 
cells without chromosomal instability (HCT116, RKO) (Green and Kaplan 2003). 
Wild-type APC normally localized with the plus-end of microtubules; however, 
when chromosomally stable 293 (also known as HEK; human embryonic kidney) 
cells with wild-type APC were transfected with an N terminus APC (N-APC1–1450 
encoding APC codons 1–1450) fragment expression vector, there was direct and 
dominant interference with mitotic spindle and kinetochore microtubule plus-end 
attachments. The 293 cells expressing the truncated N-APC1–1450 quantitatively 
resembled colon-cancer cells with chromosomal instability in a variety of mitotic-
spindle assays: increased collapsed mitotic spindles, decreased mitotic spindle 
pole-to-pole length, increased chromosomal width to height (congression index), 
and increased kinetochore localization of BubR1 (indicative of an aberrant mitotic-
spindle checkpoint). This occurred despite the presence of equal or excess wild-
type APC expression in these cells, implying a dominant role for N-APC1–1450. 
In contrast to these results, transfection of 293 cells with expression vectors for 
either wild-type APC or a C terminus APC2560–2843 fragment (that retains the EB1 
 microtubule-binding domain) did not cause interference of mitotic-spindle microtubule 
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plus-end attachments. Although the effects of N-APC1–1450 on the mitotic spindle 
appeared to be dominant and led to chromosomal positioning errors, expression 
of N-APC1–1450 in 293 cells did not lead to measurable chromosomal instability. 
However, 293 cells are normally hypotriploid and have a markedly compromised 
mitotic-spindle checkpoint (Tighe et al. 2004).

Similar to the previously described experiments in human 293 cells (Green and 
Kaplan 2003), Tighe et al. expressed an N terminus fragment of APC (N-APC1–750) in 
near-diploid HCT116 cells that normally express wild-type APC (Tighe et al. 2004). 
Compared to APC+/+ HCT116 cells, N-APC1–750 HCT116 cells were observed to have 
a defective mitotic-spindle checkpoints with nocadazole treatment. Following wash-
out of the nocodazole at 48 h, long-term surviving N-APC1–750 HCT116 cells became 
highly aneuploid. In contrast, the surviving population of similarly treated wild-type 
APC HCT116 cells remained near diploid. Similar to N-APC1–1450 293 cells immun-
ofluorescent confocal microscopy results (Green and Kaplan 2003), N-APC1–750 
HCT116 cells were observed to have weakened mitotic-spindle kinetochore-
 microtubule interactions more typical of other colon-cancer cells with chromosomal 
instability than chromosomally stable, wild-type HCT116 (Tighe et al. 2004).

Recent work has further elucidated the functional dynamics of truncating APC 
mutations, EB1, and chromosomal instability (Green et al. 2005). Using human 293 
cells, Green et al. (2005) observed that siRNA inhibition of either APC or EB1 reca-
pitulated the mitotic-spindle phenotype observed in their earlier experiments with 
N-APC expression. Inhibitory effects of APC and EB1 were distinct from inhi-
bition of other microtubule dynamic-regulating (+TIPs) proteins. Furthermore, 
inhibition of APC and EB1 was nonadditive suggesting that these proteins work 
together maintaining mitotic-spindle function.

Using multiple N-APC-deletion constructs, experiments by Green et al. (2005) 
have genetically dissected the dominant-negative effects of APC truncation (Green 
et al. 2005). Removal of the first 58 amino acids responsible for APC oligomeriza-
tion (N-APC58–1450) eliminated the mitotic-spindle phenotype observed in 293 cells 
expressing N-APC1–1450, strongly suggesting that APC oligomerization is critical 
for dominant negative activity. As expected from these results, N-APC1–1450, but not 
N-APC58–1450, was observed to associate with full-length APC. Further deletions 
of the C-terminal region of N-APC1–1450 (N-APC1–1309, N-APC1–1020, N-APC1–850) 
progressively reduced mitotic-spindle defects in 293 cells and the mitotic-spindle 
function of N-APC1–768 293 cells was indistinguishable from wild type. EB1 was 
observed to copurify with full-length APC; however, the expression N-APC1–1450 
directly eliminated the interaction between EB1 and wild-type APC. Confocal 
immunofluorescent microscopy indicated that the effect of N-APC1–1450 on EB1 was 
to increase the number of pausing events in growing mitotic-spindle microtubules, 
suggesting that wild-type APC normally stimulates the antipause activity of EB1 on 
mitotic-spindle microtubule polymerization. These effects of N-APC1–1450 on EB1-
associated microtubule pausing were not affected by nocodazole and were partially 
rescued by microtubule-independent C-APC2560–2843 (which does not contain a 
microtubule-binding domain), suggesting that APC normally regulates EB1 function 
in the cytosol, prior to association with microtubule plus-ends.
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Recent studies have further established an association between APC deficiency 
and a number of other mitosis-related genes (Abal et al. 2007; Hadjihannas et al. 2006). 
Using FISH analysis Hadjihannas et al. (2006) observed that 60% of colo rectal 
cancers with chromosomal instability expressed high levels of Conductin compared 
to 7% of colorectal cancers without chromosomal instability (Hadjihannas et al. 
2006). When Conductin was expressed in near-diploid, APC-wild-type, HCT116 
cells, 14–46% of cells exhibited chromosomal gains or losses compared to 2–7% 
of HCT116 with low, basal levels of Conductin expression. siRNA depletion of 
APC in HCT116 cells leads to upregulation of Conductin, and 12–20% of cells 
were observed to contain chromosomal gains or losses. Conductin levels were cell-
cycle dependent and coimmunoprecipitated specifically with the known mitotic 
regulator PLK1, but not with other mitotic regulators (Mad2, Emi1, cdcd27, 
cyclin B1, Cdc2). Both Conductin and PLK1 localized to mitotic centrosomes and 
spindles. Expression of Conductin in HCT116, DLD1, and SW480 colon-cancer 
cells consistently led to significant impairment of mitotic-spindle checkpoint with 
nocodazole treatment (20–30% arrest in Conductin-overexpressing cells compared 
to >80% arrest in cells with basal Conductin expression). Conductin inhibition 
in chromosomally unstable SW480 cells by RNAi restored nocodazole-induced 
mitotic-spindle arrest in these cells.

Abal et al. (2007) performed videomicroscopy and transcriptome analysis on 
diploid adenomas from transgenic pVillin-KRASV12G mice expressing oncogenic 
human K-Ras and on adenomas from compound Apc+/1638N/pVillin-KRASV12G mice 
with dominant truncating Apc mutations (Abal et al. 2007). Videomicroscopy revealed 
mitotic defects in the Apc+/1638N/pVillin-KRASV12G, but not pVillin-KRASV12G 
polyps. Transcriptome analysis revealed that Apc mutation was statistically 
significantly associated with upregulation of MAD2L1, BUB1B, and STMN1. Both 
MAD2L1 and BUB1B are components of the mitotic-spindle checkpoint and 
STMN1 regulates microtubule polymerization. All three genes were observed to 
be overexpressed in nonfamilial human adenomas, carcinomas, and FAP adenomas 
compared to normal mucosa. Furthermore, transfection of wild-type APC in APC-
mutant SW480 colon-cancer cells moderately reduced MAD2L1, BUB1B, and 
STMN1 expression as did APC silencing by siRNA in 293 cells, further linking 
APC derangement with additional important mitotic-spindle proteins.

In addition to direct effects on the mitotic spindle which appear to give rise to 
chromosomal instability, APC mutation has long been linked to apoptosis resistance 
as inducible APC expression in colon-cancer cells with an APC mutation triggers 
apoptosis (Morin et al. 1996). There is an obvious benefit for cancer cells in link-
ing mitotic-spindle deregulation that gives rise to chromosomal misalignment with 
cellular resistance to the identification (which triggers cell death) of chromosomal 
derangements. Dikovskaya et al. (2007) have recently investigated the association 
of APC with both mitotic spindle and apoptotic function (Dikovskaya et al. 2007). 
RNAi APC-depleted U2OS human osteosarcoma cells displayed mild metaphase 
kinetochore tension abnormalities. Although these abnormalities were expected to 
lead to the accumulation of spindle-checkpoint proteins, decreased Bub1, as well 
as BubR1 association with kinetochores, was observed in these cells, as was an 
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accelerated rate of mitotic progression. These APC-deficient U2OS cells displayed 
greater resistance to nocodazole- and taxol-induced mitotic-checkpoint arrest than 
APC-sufficient control cells. Inappropriate mitotic exit of APC-depleted U2OS 
cells leads to mitotic slippage and an increased population of tetraploid cells that 
had exited mitosis (as distinct from cells in M phase that normally possess double 
chromosome content). The number of tetraploid cells that had exited mitosis was 
increased even further with nocodazole or taxol treatment indicating that APC 
deficiency led to both mitotic-spindle-assembly abnormalities and mitotic-spindle-
checkpoint abnormalities. Apoptosis was directly assessed by detection of cleaved 
Caspase 3. Although APC-depleted cells did undergo appropriate apoptosis after 
staurosporine treatment, basal levels of apoptosis and apoptotic responses to noco-
dazole and taxol were statistically significantly reduced in APC-depleted cells com-
pared to controls. From these experiments, it thus appears that APC loss (depletion, 
as distinct from truncation) leads to a combination of defects compromising the 
mitotic spindle and mitotic checkpoint as well as apoptosis.

Although much of the information presented in this chapter appears to support a 
role for APC in chromosomal instability that is separate from its role in the canoni-
cal WNT pathway, recent evidence suggests that there may be a greater overlap 
in these roles of APC than has been previously appreciated (Tighe et al. 2007). 
Tighe et al. (2007) inhibited GSK-3β kinase activity in HeLa and DLD1 human 
cancer cells using a panel of small molecule inhibitors and analyzed the effects on 
mitosis. GSK-3β is a kinase that, in concert with APC and Axin, targets β-catenin 
for proteolysis in canonical WNT signaling. Compared to controls, cancer cells 
treated with GSK-3β inhibitors displayed delayed mitotic entry and exit, delayed 
chromosomal alignment, disoriented chromosomal alignment, altered mitotic spin-
dle morphology, and, ultimately, elevated levels of chromosome missegregation. 
GSK-3β inhibition of DLD1 cells with siRNA similarly affected spindle morphol-
ogy and chromosome alignment and segregation. Whether these mitotic-spindle-
related roles of GSK3β are separate from its role in canonical WNT signaling 
was not addressed in this study. Furthermore, although GSK3b mutation does not 
appear to play a role in colorectal carcinogenesis and thus is unlikely to contribute 
to chromosomal instability, the results of this study raise concern over the safety of 
GSK3β inhibitors currently under investigation for diabetes and neurodegenerative 
disorders.

Conclusions

A number of apparently distinct pathways of genomic instability including chro-
mosomal, microsatellite, and CpG-island-methylation instabilities appear to be 
critical in human carcinogenesis. The most common form of this genetic instability 
in colorectal cancer is chromosomal instability. Chromosomal instability is char-
acterized by an increased rate of loss or gain of large portions of chromosomes 
or whole chromosomes. Approximately 85% of colorectal cancers are aneuploid 
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and appear to be both genetically and clinically distinct from cancers that do not 
display this hallmark of chromosomal instability. Chromosomal instability appears 
to be a genetically dominant phenotype, and the underlying cause of this mutator 
pathway has, until recently, been largely enigmatic. A number of mitotic-spindle 
and cell- cycle genes, such as BUB1, MAD2, Aurora-A, and CDC4, appear to play 
a causative role in chromosomal instability in a subset of colorectal cancers with 
aneuploidy. In addition, it now appears that specific truncating mutations of the 
colorectal cancer gatekeeper gene, APC, play a critical role in establishing chromo-
somal instability in the majority of colorectal adenomas and carcinomas. Evidence 
for this relationship initially came indirectly from studies of APC functional 
domains and mutational analyses. Recently, our understanding of APC mutation in 
chromosomal instability has been advanced through both forward- and reverse-ge-
netic experiments establishing APC as a key regulator of mitotic-spindle assembly 
and the mitotic-spindle checkpoint. A better understanding of this apparent causal 
role of APC mutation in colorectal cancer chromosomal instability may one day 
play a critical role in the development of effective molecular-based chemoprevention, 
screening, and therapy.
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Chapter 4
DNA Methylation in Colorectal Cancer: 
Multiple Facets of Tumorigenesis

Joanne P. Young and Peter W. Laird

Introduction

Epigenetic mechanisms of gene regulation result in stable cellular phenotypes that 
are passed on at cell division but are not explained by alterations in the primary 
structure of DNA; they contribute to both phenotypic diversity and disease (Jones 
et al. 1999; Serman et al. 2006). Epigenetic control relies on multiple interrelated 
processes. Perhaps foremost among these are the post-translational modifications to 
the N-terminal tails of the histone proteins that constitute the nucleosome packaging 
of genomic DNA. The type and distribution of these modifications can influence 
the degree of chromatin compaction and can govern interactions with other chro-
matin proteins and trans-acting factors. In higher eukaryotes, an additional, very 
stable epigenetic silencing mechanism is mediated by C-5 methylation of cytosine 
residues; in mammals, this is in the context of CpG dinucleotides (Boyer et al. 
2006; Lee et al. 2006). There is also evidence for a role in transcriptional control 
by subsets of RNA molecules (Lippman et al. 2004). Interactions between the 
DNA and protein complexes provide a means whereby transcription is controlled 
by altering the three-dimensional structure of chromatin within the nucleus of a cell 
and by the selective recruitment or exclusion of transcription factors.

Cytosine-5 DNA methylation at CpG dinucleotides plays a key role in long-
term silencing of parasitic DNA elements and of other types of repetitive elements, 
and is essential for maintenance of: silenced genes on the inactive X-chromosome 
in females; imprinted genes; and some developmentally controlled genes (Serman 
et al. 2006). Complex organ systems in humans require a reservoir both of stem-
like and proliferating cells for tissue building and renewal, and of differentiated 
cells which give rise to the phenotypic features of a tissue or organ. Epigenetic 
mechanisms contribute significantly to the coordinated gene expression that 
underlies this process (Jaenisch et al. 2003). The pathogenesis of human disease 
via inherited disorders, inflammation and aging, response to environmental agents 
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(Sathyanarayana et al. 2007), and the action of infectious organisms all result in 
altered gene expression, accompanied or mediated by DNA methylation changes 
(Santos-Reboucas et al. 2007).

The target CpG dinucleotide sequence for DNA methylation in mammals is 
distributed unevenly across the genome. Much of the genome is depleted of most 
CpGs, interrupted by occasional stretches of about 500 bp of normal CpG density, 
referred to as CpG islands (Bird 1986). About half of all mammalian promoters 
have a CpG island spanning the transcription start site, but a significant minority 
of CpG islands can be found in downstream areas of genes or even in intergenic 
regions. CpG islands and CpG-poor areas of the genome display quite different 
epigenetic behaviors, so it is important to keep this distinction in mind as we 
discuss epigenetic alterations in colorectal cancer. CpG islands are usually not 
methylated, whether or not the gene is expressed (Issa 2004). However, when they 
become methylated in a normally expressed gene, there is a reciprocal relationship 
between the density of methylated cytosine residues in the promoter region of a 
gene and the level of transcription (Bird 1986). It is not certain whether this is a 
direct physical-sequence-dependent phenomenon or whether it is mediated indi-
rectly through the deacetylation of histones with resulting changes in the spatial 
configuration of the DNA.

Congenital disorders involving abnormal imprinting are seen in the fetal and 
postnatal overgrowth conditions such as Beckwith–Wiedemann and Silver–Russell 
syndromes (Delaval et al. 2006). Aging is associated with increasing DNA meth-
ylation of some CpG islands in the colon (Ahuja et al. 1998, 2000; Issa 1999, 
2000; Chan et al. 2002a, b) and in other tissues (Santos-Reboucas et al. 2007). 
Environmental exposures such as tobacco smoke (Samowitz et al. 2006; Slattery 
et al. 2007) and perhaps toxins (Shen et al. 2002) have been shown to be associated 
with increased CpG-island DNA methylation in cancer. The presence of infectious 
agents has also been associated with promoter DNA hypermethylation in prema-
lignant and malignant lesions of the epithelia and hemopoietic tissues. Oncogenic 
viruses, in particular Epstein–Barr virus (EBV) in gastric cancer (Chang et al. 
2006) and human papilloma virus (HPV) in cervical cancer (Feng et al. 2007; Kang 
et al. 2007), and bacteria, such as H. pylori in gastric cancer, are associated with 
frequent promoter DNA hypermethylation (Perri et al. 2007). The exact mechanism 
is unknown and, though there is some evidence for suppression of host immune 
response, and host suppression of integrated sequences, DNA methylation is thought 
to be a result of chronic inflammatory processes, possibly associated with increased 
cell turnover. Chronic inflammation in the absence of known infectious agents is 
seen in Barrett metaplasia in the esophagus and inflammatory bowel diseases, two 
conditions where DNA methylation is frequent (Issa et al. 2001; Baumann et al. 
2006; Clement et al. 2006; Hamilton et al. 2006). Hence, it may be the inflamma-
tion and associated cell turnover, rather than the agents themselves, that induce 
promoter DNA hypermethylation (Shames et al. 2007). Importantly, DNA methyla-
tion plays a fundamental role in the establishment of neoplasia in a wide variety 
of human tumors. Neoplastic transformation in high-cell-turnover tissues, such as 
the colorectum, is associated with changes in chromatin architecture and epigenetic 
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alterations at multiple levels, creating an environment dominated by disordered cell 
growth (Shames et al. 2007).

DNA Methylation and Neoplasia

The alteration of DNA methylation patterns in cancer has been recognized for 
several decades, but the causal relevance of these changes to the cancer process 
has only recently gained acceptance (Jones et al. 1999). In the 1970s, hybridiza-
tion studies of malignant teratomas with normal murine cells implicated epigenetic 
factors in the resulting nonmalignant phenotype (Mintz et al. 1975). More recently, 
Jaenisch and colleagues have demonstrated that the passage of melanoma nuclei 
through an embryo, a process known to remove and re-establish DNA methylation 
patterns, resulted in diminution or abrogation of some of the malignant behaviors 
of the melanoma (Hochedlinger et al. 2004). Alterations of DNA methylation in 
human cancer cells were first reported in 1982 as a global decrease of DNA meth-
ylation content in human cancer cell lines (Diala et al. 1982, 1983), and then as 
localized (Feinberg and Vogelstein 1983a, b; Gama-Sosa et al. 1983) and global 
(Flatau et al. 1983; Gama-Sosa et al. 1983) DNA hypomethylation in primary 
tumors. Tumor-specific CpG-island hypermethylation was first reported in 1986 
for the calcitonin gene in human lung tumors and lymphomas (Baylin et al. 1986). 
These early reports were followed by extensive documentation of these two kinds 
of DNA methylation changes in cancer genomes: widespread loss of global DNA 
methylation content, largely occurring in CpG-poor parts of the genome, and local-
ized increased or de novo methylation of CpG islands, which are often unmethyl-
ated in normal tissues. This highly localized CpG-island hypermethylation does 
not affect CpG dinucleotides in sufficient numbers to offset the genome-wide 
reduction in DNA methylation content. Nevertheless, CpG-island hypermethyla-
tion has important phenotypic consequences, because many gene promoters are 
covered by CpG islands and become silenced by abnormal hypermethylation in 
cancer. Therefore, promoter CpG-island hypermethylation has received, by far, the 
most attention in cancer epigenetics research. Although global reductions in DNA 
methylation content are thought to be associated with increased genomic instability, 
relatively little is known about the phenotypic effects of localized hypomethylation 
of specific gene promoters. In recent years, it has become apparent that various 
mechanisms underlie global or localized hypomethylation and different types of 
localized hypermethylation.

An interesting mechanistic example of a cancer-associated epigenetic defect that 
involves both regional DNA hypo- and hypermethylation is loss of genomic imprint-
ing. Imprinted loci are expressed monoallelically in a parent-of-origin-dependent 
manner, with the nonexpressed allele generally displaying promoter CpG-island 
hypermethylation. However, regulation of these regions can be complex, and can 
involve competition for enhancers and hypomethylation of regulatory regions near 
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the silent allele. Therefore, loss of genomic imprinting can involve both examples 
of conversion of monoallelic DNA methylation to biallelic DNA methylation and 
monoallelic DNA methylation to biallelic DNA hypomethylation.

Two clearly distinct mechanisms of CpG-island hypermethylation in colorectal 
cancer have emerged. One is the concordant hypermethylation of a specific group 
of CpG islands in a subset of colorectal cancers, referred to as CpG-island methyla-
tor phenotype (CIMP). It is not clear what mechanism underlies CIMP-associated 
CpG-island hypermethylation, but it is strongly associated with mutation of the 
BRAF oncogene. The other class of CpG-island hypermethylation found in color-
ectal cancer is the promoter methylation of stem-cell polycomb targets. Polycomb 
proteins occupy promoters of genes encoding master regulators of differentia-
tion and development in stem cells, and keep these genes in a lightly repressed 
state, poised for activation. These polycomb targets appear to be predisposed to 
CpG-island hypermethylation in cancer. It is likely that further analysis will yield 
additional subgroups of concordant CpG-island hypermethylation in colorectal 
cancer, providing clues to specific underlying mechanisms. Not all CpG islands that 
undergo cancer-specific DNA methylation are located in the promoters of tumor 
suppressor genes or even in genes that are expressed in normal tissue. However, this 
passenger-style DNA methylation is probably reflective of an increased rate of epi-
genetic inactivation affecting other key targets which contribute to tumorigenesis 
(Jones et al. 1999).

In cancer of the colorectum, and a diversity of other malignancies of epithelial 
and hemopoietic origin, promoter-DNA hypermethylation is a frequent occurrence 
(Ducasse et al. 2006; Hayslip et al. 2006; Wu et al. 2006; Yasui et al. 2006; Costa 
et al. 2007; Feinberg 2007; Li et al. 2007). It is present early in the establishment 
of neoplasia (Chan et al. 2002a, b) and is cumulative over the course of multistep 
carcinogenesis (Baylin et al. 2006). It is important to note that promoter DNA 
hypermethylation shows tissue specificity, is associated with expression silenc-
ing of the adjacent coding gene (Jones et al. 1999), and is considered to be an 
alternative inactivation mechanism for tumor suppressor genes in cancers. The 
association between promoter DNA hypermethylation and loss of expression was 
first mooted in 1986 during studies of the calcitonin gene, and demonstrated with 
some degree of certainty with subsequent studies of the CDKN2A gene (Baylin 
et al. 1986; Herman et al. 1995; Merlo et al. 1995).

The genes affected by promoter-DNA hypermethylation-induced silencing are 
involved in transcriptional regulation, DNA repair, cell-cycle control, and growth-
factor pathway control and, fundamental to the establishment of neoplasia, include 
antiproliferative and proapoptotic genes. Promoter-DNA hypermethylation can 
sometimes silence multiple members of the same gene family, suggesting a targeted 
specificity (Akiyama et al. 2003). Further, multiple adjacent genes in a particular 
region of a chromosome may also be silenced, reflecting changes in chromatin 
structure, and with implications analogous to loss of heterozygosity (Frigola et al. 
2006). Finally, DNA hypermethylation of particular genes shows tissue-specific 
differences in frequency, suggestive of functional relevance in cancer (Suzuki 
et al. 2006). Though some promoter-DNA  hypermethylation changes may be the 
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result of stochastic events, there is compelling evidence that methylation-induced 
silencing of particular genes drives critical events in multistep carcinogenesis. For 
example, in a subset of colorectal cancers, epigenetic inactivation of the DNA 
mismatch-repair gene MLH1 is likely to be the event that effects the malignant 
transformation of benign serrated polyps (Jass et al. 2000).

Other alterations observed in colorectal cancer where DNA methylation plays 
a conspicuous role include the presence of aberrant gene-specific promoter-DNA 
methylation in the constitutive genome which has become known as germline 
epimutation.

The mechanisms  governing epigenetic processes and promoter-DNA hypermethy
lation, in the colorectum in particular, remain elusive (Shames et al. 2007). 
Promoter-DNA hypermethylation does not affect all genes with equal probability. 
The presence of a large CpG island in a promoter does not dictate whether a gene 
will be methylated in cancer. Well-documented differential methylation in cancer 
includes the mismatch-repair genes: MLH1 is frequently silenced by methyla-
tion, but MSH2 and PMS2 almost never, even though all three have CpG islands 
within their promoters and play important roles in the genesis of colorectal cancer. 
Similarly, CDKN2A and RB vary markedly by organ site in their methylation 
status, despite their universal involvement in tumors (Shames et al. 2007). These 
observations suggest that DNA methylation of promoters in neoplastic progression 
is unlikely to be random and, like microsatellite instability (Simms et al. 1997) 
and allelic loss, is a directed mechanism in tumorigenesis. Recent evidence for 
such an instructive mechanism has come from work published by Keshet and 
coworkers (2006), where genes that underwent apparent de novo DNA methyla-
tion in colorectal-cancer cells were derived from functionally distinct gene groups, 
had promoter regions featuring common sequence motifs (Das et al. 2006), and 
consistent with the findings of Frigola and colleagues (2006), were found in 
clusters on chromosomes.

Epigenetic Changes in Colorectal Neoplasia

Genome-Wide Hypomethylation of DNA

Hypomethylation of DNA sequences has been recorded in the very early stages of 
colonic neoplasia (Goelz et al. 1985; Sharrard et al. 1992), prior to malignant trans-
formation (Bariol et al. 2003). It is observed in noncoding regions (Jaenisch et al. 
2003) and has been associated with genomic instability (Matsuzaki et al. 2005), 
loss of imprinting (Cui et al. 2002), and the induction of expression of oncofe-
tal genes and repetitive sequences (Yoder et al. 1997; Walsh et al. 1998). DNA 
hypomethylation is observed most often in repetitive sequences (Jaenisch et al. 
2003). The human genome contains vast amounts of repetitive DNA. Some of these 
elements represent the entire coding sequence of retroviruses embedded into the 
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genome, with associated mutations and DNA methylation (Englander et al. 1993; 
Ostertag et al. 2005), and it has been postulated that the primary function of DNA 
hypermethylation is the repression of such repetitive elements, on the basis that 
expression could lead to insertional mutagenesis (Walsh et al. 1998). In the human 
genome, many repetitive elements, including endogenous retroviruses, LINES, 
SINES, and Alu repeats, have associated promoters. The notion that demethyla-
tion of these potentially mobile elements is associated with their mobilization, 
and possible role in insertional mutagenic events has also been proposed 
(Jackson-Grusby et al. 2001).

Although it has often been hypothesized, there is as yet little concrete evidence 
for a role of DNA hypomethylation in facilitating or encouraging the upregulation 
of genes that are not expressed in normal adult cells, such as those for embryonic 
growth and development. However, in principle, this could result in aberrant expres-
sion of genes which may encourage neoplastic transformation. Hypomethylation 
of some oncogenes has been reported in colorectal tumors, including the KRAS 
and HRAS oncogenes (Feinberg and Vogelstein 1983a, b) and of a noncoding 
element in MYC genes (Sharrard et al. 1992), that shows increasing frequency with 
progression.

DNA hypomethylation is frequent in colonic tumors and is thought to lower 
the threshold for the establishment of neoplasia. It is the likely initiator of spatial 
abnormalities in chromatin which result in faulty segregation at mitosis and ulti-
mately determine cancer cell ploidy. Overall cytosine DNA methylation content is 
reported to decrease with increasing tumor advancement. A well-recognized result 
of DNA hypomethylation is the induction of global genetic instability and, though 
the evidence is mostly indirect, this has been observed in cases of extreme global 
hypomethylation in murine models (Gaudet et al. 2003; Karpf et al. 2005) and in 
multiple studies of human cancers particularly those of the colorectum (Eden et al. 
2003; Matsuzaki et al. 2005; Rodriguez et al. 2006). DNA hypomethylation-related 
instability is primarily of a chromosomal nature, and may contribute to the high 
levels of loss of heterozygosity seen in colorectal tumors. Indirect consequences of 
demethylation-induced instability may stem from the transposition of a normally 
silent gene into proximity with an active promoter.

Studies of colon cancer cell lines that used a selectable retroviral reporter were 
among the first to demonstrate, at a fundamental molecular level, that the mecha-
nisms that drive carcinogenesis in the colon are heterogeneous, and that one of 
these mechanisms governed chromosomal instability (Lengauer et al. 1997a, b). 
In these experiments, where all cell lines were selectable with G418, the retro-
viral 5'-LTR was methylated in approximately one-half of the lines, rendering 
the beta-galactosidase reporter gene undetectable. An interesting observation 
from this work was that cell lines with a mismatch-repair defect were able to 
methylate ectopic DNA, whereas cell lines that were wild type for MMR were 
vulnerable to genome-wide chromosomal aberrations and aneuploidy associated 
with decreased methylation ability. However, subsequent work did not confirm 
the link between functional mismatch repair and a reduced methylating capability 
(Pao et al. 2000).
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Loss of Imprinting in Colorectal Cancer

Genomic imprinting is a type of non-Mendelian inheritance, confined to mammals, in 
which only one allele of a pair is expressed. Imprinted genes are silenced in a parent-
of-origin-specific manner, and are classified as maternally or paternally imprinted 
according to the silenced allele. There are approximately 50–100 imprinted genes 
in the human genome, and these genes acquire epigenetic marks during game-
togenesis. It is known that DNA methylation participates in the maintenance of 
monoallelic chromatin sites. Genomic imprinting is coordinated within a regulatory 
region known as the imprinting control region (ICR), which is often an example of 
a differentially methylated region (DMR). Once imprinted, the allele-specific 
differential epigenetic state is preserved through cell division, in part, by a main-
tenance methyl-transferase known as DNMT1 (Vilkaitis et al. 2005; Jelinic et al. 
2007). Interpretation of the imprint is controlled by one of two mechanisms: chro-
matin barrier formation through the binding protein CTCF which has been described 
for the imprinted locus IGF2/H19 (Bell et al. 2000, 2001); or a similar barrier via 
untranslated RNAs associated with KCNQ1 (Mancini-DiNardo et al. 2003, 2006), in 
either case ensuring that only the maternal or paternal allele is expressed.

Imprinted genes tend to be regulators of embryonic growth, placental growth, or 
adult metabolism that require precise control of their expression for normal develop-
ment. Congenital overgrowth syndromes, including Beckwith–Wiedemann syndrome, 
result from the disruption of imprinting controls (Butler 2002). Recent interest has 
centered on loss of imprinting (LOI) in a large variety of human cancers, including that 
of the colorectum. In colorectal-cancer patients, LOI can manifest as activation of the 
normally silent copy of the growth promoting gene IGF2. In murine models, the result-
ant upregulation leads to aberrant proliferative defects which include expanded colonic 
crypts (Sakatani et al. 2005). Further, murine models where LOI has been introduced 
have an increased susceptibility to tumor formation (Holm et al. 2005). In humans, 
LOI at IGF2 is observed in 54–66% of colorectal cancers and, informatively, in most 
corresponding normal mucosae (Nakagawa et al. 2001a, b; Ohlsson 2004; Maenaka 
et al. 2006) and in peripheral blood lymphocytes. Patients with past or present colo-
rectal cancer are more likely to have LOI at IGF2 as are patients with a family history 
of colorectal cancer in first-degree relatives (Cui et al. 2003) suggesting epigenetic 
predisposition. Such findings suggest that LOI may be used as an indicator of risk, and 
even a point of therapeutic intervention for colorectal neoplasia, as such individuals 
will have a greatly expanded pool of cells that are vulnerable to neoplasia.

Polycomb Proteins and DNA Methylation 
in Colorectal Cancer

Several hundred genes have been reported to accumulate de novo DNA methylation 
within their CpG-island promoters in cancer. A previous report suggested that 
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this process may be associated with a directive mechanism, and that such genes 
shared common sequence features (Keshet et al. 2006). Recently, one mechanism 
of CpG-island hypermethylation was suggested from an observed link between the 
chromatin state in stem cells of genes involved in normal development, on the one 
hand, and the subsequent acquisition of cancer-associated DNA methylation on 
the other, thus reinforcing the concept of progenitor or “stem-like” properties in 
cancer cells (Ohm et al. 2007; Schlesinger et al. 2007; Widschwendter et al. 2007).

Histone modifications characteristic of heterochromatin accompany promoter 
DNA methylation during normal postimplantation development. One particular 
chromatin mark, namely trimethylation of histone H3 at lysine 27 (H3K27), has 
been associated with promoter DNA methylation in colon cancer cells. An important 
observation from Schlesinger and colleagues (2007) was that marking of H3K27 
was already in place in both embryonic stem cells and other undifferentiated cell 
types, suggesting that these marks may render certain genes more vulnerable to 
cancer-associated promoter DNA hypermethylation. However, it is important to note 
that stem-cell H3K27 trimethylation targets do not acquire promoter DNA meth-
ylation in normal differentiated tissues. Thus, DNA methylation of H3K27 targets 
is an abnormal event that occurs in oncogenesis, and not in normal development. 
However, not all genes that are methylated in colorectal cancer have this epigenetic 
mark, i.e., H3K27 is not a general marker of gene silencing (Schlesinger et al. 
2007); therefore, the possibility of other mechanisms must be given consideration. 
Genes other than those that carry this epigenetic mark can undergo de novo DNA 
methylation in cancer, including MLH1 and STK11. These events may represent 
stochastic promoter DNA methylation, either as an early event, even detectable in 
histologically normal colonic mucosa adjacent to the colorectal tumor (Nakagawa 
et al. 2001a, b), or as a late event in the case of methylation of the second allele 
following mutation or deletion of the first allele; this may represent an adaptive 
growth response of the neoplasm (Wong et al. 1999; Esteller et al. 2001).

H3K27 undergoes marking by a polycomb repressor complex, PRC2, which 
is composed of enhancer of zeste homolog 2 (EZH2) working in concert with its 
cofactors EED and SUZ12 (Zhang et al. 2004). The PRC2 complex plays an impor-
tant role in the suppression of differentiation-inducing gene products in embryonic 
stem cells inasmuch as PRC2 components silence genes that, by inducing differ-
entiation, would otherwise abrogate the ability of a progenitor cell to proliferate 
(Lee et al. 2006). The findings of several studies have suggested that genes marked 
by PRC2 components in stem cells are significantly more likely to undergo DNA 
methylation in a cancer-specific manner in colon, breast, and ovarian cancer cells 
(Widschwendter et al. 2007), and that they contain potential PRC2 binding elements 
within their DNA sequence (Keshet et al. 2006; Ohm et al. 2007; Schlesinger et al. 
2007; Widschwendter et al. 2007). Therefore, genes targeted by polycomb modifi-
cation in stem cells contain promoter motifs that act as genetic signals for de novo 
DNA methylation in cancer (Schlesinger et al. 2007; Tanay et al. 2007).

It is important to note that polycomb repressors appear to play a different role 
in tumor cells than they do in the stem cells that give rise to the cancer. PRC2 
targets in stem cells are largely transcription factors that are master regulators of 
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differentiation and development (Lee et al. 2006), whereas, in cancer cells, PRC2 
targets feature genes encoding glycoproteins, receptors, and immunoglobulin-related 
genes (Squazzo et al. 2006), which are not frequent cancer-specific DNA methyla-
tion targets. How and when polycomb stem-cell targets acquire abnormal DNA 
methylation is currently unclear, but it seems likely that this occurs early, perhaps 
preneoplastically. Therefore, studies of DNA methyltransferases and of polycomb 
proteins in advanced cancer cells may be of limited relevance to our understanding 
of this event. Reports of DNA methyltransferase upregulation in cancer cells have 
been contradictory (Eads et al. 1999; Robertson et al. 1999; Robertson 2001), and 
it seems unlikely that mere overexpression of DNA methyltransferases is at the root 
of abnormal DNA methylation in cancer.

There have been reports of tumor-specific increases in polycomb components 
(Varambally et al. 2002; Kleer et al. 2003), with EZH2, in particular, having been 
reported to be upregulated in multiple cancers (Fiskus et al. 2006; Beke et al. 2007; 
Bryant et al. 2007; Lu et al. 2007; Marker 2007; Mattioli et al. 2007; Shi et al. 2007). 
However, as noted earlier, polycomb repression may play a role in advanced cancer 
cells other than DNA methylation recruitment. One of the hallmarks of neoplasia 
is resistance to induction of apoptosis. One of the most important biochemical 
responses to apoptotic stimuli is the induction of a cascade of proteolysis initiated 
by a family of enzymes called caspases. Recent links between polycomb compo-
nents and caspases have been reported: Wong and colleagues (2007a, b) have dem-
onstrated that Ring1B, a component of polycomb protein complexes that modulate 
chromatin structures, is a direct substrate of active caspase-3 and caspase-9 both in 
vitro and in vivo. Though not directly applicable to the discussion here, such a link 
between polycombs and a fundamental process which is disrupted in the establish-
ment of neoplasia is nonetheless of great interest.

The CpG-Island Methylator Phenotype

The concept of a concerted “epigenetic instability” in colorectal cancers driving the 
progression of tumors via de novo DNA methylation of gene promoters was intro-
duced in 1999. As a result of their own observations, Jean-Pierre Issa and 
colleagues proposed a dichotomous scheme of molecular classification in colorectal 
cancers, based not upon genetic changes, such as had been identified in 1993 with 
the recognition of microsatellite instability (MSI) (Ionov et al. 1993), but upon an 
analogous system involving epigenetic alterations (Toyota et al. 1999). Colorectal 
cancer included a subset of tumors in which there was widespread and concordant 
DNA hypermethylation of specific gene promoters, which was named CpG-island 
methylator phenotype or CIMP. CIMP supports neoplastic progression by inactiva-
tion of tumor suppressor genes in a similar fashion to the global Darwinian-style 
somatic evolution model which was used to explain MSI (Issa 2004).

Like the colorectal-cancer milestones before it: the Vogelstein model in 1988 
(Vogelstein et al. 1988), and the recognition of MSI some 4–5 years later (Aaltonen 
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et al. 1993; Ionov et al. 1993; Thibodeau et al. 1993), publication of the novel 
concept of CIMP generated much interest and research activity, the overwhelming 
majority of which supported the proposition that CIMP was a recognizable pheno-
type within colorectal cancer (van Rijnsoever et al. 2002; Samowitz et al. 2005a, b, 
2006; Song et al. 2005; Ogino et al. 2006a, b, 2007a, b; Tanaka et al. 2006). CIMP 
tumors were found to occur in other organs (An et al. 2005; Chang et al. 2006; Marsit 
et al. 2006) and, in the colon, showed associations with female sex (Hawkins et al. 
2001, 2002; An et al. 2005; Chang et al. 2006; Marsit et al. 2006), advanced age 
at presentation (Jass et al. 1998; Iacopetta et al. 2006), a tendency to occur proxi-
mally in the colon (Thibodeau et al. 1993; Young et al. 2001a, b; van Rijnsoever 
et al. 2002; McGivern et al. 2004; Rashid et al. 2004; Samowitz et al. 2005a, b), 
increased incidence of somatic BRAF- and KRAS-activating mutations (Toyota 
et al. 2000; Kambara et al. 2004; Tanaka et al. 2006; Weisenberger et al. 2006), 
and distinctive histological features such as clonal heterogeneity, mucinous or 
poorly differentiated histology, and contiguous serrated precursor lesions (Young 
et al. 2001a, b). In contrast, mutations in TP53, upregulation of beta-catenin, and 
 chromosomal instability were relatively rare, suggesting that CIMP tumors devel-
oped via an alternative nonoverlapping pathway to that proposed by Vogelstein and 
 colleagues (1988).

The original marker set used to define CIMP was subsequently improved by the 
introduction of the MINT (methylated in tumor) clones which had been derived 
from MCA (methylated CpG-island analysis). In addition, this study made the 
important step of partitioning methylated gene promoters into type-A genes (genes 
frequently methylated in tumors, but also in normal tissue as a function of aging) 
and type-C genes (genes which underwent cancer-specific DNA methylation) 
(Toyota et al. 2002). At least several hundred gene promoters are affected by DNA 
hypermethylation in cancer (Shames et al. 2007). Until very recently, the subset 
of these gene promoters which define CIMP had been a moving target, but had 
consistently been chosen on the basis of their being type-C genes. Type-C gene 
promoters define a subgroup of colorectal cancers that are characterized by a level 
of epigenetic instability that is 3- to 5-fold higher than the remainder of colorectal 
cancers (Issa 2004). It is important to note here that although some of the genes 
within CIMP are those premarked by polycomb repressor complexes, the genes 
that define CIMP also include genes such as MLH1 which are not premarked. 
Conversely, many premarked genes are not found within the CIMP cluster; 
therefore, even though there is some overlap between the gene groups, it is likely 
that CIMP arises through a later-onset and independent mechanism.

Despite multiple supportive publications, CIMP remained a controversial concept. 
Several groups failed to find a dichotomous distribution in the analysis of promoter 
DNA methylation in colorectal cancers (Eads et al. 1999; Yamashita et al. 2003; 
Anacleto et al. 2005). In 2003, a publication appeared which cast significant doubt 
on the concept of CIMP, suggesting that it was an arbitrary discontinuity in a 
continuous distribution of hypermethylated gene promoters (Yamashita et al. 2003). 
This was followed by a further publication that supported those findings (Anacleto 
et al. 2005), and this doubt has continued until the present day (Wong et al. 2007a, b). 
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Several factors may have influenced these reports. Firstly, 70–80% of de novo 
methylated promoters in humans are age-related and need to be excluded from the 
analysis. Secondly, the use of a nonquantitative detection method and multiple differ-
ent panels has also added to the confusion surrounding the classification of CIMP.

In an extensive study in 2006, Weisenberger and colleagues attempted to address 
the controversy as to whether CIMP was a classification that could be demonstrated 
in a more global and objective manner, as suggested by Issa (2004). To this end, 
they assayed a total of 295 colorectal tumors for DNA methylation using a stepwise 
approach, starting with 195 DNA methylation markers, identifying 92 type-C mark-
ers, and through unsupervised hierarchical cluster analysis demonstrated unequivo-
cally that CIMP represented a distinct subset of colorectal tumors (Weisenberger 
et al. 2006). Further, CIMP could be classified by using a subset of just five markers 
(NEUROG1, CACNA1G, IGF2, RUNX3, and SOCS1), and this was validated in an 
independent set of colorectal cancers. In line with previous findings, there was a slight 
trend toward female sex, and significant associations with location in the proximal 
colon, MSI-H status, and MLH1 promoter DNA methylation. This CIMP cluster was 
also detected by the original panel, although with significantly decreased specificity. 
The new marker panel identified tumors accounting for almost all sporadic MSI-H 
colorectal cancers, but also for as many again of colorectal cancers which were not 
MSI-H. The strongest of all associations was with activating somatic mutation in 
the BRAF oncogene (odds ratio for association was >200). Activating mutations in 
BRAF were rarely seen outside the CIMP cluster. However, only 70–80% of CIMP 
colorectal cancers have a BRAF mutation. This very tight association between 
CIMP and BRAF mutation, and the mutual exclusivity of BRAF and KRAS muta-
tions resulted in the unexpected finding that CIMP was inversely associated with 
KRAS mutation, in contrast to some previous publications.

In approaching the question of CIMP as causal, there are several aspects of the 
argument which should be taken into account. Firstly it is clear that, in sporadic 
colorectal cancer, CIMP precedes the onset of MSI, as it is the epigenetic inac-
tivation of the DNA mismatch-repair gene MLH1 that gives rise to the MSI-H 
phenotype at malignant transformation. Reversal of this process has been achieved 
in cell-line experiments (Herman et al. 1998), and the absence of CIMP in Lynch 
syndrome tumors also supports the premise that MSI does not accelerate epigenetic 
instability (McGivern et al. 2004). Secondly, epigenetic changes such as those seen 
in CIMP colorectal cancers are present in normal mucosa in patients with CIMP 
cancers (Young et al. 2001a, b; Wynter et al. 2004; Kawakami et al. 2006), and also 
in a colorectal-cancer predisposition known as hyperplastic polyposis syndrome 
(HPS) (Wynter et al. 2004; Minoo et al. 2006) where DNA methylation of the 
normal colonic tissue is extraordinarily dense. Thirdly, patients with HPS exhibit 
multiple cancer and polyps in their colorectum which are concordant for CIMP and 
somatic BRAF mutation (Chan et al. 2002a, b; Beach et al. 2005), indicating that 
dysregulation of epigenetic controls may have resulted from a preceding genetic 
event. Finally, colorectal-cancer families have been reported where somatic BRAF 
mutation and CIMP feature prominently in the tumor phenotype (Frazier et al. 2003; 
Young et al. 2005; Vandrovcova et al. 2006).
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Mechanistic questions also arise during the study of CIMP. Unlike MSI, where a 
defined genetic cause has been identified, namely that of an inactivated mismatch-
repair gene, there have been no analogous mutations found in the epigenetic 
machinery of human cells which could account for CIMP. However, consistent with 
MSI, CIMP is likely to be driven by the relaxation of an important cellular control 
mechanism, to account for the widespread methylated promoters present in CIMP 
tumors, rather than a stochastic selection of DNA methylation inactivated genes. 
The close association of BRAF mutation with CIMP suggests that one may give rise 
to the other. Minoo and colleagues have developed a novel mechanistic model to 
investigate the effect of forced expression of a BRAF-activating mutation in a near-
normal colorectal cell line. Findings included increased resistance to apoptosis, 
maintenance of a transformed phenotype, and the stimulation of promoter DNA 
methylation in the mismatch-repair gene MLH1 (Minoo et al. 2007). The close 
relationship between somatic BRAF mutation and CIMP is likely to yield more 
novel insights in the near future.

The Histological Context of CIMP in the Colorectum

An explanation for the distinctive molecular and histologic, and even epidemiologic 
features of colorectal cancers characterized by CIMP and somatic BRAF mutation 
lies in their origins within a particular subset of serrated polyps (Jass 2001, 2003; 
Kambara et al. 2004). However, in parallel with the recognition and acceptance 
of CIMP as a distinct subset of colorectal cancer, its histologic features remained 
controversial for at least a decade. (For a full review of the serrated pathway of 
colorectal-cancer development see Chap. 4.)

Colorectal cancer arises in precursor lesions or epithelial polyps of which there 
are two common types. For decades, one of these, the adenoma, has been consid-
ered to have malignant potential. However, the other type (hyperplastic polyps) 
has been dismissed as innocuous. During the last decade, a subset of hyperplastic 
polyps called sessile serrated adenomas (SSA) which are large and atypical has 
risen to prominence as being the major precursor lesion for CIMP colorectal can-
cers (Goldstein et al. 2003; Jass 2003, 2004; Goldstein 2005). Located frequently 
in the proximal colon, SSA are characterized by somatic BRAF mutation and 
CIMP (Kambara et al. 2004), consistent with their precursor status (Yang et al. 
2004). Patients with Hyperplastic Polyposis Syndrome (HPS) have numerous ser-
rated polyps and frequently harbor SSA in their proximal colon. HPS patients have 
played a major part in the elucidation of the serrated pathway to colorectal cancers 
with CIMP and BRAF mutation. It was in patients with HPS that the serrated path-
way as we understand it currently, was first recognized at both a histomorphologic 
(Torlakovic et al. 1996) and molecular level (Jass et al. 2000).

Gene-promoter DNA methylation is found in a variety of precursor lesions 
including adenomas; however, SSA are characterized by the dense DNA methylation 
of type-C genes that are associated with CIMP, and this is an important distinction. 
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The markers used to define CIMP (MINT clones) have been analyzed in MSI-H 
sporadic colorectal tumors as a comparison with the MSI-H colorectal cancers in 
Lynch syndrome which have a genetic basis (McGivern et al. 2004). Included in 
this analysis was a gene of the TGF-beta superfamily, HPP1, which is frequently 
methylated in a wide variety of colonic neoplasms including adenomas, serrated 
polyps, and cancers with and without CIMP (Young et al. 2001a, b). There was 
a striking difference in the level of DNA methylation seen in the MINT clones, 
with almost negligible levels being present in the Lynch-syndrome cancers. HPP1 
undergoes marking by PRC2 in progenitor cells and, in contrast with the MINT 
clones, showed significant DNA methylation in both groups, suggesting that a 
group of genes are methylated in the early establishment of neoplasia, possibly in 
microscopically normal colonic mucosa, and that CIMP is a superimposed alteration 
upon this early epigenetically unstable field change (Shen et al. 2005). BRAF mutation 
is present very early in neoplasia – at the stage of the aberrant crypt focus – and either 
may synergize with as-yet-unknown factors to potentiate the development of CIMP 
(Minoo et al. 2007), or may, as a result of CIMP, be able to exert its proliferative 
effects (Minoo et al. 2006).

Epidemiology of CIMP in Colorectal Neoplasia

Several studies, including one involving almost 400 patients with colorectal cancer, 
have investigated the epidemiology of CIMP colorectal tumors and confirmed 
associations with proximal location, advanced age, and female sex (Hawkins et al. 
2002). When microsatellite unstable cases were excluded from the analysis, the 
association with female sex was eliminated. An even larger study investigating the 
epidemiology of CIMP colorectal tumors was carried out in a population-based 
panel of over 800 cases from North America (Samowitz et al. 2005a, b). Here 
again, CIMP was unequivocally demonstrated within the population (Issa et al. 
2005) and shown to be tightly associated with somatic BRAF mutation, consistent 
with the findings of others (Kambara et al. 2004; Weisenberger et al. 2006). Here, 
family history of colon cancer was statistically significantly associated with BRAF 
mutation positive microsatellite-stable cancers (odds ratio for association was 4.2) 
suggesting a genetic predisposition toward developing colorectal cancers with 
somatic BRAF mutation. Subsequently, this same population was examined for a 
previously reported finding of an association between MSI-H and smoking (Slattery 
et al. 2004). The findings on this occasion were more definitive and showed that 
smoking was significantly associated with CIMP and with BRAF mutation irrespec-
tive of microsatellite instability status (Samowitz et al. 2006). In contrast, studies 
of the effect of diet, particularly of folate in the diet, on the propensity to develop 
colorectal cancers with CIMP and BRAF mutation have produced no consistent 
findings (Slattery et al. 2007). The findings listed earlier confirm and extend our 
understanding of colorectal tumors with BRAF mutation and CIMP as a distinct 
subtype of colorectal cancer with both genetic and environmental etiologies.
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Rare Events: Germline Epimutation 
and Colorectal Cancer

Epimutation is a term used for the abnormal silencing of a gene due to epigenetic 
factors rather than a sequence variant (Holliday 1987). If an epimutation in a 
particular gene were to be present in the germline of an individual, it would be 
expected that this individual would have an equivalent phenotype to those individuals with 
germline-inactivating mutations in the same gene. Lynch syndrome is an autosomal 
dominant cancer predisposition which manifests as familial clustering of predomi-
nantly colorectal and endometrial cancers (Douglas et al. 2005). The underlying 
genetic cause is an inactivating mutation in one of four DNA mismatch-repair genes, 
namely MLH1, MSH2, MSH6, or PMS2. Tumors developing in Lynch syndrome 
show high-level microsatellite instability (MSI-H) as a result of DNA mismatch-
repair deficiency (Lagerstedt Robinson et al. 2007).

Recently, germline epimutations associated with promoter DNA methylation have 
been reported in two genes in the DNA mismatch-repair system, with consequences 
to the patients consistent with a Lynch syndrome phenotype. In 2002, Gazzoli and 
colleagues (2002) described a case of a young-onset female patient with an MSI-H 
colorectal cancer, where one allele of the MLH1 gene was methylated in the germ-
line, and allelic loss in the tumor removed the wild-type allele in accordance with 
the typical inactivation sequence of a tumor-suppressor gene; this patient showed 
no evidence of carrying a germline genetic mutation in MLH1. Vertical transmission 
was not investigated, as parental DNA was not available for testing. The authors 
concluded that this case represented an alternative mechanism for Lynch syndrome, 
but was a relatively rare occurrence. Subsequently, Miyakura and colleagues (2004) 
described four cases of apparently nonfamilial but early-onset MSI-H colorectal 
cancer where germline methylation of MLH1 was prevalent in leukocyte DNA. In two 
cases, endometrial cancer was also present. An informative polymorphism in the 
MLH1 promoter allowed the investigators to demonstrate that DNA methylation was 
hemiallelic. This report concluded that germline epimutation was an explanation for 
a minority of cases of young-onset apparently nonfamilial MSI-H cancer, and this 
has been recently confirmed by Valle and colleagues (2007).

Suter and coworkers (2004) took a more detailed approach and addressed the 
concept that epimutation might be transmissible between generations. They analyzed 
two cases where evidence of a germline epimutation in MLH1 was present in 
multiple cell lineages from each patient. Both cases had multiple primary cancers, 
most of which were part of the spectrum of cancers of Lynch syndrome, and allelic 
loss could be demonstrated in the majority of the tumors. However, methylation of 
MLH1 was not detected in the germline of relatives, but was observed in the sperma-
tozoa of the male case suggesting that transmission to subsequent generations was a 
real possibility. DNA methylation, though extensive in the somatic normal tissues, 
was mosaic, typical of epigenetic silencing. The authors concluded that germline 
epimutation was an alternative mechanism of inactivation of MLH1 in the germline, 
but unlike Mendelian genetic traits, inheritance was weak as a result of mosaicism.
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In a further report from the same group of investigators (Hitchins et al. 2007), an 
instance of germline vertical transmission of this trait to an offspring was described. 
In two cases of germline epimutation of MLH1, transmission occurred to only 
one son despite the affected allele being passed to multiple offspring. Evidence of 
meiotic erasure of epigenetic marks occurred in the constitutive DNA of recipients 
of the methylated allele and in the spermatozoa of the son with evidence of inherit-
ance of the germline epimutation.

MLH1 is frequently methylated in sporadic colorectal cancer, marking this 
gene as vulnerable to epigenetic promoter abnormalities. However, a companion 
gene in the MMR complex, MSH2, is almost never methylated even though it has 
a large CpG-island promoter. Despite this, a family has been reported where three 
successive generations exhibit germ-line, allele-specific mosaic hypermethylation 
of MSH2 in the absence of any evidence of genetic mutation (Chan et al. 2006). 
Colorectal and endometrial cancers are MSI-H and show immunohistochemical 
absence of MSH2. The highest level of DNA methylation was seen in the rectal 
mucosa, and the lowest in the leukocytes. These individuals have multiple 
primary cancers with an early age of onset, and have tumor features consistent 
with those seen in Lynch syndrome in that they are MSI-H and show absence of 
an MMR protein on immunohistochemistry (IHC). However, none of the affected 
individuals has any deleterious sequence variation that could be invoked as the 
cause of their cancer predisposition. This is a very rare occurrence, occurring in 
less than 1% of those cases of Lynch syndrome where no deleterious mutations 
can be found (Hitchins et al. 2005). The mechanism of induction of a germline 
epimutation is currently unknown. The possibilities include occurrence as 
a secondary event to a cis- or trans-activating mutation, or as a primary event 
following fertilization (Horsthemke 2006). DNA methylation is reversible and 
mosaic in nature and, therefore, is unlikely to be consistent with Mendelian 
genetic principles. It is even possible that this event is a rare chance occurrence. 
The current debate concerning these reports is centered around whether the 
epimutation per se is inherited or whether the epimutation is caused post fertiliza-
tion by a cis-acting genetic factor or a genetic modifier (Horsthemke 2006; Chong 
et al. 2007; Leung et al. 2007; Suter and Martin 2007a, b). It is not possible at this 
time to state definitively that either gene is directly inherited in an epigenetically 
altered state. The specificity of the epimutation in the MSH2 family seems to be 
more consistent with somatic acquisition of epigenetic silencing, whereas MLH1 
germline epimutation is only weakly heritable and may be dependent upon a 
specific genetic background for expression.

DNA Methylation in the Diagnosis and Therapy of Cancer

There are several key aspects of DNA methylation that make it useful in the diagnosis 
and treatment of cancer (Laird 2003; Shames et al. 2007). DNA methylation repre-
sents a tumor-specific change in the DNA which can be detected in blood, secretions, 
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and tissue biopsies. DNA is stably methylated and can be readily measured by 
high-throughput PCR techniques, even in archived paraffin-embedded tissue (Laird 
2005). Both hyper- and hypomethylation changes are found at a very early stage 
in neoplasia, and suggest that screening for these changes may identify persons at 
increased risk for the subsequent development of malignancy. DNA methylation 
profiles can be used to type subsets of tumors from the same site as well as from 
different sites. This feature has its utility in the markedly different survival outcomes 
and responses to treatment present in subgroups of colorectal cancer. It is important 
to note that DNA methylation is potentially reversible using pharmacologic means, 
thus offering opportunities for early intervention.

Early detection of cancers is essential to the survival of the patient. The early 
onset of DNA methylation changes in the often preneoplastic tissue of the colon 
(Shen et al. 2005) and other parts of the digestive tract presents a unique opportu-
nity to detect cancer early by the development of robust assay systems. Stool tests 
for molecular markers are under development and hold the promise of being more 
specific than FOBT for routine colorectal-cancer screening (Belshaw et al. 2004; 
Suzuki et al. 2005).

Conclusions

There is much evidence for the central importance of DNA methylation in epigenetic 
processes. Complex and dynamic interdigitation of protein complexes and DNA 
serves to regulate the spatial arrangement of chromatin in an intricate and highly 
interdependent, even cyclical manner, rendering it extremely difficult to identify 
the initiating event (Laird 2005). However, it is currently thought that epigenetic 
alterations are brought about by the binding of protein complexes to the DNA, 
mechanisms that regulate transcription or changes in histones. DNA methylation, 
one of the best studied of the epigenetic alterations, is likely to require a critical 
seeding density to be established but, once in place, it exerts a powerful influence 
on subsequent gene expression. Currently, nonetheless, we do not understand the 
epigenetic regulatory machinery – and the defects within it – that give rise to cancer 
of the colon and other organs. Our increasing understanding of DNA methylation 
is likely to be central in its impact on the prevention, detection, and treatment of 
cancer in the near future.
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Chapter 5
Pathways and Pathology

Jeremy R. Jass

Introduction

The aim of this chapter is to explain how the traditional tools of the pathologist 
led first, to the classification of colorectal polyps and, then, to the concept of the 
adenoma-carcinoma sequence as the dominant tumourigenic pathway in the color-
ectum. The subsequent discovery of the genetic steps underlying this pathway gave 
rise to a single linear model to explain the initiation, progression, and final trans-
formation of the adenoma into a carcinoma. A critical analysis of the ‘polyp story’ 
will show that, from the outset, the adenoma-carcinoma paradigm was a deliberate 
oversimplification designed to facilitate clinical decision making. Rigid adherence 
to the concept, following the genetic revolution in the1980s, delayed the recogni-
tion that colorectal cancer is in fact a multi-pathway disease. Furthermore, the most 
efficient pathways to colorectal cancer are characterized by the co-occurrence of 
key elements of the archetypal pathways into ‘fusion’ pathways.

Adenoma-Carcinoma Sequence

The evidence for the adenoma-carcinoma sequence is incontrovertible. For the 
pathologist, the most convincing proof is the direct observation of cancer arising 
within an adenoma (Morson 1966). For the clinician the most direct proof is the 
prevention of colorectal cancer by colonoscopic polypectomy (Winawer et al. 1993). 
These two kinds of evidence were elegantly combined in this colonoscopic study, 
inasmuch as all five colorectal cancers that developed during the follow-up of the 
study group arose within adenomas. A third, but less direct, kind of evidence is 
provided by various striking relationships between adenomas and carcinomas. For 
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example, adenomas were shown to be six times as common in surgical specimens of 
colorectal cancer than in length-, age- and sex-matched colorectal specimens  without 
cancer (Eide 1986a). Nevertheless, uncritical acceptance of these findings may lead 
to an overly simplistic understanding of the adenoma-carcinoma sequence.

The modern ‘unifying’ classification of colorectal adenomas encourages the 
view that these lesions are essentially homogeneous and differ only according to 
the evolutionary stage at which they are diagnosed. For example, an early adenoma 
will be small, mildly dysplastic, and have a tubular architecture, while a late or 
advanced adenoma will be large, severely dysplastic, and more likely to have a 
 villous architecture. Tubular adenoma, tubulovillous adenoma, and villous  adenoma 
were originally termed adenomatous polyp, papillary adenoma, and villous papil-
loma, respectively. Prior to the internationally agreed adoption of the unifying term 
‘adenoma’ (Morson and Sobin 1976), these lesions were regarded as a set of different 
entities and not as a biologic continuum. The early controversy regarding the malignant 
potential of adenomas centred on the fact that the adenomatous polyp (tubular 
adenoma) was considered, by some, to be harmless (Spratt et al. 1958) and, by oth-
ers, to have significant malignant potential (Morson et al. 1983). Although the latter 
view has prevailed, it is nonetheless clear that most adenomas cannot progress to 
cancer, amply illustrated by experience in different clinical settings.

Malignant Potential of Adenomas in Different 
Clinical Scenarios

When an autopsy study conducted in Norway was extrapolated to a fixed Norwegian 
population, the latter cohort was estimated to include 26,419 adenoma-bearing 
individuals. During a 10-year period, 656 colorectal cancers developed within this 
population. Assuming that every colorectal cancer developed with an adenoma-bearing 
individual, it can be inferred that it required 40 adenoma-bearing subjects to produce 
one colorectal cancer during a 10-year period (Eide 1986b). Some of these subjects 
will have had two or more adenomas, and the ratio of adenoma to carcinoma will in 
fact be greater than 40 to 1. This study also showed that the risk of malignancy was 
much higher for villous adenomas than tubular adenomas (Eide 1986b).

The low risk of progression of tubular adenomas is even more graphically illus-
trated in familial adenomatous polyposis (FAP), in which many hundreds, if not 
thousands, of colorectal adenomas begin to develop at around puberty. Colorectal 
cancer develops at an average age of 39 years in newly diagnosed subjects and at 
an average age of 33 years in call-up members of known polyposis families (Day 
et al. 2003). This means that it may take up to 25 years for one or two out of many 
thousands of colorectal adenomas to become malignant.

It may be argued that the progression from adenoma to carcinoma is an age-
 related process that will accelerate in subjects developing sporadic adenomas in 
 middle age. This may be countered by the fact that colorectal cancers develop at 
an early age in Lynch syndrome or hereditary non-polyposis colorectal cancer. This is 
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despite the fact that subjects with Lynch syndrome develop small numbers of colorec-
tal adenomas. For example, in a well-studied series of 22 adenoma-positive patients 
with Lynch syndrome, most subjects had only one adenoma and only three patients 
had the maximum of three adenomas. Morphologically, Lynch syndrome adenomas 
do not differ greatly from the adenomas in familial adenomatous polyposis. Indeed, 
they cannot be differentiated except by the use of immunohistochemistry to show 
loss of expression of a DNA mismatch repair protein (Iino et al. 2000), yet there is a 
strong likelihood that each Lynch syndrome adenoma will not only progress to color-
ectal cancer but will do so within a short time frame. This rapid evolution may be 
appreciated when patients with a negative screening colonoscopy develop an interval 
 colorectal cancer before the next screening examination (Vasen et al. 1995).

Based on these simple clinical examples, common sense does not allow us to 
view adenomas as homogeneous entities differing only in their stage of progres-
sion at the time of diagnosis. Although a patient with FAP will inevitably develop 
colorectal cancer by middle age, an individual adenoma in this syndrome and an 
individual adenoma in Lynch syndrome have vastly different natural histories. 
Furthermore, the Norwegian study shows that a non-familial adenoma has a malig-
nant potential that is intermediate between the extremes observed in the two main 
forms of hereditary colorectal cancer. Despite these observations, adenomas in FAP 
have been widely accepted as the exact equivalents of sporadic adenomas. Before 
considering the facts underlying the differing mechanisms of adenoma initiation in 
the three clinical scenarios outlined, it is necessary to discuss adenoma multiplicity 
and an apparent paradox.

Adenoma Multiplicity and Malignant Potential

As pointed out earlier, the adenomas occurring in the context of the extreme multi-
plicity of FAP are, at the individual level, the least aggressive types of adenoma. 
By contrast, adenoma multiplicity is well established as a marker of aggression in 
the context of non-familial colorectal neoplasia (Day et al. 2003). The simplistic 
explanation is that the patient with two adenomas has twice the chance of developing 
colorectal cancer as the patient with one adenoma, and so on. However, observational 
studies show that adenoma multiplicity explains aggression only under particular 
circumstances. For example, one study examined the fate of patients who had adeno-
mas removed sigmoidoscopically but were not followed up (Atkin et al. 1992). There 
was no increased risk of dying of colorectal cancer in subjects with non-advanced 
adenomas, even if these were multiple. Subjects with advanced adenomas (large, 
high grade, or villous) had a threefold increase in standardized incidence ratios 
for mortality due to colorectal cancer. However, in subjects with both multiple and 
advanced adenomas, the increase in mortality was sixfold (Atkin et al. 1992).

The most parsimonious explanation for these striking observations is that there 
is a single genetic explanation underlying the predisposition to both adenoma mul-
tiplicity and adenoma aggression. An illustration of this possibility is a  longitudinal 
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study in which colorectal adenomas were not removed, but their behaviour was 
observed over time (Almendingen et al. 2003). Most adenomas did not grow, 
but, when growth occurred, this was more likely to be detected in patients with 
a family history of colorectal cancer (Almendingen et al. 2003). The existence of 
colorectal cancer families with multiple adenomas has been known for many years 
(Lovett 1976). Veale hypothesized an autosomal recessive mechanism (Morson 
et al. 1983), and this suggestion was vindicated by the discovery of bi-allelic germ-
line alterations in the DNA repair gene MUTYH (MYH) in some multiple adenoma 
families (Al-Tassan et al. 2002). MYH-associated polyposis also explains how a 
genetic predisposition could explain both multiplicity and accelerated progres-
sion of adenomas. This is because reduced activity of MYH predisposes to G to T 
transition mutations in APC, KRAS, and possibly other cancer genes that would act 
 synergistically in driving neoplastic evolution (Kambara et al. 2004b). However, the 
phenotype of MYH-associated polyposis approximates to FAP and does not explain 
the presence of relatively small numbers of adenomas in a familial setting. One of 
the most promising genetic loci showing linkage to an adenoma and carcinoma 
susceptibility locus and which could therefore explain the combination of multiple 
and aggressive adenomas is on chromosome 9q22.32 (Wiesner et al. 2003; Kemp 
et al. 2006; Skoglund et al. 2006).

Mechanisms Underlying the Initiation 
of Colorectal Adenomas

For many years, the concept of a diffuse hyper-proliferative field change was con-
ceived as the earliest event in colorectal tumourigenesis (Deschner 1982). Interest 
waned when tests of hyper-proliferation were found to be of limited clinical value. 
At the same time animal models of colorectal tumourigenesis introduced the  concept 
of minute focal lesions with malignant potential. Following the administration of 
carcinogens, such ‘aberrant crypt foci’ were visualized by staining the  surface of 
the colonic epithelium with a vital dye such as methylene blue (Bird 1987; Bird 
et al. 1989). Under the dissecting microscope, the clusters of aberrant crypt openings 
were recognized by their increased size and increased staining intensity. Using a 
similar technique, minute lesions resembling aberrant crypt foci were  subsequently 
identified in human colonic mucosa (Roncucci et al. 1991a, b). However, histological 
examination showed that these were frequently the minute counterparts of the two 
commonest types of colorectal polyp: adenoma and hyperplastic polyp. In FAP 
specimens, virtually all such lesions are micro-adenomas. In the colorectum of 
non-FAP patients, most of these lesions are either micro-hyperplastic polyps with 
serrated crypts or comprise clusters of slightly widened crypts with surface tufting 
but minimal epithelial serration (Roncucci et al. 1991a, b). The serrated hyperplastic 
aberrant crypt foci usually have BRAF mutation, while their minimally serrated 
counterparts usually have KRAS mutation (Rosenberg et al. 2007). Outside FAP, 
probably no more than 5% of these minute lesions are micro-adenomas (Jen et al. 
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1994). The term ‘aberrant crypt focus’, without further qualification, confers little 
meaning in the context of human tissues.

The condition FAP is rare in itself, but provides a highly accessible model for 
the study of micro-adenomas in humans. It has been shown that a single molecular 
event, namely disruption of the APC gene, is responsible for both the initiation and 
the subsequent growth of the adenoma in FAP (Lamlum et al. 2000). Loss of the 
APC protein prevents the normal degradation of the transcriptional co-activator 
β-catenin, and this, in turn, sends the Wnt signalling pathway into overdrive 
(Korinek et al. 1997). Nevertheless, in order for an adenoma to be initiated and 
then to grow into a recognizable lesion, there must be an optimal level of signalling 
mediated by β-catenin. This depends on a certain level of residual APC function 
as opposed to the complete loss of APC protein (Lamlum et al. 1999; Albuquerque 
et al. 2002; Schneikert and Behrens 2006). The APC protein includes a β-catenin 
regulating domain that comprises seven 20-amino acid repeats; at the gene level, 
there are a total of 14 such repeats in each normal cell. Most germline mutations 
(first hit) that cause classical FAP result in a protein containing only a single repeat 
and therefore a total of eight repeats within each cell. This is adequate for normal 
cell function. The second hit is usually the result of a mitotic recombination with 
loss of the wild-type allele (loss of seven repeats) and duplication of the mutant 
germline allele, leaving only two repeats in the cell. This appears to be the optimum 
dose for the initiation and subsequent growth of an adenoma. In the situation where 
the germline mutation causes complete loss of APC function, then the second or 
somatic hit is not associated with loss of heterozygosity but is typically a mutation 
causing loss of five repeats. This will again leave a total of two repeats in the cell 
(Lamlum et al. 1999; Albuquerque et al. 2002). This has been referred to as the 
‘just right’ signalling model in which specific APC alterations are selected on the 
basis that a particular level of residual APC protein function is required to optimally 
drive the Wnt-signalling cascade and, in turn, tumourigenesis (Albuquerque et al. 
2002). A reason for emphasizing the requirement for truncated APC (Schneikert 
and Behrens 2006) will be discussed later.

‘Bottom-up’ and ‘top-down’ models have been used to explain how loss of Wnt 
pathway regulation leads to the initiation of micro-adenomas (Shih et al. 2001; 
Preston et al. 2003). There is some confusion in relation to the terms ‘bottom-up’ 
and ‘top-down’, and this is because these terms have been applied to two different 
(though related) scenarios. The terms have been applied first to the mechanism 
of initiation of the uni-cryptal adenoma (Shih et al. 2001; Preston et al. 2003) 
and second to the location of the proliferative zone in established adenomas (Jass 
 et al. 2002). The pioneering work of Nakamura and Kino (1984) established the 
‘bottom-up’ mechanism at the point of initiation. Their micro-reconstruction  studies 
in FAP specimens showed that the uni-cryptal adenoma begins as a minute bud or 
outgrowth close to the base of a normal-appearing crypt. Subsequently, the bud 
migrates upwards in the company of the normal crypt epithelium and, at the same 
time, extends into the surrounding lamina propria as a dysplastic or adenomatous 
tubule. Finally, the opening of the dysplastic tubule is relocated to the surface 
epithelium from which the uni-cryptal adenoma is suspended. The adenomatous 
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crypt so-formed is usually considerably shorter than a normal crypt but under-
goes more frequent fission to form a micro-adenoma (Fig. 5.1). Through repeated 
crypt fission or branching, the superficial mucosal compartment is progressively 
 populated by multiple adenomatous crypts. This results in a mass expansion that 
generates a macroscopically visible small nodule. The adenomatous cells may 
migrate laterally within the surface epithelium and even down adjacent normal 
crypts. This downward growth often telescopes or intussuscepts within the  normal 
crypt (snow-plough effect). Therefore, even if the initiation of the neoplastic proc-
ess is ‘bottom-up’, ‘top-down’ growth will occur subsequently (Preston et al. 
2003). Additionally, the fact that proliferating adenomatous epithelium occupies 
the superficial compartment of the polyp while residual normal crypts dominate in 
the lower mucosal compartment has invited the use of the term ‘top-down’ to 
describe the profoundly altered location of the proliferative compartment in an 
established tubular adenoma (Jass et al. 2002).

Lack of Equivalence of FAP Versus Sporadic 
Micro-Adenomas

The sporadic model for the evolution of colorectal cancer is loosely based on the 
premise that carcinomas develop in adenomas and the latter are initiated through 
inactivation of both copies of the tumour suppressor gene, APC. In FAP, the 
first copy of APC is mutated in the germline and the second allele is mutated or 

Fig. 5.1 Micro-adenoma in FAP. This lesion arises by ‘bottom-up’ initiation in which the earliest 
changes occurring in the lower compartment of a normal-appearing crypt. Ultimately and prolif-
erating tubules come to occupy the superficial compartment giving a ‘top-down’ distribution of 
the proliferating adenomatous epithelium. Haematoxylin and Eosin
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lost somatically (see above). In sporadic adenomas, both copies are inactivated 
somatically. It is likely that that this mechanism does explain the initiation of some 
 sporadic colorectal cancers, but enthusiasm must be tempered by the fact that FAP 
and sporadic micro-adenomas are not equivalent lesions.

The origin of the monoclonal micro-adenoma in FAP is discussed above. In 
FAP, further growth appears to depend on the mutually growth-enhancing effects of 
adjacent monoclonal micro-adenomas, which fuse to form a larger polyclonal mass 
(Novelli et al. 1996). This mechanism for growth does not apply to the far more 
 isolated crypts of non-FAP micro-adenomas. Despite this early growth advantage for 
adenomas in FAP, it has been pointed out that the individual adenoma in FAP has a 
much lower potential for malignant transformation than a non-FAP adenoma. These 
observations raise the possibility that familial and non-familial micro- adenomas 
could be initiated by different mechanisms.

On the basis of Knudsen’s hypothesis, all colorectal cancers should have a 
mutation of APC, and this should also apply to pre-cancerous lesions including 
the micro-adenoma (or dysplastic aberrant crypt focus). It is often assumed that 
the ‘vast majority’ of colorectal cancers have an APC mutation, though the mean 
frequency of APC mutation in primary colorectal cancers (as opposed to cell lines) 
is, in fact, around 60% (Powell et al. 1992; Aaltonen et al. 1993; Huang et al. 1996; 
Konishi et al. 1996; Olschwang et al. 1997; Salahshor et al. 1999; Shitoh et al. 
2000; Kapiteijn et al. 2001; Jass et al. 2003; Samowitz et al. 2007). The  frequency 
of APC mutation varies by anatomical location, being highest in the distal, and 
lowest in the proximal, colorectum (Kapiteijn et al. 2001). In sporadic micro-
adenomas, the frequency of an APC mutation would be expected to be 100% and, 
indeed, was 100% in the first published study (Jen et al. 1994). However, there 
was only one micro-adenoma in that study. Sporadic micro-adenomas are rare and 
difficult to find. However, among 32 sporadic micro-adenomas identified in four 
studies, only six (19%) had an APC mutation (Jen et al. 1994; Otori et al. 1998; 
Takayama et al. 2001; Rosenberg et al. 2007). The frequency of APC mutation in 
small sporadic tubular adenomas is intermediate between micro-adenoma and cancer 
(33%) (Kim et al. 2001; Umetani et al. 2004). The frequency of APC mutation 
approaches that of cancer only in advanced adenomas (De Benedetti et al. 1994; 
Mulkens et al. 1998).

Taken together, the preceding data are disquieting and difficult to explain, but 
they cannot be ignored. It is possible that early dysplastic lesions with APC mutation 
are more likely to progress to cancer than those without APC mutation. However, 
the model provided by FAP, a condition in which all adenomas have bi-allelic APC 
alterations but individual adenomas rarely progress, does not support this suggestion. 
It is also possible that APC alterations may occur during progression of sporadic 
colorectal neoplasia. There is some evidence for this, insofar as in adenomas 
harbouring a sub-clone with carcinoma-in situ, loss of APC was shown to be 
restricted to this advanced sub-clone (Zauber et al. 1999). This finding links loss of 
APC with progression rather than initiation of sporadic neoplasia.

There is evidence that APC inactivation may not occur at any stage in the 
evolution of certain subsets of colorectal cancer. APC mutation occurs with reduced 
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frequency in sporadic colorectal cancers with DNA microsatellite instability (MSI) 
(Salahshor et al. 1999; Jass et al. 2003; Samowitz et al. 2007), a subset which 
also shows extensive DNA methylation or the CpG island methylator phenotype 
(CIMP). APC may be inactivated by methylation of its promoter region (Esteller 
et al. 2000a), and it has been suggested that APC methylation could be function-
ally equivalent to APC mutation (Nathke 2004). This suggestion is implausible for 
three reasons: (1) there is no correlation between CIMP and methylation of APC 
(Esteller et al. 2000a); (2) bi-allelic methylation would result in complete silencing 
of APC when some residual functioning APC protein is necessary for initiating 
tumourigenesis (see earlier); and, (3) the finding of a normal immunohistochemi-
cal distribution of β-catenin in colorectal cancers with MSI is indicative of normal 
Wnt-signalling (Jass et al. 1999; Wong et al. 2002). It is frequently pointed out that 
mutation of other components of the Wnt-signalling pathway may substitute for 
APC mutation. The main contender for this role is b-catenin. However, mutation 
of b-catenin is restricted to colorectal cancers with MSI (Mirabelli-Primdahl et al. 
1999) and, within that group, to a subset of Lynch syndrome cancers (Akiyama 
et al. 2000; Johnson et al. 2004). It is unclear whether or not Lynch syndrome adeno-
mas are initiated by b-catenin mutation (Akiyama et al. 2000; Johnson et al. 2004). 
Nevertheless, it is very clear that b-catenin mutation occurs far too infrequently to 
fill the 40% gap represented by colorectal cancers that lack APC mutation.

It may be concluded that APC inactivation is not required in all instances of 
 neoplastic initiation in the colorectum and may not be required at all in the evolu-
tion of certain subsets of colorectal cancer. Furthermore, although mutation of 
KRAS and mutation and/or aberrant expression of TP53 are strongly associated 
with advanced adenomas (Barry et al. 2006; Einspahr et al. 2006), the fact that only 
around 10% of colorectal cancers are characterized by synchronous mutation of 
APC, KRAS, and TP53 (Smith et al. 2002; Samowitz et al. 2007) leaves a sizeable 
gap in our knowledge of precancerous pathways.

Precursor Lesions for Sporadic Colorectal Cancer 
that Are Not Well Represented in FAP

In the preceding sections, it has been shown that the behaviour of colorectal 
adenomas varies considerably according to the clinical circumstances in which the 
adenoma presents. The model presented by FAP was used to illustrate the initiation 
of a micro-adenoma and its subsequent growth into a small tubular adenoma. It was 
then shown that early adenomas and neoplastic pathways occurring in the non-FAP 
setting are not necessarily equivalent to those occurring in the setting of FAP. In 
the following sections, it is argued that there are polypoid precursors to colorectal 
cancer that cannot be slotted in between the small tubular adenoma and colorectal 
cancer in order to provide the bridging element within a single linear sequence. 
These alternative precursor lesions include particular types of adenoma: villous 
adenoma and serrated adenoma, and particular types of serrated polyp that, until 
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recently, were labelled as hyperplastic polyps with no malignant potential. None of 
these polyp types is well represented in FAP suggesting that they may be initiated 
by mechanisms other than inactivation of APC.

Villous Adenoma

Villous adenomas are rare, accounting for around 1% of all colorectal polyps. 
However, they are greatly over-represented within the residual adenomas occurring 
immediately adjacent to early colorectal cancers. One-third of such adenomas were 
villous adenomas in the detailed survey that underpinned the adenoma-carcinoma 
concept (Muto et al. 1975). In placing colorectal adenomas within a morphologic 
continuum in which the common tubular form is the least aggressive and the villous 
adenoma has achieved the greatest potential for malignant change, one gains the 
erroneous impression of the progressive transformation of a tubular adenoma into 
an adenoma with villi. In the classical villous adenoma, the surface epithelium is 
greatly increased in area and is folded into broad leaves or folds to produce a com-
plex gyriform or cerebriform pattern. The false concept of finger-like villi results 
from the two-dimensional appearance of epithelial folds when these are viewed in 
histological sections. This three-dimensional cerebriform appearance can be appre-
ciated when villous adenomas are studied during colonoscopy. By means of a vital 
dye and magnifying endoscopy, it is possible to identify minute villous adenomas 
with a cerebriform surface and no evidence of a pre-existing tubular adenoma (Kudo 
et al. 1996). This suggests that the villous adenoma develops de novo and not from 
a pre-existing tubular adenoma.

There is increasing evidence in support of the concept that tubular and vil-
lous adenomas are fundamentally different types of colorectal neoplastic polyps. 
The early development of the tubular adenoma, as exemplified in FAP, results in the 
generation of superficially arranged tubules lined by dysplastic cells. This produces 
a ‘top-down’ organization of the proliferative compartment (see above). In classi-
cal villous adenomas, the most undifferentiated and highly proliferative cells occur 
basally (as in normal mucosa), and the cells mature and differentiate as they ascend 
to their location on the expanded surface epithelium (a ‘bottom-up’ organization). 
In tubular adenomas, there is a striking loss of mucin production, but the opposite 
occurs in villous adenomas, with maturing cells becoming filled with large amounts 
of secretory mucin. The secretory mucin in villous adenomas is not only intestinal 
in type (MUC2) but inappropriately features gastric mucin (MUC5AC) (Takata 
et al. 2003). The transcription factor HATH1 is linked to differentiation of mucin-
secreting cell lineages. There is repression of HATH1 in tubular adenomas and non-
mucinous adenocarcinomas but strong expression in villous adenomas and mucinous 
carcinomas of the colorectum (Park et al. 2006).

Despite their importance as precancerous lesions, the rarity of villous adenomas, 
combined with the practice of lumping them with tubulovillous adenomas, means 
that little is known of their molecular pathology. KRAS mutation is very strongly 
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associated with a villous architecture (Maltzman et al. 2001; Jass et al. 2006; Spring 
et al. 2006), but this may be occurring in the context of a progressing tubular to 
tubulovillous adenoma according to the Vogelstein model (Vogelstein et al. 1988). 
Although it has been argued that pure villous adenomas do not develop with tubular 
adenomas, there are early descriptions of villous adenomas arising in hyperplastic 
polyps (Goldman et al. 1970). In retrospect, the published figures appear to show 
serrated adenomas (see below) with a villous architecture. However, it is interest-
ing that villous adenomas, serrated adenomas, and hyperplastic polyps are all 
characterized by increased expression of the mucin transcription factor HATH1 
(Park et al. 2006) and by increased expression of both intestinal and gastric mucins 
(Biemer-Hüttmann et al. 1999; Takata et al. 2003).

Serrated Adenoma

Like villous adenomas, serrated adenomas are uncommon and accounted for less than 
1% of polyps in the seminal 1990 study that reviewed over 18,000 colorectal polyps 
(Longacre and Fenoglio-Preiser 1990). This adenoma has a serrated architecture that 
occurs in hyperplastic polyps, but the epithelial lining has the dysplastic cytology 
of an adenoma (Fig. 5.2). A relatively high proportion (11%) of serrated adenomas 
contained foci of intra-mucosal carcinoma, indicating that these lesions do have 
malignant potential (Longacre and Fenoglio-Preiser 1990). In this seminal report, the 
authors noted the original diagnoses of the lesions. About one-third were diagnosed 
as hyperplastic polyps, one-third as adenomas, and one-third as a combination of the 
two. This illustrates that serrated adenomas do represent a spectrum. Those resem-
bling hyperplastic polyps are more likely to be sessile, to occur in the proximal colon, 
and to have a tubular architecture. Those resembling adenomas are more likely to 
occur in the distal colorectum, to be pedunculated, and to have a tubulovillous or villous 
architecture. In the Japanese literature, these have been classified as ‘Type 1’ and 
‘Type 2’ serrated adenomas, respectively (Matsumoto et al. 1999; Miwa et al. 2005).

Initially, serrated adenomas were not linked with hyperplastic polyps but were 
regarded as a type of adenoma that happened to display a superficial likeness to 
the hyperplastic polyp (Longacre and Fenoglio-Preiser. 1990). A subsequent study 
of mixed polyps provided a different interpretation and introduced the concept of 
a ‘serrated pathway’ to colorectal cancer. Mixed polyps were originally assumed 
to be simple chance collisions between a hyperplastic polyp and an adenoma 
(Longacre and Fenoglio-Preiser 1990). However, identical microsatellite mutations 
were demonstrated in DNA obtained from micro-dissected tissue obtained from 
the two components of mixed polyps. Furthermore, the adenomatous component 
frequently comprised serrated adenoma as opposed to the far more common, and 
therefore expected, tubular adenoma (Iino et al. 1999). Both observations made it 
highly unlikely that the two components could be chance collisions. The linking 
of hyperplastic polyps and serrated adenomas within a serrated pathway gained 
further strong support from the observation that both lesions showed frequent 



5 Pathways and Pathology 107

mutation of the oncogene BRAF as well as extensive DNA methylation (Jass 2005). 
These molecular alterations are believed to be important in the initiation of serrated 
polyps but are rare events in tubular adenomas (Jass 2005).

There are occasional reports of serrated adenomas occurring in the context 
of FAP (Matsumoto et al. 2002), suggesting that glandular serration may occur 
secondarily within an adenoma initiated by inactivation of APC. However, most 
studies of sporadic serrated adenomas emphasize the infrequency of APC mutation 
and loss of the APC locus at 5q (Sawyer et al. 2002). In serrated adenomas without 
mutation of BRAF, one frequently finds mutation of KRAS. Only a minor subset 
will lack mutation in either of these oncogenes (Chan et al. 2003; Yang et al. 2004; 
Jass et al. 2006).

Seeking to assess their contribution to the burden of malignancy, one study found 
residual serrated adenoma adjacent to 5.8% of colorectal cancers (Mäkinen et al. 
2001). Given the frequent destruction of precursor lesions by colorectal cancer, this 
is inevitably an underestimate of the actual proportion of colorectal cancers that 
develop in serrated adenomas. As noted earlier, about one-third of residual adeno-
mas were described as villous adenomas at a time when serrated adenomas were 
not recognized (Muto et al. 1975). Despite the fact that villous adenoma and ser-
rated adenoma may be overlapping categories, it is evident that the importance of 
both lesions as precursors of colorectal cancer is disproportionate to their rarity.

Fig. 5.2 A serrated adenoma 
in which dysplastic or 
adenomatous glands show the 
serrated architectural contour 
that is characteristic of a 
hyperplastic polyp. 
Haematoxylin and Eosin
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Hyperplastic Polyps and Allied Lesions 
with Malignant Potential

In contrast with villous and serrated adenomas, hyperplastic polyps are common 
lesions that have traditionally been regarded as entirely innocuous. Yet it is now 
apparent that these lesions may progress to serrated adenoma or to other forms of epi-
thelial dysplasia with malignant potential. Like serrated adenomas, most hyperplastic 
polyps have mutation of either KRAS or BRAF (Yang et al. 2004; Jass et al. 2006; 
Spring et al. 2006). As noted, most micro-hyperplastic polyps (or hyperplastic aber-
rant crypt foci) also have mutation of KRAS or BRAF (Beach et al. 2005; Rosenberg 
et al. 2007). Epithelial polyps that are monoclonal proliferations initiated by mutation 
of oncogenes may be defined as benign neoplasms (Williams 1997). Nevertheless, 
hyperplastic polyps show a spectrum of cellular abnormalities that can be described 
as diametrically opposite to those of conventional adenomas. For example, the cells 
of hyperplastic polyps show features of both hyper- maturation and even senescence 
at the ultrastructural level (Kaye et al. 1973; Hayashi et al. 1974), yet cell kinetic 
studies show reduced rates of proliferation and migration along the crypt column 
(Hayashi et al. 1974).

It is now clear that mutation of oncogenes in isolation does not result in imme-
diate tumourigenesis but leads to a state of inhibited cell proliferation and senes-
cence (Serrano et al. 1997). The senescent phenotype occurs through the induction 
of cell regulatory proteins such as p16INK4A, p14ARF, p19ARF, and Rb (Collado and 
Serrano 2006). In order to switch from a state of senescence to the state of progres-
sive growth that characterizes neoplasia, one or more of the tumour suppressor 
genes encoding the preceding growth regulators must be inactivated (Michaloglou 
et al. 2005). Mutational activation of BRAF and KRAS not only induces a senescent 
phenotype but, depending on associated factors, is either anti-apoptotic or pro-
apoptotic (Cox and Der 2003). There is evidence that a prevailing anti-apoptotic 
state is fundamental to the pathogenesis of serrated polyps (Tateyama et al. 2002; 
Komori et al. 2003). Pro-apoptotic molecules downstream of KRAS include 
RASSF1, RASSF2, RASSF5 (NORE1), and MST1. It is noteworthy that most of 
the genes encoding the preceding cell-cycle and pro-apoptotic proteins are prone to 
methylation of their promoter regions. Furthermore, methylation of these genes has 
been demonstrated in hyperplastic polyps (Minoo et al. 2006).

It is therefore likely that the early evolution and progressive growth of hyper-
plastic polyps depends on mutation of either KRAS or BRAF and synergies provided 
by the stepwise silencing of tumour suppressor genes implicated in the control of 
both cell proliferation and apoptosis. The requisite synergies may differ for BRAF 
and KRAS. Oncogenic KRAS may be viewed as providing resistance to apoptosis 
through the phosphorylation of pro-survival Akt. BRAF- initiated lesions may be 
more dependent on apoptotic inhibition through the methylation of pro-apoptotic 
genes. This is attested to by the fact that extensive DNA methylation, or the CpG 
island methylator phenotype-high (CIMP-high), is more evident in hyperplastic 
polyps with BRAF than with KRAS mutation (O’Brien et al. 2004). An association 
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between BRAF but not KRAS mutation with CIMP-high is also observed in color-
ectal cancer (Weisenberger et al. 2006), while KRAS mutation in colorectal cancer 
is associated with CIMP-low (Ogino et al. 2006).

As noted earlier, most hyperplastic polyps and even their minute counterparts 
(hyperplastic aberrant crypt foci) have either BRAF or KRAS mutation. Hyperplastic 
polyps with KRAS mutations are usually located in the distal colon and rectum, 
tend to remain small, and show the least deviation from normal in terms of their 
histological appearances (Yang et al. 2004; Spring et al. 2006). The retention of 
conspicuous goblet cells (as in normal colorectal mucosa) accounts for the term 
‘hyperplastic polyp/goblet cell type’ (HP-GC) (Torlakovic et al. 2003) (Fig. 5.3). 
Hyperplastic polyps with BRAF mutation are located both proximally and distally, 
are relatively large, and show the greatest histologic deviation from the normal 
(Yang et al. 2004; Spring et al. 2006). The main histologic abnormalities are marked 
glandular serration and the presence of a prominent population of columnar cells 
containing mucin-filled microvesicles. This accounts for the term ‘hyperplastic 
polyp/microvesicular type’ (HP-MV) (Torlakovic et al. 2003) (Fig. 5.4).

Reports of malignant change in hyperplastic polyps have highlighted particular 
features of high-risk hyperplastic polyps, notably large size (Urbanski et al. 1984), 

Fig. 5.3 Hyperplastic polyp, 
goblet cell type (HP-GC). This 
subtype deviates minimally 
from the normal and most 
have KRAS mutation. 
Haematoxylin and Eosin
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proximal location (Jass et al. 2000a), and multiplicity as seen in the condition, 
hyperplastic polyposis (Warner et al. 1994). It was through the study of hyper-
plastic polyposis that Torlakovic and Snover first proposed that some hyperplastic 
polyps were fundamentally different from the typical benign lesion and should be 
separated as a type of serrated adenoma (Torlakovic and Snover 1996). The con-
cept of sessile and hyperplastic-like serrated adenomas was already hinted at in the 
study of Longacre and Torlakovic and subsequently developed in the Japanese lit-
erature, but the term serrated adenoma referred to polyps that were unequivocally 
dysplastic (see earlier). The work of Torlakovic and Snover expanded the concept 
of sessile serrated adenoma to include lesions that were atypical in architecture 
and proliferation but lacked the cytologic hallmarks of dysplasia (Fig. 5.5). They 
showed that 18% of sporadically occurring ‘hyperplastic polyps’ met the features 
of ‘sessile serrated adenoma’ (Torlakovic et al. 2003). In view of the lack of overt 
dysplasia, others suggested terms such as ‘sessile serrated polyp’ (Jass 2004) or 
‘serrated polyp with atypical proliferation’ (Jass 2000; O’Brien et al. 2004) for 
these atypical hyperplastic polyps. The great majority of these atypical serrated 
polyps have BRAF mutation and extensive DNA methylation (Kambara et al. 
2004a). As noted earlier, these features also characterize the HP-MV subtype of 
hyperplastic polyp. Therefore, the sessile serrated adenoma could be viewed as the 

Fig. 5.4 Hyperplastic polyp, 
microvesicular type (HP-MV). 
Columnar cells with 
mucin-filled microvesicles 
and obvious serration define 
this subtype, most of which 
have BRAF mutation. 
Haematoxylin and Eosin
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extreme end of the spectrum of HP-MV. At the other end of the spectrum are the 
micro-hyperplastic polyps (aberrant crypt foci) with a BRAF mutation (Rosenberg 
et al. 2007).

Colorectal Cancer: A Multi-pathway Disease

There is now a large body of data indicating that sporadic MSI-High (MSI-H) 
colorectal cancers do not develop through the classical adenoma-carcinoma 
sequence but within proximally located, atypical hyperplastic polyps or sessile 
serrated adenomas (Jass 1983; Biemer-Hüttmann et al. 2000; Jass et al. 2000a, b; 
Hawkins and Ward 2001; Goldstein et al. 2003; Oh et al. 2005). Although it was 
originally assumed that sporadic adenomas could show MSI-H (Grady et al. 1998), 
it was subsequently found that this applied almost exclusively to adenomas pre-
senting in Lynch syndrome (Loukola et al. 1999). Conversely, loss of expression 
of MLH1 and MSI-H was demonstrated within dysplastic subclones in serrated 
polyps (Jass et al. 2000a; Oh et al. 2005) (Fig. 5.6a, b). Although it was clear that 

Fig. 5.5 Variant hyperplastic polyp known as sessile serrated adenoma. This differs from hyper-
plastic polyp/microvesicular type in showing greater architectural disorder and increased mucin 
production, but there is no overt cytologic atypia. The crypts show dilatation and exaggerated ser-
ration, and extend horizontally along the muscularis mucosae. Haematoxylin and Eosin
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Fig. 5.6 Mixed polyp with ‘hyperplastic’ and dysplastic components (a). The dysplastic compo-
nent shows loss of expression of MLH1 (b). (a) Haematoxylin and Eosin; (b) Immunohistochemical 
demonstration of nuclear MLH1 protein product

the ‘classic’ mutational spectrum implicating APC, KRAS, and TP53 was rarely 
observed in sporadic MSI-H colorectal cancers (Olschwang et al. 1997; Salahshor 
et al. 1999), it was the demonstration that serrated polyps and sporadic MSI-H 
colorectal cancers were unique in sharing a genotype encompassing mutation of 
BRAF and extensive DNA methylation (CIMP-high) that cemented the concept of 
an independent serrated pathway (Chan et al. 2002, 2003; Kambara et al. 2004a, b; 
O’Brien et al. 2004, 2006; Yang et al. 2004).

Clinico-pathologic and molecular features of the classical and serrated pathways 
are shown in Table 5.1. Two important points emerge from this pathway subdivi-
sion. First, there is little or no overlap between the two pathways. This suggests 
that the two tumourigenic pathways are completely independent with different 
underlying causes, epidemiologic associations, natural histories, and clinical cor-
relations. Second, there are clearly many colorectal cancers that do not fit into one 
or other of these two pathways. Only about 15% of non-familial colorectal cancers 
are MSI-H, and only about 30% are characterized by mutation of APC and TP53 
and chromosomal instability (CIN) (Smith et al. 2002). These groups correspond 
with Type 1 and 4 cancers in Fig. 5.7 (Jass 2007). Some 55% of colorectal cancers 
must be characterized by combinations of the molecular features that define the two 
largely independent pathways. These may be conceived as evolving through ‘fusion’ 
pathways (Jass et al. 2006).
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Feature Classical Serrated

Precursor lesion Adenoma Serrated polyp
Gender predilection Males Females
Site predilection Distal colorectum Proximal colon
Genetic instability Chromosomal Microsatellite
DNA methylation + + + +
Loss of heterozygosity + + + −
APC mutation + + + +
TP53 mutation + + + −
BRAF mutation − + + +
Mucin production + + + +
Poor differentiation + + + +
Lymphocytic infiltration + +++
Tumour buddinga + + + +
Dirty necrosisb + + + +
a De-differentiation at invasive margin
b Tumour necrosis with abundant nuclear debris

Table 5.1 Clinical, molecular and pathologic features of prototype 
classical and serrated (alternative) pathways to colorectal cancer

Fig. 5.7 Classification of colorectal cancer based 
on DNA methylation and DNA microsatellite 
instability. See text for explanation of Types 1–5

‘Fusion Polyps’ and ‘Fusion Pathways’ for the Accelerated 
Evolution of Colorectal Cancer

In the preceding sections, it was shown that adenomas are lesions characterized by 
loss of control of epithelial proliferation (for example through inactivation of APC) 
while resistance to apoptosis (achieved, for example, through pro-survival signal-
ling by oncogenic KRAS or BRAF) is fundamental to the initiation of many serrated 
polyps. Increased proliferation and inhibition of apoptosis are key components of 
the malignant phenotype. It is therefore not surprising that advanced colorectal 
adenomas and a subset of carcinomas (corresponding to Type 3 and some Type 
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4 cancers in Fig. 5.7) should have alterations of both APC and KRAS (Vogelstein 
et al. 1988). This may be viewed as a ‘fusion’ of the key mutational steps involved 
in the initiation of different types of epithelial polyp (Jass et al. 2006). Colorectal 
neoplasms in Lynch syndrome (Type 5 in Fig. 5.7) may be viewed as another 
type of fusion. APC alterations are often found in adenomas in Lynch syndrome 
(Konishi et al. 1996). However, these neoplasms do not develop CIN as in the 
conventional adenoma-carcinoma sequence but share the MSI-H phenotype with 
non-familial cancers that evolve through the serrated pathway.

Although extensive DNA methylation or CIMP-high is present in virtually all 
non-familial MSI-H colorectal cancers, it is not limited to this subset. Extensive 
DNA methylation is found in a subset of colorectal cancers with BRAF muta-
tion but lacking in MSI-H as well as CIN (Type 2 in Fig. 5.7) (Weisenberger et al. 
2006; Goel et al. 2007). Less extensive DNA methylation (CIMP-low) is found in a 
 further subset of colorectal cancers and is associated with KRAS mutation (Type 3 in 
Fig. 5.7) (Issa 2005; Weisenberger et al. 2006; Ogino et al. 2007). Little is known 
of the mechanisms underlying CIMP. However, it is clear that CIMP-high may be 
fully developed within hyperplastic polyps and even in the normal colonic mucosa of 
 subjects with hyperplastic polyps (Minoo et al. 2006). On the other hand, CIMP-high 
is absent in the tubular adenomas of subjects with FAP (Wynter et al. 2006). DNA 
methylation becomes more extensive in colorectal adenomas in  association with 
progression (Rashid et al. 2000; Kim et al. 2005; O’Brien et al. 2006). Mechanisms 
underlying the development of CIMP within a progressing adenoma are likely to be 
radically different from the mechanisms applying in normal mucosa and in hyperplas-
tic polyps (which are manifestly not advanced lesions). Studies that have considered 
the distribution of methylation across all colorectal cancers, irrespective of pathways 
and pathogenesis, are therefore lacking in biologic meaning (Yamashita et al. 2003).

The development of MSI-H in sporadic colorectal cancer is largely explained 
by methylation of the DNA mismatch repair gene MLH1 (Kane et al. 1997). Loss 
of expression of MLH1, as shown by immunohistochemistry, occurs in serrated 
polyps, though as a rare event (Jass et al. 2000a, b). However, once this critical step 
is established there appears to be a rapid transformation into a malignant pheno-
type. This is evident from the fact that sub-clones in serrated polyps with loss of 
expression of MLH1 are usually dysplastic if not frankly malignant (Oh et al. 2005; 
Goldstein 2006; Sheridan et al. 2006).

O-6-Methylguanine DNA methyltransferase (MGMT) is a type of direct DNA 
repair gene that, like MLH1, is inactivated by DNA methylation (Esteller et al. 
1999). Unlike MLH1, however, loss of expression of MGMT can be observed 
relatively frequently in the non-dysplastic crypts of hyperplastic polyps (Whitehall 
et al. 2001), and MGMT methylation even occurs in hyperplastic aberrant crypt 
foci (Greenspan et al. 2007). Methylation and loss of expression of MGMT also 
occur within conventional adenomas and particularly in villous adenomas (Rashid 
et al. 2001). Deficiency of the direct DNA repair protein, MGMT, generates highly 
mutagenic methylG:T mismatches which may predispose not only to mutation 
but to CIN through futile cycles of attempted repair (Karran and Bignami 1994). 
The  reason why loss of MGMT may occur relatively frequently in different types 
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of polyp without rapidly driving further tumourigenesis (as is the case for MLH1 
 deficiency) is because either successful repair of DNA damage is achieved or 
persisting DNA or chromosomal damage will trigger pro-apoptotic signalling 
by MLH1 and p53, respectively (Fishel 1999). Further neoplastic evolution may 
therefore depend on the inactivation of either MLH1 or TP53 or a co-functioning 
alternative to TP53 such as p14ARF (Esteller et al. 2000b). The cellular response 
to the presence of DNA mismatches may sometimes lie between the extremes of 
efficient repair versus programmed cell death. In the presence of an over-extended 
mismatch repair system, persisting DNA mismatches may give rise to low-level 
MSI (MSI-L). This would explain the association between MGMT methylation and 
MSI-L (Whitehall et al. 2001; Greenspan et al. 2007; Ogino et al. 2007).

Methylation of MGMT is common to both serrated polyps and conventional 
adenomas and could therefore serve as a unifying mechanism to explain different 
types of ‘fusion pathway’. MethylG:T mismatches that develop as a consequence of 
MGMT inactivation predispose to G:C to A:T mutations. This restricted mutational 
signature occurs in association with MGMT methylation in both KRAS (Esteller 
2000) and TP53 (Esteller et al. 2001). In the case of serrated polyps, mutation 
of TP53 may underlie the evolution of CIMP-high colorectal cancer without the 
advent of MSI-H (some Type 2 cancers in Fig. 5.7) (Jass et al. 2006). Conversely, 
the presence of MGMT methylation in villous adenomas (Rashid et al. 2001) 
explains the frequent finding of KRAS mutation in this subset (Maltzman et al. 
2001). KRAS mutation is generally perceived as either initiating minor and non-
progressing serrated lesions (see earlier) or serving as a key step in the progression 
of established adenomas (O’Brien et al. 2006). However, it is possible that serrated 
lesions initiated by KRAS mutation may occasionally progress, thus explaining the 
finding of serrated adenomas with KRAS mutation (Jass et al. 2006). Indeed there 
is evidence from both animal (Janssen et al. 2002) and human studies (Takayama 
et al. 2001) that KRAS mutation can initiate the development of dysplastic lesions in 
the colorectum. Because KRAS mutation is associated with CIMP-low, it is conceiv-
able that bi-allelic methylation of APC (Esteller et al. 2000) could drive  neoplastic 
progression in lesions previously initiated by KRAS mutation and  provide a further 
example of a ‘fusion pathway’ (Jass et al. 2006).

Conclusion

It is still widely accepted that the vast majority of colorectal cancers develop in 
adenomas that are in turn initiated by bi-allelic inactivation of the APC gene. On 
this basis, adenomas occurring in the autosomal dominant condition FAP should be 
the exact counterparts of the benign precursors of most sporadic colorectal cancers. 
Three lines of inquiry indicate that FAP provides a limited model for explaining 
the early evolution of sporadic colorectal cancer. These lines of inquiry highlight: 
(1) the strikingly different malignant potential of adenomas occurring in different 
clinical presentations; (2) the lack of APC mutation in early and advanced sporadic 
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colorectal neoplasms; and (3) the contribution to colorectal malignancy by types of 
polyp (villous adenoma, serrated adenoma, and variants of hyperplastic polyp) that 
are biologically distinct and, essentially, do not arise from, the tubular adenoma (the 
hallmark lesion initiated by APC inactivation).

Colorectal cancer is a multi-pathway disease. The existence of two largely 
non-overlapping pathways to colorectal cancer implies a separation of underlying 
causes, epidemiologic associations, and natural histories. However, the classi-
cal adenoma-carcinoma sequence and the serrated pathway are only prototypes. 
Molecular features unique to one or another prototype co-occur in various forms 
and combinations within ‘fusion pathways’. Effective cancer control by either 
chemo-prevention or the endoscopic removal of precursor lesions depends upon a 
fundamental understanding of the differing early routes to colorectal cancer.
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Chapter 8.1
MUTYH-Associated Polyposis

Spring Holter and Steven Gallinger

Introduction

Until recently, APC was the only known gene in which germline mutations were 
shown to lead to the development of colorectal adenomatous polyposis. However, 
in 2002, Al-Tassan et al. reported “Family N,” a British kindred consisting of 
three of seven siblings affected with multiple adenomatous polyps or colorectal 
adenocarcinoma without a detectable germline APC mutation (2002). Somatic APC 
mutation analysis of the adenomas and adenocarcinoma revealed an unusually high 
proportion of G:C to T:A transversions, which are characteristic of base-excision 
repair (BER) pathway defects. Germline analysis of the BER genes MUTYH, 
OGG1, and MTH1 identified compound heterozygous germline mutations, Y165C 
and G382D, within MUTYH in all affected individuals. All unaffected family 
members were either heterozygous or wild type, indicating an autosomal recessive 
pattern of inheritance. This was the first report of pathogenic germline mutations 
within a BER gene as well as the first report of an autosomal recessive inheritance 
pattern associated with adenomatous polyposis and hereditary colorectal cancer, 
now known as MUTYH-associated polyposis (MAP).

Base-Excision Repair and MUTYH

The BER pathway protects against DNA damage due to reactive oxygen species 
(ROS) produced during cellular metabolism or through environmental exposure 
to ionizing radiation or chemicals. The most stable and highly mutagenic base 
lesion is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) that is generated in 
DNA from guanine. Cells with deficient BER are susceptible to DNA damage by 
ROS. Key components of the human BER pathway that prevent DNA damage due 
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to ROS include MTH1, OGG1, and MUTYH. Each enzyme has a specific function 
 following oxidative damage to the cell. MTH1, an 8-oxo-dGTPase, hydrolyzes 
8-oxoGTP to 8-oxoGMP to prevent the incorporation of the oxidized guanine into 
nascent DNA. OGG1 is a DNA glycosylase that detects and removes 8-oxodGs that 
are paired with cytosine. MUTYH, another DNA glycosylase, specifically identi-
fies and removes adenine residues that have been incorrectly paired with 8-oxodG. 
Failure to correct 8-oxoG:A mispairs leads to the characteristic G:C to T:A 
transversions in the subsequent round of DNA replication (Lu et al. 2001).

At least 80 germline MUTYH variants have been reported to date; the majority 
are missense mutations, but they also include nonsense, small insertion/deletions, 
and splice site variants (Cheadle and Sampson 2007). Large rearrangements of 
MUTYH have not been reported (Nielsen et al. 2005). By far the most commonly 
reported mutations are Y165C and G382D which account for approximately 80% 
of MUTYH mutations reported in Caucasian populations (Sampson et al. 2003; 
Sieber et al. 2003) with a baseline population frequency of 0.3–2% (Al-Tassan et al. 
2002; Sieber et al. 2003; Croitoru et al. 2004; Fleischmann et al. 2004). Specific 
mutations in certain ethnic groups have also been reported, such as E466X, Y90X, 
and 1395delGGA in Indian, Pakistani, and Italian populations, respectively (Jones 
et al. 2002; Gismondi et al. 2004).

The amino acids at the positions of the originally reported MUTYH missense 
mutations, Y165C and G382D, are conserved across multiple species. Disruption 
of these conserved amino acids may affect the ability of MUTYH to remove A from 
an A:8-oxodG pair. To assess the functional consequences of these mutations and 
others, we have cloned wild-type MUTYH and the mutants Y90X, Y165C, R231H, 
R260Q, P281L, Q377X, E466X, G382D, 1103delC (generated by site-directed 
mutagenesis). Bacterially expressed recombinant variant MUTYH proteins were 
purified and studied for their DNA-binding and glycosylase activities on synthetic 
double-stranded DNA substrates containing A:8-oxodG mismatches. Mutants 
R260Q and G382D were found to be partially active in substrate binding and 
adenine removal (64 and 82% less active than wild type), and Y165C, R231H, 
and P281L were severely defective in both activities. All of the frameshift mutants 
Y90X, Q377X, E466X, and 1103delC, were also devoid of DNA-binding and gly-
cosylase activities (unpublished). Additional MUTYH mutations, R227W, V232F, 
and A459D, have also been shown to have decreased glycosylase activity (Cheadle 
and Sampson 2007).

MAP Cancer Development

Chromosomal instability (CIN) and microsatellite instability (MSI) are well 
 characterized pathways through which the majority of colorectal cancers develop 
and the hereditary colorectal cancer conditions Familial Adenomatous Polyposis 
(FAP) (see Chap. 5) and Lynch Syndrome/Hereditary NonPolyposis Colorectal 
Cancer (HNPCC) (see Chap. 6) are prime examples of each. FAP-related and 
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the majority of nonfamilial colorectal cancers develop through the CIN pathway 
 characterized by mutations in APC, p53, K-ras or SMAD4, loss of 18q, and an 
aneuploid karyotype. In contrast, Lynch-related and approximately 10–20% of 
sporadic colorectal cancers develop due to defects in the mismatch repair pathway 
leading to widespread MSI and a near-diploid karyotype (Chung 2000). The path-
way in which defective MUTYH leads to colorectal cancer is still under investiga-
tion. Several studies analyzing somatic events in MAP-associated adenomas and 
carcinomas have confirmed that MAP tumors are characterized by truncating muta-
tions in APC caused by G:C to T:A transversions, particularly at GAA sequences, 
which lead to a stop codon, TAA (Al-Tassan et al. 2002; Lipton et al. 2003). MAP 
tumors also have high a frequency of mutations in K-ras, particularly a G:C to T:A 
transversion GGT > TGT (G12C) in exon 1 (Lipton et al. 2003; Jones et al. 2004). 
MAP tumors are generally microsatellite stable and are nearly diploid (Lipton et al. 
2003). MAP tumors may develop through a distinct somatic pathway but one that 
shares characteristics of both the CIN pathway, such as APC mutations and micro-
satellite stable tumors, and the MSI pathway, with a near-diploid karyotype and 
low levels of loss of heterozygosity. A robust immunohistochemical assay would be 
helpful in characterizing the adenoma-to-carcinoma sequence in MAP.

The development of colorectal cancer due to MUTYH inactivation may be 
specific to germline mutations. Halford et al. investigated 75 unselected sporadic 
colorectal cancers and did not identify somatic MUTYH mutations. MUTYH mRNA 
and protein expression was found at normal levels in 35 colorectal cancer cell 
lines suggesting that epigenetic silencing is unlikely (2003). The role of somatic 
MUTYH mutations in the development of nonfamilial colorectal cancer is yet to be 
clarified.

Myh−/− mice have failed to recapitulate the phenotype seen in patients with MAP. 
Myh−/− mice do not develop tumors and have only an age-dependent accumulation 
of 8-oxodG in liver. Only when there is concurrent deficiency of both myh and 
ogg1 (myh−/−/ogg1−/−) do mice have an increased accumulation of 8-oxodG in other 
organs, including lung and small intestine, and tumors begin to develop (Russo 
et al. 2007). Thus far, no pathogenic human mutations in the other BER genes, 
OGG1 or MTH1, have been identified to be associated with tumor development.

Clinical Features

MAP is characterized by the development of multiple adenomatous polyps and 
a clinical phenotype that is often indistinguishable from Attenuated Familial 
Adenomatous Polyposis (AFAP), and classic FAP. Establishing the correct genetic 
diagnosis for the patient with adenomatous polyposis is not only important for that 
individual, but will also direct cancer surveillance for his or her family members. 
Polyposis and cancer risk exist for each successive generation in families with auto-
somal dominantly inherited FAP or AFAP; whereas a single generation is at risk for 
autosomal recessively inherited MAP.
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Polyps in MAP tend to be mainly small tubular or tubulovillous adenomas 
with mild dysplasia and occasional hyperplastic polyps. Also typically present 
are microadenomas, which were previously thought to be pathognomonic of FAP 
(Sieber et al. 2003; Lipton et al. 2003). Diagnosis of polyposis is generally at an 
older age than classic FAP but similar to AFAP, with a mean age ranging from 
45 to 56 (Sampson et al. 2003; Sieber et al. 2003; Wang et al. 2004; Nielsen et al. 
2005; Croitoru et al. 2007). There have been some reports of very early-onset 
polyposis with the youngest diagnosis at 13 years (Sampson et al. 2003). At least 
50% of individuals are diagnosed with a colorectal cancer at the time of polyposis 
diagnosis. Cancer develops throughout the colorectum without a site-specific pre-
dilection (Sampson et al. 2003; Sieber et al. 2003; Wang et al. 2004; Nielsen et al. 
2005; Croitoru et al. 2007). Very early-onset (<30 years) colorectal cancers have 
also been reported with MAP (Nielsen et al. 2005; Aretz et al. 2006). MAP color-
ectal cancers have no pathological features to distinguish them from FAP-related 
or sporadic colorectal cancers.

Polyp number in MAP is variable. Multiple studies have been reported which 
assess the frequency of biallelic MUTYH mutations in patients with classic 
polyposis, attenuated polyposis, and sporadic colorectal cancers. Clinic-based 
series of APC-negative polyposis patients have estimated that biallelic MUTYH 
mutations account for 11–42% of attenuated polyposis, defined as 10–100 
adenomas (Sieber et al. 2003; Isidro et al. 2004; Wang et al. 2004; Nielsen et al. 
2005; Croitoru et al. 2007) and 7.5–29% of classic polyposis, defined as >100 
adenomas (Sampson et al. 2003; Sieber et al. 2003; Gismondi et al. 2004; Nielsen 
et al. 2005). Biallelic MUTYH mutations do not appear to be a major contributor 
in patients with fewer than ten polyps (Wang et al. 2004). However, studies of 
nonpolyposis early-onset colorectal cancer, as well as nonfamilial colorectal 
cancers, have identified biallelic mutations in approximately 0.5% of patients 
(Fleischmann et al. 2004; Wang et al. 2004).

The major distinguishing feature of MAP is family history. MAP follows an 
autosomal recessive inheritance pattern; thus, a typical family may have several 
individuals in a single generation affected. A MAP patient may also appear to 
have nonfamilial colorectal cancer (no family history); this may be difficult to dif-
ferentiate from a case with a de novo APC mutation. Some families may appear 
to have a dominant family history with successive generations diagnosed with 
colorectal cancer. These cancers may be phenocopies due to the high incidence 
of colorectal cancer. MUTYH mutations are common enough that 1–2% of carriers 
will have children with a partner who is also a carrier and the family history will 
follow a pseudodominant inheritance pattern (Sieber et al. 2003; Croitoru et al. 
2007; Nielsen et al. 2007).

Although no detailed genotypic studies of penetrance have been performed for 
MAP, it has been suggested that penetrance is near 100%, because no true con-
trols have been identified with biallelic MUTYH mutations. One study found that 
biallelic carriers have a 53-fold (95% CI: 14–200, p < 0.0001) increased risk of 
CRC compared to the general population with a cumulative risk by age 70 of 80% 
(35–100%) (Jenkins et al. 2006). The high estimates of penetrance for MAP may 
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be because it is recessively inherited; therefore, most patients do not have a family 
history and present, often with symptoms, later than those under surveillance.

Extracolonic cancer risks in MAP are still being elucidated. The most consist-
ently reported feature is upper gastrointestinal polyps: approximately 5% of MAP 
patients have exhibited duodenal adenomas with or without duodenal adenocarci-
noma (Nielsen et al. 2005, 2006). Fundic gland polyps have been reported (Jo et al. 
2005) as well as a report of a MAP patient diagnosed with colonic polyposis at 
age 13 and gastric cancer at age 17 (Sampson et al. 2003). Upper gastrointestinal 
features may be underestimated as not all individuals with an attenuated polyposis 
phenotype may be referred for upper endoscopy.

Endogenous reactive oxygen species have been implicated in the carcinogen-
esis of multiple cancer types, including lung, breast, kidney, liver, and prostate 
(Okamoto et al. 1994; Malins and Haimanot 1991; Jaruga et al. 1994; Wang et al. 
2002; DeMarzo et al. 2003). Therefore, it may be hypothesized that germline 
MUTYH mutations would predispose carriers to some of these malignancies due 
to defects in BER of endogenous oxidative damage. Several series have evaluated 
patients with lung cancer, prostate cancer, hepatocellular carcinoma, cholangiocar-
cinoma, acute myeloid leukemia, acute lymphoblastic leukemia, and squamous cell 
carcinoma of the head and neck for germline mutations in MUTYH. No pathogenic 
biallelic germline mutations have been identified in any of these patient populations 
(Akyerli et al. 2003; Al-Tassan et al. 2004; Baudhuin et al. 2006; Gorgens 2007; 
Shin et al. 2007).

Extracolonic features that are typically associated with FAP such as congenital 
hypertrophy of the retinal pigment epithelium (CHRPE), osteomas, and dental 
anomalies (Gismondi et al. 2004) have occasionally been reported in MAP patients. 
These may not be true associations but purely coincidental as, in the past, MAP 
patients were clinically diagnosed with FAP and were therefore evaluated for these 
features which may occur sporadically in the general population.

Many of the hereditary colorectal cancer predisposition syndromes have associ-
ated dermatologic manifestations. Several MAP families have been reported with 
associated skin lesions. Baglioni and colleagues (2005) identified two siblings with 
MAP and pilomatricomas, benign tumors of the hair follicle. Ponti et al. (2005, 
2007) have reported four individuals from three unrelated MAP families with seba-
ceous gland hyperplasia.

Cancer Risk to Heterozygotes

Increased colorectal cancer risk in heterozygous carriers of MUTYH is controver-
sial. Most studies have been unable to detect an association between heterozygous 
MUTYH mutations and increased colorectal cancer risk and those that have been 
able to show an association are borderline statistically significant (Croitoru et al. 
2004; Farrington et al. 2005; Jenkins et al. 2006; Webb et al. 2006). A heterozygous 
MUTYH mutation is probably a low-penetrance allele; the studies carried out to 
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date are underpowered to detect any association between heterozygous mutations 
and colorectal cancer risk. It is possible that MUTYH carriers could acquire a 
somatic mutation or inactivation of the second wild-type allele and develop color-
ectal cancer. However, somatic MUTYH mutations are infrequent in colorectal 
cancers (Halford et al. 2003). Low levels of heterozygosity at the MUTYH locus 
on chromosome 1p have been demonstrated in small numbers by different groups 
(Croitoru et al. 2004; Kambara et al. 2004).

Conclusion

There is still much to be learned about the molecular basis, clinical features, and 
appropriate management of MAP. Why do biallelic MUTYH mutations result in 
tumors of the gastrointestinal tract and not other organs that are more susceptible 
to damage by reactive oxygen species? With the low rate of somatic MUTYH 
mutations in sporadic colorectal cancer, do biallelic MUTYH mutations simply 
confer an increased mutation rate in genes known to be associated with colorectal 
cancer development, e.g., APC and K-ras? Why do not germline MTH1 or OGG1 
mutations cause a similar tumor phenotype? Are there modifier genes that affect 
the clinical phenotype in individuals with MAP, which may, in turn, explain why 
some individuals have numerous polyps and some have only early-onset colorectal 
cancer? Are there genotype-phenotype correlations that may predispose to a more 
severe presentation? Are there histopathological features of MAP tumors that may 
aid in the identification of individuals at risk? Are there other extracolonic cancer 
risks? Do heterozygous mutation carriers have an increased risk of colorectal 
 cancer? What is the best management strategy for biallelic, as well as heterozygous, 
MUTYH mutation carriers? These issues are important for the understanding of the 
pathogenesis of colorectal cancer, the approach to the patient with multiple polyps, 
and the management of individuals with MAP.
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In 1991, the International Collaborative Group on Hereditary NonPolyposis Colon 
Cancer published what became known as the Amsterdam I criteria (AC-I) for the 
definition of HNPCC (Vasen et al. 1991). The AC-I are fulfilled if all four of the 
following conditions are met: (1) three cases of colorectal cancer (CRC) in which 
two of the affected individuals are first-degree relatives of the third; (2) CRCs 
occurring in two generations; (3) one CRC diagnosed before the age of 50 years; 
and (4) familial adenomatous polyposis not diagnosed in the family. Prior to 
discovery of the molecular basis of Lynch Syndrome or hereditary nonpolyposis 
colon cancer (HNPCC), Dr. Henry Lynch and others, had already defined this as a 
syndrome with autosomal dominant inheritance, characterized by greatly increased 
risks for colorectal carcinoma (CRC) that tended to occur two decades younger 
and was more likely to be located in the right colon than nonfamilial CRC. In addi-
tion, it was recognized that risks for the following carcinomas were also increased: 
endometrium, stomach, small intestine, hepatobiliary tract, kidney, ureter, and 
ovary. Application of the stringent AC-I to colorectal cancer patients and families 
facilitated the identification of the genetic lesions underlying HNPCC: a germline 
mutation in one of several DNA mismatch-repair genes (see Chap. 6 for details).

Following this major discovery, the term “HNPCC” began to be used inconsist-
ently in the medical literature: multiple papers continued to use HNPCC to mean 
probands who had pedigrees that fulfilled AC-I, regardless of molecular findings; 
others began to use HNPCC to refer only to families with hereditary DNA mismatch-
repair deficiency; lastly, there began to be papers containing the implicit assumption 
that if a pedigree fulfilled the AC-I, then a DNA mismatch-repair defect must be 
present in that pedigree, and this too, was called HNPCC. This confusion existed 
despite that fact that research had already showed that fulfillment of AC-I was not 
equivalent to having a hereditary DNA mismatch-repair gene mutation (Bisgaard 
et al. 2002; Wijnen et al. 1998 and others). For example, Wijnen et al. (1998), 
reported on 184 probands of which 92 had family histories that met AC-I. Mutations 
in MLH1 or MSH2 were found in only 45% of those meeting the criteria. Note that 
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both younger age at diagnosis of CRC and the presence of endometrial cancer in the 
family increased the likelihood that a mismatch-repair mutation would be found.

For those families that met AC-I but did not have DNA mismatch-repair gene 
defect, the magnitude of CRC risk and the tumor spectrum were unknown. As a 
consequence it was unknown whether the extremely rigorous cancer-screening 
recom mendations for “HNPCC” (Burke et al. 1997) were appropriate for those who 
did not have DNA mismatch-repair defects.

To explore this subject, cancer risks were studied among relatives of 161 probands 
from AC-I-positive families from the USA, Canada, Australia, and Germany (Lindor 
et al. 2005). All were characterized according to whether their tumors showed evi-
dence of DNA mismatch-repair deficiency using tumor microsatellite instability 
testing. Ninety families had DNA mismatch-repair deficiency and 71 had normal 
DNA mismatch repair on tumor microsatellite-instability testing. The Amsterdam-
defining “triad” of three affected individuals, which always included the proband, 
was removed from the analysis so as to be maximally conservative. The  remaining 
3,422 relatives were either first- or second-degree relatives of a triad member. 
The incidence of cancer in these relatives was calculated as the ratio of observed 
to expected cases to the number of at-risk person-years (standardized  incidence 
ratio; SIR). In the 90 families with DNA mismatch repair-deficient tumors, the 
risk for cancers was statistically significantly elevated in complete accordance with 
expectation of the syndrome described by Dr. Henry Lynch and colleagues: risks 
were increased for colorectal, endometrial, gastric, small intestine, and  kidney/
ureter cancers. However, in the 71 families without DNA  mismatch-repair defi-
ciency, there was a modestly increased risk for colorectal  cancer (SIR 2.3; 95% CI: 
1.7–3.0), but for no other cancer site. In addition, the average age at diagnosis of 
CRC was older in the families without DNA mismatch-repair deficiency: 61 versus 
49 years. This large study concluded that families who fulfill the AC-I should not 
be counseled as if they have hereditary DNA  mismatch-repair defect because the 
cancer risks are lower and different. The authors proposed use of the term “Lynch 
Syndrome” to describe families with hereditary DNA mismatch-repair defect and 
the term “Familial Colorectal Cancer Type X” to signify the other HNPCC-like 
clusters in which no DNA mismatch-repair defect could be identified. The word 
“hereditary” was avoided as this remained unproven and the “X” signified the 
unknown nature of this disorder. A call has been made for retirement of the term 
HNPCC (Jass 2006).

Familial Colorectal Cancer Type X (FCCTX) is undoubtedly a heterogenous 
grouping of: (1) random aggregations of a common tumor; (2) aggregations of a 
tumor related to shared lifestyle factors; (3) polygenic predisposition; (4) some 
yet-to-be-defined single-gene disorders. In a population-based study of 1,042 CRC 
probands with verified family histories, Aaltonen et al. (2007) explored how much 
of familial risk is attributable to Lynch Syndrome or other known genetic syn-
drome. When known syndromes were excluded from the analysis, 32% of familial 
risk remains unaccounted for by the known loci. Genetic modeling of the data did 
not suggest a better explanation than a simple polygenic model. Studies are now 
beginning to chip away at the genetic causes of FCCTX.
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Several additional studies have furthered knowledge regarding FCCTX. In a study 
of 41 German families, Mueller-Koch et al. (2005) confirmed the older age of onset 
in FCCTX compared to Lynch Syndrome (55 vs. 41 years) and also noted that two-
third of the tumors were left sided which is the inverse of CRC in Lynch Syndrome. 
Although the Lynch Syndrome group had more synchronous and metachronous 
CRCs, the FCCTX group had greater adenoma/carcinoma ratio and a tendency toward 
more adenomas, perhaps suggesting a slower progression of adenomas to carcino-
mas. This interpretation appeared to be confirmed in a separate study of 97 families 
with dominant CRC family history in the United Kingdom (Dove-Edwin et al. 2006) 
in which individuals with Lynch Syndrome and FCCTX had an equal likelihood of 
having high-risk adenomas but CRC developed only in those with Lynch Syndrome. 
In 64 Spanish families that met Amsterdam criteria, 40% had normal DNA mismatch 
repair in tumor tissue, and Valle et al. (2007) also confirmed the older age at CRC 
diagnosis in the FCCTX compared to Lynch Syndrome (53 vs. 41 years). In addition, 
the FCCTX cases were less likely to be in the right colon, to have mucinous tumors, 
and to have fewer multiple primary tumors. Llor et al. (2005) also studied 25 Spanish 
families meeting Amsterdam criteria: among 100 patients, 40% had normal DNA 
mismatch repair and, compared to Lynch Syndrome cases, age at diagnosis of CRC 
in relatives was older (60 vs. 54 years), 89% of tumors were left sided, none showed 
tumor infiltrating lymphocytes (whereas half of the Lynch Syndrome CRC did so). 
Table 8.2.1 compares and contrasts Lynch Syndrome with FCCTX.

Caution must be exercised in assigning a family to the FCCTX group. With 
the studies so far depending heavily upon tumor microsatellite instability results, 
one must consider the following: the possibility of a phenocopy within a Lynch 
Syndrome family (i.e., a microsatellite-stable tumor that arose by chance in a 
 family that actually does have a mismatch-repair defect); the fact that not all tumors 
with germline MSH6 mutations are MSI-high; and laboratory quality control prob-
lems such as the adequacy of the representation of tumor cells in the MSI-assay. In 
general, the age at diagnosis in the FCCTX families is older than in Lynch families 
and, in light of the findings to date, families with young average age of onset of 

Table 8.2.1 Families that fulfill the pedigree Amsterdam criteria

 Lynch Syndrome Familial Colorectal Cancer Type X

Colorectal  
Cancer risk Very high Modestly increased
Age of onset ~45 years average 50–60s
Usual location Proximal colon Distal colon
Polyps Few More

Other cancers  
Endometrial risk Very high Not very high
Other cancer sites Many None known

DNA mismatch-repair (MMR) genes  
Germline Mutations found No mutations found
Tumor Microsatellite instability No MSI/stable
Tumor staining Loss of MMR expression Normal expression
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colorectal tumors, or manifesting other classical Lynch Syndrome tumors such as 
endometrial cancer, should probably not be categorized as having FCCTX. Cancer-
screening recommendations have been suggested for FCCTX (Lindor et al. 2005; 
Hendriks et al. 2006; Dove-Edwin et al. 2006), but it is essential to not miscatego-
rize such families and to continue to search for single-gene syndromes.
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Introduction

Only one-third of all familial colorectal cancer (CRC) has a well-characterised 
genetic basis. The two most common hereditary CRC predispositions, familial 
adenomatous polyposis (FAP) and hereditary non-polyposis colon cancer (HNPCC 
or Lynch Syndrome) (Jass 2006), arise through the traditional CRC developmental 
model, the adenoma-carcinoma sequence (Iino et al. 2000; Young et al. 2001) and are 
discussed in Chaps. 5 and 6. With the recognition of the serrated neoplasia pathway 
as a major contributor to CRC in the wider population (Jass 2001), an opportunity 
arose to understand a further subset of familial cases. Familial serrated neoplasia 
encompasses a spectrum of phenotypes that includes: (1) apparently isolated cases 
of hyperplastic polyposis syndrome (HPS) which may have an autosomal recessive 
or co-dominant aetiology (Young and Jass 2006; Young et al. 2007), (2) HPS in a 
familial setting, and (3) the recently described autosomal dominant CRC predis-
position known as the serrated pathway syndrome (SPS) (Young et al. 2005). The 
single trait that occurs frequently across this range of presentations is the advanced 
serrated polyp (Torlakovic et al. 2003), a lesion that has increased malignant poten-
tial (Goldstein et al. 2003; Jass 2003) and that is rarely seen in families with FAP or 
Lynch Syndrome (Rijcken et al. 2003). The management of families with serrated 
neoplasia and individuals with hyperplastic polyposis presents a major challenge, 
inasmuch as there are no defined guidelines for their screening and management. 
In addition, recognition of cases and their families that do not fulfil the criteria for 
HPS has been difficult because this spectrum of disorders lacks a defined clinical 
perimeter, reflecting its recent description. Finally, the genetic mutation(s) underly-
ing serrated neoplasia predisposition have yet to be discovered.
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Hyperplastic Polyposis Syndrome

HPS has been defined by Burt and Jass as a series of alternative phenotypes. Those 
who fulfil the criteria demonstrate: (1) at least five histologically diagnosed hyper-
plastic polyps proximal to the sigmoid colon, two of which are greater than 10-mm 
in diameter; or (2) any number of hyperplastic polyps occurring proximal to the sig-
moid colon in an individual who has a first-degree relative with hyperplastic poly-
posis; or (3) more than 20 hyperplastic polyps of any size distributed throughout the 
colon (Burt and Jass 2000). In addition, Higuchi and Jass have suggested that atypi-
cal serrated polyps (these include sessile serrated adenomas, serrated adenomas, 
and mixed polyps) are counted in the total and that the polyp count be cumulative 
over time (Higuchi and Jass 2004). HPS affects both sexes and is usually diagnosed 
in the sixth or seventh decade (Leggett et al. 2001; Rubio et al. 2006), though ear-
lier presentations have been reported (Cohen et al. 1981; Bengoechea et al. 1987; 
Torlakovic and Snover 1996; Keljo et al. 1999). The polyposis involves at least the 
proximal colon; however, it is frequently pan-colonic (Leggett et al. 2001; Yeoman 
et al. 2007), and importantly, includes a smaller number of traditional adenomas. 
HPS is more common in Europeans (Young et al. 2007; Yeoman et al. 2007), shows 
evidence of genetic predisposition (Young and Jass 2006), and importantly, is a 
condition now considered to carry a high risk of CRC (Bengoechea et al. 1987; 
Teoh et al. 1989; Jeevaratnam et al. 1996; Torlakovic and Snover 1996; Azimuddin 
et al. 2000; Jass et al. 2000; Rashid et al. 2000; Leggett et al. 2001; Lage et al. 
2004; Chow et al. 2006). In reports of series where CRC was present, it appeared 
that the risk of a synchronous CRC was higher in those with atypical or large ser-
rated polyps, and with dysplastic changes (Leggett et al. 2001; Lage et al. 2004). 
The molecular features of the pathway, namely, somatic BRAF mutation and CIMP, 
demonstrate a high rate of concordance within individual lesions in subjects with 
HPS (Chan et al. 2002; Beach et al. 2005).

In parallel with the recognition that HPS carries a high risk of CRC development, 
the notion that there is a genetic predisposition has slowly evolved. Though affected 
first-degree relatives with HPS are rare and mostly involve sibships (Jeevaratnam 
et al. 1996; Chow et al. 2006), the presence of a substantial family history of CRC 
was noted as early as 1980 (Williams et al. 1980). Factors that delayed the recogni-
tion of a genetic link include the long-held premise that serrated polyps are of little 
clinical consequence, and the publication of several HPS case-series where family 
history of CRC had either not been observed or not been examined (Torlakovic and 
Snover 1996; Place and Simmang 1999; Jass et al. 2000; Ferrandez et al. 2004; 
Oberschmid et al. 2004). However, HPS with a family history of CRC has now been 
reported on multiple occasions (Jeevaratnam et al. 1996; Jass et al. 1997; Azimuddin 
et al. 2000; Hyman et al. 2004; Lage et al. 2004; Chow et al. 2006). As with individ-
ual cases where a synchronous CRC was present, a family history of CRC was more 
likely to occur when the polyps were found to show dysplastic changes (Azimuddin 
et al. 2000). A phenotype of multiple serrated polyps, and occasional affected sib-
ships including consanguineous kindreds (Chow et al. 2006) and identical twins, 
suggest an autosomal recessive or co-dominant mechanism as the most likely mode 
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of inheritance (Young and Jass 2006; Young et al. 2007), though the identification 
of the specific genetic variant associated with HPS will be necessary in order to 
analyse the mode of inheritance in an empirical manner. Sequence variants in MYH 
and EPHB2 have been reported in some HPS cases, though these did not account for 
the majority of cases (Chow et al. 2006; Kokko et al. 2006).

Phenotypic Dichotomy in Hyperplastic Polyposis Syndrome

In 1996, it was proposed that HPS is a heterogeneous condition (Torlakovic and 
Snover 1996). This is supported by the apparent dichotomy of phenotypes, namely 
one sub-type with numerous, and relatively uniform, serrated polyps and a second 
sub-type with fewer polyps but in which the polyps were more likely to be proxi-
mal, to have atypical features and to have diameters greater than 1 cm (Rashid et al. 
2000). For example, Azimuddin and colleagues described 16 cases of large atypical 
hyperplastic polyps from a series of colonoscopies. All but one lesion occurred in 
the proximal colon, and 9 of 16 cases had a family history of CRC (Azimuddin 
et al. 2000). It is the second sub-type which is more likely to be associated with a 
personal and family history of CRC, though the sub-types demonstrate consider-
able overlap in these features.

Serrated Pathway Syndrome

Familial cancer syndromes associated with BRAF-mutation-bearing tumours, and 
thereby reflecting an origin in serrated polyps, have been described recently in 
Australia (where 2 of 11 CRC families included cases of HPS) (Young et al. 2005) 
and Sweden (Vandrovcova et al. 2006). Such families show a pedigree consistent 
with autosomal dominant inheritance. Individuals with CRC or advanced serrated 
polyps are present across several generations and both sexes are affected. The 
features which characterise these families include: a relatively high frequency 
of BRAF mutation (18–70%); increased levels of methylation in the CpG island 
marker MINT31; a background of advanced serrated polyps; increased glandular 
serration within CRCs; and variable levels of tumour MSI. It is currently not known 
whether these families represent a single penetrant co-dominant allele of an HPS 
gene with an overlapping phenotype, or a distinct syndrome.

Conclusion

An understanding of the genetic basis for a predisposition to CRC contributes greatly to 
the management of families, allowing for pre-symptomatic genetic testing and screen-
ing of those where a high level of risk is suspected (Aaltonen et al. 2007). The implica-
tions of a genetic predisposition to serrated neoplasia may also have  implications for the 
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wider population (Young and Jass 2006). If HPS is a co-dominantly inherited  condition, 
then carriers of a single allele will be several orders of magnitude more common than 
bi-allelic mutation carriers and will be at increased risk for colorectal cancer. It has 
been shown, at a population level, that individuals with microsatellite  stable serrated-
pathway CRC are more likely to have a family history of CRC, evidence which sup-
ports this proposition (Samowitz et al. 2005). Issues remain to be addressed in families 
with serrated neoplasia, such as the establishment of a clinicopathological definition 
of the syndrome and recognition of its genetic basis. Establishing these will allow the 
development of recommendations for frequency and method of screening in those most 
at risk for the development of advanced serrated polyps, particularly individuals with 
HPS and their families. To this end, the importance of the serrated polyp in screening 
programs has been recently highlighted (Winawer et al. 2006).
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Background

Peutz–Jeghers syndrome (PJS) is a rare autosomal dominant disorder characterized 
by melanotic macules, hamartomatous intestinal polyps, and an increased risk for 
several cancers, including colon cancer. The earliest reported cases consistent with 
PJS were a pair of identical twins described by Hutchinson in 1896 (Keller et al. 
2001). Peutz reported a family in 1921, and an additional ten cases from several 
families were reported by Jeghers et al. in 1949 (Peutz 1921; Jeghers et al. 1949).

Estimates of the incidence of PJS range from 1 in 8,300 to 1 in 200,000 (Mallory 
and Stough 1987; Burt 2002). PJS has been reported in populations worldwide and 
occurs equally in males and females (Anyanwu 1999; Yoon et al. 2000).

Manifestations

Almost all individuals with PJS are thought to express the three features of the 
disease. There is variability among patients in the degree to which they are affected 
and at what age they manifest the disease (Westerman et al. 1999).

Melanotic macules are the cardinal feature of PJS (Banse-Kupin and Douglass 
1986). They develop on the lips and perioral skin by the end of the first year of life 
and are almost always present by 5 years. The macules are 1–5 mm in diameter and 
vary from dark chocolate to latte in color. They may fade in puberty and adulthood.

PJS intestinal polyps are hamartomata with hypertrophied disorganized normal 
epithelium over an underlying smooth-muscle core (Jansen et al. 2006). The smooth-
muscle core is unique to PJS hamartoma. PJS hamartomatous polyps arise most 
frequently in the small intestine, less so in the colon, and least frequently in the 
stomach. Between the ages of 9 and 14 years, most PJS patients develop episodes of 
abdominal pain caused by intermittent intussusception of small bowel polyp(s).
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PJS is associated with an increased risk of breast, colon, small bowel, pancreas, 
gastric, and other cancers. The most current and complete data on cancer risk are from 
a multicenter, collaborative series of 416 PJS patients (Hearle et al. 2006). The cumu-
lative risk of any cancer was 85% by age 70. The cumulative risk specifically for colon 
cancer was 3% (40 years), 5% (50 years), 15% (60 years), and 39% (70 years).

STK11

The only gene associated with PJS to date is STK11. There is evidence that there 
may be a second, as yet unknown, gene associated with PJS in a minority of fami-
lies (Olschwang et al. 1998). In 1997, the PJS locus was identified at 19p13.3 using 
comparative genome hybridization, loss of heterozygosity, and targeted linkage 
analysis (Hemminki et al. 1997). One year later, mutations in the STK11 gene at that 
locus were identified in PJS patients (Hemminki et al. 1998; Jenne et al. 1998).

STK11 is the official gene designation of the Human Genome Organization. 
LKB1 is sometimes used. The mouse homolog of STK11 is designated lkb1.

STK11 consists of ten exons covering 22.6 kb of genomic DNA located at 
19p13.3. Nine exons are coding, one is noncoding. Only one transcript is known. 
STK11 codes for a 433-amino acid protein that is ubiquitously expressed and 
present primarily in the cytoplasm and to a lesser extent the nucleus (Rowan et al. 
2000; Boudeau et al. 2003). STK11 is highly conserved with approximately 88 and 
84% homology, respectively, with its mouse (lkb1) and Xenopous homologs 
(XEET1) (Hemminki et al. 1998).

Functions of STK11

STK11 is a tyrosine kinase. It is the only tyrosine kinase known to function as a tumor 
suppressor. STK11’s primary function is energy homeostasis and it is the primary 
kinase of AMP Kinase (AMPK) (Shaw et al. 2004). STK11, AMPK, and the down-
stream mTOR pathway allow cells to integrate available energy, amino acid supplies, 
and growth-factor inputs and to adjust energy expenditure and protein production 
accordingly (Hay and Sonenberg 2004). In situations of low ATP levels – hypoxia, 
low glucose – AMPK is phosphorylated by STK11. AMPK, in turn, downregulates the 
mTOR (mammalian target of rapamycin) pathway through the TSC1/TSC2 complex. 
Protein synthesis and energy expenditure are then decreased by downregulation of 
ribosomal RNA and ribosome synthesis (Høyer-Hansen and Jäättelä 2007).

STK11 also plays a role in the VEGF pathway and cellular polarity. Lkb1−/− mice 
have high levels of VEGF and vascular malformations (Ylikorkala et al. 2001). 
STK11 homologs in C. elegans and D. melanogaster are involved in embryonic 
polarity (Watts et al. 2000; Martin et al. 2003). In human epithelial cell lines, acti-
vation of STK11 results in polarization of cells and formation of an apical brush 
border (Baas et al. 2004).
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Mouse Model

Lkb1−/+ knockout mice have a phenotype similar to PJS patients. They develop 
polyps at the junction of the stomach and duodenum between 10 and 14 months 
of life. They rarely develop small bowel polyps and do not have colon polyps. 
Connective tissue arborizes through the polyps, in a manner similar to the smooth-
muscle arborization seen in human PJS polyps. After 50 weeks of life, some lkb1−/+ 
mice develop hepatocellular carcinoma (Nakau et al. 2002). Lkb1−/− mice die in 
midgestation.

Carcinogenesis in PJS

Hamartoma → adenoma → carcinoma is the putative pathway for colon cancer in 
PJS. Hamartomatous polyps are thought to have a very low malignant potential, and 
it was unclear whether PJS-associated hamartomas were the premalignant lesions 
associated with cancer in PJS. Molecular and histological studies have confirmed 
that hamartomatous polyps are premalignant in PJS (Flageole et al. 1994).

It is not known whether inactivation of the second STK11 allele is necessary 
for carcinogenesis or if a 50% decrease in protein expression (haploinsufficiency) 
is enough for carcinogenesis. Supporting the haploinsufficiency hypothesis are 
studies of polyps from lkb1−/+ mice showing 50% levels of lkb1 mRNA transcripts 
and protein (Jishage et al. 2002). Supporting the two-hit hypothesis are studies of 
 hepato cellular carcinomas from lkbIb1–/+ mice that show LOH at the lkb1 locus 
(Nakau et al. 2002). Further, hypomorphic lkb1 mice, lkb1fl/fl, have been created that 
have lkb1 protein levels that are 10% of normal; these mice do not develop polyps 
or tumors, suggesting that complete loss of lkb1 function is necessary for polyp and 
tumor growth (Alessi et al. 2006).

Data from human PJS patients also show that LOH of STK11 is variably present 
in polyps and cancers (Table 8.4.1). Neither PJS-associated hamartomas nor 
 carcinomas exhibit many of the genetic events to the same degree as that seen in 

Table 8.4.1 Features of PJS-associated hamartomatous polyps and cancers

 PJS PJS
Characteristic Hamartomatous polyp Cancera

LOH STK11 7/22 8/11
APC somatic mutation 0/22 2/11
Microsatellite instability 0/22 1/11
Nuclear β-catenin 4/22 5/11
LOH APC 0/22 0/11
COX-2 epithelial expression (any) 10/22 8/11
COX-2 stromal expression (any) 12/22 2/7
a Cancers studied were colon, small bowel, pancreas, nasopharynx, and lung. 
Adapted with permission from De Leng et al. (2003)
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nonfamilial colon cancer such as somatic APC mutations. Conclusions are limited 
by the small number of PJS hamartomas and carcinomas that have been studied.

STK11 Loss of Heterozygosity and Somatic 
Mutations in Sporadic Cancer

Twenty to thirty percent of nonfamilial colon cancers have LOH at the STK11 
locus. In studies of colon cancers with STK11 LOH, somatic mutations have been 
identified in only a few cases. Somatic STK11 mutations are rare in colon cancer 
and in cancers other than lung cancer where they have been reported in 30% of 
cases (Forster et al. 2000; Sanchez-Cespedes et al. 2002).

Cyclooxygenase-2

COX-2 (cyclooxygenase-2) is overexpressed in the hamartomatous polyps of 
the lkb1+/− mouse (Rossi et al. 2002). Crossing lkb1+/− mice onto a COX-2−/+ or 
COX-2−/− background decreases polyp burden (Udd et al. 2004). In a study com-
paring COX-2 expression in PJS hamartomatous polyps and carcinomas, 24% of 
polyps, compared to 64% of carcinomas, had moderate or strong COX-2 expression 
(De Leng et al. 2003). Lkb1+/− mice treated with the COX-2 inhibitor, celecoxib, had 
a decrease in both the formation of new polyps and the size of pre-existing polyps. 
When six PJS patients were treated with celecoxib, two had a decrease in gastric 
polyps (Udd et al. 2004).
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Juvenile Polyposis (JP) is an autosomal dominant, genetically heterogeneous 
 disorder, characterized by multiple (5–200) (Aaltonen et al. 2000) hamartomatous 
polyps of the gastrointestinal tract. A variety of extracolonic manifestations have 
been recorded (McColl et al. 1964; Soper and Kent 1971; Sachatello et al. 1974; 
Walpole and Cullity 1989; Erkul and Ariyurek 1994; Coburn et al. 1995; Desai 
et al. 1998; Pacheco et al. 2007), but it is unclear whether patients in earlier reports 
had JP or some other hamartoma syndrome. No formal study of disease prevalence 
has been published, but the population incidence of JP is estimated to be 1 in 
100,000 (Burt et al. 1990).

The most commonly cited clinical diagnostic criteria for JP were proposed 
by Jass and colleagues (1988) (Table 8.5.1). Wide variability in intrafamilial and 
interfamilial expressivity of the clinical phenotype is observed. Affected individu-
als typically present with symptoms secondary to polyp formation (hematochezia, 
anemia, melena, abdominal pain) during their first two decades of life. However, 
one-third of affected individuals remain asymptomatic until adulthood (Coburn 
et al. 1995). The name, juvenile, refers to the histology of the polyps (which resem-
ble sporadic inflammatory polyps of childhood), not to the age at diagnosis.

Juvenile Polyposis shares clinical features with other colonic hamartomatous 
polyp syndromes (Cowden, Bannayan–Riley–Ruvalcaba, Peutz–Jeghers, Basal 
Cell Nevus/Gorlin), often leading to misdiagnosis. The benefit of clinical and 
molecular hindsight has permitted better classification of patients previously diag-
nosed with JP. Distinction among syndromes is important for both clinical and 
research purposes. Careful pathologic examination and clinical and family history 
can help to differentiate. Many hamartomatous polyp syndromes have a charac-
teristic dermatologic or histopathological finding that can be especially helpful in 
establishing the correct diagnosis (Tables 8.5.2 and 8.5.3). Hamartomatous polyps 
arise from the disorganized growth of surrounding normal tissue element(s). The 
term juvenile polyp is sometimes used synonymously with hamartomatous polyp. 
But, more precisely, a juvenile polyp is a unique type of hamartomatous polyp.
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Table 8.5.1 Clinical diagnostic criteria for JP (Jass et al. 1988)

One or more of the following:
• More than five juvenile polyps of the colorectum
• Juvenile polyps throughout the gastrointestinal tract
• Any number of juvenile polyps with a family history of juvenile polyposis

Table 8.5.2 Dermatologic findings in the hamartomatous polyp syndromes

Syndrome Inheritance Dermatologic findings

JP (hereditary) Autosomal dominant Multiple CALs (not consistent)
Sporadic juvenile polyp Sporadic Multiple CALs (uncertain if 

associated)
Bannayan–Riley–Ruvalcaba Autosomal dominant 

(allelic with Cowden)
Lipomas
Pigmented macules of the glans 

penis
Vascular malformations

Cowden Autosomal dominant Trichilemmomas
Papillomatous papules
Acral/planter keratosis
Glycogenic acanthosis
Multiple CALs

Cronkhite–Canada Sporadic Diffuse lentigines
Alopecia
Nail dystrophy

Gorlin (nevoid basal cell 
carcinoma syndrome)

Autosomal dominant Jaw keratocysts
Basal cell carcinomas
Facial milia
Meibomian cysts
Sebaceous cysts
Dermoid cysts
Skin tags (especially on neck)

Neurofibromatosis type 1 Autosomal dominant Multiple CALs
Freckling, axillary, inguinal, 

and elsewhere
Neurofibromas

Peutz–Jeghers Autosomal dominant Dark blue/brown macules 
around mouth, buccal 
mucosa, eyes, nostrils, 
perianal area

Hyperpigmented macules of the 
finger

CAL café-au-lait macules

Juvenile polyps range in size from 5 to 50 mm. Although most common in the 
colon, they can also occur in the stomach and small intestine. They are spherical 
in shape, can be single or multilobulated, and commonly exhibit surface erosion. 
With the exception of gastric juvenile polyps, which are sessile, most juvenile 
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Table 8.5.3 Comparing and contrasting the hamartomous gastrointestinal polyps between 
syndromes

Disorder Polyp location Polyp number
Polyp appearance and 
 histology

JP (hereditary) Stomach, small 
bowel, colon

Multiple Expanded lamina 
propria; hyperplastic, 
focally crowded, and 
cystic glands; surface 
erosions common; not 
as often pedunculated 
as sporadic juvenile 
polyp; dysplasia

Sporadic juvenile 
polyp

Colon 1 Pedunculated, smooth, 
round eroded surface; 
lacks smooth muscle; 
surface erosions com-
mon; rarely has areas 
of dysplasia

Banayan–Ruvalcaba–
Riley

Esophagus, stomach, 
small bowel, 
colorectum

Multiple Spectrum of intestinal 
findings: hamartoma-
tous polyps, gangli-
oneuromas, clusters of 
ganglia within lamina 
propria, atypical polyps 
with some features of 
tubulovillous adenomas

Cowden Esophagus, stomach, 
small bowel, 
colorectum

Multiple Hamartomatous polyps, 
lipomatous hamarto-
mas, ganglioneuroma-
tosis

Cronkhite–Canada Stomach, small 
bowel, colon

Multiple Broad sessile base, 
expanded edematous 
lamina propria and 
cystic glands; no 
dysplasia

Gorlin (nevoid basal 
cell carcinoma 
syndrome)

Stomach Not common Hamartomas not well 
described in literature

Neurofibromatosis 
type I

Colon Not common Hamartomas, not well 
described in literature; 
neurofibromas, gangli-
oneuromas

Peutz–Jeghers Mostly small bowel; 
can involve 
stomach and 
colorectum

Multiple Smooth muscle forming 
infrastructure; branch-
ing bands of smooth 
muscle; hyperplasia, 
elongation, and cystic 
change of the foveolar 
epithelium; atrophy of 
deeper glandular 
components
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polyps are pedunculated (i.e., have a stalk). Histologically, expanded edematous 
lamina  propria with mucinous, dilated glands, abundant stroma, and inflammatory 
infiltrate are commonly observed. Some juvenile polyps may have areas of dys-
plasia (Aaltonen 2000; Brosens 2007; Burke and Sobin 1989; Burger et al. 2002; 
Howe 2004; Jass et al. 1988). Solitary juvenile polyps occur in approximately 2% 
of the pediatric population. Although histologically quite similar to juvenile polyps 
observed in JP, these polyps are not associated with either increased risk of malig-
nancy or extracolonic manifestations and are seldom dysplastic (Nugent et al. 1993; 
Giardiello and Hamilton 1991). Similar polyp pathology is also observed with 
Cronkhite–Canada syndrome, a sporadic, adult-onset colonic hamartomatous polyp 
syndrome that is more prevalent among Japanese. Certain pathologic nuances may 
help to distinguish solitary hamartomatous polyps and the hamartomatous polyps 
observed as part of Cronkhite–Canada syndrome from those associated with famil-
ial JP. For example, Cronkhite–Canada hamartomatous polyps tend to have a broad 
sessile base and are not pedunculated like those observed in JP (Burke and Sobin 
1989). In addition, a frond-like growth pattern, comparatively less stroma, and 
dilated glands with more proliferative smaller glands are more commonly observed 
in familial JP rather than solitary, sporadic juvenile polyps (Brosens et al. 2007).

Individuals with familial JP have an increased risk of GI malignancy. A survey 
of the literature assesses this risk at approximately 50% (Brosens et al. 2007 ; Howe 
et al. 1998) with a reported range of 9–68% (Jass et al. 1988; Jarvinen and Franssila 
1984; Coburn et al. 1995; Howe et al. 1998; Brosens et al. 2007). Cancers of the 
stomach, duodenum, and pancreas have been described in some patients, but the risk 
for malignancy is highest (~40%) in the colon (Howe et al. 1998). The mechanism 
by which malignant transformation occurs remains a subject of research. A juvenile 
polyp-adenomatous change-dysplasia-carcinoma sequence is suspected following 
several reported cases of colorectal adenocarcinoma in patients with JP, and a docu-
mented correlation between risk of malignancy and a preponderance of juvenile 
polyps exhibiting dysplastic change (Merg et al. 2005; Roth 1999). It has also been 
suggested that disruption of TGF-β signaling due to an abnormal microenvironment 
created largely by abundant stroma is responsible (Kim et al. 2006; Kinzler and 
Vogelstein 1998). Additional research is required to determine whether individuals 
with JP are generally predisposed to malignancy separate from a predisposition to 
polyps, or are predisposed to polyps that, in turn, become malignant, or both.

Considerable heterogeneity complicates the molecular diagnosis of JP. To date, 
two genes, BMPR1A and MADH4/SMAD4, and recently a third gene, ENG, have 
been implicated in JP. These three genes encode proteins of the closely related 
TGF-β- and BMP-signaling pathways. The TGF-β and BMP signal transduction 
pathways each involve a signaling cascade where ligands bind to type 2 receptors 
to recruit type 1 receptors, like BMPR1A, creating a receptor complex that, in turn, 
phosphorylates unique SMADs. The TGF-β and BMP pathways converge when 
the unique, activated SMADs (SMAD1, SMAD5, SMAD8 for BMP, and SMAD2 
and SMAD3 for TGF-β) bind to the common SMAD4 product, creating a SMAD 
oligomer. The SMAD oligomer shuttles into the cell nucleus and binds to transcrip-
tion factors to form a transcriptional complex, thereby regulating gene expression 
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and ultimately cellular homeostasis (Heldin et al. 1997; Howe et al. 2004; Brosens 
et al. 2007; Merg et al. 2005).

The prevalence of BMPR1A and MADH4/SMAD4 mutations in JP patients is 
reported to be 11.4–20.8 and 18.2–18.6%, respectively (Sayed et al. 2002; Howe et al. 
2004; Pyatt et al. 2006). This low combined detection rate has prompted a continued 
search for other possible genes/proteins within the TGF-β and BMP pathways.

Comprehensive molecular screening of the following TGF-β type I, type II, 
and SMAD receptor proteins: BMPR1B, BMPR2, ACVR1, SMAD2, SMAD3, 
and SMAD7 has not identified a single causative mutation among BMPR1A and 
MADH4/SMAD4 mutation-negative JP patients (Bevan et al. 1999; Howe et al. 
2004; Roth et al. 1999). However, mutations in the ENG gene that encodes endog-
lin, a TGF-β accessory receptor protein, have been reported in two patients with JP 
with onset in infancy (Sweet et al. 2005), and it is notable that neither had clinical 
features consistent with Hereditary Hemorrhagic Telangiectasia (HHT) syndrome, 
which is often caused by mutations in the ENG gene. The prevalence of ENG gene 
mutations in JP patients without features of HHT has yet to be adequately described 
(Howe et al. 2007).

HHT is inherited in an autosomal dominant fashion and is clinically character-
ized by arteriovenous malformations and skin and mucosal telangiectasias. Two 
genes, ACVRL1/ALK-1 and ENG, are associated with HHT. ACVRL1/ALK-1 
encodes activin A receptor type-like kinase 1 that acts as an alternate TGF-β type 
I receptor in endothelial cells. The ENG gene encodes endoglin, an accessory 
receptor protein that binds to specific TGF-β proteins depending on the presence 
of particular type I and type II receptors. The endoglin protein is required for effi-
cient ALK-1 signaling (Blanco et al. 2005). More than 92% of individuals meeting 
clinical diagnostic criteria of HHT have mutations in the ENG or ACVRL1 genes 
(Letteboer et al. 2005). Several patients with features of both JP and HHT have 
been reported. None of these patients was reported to have mutations in the ENG or 
ACVRL1 genes; instead, many have mutations in the MADH4/SMAD4 gene, which 
is mutated in approximately 10–20% of JP patients without obvious features of 
HHT (Burger et al. 2002; Gallione et al. 2004, 2006; Howe et al. 2004; Roth et al. 
1999). A retrospective review of such patients may show findings consistent with 
HHT. Some authors have suggested that individuals who exhibit features of both 
HHT and JP have a distinct syndrome, while others suggest that variable expres-
sivity and age-related penetrance may explain the clinical overlap. The molecular 
and clinical relationship of JP and HHT continues to be the subject of research.

Efforts to correlate genotype and phenotype have elucidated specific trends that, 
depending on clinical features, may be helpful guiding molecular testing strategies 
for affected patients:

Polyp morphology of • MADH4/SMAD4 mutation-positive patients has been 
reported to show less prominent stroma than polyps of mutation-negative indi-
viduals (Woodford-Richens et al. 2001).
MADH4/SMAD4•  mutations have been identified in individuals exhibiting fea-
tures of both HHT and JP.



204 K.A. Mensink et al.

A sometimes massive preponderance of gastric polyps, has been observed in • 
MADH4/SMAD4 mutation-positive patients which distinguishes them from 
BMPR1A mutation-positive and affected mutation-negative JP patients (Sayed 
et al. 2002; Friedl et al. 2002; Handra-Luca et al. 2005).
In general, • MADH4/SMAD4 or BMPR1A mutation-positive patients are more 
likely to have: (1) more polyps; (2) a family history of JP; and (3) a family his-
tory of GI cancer (Sayed et al. 2002).

Although relatively rare, JP is the most common of the hamartomatous polyp 
syndromes. Wide clinical variability and genetic heterogeneity complicate the 
diagnosis of affected individuals, but careful pathologic and clinical examination 
coupled with appropriate molecular studies can correctly distinguish familial JP 
from those with nonfamilial hamartomas or with other colonic hamartomatous syn-
dromes. Continued clinical and molecular research will not only improve diagnosis 
and management of JP patients, but will continue to provide insight into the compli-
cated interrelationship of the TGF-β superfamily proteins and cancer mechanisms, 
and thus, probably influence progress in cancer research more generally.
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Bloom Syndrome and the BLM Gene

Bloom syndrome (BS) was first described by Dr. David Bloom in 1954 after he 
observed a small number of patients of Ashkenazi Jewish origin with erythema-
tous lesions of the face and small stature (Bloom 1954). Approximately 10 years 
later, the chromosomal instability and cancer predisposition of BS were reported 
(German et al. 1965). BS is a rare autosomal recessive disorder in which affected 
individuals show pre- and postnatal growth retardation, sun-sensitive facial ery-
thema, immunodeficiency, and male infertility. Those affected are predisposed to 
a plethora of cancers, most commonly occurring before the age of 25 (German 
1993). Carcinomas are observed with highest frequency, followed by leukemias 
and lymphomas (German and Ellis 1998). Cytologically, the hallmark of BS is 
elevated sister chromatid exchange (SCE), approximately 5- to 10-fold higher than 
in cells from unaffected individuals. SCE is often used as a diagnostic marker of 
BS, although molecular genetic mutational analysis is available. Other cytological 
features of BS include quadriradial structures, telomere associations, and chromo-
some breaks (German 1964; German et al. 1965; Chaganti et al. 1974).

The disease gene for BS, known as BLM, maps to chromosome 15q26.1 and 
encodes a 159-kDa protein that is a member of the recQ family of helicases (Ellis 
et al. 1995). This family of helicases is highly conserved throughout evolution; 
multicellular organisms have multiple recQ-like helicase genes in contrast to 
unicellular organisms that have only one. The BLM gene encodes a protein that 
contains a central helicase domain. Carboxy terminal to the helicase domain is 
the conserved RQC domain (recQC-terminal) that defines this family of helicases, 
and the HRDC domain (helicase, RNaseD and C-terminal), a domain common to 
RNA helicases. A nuclear localization signal is also present in the C terminus of 
most eukaryotic recQ-like helicases. The human recQ-like helicases have very  little 
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homology outside the central helicase domain; the other regions vary greatly in 
length. Such differences permit distinct protein binding partners suggesting some 
unique functions for each helicase (Hickson 2003).

The recQ-like family of helicases in humans consists of five members: BLM, 
WRN, RecQL1, RecQL4, and RecQL5 (Karow et al. 2000a,). Mutations in BLM, 
WRN, and RecQL4 lead to the chromosome breakage syndromes, Bloom, Werner, 
and Rothmund–Thompson syndromes, respectively. The functions of RecQL1 and 
RecQL5 are less clear, as germline mutations of these genes are not associated with 
a human syndrome. Homozygous mutation of Recql5 in mice leads to an increase 
in cancer susceptibility, with lymphomas occurring in more than half of the mice 
with tumors. Embryonic stem (ES) cells deficient in Recql5 show elevated levels 
of spontaneous DNA double-strand breaks (DSB) (Hu et al. 2007). Cells lacking 
RecQL1 are sensitive to IR induced damage and camptothecin, resulting in high 
SCE (Sharma and Brosh 2007). Also, RecQL1 depletion by siRNA leads to mitotic 
cell death in cancer cells, but not in normal cells suggesting that RecQL1 is neces-
sary for the repair of replication induced damage that persists in cancer cells due to 
lack of checkpoints (Futami et al. 2008).

Since the cloning of BLM in 1995, 64 unique mutations have been reported in 
the Bloom’s Syndrome Database (German et al. 2007), a large number of which 
(54) lead to premature stop codons, and the remaining (10) code for missense muta-
tions. Frameshift mutations caused by insertions and deletions are found through-
out the gene. The BlmAsh mutation is a 6-bp deletion and 7-bp insertion found at 
high frequency in those of Ashkenazi Jewish descent, of whom one in 120 is a 
carrier (Straughen et al. 1998). One-third of those affected by BS are of Ashkenazi 
Jewish origin.

Biochemical Properties of BLM

The BLM helicase has ATP- and Mg2+-dependent 3'–5' helicase activity. BLM does 
not effectively unwind blunt-ended DNA substrates and has poor processivity on 
dsDNA with a free 3'-end (Karow et al. 1997). This can be enhanced in the presence 
of the single-stranded binding protein, RPA (Brosh et al. 2000). Preferred in vitro 
substrates include unusual DNA structures such as duplex DNA containing a  bubble 
and G4 DNA, stable structures that can form in G-rich regions of the genome such 
as telomeres (Mohaghegh et al. 2001; Brosh et al. 2000). BLM can recognize and 
promote branch migration of double Holliday junctions, and its interaction with 
topoisomerase IIIα-BLAP75-BLAP18, known as the BTB complex, is necessary 
for proper processing of these structures to yield a noncrossover product (Wu and 
Hickson 2003; Raynard et al. 2006; Singh et al. 2008). BLM can promote reverse 
branch migration of stalled replication forks thus facilitating repair without ini-
tiation of homologous recombination (HR) (Karow et al. 2000b), and can disrupt 
D-loops, early intermediates in HR (van Brabant et al. 2000). In vitro evidence, 
therefore, suggests an antirecombinogenic role for BLM.
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In vivo, slow progression of DNA replication supports a role for BLM in the 
resolution of stalled replication forks (Hand and German 1975; Lönn et al. 1990). 
Additionally, BS cells are highly sensitive to hydroxyurea (HU), a nucleotide analog 
that halts DNA replication and activates the S-phase cell-cycle checkpoint. BLM 
colocalizes with proteins involved in replication and DNA repair such as γH2AX, 
RAD51, RPA, and PCNA (Brosh et al. 2000; Rassool et al. 2003; Yankiwski et al. 
2000; Davies et al. 2004). BLM has been implicated in the repair of DSB with 
putative roles in both HR and nonhomologous end-joining (NHEJ) (Langland et al. 
2002; Wu and Hickson 2003).

Blm/BLM Mutation and Colorectal Cancer Susceptibility

The cancer spectrum that results from lack of BLM, albeit wide, is restricted to prolif-
erative tissues where BLM is normally expressed. Of the 238 affected in the Bloom’s 
Syndrome Registry, 25 have reported colorectal tumors. Colorectal tumors have been 
identified from cecum to rectum, and range from numerous adenomatous polyps to 
adenocarcinomas (German 1996; Lowy et al. 2001). Although the case numbers are 
small, almost half of the carcinomas occur in the ascending or transverse colon, rather 
than the more common descending colon for the general population (Lowy et al. 
2001). Genetic analysis of six adenomas in one BS person revealed somatic mutations 
of APC, but no germline mutation (Lowy et al. 2001). Different APC mutations were 
found in four of these adenomas suggesting that each adenoma formed independ-
ently. Two adenomas from the same person were positive for microsatellite instability. 
These analyses suggest a general increase in mutation frequency in the epithelial cells 
of the colon in BS persons. In another study, Calin et al. (2000) examined 63 colon 
carcinomas with high microsatellite instability and determined that a small proportion 
of these tumors carried microsatellite mutations in BLM and that such frameshifts 
were significantly associated with a mucinous histopathology of the tumor. It is 
unclear from this work whether BLM is a genomic or functional target of mutation.

Although BS is a recessive disorder, reports suggest that BLM haploinsufficiency 
leads to an increase in the incidence of intestinal cancers. A study in which mice 
carrying one Blm null allele (BlmCin/+) were challenged with a murine leukemia 
virus infection showed that the BlmCin/+ mice died earlier from lymphoma than their 
wild-type littermates (Goss et al. 2002). To determine the effect of Blm haploinsuf-
ficiency on intestinal tumorigenesis, BlmCin/+ mice were crossed with ApcMin/+ mice 
carrying a premature stop codon in one allele of Apc. At 4 months of age, ApcMin/+; 
BlmCin/+ developed twice the number of adenomas compared to ApcMin/+; Blm+/+ 
mice. The adenomas in the double heterozygotes were characterized by high-grade 
dysplasia, rather than the low-grade dysplasia of the ApcMin/+ mouse adenomas. 
Mutational analysis of the adenomas, using genetic markers proximal and distal to 
Apc on mouse chromosome 18, showed that the loss of the second Apc allele could 
be mediated by somatic recombination, rather than just associated with isodisomy. 
All the adenomas examined remained heterozygous at Blm.
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Gruber et al. (2002) asked similar questions using a human population to deter-
mine if carriers of a BLM mutation are at an increased risk of developing colon 
cancer. One thousand two hundred forty-four Ashkenazi Jews with colorectal 
cancers were genotyped at BLM and determined to have an allele frequency of 1 in 
54. Ashkenazi Jews without colorectal cancers were determined to have an allele 
frequency of 1 in 118. The age of colon cancer diagnosis did not differ between 
BLMAsh/+ and BLM+/+ patients. Gruber et al. (2002) concluded that carriers of BLM 
mutation are twice as likely to develop colorectal cancer as noncarriers. All individu-
als in the study had three of four grandparents of Ashkenazi Jewish origin, and were 
evaluated by full colonoscopy. Anyone with a history of inflammatory bowel disease 
or a family history of colon cancer was eliminated from both study groups.

Since these reports were published, three other reports have been unable to 
demonstrate an association between BLM haploinsufficiency and susceptibility 
to colorectal cancer. Cleary et al. (2003) genotyped 2,333 Jewish individuals to 
determine the allele frequency of BLMAsh. Four hundred ninety-seven individuals 
were diagnosed with colorectal cancer, 125 with adenomatous polyps, 767 with 
noncolorectal cancers, and 944 were cancer-free. They found the allele frequency 
of BLMAsh mutation did not significantly differ between individuals with colorectal 
tumors, noncolorectal cancer, or those that were cancer-free (0.80, 0.87, and 0.85%, 
respectively). Cleary et al. (2003) also found that, among their sample populations, 
the mean age of colorectal cancer diagnosis for BLMAsh carriers was 74 years com-
pared to 71 years for noncarriers, suggesting that BLMAsh heterozygosity does not 
markedly alter the mean age for cancer diagnosis. A second study reported an allele 
frequency of 0.9% for BLMAsh mutation in paraffin-embedded blocks of colorectal 
tumors from 429 Ashkenazi Jews (Zauber et al. 2005). In a third report, Baris et al. 
(2007) retrospectively studied three generations of 28 individuals carrying the 
BLMAsh and 43 non-carriers. They found no significant difference in the prevalence 
of malignancies (breast and colon) among carriers and non-carriers.

Although the role of BLM haploinsufficiency in susceptibility to colorectal 
 cancer still awaits larger human population studies, it is clear, from the  mouse-model 
experiments, that haploinsufficiency affects tumor number, tumor histopathology, 
and mutational mechanism. It is also clear that individuals with Bloom Syndrome 
can develop a wide range of cancers at an early age, but seem to develop colon 
cancer at an unusually high frequency.
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The hereditary colorectal cancer syndromes have been the focus of intense molecu-
lar and clinical investigations aimed at formulating models of tumorigenesis and 
optimizing the diagnosis, management, and genetic counseling of affected families. 
However, despite the vastly increasing amount of knowledge regarding the genetic 
basis of inherited colorectal cancer in the past 15 years, there remains a substantial 
portion of the disease where a genetic basis cannot be identified. Although many 
of these may be related to environmental or dietary causes and others may reflect 
an interaction between low- or intermediate-penetrance genes with environmental 
factors, additional high-penetrance genes may also be responsible for some cases, 
particularly those diagnosed at unusually young ages or associated with a family 
history of other cancers. p53 is one of these high-penetrance genes that underlies the 
hereditary cancer syndrome known as Li–Fraumeni Syndrome (LFS), the mutation 
of which confers a predisposition to a variety of tumors including colorectal cancer 
at early age. Although initial studies focused on the classic tumors associated with 
LFS, subsequent reports suggested that germline p53 mutation carriers might have 
an increased susceptibility to a much broader range of neoplasms (Garber et al. 
1991; Birch et al. 1994, 1998; Varley et al. 1995; Kleihues et al. 1997; Hisada et al. 
1998; Nichols et al. 2001). These include carcinomas of the colon, lung, stomach, 
pancreas, ovary, and lymphomas.

LFS is a rare familial cancer syndrome in which cancer susceptibility is dominantly 
inherited (Li and Fraumeni 1969). LFS is characterized by the occurrence of several 
cancers at remarkably early ages. The classic syndrome (Table 8.7.1) includes a 
number of specific tumor types: soft tissue sarcomas and osteosarcomas, brain tumors, 
adrenocortical carcinoma, leukemias, and breast cancer. In 70% of families with clas-
sic LFS and 30% of Li–Fraumeni-Like (LFL) families (more relaxed criteria) (Table 
8.7.1), a germline mutation in the p53 gene can be identified (Kleihues et al. 1997).
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The p53 gene, first identified in 1979, is located on chromosome 17p (Malkin 
et al. 1990) and encodes for a 53-kDa nuclear phosphoprotein that binds DNA 
sequences and functions as a negative regulator of cell growth and proliferation 
in the setting of DNA damage. Often considered as the “guardian of the genome” 
(Lane 1992), the p53 protein recognizes damaged cells and functions as a “check-
point” by delaying the progression of the cell cycle so that damaged DNA can 
be repaired or apoptosis (programmed cell death) can be ensured (Fisher 2001). 
It accomplishes these tasks either by: repairing the DNA via the transcriptional 
activation of the downstream genes (p21, MDM-2, GADD45, Bax, IGF-BP, and 
cyclin-G); or directly signaling a “sensor” molecule that confirms the DNA dam-
age and proceeds with apoptosis. p53 not only mediates the proper activation of 
the RB pathway (Levine 1997), which is essential to arresting the cell cycle, but 
also may directly aid in the DNA repair process (Varley et al. 1997). Inactivation 
of the p53 gene or disruption of the p53 protein product can determine the persist-
ence of damaged DNA and the possible development of malignant cells. Most of 
the germline p53 mutations are missense mutations involving the binding domain 
of p53 and are localized between exon 4 through exon 9. Although p53 germline 
deletions are very rare, they do need to be considered in patients with clear LFS 
features in the absence of detectable missense mutations (Bougeard et al. 2003; 
Walsh et al. 2006).

LFS is a rare syndrome, with estimates of the frequency of germline p53 muta-
tions in the range of 1:8,000 in the general population (Nichols et al. 2001), or one-
tenth the frequency of mutated germline BRCA1 and BRCA2 mutations. In LFS, the 
risk of developing cancer is 50% by age 30 and 90% by age 70 years. The rate of 
multiple primary cancers is also markedly elevated in LFS individuals who survive 
a first cancer diagnosis (Hwang et al. 2003).

Analysis of 45 LFS families and 140 other affected cases within the literature 
performed by Nichols et al. showed that carriers of a p53 mutation had significantly 
earlier age of diagnosis (median age: 33 years) of colorectal cancer (CRC) than the 

Table 8.7.1 Li–Fraumeni Syndrome (LFS) and Li–Fraumeni-like (LFL) criteria

Li–Fraumeni classic criteria

• Proband diagnosed with sarcoma before 45 years of age, and
• A first-degree relative with any cancer before 45 years of age, and
• Another first-or second-degree relative in the lineage with any cancer before age 45 years or 

sarcoma at any age

Li–Fraumeni-like (LFL) criteria

Birch’s Definition:
• Proband with any childhood cancer or sarcoma, brain tumor, or adrenal cortical tumor before 

45 years of age, and
• First- or second-degree relative with a typical LFS tumor (sarcoma, brain tumor, breast 

 cancer, adrenal cortical tumor or leukemia) at any age, and
• First- or second-degree relative with any cancer before 60 years of age

Eeles’ Definition:
• Two first- or second-degree relatives with any LFS-related malignancies at any age
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general population (median age: 72 years) (Nichols et al. 2001). This unusually 
early age of presentation is characteristic of hereditary cancers, and suggested that 
CRC, among other neoplasms, may also be associated with LFS. The prevalence of 
early-onset colon cancer, defined as CRC diagnosed at or below age 50, was sub-
sequently evaluated in 397 patients from 64 families with LFS (Wong et al. 2006) 
who are part of the Dana-Farber Cancer Institute LFS Family registry assembled by 
Dr. Frederick Li and Joseph Fraumeni. The goal of this analysis was to determine 
whether CRC is associated with LFS and, therefore, to determine if LFS should be 
considered in patients with early-onset CRC. Of the total families, 12.5% had indi-
viduals with a germline p53 mutation and CRC diagnosed at age less than 50 years. 
The mean age at diagnosis was 33 years with a median age of 41 years (range: 9–50 
years). From this group, three patients developed colon cancer before age 20 (27% 
of 11 patients with early-onset CRC) and one patient (9.1%) between age 20 and 
34 (Table 8.7.2). The results of this study demonstrated a high rate of CRC in 
LFS families, often occurring at very young ages (less than age 20). These results 
are in contrast with the incidence rate of CRC in the general population from the 
Surveillance, Epidemiology, and End Results (SEER) database, which showed that 
0.2% of all colorectal cancers were diagnosed before age 20; 2.2% between ages 
20 and 34; 7.6% between ages 35 and 44; and 22.1% between ages 45 and 54.

Table 8.7.2 Classic LFS patients with early-onset colorectal cancer – age of diagnosis, method 
of conformation, and pathology report. Table data reprinted with permission from Gastroenterology 
(Wong et al. 2006)

Patient
Age 
dx

Method of 
confirmation

Tumor
type Location Grade

Lymph 
nodes Metastases

1 9 Pathology AdenoCa L colon Mod well 
diff

No Omentum, 
peritoneum

2 11 Pathology AdenoCa Transverse 
colon

No report Yes Lungs, liver, 
adrenal, 
thymus

3 15 Death 
certificate

4 20 Pathology AdenoCa R colon Mod 
undiff

Yes No

5 41 Pathology AdenoCa L colon Well diff Yes Omentum, 
liver, 
peritoneum

6 41 Pathology AdenoCa L colon, 
Rectum

Mod diff No No

7 41 Verbal report
8a 41 Pathology AdenoCa L colon, 

rectum
Well diff No No

9 43 Verbal report
10 49 Pathology AdenoCa L colon Mod diff No Mesocolon
8b 50 Pathology AdenoCa Rectum Well diff No No

AdenoCa adenocarcinoma; mod diff moderately differentiated; undiff undifferentiated
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An additional study by Olivier et al. also confirmed the early age of onset of 
CRC among individuals in another Li–Fraumeni database (Olivier et al. 2003). The 
frequency of CRC in p53-confirmed or obligate carriers with a family history of 
LFS or LFL was 1.8% with a median age of onset of 34 years and a slightly higher 
incidence (57%) in male p53 carriers versus sporadic CRC cases (50%).

The findings of early-onset CRC in p53 carriers, if confirmed, will result in the 
inclusion of LFS in risk assessment models and genetic counseling as well as the 
consideration of LFS as a possible alternative etiology of early-onset CRC when 
the other hereditary conditions (Lynch Syndrome, FAP) have been excluded (Lynch 
and de la Chapelle 1999, 2003).

Additional studies are required to confirm these preliminary findings about the 
role of germline p53 in inherited CRC, including further assessment of the preva-
lence of germline p53 mutations in individuals with young-onset CRC (<40 years); 
determination of the phenotypic characteristics of CRC associated with germline 
p53 mutations compared with non-familial cases; and determination of genotype-
phenotype correlations with CRC phenotype and other associated tumors.
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At least five studies have recently identified single nucleotide polymorphism 
 variants associated with prostate cancer risk at chromosome 8q24 (Amundadottir 
et al. 2006; Freedman et al. 2006; Gudmundsson et al. 2007; Haiman et al. 2007b; 
Yeager et al. 2007). A comparable series of studies has now identified variants in 
the same region, including rs6983267 and rs10505477, as being associated with 
colorectal cancer risk (Gruber et al. 2007; Haiman et al. 2007a; Poynter et al. 2007; 
Tomlinson et al. 2007; Zanke et al. 2007), although the mode of inheritance has been 
inconsistent across studies: two observed a log-linear per-allele effect (Tomlinson 
et al. 2007; Zanke et al. 2007), one reported a statistically significant per-allele asso-
ciation and a nonmultiplicative risk (Haiman et al. 2007a), one observed a dominant 
effect for the association (Gruber et al. 2007), the fifth found a deviation from 
additivity in a dominant model (Poynter et al. 2007). There is some inconsistency in 
whether heterogeneity exists by age or family history (Gruber et al. 2007; Haiman 
et al. 2007a; Poynter et al. 2007; Tomlinson et al. 2007). Microsatellite instability 
has been included in two studies: one showed no heterogeneity (Tomlinson et al. 
2007); the other suggested a stronger association for MSI-H cases (Poynter et al. 
2007). The Poynter et al. study observed an association in the population-based, but 
not the clinic-based, families between colorectal cancer risk and rs10505477 (OR 
= 1.38, 95% CI: 1.09–1.75 for heterozygous carriers of the T allele, OR = 1.15, 
95% CI: 0.85–1.55 for homozygous carriers of the T allele p = 0.005), with, 
thus, no evidence of a per-allele association (Poynter et al. 2007).

Zanke et al. (2007) and Poynter et al. (2007) have also identified another suscep-
tibility allele for colorectal cancer at 9p24 (rs719725). In the Poynter et al. study, 
the OR per A allele was 1.21 (95% CI: 1.03–1.42, p = 0.02), with no heterogeneity 
by MSI status, age, or family history. The Poynter et al. findings also suggested that 
there was no statistical interaction between variants at the 8q24 and the 9p24 loci 
(Poynter et al. 2007).

Chapter 8.8
Chromosomes 8q24 and 9p24: Associations 
with Colorectal Cancer

John D. Potter

J.D. Potter, 
Cancer Prevention Research Program, Division of Public Health Sciences, Fred Hutchinson 
Cancer Research Center
e-mail: jpotter@fhcrc.org

DOI: 10.1007/978-0-387-09568-4_16,



220 J.D. Potter

The 8q24 locus is not in a known gene but is 400- to 500-kb telomeric of 
the MYC oncogene, which has a known role in colon cancer biology. Zanke et al. 
failed to show any difference in immunohistochemical expression by 8q24 geno-
type (Zanke et al. 2007). The 9p24 locus is also in a gene desert; the gene most 
proximal (37-kb telomeric) is protein kinase NYD-SP25 isoform 3 (TPD52L3) 
(Boutros et al. 2004). Two other neighboring genes include IL33 (124-kb  telomeric) 
(Schmitz et al. 2005) and ubiquitin-like PHD and RING finger domain-containing 
protein (UHRF2, 47-kb centromeric) (Li et al. 2004). None of these has an estab-
lished relationship to colorectal cancer risk.

The associations between these loci and colorectal cancer are weak. The consist-
ency of the finding, especially for 8q24, and the relatively high frequency of the 
variants in the population, nonetheless, mean that the importance to overall disease 
burden is high.
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Chapter 6
Familial Adenomatous Polyposis

Julian A. Sanchez, Graham Casey, and James M. Church

Introduction

Familial adenomatous polyposis (FAP) is a highly penetrant, autosomal dominant syn-
drome resulting from germline mutations of the adenomatous polyposis coli (APC) 
gene (OMIM 175100) (Galiatsatos and Foulkes 2006). FAP was the first hereditary 
colorectal cancer syndrome to be recognized clinically (Lockhart-Mummery 1925), 
and the first hereditary colorectal cancer condition for which a causative gene was 
identified. It has been the stimulus for the formation of hereditary colorectal cancer 
registries and international collaborative study groups, and has been one model for 
understanding the adenoma-carcinoma sequence that occurs frequently in sporadic 
colorectal cancers. Although FAP is the result of an inactivating germline mutation 
in a single gene, it is clinically heterogenous, both within and between families. 
Management of affected individuals can be helped by knowledge of the genotype, 
and the clinical presentation can often be a clue to the site of the mutation.

Clinical Summary of FAP

Epidemiology

FAP has a frequency of one in every 5,000 to 10,000 live births, and distribution 
is equal between the sexes (Rozen and Macrae 2006). Polyps develop during the 
second and third decades of life, and patients usually present either following the 
development of symptoms or as a result of screening because of a known family 
history. In a review of over 180 families and 922 affected individuals in the inherited 
colorectal cancer registry at the Cleveland Clinic, the mean age at presentation was 
27 years and the mean age at colectomy was 29 years (Rustin et al. 1990). FAP leads 
to a nearly inevitable progression to colorectal carcinoma and accounts for 1% of 
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all colorectal cancers (Lipton and Tomlinson 2006). FAP has a variable degree of 
clinical expression, and the disease presentation can range from very severe to more 
attenuated forms and has both colonic and extracolonic manifestations.

Clinical Presentation

The majority of patients are asymptomatic while the polyps develop. Patients can 
present with signs and symptoms of bleeding and abdominal discomfort, although 
others present with more advanced signs including weight loss, anemia, or intestinal 
obstruction. Compared to those screened as at-risk, but asymptomatic, family mem-
bers, symptomatic patients without a family history have a markedly higher chance 
of having a colorectal cancer at presentation (67% vs. 3%, Bulow 2003). Colorectal 
polyposis, numbering in the hundreds to thousands, is pathognomonic for disease 
diagnosis, but the number of polyps can vary substantially. Polyps are generally 
small, usually less than 1 cm, and can occur throughout the colorectum with a pre-
dilection for the sigmoid colon and rectum (Lal and Gallinger 2000). Polyps can 
be sessile or pedunculated with varied histology from tubular adenoma to villous 
adenoma. Colorectal carcinoma risk is generally proportional to the size, number, 
and histology of the polyps, and the genetic progression follows the chromosomal 
instability pathway. Diagnosis is confirmed with careful documentation of family 
history, endoscopic evaluation, and testing for an APC germline mutation.

Multiple extracolonic manifestations of FAP have been described, representing 
all three embryological layers. These manifestations can be either benign or malig-
nant. Endodermal lesions include gastric and small bowel polyps and carcinomas. 
Mesodermal abnormalities include desmoid tumors, osteomas, and dental abnor-
malities. Ectodermal lesions localize to the eye, brain, and skin appendages.

Gastric Polyps

Histologically, gastric polyps are most often fundic-gland polyps but can also be 
adenomas or hyperplastic polyps. In a review from the Lahey Clinic, 33% of FAP 
patients developed gastric polyps but progression to carcinoma was rare (Marcello 
et al. 1996). Sporadic fundic-gland polyps are generally considered hamartoma-
tous and have little malignant potential. However, patients with FAP often have 
more of these polyps and up to 41% show dysplasia (Bianci et al. 2007). Although 
Helicobacter pylori gastritis has been shown to have a protective effect on the 
development of fundic-gland polyps, gastroduodenal reflux with associated bile-
acid exposure has been associated with increased polyp development (Choudhry 
et al. 1998; Marcello et al. 1996). The local bile-rich environment, in the setting of 
an appropriate APC mutation, may promote or protect against polyp formation via 
epigenetic interactions. Conversely, in a study comparing epigenetic methylation 
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(CpG Island Methylator Phenotype, or CIMP), in sporadic fundic-gland polyps to 
FAP-associated polyps, researchers showed that promoter methylation was, overall, 
a relatively rare event (10%) and that, when it did occur, methylation was more 
common in sporadic fundic-gland polyps than in syndromic polyps (Abraham et al. 
2004). FAP-associated fundic-gland polyps may be less prone to epigenetic events 
including methylation, and their malignant potential may be due to both germline 
and somatic mutations.

This difference between sporadic and FAP-associated fundic-gland polyps has 
been further characterized by the demonstration of differential APC mutations. 
A series of studies comparing sporadic and syndromic polyps demonstrated that, 
although FAP-associated polyps had a higher overall frequency of both somatic and 
germline APC mutations than sporadic fundic-gland polyps, they had a lower 
frequency of β-catenin mutations (Abraham et al. 2000, 2001). These data under-
score the theory that the FAP-associated lesions arise from a different mechanism 
than their sporadic counterparts.

In contrast to fundic-gland polyps, gastric adenomas are uncommon (10% of 
patients undergoing EGD) and are generally found in the gastric antrum (Church 
et al. 1992). Similar to fundic-gland polyps, there seems to be an association with 
gastric adenoma formation and gastric bile reflux.

Duodenal Polyps

In treating almost 250 FAP patients at the Cleveland Clinic, Church and colleagues 
(1992) found that 88% develop duodenal polyps and that these were often located 
near the ampulla and papilla. A survey of the polyposis registry at St. Mark’s 
Hospital found that patients with severe duodenal polyposis often have germline 
APC mutations at a different locus from that in patients with severe colonic poly-
posis. Patients with germline APC mutations occurring after codon 1400 were 
more likely to have severe duodenal polyposis, and they tended to show allelic loss. 
Additionally, severe upper gastrointestinal polyposis was associated with somatic 
mutations in a cluster region between codons 1400 and 1580 (Groves et al. 2002). 
Duodenal polyps can become dysplastic and progress to carcinoma, and this repre-
sents the third most common cause of death in FAP patients after colorectal cancer 
and desmoid disease. FAP patients have 100 times the risk of duodenal carcinoma 
as the normal population (Nivatvongs 1999).

Desmoid Tumors

Desmoid tumors are rare, locally invasive soft-tissue tumors which most commonly 
arise in patients with FAP. Desmoids are monoclonal, neoplastic processes and have 
been associated with trisomies, somatic mutations, and translocations. Desmoids 



128 J.A. Sanchez et al.

often stain very strongly for β-catenin which may explain their local aggressiveness 
(Zippel and Temple 2007). Although they do not usually metastasize, they are often 
aggressive locally and are the second leading cause of death in FAP patients and the 
leading cause of death following colectomy (Arvanitis et al. 1990). Approximately 
10–25% of FAP patients will develop desmoids in their lifetime (Sturt and Clark 
2006), and FAP patients are 800 times more likely to develop desmoids than the 
general population (Lynch and Fitzgibbons 1996). Eighty percent of desmoids are 
intra-abdominal and are often found at the site of surgical incisions. Trauma has 
been implicated as a predisposing factor in their development, as 84% of FAP-
associated desmoids developed within 5 years of abdominal surgery (Bertario et al. 
2001). Although surgery seems to be a predisposing factor, desmoids also develop 
in the absence of trauma. Desmoids have been described in the abdominal mesen-
tery and can grow quite large, displacing abdominal organs and causing significant 
compression, obstruction, pain, and mortality.

As is the case for colonic FAP disease, the location of the germline APC muta-
tion can predict the severity of the desmoid burden. Distal germline APC mutations, 
3′ of codon 1444, have been associated with more aggressive disease. Such muta-
tions confer a 12-fold increased risk of desmoid development (Caspari et al. 1995). 
The combination of a distal APC mutation and abdominal surgery is associated 
with an even higher risk of desmoid development (Speake et al. 2007). Desmoids 
can be hormonally sensitive, due to expression of estrogen, progesterone, and 
androgen receptors.

Osteomas and Dental Abnormalities

Osteomas may occur in any bone, but are often localized to the facial skeleton. 
Dental abnormalities affect 70% of FAP patients and include supranumerary teeth, 
missing teeth, fused roots, and dental osteomas (Lal and Gallinger 2000). These 
benign tumors may cause symptoms based on their location, and a new diagnosis 
can prompt a medical consultation for FAP evaluation.

Congenital Hypertrophy of Retinal Pigment Epithelium

Congenital hypertrophy of retinal pigment epithelium (CHRPE) is an asympto-
matic hamartoma of the retinal epithelium which can occur in 66–92% of FAP 
patients (Chen et al. 2006). On indirect ophthalmoscopic evaluation, it character-
istically presents as round or oval hyper- or hypopigmented lesions that are often 
bilateral. Using a cut-off of four or more lesions in both eyes excludes the confu-
sion with sporadic CHRPE and is evidence for a possible APC mutation (Chen 
et al. 2006).
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Thyroid Carcinoma

Patients with FAP have an increased risk of thyroid carcinoma which may 
affect as many as 12% of patients (Herraiz et al. 2007). These cancers are often 
well-differentiated papillary cancers and predominantly affect young women. 
Mutant β-catenin may be responsible for the unusual cribriform-morular vari-
ant of papillary thyroid carcinoma that is associated with FAP (Xu et al. 2003). 
These papillary thyroid carcinomas are often associated with the somatic RET 
proto-oncogene translocations and generally have a good prognosis. A review of 
97 patients with FAP and papillary thyroid carcinoma showed that 89% had acti-
vation of RET/PTC; individual isoforms lead to different tumor behavior (Cetta 
et al. 2001).

Adrenal and Hepatobiliary Tumors

A review of the Cleveland Clinic FAP registry showed that the presence of an 
adrenal incidentaloma is 7.4% in FAP patients, significantly higher than in the 
general population. Although rare, associations with cholangiocarcinoma, pancre-
atic adenocarcinoma, and hepatoblastoma have also been described with the FAP 
syndrome.

Attenuated FAP

A subset of FAP patients have an attenuated form, defined as less than 100 synchro-
nous colorectal adenomas. There is a predominantly right-sided colonic distribution 
and rectal sparing, and patients often present in their fifth to seventh decades of life 
(Knudsen et al. 2003). Patients with attenuated FAP (AFAP) and 5′ APC mutations 
are less likely to have desmoid disease and other extracolonic manifestations. The 
cancer risk is similar to that of the classic syndrome, although the cancers occur 
later, and patients are offered prophylactic surgical therapy. The AFAP phenotype 
may be a product of gene dosing due to alternative splicing, resulting in subnor-
mal levels of circulating APC protein – see also Chap. 4. This decrease in APC 
protein production leads to inadequate levels of tumor suppressor activity and pro-
motes polyposis. APC mutations in AFAP have been described in both the 5′ and 
the 3′ gene ends as well as in exon 9 (Knudsen et al. 2003). Allelic variation in 
APC, hormonal and growth-factor influences, and nearby or distant gene interac-
tions may explain the phenotypic differences observed in this attenuated disease 
(Foulkes 1995). Given the relatively few polyps and right-sided predilection, this 
phenotype can be confused with Lynch Syndrome and can be similar to that of 
MYH-associated polyposis.
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Genetics of FAP

APC and FAP

One of the first clues to the location of the gene involved in FAP was the case report 
by Herrera et al. (1986), describing a developmentally retarded patient who had 
polyposis and a deletion of the long arm of chromosome 5 (Herrera et al. 1986). 
The gene itself, APC, maps to 5q21 and was cloned in 1991 following linkage 
analysis and germline mutation screening of candidate genes in families with FAP 
(Bodmer et al. 1987; Groden et al. 1991; Kinzler et al. 1991; Nishisho et al. 1991). 
APC consists of 15 transcribed exons and encodes a protein of 2,843 amino acids 
(Fearnhead et al. 2001). It functions as a tumor suppressor gene and has been impli-
cated in a number of cell processes including transcription regulation, cell cycle 
control, apoptosis, and maintenance of the fidelity of chromosomal segregation 
(Fearnhead et al. 2001). Perhaps the best-characterized role for APC is as part of 
a scaffolding protein complex that negatively regulates Wnt signaling (Fearnhead 
et al. 2001; Goss and Groden 2000; Nathke 2004).

APC is inactivated in the majority of colorectal cancers, and loss of APC 
function is a hallmark-initiating event of the chromosomal instability pathway 
(CIN) phenotype of colorectal cancer. APC and the transcription co-regulator 
β-catenin play central roles in the Wingless/Wnt signaling pathway. In normal 
cells, in the absence of Wnt signaling, APC along with Axin, glycogen synthase 
kinase 3 β (GSK3β), and casein kinase recruit β-catenin into a destruction com-
plex where it is phosphorylated by GSK3β, leading to β-catenin degradation 
by the ubiquitin-mediated proteosome pathway. This cellular process results 
in the maintenance of low levels of free cytosolic β-catenin. When the Wnt 
signaling pathway is activated, the APC/Axin/GSK3β complex disassociates, 
allowing stabilization of cytosolic β-catenin. Accumulated β-catenin associates 
with T cell factor (TCF) and lymphoid-enhancer factor (LEF), and the resulting 
complex enters the nucleus and activates transcription. On entering the nucleus, 
the β-catenin/TCF/LEF proteins provide a potent transcriptional transactivation 
complex leading to transactivation of a number of critical genes including MYC 
and cyclin D1 (Nathke 2004, 2006; Watson 2001). Loss of control of this path-
way through inactivation of APC leads to aberrant accumulation of β-catenin 
and transcriptionally active β-catenin/TCF/LEF complexes and abnormal acti-
vation of target genes (Fearnhead et al. 2001). The Wingless/Wnt pathway can 
also be activated by mutations in β-catenin in colorectal cancers without APC 
mutations (Samowitz et al. 1999). APC also participates in a number of other 
cellular processes related to cytoskeletal organization, in particular microtubule 
stabi lity (Nathke 2006). The genetic evidence of the importance of derange-
ment of the β-catenin signaling pathway in CRC strongly suggests a central 
role for the Wnt/APC/β-catenin pathway in CRC development. However, APC 
loss alone is not sufficient for tumor development, as activating mutations of 
the KRAS and BRAF oncogenes, inactivation of SMAD4, and  inactivating muta-
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tions of the p53 tumor-suppressor gene are also implicated in colorectal cancer 
development – see Chap. 4.

APC Germline Mutations Leading to FAP

Germline mutations have been identified in the majority of patients with FAP 
(Fearnhead et al. 2001) and, to date, over 800 different APC germline mutations have 
been reported (Nieuwenhuis and Vasen 2007). The vast majority of APC mutations 
associated with FAP are frame-shift or nonsense mutations that lead to an inactive 
truncated protein product (Fearnhead et al. 2001; Galiatsatos and Foulkes 2006). 
Although mutations can occur throughout the gene, the majority of APC mutations 
can be found between codons 1250 and 1464 in the 5′ region of exon 15, a region 
known as the mutation cluster region (MCR) (Nieuwenhuis and Vasen 2007). The 
“hot spots” for mutations are at codons 1061 and 1309 and account for approxi-
mately 11 and 17%, respectively, of all germline APC mutations (Nieuwenhuis and 
Vasen 2007). The majority of the remaining mutations are spread between codons 
200 and 1600 with only a few mutations occurring outside this region (Fearnhead 
et al. 2001; Nieuwenhuis and Vasen 2007) (Figs. 6.1 and 6.2).

Extensive mutation screening can identify APC sequence changes in up to 95% 
of patients presenting with classical FAP, particularly when standard genetic test-
ing is supplemented with conversion analysis (separation of alleles) or multiplex 
ligation-dependent probe amplification (MLPA) (Galiatsatos and Foulkes 2006; 

Fig. 6.1 APC germline mutations reported in FAP patients (modified from Nieuwenhuis and 
Vasen 2007)
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Fig. 6.2 Diagram showing important APC protein motifs, APC exon structure, and FAP pheno-
type associated with germline mutations (modified from Crabtree et al. 2003; Galiatsatos and 
Foulkes 2006)

Meuller et al. 2004). Approximately 80% of FAP families have a detectable 
 mutation; however, between 10 and 30% are de novo mutations (Guillem et al. 
1999). Although patients with a de novo mutation have no family history and do not 
get screened, there is some evidence that de novo mutations produce a more severe 
phenotype, independent of clinical presentation (Bonardi 2006).

Genotype–Phenotype Association: Polyposis Severity

Classical FAP is defined clinically as the presence of >100 synchronous  colorectal 
adenomas, whereas attenuated FAP is defined as <100. Subgroups are also defined, 
such as profuse FAP (>5,000 synchronous adenomas), and sparse or mild FAP 
(polyp number between 100s and 1,000s), that have variable ages of onset of 
colorectal polyposis and age of onset of colorectal cancer (Fearnhead et al. 2001; 
Nieuwenhuis and Vasen 2007). The severity of disease often correlates with the 
location of APC mutations. For example, patients with mutations in codon 1250 
to codon 1464, and particularly at codon 1309, often develop profuse polyposis 
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with symptoms a decade earlier than usual, and colorectal cancer developing at an 
earlier age (Bertario et al. 2003; Caspari et al. 1994; Enomoto et al. 2000; Ficari 
et al. 2000; Gayther et al. 1994; Nagase et al. 1992; Nugent et al. 1994). Attenuated 
FAP, where patients generally develop fewer than 100 colon polyps and cancer 
onset is delayed, is associated with mutations in the extreme 5′ (exons 1–4) and 3′ 
(distal to codon 1580) regions of APC as well as the alternatively spliced site of 
exon 9, although exceptions to this have been noted (Brensinger et al. 1998; Friedl 
et al. 1996; Sieber et al. 2006; Soravia et al. 1998; Walon et al. 1997). An extensive 
review of relevant literature on this topic has recently been published (Galiatsatos 
and Foulkes 2006; Nieuwenhuis and Vasen 2007).

The disease phenotype has been showed to vary among populations. A col-
laborative study of 863 patients from 15 different registries, by researchers from 
the University of Nebraska, compared the clinical expression and associated APC 
mutations in three ethnic groups: Asians, Europeans, and North Americans (Attard 
et al. 2007). Investigators found that the risk of gastric cancer in FAP patients was 
higher in Asian populations than in Europeans and North Americans and that there 
was a clear difference in the pattern of APC gene mutations in North Americans 
compared to Europeans and Asians. The North American population had a higher 
frequency of mutations in codons 2 through 811, while the Asian registries reported 
a greater frequency of APC mutations at codons 1099 through 1694. The mutations 
in the North American population imparted a lower incidence of upper gastro-
intestinal tumors. This genotype–phenotype association may account for the clinical 
differences in disease presentation among ethnicities (Attard et al. 2007).

Genotype–Phenotype Association: Extracolonic 
Manifestations of FAP

Although penetrance nears 100%, there is marked variability in the clinical 
 pheno type of FAP. The majority of FAP patients develop extracolonic manifesta-
tions. Desmoid tumors are associated with mutations between codons 1310 and 
2011 (Bertario et al. 2003), with the highest severity occurring between codons 
1444/5 and 1580/1 (Caspari et al. 1995; Davies et al. 1995; Friedl et al. 2001; 
Gebert et al. 1999). No consistent genotype correlation has been found with duo-
denal adenomas, although FAP patients with APC mutations in codons 976–1067 
have been reported to have a 3- to 4-fold increased risk (Bertario et al. 2003). 
Congenital hypertrophy of the retinal pigment epithelium (CHRPE) generally 
precedes the development of polyposis (Galiatsatos and Foulkes 2006) and appears 
to be associated predominantly with APC mutations spanning the region between 
codons 543 and 1309 (Bertario et al. 2003), but the mutations may extend beyond 
these boundaries (Caspari et al. 1995; Cetta et al. 2000). Papillary thyroid cancer is 
associated with APC mutations between codons 140 and 1309 (Cetta et al. 2000).

APC is a tumor suppressor gene and follows the two-hit model. Studies suggest 
that the location of the APC germline mutation may influence the location of the 
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second hit (Albuquerque et al. 2002; Crabtree et al. 2003; Lamlum et al. 1999). It 
has been reported that if the APC germline mutation occurs between codons 1194 
and 1392, there is strong selection for loss of heterozygosity as the second hit. In 
contrast, if the germline APC mutation occurs outside this region, the second hit 
will more likely be an inactivating mutation in the second APC allele (Fearnhead 
et al. 2001; Fodde et al. 2001; Sieber et al. 2006). It has been proposed that this may 
be related to the occurrence of APC mutations in relation to β-catenin degradation 
repeats in APC. APC contains seven 20-bp repeats that are involved in degrading 
the transcription cofactor β-catenin and therefore play a role in negatively regulat-
ing Wnt signaling. If an APC mutation occurs between the first and second repeats, 
it tends to be associated with loss of heterozygosity, whereas APC mutations 
outside this region tend to be associated with somatic mutations as the second hit 
(Crabtree et al. 2003; Sieber et al. 2006).

APC Polymorphisms

Missense mutations in the APC gene have been described in non-FAP patients with 
multiple adenomas occurring at earlier ages. One particular variant, a missense 
polymorphism I1307K, results from a T to A transversion leading to an unstable 
poly-A stretch, is seen in 6% of Ashkenazim and is associated with increased 
risk of colorectal cancer (Laken et al. 1997). Although the effect of this missense 
mutation on APC function has yet to be determined, carriers do have an increased 
risk of colorectal cancer but not polyposis or other extra colonic manifestations of 
FAP. Another common variant (E1317Q) in the APC gene was reported in 4.3% 
of FAP patients in one study, associated with a relative risk of colorectal cancer 
of 11.17 (p < 0.001) (Lamlum et al. 2000). However, this finding has not been 
supported by multiple other studies (Evertsson et al. 2001; Fearnhead et al. 2004; 
Frayling et al. 1998; Gismondi et al. 2002; Hahnloser et al. 2003).

FAP Modifier Genes

Considerable phenotypic variability occurs even among individuals and families 
with identical genotypic mutations (Giardiello et al. 1994; Soravia et al. 1998). 
This variation in clinical presentation suggests that modifier genes or environmental 
 factors can also impact expression of the disease (Houlston et al. 2001; Houlston 
and Tomlinson 2001). For example, the incidence and severity of duodenal adeno-
mas may be affected by specific APC mutations but may be also influenced by a 
modifier gene on 1p35-36 (Dobbie et al. 1997; Tomlinson et al. 1996), although 
some studies dispute this finding (Plasilova et al. 2004). N-acetyltransferases (NAT1 
and NAT2) are involved in phase 2 reactions that metabolize xenobiotic compounds, 
and variants have been identified in these genes that have been shown to affect 
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N-acetyltransferase metabolism reactions. NAT1 and NAT2 variants have been asso-
ciated with a twofold increase in severity of FAP phenotype (Crabtree et al. 2004).

Non-APC-Associated Polyposis

Some patients with multiple colorectal adenomas (generally less than 100 polyps) 
but no identifiable APC gene mutation have been shown to harbor compound 
 heterozygous germline mutations in the base excision repair MYH gene (Croitoru 
et al. 2004; Jenkins et al. 2006). MYH-associated polyposis is described in more 
detail in Chap. 7.
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Chapter 7
DNA Mismatch Repair and Lynch Syndrome

Brittany C. Thomas, Matthew J. Ferber, and Noralane M. Lindor

Introduction

Postreplicative DNA mismatch repair (MMR) is a highly conserved molecular 
 mechanism that functions to ensure genomic integrity by repairing mismatched base-
pairs that are incorporated into the genetic code during cellular replication. Disruption 
of this essential function leads to the random accumulation of mutations, resulting in a 
markedly increased potential for malignancy. Lynch Syndrome is a hereditary predispo-
sition to colon and other types of cancer and the most common hereditary colon cancer 
syndrome currently known. The association of Lynch Syndrome with defective MMR 
was elucidated by the demonstration of microsatellite instability (MSI) in  colon-tumor 
DNA and subsequent cloning of hMSH2 and hMLH1, the human homologs of two 
bacterial MMR genes. Evidence of genomic instability, in the form of MSI induced 
by deficiencies of the DNA MMR pathway, provided the molecular basis by which to 
redefine the clinically heterogeneous group of hereditary colon cancer syndromes.

Genomic Instability

Several important early findings led to the discovery of defective DNA mismatch 
repair as the underlying genetic etiology of Lynch Syndrome. Loeb and colleagues 
first proposed (1991) and later expanded (2006) on the idea of genomic instability 
as a mutator phenotype initiated by random point mutations early in the colorectal 
adenoma-carcinoma sequence. They observed that the number of alterations in 
tumor DNA could not be explained by the well-established spontaneous mutation 
rate in somatic cells, based on their previous observation of very few errors in 
newly synthesized DNA of normal (non-neoplastic) daughter cells. They hypoth-
esized that a defect in the DNA replication process, which normally functions to 
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ensure base-pairing accuracy, results in an elevated accumulation of errors in the 
genetic code (Loeb et al. 1974; Loeb 1991; Venkatesan et al. 2006).

The observation that mutations in oncogenes and tumor suppressor genes accu-
mulate throughout colon cancer development provided the model by which an 
underlying susceptibility to genomic instability could promote tumorigenesis. 
A defect in the DNA replication process, allowing an increase in the number of 
persistent mutations, will inevitably result in alterations in genes involved in cell-
cycle regulation. This facilitates the proliferation of neoplastic cells with selective 
cell-growth advantage and, thus, clonal expansion, a common feature of colorectal 
tumors. This identified a mechanism for progression to malignancy (Vogelstein 
et al. 1988; reviewed in Fearon and Vogelstein 1990).

The discovery of microsatellite instability (MSI) in DNA isolated from colon 
tumors was first reported in 1993 by three independent groups, and observed both in 
familial and nonfamilial tumors (Aaltonen et al. 1993; Ionov et al. 1993; Thibodeau 
et al. 1993). Discrepancies in the number of (CA)

n
 and other dinucleotide repeat 

sequences were observed within polymorphic repeat segments of DNA, termed 
microsatellites. These discrepancies were specifically noted as shifts in electro-
phoretic mobility of the repeat fragments isolated from tumor DNA compared to 
DNA from normal tissue in the same individual. Expansions and contractions of 
dinucleotide repeats within tumor microsatellites thus became known as “microsat-
ellite instability” (MIN or MSI) or the “replication error” (RER+) phenotype.

Two other observations confirmed the role of MSI as a phenotypic marker for 
genomic instability: (1) mutations in yeast genes involved in DNA mismatch repair 
result in instability of repetitive DNA sequences during cellular replication; and 
(2) tumor cell lines exhibiting MSI also display elevated spontaneous mutation 
rates at selected genomic loci (Bhattacharyya et al. 1994).

Fifteen to twenty percent of all colorectal carcinomas exhibit defective MMR in the 
form of a high level of microsatellite instability (MSI-high or MSI-H). Of these, only 
about 10% (1.5–2% of all CRCs) can be explained by a germline mutation in an MMR 
gene (Aaltonen et al. 1998; Cunningham et al. 2001). The vast majority of cases dem-
onstrating defective MMR are explained by somatic hypermethylation of the hMLH1 
gene promoter (Cunningham et al. 1998; Gazzoli et al. 2002). This phenomenon com-
plicates the testing algorithm and ultimate diagnosis of Lynch Syndrome in individuals 
with colon cancer (see the section “Molecular Screening for Lynch Syndrome”).

DNA Mismatch-Repair Mechanism

Evidence of genomic instability in the form of tumor MSI and the cloning of  several 
genes encoding mismatch-repair proteins implicated the DNA MMR complex in 
the etiology of Lynch Syndrome (see the section “Gene Discovery”). The MMR 
system serves several functions; the most relevant to Lynch Syndrome tumor devel-
opment involves the repair of mismatched bases that are incorporated into DNA 
during cellular replication or DNA insult; this limits the accumulation of potentially 
deleterious mutations in coding regions of the DNA.
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Elucidation of the postreplicative DNA mismatch-repair mechanism in human 
cells was aided by studies involving the MutHLS system in bacterial E. coli and 
similar systems in the budding yeast, Saccharomyces cerevisiae. The bacterial 
MutHLS repair pathway produces several proteins, including MutS and MutL 
homodimers, to facilitate methylation-dependent, nick-directed mismatch repair. 
The identification of several MutS homologs (MSH) and MutL homologs (MLH) 
in eukaryotes demonstrates conservation between prokaryotic and eukaryotic 
MMR machinery. Both systems incorporate mismatch recognition, excision of the 
mispaired segment, and resynthesis of the excised strand; however, the process is 
not as well characterized in eukaryotic cells. Excision of the mismatched bases in 
E. coli cells is facilitated by methylation of the newly synthesized daughter strand, 
allowing discrimination between the template and replicated DNA strands dur-
ing mismatch repair. An analogous signal has not yet been detected in eukaryotic 
MMR, although it is believed to exist.

The MutSα heterodimer consists of the human MSH2 and MSH6 proteins 
encoded by the hMSH2 and hMSH6 genes. The primary function of the MutSα het-
erodimer is to initiate the repair process by binding to DNA mismatches detected by 
MSH6. The errors specifically corrected by this system are single mispaired bases or 
small insertion/deletion loops (IDLs) that arise as a result of slippage of the primer 
against the template strand. A second heterodimer complex, MutSβ, consisting of 
MSH2 and MSH3, also initiates the mismatch-repair mechanism. Although MSH6 
and MSH3 have been reported to be functionally redundant (thus explaining the 
relative lack of observed germline mutations in hMSH3), the possible involvement 
of the MutSβ complex in suppression of deletion and duplication errors has been 
described (Marsischky et al. 1996; Harrington and Kolodner 2007). Furthermore, 
MSH3 does not appear to compensate for the loss of MSH6, potentially because 
the MutSβ complex preferentially repairs IDLs involving two to eight bases versus 
the base-base mismatches and IDLs containing a smaller number of bases that are 
repaired by MutSα. Other MutS homologs have been identified and may contribute 
to the MMR pathway; however, to date, only germline mutations within the hMSH2 
and hMSH6 genes have been associated with MSH-related Lynch Syndrome.

The MutL homologs, MLH1 and PMS2 (postmeiotic segregation polypeptide), 
comprise the heterodimer MutLα, which interacts with several proteins includ-
ing MutSα to facilitate mismatch recognition and reparation. Two other MutL 
homologs, PMS1 and MLH3, have been described; however, their respective roles 
in postreplicative DNA MMR and Lynch Syndrome are, at this time, not as well 
established (reviewed in Kolodner 1995; Jiricny and Nystrom-Lahti 2000; Aquilina 
and Bignami 2001; Peltomaki 2005).

Gene Discovery

The hMSH2 gene was the first of the eukaryotic MMR genes to be cloned,  mapping 
to human chromosome 2p22-p21. Homology to the previously  identified bacterial 
mutS gene sequence facilitated its discovery. Subsequent detection of germline 
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hMSH2 mutations in putative Lynch Syndrome patients confirmed its association 
with hereditary disease (Fishel et al. 1993; Leach et al. 1993). hMLH1, PMS2, 
and PMS1 were cloned shortly thereafter, using similar methods that employed 
sequences within conserved regions of the MutL family of proteins in yeast 
and bacteria (Bronner et al. 1994; Nicolaides et al. 1994). Germline muta-
tions in hMLH1, located on human chromosome 3p21.3, and PMS2, located on 
human chromosome 7p22, were subsequently detected in affected individuals 
(Papadopoulos et al. 1994). Cloning of the hMSH6 gene, located near hMSH2 on 
human chromosome 2p16, was the last major causative gene to be associated with 
Lynch Syndrome (Drummond et al. 1995; Palombo et al. 1995; Akiyama et al. 
1997; Miyaki et al. 1997). Despite their suggested roles in the mismatch-repair 
pathway, germline mutations in two other homologs of the bacterial mutS and mutL 
genes, namely hMSH3 and PMS1, do not currently appear to contribute to Lynch 
Syndrome (Peltomaki and Vasen 2004).

Predisposition to cancer, as conferred by mutations in any one of these four 
MMR genes, is inherited in an autosomal dominant manner. Consistent with 
Knudson’s “two-hit” hypothesis, germline mutations in hMLH1 coupled with 
loss of the wild-type allele, either by loss of heterozygosity or hypermethylation 
of hMLH1, have been observed in tumors of Lynch Syndrome patients. LOH 
and hMLH1 hypermethylation are the most common causes of gene inactivation 
in nonfamilial MSI-H colon cancer, accounting for the nearly 20% of all such 
colon tumors. Rarely, gene conversion as a mechanism of inactivation has also 
been observed (Hemminki et al. 1994; Tannergard et al. 1997; Zhang et al. 2006; 
Ollikainen et al. 2007).

Microsatellite Instability

Microsatellite instability (MSI) is now the widely accepted term used to describe 
the phenotype observed in both nonfamilial and Lynch Syndrome tumor DNA as 
a result of defective DNA mismatch repair (Boland et al. 1998). By definition, 
microsatellites are short repeated segments of DNA that are interspersed randomly 
across the human genome. They are polymorphic, both in repeat size and number. 
Repeating units vary in size between one (mononucleotide repeat) and six nucle-
otides, approximately, and contain 10–50 identical repeats per microsatellite locus 
(Weber 1990). Microsatellites are, by their repetitive nature, susceptible to instability 
due to slippage of the DNA polymerase complex during the DNA replication 
process. Instability, in the form of contractions or expansions in repeat length, 
occurs when the DNA MMR mechanism fails to correct these mutations. PCR-
based analysis of isolated neoplastic (tumor) DNA and non-neoplastic (adjacent 
normal mucosa) DNA from the same individual, via size-based electrophoretic 
separation, allows a way of detecting relative microsatellite expansions or contrac-
tions, thereby establishing the presence or absence of microsatellite instability 
(reviewed in Baudhuin et al. 2005a).



7 DNA Mismatch Repair and Lynch Syndrome 145

Standard designations that describe the various levels of microsatellite  instability 
within colon tumors have been formally adopted as follows: MSI-H (high level of 
microsatellite instability), MSI-L (low level of microsatellite instability), and MSS 
(microsatellite stable). MSI-H tumors are characterized by instability detected at 
30% or greater of the microsatellite markers analyzed. MSI-L describes tumors 
that demonstrate instability at less than 30% of markers tested, and MSS tumors 
are characterized by stability of all markers tested (Dietmaier et al. 1997; Boland 
et al. 1998; Thibodeau et al. 1998). In addition to these designations, the National 
Cancer Institute workshop in 1997 recommended a set of five markers comprising 
two mononucleotide microsatellite markers (BAT25, BAT26) and three dinucle-
otide microsatellite markers (D5S346, D2S123, and D17S250) in order to establish 
standards for microsatellite marker selection and minimize inconsistencies among 
clinical diagnostic laboratories (Boland et al. 1998).

Currently, the clinical relevance of MSI-L tumors is ambiguous as a certain 
amount of genomic instability is expected in DNA even in MMR proficient tumors 
(Laiho et al. 2002). MSI-L tumors, like MSS tumors, reflect MMR proficiency 
in the majority of cases. However, the use of MSI marker panels that include 
a preponderance of dinucleotide markers may underestimate the instability 
demonstrated in MSH6 deficient tumors, given their tendency not to show instability at 
dinucleotide microsatellite loci (Wagner et al. 2001; Ward et al. 2001); this dem-
onstrates the importance of incorporating mononucleotide markers into a standard 
MSI testing panel.

Molecular Screening for Lynch Syndrome

Prior to clarification of the molecular etiology of Lynch Syndrome, a set of  clinical 
criteria were adopted by The International Collaborative Group on Hereditary 
NonPolyposis Colorectal Cancer (ICG-HNPCC), called the Amsterdam Criteria (AC), 
for the purposes of facilitating early gene linkage and natural history  studies 
(Fig. 7.1) (Vasen et al. 1991). Although their intended purpose was to help 
 distinguish hereditary from nonhereditary cases to facilitate clinical and research 
studies, fulfillment of the AC became the clinical definition of what was most 
commonly known as Hereditary NonPolyposis Colon Cancer, HNPCC. Following 
the identification of several causative genes, however, studies have shown that only 
about half of families that fulfill the original AC actually have Lynch Syndrome, 
renamed by Boland in 2005 as the molecularly characterized hereditary  syndrome 
defined by the presence of a germline mutation in an MMR gene (see the  section 
“Evolution of a Name: HNPCC Versus Lynch Syndrome”). In support of this 
distinction, Lindor and colleagues reported disparate clinical features among 
Amsterdam-criteria-positive families whose tumors demonstrated an MSI-H phe-
notype (defective MMR) and AC-positive families whose tumors displayed MSI at 
less than 30% or 0 markers analyzed, calling the latter, Familial Colorectal Cancer 
Type X (Lindor et al. 2005). The AC have since been proven to lack both sensitivity 
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and specificity, missing mutation-positive cases as well as capturing families who 
do not  demonstrate germline MMR mutations. However, the AC are historically 
and inextricably linked to Lynch Syndrome, representing an important basis by 
which HNPCC and Lynch Syndrome have been defined for years and continue to 
facilitate clinical recognition of possible new cases.

Several iterations of criteria and guidelines (Amsterdam criteria I and II, 
Bethesda guidelines, and revised Bethesda guidelines) have evolved in an effort to 
guide clinicians toward a diagnosis of Lynch Syndrome (Vasen et al. 1991, 1999; 
Rodriguez-Bigas et al. 1997; Umar et al. 2004). The advent of molecular screen-
ing via microsatellite instability testing and immunohistochemical protein analysis 
(MSI/IHC) within tumors of affected individuals, provided a new way of screen-

                                                                - all four criteria must be met to be considered AC ‘positive’ -

• 3 or more relatives with histologically verified colon cancer in which one of the relatives 
is a first degree relative of the other two 

• 2 successive generations affected 

• 1 relative diagnosed with colon cancer under 50 years of age 

• familial adenomatous polyposis (FAP) excluded 

Amsterdam Criteria (Vasen et al 1991)

Revised Bethesda Guidelines (Umar et al 2004) - any of the following are sufficient for  
consideration of MSI studies - 

• colorectal cancer diagnosed under 50 years of age 

• presence of synchronous or metachronous colorectal cancer or other HNPCC-related 
tumor* regardless of age 

• colorectal cancer in an individual less than 60 years of age, exhibiting tumor infiltrating 
lymphocytes, Crohn’s-like lymphocytic reaction, mucinous/signet-ring differentiation, or
medullary growth pattern 

• colorectal cancer diagnosed in on or more first-degree relatives of an individual with an 
HNPCC-related tumor* in which one of the two relatives is diagnosed under 50 years of
age  

• colorectal cancer diagnosed in two or more first or second-degree relatives with 
HNPCC-related tumors* at any age 

*HNPCC-related tumors include colorectal, endometrial, stomach, ovarian, pancreas, ureter and renal pelvis, biliary tract, brain tumors
(glioblastoma as seen in Turcot syndrome, a rare variant of Lynch syndrome), sebaceous gland adenomas/adenocarcinomas and
keratoacanthomas (as seen in Muir-Torre syndrome, a second variant of Lynch syndrome) and carcinoma of the small bowel. 

Fig. 7.1 The Amsterdam Criteria (AC) were originally adopted by The International Collaborative 
Group on Hereditary NonPolyposis Colorectal Cancer to facilitate gene discovery and natural 
history research. The AC have since been applied clinically to identify families at risk for heredi-
tary colon cancer. About half of all families that meet the AC actually have Lynch syndrome 
confirmed by molecular testing.

The Revised Bethesda Guidelines are the second iteration of the Bethesda Guidelines created 
to aid providers in choosing which patients to screen via MSI analysis using clinical and his-
topathological criteria consistent with Lynch syndrome.
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ing for Lynch Syndrome, based upon the presence or absence of defective MMR. 
The revised Bethesda guidelines were developed to aid providers in choosing 
which patients to screen via MSI analysis by first selecting those with clinical or 
histopathological features consistent with Lynch syndrome (Fig. 7.1) (Umar et al. 
2004). Those cases that demonstrate MSI and evidence of defective MMR, may 
opt for IHC analysis, if not already performed, to identify the culprit gene within 
the tumor. Absence of protein expression observed in the tumor is indicative of 
a potential germline mutation within the corresponding gene; genetic counseling 
followed by selective gene analysis can then be conducted to identify the familial 
mutation and establish a diagnosis (as recommended by Umar et al. 2004). Loss 
of expression of MLH1/PMS2, although reflective of defective DNA MMR, may 
be explained by either acquired or germline defects in the hMLH1 or PMS2 genes. 
However, loss of MSH2/MSH6 expression within the tumor is generally indicative 
of a germline mutation within one of the two genes, as there is no alternative expla-
nation to loss of expression of MSH2/MSH6 expression in CRC tumors at this time. 
For this reason, genetic counseling is recommended prior to IHC analysis, given the 
high likelihood of a germline mutation in certain cases.

Although this strategy has proved to be a feasible and reliable screening method 
for Lynch Syndrome (Aaltonen et al. 1998), it is often complicated by other factors. 
Individuals without striking clinical presentations do not necessarily fall within the 
revised Bethesda guidelines and are therefore likely to be missed. However, these 
are few in number and, in general, this screening strategy picks up the majority 
of Lynch Syndrome cases. Furthermore, tumor from an affected individual is not 
always available for analysis. In cases with a strong suspicion of Lynch Syndrome, 
sequence analysis, in addition to analysis for large genomic rearrangements, may 
be conducted for the asymptomatic/presymptomatic individual to identify a pos-
sible underlying germline mutation. However, because the state of genetic testing 
is imperfect, current methods may be unable to identify a germline mutation and, 
therefore, a hereditary DNA mismatch-repair defect cannot be ruled out. When fea-
sible, it is beneficial to follow up a negative germline test with tumor analysis (MSI 
testing) to distinguish hereditary tumors demonstrating defective MMR indicative 
of an undetectable germline mutation from tumors that developed as a result of 
other non-MMR related processes.

Lastly, the majority of tumors exhibiting defective MMR are explained by 
acquired promoter hypermethylation of hMLH1, further complicating testing 
algorithms. MSI-high tumors showing loss of expression of hMLH1 could be 
attributable to a germline mutation in hMLH1 or acquired hypermethylation of the 
gene. To address this situation, both germline (blood) mutation analysis and tumor 
methylation studies are available clinically. Recent studies have shown a strong 
correlation between the loss of hMLH1 expression by immunohistochemistry and 
advancing age at diagnosis, right-sided tumor location, and female sex (Kakar 
et al. 2003). This, in addition to family-history information, can help to determine 
whether a germline mutation or an epigenetic process is more likely in any specific 
case. Making this distinction is extremely helpful in guiding which line of testing 
may be most appropriate. Recent reports demonstrate a remarkable correlation 
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between the presence of a specific somatic BRAF V600E mutation and hMLH1 pro-
moter hypermethylation, thus providing a second testing strategy for differentiating 
between hereditary and nonfamilial cases (for review see Baudhuin et al. 2005a; 
Thomas et al. 2005).

Mutation Profile

Several hundred mutations in the MMR genes associated with Lynch Syndrome 
have been reported. Approximately 50% of disease-causing mutations are within the 
hMLH1 gene, 40% in the hMSH2 gene, and 7% in the hMSH6 gene; the  contribution 
of mutations in PMS2 is much smaller (Peltomaki 2004). Other genes have been 
evaluated for their possible involvement in the pathogenesis of Lynch Syndrome; 
however, mutations in these four genes account for nearly all Lynch Syndrome cases 
identified to date.

In general, mutations are found along the entire length of each of hMLH1, 
hMSH2, and hMSH6, with the exception of exons 1 and 10 of hMSH6, in which no 
mutations have been reported. Several exons harbor mutations more frequently than 
others, including exons 1 and 16 of hMLH1, exons 3 and 12 of hMSH2, and exon 4 
of hMSH6. Despite these apparent mutation “hot spots,” the large majority (~80%) 
of the documented mutations in these genes have been reported as private mutations 
(Peltomaki 2004). Certain founder mutations do occur repeatedly in specific ethnic 
groups (see the section “Founder Mutations”).

Many of the mutations identified are single base-pair substitutions or small 
insertions and deletions, both of which typically result in termination of the coding 
sequence or have marked downstream effects on protein production or function. 
In addition to the ubiquitous pathogenic mutations including nonsense, frameshift, 
and splice-site mutations, other types of alterations also make important  contributions 
to the types of mutations frequently observed in Lynch Syndrome.

Large Genomic Rearrangements

Large genomic rearrangements probably account for about 20% of total pathogenic 
MMR mutations; however, estimates vary widely between 7 and 55% (Wijnen et al. 
1998; Yan et al. 2000; Gille et al. 2002; Viel et al. 2002; Wang et al. 2002; Taylor 
et al. 2003; Baudhuin et al. 2005b; Grabowski et al. 2005; Kurzawski et al. 2006). 
Discrepancies in reported frequency of these rearrangements are probably due to 
founder effects, ethnic differences, detection methods, selection criteria, and chance.

Most of the large rearrangements reported to date are large genomic deletions. 
These large deletions involve deletions of single or multiple exons, including the 
promoter region in some cases (Charbonnier et al. 2002; Gille et al. 2002; Wang 
et al. 2002; Nakagawa et al. 2003; Taylor et al. 2003; Baudhuin et al. 2005b; 
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Grabowski et al. 2005; van der Klift et al. 2005; Kurzawski et al. 2006). Less 
commonly, whole gene deletions of hMSH2 have been observed (Gille et al. 2002; 
Wang et al. 2002). Large genomic duplications have been reported in both hMSH2 
and hMLH1, albeit to a much lesser extent than deletions (Charbonnier et al. 2000; 
Di Fiore et al. 2004; Baudhuin et al. 2005b). Of note, van der Klift (2005) described 
two other types of large rearrangements including an inversion in hMSH2 and a 
2-kb insertion in intron 7 of the PMS2 gene (van der Klift et al. 2005).

Large rearrangements most commonly occur in hMSH2 and hMLH1, accounting 
for one-third of all pathogenic mutations observed in hMSH2 (Wijnen et al. 1998; 
Wang et al. 2002). Currently, only four large rearrangements in hMSH6 have been 
documented, including three deleterious deletions and one suspected deleterious 
duplication (Plaschke et al. 2003; van der Klift et al. 2005). However, only one 
study has actually analyzed an hMSH6-mutation enriched population by testing 
patients whose tumors showed isolated loss of expression of MSH6 by immu-
nohistochemical analysis. They found 2 large rearrangements in the 3 remaining 
individuals (out of a total of 15) who did not have a detectable hMSH6 germline 
mutation by direct DNA sequencing, suggesting that large rearrangements may 
contribute to the overall mutation spectrum in hMSH6 at a frequency similar to 
that observed in hMSH2 and hMLH1 (Plaschke et al. 2003). In a similar study of 
patients whose tumors exhibited isolated loss of PMS2 expression, four of seven 
(57%) were found to have a large genomic rearrangement involving the PMS2 
gene, including two exonic deletions, a complex rearrangement (due to a genomic 
deletion or inactivation by gene conversion), and an intronic insertion, all reported 
as probably pathogenic (Hendriks et al. 2006b). A deletion of exons 1–10 in PMS2 
has also been reported (Rahner et al. 2007).

Large genomic rearrangements first became apparent as part of the mutation 
spectrum following the identification of a 3.5-kb deletion within the hMLH1 gene, 
reported as a Finnish founder mutation (Nystrom-Lahti et al. 1995). A second large 
deletion of exons 13–16 in hMLH1 was reported shortly thereafter, leading authors to 
speculate that, given the large number of Alu repeats within the gene, large genomic 
rearrangements may be common in Lynch Syndrome (Mauillon et al. 1996). 
Subsequent analysis of the hMSH2 gene by Wijnen and colleagues identified eight 
genomic deletions, most probably occurring as a result of a common recombination 
event, rather than a founder effect, as indicated by haplotype analysis performed on 
individuals with identical deletions (Wijnen et al. 1998). Follow-up analyses also 
suggested a high frequency of large rearrangements within hMSH2 confirming Alu-
mediated homologous recombination as a major mechanism behind mutation recur-
rence (Charbonnier et al. 2002; van der Klift et al. 2005). Despite Alu-rich genomic 
structures, however, not all large rearrangements in MMR genes appear to be derived 
this way. Evidence of nonhomologous recombination, involving Alu and L1 repeat 
elements, suggests a second, less frequent, mechanism for large rearrangements in 
hMSH2, hMLH1, and hMSH6 (Viel et al. 2002; van der Klift 2005).

Several large rearrangement detection methods have been used; however, the 
two most widely recommended methods are Southern blot analysis and multiplex 
ligation-dependent probe amplification (MLPA) because of their sensitivity and 
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simplicity, respectively (Nakagawa et al. 2003; van der Klift et al. 2005). MLPA 
is a relatively simple method used to detect copy-number mutations such as dele-
tions and duplications with high sensitivity and specificity; however, this method 
has several limitations. MLPA invariably misses noncopy-number mutations such 
as large insertions and inversions. Polymorphisms located in the primer regions 
can disrupt the MLPA reaction as well, causing single-exon deletions which com-
promise the end result, unless sequencing of the primer regions is also performed. 
Furthermore, the presence of pseudogenes has made copy-number detection by 
MLPA more difficult in determining the presence or absence of deletions and 
duplications in hPMS2. Southern blot analysis can also characterize the breakpoints 
associated with large deletions and duplications more accurately than MLPA, 
which is important for distinguishing founder mutations from novel mutations, as 
well as providing an appealing alternative PCR-based approach to surveying DNA 
from family members for a familial large rearrangement. Notably, Nakagawa and 
colleagues utilized conversion analysis, a technique initially introduced to increase 
mutation-detection rates in MMR genes by haploid reduction of host genome, 
to characterize the breakpoints of large rearrangements detected by MLPA (Yan 
et al. 2000; Nakagawa et al. 2003). Although Southern blot analysis has been the 
gold standard method for detecting large rearrangements, MLPA is a less time-
consuming and less labor-intensive technique, and consumes smaller amounts of 
DNA. Despite the debate surrounding choice of method, the development of these 
reliable tools to detect large genomic rearrangements has led to an overall increase 
in mutation-detection rates for the MMR genes.

Missense Mutations

As is true of many genetic diseases, base-pair disruptions leading to missense 
alterations and in-frame deletions represent an elusive set of sequence changes, the 
pathogenicity of which can be difficult to ascertain. Over one-third of mutations 
in hMLH1 and hMSH6 and nearly 20–25% of mutations in hMSH2 are missense 
mutations (Peltomaki and Vasen 2004). Missense and silent mutations are defined 
by single base-pair substitutions resulting in either an alternate amino acid or the 
same amino acid, respectively, and may or may not have a deleterious effect on pro-
tein function. Traditionally, pathogenic missense mutations in MMR genes affect 
the local structure or conformation of the encoded protein, producing aberrant 
protein interaction and function within the MMR pathway (Peltomaki and Vasen 
2004). This can result, for example, from a change in the polarity of a specific 
amino acid. Recent literature suggests that missense and silent mutations may also 
exert an effect on normal mRNA splicing if the mutation occurs near an intron–
exon boundary. It has been well established that disruption of the “invariant” donor 
and acceptor sites of intron–exon boundaries is pathogenic by causing alternative 
splicing. However, missense and silent mutations may affect splicing via other 
methods, including disruption of exonic splicing enhancer consensus sequences or 
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activation of cryptic splice sites (Cartegni et al. 2002; Gorlov et al. 2003; Auclair 
et al. 2006; Pagenstecher et al. 2006).

Many missense alterations have been successfully classified as disease-causing 
or susceptibility alleles through studies correlating functional, biochemical, and 
clinical data (including presence or absence of microsatellite instability in tumor 
DNA) (Raevaara et al. 2005). The A636P missense alteration prevalent in the 
Ashkenazi Jewish population, for example, has been established as a pathogenic 
mutation (Foulkes et al. 2002). However, because missense mutations do not 
 create an obviously truncated product, their effect on protein function is difficult 
to predict, as the protein may harbor some residual activity. This can lead to unu-
sual clinical manifestations compared to typical Lynch Syndrome patients. Thus, 
missense alterations are difficult to classify because the biochemical and functional 
data may not be as compelling as those observed with nonsense or frameshift muta-
tions and, similarly, the clinical data may not be as well defined. Therefore, by their 
very nature, it can be difficult to distinguish between a “mild” susceptibility allele 
and a benign missense alteration in a substantial portion of Lynch Syndrome cases, 
making diagnosis and prognosis equally complex.

Without extensive functional and biochemical studies or reliable clinical data 
to prove co-segregation with disease in a family, few other resources are available 
for determining the clinical significance of many of these alterations. However, 
the development of standardized tools for comparative genomic analysis should 
serve as valuable resources for understanding this complex category of mutation. 
Ollila and colleagues assessed how well comparative sequence analysis predicts the 
results of functional assays as a possible tool to assess the significance of missense 
mutations (excluding in-frame deletions). Using a specific set of sequences includ-
ing yeast, parasites, and animals, but excluding plants and bacteria, resulted in an 
overall predictive value of 92% for hMSH2 and 82% for hMLH1 (Ollila et al. 2006). 
A similar study using computational methods involving hMLH1 and hMSH2 found 
that missense mutations occurring at codons in which the respective amino acid is 
highly conserved have up to a 97% likelihood of being pathogenic, suggesting the 
overall predictive value of comparative sequence analysis to be high enough to pro-
mote its use in clinical practice (Chan et al. 2007). Although sequence homology 
probably cannot replace functional studies, it may serve a useful role in the clinical 
world as a screening method for identifying alterations that warrant confirmatory 
analysis (Ollila et al. 2006).

The Human Variome Project (HVP) was recently created for the purpose of stand-
ardizing a process by which clinicians and laboratorians can  publicize  mutation/
alteration information. Although databases currently exist for the purpose of 
 assimilating genotypic and phenotypic information, they remain incomplete due 
to issues with compliance, accessibility, and timeliness of data entry. The HVP 
is devoted to developing a process by which information is collected, stored, and 
accessed such that all information is captured in an efficient way for optimal clini-
cal use (Cotton et al. 2007). With the advent of the HVP and the promising predic-
tive value of sequence homology, the clinical significance of many MMR missense 
alterations may be easier to discern in the near future.
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Founder Mutations

Included within the collection of over 500 reported MMR gene mutations are  several 
well-documented founder mutations. Nystrom-Lahti and Moisio and colleagues 
described, and confirmed by haplotype analysis, the first two founder  mutations 
in the Finnish population (called mutation 1 and mutation 2) in the hMLH1 gene 
(Nystrom-Lahti et al. 1995; Moisio et al. 1996). These two mutations, specifically a 
mutation at the splice acceptor site of exon 6 and a large genomic deletion involving 
exon 16 and surrounding introns, make up a large proportion of the disease-causing 
mutations in the Finnish population. Together, they are estimated to account for 
between 63 and 68% of families who fulfill the Amsterdam criteria and 50% of 
families with verified or putative diagnoses of Lynch Syndrome in this population 
(Moisio et al. 1996; Nystrom-Lahti et al. 1996).

In 2002, Foulkes and colleagues characterized a previously reported and con-
firmed pathogenic missense mutation in hMSH2 as a founder mutation within the 
Ashkenazi Jewish population (Yuan et al. 1999; Marra et al. 2001; Foulkes et al. 
2002). The 1906 G > C mutation which results in an alanine-to-proline amino acid 
change at codon 636 (A636P) is estimated to represent 10–33% of disease-causing 
mutations in Ashkenazi Jewish families who meet the Amsterdam criteria (Foulkes 
et al. 2002). Among other cancer predisposition syndromes, including Bloom 
syndrome (BLM), Fanconi anemia type C (FANCC), hereditary breast and ovarian 
cancer (BRCA1 and BRCA2), and familial adenomatous polyposis (APC), founder 
mutations in the Ashkenazi Jewish population are quite common. However, unlike 
these other mutations, the frequency of the A636P mutation within the Ashkenazim 
in general is relatively rare. For instance, the three common founder mutations 
identified in individuals with Hereditary Breast and Ovarian Cancer (185delAG and 
5382insC in BRCA1 and 6174delT in BRCA2) are found in approximately 2.5% of 
Ashkenazi individuals (Struewing et al. 1997), whereas the A636P has been esti-
mated to occur at a frequency of less than .05% in the general Ashkenazi population 
(Guillem et al. 2003). Despite its relatively rare occurrence in this population over-
all (which Faulkes and colleagues attribute to a recent origin or perhaps chance), its 
prevalence among individuals with Lynch Syndrome in this population is notable.

Recently, a mutation detected in approximately 10% of affected North American 
families was studied and proven to be a founder mutation through a combined gene-
alogical and molecular approach. The exon 1–6 deletion of hMSH2, also known as 
the American Founder Mutation (AFM), is characterized molecularly by specific 
breakpoints not common to all exon 1–6 deletions within this gene. Non-AFM exon 
1–6 deletions occur commonly as well, probably due to the Alu-rich sequences 
flanking these exons. Therefore, as suggested by haplotype analysis, the AFM 
deletion is distinguishable from other exon 1–6 deletions by its unique end points, 
providing additional molecular evidence of a common ancestor, now thought to 
have originated in Germany (Wagner et al. 2003; Lynch et al. 2006).

Reports of founder mutations in other ethnic groups have also been documented. 
Chan and colleagues have reported two founder mutations, a large deletion in 
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hMLH1 and a small 4-bp deletion in hMSH2, in the southern Chinese population, 
the latter of which was estimated to account for 21% of deleterious MMR gene 
mutations in this population. Haplotype analysis suggested a common ancestor 
in both cases (Chan et al. 2001, 2004). Other founder mutations, as confirmed 
by haplotype analysis or geneologic studies within the hMLH1 and hMSH6 
genes, have also been reported as originating in Switzerland, Sweden, Denmark, 
Finland, the Netherlands, Italy, and Korea (Hutter et al. 1996; Jager et al. 1997; 
Berends et al. 2002; Caluseriu et al. 2004; Shin et al. 2004; Thiffault et al. 2004; 
Cederquist et al. 2005; Vahteristo et al. 2005).

Mutations observed more than once are generally thought to arise from a 
 common ancestor (founder mutation) or as a result of a recurrent de novo event. 
Of interest, the IVS5 + 3 A > T nucleotide substitution in hMSH2, which abolishes 
the exon 5 splice donor site, accounts for 11–20% of all hMSH2 mutations world-
wide. Although a common haplotype was identified in families originating from 
Newfoundland, haplotype analysis could not confirm a recent common ancestor 
in other ethnic populations. This suggests that the mutation, although appearing to 
be the result of a founder effect in one population, is the most frequently recurring 
de novo mutation in others, having been reported in the United States, England, 
Japan, and Italy. Authors suspect that its recurrence as a de novo mutation may be 
facilitated by a 26-bp mononucleotide repeat sequence that increases the likelihood 
of misalignment during the replication process (Froggatt et al. 1995, 1999; Desai 
et al. 2000).

Heritable Epimutations?

Acquired hypermethylation of the hMLH1 promoter is a well-established  mechanism 
of gene inactivation via transcriptional silencing, in tumors of individuals with non-
familial colon cancer (Cunningham et al. 1998; Kuismanen et al. 2000; Miyakura 
et al. 2001; Gazzoli et al. 2002). Like germline mutations in hMLH1, acquired 
promoter hypermethylation facilitates colon cancer development by disabling an 
MMR gene as a precursor to carcinogenesis. hMLH1 hypermethylation is therefore 
the most common cause of MMR deficiency observed in colon tumors, either via 
biallelic methylation or methylation and loss of heterozygosity (Ollikainen et al. 
2007). Recently, several reports have surfaced of inherited epimutations, epigenetic 
silencing of a gene that is not normally silenced. Evidence of hypermethylation of 
hMLH1 and hMSH2 in normal tissue (e.g., peripheral blood lymphocytes, buccal 
mucosa, normal colorectal mucosa, etc.) of individuals with multiple primary can-
cers and/or early-onset cancer suggests the possibility of heritable epimutations of 
the MMR genes as a new class of mutations responsible for a Lynch-Syndrome-like 
presentation. Germline hypermethylation of hMLH1 is followed by a second “hit” 
to the opposing allele, initiating tumorigenesis. This is supported by data from sev-
eral groups that have shown that tumor DNA demonstrated loss of heterozygosity 
of the unmethylated allele.
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Of the handful of cases that have emerged in the literature, all but one have 
illustrated hemiallelic (one allele) germline methylation of the hMLH1 gene in 
individuals with MSI-H tumors showing loss of expression of hMLH1 by IHC 
and no detectable germline mutation by sequencing or large rearrangement analy-
ses (Gazzoli et al. 2002; Miyakura et al. 2004; Suter et al. 2004; Hitchins et al. 
2005; Chen et al. 2007; Hitchins et al. 2007; Valle et al. 2007). These studies also 
 suggest that the germline epimutation generally arises as a de novo event, either in 
the parental germline or very early in embryogenesis and is rarely transmitted to 
subsequent generations. This was supported by evidence that parents and siblings 
did not demonstrate methylation of the same inherited allele (traceable by SNP 
or haplotype analysis) as the original proband. Furthermore, it appears that the 
epimutations usually undergo reversal during gametogenesis to re-establish the 
normal parent-of-origin methylation pattern. Both Suter et al. (2004) and Hitchins 
et al. (2007) demonstrated disappearance of germline methylation from one genera-
tion to the next by testing, for the presence of methylation, the affected parentally 
derived allele in the DNA of the offspring of the affected individual. Absence of 
the epimutation in the proband’s children suggests that not only did the epimutation 
arise de novo, but also that it probably does not confer a predisposition to cancer in 
subsequent generations (Suter et al. 2004; Hitchins et al. 2007).

Both groups, however, also reported evidence supporting the potential for 
the epimutation to be passed on to offspring. Hitchins and colleagues described 
a man who exhibited partial (50%) germline hMLH1 hypermethylation, whose 
mother demonstrated the epimutation in all of her somatic cells, showing partial 
retention of the epimutation in the next generation. Although analysis of his con-
stitutional DNA demonstrated that the man was transcribing RNA only from his 
paternally derived allele, no evidence of hMLH1 hypermethylation was detected 
in a sample of his motile spermatozoa, and germline reactivation of the mater-
nally derived allele was confirmed by RNA analysis. Suter (2004) demonstrated 
hypermethylation in spermatozoa of an individual who was found to have germline 
hMLH1 hypermethylation. However, the proportion of colonies that exhibited the 
epimutation, <1% (5/526), is probably small enough to imply a negligible risk 
to future children (Suter et al. 2004). Hitchins and colleagues also hypothesized 
that oogenesis may be more prone to these epigenetic errors because, in general, 
the methylated homolog is maternally derived and epimutation reversal has been 
demonstrated during spermatogenesis in men displaying the germline epimutation 
in constitutional cells. If this is true, then any transmission of the epimutation will 
probably be reversed during spermatogenesis as observed in the two cases earlier 
(Suter et al. 2004; Hitchins et al. 2007). This is also supported by studies conducted 
in mice that suggested transmission of epimutations due to incomplete reversal of 
the epimutation during gametogenesis (Roemer et al. 1997; Morgan et al. 1999; 
Rakyan et al. 2003).

A few groups have hypothesized that changes within the coding or promoter 
regions of the MMR genes may contribute to epigenetic events such as the hMLH1 
hypermethylation that has been observed both in tumor and normal DNA. One 
study identified a SNP (−93 A) that was statistically significantly associated with 
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hMLH1 methylation in endometrial tumors (Chen et al. 2007). Although this prob-
ably does not explain the recent reports of hMLH1 germline methylation, it does 
provide evidence of cis-factors acting somatically to influence epigenetic events. 
Another study demonstrated germline hypermethylation of the hMSH2 gene in ten 
different individuals across three successive generations, which is, to date, the only 
report of germline hypermethylation observed in an MMR gene other than hMLH1. 
A potential cis-acting factor present in hMSH2 in this family was evidenced by 
perfect segregation of hMSH2 hypermethylation and a disease haplotype, confirm-
ing allele-specific methylation (Chan et al. 2006). This study provided the first 
evidence of a cis-acting factor that could also be influencing methylation at the 
germline level (Chan et al. 2006; Hitchins et al. 2007).

Because inactivation of one MMR allele (i.e., of hMLH1) is probably present at 
conception, individuals with MMR germline epimutations (promoter hypermethyla-
tion) may be susceptible to cancer risks similar to those observed in Lynch Syndrome 
who harbor germline mutations within the coding regions of the gene. However, 
unlike germline mutations in the coding sequence, promoter hypermethylation is 
probably a transient phenomenon which is, only rarely, transmitted to subsequent 
generations and, therefore, usually does not pose the same risks to future gen-
erations as those associated with inherited MMR mutations. Therefore, germline 
 hypermethylation of an MMR gene could be considered in the evaluation of single-
ton cases of young onset colon cancer and/or multiple primary cancers whose tumors 
demonstrate evidence of defective DNA mismatch repair (Volle et al. 2007).

Evolution of a Name: HNPCC Versus Lynch Syndrome

The terms “Lynch Syndrome” and “Hereditary Nonpolyposis Colon Cancer” 
(HNPCC) have been the most commonly used names for a heterogeneous heredi-
tary colorectal cancer syndrome. This syndrome has been described and subdivided 
by its various clinical presentations, all of which are predominantly associated 
with a predisposition to certain types of cancers. The observation of a molecular 
mutator phenotype that manifests as microsatellite instability in tumors of some 
affected individuals led to discovery of mutations in the MMR genes, allowing for a 
molecular basis by which a diagnosis of the syndrome could be established. Thus, a 
redefinition of the syndrome was recently proposed, changing the way in which the 
terms Lynch Syndrome and HNPCC, are used in order to ensure that proper medi-
cal management and counseling are based on an accurate diagnosis of the disease 
(Boland 2005; Jass 2006).

The syndrome was first described by Dr. S. A. Warthin after reviewing  pathology 
specimens and records of individuals belonging to the striking “Family G” affected 
by uterine, gastric, and other cancers (Warthin 1913). This family was later followed 
up by Lynch and colleagues in 1971 who described the high frequency of endome-
trial and colorectal cancers in the later generations and introduced the cancer family 
syndrome (Lynch et al. 1966; Lynch and Krush 1971). The cancer family syndrome 
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(CFS) was initially defined by early-onset colon cancer, predominantly proximal 
in location, with a high frequency of metachronous and/or synchronous cancers, 
including endometrial and other extracolonic malignancies. Further evaluation of 
such families revealed two distinct tumor spectra: (1) colon cancer in the context of 
extracolonic malignancies (CFS) and (2) site-specific colon cancer, called heredi-
tary site-specific nonpolyposis colon cancer (HSSCC) (Lynch et al. 1991). In 1984, 
CFS and HSSCC were renamed Lynch Syndrome I and Lynch Syndrome II, respec-
tively (Boland and Troncale 1984). Together they became known as hereditary 
nonpolyposis colon cancer (HNPCC), clinically defined by a family history of 
predominantly right-sided colon cancer in the absence of the extensive polyposis 
(Lynch et al. 1985a, b) characteristic of FAP (see Chap. 5).

In the early 1990s, microsatellite instability was described and shown to be 
related to defective DNA mismatch repair due to germline mutations in the MMR 
genes, defining the syndrome at a molecular level. Recognizing that not all tumors 
from families that fulfill the Amsterdam criteria display evidence of the molecular 
MSI phenotype, suggested the presence of more than one underlying molecular eti-
ology for the pedigree-defined HNPCC. The name, HNPCC, therefore is no longer 
optimal, as it does not distinguish between the probable two or more molecularly 
distinct phenotypes (Boland 2005; Jass 2006). Accordingly, in the last 2 years, 
the term Lynch Syndrome has been established as the hereditary cancer syndrome 
associated with mutations in one of several established MMR genes (Boland 2005). 
For the families that fulfill the Amsterdam Criteria but do not exhibit evidence of 
defective MMR as the etiology of tumor formation, the name, Familial Colorectal 
Cancer Type X, has been proposed; although probably still heterogeneous, the clini-
cal manifestations are distinct from those of Lynch Syndrome and are addressed 
in Chap. 8.2.

The evolution of a “syndrome” and its name has been paralleled by the evolution 
of “Family G” as first described by Warthin nearly a century before. In addition to 
the documentation of over 900 family members, the identification of a deleterious 
hMSH2 mutation (T > G at the splice acceptor site of exon 4) in affected members 
of “Family G,” as well as a shifting phenotype across the generations (Potter 2001) 
has transformed this historic cancer family syndrome lineage into a present-day 
Lynch Syndrome family (Douglas et al. 2005).

Incidence

In the absence of a molecular marker by which to measure disease, the incidence 
of “HNPCC/Lynch Syndrome” among all CRC cases has historically been based 
on clinical ascertainment and diagnosis. Thus, early estimates of disease incidence 
varied widely in the literature, depending on the clinical criteria used for ascer-
tainment. Early population-based studies estimated that incident Lynch Syndrome 
cases account for about 4–6% of all colorectal cancer (Mecklin 1987). This is prob-
ably because the absence of a distinct clinical phenotype, unlike FAP, allowed for 
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more flexibility in the choice of cases that were included in the disease spectrum 
(Lynch et al. 1985a). Later incidence estimates incorporating the more stringent 
family-history-based Amsterdam criteria (Vasen et al. 1991), suggested that the 
incidence of Lynch Syndrome is less than 1% (0.3–0.9%) of all CRC (Aaltonen 
et al. 1994; Mecklin et al. 1995; Evans et al. 1997; Peel et al. 2000).

The first population-based studies to use MSI analysis to screen for defective 
MMR in Finland estimated the incidence of Lynch Syndrome associated with a 
germline mutation in one of several known MMR genes, to be about 2.7% of all 
CRC in that population (Aaltonen et al. 1998; Salovaara et al. 2000). This translates 
to a carrier frequency of approximately 1/740 (Salovaara et al. 2000). However, the 
incidence of Lynch Syndrome in Finland may be inflated by founder effects, sug-
gesting that the incidence may, generally, be lower (Aaltonen et al. 1998; Salovaara 
et al. 2000; Samowitz et al. 2001). More recent studies in other populations have 
suggested an overall incidence of about 1% (Ravnic-Glavac et al. 2000; Samowitz 
et al. 2001) to 2% (Cunningham et al. 2001; Hampel et al. 2005). The last two 
studies included analysis of the hMSH6 gene in addition to hMLH1 and hMSH2 
and added detection of large rearrangements. Therefore, these recent studies prob-
ably represent a more accurate estimate of the true incidence of Lynch Syndrome. 
Limitations of current estimates of disease incidence include characterization of 
prevalent missense alterations detected in the presence of defective MMR, unde-
tected mutations within regions of the MMR genes that are not or cannot always be 
analyzed (e.g., introns, promoters), and ascertainment bias involving inclusion of 
probands with colon cancer only.

Because CRC is estimated to account for only about 45% of cancer diagnoses 
in individuals with Lynch Syndrome, preliminary studies analyzing the incidence 
of Lynch Syndrome among all endometrial and other extracolonic cancer cases are 
beginning to emerge. Hampel and colleagues screened tumors of 543 unselected 
endometrial cancer patients for the presence of defective MMR. MSI and IHC 
analysis identified 119 individuals whose tumors exhibited evidence of defective 
MMR. 10 of the 119 individuals (1.8%) had detectable pathogenic germline muta-
tions in a known MMR gene (Hampel et al. 2006). Thus, the incidence of Lynch 
Syndrome among endometrial cancer cases appears to be similar to that associated 
with all CRC cases.

Histopathology

Lynch Syndrome, unlike other hereditary colon cancer syndromes (FAP – see Chap. 5; 
MAP – see Chap. 8.1), is not associated with a polyposis phenotype (Lynch et al. 
1993). The adenoma-carcinoma sequence leading to colonic tumor formation has 
been illustrated by various researchers (Love 1986; Mecklin et al. 1986b; Lanspa 
et al. 1990); however, the incidence of adenomas in Lynch Syndrome patients is 
similar to that observed in the general population, leading researchers to conclude 
that the high rate of primary and metachronous/synchronous CRCs observed in 
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HNPCC/Lynch Syndrome is due to an acceleration of the adenoma-carcinoma 
sequence. This is supported by observations of a greater frequency of adenomas with 
high-grade dysplasia and/or a villous component in patients with Lynch Syndrome 
compared to non-Lynch Syndrome patients (Love 1986; Mecklin et al. 1986b; 
Jass and Stewart 1992; Jass et al. 1994). Because of the accelerated transformation, 
more frequent clinical screening is required in this population (Jarvinen et al. 2000; 
Lynch and de la Chapelle 2003; Hendriks et al. 2006a, b; Vasen et al. 2007).

Early studies suggested that associations with certain CRC tumor histopatho-
logic characteristics might also exist. Tumors selected on the basis of family history 
of colon cancer tended to be poorly differentiated twice as often as in a control 
group with no family history of colorectal cancer (Mecklin et al. 1986b; Lynch 
et al. 1993; Jass et al. 1994), and displayed a mucinous component more often than 
was observed in nonfamilial CRCs, especially when metachronous tumors were 
included in the evaluation (Mecklin et al. 1986b; Jass and Stewart 1992; Jass et al. 
1994). With the discovery of MSI within CRC tumor DNA, studies analyzing 
histopathologic characteristics of MSI-H tumors (including both nonfamilial and 
Lynch Syndrome tumors) increased both in number and scope.

MSI-H tumors generally show considerable histopathologic heterogeneity 
(Greenson et al. 2003; Umar et al. 2004). However, correlations between his-
topathologic features and MSI-H status have been established. Consistent with 
previous family-history-based studies, MSI-H tumors tend to be poorly differenti-
ated, mucin producing, and exhibit a medullary growth pattern (Kim et al. 1994; 
Ward et al. 2001; Greenson et al. 2003). Studies examining those with mucinous 
tumors, specifically, have demonstrated that MSI-H tumors (defined by abnormal 
IHC staining or MSI at two or more of the five markers recommended by the 
Bethesda conference or >30% of markers) comprise 30% of all mucinous colorec-
tal cancers. MSI-H tumors, therefore, make up a greater proportion of mucinous 
tumors than nonmucinous tumors (Messerini et al. 1997; Kakar et al. 2004). A rare 
type of mucinous tumor, signet-ring cell carcinoma, has also been observed more 
frequently among MSI-H tumors (Mecklin et al. 1986b; Lynch et al. 1993; Kim 
et al. 1994).

Despite the over-representation of mucinous tumors among MSI-H CRCs, early 
authors observed a tendency toward a better prognosis in those belonging to the 
hereditary group than generally expected of mucinous tumors (Jass and Stewart 
1992; Jass et al. 1994). Kakar et al. (2004) also described better than expected 
survival rates observed in a group of individuals with MSI-H mucinous tumors 
(Kakar et al. 2004). In general, tumor microsatellite instability has been associated 
with favorable prognoses (Thibodeau et al. 1993; Halling et al. 1999; Ward et al. 
2001), and it has been suggested that this may be related to the other reported 
predominant histopathologic features in Lynch Syndrome CRCs, including tumor-
infiltrating lymphocytes (TILs), a Crohn’s-like lymphocytic response, medullary 
growth pattern, and diploidy, all of which are associated with a favorable prognosis 
(Lynch et al. 1993; Jass et al. 1994; Kakar et al. 2004).

Several of the noted histopathologic features have proven to be sensitive pre-
dictors of MSI-H status. Based on their apparent predictive value, the Bethesda 
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guidelines were revised to include individuals with “MSI-H histology” diagnosed 
in those less than 60 years as appropriate for further evaluation as possible Lynch 
Syndrome patients (Fig. 7.1) (Umar et al. 2004). Recently, a scoring system based 
on the predictive value of these histologic features was proposed to aid in the 
selection of cases for screening for Lynch Syndrome. Similar to previous analyses, 
Jenkins et al. (2007) identified several independent histopathologic predictors of 
MSI-H phenotype, each with its own specific predictive value (presence of TILs, 
poor differentiation, mucin production, and Crohn’s like response) (Kim et al. 1994; 
Smyrk et al. 2001; Ward et al. 2001; Greenson et al. 2003). These  independent 
 predictors, in addition to age of diagnosis and proximal colon-tumor location, have 
an overall sensitivity of 93% and specificity of 55% for MSI-H tumors, proving 
better than any of the individual predictive factors taken alone (Jenkins et al. 2007). 
Consideration of histopathologic characteristics, as facilitated by the proposed 
scoring system, MsPath, supports the inclusion of histopathology features in the 
diagnostic evaluation for Lynch Syndrome.

Clinical Features

Tumor Spectrum

Despite the focus on CRC, Lynch Syndrome involves multiple other organs. The 
tumor spectrum associated with Lynch Syndrome was originally derived clinically 
through family studies and subsequently defined further through molecular analy-
sis. Overall, CRC continues to be the most prevalent type of cancer associated with 
Lynch Syndrome, comprising about 45% of these diagnoses. Lynch Syndrome 
has traditionally been and continues to be characterized by metachronous and/or 
synchronous colonic and extracolonic tumors as well as a preponderance of right-
sided/proximal colonic tumors (Lynch et al. 1985a; Lanspa et al. 1990; Jass and 
Stewart 1992; Aaltonen et al. 1993; Ionov et al. 1993; Lothe et al. 1993; Thibodeau 
et al. 1993; Kim et al. 1994; Greenson et al. 2003). The mean age at diagnosis of 
colon cancer in Lynch Syndrome patients is about 45 years (Mecklin et al. 1986a; 
Vasen et al. 1990). More recent studies have suggested differences in mean age at 
diagnosis and disease penetrance, dependent upon the MMR gene involved.

Early clinical studies revealed multiple extracolonic malignancies associated 
with Lynch Syndrome. After CRC, the second most common cancer observed is 
endometrial. The mean age at diagnosis of CRC and endometrial carcinoma asso-
ciated with germline mutations in hMLH1 and hMSH2 remains similar to those 
observed in earlier clinical studies (45 and 50 years, respectively); however, for 
hMSH6, the average age at diagnosis is about 10 years later for both CRC and 
endometrial tumors (Wijnen et al. 1999; Peltomaki et al. 2001; Wagner et al. 2001; 
Hendriks et al. 2004). Other studies have shown greater-than-expected frequencies 
of cancers of the ovary, stomach, biliary tract, renal pelvis and ureter, and small 
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bowel (Mecklin et al. 1986a; Vasen et al. 1990; Watson and Lynch 1994; Aarnio 
et al. 1999). The presence of defective MMR manifesting as MSI in gastric, ovar-
ian, and other historical Lynch-Syndrome-related tumors has also been documented 
(reviewed in Peltomaki 2003).

Penetrance

Similar to observations regarding mean age at diagnosis, the cumulative risk for 
cancer associated with mutations in hMLH1 and hMSH2 differs from that asso-
ciated with hMSH6 mutations. The lifetime risk of developing colon cancer (by 
age 70–75) is approximately 80% (range: 53–90%) associated with hMLH1 and 
hMSH2 mutations. The lifetime risk for CRC associated with a germline hMSH6 
mutation, however, is 50%. Unlike CRC, endometrial cancer appears to be more 
penetrant in hMSH6 families with a cumulative lifetime risk of 71% versus the 
30–40% associated with hMLH1 and hMSH2 (Vasen et al. 1996; Hendriks et al. 
2004; Peltomaki 2005). In a recent review of literature on Lynch Syndrome, Vasen 
et al. (2007) reported lifetime risks for cancer in families with identified MMR gene 
mutations as follows: CRC in men: 28–75%; CRC in women: 24–54%; endometrial 
cancer: 27–71%; ovarian cancer: 3–13%; gastric cancer 2–13%; urinary tract can-
cer: 1–12%; brain tumor: 1–4%; bile duct/gallbladder cancer: 2%; and small bowel 
cancer: 4–7%. The lifetime risks for various skin cancers have not been well stud-
ied, but are certainly increased for sebaceous tumors. Heterozygous PMS2 muta-
tions, although well established as a mechanism of disease, are less penetrant than 
mutations in the other three common MMR genes (De Rosa et al. 2000; Hendriks 
et al. 2006b).

Clinical Variants of Lynch Syndrome

As Lynch Syndrome was being defined both clinically and molecularly, several 
variants of the disease emerged. Muir-Torre syndrome (MTS) was the first to be 
reported and was formally defined in 1995. It is characterized by the concurrence of 
classic Lynch Syndrome tumors with sebaceous gland adenomas/adenocarcinomas 
and/or keratoacanthomas (Lynch et al. 1991; Schwartz and Torre 1995). Defective 
MMR was established as the underlying molecular etiology of MTS, through dem-
onstration of MSI in both sebaceous and colorectal tumors (Honchel et al. 1994; 
Bocker et al. 1997; Entius et al. 2000; Machin et al. 2002). MTS is predominantly 
caused by deficiencies (including large gene rearrangements) in hMSH2, but muta-
tions in hMLH1 and hMSH6 have also been reported (Barana et al. 2004; Mangold 
et al. 2004; Arnold et al. 2007; Mangold et al. 2007).

Biallelic mutations have been reported frequently in association with PMS2 
gene involvement: both homozygous and compound heterozygous mutations have 
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been reported. Turcot syndrome, a clinical variant of both Lynch Syndrome and 
familial adenomatous polyposis, may be caused by biallelic PMS2 mutations, 
resulting in an autosomal recessive syndrome. Clinically, Turcot Syndrome is char-
acterized by the occurrence of primary brain tumors, specifically glioblastomas, in 
association with colorectal cancer or colorectal adenomas usually at early stages; 
however, other cancer types have also been observed (Turcot et al. 1959; Agostini 
et al. 2005).

Biallelic mutations in hMLH1, hMSH2, and hMSH6 have become more frequent 
in the literature; these are generally characterized by a unique phenotype consist-
ing of hematologic malignancies, early-onset CRC, and café-au-lait macules that 
are essentially indistinguishable from those seen in Neurofibromatosis type 1 
(Trimbath et al. 2001; Poley et al. 2007). The term “Lynch Syndrome Type III” has 
been suggested for this rare phenotype.
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Chapter 9
Genetic Variability in Folate-Mediated 
One-Carbon Metabolism and Risk 
of Colorectal Neoplasia

Amy Y. Liu and Cornelia M. Ulrich

Introduction

Folate is a necessary micronutrient in humans, essential for transferring single-
 carbon units for important biochemical reactions such as the biosynthesis of methionine, 
thymidylate, purines, and glycine, and in the metabolism of serine, formate, and 
histidine. The principal reactions of folate-mediated one-carbon metabolism 
(FOCM) in the cytosol and the major transport mechanisms of folate into the cell 
are illustrated in Fig. 9.1.

Experiments in animal models and epidemiologic studies investigating dietary 
intakes or biomarkers of folate status have provided evidence linking FOCM to 
colorectal cancer risk. It has been shown in animal studies that a methyl- group-
deficient diet can enhance colon carcinogenesis, with potentially different effects 
depending on the transformation state of the cell (Kim 2004). The results from 
epidemiologic studies on both colorectal adenomas and colorectal cancer show a 
strong inverse association between folate status and colorectal neoplasia: either high 
dietary folate intakes or high biomarkers of folate intake are consistently associated 
with a decreased risk (Benito et al. 1990; Freudenheim et al. 1991; Giovannucci 
et al. 1993, 1995; Boutron-Ruault et al. 1996; Glynn et al. 1996; Slattery et al. 
1997; Kato et al. 1999; Giovannucci 2002; Konings et al. 2002).

These associations are not explained merely by some other truly causal factors 
correlating with a high folate intake or blood level; rather, genetic studies provide 
good evidence of a causal relationship between aspects of FOCM and an altered risk 
of cancer. In order for FOCM to function, several nutrients, such as vitamin B12, B6, 
and B2, are necessary as cofactors of various enzymes. In addition to critical cofac-
tors, many feedback mechanisms and other regulatory processes ensure the robustness 
of the complex metabolic pathways that constitute folate metabolism (Wagner 1995; 
Nijhout et al. 2004). Consequently, for phenotypic effects to occur, multiple distur-
bances within the pathway, or stress on the system as a whole (e.g., low intakes of 
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folate or other nutrients involved in FOCM), are required. For example, the  association 
between genetic polymorphisms in MTHFR and biomarkers, such as homocysteine 
concentrations, are strongest under low folate conditions. Thus, examining gene–gene 
and gene–nutrient interactions within this complex system is a critical step in under-
standing the relationship between folate metabolism and cancer risk.

Investigating Genetic Polymorphisms 
in Epidemiologic Studies

A wealth of information regarding inherited human genetic variability has become 
accessible as part of the Human Genome Project. Studies investigating the associa-
tions between genetic susceptibility and disease are important because they can 
(a) provide evidence for a causal relationship between an environmental factor 
(e.g., folate) and disease outcomes; (b) help to elucidate whether increasing or 
reducing intakes of specific nutrients may benefit certain people or population 

Fig. 9.1 Overview of folate-mediated one-carbon metabolism (simplified), links to methylation 
reactions and nucleotide synthesis (modified with permission from (Ulrich et al. 2003) ). THF tetra-
hydrofolate; DHF dihydrofolate; RFC reduced folate carrier; hFR human folate receptor; MTHFR 
5,10-methylenetetrahydrofolate reductase; DHFR dihydrofolate reductase; GART glycinamide 
ribonucleotide transformylase; AICARFT 5-amino-imidazole-4-carboxamide ribonucleotide trans-
formylase; AICAR 5-aminoimidazole-4-carboxamide ribonucleotide; GAR glycinamide ribonucle-
otide; SAM (AdoMet) S-adenosylmethionine; SAH (AdoHcy) S-adenosylhomocysteine; dUMP 
deoxyuridine monophosphate; dTMP deoxythymidine monophosphate; MS methionine synthase; 
TS thymidylate synthase; MT methyltransferases; X a variety of substrates for  methylation
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groups depending on genetic susceptibility; and (c) assist in discovering biologic 
mechanisms connecting specific biologic pathways to disease outcomes.

Early epidemiologic studies focused mainly on specific candidate polymorphisms 
in proteins that appear essential in a biologic pathway (for the discussion here, folate 
metabolism) or are functionally relevant. However, this approach is limited because 
it omits either other genetic variants within the same biologic pathway or other 
genetic polymorphisms within the same gene. Consequently, performing compre-
hensive investigations covering genetic variability in numerous biologically interre-
lated proteins will become more and more critical in future studies. However, only if 
suitable statistical methods are available for pathway-based analyses and if sample 
sizes are sufficient to provide stable estimates for gene–gene and gene–environment 
interactions can a full integration of biologic relationships into the epidemiologic 
data analysis be achieved. In this chapter, many of the studies discussed were limited 
by sample size; therefore, studies in other populations are needed in order to con-
firm the reported gene–gene or gene–nutrient interactions. Furthermore, by utilizing 
a candidate polymorphism approach, as noted earlier, additional genetic variation 
within the same gene or in adjacent genomic regions may be overlooked. The can-
didate polymorphism may not be the causal variant; rather, another polymorphism in 
linkage disequilibrium (LD) with the candidate may be causing the observed associa-
tions. In order to address these concerns, investigations of gene-wide haplotypes or 
combination of haplotypes (i.e., diplotypes) (as well as methods development) are 
underway for integrating these approaches in epidemiologic analyses (Johnson et al. 
2001; Patil et al. 2001; Dawson et al. 2002; Gabriel et al. 2002).

We here focus on the studies to date of those polymorphisms that are expected 
to have phenotypic effects (as indicated by biomarker measurements) or have been 
associated with disease endpoints.

Polymorphisms in One-Carbon Metabolism 
and Their Functional Impact

Thymidylate Synthase

5,10-Methylenetetrahydrofolate (5,10-methylene-THF) is a crucial substrate in 
folate metabolism with connections to three biosynthetic pathways: thymidine syn-
thesis, purine synthesis, or methionine synthesis via 5,10-methylenetetra hydro folate 
reductase (MTHFR). Thymidylate synthase (TS) catalyzes the transfer of a methyl 
group from 5,10-methylene-THF to deoxyuridine monophosphate, creating deoxy-
thymidine monophosphate and dihydrofolate. Additionally, TS is an important drug 
target for chemotherapeutic agents (Ulrich et al. 2002b, 2003). A polymorphic 
28-bp tandem repeat is located in the 5′-UTR of the TS gene and functions as a cis-
acting transcriptional enhancer element (Kaneda et al. 1987). Two and three repeats 
occur most commonly; however, among populations of African descent, the rarer 
four and nine tandem repeats have been observed (Marsh et al. 2000). Individuals 
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with the triple repeat have approximately 2–4 times greater gene expression than 
individuals with the double repeat (Horie et al. 1995; Pullarkat et al. 2001). The 
3R/3R genotype has been found to be associated with reduced plasma folate 
and, furthermore, with increased plasma homocysteine concentrations among 
individuals with low folate intake (Trinh et al. 2002). Additionally, within the 
second repeat of 3R alleles, a G > C polymorphism has been identified that alters 
the transcriptional activation of TS gene (Mandola et al. 2003). Within the 3′-UTR 
of the TS gene is a third functionally relevant polymorphism – a 6-bp deletion 
(1494del6) which has been associated with reduced mRNA stability (Ulrich et al. 
2000; Mandola et al. 2004).

5,10-Methylenetetrahydrofolate Reductase

5,10-Methylenetetrahydrofolate reductase (MTHFR) catalyzes 5,10-methylene-
THF to 5-methyltetrahydrofolate (5-methyl-THF). MTHFR plays a critical role in 
FOCM because it balances the DNA methylation and DNA synthesis pathways. 
Two common polymorphisms have been investigated extensively within MTHFR. 
First, MTHFR C677T was identified as reducing MTHFR activity, with the ther-
molabile variant 677TT reported to decrease normal enzyme activity by as much 
as 70% (Frosst et al. 1995). Epidemiologic studies have consistently observed 
that the 677TT genotype is associated with higher plasma homocysteine concen-
trations than wild type, with this relationship being strongest under a low folate 
status (Jacques et al. 1996; Girelli et al. 1998). Low levels of vitamin B2 lead to 
higher homocysteine concentrations as well, but only in 677TT individuals (Hustad 
et al. 2000). MTHFR C677T provides a classic example of a gene–nutrient inter-
action with 677TT, 677CT, and 677CC having highest, intermediate, and lowest 
homocysteine levels, respectively, under low folate levels; yet, in the presence of 
normal folate status, there were no differences among the different genotypes. 
Furthermore, it has been observed that under low folate levels, 677TT individuals 
have decreased levels of genomic DNA methylation (Friso and Choi 2002; Friso 
et al. 2002a).

The variant genotype of the second common polymorphism, MTHFR A1298C, 
also confers reduced enzyme activity compared to wild type (van der Put et al. 
1998). Initial studies reporting on the association between A1298C and homo-
cysteine  levels were inconsistent (van der Put et al. 1998; Weisberg et al. 1998; 
Friedman et al. 1999; Chango et al. 2000a; Friso et al. 2002b): observing no 
association (Friso et al. 2002b); lower (Friedman et al. 1999); or higher (Chango 
et al. 2000a; Ulvik et al. 2007) homocysteine levels in individuals with the 
1298CC genotype. A recent large-scale study by Ulvik et al. with 10,034 study 
participants established, nonetheless, that the 1298C allele does have functional 
impact, independent of the C677T polymorphism: with each additional 1298C 
allele, homocysteine increased statistically significantly and serum folate levels 
decreased (Ulvik et al. 2007). In relation to DNA methylation, studies showed that 
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individuals with the 677TT and 1298AA genotypes, compared to the other geno-
types, had reduced genomic DNA methylation in the presence of low folate (Stern 
et al. 2000; Friso et al. 2002a, 2005). The two most common MTHFR variants 
studied also appear to interact with each other: individuals heterozygous for both 
polymorphisms had decreased MTHFR enzyme activity, increased homocysteine 
concentrations, and reduced plasma folate levels (van der Put et al. 1998). The 
very large study of Ulvik et al. had sufficient statistical power to establish 
that individuals with the 677TT/1298AA genotype had the lowest serum folate 
and highest homocysteine concentrations (Ulvik et al. 2007). Homocysteine 
concentration changes were greatest in the presence of low folate. This result can 
be explained by the model of MTHFR as an enzyme dimer, in which its six main 
configurations are sensitive to low folate levels (Ulvik et al. 2007).

Methionine Synthase

Methionine synthase (MTR) catalyzes the methylation of homocysteine to methio-
nine while simultaneously converting 5-methyl-THF to tetrahydrofolate (THF). 
Studies have identified a variant in the MTR gene (A2756G, Asp919Gly) (Leclerc 
et al. 1998) that may affect plasma homocysteine concentrations. For example, 
some studies (Harmon et al. 1999; Chen et al. 2001), although not all (van der Put 
et al. 1997; Ma et al. 1999; Jacques et al. 2003), observed that, across genotypes, 
homocysteine concentrations tend to decrease linearly, with the AA genotype 
 associated with the highest homocysteine concentrations.

Methionine Synthase Reductase

Methionine synthase reductase (MTRR) is responsible for the reductive methyla-
tion of the cobalamin cofactor of MTR (Leclerc et al. 1998). A variety of disorders 
of folate or cobalamin metabolism have been described in individuals who lack this 
enzyme activity (Watkins and Rosenblatt 1989). An association between the A66G 
(Ile22Met) polymorphism and homocysteine concentrations has been reported 
(Wilson et al. 1999; Gaughan et al. 2001); however, the functional impact of the 
variant is not well defined (Jacques et al. 2003). Furthermore, investigators have 
proposed a relationship between the A66G polymorphism and risk of developmen-
tal defects (Wilson et al. 1999; O’Leary et al. 2002).

Serine Hydroxymethyltransferase

Serine hydroxymethyltransferase (SHMT), with the cofactor pyridoxal phosphate 
(vitamin B6), catalyzes the conversion of THF to 5,10-methylene-THF in a  reversible 
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reaction. As mentioned previously, 5,10-methylene-THF is a crucial substrate in 
folate metabolism that links to three biosynthetic pathways: thymidine synthesis, 
purine synthesis, or methionine synthesis via MTHFR. Within FOCM, one of the 
critical regulatory mechanisms concerns the synthesis and fate of 5,10-methylene-
THF. Cytosolic SHMT (cSHMT) activity increases when glycine concentrations 
increase; consequently, more 5,10-methylene-THF is committed to serine synthesis 
and less 5-methyl-THF is produced (Herbig et al. 2002). However, the function of 
cSHMT in FOCM is not clearly characterized because, in mammals, mitochondrial 
SHMT also provides single-carbon units for the cytosolic metabolism (Garrow et al. 
1993; Wagner 1995; Stover et al. 1997; Liu et al. 2001). Mean red blood cell and 
plasma folate concentrations were higher in individuals with a T-allele compared to 
CC homozygotes of the C1420T (Leu474Phe) polymorphism in the cSHMT gene 
(Heil et al. 2001).

Cystathionine b -Synthase

Cystathionine β-synthase (CBS) catalyzes the trans-sulfuration of homocysteine to 
cystathionine, with a deficiency in this enzyme leading to classical homocystinuria 
(Mudd et al. 1995). Vitamin B6 is necessary as a cofactor for this reaction, thereby 
providing a potential motivation for studying gene–nutrient interactions with nutri-
ents other than folate. Within CBS, several polymorphisms have been described 
that are in linkage disequilibrium (a 68-bp insertion in exon 8; C699T; C1080T; 
and C1985T) (De Stefano et al. 1998; Kraus et al. 1998). These variants may 
modify homocysteine levels (De Stefano et al. 1998; Kruger et al. 2000), change 
postmethionine-load homocysteine concentrations (Aras et al. 2000), and influence 
coronary artery disease risk (Kruger et al. 2000). Furthermore, postmethionine-load 
homocysteine concentrations may also be affected by a 31-bp variable number 
tandem repeat that spans the exon12/intron12 boundary (Sebastio et al. 1995; Yang 
et al. 2000; Lievers et al. 2001).

Reduced Folate Carrier

The reduced folate carrier (RFC) actively transports 5-methyl-THF from the 
plasma to the cytosol. The polymorphism G80A (Arg27His) in the RFC gene may 
result in better carrier function or higher affinity for folate (Chango et al. 2000b). 
Chango et al. observed that the variant A-allele was consistently and linearly 
associated with increasing plasma folate concentrations; however, these differences 
were not statistically significant (Chango et al. 2000b). Further supporting the 
idea that differential carrier activity exists among those with the variant allele is the 
discovery that plasma concentrations of the chemotherapeutic agent, methotrexate, 
24–48 h after administration were higher among children with the AA genotype 
(Laverdiere et al. 2002).
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Other Genes

Candidate polymorphisms have been described in virtually all proteins relevant 
to FOCM. Thus far, there have not been any epidemiologic studies on colorectal 
cancer risk and polymorphisms in enzymes responsible for polyglutamation or 
cleavage of γ-glutamyl groups, or other key enzymes, such as those involved in 
transcobalamin transport. Some of these candidate polymorphisms are briefly 
described here.

Polyglutamation of folate molecules via folylpolyglutamyl synthase (FPGS) 
and cleavage of these glutamyl groups by γ-glutamyl hydrolase (GGH) are impli-
cated in the regulation of intracellular folate concentrations. Several variants have 
been reported in the GGH gene: C-401T, G-354T, T-124G, and C452T (Chave 
et al. 2003; Cheng et al. 2004). The polymorphism, C452CT in exon 5, is associ-
ated with GGH activity and reduces GGH hydrolysis of long-chain methotrexate 
 polyglutamates in leukemia patients treated with high-dose methotrexate (Cheng 
et al. 2004).

In order for folic acid to enter the FOCM pathway, dihydrofolate reductase 
(DHFR) is vital. Several polymorphisms reported among Japanese (Goto et al. 
2001) have not been seen by our group in a North American population (unpub-
lished results). A 19-bp deletion polymorphism within intron1 of DHFR may be 
associated with an increased risk of spina bifida (Johnson et al. 2004).

Transcobalamin II (TCII) is a serum protein that transports vitamin B12 to tis-
sues. As shown in Fig. 9.1, the conversion of homocysteine to methionine by MTR 
requires vitamin B12 as a cofactor. Variants, C776G, A67G, G280A, C1043T, and 
G1196A, have been reported in TCII (Afman et al. 2001, 2002; Lievers et al. 2002). 
The most common TCII polymorphism is C776G, but studies investigating this 
polymorphism and homocysteine and vitamin B12 concentrations have been incon-
sistent (Afman et al. 2001, 2002; Lievers et al. 2002; Miller et al. 2002; Zetterberg 
et al. 2002, 2003; Fodinger et al. 2003; Geisel et al. 2003; Wans et al. 2003; Anello 
et al. 2004; Winkelmayer et al. 2004). However, two studies have found that among 
those with the 776GG polymorphism, methylmalonic acid is higher (Miller et al. 
2002; Geisel et al. 2003). The other variants of TCII, A67G, G280A, C1043T, and 
G1196A, may be associated with homocysteine and vitamin B12 concentrations 
(Afman et al. 2002; Lievers et al. 2002). Given the numerous polymorphisms in 
TCII, evaluating the genetic variability within this gene in a comprehensive manner 
(e.g., by haplotype or diplotype analyses) is essential.

Polymorphisms in One-Carbon Metabolism 
and Colorectal Cancer Risk

Because colorectal cancer is common (Sandler et al. 2002), numerous research 
groups have conducted large case-control and intermediate-size prospective cohort 
studies. Although the case-control studies were usually much larger and thereby 
provided more statistical power to assess gene–gene or gene–nutrient interactions, 
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such studies rely on questionnaire data to evaluate folate status because biomarkers, such 
as serum folate, may be altered by the presence of a tumor. Prospective cohort stud-
ies are not similarly limited. Colorectal adenoma, an established precursor of 
colorectal cancer, has also been examined in both case-control and prospective 
studies (Winawer et al. 1993); studies largely based on screening by colonoscopy 
or sigmoidoscopy. However, as sigmoidoscopy does not detect polyps in the 
proximal colon, this type of screening can lead to misclassification of individuals 
as  polyp-free. Studies of colorectal adenoma may be especially pertinent to FOCM 
because genomic hypomethylation is an early stage in colorectal carcinogenesis, 
perhaps implicating the folate pathway early in progression (Fearon and Vogelstein 
1990). Furthermore, although folate may protect against colon carcinogenesis early 
in the process, increased intakes appear to promote the growth of existing premalignant 
lesions (Kim 2004; Cole et al. 2007; Ulrich and Potter 2007) creating additional 
complexity. Nonetheless, it may thus be conjectured that the inverse association 
between folate and colon neoplasia will be stronger for adenoma than cancer risk.

5,10-Methylenetetrahydrofolate Reductase

Polymorphisms in MTHFR and colorectal cancer risk have been investigated exten-
sively. An initial case-control study discovered that 677TT individuals were at a 
reduced risk for colorectal cancer under high dietary methyl sources, an association 
not seen among those consuming alcohol (Chen et al. 1996). Later studies observed 
the same association when investigating folate status: carriers of the 677TT geno-
type were at a reduced risk at adequate folate levels; however, under low folate, 
these individuals were at an increased risk for colorectal cancer (Ma et al. 1997; Le 
Marchand et al. 2005; Koushik et al. 2006; Huang et al. 2007; Hubner et al. 2007). 
However, some studies did not find a statistically significant association between 
the C677T polymorphism and colorectal cancer (Matsuo et al. 2005; Otani et al. 
2005). Studies on A1298C suggest that the1298AA homozygotes had an increased 
colorectal cancer risk (Chen et al. 2006; Huang et al. 2007). A study of colon 
cancer observed that, among 677TT individuals, high intakes of vitamin B6 and 
B12, in addition to folate, were associated with lower risk (Slattery et al. 1999). 
However, a recent study found no association between the 677 T-allele and risk of 
colon cancer, but did report an increased risk for rectal cancer (Wang et al. 2006). 
A case-control study investigating C > T mutations within the p53 gene reported 
that individuals with a 677TT genotype were at a reduced risk for these mutations, 
but only at CpG sites (Ulrich et al. 2005b). The Physicians’ Health Study reported 
a weak association between the 1298CC genotype and reduced colon cancer risk 
which was unaltered by folate status (Chen et al. 2002). Wang et al. later verified 
these findings (Wang et al. 2006), and Keku et al. described this relationship among 
Caucasians, but not African-Americans (Keku et al. 2002).

Adenoma studies have been inconsistent on the association between the C677T 
polymorphism and risk: some have reported no associations (van den Donk et al. 
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2005; Mitrou et al. 2006; Huang et al. 2007), although others have reported a 
reduced risk (Marugame et al. 2003; Hirose et al. 2005; Hubner et al. 2006b). 
An initial study observed a reduced risk among individuals with the 677TT geno-
type and a high plasma folate level and an elevated risk for those with low folate 
(Marugame et al. 2003). Martinez et al. observed that individuals with both the 
homozygote variant genotypes, 677TT and 1298CC, were at an increased risk for 
metachronous adenoma, with a higher risk in the presence of low folate (Martinez 
et al. 2006). Future studies investigating the gene–nutrient interactions between one 
or more MTHFR polymorphisms and folate are needed to elucidate mechanisms.

Thymidylate Synthase

There have been several published studies investigating polymorphisms in thymi-
dylate synthase and the risk of colorectal neoplasia. Ulrich et al. initially reported 
on 510 cases and 604 polyp-free controls and observed little association between 
the TSER and TS 1494del6 polymorphisms and risk of colorectal adenoma (Ulrich 
et al. 2002a). Hubner et al. also observed no association between TSER and TS 
1494del6 variants and metachronous adenoma risk (Hubner et al. 2006b). However, 
in the former study, a statistically significant interaction between the TSER geno-
type and folate intake was observed: among individuals with 3R/3R genotypes 
(corresponding to higher TS expression), persons taking >440 μg per day of 
folate (highest tertile) were at a 2-fold decreased risk compared to persons taking 
≤440 μg per day; concomitantly, among individuals with 2R/2R genotypes, high 
folate intake was associated with an 1.5-fold increased risk (Ulrich et al. 2002a). 
A similar trend was found for vitamin B12. However, a study by Chen et al. (2004a) 
among 373 sigmoidoscopy-detected cases (thus limited to the distal colon) and 720 
controls did not find such interactions. In contrast, they reported a statistically sig-
nificant TSER-alcohol interaction: although individuals with the 2rpt/2rpt genotype 
were not at an increased risk if they had high alcohol consumption, heterozygotes 
and those with the 3rpt/3rpt genotype showed an elevated risk.

A prospective study reporting of 270 cases of colorectal cancer and 454 controls 
discovered that individuals with 2rpt/2rpt genotypes (lower TS expression) were 
at a reduced risk (Chen et al. 2003). A more recent study of 1,600 cases of colon 
cancer and 1,962 controls observed that the TSER variant was associated with a 
statistically significantly decreased risk among men, and individuals with both TS 
polymorphisms (TSER and TS 1496del6) were at a reduced risk, with statistically 
significant results for women (Ulrich et al. 2005a). Additionally, the TSER variant 
was associated with a reduced colon cancer risk in the presence of both low folate 
and methionine intakes, which is consistent with previous reports. It has been 
hypothesized that a greater diversion of 5,10-methylene-THF toward thymidine 
synthesis may explain why the MTHFR 677TT genotype is generally associ-
ated with a decreased colorectal cancer risk (Choi and Mason 2000). However, 
the results for TS polymorphisms show that individuals with low TS expression, 
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in conjunction with reduced MTHFR activity, also have a decreased risk of colon 
cancer (Ulrich et al. 2005a); these findings refute the aforementioned hypothesis 
and suggest that purine synthesis is a more likely mechanism connecting FOCM 
to colorectal carcinogenesis (Ulrich et al. 2005a). As discussed earlier, there seem 
to be at least three genetic polymorphisms within the TS gene that influence gene 
expression or protein stability (Horie et al. 1995; Ulrich et al. 2000; Mandola et al. 
2003). As a result, future studies exploring diplotype analyses should genotype all 
of these genetic variants and ensure that sample sizes are appropriate.

Methionine Synthase

The A2756G (Asp919Gly) polymorphism in MTR has been investigated by several 
groups (Chen et al. 1998; Ma et al. 1999; Le Marchand et al. 2002; Goode et al. 
2004; Ulvik et al. 2004). With a minor allele frequency of approximately 0.20, 
few studies investigating this less common variant had a large enough sample size 
to explore risks or gene–diet interactions associated with the homozygous variant 
genotype, which makes up approximately 3% of the Caucasian populations. A 
statistically significantly reduced risk of colorectal cancer with the variant MTR 
genotype (2756GG) has been reported by both the Physician’s Health Study and 
a very large Norwegian cohort of more than 2,000 case-control pairs (Ma et al. 
1999; Ulvik et al. 2004). Conversely, Le Marchand and colleagues did not observe 
any associations between this polymorphism and the risk of colorectal cancer in 
727 cases of Japanese, Caucasian, and Native Hawaiian  origin and 727 ethnicity-
matched controls. A case-control study by Matsuo et al. also observed no statisti-
cally significant association between colorectal cancer risk and A2756G; but, the 
2756GG genotype was associated with an increased risk among drinkers. However, 
a nested case-control study with 140 colorectal patients and 343 controls conducted 
in China observed that the 2756 G-allele was associated with an increased risk of 
colorectal cancer, and patients with MTHFR 1298AA and either MTR 2756AG or 
MTR 2756GG genotypes were at an increased risk (Chen et al. 2006). These results 
need to be further evaluated with larger sample studies and studies evaluating differ-
ent ethnic groups. Ulrich et al. did not observe any association between the D919G 
polymorphism and colon cancer risk (Ulrich et al. 2005a).

There are conflicting findings from studies of colorectal adenoma, showing 
either a trend toward higher risk (Goode et al. 2004) or decreased risk (Chen et al. 
1998). The 2756GG variant genotype may be associated with lower risk only in the 
presence of low alcohol intake (Ma et al. 1999; Goode et al. 2004) or high methio-
nine intake (Goode et al. 2004). Additionally, several interactions with MTHFR or 
TS have been proposed (Le Marchand et al. 2002; Goode et al. 2004). However, 
in the large Norwegian JANUS cohort (Ulvik et al. 2004), the only biomarker 
measured was homocysteine, which may not be an ideal biomarker of folate status, 
as it could be influenced by MTR or CBS genotypes. Limited statistical power in 
studies of gene–nutrient or gene–gene  interactions may be responsible for these 
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discrepancies. Accordingly, a comprehensive evaluation of the association of the 
MTR variant and the risk of colorectal neoplasia under specific dietary conditions 
is necessary. Furthermore, the phenotype associated with the MTR G2756A poly-
morphism has not been investigated; it is uncertain if the associations reported here 
are attributable to the variant itself or another polymorphism with which it is in LD. 
In order to help answer this question, gene-wide haplotype studies of MTR, along 
with biochemical evaluations, are needed.

Methionine Synthase Reductase

One case-control study of colorectal cancer examining MTRR observed an elevated 
risk among Caucasians, but not among other ethnic groups (Le Marchand et al. 
2002). A nested case-control study examining Ser(284)Thr and Art(415)Cys poly-
morphisms observed that individuals who were carriers of both variants had an 
increased risk of colorectal cancer (Koushik et al. 2006). Otani et al. did not observe 
a statistically significant association between the A66G polymorphism and color-
ectal cancer risk; however, A66G may modify the associations of folate or vitamin 
B6 with colorectal cancer (Otani et al. 2005). Although a statistically significant 
interaction was discovered between folate and the A66G polymorphism, there was 
no linear trend within each stratum. In wild-type MTRR individuals, higher vitamin 
B6 intake was associated with a decreased risk of colorectal cancer. Individuals 
who were heterozygous for the A66G polymorphism were at a decreased risk for 
colorectal adenoma recurrence (Hubner et al. 2006a). Additionally, a gene–diet 
interaction suggested that A66G heterozygotes had a reduced risk for recurrence if 
they received folate supplement (Hubner et al. 2006a).

Other Genes

Few studies have been conducted on several other FOCM enzymes. There has been 
only one study investigating colorectal cancer risk and polymorphisms in each of 
the following enzymes: cSHMT, CBS, RFC, methylenetetrahydrofolate dehydroge-
nase, and glutamate carboxypeptidase, with no statistically significant associations 
or gene–gene or gene–diet interactions discovered (Le Marchand et al. 2002; Chen 
et al. 2004b). However, one study evaluating the Arg(239)Gln variant in betaine-
homocysteine methyltransferase (BHMT) observed that carriers of this polymor-
phism were at an increased risk for colorectal cancer (Koushik et al. 2006). These 
studies were all limited by small sample sizes, especially for evaluating gene–gene 
or gene–diet interactions.

Several studies have investigated DNA methyltransferases (DNMTs), exploring the 
connection between FOCM and the provision of S-adenosylmethionine (SAM), 
the only human methyl-group donor. In preliminary studies, we evaluated three 
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polymorphisms (C-149T, T-283C, and G-579T) in the promoter region of the DNA 
methyltransferase-3b (DNMT3b) gene and discovered that, among individuals with 
low folate and low methionine intakes, those with the -149TT genotype were at 
an increased risk for colorectal adenoma (Jung et al. 2008). Furthermore, results 
from this study are consistent with previous research (Giovannucci et al. 2003; 
Tiemersma et al. 2003) suggesting that alcohol dehydrogenase (ADH) may also 
be an important factor in the gene–diet interactions that play a role in colorectal 
carcinogenesis (Jung et al. 2008). Alcohol inhibits both the absorption of folate 
and several enzymes in the pathway and, thus, is also an important dietary factor 
to consider.

Final Thoughts

FOCM is highly pertinent for cancer prevention because this pathway is vital for 
both nucleotide synthesis and the provision of SAM for methylation reactions. 
Recent studies have begun to investigate enzymes other than MTHFR. There are 
numerous genetic polymorphisms, some with strong evidence for phenotypic 
impact in vitro. There is also evidence that these variants may modify cancer risk. 
Because of the intricacies of the pathway, the array of genetic variability, and the 
many regulatory mechanisms, this area is in need of a thorough assessment of 
the associations within epidemiologic studies of sufficient size to consider multiple 
exposures and polymorphisms using a statistical analytic approach that incorpo-
rates biologic information. A tool for integrating biology into statistical analysis 
may arise from the development of a mathematical model of folate metabolism 
(Reed et al. 2006). Preliminary results from the model are promising, with predic-
tions matching experimental data, extending our knowledge on the role of FOCM 
in methylation and in mitochondrial metabolism, and suggesting avenues for the 
application of this information in statistical analyses (Nijhout et al. 2006a, b; Reed 
et al. 2006; Ulrich et al. 2006).

References

Afman, L. A., Van Der Put, N. M., Thomas, C. M., Trijbels, J. M., and Blom, H. J. 2001. Reduced 
vitamin B12 binding by transcobalamin II increases the risk of neural tube defects. QJM 
94:159–66.

Afman, L. A., Lievers, K. J., van der Put, N. M., Trijbels, F. J., and Blom, H. J. 2002. Single 
nucleotide polymorphisms in the transcobalamin gene: relationship with transcobalamin con-
centrations and risk for neural tube defects. Eur J Hum Genet 10:433–8.

Anello, G., Gueant-Rodriguez, R. M., Bosco, P., Gueant, J. L., Romano, A., Namour, B., Spada, 
R., Caraci, F., Pourie, G., Daval, J. L., and Ferri, R. 2004. Homocysteine and methylenetet-
rahydrofolate reductase polymorphism in Alzheimer’s disease. Neuroreport 15:859–61.

Aras, O., Hanson, N. Q., Yang, F., and Tsai, M. Y. 2000. Influence of 699C → T and 1080C → T 
polymorphisms of the cystathionine beta-synthase gene on plasma homocysteine levels. Clin 
Genet 58:455–9.



9 Genetic Variability in Folate-Mediated One-Carbon Metabolism 235

Benito, E., Obrador, A., Stiggelbout, A., Bosch, F. X., Mulet, M., Munoz, N., and Kaldor, J. 1990. 
A population-based case-control study of colorectal cancer in Majorca. I. Dietary factors. Int 
J Cancer 45:69–76.

Boutron-Ruault, M. C., Senesse, P., Faivre, J., Couillault, C., and Belghiti, C. 1996. Folate and 
alcohol intakes: related or independent roles in the adenoma-carcinoma sequence? Nutr 
Cancer 26:337–46.

Chango, A., Boisson, F., Barbe, F., Quilliot, D., Droesch, S., Pfister, M., Fillon-Emery, N., 
Lambert, D., Fremont, S., Rosenblatt, D. S., and Nicolas, J. P. 2000a. The effect of 677C → T and 
1298A → C mutations on plasma homocysteine and 5,10-methylenetetrahydrofolate reductase 
activity in healthy subjects. Br J Nutr 83:593–6.

Chango, A., Emery-Fillon, N., de Courcy, G. P., Lambert, D., Pfister, M., Rosenblatt, D. S., and 
Nicolas, J. P. 2000b. A polymorphism (80G → A) in the reduced folate carrier gene and its 
associations with folate status and homocysteinemia. Mol Genet Metab 70:310–5.

Chave, K. J., Ryan, T. J., Chmura, S. E., and Galivan, J. 2003. Identification of single nucleotide 
polymorphisms in the human gamma-glutamyl hydrolase gene and characterization of pro-
moter polymorphisms. Gene 319:167–75.

Chen, J., Giovannucci, E., Kelsey, K., Rimm, E. B., Stampfer, M. J., Colditz, G. A., Spiegelman, D., 
Willett, W. C., and Hunter, D. J. 1996. A methylenetetrahydrofolate reductase polymorphism 
and the risk of colorectal cancer. Cancer Res 56:4862–4.

Chen, J., Giovannucci, E., Hankinson, S. E., Ma, J., Willett, W. C., Spiegelman, D., Kelsey, K. T., 
and Hunter, D. J. 1998. A prospective study of methylenetetrahydrofolate reductase and 
methionine synthase gene polymorphisms, and risk of colorectal adenoma. Carcinogenesis 
19:2129–32.

Chen, J., Stampfer, M. J., Ma, J., Selhub, J., Malinow, M. R., Hennekens, C. H., and Hunter, D. J. 
2001. Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine 
and folate levels and relation to risk of myocardial infarction. Atherosclerosis 154:667–72.

Chen, J., Ma, J., Stampfer, M. J., Palomeque, C., Selhub, J., and Hunter, D. J. 2002. Linkage dise-
quilibrium between the 677C > T and 1298A > C polymorphisms in human methylenetetrahy-
drofolate reductase gene and their contributions to risk of colorectal cancer. Pharmacogenetics 
12:339–42.

Chen, J., Hunter, D. J., Stampfer, M. J., Kyte, C., Chan, W., Wetmur, J. G., Mosig, R., Selhub, J., 
and Ma, J. 2003. Polymorphism in the thymidylate synthase promoter enhancer region modi-
fies the risk and survival of colorectal cancer. Cancer Epidemiol Biomarkers Prev 12:958–62.

Chen, J., Kyte, C., Chan, W., Wetmur, J. G., Fuchs, C. S., and Giovannucci, E. 2004a. 
Polymorphism in the thymidylate synthase promoter enhancer region and risk of colorectal 
adenomas. Cancer Epidemiol Biomarkers Prev 13:2247–50.

Chen, J., Kyte, C., Valcin, M., Chan, W., Wetmur, J. G., Selhub, J., Hunter, D. J., and Ma, J. 2004b. 
Polymorphisms in the one-carbon metabolic pathway, plasma folate levels and colorectal can-
cer in a prospective study. Int J Cancer 110:617–20.

Chen, K., Song, L., Jin, M. J., Fan, C. H., Jiang, Q. T., and Yu, W. P. 2006. [Association between 
genetic polymorphisms in folate metabolic enzyme genes and colorectal cancer: a nested case-
control study]. Zhonghua Zhong Liu Za Zhi 28:429–32.

Cheng, Q., Wu, B., Kager, L., Panetta, J. C., Zheng, J., Pui, C. H., Relling, M. V., and Evans, W. E. 
2004. A substrate specific functional polymorphism of human gamma-glutamyl hydrolase 
alters catalytic activity and methotrexate polyglutamate accumulation in acute lymphoblastic 
leukaemia cells. Pharmacogenetics 14:557–67.

Choi, S. W., and Mason, J. B. 2000. Folate and carcinogenesis: an integrated scheme. J Nutr 
130:129–32.

Cole, B. F., Baron, J. A., Sandler, R. S., Haile, R. W., Ahnen, D. J., Bresalier, R. S., McKeown-
Eyssen, G., Summers, R. W., Rothstein, R. I., Burke, C. A., Snover, D. C., Church, T. R., 
Allen, J. I., Robertson, D. J., Beck, G. J., Bond, J. H., Byers, T., Mandel, J. S., Mott, L. A., 
Pearson, L. H., Barry, E. L., Rees, J. R., Marcon, N., Saibil, F., Ueland, P. M., and Greenberg, 
E. R. 2007. Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. 
JAMA 297:2351–9.



236 A.Y. Liu and C.M. Ulrich

Dawson, E., Abecasis, G. R., Bumpstead, S., Chen, Y., Hunt, S., Beare, D. M., Pabial, J., 
Dibling, T., Tinsley, E., Kirby, S., Carter, D., Papaspyridonos, M., Livingstone, S., Ganske, R., 
Lohmussaar, E., Zernant, J., Tonisson, N., Remm, M., Magi, R., Puurand, T., Vilo, J., Kurg, A., 
Rice, K., Deloukas, P., Mott, R., Metspalu, A., Bentley, D. R., Cardon, L. R., and Dunham, I. 
2002. A first-generation linkage disequilibrium map of human chromosome 22. Nature 418:
544–8.

De Stefano, V., Dekou, V., Nicaud, V., Chasse, J. F., London, J., Stansbie, D., Humphries, S. E., 
and Gudnason, V. 1998. Linkage disequilibrium at the cystathionine beta synthase (CBS) 
locus and the association between genetic variation at the CBS locus and plasma levels of 
homocysteine. The Ears II Group. European Atherosclerosis Research Study. Ann Hum Genet 
62:481–90.

Fearon, E. R., and Vogelstein, B. 1990. A genetic model for colorectal tumorigenesis. Cell 
61:759–67.

Fodinger, M., Veitl, M., Skoupy, S., Wojcik, J., Rohrer, C., Hagen, W., Puttinger, H., Hauser, A. C., 
Vychytil, A., and Sunder-Plassmann, G. 2003. Effect of TCN2 776C > G on vitamin B12 
 cellular availability in end-stage renal disease patients. Kidney Int 64:1095–100.

Freudenheim, J. L., Graham, S., Marshall, J. R., Haughey, B. P., Cholewinski, S., and Wilkinson, G. 
1991. Folate intake and carcinogenesis of the colon and rectum. Int J Epidemiol 20:368–74.

Friedman, G., Goldschmidt, N., Friedlander, Y., Ben-Yehuda, A., Selhub, J., Babaey, S., 
Mendel, M., Kidron, M., and Bar-On, H. 1999. A common mutation A1298C in human meth-
ylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate 
concentrations. J Nutr 129:1656–61.

Friso, S., and Choi, S. W. 2002. Gene–nutrient interactions and DNA methylation. J Nutr 
132:2382S–7S.

Friso, S., Choi, S. W., Girelli, D., Mason, J. B., Dolnikowski, G. G., Bagley, P. J., Olivieri, O., 
Jacques, P. F., Rosenberg, I. H., Corrocher, R., and Selhub, J. 2002a. A common mutation in 
the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through 
an interaction with folate status. Proc Natl Acad Sci USA 99:5606–11.

Friso, S., Girelli, D., Trabetti, E., Stranieri, C., Olivieri, O., Tinazzi, E., Martinelli, N., Faccini, G., 
Pignatti, P. F., and Corrocher, R. 2002b. A1298C methylenetetrahydrofolate reductase muta-
tion and coronary artery disease: relationships with C677T polymorphism and homocysteine/
folate metabolism. Clin Exp Med 2:7–12.

Friso, S., Girelli, D., Trabetti, E., Olivieri, O., Guarini, P., Pignatti, P. F., Corrocher, R., and 
Choi, S. W. 2005. The MTHFR 1298A > C polymorphism and genomic DNA methylation in 
human lymphocytes. Cancer Epidemiol Biomarkers Prev 14:938–43.

Frosst, P., Blom, H. J., Milos, R., Goyette, P., Sheppard, C. A., Matthews, R. G., Boers, G. J., den 
Heijer, M., Kluijtmans, L. A., van den Heuvel, L. P., and Rozen, R. 1995. A candidate genetic 
risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase 
[letter]. Nat Genet 10:111–3.

Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., 
DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S. N., Rotimi, C., Adeyemo, A., 
Cooper, R., Ward, R., Lander, E. S., Daly, M. J., and Altshuler, D. 2002. The structure of 
haplotype blocks in the human genome. Science 296:2225–9.

Garrow, T. A., Brenner, A. A., Whitehead, V. M., Chen, X. N., Duncan, R. G., Korenberg, J. R., 
and Shane, B. 1993. Cloning of human cDNAs encoding mitochondrial and cytosolic serine 
hydroxymethyltransferases and chromosomal localization. J Biol Chem 268:11910–6.

Gaughan, D. J., Kluijtmans, L. A., Barbaux, S., McMaster, D., Young, I. S., Yarnell, J. W., 
Evans, A., and Whitehead, A. S. 2001. The methionine synthase reductase (MTRR) A66G 
polymorphism is a novel genetic determinant of plasma homocysteine concentrations. 
Atherosclerosis 157:451–6.

Geisel, J., Hubner, U., Bodis, M., Schorr, H., Knapp, J. P., Obeid, R., and Herrmann, W. 2003. 
The role of genetic factors in the development of hyperhomocysteinemia. Clin Chem Lab Med 
41:1427–34.



9 Genetic Variability in Folate-Mediated One-Carbon Metabolism 237

Giovannucci, E. 2002. Epidemiologic studies of folate and colorectal neoplasia: a review. J Nutr 
132:2350S–5S.

Giovannucci, E., Stampfer, M. J., Colditz, G. A., Rimm, E. B., Trichopoulos, D., Rosner, B. A., 
Speizer, F. E., and Willett, W. C. 1993. Folate, methionine, and alcohol intake and risk of 
colorectal adenoma. J Natl Cancer Inst 85:875–84.

Giovannucci, E., Rimm, E. B., Ascherio, A., Stampfer, M. J., Colditz, G. A., and Willett, W. C. 
1995. Alcohol, low-methionine – low-folate diets, and risk of colon cancer in men. J Natl 
Cancer Inst 87:265–73.

Giovannucci, E., Chen, J., Smith-Warner, S. A., Rimm, E. B., Fuchs, C. S., Palomeque, C., Willett, 
W. C., and Hunter, D. J. 2003. Methylenetetrahydrofolate reductase, alcohol dehydrogenase, 
diet, and risk of colorectal adenomas. Cancer Epidemiol Biomarkers Prev 12:970–9.

Girelli, D., Friso, S., Trabetti, E., Olivieri, O., Russo, C., Pessotto, R., Faccini, G., Pignatti, P. F., 
Mazzucco, A., and Corrocher, R. 1998. Methylenetetrahydrofolate reductase C677T mutation, 
plasma homocysteine, and folate in subjects from northern Italy with or without angiographi-
cally documented severe coronary atherosclerotic disease: evidence for an important genetic–
environmental interaction. Blood 91:4158–63.

Glynn, S. A., Albanes, D., Pietinen, P., Brown, C. C., Rautalahti, M., Tangrea, J. A., Gunter, E. W., 
Barrett, M. J., Virtamo, J., and Taylor, P. R. 1996. Colorectal cancer and folate status: a nested 
case-control study among male smokers. Cancer Epidemiol Biomarkers Prev 5:487–94.

Goode, E. L., Potter, J. D., Bigler, J., and Ulrich, C. M. 2004. Methionine synthase D919G poly-
morphism, folate metabolism, and colorectal adenoma risk. Cancer Epidemiol Biomarkers 
Prev 13:157–62.

Goto, Y., Yue, L., Yokoi, A., Nishimura, R., Uehara, T., Koizumi, S., and Saikawa, Y. 2001. 
A novel single-nucleotide polymorphism in the 3′-untranslated region of the human dihydro-
folate reductase gene with enhanced expression. Clin Cancer Res 7:1952–6.

Harmon, D., Shields, D., Woodside, J., McMaster, D., Yarnell, J., Young, I., Peng, K., Shane, B., 
Evans, A., and Whitehead, A. 1999. Methionine synthase D919G polymorphism is a sig-
nificant but modest determinant of circulating homocysteine concentrations. Genet Epidemiol 
17:298–309.

Heil, S. G., Van der Put, N. M., Waas, E. T., den Heijer, M., Trijbels, F. J., and Blom, H. J. 2001. 
Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube 
defects? Mol Genet Metab 73:164–72.

Herbig, K., Chiang, E. P., Lee, L. R., Hills, J., Shane, B., and Stover, P. J. 2002. Cytoplasmic serine 
hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucle-
otide and S-adenosylmethionine biosyntheses. J Biol Chem 277:38381–9.

Hirose, M., Kono, S., Tabata, S., Ogawa, S., Yamaguchi, K., Mineshita, M., Hagiwara, T., 
Yin, G., Lee, K. Y., Tsuji, A., and Ikeda, N. 2005. Genetic polymorphisms of methylene-
tetrahydrofolate reductase and aldehyde dehydrogenase 2, alcohol use and risk of colorectal 
adenomas: Self-Defense Forces Health Study. Cancer Sci 96:513–8.

Horie, N., Aiba, H., Oguro, K., Hojo, H., and Takeishi, K. 1995. Functional analysis and DNA 
polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the 
human gene for thymidylate synthase. Cell Struct Funct 20:191–7.

Huang, Y., Han, S., Li, Y., Mao, Y., and Xie, Y. 2007. Different roles of MTHFR C677T and 
A1298C polymorphisms in colorectal adenoma and colorectal cancer: a meta-analysis. J Hum 
Genet 52:73–85.

Hubner, R. A., Muir, K. R., Liu, J. F., Logan, R. F., Grainge, M., Armitage, N., Shepherd, V., 
Popat, S., and Houlston, R. S. 2006a. Genetic variants of UGT1A6 influence risk of colorectal 
adenoma recurrence. Clin Cancer Res 12:6585–9.

Hubner, R. A., Muir, K. R., Liu, J. F., Sellick, G. S., Logan, R. F., Grainge, M., Armitage, N., 
Chau, I., and Houlston, R. S. 2006b. Folate metabolism polymorphisms influence risk of colo-
rectal adenoma recurrence. Cancer Epidemiol Biomarkers Prev 15:1607–13.

Hubner, R. A., Lubbe, S., Chandler, I., and Houlston, R. S. 2007. MTHFR C677T has differential 
influence on risk of MSI and MSS colorectal cancer. Hum Mol Genet 16:1072–7.



238 A.Y. Liu and C.M. Ulrich

Hustad, S., Ueland, P. M., Vollset, S. E., Zhang, Y., Bjorke-Monsen, A. L., and Schneede, J. 
2000. Riboflavin as a determinant of plasma total homocysteine: effect modification by the 
methylene tetrahydrofolate reductase C677T polymorphism. Clin Chem 46:1065–71.

Jacques, P. F., Bostom, A. G., Williams, R. R., Ellison, R. C., Eckfeldt, J. H., Rosenberg, I. H., 
Selhub, J., and Rozen, R. 1996. Relation between folate status, a common mutation in meth-
ylenetetrahydrofolate reductase, and plasma homocysteine concentrations [see comments]. 
Circulation 93:7–9.

Jacques, P. F., Bostom, A. G., Selhub, J., Rich, S., Curtis Ellison, R., Eckfeldt, J. H., Gravel, R. A., 
and Rozen, R. 2003. Effects of polymorphisms of methionine synthase and methionine 
synthase reductase on total plasma homocysteine in the NHLBI Family Heart Study. 
Atherosclerosis 166:49–55.

Johnson, G. C., Esposito, L., Barratt, B. J., Smith, A. N., Heward, J., Di Genova, G., Ueda, H., 
Cordell, H. J., Eaves, I. A., Dudbridge, F., Twells, R. C., Payne, F., Hughes, W., Nutland, S., 
Stevens, H., Carr, P., Tuomilehto-Wolf, E., Tuomilehto, J., Gough, S. C., Clayton, D. G., and 
Todd, J. A. 2001. Haplotype tagging for the identification of common disease genes. Nat Genet 
29:233–7.

Johnson, W. G., Stenroos, E. S., Spychala, J. R., Chatkupt, S., Ming, S. X., and Buyske, S. 2004. 
New 19 bp deletion polymorphism in intron-1 of dihydrofolate reductase (DHFR): a risk factor 
for spina bifida acting in mothers during pregnancy? Am J Med Genet 124A:339–45.

Jung, A., Poole, E. M., Bigler, J., Whitton, J., Potter, J. D., and Ulrich, C. M. 2008. DNA meth-
yltransferase and alcohol dehydrogenase: gene–nutrient interactions in relation to risk of 
colorectal polyps. Cancer Epidemiol Biomarkers Prev 17(2):330–8.

Kaneda, S., Takeishi, K., Ayusawa, D., Shimizu, K., Seno, T., and Altman, S. 1987. Role in 
translation of a triple tandemly repeated sequence in the 5′-untranslated region of human 
thymidylate synthase mRNA. Nucleic Acids Res 15:1259–70.

Kato, I., Dnistrian, A. M., Schwartz, M., Toniolo, P., Koenig, K., Shore, R. E., Akhmedkhanov, A., 
Zeleniuch-Jacquotte, A., and Riboli, E. 1999. Serum folate, homocysteine and colorectal cancer 
risk in women: a nested case-control study. Br J Cancer 79:1917–22.

Keku, T., Millikan, R., Worley, K., Winkel, S., Eaton, A., Biscocho, L., Martin, C., and Sandler, R. 
2002. 5,10-Methylenetetrahydrofolate reductase codon 677 and 1298 polymorphisms and 
colon cancer in African Americans and whites. Cancer Epidemiol Biomarkers Prev 11:
1611–21.

Kim, Y. I. 2004. Will mandatory folic acid fortification prevent or promote cancer? Am J Clin 
Nutr 80:1123–8.

Konings, E. J., Goldbohm, R. A., Brants, H. A., Saris, W. H., and van den Brandt, P. A. 2002. 
Intake of dietary folate vitamers and risk of colorectal carcinoma: results from The Netherlands 
Cohort Study. Cancer 95:1421–33.

Koushik, A., Kraft, P., Fuchs, C. S., Hankinson, S. E., Willett, W. C., Giovannucci, E. L., and 
Hunter, D. J. 2006. Nonsynonymous polymorphisms in genes in the one-carbon metabolism path-
way and associations with colorectal cancer. Cancer Epidemiol Biomarkers Prev 15:2408–17.

Kraus, J. P., Oliveriusova, J., Sokolova, J., Kraus, E., Vlcek, C., de Franchis, R., Maclean, K. N., 
Bao, L., Bukovsk, Patterson, D., Paces, V., Ansorge, W., and Kozich, V. 1998. The human 
cystathionine beta-synthase (CBS) gene: complete sequence, alternative splicing, and poly-
morphisms. Genomics 52:312–24.

Kruger, W. D., Evans, A. A., Wang, L., Malinow, M. R., Duell, P. B., Anderson, P. H., Block, P. C., 
Hess, D. L., Graf, E. E., and Upson, B. 2000. Polymorphisms in the CBS gene associated with 
decreased risk of coronary artery disease and increased responsiveness to total homocysteine 
lowering by folic acid. Mol Genet Metab 70:53–60.

Laverdiere, C., Chiasson, S., Costea, I., Moghrabi, A., and Krajinovic, M. 2002. Polymorphism 
G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and 
outcome of childhood acute lymphoblastic leukemia. Blood 100:3832–4.

Le Marchand, L., Donlon, T., Hankin, J. H., Kolonel, L. N., Wilkens, L. R., and Seifried, A. 2002. 
B-vitamin intake, metabolic genes, and colorectal cancer risk (United States). Cancer Causes 
Control 13:239–48.



9 Genetic Variability in Folate-Mediated One-Carbon Metabolism 239

Le Marchand, L., Wilkens, L. R., Kolonel, L. N., and Henderson, B. E. 2005. The MTHFR 
C677T polymorphism and colorectal cancer: the multiethnic cohort study. Cancer Epidemiol 
Biomarkers Prev 14:1198–203.

Leclerc, D., Wilson, A., Dumas, R., Gafuik, C., Song, D., Watkins, D., Heng, H. H., 
Rommens, J. M., Scherer, S. W., Rosenblatt, D. S., and Gravel, R. A. 1998. Cloning and map-
ping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with 
homocystinuria. Proc Natl Acad Sci USA 95:3059–64.

Lievers, K. J., Kluijtmans, L. A., Heil, S. G., Boers, G. H., Verhoef, P., van Oppenraay-Emmerzaal, D., 
den Heijer, M., Trijbels, F. J., and Blom, H. J. 2001. A 31 bp VNTR in the cystathionine beta-syn-
thase (CBS) gene is associated with reduced CBS activity and elevated post-load homocysteine 
levels. Eur J Hum Genet 9:583–9.

Lievers, K. J., Afman, L. A., Kluijtmans, L. A., Boers, G. H., Verhoef, P., den Heijer, M., Trijbels, F. J., 
and Blom, H. J. 2002. Polymorphisms in the transcobalamin gene: association with plasma 
homocysteine in healthy individuals and vascular disease patients. Clin Chem 48:1383–9.

Liu, X., Szebenyi, D. M., Anguera, M. C., Thiel, D. J., and Stover, P. J. 2001. Lack of catalytic 
activity of a murine mRNA cytoplasmic serine hydroxymethyltransferase splice variant: evi-
dence against alternative splicing as a regulatory mechanism. Biochemistry 40:4932–9.

Ma, J., Stampfer, M. J., Giovannucci, E., Artigas, C., Hunter, D. J., Fuchs, C., Willett, W. C., 
Selhub, J., Hennekens, C. H., and Rozen, R. 1997. Methylenetetrahydrofolate reductase poly-
morphism, dietary interactions, and risk of colorectal cancer. Cancer Res 57:1098–102.

Ma, J., Stampfer, M. J., Christensen, B., Giovannucci, E., Hunter, D. J., Chen, J., Willett, W. C., 
Selhub, J., Hennekens, C. H., Gravel, R., and Rozen, R. 1999. A polymorphism of the methio-
nine synthase gene: association with plasma folate, vitamin B12, homocyst(e)ine, and color-
ectal cancer risk. Cancer Epidemiol Biomarkers Prev 8:825–9.

Mandola, M. V., Stoehlmacher, J., Muller-Weeks, S., Cesarone, G., Yu, M. C., Lenz, H. J., and 
Ladner, R. D. 2003. A novel single nucleotide polymorphism within the 5′ tandem repeat poly-
morphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional 
activity. Cancer Res 63:2898–904.

Mandola, M. V., Stoehlmacher, J., Zhang, W., Groshen, S., Yu, M. C., Iqbal, S., Lenz, H. J., and 
Ladner, R. D. 2004. A 6 bp polymorphism in the thymidylate synthase gene causes message 
instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics 
14:319–27.

Marsh, S., Ameyaw, M. M., Githang’a, J., Indalo, A., Ofori-Adjei, D., and McLeod, H. L. 2000. 
Novel thymidylate synthase enhancer region alleles in African populations. Hum Mutat 16:528.

Martinez, M. E., Thompson, P., Jacobs, E. T., Giovannucci, E., Jiang, R., Klimecki, W., and 
Alberts, D. S. 2006. Dietary factors and biomarkers involved in the methylenetetrahydrofolate 
reductase genotype-colorectal adenoma pathway. Gastroenterology 131:1706–16.

Marugame, T., Tsuji, E., Kiyohara, C., Eguchi, H., Oda, T., Shinchi, K., and Kono, S. 2003. 
Relation of plasma folate and methylenetetrahydrofolate reductase C677T polymorphism to 
colorectal adenomas [comment]. Int J Epidemiol 32:64–6.

Matsuo, K., Ito, H., Wakai, K., Hirose, K., Saito, T., Suzuki, T., Kato, T., Hirai, T., Kanemitsu, Y., 
Hamajima, H., and Tajima, K. 2005. One-carbon metabolism related gene polymor-
phisms interact with alcohol drinking to influence the risk of colorectal cancer in Japan. 
Carcinogenesis 26:2164–71.

Miller, J. W., Ramos, M. I., Garrod, M. G., Flynn, M. A., and Green, R. 2002. Transcobalamin 
II 775G > C polymorphism and indices of vitamin B12 status in healthy older adults. Blood 
100:718–20.

Mitrou, P. N., Watson, M. A., Loktionov, A. S., Cardwell, C., Gunter, M. J., Atkin, W. S., 
Macklin, C. P., Cecil, T., Bishop, T. D., Primrose, J., and Bingham, S. A. 2006. MTHFR (C677T 
and A1298C) polymorphisms and risk of sporadic distal colorectal adenoma in the UK Flexible 
Sigmoidoscopy Screening Trial (United Kingdom). Cancer Causes Control 17:793–801.

Mudd, S. H., Levy, H. L., and Skovby, F. 1995. Disorders of transsulfuration. In: The Metabolic 
and Molecular Basis of Inherited Disease, eds. C. R. Scriver, A. L. Beaudet, W. S. Sly and D. 
Valle, pp. 1279–327, New York: McGraw-Hill.



240 A.Y. Liu and C.M. Ulrich

Nijhout, H. F., Reed, M. C., Budu, P., and Ulrich, C. M. 2004. A mathematical model of the folate 
cycle: new insights into folate homeostasis. J Biol Chem 279:55008–16.

Nijhout, H. F., Reed, M., Anderson, D., Mattingly, J., James, S. J., and Ulrich, C. M. 2006a. 
Long-range allosteric interactions between the folate and methionine cycles stabilize DNA 
methylation rate. Epigenetics 1:81–7.

Nijhout, H. F., Reed, M. C., Lam, S. L., Shane, B., Gregory, J. F., III, and Ulrich, C. M. 2006b. In 
silico experimentation with a model of hepatic mitochondrial folate metabolism. Theor Biol 
Med Model 3:40.

O’Leary, V. B., Parle-McDermott, A., Molloy, A. M., Kirke, P. N., Johnson, Z., Conley, M., 
Scott, J. M., and Mills, J. L. 2002. MTRR and MTHFR polymorphism: link to Down 
syndrome? Am J Med Genet 107:151–5.

Otani, T., Iwasaki, M., Hanaoka, T., Kobayashi, M., Ishihara, J., Natsukawa, S., Shaura, K., 
Koizumi, Y., Kasuga, Y., Yoshimura, K., Yoshida, T., and Tsugane, S. 2005. Folate, vitamin 
B6, vitamin B12, and vitamin B2 intake, genetic polymorphisms of related enzymes, and risk 
of colorectal cancer in a hospital-based case-control study in Japan. Nutr Cancer 53:42–50.

Patil, N., Berno, A. J., Hinds, D. A., Barrett, W. A., Doshi, J. M., Hacker, C. R., Kautzer, C. R., 
Lee, D. H., Marjoribanks, C., McDonough, D. P., Nguyen, B. T., Norris, M. C., Sheehan, J. B., 
Shen, N., Stern, D., Stokowski, R. P., Thomas, D. J., Trulson, M. O., Vyas, K. R., Frazer, K. A., 
Fodor, S. P., and Cox, D. R. 2001. Blocks of limited haplotype diversity revealed by high-
resolution scanning of human chromosome 21. Science 294:1719–23.

Pullarkat, S. T., Stoehlmacher, J., Ghaderi, V., Xiong, Y.-P., Ingles, S. A., Sherrod, A., Warren, R., 
Tsao-Wei, D., Groshen, S., and Lenz, H.-J. 2001. Thymidylate synthase gene polymorphism 
determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J 1:65–70.

Reed, M. C., Nijhout, H. F., Neuhouser, M. L., Gregory, J. F., III, Shane, B., James, S. J., Boynton, A., 
and Ulrich, C. M. 2006. A mathematical model gives insights into nutritional and genetic 
aspects of folate-mediated one-carbon metabolism. J Nutr 136:2653–61.

Sandler, R. S., Everhart, J. E., Donowitz, M., Adams, E., Cronin, K., Goodman, C., Gemmen, E., 
Shah, S., Avdic, A., and Rubin, R. 2002. The burden of selected digestive diseases in the 
United States. Gastroenterology 122:1500–11.

Sebastio, G., Sperandeo, M. P., Panico, M., de Franchis, R., Kraus, J. P., and Andria, G. 1995. 
The molecular basis of homocystinuria due to cystathionine beta-synthase deficiency in Italian 
families, and report of four novel mutations. Am J Hum Genet 56:1324–33.

Slattery, M. L., Schaffer, D., Edwards, S. L., Ma, K. N., and Potter, J. D. 1997. Are dietary factors 
involved in DNA methylation associated with colon cancer? Nutr Cancer 28:52–62.

Slattery, M. L., Potter, J. D., Samowitz, W., Schaffer, D., and Leppert, M. 1999. Methylene-
tetrahydrofolate reductase, diet, and risk of colon cancer. Cancer Epidemiol Biomarkers Prev 
8:513–8.

Stern, L. L., Mason, J. B., Selhub, J., and Choi, S. W. 2000. Genomic DNA hypomethylation, 
a characteristic of most cancers, is present in peripheral leukocytes of individuals who are 
homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. 
Cancer Epidemiol Biomarkers Prev 9:849–53.

Stover, P. J., Chen, L. H., Suh, J. R., Stover, D. M., Keyomarsi, K., and Shane, B. 1997. Molecular 
cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyl-
transferase gene. J Biol Chem 272:1842–8.

Tiemersma, E. W., Wark, P. A., Ocke, M. C., Bunschoten, A., Otten, M. H., Kok, F. J., and 
Kampman, E. 2003. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and 
colorectal adenomas. Cancer Epidemiol Biomarkers Prev 12:419–25.

Trinh, B. N., Ong, C.-N., Coetzee, G. A., Yu, M. C., and Laird, P. W. 2002. Thymidylate syn-
thase: a novel genetic determinant of plasma homocysteine and folate levels. Hum Genet 
111:299–302.

Ulrich, C. M., and Potter, J. D. 2007. Folate and cancer – timing is everything. JAMA 297:2408–9.
Ulrich, C. M., Bigler, J., Velicer, C., Greene, E., Farin, F., and Potter, J. 2000. Searching expressed 

sequence tag databases: discovery and confirmation of a common polymorphism in the thymi-
dylate synthase gene. Cancer Epidemiol Biomarkers Prev 9:1381–5.



9 Genetic Variability in Folate-Mediated One-Carbon Metabolism 241

Ulrich, C. M., Bigler, J., Bostick, R., Fosdick, L., and Potter, J. D. 2002a. Thymidylate synthase 
promoter polymorphism, interaction with folate intake, and risk of colorectal adenomas. 
Cancer Res 62:3361–4.

Ulrich, C. M., Robien, K., and Sparks, R. 2002b. Pharmacogenetics and folate metabolism – a 
promising direction. Pharmacogenomics 3:299–313.

Ulrich, C. M., Robien, K., and McLeod, H. L. 2003. Cancer pharmacogenetics: polymorphisms, 
pathways and beyond. Nat Rev Cancer 3:912–20.

Ulrich, C. M., Curtin, K., Potter, J. D., Bigler, J., Caan, B., and Slattery, M. L. 2005a. 
Polymorphisms in the reduced folate carrier, thymidylate synthase, or methionine synthase and 
risk of colon cancer. Cancer Epidemiol Biomarkers Prev 14:2509–16.

Ulrich, C. M., Curtin, K., Samowitz, W., Bigler, J., Potter, J. D., Caan, B., and Slattery, M. L. 
2005b. MTHFR variants reduce the risk of G:C → A:T transition mutations within the p53 
tumor suppressor gene in colon tumors. J Nutr 135:2462–7.

Ulrich, C. M., Nijhout, H. F., and Reed, M. C. 2006. Mathematical modeling: epidemiology meets 
systems biology. Cancer Epidemiol Biomarkers Prev 15:827–9.

Ulvik, A., Vollset, S. E., Hansen, S., Gislefoss, R., Jellum, E., and Ueland, P. M. 2004. Colorectal 
cancer and the methylenetetrahydrofolate reductase 677C → T and methionine synthase 
2756A → G polymorphisms: a study of 2,168 case-control pairs from the JANUS cohort. 
Cancer Epidemiol Biomarkers Prev 13:2175–80.

Ulvik, A., Ueland, P. M., Fredriksen, A., Meyer, K., Vollset, S. E., Hoff, G., and Schneede, J. 
2007. Functional inference of the methylenetetrahydrofolate reductase 677 C > T and 1298A 
> C polymorphisms from a large-scale epidemiological study. Hum Genet 121:57–64.

van den Donk, M., Buijsse, B., van den Berg, S. W., Ocke, M. C., Harryvan, J. L., Nagengast, F. M., 
Kok, F. J., and Kampman, E. 2005. Dietary intake of folate and riboflavin, MTHFR C677T 
genotype, and colorectal adenoma risk: a Dutch case-control study. Cancer Epidemiol 
Biomarkers Prev 14:1562–6.

van der Put, N. M., van der Molen, E. F., Kluijtmans, L. A., Heil, S. G., Trijbels, J. M., Eskes, 
T. K., Van Oppenraaij-Emmerzaal, D., Banerjee, R., and Blom, H. J. 1997. Sequence analysis 
of the coding region of human methionine synthase: relevance to hyperhomocysteinaemia in 
neural-tube defects and vascular disease. QJM 90:511–7.

van der Put, N. M., Gabreels, F., Stevens, E. M., Smeitink, J. A., Trijbels, F. J., Eskes, T. K., van 
den Heuvel, L. P., and Blom, H. J. 1998. A second common mutation in the methylenetetrahy-
drofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 
62:1044–51.

Wagner, C. 1995. Biochemical role of folate in cellular metabolism. New York: Marcel Dekker.
Wang, J., Gajalakshmi, V., Jiang, J., Kuriki, K., Suzuki, S., Nagaya, T., Nakamura, S., Akasaka, S., 

Ishikawa, H., and Tokudome, S. 2006. Associations between 5,10-methylenetetrahydrofolate 
reductase codon 677 and 1298 genetic polymorphisms and environmental factors with refer-
ence to susceptibility to colorectal cancer: a case-control study in an Indian population. Int J 
Cancer 118:991–7.

Wans, S., Schuttler, K., Jakubiczka, S., Muller, A., Luley, C., and Dierkes, J. 2003. Analysis of 
the transcobalamin II 776C > G (259P > R) single nucleotide polymorphism by denaturing 
HPLC in healthy elderly: associations with cobalamin, homocysteine and holo-transcobalamin 
II. Clin Chem Lab Med 41:1532–6.

Watkins, D., and Rosenblatt, D. S. 1989. Functional methionine synthase deficiency (cblE and 
cblG): clinical and biochemical heterogeneity. Am J Med Genet 34:427–34.

Weisberg, I., Tran, P., Christensen, B., Sibani, S., and Rozen, R. 1998. A second genetic polymor-
phism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme 
activity. Mol Genet Metab 64:169–72.

Wilson, A., Platt, R., Wu, Q., Leclerc, D., Christensen, B., Yang, H., Gravel, R. A., and Rozen, R. 
1999. A common variant in methionine synthase reductase combined with low cobalamin 
(vitamin B12) increases risk for spina bifida. Mol Genet Metab 67:317–23.

Winawer, S. J., Zauber, A. G., Ho, M. N., O’Brien, M. J., Gottlieb, L. S., Sternberg, S. S., Waye, J. D., 
Schapiro, M., Bond, J. H., Panish, J. F., Ackroyd, F., Shike, M., Kurtz, R. C., Hornsby-Lewis, L., 



242 A.Y. Liu and C.M. Ulrich

Gerdes, H., Stewart, E. T., and The National Polyp Study Workgroup. 1993. Prevention of 
colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup [see 
comments]. N Engl J Med 329:1977–81.

Winkelmayer, W. C., Skoupy, S., Eberle, C., Fodinger, M., and Sunder-Plassmann, G. 2004. 
Effects of TCN2 776C > G on vitamin B, folate, and total homocysteine levels in kidney 
transplant patients. Kidney Int 65:1877–81.

Yang, F., Hanson, N. Q., Schwichtenberg, K., and Tsai, M. Y. 2000. Variable number tandem repeat 
in exon/intron border of the cystathionine beta-synthase gene: a single nucleotide substitution 
in the second repeat prevents multiple alternate splicing. Am J Med Genet 95:385–90.

Zetterberg, H., Coppola, A., D’Angelo, A., Palmer, M., Rymo, L., and Blennow, K. 2002. No 
association between the MTHFR A1298C and transcobalamin C776G genetic polymorphisms 
and hyperhomocysteinemia in thrombotic disease. Thromb Res 108:127–31.

Zetterberg, H., Nexo, E., Regland, B., Minthon, L., Boson, R., Palmer, M., Rymo, L., and 
Blennow, K. 2003. The transcobalamin (TC) codon 259 genetic polymorphism influences 
holo-TC concentration in cerebrospinal fluid from patients with Alzheimer disease. Clin Chem 
49:1195–8.



J.D. Potter and N.M Lindor (eds.), Genetics of Colorectal Cancer, 243

© Springer Science + Business Media, LLC 2009

Chapter 10
Genetic Variability in NSAID Targets 
and NSAID-Metabolizing Enzymes 
and Colorectal Neoplasia

Elizabeth M. Poole, James T. Cross, John D. Potter, and Cornelia M. Ulrich

Introduction

Inflammation is a known or suspected risk factor for several cancer types (Coussens 
and Werb 2002), including colorectal cancer. Nonsteroidal anti-inflammatory drugs 
(NSAIDs), including aspirin (acetylsalicylic acid), indomethacin, piroxicam, sulindac, 
and ibuprofen, have several functions, including reduction of inflammation, fever, 
and pain. Results of epidemiologic studies, intervention trials, and animal studies 
suggest that aspirin and other NSAIDs inhibit colorectal carcinogenesis (Giovannucci 
1999; Brown and DuBois 2005). In observational studies, regular aspirin use has 
been associated with an approximate halving of risk of colorectal  cancer compared 
with nonusers (Thun et al. 1991; Suh et al. 1993; Giovannucci et al. 1994, 1995; 
Muscat et al. 1994; Peleg et al. 1994; Schreinemachers and Everson 1994; La Vecchia 
et al. 1997; Freedman et al. 1998; Chan et al. 2005a; Bigler et al. 2001). Studies of 
adenomatous polyps, precursors of colorectal cancer, have shown similar results 
(Greenberg et al. 1993; Logan et al. 1993; Suh et al. 1993; Martinez et al. 1995). 
Recently, two randomized placebo-controlled trials (RCTs) of aspirin for the preven-
tion of recurrent adenomatous polyps have shown risk reductions of 19–35% (Baron 
et al. 2003; Sandler et al. 2003). Two other RCTs of the COX-2 specific NSAID 
(coxib) celecoxib showed a 33–36% risk reduction and even greater  reduction in the 
risk of advanced adenoma (Arber et al. 2006; Bertagnolli et al. 2006).

About 25% of chronic NSAID users experience toxicities, in particular gastro-
intestinal bleeding and renal toxicity (Murray and Brater 1993; Davies 1995). 
The traditional NSAIDs, such as aspirin and ibuprofen, are associated with 
 gastrointestinal bleeding, whereas coxibs may result in cardiovascular toxicity. The 
celecoxib randomized control trials were stopped early due to adverse cardio vascular 
events among the group receiving celecoxib (Bresalier et al. 2005; Nussmeier et al. 
2005; Solomon et al. 2005). NSAID-associated side effects have prompted research 
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to identify genetic variations that may predispose toward adverse events and help 
identify population groups most likely to benefit from NSAID use (Ulrich et al. 
2006). This chapter is a summary of the known genetic variability in the genes that 
target and metabolize NSAIDs and the results of epidemiologic studies of these 
genetic variants. It is likely that polymorphisms in these pathways may interact 
with NSAID use to alter an individual’s colorectal cancer risk/benefit profile.

Genetic Variability in NSAID Targets

The anti-inflammatory activity of NSAIDs is due to their ability to inhibit the 
 cyclooxygenase activity of the prostaglandin H synthase enzymes (also known as 
the COX enzymes) (Vane 1971), thus decreasing the production of prostaglandins. 
The COX enzymes have two isoforms: COX-1, which is constitutively expressed in 
many tissues and is responsible for tissue homeostatic functions, and COX-2, which 
is inducible and has a role in many inflammatory and proliferative reactions (Taketo 
1998; Smith et al. 2000; Gupta and Dubois 2001). The COX enzymes are essential 
for the production of prostaglandins and have two functions: first, a cyclooxygenase 
(COX) reaction which converts arachidonic acid (an omega-6 fatty acid) to prostag-
landin G2 (PGG

2
); and second, a peroxidase reaction which converts PGG

2
 to PGH

2
.

Prostaglandins are in the eicosanoid family of oxygenated-lipid signaling 
molecules, formed from arachidonic acid and some other highly unsaturated fatty 
acids. They are widely produced in the human body and have important roles 
in inflammation and other physiologic processes, such as blood clotting, wound 
healing, immune responses, bone metabolism, and nerve growth and development 
(Mead et al. 1986). Cancer tissues contain high concentrations of prostaglandins 
(Jaffe 1974; Bennett et al. 1977; Rigas et al. 1993; Pugh and Thomas 1994; 
Gupta and Dubois 2001). Prostaglandin E

2
, specifically, appears to be central to 

 carcinogenesis: activation of prostaglandin E
2
 receptors triggers other signaling 

pathways known to contribute to cancer progression, such as the epidermal growth 
factor receptor pathway (Pai et al. 2002; Buchanan et al. 2003; Han and Wu 2005). 
Additionally, disruption of these receptors in mouse models reduces tumor forma-
tion (Watanabe et al. 1999, 2000; Mutoh et al. 2002).

Studies of colorectal tissue have shown COX-2 expression in up to 90% of color-
ectal carcinomas and 40% of adenomas, with no expression in normal colorectal 
mucosa (Eberhart et al. 1994; Kutchera et al. 1996; Chapple et al. 2000). In a recent 
study, aspirin use was associated with a deficit of tumors that over expressed COX-2; 
in individuals whose tumors expressed little COX-2, there was no reduction of risk 
with regular aspirin use (Chan et al. 2007). Given its role in inflammation, many of 
the initial studies focused on COX-2 as the likely target in COX-induced colorectal 
carcinogenesis. However, COX-1 has been more recently implicated in colorectal 
cancer development (Oshima et al. 1996; Chulada et al. 2000), and in NSAID 
pharmacokinetics (Fries et al. 2006). Thus, studies of variability in prostaglandin 
synthesis in relation to colorectal neoplasia should consider both enzymes.
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Cyclooxygenase-1 (COX-1)

COX-1 has been systematically screened for polymorphisms in African Americans 
and Caucasians by our group (Ulrich et al. 2002) and by the University of 
Washington-Fred Hutchinson Cancer Research Center Variation Discovery 
Resource (UW-FHCRC-VDR) and SNP500Cancer. Additionally, several other 
groups have reported SNPs in COX-1 (Scott et al. 2002; Halushka et al. 2003; 
Hillarp et al. 2003); one of these, P17L, has been associated with functional effects 
(Scott et al. 2002; Halushka et al. 2003; Fries et al. 2006) and two others, R8W and 
L237M, are predicted to have functional impact by in silico programs such as SIFT 
(Ng and Henikoff 2003) and PolyPhen (Ramensky et al. 2002).

Cyclooxygenase-2 (COX-2)

Like COX-1, COX-2 has also been screened by the UW-FHCRC-VDR, the University 
of Washington National Institute of Environmental Health Environmental Genome 
Project (NIEHS-EGP), and SNP500Cancer and several groups have also reported 
polymorphisms. Unlike COX-1, however, nonsynonymous polymorphisms in 
COX-2 are very rare [see dbSNP at http://www.ncbi.nlm.nih.gov]. Thus almost all 
studies of genetic variability in COX-2 have focused on intronic or UTR polymor-
phisms. Of these, the −765G > C polymorphism has been consistently associated 
with differential expression (Papafili et al. 2002; Cipollone et al. 2004; Zhang 
et al. 2005; Orbe et al. 2006); however, other UTR polymorphisms have also been 
reported to alter mRNA expression (Hu et al. 2005; Zhang et al. 2005) or changes 
in transcription-factor-binding sites (Panguluri et al. 2004).

Other Targets

Although COX-1 and COX-2 have been the focus of much research into colorec-
tal carcinogenesis, inquiries into many targets downstream in this pathway and, 
in competing pathways, are beginning to show promising results. There are four 
prostaglandin synthases that act downstream of the COX enzymes that may be of 
interest for colorectal carcinogenesis (see Fig. 10.1). Specifically, prostaglandin 
E

2
 synthase (PGES) may be of particular interest due to the known activities of 

PGE
2
 in colorectal cancer. This gene has been completely resequenced by the 

UW-FHCRC-VDR and partially (the exons and UTRs) by our group (Bigler et al. 
2007). Although the reported nonsynonymous polymorphisms are rare, two of them 
are likely to be functional, based on predictions from SIFT and PolyPhen. PGE

2
 has 

four cell-surface receptors that may also be of interest, given that recent evidence 
has shown that these receptors crosstalk with the EGFR pathway (Pai et al. 2002; 

http://www.ncbi.nlm.nih.gov
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Fig. 10.1 NSAIDs, COX inhibition, and prostaglandins. The main targets of coxibs and NSAIDs 
are COX-1 and COX-2, enzymes central to the metabolism of arachidonic acid to prostaglandins 
(PGs); an alternative pathway involves the lipoxygenases. Both pathways are regulated by perox-
ide concentrations, with COX-2 being influenced at lower concentrations than COX-1. PGs influ-
ence angiogenesis, apoptosis, cell proliferation, and migration. The balance between pro- and 
antithrombotic factors is probably relevant to the cardiovascular toxicity of coxibs. IL6 interleukin 
6; NF-kB nuclear factor-κB; PDGF platelet-derived growth factor; PLA

2
 phospholipase A; VEGF 

vascular endothelial growth factor
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Buchanan et al. 2003; Han and Wu 2005). Like PGES, two of these receptors, 
EP2 and EP4, have been completely resequenced by the UW-FHCRC-VDR and 
partially by our group (Bigler et al. 2007). As in the case of PGES, several of the 
reported nonsynonymous polymorphisms were predicted to have functional conse-
quences (Bigler et al. 2007).

Another downstream prostaglandin synthase of potential interest is prostaglandin I
2
 

synthase or prostacyclin synthase (PGIS). PGIS has been of recent interest because 
of the cardiotoxicity of the coxibs. PGIS has antithrombotic activity and inhibits 
platelet aggregation, vasoconstriction, and vascular proliferation (Marcus et al. 
2002). Because COX-2 is the major source of PGIS (Fitzgerald 2004), targeted 
inhibition of COX-2, and thus inhibition of PGIS, may be the source of the car-
diovascular side effects of the coxibs. PGIS has been screened for polymorphisms 
by SNP500Cancer, and there is a known variable number tandem repeat (VNTR) 
polymorphism [−3(CCAGCCCCG)3–8] in the promoter region; having fewer than 
the wild-type number of alleles (6R) has been associated with reduced promoter 
activity (Iwai et al. 1999; Chevalier et al. 2001).

The arachidonate lipoxygenases (ALOXs) are of interest because they compete 
with the COXs for their substrate, arachidonic acid. There are three major lipoxyge-
nases: ALOX5, ALOX12, and ALOX15. ALOX5 and -12 are thought to be procar-
cinogenic, whereas ALOX15 may have anticarcinogenic properties (Shureiqi and 
Lippman 2001). ALOX12 and ALOX15 have been resequenced by the UW-FHCRC-
VDR, and all three lipoxygenases have been resequenced by SNP500Cancer. There 
is a promoter VNTR polymorphism [−176(GGGCGG)2–8] in ALOX5, in which 
having fewer repeats than wild type (5R) has been associated with a decrease in 
promoter activity, although the effect of having more repeats than wild type has not 
been resolved (In et al. 1997; Silverman and Drazen 2000).

15-Hydroxyprostaglandin dehydrogenase (PGDH) breaks down PGE
2
 into 

15-keto PGE, which has greatly reduced biological activity (Ensor and Tai 1995). 
Recently, PGDH expression was reported to be greatly reduced in colon cancer, 
providing another mechanism by which cancer cells enhance the production of 
prostaglandins (Yan et al. 2004; Backlund et al. 2005). PGDH has been systemati-
cally screened for polymorphisms by the UW-FHCRC-VDR.

Ornithine Decarboxylase

Ornithine decarboxylase (ODC1) may play a role in the development of colorectal 
polyps and cancer. ODC1 is inhibited by NSAIDs, including celecoxib (Ostrowski 
et al. 2003); however, this inhibition is through a prostaglandin-independent path-
way. ODC1 catalyzes the synthesis of polyamines, which have several carcinogenic 
actions, including increased cell division, upregulation of genes involved in meta-
stasis and tumor invasion, and downregulation of apoptosis (Babbar et al. 2003; 
Gerner and Meyskens 2004). Increased concentrations of intracellular polyamines 
have been positively associated with cancer risk (Janne et al. 1978; Gerner and 
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Meyskens 2004), including colorectal (Kingsnorth et al. 1984), and have been 
inversely associated with apoptosis (Scornioni 2001). Additionally, ODC1 has 
been shown to be overexpressed in cancerous colon epithelium compared to normal 
colon expression levels (LaMuraglia et al. 1986; Porter et al. 1987; Koo et al. 1988; 
Gerner and Meyskens 2004; Wolter et al. 2004). Thus, although the main action of 
NSAIDs is through inhibition of prostaglandin synthesis, ODC1 inhibition may be 
another pathway by which NSAIDs exert chemopreventive properties in colorectal 
cancer (Carbone et al. 1998; Turchanowa et al. 2001; Martinez et al. 2003).

ODC1 has been screened by the NIEHS-EGP. However, to date, research into 
the role of genetic variability has been limited to the 315G > A polymorphism. This 
 polymorphism is located near transcription-factor-binding sites and was associated 
with differential RNA expression in one study (Guo et al. 2000). In another study, 
aspirin did not affect the promoter activity of the ODC1 gene (Martinez et al. 2003), 
indicating that the role of this polymorphism requires further investigation.

Genetic Variability in NSAID-Metabolizing Enzymes

NSAIDs are metabolized by two main mechanisms: glucuronidation and hydroxy-
lation. Glucuronidation of NSAIDs is accomplished primarily through the 
 UDP-glucuronosyltransferases (UGTs), specifically UGT1A6 (Kuehl et al. 2005); 
hydroxylation occurs via the cytochrome P450 2C enzymes, specifically CYP2C9 
(Miners and Birkett 1998), although other UGTs and CYPs may also contribute. 
Both the UGT1A6 and the CYP2C9 genes have known genetic polymorphisms 
that are associated with slower metabolism. These functional polymorphisms may 
interact with NSAID use to affect risk of colorectal neoplasia.

UGT1A6

UGT1A6 has been systematically screened for polymorphisms by SNP500Cancer. 
Two known variant alleles in UGT1A6 have been associated with decreased enzyme 
activity; the first is characterized by amino acid changes at amino acids 181 and 184 
(T181A + R184S, also known as UGT1A6*2) and the second by R184S (also known 
as UGT1A6*4) alone (Ciotti et al. 1997; Lampe et al. 1999). These genotypes are 
associated with a 30–50% reduction in enzyme activity (Ciotti et al. 1997).

CYP2C9

CYP2C9 has been screened for genetic variation by the NIEHS-EGP and by 
SNP500Cancer; there are more than 100 SNPs reported in dbSNP. However, similar 
to UGT1A6, there are two well-studied polymorphisms in CYP2C9, R144C (also 
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known as *2) and I359L (also known as *3). Like UGT1A6, these polymorphisms 
have known functional effects, namely, a 5–30% reduction in enzyme activity com-
pared to native CYP2C9 (Rettie et al. 1994; Takahashi et al. 1998).

Genetic Variability in NSAID Targets 
and NSAID-Metabolizing Enzymes and Risk 
of Colorectal Neoplasia

Investigations of potential gene–NSAID interactions in relation to risk of colorectal 
neoplasia have recently been comprehensively summarized (Cross et al. 2008). 
Following is a review of main-effect associations and gene–NSAID interactions 
published to date. Evaluation of these studies is complicated by the lack of a consist-
ent definition of NSAID use. Definitions are inconsistent with respect to amount, 
type of NSAID, duration of use, and recency of use. Given that the benefits of 
NSAIDs probably vary by all of these, comparisons of studies that used markedly 
differing definitions may obscure the true relationships among genetic variability in 
NSAID-related genes, NSAID use, and risk of colorectal neoplasia.

NSAID Targets

COX-1

Studies of COX-1 are a relatively recent focus of cancer research. To date, four 
studies have evaluated four COX-1 polymorphisms (R8W, L15-L16del, P17L, and 
L237M) for a main-effect association with colorectal neoplasia risk or an interaction 
with NSAID exposure (Goodman et al. 2004; Ulrich et al. 2004; Siezen et al. 2005, 
2006b). Only the L15-L16del polymorphism has been independently associated 
with increased risk of colorectal adenomatous polyps (OR: 3.6; 95% CI: 1.2–11.2) 
(Ulrich et al. 2004). In the same study, current, regular NSAID use (more than 
once per week) was associated with a reduction of adenoma risk among those with 
the 17PP (wild type) genotype compared to wild type nonusers (OR: 0.6; 95% CI: 
0.5–0.8; p = 0.03) (Ulrich et al. 2004). This interaction has not been investigated in 
any other studies. The functional effects of this polymorphism are unclear, because 
the P17L polymorphism is found in the signal peptide portion of COX-1 and is 
cleaved from the mature protein. However, Halushka et al. reported that the P17L 
polymorphism is in complete linkage disequilibrium with a polymorphism in the 
promoter region of COX-1, −842A > G, which may have effects on transcription-
factor-binding sites (Halushka et al. 2003). No associations or interactions with 
the R8W or L237M polymorphisms have been reported for colorectal neoplasia. 
However, due to the rarity of these polymorphisms, larger studies may be required 
for adequate power to detect such associations.
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COX-2

In eight studies of colorectal neoplasia risk, eleven COX-2 polymorphisms have been 
tested for main-effect associations or interaction with NSAID use (Lin et al. 2002; 
Cox et al. 2004; Goodman et al. 2004; Koh et al. 2004; Ulrich et al. 2005; Sansbury 
et al. 2006; Siezen et al. 2006a, b). Four of these studies included the −765G > C 
polymorphism and three included V511A, which occurs only in non-Caucasian pop-
ulations. Main-effect associations with colorectal cancer have been reported for two 
SNPs: an inverse association with a synonymous SNP in exon 3 (V102V) (Siezen 
et al. 2006a) and a positive association with an intronic SNP (Cox et al. 2004), but 
these have not been confirmed in additional studies. In one study, a suggested inter-
action between the −765G > C polymorphism and current, regular NSAID use (more 
than once per week) was detected: when stratified on NSAID use, homozygous 
variant nonusers were at decreased risk of adenoma (OR: 0.26, 95% CI: 0.07–0.89) 
compared to wild-type nonusers, whereas homozygous-variant NSAID users (OR: 
0.82, 95% CI: 0.25–2.73) showed no reduction in risk (Ulrich et al. 2005). However, 
a smaller study of 337 adenoma cases and 368 controls did not confirm this potential 
interaction (Siezen et al. 2006b). The −765G > C polymorphism has been shown 
to suppress COX-2 promoter activity in one study (Papafili et al. 2002), but not in 
another (Orbe et al. 2006). Among atherosclerosis patients, the −765CC genotype 
was associated with lower levels of C-reactive protein and interleukin-6, biomarkers 
of inflammatory processes (Orbe et al. 2006).

Two studies have examined potential interactions between the COX-2 V511A 
polymorphism and NSAID use among African-Americans in modifying colorectal 
cancer (Lin et al. 2002) and adenoma (Sansbury et al. 2006). The adenoma study 
(161 cases, 219 controls) reported statistically significant risk reductions among 
those who used NSAIDs (more than two times per week for at least 2 years) or car-
ried the A allele (or both) compared to those with neither exposure (Lin et al. 2002). 
However, this study did not evaluate multiplicative interaction. The study of colo-
rectal cancers observed that the risk reduction associated with regular NSAID use (at 
least 3 times a week for at least 3 months) (OR: 0.66; 95% CI: 0.45–0.95) may be 
more pronounced among those carrying at least one variant allele (OR: 0.29, 95% CI: 
0.08–1.06), indicating that those with the alanine variant may receive greater benefit 
from regular NSAID use. This interaction, however, was not statistically significant 
( p = 0.59). A functional analysis of COX-2 polymorphisms has suggested that the 
V511A variant does not modify COX-2 activity; thus, it is less likely that there is a 
true NSAID interaction with this polymorphism (Fritsche et al. 2001).

A small hospital-based case-control study (292 cases and 274 controls) con-
ducted in Spain examined eight COX-2 polymorphisms and reported one statisti-
cally significant main-effect association: subjects carrying one or more variant 
allele of the intronic 9850A > G polymorphism had a statistically significantly 
increased risk of colorectal cancer (OR: 2.49; 95% CI: 1.17–5.32) (Cox et al. 2004). 
However, no interaction with NSAID use was observed (p-interaction = 0.19). 
A haplotype analysis of the eight SNPs in this study confirmed the main-effect 
association with the 9850A > G SNP – the haplotype containing the 9850 variant 
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allele was the only polymorphism associated with a change in colorectal cancer 
risk. To date, the 9850A > G polymorphism has not been investigated in other stud-
ies of colorectal cancer, so this association remains unconfirmed. Because of the 
small size of this study, statistical power to detect NSAID interactions was limited. 
Moreover, because it was hospital-based, the control group may have had underly-
ing comorbidities associated with NSAID use; thus, any true association between 
NSAID use and colorectal cancer may be attenuated, further limiting ability to 
detect gene–NSAID interactions.

Other Genes Related to Prostaglandin Synthesis

Although several genes described earlier have been suggested as potential targets 
for NSAID interactions in relation to colorectal neoplasia risk, studies of genetic 
variability in these genes are limited to date.

In a case-control study of 516 adenoma cases and 618 polyp-free controls, cases 
with fewer than the wild-type number of PGIS [−3(CCAGCCCCG)3–8] alleles 
(i.e., <6R/<6R) had a nearly twofold increase in risk compared to the wild-type 
 genotype (6R/6R) (OR: 1.90; 95% CI: 1.09–3.31). Additionally, there was a sug-
gested interaction with regular NSAID use (more than one pill per week for at least 
1 year) in which the group of regular users who had at least one allele with greater 
than wild-type number of repeats (>6R/≥6R) was at greatly reduced adenoma risk 
compared to wild-type nonusers (OR: 0.33; 95% CI: 0.11–0.99; p-interaction = 0.06) 
(Poole et al. 2006).

In the same case-control study, evidence neither for an association with two 
ALOX5 polymorphisms (−1700A > G or [−176(GGGCGG)2–8]) nor for an NSAID 
interaction was observed (Poole et al. 2006). Two other studies have also shown no 
association between colorectal neoplasia risk and the −1700A > G polymorphism 
(Goodman et al. 2004; Gong et al. 2007). Goodman et al. (2004) also reported 
no association with another promoter polymorphism (−1753G > A) but did not 
examine NSAID interactions (Goodman et al. 2004). Gong et al. (2007) reported 
no association with a fourth ALOX5 polymorphism (21C > T) and no interaction 
between either of the studied ALOX5 polymorphisms and NSAID use for colorectal 
adenoma risk (Gong et al. 2007). These studies suggest that either there is no asso-
ciation of ALOX5 with colorectal neoplasia risk and no interaction with NSAIDs, 
or that a causative variant in ALOX5 is yet to be discovered.

The study by Gong et al. (2007) also investigated an association between a 
nonsynonymous polymorphism in ALOX12 (R261Q) and adenoma risk. In 162 
adenoma cases and 211 controls, having at least one Q allele was associated 
with decreased adenoma risk (OR: 0.62; 95% CI: 0.40–0.96). Although the study 
was small, the authors reported a statistically significant interaction between 
this polymorphism and nonaspirin NSAID use (at least once per week) in which 
only the NSAID users with at least one Q allele were at decreased adenoma risk 
(p-interaction = 0.02) (Gong et al. 2007). Although intriguing, this result requires 
confirmation in larger studies.
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ODC1

ODC1 is a relatively recent gene of interest for colorectal cancer risk; thus, only 
two studies have investigated a potential interaction between the ODC1 315G > A 
polymorphism and NSAID use in modifying colorectal neoplasia risk. In a rand-
omized trial of wheat bran to prevent adenoma recurrence, Martinez and colleagues 
reported in 341 cases and 347 controls that the 315AA genotype was associated 
with reduced risk of metachronous adenoma (OR: 0.48; 95% CI: 0.24–0.99) 
(Martinez et al. 2003). Additionally, among the group that used aspirin (use not 
further defined), those with the 315AA genotype were at greatly reduced risk of 
metachronous adenoma compared to those with the wild-type (GG) genotype who 
did not use aspirin (OR: 0.10; 95% CI: 0.02–0.66). The 315AA genotype was 
not associated with risk reduction among aspirin nonusers (OR: 0.68; 95% CI: 
0.30–1.51); however, the interaction was not statistically significant (p-interaction 
= 0.13). Subsequently, Barry et al. conducted a study of the ODC1 315G > A 
polymorphism in 972 participants in the Aspirin/Folate Polyp Prevention Trial 
and detected no main-effect association between this polymorphism and risk of 
metachronous adenoma. However, a statistically significant interaction between 
315G > A genotype and aspirin use on metachronous adenoma was detected 
(Barry et al. 2006): among those with at least one variant 315A allele, those receiv-
ing  aspirin (either 81 or 300 mg daily) were at statistically significantly reduced 
risk of metachronous adenoma (RR: 0.77; 95% CI: 0.63–0.95; p-interaction = 
0.04) and advanced adenoma (RR: 0.51; 95% CI: 0.29–0.90; p-interaction = 0.02) 
compared to those on placebo. No risk reduction associated with aspirin use was 
observed among those with the wild-type genotype. The results of these two studies 
suggest that aspirin use, in the context of the ODC1 315 variant genotype, may be 
associated with greater protection against colorectal carcinogenesis; however, these 
results require confirmation in larger studies.

NSAID-Metabolizing Enzymes

UGT1A6

Potential associations with the functional UGT1A6 polymorphisms (T181Ala + 
R184S or R184S alone) and risk of colorectal neoplasia or interactions with NSAID 
use have been investigated in four studies, with conflicting results. In a case-control 
study of 441 adenoma cases and 488 controls, regular aspirin use was associated 
with reduced adenoma risk only among those with at least one variant allele (OR: 
0.53, 95% CI: 0.33–0.86, p-interaction not reported) (Bigler et al. 2001). This 
association was also observed for nonaspirin NSAID use, but was less pronounced. 
A similar association was observed in a case-control study of 530 women with 
adenoma and 532 control women participating in the Nurses’ Health Study: there 
was greater risk reduction associated with regular NSAID use among women with 
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any variant UGT1A6 genotype compared to women with the wild-type alleles 
(p-interaction = 0.02) (Chan et al. 2005b). Two other studies have reported no inter-
action between UGT1A6 genotype and NSAID use (Hubner et al. 2006; Samowitz 
et al. 2006). In the first, no main-effect association was seen for UGT1A6 among 
1,554 colon cancer cases and 1,939 controls or among 671 rectal cancer cases and 
860 controls. The risk reductions associated with regular aspirin or ibuprofen use 
(at least three times per week for 1 month or more during the 2 years prior to diag-
nosis or reference date) were similar across genotypes (Samowitz et al. 2006). In 
the second study of 546 participants in the United Kingdom Colorectal Adenoma 
Prevention trial, having any variant allele was associated with reduced risk of 
adenoma recurrence (OR: 0.68, 95% CI: 0.52–0.89). However, no inter action 
with aspirin use (300 mg daily) was observed (p = 0.70). In general, the results of 
these investigations suggest that UGT1A6 variants may interact with NSAIDs to 
affect risk of adenoma (Hubner et al. 2006). However, given that the one study of 
colorectal cancer, the largest of the four studies, found no interaction with NSAID 
use, further studies may be required to determine whether UGT1A6 plays a role in 
colorectal neoplasia risk, and whether its role differs by stage of progression.

CYP2C9

Three of the studies that investigated genetic variability in UGT1A6 also examined 
potential associations between the *2 and *3 polymorphisms in CYP2C9, and inter-
actions with NSAID use, on risk of colorectal neoplasia (Bigler et al. 2001; Hubner 
et al. 2006; Samowitz et al. 2006). In the case-control study by Bigler et al. (2001), 
no main-effect association was reported, but a statistically significant adenoma risk 
reduction associated with regular aspirin use (more than once per week vs. less than 
once per month) was seen in those with the wild-type CYP2C9 genotype (OR: 0.50, 
95% CI 0.32–0.78), but not among those with the variant genotype (p-interaction not 
reported). However, among nonaspirin NSAID users, a statistically significant risk 
reduction was observed only among those with any variant (Bigler et al. 2001). The 
study of 1,554 colon cancer cases and 1,939 controls and among 671 rectal cancer 
cases and 860 controls similarly found no main-effect association, but noted a statis-
tically significant interaction in which those who were homozygous for the variant 
alleles had a greater decrease in risk with regular ibuprofen use (at least three times 
per week for 1 month or more during the 2 years prior to diagnosis or reference date) 
than those with the wild-type alleles (p-interaction = 0.02). No similar interaction 
was observed for regular aspirin use (Samowitz et al. 2006). In the United Kingdom 
Colorectal Adenoma Prevention trial, no interaction between CYP2C9 genotypes 
and aspirin treatment (300 mg daily) was reported; however, power to detect inter-
actions was limited by the relatively small sample size (266 patients on aspirin and 
280 on placebo) (Hubner et al. 2006). The two larger studies of CYP2C9 *2 and *3 
are generally consistent: both found that the combination of NSAID use and variant 
genotypes afforded the greatest risk reduction. However, the lack of confirmation in 
the United Kingdom Colorectal Adenoma Prevention trial (Hubner et al. 2006) and 
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the differing results for aspirin and nonaspirin NSAIDs in the adenoma case-control 
study (Bigler et al. 2001) suggest that the interaction between CYP2C9 polymor-
phisms and NSAID use requires additional clarification.

Summary

Initial studies suggest that genetic variability in NSAID targets and NSAID-
metabolizing enzymes may be key to understanding the relationship between regu-
lar NSAID use and colorectal cancer chemoprevention. Given the great potential of 
NSAIDs as preventive agents, particularly for colorectal carcinogenesis, research 
into these genes is highly relevant and an important area of future research.
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Chapter 11
The Role of Chemical Carcinogens and Their 
Biotransformation in Colorectal Cancer

Loïc Le Marchand

As reviewed in Chap. 1, the epidemiology of colorectal cancer (CRC) suggests a 
predominant role for lifestyle factors in the etiology of this disease. A number of 
these risk factors, including smoking and consumption of well-done or processed 
meat, may lead to exposure to exogenous chemicals which are strongly suspected 
to cause cancer in humans. For the purposes of this chapter, in line with standard 
nutritional epidemiologic usage, red meat refers to meat from mammals, white 
meat to that from fowl and fish. Most of these chemicals require transformation 
by xenobiotic-metabolism enzymes in order to become active carcinogens that are 
capable of binding to DNA and inducing mutations. Specific lifestyle exposures, 
such as alcohol, certain phytochemicals, smoking, and exogenous estrogens, may 
also induce or inhibit many of these biotransformation enzymes. Thus, the large 
interindividual variation which is typically observed in the activity levels of these 
enzymes may be due to differences in lifestyle. That variation may also reflect 
genetic differences, because the genes that code for these enzymes often contain 
common inherited polymorphisms that affect activity. Consequently, exposures 
to chemical carcinogens through diet and smoking, along with these possible 
modifying factors, both environmental and genetic, have been investigated for 
their associations with CRC. It should be noted that because these exposures are 
particularly common in Western countries, it is possible that they may explain a 
sizable component of the excess CRC risk observed in the developed world. The 
purpose of this chapter is to review the available research on chemical carcinogens, 
biotransformation and modifying factors, as it relates to the risk of CRC in the 
general population.
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Chemical Carcinogens

Heterocyclic Aromatic Amines

More than twenty known heterocyclic aromatic amines (HAAs) have been shown 
to form when meat or fish is cooked at high temperature (>250°C) to a “well-done” 
state. Many of these compounds are known to be carcinogenic in experimental 
 animals, including nonhuman primates (Sugimura et al. 2004). Several  epidemiologic 
studies have linked the consumption of well-done meat with an increased risk 
of cancer at several sites, including the large bowel (Cross and Sinha 2004), 
although the data have not been entirely consistent. The levels of HAAs formed in 
cooked meats are dependent upon the type of meat, the temperature and duration 
of cooking, the use of sauces and marinades, and a variety of other factors which, 
together, make exposure assessment in free-living individuals difficult. The most 
abundant HAAs in cooked meats are 2-amino-1- methyl-6-phenylimidazol[4,5-b]
pyridine (PhIP), 2-amino-3,8-dimethylimidazol[4,5-f]quinoxaline (8-MeIQx), 
2-amino-3,4,8-trimethylimidazol[4,5-f]quinoxaline (4,8-DiMeIQx), and 2-amino-
9H-pyrido[2,3-b]indole (AαC). Studies that have estimated HAA intake have 
usually shown a weak main-effect association with colorectal adenoma or cancer 
(Sinha et al. 1999, 2001, 2005b; Nowell et al. 2002; Butler et al. 2003; Wu et al. 
2006), but not always (Augustsson et al. 1999; Le Marchand et al. 2002a; Gunter 
et al. 2005; Shin et al. 2007). Ingestion of a realistic dose of PhIP has also been 
shown to result in significant PhIP–DNA adduct formation in the colon (Dingley 
et al. 1999).

Smoking is another common source of HAA exposure in humans. AαC and 
PhIP are the most abundant of the known HAAs formed in tobacco smoke, and 
these compounds are considered human carcinogens (Hecht 2003). These carcino-
gens can reach the large bowel through the circulation or, perhaps, through direct 
contact after oral ingestion with mucus or saliva.

Polycyclic Aromatic Hydrocarbons

polycyclic aromatic hydrocarbons (PAHs) are carcinogenic pyrolysis products that 
are present in tobacco smoke and in cured meats or smoked foods, or are formed when 
meat is cooked directly above an open heat source (e.g., by grilling or  barbecuing) 
(Phillips 1999). Benzo[α]pyrene (B[α]P) is one of the most potent PAH carcino-
gens in animal studies (Goldstein et al. 1998). Several  epidemiologic  studies have 
reported an association of B[α]P exposure through grilled/ barbecued meat intake 
with colorectal adenoma (Sinha et al. 2005a, b; Gunter et al. 2005).  PAH–DNA 
adducts have been shown to be present in the colonic mucosa (Alexandrov et al. 
1996), and levels rise in circulating leukocytes (a potential surrogate marker) as a 
result of smoking tobacco or eating charbroiled meat (Rothman et al. 1990; Kang 
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et al. 1995). Finally, levels of PAH–DNA adducts in blood  leukocytes have been 
found to be associated with risk of colorectal adenoma (Gunter et al. 2007).

Nitrosamines

Salted, smoked, and pickled foods, and meat processed with nitrate or nitrite are 
the main source of preformed N-nitroso compounds (NOCs) in the diet (Tricker 
1997). Intake of processed meats has been more consistently and strongly associated 
with CRC than other red meats in recent meta-analyses of the literature (Sandhu 
et al. 2001; Norat et al. 2002). Estimated, dietary nitrate and nitrite intakes have 
also been associated with colorectal adenoma (Ward et al. 2007); similarly, intake 
of a common preformed dietary nitrosamine in the diet, N-nitrosomethylamine 
(NDMA), has been associated with CRC risk in a Finnish cohort study (Knekt 
et al. 1999).

Moreover, the feeding of cooked fresh red meat to humans has been shown to 
increase endogenous NOC formation in the large intestine, as measured by fecal 
NOC level; this was not seen with white meat or fish, or with amounts of red meat 
below the approximate average intake in Western countries (Bingham et al. 2002). 
The proposed mechanism underlying this relationship is that heme, present in 
red, but not white, meat stimulates the endogenous formation of NOCs (Bingham 
et al. 1996; Cross et al. 2003). These carcinogens are able to cause gastrointes-
tinal tumors in animals (Bogovski and Bogovski 1981). O6-methylguanine is a 
promutagenic adduct formed by many N-methyl-NOCs and is responsible for the 
mutagenicity and carcinogenicity of alkylating agents. A high red-meat intake has 
recently been shown to increase the proportion of exfoliated colonic cells staining 
positive for the NOC-specific DNA adduct O6-carboxymethylguanine, demonstrat-
ing a link between red-meat intake and a promutagenic lesion in the colon (Lewin 
et al. 2006).

Tobacco smoke is a source of exposure to other nitrosamines that are potent 
carcinogens and may affect CRC risk. The tobacco-specific 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone (NNK) is not known to cause colorectal tumors in experi-
mental animals. However, it has been shown to stimulate the growth of colon cancer 
cells in culture by activation of β-adrenoceptors (Wu et al. 2005).

Acrylamide

The general population is exposed to measurable amounts of acrylamide through 
smoking and consumption of heat-processed carbohydrate-rich foods (Tareke 
et al. 2002). Glycidamine, the metabolite of acrylamide, has been shown to induce 
mutations in bacteria (IARC 1994), as well as chromosomal alterations and cell 
transformation in mammalian cell lines (Dearfield et al. 1995). Glycidamine is also 



known to form DNA adducts in vivo (IARC 1994). To date, the epidemiologic data 
do not suggest an association between dietary acrylamide intake and CRC (Mucci 
et al. 2003; Pelucci et al. 2003; Dybing and Sanner 2003), although studies have 
been few and dietary exposure is difficult to assess because levels vary markedly 
with food processing conditions.

Biotransformation

Most chemical carcinogens require activation by biotransformation enzymes in 
order to become reactive and bind to DNA or other target proteins (see Table 11.1). 
These enzymes play an important role in the metabolism and elimination of a 
 variety of xenobiotics, including drugs, toxins, and carcinogens. In general, Phase I 
enzymes catalyze reactions that increase the reactivity of hydrophobic compounds, 
preparing them for reactions catalyzed by Phase II enzymes. The latter generally 
increase water solubility and facilitate elimination of the compounds through the 
urine. Phase I enzymes are mostly cytochrome P450 (CYP) enzymes; Phase II 
enzymes include glutathione S-transferases (GSTs), sulfotransferases (SULTs), 
UDP-glucuronosyl transferases (UGTs), NADPH quinine oxidoreductase (NQO), 
N-acetyltransferases (NATs), and others.

Table 11.1 Xenobiotic-metabolizing enzymes

Enzymes Reactions

Phase 1: “Oxygenases” Oxidation, reduction, or hydrolytic reactions
Cytochrome P450s (CYPs) N and S oxidation, dealkylation, aliphatic 

and aromatic hydroxylation, deamination, 
dehalogenation

Flavin-containing monooxygenases Nitrogen, Sulfur, and P oxidation
Epoxide hydrolases Hydrolysis of epoxides
Phase 2: “Transferases” Conjugating with substrate
Sulfotransferases Addition of sulfate
UDP*-glucoronosyltransferases (UGTs) Addition of glucuruonic acid
Glutathione-S-transferases (GSTs) Addition of glutathione
N-acetyltransferases (NATs) Addition of acetyl group
Methyltransferases (MTs) Addition of methyl group

Reducing enzymes
Alcohol dehydrogenases Reduction of alcohols
Aldehyde dehydrogenases Reduction of aldehydes
NADPH**-quinone oxidoreductase (NQC) Reduction of quinines

UDP* uridine diphosphate; NADPH** reduced nicotinamide adenine dinucleotide phosphate.
Information on specific genetic polymorphisms of these enzymes can be found at http://www.
hgvbase.org/ (The Human Genome Variation Database), http://www.pharmgkb.org 
(Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB), http://www.ncbi.nlm.
nih.gov/sites/entrez?db=omim (Online Mendelian Inheritance in Man)
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Heterocyclic Amines

The major pathways in the metabolism of HAAs, such as those for 8-MeIQX and 
PhIP, have been well characterized (Turesky 2002). These compounds first undergo 
oxidation by CYP enzymes and, then, direct conjugation by UGTs or SULTs before 
being eliminated (Turesky et al. 1998; Stillwell et al. 1997). CYP1A2, which is 
principally expressed in the liver, is the major P450 involved in the oxidation 
of these HAAs (Turesky 2002). CYP 1A1 and 1B1 play a more minor role in 
the activation of these procarcinogens (Crofts et al. 1998; Shimada et al. 1999). 
N-hydroxylated metabolites can further undergo O-sulfonylation by SULT1A1 
which leads to the formation of N-sulfonyloxy esters that can undergo heterocyclic 
cleavage generating nitrenium ions, the ultimate carcinogens. N-hydroxy-HCAs 
can also undergo O-acetylation by NAT2 and, to a lesser extent, NAT1, also con-
tributing to the formation of nitrenium ions. Both NAT1 and NAT2 are expressed 
in intestinal cells (Hein 2002). In contrast, NAT1 and NAT2 are also involved in 
the detoxification of aromatic amines (to which tobacco smokers are exposed) by 
N-acetylation reaction.

Polycyclic Hydrocarbons

B[α]P, have been shown to be metabolized initially by CYP 1A1 or 1B1 to an epox-
ide [benzo(α)pyrene-7,8-epoxide] and, subsequently, hydrolyzed by microsomal 
epoxide hydrolase (EPHX1) to a dihydrodiol (benzo(α) pyrene-7,8-dihydrodiol) 
(Shimada et al. 1999; Rihs et al. 2005). CYP 1A1, 1B1, or 3A4 can then transform 
the dihydrodiol to a highly reactive diol-epoxide (benzo(α)pyrene-7,8-dihydrodiol-
9,10-epoxide, BPDE) that can covalently bind to DNA, creating a PAH adduct 
which may, if the DNA is not repaired, induce mutation, predominantly in the 
form of G-to-T transversions (McCoull et al. 1999). PAH-diol-epoxide metabolites can 
be detoxified by GSTs, particularly GSTM1 and GSTP1, which exhibit substrate 
specificity and are expressed in the colon (Sundberg et al. 1997; Hoensch 
et al. 2006).

N-Nitroso Compounds

NDMA, a common preformed nitrosamine in the diet, undergoes hydroxylation 
and subsequent hydrolysis to an aldehyde and a monoalkylnitrosamine that rear-
ranges and releases a carbocation that reacts with DNA bases (Loeppky 1999). The 
hydroxylation is catalyzed by CYP2E1 (Lin et al. 1999); other P450s, including 
CYP2A6, have also been implicated (Gonzalez and Gelboin 1993; Kamataki et al. 
1999).



Modulators of Biotransformation

There are large interindividual differences in the rates of metabolism of drugs and 
carcinogens. These differences are not completely understood, but some environ-
mental and genetic factors have been identified.

Environmental Modulators

Environmental factors that influence the metabolism of drugs and carcinogens 
in humans include diet, smoking, alcohol, drugs (e.g., phenobarbital, rifampicin, 
clotrimazole), herbal remedies (e.g., St. Johns wort), and exposure to environmen-
tal pollutants (e.g., PAHs, dioxin) (Conney 2003). Smoking is known to induce a 
number of CYP enzymes, such as 1A1, 1A2, and 1B1. Dietary factors, and the 
CYP enzymes that they induce, include caffeine (1A2), alcohol (2E1), well-done 
meat (1A1, 1A2). Increasing the ratio of protein to carbohydrate in the diet has also 
been shown to increase the oxidative metabolism of certain drugs (Conney 2003). 
In contrast, grapefruit is known to inhibit CYP3A4 and 1A2, whereas cruciferous 
vegetables (e.g., watercress and broccoli sprouts) inhibit CYP2E1 (Conney 2003; 
Cuthrell and Le Marchand 2006).

Cruciferous vegetables also induce Phase II enzymes. Consumption of water-
cress by smokers increased the excretion of glucuronidated metabolites of nicotine, 
suggesting that UGT activity is increased (Hecht et al. 1999). Consumption of 
Brussels sprouts for a week significantly increased plasma and intestinal GST 
levels in nonsmokers (Nijhoff et al. 1995). Butyrate, one of the major products of 
colonic microbial fermentation, has also been shown to induce GST in colon tumor 
cell lines and to protect against genotoxicity (Ebert et al. 2001). Recently, GST 
activity in the rectal mucosa has been shown to be affected by fruit and vegetable 
intake (Tijhuis et al. 2007). In future studies, GST activity in blood lymphocytes 
may serve as a convenient biomarker because it has been shown to correlate with 
GST activity in colon tissue (Szarka et al. 1995).

The mechanisms by which hydrolysis products of glucosinolates from  cruciferous 
vegetables induce Phase II enzymes are relatively well understood. Isothiocyanates 
are known to increase the transcription of genes that contain an antioxidant 
response element (ARE), such as GSTs and NQO (Higdon et al. 2007). Similarly, 
acid condensation products of indole-3-carbinol bind in the cytoplasm to the aryl 
hydrocarbon receptor (AhR) and complex with the AhR nucleus translocator (Arnt) 
protein to enter the nucleus (Safe 2001). This complex binds to specific DNA 
sequences, the xenobiotic response elements (XRE), and the transcription of the 
corresponding genes (e.g., CYP1A1, 1A2, 1B1) is enhanced.

It should be noted that the relationship between modulation of biotransforma-
tion enzymes and carcinogenesis is not straightforward. Although the induction 
of CYP enzymes that metabolize carcinogens usually inhibits carcinogenesis in 
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 experimental animals (presumably because detoxification pathways are enhanced 
to a greater extent than activation pathways), sometimes carcinogenesis is enhanced 
(Conney 2003). Furthermore, some enzyme inducers that inhibit carcinogenesis 
when given together with the carcinogen are tumor promoters when given after the 
carcinogen (Conney 2003).

Genetic Modulators

Inherited single-nucleotide polymorphisms (SNPs) or copy number variants 
(CNVs) in the genes coding for biotranformation enzymes often affect enzyme 
activity, either by affecting the expression of the gene or the transcription of the 
mRNA, or changing the amino acid sequence of the protein.

The human acetylator polymorphism was identified over 50 years ago when it 
was observed that the N-acetylation of isoniazid and sulfamethazine divided human 
populations into rapid, intermediate, and slow acetylator phenotypes. In recent 
years, over 25 human NAT1 and NAT2 alleles have been identified (Hein 2002), and 
the relationship of these alleles to phenotype has been relatively well characterized. 
Because NAT2*4 confers high enzyme activity and is the most common allele in 
the originally studied population (Japanese), it is defined as the reference allele. 
Most epidemiologic studies of NAT2 assessed three (M1, M2, M3) or four (+M4 in 
African Americans) alleles to individuals identified as having the slow phenotype. 
It has recently been shown that this approach results in some misclassification, and 
a more comprehensive genotyping method (with 12 variant alleles) has been pro-
posed (Hein 2002). Similarly, for NAT1, 1*4 is defined as the reference allele (Hein 
2002), and a comprehensive genotyping method has recently been proposed (Doll 
and Hein 2002). The NAT1*10 allele has been associated with a rapid-acetylator 
phenotype, both in vitro and in vivo (Bell et al. 1995; Hein 2002), but this has not 
been confirmed by recombinant expression studies (Hein 2002). Thus, the rela-
tionship between NAT1 genetic variants and phenotypic enzyme activity remains 
unclear.

Other biotransformation genes have been less comprehensively studied. Several 
genetic variants in CYP1A2 have been investigated for association with enzyme 
activity assessed indirectly by caffeine-metabolism phenotyping. One polymor-
phism in exon 1 (CYP1A2*1F) has been associated with a lower inducibility 
in smokers (Sachse et al. 1999). A 2455 A-to-G substitution polymorphism in 
CYP1A1, resulting in a Ile462Val substitution in the heme binding region of exon 
7, has been shown to be associated with an increased in vitro activity and/or induc-
ibility (Landi et al. 1994; Crofts et al. 1994; Kiyohara et al. 1996). Moreover, 
human studies that have used urinary 1-hydroxypyrene as a marker of PAH activa-
tion have shown higher 1-OHP excretion in individuals with the polymorphism 
(Wu et al. 1998; Merlo et al. 1998; Nerurkar et al. 2000). A G1294C substitution 
in the CYP1B1 gene is also thought to result in a more active enzyme variant 
(Shimada et al. 1999). As mentioned earlier, the regulation of CYPs1A1, 1A2, and 



1B1  expression is under the control of AhR, a ligand activated transcription factor 
(Swanson and Bradfield 1993). A polymorphism within the coding region of the 
AHR gene, which results in replacement of Arg by Lys at codon 554 (G1721A poly-
morphism), has been identified, in a Japanese population, with an allele frequency 
of 0.43 (Kawajiri et al. 1995) and shown to be associated with a threefold increase 
in induced CYP1A1 activity (Smart and Daly 2000).

The several-fold variation in EPHX1 activity in humans has partly been attrib-
uted to polymorphisms in exon 3 (Tyr113His) and exon 4 (His139Arg) of the 
EPHX1 gene that result in amino acid substitutions. EPHX1 activity has been 
shown in vitro to be reduced (about 40%) with 113His and increased (about 25%) 
with 139Arg, possibly due to altered stability of the protein (Hassett et al. 1994; 
Laurenzana et al. 1998). The combined high activity alleles for these polymor-
phisms have been associated with increased BPDE DNA adducts (Pastorelli et al. 
1998) and chromosomal aberrations (Cajas-Salazar et al. 2003).

The G638A polymorphism in SULT1A1 results in an amino acid change (Arg to 
His) and decreased sulfotransferase activity, as measured in platelets (Ozawa et al. 
1994). Functional polymorphisms have also been described in the CYP2A6 gene 
by studying individuals who were deficient in their ability to metabolize the drug, 
coumarin, a known substrate (Fernandez-Salguero et al. 1995). The CYP2A6*2 vari-
ant allele has a T-to-A substitution at codon 160 that leads to a leu-to-his change 
and reduced enzyme activity. The CYP2A6*3 allelic variant may have resulted from 
a gene conversion between the wild-type allele and the neighboring CYP2A7. It 
has been suggested that this polymorphism confers reduced activity because of 
sequence similarity to CYP2A7 which codes for an inactive enzyme (Fernandez-
Salguero et al. 1995).

Sequence variations in GST genes are common and have been shown to result 
in changes in isoenzyme levels, either through deletion (GSTM1 and GSTT1) or 
single nucleotide polymorphisms (e.g., GSTP1 and GSTA1). The activity of GST 
isoenzymes in the rectal mucosa has been shown to be affected by these polymor-
phisms (Tijhuis et al. 2007).

Genetic Polymorphisms in Biotransformation 
Genes and CRC Risk

Using the considerable variation that exists in the prevalence of the rapid- acetylation 
phenotype across populations, a recent ecological study showed that, in combina-
tion with meat intake, some significant proportion of the international variability in 
CRC incidence can be attributed to NAT2 genotype (Ognjanovic et al. 2006). Two 
recent reviews of past analytical studies of NAT phenotype or genotype and CRC 
or adenoma concluded that no consistent (main effect) association had been found 
(Brockton et al. 2000; Hein 2002). However, most studies that examined the com-
bined effects of dietary exposure and the NAT2 phenotype or genotype reported a 
stronger effect on CRC or adenoma risk for meat (Roberts-Thomson et al. 1996), 
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fried meat (Welfare et al. 1997), red meat (Chen et al. 1998), or a meat muta-
gen index (Kampman et al. 1999) in rapid/intermediate acetylators than in slow 
acetylators. Thus, these data provide some evidence for a joint effect of the NAT2 
rapid phenotype and meat carcinogens on adenoma and CRC. Fewer studies have 
included NAT1*10, but some have also suggested a stronger association for this 
allele among subjects exposed to HAAs (Brockton et al. 2000; Hein 2002). Finally, 
two studies that examined the joint effects of the CYP1A2 and NAT2 rapid pheno-
types found a marked increased risk for CRC in subjects who also were exposed 
to well-done meat (Lang et al. 1994; Le Marchand et al. 2001). Other studies have 
examined the interactions of NAT2 and NAT1 with smoking, but the results have 
been inconsistent (Brockton et al. 2000; Lilla et al. 2006). Unfortunately, all these 
studies were relatively small and lacked statistical power to test conclusively for 
interactions.

A smaller number of studies have examined other genes involved in meat 
carcinogen metabolism in relation to CRC. Individuals with the rapid CYP2A6 
phenotype or low activity GSTA1 genotype were found to be at increased risk, 
and those with the low activity SULT1A1 genotype at lower risk, of CRC (Nowell 
et al. 2002). The SULT1A1*2 (high activity) allele has also been associated with 
an increased CRC risk (Sun et al. 2005) and main-effect associations were also 
reported for SNPs in UGT1A6 and UGT1A7 (van der Logt et al. 2004; Hubner 
et al. 2006) for CRC and adenoma. These associations are consistent with the role 
of the corresponding enzymes in the biotransformation of HAAs or nitrosamines, 
although interactions with exposure to meat carcinogens were either not tested or 
not significant. Such measures are useful in strengthening the biological plausibil-
ity of these relationships. In this regard, the findings that two functional polymor-
phisms in CYP2E1 modify the associations of red meat and processed meats with 
rectal cancer provide additional evidence for an association of nitrosamines with 
CRC (Le Marchand et al. 2002b).

CYP1A1 has also been investigated in relation to CRC. A main effect, as well 
as an interaction with smoking, was suggested in several studies (Sivaraman et al. 
1994; Le Marchand 2002; Slattery et al. 2004). Moreover, smokers carrying both 
the CYP1A1 Val462 and NQO1 ser187 alleles have been reported to be at markedly 
increased risk of colorectal adenoma (Hou et al. 2005). The two EPHX1 alleles in 
codons 113 and 139 associated with high predicted enzymatic activity have been 
reported to increase risk for colorectal adenoma and CRC, particularly among 
smokers or individuals who regularly eat well-done meat (Cortessis et al. 2001; 
Huang et al. 2005); however, not all studies found these associations (Robien et al. 
2005; Mitroun et al. 2007).

A recent review of the literature on CRC and the GSTM1 and GSTT1 deletion 
polymorphisms concluded that no consistent main-effect association had been 
observed (Cotton et al. 2000). Similarly, studies that examined the combined effects 
of these polymorphisms and smoking have usually found no or weak interactions 
(Gertig et al. 1998; Cotton et al. 2000; Lüchtenborg et al. 2005; Huang et al. 2006). 
A cohort study in Singapore reported that intake of cruciferous vegetables [a source 
of isothiocyanates (ITC)] modified the risk of colorectal cancer in individuals with 



low GST activity (Seow et al. 2002): a 57% reduction in CRC risk was observed 
among high ITC consumers with both the GSTM1 and GSTT1 null genotypes. It 
remains to be seen whether such an effect can be detected in Western populations 
which typically have a markedly lower intake of cruciferous vegetables.

The most recent studies have examined the effects of a larger number of SNPs 
or genes. One study testing the associations of multiple SNPs in CYP genes and 
CRC reported a main-effect association for SNPs in CYP1A2 and CYP1B1 (Bethke 
et al. 2007). Another study of multiple combinations of CYP gene polymorphisms 
replicated the associations with CYP1A2 and CYP2E1 mentioned above and 
suggested that building a multigenic model might be a promising approach (Küry 
et al. 2007).

Conclusion and Research Needs

Many decades of laboratory research on chemical carcinogens have provided a 
rich foundation for the investigation of their biological effects and mechanisms of 
action in humans. Epidemiologic studies have confirmed that large segments of the 
population are exposed to significant doses of these compounds through diet and 
smoking, especially in developed countries where two-third of the world CRCs 
occur. An increase in red-meat and cigarette consumption, as seen among Japanese 
migrants to the US, and in Japan and Korea since the 1950s, has been followed 
by a rapid rise in CRC rates (Le Marchand 1999; Kono 2004). Case-control and 
prospective studies have provided suggestive evidence for the role of specific meat 
and tobacco carcinogens in the etiology of CRC. Evidence is also emerging for the 
additional role of environmental and genetic factors that enhance the biotransfor-
mation of these compounds into ultimate carcinogens. However, the available data 
are far from being conclusive. The challenges in measuring exposure to specific 
carcinogens in observational studies have been considerable. In addition, the stud-
ies conducted to date suffered from methodological limitations (insufficient sample 
size, lack of control for Type I error, confounding, etc.). The effects reported have 
been of low magnitude and, as a result, any potentially confirmatory studies need 
to be of much larger size. The complexity of the biological pathways involved is 
such that multiple biotransformation phenotypes, cofactors, and modifiers need to 
be considered, making these studies difficult to implement and expensive. Large 
existing prospective studies in which exposure information was collected prior to 
onset of disease should be particularly useful in minimizing recall and selection 
biases. New approaches using information on linkage disequilibrium need to be 
applied to scan comprehensively genetic variation at candidate loci for association 
with disease. Perhaps most importantly, biomarkers of long-term exposure need to 
be developed so that they can be related to cancer risk and/or used to validate ques-
tionnaire exposure information. Similarly, biomarkers of early biological effects 
(e.g., DNA adducts) that can be reliably measured on large numbers of samples 
are needed, since such measures have the advantage of integrating the effects of 
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 exposure, absorption, and individual biological response. These new tools and stud-
ies will ultimately improve our etiologic understanding of CRC, as well as that of 
other cancers, and may lead to new prevention and therapeutic approaches.
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Chapter 12
Calcium and Vitamin D

Roberd M. Bostick, Michael Goodman, and Eduard Sidelnikov

Introduction

Of the various agents tested in clinical trials against colorectal neoplasms, only two, 
calcium and nonsteroidal anti-inflammatory drugs (NSAIDs), have been found to 
have preventive efficacy, and calcium is the only one for which significant long-
term adverse consequences have not been demonstrated. Vitamin D alone, and in 
combination with calcium, is now being tested in a large, long-term, randomized, 
placebo-controlled chemoprevention trial of sporadic colorectal adenoma recur-
rence, and is of current intense interest. This chapter summarizes calcium and vita-
min D physiology and metabolism and the mechanistic, genetic, and epidemiologic 
evidence for these agents in preventing colorectal cancer.

Calcium and Vitamin D Physiology and Metabolism

Calcium

Calcium has a variety of functions in the body, including its “classical” functions 
in bone structure, current flow across excitable membranes, fusion and release of 
storage vesicles, and muscle contraction, and its “nonclassical functions” such as 
intracellular regulation of various enzymes, and regulation of cell proliferation and 
differentiation (Friedman 2006; Bringhurst et al. 2007; Bostick 2001; Chakrabarty 
et al. 2003). Tight regulation of calcium within narrow, low intracellular and high 
extracellular ranges is essential for human life, and is an intricate, homeostatic 
dance involving calcium intake, calcium absorption, and discharge from the intes-
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tines, deposition and release from bone, and urinary filtering and excretion involv-
ing parathyroid hormone (PTH) and vitamin D intake, synthesis, and metabolism.

Calcium, present in a variety of foods, enters the body only through the  intestine 
(Friedman 2006; Bringhurst et al. 2007). Active, vitamin D-dependent, transcellu-
lar transport occurs in the proximal duodenum and, to progressively lesser extent, 
in the jejunum and ileum; facilitated diffusion through the intercellular spaces 
throughout the small intestine accounts for the majority of the total calcium uptake. 
These processes also operate to a lesser extent in the large intestine. On average, 
about 30% of calcium consumed is absorbed, and the remainder is excreted in feces 
(Bostick 2001). Nonabsorbed fecal stream-calcium can bind with various com-
pounds, such as bile acids, and/or be excreted as free calcium (Bostick 2001).

Calcium and the calcium-sensing receptor (CaSR), which transduces  extracellular 
calcium binding into a variety of intracellular responses, appear to function together 
to regulate diverse cellular processes in a variety of cell types (Lamprecht and Lipkin 
2001). Examples include roles in cell-cycle regulation and cell–cell and cell–matrix 
adhesion (Lamprecht and Lipkin 2001). Also, the CaSR, more than a calcium sensor, is 
a fairly broad spectrum sensor of small cationic molecules capable of transducing signals 
in response to heavy metals and cationic amino acids (Chattopadhyay and Brown 2006). 
As a probable amino acid sensor, the CaSR may also participate in the control of digestion, 
absorption, appetite, and somatic metabolism (Chattopadhyay and Brown 2006).

Human colonocytes proliferate only in a low calcium environment, and even 
modest increases in calcium concentration reduce proliferation and induce dif-
ferentiation. Although plasma-free calcium levels are tightly regulated, calcium 
concentration generally increases from colonic crypt base to lumen, corresponding 
to crypt colonocyte proliferation and differentiation (Rodland 2004).

Vitamin D

Vitamin D has both “classical” endocrine functions (i.e., related to calcium 
homeostasis) and “nonclassical” autocrine/paracrine functions (i.e., not related to 
calcium homeostasis or functions) that operate through genomic (via the nuclear 
vitamin D receptor (VDR) ) and nongenomic (“rapid responses” not involving the 
nuclear VDR) mechanisms (Lips 2006; Norman 2006; Holick 2007). The nonclas-
sical autocrine/paracrine functions may be most relevant to colon carcinogenesis 
and prevention. The VDR is expressed in many human tissues, including the colon. 
These tissues also express CYP27B1 and CYP24 enzymes, which, respectively, 
synthesize and degrade the most potent activator of VDR, 1α,25-(OH)

2
-vitamin D 

(collective term for 1α,25-(OH)
2
-vitamins D

2
 and D

3
). Beyond calcium homeostasis, 

vitamin D has a role in cell-cycle regulation, promotes bile-acid degradation, and 
influences growth-factor signaling, inflammation, and immune function.

There are two precursors to active vitamin D hormones, provitamin D
3
 and 

provitamin D
2
 (Friedman 2006; Bringhurst et al. 2007; Holick 2007). Provitamin D

3
 

is synthesized in the skin, where, on exposure to ultraviolet radiation, it is converted 
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to vitamin D
3
, which may also be obtained from a few dietary sources. Provitamin D

2
 

is present only in plants, and vitamin D
2
 exposure in humans is only from the diet and 

vitamin supplements. Because there is no practical difference between the antirachitic 
properties of vitamin D

2
 and vitamin D

3
 (the major circulating form) in humans, “vita-

min D” is traditionally used as a collective term for vitamins D
2
 and D

3
. Vitamin D 

is transported through the circulation to the liver, where it is hydroxylated at the 25 
position to 25-OH-vitamin D. This reaction is catalyzed by one or more enzymes 
with 25-hydroxylase activity, including CYP27A1, CYP2D6, CYP2R1, CYP2C11, 
CYP3A4, CYP2D25, and CYP2J3. 25-OH-vitamin D can be stored in the liver or be 
distributed widely via the circulation. Because 25-hydroxylation is not closely regu-
lated, 25-OH-vitamin D levels reflect overall vitamin D status from combined dietary 
and sunlight sources. Over 95% of 25-OH-vitamin D in serum consists of 25-OH-
vitamin D

3
, which has a circulating half-life of about 20 days. Body fat is a large stor-

age reservoir for 25-OH-vitamin D. In various tissues, 25-OH-vitamin D undergoes 
a second hydroxylation catalyzed by CYP27B1 at the 1α position to form 1α,25-
(OH)

2
-vitamin D

3
, which is 100- to 1,000-fold more potent than 25-OH-vitamin D. 

1α,25-(OH)
2
-vitamin D produced in the kidneys is released into the circulation for its 

classical endocrine function in bone and calcium homeostasis, whereas 1α,25-(OH)
2
-

vitamin D, produced in other tissues, exerts its nonclassical autocrine/paracrine effects 
and is not released into the circulation because its synthesis is balanced with degrada-
tion (Fraser 1995). In contrast to 25-hydroxylation, endocrine and autocrine/paracrine 
1α-hydroxylation is tightly regulated, and 1α,25-(OH)

2
-vitamin D is short lived 

(hours to a few days); consequently, serum levels of 1α,25-(OH)
2
-vitamin D do not 

reflect vitamin D status except during clear conditions of deficiency or excess (Holick 
1990). CYP24, expressed in many vitamin D target tissues, initiates the degradation of 
25-OH-vitamin D and 1α,25-(OH)

2
-vitamin D to their excretory metabolites. Calcium 

can increase CYP24 gene transcription, but the major inducer is 1α,25-(OH)
2
-vitamin 

D, thus promoting its own inactivation and limiting its biologic effects.
For its nonclassical, autocrine/paracrine functions, vitamin D modulates more 

than 200 responsive genes with a wide array of functions in a cell- and tissue- specific 
manner (Ebert et al. 2006; Yee et al. 2005). Functions identified to date include 
roles in regulating cell proliferation, differentiation, and apoptosis; growth-factor 
signaling; protection against oxidative stress; bile-acid and xenobiotic metabolism; 
immunomodulation; cell adhesion; DNA repair; and angiogenesis.

1α,25-(OH)
2
-vitamin D is thought to act through genomic and nongenomic mecha-

nisms (Lips 2006; Norman 2006; Holick 2007; Reichrath et al. 2007). Genomic effects 
are mediated via binding to the nuclear VDR. 1α,25-(OH)

2
-vitamin D, being a rela-

tively small, lipophilic molecule that easily penetrates the cell membrane, is taken up 
by the cell by simple diffusion and binds to the VDR, then the VDR binds to target 
DNA sequences as a heterodimer with the retinoid X receptor (RXR), recruiting a 
series of coactivators resulting in the induction of target gene expression. Nongenomic 
effects, or rapid responses (Lips 2006; Norman 2006; Holick 2007), may work 
through a plasma membrane receptor (apparently the VDR in a second location) 
and second messengers involved in regulation of voltage-gated calcium channels, 
opening of chloride channels, modulation of  protein kinase  activity, activation of 
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mitogen- activated protein kinases, and a role in cell-cycle  regulation. The  nongenomic 
 pathways lead to the onset of rapid biological responses (seconds to 1–2 min), includ-
ing inhibition of cell proliferation and stimulation of cell differentiation.

Mechanisms of Calcium and Vitamin D 
in Colorectal Carcinogenesis

As described earlier, calcium and vitamin D are highly physiologically inter-related, 
and the growing list of putative mechanisms by which they may reduce risk of color-
ectal neoplasms reflects these inter-relationships. The importance of the intestinal 
tract in calcium homeostasis and the abundance of CaSRs and VDRs in the colon 
suggest that substantial and/or prolonged calcium and vitamin D exposures outside 
optimal ranges may adversely affect the colon. Modern exposures in industrialized 
countries to calcium and vitamin D are quite low by evolutionary and historical 
standards. The estimated average intake of calcium in Western diets is 740 mg 
daily (Bostick 2001), yet the calcium intake of all mammalian species (including 
chimpanzees) other than modern human is equivalent to a human intake of 1,500–
2,000 mg daily, an amount that corresponds to the estimated intake of Paleolithic 
man (wild plant foods are high in calcium, whereas plants grown and marketed by 
modern industrial agricultural methods are low in calcium) (Bostick 2001). In con-
trast to the increasingly indoor lifestyles in industrialized countries, humans during 
the Paleolithic period were primarily outdoor gatherer-hunters exposed to sunlight 
most days, year round. Dark-skinned people who spend most of their time outdoors 
in sub-Saharan latitudes maintain 25-OH-vitamin D blood levels of about 150 nmol 
L−1* (Hollis 2005), and various lines of evidence suggest that optimal levels may 
be 80–250 nmol L−1, levels, achievable by total vitamin D exposures of 25–100 μg† 
daily (averaged over a year) (Holick 2007; Hollis 2005; Heaney 2005). In the United 
States (US) and Europe, half or more of the population maintains 25-OH-vitamin D 
blood levels below this range, and median dietary intakes of vitamin D in the US are 
around 2.5 μg daily. Both calcium and vitamin D influence bile-acid metabolism, 
affect genes/proteins in colon carcinogenic pathways, and modulate cell prolifera-
tion and differentiation, all thought to be important in colon carcinogenesis.

Calcium

The three most prominent hypotheses for protective effects of calcium against color-
ectal cancer involve (1) bile-acid scavenging, (2) direct effects on the cell cycle, and 
(3) modulation of E-cadherin and β-catenin expression via the CaSR. These  potential 

* nmol L−1 = μg/L × 2.5; μg/L = ng/ml.

† μg = IU/40.
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mechanisms are probably complementary in reducing mutations and promoting safer 
patterns of cell-cycle events in colon crypt cells, as well as in the expression of vari-
ous genes regulating the normal structure and function of the colon crypt.

Bile Acids

Bile acids, produced in response to fat intake and digestion, are mutagenic and 
otherwise damage cells, provoking compensatory hyperproliferation. Bile acids 
can be neutralized in the gut lumen by free calcium when calcium intake reaches 
1,500–2,000 mg daily (Bostick 2001). In a corollary to this hypothesis, if calcium 
intake is high enough to bind bile acids and prevent cell injury, it may also prevent 
the consequent inflammatory response, thus suppressing COX-2 and promoting 
APC expression, which in turn suppresses proliferation (Boyapati et al. 2003).

Direct Effect on Cell Cycle

The hypothesis here, based on in vitro studies, is that free gut calcium has a 
direct effect on cell cycle, decreasing proliferation and increasing differentiation 
by as-yet-unclear mechanisms, perhaps involving interaction with E-cadherin 
(a  calcium-dependent cell-adhesion molecule affected by the wnt pathway), cAMP, 
calmodulin, tyrosine kinase, ornithine decarboxylase, and/or the CaSR (Bostick 
2001; Chakrabarty et al. 2003).

Calcium and the CaSR

The CaSR transduces extracellular calcium binding into a variety of intracellular 
responses, including pathways involved in proliferation, differentiation, and apop-
tosis control (Lamprecht and Lipkin 2001). This hypothesis, then, may also be 
the mechanism for the direct effect on cell cycle, but with added benefits for cell 
adhesion: the CaSR regulates colon epithelial cell proliferation and differentiation 
in vitro by upregulating E-cadherin expression and downregulating β-catenin bind-
ing to TCF4 (Chakrabarty et al. 2003). In a rat model, colon crypt epithelial cells 
acquire CaSR expression as they migrate and differentiate toward the apex of the 
crypt, and both calcium and 1α,25-(OH)

2
-vitamin D

3
 stimulate the promoter of 

the CaSR gene in an additive manner (Bhagavathula et al. 2005). Although free 
calcium levels in plasma are tightly regulated, there is a substantial calcium gradient 
in the colon crypt, with concentrations increasing from base to lumen (Rodland 
2004). The gradients of calcium concentration and CaSR expression correlate 
with colonocyte proliferation and differentiation, and CaSR expression is inversely 
associated with differentiation in colorectal carcinomas. Thus, the CaSR and extra-
cellular calcium may function together, at least in part, by suppressing β-catenin/
TCF4 activation to tightly regulate colon epithelial cell growth and differentiation 
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programs; disruption of CaSR expression or function may circumvent normal 
proliferation, differentiation, and cell–cell and cell–matrix adhesion, thus promot-
ing carcinogenesis (Lamprecht and Lipkin 2001; Peters et al. 2004a; Kallay et al. 
2000). The CaSR may also serve a broader role as a “nutrient receptor,” recognizing 
nutrients (e.g., amino acids) other than divalent cations (Brown 2005), thus playing 
additional roles in reducing risk of colorectal neoplasms.

Vitamin D

The four most prominent hypotheses for the role of vitamin D in protecting against 
colorectal cancer involve (1) bile-acid catabolism, (2) direct effects on the cell 
cycle, (3) growth-factor signaling, and (4) immunomodulation. As with calcium, 
these potential mechanisms are probably complementary.

Bile Acids

Vitamin D, as well as the secondary bile acid, lithocholic acid (LCA), can activate the 
VDR, which induces expression in vivo of CYP3A4, which, in turn, detoxifies LCA 
in the intestine and liver (Makishima et al. 2002). Such increased bile-acid detoxi-
fication may yield the same result as bile-acid neutralization by calcium: reduced 
DNA mutation, cell damage, compensatory hyperproliferation, and inflammation.

Direct Effect on Cell Cycle

Vitamin D is thought to protect against colorectal neoplasia by reducing epithe-
lial cell proliferation, inducing differentiation, and promoting apoptosis (Bostick 
2001), activities that are mediated in part by the VDR (Lips 2006; Norman 2006). 
These activities probably occur through colon tissue autocrine/paracrine synthesis 
of 1α,25-(OH)

2
-vitamin D. Ligand-bound VDR can arrest cells in G1, probably 

through modulating cell-cycle proteins such as cyclin D1 (van den Bemd et al. 
2000; Haussler et al. 1998; Moffatt et al. 2001). The apoptotic effects of vitamin D 
may occur through inducing bak and TGFb or inhibiting bcl-2 expression (van den 
Bemd et al. 2000; Diaz et al. 2000). Vitamin D also can reduce expression of c-myc, 
c-fos, and c-jun oncogenes, and suppress telomerase and angiogenesis (van den 
Bemd et al. 2000; Haussler et al. 1998; Tong et al. 1998, 1999).

Growth-Factor Signaling

Vitamin D signaling and several growth-factor pathways (insulin, insulin-like 
growth factor, growth hormone, epidermal growth factor, vascular epithelial growth 
factor, and transforming growth factor and their relevant binding proteins and 
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receptors) interact in ways that result in growth suppression. Vitamin D: interferes 
with epidermal growth-factor (EGF) signaling (perhaps by reducing expression of 
the EGF receptor) (van den Bemd et al. 2000; Tong et al. 1998; Tong et al. 1999); 
reduces expression of the insulin-like growth factor-1 (IGF-1) receptor (van den 
Bemd et al. 2000); and inhibits IGF-1 signaling generally (Xie et al. 1999). In vitro, 
although vitamin D has been shown not to affect total secreted TGFβ, it increased 
the amount of the active form (Chen et al. 2002). Further, 1α,25-(OH)

2
-vitamin D

3
: 

sensitized colon-cancer cell lines to TGFβ growth inhibition; increased IGF-IIR 
expression, increasing activation of latent TGFβ; and, in combination with TGFβ, 
reduced cell proliferation. SMAD3, a downstream protein in the TGFβ signaling 
pathway, is a coactivator of the VDR and positively regulates the vitamin D signaling 
pathway (Harris and Go 2004).

Immunomodulation

Vitamin D appears to have important effects on immunity and control of inflamma-
tion (Yee et al. 2005; Reichrath et al. 2007; Cannell et al. 2006; Cantorna 2006) that 
may be relevant to colon carcinogenesis and prevention. The colon is a reservoir 
for microbes, and inflammation is an established risk factor for colorectal cancer. 
Various cell types involved in immunologic reactions express VDR and CYP27B1. 
Local 1α,25-(OH)

2
-vitamin D synthesis in immune cells is considered critically 

important for regulating and controlling immune responses. The role of vitamin D 
in immunomodulation is reviewed in detail elsewhere (Yee et al. 2005; Reichrath 
et al. 2007; Cannell et al. 2006; Cantorna 2006). The growing list of vitamin-D-
responsive inflammation-control genes includes those for IL-2, IL-4, IL-5, IL-6, 
IL-10, IL-10R, IL-12, IFN-γ, lymphotoxin, TNFα, and GM-CSF. In prostate-
cancer cell cultures, 1α,25-(OH)

2
-vitamin D

3
 decreased COX-2 expression, while 

increasing 15-PGDH and inhibiting EP2 and FP prostaglandin receptor expression. 
This area of research is new and it has not been directly linked to colorectal car-
cinogenesis and prevention; thus, the relative contribution, to colon carcinogenesis, 
of vitamin D effects on immunomodulation is currently unclear.

Epidemiology of Calcium, Vitamin D, and Colorectal 
Neoplasms

Human epidemiologic studies are motivated to a large extent by the  mechanistic 
 evidence discussed in previous sections and by the results of animal  experiments, 
which have been almost entirely consistent in finding that calcium and  vitamin D 
reduce colorectal tumorigenesis (Wargovich and Baer 1989). There have been 
 numerous observational studies of calcium and vitamin D and risk of colorectal 
 neoplasms, but few addressed interactions of these agents with  interindividual genetic 
differences, and there have been few clinical trials. In this section, the  epidemiologic 
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evidence for modulation of colorectal cancer risk is summarized, first for calcium 
and then for vitamin D. For each agent, we first review their main-effect associa-
tions (i.e., associations not involving interactions with other agents or genetic poly-
morphisms) with colorectal cancer and then with colorectal adenoma, organized 
by type of epidemiologic study, followed by a review of studies of associations of 
genotypes of relevant genes in calcium or vitamin D metabolism and physiology 
(alone and in combination with calcium or vitamin D) with colorectal neoplasms. 
This is followed by a review of studies that investigated potential calcium-vitamin D 
interactions.

Calcium

Observational Studies of Colorectal Cancer and Calcium

Data from the numerous observational studies – especially from the prospective 
cohort studies – are consistent with the hypothesis that higher intakes of calcium 
reduce risk of colorectal cancer. Of 42 analyses of data from analytic observational 
studies of calcium and colorectal cancer (22 case-control studies and 20 pro-
spective cohort studies), 30 (71%) found inverse associations, of which 16 were 
statistically significant, three found null associations, and nine found increased 
risk with higher intake, none of which was statistically significant. There is more 
consistency among the prospective cohort than the case-control studies: of the 
20 cohort studies, 18 (90%) found inverse associations, of which eight were sta-
tistically significant. A pooled analysis of 10 cohort studies from five countries 
reported a statistically significant 22% reduction in risk for incident colorectal 
cancer among those consuming the highest versus the lowest levels of calcium 
(Cho et al. 2004). Since that pooled analysis, five new prospective studies of 
calcium and colorectal cancer have been reported, four of which reported relative 
risks (RRs) between 0.67 and 0.74 (of which three were statistically significant) 
(Flood et al. 2005; Kesse et al. 2005; Larsson et al. 2006; Park et al. 2007) and 
one reported a statistically nonsignificant RR of 1.2 (Lin et al. 2005). The propor-
tions of inverse associations are comparable for men and women and for colon 
and rectal cancers.

Observational Studies of Colorectal Adenoma and Calcium

The results of the relatively fewer calcium and colorectal adenoma studies support 
those of the colorectal cancer studies. Of 11 observational studies of calcium and 
colorectal adenoma (eight primary case-control studies, two case-control studies 
nested in cohort studies, and one prospective study in a clinical-trial cohort), nine 
(82%) found inverse associations, of which one was statistically significant, and 
two found statistically nonsignificant increases in risk with higher intake.
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Calcium and Clinical Trials of Biomarkers

Of at least 17 trials of calcium and colorectal epithelial cell proliferation, most 
were pilot studies with significant methodological limitations that largely reported 
beneficial responses (Bostick 1997). There are only two full-scale clinical trials 
(Baron et al. 1995; Bostick et al. 1995). One found no evidence for a reduction in 
the overall proliferative rate, but a marked, statistically significant downward shift 
(normalization) of the colon-crypt proliferative zone (Bostick et al. 1995). The second, 
an adjunct study to a calcium and adenoma recurrence trial (the Calcium Polyp 
Prevention Study, see later), found no effect on proliferation (Baron et al. 1995); 
however, in contrast to the first study, this study had poor reader reliability for pro-
liferation markers (r = 0.41 vs. 0.94 in the first study). Three small, pilot trials of 
calcium and biomarkers of apoptosis and cell differentiation reported inconclusive 
results (Holt et al. 1998). Several small trials investigating the calcium/bile-acid 
hypothesis found that calcium decreased the concentration and excretion of free 
bile acids and the cytotoxicity of fecal water (Alberts et al. 1996; Glinghammar 
et al. 1997; Govers et al. 1996; Lupton et al. 1996).

Calcium and Clinical Trials of Colorectal Neoplasms

There have been five preliminary and two major clinical trials of calcium and 
adenoma recurrence, and one major trial of prevention of incident colorectal cancer. 
In a US multicenter, randomized, double-blind, placebo-controlled clinical trial 
(n = 913) of calcium supplementation and adenoma recurrence (the Calcium Polyp 
Prevention Study) (Baron et al. 1999), persons with at least one adenoma at baseline 
colonoscopy were randomized to either placebo or 1,200 mg of elemental calcium 
daily. Adenomas detected after a 1-year follow-up colonoscopy up to and including 
a 4-year follow-up colonoscopy were considered recurrent. The RR for any meta-
chronous adenoma was 0.85 (95% confidence interval (95% CI: 0.74–0.98) ); for 
the average number of adenomas, 0.76 (95% CI: 0.60–0.96); and for advanced ade-
nomas, 0.46 (95% CI: 0.26–0.83) (Wallace et al. 2004). After 5 years of post-trial 
follow-up of 597 participants, the decreased risk for metachronous adenomas per-
sisted (RR: 0.63, 95% CI: 0.46–0.87) (Grau et al. 2007). A smaller European trial 
(n = 665) tested the effect of 2,000 mg of elemental calcium daily on metachronous 
adenoma, and found a statistically nonsignificant reduction RR: 0.66, 95% CI: 
0.38–1.17) (Bonithon-Kopp et al. 2000). A meta-analysis of all seven adenoma 
recurrence trials yielded a summary RR of 0.80 (95% CI: 0.68–0.93) (Shaukat 
et al. 2005). Finally, in the Women’s Health Initiative randomized, double-blind, 
placebo-controlled clinical trial (n = 36,282 postmenopausal women) of 1,000 mg 
of elemental calcium plus 10 μg of vitamin D versus placebo over an average of 
7 years, no prevention of incident, invasive colorectal cancers was found (RR: 1.08, 
95% CI: 0.86–1.34) (Wactawski-Wende et al. 2006). However, these results are dif-
ficult to interpret because of the low adherence in the active treatment group (only 
60% took 80% or more of their pills) and the high rate of drop-in in the  placebo 
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group (69% took calcium and vitamin D supplements on their own,  resulting in 
intakes twice those of the national averages), the low doses administered, and the 
short length of follow-up for such a downstream endpoint. In summary, higher 
calcium intakes reduce metachronous colorectal adenomas, but there has been no 
adequate test of whether it can reduce incidence of colorectal carcinoma.

Observational Studies of CaSR Gene Polymorphisms 
and Colorectal Neoplasms

The human CaSR gene, located on chromosome 3q13.3-q21, has eight exons, of 
which exons 2–7 encode the 1,078 amino acid CaSR protein (Harding et al. 2006; 
Heath et al. 1996). Two promoter regions, which contain vitamin D response ele-
ments (VDREs), and more than 600 genetic variants have been found. Some rare 
genetic variants that lead to amino acid substitutions that alter the CaSR function, 
cause some familial calcium homeostasis-related disorders. Three single nucleotide 
polymorphisms (SNPs) in exon 7 (A986S, G990R, and Q1011E) that cause amino 
acid changes but do not appear to cause overt calcium homeostasis disturbances, 
were investigated in relation to risk for colorectal neoplasms in two studies (Speer 
et al. 2002; Peters et al. 2001). In a small (n = 56 cases, 112 controls), hospital-
based case-control study in Hungary, no association was found between CaSR 
A986S genotypes and rectal cancer (Speer et al. 2002). In a large (n = 716 cases 
and 729 controls), sigmoidoscopy-based case-control study of distal colorectal 
adenomas nested in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening 
Trial (PLCO trial), no statistically significant associations between these three 
CaSR genotypes and distal adenomas were found (Peters et al. 2001); however, 
the statistically nonsignificant results suggested that there may be lower risk for 
advanced adenomas with one diplotype (i.e., two haplotypes in combination) alone 
and in combination with higher calcium intake.

Studies of Calcium in Interaction with Other Agents, Risk Factors, 
and Genotypes in Relation to Risk of Colorectal Neoplasms

Possible interactions of calcium with various other agents, risk factors, and 
polymorphisms of genes other than CaSR have been reported. Studies of poten-
tial interactions of calcium with vitamin D are reviewed later. With the bile-acid 
hypothesis in mind, a few studies investigated possible interactions of calcium 
with fat intake; however, their sample sizes were too small to investigate interac-
tions adequately and the results have been inconsistent, thus providing no solid 
answers. Based on the bile-acid/inflammation hypothesis, it was hypothesized 
that the calcium-colorectal neoplasm association may be modified by NSAIDs 
(Boyapati et al. 2003). In support of this, a colonoscopy-based case-control study 
of incident, nonfamilial colorectal adenomas (n = 177 cases, 228 controls) in North 
Carolina reported a marked reduction of risk with higher calcium intakes among 
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those not using NSAIDs (odds ratio (OR): 0.36, 95% CI: 0.15–0.85), but not among 
NSAID users (Boyapati et al. 2003). Similar results were seen in secondary analy-
ses of the Calcium Polyp Prevention Study: among 832 participants, the RR for 
 metachronous adenoma with calcium was 0.64 (CI: 0.46–0.90) among those who 
did not take aspirin and/or NSAIDs, but 0.93 (CI: 0.73–1.19) among those who did 
(Grau et al. 2005).

Because of the inter-relationships of calcium and vitamin D, potential interac-
tions of calcium with VDR polymorphisms have been investigated in a few studies. 
In a case-control study of colorectal cancer (n = 217 cases, 890 controls) nested in 
a large cohort of Singapore Chinese (Wong et al. 2003), associations of VDR FokI 
genotypes with colorectal cancer differed, depending on levels of calcium intakes, 
with the lowest risk seen among persons with the FF genotype who had high  calcium 
intakes. In a health maintenance organization population-based case-control study 
of colorectal adenoma in Los Angeles, California (n = 373 cases, 394 controls), a 
VDR FokI genotype-calcium interaction was also suggested;  however, the lowest 
risk for large adenomas was seen among persons with the FF genotype who also 
had low calcium intakes (Ingles et al. 2001). In a population-based case-control 
study of colorectal adenoma in Maryland (n = 239 cases, 228 controls), a modest 
inverse association between total calcium intake and adenomas did not differ by 
FokI VDR genotype (Peters et al. 2001). Among 803 participants in the Calcium 
Polyp Prevention Study, there was no evidence that the effect of calcium sup-
plementation on adenoma recurrence was modified by FokI VDR polymorphisms 
(Grau et al. 2003).

In a population-based case-control study of incident colon and rectal cancer 
(n = 2,306 cases, 2,749 controls) there was evidence that risk for colon, but not 
rectal, cancer was lowest in persons homozygous for both the VDR short Poly(A) 
polymorphism (SS) and the BsmI B polymorphism (BB) who also had high 
 calcium intakes (Slattery et al. 2004b). In a colonoscopy-based case-control study 
of colorectal adenoma in Minneapolis, Minnesota (n = 393 cases, 406 controls) 
(Kim et al. 2001), risk tended to be lowest among those with the BsmI BB  genotype 
who had low calcium intakes. However, a colonoscopy-based case-control study 
of  colorectal adenoma in North Carolina (n = 177 cases, 228 controls) found 
evidence for  lowest risk among those with a VDR BsmI b allele who had higher 
calcium intakes (Boyapati et al. 2003). In the same study population, associations 
of  calcium intake with adenomas did not differ according to VDR Tru9I genotypes 
(Gong et al. 2005a). Among 803 participants in the Calcium Polyp Prevention 
Study, there was no evidence that the effect of calcium supplementation on  adenoma 
 recurrence was modified by VDR TaqI polymorphisms (Grau et al. 2003).

Based on knowledge of the two major molecular pathways to colorectal can-
cer, the APC-β-catenin-Tcf pathway (wingless pathway) and the mismatch repair 
pathway, a calcium association with colorectal neoplasms has been  investigated in 
conjunction with APC, CCND1 (the cyclin D1 gene, a downstream transcription target 
of the APC pathway), K-ras, and microsatellite instability (MSI). The only study 
to report a calcium-APC genotype interaction, a case-control study of colorectal 
cancer in Portugal (n = 196 cases, 200 controls (a convenience sample of “healthy 
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blood donors and health care workers”) ) reported evidence for an interaction of 
 calcium with APC D1822V genotypes in which risk was lowest in persons with a 
high calcium intake and at least one V allele (Guerreiro et al. 2007). A colonos-
copy-based case-control study of colorectal adenoma in North Carolina (n = 161 
cases, 213 controls) reported evidence for a calcium-CCND1 A870G genotype 
interaction in which risk was lowest for persons with high calcium intakes and 
the GG genotype (Lewis et al. 2003). In a population-based case-control study of 
invasive colorectal cancer in North Carolina (n  = 486 cases, 1,048 controls), an 
inverse association between calcium and colorectal cancer did not differ by MSI 
status (Satia et al. 2005). In a case-case (n = 108) analysis of colorectal cancer in a 
Mediterranean population, relative to persons with tumors without K-ras mutations, 
there was a reduced risk for tumors with K-ras mutations in association with higher 
calcium intake (Bautista et al. 1997); however, in a colonoscopy-based case-control 
study of colorectal adenoma in the Netherlands (n = 534 cases, 704 controls), higher 
calcium intake was associated with reduced risk for adenomas without K-ras muta-
tions, but not for adenomas with K-ras mutations (Wark et al. 2006). There have 
been too few studies of calcium in relation to colon carcinogenesis pathway genes 
to draw any conclusions about differential associations by colon-carcinogenesis-
pathway genotypes or acquired mutations.

Vitamin D

Based on clinical and ecologic observations of a correlation between sun  exposure 
and colorectal cancer incidence, Garland and Garland proposed, in 1980, that 
vitamin D insufficiency may increase colon-cancer incidence and mortality (Garland 
and Garland 1980). Several ecologic studies have confirmed a correlation 
between sunlight exposure and colorectal cancer occurrence. Beyond these early 
 hypothesis-generating studies, there is now a considerable and evolving literature 
on a vitamin D-colorectal neoplasms association; it includes studies of associa-
tions of colorectal neoplasms with questionnaire-based measures of dietary (food 
and supplements) vitamin D intake, circulating levels of vitamin D metabolites, and 
VDR gene polymorphisms.

Observational Studies of Colorectal Cancer and Vitamin D

Of 30 reported analytic observational studies of vitamin D and colorectal cancer 
(17 case-control studies and 13 prospective cohort studies), 20 (67%) found inverse 
associations, of which six were statistically significant, six found null associations, 
and four found statistically nonsignificant evidence of higher risks with higher 
intake. A pooling project of 5 (of 10) cohort studies with total vitamin D intake 
(diet plus supplements) assessment, reported, in 2004, a statistically nonsignificant 
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7% reduction in risk for incident colorectal cancer among those consuming the 
highest levels of vitamin D (blood levels were not assessed) versus those consum-
ing the lowest levels (Cho et al. 2004). The risk estimates from three subsequent 
prospective cohort studies (Kesse et al. 2005; Park et al. 2007; Lin et al. 2005) were 
similar to that pooled estimate. The proportions of inverse associations are compa-
rable for men and women and for colon and rectal cancers.

Because studies that investigated dietary vitamin D did not account for vitamin 
D exposure from sunlight (which provides 90–95% of vitamin D for most people 
(Holick 2007), and because vitamin D fortification of milk products (the primary 
source of dietary vitamin D in the US) may be inconsistent (Chen et al. 2007), there 
is probably serious error and misclassification of total vitamin D exposures based 
on diet alone which almost certainly biases findings toward the null. Whereas only 
15 of 25 (60%) studies that assessed dietary vitamin D found inverse associations 
(of which five were statistically significant), all five studies that assessed vitamin D 
exposure with 25-OH-vitamin D blood levels found inverse associations (Wactawski-
Wende et al. 2006; Braun et al. 1995; Feskanich et al. 2004; Garland et al. 1989; 
Tangrea et al. 1997) (of which one was statistically significant (Wactawski-Wende 
et al. 2006). This greater consistency for the  25-OH-vitamin-D-blood level studies 
may be remarkable given the low blood levels in the studies (mean levels in controls 
were generally less than 82 nmol L−1 – now considered by many to be the lower 
limit for vitamin D sufficiency (Holick 2007; Hollis 2005; Heaney 2005). However, 
given that there have been only five studies that assessed 25-OH-vitamin D blood 
levels, this greater proportional “consistency” should be viewed as only suggestive. 
There have been only six studies that investigated blood levels of 1α,25-(OH)

2
-

vitamin D with colorectal neoplasms; however, as might be expected from this 
tightly regulated, poor indicator of vitamin D exposure, the results have been null.

Observational Studies of Colorectal Adenoma 
and Vitamin D as a Main Effect

Of 21 reported analyses of data from analytic observational studies of vitamin 
D and colorectal adenoma (12 primary case-control studies, four case-control 
studies nested in prospective cohort studies, and five prospective studies in 
clinical-trial cohorts), 12 (57%) found inverse associations of which three were 
statistically significant, seven found null associations, and two found statistically 
nonsignificant increased risk. Eight of 15 (53%) that assessed dietary vitamin 
D intakes found inverse associations, of which one was statistically significant, 
whereas four of six (67%) studies that assessed 25-OH-vitamin D blood levels 
found inverse associations, of which two were statistically significant (Peters 
et al. 2001; Grau et al. 2003; Jacobs et al. 2007; Levine et al. 2001; Peters et al. 
2004b; Platz et al. 2000). Although adenomas have received less study, at this 
time, the results of vitamin D and colorectal adenoma are fairly consistent with 
those for colorectal cancer.
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Observational Studies of Colorectal Neoplasms and VDR 
and Vitamin D-Metabolizing Enzyme Gene Polymorphisms

As described earlier, receptors and enzymes important in the activity and metabolism 
of vitamin D include the VDR, vitamin D 25-hydroxylase(s), CYP27B1, CYP24, 
and CYP3A4. There have been numerous reported SNPs in the genes encoding 
for these receptors and enzymes; however, only a few polymorphisms of the VDR 
gene have been investigated in relation to risk of colorectal neoplasms. Four SNPs 
located near the 3' region of the VDR gene are identified by their restriction endo-
nuclease cleavage sites and include three intronic mutations, G > A (BsmI), C > A 
(ApaI), G > A (Tru9I), and a T > C mutation in exon 9 (TaqI) (McCullough et al. 
2007). Although not known to have functional consequences, these SNPs are in 
strong linkage disequilibrium with a Poly(A) microsatellite repeat polymorphism 
in the 3' untranslated region that may serve as a marker for functionally different 
alleles (Sweeney et al. 2006). At the 5' end of the VDR gene (intron 2), there is a 
thymine/cytosine (T/C) polymorphism in the first two potential start (ATG) codons 
that are separated by three codons. This polymorphism, not in linkage disequilib-
rium with the other variants described earlier (Slattery et al. 2004a), results in two 
alleles that can be distinguished by a restriction fragment length polymorphism 
using the endonuclease FokI (Huang et al. 2006).

There have been a few reports from case-control studies of VDR variation and 
colorectal cancer. Several publications described analyses from a combined case-
control dataset that included information on 2,450 colorectal cancer cases and 
2,821 controls from three sites: the state of Utah, the Kaiser Permanente Medical 
Care Program of northern California, and the Twin Cities metropolitan area, 
Minnesota (colon study only). An analysis limited to a subset of participants from 
Utah investigated associations with three of the five linked VDR 3' region polymor-
phisms (Poly(A), BsmI, TaqI) and the 5' region FokI polymorphism, individually 
and in combination (Slattery et al. 2001). On the one hand, in analyses involving 
individual polymorphic genotypes, compared to persons who were homozygous 
for common alleles, those who were homozygous for variant alleles tended to be 
at slightly lower risk; however, none of these associations was statistically sig-
nificant. On the other hand, the combined SSBBtt genotype was associated with 
a statistically significant halving of risk. In an analysis that included the Utah and 
California sites, the results for BsmI were null, whereas those for the Poly(A) SS 
and the BsmI + Poly(A) (SSBB) genotypes were moderately inverse (ORs: 0.79 
(95% CI: 0.56–0.96) and 0.82 (95% CI: 0.69–0.98), respectively) (Slattery et al. 
2004b). There was no interaction between VDR polymorphisms and vitamin D 
intake but some evidence of an interaction between calcium intake and BsmI/
Poly(A) diplotypes for rectal, but not colon cancer. In two analyses of data from 
all three participating states, the FokI Ff genotype was associated with a 10% 
statistically nonsignificant reduction in colorectal cancer risk (OR: 0.90, 95% CI: 
0.80–1.02), whereas the ff genotype was associated with a somewhat more pro-
nounced decreased risk (OR: 0.81, 95% CI: 0.68–0.96) (Murtaugh et al. 2006). 
The common haplotype bLF, containing the BsmI b, Poly(A) long (L) and FokI F 
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alleles, was associated with a modestly increased risk of colon cancer (OR: 1.15, 
95% CI: 1.03–1.28) as was, somewhat more strangely, the rare BLF haplotype (OR: 
2.40, 95% CI: 1.43–4.02) (Sweeney et al. 2006). No case-control differences were 
detected for rectal cancer.

The only other population-based study of VDR genotypes and colorectal  cancer 
was conducted in South Korea (Park et al. 2006). Colorectal cancer patients (n = 190) 
who underwent surgical treatment for colorectal cancer at a large medical center in 
Seoul were compared to 318 healthy controls with no history of colorectal cancer. 
Colorectal cancer risk was statistically significantly decreased for those with the 
FokI ff (compared to FF) (OR: 0.35, 95% CI: 0.19–0.65) and increased for those 
with the ApaI aa (compared to AA) (OR: 2.22, 95% CI: 1.12–4.40) genotypes.

There have been five VDR-colorectal adenoma case-control studies, all endos-
copy-based. In the previously mentioned colonoscopy-based case-control study of 
incident, colorectal adenoma in North Carolina, the VDR Tru9I polymorphism variant 
u allele was associated with a modest, and not statistically significant, decreased risk 
for adenoma: ORs 0.88 (95% CI: 0.17–4.55) and 0.69 (95% CI: 0.40–1.25) for the 
Uu and uu genotypes, respectively (Gong et al. 2005a), with no evidence for an inter-
action with vitamin D intake. In the same population, there was no evidence for an 
association with the VDR BsmI polymorphism or for a BsmI-vitamin D intake interac-
tion (Boyapati et al. 2003). Two similarly designed case-control studies found weak, 
statistically nonsignificant lower colorectal adenoma risk among those with VDR 
FokI Ff or ff genotypes (Peters et al. 2001; Ingles et al. 2001). In another similarly 
designed case-control study (Kim et al. 2001), relative to the VDR BsmI bb genotype, 
neither the Bb nor the BB genotype was strongly associated with risk of colorectal 
adenomas; however, participants in the lowest tertile of vitamin D intake who had 
the BB genotype were at lower risk (OR: 0.24, 95% CI: 0.08–0.76) than those in the 
highest tertile of vitamin D intake who had the bb genotype (p

interaction
 = 0.07).

Finally, three studies reported on associations between colorectal neoplasms and 
VDR TaqI and FokI polymorphisms. A case-control study of colorectal adenoma 
nested within the PLCO trial (n = 239 cases, 228 controls) found no evidence for 
associations with VDR TaqI genotypes (Peters et al. 2004a). In the other nested 
case-control study (n = 217 cases, 890 controls), in a cohort of Singapore Chinese, 
VDR FokI polymorphisms were associated with moderately higher colorectal can-
cer risk: ORs 1.51 (95% CI: 1.00–2.29) and 1.84 (95% CI: 1.15–2.94) for the Ff 
and ff genotypes, respectively (Wong et al. 2003). However, in a cohort analysis of 
the Calcium Polyp Prevention Study, there was no evidence for an association of 
VDR TaqI or FokI genotypes with metachronous adenomas (Grau et al. 2003).

Studies of Colorectal Neoplasms and Vitamin D and VDR 
Genotypes and Their Interaction with Other Genotypes

In the only study to investigate an interaction between vitamin D intake and poly-
morphisms of the PPARg gene, a colonoscopy-based case-control study of incident, 
nonfamilial colorectal adenomas in North Carolina (n = 163 cases, 212 controls), 
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there was no evidence for an interaction between vitamin D intake and PPARg 
Pro12Ala genotypes (Gong et al. 2005b). Because there is evidence for tran-
scriptional crosstalk between the VDR and the androgen receptor (AR) genes, the 
previously described Utah-California-Minnesota case-control study of colorectal 
cancer investigated interactions among vitamin D exposure, AR CAG repeats, and 
various VDR polymorphisms (Slattery et al. 2006). In this study (the only reported 
study to have investigated these potential interactions) there was evidence for: (1) 
an AR CAG repeat polymorphism-vitamin D exposure (diet and sunlight) interac-
tion limited to men, such that risk for colon cancer was highest, but risk for rectal 
cancer was lowest, in those with 23 or more AR CAG repeats who also were in the 
lowest tertile of vitamin D intake or sunlight exposure; (2) an interaction of the 
AR CAG repeat polymorphism with VDR Poly(A)/BsmI LL/bb genotypes in rela-
tion to rectal cancer, again limited to men; and (3) an interaction of the AR CAG 
repeat polymorphism with VDR Fok1 genotypes limited to women.

In the only study to investigate whether a vitamin D intake-colorectal cancer 
association differs according to whether the tumors were K-ras mutation positive 
or negative, a case–case (n = 108) analysis of colorectal cancer in a Mediterranean 
population, there was a tendency toward reduced risk, primarily for tumors with 
K-ras mutations (Bautista et al. 1997).

There have been too few studies such as these to draw any conclusions about 
whether vitamin D interacts with various genotypes or whether VDR genotypes 
interact with other genotypes to modify risk for colorectal neoplasms generally 
(or for mutation-defined subsets) in humans.

Calcium Plus Vitamin D

Of the numerous observational epidemiologic studies of calcium and vitamin 
D and colorectal neoplasms, only 13 have reported investigating whether they 
may synergistically modify risk of colorectal neoplasms and, of these, only four 
presented complete data for assessing interactions (Grau et al. 2003; Levine 
et al. 2001; Oh et al. 2007; Zheng et al. 1998). Only two of these four studies, 
both of adenomas, measured 25-OH-vitamin D blood levels (Grau et al. 2003; 
Levine et al. 2001). Some evidence of interaction between calcium and vitamin 
D was suggested in a small cohort study of colorectal cancer in men, a cohort 
study of rectal cancer in women, a multinational pooled analysis of 10 cohort 
studies, two  sigmoidoscopy-based case-control studies of adenomas, a nested 
case-control analysis of distal colorectal adenoma in a cohort of female nurses, 
and a cohort analysis of a  calcium supplementation-adenoma recurrence trial. 
Of these, the cohort analysis of the  calcium supplementation trial (Grau et al. 
2003) deserves the most attention. First, calcium exposure was from a rand-
omized intervention of 1,200 mg of elemental calcium daily versus placebo 
and, second, although  vitamin D was not an intervention exposure, serum 
 25-OH-vitamin D was  measured. As previously described, this trial found 
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a statistically significant reduction in  metachronous adenoma with calcium 
supplementation (Baron et al. 1999). In a separate cohort analysis, adenoma 
recurrence in the calcium-intervention group was found only among those with 
25-OH-vitamin D levels greater than the cohort median (72.8 nmol L−1) (RR: 
0.71, 95% CI: 0.57–0.89; p

interaction
 = 0.01) (Grau et al. 2003). Although these 

results suggest that calcium and vitamin D may interact in humans to reduce 
risk of colorectal neoplasms, they are far from conclusive. Assessment of 
vitamin D exposure, using 25-OH-vitamin D blood levels, may be particularly 
important for investigating calcium-vitamin D interactions.

Overall Summary and Conclusions

Calcium and vitamin D have become prominent in understanding the etiology and 
prevention of colorectal cancer. Recent discoveries of the CaSR, the VDR, and 
CYP27B1 and CYP24 in colon tissue; multiple actions of calcium and  vitamin D 
not related to calcium homeostasis; and specific roles of calcium and vitamin D in 
maintaining normal colon crypt structure, function, and protection  collectively 
provide the basis for expecting protective effects of calcium and vitamin D against 
colorectal carcinogenesis. The strong rationale for this expectation includes 
 protection against mutagenic/mitogenic bile acids, modulation of the cell-cycle 
and cell adhesion in colon crypt colonocytes, growth-factor modulation, and 
immunomodulation. Evidence from the observational epidemiologic studies for 
protection against colorectal neoplasms by higher intakes of calcium is very strong, 
especially that from the prospective cohort studies. This observational evidence is 
strongly supported by clinical-trial findings of reduced adenoma recurrence with 
calcium supplementation. The human evidence for a protective effect of vitamin D 
against colorectal neoplasms is not as strong as that for calcium, probably because 
most vitamin D exposure is from sunlight and most of the observational epidemio-
logic studies of vitamin D and colorectal neoplasms investigated only poorly meas-
ured dietary exposures. Serum 25-OH-vitamin D, the best indicator of total vitamin 
D exposure, was inversely associated with colorectal cancer in all five studies that 
measured it. There are no reported clinical trials of vitamin D and metachronous 
colorectal adenoma, but one is underway. Overall, human studies investigating 
calcium-vitamin D interactions have been inconclusive, probably because almost 
all of them relied on assessing vitamin D exposure strictly through dietary intakes. 
The genes for the CaSR, the VDR, vitamin D-metabolizing enzymes, and other 
relevant proteins are polymorphic, but few studies have investigated their associa-
tions with colorectal neoplasms, alone or in combination with one another, with 
calcium, or with vitamin D. To date, there is neither strong nor consistent evidence 
that such genetic variation plays a role in colorectal carcinogenesis; however, this 
line of investigation is in its infancy. The inverse calcium-colorectal cancer asso-
ciation is probably causal, and the inverse vitamin D-colorectal cancer association 
holds a similar promise.



294 R.M. Bostick et al.

References

Alberts DS, Ritenbaugh C, Story JA, Aickin M, Rees-McGee S, Buller MK, Atwood J, Phelps J, 
Ramanujam PS, Bellapravalu S, Patel J, Bextinger L, Clark L (1996) Randomized, double-
blinded, placebo-controlled study of effect of wheat bran fiber and calcium on fecal bile acids 
in patients with resected adenomatous colon polyps. J Natl Cancer Inst 88:81–92

Baron JA, Tosteson TD, Wargovich MJ, Sandler R, Mandel J, Bond J, Haile R, Summers R, 
van Stolk R, Rothstein R (1995) Calcium supplementation and rectal mucosal proliferation: a 
randomized controlled trial. J Natl Cancer Inst 87:1303–1307

Baron JA, Beach M, Mandel JS, van Stolk RU, Haile RW, Sandler RS, Rothstein R, Summers RW, 
Snover DC, Beck GJ, Bond JH, Greenberg ER (1999) Calcium supplements for the prevention 
of colorectal adenomas. Calcium Polyp Prevention Study Group. N Engl J Med 340:101–107

Bautista D, Obrador A, Moreno V, Cabeza E, Canet R, Benito E, Bosch X, Costa J (1997) Ki-ras 
mutation modifies the protective effect of dietary monounsaturated fat and calcium on sporadic 
colorectal cancer. Cancer Epidemiol Biomarkers Prev 6:57–61

Bhagavathula N, Kelley EA, Reddy M, Nerusu KC, Leonard C, Fay K, Chakrabarty S, Varani J 
(2005) Upregulation of calcium-sensing receptor and mitogen-activated protein kinase 
signalling in the regulation of growth and differentiation in colon carcinoma. Br J Cancer 
93:1364–1371

Bonithon-Kopp C, Kronborg O, Giacosa A, Rath U, Faivre J (2000) Calcium and fibre supple-
mentation in prevention of colorectal adenoma recurrence: a randomised intervention trial. 
European Cancer Prevention Organisation Study Group. Lancet 356:1300–1306

Bostick RM (1997) Human studies of calcium supplementation and colorectal epithelial cell pro-
liferation. Cancer Epidemiol Biomarkers Prev 6:971–980

Bostick RM (2001) Diet and nutrition in the etiology and primary prevention of colon cancer. In: 
Bendich A, Deckelbaum R (eds) Preventive Nutrition: The Comprehensive Guide for Health 
Professionals. Humana, Totowa, NJ, pp 47–96

Bostick RM, Fosdick L, Wood JR, Grambsch P, Grandits GA, Lillemoe TJ, Louis TA, Potter JD 
(1995) Calcium and colorectal epithelial cell proliferation in sporadic adenoma patients: a ran-
domized, double-blinded, placebo-controlled clinical trial. J Natl Cancer Inst 87:1307–1315

Boyapati SM, Bostick RM, McGlynn KA, Fina MF, Roufail WM, Geisinger KR, Wargovich M, 
Coker A, Hebert JR (2003) Calcium, vitamin D, and risk for colorectal adenoma: dependency 
on vitamin D receptor BsmI polymorphism and nonsteroidal anti-inflammatory drug use? 
Cancer Epidemiol Biomarkers Prev 12:631–637

Braun MM, Helzlsouer KJ, Hollis BW, Comstock GW (1995) Colon cancer and serum vitamin D 
metabolite levels 10–17 years prior to diagnosis. Am J Epidemiol 142:608–611

Bringhurst FR, Demay MB, Krane SM, Kronenberg HM (2007) Bone and mineral metabolism in 
health and disease. In: Kasper DL, Braunwald E, Fauci AS, Hauser SL, Longo DL, Jameson L, 
Isselbacher KJ (eds) Harrison’s Principles of Internal Medicine. McGraw-Hill, New York

Brown EM (2005) Calcium-sensing receptor. In: Feldman D, Pike JW, Glorieux FH (eds) Vitamin 
D2. Elsevier Academic, Boston, pp 551–562

Cannell JJ, Vieth R, Umhau JC, Holick MF, Grant WB, Madronich S, Garland CF, Giovannucci E 
(2006) Epidemic influenza and vitamin D. Epidemiol Infect 134:1129–1140

Cantorna MT (2006) Vitamin D and its role in immunology: multiple sclerosis, and inflammatory 
bowel disease. Prog Biophys Mol Biol 92:60–64

Chakrabarty S, Radjendirane V, Appelman H, Varani J (2003) Extracellular calcium and calcium 
sensing receptor function in human colon carcinomas: promotion of E-cadherin expression and 
suppression of beta-catenin/TCF activation. Cancer Res 63:67–71

Chattopadhyay N, Brown EM (2006) Role of calcium-sensing receptor in mineral ion metabolism 
and inherited disorders of calcium-sensing. Mol Genet Metab 89:189–202

Chen A, Davis BH, Sitrin MD, Brasitus TA, Bissonnette M (2002) Transforming growth factor-
beta 1 signaling contributes to Caco-2 cell growth inhibition induced by 1,25(OH)(2)D(3). 
Am J Physiol Gastrointest Liver Physiol 283:G864–874



12 Calcium and Vitamin D 295

Chen TC, Chimeh F, Lu Z, Mathieu J, Person KS, Zhang A, Kohn N, Martinello S, Berkowitz R, 
Holick MF (2007) Factors that influence the cutaneous synthesis and dietary sources of vita-
min D. Arch Biochem Biophys 460:213–217

Cho E, Smith-Warner SA, Spiegelman D, Beeson WL, van den Brandt PA, Colditz GA, 
Folsom AR, Fraser GE, Freudenheim JL, Giovannucci E, Goldbohm RA, Graham S, Miller 
AB, Pietinen P, Potter JD, Rohan TE, Terry P, Toniolo P, Virtanen MJ, Willett WC, Wolk A, 
Wu K, Yaun SS, Zeleniuch-Jacquotte A, Hunter DJ (2004) Dairy foods, calcium, and colorec-
tal cancer: a pooled analysis of 10 cohort studies. J Natl Cancer Inst 96:1015–1022

Diaz GD, Paraskeva C, Thomas MG, Binderup L, Hague A (2000) Apoptosis is induced by the 
active metabolite of vitamin D3 and its analogue EB1089 in colorectal adenoma and carci-
noma cells: possible implications for prevention and therapy. Cancer Res 60:304–312

Ebert R, Schutze N, Adamski J, Jakob F (2006) Vitamin D signaling is modulated on multiple 
levels in health and disease. Mol Cell Endocrinol 248:149–159

Feskanich D, Ma J, Fuchs CS, Kirkner GJ, Hankinson SE, Hollis BW, Giovannucci EL (2004) 
Plasma vitamin D metabolites and risk of colorectal cancer in women. Cancer Epidemiol 
Biomarkers Prev 13:1502–1508

Flood A, Peters U, Chatterjee N, Lacey JV, Schairer C, Schatzkin A (2005) Calcium from diet 
and supplements is associated with reduced risk of colorectal cancer in a prospective cohort of 
women. Cancer Epidemiol Biomarkers Prev 14:126–132

Fraser DR (1995) Vitamin D. Lancet 345:104–107
Friedman PA (2006) Agents affecting mineral ion homeostasis and bone turnover. In: Brunton LL, 

Lazo JS, Parker KL (eds) Goodman and Gilman’s The Pharmacologic Basis of Therapeutics. 
McGraw-Hill, New York, pp 1647–1678

Garland CF, Garland FC (1980) Do sunlight and vitamin D reduce the likelihood of colon cancer? 
Int J Epidemiol 9:227–231

Garland CF, Comstock GW, Garland FC, Helsing KJ, Shaw EK, Gorham ED (1989) Serum 
25-hydroxyvitamin D and colon cancer: eight-year prospective study. Lancet 2:1176–1178

Glinghammar B, Venturi M, Rowland IR, Rafter JJ (1997) Shift from a dairy product-rich to a 
dairy product-free diet: influence on cytotoxicity and genotoxicity of fecal water – potential 
risk factors for colon cancer. Am J Clin Nutr 66:1277–1282

Gong YL, Xie DW, Deng ZL, Bostick RM, Miao XJ, Zhang JH, Gong ZH (2005a) Vitamin 
D receptor gene Tru9I polymorphism and risk for incidental sporadic colorectal adenomas. 
World J Gastroenterol 11:4794–4799

Gong Z, Xie D, Deng Z, Bostick RM, Muga S, Hurley TG, Hebert JR (2005b) PPARγ 
Pro12Ala polymorphism and risk for incident sporadic colorectal adenomas. Carcinogenesis 
26:579–585

Govers MJ, Termont DS, Lapre JA, Kleibeuker JH, Vonk RJ, Van der Meer R (1996) Calcium 
in milk products precipitates intestinal fatty acids and secondary bile acids and thus inhibits 
colonic cytotoxicity in humans. Cancer Res 56:3270–3275

Grau MV, Baron JA, Sandler RS, Haile RW, Beach ML, Church TR, Heber D (2003) Vitamin D, 
calcium supplementation, and colorectal adenomas: results of a randomized trial. J Natl Cancer 
Inst 95:1765–1771

Grau MV, Baron JA, Barry EL, Sandler RS, Haile RW, Mandel JS, Cole BF (2005) Interaction of 
calcium supplementation and nonsteroidal anti-inflammatory drugs and the risk of colorectal 
adenomas. Cancer Epidemiol Biomarkers Prev 14:2353–2358

Grau MV, Baron JA, Sandler RS, Wallace K, Haile RW, Church TR, Beck GJ, Summers RW, 
Barry EL, Cole BF, Snover DC, Rothstein R, Mandel JS (2007) Prolonged effect of calcium 
supplementation on risk of colorectal adenomas in a randomized trial. J Natl Cancer Inst 
99:129–136

Guerreiro CS, Cravo ML, Brito M, Vidal PM, Fidalgo PO, Leitao CN (2007) The D1822V APC 
polymorphism interacts with fat, calcium, and fiber intakes in modulating the risk of colorectal 
cancer in Portuguese persons. Am J Clin Nutr 85:1592–1597

Harding B, Curley AJ, Hannan FM, Christie PT, Bowl MR, Turner JJ, Barber M,  Gillham-Nasenya I, 
Hampson G, Spector TD, Thakker RV (2006) Functional characterization of calcium sensing 



296 R.M. Bostick et al.

receptor polymorphisms and absence of association with indices of calcium homeostasis and 
bone mineral density. Clin Endocrinol 65:598–605

Harris DM, Go VL (2004) Vitamin D and colon carcinogenesis. J Nutr 134:3463S–3471S
Haussler M, Whitfield G, Haussler C, Hsieh J, Thompson P, Selznick S, Dominguez C, Jurutka P 

(1998) The nuclear vitamin D receptor: biological and molecular regulatory properties 
revealed. J Bone Miner Res 13:325–349

Heaney RP (2005) The vitamin D requirement in health and disease. J Steroid Biochem Mol Biol 
97:13–19

Heath H, Odelberg S, Jackson CE, Teh BT, Hayward N, Larsson C, Buist NR, Krapcho KJ, 
Hung BC, Capuano IV, Garrett JE, Leppert MF (1996) Clustered inactivating mutations and 
benign polymorphisms of the calcium receptor gene in familial benign hypocalciuric hypercal-
cemia suggest receptor functional domains. J Clin Endocrinol Metab 81:1312–1317

Holick M (1990) The use and interpretation of assays for vitamin D and its metabolites. J Nutr 
120:1464–1469

Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281
Hollis BW (2005) Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: 

implications for establishing a new effective dietary intake recommendation for vitamin D. 
J Nutr 135:317–322

Holt PR, Atillasoy EO, Gilman J, Guss J, Moss SF, Newmark H, Fan K, Yang K, Lipkin M (1998) 
Modulation of abnormal colonic epithelial cell proliferation and differentiation by low-fat 
dairy foods: a randomized controlled trial. J Am Med Assoc 280:1074–1079

Huang SP, Huang CY, Wu WJ, Pu YS, Chen J, Chen YY, Yu CC, Wu TT, Wang JS, Lee YH, 
Huang JK, Huang CH, Wu MT (2006) Association of vitamin D receptor FokI polymorphism 
with prostate cancer risk, clinicopathological features and recurrence of prostate specific anti-
gen after radical prostatectomy. Int J Cancer 119:1902–1907

Ingles SA, Wang J, Coetzee GA, Lee ER, Frankl HD, Haile RW (2001) Vitamin D receptor 
polymorphisms and risk of colorectal adenomas (United States). Cancer Causes Control 
12:607–614

Jacobs ET, Alberts DS, Benuzillo J, Hollis BW, Thompson PA, Martinez ME (2007) Serum 
25(OH)D levels, dietary intake of vitamin D, and colorectal adenoma recurrence. J Steroid 
Biochem Mol Biol 103:752–756

Kallay E, Bajna E, Wrba F, Kriwanek S, Peterlik M, Cross HS (2000) Dietary calcium and growth 
modulation of human colon cancer cells: role of the extracellular calcium-sensing receptor. 
Cancer Detect Prev 24:127–136

Kesse E, Boutron-Ruault MC, Norat T, Riboli E, Clavel-Chapelon F (2005) Dietary calcium, 
phosphorus, vitamin D, dairy products and the risk of colorectal adenoma and cancer among 
French women of the E3N-EPIC prospective study. Int J Cancer 117:137–144

Kim HS, Newcomb PA, Ulrich CM, Keener CL, Bigler J, Farin FM, Bostick RM, Potter JD (2001) 
Vitamin D receptor polymorphism and the risk of colorectal adenomas: evidence of interaction 
with dietary vitamin D and calcium. Cancer Epidemiol Biomarkers Prev 10:869–874

Lamprecht SA, Lipkin M (2001) Cellular mechanisms of calcium and vitamin D in the inhibition 
of colorectal carcinogenesis. Ann N Y Acad Sci 952:73–87

Larsson SC, Bergkvist L, Rutegard J, Giovannucci E, Wolk A (2006) Calcium and dairy food 
intakes are inversely associated with colorectal cancer risk in the Cohort of Swe dish Men. 
Am J Clin Nutr 83:667–673

Levine AJ, Harper JM, Ervin CM, Chen YH, Harmon E, Xue S, Lee ER, Frankel HD, Haile RW 
(2001) Serum 25-hydroxyvitamin D, dietary calcium intake, and distal colorectal adenoma 
risk. Nutr Cancer 39:35–41

Lewis RC, Bostick RM, Xie D, Deng Z, Wargovich MJ, Fina MF, Roufail WM, Geisinger KR 
(2003) Polymorphism of the cyclin D1 gene, CCND1, and risk for incident sporadic colorectal 
adenomas. Cancer Res 63:8549–8553

Lin J, Zhang SM, Cook NR, Manson JE, Lee IM, Buring JE (2005) Intakes of calcium and  vitamin D 
and risk of colorectal cancer in women. Am J Epidemiol 161:755–764

Lips P (2006) Vitamin D physiology. Prog Biophys Mol Biol 92:4–8



12 Calcium and Vitamin D 297

Lupton JR, Steinbach G, Chang WC, O’Brien BC, Wiese S, Stoltzfus CL, Glober GA, Wargovich MJ, 
McPherson RS, Winn RJ (1996) Calcium supplementation modifies the  relative amounts of 
bile acids in bile and affects key aspects of human colon physiology. J Nutr 126:1421–1428

Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ 
(2002) Vitamin D receptor as an intestinal bile acid sensor. Science 1296:1313–1316

McCullough ML, Stevens VL, Diver WR, Feigelson HS, Rodriguez C, Bostick RM, Thun MJ, 
Calle EE (2007) Vitamin D pathway gene polymorphisms, diet, and risk of postmenopausal 
breast cancer: a nested case-control study. Breast Cancer Res 9:R9

Moffatt KA, Johannes WU, Hedlund TE, Miller GJ (2001) Growth inhibitory effects of 1alpha, 
25-dihydroxyvitamin D(3) are mediated by increased levels of p21 in the prostatic carcinoma 
cell line ALVA-31. Cancer Res 61:7122–7129

Murtaugh MA, Sweeney C, Ma KN, Potter JD, Caan BJ, Wolff RK, Slattery ML (2006) Vitamin D 
receptor gene polymorphisms, dietary promotion of insulin resistance, and colon and rectal 
cancer. Nutr Cancer 55:35–43

Norman AW (2006) Minireview: vitamin D receptor: new assignments for an already busy recep-
tor. Endocrinology 147:5542–5548

Oh K, Willett WC, Wu K, Fuchs CS, Giovannucci EL (2007) Calcium and vitamin D intakes in 
relation to risk of distal colorectal adenoma in women. Am J Epidemiol 165:1178–1186

Park K, Woo M, Nam J, Kim JC (2006) Start codon polymorphisms in the vitamin D receptor and 
colorectal cancer risk. Cancer Lett 237:199–206

Park SY, Murphy SP, Wilkens LR, Nomura AM, Henderson BE, Kolonel LN (2007) Calcium and 
vitamin D intake and risk of colorectal cancer: the Multiethnic Cohort Study. Am J Epidemiol 
165:784–793

Peters U, McGlynn KA, Chatterjee N, Gunter E, Garcia-Closas M, Rothman N, Sinha R (2001) 
Vitamin D, calcium, and vitamin D receptor polymorphism in colorectal adenomas. Cancer 
Epidemiol Biomarkers Prev 10:1267–1274

Peters U, Chatterjee N, McGlynn KA, Schoen RE, Church TR, Bresalier RS, Gaudet MM, Flood A, 
Schatzkin A, Hayes RB (2004a) Calcium intake and colorectal adenoma in a US colorectal 
cancer early detection program. Am J Clin Nutr 80:1358–1365

Peters U, Hayes RB, Chatterjee N, Shao W, Schoen RE, Pinsky P, Hollis BW, McGlynn KA 
(2004b) Circulating vitamin D metabolites, polymorphism in vitamin D receptor, and colorec-
tal adenoma risk. Cancer Epidemiol Biomarkers Prev 13:546–552

Platz EA, Hankinson SE, Hollis BW, Colditz GA, Hunter DJ, Speizer FE, Giovannucci E (2000) 
Plasma 1,25-dihydroxy- and 25-hydroxyvitamin D and adenomatous polyps of the distal 
colorectum. Cancer Epidemiol Biomarkers Prev 9:1059–1065

Reichrath J, Lehmann B, Carlberg C, Varani J, Zouboulis CC (2007) Vitamins as hormones. Horm 
Metab Res 39:71–84

Rodland KD (2004) The role of the calcium-sensing receptor in cancer. Cell Calcium 35:291–295
Satia JA, Keku T, Galanko JA, Martin C, Doctolero RT, Tajima A, Sandler RS, Carethers JM 

(2005) Diet, lifestyle, and genomic instability in the North Carolina Colon Cancer Study. 
Cancer Epidemiol Biomarkers Prev 14:429–436

Shaukat A, Scouras N, Schunemann HJ (2005) Role of supplemental calcium in the recurrence 
of colorectal adenomas: a metaanalysis of randomized controlled trials. Am J Gastroenterol 
100:390–394

Slattery ML, Yakumo K, Hoffman M, Neuhausen S (2001) Variants of the VDR gene and risk of 
colon cancer (United States). Cancer Causes Control 12:359–364

Slattery ML, Murtaugh M, Caan B, Ma KN, Wolff R, Samowitz W (2004a) Associations between 
BMI, energy intake, energy expenditure, VDR genotype and colon and rectal cancers (United 
States). Cancer Causes Control 15:863–872

Slattery ML, Neuhausen SL, Hoffman M, Caan B, Curtin K, Ma KN, Samowitz W (2004b) Dietary 
calcium, vitamin D, VDR genotypes and colorectal cancer. Intl J Cancer 111:750–756

Slattery ML, Sweeney C, Murtaugh M, Ma KN, Caan BJ, Potter JD, Wolff R (2006) Associations 
between vitamin D, vitamin D receptor gene and the androgen receptor gene with colon and 
rectal cancer. Int J Cancer 118:3140–3146



298 R.M. Bostick et al.

Speer G, Cseh K, Mucsi K, Takacs I, Dworak O, Winkler G, Szody R, Tisler A, Lakatos P (2002) 
Calcium-sensing receptor A986S polymorphism in human rectal cancer. Int J Colorectal Dis 
17:20–24

Sweeney C, Curtin K, Murtaugh MA, Caan BJ, Potter JD, Slattery ML (2006) Haplotype analy-
sis of common vitamin D receptor variants and colon and rectal cancers. Cancer Epidemiol 
Biomarkers Prev 15:744–749

Tangrea J, Helzlsouer K, Pietinen P, Taylor P, Hollis B, Virtamo J, Albanes D (1997) Serum levels 
of vitamin D metabolites and the subsequent risk of colon and rectal cancer in Finnish men. 
Cancer Causes Control 8:615–625

Tong WM, Kallay E, Hofer H, Hulla W, Manhardt T, Peterlik M, Cross HS (1998) Growth regula-
tion of human colon cancer cells by epidermal growth factor and 1,25-dihydroxyvitamin D3 is 
mediated by mutual modulation of receptor expression. Eur J Cancer 34:2119–2125

Tong WM, Hofer H, Ellinger A, Peterlik M, Cross HS (1999) Mechanism of antimitogenic action 
of vitamin D in human colon carcinoma cells: relevance for suppression of epidermal growth 
factor-stimulated cell growth. Oncol Res 11:77–84

van den Bemd GJ, Pols HA, van Leeuwen JP (2000) Anti-tumor effects of 1,25-dihydroxyvitamin 
D3 and vitamin D analogs. Curr Pharm Des 6:717–732

Wactawski-Wende J, Kotchen JM, Anderson GL, Assaf AR, Brunner RL, O’Sullivan MJ, 
Margolis KL, Ockene JK, Phillips L, Pottern L, Prentice RL, Robbins J, Rohan TE, Sarto GE, 
Sharma S, Stefanick ML, Van Horn L, Wallace RB, Whitlock E, Bassford T, Beresford SA, 
Black HR, Bonds DE, Brzyski RG, Caan B, Chlebowski RT, Cochrane B, Garland C, Gass M, 
Hays J, Heiss G, Hendrix SL, Howard BV, Hsia J, Hubbell FA, Jackson RD, Johnson KC, 
Judd H, Kooperberg CL, Kuller LH, LaCroix AZ, Lane DS, Langer RD, Lasser NL, Lewis CE, 
Limacher MC, Manson JE (2006) Calcium plus vitamin D supplementation and the risk of 
colorectal cancer. N Engl J Med 354:684–696

Wallace K, Baron JA, Cole BF, Sandler RS, Karagas MR, Beach MA, Haile RW, Burke CA, 
Pearson LH, Mandel JS, Rothstein R, Snover DC (2004) Effect of calcium supplementation 
on the risk of large bowel polyps. J Natl Cancer Inst 96:921–925

Wargovich MJ, Baer AR (1989) Basic and clinical investigations of dietary calcium in the preven-
tion of colorectal cancer. Prev Med 18:672–679

Wark PA, Van der Kuil W, Ploemacher J, Van Muijen GN, Mulder CJ, Weijenberg MP, Kok FJ, 
Kampman E (2006) Diet, lifestyle and risk of K-ras mutation-positive and -negative colorectal 
adenomas. Int J Cancer 119:398–405

Wong HL, Seow A, Arakawa K, Lee HP, Yu MC, Ingles SA (2003) Vitamin D receptor start codon 
polymorphism and colorectal cancer risk: effect modification by dietary calcium and fat in 
Singapore Chinese. Carcinogenesis 24:1091–1095

Xie S, Pirianov G, Colston K (1999) Vitamin D analogues suppress IGF-I signalling and promote 
apoptosis in breast cancer cells. Euro J Cancer 35:1717–1723

Yee YK, Chintalacharuvu SR, Lu J, Nagpal S (2005) Vitamin D receptor modulators for inflam-
mation and cancer. Mini Rev Med Chem 5:761–778

Zheng W, Anderson KE, Kushi LH, Sellers TA, Greenstein J, Hong CP, Cerhan JR, Bostick RM, 
Folsom AR (1998) A prospective cohort study of intake of calcium, vitamin D, and other 
micronutrients in relation to incidence of rectal cancer among postmenopausal women. Cancer 
Epidemiol Biomarkers Prev 7:221–225



Index

A
A66G, 229
A67G, 225
A459D, 170
A636P missense alteration, 148, 150
A986S, 282
A1298C, 226
A2756G, 228
Aberrant crypt foci (ACF), 53, 99
AC. See Amsterdam Criteria
ACF. See Aberrant crypt foci
Acrylamide, 259–260
ACVR1, 199
Adenoma-carcinoma sequence, 95–96
Adenomas, 5

initiation of, 98–100
malignant potential of, 96–97
metachronous, 8–9
multiplicity, 97–98
serrated, 14, 104–105, 108
sessile serrated, 82, 108
tubular, 96
tubulovillous, 96
villous, 96, 103–104
vitamin D and, 285

ADH. See Alcohol dehydrogenase
Adrenal tumors, 127
AFM. See American Founder Mutation
Alcohol, 13
Alcohol dehydrogenase (ADH), 230
ALK-1, 199
Allied lesions, 106–109
ALOXs. See Arachidonate lipoxygenases
Alu, 76, 150
Alu repeats, 147
American Founder Mutation (AFM), 150
AMPK, 190
Amsterdam Criteria (AC), 143, 144, 154, 179, 180

families fulfilling, 181

Androgen receptor (AR), 288
Animal fat, 11
Anthropometry, 12–13
Antioxidant response element (ARE), 262
AOM. See Azoxymethane
Apal, 287
APC gene, 1, 6, 14, 27, 28, 35, 36, 51, 54, 61, 

98, 99, 105, 110, 123, 171, 284
chromosomal instability and, 58–65
deficiency, 64
distal germline mutations, 126
exon structure, 130
FAP and, 128–129
functional domains of, 59–60
germline mutations, 129–130
inactivation of, 111
mutation, 100–101, 131, 205
N-terminus fragment of, 63
polymorphisms, 132
protein motifs, 130

AR. See Androgen receptor
Arachidonate lipoxygenases (ALOXs), 

243, 247
ARE. See Antioxidant response element
Arg27His, 224
Arg(239)Gin, 229
Art(415)Cys, 229
Ascorbate, 7
Ashkenazi Jewish population, 148–149, 

203, 205
Aspirin, 16, 239
Attenuated FAP, 127, 171
Aurora-A, 57, 66
Azoxymethane (AOM), 38

B
Bannayan-Riley-Ruvalcaba syndrome, 

195, 196, 197

 299



300 Index

Basal Cell Nevus syndrome, 195, 196
Base-excision repair (BER), 169–170, 173
BAT25, 143
BAT26, 143
Bax, 210
Beckwith-Wiedemann syndrome, 72
BER. See Base-excision repair
Bethesda Guidelines, 144, 156
Bile acids, 277, 278
Biomarkers, 281
Biotransformation of carcinogens, 257, 

260–261
CRC risk and, 264–266
environmental modulators, 262–263
modulators of, 262–264

BLM gene, 55, 150, 203
biomechanical properties, 204–205
haploinsufficiency, 206
mutation, 205–206

Bloom, David, 203
Bloom’s Syndrome Registry, 205
Bloom syndrome (BS), 150, 203
BMPR1A, 198–199, 200
BMPR2, 199
BMP-signaling pathways, 198
Bottom-up model, 99–100
BRAF, 74, 80–83, 98, 105–108, 110, 184

hyperplastic polyps with mutations, 107
mutation, 112, 128–129, 185
V600E mutation, 145

BRCA1, 55, 150
germline mutations, 210

BRCA2, 55, 150
germline mutations, 210

BS. See Bloom syndrome
Bsml, 286, 287
BUB1, 56, 62, 66
BUB1B, 64
BUB3, 56, 61, 62
BubR1, 62

C
C57BL/6, 28
C-149T, 230
C-401T, 225
C452CT, 225
C452T, 225
C677T, 222
C699T, 224
C1043T, 225
C1080T, 224
C1985T, 224
CACC. See Colitis-associated colon cancer

CACNA1G, 81
Caco, 62
Calbindin-D9K promoter, 30
Calcium, 1, 9, 11–12

CaSR and, 277–278
cell cycle and, 277
epidemiology and, 280–284
interaction, 282–283
mechanisms, 276–278
metabolism, 273–274
physiology, 273–274
vitamin D and, 288–289

Calcium Polyp Prevention Study, 281, 283
Calcium-sensing receptor (CaSR), 274, 282

calcium and, 277–278
Cancer family syndrome (CFS), 153
Cancer Prevention Study II, 10
Carcinogenesis in PJS, 191–192
Carcinogens

acrylamide, 259–260
biotransformation of, 257, 260–261
chemical, 258–260
HAAs, 258
heterocyclic amines, 261
induced models of tumorigenesis, 38
nitrosamines, 259
N-Nitroso compounds, 261
PAHs, 258–259
polycyclic hydrocarbons, 261

Carcinoma, thyroid, 127
Carotenoids, 7
Case-control studies, 10
Caspase 3, 65
CaSR. See Calcium-sensing receptor
β-catenin, 28–29, 59, 60, 99, 102, 126

transgenic mice, 30–31
CBS. See Cystathionine β-synthase
CDC4, 57, 66
CDKN2A, 74
Cdx2 mice, 39
C. elegans, 190
Cell cycle, 277, 278
CFS. See Cancer family syndrome
CGH. See Comparative genomic hybridization
Chemical carcinogens, 258–260
Cholecystectomy, 16
Chromosomal instability pathway, 52–54, 110, 

128
APC and, 58–65
genetic basis of, 54–58
inherited syndromes with, 55
MAP cancer development, 170

Chromosome 3p21.3, 142
Chromosome 8q24, 215



Index 301

Chromosome 9q22.32, 98
Chromosome 17p, 210
CHRPE. See Congenital hypertrophy of retinal 

pigment epithelium
CIMP. See CpG island methylator pathways
CNVs. See Copy number variants
Colitis-associated colon cancer (CACC), 36
Colorectal Adenoma Prevention trial, 249
Colorectal cancer (CRC)

accelerated evolution of, 111–114
biotransformation of carcinogens in, 

264–266
classification of, 111
descriptive epidemiology, 5–6
DNA methylation in diagnosis of, 85–86
environmental risk factors, 7–15
epidemiology, 279–288
genetic and molecular events in, 6
genetic variability in NSAID targets, 

245–250
imprinting in, 77
medical conditions, 15–16
multi-pathway disease, 109–110
occurrence of, 1
pathway features, 111
precursor lesions, 102–103

Columnar cells, 108
Comparative genomic hybridization 

(CGH), 53
Congenital hypertrophy of retinal pigment 

epithelium (CHRPE), 126, 131, 173
Copy number variants (CNVs), 263
Cowdan syndrome, 195, 196, 197
Cox. See Cyclo-oxygenases
Cox-1, 31, 240, 245–246

as target, 241
Cox-2, 31, 192, 240, 246–247

inhibitors, 16
as target, 241

Coxib, 239
CpG dinucleotides, 71, 72
CpG island, 72, 73

hypermethylation of, 78
methylator phenotype, 79–82

CpG island methylator pathways (CIMP), 
51–52, 74, 79–82, 102, 106, 125

epidemiology of, 83
histological context of, 82–83

cPLA
2
. See Cytosolic phospholipase A

2

CRC. See Colorectal cancer
Crohn disease, 15, 36
Cronkhite-Canada syndrome, 196, 197, 198
CSF. See Cytostatic factor
cSHMT. See Cytosolic SHMT

C-terminal, 29, 38, 59
CTNNB1, 30, 59, 61–62
Cyclin E regulators, 57
Cyclin G, 210
Cyclo-oxygenases (Cox), 31, 192. See also 

Cox-1; Cox-2
inhibition, 242

CYP1A1, 263, 265
CYP1A2, 263, 266
Cyp1A-Cre, 29
CYP1B1, 266
CYP2A7, 264
CYP2C9, 244–245, 249, 250
CYP2C11, 275
CYP2D6, 275
CYP2D25, 275
CYP2E1, 261, 262, 265, 266
CYP2R1, 275
CYP3A4, 262, 275, 278, 286
CYP24, 286
CYP27A1, 275
CYP27B1, 275, 279, 286
CYP213, 275
Cystathionine β-synthase (CBS), 224
Cytochrome P450, 260
Cytokine-deficient mice, 36–37
Cytosine-5, 71
Cytosolic phospholipase A

2
 (cPLA

2
), 31

Cytosolic SHMT (cSHMT), 224, 229
Cytostatic factor (CSF), 62

D
D2S123, 143
D5S346, 143
D17S250, 143
D1822V, 284
Dental abnormalities, 126, 173
Descriptive epidemiology, 5–6
Desmoid tumors, 125–126
DHFR. See Dihydrofolate reductase
Diabetes mellitus, 15
Diagnosis, DNA methylation in, 85–86
Diet, low-fat, 9
Differentially methylated region 

(DMR), 77
Dihydrofolate reductase (DHFR), 225
1,2-dimethylhydrazine, 38
Ding, 58
DLD1, 52, 56, 64, 65
DLG-binding domain, 59
D. melanogaster, 190
DMR. See Differentially methylated region
DNA hypomethylation, 75–76



302 Index

DNA methylation, 102. See also Methylation
in diagnosis of, 85–86
neoplasia and, 73–75
polycomb proteins and, 77–79

DNA methyltransferase 1 (DNMT1), 32, 77, 
229–230

DNMT1. See DNA methyltransferase 1
Dominant negative N-cadherin mice, 39–40
Drosophila melanogaster, 39
Duodenal polyps, 125

E
E466X, 170
E1317Q, 132
EB1, 60, 62, 63
EBV. See Epstein-Barr virus
E-cadherin, 277
E. coli, 140–141
EED, 78
EGFR pathway, 241
Embryonic stem (ES) cells, 61, 204
Endogenous oxidative damage, 173
ENG, 198, 199
ENU. See Ethylnitrosourea
Environmental risk factors, 7–15

alcohol, 13
animal fat, 11
anthropometry, 12–13
diet, 7
fiber, 7–10
fruits, 7–10
infection, 14–15
meat, 10
micronutrients, 7–10
occupation, 15
physical activity, 12–13
reproductive factors, 14
saturated fat, 11
tobacco, 13–14, 259
total dietary fat, 11
vegetables, 7–10

EPHB2, 184
EPHX1. See Epoxide hydrolase
EPIC study, 8
Epidemiology

calcium and, 280–284
CRC, 279–288
of FAP, 123–124
vitamin D and, 284–288

Epidemiology, descriptive, 5–6
Epigenetic changes, 75–83
Epimutations, heritable, 151–153
Epoxide hydrolase (EPHX1), 261, 264

Epstein-Barr virus (EBV), 72
ES cells. See Embryonic stem cells
Estrogen, 17
Ethylnitrosourea (ENU), 28
Exercise, 12–13
EZH2, 78, 79

F
Fabp, 39
Fabp1, 30
Familial adenomatous polyposis coli (FAP), 

16, 28, 53, 64, 96, 97, 99, 183
adrenal tumors and, 127
APC gene, 128–129
attenuated, 127, 171
clinical presentation of, 124
congenital hypertrophy and, 126
dental abnormalities, 126
desmoid tumors and, 125–126
duodenal polyps and, 125
epidemiology of, 123–124
equivalence of, 100–102
extracolonic manifestations of, 131–132
gastric polyps, 124–125
genotype-phenotype association, 130–132
germline mutations leading to, 129–130
hepatobiliary tumors, 127
micro-adenomas in, 100
modifier genes, 132–133
osteomas and, 126
retinal pigment epithelium, 126
thyroid carcinoma and, 127

Familial Colorectal Cancer Type X, 143, 154, 
180–181

AC and, 181
Family G, 154
FANCC. See Fanconi anemia type C
Fanconi anemia type C (FANCC), 150
FAP. See Familial adenomatous polyposis coli
Fat

animal, 11
low-fat diet, 9
saturated, 11
total dietary, 11

Fbw7, 57
Fiber, 7–10
FISH. See Fluorescent in situ hybridization
Flavonoids, 7
Fluorescent in situ hybridization (FISH), 

52, 64
FOBT, 86
FOCM. See Folate-mediated one-carbon 

metabolism



Index 303

Fokl, 287
Folate, 7, 9
Folate-mediated one-carbon metabolism 

(FOCM), 219, 220, 225
Folylpolyglutamyl synthase (FPGS), 225
Founder mutations, 149–151
FPGS. See Folylpolyglutamyl synthase
Fruits, 7–10
Fusion pathways, 111–114
Fusion polyps, 111–114

G
G280A, 225
G-354T, 225
G382D, 170
G418, 76
G-579T, 230
G638A, 264
G990R, 282
G1196A, 225
G1294C, 263
GADD45, 210
Gastric polyps, 124–125
Gastrointestinal tumorigenesis, 28
GEM. See Genetically engineered mice
Gene discovery, 141–142
Genetically engineered mice (GEM)

carcinogen-induced models of 
tumorigenesis, 38

β-catenin transgenic, 30–31
Cdx2, 39
cytokine-deficient, 36–37
DNA mismatch repair and, 34–36
dominant negative N-cadherin mice, 39–40
immune-deficient, 36
models, 38–40
mucin-deficient, 36
P13k-deficient, 39
RbMI/MI, 38
Smad−/−, 33–34
TGFβ1−/−, 32–33
TGF-beta signaling pathway and, 32–34
Wnt signalling pathway, 27–30

Genetic events, 6
Genetic variability

in NSAID-metabolizing enzymes, 244–250
in NSAID targets, 240–244, 245–250

Genomic instability, 139–140
Genotype-phenotype association, 130–131
Germline mutations

APC gene, 126, 129–130
BRCA1, 210
BRCA2, 210
epimutation, 84–86

FAP, 129–130
hMLH1, 151, 157
hMSH2, 157
p53, 212

GGH. See γ-glutamyl hydrolase
Glioblastomas, 158
γ-glutamyl hydrolase (GGH), 225
Glutathione S-transferases, 260
Gorlin syndrome, 195, 196, 197
Growth-factor signaling, 278–279
GSK-3Β, 30, 65, 128
GSTA1, 264
GSTM1, 261, 264, 265, 266
GSTP1, 261, 264
GSTT1, 264, 265, 266
Guanine, 169

H
H3K27, 78
H19, 77
HAAs. See Heterocyclic aromatic amines
Hamartomatous polyps, 189

comparisons of, 197
dermatologic findings in, 196
features of, 191

Haploinsufficiency, BLM, 206
HATH1, 103, 104
HCT116, 56, 57, 61–62, 63, 64
HEK, 62
HeLA, 65
Helicobacter pylori, 15, 72, 124–125
Hepatobiliary tumors, 127
Hereditary Breast and Ovarian Cancer, 150
Hereditary Hemorrhagic Telangiectasia 

(HHT), 199
Hereditary NonPolyposis Colon Cancer 

(HNPCC), 143, 144, 179, 183
incidence of, 154–155
Lynch syndrome, 153–154

Heritable epimutations, 151–153
Heterocyclic amines, 10, 261
Heterocyclic aromatic amines (HAAs), 258
Heterozygotes, 173–174
HHT. See Hereditary Hemorrhagic 

Telangiectasia
hMLH1, 142, 145, 146, 147, 149, 150, 159

germline mutations in, 151, 157
hypermethylation, 142, 152
methylation, 152

hMSH2, 139, 141, 142, 146, 147, 149, 158, 159
germline mutations in, 157
missense mutation, 150

hMSH3, 142
hMSH6, 141, 146, 155, 158, 159



304 Index

HNPCC. See Hereditary NonPolyposis 
Colon Cancer

Homologous recombination (HR), 204
hPMS2, 148
HPP1, 83
HPS. See Hyperplastic polyposis syndrome
HPV. See Human papilloma virus
HR. See Homologous recombination
HRAS, 76
HRDC domain, 203
HT29 cells, 52, 62
Human Genome Project, 220
Human papilloma virus (HPV), 72
Human Variome Project (HVP), 149
HVP. See Human Variome Project
15-Hydroxyprostaglandin dehydrogenase 

(PGDH), 243
Hypermethylation, 74

of CpG island, 78
hMLH1, 142, 152
widespread and concordant, 79

Hyperplastic polyposis syndrome (HPS), 
82, 183–184

phenotypic dichotomy in, 185
serrated pathway syndrome and, 185

Hyperplastic polyps, 5, 14, 104, 106–109
BRAF mutations, 107–108
goblet cell type, 107
KRAS mutations, 107–108
microvesicular type, 108
mixed, 110
variant, 109

Hypomethylation
DNA, 75–76
genome-wide, 75–76
IBD. See Inflammatory bowel disease

I
ICG-HNPCC. See International Collaborative 

Group on Hereditary NonPolyposis 
Colorectal Cancer

ICR. See Imprinting control region
IDLs. See Insertion/deletion loops
IGF2, 77, 81
IHC. See Immunohistochemistry
Il-2, 36–37
IL33, 215–216
Immune-deficient GEM, 36
Immunohistochemistry (IHC), 85, 144
Immunomodulation, 279
Imprinting, 72

loss of, 77
Imprinting control region (ICR), 77

Inactive X-chromosome, 71
Indoles, 7
Infection, 14–15
Inflammatory bowel disease (IBD), 15, 36
Insertion/deletion loops (IDLs), 141
International Collaborative Group on 

Hereditary NonPolyposis Colorectal 
Cancer (ICG-HNPCC), 143, 179

Iowa Women’s Health Study, 13
Isothiocyanates, 7, 265

J
“Just-right” signaling, 60
Juvenile polyposis, 1, 195–200

clinical diagnostic criteria for, 196
dermatologic findings in, 196

K
KCNQ1, 77
53-kDa nuclear phosphoprotein, 210
Knudson’s two-hit hypothesis, 60
KRAS, 6, 51, 80, 98, 103, 105, 106, 107, 110

hyperplastic polyps with mutations, 107
mutation, 114, 128–129

K-ras, 171
mutations, 284
L237M, 241, 245

L
Large genomic rearrangements, 146–148
LCA. See Lithocholic acid
LEF. See Lymphoid-enhancer factor
Lesions

allied, 106–109
precursor, 102–103

Leu474Phe, 224
LFL families. See Li-Fraumeni-Like families
LFS. See Li-Fraumeni Syndrome
Li-Fraumeni-Like (LFL) families, 209
Li-Fraumeni Syndrome (LFS), 209–212

database, 212
patients, 211

LINES, 76
Lithocholic acid (LCA), 278
Log-linear per-allele effect, 215
LOH. See Loss of heterozygosity
LOI. See Loss of imprinting
Loss of heterozygosity (LOH), 39, 52, 142, 191

STK11, 192
Loss of imprinting (LOI), 77
LoVo, 52, 62



Index 305

Low-fat diet, 9
Lymphoid-enhancer factor (LEF), 128
Lynch, Henry, 179, 180
Lynch syndrome, 1, 34–35, 84, 97, 112, 139, 

141, 179
AC and, 181
clinical features, 157–159
clinical variants of, 158
diagnosis of, 140
founder mutations, 149–151
heritable epimutations and, 151–153
histopathology, 155–156
HNPCC v., 153–154
incidence of, 154–155
large genomic rearrangements, 

146–148
missense mutations, 148–149
molecular screening for, 143–145
MSI and, 142–143
mutation profile, 146
penetrance, 158
tumor spectrum, 157
MAD2, 56, 57, 66

M
MAD2LI, 64
MADH4, 198, 200
MALT. See Mucosa-associated 

lymphoid tissue
MAP. See MUTYH-associated polyposis
MCA. See Methylated CpG-island analysis
MCR. See Mutation cluster region
MDM-2, 210
Meat, 10, 258, 259
Medical conditions, 15–16
Medications, 16–17
Metachronous adenoma, 8–9
Methionine synthase (MTR), 223, 228–229
Methionine synthase reductase (MTRR), 

223, 229
5,10-Methylenetetrahydrofolate, 221, 

222–223, 226–227
Methylated CpG-island analysis (MCA), 80
Methylation. See also DNA methylation; 

Hypermethylation; Hypomethylation
hMLH1, 152
MGMT, 112

Methylation, hMLH1, 152
MGMT, 112

methylation, 112
Micro-adenomas

in FAP, 100
sporadic, 100–102

Micronutrients, 7–10
Microsatellite instability (MSI), 14, 34, 51, 79, 

81, 84, 102, 110, 139, 283
discovery of, 140
high, 110, 143, 156
low, 143
in Lynch syndrome, 142–143
in MAP cancer development, 

170–171
Microsatellite stable (MSS), 143
Microtubules (MT), 62
MINT, 80, 83
MINT31, 185
Mismatch repair (MMR), 34–36, 76, 85

defective, 143, 145, 157, 158
disabling, 151
eukaryotic, 141–142
mechanism, 140–141
mutation profile, 146
pathway, 148
postreplicative, 139

Missense mutation, 148–149
hMSH2, 150

Mitotic spindle arrest, 55–58
MLH. See MutL homologs
MLH1, 7, 34, 35, 75, 78, 80, 82, 84, 85, 112, 

145, 179
MLH3, 34
MLPA. See Multiplex ligation-dependent 

probe amplification
MMR. See Mismatch repair
Modifier genes, 132–133
Molecular events, 6
Molecular screening, for Lynch syndrome, 

143–145
Mouse models, PJS, 191
MRE11, 58
mRNA, 58

splicing, 148
MSH. See MutS homologs
MSH2, 34, 35, 36, 75, 84, 85, 145, 

147, 179
MSH3, 34, 141
MSH6, 34, 35, 36, 84, 145

mutations, 181
MSI. See Microsatellite instability
MsPath, 157
MSS. See Microsatellite stable
MST1, 106
MT. See Microtubules
MTH1, 170
MTHFR, 219
MTR. See Methionine synthase
MTR2756AG, 228



306 Index

MTRR. See Methionine 
synthase reductase

MTS. See Muir-Torre syndrome
MUC2, 36, 103
MUC5AC, 103
Mucin-deficient mice, 36
Mucosa-associated lymphoid tissue 

(MALT), 15
Muir-Torre syndrome (MTS), 158
Multiplex ligation-dependent probe 

amplification (MLPA), 129, 147–148
Multivitamin supplements, 9
Mutation 1, 150
Mutation 2, 150
Mutation cluster region (MCR), 129
Mutation profile, 146
Mutator phenotype, 139, 153
MutHLS, 141
mutL, 142
MutL homologs (MLH), 141
mutS, 142
MutS homologs (MSH), 141
MUTYH, 98, 169–170, 171
MUTYH-associated polyposis (MAP), 1, 53

base-excision repair and, 169–170
cancer development, 170–171
clinical features of, 171–173
extracolonic cancer risks in, 173
heterozygotes, 173–174
polyps in, 172, 174

MYC, 76
MYC oncogene, 215
MYH, 184

N
N131β-catenin, 30
N-acetylation, 263
N-acetyltransferases (NATs), 260
NADPH quinine oxidoreductase 

(NQO), 260
N-APC-deletion constructs, 63
NAT1, 261, 263
NAT2, 261, 263, 264–265
National Cancer Institute, 143
National Institute on Environmental Health 

Environmental Genome Project 
(NIEHS-EGP), 241, 244

NATs. See N-acetyltransferases
N-cadherin mice, 39–40
NDMA. See N-nitrosomethylamine
Neoplasia

DNA methylation and, 73–75
epidemiology of CIMP in, 83
epigenetic changes in, 75–83

Neurofibromatosis, 196, 197
NEUROG1, 81
NHEJ. See Nonhomologous end-joining
NIEHS-EGP. See National Institute on 

Environmental Health Environmental 
Genome Project

Nitrosamines, 259
N-methyl-N-nitrosourea, 38
N-nitroso compounds (NOCs), 259, 261
N-nitrosomethylamine (NDMA), 259
NOCs. See N-nitroso compounds
Non-APC-associated polyposis, 133
Nonhomologous end-joining (NHEJ), 205
NOREI, 106
NQO. See NADPH quinine oxidoreductase
NSAIDs, 16, 31, 56, 239–240, 273, 282

genetic variability in metabolizing 
enzymes, 244–245, 245–250

genetic variability in targets, 240–250
N-terminal, 30, 60

of APC, 63
Nuclear atypia, 57
Nurses’ Health Study, 10
NYD-SP25 isoform 3, 215

O
O-acetylation, 261
Obesity, 12–13
Occupation, 15
OCs. See Oral contraceptives
ODC. See Ornithine decarboxylase
OGG1, 169, 170
1103delC, 170
1395delGGA, 170
129/BL6, 29
Oral contraceptives (OCs), 17
Ornithine decarboxylase (ODC), 

243–244, 248
Osteomas, 126, 173
8-oxo-7,8-dihydro-2’-deoxyguanosine 

(8-oxodG), 169–170
8-oxodG. See 8-oxo-7,8-dihydro-2’-

deoxyguanosine

P
P13K/Akt signaling, 31
P13k-deficient mice, 39
p14, 113
p21, 210
p53, 36, 51, 171, 226

germline mutations, 212
inactivation, 58
role of, 209–212



Index 307

P281L, 170
PAHs. See Polycyclic aromatic hydrocarbons
Parathyroid hormone (PTH), 274
PCNA, 204
PCR techniques, 86
Peristalsis, 12
Peroxisome proliferator activity receptor delta 

(PPARδ), 31
Peutz-Jeghers syndrome, 1, 189, 196, 197

hamartoma, 189
manifestations of, 189–190
mouse model, 191

PGDH. See 15-Hydroxyprostaglandin 
dehydrogenase

PGE
2
. See Prostaglandin E2

PGIS. See Prostacyclin synthase
Phase II enzymes, 262
Phenols, 7
Phenotypic dichotomy in HPS, 185
Physical activity, 12–13
Pilomatricomas, 173
PLCO. See Prostate, Lung, Colorectal, and 

Ovarian Cancer Screening Trial
PLK1, 64
PMH. See Postmenopausal hormones
PMS1, 34, 142
PMS2, 34, 75, 84, 141, 142, 145, 146, 147
Poly(A), 286
Polycomb proteins, 77–79
Polycyclic aromatic hydrocarbons (PAHs), 

258–259
Polycyclic hydrocarbons, 261
Polymorphisms

APC, 132
investigating, 220–221
metabolizing enzyme gene, 286–287
in one-carbon metabolism, 221–226
thymine/cytosine, 286

Polypectomy, 95
Polyposis, non-APC-associated, 133
Polyps, 5

gastric, 124–125
hamartomatous, 189, 191, 196, 197
hyperplastic, 5, 14, 104, 106–109
MAP, 172
sporadic juvenile, 197

Postmenopausal hormones (PMH), 17
PPARδ. See Peroxisome proliferator activity 

receptor delta
PPARγ gene, 287
PRC2 complex, 78, 83
Precursor lesions, 102–103
Pro12 Ala, 288
Prostacyclin synthase (PGIS), 243
Prostaglandin E2 (PGE

2
), 31, 241, 242

Prostaglandin synthesis, 247
Prostate, Lung, Colorectal, and Ovarian 

Cancer Screening Trial (PLCO), 
8, 282

Provitamin D, 274
PTH. See Parathyroid hormone
PtK cells, 61
pVillin-KRASV12G, 64

Q
Q377X, 170
Q1011E, 282
Quinolone, 38

R
R8W, 241
R227W, 170
R231H, 170
R260Q, 170
RAD51, 204
Randomized controlled trials (RCTs), 239
RASSF1, 106–109
RASSF2, 106–109
RASSF5, 106–109
Rb. See Retinoblastoma
RbMI/MI, 38
RCTs. See Randomized controlled trials
Reactive oxygen species (ROS), 169
Recq15, 204
RecQL4, 204
RecQL5, 204
RecQ-like family, 204
Reduced folate carrier (RFC), 224–225, 229
Reproductive factors, 14
RET, 127
Retinal pigment epithelium, 

126, 131, 173
Retinoblastoma (Rb), 38
Retinoid X receptor (RXR), 275
RFC. See Reduced folate carrier
RING finger domain-containing 

protein, 216
RKO, 62
RNAi, 64
ROD, 58
ROS. See Reactive oxygen species
Rothmund-Thompson syndrome, 204
RPA, 204
RQC domain, 203
rs6983267, 215
rs10505477, 215
RUNX3, 81
RXR. See Retinoid X receptor



308 Index

S
Saccharomyces cerevisiae, 141
S-adenosylmethionine, 229
Saturated fat, 11
SCE. See Sister chromatid exchange
Schistosoma japonicum, 14–15
SEER. See Surveillance, Epidemiology, 

and End Results
Serine hydroxymethyltransferase (SHMT), 

223–224
Serrated adenomas, 14, 104–105, 108
Serrated pathway syndrome (SPS), 183

HPS and, 185
Ser(284)Thr, 229
Sessile serrated adenomas (SSA), 82, 108
SHMT. See Serine hydroxymethyltransferase
SIFT, 241
Silver-Russell syndrome, 72
SINES, 76
Single nucleotide polymorphisms (SNP), 

152, 263, 282
SIR. See Standardized incidence ratio
siRNA, 64, 65
Sister chromatid exchange 

(SCE), 203
677IT, 221, 226
Smad−/−, 33–34
SMAD2, 32, 33, 199
SMAD3, 33–34, 198, 199, 279
SMAD4, 32, 33–34, 171, 198, 200

inactivation of, 128–129
SMAD7, 199
SNP. See Single nucleotide 

polymorphisms
SOCS1, 81
Southern blot analysis, 148
Sporadic juvenile polyp, 197
SPS. See Serrated pathway syndrome
SR-alpha, 29
SSA. See Sessile serrated adenomas
Standardized incidence ratio (SIR), 180
STK11, 78, 190

functions of, 190
LOH, 192

STK15, 57
STMN1, 64
Sulfotransferases (SULTs), 260
SULT1A1, 264, 265
Surveillance, Epidemiology, and End Results 

(SEER), 210
SUZ12, 78
SW480, 52, 62, 64
SW837, 52

T
T-124G, 225
T-283C, 230
Taql, 283, 286
T-cell factor (TCF), 128
T-cells, 36
TCF. See T-cell factor
TCF4, 277
TCII. See Transcobalamin II
TGFβ1−/−, 32–33
TGF-beta, 27, 83, 198, 199, 279

GEM and, 32–34
signaling, 198

Therapy, DNA methylation in, 85–86
Thymidylate synthase, 221–222, 227–228
Thymine/cytosine polymorphism, 286
Thyroid carcinoma, 127
TILs. See Tumor-infiltrating 

lymphocytes
Tobacco, 13–14, 259
Top-down model, 99–100
Total dietary fat, 11
TP53, 80, 110
TPD52L3, 215
Transcobalamin II (TCII), 225
TS polymorphisms, 227
Tubular adenoma, 96
Tubulin, 62
Tubulovillous adenoma, 96
Tumorigenesis, 38
Tumor-infiltrating lymphocytes (TILs), 156
Tumors

adrenal, 127
desmoid, 125–126
hepatobiliary, 127
suppressor genes, 139–140

Turcot Syndrome, 158
2rpt/2rpt genotypes, 227
Type-C genes, 80
Tyr113His, 264

U
U2OS, 64–65
Ubiquitin-like PHD, 216
UDP-glucuronosyl transferase (UGTs), 260
UGT1A6, 244, 248–249, 265
UGT1A7, 265
UGTs. See UDP-glucuronosyl 

transferase
Ulcerative colitis, 15, 36
5′-UTR, 221
UW-FHCRC-VDR, 241



Index 309

V
V232F, 170
Variable number tandem repeat (VNTR), 243
VDR. See Vitamin D receptor
VDREs. See Vitamin D response elements
Vegetables, 7–10
Villin-CreER, 29
Villous adenoma, 96, 103–104
Vitamin B12, 227
Vitamin D, 1, 11–12, 278–279

adenomas and, 285
calcium, 288–289
cell cycle and, 278
epidemiology and, 284–288
growth-factor signaling, 278–279
immunomodulation and, 279
metabolism, 274–275
metabolizing enzyme gene polymorphisms, 

286–287
observational studies, 284–287
physiology, 274–275

Vitamin D receptor (VDR), 274
genotypes, 287–288

Vitamin D response elements 
(VDREs), 282

Vitamin E, 9

VNTR. See Variable number tandem repeat
Vogelstein model, 79–80, 104

W
Werner syndrome, 204
Wnt signalling pathway, 27–30, 38, 59, 61, 277

genes modifying, 31–32
Women’s Health Initiative, 9, 281

X
Xenobiotic metabolizing enzymes, 260
Xenobiotic response elements (XRE), 262
Xenopus, 62, 190
XRE. See Xenobiotic response elements

Y
Y90X, 170
Y165C, 170

Z
ZW10, 58
ZWILCH, 58


	cover-large.tif
	front-matter.pdf
	fulltext.pdf
	Chapter 1
	Colorectal Cancer: Epidemiology
	Introduction
	Descriptive Epidemiology
	Genetic and Molecular Events in Colorectal Cancer
	Environmental Risk Factors
	Diet
	Vegetables, Fruits, Fiber, and Micronutrients
	Meat
	Total Dietary Fat
	Animal or Saturated Fat
	Calcium and Vitamin D
	Physical Activity and Anthropometry
	Alcohol
	Tobacco
	Reproductive Factors
	Infection
	Occupation

	Medical Conditions
	Inflammatory Bowel Disease
	Diabetes Mellitus
	Cholecystectomy

	Medications
	NSAIDs
	Postmenopausal Hormone Use


	Conclusion
	References



	fulltext_2.pdf
	Chapter 2
	Mouse Models of Intestinal Cancer
	Introduction
	GEM and the Wnt Signaling Pathway
	Min/+ and Related Mice
	beta-Catenin Transgenic Mice
	Genes that Modify the Wnt Pathway

	GEM and the TGFbeta Signaling Pathway
	TGFbeta1−/− and Related Mice
	Smad−/− Mice

	GEM and DNA Mismatch Repair
	Immune-Deficient GEM
	Cytokine-Deficient Mice
	Mucin-Deficient Mice

	Carcinogen-Induced Models of Intestinal Tumorigenesis
	Other GEM Models of Intestinal Cancer
	RbMI/MI Mice
	PI(3)K-Deficient Mice
	Cdx2−/− Mice
	Dominant Negative N-Cadherin Mice

	Conclusions
	References



	fulltext_3.pdf
	Chapter 3
	The Chromosomal-Instability Pathway and APC Gene Mutation in Colorectal Cancer
	Introduction
	Evidence for the Existence of a Chromosomal-Instability Pathway
	The Genetic Basis of the Chromosomal-Instability Pathway
	APC Mutation and Chromosomal Instability
	Conclusions
	References



	fulltext_4.pdf
	Chapter 4
	DNA Methylation in Colorectal Cancer: Multiple Facets of Tumorigenesis
	Introduction
	DNA Methylation and Neoplasia
	Epigenetic Changes in Colorectal Neoplasia
	Genome-Wide Hypomethylation of DNA
	Loss of Imprinting in Colorectal Cancer
	Polycomb Proteins and DNA Methylation in Colorectal Cancer
	The CpG-Island Methylator Phenotype
	The Histological Context of CIMP in the Colorectum
	Epidemiology of CIMP in Colorectal Neoplasia

	Rare Events: Germline Epimutation and Colorectal Cancer
	DNA Methylation in the Diagnosis and Therapy of Cancer

	Conclusions
	References



	fulltext_5.pdf
	Chapter 5
	Pathways and Pathology
	Introduction
	Adenoma-Carcinoma Sequence
	Malignant Potential of Adenomas in Different Clinical Scenarios
	Adenoma Multiplicity and Malignant Potential
	Mechanisms Underlying the Initiation of Colorectal Adenomas
	Lack of Equivalence of FAP Versus Sporadic Micro-Adenomas
	Precursor Lesions for Sporadic Colorectal Cancer that Are Not Well Represented in FAP
	Villous Adenoma
	Serrated Adenoma
	Hyperplastic Polyps and Allied Lesions with Malignant Potential
	Colorectal Cancer: A Multi-pathway Disease
	‘Fusion Polyps’ and ‘Fusion Pathways’ for the Accelerated Evolution of Colorectal Cancer
	Conclusion
	References



	fulltext_6.pdf
	Chapter 8
	Additional Syndromes with Hereditary Predisposition to Colorectal Cancer
	Chapter 8.1
	MUTYH-Associated Polyposis
	Introduction
	Base-Excision Repair and MUTYH
	MAP Cancer Development
	Clinical Features
	Cancer Risk to Heterozygotes
	Conclusion
	References




	fulltext_7.pdf
	Chapter 9
	Familial Colorectal Cancer Type X
	References


	fulltext_8.pdf
	Chapter 10
	Families with Serrated Neoplasia of the Colon
	Introduction
	Hyperplastic Polyposis Syndrome
	Phenotypic Dichotomy in Hyperplastic Polyposis Syndrome
	Serrated Pathway Syndrome
	Conclusion
	References



	fulltext_9.pdf
	Chapter 11
	Peutz–Jeghers Syndrome
	Background
	Manifestations
	STK11
	Functions of STK11
	Mouse Model
	Carcinogenesis in PJS
	STK11 Loss of Heterozygosity and Somatic Mutations in Sporadic Cancer
	Cyclooxygenase-2
	References



	fulltext_10.pdf
	Chapter 12
	Juvenile Polyposis
	References


	fulltext_11.pdf
	Chapter 13
	BLM Mutation and Colorectal Cancer Susceptibility
	Bloom Syndrome and the BLM Gene
	Biochemical Properties of BLM
	Blm/BLM Mutation and Colorectal Cancer Susceptibility
	References



	fulltext_12.pdf
	Chapter 14
	The Role of p53 in Colorectal Cancer
	References



	fulltext_13.pdf
	Chapter 15
	Chromosomes 8q24 and 9p24: Associations with Colorectal Cancer
	References


	fulltext_14.pdf
	Chapter 6
	Familial Adenomatous Polyposis
	Introduction
	Clinical Summary of FAP
	Epidemiology
	Clinical Presentation
	Gastric Polyps
	Duodenal Polyps
	Desmoid Tumors
	Osteomas and Dental Abnormalities
	Congenital Hypertrophy of Retinal Pigment Epithelium
	Thyroid Carcinoma
	Adrenal and Hepatobiliary Tumors
	Attenuated FAP

	Genetics of FAP
	APC and FAP
	APC Germline Mutations Leading to FAP
	Genotype–Phenotype Association: Polyposis Severity
	Genotype–Phenotype Association: Extracolonic Manifestations of FAP

	APC Polymorphisms
	FAP Modifier Genes
	Non-APC-Associated Polyposis

	References



	fulltext_15.pdf
	Chapter 7
	DNA Mismatch Repair and Lynch Syndrome
	Introduction
	Genomic Instability
	DNA Mismatch-Repair Mechanism
	Gene Discovery
	Microsatellite Instability
	Molecular Screening for Lynch Syndrome
	Mutation Profile
	Large Genomic Rearrangements
	Missense Mutations
	Founder Mutations
	Heritable Epimutations?
	Evolution of a Name: HNPCC Versus Lynch Syndrome
	Incidence
	Histopathology
	Clinical Features
	Tumor Spectrum
	Penetrance
	Clinical Variants of Lynch Syndrome

	References



	fulltext_16.pdf
	Chapter 16
	Genetic Variability in Folate-Mediated One-Carbon Metabolism and Risk of Colorectal Neoplasia
	Introduction
	Investigating Genetic Polymorphisms in Epidemiologic Studies
	Polymorphisms in One-Carbon Metabolism and Their Functional Impact
	Thymidylate Synthase
	5,10-Methylenetetrahydrofolate Reductase
	Methionine Synthase
	Methionine Synthase Reductase
	Serine Hydroxymethyltransferase
	Cystathionine beta -Synthase
	Reduced Folate Carrier
	Other Genes

	Polymorphisms in One-Carbon Metabolism and Colorectal Cancer Risk
	5,10-Methylenetetrahydrofolate Reductase
	Thymidylate Synthase
	Methionine Synthase
	Methionine Synthase Reductase
	Other Genes
	Final Thoughts

	References


	fulltext_17.pdf
	Chapter 17
	Genetic Variability in NSAID Targets and NSAID-Metabolizing Enzymes and Colorectal Neoplasia
	Introduction
	Genetic Variability in NSAID Targets
	Cyclooxygenase-1 (COX-1)
	Cyclooxygenase-2 (COX-2)
	Other Targets
	Ornithine Decarboxylase

	Genetic Variability in NSAID-Metabolizing Enzymes
	UGT1A6
	CYP2C9

	Genetic Variability in NSAID Targets and NSAID-Metabolizing Enzymes and Risk of Colorectal Neoplasia
	NSAID Targets
	COX-1
	COX-2
	Other Genes Related to Prostaglandin Synthesis

	ODC1

	NSAID-Metabolizing Enzymes
	UGT1A6
	CYP2C9


	Summary
	References



	fulltext_18.pdf
	Chapter 18
	The Role of Chemical Carcinogens and Their Biotransformation in Colorectal Cancer
	Chemical Carcinogens
	Heterocyclic Aromatic Amines
	Polycyclic Aromatic Hydrocarbons
	Nitrosamines
	Acrylamide

	Biotransformation
	Heterocyclic Amines
	Polycyclic Hydrocarbons
	N-Nitroso Compounds

	Modulators of Biotransformation
	Environmental Modulators
	Genetic Modulators

	Genetic Polymorphisms in Biotransformation Genes and CRC Risk
	Conclusion and Research Needs
	References


	fulltext_19.pdf
	Chapter 19
	Calcium and Vitamin D
	Introduction
	Calcium and Vitamin D Physiology and Metabolism
	Calcium
	Vitamin D

	Mechanisms of Calcium and Vitamin D in Colorectal Carcinogenesis
	Calcium
	Bile Acids
	Direct Effect on Cell Cycle
	Calcium and the CaSR

	Vitamin D
	Bile Acids
	Direct Effect on Cell Cycle
	Growth-Factor Signaling
	Immunomodulation


	Epidemiology of Calcium, Vitamin D, and Colorectal Neoplasms
	Calcium
	Observational Studies of Colorectal Cancer and Calcium
	Observational Studies of Colorectal Adenoma and Calcium
	Calcium and Clinical Trials of Biomarkers
	Calcium and Clinical Trials of Colorectal Neoplasms
	Observational Studies of CaSR Gene Polymorphisms and Colorectal Neoplasms
	Studies of Calcium in Interaction with Other Agents, Risk Factors, and Genotypes in Relation to Risk of Colorectal Neoplasms

	Vitamin D
	Observational Studies of Colorectal Cancer and Vitamin D
	Observational Studies of Colorectal Adenoma and Vitamin D as a Main Effect
	Observational Studies of Colorectal Neoplasms and VDR and Vitamin D-Metabolizing Enzyme Gene Polymorphisms
	Studies of Colorectal Neoplasms and Vitamin D and VDR Genotypes and Their Interaction with Other Genotypes

	Calcium Plus Vitamin D

	Overall Summary and Conclusions
	References



	back-matter.pdf
	Potter_Index.pdf



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




