

Lecture Notes
in Business Information Processing 35

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Norman M. Sadeh
Carnegie Mellon University, Pittsburgh, PA, USA

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Olly Gotel Mathai Joseph
Bertrand Meyer (Eds.)

Software Engineering
Approaches for
Offshore and
Outsourced Development

Third International Conference, SEAFOOD 2009
Zurich, Switzerland, July 2-3, 2009
Proceedings

13

Volume Editors

Olly Gotel
Pace University
New York City, NY 10038, USA
E-mail: ogotel@pace.edu

Mathai Joseph
Tata Consultancy Services
Pune 411 001, India
E-mail: m.joseph@tcs.com

Bertrand Meyer
ETH Zurich
Department of Computer Science
8092 Zurich, Switzerland
E-mail: Bertrand.Meyer@inf.ethz.ch

Library of Congress Control Number: 2009929830

ACM Computing Classification (1998): D.2, K.6, K.4.2, J.1

ISSN 1865-1348
ISBN-10 3-642-02986-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02986-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12717293 06/3180 5 4 3 2 1 0

Preface
SEAFOOD 2009: Enabling Global Partnerships

to Deliver on Business Needs

Companies have been outsourcing areas of software development work for many
years, either because of the engineering challenges or because the outsourced
aspect is not central to their core business. A profound transformation has been
affecting this model over recent years: a massive transfer of development ac-
tivities from the USA and Europe to a skilled labor force in service-providing
countries. This transformation has been driven by the demands of a global busi-
ness climate seeking to increase the value delivery of IT investment. However,
the ability to realize this value can prove problematic in practice. Of particular
concern are the hidden costs of globally distributed models of working, such as
understanding and communicating the true business needs across organizational
and cultural boundaries.

To address such issues, offshore outsourcing requires different support from
in-house development and this means adapting familiar techniques, processes and
tools to this setting, as well as perhaps creating innovative new ones. Coupled
with this industry transformation there is hence a pressing need to re-examine
those software engineering approaches that either facilitate or impede this model
of working. With an inevitable focus on the economy in 2009, business decisions
regarding the sourcing of software development projects will come under close
scrutiny. It will become increasingly critical to design global partnerships that
both clarify cost/benefits and enable delivery on business needs.

SEAFOOD 2009, the Third International Conference on Software Engineer-
ing Approaches for Offshore and Outsourced Development, was held at ETH
Zürich during July 2–3, 2009. Bertrand Meyer and Mathai Joseph established
the SEAFOOD series of conferences in 2007 in an attempt to not only bring
software engineering to outsourcing but also to bring outsourcing into the col-
lective consciousness of the software engineering community. SEAFOOD seeks to
provide an opportunity for participants from academia and industry to present
and discuss experiences, ideas and proposals related to this topic.

Reflecting the global nature of offshore outsourcing, SEAFOOD 2009 re-
ceived submissions from Australia, Bangladesh, Brazil, China, Denmark, Fin-
land, Germany, India, Italy, Japan, Switzerland, The Philippines, Thailand and
the USA. The 12 articles in this volume were selected for presentation and dis-
cussion. These include 9 papers from industry (5 full papers and 4 short posi-
tion papers) and 3 full research papers from academia. The conference program
also included two keynote presentations and the abstracts are contained in this
volume: “Decentralized Software Development: Pitfalls and Challenges,” deliv-
ered by Carlo Ghezzi, Politecnico di Milano, Italy; and “An Empiricist View of

VI Preface

Managing Globally Distributed Software Development,” delivered by Narayan
Ramasubbu, Singapore Management University, Singapore. The conference pro-
gram was supplemented by an industry panel discussion organized by David
Michael of United Business Media on the theme of “Software Engineering Prac-
tices to Ensure Success in a Multi-country Environment.” The conference site
at http://seafood.ethz.ch includes information on this conference, as well as on
past and future SEAFOOD events.

Many people contributed to SEAFOOD 2009. In particular, Martin Nordio
played a central role throughout the organization of the conference, assisting
with the program logistics, local arrangements and preparation of this volume.
We thank the industry and education Program Chairs, David Michael and Chris-
telle Scharff for their attention to the industry and education submissions. We
also thank the entire Program Committee for their timely work in reviewing
submissions and Patrick Mäder for attending to publicity. SEAFOOD 2009 was
co-located with TOOLS 2009 and we are further grateful to Claudia Günthart
for assisting with the local arrangements.

May 2009 Olly Gotel
Mathai Joseph

Bertrand Meyer

Conference Organization

Program Chairs

Bertrand Meyer ETH Zürich, Switzerland – General Co-chair
Mathai Joseph Tata Consultancy Services, India – General

Co-chair
Olly Gotel Pace University, New York City, USA –

Program Chair

Organizing Committee

David Michael United Business Media, USA – Industry Track
Christelle Scharff Pace University, USA – Education Track
Patrick Mäder Ilmenau Technical University, Germany –

Publicity

Program Committee

Pamela Abbott Brunel University, UK
Kay Berkling Inline Internet Online GmbH, Germany
Manfred Broy Technische Universität München, Germany
Val Casey Bournemouth University, UK
Oliver Creighton Siemens AG, Germany
Jean-Pierre Corriveau Carleton University, Canada
Al Davis University of Colorado and The Davis

Company, USA
Barry Dwolatzky Wits University, South Africa
Patricia Ensworth Harborlight Management Services, USA
Samuel Fricker University of Zürich and

FUCHS-INFORMATIK AG, Switzerland
Don Gause SUNY Binghamton and Savile Row, LLC,

USA
Matt Ganis IBM Hawthorne, USA
Victor Gergel University of Nizhni Novgorod, Russia
Tony Gorschek Blekinge Institute of Technology, Sweden
Amar Gupta University of Arizona, USA
David Klappholz Stevens Institute of Technology, USA
Vidya Kulkarni University of Delhi, India
Vinay Kulkarni Tata Research Development and Design

Centre, India
Liz Q. Li Motorola Inc., USA

VIII Organization

Christine Mingins ucube, Australia
Cornelius Ncube Bournemouth University, UK
Uolevi Nikula Lappeenranta University of Technology,

Finland
Dragutin Petkovic San Francisco State University, USA
Moniphal Say Institute of Technology of Cambodia,

Cambodia
Thanwadee Sunetnanta Mahidol University, Thailand
Gary Thompson Sun Microsystems and San Francisco State

University, USA
Rainer Todtenhoefer University of Applied Sciences Fulda,

Germany
Hiroshi Tsuji Osaka Prefecture University, Japan
Ye Yang Institute of Software Chinese Academy of

Sciences, China
Yunwen Ye Software Research Associates, Inc., Japan
Jianjun Zhao Shanghai Jiao Tong University, China

Local Organization

Martin Nordio ETH Zürich, Switzerland
Claudia Günthart ETH Zürich, Switzerland

Table of Contents

Invited Keynote Speakers

Decentralized Software Development: Pitfalls and Challenges
(Abstract) . 1

Carlo Ghezzi

An Empiricist View of Managing Globally Distributed Software
Development (Abstract) . 3

Narayan Ramasubbu

Industry Challenges and Best Practices

IBM Industry Practice: Challenges in Offshore Software Development
from a Global Delivery Center . 4

Ilario Musio

Solution Proposals for Japan-Oriented Offshore Software Development
in China . 14

Lei Zhang, Xuan Zhang, Meiping Chai, Yibing Tan, Shigeru Miyake,
Yoji Taniguchi, Jun Hosoya, and Ryota Mibe

Working in Distributed Teams: Challenges, Best Practices, and
Guidelines . 25

Arul Mozhi Ganesan and Kayal Vizhi Ganesan

Measurement and Estimation

Quantitative CMMI Assessment for Offshoring through the Analysis of
Project Management Repositories . 32

Thanwadee Sunetnanta, Ni-On Nobprapai, and Olly Gotel

Predicting Fault-Prone Modules: A Comparative Study 45
Hao Jia, Fengdi Shu, Ye Yang, and Qing Wang

Effort Drivers Estimation for Brazilian Geographically Distributed
Software Development . 60

Ana Carina M. Almeida, Renata Souza, Gibeon Aquino, and
Silvio Meira

X Table of Contents

Strategic Concerns and Technologies

Challenges for Product Roadmapping in Inter-company
Collaboration . 66

Tanja Suomalainen, Maarit Tihinen, and Päivi Parviainen

Global Software Development with Cloud Platforms 81
Pavan Yara, Ramaseshan Ramachandran,
Gayathri Balasubramanian, Karthik Muthuswamy, and
Divya Chandrasekar

Competitive Risk Identification Method for Distributed Teams 96
Yegor Bugayenko

Communication and Specification

Model-Centric Approach to Software Design and Stakeholder-Specific
Architecture Views in Scope of a Financial Institution 102

Patrick Senti

The Role of Contracts in Distributed Development 117
Martin Nordio, Roman Mitin, Bertrand Meyer, Carlo Ghezzi,
Elisabetta Di Nitto, and Giordano Tamburrelli

Managing Communication among Geographically Distributed Teams:
A Brazilian Case . 130

Ana Carina M. Almeida, Ivaldir H. de Farias Junior, and
Pedro Jorge de S. Carneiro

Author Index . 137

Decentralized Software Development: Pitfalls

and Challenges

Carlo Ghezzi

Politecnico di Milano, Italy
carlo.ghezzi@polimi.it

Abstract. The talk discusses different three main threads through which
monolithic and centralized software development became increasingly dis-
tributed and decentralized. One is off-shoring, in which geographically dis-
tributed teams cooperate in the development of an application. Another
is component-based software development, in which two separate develop-
ment cycles interact: development of component and development of the
composite. A third thread is software-as-service, in which the two main
stakeholders (service provider and the service client) continue to interact
at run time. Each of these threads has its own potential advantages over
traditional software development, but also raises fundamental concerns.
The talk discusses how they stress some of the conceptually difficult as-
pects of software development and how they introduce new problems and
difficulties that did not exist before.

Short Biography

Carlo Ghezzi is a Professor and Chair of Software Engineering at Politecnico
di Milano. He is the Rectors Delegate for research. In the past, he has been
a member of the Academic Senate and a Member of the Board of Governors
of Politecnico. He also held positions as Department Chair, Head of the PhD
Program and Head of consiglio di corso di laurea. He has also been affiliated
with: Universit di Padova, University of California at Los Angeles, University of
North Carolina at Chapel Hill, University of California at Santa Barbara (USA),
Escuela Superior Latino-Americana de Informatica (Argentina), Technical Uni-
versity of Vienna and University of Klagenfurt (Austria), University of Lugano
(Switzerland).

He is a Fellow of the ACM (citation: Numerous research contributions from
compiler theory to real-time systems to software processes. A strong contributor
to the software engineering community in Europe and worldwide.) and Fellow of
the IEEE (citation: Contributions to programming languages and software en-
gineering). He was awarded the ACM SIGSOFT Distinguished Service Award.
He is a member of the Academy of Sciences. He has been a member of several
governmental committees and was the Italian representative in the EU Infor-
mation Technology Committee (Esprit Programme) during the 4th Framework
Programme. He has been on the board of several international research projects
and institutions in Europe, Japan, and the USA.

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 1–2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 C. Ghezzi

He is a regular member of the program committee of flagship conferences of
the software engineering field, such as the International Conference on Software
Engineering and Foundations of Software Engineering/ European Software En-
gineering Conference, for which he also served as Program and General Chair.
He has been General Chair of the International Conference on Service Oriented
Computing (ICSOC 2006, Chicago, USA). He has been the Editor in Chief of
the ACM Transactions on Software Engineering and Methodology and Associate
Editor of IEEE Transactions on Software Engineering. He is currently an Asso-
ciate Editor of Science of Computer Programming (Elsevier), Service Oriented
Computing and Applications (Springer), and Software Process Improvement and
Practice (J. Wiley and Sons).

Carlo Ghezzis research has been focusing on different aspects of software en-
gineering and programming languages. Currently, he is active in the area of
software architectures, especially evolvable and distributed software architec-
tures for ubiquitous and pervasive computer applications. He co-authored over
150 papers, almost all of which are published internationally, and 8 books. He
coordinated several national and international (EU funded) research projects.
He has been a recipient of an ERC Advanced Research Grant in 2008.

An Empiricist View of Managing Globally

Distributed Software Development

Narayan Ramasubbu

Singapore Management University, Singapore
nramasub@smu.edu.sg

Abstract. Software Engineering research is still catching up with the
explosive growth in the adoption and proliferation of distributed soft-
ware development in its many forms. In this talk, I will present the
research roadmap I, as an empirical researcher, had taken to investigate
distributed software development, and will highlight the key findings
and inferences from my exploration. Drawing evidence from more than
two hundred large scale distributed software development projects that
I had observed in the past five years, I will discuss the challenges faced
by distributed software teams along with the way these teams (and their
organizations) have responded to the challenges. I will also share my
views on the existing gaps, both theoretical and empirical, in software
engineering economics literature that need to be bridged to further our
understanding of distributed software development. These gaps specifi-
cally relate to how software engineering researchers and practitioners ac-
commodate distributedness in project planning, execution, control and
reflection activities. Overall, my discussions will call for a new set of gov-
ernance schemes specifically suited for distributed software development
projects, and will lay out a roadmap for empirical software engineers to
build one.

Short Biography

Narayan Ramasubbu is an assistant professor at the School of Information Sys-
tems at the Singapore Management University. He has a Ph.D. in Business Ad-
ministration from the University of Michigan, Ann Arbor, and an Electronics
and Telecommunications Engineering degree from Bharathiyar University, India.
Prior to pursuing the Ph.D., he was a senior developer and product management
specialist, first at CGI Inc. and then at SAP AG. His research focuses on software
engineering economics, distributed software product development, and software
product standardization and customization. His research statement and projects
can be viewed at http://www.sis.smu.edu.sg/faculty/infosys/nramasub.asp.

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, p. 3, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

IBM Industry Practice: Challenges in Offshore

Software Development from a Global Delivery
Center

Ilario Musio

IBM
ilario.musio@ch.ibm.com

http://www.ibm.com

Abstract. Offshore software development has greatly influenced com-
petitiveness among IT companies in the last decade. Despite the fact
that there are matured and developed offshoring methodologies, there
is an ongoing tendency to look for new ways of improving them. Major
IT corporations successfully rely on their offshore delivery centers for
bridging the gap between communication and infrastructure boundaries.
However, projects tend to fail, so problems have to be considered that
arise between on- and offshore parts within the same corporation. Based
on seven case studies from the industry, this paper describes experiences
and challenges faced during the execution of offshore application develop-
ment between IBM Switzerland and IBM India. Additionally, approaches
on how they can be solved are proposed.

Keywords: offshore insourcing, global delivery, offshoring, India, indus-
try practice.

1 Introduction

The IT industry is undergoing a great change in how software is developed. With
the world getting flatter, faster and smarter, more and more ideas arise on how
to execute business in a way to benefit economically and technically. Offshore
outsourcing is one such solution multinational IT corporations have turned to
for cutting development costs to remain competitive. Since distributed projects
started to fail [13], companies and researchers have been searching for new ways
to improve the function of globally distributed teams [2]. One major investment
has been the construction of global delivery centers spread all over the world,
especially in emerging countries such as India. These centers serve as outsourcing
partners with the advantage of being within the same corporation [4].

The main benefits are:

– Shorter project set-up times due to internal contracting
– Standard infrastructure and communication channels
– Consistent methodologies and processes
– Increased security and confidentiality
– Protection of proprietary knowledge.

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 4–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.ibm.com

IBM Industry Practice: Challenges in Offshore Software Development 5

However, achieving these benefits in practice can be challenging. The con-
stantly changing IT environment brings about new problems that must each be
overcome.

2 The Global Delivery India Program

IBM operates global delivery centers in eight countries across four continents.
The largest division is located in India, where approximately 60,000 people are
employed.

While IBM Switzerland has been delivering offshore projects to India for many
years, collaboration between shores continues to be a challenge. In response, it
started the Global Delivery India program [19]. Ten Swiss application developers
were sent to India in 2007. They were each assigned to different offshore projects
for a year, where they worked as members of the development teams. The goal
of the program was to gain experience within a globally distributed software
development team, identify collaboration barriers between shores and define best
practices for a globally integrated software delivery methodology.

Taking part in this program gave participants the opportunity to view the
distributed software engineering process from the offshore team’s point of view.
It gave them a first-hand look at how Indian colleagues approach and exe-
cute software development, as well as the way in which the project deals with
cultural differences, distributed communication strategies, and offshore project
management.

Traditionally, IBM uses its corporation-wide methodologies to manage soft-
ware development projects. Its methods and processes are executed thoroughly
and are being constantly improved. However, before those methodologies can be
adapted for distributed projects, a number of questions must first be answered:

– Where do the methodologies currently being applied fail?
– How can those methodologies be efficiently applied on offshore projects?
– What kind of problems go undetected in offshore software development

projects, and how can they be solved?
– At what points in the project lifecycle do coordination and communication

issues arise?

This paper discusses the experiences and lessons learned during the Global
Delivery India program. All experiences are based on qualitative assessments
on seven different global delivery case studies, as well as surveys involving the
program participants, project managers, and other stakeholders on both shores
in Europe and India. The applied survey methodology is described in more detail
in section 4.

The following sections describe experiences that directly affected the execution
of the offshore projects. Recommended approaches are presented in separate
subsections.

6 I. Musio

3 Experiences

3.1 Cultural Diversity

Cultural differences can impede a smooth collaboration. Messages can be inter-
preted differently by different cultures which can lead to misunderstandings and
confusion [8].

Especially during the starting phases of the case study projects, several cul-
tural misunderstandings were experienced. A typical misunderstanding is the
different perception of the word “Yes.” An Indian “Yes” may not only mean “I
agree,” but could also mean “I understand what you are saying, but I do not
agree with you.” [18]. This led to ambiguous perceptions on e.g., the complete-
ness of a work unit or to wrongly interpreted requirements.

Being aware of such cultural misconceptions is the basic rule for a successful
offshore project [3].

Recommended Approach: Cultural Awareness Education. Take steps to ensure
the entire team, on- and offshore, is aware of the cultural differences between
the originating country and India, regardless of how responsibilities are divided
within the project. Special attention must be given to team members that will
directly interact with the other shore or with the client. This might consist of
awareness classroom courses with focus on cultural conflicts that have a direct
impact on intercultural collaboration [10], [7].

In any case, the importance of cultural awareness must not be underestimated.
If classroom training courses are not possible, material describing at least the
basic cultural differences should be prepared and distributed among the onsite
and offshore practitioners for them to study in the project’s initial phase.

3.2 Workforce Capability

The success of a global delivery project ultimately depends on an involved work-
force. Methodologies and processes may be optimal, but the real challenge can
be finding engineers with the required skills.

It can be difficult to find practitioners with many years of experience in a
specific field or development environment in India. With the constantly growing
technology market in India, there is a high staff turnover within IT companies.
Indian IT specialists can readily find another job with a better salary, which
causes great volatility in IT teams, making frequent hiring processes and uni-
versity recruiting events a necessity. The program revealed that many hiring
processes do not always meet European standards. Observations showed that
the majority of new hires did not have the expected technical knowledge. This
is due to the fact that university hires can come from fields of study that are
unrelated to IT.

Recommended Approach: Monitor Practitioner Hiring Process. It is important
to verify each practitioner’s skill set, especially for newly set up projects.

IBM Industry Practice: Challenges in Offshore Software Development 7

Review all practitioners hired offshore and make sure to assemble a skillful
and competent team. Delegating of hiring processes to an offshore representative
should be kept to a minimum, as skill requirement concepts can vary among
different societies. This is especially important when new hires join a team.

When hiring, do not rely solely on résumés and recommendation letters. Phone
interviews should be the preferred hiring method. Candidates should be assessed
on the required skills before being considered for the position. If training is
required prior to joining a team, verify that the candidate successfully completed
the training.

3.3 Methodologies

Major software corporations use their own methodologies and processes for guid-
ing and managing software projects e.g., Rational Unified Process, XP, Agile,
SCRUM, etc. These methodologies are being adapted for offshore outsourcing
[11], [6].

As experiences from the case studies revealed, it is crucial for the success of
the project that everyone is aware of the in-house processes and tools.

Awareness of standard methods helps all practitioners clearly understand their
roles within the project and provides a common vocabulary based on clear def-
initions. Those advantages improve productivity by reducing ambiguity which
enhances effective project execution.

Recommended Approach: Provide Information about Methodology. Choose a well-
defined methodology, and propagate it not only to the onsite project managers,
architects, and developers, but to the entire offshore team as well. The method-
ology provides a bigger picture, and it allows offshore practitioners to proactively
contribute to the project.

3.4 Creativity

Work tasks and deliverables in which creativity and innovation are important
should not be sent offshore [12]. Innovation occurs when programmers come up
with creative ideas while they are working. If the offshore teams do not have
creative programmers, potential innovation might be lost in the project.

Some deliverables in particular require the client to be close at hand, so as to
involve them early on and avoid unnecessary acceptance iterations.

In one of the case studies, the graphical unit interface module was developed
offshore. Though the functionality was complete, the screen arrangement did not
meet the client’s expectations. This led to additional acceptance iterations that
could have been avoided.

Recommended Approach: Keep Creative Work Units. Examples of creative and
innovative deliverables are e.g., Graphical Unit Interface screens, interaction
process definitions and other Human-Computer interaction models.

Those deliverables should be developed on site and not assigned to the offshore
team to avoid prolonging the communication process.

8 I. Musio

Nevertheless, promote innovation and creativity in the offshore team. Let the
Indian colleagues perform autonomously and motivate them to suggest improve-
ments. After a tighter relationship is built and the Indian team gets to know the
client better, increasingly creative tasks can be sent offshore.

3.5 Productivity

Labor productivity can be measured as the amount of productive work during
a specific amount of time. As distractions increase, productivity decreases. Ob-
servations from the case studies showed that during Indian social and cultural
events productivity falls below normal levels. This was observed e.g., during the
Diwali festivities in October, during the December and January “wedding sea-
son”, or during political strikes in unstable cities. Differences in productivity
between the seasons were also observed e.g., heavy rain impedes many people
from going to the office, due to unstable transit systems.

Recommended Approach: Monitor Productivity. In traditional schedule and mile-
stone management, festivities are usually taken into consideration. Make sure to
keep the Indian holiday calendar in mind, as described above.

Completion of detailed activity reports by practitioners should also be re-
quired in order to better assess their activities. Verify that all practitioners record
their activities using an adequate level of detail.

An online hour tracking tool might be introduced and applied, where practi-
tioners record their activities on a daily basis.

3.6 Infrastructure and Organizational Tools

Despite having a company-wide infrastructure, it is not used equally everywhere.
In most of the case study projects it was shown that calendar and scheduling sys-
tems were not being used correctly. There were many ad hoc meetings and calls,
making advance planning difficult and causing appointment overlaps, poorly or-
ganized meeting room reservations, etc.

Development frameworks were also used unevenly. The use of commonly con-
figured development environments is essential in order to plan, build, and trace
all involved deliverables [16].

Recommended Approach: Increase Adherence to Organizational Procedures. Make
sure the company-wide calendar is used appropriately for meetings, calls, social
events, and even private appointments. If necessary, conduct training sessions,
especially for newly hired personnel.

3.7 Communication

Communication problems are a major cause of offshore project failures. Issues
have been described in many studies and academic researches [11]. Barriers to
interaction between offshore and onsite team must be kept to a minimum. Well-
structured and continuous communication among team members improves per-
formance and makes project success more likely [9], [5].

IBM Industry Practice: Challenges in Offshore Software Development 9

Recommended Approach: Emphasize Communication Strategies. Ensure the us-
age of both synchronous and asynchronous communication tools [14]. Experi-
ences from the case studies showed clear improvement in collaboration efficiency
when using asynchronous communication tools, such as Instant Messengers or
online collaboration tools. However, all team members must commit to using the
chosen tool regularly [15].

Create email distribution lists, as well as instant messenger groups that include
onshore and offshore team members. Designate offshore and onsite administrators
to keep the lists updated. Let the offshore teamknow that anymember on the onsite
team will be available for queries and questions through instant messenger.

At the same time, schedule weekly phone calls and plan face-to-face visits
to develop trust and build a healthy relationship. This makes it much easier to
maintain a virtual team.

3.8 Meetings and Attentiveness

In a distributed environment, meetings between onsite and offshore team are
conducted mainly by telephone.

It was observed that during phone calls some participants might switch off
the microphone and then gradually become less attentive.

Recommended Approach: Conduct Effective Meetings. Choose video conferences
over phone calls or chats wherever possible. Using webcams over the Internet
avoids costs of expensive video conference systems.

Always remind the attendees to switch off their mobile phones during meet-
ings, as it is not uncommon in India for a phone to ring in the middle of a
meeting.

It is a good practice to prepare an agenda for the meeting in order that
everyone involved is aware of the planned discussion points [14]. This document
can then be transcribed into the meeting’s minutes. Require the minutes to be
signed off, to ensure that all parties have fully understood and agreed with the
decisions made.

3.9 Uncertainty and Ambiguity

Differences among cultures imply different ways of interaction between onsite
and offshore team members. In certain cultures, it can be considered impolite
to directly disagree with someone, while in another culture people might speak
more plainly [8].

In the Indian culture communication is less direct than in Western countries.
It was observed that Indian team members were asking fewer questions than
their Swiss counterparts. This led to misunderstandings, since for the onsite
team, asking no questions implied that a given task was fully understood.

Recommended Approach: Avoid Uncertainty. Always encourage the Indian team
to ask questions whenever in doubt.

10 I. Musio

In order to improve comprehensibility, write detailed technique and process
definition documents while always remembering the cultural factors described
in section 3.1. Make sure the offshore team understands the documentation, and
ask questions to verify their understanding. Properly translate all documents
before sending them offshore.

It is essential to keep an open-minded attitude toward the other culture and
its implicit communication.

3.10 Deadlines

Deadlines delineate the project boundaries and form a basis for milestone manage-
ment. Unfortunately, different cultures perceive deadlines differently. In Switzer-
land, adhering to deadlines goes without saying, while Indian colleagues tend to be
more flexible in managing their time. They may not view a deadline as imperative
unless its importance has been highlighted explicitly.

Furthermore, many Hindi speakers use the same expression for the following
two sentences: “I will do it” and “I shall/might do it.” Using this expression
makes unclear whether it will actually be done or not. When this expression is
used, be sure to verify the true meaning that lies behind it.

Recommended Approach: Enforce Deadline Adherence. Deadlines should be de-
liberately set early e.g., by one or two days. Always include a precise target time,
e.g., “until June 27th, 5:00 p.m. CET.” Additionally, be sure to frequently ask
about the progress being made and whether the current deadline is still realistic.

3.11 Documentation and Knowledge Transfer

Knowledge transfer is critical in any kind of transition e.g., project hand-over or
new people joining a team. Due to the high staff turnover in India, offshore teams
can be very volatile and knowledge transfer becomes crucial. Three out of seven
case study projects had poor or no documentation at all. New team members,
especially new hires, needed more time to become acquainted with the project.
This led to unexpected delays, which is a major risk in offshore projects [1].

Recommended Approach: Improve Documentation. Follow the guidelines below
to create and maintain stable documentation:

– Create architectural documents describing implemented modules
– Require documentation for every decision and assumption taken by the off-

shore team
– Check that there is sufficient documentation for new team members
– Define clear formatting rules for any kind of documentation
– Enforce and verify code comments, annotations, and implementation notes.

IBM Industry Practice: Challenges in Offshore Software Development 11

3.12 Assets and Knowledge Management

Many corporations use knowledge bases for gathering reusable work products
and lessons learned from past projects. Using those knowledge bases can lead to
improved performance without reinventing the wheel.

Not all team members might be completely familiar with knowledge databases.
In most of the studied projects, there was almost no awareness of the corporation-
wide asset repository.

Recommended Approach: Promote Asset Reuse. Determine whether it is neces-
sary to assess how reusable assets are being used and how to create new ones.
Rewarding asset creation might improve motivation among practitioners to ac-
tively support and contribute to the knowledge base.

3.13 Others

During the Global Delivery India program, other factors emerged that can im-
prove distributed project execution. Make sure to:

– Maintain a friendly but authoritative relationship with the offshore team
– Define responsible entities that are responsible for sub-projects
– Define an internal contract or document of understanding which includes rules

that enable a smooth collaboration, and distribute it to the whole team.

4 Survey Methodology

The approach for the survey methodology is based on qualitative interviews and
informal discussions. Seven projects were chosen as research cases. All projects
are distributed software development projects, where the client is based in a
European country and the main part of the delivery takes place in India. The
types of projects are diverse, containing development and maintenance projects,
as well as successful and more challenging projects.

The research data consisted of information taken from interviews of project
stakeholders from both shores in Europe and India. Furthermore, different roles
and positions in the project were considered. Depending on the role of the intervie-
wee, the interviews were adapted to focus on the corresponding tasks in the project.

All information gathered from the interviewee is based on their personal expe-
riences with globally distributed collaboration practices, which included topics
such as cultural diversity, communication approach, methodology adoption, tool
usage, and infrastructure set-up.

5 Conclusion and Future Work

This paper has described a set of challenges that arise on offshore projects be-
tween the European and the global delivery center shore. The recommended

12 I. Musio

approaches might minimize those challenges. Although some of the suggested
approaches are already in use, new questions arise: What impact does the ap-
proach have on the project? How can those approaches be integrated into the
current methodologies?

Additional surveys might be conducted in future in order to answer those
questions, verify the efficacy of the approaches in improving inter-shore collab-
oration, and to check their feasibility. There is no question that offshoring will
continue, and the current economic crisis makes it more necessary than ever [17].

Acknowledgments. The Global Delivery India program was sponsored and
supported by IBM Switzerland Global Business Services – Application Services.
I would like to thank them for giving me the opportunity to go through this
experience. I would also like to thank Anjali Keshava, Samuel Kurth and Bimal
Mathews for their proofreading and commenting on earlier versions of this paper.
Thanks to IBM India for the warm hospitality and all involved people that were
always open for interviews.

References

1. Bloch, M., Jans, Ch.: Reducing risks in offshoring projects. The McKinsey Quar-
terly, McKinsey&Company 3 (2005),
http://mckinseyquarterly.com/PDFDownload.aspx?ar=1634

2. Braun, A.: A Framework to Enable Offshore Outsourcing. In: International Confer-
ence on Global Software Engineering (ICGSE), pp. 125–129. IEEE, Los Alamitos
(2007)

3. Carmel, E.: Global Software Teams: Collaborating Across Borders and Time Zones.
Prentice Hall, Englewood Cliffs (1999)

4. Carmel, E., Agarwal, R.: The Maturation of Offshore Sourcing of Information
Technology Work. In: Information Systems Outsourcing, pp. 631–650. Springer,
Heidelberg (2006)

5. Christiansen, H.M.: Meeting the Challenge of Communication in Offshore Software
Development. In: Meyer, B., Joseph, M. (eds.) SEAFOOD 2007. LNCS, vol. 4716,
pp. 19–26. Springer, Heidelberg (2007)

6. Cristal, M., Wildt, D., Prikladnicki, R.: Usage of SCRUM Practices within a Global
Company. In: International Conference on Global Software Engineering (ICGSE),
pp. 222–226. IEEE, Los Alamitos (2008)

7. Hofstede, G.: Cultural Dimensions, http://www.geert-hofstede.com
8. Hofstede, G., Hofstede, G.J.: Cultures and Organizations: Software of the Mind.

McGraw-Hill, New York (2005)
9. Iacono, C.S., Weisband, S.: Developing Trust in Virtual Teams. In: Proceedings of

the Thirtieth Hawaii International Conference on System Sciences, pp. 412–420.
IEEE, Los Alamitos (1997)

10. Itim Culture & Management Consultancy, http://www.itim.org
11. Kornstädt, A., Sauer, J.: Tackling Offshore Communication Challenges with Ag-

ile Architecture-Centric Development. In: Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA), pp. 44–47. IEEE, Los Alamitos
(2007)

http://mckinseyquarterly.com/PDFDownload.aspx?ar=1634
http://www.geert-hofstede.com
http://www.itim.org

IBM Industry Practice: Challenges in Offshore Software Development 13

12. Matloff, N.: Offshoring: What Can Go Wrong? IT Pro., 39–45 (July-August 2005)
13. Mauch, C., Wildemann, H.: Erst analysieren, dann outsourcen. IO new manage-

ment 9, 32–37 (2004)
14. Meyer, B.: Design and Code Reviews in the Age of the Internet. Communications

of the ACM 51(9), 66–71 (2008)
15. Niinimäki, T., Lassenius, C.: Experiences of Instant Messaging in Global Software

Development Projects: A Multiple Case Study. In: International Conference on
Global Software Engineering (ICGSE), pp. 55–64. IEEE, Los Alamitos (2008)

16. Parvathanathan, K., Chakrabarti, A., Patil, P.P., Sen, S., Sharma, N., Johng, Y.:
Global Development and Delivery in Practice: Experiences of the IBM Rational
India Lab. IBM Redbooks (2007)

17. Spang, S.: Five trends that will shape business technology in 2009. The McKinsey
Quarterly, McKinsey&Company (2009),
http://mckinseyquarterly.com/PDFDownload.aspx?ar=2296

18. Storti, C.: Speaking of India: Bridging the Communication Gap When Working
with Indians. Nicholas Brealey Publishing (2007)

19. Namaste! – IBM Schweiz beschreitet neue Wege in der Software-Entwicklung.
Think! Kundenmagazin der IBM Schweiz, IBM Switzerland, May 2007, p. 5 (2007),
http://ibm.com/ch/think/archiv/42007/pdf/IBM_Think_407_de_72.pdf

http://mckinseyquarterly.com/PDFDownload.aspx?ar=2296
http://ibm.com/ch/think/archiv/42007/pdf/IBM_Think_407_de_72.pdf

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 14–24, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Solution Proposals for Japan-Oriented Offshore Software
Development in China

Lei Zhang1, Xuan Zhang1, Meiping Chai1, Yibing Tan1,
Shigeru Miyake1, Yoji Taniguchi2, Jun Hosoya2, and Ryota Mibe2

1 Hitachi (China) Research & Development Corporation,
301 North Wing Tower C Raycom Infotech Park, 2 Kexueyuan Nanlu, HaidianDistrict,

Beijing, China (100190)
{leizhang,xzhang,mpchai,ybtan,smiyake}@hitachi.cn

2 Hitachi, Ltd., Systems Development Laboratory,
Hitachi System Plaza Shinkawasaki, 890, Kashimada, Saiwai-ku, Kawasaki-shi,

Kanagawa-ken, 212-8567, Japan
{yoji.taniguchi.rf,jun.hosoya.fm,ryota.mibe.mu}@hitachi.com

Abstract. Surveys on the Japan-oriented vendors in China were conducted twice
to find out the existent problems in the Japan-oriented offshore software
development. From these survey results, four main problems were found out,
which were the frequent requirement changes from the product owner, the
misunderstanding of the requirement specification in the vendor side, the heavy
overhead of the project management and the low-efficiency communication
between the product owner and the vendor. Several solutions are proposed to
solve these four problems, which mainly consist of the improvement of the
offshore software development process and the development of the offshore
development supporting tools. The proposed offshore development process is
based on the application of the prototype development, the iteration development
and the customer test driven development processes. The proposed offshore
development supporting tools include the project management assistant tool and
the communication assistant tool.

Keywords: Offshore software development, requirement change, requirement
misunderstanding, project management, communication.

1 Introduction

In recent years, the offshore software development has become a popular way to
decrease the software development cost and improve the core technical competence
for many companies. However, some risks still exist in the offshore outsourcing, such
as miscommunication, cultural difference in business customs, quality issues and so
on [1][2][3]. Japan and China are two important cooperation partners in the offshore
software development. However, Japanese companies also often complained that the
quality was not satisfactory, and the cost turned to be much more than they expected,
and so forth. [4]. It seems that the offshore software development will not definitely
succeed as expected if some main issues can not be found out and solved.

 Solution Proposals for Japan-Oriented Offshore Software Development in China 15

In order to support Japan-oriented offshore software development, many
researchers in the world, especially in Japan and in China, carried out the related
researches in recent years. S-open Offshoring Development Study Committee [5]
conducted the surveys on the Japanese outsourcing companies and the Japan-oriented
offshore vendors in China. They found out some existent problems and gave some
suggestions to the offshore software development between Japan and China from the
viewpoint of Japan side. Tsuji H. et al. [6] [7] presented the risk assessment scheme
and tool based on the survey on many vendors in China, India or other Asian
countries, in order to quantify the risk of Japanese offshore software outsourcing and
promote a knowledge spiral for project management. Kojima S. and Kojima M. [8]
presented some proposals for IT offshoring work for the Japanese industries based on
the interviews with 21 companies, such as the strategic selection of the offshore
locations, training in India and the like.

On the other hand, some researchers also conducted the studies on the general
offshore software development, no relation with countries. Christiansen, H.M. [9]
analyzed the factors, which have an impact on communication in the offshore
software development and gave some suggestions on how to meet these challenges.
Martin Fowler [10] proposed to use an agile software process in the offshore
development.

Our group started the research on Japan-oriented offshore software development in
China from 2005 [11] [12] [13] [14]. The surveys on Japan-oriented offshore vendors in
China were conducted twice in 2006 and 2008, respectively. The main issues in Japan-
oriented offshore software development in China were found out and corresponding
solution proposals were presented. The proposals include the improvement of the
development process and the development of the supporting tools, which will be stated
in detail in the following sections.

2 Survey Results

2.1 Survey Contents

In 2006, we conducted the first survey on Japan-oriented offshore software
development in China. Twenty four Japan-oriented offshore vendors were selected,
most of which were ranked the top 50 vendors in China. The questionnaire included
the company information, the project information, the software development process,
the existent problems, the experiences and expectations. Two year later, in 2008 we
carried out the second survey on Japan-oriented offshore software development in
China, in order to find out whether there are new trends in this field. In this survey, 20
vendors were selected and 70% of which were selected from the 24 surveyed vendors
in 2006 to make the comparison between two surveys more reasonable. The
questionnaire was revised a little based on that in 2006, mainly adding some questions
about the requirement change and the communication.

2.2 Existent Problems of Japan-Oriented Offshore Software Development

From the above two surveys, 10 main existent problems were found out from Japan
side and China side, which are listed as follows.

16 L. Zhang et al.

Firstly, four problems were detected only from Japan side.

(1) No special manager for one project
(2) Too ambiguous requirement specification (RS)
(3) Too frequent requirement changes (RC)
(4) Low design quality
 Secondly, another four problems were discovered only from China side.
(5) Lack of Bridge Software Engineers (BSE)
(6) Low technology skills
(7) Low estimation ability of delivery and cost
(8) Many requirement misunderstanding
 Finally, two common problems were found out from both Japan and China.
(9) Low-efficiency project management
(10) Low-efficiency communication

In our opinion, problems (1)(2)(4)(5)(6) and (7) are mainly related to the improve-
ment of the company organization and the education level of Japan side or China side,
which are difficult to be solved by the researches. While the left four problems,
(3)(8)(9) and (10), may be solved to a certain extent by the improvement of the
development process or the application of the supporting tools.

 JAPAN CHINA

Project
Manager

Project
Manager

RS

High-level
Design

Project
Management

System
Test

Acceptance
Test

Delivery

Low-level
Design

Coding/
Unit Test

Integration
Test

(1)No specific
Project manaqer

(2)Ambiguous RS

(4)Low Design
Quality

(5)Lack of BSE

(6)Low technology skills

(7)Low estimation ability
of delivery and cost

(8)Many requirement
misunderstanding

(9)Low-efficiency
project management

(10)Low-efficiency
communication

(3)Frequent RC

Fig. 1. Problems in Japan-oriented Offshore Software Development in China

2.3 Reasons of Main Existent Problems

Based on the survey results, the reasons of four main problems (3)(8)(9) and (10)
were analyzed and summarized in Table 1. Briefly speaking, problem (3), frequent
RC, was resulted from the development process of Japanese style. In such process,

 Solution Proposals for Japan-Oriented Offshore Software Development in China 17

most requirement items generally are not fixed yet when the development is started,
but becoming clear gradually with the proceeding of the development. Therefore, in
this case the frequent requirement change is inevitable.

As for the problem (8) of requirement misunderstanding, one main reason is that
the different culture and language between Japan and China may cause the different
understanding on the same requirement item. Another main reason is that so far there
is no effective way to confirm the understanding correctness of the vendor side. This
means even if some requirement items are misunderstood by the vendor side, such
mistake is difficult to be detected timely until these requirements are implemented
and finally tested.

There are two main reasons for problem (9). First is the overhead of the project
management is very big, including the data collection, the risk analysis and the report
writing. Second is the skill levels of the project managers in Japan are different. Some
risks can be detected timely by the experienced project managers, while may be
ignored by the novices.

Table 1. Reasons of Main Existent Problems

Problem
No.

Problems Reasons

(3) Frequent RC
·Japanese style development process (i.e. requirements

are fixed gradually during the development)

(8) Requirement
misunderstanding

·Different culture and language
·Lack of effective way to confirm the understanding

correctness of the vendor side

(9)
Low-efficiency
project
management

·Overhead is very big, including data collection, risk
analysis and report writing.

·Risk sometimes can not be timely detected due to the
poor experience of the project managers

(10) Low-efficiency
communication

·Limited communication ways (mainly E-mail and TV
meeting)

·Delayed feedback from the product owner
·Mass and scattered information

As for the problem (10) of low-efficiency communication, the first reason is the

communication ways in the offshore development is limited. Due to the cost
consideration, the communication in the offshore development is mainly based on
E-mail and TV meeting, which have lower efficiency compared with telephone and
face to face discussion. The second reason is that in many cases, the manager in Japan
is very busy every day. He/She cannot give timely feedback to the requirements from
Chinese vendors. Such delayed feedback greatly affects the work efficiency of the
vendor side. Furthermore, due to the limited communication ways, it is difficult to
effectively remind the project manager in Japan of the reply delay. Finally, the
communication contents are various in the offshore software development, such as the
Q&A on the requirement or the design, the review comments on the documents, and
the like. Thereby, such kind of information in the offshore development is mass and
scattered.

18 L. Zhang et al.

3 Solution Proposals

In order to solve the above four main problems, we present some proposals, which are
listed in Table 2. The problems of the frequent RC and the requirement misunder-
standing are proposed to be solved by an improved offshore software development
process, which is composed of the prototype development, the iteration development
and the customer test driven development (CTDD). The problems of the low-
efficiency project management and the low-efficiency communication are recom-
mended to be resolved by the supporting tools of HOPE and FOCUS, respectively. In
section 3.1-3.3, all the proposals will be stated in detail.

Table 2. Solution Proposal List for Offshore Software Development

Proposal
No.

Problems to be Solved Proposal Contents

Prototype development
Frequent RC

Iteration development (I)
Requirement
misunderstanding

Customer Test Driven Development (CTDD)

(II)
Low-efficiency project
management

HOPE: Supporting tool of auto data collection,
analysis and report generation

(III)
Low-efficiency
communication

FOCUS: Supporting tool of communication
acceleration and management

3.1 Proposal (I): Improved Offshore Development Process

As mentioned in Table 2, we proposed an offshore software development process,
which is composed of the prototype development, the iteration development and
CTDD, to improve the adaptation ability of RC and avoid the misunderstanding of
RS. These three practices can be adopted in the corresponding phases of the
development process shown in Fig. 2. In this figure, only the most typical work
assignment between Japan side and China side are demonstrated, that is Japan side
takes charge of RS, high-level design, system test and acceptance test, while China
side is responsible for other left works. The application of our proposed offshore
software development process generally includes the following four steps.

(i) Japan side collects and analyzes the needs from the end-users and forms them
into RS. The high-level design is also usually done by Japan side. After that
the development work is transferred to China side.

(ii) China side analyzes the change risk of the requirements and the uncertainty
of the architecture approach, and then defines the scope of the prototype
development, which should be agreed by Japan side. By the prototype
development, China side proves the architecture and demonstrates the core
requirements to Japan side. The phase of the prototype development ends
after the confirmation from Japan side. Otherwise the prototype should be
improved iteratively.

 Solution Proposals for Japan-Oriented Offshore Software Development in China 19

(iii) Other requirements will be implemented iteratively according to their
priority. In iteration, firstly the iteration plan, which defines the development
scope and the acceptance criteria, should be agreed by Japan side. Then
China side writes the function test cases. After Japan side confirms these test
cases, China side starts the low-level design, the coding, the unit test and the
integration test. The confirmed function test cases will be executed in the
function test phase by the end of this iteration to verify whether the
implemented software meets the customer’s requirements.

(iv) After Japan side completes the system test and the acceptance test, the
product can be delivered finally.

 JAPAN

RS

High-level
Design

Confirmation

System
Test

Acceptance
Test

Delivery

Low-level
Design

Coding/
Unit Test

Integration
Test

Prototype
Development

RS
Implementation

Function
Test Case

Iteration
Plan

Function
Test

Phase1

Phase2

Iteration1

Iteration n

Iteration n+1

Iteration N

…

…

…

…

CHINA

Prototype
Development

Iteration
Development

Customer Test Driven
Development

E.g. Iteration n

Confirmation

Confirmation

JAPAN

Fig. 2. Proposal of Offshore Software Development Process

Therefore, it is expected that the core requirements and the architecture can be
determined as much as possible by the prototype development. This can reduce the
times of the requirement change in the later phase. What’s more, the fixed
requirements or the requirements with higher priority are recommended to be
implemented in the earlier iterations, so the ambiguous requirements can be further
discussed until they become clear enough to be implemented in the later iterations.
Such kind of iterative development can detect the bugs in the earlier phase and also
avoid the great rework due to the requirement change in the later phase. Furthermore,
if Japan side confirms the function test cases, which are written by China side, at the
beginning of the iteration and China side executes the function test using these
confirmed test cases at the end of this iteration, the understanding consistency of the
requirements between Japan and China can be checked within iteration. This is
expected to reduce the bugs which are caused by the requirement misunderstanding.

In a word, by using this improved offshore software development process, it is
expected to cut down the rework cost of the requirement change, detect the bugs
in the earlier stage and decrease the bugs due to the requirement misunderstanding.

20 L. Zhang et al.

Of course, the effectiveness of this process needs to be evaluated quantitatively in the
real projects in the near future.

In practice, the above proposed process can be tailored according to the specific
application environment, which is mainly influenced by the difficulty degree and the
requirement property of a project. The difficulty degree can be judged by considering
three factors: (i) Human resource, considering the business domain knowledge, the
technical ability, the development experiences and the whole team cooperation
ability. (ii) Reusable resource, considering the architecture, the design model and the
components. (iii) Project style, considering the application software, the middleware,
the embedded software, etc. The requirement property can also be decided according
to three factors: (i) Requirement specification, considering its accuracy and
integrality. (ii) Project scale, considering the code size and the person*month needed.
(iii) Customer satisfaction, considering the required accuracy and the detailed degree.

The recommended processes for different difficulty degrees and different
requirement properties are briefly presented in Table 3. In addition, the work
assignment in the process shown in Fig.2 is the most common type between the
product owner and the vendor. In practice, the tasks between the roles may be slightly
different from this description, which will not influence the adoption of these
practices essentially.

Table 3. Proposed Processes according to Different Application Environment

Application Environment
Difficulty Degree Requirement Property

Proposed Development Process

Easy Fixed Waterfall & CTDD
Hard Fixed Waterfall & Prototype & CTDD
Easy Unfixed Iteration & CTDD
Hard Unfixed Iteration & Prototype & CTDD

3.2 Proposal (II): Project Management Supporting Tool – HOPE

In order to cut down the overhead of the project management, some companies in
Hitachi Group also considered applying some supporting tools, which can
automatically collect the project data and generate the project report. However, in
most cases the application of these tools will change the existent project management
process to a certain extent, such as the change of the bug tracking tool, the test case
sheet format and the like. Such kind of changes conversely results in the increased
overhead of the project management. Therefore, the most suitable supporting tool is
to automatically collect the data and generate the report, but bringing the change to
the existent project management process as few as possible.

Aiming at the above targets, we developed a supporting tool named HOPE (Hitachi
Offshore Project Examiner) for the offshore project management. The four main
features of HOPE are shown in Fig. 3 and stated as follows.

(i) Good supporting of existent project management process. In order to keep
the existent project management process, all the tools (e.g. Bugzilla) or the
data collection sheet (e.g. B table), which are used to collect the project data,

 Solution Proposals for Japan-Oriented Offshore Software Development in China 21

are designed as the collector plug-ins in HOPE system. Such kind of plug-ins
can be customized according to the different requirements from different
companies. So the necessary project data can be collected by HOPE without
changing the existent project management process in a company.

(ii) Automatic data collection, analysis and report generation. HOPE
automatically and periodically collects the project data from the above
collector plug-ins. Furthermore, HOPE automatically analyzes these data,
generates and sends the project reports to the product owner and the
vendor periodically. Therefore, the overhead of the project management
can be cut down.

(iii) Automatic rule based risk detection. Some risk detection rules are defined
in HOPE based on the experiences of the project management. By
analyzing the collected data according to these rules, the project risks can
be detected automatically as the exception information. Furthermore, all
the rules are also design as the plug-ins in HOPE system, which can be
easily customized by users. So by using HOPE, some good experiences of
the project management can be easily shared within a company.

(iv) Different report granularities for product owner and vendor. According
to the different requirements of the product owner and the vendor, HOPE
generates the report based on different data granularities. For example, the
report to the product owner only includes the information of the whole
project, but that to the vendor includes more detailed information, such as
the information of every module.

Tools
・Progress Mngt
（XPlanner,Excel…)
・Version Control
（CVS,SVN…）
・Bug Tracking
（Bugzilla,GNATS…）
・Test Mngt
（JUnit,CppUnit…）
・Coverage Tool
（EMMA,Cobetura…）

…

HOPE

PM PM

Data

・Progress

・Code Size

・Bug Number

・Bug Severity

・Test Case

・Test Pass Ratio

・Coverage

・Complexity

…

Exception Rules
・Progress is later than planned
schedule

・Bug density is higher than

criterion

・Coding is proceeding, but code

size does not increaes

・At the end of Function test

phase, bug number still

increases

…

Report

For Product
Owner

For Vendor

Comments Comments

Solution

Vendor

Solution

Product Owner

Fig. 3. Image of Offshore Project Management Tool - HOPE

22 L. Zhang et al.

(a) Progress report

(b) Quality Exception Report

(c) Detailed Exception Information

Fig. 4. HOPE Report to Product Owner

 Solution Proposals for Japan-Oriented Offshore Software Development in China 23

An example of the HOPE reports to the product owner is shown in Fig.4, which
consists of the progress report and the exception report. In the progress report (refer to
Fig.4 (a)), the progresses for each vendor are demonstrated. If the progress is going
well, the bar is shown in green color. Otherwise, the bar is shown in red color. In the
quality exception report (refer to Fig.4 (b)), the detected exception information is also
listed for each vendor by small icons. By clicking the icons, user can check the
detailed exception information (refer to Fig.4 (c)). Herein, the related time-series data
and the required criterion are shown in a chart. Also the description of the rule used
for the exception detection and the possible reasons of this exception are also listed
under the chart.

The format of the HOPE reports to the vendor is very similar to that to the product
owner, but the data granularity is finer, such as each module’s information.
Furthermore, besides HTML reports, HOPE can also generate Excel reports
automatically to meet the different needs of different users. So by checking the HOPE
reports, the project managers in both product owner and vendor can monitor the
current risks of the progress and the quality very easily and timely.

At present, HOPE is being trial used in some Hitachi associated companies. Some
numerical evaluation results of HOPE will be presented after these trail uses, such as
the reduction ratio of the overhead of the project management and so on.

3.3 Proposal (III): Communication and RC Supporting Tool – FOCUS

In order to solve the problem of the low-efficiency communication, we proposed a
communication-supporting tool for the offshore software development, which is
named FOCUS (Facilitating Offshore Communication Unified System). Because
FOCUS is still under development, the detail demonstration will be omitted here.
Briefly speaking, it is expected that FOCUS can cut down the overhead of the
communication by the unified management of the communication content and history.
Also with the periodic alert, the problem of the feedback delay can be restrained. So
with FOCUS the existent problems of the communication in Japan-oriented offshore
software development can be solved to a certain extent.

4 Summary

Based on the two surveys on Japan-oriented offshore vendors in China, 10 main existent
problems have been found out. Except for the problems related to the company
organization or the education, we present the solution proposals for four main issues,
which are low-efficiency project management, low-efficiency communication, frequent
requirement change and many requirement misunderstanding. The solution proposals
include the improved offshore software development process and two supporting tools
HOPE and FOCUS.

The improved offshore software development process is composed of the
prototype, the iteration and the customer test driven development. With this process, it
is expected that the adaptation ability of the requirement changes can be improved
and the requirement misunderstanding can be avoided. HOPE helps the product
owner and the vendor to cut down the overhead of the project management by
automatic and periodic data collection and report generation, without changing the
existent project management process. What’s more, by the automatic rule based risk

24 L. Zhang et al.

detection, the project risk can be detected timely and the good experiences of the
project management can be shared easily. FOCUS is helpful for the product owner
and the vendor to cut down the overhead of the communication by unified
management of the communication content and history. Also the problem of the
feedback delay can be solved to a certain extent.

With the above improved development process and supporting tools, some main
issues in Japan-oriented offshore software development are expected to be solved.
However, the effectiveness of our proposals needs evaluation in the real projects in
the near future.

References

1. Aspray, W., Maydas, F., Vardi, M.Y. (eds.): Globalization and Offshoring of Software,
Report of the ACM Job Migration Task Force, Association for Computing Machinery (2006)

2. Krishna, S., Sahay, S., Walsham, G.: Managing Cross-Cultural Issues in Global Software
Outsourcing. CACM 47(4), 62–66 (2004)

3. Mayer, B.: The Unspoken Revolution in Software Engineering. Computer, 121–124
(January 2005)

4. Jinnai, K.: Learn from Offshoring. Project Management Magazine (in Japanese) 1, 83–103
(2005)

5. S-open Offshoring Development Study Committee: Comprehensive Guide Book on
Software Development Offshoring. Nikkei BP, Tokyo (2004) (in Japanese)

6. Tsuji, H., et al.: Questionnaire-Based Risk Assessment Scheme for Japanese Offshore
Software Outsourcing. In: Meyer, B., Joseph, M. (eds.) SEAFOOD 2007. LNCS,
vol. 4716, pp. 114–127. Springer, Heidelberg (2007)

7. Zhongqi, S., Hiroshi, T., et al.: Preliminary Analysis for Risk Finding in Offshore
Software Outsourcing from Vendor’s Viewpoint. In: Second International Conference on
Software Engineering Approaches For Offshore and Outsourced Development SEAFOOD,
16 pages (2008)

8. Kojima, S., Kojima, M.: Making IT Offshoring Work for the Japanese Industries. In:
Meyer, B., Joseph, M. (eds.) SEAFOOD 2007. LNCS, vol. 4716, pp. 67–82. Springer,
Heidelberg (2007)

9. Christiansen, H.M.: Meeting the Challenges of Communications in Offshore Software
Development. In: Meyer, B., Joseph, M. (eds.) SEAFOOD 2007. LNCS, vol. 4716,
pp. 19–26. Springer, Heidelberg (2007)

10. Fowler, M.: Using an Agile Software Process with Offshore Development, ThoughtWorks
(2004), http://www.martinfowler.com/articles/agileOffshore.html
(accessed July 26, 2004)

11. Zhang, L., Chai, M.P., Zhang, X., Miyake, S., Mibe, R.: Survey on Japan-oriented offshore
software development in China. In: Meyer, B., Joseph, M. (eds.) SEAFOOD 2007. LNCS,
vol. 4716, pp. 170–181. Springer, Heidelberg (2007)

12. Chai, M.P., Zhang, L., Miyake, S., Taniguchi, Y., Mibe, R.: Survey on Japan-oriented offshore
software development in China. In: Proceedings of JCIS 2009, Weihai, China (2009)

13. Zhang, X., Zhang, L., Chai, M.P., Miyake, S., Mibe, R.: HOPE: Extensible system for
Automatic & Periodic Diagnosis of Offshore Software Project. In: Jacko, J.A. (ed.) HCI
2007. LNCS, vol. 4553, pp. 807–815. Springer, Heidelberg (2007)

14. Zhang, L., Akifuji, S.: Comparison between Test Driven Development and Waterfall
Development in a small-scale project. In: Abrahamsson, P., Marchesi, M., Succi, G. (eds.)
XP 2006. LNCS, vol. 4044, pp. 211–212. Springer, Heidelberg (2006)

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 25–31, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Working in Distributed Teams:
Challenges, Best Practices, and Guidelines

Arul Mozhi Ganesan and Kayal Vizhi Ganesan

ISL, IBM India Pvt Ltd., Bangalore 560071, India
arulgane@in.ibm.com, kaganesa@in.ibm.com

Abstract. In this paper, we discuss the different challenges faced by offshore
software development engineering teams – starting with the incubation period
to ongoing development – from the team members' perspective. We also discuss
actions taken to overcome the obstacles, and extrapolate some of the best
practices and guidelines from the authors’ own experience of working for more
than a decade in distributed teams in multinational companies.

Keywords: Communication, cultural differences, knowledge transfer, offshore
team, remote team.

1 Introduction

Many industries, including software industries, have offshore development centers in
different countries all over the world. This paper discusses some of the generic chal-
lenges faced by many offshore software development engineering teams and best
practices for converting the distributed team setup, consisting of teams from all over
the world, into a beneficial one for business.

Section 2 focuses on the details of the following generic challenges: Challenges
during ramp-up, cycle time of communication, technical expertise, schedules and fes-
tivals, communicating with the remote teams, and differences in cultural dimensions.
The subsection under section 2 lists the details of each challenge, best practices to
overcome the challenge, and guidelines. Section 3 provides the conclusion.

2 Challenges

The fundamental issues for distributed teams are communication, coordination, syn-
chronization due to time zone differences, and cultural differences. This paper dis-
cusses challenges faced by distributed team members and describes how the chal-
lenges can be addressed.

In this paper, the keywords counterpart team or remote team refer to the onsite
software engineering team with whom the offshore software development engineering
team needs to interact or work.

26 A.M. Ganesan and K.V. Ganesan

2.1 Challenges during Ramp-Up

Challenge 1
Most often the offshore software development teams are started as an extended team
of the existing development teams in the United States, the United Kingdom, or Can-
ada. The new offshore engineering teams are not provided with complete details about
their counterparts in the existing teams.

During initial setup, very few knowledge transfer sessions from the existing team
are given with focus on the technical details of the projects to be executed. Most of
the time, information regarding setting up the work environment, access to the sys-
tems, and access to the lab machines in the remote team is not provided formally. This
information may not be formally documented. Usually the information is obtained
when discussing with various team members from counterpart teams through
email/phone or on need basis. Due to the formal non-availability of basic information,
there is a delay or there is an increase in the ramp up time. To overcome these initial
hurdles, the following tips could be practiced.

Best Practices 1
1. When knowledge transfer is provided by the counterpart teams, record those ses-

sions with audio and demos given. Use tools such as IBM Lotus Sametime® and
other web meeting tools that have recording options, options to replay and convert
into different formats. It is very useful for the team members to refer and play back
for better understanding.

2. Capture all the information gathered in a document.
a. Details of the team members in the counterpart team:

1. Their roles and responsibilities
2. Their tasks on the team
3. Their technical areas of expertise
4. Contact details, such as email address and phone numbers
5. Preferred mode of communication (either email, phone, or chat)
6. Preferred time to contact

b. Details of the various development and execution systems available in the
counterpart team (most of the time, the offshore development teams may not
have the complete lab setup, and might need access to the setups from re-
mote teams)

c. Procedure or permissions to get access rights to the development and lab sys-
tems or machines, including details of the contact person (or tool), to create
user names and passwords in the remote environment

d. Details of the source code version control tools used by the remote teams,
the configuration procedure to create a workspace, and the location or re-
pository details of the workspaces

e. Details of the compilation environment and procedures to execute and debug
Convert the information into a PDF format and name the document Newbie
Guide. When a new member joins the team, he/she can refer to the Newbie Guide
and then can more easily prepare for working with the team

 Working in Distributed Teams: Challenges, Best Practices, and Guidelines 27

3. Create a central database (or team room database) and keep all the required docu-
ments so that they can be easily accessed through a web link. It serves as a central
repository of documents and all the project related documents are easily available
in one place.

These best practices can help the offshore team members to speed up and reduce
the initial ramp-up time.

Guidelines 1
■ Recording the knowledge transfer sessions to create a useful resource for replay-

ing later.
■ Maintain a simple document capturing details of the team members, work envi-

ronment setups, and details for getting access to the lab environments.
■ Keep all the documents and references in a wiki page, Web link, or database that

can be accessed by all the team members.

2.2 Cycle Time of Communication

Challenge 2
In an extended team setup, few modules of the entire project/product are handled by
the offshore software development teams. The rest of the modules are handled by
counterpart team members from different geographies.

For technical problems or issues related to the project, the offshore team members
often send a mail to the counterpart team by the end of their business day. Many times
there is no overlapping of working hours between offshore development teams and
counterpart teams. Hence, the responses are received by the next business day.

To resolve a problem, sometimes, a couple of days of email exchanges between the
offshore teams and counterpart teams occur. These kinds of communication styles
tend to increase the cycle time to find the resolution for the problem.

The following best practices can be used to reduce the cycle time to resolve issues.

Best Practices 2
1. It is observed from working in the software industry that some of the offshore soft-

ware development team members, and also the counterpart team members, work at
a time that is convenient for them. When you need a clarification from the distrib-
uted team member from a different geographic location, don't wait to send the email
at the end of your business day. Instead, whenever in doubt, send out the email im-
mediately. Sometimes, the respective counterpart/concerned team member might be
working late or early, and will have the opportunity to respond immediately.

2. Another option is to send an email to determine a convenient time to talk over chat
or telephone and get clarification, which significantly reduces the total time taken
to resolve the issue.

3. Do not forget to document or record the details of clarifications provided or techni-
cal assistance provided by the remote team in the team room database. This infor-
mation could be useful for other team members with similar questions.

28 A.M. Ganesan and K.V. Ganesan

Guidelines 2
Working in a distributed team, whenever you need a clarification from the remote team:

■ Send out the mail immediately. Don't wait for the end of the business day to send
the mail.

■ When possible, either chat with them or have a meeting.
■ Record the information for later reference.

2.3 Technical Expertise

Challenge 3
Most often, when the offshore software development teams are working as an ex-
tended team from different geographic location, complete project details and expertise
are not available. Information for only a few of the modules of the entire project is
available in offshore development teams.

When an obstacle or technical problem happens, the offshore development team
might need to wait to receive clarification from their counterparts. There can be con-
fusion and arguments regarding the root cause of the problem, as the complete knowl-
edge of the product/project or expertise are not available.

Best Practices 3
Technical expertise should be built locally, either by assigning a dedicated technical
lead for the team or by pooling some of the senior engineers or technical managers
from different groups. These technical experts should have expertise and technical
skills in specific domains. They should be trained to have the knowledge of the entire
project/product, debugging skills, and the ability to analyze issues reported from cus-
tomers. They should be able to guide and resolve day to day technical issues such as
domain specific queries, debugging, core file analysis, and so on.

Whenever there are technical issues, the local technical experts should be contacted
first. The local technical experts should be able to provide initial guidance for analyz-
ing the problem and to find out the root cause. If absolutely necessary, and if the
problem cannot be solved locally by the offshore development team, then the remote
team needs to be contacted for further assistance.

Building local technical expertise significantly improves the problem resolution
time, and also provides more commitment and involvement and sense of ownership
from the offshore development teams.

Guidelines 3
■ Build local team technical expertise in the offshore development team, with tech-

nical skills on a specific domain. This expertise can be leveraged for initial prob-
lem analysis and resolution.

2.4 Schedules and Local Festivals

Challenge 4
Most of the time, the project schedules are driven from the remote teams, without
taking into account of the local holidays and festivals in the offshore development

 Working in Distributed Teams: Challenges, Best Practices, and Guidelines 29

team, For example, in India, festivals such as Diwali and Dashara are important cele-
brations, and most people plan their vacation with their families during these times.

If projects are scheduled to be delivered during the local festival time of the off-
shore development team, there might be some unnecessary delay in the project due to
key resources or team members taking their vacation. It is difficult to ask employees
not to take leave during the festival to accommodate project release dates; it might
demoralize the team members of the offshore development teams.

Best Practices 4
1. Project schedules and deliverables need to be finalized after discussion with the

offshore development team. This approach will boost the offshore development
team’s confidence and satisfaction level, as due respect is given to their culture and
values. Also, the offshore development teams should communicate their vacation
timing well in advance, during the time of planning itself.

2. On the other hand, many counterpart teams from the United States, the United
Kingdom or Canada plan their leave or long weekends, holidays, or vacations dur-
ing the months of December and January. Both the offshore and remote teams
could formally discuss and schedule the offshore team members as backup, which
will increase the high availability of the product or project handled by the teams to
the customer. In some cases where this arrangement is not possible, the offshore
team can also plan for their own team development activities during this time.

3. In general, mark the holidays of both teams in the calendar/schedule. Having done
that, the teams will know the availability of the other team members when schedul-
ing meetings and can schedule the project deadlines based on that. Tools like IBM
Lotus Notes® have options to remind individuals of the upcoming holidays marked
in their calendar.

Guidelines 4
■ Communicate your holidays and vacations well in advance to the counterpart

team.
■ Mark the calendar with the counterpart team’s official holidays.
■ When scheduling the project release and target dates, considers both offshore and

remote teams’ holiday seasons.

2.5 Communicating with the Remote Team

Challenge 5
Most often, offshore team members tend to speak fast, unlike the Americans/British
who are the native English speakers. They tend to use abbreviations, jargons, and ac-
ronyms (which are mostly common only in the native counties) in a conference call,
while interacting with the remote team.

Best Practices 5
To avoid communication hurdles, the following tips can be used.

1. Nowadays, most companies have an intranet text messaging service (text chat).
Invite all the participants to a text chat, while starting the voice-based conference

30 A.M. Ganesan and K.V. Ganesan

call. If anyone in the conference call has difficultly in understanding another per-
son, or any particular sentence or word, they can ask the person to type in the chat
window.

2. Always speak slowly while communicating with the remote team.
3. Summarize the meeting details and make sure everyone understands
4. Always send minutes of the meeting immediately after a voice conference call

with the remote team.

By following these tips, everyone will have the same understanding with better clar-
ity, and it will be easier to follow up on action items.

Guidelines 5
If possible, use a text-based messaging system along with a voice based one for better
understanding and clarity in communication.

2.6 Differences in Cultural Dimensions

Challenge 6
In a distributed team setup, it is possible to have teams that are culturally very differ-
ent. A few of the differences are

1. In offshore teams, there are large gaps between levels of the organization. They al-
ways provide group opinions rather than individual opinions, and they talk more
about the group's need, unlike their counterparts from western countries (United
States/United Kingdom/Canada, etc.), where there are fewer gaps between managers
and subordinates and each are expected to have their own opinions and concerns.

2. In general, offshore team members tend to over commit. Rather than being very
straightforward and not hesitating to say “No” They think more about the future
and long-term aspects, unlike western counterparts who focus very much on the
task at hand.

Best Practices 6
A few tips to achieve success factors are:

1. Set realistic objectives and time frames
2. Understand the orientation of other cultures and their potential impacts
3. Familiarize yourself with your counterpart’s cultures, customs, and traditions
4. Focus on relating to individuals rather than thinking in terms of cultural stereotypes
5. Focus on creating value out of differences rather than trying to assimilate or avoid

the differences
6. Recognize that there is tremendous potential for breakthroughs in having a prob-

lem solved in a new way.

Guidelines 6
■ Recognize that there are differences and prepare for them.
■ Adapt behaviors to make working together easier and more successful.
■ Help others work effectively across cultures.

 Working in Distributed Teams: Challenges, Best Practices, and Guidelines 31

3 Conclusion

Having teams distributed geographically has advantages and business benefits. The
teams internally face many challenges due to time zone differences, cultural differ-
ences, communication gaps, and environmental differences. The guidelines given in
this paper will help them to overcome a few of those issues. The benefits we gain
from distributed teams are plusses and the issues are many. Hence, it is important to
address the challenges or difficulties as early as possible and to understand each other
to get the best results from the distributed team.

Disclaimer: The work presented is that of the authors and IBM® is not responsible or
liable for any information presented in this paper.

References

1. Hofstede, G.: Culture’s Consequences: International Differences in Work-Related Values.
Sage Publications, Newbury Park (1984)

2. Culture Clash Quick Cases, http://w3-03.ibm.com/manager/simulations/
simi5.nsf/Pages/HomePage

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 32–44, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Quantitative CMMI Assessment for Offshoring through
the Analysis of Project Management Repositories

Thanwadee Sunetnanta1, Ni-On Nobprapai1, and Olly Gotel2

1 Mahidol University, Department of Computer Science, Bangkok, Thailand
cctth@mahidol.ac.th, g4637267@student.mahidol.ac.th
2 Pace University, Department of Computer Science, New York, NY, USA

ogotel@pace.edu

Abstract. The nature of distributed teams and the existence of multiple sites in
offshore software development projects pose a challenging setting for software
process improvement. Often, the improvement and appraisal of software
processes is achieved through a turnkey solution where best practices are
imposed or transferred from a company’s headquarters to its offshore units. In
so doing, successful project health checks and monitoring for quality on
software processes requires strong project management skills, well-built
onshore-offshore coordination, and often needs regular onsite visits by software
process improvement consultants from the headquarters’ team. This paper
focuses on software process improvement as guided by the Capability Maturity
Model Integration (CMMI) and proposes a model to evaluate the status of such
improvement efforts in the context of distributed multi-site projects without
some of this overhead. The paper discusses the application of quantitative
CMMI assessment through the collection and analysis of project data gathered
directly from project repositories to facilitate CMMI implementation and reduce
the cost of such implementation for offshore-outsourced software development
projects. We exemplify this approach to quantitative CMMI assessment through
the analysis of project management data and discuss the future directions of this
work in progress.

Keywords: CMMI appraisal, CMMI assessment, offshore software develop-
ment, project management, quantitative analysis, SCAMPI, software process
improvement.

1 Introduction and Motivation

Software process improvement (SPI) is often promoted to ensure more disciplined
project management, better project control and (ultimately) enhanced quality in
software development products. In practice, SPI efforts are commonly guided and
appraised through process improvement approaches such as the Capability Maturity
Model Integration (CMMI), as governed by the Software Engineering Institute (SEI)
[1]. In the particular context of offshore software development, there can be a strong
need to attain a CMMI quality rating at a particular maturity level as it is perceived as

 Quantitative CMMI Assessment for Offshoring through the Analysis 33

an important factor that contributes to the likely success of the work delivered. Such
maturity level ratings further play a very important role in defining how the software
development process will be structured and applied to each offshore development unit
[2]. From the view of offshore business centers or suppliers, appraisal at a certain
CMMI maturity level can maximize their chances of winning business from
companies that are pursuing offshore outsourcing services. From the view of onshore
business centers or headquarters, working with offshore partners who have gained an
appraisal at a requisite CMMI maturity level can help them minimize risk in their
outsourced projects.

A quick path to CMMI adoption and implementation in offshore settings can be to
impose or transfer a turnkey solution and the best practices from an onshore
headquarters to its offshore units. This is often done by providing the offshore units
with a collection of procedures, checklists, templates and standards to which the
offshore units must conform in their development processes. In so doing, successful
project health checks and monitoring for sustained quality on software processes
requires strong project management skills, well-built onshore-offshore coordination
and regular onsite visits by the SPI consultants from the headquarters’ team. A case
study has demonstrated the importance of such knowledge transfer from multinational
corporations to their subsidiaries so as to build up a knowledge base, improve
capabilities, accelerate management localization, and survive intense competition,
thereby generating good returns for their parent companies [3]. However, the nature
of distributed software development teams and the existence of multiple sites in
offshore software development arrangements still pose a challenging setting in which
to perform all the necessary management, coordination and consultation tasks.

Though the benefits of attaining a high CMMI maturity level rating are obvious,
CMMI adoption and implementation can be costly, time-consuming and complex,
especially for low-cost development countries which are the emerging markets for IT
and business process offshoring. It is clearly stated by the SEI that the CMMI is a
model, not a process standard [4]. The CMMI suggests what to do and what work
products should be produced to achieve process quality, but it does not say how to do
the process and its essential activities. When systems software engineering is
outsourced, providing guidance on how to interpret the CMMI is desirable [5].
Therefore, one factor in successful CMMI interpretation and implementation for
offshoring contexts is to overcome any cross-border culture and language barriers in
the transition of CMMI practices. Fast-growing offshore outsourcing software
development industries in countries like India and those in Central and Eastern
Europe may be able to adopt CMMI without the barriers or with fewer barriers of
language and culture. However, for other offshoring countries like China, three major
obstacles to CMM/CMMI implementation have been reported. The obstacles are
over-complex and dogmatic CMMI implementation processes (65%), the high cost of
the implementation (52%) and other issues such as the lack of automated supporting
tools (<5 %) [6].

This paper proposes to apply a model of quantitative CMMI assessment for the
benefit of SPI in offshore software development projects to address some of these
obstacles. We use the term CMMI ‘assessment’ to emphasize the fact that what we
propose in this paper does not intend to replace a full and traditional CMMI appraisal

34 T. Sunetnanta, N.-O. Nobprapai, and O. Gotel

(as outlined in Section 2). Rather, it seeks to provide complementary and supporting
evidence of process quality and improvement, in an ongoing continual assessment
basis and with less need for site visits. Note that this would not eliminate the need for
site visits and personnel interviews to gather evidence, but it could help to prepare for
such appraisal activities more pointedly. By ‘quantitative’, we mean that the
assessment results are calculated from objective evidence that is collected by way of
data gathered during the regular course of project development. This is in contrast to
traditional CMMI appraisals where project evidence is collected at the time of
appraisal, so often in a post-hoc manner.

Tools to support traditional appraisals tend to provide web-based forms or
templates to collect project evidence when an appraisal in underway. Such tools
typically act more like assistants, providing a navigable structure to help the
appraisers gather suitable evidence, a mechanism to record, collate and manage the
evidence, and graphical techniques to present the data and resulting maturity profiles
for analysis purposes. Example tools include the Interim Maturity Toolkit [9] and
CMMiPal [10]. The Interim Maturity Toolkit provides users with spreadsheets to fill
in a score from 0 to 10 representing the frequency with which each CMMI practice is
conducted, a “?” for ‘I don’t know’, or a “m” for ‘this is not applicable’. CMMiPal
uses a database to record objective appraisal evidence. If the evidence is provided for
a CMMI practice, then CMMiPal indicates that the practice is done. Other example
tools include the Appraisal Assistant (free and general purpose) [7] and the CMMI
Appraisal Recorder (commercial) [8]. Given that tool functionality is quite
straightforward and similar, many appraisers commonly develop their own
proprietary tools to support their tasks. While the results of existing CMMI appraisal
tools are generalized in the form of “Do” and “Not-Do” options, our work attempts to
classify objective assessment evidence, retrieve this evidence from project
repositories, count this evidence, and construct statistical models in an attempt to
explain what is observed.

When objective evidence about a project’s activity is collectively stored in a
repository for quantification, it allows tasks for local CMMI implementation at an
offshore site to be monitored remotely by its headquarters or onshore center. Well-
built offshore coordination for CMMI assessment is therefore implicitly achieved
through this quantitative CMMI assessment model, thereby reducing the demands of
monitoring tasks and the onsite visits associated with CMMI implementation in such
settings. Although our first intention in developing this quantitative assessment model
was to provide measurable and indicative CMMI assessment results, so as to gauge
process quality and guide improvement activities, we also suggest that such a
quantitative approach would ease the process of planning and preparing for a fuller
appraisal, as well as offer supporting evidence for the appraisal itself.

In Section 2, we describe our quantitative CMMI assessment model and illustrate
how it is applied to offshore software development. Section 3 then shows the details
of our quantitative CMMI assessment process and rules. We illustrate this approach to
quantitative CMMI assessment through the analysis of a project management
repository in Section 4, and finish with conclusions and a summary of ongoing work
in Section 5.

 Quantitative CMMI Assessment for Offshoring through the Analysis 35

2 Quantitative CMMI Assessment Model for Offshoring

Our assumption is that the objective evidence for quantitative CMMI assessment can
be automatically gathered and measured from an analysis of the existence of key
project configuration items (CIs), such as work breakdown structures, requirement
reviews, test documents, etc., held in project repositories. While software developers
at an offshore site work, the project CIs that are constructed or delivered as part of the
development process can be collected into a local project CI repository. Our
quantitative CMMI assessment process then makes use of the data in this repository
for local CMMI assessment. Considering that a project may be split and outsourced to
different offshore units, the local project CI repositories of different offshore sites can
be pooled together into an integrated project CI repository for global quantitative
CMMI assessment to monitor the quality of the development process as a whole. Fig.
1 depicts this quantitative CMMI assessment concept in a distributed offshore setting.

To conduct the analysis of project CIs for quantitative CMMI assessment, a CMMI
appraiser is required to set up rules to identify which project CIs will be suitable as
objective evidence of the different sub-practices of the CMMI. This rule setting
activity is done as a pre-process to the assessment. To define the same assessment
standard for every offshore unit of a single company, a set of assessment rules can be
set once and then applied to all the units. Fig. 2 summarizes the main use cases and
actors in our assessment model.

Fig. 1. Overview of Quantitative CMMI Assessment for Offshoring

36 T. Sunetnanta, N.-O. Nobprapai, and O. Gotel

Fig. 2. Use Cases, Actors and Associations in the Quantitative CMMI Assessment Model

The model of our quantitative CMMI assessment aligns with the phases of

SCAMPI, the Standard CMMI Appraisal Method for Process Improvement, as
designed by the SEI [11]. The SCAMPI phases consist of Plan and Prepare for
Appraisal, Conduct Appraisal and Report Results. In the SCAMPI’s Plan and Prepare
for Appraisal phase, requirements for appraisal are analyzed in order to determine
appraisal objectives, scope, constraints, outputs, and to obtain commitment to
appraisal input. Following the appraisal plan, team selection and preparation for the
collection of objective evidence then proceeds. In the SCAMPI’s Conduct Appraisal
phase, objective evidence will then be examined, verified, validated and documented,
and appraisal results are determined from the analysis of the objective evidence
presented. Finally, the appraisal results, lessons learned and feedback are delivered in
the SCAMPI’s Report Results phase. Our quantitative CMMI assessment model
follows such activities as defined by SCAMPI. However, we move part of the data
collection activity so as to collect some evidence prior to conducting the appraisal
proper. By doing this, we reduce the tasks and time required when the appraisal is
actually being conducted. Furthermore, as the results of our quantitative assessment
can be calculated from the analysis of the project CIs that exist at any stage during a
project, the monitoring of CMMI implementation can be done in near real-time as the
implementation progresses. This is particularly appealing for those situations where
the cost of an external appraisal may be prohibitive but where awareness of process
maturity is beneficial. In the next section, we explain this assessment process and its
rules in more detail.

3 Quantitative CMMI Assessment Process and Rules

Fig. 3 shows the architectural view of our CMMI assessment model. It consists of two
main components: Project Configuration Items Repository Manager and Quantitative
CMMI Assessment Engine. A dotted border box in the figure indicates the boundary of
each component.

Add items to
project CI repository

Set up quantitative
CMMI assessment

Conduct CMMI
assessment

CMMI
Appraiser

Software
Developer

View CMMI
assessment results

Assessment Pre-Process

 Quantitative CMMI Assessment for Offshoring through the Analysis 37

Fig. 3. Architectural View of Quantitative CMMI Assessment

Fig. 4. Hierarchy of Conventional CMMI Components and Associated Assessment Rules

Software developers use the Project Configuration Items Repository Manager to add

details of project configuration items as the project development progresses. In our
implementation, we design project CI schema representing the data model of
configuration items to be collected. An example of the data model is shown in the next
section. Details of the project CI will be retained in the project CI repository to be
retrieved for further analysis and CMMI assessment.

Quantitative CMMI Assessment Engine

Generate CMMI reports

Conduct CMMI
assessment

Set up quantitative CMM
assessment rules CMMI

assessment
DB

Types of rules and objective
evidence for assessment

Project to
be assessed

Type of assessment report
required

SQL statements
for assessment
rules

Quantitative
assessment rules

Updated assessment
results

Assessment
results

Assessment Reports

Project Configuration Items Repository Manager

Add items to project
repository

Project CI
repository

CMMI
Appraiser

Software
Developer

Project CI Schema

Project
configuration items

Project
configuration
items data

Project configuration
items for assessment

Process Area Category

Process Area (PA)

Specific Goal (SG) Generic Goal (GG)

Specific Practice (SP) Generic Practice (GP)

Sub practice Sub practice

Assessment Rules

By Score By Compliant

Assessment Rules

By Score By Compliant

38 T. Sunetnanta, N.-O. Nobprapai, and O. Gotel

The Quantitative CMMI Assessment Engine contains the processes that deal with
setting up quantitative CMMI assessment rules, conducting CMMI assessment and
generating assessment reports. In our model, there are two types of assessment rules
to be evaluated: “By Score” assessment rules are for checking on the number of times
that the implementation of a certain activity is satisfied with CMMI assessment rules;
while “By Compliant” assessment rules are for checking whether an activity is carried
out or not, without concern for the number of times the activity is actually performed.
Fig. 4 shows how we associate our assessment rules to the hierarchy of conventional
CMMI components. The calculation of assessment results is hence derived from sub-
practices to process areas in different process area categories.

As mentioned in Section 2, to define a quantitative assessment rule, CMMI
appraisers are required to select those types of objective evidence to be measured and
types of rules for those measurements. Our Quantitative CMMI Assessment Engine
will then automatically transform the specification of assessment rules given by the
appraisers into SQL statements. The statements will be subsequently retrieved in the
analysis process for CMMI assessment.

Upon the completion of the assessment, CMMI appraisers may obtain assessment
reports which consist of: (i) a summary of assessment results by process area category
and by process area; (ii) a detailed report of the assessment results for all practices
and sub-practices; and (iii) an assessment report in the form of an area chart diagram
showing the relative strengths and weaknesses of the Specific Goals (SGs) and
Generic Goals (GGs). Examples of these reports are illustrated in the next section.

4 Sample Application of Quantitative CMMI Assessment Using
the Analysis of Project Management Repositories

To demonstrate how our quantitative CMMI assessment is conducted, we provide a
worked example in this section. To limit the scope of this example, we focus on the
assessment of the CMMI project management process area category. Fig. 5 represents
the data model of the configuration items that we designed as offering objective
evidence of the Project Monitoring and Control (PMC), Project Planning (PP) and
Supplier Agreement Management (SAM) process areas of the project management
process area category. In our implementation, this data model is defined in the form
of the project CI schema as mentioned in Fig. 3, and it was derived from the manual
inspection of the types of work products required in the assessment of these project
management related process areas. The templates for entering actual instances of
project CI for these types of work products are provided by the Project Configuration
Items Repository Manager, which was described in the previous section. The
instances explain relevant attributes of project configuration items. For example, a
project instance is defined with the attributes of project ID, organization ID, customer
ID, project name, project description, project objective, project manager, overall
budget and actual cost. Likewise, a work breakdown structure or WBS instance is
defined with its ID and details of tasks that are contained in the structure, including
task name, task description, task category and phases. The attribute values of an
instance will be checked for the quantified results of an assessment as specified by
predefined assessment rules.

 Quantitative CMMI Assessment for Offshoring through the Analysis 39

Fig. 5. Logical Data Model of Project CI Repository of Project Management Related Process
Areas

Fig. 6 exemplifies some of the rules that have been defined for this example. The
description of tasks required for the sub-practices was obtained from the CMMI
standard. The assessment rules defined in the figure are samples of the selection of
objective evidence by CMMI appraisers for each of the sub-practices. The research
methodology for defining the rules is to firstly inspect the assessment requirements
specified by CMMI sub-practices, then to select the relevant objective evidence from
the project CI repository, and then finally to determine whether the assessment of the
sub-practices should be done by score or by compliance as previously defined in
Section 3. The SQL statements shown in Fig. 6 are quantitative CMMI rules that were
automatically generated by our Quantitative CMMI Assessment Engine in response to
the selection of objective evidence and assessment requirements. Note that the
specification of quantitative assessment rules can be made at a fine-grained level to
define criteria on the attributes of project configuration items. An example can be
seen from the grey highlighted rule of sub-practice 1 of SP 1.1 of SG 1 in the Project
Planning Practice Area in Fig. 6.

To demonstrate how the Quantitative CMMI Assessment Engine will generate the
results of a quantitative CMMI assessment from the analysis of project management
repositories, assume that we are conducting a CMMI assessment for the ABC
Company whose nature of business is software services and solutions. The ABC
Company has outsourced its inventory system development to an offshore unit. The
offshore unit maintains records of how they have dealt with suppliers and managed
product needs, but they rarely documented details on project tasks.

40 T. Sunetnanta, N.-O. Nobprapai, and O. Gotel

Category Project Management

PA: Project Planning
SG 1: Establish Estimate
SP 1.1 Establish the scope of the project

Subpractice Description Descriptive Assessment Rule SQL
1 Identify risks and their

mitigation tasks
Check relationship of WBS with
project risk

SELECT COUNT(X) FROM
WBS, Proj_Risk WHERE
(Proj_Risk.WBS_ID =
WBS.WBS_ID)

Tasks for skill and knowledge
acquisition

Check WBS relationship with
skill and training identified

SELECT COUNT(X) FROM
WBS, Skill_Need WHERE
(Skill_Need.WBS_ID =
WBS.WBS_ID)

Tasks for development of
needed support plans, such as
configuration management,
quality assurance, and
verification plans

Check tasks defined in WBS for
the task categories of supported
plan, configuration management,
quality assurance and verification
plan

SELECT COUNT(X) FROM
WBS WHERE Task_Category
IN (Support Plan, Configuration
Management, Quality
Assurance, Verification Plan)

2 Identify the work packages in
sufficient detail to specify
estimates of project tasks,
responsibilities, and schedule

Check availability of filling
information in WBS about
planning

SELECT COUNT(X) FROM
WBS WHERE
Phase=”Planning”

3 Identify product or product
components that will be
externally acquired

Check availability of WBS
relationship with product needed

SELECT COUNT(X) FROM
WBS, Product_Need WHERE
(Product_Need.WBS_ID =
WBS.WBS.ID)

4 Identify work products that
will be reused

Check availability of reused
material in WBS

SELECT COUNT(X) FROM
WBS WHERE Reused_Material
IS NOT NULL

SP 1.2 Establish estimate of work product and task attributes
Subpractic

e
Description Descriptive Assessment Rule SQL

1 Determine the technical approach
for the project

Check availability of project
document with document type of
technical approach document

SELECT COUNT(X) FROM
WBS, Proj_Doc WHERE
WBS.WBS_ID =
Proj_Doc.WBS_ID AND
Proj_Doc.Doc_Type =
“Technical Approach”

2 Use appropriate methods to
determine the attributes of the
work products and tasks that will
be used to estimate the resource
requirements

Check availability of WBS
relationship with project
measurement

SELECT COUNT(X) FROM
WBS, Proj_Measurement
WHERE
(Proj_Measurement.WBS_ID =
WBS.WBS_ID)

3 Estimate the attributes of the
work products and tasks

Count ratio of expected work
product in WBS table

SELECT COUNT(X) FROM
WBS WHERE Expected_WP IS
NOT NULL; SELECT
COUNT(X) FROM WBS;

SP 1.3 Define project life cycle
Subpractic

e
Description Descriptive Assessment Rule SQL

1 Define the project lifecycle
phases on which to scope the
planning effort

Check availability of phase in
WBS table

SELECT COUNT(X) FROM
WBS WHERE Phase IS NOT
NULL

Fig. 6. Sample Quantitative Assessment Rules for the Project Management Process Area
Category

Fig. 7 shows the existence (or not) of project configuration items in the project
management repository of the ABC Company’s offshore unit. For this sample case,
there are some configuration items or work products that the ABC Company produces

 Quantitative CMMI Assessment for Offshoring through the Analysis 41

CI Types Project
Scheduling

Risk
Management

Resource
Management

Document
Management

Skill and
Training

Management

Supplier
Agreement

Management

Stakeholder
Management

Existence Some None None None None Some None

Fig. 7. Status of Project Configuration Items for ABC Company’s Offshore Unit

Fig. 8. Sample Quantitative CMMI Assessment Result for ABC Company’s Offshore Unit

that provide evidence of project schedule planning and supplier agreement manage-
ment activities. Nonetheless, the company does not hold evidence that they conduct
any activities related to managing risk, resources, documents, skills, training and
stakeholders. In other words, the project configuration items related to those activities
do not exist in the ABC Company’s project management data repository.

Fig. 8 illustrates the assessment results that can be obtained from this example. The
numbers that are the results of this assessment for each practice are calculated from
the assessment rules that were generated for quantifying the project CI in the project
management repository. The existence of CI types for project scheduling and supplier
agreement management results in the assessment scores in the areas of Project
Monitoring and Control, Project Planning, and Supplier Agreement Management.

From Fig. 8, we can see the assessment results that indicate not only whether the
practices are done in the areas but also the numbers representing the percentage of

42 T. Sunetnanta, N.-O. Nobprapai, and O. Gotel

project configuration items that match the objective evidence as defined for the
assessment of each practice or process area. It can also be seen that the overall
maturity of the project management process area of the offshore unit of the ABC
Company is very low (1.71%). Out of PMC, PP and SAM, this offshore unit has the
strongest maturity in SAM. However, further process improvement on SAM is still
required for the offshore unit as the maturity of its SAM process is still only 5.66%.
In other words, the ABC Company’s offshore unit has done only 5.66% of all the
tasks required for evidence of process maturity in supplier agreement management, as
recommended by the CMMI. (Note the NaN results in Fig. 9 reflect process areas that
are not yet supported.) The assessment results, in the form of an area chart shown also
in Fig. 9, further exemplify the rating of the generic goals (GG) and specific goals
(SG) in the project management process area category that this offshore unit satisfies.

5 Conclusions and Ongoing Work

We have presented the design of our quantitative CMMI assessment model in this
paper. In order to automate the CMMI assessment process and to collect objective
evidence for CMMI assessment, our model is comprised of two parts: a Project
Configuration Items Repository Manager and a Quantitative CMMI Assessment
Engine. In comparison to SCAMPI phases, our model collects objective SPI evidence
prior to the time the appraisal is actually conducted based on examining existing
project data that has been collected during the normal course of project activities.
Unlike similar tools available from companies doing CMMI consulting or conducting
SCAMPI appraisals, we have proposed to separate the collection of objective
assessment evidence (where possible) from the participants who will assess the
evidence. Instead of combining the collection of all evidence with the appraisal
process, we anticipate that some pre-collection of data is possible. This can potentially
reduce both the complexity of tasks and the time required to conduct appraisals,
particularly in a multi-site setting. Further, it can provide for an up-to-the-moment
perspective on both local and integrated levels in such settings.

To evaluate our model, we have developed a CMMI assessment tool and have
designed the assessment rules for the Project Monitoring and Control (PMC), Project
Planning (PP) and Supplier Agreement Management (SAM) project management
process areas of the CMMI. We used VB.NET to implement the Project Configuration
Items Repository Manager for the data entry of the project configuration items and we
used ASP.NET to implement a web-based application for the CMMI assessment,
which is equipped with our Quantitative CMMI Assessment Engine. The tool was
exercised with test cases to provide for a preliminary inspection of the correctness of
the assessment rules in the form of the SQL statements that were automatically
generated by our Quantitative CMMI Assessment Engine, as well as to evaluate the
correctness of the assessment results as measured from the analysis of the project
management data of the test cases. To fully test our model for quantitative CMMI
assessment, more work needs to be done to define additional rules for the remaining
process areas in the project management process area category, such as Integrated

 Quantitative CMMI Assessment for Offshoring through the Analysis 43

Project Management, Quantitative Project Management and Risk Management. We are
currently investigating how to import the project management data from existing
project management tools so that the assessment can be done based on the content of
project configuration items held in such tools directly, thus easing the process. Future
work also involves extending the design of the project’s CI repository and its data
entry to include additional CIs from other software development phases beyond project
management. Although it may require intensive expert experience and human work at
the onset to set up the assessment rules, the set up is required once and passed on to
multiple offshoring sites where the similar practice of CMMI assessment is required.
As with the appraisal process in general, where the selection of appropriate evidence
depends upon the skill and integrity of the appraiser, the assessment rules are likewise
pivotal. However, ensuring the quality and consistency of the SEI's process appraisal
technology is outside the scope of our current work.

Although in its early stages, this work has begun to demonstrate how quantitative
CMMI assessment can be achieved through the analysis of project configuration items
that can be collected automatically, remotely and cumulatively while a software
development project is in progress, irrespective of the global distribution of project
units and without the need for software developers to change their everyday practices
to explicitly enable such continual assessment. In so doing, we suggest that it will
help to reduce the cost and effort of SPI implementation for offshore software
development, especially in emerging offshoring countries where the costs of such
programs are prohibitive and the guidelines are not so well established. The
quantitative assessment results generated from our model are primarily intended to
form part of an internal or self-appraisal program, so facilitating and guiding CMMI
interpretation and implementation. In this way, our model can be considered as a
complementary technique to the wider appraisal activities that are demanded by
SCAMPI, not a replacement. However, the benefit is that it does offer precise
measurement and analysis of objective assessment evidence by explicit programming
queries and statistical models instead of relying solely on an individuals’
interpretation of the existence of objective assessment evidence.

Further work is required to put this work into practice with real project data and to
evaluate its practicality and appeal to the wider software industry. Its role in
supporting SPI in offshoring contexts will be the primary target of our studies. At this
current stage of the work, we have demonstrated that the assessment rules proposed in
this model can enable the quantified measurement and quality rating of process
activities or work products relative to CMMI criteria. The validation of this model,
process and supporting tool by CMMI appraisers, and the usefulness of the outputs
generated, will need to be further investigated as the next step. The quality of the rules
set for CMMI assessment in this model will be validated further, by inspecting the
precision and recall of the outputs returned by the rules in comparison to the outputs
of manual CMMI assessment. Time factors, such as the time required in setting the
rules and analyzing the outputs, in comparison to the time required for manual
assessment, will also be studied to examine the time saving that use of this tool may
bring. We plan to make the tool freely available for others to use so as to enable this
next validation step.

44 T. Sunetnanta, N.-O. Nobprapai, and O. Gotel

References

1. Software Engineering Institute (SEI): CMMI for Development Version 1.2. Carnegie
Mellon University, Pittsburgh (2006)

2. Pilatti, L., Audy, J.L.N.: Global Software Development Offshore Insourcing Organizations
Characteristics Lessons Learned from a Case Study. In: IEEE International Conference on
Global Software Engineering (ICGSE 2006) (2006)

3. Wanga, P., Tongb, T.W., Koh, C.P.: An Integrated Model of Knowledge Transfer from
MNC Parent to China subsidiary. Journal of World Business 39, 168–182 (2004)

4. Software Engineering Institute (SEI), CMMI? Or Agile: Why Not Embrace Both!,
 http://www.sei.cmu.edu/pub/documents/08.reports/08tn003.pdf

5. Konrad, M., Chrissis, M.B., Curtis, B., Paulk, M.: A Report on the May 2002 CMMI®
Workshop, Adoption Barriers and Benefits for Commercial Software and Information
Systems Organizations, Software Engineering Institute (2002), http://www.sei.
cmu.edu/pub/documents/02.reports/pdf/02sr005.pdf

6. Wu, Z., Christensen, D., Li, M., Wang, Q.: A Survey of CMM/CMMI Implementation in
China. In: Li, M., Boehm, B., Osterweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 507–
520. Springer, Heidelberg (2006)

7. Appraisal Assistant, http://www.sqi.gu.edu.au/AppraisalAssistant/
indexFrameset.html

8. CMMI® Appraisal Recorder, http://www.se-cure.ch/Products.html
9. Interim Maturity Evaluation based on Capability Maturity Model Integration for

Development (CMMI-DEV), V1.2, Management Information System, http://www.
man-info-systems.com/index_files/FreeTools.htm

10. CMMiPal 1.0, Chemuturi Consultants,
 http://www.brothersoft.com/cmmipal-63969.html

11. Software Engineering Institute (SEI): Standard CMMI Appraisal Method for Process
Improvement (SCAMPI), Version 1.1: Method Definition Document, Handbook,
CMU/SEI-2001-HB-001, Carnegie Mellon University, Pittsburgh (2001)

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 45 – 59, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Predicting Fault-Prone Modules: A Comparative Study

Hao Jia1,2, Fengdi Shu1, Ye Yang1, and Qing Wang1

1 Laboratory for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, Beijing 100190, China

2 Graduate University of Chinese Academy of Sciences,
19# Yuquan Road, Shijingshan District, Beijing 100039, P.R. China

{jiahao,fdshu,ye,wq}@itechs.iscas.ac.cn

Abstract. Offshore and outsourced software development is a rapidly
increasing trend in global software business environment. Predicting fault-prone
modules in outsourced software product may allow both parties to establish
mutually satisfactory, cost-effective testing strategies and product acceptance
criteria, especially in iterative transitions. In this paper, based on industrial
software releases data, we conduct an empirical study to compare ten classifiers
over eight sets of code attributes, and provide recommendations to aid both the
client and vendor to assess the products’ quality through defect prediction.
Overall, a generally high accuracy is observed, which confirms the usefulness
of the metric-based classification. Furthermore, two classification techniques,
Random Forest and Bayesian Belief Network, outperform the others in terms of
predictive accuracy; in more detail, the former is the most cost-effective and the
latter is of the lowest fault-prone module escaping rate. Our study also
concludes that code metrics including size, traditional complexity, and object-
oriented complexity perform fairly well.

1 Introduction

The last two decades have witnessed an increasingly prominent trend toward the
offshore and outsourced software development. However, quality is difficult to
measure and control when a project is performed outsourced [1]. Theoretically, the
client and vendor should share the responsibilities for managing the quality of
outsourced projects. While practically, problems arise partially due to the vendor’s
motives for maximizing profits and the client’s lack of control and visibility into the
vendor’s quality control processes. To make matters worse, such problems are
sometimes ignored in the software outsourcing literature [2].

One goal of defect prediction techniques is to identify high-risk modules and get
desirable testing efficiency based on historical records. It can be leveraged to mitigate
these “outsourced” problems by aiding the vendor in making strategic test plans and
the client in accordingly monitoring the test plans before making acceptance and
deployment decisions, especially in iterative and incremental transitions, which are
prevalently adopted. Previous research on defect prediction mainly focuses on the
competitive performance of prediction models over predictors such as software
metrics [3, 7]. A number of prediction models are proposed to predict either the type

46 H. Jia et al.

of a module (whether it is fault-prone or not) or the number of faults within a module
[3, 4, 5]. The former is usually referred to as classification models while the latter is
usually referred to as regression models; and the two kinds of models have commonly
different performance indicators. Besides, various types of metrics have been
proposed including product metrics, process metrics, deployment and usage metrics,
and software and hardware configurations metrics [6]. A group of theoretical and
empirical studies have been conducted to compare the predictive performance of
assorted prediction models [3, 4, 5, 7, 8, 9] over diverse metrics [10, 11, 12] under
different predictive indicators [19]. However, no convergent conclusion has been
drawn on some model’s superiority over another over all data sets [31].

Our study aims to provide useful recommendations on the selection of prediction
models and software metrics for both the client and vendor to better control the
quality of the outsourced software. Especially, due to the increasing trends of market
changes and company’s growth, more and more clients favor iterative and
incremental transitions of outsourced software to increase their abilities in operational
flexibility and scaling. Therefore, we pay particular attention to predicting fault-prone
modules in the context of consecutive releases. As a result, the conclusions are based
on comparisons of ten classification models over eight sets of code metrics based on
data from three releases of an industrial software project. We choose the compared
classification models and code metrics with respect to three major considerations: 1)
Classification has been proven to be a promising technique in achieving better
software quality control [3, 7]. 2) Because clients lack technical expertise and have
limited understandable sources, we apply code metrics and historical defect data that
can be collected automatically by tools without in-depth technical knowledge needed.
3) Considering the frequent tradeoff between cost and quality, different defect
prediction models should be adopted according to business value propositions.

The remainder of the paper is organized as follows: Section 2 presents some related
work; Section 3 deals with the experimental setup; Section 4 reports and analyzes the
major results and provides corresponding recommendations; Section 5 discusses the
threats to validity; and finally Section 6 draws the conclusions and discusses the
future work.

2 Related Work

Predicting which modules are more fault-prone than others has been addressed by a
lot number of research, among which have assessed the predictive performance of
some classification models over various metrics across a large number of accuracy
indicators.

2.1 Classification Models for Predicting Fault-Prone Modules

A wide range of classifiers have been developed and applied to predict fault-prone
modules in software. Basili et al. [13] used Logistic Regression (LR) to predict the
fault-prone classes on a suite of object-oriented design metrics. Fenton et al. [14]
proposed Bayesian Belief Networks (BBN) for software defect prediction. Guo et al.
[15] and Lessmann et al. [7] proposed Random Forest (RF) classifier for defect

 Predicting Fault-Prone Modules: A Comparative Study 47

prediction on NASA MDP defect datasets 1 . By comparing with some machine
learning and statistical methods, they found that its accuracy was generally higher.
Xing et al. [16] adopted Support Vector Machine (SVM) as predictive classification
model for a Medical Imaging System and achieved better predictive performance than
discriminant analysis and CART. Elish et al. [17] further substantiated the
attractiveness of SVM on MDP dataset. Recently, Menzies et al. [10] pointed out that
a Naive Bayes (NB) model was easy to interpret as well as computationally efficient.
Moser et al. [18] observed the performance of Naïve Bayes, J48 Decision Tree and
Logistic Regression respectively, and proposed that J48 Decision Tree (JDT) learner
generated very accurate results for the three releases of the Eclipse project.

However, as Myrtveit et al. [31] mentioned, “empirical studies on software
prediction models do not converge with respect to the question ‘which prediction
model is best’”. Therefore, our study uses industrial project data to compare ten
prediction models on eight sets of predictors, aim to develop further understanding to
improve the convergence and formulate useful recommendations to facilitate their
application to outsourced software projects in similar developing context.

2.2 Code Metrics as Predictors

Another essential factor influencing the predictive performance is the software
metrics as predictors. The most studied and traditional approach for defect prediction
is to relate software defects to the product itself. Along these lines there have been
various studies. The most traditional ones are size and complexity [21, 22]. To
measure the span-new characteristics of object-oriented programs, Chidamber and
Kemerer [23] proposed a suite of object-oriented design metrics (CK metrics), which
has been substantiated by several theoretical and empirical studies [13, 24].
Moreover, other code metrics are proposed to complement CK metrics in defect
prediction. Zimmermann et al. [26] extracted a vast amount of size and untypical
complexity metrics from source code of Eclipse project and found a significant
correlation between their metrics and pre- and post-release defects. Nagappan and
Ball [27] showed that the software defect density can be effectively predicted by
relative code churn. Additionally, Nagappan et al. [11] identified a number of code
metrics in terms of modules to predict post-release failures within five Microsoft
projects, and turned out that complexity metrics can be successful predictors.

In all, as Menzies et al. [10] demonstrated, code metrics are useful, easy to use, and
widely used. Based on the experiments on eight subsystems taken from four systems,
they found that the predictors got from source code performed surprisingly well.

2.3 Performance Measures for Assessing Classification Models

Classification models are routinely assessed by counting the number of correctly
predicted modules over hold-out data. El-Eman et al. [19] described a large number of
performance indicators which can be constructed from four basic figures in confusion
matrix [20] shown in Table 1. When applied to defect prediction, “yes” means fault-
prone, and “no” means not fault-prone. Accuracy, precision, and recall are three of the
commonly used performance indicators [20].

1 NASA Data Program. http://mdp.ivv.nasa.gov/

48 H. Jia et al.

Table 1. Confusion matrix

 Predicted Class
 yes No

yes
True Positive

(TP)
False Negative

(FN) Actual
Class

no
False Positive

(FP)
True Negative

(TN)

Accuracy is also known as correct classification rate. This is an intuitively

appealing measure of predictive performance since it is easy to interpret and has been
widely used in a number of previous studies [10, 16, 17]. It is calculated as follows:

Precision is also known as correctness. The higher the precision, the less effort and
resources is taken in activities, like testing and inspection, on not fault-prone modules.
It is calculated as follows:

Recall is also known as defect detection rate. The higher the recall, the fewer fault-
prone modules go undetected. It is calculated as follows:

3 Study Design

The steps of this comparative study include:

 Identifying candidate classification models, sets of code metrics, and

performance indicators;
 Preparing data; (w.r.t. parameter initialization of the selected models,

historical defect data of the subject system, and code metric data obtained
automatically);

 Producing and recording of prediction results;
 Comparing and analyzing results;
 Providing recommendations;

3.1 Subject System

The comparative study makes use of defect data and program code from three
consecutive releases of a software project within a medium-sized software
organization in China. The lead product is the software quality management platform
(QMP) [25], targeting to facilitate the process improvement initiatives in many small
and medium software organizations. It is a web application using Java programming

 Predicting Fault-Prone Modules: A Comparative Study 49

language and Servlet/Struts/Hibernate architecture. The core products features
incrementally and iteratively offered by the project series.

General information about the three consecutive releases is shown in Table 2. For
reasons of confidentiality, we shall refer to them as release A, B, and C, using the
alphabetical order stands for their release sequence. All of the releases were
developed and tested by relatively steady teams under similar environment. In our
study, experienced developers are defined as the ones with more than three years
experiences in developing web applications using Java. The development team also
included several graduated students with about two-year experiences in software
development. QMP was tested independently of developers, and the column team size
merely indicates the number of developers involving no reviewers or testers.
Furthermore, to evaluate the performance of classification models for the latest
release from historical data, we use prior releases A and B for model building and the
latest release C for performance estimation.

Table 2. Brief information about the three releases of QMP

Release

Source
Files

Classes
and

Interfaces

Lines
of

Code

Project
duration
(months)

Team
size

Experienced
developers

A 719 910 111,257 5 13 5
B 736 940 114,129 1 5 4
C 909 1154 148,210 4 7 6

3.2 Candidate Classification Models, Code Metric Sets, and Performance
Indicators

3.2.1 Classification Models
This study aims at contrasting the competitive performance of various classification
models and sets of metrics. To that end, an overall number of 10 classifiers are
selected. The selection aims at achieving a balance between classical defect prediction
models (i.e., Naïve Bayes, Bayesian Belief Network, SVM, K-Nearest Neighbor,
Decision Tree, Random Forest, and Logistic Regression), and novel approaches that
have not yet found widespread usage in defect prediction (i.e., neural network
techniques like Multi-Layer Perceptron and Radial Basis Function Networks, and
ensemble methods like LogitBoost). A detailed description of most methods can be
found in general textbooks like [20].

3.2.2 Code Metric Sets
For each of the modules, we use following two metrics tools and several scripts to
extract code metrics automatically from the Java source files of the subject system:

 Understand for Java2 (UJ) by Scientific Toolworks.
 SourceMonitor3 (SM) by Campwood Software.

2 Scientific Toolworks. http://www.scitools.com
3 Campwood Software. http://www.campwoodsw.com/

50 H. Jia et al.

We choose these tools from the collection of implements employed in [6, 28]
according to whether they are available (license purchased or open sourced), easy to
use, of relatively high performance, and applicable to our dataset. These tools collect
eight sets of metrics data: Understand for Java extracts five sets and SourceMonitor
extracts three sets. Details may be referred to Section 3.4.3.

3.2.3 Performance Indicators
As we discussed in Section 1, quality prediction models in offshore and outsourced
software development should not only be useful but also applicable to different
business value propositions. We use accuracy to indicate the usefulness of
classification models over predictors. As for applicability, precision and recall are
used according to different business value propositions. In more detail, for example,
high-assurance and complex mission-critical systems should be taken under more
intensive testing at the expense of cost and schedule, which requiring high recall;
while for market-oriented software systems, their success depend mainly on the
chances and requirements of market and moderate flaws might be tolerated and fixed
in updated releases, which preferring to high precision. Moreover, this study assesses
the competitive performance using nonparametric tests, which is distribution-free and
reportedly robust to outliers [7].

3.3 Preparation of Data

3.3.1 Parameter Initialization of the Selected Models
We used the open-source WEKA4 machine learning toolkit to conduct this study.
Except for C-SVC, where grid search was used to check the candidate parameters and
explore the best performance, other classification models were initialized according to
parameters used in prior work [17]. Details are listed as follows:

 NB (Naïve Bayes): it needs no parameter.
 BBN (Bayesian Belief Network): the Simple Estimator algorithm is used for

finding the conditional probability tables and the K2 algorithm is used for
searching the network.

 C-SVC (C-Support Vector Classification): it is one type of support vector
machines used for classification. The kernel function used is radial basis
function; regularization parameter (C) is set at 1; bandwidth (γ) is set at 0.5.

 LR (logistic regression): it is set with default parameters.
 MLP (Multi-Layer Perceptron): it is a network architecture using a three layered,

fully connected, and feed-forward multi-Layer perceptron. MLP is trained using
back-propagation algorithm. The number of hidden nodes is set at 3. All nodes
in the network used the sigmoid transfer function. The learning rate is initially
0.3 and the momentum term is set at 0.2. The algorithm is halted when there is
no significant reduction in training error for 500 epochs with a tolerance value to
convergence of 0.01.

 RBFNet (Radial Basis Function Network): it uses the k-means clustering
algorithm to determine the Gaussians RBF center c and width σ. The value of k
is set at 2.

4 WEKA: http://www.cs.waikato.ac.nz/~ml/weka/

 Predicting Fault-Prone Modules: A Comparative Study 51

 KNN-3 (K-Nearest Neighbor): the number of observations (k) is set at 3.
 LogitBoost: it is an algorithm performing additive logistic regression to classify

using a regression scheme as the base learner. Threshold on improvement in
likelihood is set at -1.8; no internal cross-validation is performed; the number of
iterations to be performed is set at 10.

 J48 (C4.5 Decision Tree): the confidence factor used for pruning is set at 25%
and the minimum number of instances per leaf is set at 2.

 RF (Random Forest): it incorporates CART as base learner. The number of trees
to be generated is set at 10; the number of attributes to be used in random
selection and the maximum depth of the trees are unlimited.

In addition, the merit of a particular classification model is estimated on the hold-
out test set (so-called split-sample setup [7]).

3.3.2 Historical Defect Data
Problems are systematically recorded by the bug management tool. To assess the
delivered products’ quality, we are interested in both pre- and post-release defects –
that are, defects typically discovered during software testing and inspection, and those
resulting in failures in the field and reported by users [11].

For each release, the defect data are reported and grouped according to their
locations in terms of modules, which comprise of a few source files each of which
includes a series of classes. We thus could assign each module the number of defects.
The definition criterion of fault-prone module should be set according to specific
context. In our study, considering a large part of modules (e.g., 16% modules in
release B) contain no defect, we define fault-prone module according to: rank
modules per release according to the descending order of the number of defects,
categorize the top modules taking up the eighty percent of total defects into fault-
prone and the others non-fault-prone. Information on defects and modules of per
release is shown in Table 3.

Table 3. Brief information about defects and modules per release

Release # Defects # Modules # Fault-proneness Range of module size (LOC)
A 657 30 13 162~57367
B 119 31 7 162~57531
C 998 37 12 289~74266

3.3.3 Automatically Extracting Code Metric Data
In this work, sets of code metrics were adopted according to two criteria: 1)
automatically collected requiring little technical background; and 2) covering major
size and complexity (traditional and OO complexity) metrics.

For reason of space constraint, the full sets of metrics are neglected. UJ collects
metrics at module and class levels; SM at module and file levels. In order to have all
metrics apply to modules, we summarized the file and class metrics across each
module. For each file and class metric X, we computed the average and the maximum
value per module (henceforth denoted as X_Mean and X_Max, respectively). Taking
metric CountLineCode, the number of lines of code per class, as an example,

52 H. Jia et al.

CountLineCode _Max metric indicates the length of the largest class in a module, and
CountLineCode _Mean, the mean of CountLineCode for all classes in a module.

To evaluate the predictive performance of metrics computed by different tools at
different granularity level - module, class, and file, we partition the metrics data into
eight sets shown in Table 4. Since code metrics at class level in the full set (UJ-3) are
partially overlapped, UJ-2 is constructed using mean and max values of 20 metrics
selected from UJ-1 to remove potential redundancy and irrelevance. UJ-4, UJ-5, and
SM-3 are used to verify the hypothesis that a combination of metrics from different
viewpoints can arrive at better predictive accuracy.

Table 4. Sets of metrics data

Metrics data collected by UJ Metrics data collected by SM
UJ-1: values of total 11 metrics per module SM-1: values of total 23 metrics per

module UJ-2: mean and max values of selected 20
metrics per class SM-2: mean and max values of total 24

metrics per file UJ-3: mean and max values of total 39
metrics per class SM-3: combination of SM-1 and SM-2
UJ-4: combination of UJ-1 and UJ-2
UJ-5: combination of UJ-1 and UJ-3

4 Results and Analysis

4.1 Summary of Results

We apply the ten classification models to predict fault-prone modules using all eight
sets of metrics data respectively. All the predictions are carried out by WEKA with
uniform input data rapidly (less than 1 second), and there is no observable differences
on learning effort and ease of use among these models and metrics sets. Accuracy,
basically indicating the predictive performance, is displayed in Table 5, while results
on precision and recall are neglected due to space limitation. The classifier yielding
the best results for a particular data set is highlighted in boldface, and the metrics data

Table 5. Predictive accuracy on hold-out test data

Model UJ-1 UJ-2 UJ-3 UJ-4 UJ-5 SM-1 SM-2 SM-3
BBN 0.8333 0.8667 0.8333 0.8333 0.8667 0.8333 0.8000 0.8333
NB 0.8333 0.7667 0.8000 0.8000 0.8000 0.7333 0.7333 0.7333
C-SVC 0.6333 0.6333 0.6333 0.6333 0.6333 0.6000 0.6000 0.6333
LR 0.7667 0.8000 0.6667 0.9000 0.6333 0.5667 0.8333 0.7333
MLP 0.8333 0.8667 0.8667 0.9000 0.8667 0.6667 0.7667 0.7333
RBFNet 0.7000 0.8000 0.7667 0.8667 0.8333 0.6333 0.7667 0.6667
KNN-3 0.8000 0.9000 0.8667 0.8667 0.8667 0.7333 0.8333 0.8000
LogitBoost 0.7000 0.8000 0.7333 0.7667 0.7333 0.7333 0.7333 0.7333
J48 0.8000 0.7333 0.7000 0.7333 0.7000 0.8333 0.7000 0.7667
RF 0.8333 0.9000 0.8667 0.8667 0.8667 0.8333 0.8000 0.8333

 Predicting Fault-Prone Modules: A Comparative Study 53

yielding the best results for a particular classifier is highlighted in italics. What’s
more, the figure is based on hold-out test data (release C); results on training data are
neglected for brevity.

4.2 Comparisons of Classification Models

We compare the classifiers’ predictive performance over all eight data sets, which is
meaningful to avoid their bias toward certain metrics data. To evaluate individual
classification models and verify if some are generally superior to others, we conduct
Friedman test to check whether the differences in performance are significant. All of
the p-values for accuracy, precision, and recall fall below 0.05 (the largest value is
1.88E-06). This provides very strong evidence against the assumption that these
classifiers give equal performance. Consequently, we proceed with pairwise
comparisons to detect which particular classifiers differ significantly. Fig. 1 delineates
the results of Wilcoxon signed-rank test (α=0.05) in accuracy using a modified
version of Demsar’s significance diagram: the diagram plots methods in discussion
against mean ranks (calculated by formula in [7]), whereby all methods are sorted
according to their ranks given by Friedman test. The line segment to the right of each
classifier represents its corresponding critical difference. That is, the left end of the
line indicates from which mean rank onward another method is outperformed
significantly. For illustrative purposes, this threshold is highlighted with a vertical
dotted line. The numbers in horizontal axis indicate mean ranks across all datasets.

Fig. 1. Results of pairwise comparisons of all classifiers in accuracy

Most classifiers - with few exceptions like C-SVC - achieve promising predictive
performance, i.e. accuracy higher than 0.70, precision higher than 0.75, and recall
higher than 0.58. Overall, the high level of predictive performance across all
classification models confirms the verdict of the general appropriateness of
classification models to predict fault-prone models [3, 7].

As for accuracy, it can be observed that RF ranks first and significantly
outperforms most of others; it reaches the highest accuracy on six out of eight
datasets. The results confirm previous findings [8, 11] regarding the appealing
performance of RF for predicting fault-proneness. Since the findings are verified
widely on several projects using different metrics, it is recommended to adopt this
classifier as one of the best candidates for industrial applications. However, the

54 H. Jia et al.

performance of C-SVC is not as good as what was observed [16, 17]. In our study, it
has the lowest ranks in every metric set, and is outperformed critically by all the other
classifiers. According to Hsu [30], this phenomenon might be caused by two reasons.
One is the usage of RBF kernel because it is proved to be inefficient when the number
of features is very large. However, compared to the test data with 46237 features in
[30], the largest set of our metrics data consists of only 89 features. So it is
unconvincing that the RBF kernel is the fuse. The other possible reason is that the
model overfits the training data. After we apply grid search approach on C and γ for
UJ-2 using cross-validation, recommended in [30], predictive accuracy is enhanced to
0.6803, still less than 0.7. Further study is needed to explain this phenomenon.

a) Precision.

b) Recall.

Fig. 2. Results of pairwise comparisons of all classifiers in precision and recall

As specified in Section 2.3, we adopt another two performance indicators,
precision and recall, to provide viable suggestions on allocating testing resources
considering different emphasis on cost or quality. From their significance diagrams
shown in Fig. 2, Random Forest with the highest precision may be applied to market-
oriented systems; organizations in need of mission-critical systems may be yet in
favor of Bayesian Belief Network because of its best performance in recall. It is also
noticed that precision and recall of C-SVC are both unsatisfactory over all data sets,
since it predicts no fault-prone module, no matter whether there actually is or not.

Several factors contribute to the merits of RF and BBN [7, 29]. In general, both of
them provide an experimental way to detect metrics interactions. Specifically, RF is
fast to train, robust toward parameter settings, and naturally understandable. Besides,
it estimates the importance of metrics. As for BBN, it uses probabilistic models rather
than just the input features directly.

4.3 Comparisons of Metrics Data

Another goal of our study is to compare the impact of diverse automatically-extracted
code metrics data on defect prediction. To reduce bias introduced by the classifier, we
compare predictive performance of all classifiers over each metrics data set. Friedman
test is used to detect the differences among metrics data sets in accuracy, precision,
and recall. Significant difference is only found for accuracy with p-value<0.05, while

 Predicting Fault-Prone Modules: A Comparative Study 55

p-values for precision and recall (>0.05) indicate little or no evidence against the null
hypothesis. Hence, the discussion of metrics data below is based on accuracy, and the
discrepancies in performance measured by recall and precision are neglected.

Furthermore, results of pairwise comparisons in accuracy are depicted in Fig. 3.
Similar to the discussion of classification models in section 4.2, the predictive
performance based on these sets are generally appealing. Generally speaking,
predictive accuracy based on metrics data collected by UJ exceeds – with few
exceptions – that of those collected by SM. Specifically, UJ-2, UJ-5, and UJ-4
outperform their competitors significantly with possibly random differences among
them three.

First, we evaluate the impact of combination of metrics on predictive performance.
On one hand, UJ-2 has significantly higher accuracy than its superset UJ-3. The same
relation exists between UJ-3 and UJ-5, and UJ-1 and UJ-5. This result, according to
our dataset, denies the hypothesis that larger set of metrics leading to better predictive
performance. On the other hand, the performances of UJ-2 and its superset, UJ-4,
behave no evident difference. Similarly, SM-3 outperforms its subset SM-2
significantly, but behaves insignificantly better than its another subset SM-1.
Therefore, we cannot confirm that larger set of metrics is doomed to lose in defect
prediction. To check the impact of multicollinearity caused by combination, we
further adopt principle components analysis. But no evident enhancement or
degradation in predictive performance is observed.

Fig. 3. Results of pairwise comparisons of all metrics sets in accuracy

Then, we investigate the reasons for better performance of metrics data collected
by UJ and, find out that types of metrics may be a possible explanation. It is observed
that SM collects most metrics of size and traditional complexity (i.e. McCabe’s
cyclomatic complexity), but few of object-oriented properties are concerned.
Whereas, UJ reach a balance among three kinds of metrics including size, traditional
complexity, and object-oriented complexity (i.e. some of CK metrics) by measuring
features like coupling between classes and weighted methods per class.

4.4 Recommendations

The analysis results led us to conclude a set of recommendations to aid both the client
and vendor to assess the products’ quality through defect prediction in offshore and
outsourced software development:

56 H. Jia et al.

 Business Considerations. Defect prediction provides a comprehensive approach
for the clients to participate in the formal quality control process. It facilitates
both parties to explore and make detailed contract agreements on quality, aids
the vendor to making more strategic test plans, and provides the client with more
effective vendor governance on test to make informed decisions.

 Model Usage. Classification models are appropriate to predict the fault-prone
modules for quality control. It supports the effective assignment of testing effort
and resources to evaluate the quality of delivered software products, by paying
particular stress on high-risk modules.

 Model Selection. Based on our study, the predictive accuracy of the 10
classifiers is generally satisfying, among which the Random Forest is the best
while C-SVC behaves not so well. Moreover, illustrated by the relevance of
statistical hypothesis testing, the discrepancy of the classification models on
performance should not be underestimated.

 Cost-effective Consideration. If the customized application is market-oriented,
for the client, mostly the costs for fixing defects in later releases are not as high
as those for losing the potential market. Random Forest is recommended for this
kind of software because of its highest accuracy and precision.

 Quality Consideration. When comes to high-assurance and mission-critical
systems, particular stress should be paid to quality consideration. A field defect
may result in a great loss and even calamity. In this context, Bayesian Belief
Network is more competent. Due to our study, it performs the highest recall and
desirable accuracy, which means fewer fault-prone modules will be misclassified
as non-fault-prone and lower defects escaping rate.

 Code Metrics. Code metrics automatically gained by Understand for Java and
SourceMonitor are competent for defect prediction with no further technical
support in need. In general, metrics data collected by Understand for Java may
serve as more sound ground for defect prediction. We also propose that object-
oriented complexity metrics should be considered with size and traditional
complexity metrics to better measure the source code in object-oriented
programming languages. At last but not least, the number of predictors of a set is
not definitely proportional to the predictive performance.

5 Threats to Validity

Drawing general conclusions from empirical studies in software engineering is
difficult because any process depends on numerous potentially relevant context
factors. As for the generalization of results, the used dataset is a possible source of
bias, e.g., its measurement accuracy and representativeness [18]. To guarantee the
measurement accuracy, we verified the data from QMP through reading related
documents, interviewing with team members, and so on. In our study, the subject
project was in-house, written in Java, and iteratively developed. Hence, the
conclusions and recommendations may be not transferable to all other kinds of
projects. However, since the results of this study are in line with a number of
observations made by other researchers, we are confident that the obtained results are
relevant for the software defect prediction community.

 Predicting Fault-Prone Modules: A Comparative Study 57

The selection of classifiers is another possible source of threat. Given the variety of
available learning algorithms, there are still others that could have been considered.
Our selection is guided by the aim of finding a balance between classical techniques
and novel approaches. We believe that the most important representatives are included.

Finally, it should be noted that classification is only a single step within a
multistage defect prediction process [10]. Especially, data preprocessing or
engineering activities such as the removal of redundant and irrelevant features may
improve the predictive performance. A wide range of different methods for data
transformation and feature selection have already been proposed in the data mining
literature. As our results indicate that most classification models already achieve
promising predictive performance, i.e., accuracy higher than 0.70, precision higher
than 0.75, and recall higher than 0.58, we left these preprocessing activities for future
investigation.

6 Conclusions and Future Work

In offshore and outsourced software development, lack of technical know-how
weakens the client’s ability to keep track of the vendor’s quality control processes. It
is beneficial for both parties to reach the consensus on quality in accordance with the
client’s business value propositions. Therefore, our study aims to provide useful
recommendations on the defect prediction approaches to aid the vendor in making
strategic test plans and the client in accordingly monitoring test plan before making
acceptance and deployment decisions. Furthermore, due to the prevalent trends of
iterative and incremental transition of outsourced software aiming at the ubiquitous
changes in market, we focus on the defect prediction in the context of consecutive
releases.

This study focuses on the selection of prediction models and software metrics for
both parties to better predict the quality of the releases. We choose and compare 10
classification models over 8 sets of code metrics based on three releases of an
industrial software project. Our study concludes that: classification models are
appropriate to predict the fault-prone modules for quality control; for the trade-off
between quality and cost in defect prediction, Random Forest is the most cost-
effective and Naïve Bayes Network is of the highest detection rate of fault-prone
modules; predictive performance based on automatically-gained code metrics is
appealing; object-oriented complexity metrics should be considered with size and
traditional complexity metrics to better measure the source code in object-oriented
programming languages.

Future work includes extension of current study in three respects:

 Extending the scope of analysis to cover more classification models and
projects.

 Exploring the impact of diverse input features on the predictive performance.
 Analyzing the effects of data preprocessing and feature selection methods for

defect prediction.

58 H. Jia et al.

Acknowledgments. This work is supported by the National Natural Science
Foundation of China under grant Nos. 60573082, 90718042; the National Hi-Tech
Research and Development Plan of China under Grant No. 2006AA01Z182,
2007AA010303; the National Key Technologies R&D Program under Grant No.
2007CB310802.

References

1. Sommer, C., Troxler, G.: Outsourcing and Offshoring: The Consultancies Estimates. In:
Meyer, B., Joseph, M. (eds.) SEAFOOD 2007. LNCS, vol. 4716, pp. 109–113. Springer,
Heidelberg (2007)

2. Sabherwal, R.: The evolution of coordination in outsourced software development
projects: a comparison of client and vendor perspectives. Information and Organization 13,
153–202 (2003)

3. Khoshgoftaar, T.M., Seliya, N.: Comparative Assessment of Software Quality
Classification Techniques: An Empirical Case Study. Empirical Software Engineering 9,
229–257 (2004)

4. Khoshgoftaar, T.M., Seliya, N.: Fault Prediction Modeling for Software Quality
Estimation: Comparing Commonly Used Techniques. Empirical Software Engineering 8,
pp. 255–283 (2003)

5. Zhong, S., Khoshgoftaar, T.M., Seliya, N.: Analyzing Software Measurement Data with
Clustering Techniques. IEEE Intelligent Systems 19, 20–27 (2004)

6. Li, P.L., Herbsleb, J., Shaw, M.: Finding Predictors of Field Defects for Open Source
Software Systems in Commonly Available Data Sources: a Case Study of OpenBSD. In:
Proc. IEEE Software Metrics Symp., pp. 10–32. IEEE Computer Society, Washington
(2005)

7. Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for
software defect prediction: A proposed framework and novel findings. IEEE Trans. SW
Eng. 34, 485–496 (2008)

8. Lanubile, F., Visaggio, G.: Evaluating predictive quality models derived from software
measures: lessons learned. J. Systems and Software 38, 225–234 (1997)

9. Fenton, N., Neil, M.: A critique of software defect prediction models. IEEE Trans. SW
Eng. 25, 675–689 (1999)

10. Menzies, T., Greenwald, J., Frank, A.: Data Mining Static Code Attributes to Learn Defect
Predictors. IEEE Trans. Software Eng. 33, 2–13 (2007)

11. Nagappan, N., Ball, N., Zeller, A.: Mining metrics to predict component failures. In: Proc.
International Conference on Software engineering, pp. 452–461. ACM, New York (2006)

12. Schneidewind, N.F.: Methodology for Validating Software Metrics. IEEE Trans. Software
Eng. 18, 410–422 (1992)

13. Basili, V., Briand, L., Melo, W.: A validation of object-oriented design metrics as quality
indicators. IEEE Trans. Software Eng. 22, 751–761 (1996)

14. Fenton, N., Neil, M., Krause, P.: Software measurement: uncertainty and causal modeling.
IEEE Software 19, 116–122 (2002)

15. Guo, L., Ma, Y., Cukic, B., Singh, H.: Robust prediction of fault-proneness by random
forests. In: Proc. International Symposium on Software Reliability Engineering (ISSRE
2004), pp. 417–428. IEEE Computer Society, Washington (2004)

 Predicting Fault-Prone Modules: A Comparative Study 59

16. Xing, X., Guo, P., Lyu, M.R.: A Novel Method for Early Software Quality Prediction
Based on Support Vector Machine. In: Proc. International Symposium on Software
Reliability Engineering, pp. 213–222. IEEE Computer Society, Washington (2005)

17. Elish, K.O., Elish, M.O.: Predicting defect-prone software modules using support vector
machines. J. Systems and Software 81, 649–660 (2008)

18. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction. In: Proc. international conference
on Software engineering, pp. 181–190. ACM, New York (2008)

19. El-Emam, K., Benlarbi, S., Goel, N., Rai, S.N.: Comparing Case-Based Reasoning
Classifiers for Predicting High-Risk Software Components. J. Systems and Software 55,
301–320 (2001)

20. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd
edn. Morgan Kaufmann, San Francisco (2005)

21. McCabe, T.: A Complexity Measure. IEEE Trans. Software Eng. 2, 308–320 (1976)
22. Halstead, M.: Elements of Software Science. Elsevier, Amsterdam (1977)
23. Chidamber, S., Kemerer, C.: A metrics suite for object-oriented design. IEEE Trans.

Software Eng. 20(6), 476–493 (1994)
24. Subramanyam, R., Krishnan, M.S.: Empirical Analysis of CK Metrics for Object-Oriented

Design Complexity: Implications for Software Defects. IEEE Trans. Software Eng. 29,
297–310 (2003)

25. Yang, Y., Li, Q., Li, M., Wang, Q.: An Empirical Analysis on Distribution Patterns of
Software Maintenance Effort. In: Proc. International Conference of Software Maintenance,
pp. 456–459. IEEE Computer Society, Washington (2008)

26. Zimmermann, T., Premraj, R., Zeller, A.: Predicting Defects for Eclipse. In: Proc.
International Workshop on Predictor Models in Software Engineering, p. 9. IEEE
Computer Society, Washington (2007)

27. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect
density. In: Proc. International Conference on Software Engineering, pp. 284–292. ACM,
New York (2005)

28. Wu, S., Wang, Q., Yang, Y.: Quantitative Analysis of Faults and Failures with Multiple
Releases of SoftPM. In: Proc. International Symposium on Empirical Software
Engineering and Measurement, pp. 198–205. ACM, New York (2008)

29. Challagulla, V.U.B., Bastani, F.B., Yen, I.-L., Paul, R.A.: Empirical Assessment of
Machine Learning based Software Defect Prediction Techniques. In: Proc. International
Workshop on Object-Oriented Real-Time Dependable Systems, pp. 263–270. IEEE
Computer Society, Washington (2005)

30. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A practical guide to support vector classification
(2003), http://www.csie.ntu.edu.tw/~cjlin/libsvm/

31. Myrtveit, I., Stensrud, E., Shepperd, M.: Reliability and Validity in Comparative Studies
of Software Prediction Models. IEEE Trans. Software Eng. 31, 380–391 (2005)

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 60–65, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Effort Drivers Estimation for Brazilian Geographically
Distributed Software Development

Ana Carina M. Almeida1,2, Renata Souza1, Gibeon Aquino1,2, and Silvio Meira1,2

1 Federal University of Pernambuco (UFPE) - Informatics Center
Recife – PE – Brasil

{acma2,rmcrs,gsaj,srlm}@cin.ufpe.br
2 Centro de Estudos e Sistemas Avançados do Recife (C.E.S.A.R)

Rua Bione, 220 - Bairro do Recife – CEP 50030-390
Recife - PE – Brasil

{ana.almeida,gibeon.aquino,silvio}@cesar.org.br

Abstract. To meet the requirements of today’s fast paced markets, it is
important to develop projects on time and with the minimum use of resources.
A good estimate is the key to achieve this goal. Several companies have started
to work with geographically distributed teams due to cost reduction and time-
to-market. Some researchers indicate that this approach introduces new
challenges, because the teams work in different time zones and have possible
differences in culture and language. It is already known that the multisite
development increases the software cycle time. Data from 15 DSD projects
from 10 distinct companies were collected. The analysis shows drivers that
impact significantly the total effort planned to develop systems using DSD
approach in Brazil.

Keywords: Effort Driver, Estimation, Distributed Software Development.

1 Introduction

Over the last decades, many companies have started to work with geographically
distributed teams developing software. A lot of advantages encouraged them to
implement software in multisite [1]. The main factors that have driven distributed
software development (DSD) are:

• Differences in the development cost among offshore centers – The market demand
for system development is bigger than the number of engineers available [2], due
to the significantly increase of the engineer salary in specify areas as well as the
software cost. Besides, some governments subsidize a taxes deduction for
companies in order to stimulate Information Technology (IT) business in their
countries reducing the software development cost [1], [3].

• Time-to-market – Creating products with teams in different time zones in order to
accelerate development time by using the follow-the-sun concept [1].

• Qualified and available engineers to develop software [1].
• Staying close to the customer in order to properly know their business and needs [1].

 Effort Drivers Estimation for Brazilian Geographically DSD 61

On the other hand, the DSD approach has many challenges to make the project
successful. Mainly for the project managers that need to synchronize the activities and
communication among different sites with different time zones, cultural aspects,
language and sometimes different development process among sites [1], [4].

It is already known that it is a big challenge to deliver software on time, on budget
with all required features and functionalities. The DSD approach increases the
management complexity. An accurate estimate can improve the project planning and
help the creation of a detailed activities schedule [5], thereby minimizing the risks
intrinsic in DSD projects. According to Herbsleb [6] the multisite development
requires more effort than centralized development for creating a system with the
similar size and complexity, because of reduced communication.

There are few estimation methods that support DSD approach, for example, the
COCOMO II method [7]. Unfortunately, the COCOMO II does not introduce all
factors that can impact the DSD project duration. The effort driver list can be used to
adapt estimation methods and active a better software planning.

The approach taken for this study is based on a combination of data collection
(interviews with practitioners), analysis with theoretical research and empirical
experience. The result of this paper is an effort drivers list that could increase the
project effort in Brazilian multisite development. We analyzed fifteen projects data,
from ten different companies, that are being developed geographically distributed in
Brazil.

This article is organized as follows: Section 2 describes the sources that impact
planning and estimation on DSD projects; section 3 presents the research result and
shows an effort drivers list and section 4 explains the expected results of this research
and future works.

2 Sources of Effort Drivers Estimation for Geographically
Distributed Software Development

As already known the DSD approach introduces new challenges in the software
engineering area. In order to have a better project planning for multisite projects it is
important to identify the main drivers that can increase the project’s effort.

Some researches indicate root causes of the effort deviation. These aspects are
described below:

• Communication over distance – Synchronous and asynchronous communication
impact the project speed [1], [3]. In DSD projects, the team spends more time on
reading/writing emails, conference calls and chatting in order to share or
understand information about the project.

• Physical distance, large difference in time zones and small overlap of working
hours could delay team communication and more time will be required to solve
program issues [3].

• Interdependence among sites – The researches [4] and [8] suggest that the
multisite interdependence introduces delay in the resolution of work issue taking
more time to develop software. Due to distance it is more difficult to find the
right person and establish contact in order to have a collaborative session.

62 A.C.M. Almeida et al.

• Cultural fit is another important factor that could impact teams’ interaction. What
is culture? According to Carmel [3] culture “(…)provides members with images
of their basic concerns, principles, ethics, and bodies of manners, rituals,
ideologies, strategies, and tactics of self-survival including certain notions of
good deeds and bad,(…)”.Some authors believe that specific cultural norms
regarding software development impacts the way software is created, for
example, mind maps [9].

• Architectural Adequacy – It is critical to spend more time in the design phase in
order to create decoupled components in the system’s architecture as much as
feasible in order to be easily distributed among teams [10].

• Project Innovation – A lot of software projects have innovation as a strong
requirement. In order to deliver this requirement it is needed to have
brainstorming meetings, but geographically distributed it is more difficult and
requires more time understanding and challenging ideas between teams. [10]

• Project Turnover - Impacts the planned project effort more when the team is
distributed, due to team rebuilding and transferring knowledge [10].

Describing all these sources, it is possible to understand how critical is to consider
these risks intrinsic of the DSD context in order to achieve a better software planning.

3 Effort Drivers for Brazilian Distributed Software Development

This section aims to describe the main data collected from project leaders interview
regarding Brazilian DSD projects (section 3.1) and show the proposal for an effort
drivers list (section 3.2).

3.1 Project Description and Main Questionnaire Results

We interviewed fifteen project leaders (project managers, team and tech leaders) of
Brazilian distributed software development from ten unrelated companies. The main
purpose of this research is to identify which factors might impact the effort planned
on DSD projects in Brazil.

The projects application domains are very diverse, such as, spanning
telecommunication, education, finance, government and automotive industry. Some
projects are large distributed systems which have 13 sites working together to develop
one system. There are also small distributed systems composed by two sites. The
teams are allocated in all Brazilian territory, but 34.7% is concentrated in the
northeast and 26% in the southeast areas.

Regarding project planning, almost 80% of the companies follow a systematic
estimation process. The projects use different methods to estimate, such as Expert
Judgment (which is the most used), LOC (Lines of Code) and Use Case Points. It is
important to mention that these methods do not have specific drivers for DSD context.

Regarding the main root causes that introduce delay or increase the project effort,
the leaders mentioned that need of communication increases substantially the project
duration. The project leaders mentioned that more meetings are required to align the
teams understanding and to synchronize the project knowledge. The leaders also
mentioned that the DSD context pushes the project for using a set of tools that

 Effort Drivers Estimation for Brazilian Geographically DSD 63

requires team adaptation. The tools most used by them to communicate are mailing
list, instant message and conference calls.

Besides that, physical distance, cultural fit and interdependencies among different
sites reduce development productivity. Regarding external dependencies among
teams, the leaders estimated that at least 10% of the work force was held up due to
necessity of information from other sites. The leaders also mentioned that some
projects spend more time for the code integration phase than it was expected.

3.2 Effort Driver List for Brazilian DSD

Analyzing the main root causes found in the literature and the feedback from
Brazilian leaders about the impact on project duration and effort, it is possible to
suggest some effort drivers for DSD projects.

Table 1 presents the effort drivers indentified extracted from theoretical research
and interview analyses. The Category column distinguishes the effort driver between:
Environment (the driver belongs to DSD context) and Team (the driver belongs to
project team). Regarding the source column, it represents the effort driver origin
based on theoretical research and interview analyses.

Table 1. Effort Drivers versus sources

ID Effort Driver Description / Justification Category Source
1 Project sites

number
The number of sites that develop
the system.
The complexity to develop and
manage the software increase
according with the number of
project sites.

Environment Communication
&
Interdependence

2 Brazilian Region
which the sites
are located

The number of Brazilian regions
that the sites are located.
There are cultural differences
among different geographical
Brazilian regions.

Environment Communication
& Cultural Fit

3 Communication
Support

Diversity of tools used to increase
the project productivity allowing a
better communication among sites.

Environment Communication

4 Project Turnover A high turnover in DSD is more
critical than in centralized since
constant communication is needed
for knowledge transfer.

Team Project
Turnover

5 Project Leader
Experience

If the project leader has experience
managing DSD projects, he/she
has more facility to develop plans
for communication, coordination
and controlling team activities.

Team -

6 Team cohesion In the DSD context it is more
difficult to maintain the team
cohesion due to physical distance
and also cooperation among team
members to support each other [2].

Team Communication
& Cultural Fit

64 A.C.M. Almeida et al.

Table 2 below represents the possible values that each effort driver can assumes.
According to the team or environment feature, it is necessary to select which scale is
more adequate for the software that will be developed.

Table 2. Effort Drivers Scale Proposal

ID Very Low Low Nominal High Very High
1 Only 2 sites Between 2

and 3 sites
Between 3 and 4
sites

Between 4 and 5
sites

More than 5 sites

2 One region Two regions Three regions Four regions Five regions
3 The sites use

instant message,
email, project
mailing list and
conference calls.

The sites have
project site or
wiki and forum.

The developers use
multi-user IDE.

4 50%/year 25%/year 20%/year 10%/year 5%/year
5 <3 months 6 months 1 year 3 years 6 years
6 Very

Difficult
Interaction

Some
Difficult
Interaction

Basically
Cooperative
Interactions

Largely
Cooperative

Highly
Cooperative

4 Conclusions and Future Works

There are a lot of advantages to develop software using DSD approach. On the other
hand, it is important to understand the challenges which this approach introduces to
achieve the project success.

This paper showed an effort drivers list for DSD context that could support the
project planning. This list was proposed from theoretical research, interview analyses
based on Brazilian project leaders’ response and empirical experience.

During the planning phase, the project leader can use the “Effort Driver Scale” to
set the parameters about the project team and DSD environment in a systematic way.
It helps to measure the effort needed to develop software. Besides that, at the end of
the project, it is possible to compare the effort planned versus effort actual in order to
understand the effort deviation.

As future work, we intend to create or adapt an estimation method for DSD context
in order to support software development planning and increase the estimates
accuracy.

References

1. Jorge, A., Rafael, P.: Desenvolvimento Distribuído de Software. Rio de Janeiro, Brasil
(2008)

2. Damian, D., Zowghi, D.: The impact of stakeholders? Geographical distribution on
managing requirements in a multi-site organization. In: RE, pp. 319–330 (2002)

3. Carmel, E.: Global Software Teams – Collaborating Across Borders and Time-Zones.
Prentice Hall, USA

 Effort Drivers Estimation for Brazilian Geographically DSD 65

4. Herbsleb, J.D., Audris, M., Thomas, A.F., Rebecca, E.G.: Distance, dependencies, and
delay in a global collaboration. ACM, Computer Supported Cooperative Work,
Philadelphia (2000)

5. McConnell, S.: Software Estimation - Demystifying the Black Art. Microsoft Press (2006)
6. Herbsleb, J.D., Audris, M., Thomas, A.F., Rebecca, E.G.: An Empirical Study of Speed

and Communication in Globally Distributed Software Development. IEEE, IEEE
Transactions on Software Engineering (2003)

7. Boehm, B.: Software Cost Estimation with COCOMO II
8. Herbsleb, J.D., Audris, M., Thomas, A.F., Rebecca, E.G.: An Empirical Study Global

Software Development: Distance and Speed. In: ACM. Proceedings of the 23rd
International Conference on Software Engineering, Toronto, Canada (2001)

9. Hofstede, G.: Cultura e organizações: compreender a nossa programação mental, 1st edn.
Edições Silabo, Lisboa (1991)

10. Patrick, K., Daniel, J.P., Raghvinder, S.S.: Cost Estimation for Global Software
Development. In: ACM, Proceedings of the 2006 international workshop on Economics
driven software engineering research, Shanghai, China (2006)

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 66–80, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Challenges for Product Roadmapping in Inter-company
Collaboration

Tanja Suomalainen, Maarit Tihinen, and Päivi Parviainen

VTT Technical Research Centre of Finland, Kaitoväylä 1,
P.O. Box 1100, 90571 Oulu, Finland

{Tanja.Suomalainen,Maarit.Tihinen,Paivi.Parviainen}@vtt.fi

Abstract. Product roadmapping is a critical activity in product development, as
it provides a link between business aspects and requirements engineering and
thus helps to manage a high-level view of the company’s products. Nowadays,
inter-company collaboration, such as outsourcing, is a common way of
developing software products, as through collaboration, organisations gain
advantages, such as flexibility with in-house resources, savings in product
development costs and gain a physical presence in important markets. The role
of product roadmapping becomes even more critical in collaborative settings,
since different companies need to align strategies and work together to create
products. In order to support companies in improving their own product
roadmapping processes, this paper first gives an overview of product
roadmapping and then discusses in detail an empirical study of the current
practices in industry. The presented results particularly focus on the most
challenging and important activities of product roadmapping in collaboration.

Keywords: Product roadmap, roadmapping process, inter-company collaboration,
outsourcing.

1 Introduction

Product roadmapping is an approach to planning and defining product requirements,
based on market and stakeholders needs. A roadmap is a visualisation of a forecast,
which commonly answers a set of “why-what-how-when” questions that generally
relate to time, markets, products, and technologies [1]. During product roadmapping,
similar activities to requirements engineering (RE) are performed e.g. requirements are
elicited, analysed, communicated, agreed, and evolved. The purpose of a product
roadmap is to document defined product requirements in a form that is adequate for
analysis, communication, and subsequent implementation. However, product
roadmapping differs from RE in that it is a process with long-lasting future activities. In
product roadmapping, high-level features are presented within a timeline and scheduled
for different releases. Instead, in RE, features are analysed in more detail and defined as
to what they mean from the perspective of the product development project.

In this paper, product roadmapping is discussed from the inter-company
collaboration perspective. Inter-company collaboration or collaboration, as used in this

 Challenges for Product Roadmapping in Inter-company Collaboration 67

paper, means that two or more parties (e.g. companies, departments, customers, or
agencies) work together to create a mutual value and achieve a common goal [2].
Outsourcing is a common way of inter-company collaboration. From this perspective,
roadmaps are formal mechanisms for collecting data and sharing information in a
partnering environment [3]. A successful roadmap requires the activities of learning
and communication, which are also essential to co-operation [4]. In inter-company
collaborative product development, a roadmap can help, for example, to select the
collaboration partners, since a roadmap can help in estimating what kind of knowledge
is needed from outside the organisation. This in turn, enables organisations to
concentrate on their core competencies and thus develop products faster and better.

Product roadmapping in inter-company collaboration is a complex and multi-
dimensional process. This paper discusses the challenges that inter-company
collaboration sets for roadmapping, based on empirical research that has been done
during the Merlin1 project. The study focused on the challenges and opportunities to
create product roadmaps in collaboration, including for example, the most important
activities to consider, the most typical problems and how those problems can be avoided.

This paper is structured as follows. First, product roadmapping in inter-company
collaboration is introduced based on literature research. Second, the empirical
research conducted within the Merlin project is described. Then, the empirical
findings of the research are presented and, finally, the results are discussed and
conclusions are drawn.

2 Collaborative Product Roadmapping Based on Literature

In this section, product roadmapping is introduced. The focus of the section is to
describe a general roadmapping process and define the collaboration modes that can
be identified in systems and software engineering.

2.1 Product Roadmapping Process

A product roadmap provides a forecast of product family evolution over time and it
views relationships between the products [5]. Product roadmaps are generated within
the scope of two to three years, during which the roadmaps are revised frequently so
that the documents are always current [6]. Product roadmapping is a typically iterative
process, which involves a periodic review and improvement of the roadmap based on
human interaction, such as face-to-face meetings and workshops [1]. Commonly,
product roadmaps are owned by the product owner, who is also responsible for
gathering all of the relevant stakeholders to obtain the required information for the
roadmaps [7].

Based on literature review conducted in [8], there are several stakeholders in the
product roadmapping process. The following functions should at least participate in
the process: product management, marketing, development, customer and partner
representatives, and engineering. Product roadmapping can be described as a process
that includes several iterative cycles, as shown in Figure 1.

1 The Merlin project: Embedded Systems Engineering in Collaboration, 2004-2007.
 URL: http://www.merlinproject.org/

68 T. Suomalainen, M. Tihinen, and P. Parviainen

Fig. 1. Product roadmapping process [8]

In the first phase, capturing features, a product vision is identified, product
boundaries are set, stakeholders are defined, and product goals are determined.
Additionally, based on the market, competitor and customer analysis, major business
and market drivers for the product are defined. As a result, all the suggested features
in a product are collected and documented in a product roadmap template. In the
analysing phase, all collected features are evaluated to remove uncertainty, to resolve
conflicts, and to make resource and cost estimations. As a result of this phase, the
product vision is revised and captured as a product roadmap, i.e. verified. In the
prioritising phase, all collected features are evaluated and put into order of
importance, based on the verified product vision. Customers have an important role,
since they provide guidelines to the product by expressing their needs and
expectations, as well as what they are willing to pay for the product. As a result of
prioritisation, the product release cycles are planned and the content of each product
releases are defined. In the next phase, the roadmap is validated and thereafter
approved. At this point, the members of the roadmapping team shall review whether
the process leads to the desired outcome, and if appropriate, take further corrective
actions. After validating the product vision and product roadmap, agreements are
made between the stakeholders, and the product roadmapping process can be taken
forward. The last phase of product roadmapping, change management, is part of the
product development. The change management process begins with a change request,
i.e. the features to be changed. Thereafter, the change is analysed and impacts of the
change are defined, for instance, the scope of the change request is identified. The
impact analysis is conducted by the stakeholders of the roadmapping process.
Customers and collaboration partners are also involved in the impact analysis. As a
result, the changes are implemented and documented.

 Challenges for Product Roadmapping in Inter-company Collaboration 69

2.2 Collaboration Modes

Collaboration can take numerous forms and it can be designed for different purposes.
This paper focuses on company or inter-company collaboration, in which the co-
operation companies share some of their activities [2].

Collaboration modes can be classified in several different ways. In this paper,
collaboration modes are divided into the following three categories: joint R&D
partnerships, customer-supplier relationships (including outsourcing), and technology
exchange agreements and licensing. [9]. This classification was chosen, as it describes
organisational interdependency and was expected to impact roadmapping.

Joint R&D partnerships are formed by two or more companies that share some of
their activities, but still remain independent. Joint R&D partnerships include both
joint ventures and joint development agreements. Joint ventures are created by
partners, who agree to combine their skills and resources in a separate company
characterised by joint ownership. In the joint development agreements, companies
pool their resources with the aim of organising the joint R&D activities of two or
more companies. On the other hand, customer-supplier relationships are close
contacts between customers and suppliers. Generally, the customer is the purchasing
organisation of the software product or service and the supplier is the provider of the
software or service to the customer. A common form of customer-supplier
relationship is called outsourcing, which means subcontracting a process to a third
party company. According to Wikipedia [10] “Outsourcing involves contracting with
a supplier, which may or may not involve some degree of offshoring. Offshoring is the
transfer of an organisational function to another country, regardless of whether the
work is outsourced or stays within the same corporation/company.” In this paper,
outsourcing is seen as a part of customer-supplier relationship collaboration mode,
thus outsourcing is not discussed separately. Furthermore, technology exchange
means the exchange of knowledge, technology or information between two or more
companies. The technology exchange agreements cover technology sharing
agreements, cross-licensing and the mutual second-sourcing of existing technologies.
The licensing means that a company is granted the right to use a specific patented
technology in return for a payment. [2, 9, 11]

3 Research Design

The research was carried out as a case study research, which is an empirical inquiry
that investigates a phenomenon within its real-life context [12]. The empirical data
was collected through questionnaire studies and interviews. These data collection
methods were chosen, as the aim of the study was to find out important activities in
collaborative product roadmapping and the challenges that inter-company
collaboration sets for the product roadmapping process based on companies’
experiences. In this section, the data collection and analysis methods used are
introduced and the background of the respondents is presented.

3.1 Data Collection and Analysis

The empirical study was carried out in four phases: 1) a questionnaire, 2) analysis of
the questionnaire results, 3) interviews, and 4) the analysis of findings. The data

70 T. Suomalainen, M. Tihinen, and P. Parviainen

collection was carried out in the form of questionnaires and interviews. This paper
focuses on the results from the interviews because they give more detailed knowledge
on product roadmapping in inter-company collaboration. The purpose of the
questionnaire was to form the interview questions and focus the interviews on the
important issues in product roadmapping. The questionnaire was also used in
selecting the interviewees. The role of the questionnaire and the questions are
described in more detail in [8].

First, available literature was examined to gain overall knowledge of state-of-the-
art product roadmapping, and to prepare the questionnaire. After that, a produced
survey questionnaire was sent to potentially interested contacts, i.e. companies
assumed to have experience with product roadmapping, through VTT’s2 [13]
electronic mailing lists. The questionnaire was also sent to all the partners of the
Merlin project. Thus, the survey was e-mailed to over 600 respondents in the summer
of 2006. The response rate of the questionnaire was quite low, being only 9.8 %.
However, the 52 replies from 34 different companies formed a good basis for further
analysis. The companies who chose to take part in this survey came from Finland,
Sweden and the Netherlands.

After the questionnaire studies, work continued with interviews in order to find in
detail, how different collaboration modes affect the product roadmapping. In the
questionnaire, the respondents were asked whether they would be interested in
participating in further research in the form of an interview. Seventeen of the
respondents replied that they would be willing to participate in an interview. Because
of time limits, not all of the respondents could be interviewed, instead, the
interviewees were selected based on the experience of the respondent in product
roadmapping in collaboration.

Altogether, nine persons from eight different companies were questioned via both
phone and face-to-face interviews. The interviews were semi-structured, since the
interviews included both structured and unstructured questions, and proceeded along
certain vital themes of the research [14]. The vital themes of the research were
created, based on literature analysis and findings of the questionnaire studies. The
themes were the same for all of the interviewees, however the questions varied
between the different interview sessions based on interviewee’s expertise. All of the
interviews were audio recorded, so that the responses could be verified after the
interview in order to gain the correct information.

The qualitative data was analysed by using a generic process of data analysis
presented by Creswell [15]. Thus, after the interviews, the audio recordings were
transcribed. Thereafter, all of the data was read through in order to obtain a general
sense of the data. Then, a coding process was used to categorise the data and to label
the categories. The purpose of the coding process was also to generate a description of
the categories, to generate a small number of themes that appeared as major findings
of the qualitative data. The description and themes were then presented in qualitative
narrative, and finally, an interpretation of the data was made.

2 VTT (Valtion Teknillinen Tutkimuskeskus) Technical Research Centre of Finland the biggest

multitechnological applied research organisation in Northern Europe.
 URL: http://www.vtt.fi/?lang=en

 Challenges for Product Roadmapping in Inter-company Collaboration 71

3.2 Background of the Respondents

Of the total of 52 questionnaire respondents, 33 respondents had experience in
product roadmapping in collaboration. Most of the respondents had experience of
more than one mode of collaboration. The following table (Table 1) describes the
background experiences of the questionnaire respondents.

Table 1. Product roadmapping experiences of questionnaire respondents

Experience on Product Roadmapping
Total number
of
respondents

Experiences in product
roadmapping in collaboration

Experiences in collaboration
modes

29 Customer-supplier relationships
15 Joint R & D partnerships

33

6 Technology exchange and
licensing agreements

52

19: No experiences in collaborative product roadmapping.

Based on the experiences of questionnaire respondents in different collaboration

modes, nine persons were selected for detailed interviews. Of the nine interviewees,
seven persons had experience in customer-supplier relationships, five persons had
experience in joint R&D partnerships, and two persons had experience in technology
exchange and licensing agreements. Hence, mostly information relating to customer-
supplier relationships was gained.

The demographic data of the interviewees is presented in Table 2, indicating the
nationality of the company, the company size, and the role of the interviewee.

Table 2. Demographic data of the interviewees

Interviewee Nationality of the
company

Company size Role of the interviewee

1 Finnish > 250 employees Manager
2 Finnish > 250 employees Group Manager
3 Finnish 50–250 employees Chief Technology Officer
4 Finnish > 250 employees Product Designer
5 Finnish < 10 employees Program Director
6 Finnish > 250 employees Group Manager
7 Finnish > 250 employees Chief Engineer
8 Swedish > 250 employees Senior Researcher
9 Finnish 50–250 employees Manager

In this paper, only the results from the interviews are presented. The questionnaire

replies form the base for the interviews, as the interviewees were selected based on
the questionnaire study and the experience of the interviewees on product
roadmapping in collaboration. In addition, the details of the interview questions were
adjusted based on the questionnaire results, e.g., the details were asked for challenges

72 T. Suomalainen, M. Tihinen, and P. Parviainen

that were the most important according to the questionnaire results. Detailed results of
the questionnaire and the interviews are documented in [8]. In following section,
results from the interviews are presented in summary.

4 Empirical Findings

In this section, the results of the interview studies are presented. First, the industrial
experiences of product roadmapping in inter-company collaboration are introduced
and the main benefits of the process are presented. Then, important issues in
collaborative product roadmapping are described. After that, creating product
roadmaps in inter-company collaboration is illustrated, and product roadmapping
reflecting to collaboration modes is clarified. At the end of the section, the
collaboration effects on product roadmapping are identified. Finally, the validity and
limitations of the study are discussed.

All interviewees perceive a roadmap as a plan, a leading map, of the company’s
future directions. A product roadmap also helps to structure and arrange the product
development, in order to know how to use certain resources and what is to be done
and when. A product roadmap also provides a high-level understanding of scoping the
strategy, which allows better planning and commitment to the set plans. Many of the
interviewees also pointed out that product roadmapping improves predictability, and
hence reduces the occurrence of surprises during the development. A product
roadmap was also seen as a central method for communication, as it gives a clear idea
on what is about to be done and enables communication in regards to forthcoming
strategic projects.

In a collaboration situation, a good roadmap is the main document describing what
the parties have agreed and what is about to be done together, so everybody knows
the goals. On a good roadmap, it can be seen what others are currently doing and in
which phase they should be in. Thus, a roadmap simplifies the synchronisation
between collaboration parties and also provides vigour, backbone and predictability of
product development for the partners.

4.1 Important Issues in Collaborative Product Roadmapping

Co-operation in different layers of product development, for instance with component
manufacturers, regulators, standardisation organisations, and end-customers, was
found to be always important among the interviewees. The reason was that more
perspectives would be involved in the product roadmapping and thus the content of
the roadmap could be more precise. An interviewee, who had experience in customer-
supplier relationships, pointed out: “There has to be a customer need or an actual
customership to confirm the goal of the roadmap. Thus, the customer also acts as a
controller for the product proposal that the roadmap stays on track and that
something useful is being created.” Co-operation was hence viewed as important and
without actual collaboration partner involvement, the roadmap could not have been
successful.

Project management was also thought to be always essential, especially when
multiple actors were involved in the roadmapping process. This was since problems

 Challenges for Product Roadmapping in Inter-company Collaboration 73

were caused when tasks were divided between partners, as nobody wanted to do more
than their own part. Additionally, traditional roles between partners were found to be
often vital, especially, during prioritising features in order to know who makes the
final decision about the priorities. Thus, those persons who had the ability and powers
to also say that this is vital and this should be done first had to be involved in the
roadmapping process.

Openness between the partners in order to mutually share ideas and views was also
seen as often important, since it was essential to understand each other’s views and
reasons. Anyhow, knowledge had to be shared without loosing critical confidentiality.
Hence, the creation of good and confidential relationships with all customer and co-
operation partners was significant. Moreover, creating long lasting customer
relationships and, thereby, creating a reliable image of the case company to the
customer was found to be essential.

Based on most of the interviewees, the partners had to participate closely in the
product roadmapping process. Since if partners prepared for the product
implementation in the wrong way, then the required products might not have been
created. Thus, the partner had to have components, production lines, and test
arrangements with the correct features, in order to create the right products.
Furthermore, determining the IPRs of the product was important, particularly when
something new was being created.

Continuous communication with collaboration partners was always important as
well, since there were several changes during the process. Daily communication
between the collaboration partners was arranged through regular meetings, phone
calls, and email. At the beginning of the roadmapping process, face-to-face meetings
were thought to be particularly important in order to avoid misunderstandings.
Thereafter, participation in regular follow-up meetings was vital, in order to keep
track of the product development. The partners could also come together ad hoc, in
the case of major changes to the product. Communication was also arranged through
boards and forums, as well as exchanging documents between partners.

4.2 Creating Product Roadmaps in Inter-company Collaboration

The creation of the product roadmap in inter-company collaboration depended on the
product to be developed and the form of co-operation, as presented in Figure 2. For
instance, product roadmapping in collaboration was affected by the following aspects:
the period of the product’s life-span, the closeness of the relationships, and the type of
partnership, i.e. who was in control of the activities taking place.

When co-operation was long and tight, the product roadmaps were created
together. For example, when the product was being created for the client, the partner
then became part of the client company, and thus the co-operation became very close.
Thus, inter-company collaboration between subcontracting partners can be considered
to be tight. Additionally, in the case of products with long life spans, product
roadmaps were created in closer co-operation and the companies’ roadmaps were
shared more mutually. That was partly because partners wanted to correspond to each
other’s future challenges. Instead, in loose co-operation situations, when the
partnership was not so long lasting and intensive, or the purpose was to create a short

74 T. Suomalainen, M. Tihinen, and P. Parviainen

Fig. 2. Creating product roadmaps in inter-company collaboration

life span product, the partners didn’t then create the product roadmaps together. In
that case, the partners created the roadmaps by themselves and then shared or showed
some parts of the roadmap to the partner. Furthermore, this was the case when the
customer was a competitor.

According to most of the interviewees, product roadmaps were created together
with collaboration partners through negotiations. Information was shared between the
partners, and if there were any misalignments, then they had to be solved, so there
was always conciliation involved. Additionally, tools which allow the collection and
sorting out of the received feedback were used in the creation of the product
roadmaps. In one case, when most of the product was created together with
collaboration partners, the product roadmapping process took the practices of the
partners into account early on. Therefore, before launching the actual project, the
negotiations were conducted and the contracts were signed between the collaboration
partners. In the contracts, contact persons from both partners were agreed upon and
the creation of the product roadmaps was defined. In addition, the means of steering
the roadmap creation process, e.g. regular project meetings, were defined in the
contracts. The contracts could also include obligations of the partners to inform the
other if they acquire new technology that affects the content of the roadmap.

Moreover, when the product roadmaps were created together with collaboration
partners, it was important to write down unambiguous and clear features that could be
set on a timeline. The timeline presented when the features were to be ready and what
their quality was. This ensured that all relevant parties had a mutual understanding of
the features and the whole product. It was also important to approve the milestones
together and to synchronise the processes, when there were more collaborators
involved in the process. Therefore, the product roadmapping process required more
brainstorming and going through the ideas jointly.

When product roadmaps were created together with collaboration partners, it
produced results that were more accurate than when product roadmaps were created
inside the company. This was because mutual interests were then aligned through

 Challenges for Product Roadmapping in Inter-company Collaboration 75

communication. Collaboration also saved on processing time and enabled better
visibility, common understanding, as well as the efficient use of resources.

4.3 Product Roadmapping Reflecting to Collaboration Modes

In a customer-supplier relationship, such as outsourcing, product roadmapping begins
with planning, sharing information, and communication to create a mutual vision of
the product. Thus, a central idea in creating product roadmaps together with the
customer and supplier was to create a mutual understanding before the product was
implemented. However, the roadmap was often seen as a business secret and
competitive advantage and therefore, confidentiality was important in the customer-
supplier relationships.

The interviewees had several views on how the roadmaps were created in the
customer-supplier relationship. For instance, according to one group of interviewees,
the company only had specific points in time when they met with their partners,
which was not on a daily basis. So, in practice, the partners did not create the product
roadmaps together, but the partners’ viewpoints were collected as input into the
roadmaps. The created roadmaps were then shown to the partners to the appropriate
extent; meaning that not all of the confidential information was shown. On the other
hand, according to another interviewee group, customers (e.g., outsourcers or client
organisations) and suppliers (e.g., vendors or subcontractors) participated in the
creation of the product roadmaps. Particularly, the customers were present, since they
were regarded as the dominant partners, whose opinion ruled. In addition, when the
product was being developed together with a subcontractor and there was a common
customer, the customer made the final decisions.

When the product roadmap was created in joint R&D partnerships, then the
partners had to have a mutual understanding of each other’s roadmaps and deeper
insights into them. Additionally, the partners had to be able to disclose confidential
matters. In this kind of relationship, one was the leading partner, who had the overall
idea of the product to be developed. The other partner supported and provided input
into the process. The leading partner created the first idea of the product, and was
most likely the owner of the roadmap. However, the supporting partner was also
closely involved in creating the idea of the product and in other phases as well,
particularly the parts that affected them. The supporting partner also helped the
leading partner to create the roadmap and the final view of the product.

When the product roadmaps were created together with technology exchange or
licensing agreement partners, the relationship was then more a matter of legal
agreements and contracts that controlled the strategy. Therefore, according to one
group of interviewees, it was not as common to share roadmaps as in the other modes
of collaboration. Thus, the technology exchange and licensing agreements were more
a matter of disclosure and trust. The partners had their own roadmaps, and there was
an agreement on a strategy. This meant that the partners only showed the schedule
requirements to each other, and not the actual roadmaps. However, according to
another interviewee group, when a part of the product was created by a partner, e.g. a
commercial off-the-shelf (COTS) vendor, then the roadmap was partly created
together. This was because the vendor could then declare whether the desired features
could be done in a certain way or within a given schedule. The vendor could also

76 T. Suomalainen, M. Tihinen, and P. Parviainen

bring out matters that affected the whole roadmap, e.g. matters that the integrator did
not realise or did not notice before.

The differences between the three collaboration modes are presented in Table 3.

Table 3. Differences between collaboration modes

Collaboration Mode Important activities Product Roadmapping
Customer-supplier
relationship (incl.
outsourcing)

– Mutual vision of
the product

– Mutual
understanding

– Confidentiality and
secrecy

1. Roadmaps were not created together,
but the partners’ viewpoints were
collected as input into the roadmaps.
The roadmaps were shown to the
partners to some extent.

2. Roadmaps were created together. The
customer made the final decisions.

Joint R&D partnership – Mutual
understanding of
each other’s
roadmaps

– Disclose
confidential
matters

1. Roadmaps were created together.

Technology exchange
or licensing agreement

– Legal agreements
and contracts

1. The partners had their own roadmaps,
and there was an agreement on a line
strategy, e.g. the partners only showed
the schedule requirements to each other,
and not the actual roadmaps.

2. In a COTS vendor case, the roadmap
was partly created together. The vendor
declared whether the desired features
could be done in a certain way or within
a given schedule.

4.4 Collaboration Effects to Product Roadmapping

Product roadmapping in inter-company collaboration is a complex and multi-
dimensional process. Empirical findings indicate that collaboration effects each phase
of the product roadmapping process differently. These effects are not divided based
on the collaboration types, but discussed in general. The effects are summarised in
Table 4.

Collaboration had effects in capturing features, since the partners could provide
suggestions, boundary conditions, and limitations for creating the roadmaps. Also,
when features were captured together with the partners, it enabled the efficient use of
resources, since there was the possibility to stimulate and analyse various approaches.

Partners usually participated in the analysis to suggest their own opinions on the
features. One of the interviewees replied “Collaboration affects feature analysis,
since it helps to verify things faster”. There could be disagreements and
misunderstanding between partners during the analysis, as one of the interviewees
explained: “Some features are more important to the partner, and it causes some
other features to be left outside the product, so compromises have to be made.”

 Challenges for Product Roadmapping in Inter-company Collaboration 77

Table 4. Summary of collaboration effects to product roadmapping

Phase Effect of Collaboration
Capturing
Features

– Suggestions, boundary conditions and limitations given by the partner
– Efficient use of resources

Analysing
Features

– Help to verify features faster
– Disagreements and misunderstanding between partners
– Partners value different features, so compromises have to be made
– Partners participate in the analysis to suggest their opinions
– Continuous communication required

Prioritising
Features

– More information is available for decision-making
– Prioritisation is more complex
– Important to create mutual understanding

Roadmap
Validation and
Agreement

– More information is available for decision-making
– Improves the roadmap’s business relevance
– More complicated to reach agreements
– Partners have to be committed
– Makes the roadmap a legal agreement

Change
Management
of the
Roadmap

– Regular co-operation and meetings with the customers and partners to
notice a change proposal and to review the roadmaps

– Clear roles between the collaborators to divide change management
tasks

– Changes to the roadmap also mean changes to the co-operation
agreement

Continuous communication with the partner was also needed, since during analysis,
missing features, for instance, were noticed.

According to most of the interviewees, collaboration aided prioritisation, as more
information was faster and easier available for decision-making. On the other hand,
prioritisation was also considered to be more complex by some of the interviewees,
since more stakeholders were involved.

Collaboration also affected roadmap validation and agreement. As one of the
interviewees described, “More information is then available for decision-making”.
Another interviewee noted, “Collaboration improves the business relevance of the
roadmap, as more perspectives are involved, but then it is also more complicated to
reach an agreement.” Additionally, the partners had to be committed to the roadmap
and the product development. Therefore, the roadmap was typically a legal
agreement, which had to be updated when changes occurred.

Regular co-operation and meetings with the customers and partners were seen as
important, because the change proposal was then commonly noticed and the
roadmaps were reviewed. In order to divide the change management tasks, the roles
between the collaborators had to be clear. For instance, in the customer-supplier
agreement, when the customer proposed a change, e.g. a change in the customer’s
technical environment or in a feature’s priority order, then the customer was in
change of analysing and approving the change. When collaborators were involved in
the roadmapping, changes to the roadmap also then meant changes to the co-operation
agreement. Furthermore, if the change request affected the partner, then the partner
had to be involved in the change management process as well. In that case, the

78 T. Suomalainen, M. Tihinen, and P. Parviainen

partner’s reply was included in the impact analysis, and the input from the partner’s
change impact analysis was taken into the change management process.

4.5 Validity and Limitations of the Study

The data in this study can be considered to be adequate as altogether 52 applicable
questionnaire replies were received and nine persons in total were interviewed.
Furthermore, the questionnaire responses came from altogether 34 different
companies. Additionally, similarities could clearly be seen among the replies, hence
the sampling can be considered as adequate. However, it should be noted that most of
the respondents were Finnish, although the replies between different nationalities
didn’t diverge largely from each other. The respondents also have subjective
perspectives to the issues asked, thus the answers do not reveal the whole opinion of
the company, only the opinions of the respondent. Additionally, most of the case
companies were considered as large organisations with more than 250 employees,
thus the results may not be directly applicable to smaller companies. In addition, the
research results apply to companies that are involved in software products or service
development.

5 Discussion and Conclusions

A product roadmap provides a clear focus towards product development, and provides
a high-level understanding for scoping the strategy. On the other hand, a clear strategy
allows a better planning and commitment to the set plans. Product roadmapping also
improves predictability, and hence reduces surprises during the development.

Based on literature, the main challenges caused by inter-company collaboration can
be derived from planning activities in product roadmapping, because at that point
customisation issues are taken into account, and business and process objectives are
articulated [16, 17]. Furthermore, communication between partners, a degree of trust,
ownership of the roadmap, nominated persons, and a common language gained by
training, are the main challenge during the product roadmapping process [5, 16, 18, 19].

The empirical results revealed that continuous communication is important and,
especially, at the beginning of the product roadmapping process, face-to-face
meetings are essential to avoid misunderstandings. In order to mutually share ideas
and views, openness between collaboration partners is important. However,
knowledge should be shared without loosing critical confidentiality. Hence, creating
good and confidential relationships with partners, as well as creating long lasting
customer relationships, are of high importance. In contrary to literature, the empirical
findings draw attention to determining the product’s property rights, particularly when
something new is being created. Sharing the intellectual property rights between the
collaboration partners should be defined clearly. The empirical results highlighted that
collaboration in different layers of the product development is essential in order to
gain more perspectives to the product roadmapping process. Project management is
also challenging in a collaboration situation, because in the case of multiple actors in
the product roadmapping process, problems are caused during dividing tasks between
partners, as duplicate work and grey areas should be avoided.

 Challenges for Product Roadmapping in Inter-company Collaboration 79

The empirical results revealed that creating a product roadmap in inter-company
collaboration depends on the product to be developed and the form of co-operation.
Product roadmapping in inter-company collaboration is affected by the following
aspects: the period of the product’s life span, the closeness of the relationships, and
the type of the partnership, i.e. who is in control of the activities taking place. In a
customer-supplier relationship, such as outsourcing, the central idea in creating
product roadmaps together is to create a mutual understanding and ensure the
confidentiality of the roadmap. In joint R&D partnerships, confidentiality was seen as
important. However, the major difference compared to the customer-supplier
relationship was that either one of the joint R&D partners is the leading partner, who
had the overall idea of the product to be developed and most likely was the owner of
the roadmap. In technology exchange or licensing agreements, the relationship was
considered as more of a matter of legal agreements and contracts, and thus the
roadmaps were not shared so freely as in the other collaboration modes. Empirical
findings also indicate that collaboration affects to each phase of the product
roadmapping process differently.

This paper provided an empirical understanding and experiences about product
roadmapping, which has not been previously systematically explored. The research
results point out important activities in collaborative product roadmapping and
challenges that collaboration sets for the product roadmapping process. The findings
describe how product roadmaps are created in inter-company collaboration and how
product roadmapping reflects on different collaboration modes. These research results
increase product roadmapping knowledge that can help companies to improve their
own product roadmapping processes, by taking into account the most challenging and
important activities of product roadmapping in collaboration.

Acknowledgements

This paper has been written within the Merlin project, which is an ITEA project. The
authors would like to thank the support of ITEA [20] and Tekes [21].

References

1. Phaal, R., Farrukh, C., Probert, D.: Developing a Technology Roadmapping System. In:
Technology Management: A Unifying Discipline for Melting the Boundaries, pp. 99–111
(2005)

2. Hagedoorn, J.: Inter-Firm R&D Partnerships - an Overview of Major Trends and Patterns
since 1960. Research Policy 31, 477–492 (2002)

3. McMillian, A.: Roadmapping - Agent of Change. Res. Technol. Manage. 46, 40–47 (2003)
4. Albright, R.E.: A Unifying Architecture for Roadmaps Frames a Value Scorecard. In:

Proceedings of the IEEE International Engineering Management Conference, pp. 383–386
(2003)

5. Albright, R.E., Kappel, T.A.: Roadmapping in the Corporation. Res. Technol. Manage. 46,
31–40 (2003)

80 T. Suomalainen, M. Tihinen, and P. Parviainen

6. Lehtola, L., Kauppinen, M., Kujala, S.: Linking the Business View to Requirements
Engineering: Long-Term Product Planning by Roadmapping. In: Proceedings of the 13th
IEEE International Conference on Requirements Engineering (RE 2005), pp. 439–446
(2005)

7. Tabrizi, B., Walleigh, R.: Defining Next-Generation Products: An Inside Look. Harv. Bus.
Rev. 75, 116–124 (1997)

8. Kynkäänniemi, T.: Product roadmapping in collaboration. VTT Publications 625, Espoo
(2007)

9. Duysters, G., Hagedoorn, J.: A Note on Organizational Modes of Strategic Technology
Partnering. Journal of Scientific & Industrial Research 58, 640–649 (2000)

10. Wikipedia, http://en.wikipedia.org/wiki/Outsourcing
11. Hagedoorn, J.: Understanding the Rationale of Strategic Technology Partnering:

Interorganizational Modes of Cooperation and Sectoral Differences. Strategic Manage.
J. 14, 371–385 (1993)

12. Yin, R.K.: Applied social research methods series vol. 5; case study research: Design and
methods, 2nd edn. Sage Publications, Inc., Thousand Oaks (1994)

13. VTT, Technical Research Centre of Finland, http://www.vtt.fi/?lang=en
14. Järvinen, P.: On research methods. Opinpajan kirja, Tampere, Finland (2001)
15. Creswell, J.W.: Research design: Qualitative, quantitative, and mixed method approaches,

2nd edn. Sage Publications, Thousand Oaks (2003)
16. Phaal, R., Farrukh, C., Probert, D.: Technology Roadmapping: Linking Technology

Resources to Business Objectives. In: Proceedings of the 4th International Conference on
Management Innovative Manufacturing, (MIMZOOO) (2000)

17. Phaal, R., Farrukh, C., Mills, J., Probert, D.: Customizing the Technology Roadmapping
Approach. In: Proceedings of the Portland International Conference on Management of
Engineering and Technology (PICMET), pp. 361–369 (2003)

18. Groenveld, P.: Roadmapping Integrates Business and Technology. Res. Technol.
Manage. 40, 48–55 (1997)

19. Phaal, R., Farrukh, C., Probert, D.: Fast-Start Technology Roadmapping. In: Proceedings
of the 9th International Conference on Management of Technology (IAMOT), pp. 1–12
(2000)

20. ITEA, Information Technology for European Advancement, http://www.itea-
office.org/

21. Tekes, Finnish Funding Agency for Technology and Innovation,
 http://www.tekes.fi/eng/

Global Software Development with Cloud
Platforms

Pavan Yara, Ramaseshan Ramachandran, Gayathri Balasubramanian,
Karthik Muthuswamy, and Divya Chandrasekar

Cognizant Technology Solutions,
5/639 Old Mahabalipuram Road, Kandanchavadi, Chennai - 600096, India
{Pavankumar.Yara,Ramaseshan.Ramachandran,Gayathri.Balasubramanian,

Karthik.Muthuswamy,Divya.Chandrasekar}@cognizant.com
http://www.cognizant.com/

Abstract. Offshore and outsourced distributed software development
models and processes are facing challenges, previously unknown, with
respect to computing capacity, bandwidth, storage, security, complexity,
reliability, and business uncertainty. Clouds promise to address these
challenges by adopting recent advances in virtualization, parallel and
distributed systems, utility computing, and software services. In this
paper, we envision a cloud-based platform that addresses some of these
core problems. We outline a generic cloud architecture, its design and our
first implementation results for three cloud forms - a compute cloud, a
storage cloud and a cloud-based software service- in the context of global
distributed software development (GSD). Our "compute cloud"provides
computational services such as continuous code integration and a compile
server farm, "storage cloud" offers storage (block or file-based) services
with an on-line virtual storage service, whereas the on-line virtual labs
represent a useful cloud service. We note some of the use cases for clouds
in GSD, the lessons learned with our prototypes and identify challenges
that must be conquered before realizing the full business benefits. We
believe that in the future, software practitioners will focus more on these
cloud computing platforms and see clouds as a means to supporting a
ecosystem of clients, developers and other key stakeholders.

Keywords: Globally Distributed Software Development, Cloud com-
puting, Software-as-a-Service, compute cloud, storage cloud.

1 Introduction

The last decade has witnessed Globally Distributed Software Development(GSD)
model becoming a business necessity to capitalize on global resource pools,
attractive cost structures, and round-the-clock development for achieving faster
cycle-time accelerations [3,26,31]. At the same time, GSD has also brought
unique nuances, complexities, and challenges ranging from technical, temporal,
spatial, and process standpoints [4,25,34]. Some of these issues are long standing
such as effective capacity planning, resource provisioning, software lifecycle

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 81–95, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cognizant.com/

82 P. Yara et al.

management, communication, coordination, and collaboration mechanisms.
In addition, we are also seeing relatively new challenges with the rise of
multi cores, virtualization, recent programming frameworks & abstractions, and
other complex advances. Now, with the intensification of global economic
activity and the resulting demand for cost/benefit analysis, the need for
better outsourcing software engineering and management approaches has only
become more pronounced. Also, over the years, the various structured and
other disciplined software engineering approaches, advocated as key remedies
for addressing these GSD challenges, have undergone refinement. A range of
new, effective platforms and practices have emerged and have been adopted to
address these unique challenges of GSD. These mechanisms - such as better
communication and coordination practices [7], management of global software
teams [28], effective resource leveraging with virtual teams [33], collaboration
and knowledge management tools & techniques [16], programming methodologies
and processes [13], software lifecycle models, service oriented architecture [27]
concepts specifically web services and web 2.0 technologies, grid infrastructures
to provide IT services [17] - have succesfully tried to address the GSD challenges.

In this paper, we discuss one such emerging paradigm with several possible
positive implications for GSD. "Cloud computing", as it is popularly known,
is a paradigm that represents a disruptive business and technology concept
with different meanings for different GSD ecosystem partners. For example,
for IT users, it is a way to deliver computing, storage and applications over
the network, often the Internet, from centralized data centers. For application
developers, it is an internet-scale software development platform and run-time
environment with several interesting use case scenarios such as always-on and
always-available development environments, content collaboration spaces to
share code, documents, presentations, discussions in a Facebook mode social
media style, and services like online IDEs, continuous code builds and testing.
For infrastructure providers and administrators, it is a massive, distributed data
center infrastructure connected by IP networks to achieve economies of scale
and grant "on-demand" access to computing capacity. Thus, cloud computing
delivers "IT" as a service (ITaaS) which can be adapted to address some of the
core challenges in the GSD.

Cloud computing tries to replace the traditional desktop-as-a-platform with
network-as-a-platform model. As such, it builds on decades of research in
virtualization, parallel and distributed systems, utility computing, and more
recent advances in the fields of networking, Web, and software services. The
key idea of this paradigm is to provide a utility service, similar to a power
grid, into which a user may plug-in regardless of location to access always-on,
always-available, and device-independent IT services. In this way, it represents
the next natural step in the evolution of computing and IT services. It promises
to maximize the productivity of all IT-related activities. One such instance is
where time and resources spent building or customizing application frameworks
or building software/hardware infrastructure could be better spent on improving
the business logic with cloud paradigm.

Global Software Development with Cloud Platforms 83

We explore the nature and potential of clouds in the paper. The main
contribution of this paper is in laying a cloud-based vision for GSD and
formulating a generic architecture to address some of the GSD challenges. In
doing so, we also showcase how we realize key business benefits with our cloud-
based platforms. Our cloud platforms are easily adaptable to provide a common,
managed, and powerful infrastructure to support GSD activities. Accordingly,
the paper is structured as follows: we explain the basic concepts underlying cloud
computing paradigm in Section 2 and discuss how clouds can be used within
GSD ecosystem in Section 3. As such, we present a preliminary architecture
of the framework and discuss candidate technologies to realize it in Section 4.
Section 5 describes three GSD adaptable cloud service prototypes done at our
lab - a Compute cloud providing computational services such as continuous code
builds and integration with on-demand infrastructure; a Storage cloud providing
massive online storage for software project-related artifacts, and a cloud-based
online virtual lab solution for providing always-on and always-available training,
testing and debugging facilities - before concluding.

2 Cloud Computing Paradigm

Cloud Computing fulfills the long held dream of computing as a utility [45]
and thus has the potential to transform how the IT ecosystem makes and uses
hardware and software as a utility and a service.

2.1 Concepts

The term Cloud Computing usually refers to online delivery and consumption
model for business and customer services. These include IT services like Software-
as-a-Service (SaaS) and Storage or Server capacity as a service and many non-
IT business and consumer services which are not computing tasks. All these
are commonly referred to as X-as-a-Service (XaaS). However, for our paper, we
adopt these following definitions:

Cloud is a pool of highly scalable, abstracted infrastructure, capable of hosting
end-customer applications, that is billed by consumption [20].

Cloud services refer to the consumer and business products, services and
solutions that are delivered and consumed in real-time over network.

Cloud Computing is an emerging IT development, deployment and delivery
model which enables real-time delivery of products, services, and solutions
over the Web (i.e., enabling cloud services).

Technically, this paradigm refers to providing services on virtual machines
allocated on top of a large machine pool, whereas in business terms, the term
means a method to address scalability and availability concerns for applications.

84 P. Yara et al.

2.2 Characteristics

From an higher abstraction point, three aspects are primary to clouds - Elasticity,
Pay-per-use model, and High-Availability. The key characteristics of cloud
services, in the lines of Forrester [20], are as follows:

1. Standardized IT-based capability: Delivers compute, storage, network or
software-based capabilities, solely or in combination through standard
offerings.

2. Accessible via Internet protocols from any computer: Standards-based,
universal network access through a regular web browser via HTTP, XMPP,
Open ID, OAuth or Atom protocols.

3. Always available, and scales automatically to adjust to demand: Resilient and
highly available; elastic enough to cope with scale and demand.

4. Pay-per-use or advertising-based: Service is paid up in three ways - adver-
tising, subscription or transaction based.

5. Web or programmatic-based control interfaces: Uses service-based interfaces
like XML, JSON and REST-style software connection standards.

6. Offers full customer self-service: Customers can provision, manage, and
terminate services themselves and the control is via a Web interface or
programmatic call to service APIs.

2.3 Examples

Although the paradigm has emerged only recently, the implications of IT
services provided through it are wide-reaching [5,8,40,45]. Cloudy infrastructure
companies such as Amazon and GoGrid offer data storage priced by the
gigabyte per month and computing capacity by the CPU-hour [1]. Office and
productivity applications such as Google Apps [21], Zoho office suite, MS
SharePoint Online, Cisco WebEx in the cloud make collaboration more accessible
and highly available. SaaS companies offer CRM services through their multi-
tenant shared facilities so that clients can manage their customers without
buying software [39]. These use cases represent only the beginning of options for
delivering all kinds of complex capabilities like online businesses, collaboration
tools, R&D projects, quick project promotions, partner integration, new business
ventures [11,40], etc.

2.4 Benefits

The economic appeal of clouds is often summed up by the statement converting
capital expenses to operating expenses [2]. There are other clear business
benefits such as almost zero upfront infrastructure investment, just-in-time
infrastructure, more efficient resource utilization, usage-based costing and a real
potential for shrinking the processing time. We recommend the reader to refer
[2,5,8,11,36,40] for more details.

Global Software Development with Cloud Platforms 85

2.5 Public, Private and Hybrid Clouds

As discussed in the introduction, clouds are the result of the natural transfor-
mation of the IT infrastructure of enterprises over the last decade and can take
many forms and can be of many types. In this paper, we look at three major
types of clouds.

Public clouds are cloud services offered by third-party providers (vendors) such
as Amazon, Google, Salesforce.com for public consumption. The vendors fully
host and manage the infrastructure and charge customers for the resources they
use, usually on a hourly or transaction based interaction. Private clouds are cloud
services provided within the enterprise firewall and managed by the enterprises
such as Boeing or GM. They offer the same benefits as public clouds but with
fine-grained control, security and compliance norms. The major difficulty with
private clouds is the complexity and cost involved in setting up “internal” clouds.
Hybrid Clouds are a combination of public and private cloud properties. They
leverage services that are in both the public and private work spaces and are
typically used in scenarios like where they need to receive customer payments or
do employee payroll processing. The major drawback with hybrid clouds is the
difficulty in effectively creating and governing such a solution [18].

3 Cloud Platforms for GSD

While we are yet to see fundamentally new types of applications enabled by cloud
computing, we believe that it offers compelling benefits with several important
classes of existing applications for GSD model. The cloud paradigm, by its design,
tries to optimize IT-related productivity by taking care of scaling and availability
concerns and redirecting resources to long term strategic business development.
Emphasizing communication, collaborative work and community interaction, we
perceive clouds to offer huge leverage in many of the GSD related activities.
For example, when companies outsource tasks, those tasks often require close
working relationships between the companies involved. These collaborations
grow organically to form communities around the particular task they aim
to solve. This presents multiple issues. In previous generations of GSD, the
environments and tools had to be made available to teams involved; organizations
had to acquire the tools at their own cost, pool resources to provision the
requested job; workers couldn’t locate and use their best tools for the job as
determined by them; and they had to span time and space to share, discuss,
collaborate or even publish content where necessary, as time and circumstance
required. In addition, the exchange of content that happens in multiple forms
such as emails, discussion forums, bug tracking systems, version control systems
and logging, make it a very complex activity. Cloud-based platforms can be used
for such cases, in the form of content collaboration spaces and always-on and
always-accessible IT services. In this section, we discuss three such useful areas
for GSD - development, quality assurance & testing, and IT operations.

86 P. Yara et al.

3.1 Development

Clouds offer instant resource provisioning, flexibility, on-the-fly scaling, and high-
availability for continuously evolving GSD-related activities. Some of the use
cases include:

– Development Environments: With clouds, the ability to acquire, deploy,
configure, and host development environments becomes "on-demand". The
development environments are, then, always-on and always-available to the
concerned teams with fine-grained access control mechanisms. In addition,
the development environments can be purpose-built with support for
application-level tools, source code repositories, and programming tools.
After the project is done, these can also be archived or destroyed. The other
key element of these "on-demand" hosting environments is the flexibility
through its quick "prototyping" support. Prototyping becomes flexible, in
that as new code and ideas can be quickly turned into workable Proof-Of-
Concepts and tested.

– Developer Tools: Hosting developer tools such as IDEs and simple code
editors in the cloud eliminates the need for developers to have local IDEs and
other associated development tools. This also offers the concerned project
members to access the development environment and tools, across time-zones
and places.

– Content Collaboration Spaces: Clouds make collaboration and coordi-
nation practical, intuitive, and flexible through easy enabling of content
collaboration spaces, modeled after the social software domain tools like
Facebook or Flickr, but centering on project-related information like invoices,
statments, RFPs, requirement docs, documentation, images and data sets.
These content spaces can automate many project related tasks such as
automatically creating MS Word versions of all imported text documents
or as complex as running workflows to collate information from several
different organizations working in collaboration. Each content space can
be unique, created by composing a set of project requirements. Users can
invite internal and external collaborators into this customized environment,
assigning appropriate roles and responsibilities. After the group’s work is
"complete", their content space can be archived or destroyed. These spaces
can be designed to support distributed version control systems like bzr,
mercurial, and git enabling social platform conversations and other content
management features.

– Continuous Code Integration: Compute clouds let ’compile-test-
change’ software cycle on-the-fly do continuous builds and integration
checks to meet strict quality checks and development guidelines. They can
also enforce policies for customized builds.

– APIs & Programming Frameworks: Clouds also compel developers
to embrace standard programming model APIs where ever possible and
adhere to style guides, conventions, and coding standards in meeting the
specific project requirements. They also force developers to embrace new
programming models and abstractions such as .NET, GWT, Django, Rails,

Global Software Development with Cloud Platforms 87

and Spring for increasing overall productivity. One more key feature of
using clouds is that they enforce constraints, which pushes developers to
address the critical next-gen programming challenges of multi-cores, parallel
programming and virtualization [22].

The software engineering community is also fast evaluating approaches like Agile,
Automatic, Extreme, Pair and Re-factoring to suit clouds [2,22]. The above
mentioned use cases can be applied within both “public” and “private” clouds. If
the client requirements require “security” and "control” to be the main concerns,
we recommend offshore development companies to adopt “private” clouds as they
allow enterprises to retain control, but at the same time offer them flexibility,
availability and economies of scale.

3.2 Testing and Quality Assurance

There are two components to cloud computing in software testing. Clouds
provide the computing infrastructure for doing software testing across platforms
and in various combinations. The other component uses clouds to run fully
functional test cases with industry standard frameworks and regression support.
The use of virtual appliances for providing the requested computing requirements
is becoming a practice in the software testing domain. Virtual appliances are a set
of virtual machines pre-built, pre-configured, ready-to-run applications packaged
along with optimized operating systems. These enable flexible and quick software
testing. On the other hand, they are also used to automate execution of
some industry standard tests, support debugging and code coverage tools to
identify gaps in test procedures. In addition, the ability of clouds to simulate
thousands of users hitting Web applications is particularly attractive. Thus,
cloudifying testing services opens up interesting possibilities. One immediate use
case is where cloud testing is used to verify the real scalability of sites, servers,
applications, and networks in advance of a genuine surge in traffic.

3.3 IT Operations

Now, clouds are increasingly being used to simplify the management part of
operations in offshore development centers. Recent studies shows that cloud
deployment times can be reduced to less than 6 hours from the traditional IT
deployment times of 14-24 days for eight typical IT management tasks [29].
These tasks include operating system tasks like back-up, recovery, installation of
patches, network tasks including server assignments, configuration of network
and security parameters, installation of software, etc. The first significant
advantage of such clouds is the “cost savings” factor. The traditional IT model
requires business users to make a front-loaded investment in software and
hardware as well as a lifecycle investment in professional staff to maintain
servers and upgrade software. Clouds shift much of this expense to a “pay-
as-you-go” model and so offer significant cost advantages in terms of power,
space, cooling, hardware and operations personnel [2,11,24,44]. Other key

88 P. Yara et al.

operations benefits include the ease and effective use for backup and restore
activities to provide business continuity; ability to handle security and archiving
required for accountability and compliance regulation laws such as SOX, HIPAA
and the powerful software configuration management [37] it provides so that
infrastructure gets provisioned, deployed and relinquished according to business
needs.

4 Our Architecture and Service Offerings

Having listed the cloud advantages for GSD model, we present an applicable
and generic high-level architecture of clouds, and a hierarchy of cloud service
offerings possible with our architecture to benefit all the key stakeholders in the
ecosystem.

Fig. 1. Generic Cloud Architecture and various service offerings possible with the
architecture

4.1 Architecture Overview

We present our architecture as a layered stack to suitably represent the growing
list of technologies and IT offerings in this space. There are several elements to
the entire GSD ecosystem and the architecture is envisioned as being spread-
out over and catering to cover most of these elements (generic and abstract).
Figure 1(a) shows a generic cloud architecture for GSD. The Application layer
covers the Web-based UIs, web service APIs, multi-tenant architecture and a
rich variety of configuration options. The Platform layer adds a software stack to
the underlying infrastructure layer, manages virtual machines and supports the
development, integration and run-time execution of cloud application software.
The Infrastructure layer makes use of the underlying virtual infrastructure
so as to economically scale to very high volumes, and preferably do so in a
granular fashion. The Virtualization layer abstracts the physical resources like
servers, storage or network devices and presents equivalent logical resources for
consumption to other layers. The architecture is designed to facilitate service
offerings that serve to improve processes in GSD. Thus, we attempt to address
issues pertaining to cost constraints, hardware/software resource provisioning
and collaboration through our generic and high-level architecture.

Global Software Development with Cloud Platforms 89

4.2 Cloud Service Offerings

Embarking on familiar GSD product categories like developer tools, middleware
and IT infrastructure tasks, we segment cloud services based on the proposed
cloud architecture, as shown in Figure 1(b).

Software-as-a-Service (SaaS) delivers a single application through the browser
to thousands of customers using a multi-tenant architecture. For the customer,
it means no upfront investment in servers or software licensing; for the provider,
with just one app to maintain, costs are low compared to conventional hosting
(e.g., Salesforce.com [39]). App-components-as-a-Service spans a spectrum from
mash ups to third-party APIs. These app components are aimed at offering
developers higher-level software modules for combining existing code to create
applications (e.g.,Live Mesh API [32]). This should improve efficiency and
encourage code reuse in the development process, which is one of the pain areas in
GSD. Software-platform-as-a-service (PaaS) is an entirely virtualized platform
that includes one or more servers, operating systems, and specific applications
(e.g.,Google App Engine [22]). Virtual-Infrastructure-as-a-service (IaaS) or
Hardware-as-a- service (HaaS) is the delivery of computer infrastructure as a
service. This layer differs from PaaS in that the virtual hardware is provided
without a software stack (e.g., Amazon EC2 [1]). There are other offerings also
possible such as communication-as-a-service, desktop-as-a-service, database-as-
a-service, data-storage-as-a-service, data-as-a-service, data-mining-as-a-service,
finance-as-a-service, framework-as-a-service, IDE-as-a-service, integration-as-a-
service, and monitoring-as-a-service [11,14,20,36,44].

4.3 Key Enabling Technologies

A lot of enabling technologies contribute to the outlined cloud architecture Here,
we identify some state-of-the-art technologies that make clouds practical and
possible:

Virtualization enables clouds to deliver on-demand IT infrastructures through
virtual machines (VMs). VMs are created and managed by a Virtual Machine
Monitor (VMM), which is the software layer between the operating system
and the physical machine. VM-based platforms offer several advantages in-
cluding better isolation, availability and portability apart from the flexibility
and scalability it brings. There is a lot of renewed interest in virtualized
platforms these days which is evident by its presence in various forms such
as Server, Desktop, Application, Storage and Network coming from industry
players like VMware, Citrix, Microsoft, Red Hat, Cisco, and Sun. For more
details, the reader is advised to refer [6,38,43].

MapReduce [15] is the dominant programming model used in clouds that
provide on-demand computing capacity. Map Reduce assumes that many
common programming applications can be coded as processes that manipu-
late large data sets of <key,value> pairs. The Map process maps each <key,
value> pair in the data set into a new pair of <key’,value’>. The Reduce

90 P. Yara et al.

process, then, merges values with the same key. Although this is seemingly
simple model, it has been used to support a large number of applications, that
manipulate data. Hadoop is an open source implementation of this model
[9]. Stream-based parallel programming models, in which a User Defined
Function (UDF) is applied to all the data, are also commonly used.

Other programming models modeled after Google File System (GFS) and
Big Table are also common in many cloud forms. GFS refers to a scalable
distributed file system for large data-intensive applications [19]. It not only
provides fault tolerance while running on inexpensive commodity hardware,
but also delivers high aggregate performance to a large number of clients.
Data automatically get distributed to nodes at load time, and are processed
locally, in parallel with output data written to local disks, forming a single
user-accessible volume. Big Table [12] represents a database layer with
the key idea of separating organized storage from query storage. It is a
distributed storage system for managing structured data that is designed
to scale to a very large size. HDFS and HBase are the open source
implementation of these models [9].

Service-Oriented Architecture (SOA) allows for delivery of an integrated
and orchestrated suite of functions to an end-user through composition of
both loosely and tightly coupled functions, or services - often network-based,
following industry standards like WSDL, SOAP and UDDI [10,27].

Some cloud forms also make use of frameworks such as Pig [35], Zookeeper,
Hive, Sawzall [23], LINQ [30], Condor [42] to cope up with the complexity,
frequent failured nature of commodity hardware like hard drive crashes, network
up-downs.

5 Our Experiments

We have used these technologies to implement three GSD adaptable internal
cloud prototypes. This section presents our experiments and initial results.

5.1 Compile Server Farm

The traditional modes of compiling large software projects across clusters has
always been done using message passing interfaces such as MPI or OpenMP.
These interfaces are difficult to code, prone to errors and often time-consuming.
Moreover, in GSD environments, there has always been a need for faster compile
and build cycles to test, debug and maintain complex software projects across
verticals and domains. In such scenarios, lots of projects gets created, compiled,
and maintained on a regular basis to suit the business and client requirements.
Each of these projects typically constitute thousands of files, which when
compiled might take hours or days together to build and deploy. This change-
compile-test cycle is one of the most time consuming event of a project and it
requires huge resources like server class machines, or clusters.

Global Software Development with Cloud Platforms 91

Our first prototype tries to address this common issue using compute cloud
concepts. We represent a compute cloud as a “nexus of hardware, software and
data which provides compute services over network”. Our compute cloud is
actually a “compute server farm”. By using Hadoop and Condor, we managed to
speedup the Change-Compile-Test cycle of large software projects. Another,
key motivation for our compute clouds is to do continuous software code
integration. The following algorithm is used for our “compute server farm”.

Algorithm 1. Compute Server Farm with Hadoop and Condor
1. Client workstations launch jobs
2. Condor dynamically allocates clusters
3. Hadoop-on-Demand starts the MapReduce program on the clusters
4. MapReduce program reads/writes into HDFS
5. When done, the results are either stored in the HDFS and/or returned to the client
6. Condor reclaims nodes

We tested this approach on compiling and building up Eclipse IDE from its
Java source code. Condor [42] is used as a batch scheduler to schedule jobs
on idle workstations. We have written a Map-Reduce program [15] targeting
the hadoop run time environment to automatically split, distribute, store and
parallelize the computation using HDFS [9] as a temporary file storage. We used
JDepend for analyzing the source dependencies. The results are encouraging
with the total compilation taking about 80 minutes with 5 standard desktop
workstations, against a standalone job, taking 150 minutes. Our experience with
this approach encourages us to believe that this is a viable and simpler way of
mimicking the compute cloud for larger GSD projects.

5.2 Online Storage Cloud

The key motivation for an online storage cloud is the need for scalable
data management platform to support variety of typical use cases in GSD
environments. It should support an ecosystem of users and developments
growing around project content and fast-changing content related tasks and
ideas across domains and requirements. Additionally, GSD projects have to deal
with massive, structured, unstructured and queued files. This sheer number of
files implies cumbersome storage and organization on existing storage systems;
for example, while a SAN can provide enough storage, the simple file system
interface layered on top of a SAN is not expressive enough to manage these files.

Moreover in such projects, teams and project members tend to move from
one location to other based on various business and administrative needs. When
such team or project transfers happen, there is a strong demand for personal
data backup and restoration requests from all over the project. This presents
multiple problems. First, personal computer disks are limited in capacity and
unreliable to host prolonged project specific or personal data. Second, there is a

92 P. Yara et al.

need for policy management and capacity management to deal with the growing
security concerns and unprecedented data growth. Third, the ability to access
data, driven by policy based management, remotely is not present.

To address this, we designed a storage cloud with these characteristics: a
storage service delivered over a network (Internet or Intranet); economically
scaling capacity and performance; easy to manage (e.g. terabytes+); private and
driven by enforced policies. At its core, our storage cloud is a middleware layer
with virtualized mass storage, allowing the underlying physical storage to be
NFS or NAS, shared nothing cluster file systems, or some combination of these.
Files created or hosted in our cloud are uniquely identified with a URL so that it
can be directly addressed or collectively accessed through a FUSE based virtual
directory.

Our storage cloud is implemented with three nodes making use of Xen VMs
[6], HDFS [9], NFS and powered by OpenQRM management solution. This
remote storage is mounted as a local virtual directory through File System
in USErspace (FUSE) [41] modules in Linux and Windows. Apart from the
GSD project artifacts, it can also serve other needs like content collaboration
spaces hosting code repositories, digital content, file archives, streaming media
as outlined in the Section 3.

5.3 Lab Any Where(LAW): Online Virtual Labs

Many GSD partners like IT and ITeS organizations face major challenges
in aligning their training delivery mechanisms to business objectives. These
challenges - related to cost, time, reach, and effectiveness- are prompting
organizations to revisit their traditional training delivery modes. Dedicated
physical classes don’t reach a large audience in offshore and certainly difficult for
on-site teams due to logistics related issues. Online e-learning systems provides
scalability and rapid delivery but still offshore/on-site people miss "hands-
on" experience with real software systems. Other methodologies including
Web conference products, terminal emulators, web-based work spaces, Learning
Management systems also do not provide "real" interaction with software
systems.

Our Lab-Any-Where (LAW) prototype, tries to address this training problem,
by making use of cloud principles and components. LAW is a cloud-based
application designed to provide fully-immersive technical training and software
testing labs over network (Intranet or Internet). This Web application also
provides richly featured platforms for centrally managing hands-on training and
testing scenarios via scheduled and on-demand delivery mechanisms. We make
use of virtual appliances in achieving rapid deployment through Web browser
interface [38].

Our design prototype is implemented in two modes: one with Microsoft
Virtual Server (MVS) for delivering and testing windows OS-based training
environments, and the other one with User Mode Linux (UML) for Linux
OS-based scenarios. As such, the LAW prototype has two major components:
(i) LAW Management that can manage, control and ultimately orchestrate

Global Software Development with Cloud Platforms 93

lab resources through configurable workflows, scheduling, customization and
reporting (2) Delivery component that does automatic deployment through
virtual appliances with secure access.

6 Conclusions and Future Work

Clouds represent an inflection point in global distributed software development.
The concept draws on many existing technologies and architectures, as we have
seen in this paper. Although there is some FUD (Fear, Uncertainty, and Doubt)
with all the hype about clouds, we see clouds as a viable and effective platform
for offshore and outsourced development in the longer run. In this paper, we
outlined some positive indications and resultant implications if they are deployed
in a globally distributed software model. However, there are still concerns with
respect to vendor lock-in, SLA control, privacy, reliability, data migration &
access, auditing and regulation compliance norms. We hope that as the IT
industry works to solve these problems, cloud adoption will occur in phases,
from the nascent clouds in place today to mature cloud-based platforms with
enhanced security and better SLA norms. Moreover, it is our belief that cloud
paradigm can provide significant benefits to all key stakeholders in the GSD
ecosystem, as evident from the prototypes we showcased here. We also continue
to monitor and experiment with the different architectural, programming, and
operational models of clouds and share our results with the GSD community.
One active area is to explore the ability of clouds to play a game-changing role
in software testing. We intend to investigate further into cloudifying the testing
services as it provides ample scope and ground to check the full potential of
cloud paradigm.

References

1. Amazon: Amazon web services for simple db, s3, ec2, http://aws.amazon.com
2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,

G., Patterson, D., Rabkin, A., Stoica, I., et al.: Above the Clouds: A Berkeley View
of Cloud Computing. University of California, Berkeley, Tech. Rep. (2009)

3. Aspray, W., Mayadas, F., Vardi, M.Y.: Globalization and offshoring of software. A
Report of the ACM Job Migration Task Force, Executive Summary and Findings.
ACM, New York (2006)

4. Atkinson, R.D.: Understanding the offshoring challenge. Progressive Policy
Institute, Washington, DC (2004)

5. Baker, S.: Google and the wisdom of clouds. Business Week (2007)
6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,

Pratt, I., Warfield, A.: Xen and the art of virtualization. ACM SIGOPS Operating
Systems Review 37, 164–177 (2003)

7. Battin, R.D., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging resources in
global software development. IEEE Softw. 18(2), 70–77 (2001)

8. Bechtolsheim, A.: Cloud Computing and Cloud Networking. talk at UC Berkeley
(2008)

http://aws.amazon.com

94 P. Yara et al.

9. Bialecki, A., Cafarella, M., Cutting, D., Malley, O.: Hadoop: a framework for
running applications on large clusters built of commodity hardware,
http://lucene.apache.org/hadoop

10. Buschmann, F.: Pattern-oriented software architecture: a system of patterns. Wiley,
Chichester (2002)

11. Buyya, R., Yeo, C.S., Venugopal, S., Ltd, M.P., Melbourne, A.: Market-oriented
cloud computing: Vision, hype, and reality for delivering it services as computing
utilities. In: Proceedings of the 10th IEEE International Conference on High
Performance Computing and Communications (HPCC 2008). IEEE CS Press, Los
Alamitos (2008)

12. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. In: Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2006) (2006)

13. Cheng, L.T., de Souza, C.R., Hupfer, S., Patterson, J., Ross, S.: Building
collaboration into ides. Queue 1(9), 40–50 (2004)

14. Church, K., Hamilton, J., Greenberg, A.: On delivering embarassingly distributed
cloud services. Hotnets VII (2008)

15. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI 2004: Proceedings of the 6th conference on Symposium on Opearting
Systems Design & Implementation, Berkeley, CA, USA, p. 10. USENIX Association
(2004)

16. Desouza, K., Awazu, Y., Baloh, P.: Managing knowledge in global software
development efforts: Issues and practices. IEEE software 23(5), 30–37 (2006)

17. Foster, I., Kesselman, C.: The grid: blueprint for a new computing infrastructure.
Morgan Kaufmann, San Francisco (2004)

18. Fryer, K., Gothe, M.: Global software development and delivery: Trends and
challenges. IBM Developer Works 1 (January 2008)

19. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: SOSP 2003:
Proceedings of the nineteenth ACM symposium on Operating systems principles,
pp. 29–43. ACM, New York (2003)

20. Gillett, E.F., Brown, G.E., Staten, J., Lee, C.: The new tech ecosystems of cloud,
cloud services, and cloud computing. Forrester Research Report (August 2008)

21. Google: Google docs and spreadsheets, http://docs.google.com
22. Google: Google’s cloud implementation as app engine,

http://code.google.com/appengine/
23. Griesemer, R.: Parallelism by design: data analysis with sawzall. In: CGO 2008:

Proceedings of the sixth annual IEEE/ACM international symposium on Code
generation and optimization, p. 3. ACM, New York (2008)

24. Hamilton, J.: Perspectives blog, http://perspectives.mvdirona.com
25. Herbsleb, J.D., Mockus, A.: An empirical study of speed and communication

in globally distributed software development. IEEE Transactions on Software
Engineering 29(6), 481–494 (2003)

26. Herbsleb, J., Moitra, D.: Global software development. IEEE software 18(2), 16–20
(2001)

27. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and
principles. IEEE Internet Computing 9(1), 75–81 (2005)

28. Krishna, S., Sahay, S., Walsham, G.: Managing cross-cultural issues in global
software outsourcing. Communications of the ACM 47(4), 62–66 (2004)

29. Lin, G., Fu, D., Zhu, J., Dasmalchi, G.: Cloud computing: It as a service. IT
Professional 11(2), 10–13 (2009)

http://lucene.apache.org/hadoop
http://docs.google.com
http://code.google.com/appengine/
http://perspectives.mvdirona.com

Global Software Development with Cloud Platforms 95

30. Meijer, E., Beckman, B., Bierman, G.: LINQ: reconciling object, relations and XML
in the.NET framework. In: Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, p. 706. ACM, New York (2006)

31. Meyer, B., Hochschule, E.T., Zurich, S.: The unspoken revolution in software
engineering. IEEE Computer 39(1), 124 (2006)

32. Microsoft-Live: Microsoft live mesh api, http://www.mesh.com
33. Montoya-Weiss, M., Massey, A., Song, M.: Getting it together: Temporal

coordination and conflict management in global virtual teams. Academy of
Management Journal, 1251–1262 (2001)

34. Olson, J.S., Olson, G.M.: Culture surprises in remote software development teams.
Queue 1(9), 52–59 (2004)

35. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pp. 1099–1110. ACM, New York
(2008)

36. Rangan, K.: The Cloud Wars: $100+ billion at stake. Technical report, Tech. rep.,
Merrill Lynch (2008)

37. ReductiveLabs: Puppet configuration management,
http://reductivelabs.com/trac/puppet

38. Rosenblum, M., Garfinkel, T.: Virtual machine monitors: Current technology and
future trends. IEEE Computer 38(5), 39–47 (2005)

39. Salesforce: Salesforce customer relationships management (crm) system,
http://www.salesforce.com/

40. Siegele, L.: Let It Rise: A Special Report on Corporate IT. The Economist (October
2008)

41. Szeredi, M.: Filesystem in userspace, http://fuse.sourceforge.net
42. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The

Condor experience. Concurrency and Computation: Practice and Experience 17(2-
4), 323–356 (2005)

43. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.L., Martins, F.C.M., Anderson, A.V.,
Bennett, S.M., Kagi, A., Leung, F.H., Smith, L.: Intel virtualization technology.
IEEE Computer 38, 48–56 (2005)

44. Vogels, W.: A Head in the Clouds - The Power of Infrastructure as a Service. In:
First workshop on Cloud Computing and in Applications (CCA 2008) (October
2008)

45. Weiss, A.: Computing in the clouds. ACM net Worker 11(4), 16–25 (2007)

http://www.mesh.com
http://reductivelabs.com/trac/puppet
http://www.salesforce.com/
http://fuse.sourceforge.net

Competitive Risk Identification Method for

Distributed Teams

Yegor Bugayenko

TechnoPark Corp.
568 9th Street South 202

Naples, Florida 34102
egor@technoparkcorp.com

Abstract. The described method is a risk identification scenario for soft-
ware development projects, where the project team is multi-lingual and
distributed, time for the risk identification meeting is limited, meetings
are recurrent and an amount of risks required is bigger than a hundred.
The meeting is conducted as an online chat game, where participants com-
pete for each risk source, inventing the most severe risk. The winner gets
a bonus, while the meeting facilitator gets a big list of raw risks.

Keywords: Risk Management, Distributed Team, Risk Identification,
Distributed Meetings.

1 Introduction

One of the most important “process area” in project management is risk
management, which includes risk planning, risk identification, qualitative and
quantitative analysis, risk response planning and risk monitoring [1]. The risk
identification process provides the material for risk analysis and risk response
planning. A raw list of risks, that shall include hundreds of them [2, pp. 61–102],
can be generated by different methods, including brainstorming [3], historical
records, checklists and templates [4], risk charting, objectives-based, scenario-
based, taxonomy-based [5], conduct a “pre-mortem” [6], Affinity Diagrams [7,
pp. 135–141], Delphi technique [8,9], expert interviews, Nominal Group Tech-
nique [10,11], and others.

Every method has its own advantages and drawbacks [12,16,13,14,15]. How-
ever, any of them when applied to a project with the following constraints, will
fail to produce a required result: a) project team is multi-lingual and distributed
(online text chats only), b) risk identification meetings must take less than one
hour, c) meetings are held regularly (every iteration), and d) each meeting shall
produce at least a hundrend risks.

Existing methods will fail in these circumstances because of (most common
causes): a) Inattention; b) Language barriers; c) Unavoidable personal criticism;
d) Weariness after repeating meetings; and e) Untrained risk identifiers.

A good solution to the outlined problems could be a method that will reduce
the amount of efforts required for risk identification, at the same time increasing
personnel engagement and motivation.

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 96–101, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Competitive Risk Identification Method for Distributed Teams 97

2 Method

The purpose of this method is to increase the effectiveness of risk identification
meetings in software development projects, reduce the time and effort required for
the meetings and make the meetings possible to be held in online text chat form.

The meeting facilitator prepares and presents to the meeting participants the
list of five key project objectives and a list of risk sources (up to dozen). The
objectives go horizontally, while risk sources vertically. The matrix becomes a
field for the Risk Game.

The rules of the Risk Game are:

1. Facilitator announces the next row (risk source);
2. Everyone invents risks for the given risk source;
3. Facilitator chooses the winner for the row;
4. Matrix gets the name of the winner in a corresponding cell;
5. The person who has the most cells wins the game.

The meeting recorder maintans the list of all invented risks. This list is passed
to the facilitator by the end of the meeting. The result of the Risk Game is a
long list of raw unsorted risks, which will be used by the project management
for quantitative and qualitative risk analysis.

The proposed method is more effective than other existing methods when
meeting time is limited (less than one hour) and a big list of risks is required
(more than a hundred). The method is more effective in such circumstances
because it quickly involves everybody in the process, converts individual cricism
into a fair competition and stimulates group thinking.

3 Practical Example

Figure 1 illustrates a workflow of the method, starting with the definition of
project objectives, risk sources and a list of meeting participants (101). Project
objectives are the most important “targets” that the project has to achieve in
order to be successfully closed. Risk sources are facts that may become root
causes of risks. Sources are something that already happened, while risks are
events that may happen and have negative (or positive) effects for at least one
project objectives.

It’s desired to have a limited number of project objectives (up to 5) and a
limited amount of risk sources (less than a dozen). Bigger numbers will make
the risk identification meeting too long and not so effective, mostly because
participants won’t stay focused.

The facilitator asks all meeting participants to draw a risk matrix (example is
on Figure 2), where horizontally they place project objectives and vertically risk
sources. Each meeting participant has such a matrix locally (we assume that the
meeting is help in a virtual online chat environment).

Then the meeting goes in iterative manner, from risk source to risk source,
down the risk matrix. For each next row in a matrix the facilitator announces a

98 Y. Bugayenko

Enter

Project Objectives, Risk

Sources, and meeting

participants are defined

101

Facilitator announces next row

102

Everybody invent risks

103

The best risk found?

Row winner is announced

105

Meeting winner is announced

106

Facilitator has a

raw list of risks

107

Exit

[yes]

[not yet][there are

more rows in

the matrix]

Fig. 1. Method flow chart that illustrates interconnections between key activities of the
described method. The activities are performed during one risk identification meetings
taking totally 40-60 minutes.

risk source (102) and asks meeting participants to invent and propose possible
risks. The risks identified should have the declared source and should affect one
or more project objectives. Meeting participants invent risks (103) and send
them in more or less universal format to the chat.

The faciliator waits until the best risk is found, according to his/her own
understanding and criteria. As soon as such a risk is found, facilitator announces
the winner of the row (105) and goes to the next row.

Competitive Risk Identification Method for Distributed Teams 99

P
ro

je
ct

a
ch

ie
v
es

a
ll

b
a
se

li
n
ed

o
b
je

ct
iv

es
in

b
u
d
g
et

P
ro

o
f-
o
f-
co

n
ce

p
t

p
ro

to
ty

p
e

is
d
ep

lo
y
ed

to
u
se

rs
o
n

1
0
-A

u
g

W
eb

si
te

p
er

fo
rm

a
n
ce

o
f

5
0
0

p
a
g
es

p
er

se
co

n
d

T
es

t
co

d
e

co
v
er

a
g
e

m
ea

su
re

d
b
y

L
o
C

is
ov

er
8
0
%

O
v
er

1
5
0

cr
it

ic
a
l

d
ef

ec
ts

d
is

co
v
er

ed
a
n
d

fi
x
ed

Lack of technical experience
in used technologies (J2EE
and Web Services)

4 2 3 4 1

Budget shortage
(underestimated project)

2 3 1 2 3

Vague end-user
requirements

3 4 1 1 2

Distributed and
multi-lingual team

1 3 4 2 6

Deployment platform is
provided by customer and
is not ready yet

2 3 7 2 4

Half of project team
members are new workers
to Project Manager

3 4 0 0 1

Fig. 2. Risk Game Matrix is a key artifact used during the Risk Game. Risk Sources
are listed vertically and Project Objectives are listed horizontally. Cells of the matrix
include numbers of risks suggested by meeting participants and recorded by the meeting
facilitator.

At the end of the meeting the facilitator announces the winner of the meet-
ing (106) – the person who won the most of rows. The most important result
of the meeting is the raw list of risks (107), which will be long enough for any
project size.

A full-scale identification meeting with a team of 6-10 participants shall take 40-
60 minutes, if the facilitator has some experience of using the method. The meeting
goes in a very aggressive and competitive manner, challenging all participants and
getting the maximum of their creativity. Even better meeting performance could
be achieved by means of a monetized award to the meeting winner.

Figure 2 is a sample risk matrix, used during a risk identification meeting.
Horizontally it has a list of project objectives and vertically a list of risk sources.
Cells of the matrix are placeholders for risk, identified during the meeting.

In total, there were 70 risks identified with this matrix. It is important to note
that the amount of risks identified does not say anything about how “risky” the
project is. The only thing it indicates is the quality of risk identification outcome.

It is known that any software product has an unlimited amount of defects [17,
pp. 9–20]. A similar statement is applicable to risk identification: “Any project
has an unlimited amount of risks”. The task for the project manager is to identify
the most critical of them.

100 Y. Bugayenko

Using the proposed method risk identification may be a very iterative and
repetitive process. If project manager feels that there is not enough risks identi-
fied in the risk list, he/she can organize additional risk identification meetings,
make some changes to the Risk Game Matrix and make some changes to the
meeting team. A new meeting will produce new useful raw list of risks.

4 Conclusion and Future Research

The described method was invented and implemented in TechnoPark Corp. in
June 2008. Since that time the method was applied to seven commercial projects.
In total, 40+ risk identification meetings using this method have been already
conducted. In comparison with previous projects a number of advantages were
received:

– We enabled an effective distributed and multi-lingual risk discussions and
identification;

– Risk management is not a boring bureaucracy any longer, but is a chal-
lenging game. All team members stay focused on risks and their pro-active
identification;

– We significantly reduce project expenses due to much more throrough risk
identification;

– We keep risk identification meeting protocols in text files accessible for all
project participants, including the customer. Thus, we optimize communi-
cation and avoid loss of information.

In the next years we are going to collect more numeric results afer the method
application and give more formal proof of its effectiveness. We are also thinking
about inventing a similar method for risk response planning.

References

1. Project Management Institute, Project Management Body of Knowledge (PM-
BOK) Guide v.3., 3rd edn. PMI Press (2004)

2. Mulcahy, R.: Risk Management, Tricks of the Trade for Project Managers. RMC
Publications, Inc., USA (2003)

3. Osborn, A.F.: Applied imagination: Principles and procedures of creative problem
solving, 3rd revised edn. Charles Scribner’s Sons, New York (1963)

4. National Cyber Security Division of the U.S. Department of Homeland Security,
Common vulnerabilities and exposures, Technical report, The MITRE Corpora-
tion, USA (2008)

5. Carr, M.J., Kondra, S.L., Monarch, I., Ulrich, F.C., Walker, C.F.: Taxonomy-based
risk identification, Technical Report CMU/SEI-93-TR-006, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA (1993)

6. Mitchell, J.E.R., Deborah, J., Pennington, N.: Back to the future: Temporal per-
spective in the explanation of events. Journal of Behavioral Decision Making 2,
25–39 (1989)

Competitive Risk Identification Method for Distributed Teams 101

7. Britz, G.C., Emerling, D.W., Hare, L.B., Hoerl, R.W., Janis, S.J., Shade, J.E.: Im-
proving Performance Through Statistical Thinking. American Society for Quality,
USA (2000)

8. Linstone, H.A., Turoff, M.: The Delphi Method: Techniques and Applications. New
Jersey’s Science & Technology University, NJ, USA (1975)

9. Schmidt, R., Lyytinen, K., Keil, M., Cule, P.: Identifying software project risks: An
international delphi study. Journal of Management of Information Systems 17(4),
5–36 (2001)

10. Delbecq, A.L., VandeVen, A.H.: A group process model for problem identifica-
tion and program planning. Journal Of Applied Behavioral Science VII, 466–491
(July/August 1971)

11. Delbecq, A.L., VandeVen, A.H., Gustafson, D.H.: Group Techniques for Program
Planners. Scott Foresman and Company, Glenview, Illinois (1975)

12. Freimut, B., Hartkopf, S., Kaiser, P., Kontio, J., Kobitzsch, W.: An industrial case
study of implementing software risk management. In: ESEC/FSE-9: Proceedings
of the 8th European software engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of software engineering, New
York, NY, USA, pp. 277–287 (2001)

13. Keil, M., Cule, P.E., Lyytinen, K., Schmidt, R.C.: A framework for identifying
software project risks. Communications of the ACM 41(11), 76–83 (1998)

14. Wallace, L., Keil, M.: Software project risks and their effect on outcomes. Com-
munications of the ACM 47(4), 68–73 (2004)

15. Fairley, R.E.: Software risk management. IEEE Software 22(3), 101 (2005)
16. Charette, R.N.: Software engineering risk analysis and management. McGraw-Hill,

Inc., New York (1989)
17. Myers, G.J.: The Art of Software Testing, 2nd edn. John Wiley & Sons, Inc., NJ

(2004)

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 102–116, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Model-Centric Approach to Software Design and
Stakeholder-Specific Architecture Views

in Scope of a Financial Institution

Patrick Senti

Senior Software Engineer
CREDIT SUISSE AG,

IT Private Banking, P.O. Box, 8070 Zurich, Switzerland
patrick.senti@credit-suisse.com

Abstract. This paper presents a model-centric approach to software architecture
& design in the scope of a large financial institution. One challenge in large
organizations is the creation, aggregation and dissemination of architecture and
design specifications by multiple stakeholders and outsourcing partners, at
different times during the lifecycle of a software application. Lacking a
common design language and format, the submission of manually written
reports is common, which in turn facilitates redundancies in content and causes
specifications at large to become cluttered, inconsistent and difficult to
maintain. Manually written reports also tend to focus designers on producing
nicely arranged diagrams and prosaic description, rather than on applying sound
principles of software engineering. In turn, such specifications frustrate their
subsequent use for coding, effectively rendering the design effort questionable.
The approach presented defines a model-centric approach to enable different
architecture views, based on models maintained by a team of designers.
Employing a single-source concept, the same models serve the purpose of
software design, coding and stakeholder-specific reports.

Keywords: UML in Software Engineering, Stakeholder Views, Architecture
Documentation.

1 Introduction

This paper first describes the business-implied importance of information technology
for financial institutions. It briefly looks at the reasons and implications, and in
particular elaborates how various concerns exist in relation to IT systems used by
financial institutions in general, and in particular as is the case at Credit Suisse AG,
Switzerland, within its IT Private Banking division. In mapping the concerns to IEEE
Standard 1471 and other contributions to software architecture documentation, I
present an analysis of the information needs that are derived from these concerns.
Next, I offer the observation that the usual setup found in larger organizations – that
is, to request and provide document-based, manually written reports to address these
concerns – is negatively impacting both the quality of documentation of IT systems,

 Model-Centric Approach to Software Design 103

and the productivity of software engineers. In the subsequent sections, I first outline
an alternative approach to creating IT system documentation, whereby the
information needs by stakeholders of IT systems are abstracted into a common
metamodel and stakeholder-specific reports are defined in terms of this metamodel. In
the next chapter, I then analyze the requirements and derive the design for a system to
implement this approach. The result is a model-centric system, “TSDOC”. TSDOC
leverages OMG’s Unified Modeling Language (UML) and provides the means for
successful collaboration among software engineers and outsourcing partners. I
proclaim that TSDOC enables software engineers to eliminate redundancy in system
documentation. In the last section, I describe the ongoing implementation of TSDOC
at Credit Suisse and summarize the lessons learnt so far.

1.1 Importance of IT Systems for Financial Institutions

For financial institutions, information technology has long become a key element of
operating the business. Almost all transactions executed by financial institutions
generate or modify data. Data in this sense includes customer data, account data,
stock and other financial market data, credit data or economic data. The data needs to
be processed according to laws and regulations, and the steps taken in processing the
data must be accounted for at all times – which generates even further data (e.g. audit
trails). In short, financial institutions of practically any size and scope have no
alternative but to rely on IT systems.

Therefore, financial institutions must not only manage the economic risks inherent
in the business itself, but they must also ensure that their IT systems1 operate reliably,
predictably and uninterrupted. At the same time, it is a non-disputable requirement
that the systems operate consistent with all the laws and regulations - whichever
jurisdiction applies to any one particular transaction - as well as company-internal
policies. Further, all activities must be accounted for in terms of transaction logs. Last
but not least, IT systems must be developed and operated cost-effectively, especially
in light of new business needs, a changing regulatory environment and frequent
updates and advances of information technology in general.

1.2 Organizational Roles as Stakeholders of Systems

As a means of proper governance of these varied aspects, organizations have
identified and assigned responsibilities to respective organizational roles. At Credit
Suisse, these roles include: IT Enterprise Architects, IT Security Architects, Solution
Architects, Solution Engineers (co-located and offshore), IT Risk Officers, Business
Continuity Management and IT Operations staff. In the context of both, a) the
compound of all IT systems ("system of systems"), and b) the context of one
particular IT system, these organizational roles belong to the group of stakeholders of
the IT systems used in the organization. Specifically, the roles are stakeholders of any
an IT system’s architecture. Hence, architects must take into account these
stakeholders and address their concerns when designing and developing IT systems.

1 For the purpose of this paper, the term "IT system" refers to what is the scope of IEEE Std

1471 [1]: "software-intensive systems – any system in which software development and/or
integration are dominant considerations (…)"

104 P. Senti

1.3 Documentation Standards Address Stakeholder Concerns

The need to address concerns of multiple stakeholders has been described in the
literature and is the subject of standardization efforts. For example, the IEEE Standard
1471 [1] recommends to look at an IT system’s architecture from many different
perspectives, each of which serves the particular concerns of one or multiple
stakeholders. The metamodel presented in IEEE Standard 1471 is depicted in figure 1.
Many models and methods [2][3] have been proposed and indeed influenced the
creation of this standard [4].

Fig. 1. IEEE 1471-2000 Metamodel

Models such as the IEEE Standard 1471 [1], Kruchten’s 4+1 view model [2],
TOGAF [4] or Zachman [5] each provide a particular set of definitions of what the
specific architecture documentation should contain, on varying levels of details. They
share, however, one commonality: all describe the architecture documentation as a
compound of multiple views to a system's design. Views in this context typically
depict and describe a particular aspect which is based on the system’s structural
elements (static view), its processes and data flows (dynamic view) or the system's
hardware and software operating environment (deployment view).

1.4 Context of System Specification and Documentation at Credit Suisse

Credit Suisse has defined a standardized set of deliverables that software development
projects are required to produce. The standard is enforced through a formal project
lifecycle with five distinct milestones2. At each milestone, projects are required to
deliver a specific set of results (“work products”), based on formal templates defined
in the context of the applicable processes (SEI-certified at CMMI Level 2). All major
work products such as the project plan, the requirements specification, the system's
design and architecture, the IT operations concept (as a compound referred to as “the
system architecture documentation”) are reviewed by the IT system's stakeholders,
who are organized in the Project Review Board (PRB). The PRB members perform a

2 For projects executed in Switzerland, the milestones are: PC [Project Concept], PO [Project

Offer], RO [Realization Offer], RD [Ready for Deployment], RC [Request for Conclusion].
Other sites apply different milestones, but follow a similar concept.

 Model-Centric Approach to Software Design 105

formal review and either approve, approve with obligations or reject a project's
deliverables.

1.4.1 Large-Scale Application Landscape and Institutionalized Governance
Credit Suisse, in Switzerland, operates more than 750 applications, totaling over 40
million lines of code. The applications are based on an IBM mainframe infrastructure
(majority of transactions processing and data persistency), and the internally
developed, J2EE-/Unix-based application platform (internet, intranet, workflow).
Applications are connected by an enterprise service bus based on a set of synchronous
and asynchronous messaging middleware.

Many of these applications have been developed and continuously adopted to new
business requirements over the last 20 years, in some cases for more than 30 years.
Changes to applications are based on requests by the bank's business lines. Requests
are assigned to projects, which then take responsibility for development, testing and
deployment of new application releases. In any particular year, a portfolio of several
hundred projects are executed.

Formal architecture governance ensures the continuous, managed evolution of the
systems in-line with business needs and based on technology standards applied
throughout Credit Suisse [11]. The architecture organization has been institutionalized
at the level of the enterprise, at regional level and within the lines of business
("application domains").

1.4.2 Globally Distributed Workforce, Outsourced Offshore Development
Credit Suisse IT operates regional centers in USA (Raleigh & New York), Europe
(Zurich & London) and Asia (Singapore). Overall, up to 40% of work is contractually
outsourced, and the collaboration with preferred offshore partners (located in India) is
common practice.

Credit Suisse is applying its processes throughout the full application portfolio:
That is, the same processes apply to in-house environments as well as to work which
is outsourced to offshore partners. In order to ensure the quality of work, the
handover of responsibility for deliverables between Credit Suisse and the partner
organization follows a pre-defined procedure. For example, the procedure defines
one handover to take place at milestone RO ("realization offer"), where the
responsibility to detail a system's specification is transferred from Credit Suisse to
the outsourcing partner. Upon deployment of the system (milestone RD), the
responsibility is transferred back to Credit Suisse. The same is true for other
deliverables such as the source code, build files, test scripts or further
documentation. The overall responsibility for the project in terms of project
management and quality assessment remains with Credit Suisse at all times.

1.4.3 Analysis of Stakeholder Needs at Credit Suisse
In order to understand and formally classify the information needs of the Credit
Suisse stakeholders, an in-depth analysis has been performed by means of
interviewing stakeholder representatives, and analyzing existing specification
documents. The interview participants were nominated by the line and functional
management to represent their organizational unit and/or a particular community of
stakeholders. For each stakeholder group, two representatives were interviewed. The

106 P. Senti

interviews were conducted in order to understand the current challenges faced by the
stakeholders, in relation to system documentation and respective collaboration with
projects. A second goal was to identify potential redundancies in the set of
documentation that is normally requested of projects.

1.4.4 Common Needs, Duplication of Content
The interviews and the study of existing documentation showed that different
stakeholders request similar data, but in different contexts and sometimes from
differing points of view, as is summarized in Fig. 2.

For example, most stakeholders request a system context diagram and a component
overview to be included, and all stakeholders request to understand the deployment of
the application onto the IT systems infrastructure. However, this common need had
not been previously identified, which has caused the same information elements to be
seen as different from each other. This situation has resulted in duplication of
information by “copy/paste” and, over time, has lead to inconsistencies in the
documentation of many systems. This is particularly true in the case of re-assigned
responsibility when, over time, systems have been modified by different teams. It is
equally true when responsibility is shared by teams, co-located or offshore, possibly
working on multiple releases of the system (e.g. maintenance and new release).

Fig. 2. Currently requested reports by stakeholders, mapped to results of system design

With this approach, keeping documents in synchronization has become a hopeless
endeavor. In turn, software engineers are required to research and collect
documentation from various sources, and often find there is no up-to-date view of a
system’s design that corresponds to the actual implementation. This lack of readily
available documentation is costly. It also causes productivity to suffer because
software engineers need to spend an inappropriate amount of time to analyze systems
prior to implementing changes.

1.5 Challenges to Address

In summary, several challenges were identified based on the interviews conducted
with representatives of the stakeholder groups at Credit Suisse:

 Model-Centric Approach to Software Design 107

• "Documentation of applications inconsistent or not up-to-date": Over time,
applications have been changed by different projects and different people,
who used different documentation standards and formats. This is perceived
as a risk of losing important knowledge when key employees leave the
company or are assigned to different tasks.

• "Loss of productivity": The non-availability of a current set of documentation
results in projects having to invest time to search, consolidate, re-engineer and
validate an application's documentation prior to planning and effecting
changes.

• "Technical specifications insufficient for implementation": As technical
specifications are often captured in the form of non-formalized textual
documents, outsourcing and offshore partners sometimes are required to
substantially refine the specifications in order to meet expectations. This
carries the risk of avoidable cost of communication and delays.

Note that all challenges were identified in terms of qualitative criteria only, based on the
needs identified and prioritized by the stakeholder groups as described in section 1.4.3.

2 A Model-Centric Approach: TSDOC

To address these challenges, a new approach should enable to reduce redundancies,
and improve the quality of specifications. As systems change, documentation should
be updated continuously, by collaboration across teams, locations, projects and time.

The approach outlined in this chapter uses UML as a means to improve
specifications. Configuration management is applied to enable collaboration in teams
and with offshore partners, as well as to manage the UML models across system
releases, comparable to source code. To reduce information redundancy, stakeholder-
specific information needs are abstracted into views, such that the views can re-use
the same UML models.

As a concept, the use of UML models as input to architecture views is described
by Kruchten [6], where the Software Architecture Document (SAD) is defined as the
architecturally significant subset of a system’s models used for specification.

Fig. 3. Architecture View as a subset of analysis and design models

In order to address the various stakeholder information concerns, however, there is
no single architecture view: rather, each stakeholder’s viewpoint in turn is a specific
subset of the overall architecture view as depicted in Fig 4.

2.1 Related Work

In identifying the contents of each stakeholder-specific subset of the architecture
view, using an established approach is helpful. Related work includes Hilliard [9],

108 P. Senti

Egyed/Medvidovic [8] and Hofmeister et al. [10], who describe the use of UML
elements for architectural views, while Clements et al. [7] provide an approach to
software architecture documentation in accordance with IEEE Standard 1471-2000.
In terms of the overall concept of choosing, developing and representing architectural
views, Credit Suisse have used the approach as described by Clements et al. This was
combined with the analysis and design discipline described by Kruchten [6], in
particular the use of models to specify systems.

Since the use of UML, as such, to represent multiple architectural views (i.e.
static, dynamic and deployment views) is well established, I shall focus on the needs
implied by using UML models to support multiple stakeholder views.

Fig. 4. Multiple views of a system’s architecture, representing stakeholder information needs

2.2 Architecture Documentation – A System in Itself

I propose to take a systemic approach to software documentation. The approach
implies that UML models form the central element of all documentation, such that the
concerns of designers are separated from the concerns of the stakeholders, who ask
for a particular subset or aggregated information based on the design. In particular, I
propose to look at the requirements in regards to the architecture documentation as a
system in itself. This system henceforward is referred to as “TSDOC”.

2.2.1 Use Cases of TSDOC
In terms of TSDOC, I consider the following major use cases [Actor -> Use Case]: 1.
[Software Architect -> Create the analysis and design models]; 2. [Software Engineer
-> Contribute to existing models (configuration management, model merges)]; 3.
[Software Architect -> Define and publish concrete architecture views, based on the
models]; 4. [Application Owner -> Manage models and views in scope of the
system’s lifecycle]; 5. [Process Engineer/Stakeholders -> Define template views and
respective views, in terms of the metamodel].

In analyzing these use cases, the responsibilities to be handled by components of
TSDOC are:

1. To enable to create and manage UML models, using UML
2. To enable collaboration and configuration management;
3. To enable the (concrete) definition and publication of stakeholder views;
4. To enable the (abstract) definition of template views in terms of the metamodel;
5. To manage the metamodel itself.

 Model-Centric Approach to Software Design 109

2.2.2 Design of TSDOC
In TSDOC, the following coarse-grained components provide these facilities (Fig. 5.):

1. ModelingTool;
2. CollaborationEngine;
3. DocumentPublisher;
4. ReleaseManager;
5. UMLProfileManager.

The ModelingTool component is used to create analysis, design and deployment
models, using UML, based on the common metamodel derived from stakeholder
needs. The metamodel is provided in the form of a UML profile. The
CollaborationEngine allows for multiple designers to work on models in parallel. The
DocumentPublisher (1) allows the definition of stakeholder-specific views in terms
and by relation of elements found in the UML models, and (2) provides a
generator/model-transformation that processes the view definition to (3) create
formatted, printable reports. The ReleaseManager collects all relevant models, view
definitions and reports into a documentation release format, very much like source
code is compiled into a deployable software package. The UMLProfileManager, in
fact a sub-component of the ModelingTool, defines a UML Profile as the metamodel
and ensures its usability by the other components.

Fig. 5. The TSDOC component model (Overview)

2.2.3 Separating Stakeholder-Specific Views from Design Models
The collection of all UML models created by component designers is used as the
basis for the stakeholder-specific reports. However, in most stakeholder reports, many
of the details required to implement the software are not of interest. Rather,
stakeholder reports tend to require a somewhat aggregated, summarized level of
information. For example, the internal classes of component A are not usually a
concern of the Enterprise Architect, whereas the dependencies of component A to
other components and systems within the larger enterprise are of interest.

As each of the stakeholder views addresses different sets of concerns, the
DocumentPublisher component of TSDOC is considered separate from the
ModelingTool. The DocumentPublisher should be configurable such that multiple
stakeholder reports can be generated from the same set of source UML models. In
order to do so, the DocumentPublisher requires the definition of views in terms of a
generic report template. The template follows a set of pre-defined rules to transform a

110 P. Senti

Fig. 6. Internal design of DocumentPublisher component

set of input UML models into output reports. Conceptually, a report template in this
context is comparable to what is a page template in a web application.

From a design point of view, this yields the following internal structure of the
DocumentPublisher component (Fig. 6):

• ModelTransformationRule, to transform a set of UML models into a report. The
rule is configured such that it is capable of processing UML models, or particular
packages within UML models. It will parse the model/package recursively. For
each element found, it will invoke an instance of a RenderingRule. The way the
ModelTransformationRule knows about Rendering-Rules is by looking at the
RuleMappings, which map model elements to RenderingRules.

• RenderingRule. A RenderingRule is a script that will take a model element as
input, and render formatted, printable output. Usually, this output is in a format
such as HTML, XML, DocBook, RTF - in principle, the output can be in any
format required. RenderingRules can be thought as working much similar to
templates written using Sun’s JavaServer Pages (JSP) or Microsoft’s Application
Server Pages (ASP) technology.

• UMLAbstractionFacade, which abstracts the UML metamodel and APIs provided
by Eclipse’s GMF. It does so for the RenderingRules to have a simple, straight
forward API that does not imply specific knowledge about GMF. For example, the
facade will provide methods such as getImage(), getPackage() or getAttributes() to
allow for retrieval of model content and visual elements by name.

• RuleMapping, which implements a mapping of model elements to RenderingRules.
A mapping can be by name of model element, by naming convention, by model
element types or stereotypes.

 Model-Centric Approach to Software Design 111

• DocumentProcessor, whose purpose is to transform combined output of all
triggered RenderingRules into a format suitable for deployment or printing
(HTML, PDF). It is called upon start of a model transformation, and finally to
finish the output processing. RenderingRules should be able to call the
DocumentProcessor to notify of certain properties (such as particular style sheets
to apply etc.)

2.2.4 Rationale for Systemic Approach vs. Standard UML Tools
One could argue that it is unnecessary to look at architecture documentation as a
system by itself, since most available UML modeling tools provide a concrete
implementation of such a design already. In a sense, this is true: many UML modeling
tools indeed provide the facilities to tackle the above identified use cases.

However, practitioners tend to loose sight of the separation of the concerns
apparent from TSDOC’s use cases. In turn, the different concerns often are
intermixed, and in conclusion there is no longer a clear separation of a metamodel,
concrete UML models and views. Further, while most tools provide a component
similar to the DocumentPublisher as defined above, this is not usually configured for
enterprise use: instead, it is assumed that each designer will define concrete reports
based on concrete UML models. This results in tightly coupled report definitions that
themselves reflect the structure of the models (e.g. such a report definition would rely
on the design model to provide a package “A” or a component “B”; when the design
changes, the report definition has to be changed accordingly). Therefore, re-use of
generic, stakeholder-specific report/view templates becomes impossible. However,
reuse of modeling templates and stakeholder reports is a requirement in any larger
organization, for economic reasons as well as for the purpose of effective governance.

Taking a step back in separating the various concerns thus helps to make better use
of the UML modeling tools, in particular in an enterprise setting.

2.3 Common Metamodel of Stakeholder Views

In order to formalize the stakeholder views a common metamodel is required. The
metamodel serves as the common language to define, on an abstract level, the
contents of each view. The information needs identified in the analysis were
subsequently aggregated, essentially forming a metamodel of the various stakeholder
reports. Using this metamodel, it is now possible, for example, to formally define the
context diagram – requested by multiple stakeholders - as being made of
"Applications", and the "InformationFlows" between these "Applications".

The metamodel at Credit Suisse is loosely based on the concepts and terminology
found in the analysis and design discipline described by Kruchten, extended to meet
specific needs of Credit Suisse. The metamodel was subsequently transformed into a
UML Profile to facilitate the modeling of systems using the very terminology.

2.4 Collaborative Design: Model Ownership Is Essential

Based on the collaboration capabilities of the tool environment (e.g. configuration
management and distributed versioning systems), all design activities can be
distributed among co-located team members and outsourcing partners at offshore

112 P. Senti

locations. Configuration management further ensures that all UML models are
managed, over time, as part of the system's releases (similar to its source code).

As with any collaborative effort, it is essential to define ownership of artifacts, in
this case in relation to the UML models. The process to do so is essentially identical
to that of defining ownership with respect to component-level source code: 1. define
the major components, 2. assign ownership of components, 3. define the procedure to
commit changes and updates, in particular in the case of conflicts and required
merges. Note that for the purpose of efficient collaboration, and to enable non-
conflicting ownership assignment, the names, number and structure of UML models
should at best correlate with the component design of the IT system in question.

Once ownership has been assigned, the designers focus on the component(s)
assigned to them. To do so, they will take the existing UML model(s) of the
respective component, or create a new model. Essentially, designers have complete
freedom in respect of the internal design of a particular component (reflected in the
respective UML model) - within the limits given by the system's requirements and
constraints. Once this work is completed, all component models are collected and
integrated within the system-level UML models.

2.5 Stakeholder Views Reference Component Models

The models created by component owners are meant to be of use for coding (code
generation) and system integration: thus, these models should address the concerns of
software developers. Stakeholder views, in contrast, will reference those abstractions
and levels of detail that match the concerns of the respective stakeholder. If needed,
further abstractions can be added to the system-level UML models to trace elements
from stakeholder views to the component-level design models and vice-versa.

2.6 Scalability Requires Automation

In light of the size of Credit Suisse’s Private Banking IT unit, there is a need for the
standardization of the software development environment. While the development
tools as such (IDEs, compilers, debuggers, RDBMS etc.) have traditionally been
provided along the computing platforms, the use and standardization of a design
environment has only been recently initiated. Along with that comes the need to
provide automation for common tasks, including the set-up of models, the
collaboration and configuration management facilities, and the automation of view
publishing.

To this end, TSDOC as implemented at Credit Suisse provides a set of scripts that
automate the creation of model projects, as well as the publishing of stakeholder
views. A usage guideline explains the environment to the novice, and step-by-step
instructions support the solution architects in using the tools as efficiently as possible.

2.7 UML Models Annotated, External Documents Attached

Using TSDOC, solution architects create well-defined UML models annotated by
descriptions and diagrams, instead of writing textual documents intermixed with
(often: free-form) graphics. The UML models, in turn, serve as the basis for several
reports defined in stakeholder views. The views are UML models themselves, but

 Model-Centric Approach to Software Design 113

contain UML diagrams that reference elements from other models, to be included in
the stakeholder views. External documents such as text documents or graphics are
attachable to UML models or stakeholder views by means of URI-formatted
shortcuts. The reports are printed as a direct representation of the view models, that is
each package in the model corresponds to a document chapter or sub-chapter.

2.8 Implementation by Commercial Product Suite

The IBM Rational Software Development Platform (SDP) provides a full-fledged,
integrated software engineering and development environment. At Credit Suisse,
TSDOC is currently implemented based on the SDP, using the Rational Software
Modeler as its ModelingTool, Rational Clearcase as its CollaborationEngine, Apache
Ant scripts as its ReleaseManager and Rational SoDA as the DocumentPublisher. As
the SDP is based on Eclipse, TSDOC uses custom-developed Eclipse plugins to
distribute a UML profile, effectively realizing the common metamodel (compare
section 1.4.3), a set of standardized model templates, stakeholder view templates, and
automation scripts.

3 Experience and Lessons Learnt

The implementation of TSDOC at Credit Suisse has started in January 2009, by
means of five projects piloting this approach. The results so far are encouraging in
terms of the applicability of the approach for both creating specifications and
documenting existing systems, as well as for producing respective stakeholder views.
However, it is too early to deduce any significant results in terms of effects on
productivity or design quality. Nevertheless, first implications and lessons learnt are
described below. These were derived from feedbacks received in writing and insight
gained from discussions with participating employees.

3.1 Validation by Piloting Projects

The piloting projects have been selected to be representative of typical projects. As
Table 1 indicates most employees participating did not have prior experience using
UML or UML-based modeling tools, which is assumed to be the common situation
for most projects at large. However, all participating employees are experienced in
designing and specifying systems using non-formal, document-based approaches.

3.2 Lessons Learnt

Despite the early stage of implementation, there are a number of concerns and lessons
learnt that can be drawn from the piloting projects, as outlined in the following
sections.

3.2.1 Use of UML Modeling Perceived as Useful
All participants approve of the use of UML models as the main means of specification
and documentation. According to their feedback, one advantage lies in the ability to

114 P. Senti

Table 1. Projects piloting TSDOC. Platform indicates the technology platform (Java=J2EE,
Mainframe=IBM zOS); UML Experience indicates knowledge of UML/UML-tools of the
responsible solution architect; Status indicates status of the analysis and design work in the
project (discontinued = project was stopped for reasons not connected to TSDOC); #Employees
indicates the number of employees directly using TSDOC's modeling approach.

 Project 1 Project 2 Project 3 Project 4 Project 5

Type New System Change to

system

Change to

system

Re-

Engineering

COTS
3

Integration

Platform Java Java Mainframe Mainframe Mixed

UML Experience Yes Yes No No Yes

Status Discontinued In Progress In Progress In Progress Completed

#Employees 4 2 1 2 3

design systems based on a standard language supported by tools (UML), and store
textual information along with the design. Another advantage stated by participants
was the ability to generate and re-generate stakeholder views whenever a design
aspect changed. One advantage expected by the participants is to re-use the
specifications and documentation in future projects.

3.2.2 UML and UML-Tooling Imply a Learning Curve
Solution Architects without prior experience in using UML or a UML-based
modeling tool require time to familiarize themselves with both, the notation and the
tool. This is particularly true for employees with little or no experience in object-
oriented terminology, which is common for solution architects of mainframe systems.
Participants with this background found the customized UML profile helpful, which
provides platform-specific terminology (e.g. PLI-modules are indicated by UML
components with the <<PLI>> stereotype applied).

Based on the participants' feedback, the time required becoming familiar with
UML and the tooling was estimated to take approximately one week, on the job,
however noting that 'substantially more time' is required to reach the productivity-
level of their previous non-formal approach to specification.

3.2.3 Customized Training Curriculum Required
UML and tool training for the participants in the piloting projects was provided based
on standard offerings by the tool vendor. A training session specific to TSDOC was
held, conducted several times for different projects each.

The participants questioned the applicability of the vendor-provided tool and UML
training in their particular project: the challenge is not seen in using a UML-based
tool for system design, but the application of UML in the scope of a particular design
context and technology platform. Therefore, a training curriculum tailored to Credit
Suisse is currently under consideration.

3 Commerical off-the-shelf product.

 Model-Centric Approach to Software Design 115

3.2.4 Need for Efficient Technical Support and Knowledge Sharing
All participants experienced problems while using the UML tool, ranging from
uncertainty about expressing certain design constructs using UML, to technical
failures such as the crashing of the tool or inability to re-open existing UML models.

The technical problems were reported to and resolved by Credit Suisse support
staff. Questions regarding the application of UML were discussed in a bi-weekly
workgroup were recent issues and proposed solutions were shared.

3.2.5 Increasing Precision in Specifications
It was particularly interesting to observe the need for discussing design questions,
apparently triggered by UML: expressing a particular design aspect using UML -
instead of a non-formal description or graphic - seems to raise design-related
questions and drive a desire to be (more) precise. This increased awareness for
preciseness is an encouraging sign to potentially improving design quality as
experience grows and knowledge is shared. However, this assumption could not yet
be verified.

3.2.6 Non-formal Content Still Valuable
In all projects, existing documentation had to be integrated with the UML models.
While some of the content could be translated into UML (e.g. lists of components and
adjacent interface specifications), other content had to be represented "as such" (e.g.
textual descriptions of non-functional requirements).

4 Concluding Remarks

The approach described, TSDOC, implies that specifications and documentation of IT
systems are based on UML models instead of non-formal documents. By means of an
appropriate tool infrastructure for configuration management, specifications are kept
an integral part of a system's releases. The UML models become the single source for
multiple, stakeholder-specific views, thus reducing unwarranted redundancy. TSDOC
further supports to leverage the benefits associated with collaborative development
scenarios, co-located and offshore, namely by reduced ambiguity of specifications.

As first experiences at Credit Suisse indicate, the use of UML implies a learning
curve, yet allow practitioners to be more precise than by using non-formal
specifications. As a general implication for global software development, the major
challenge remains to agree a common metamodel compliant to match stakeholder-
specific reporting needs, and to institutionalize the use of UML across the
organization and its partners. Institutionalization implies a customized curriculum,
knowledge sharing among practitioners, and a sustained effort to support an efficient
tool infrastructure.

References

1. IEEE: ANSI/IEEE Std 1471–2000 Recommended Practice for Architectural Description of
Software-Intensive Systems (2000)

2. The Open Group: The Open Group Architectural Framework (TOGAF),
 http://www.opengroup.org/architecture/togaf

116 P. Senti

3. Kruchten, P.B.: The 4+1 view model of architecture. IEEE Software 28(11), 42–50 (1995)
4. Hill, R.: An ISO/IEC 42010 (IEEE Std 1471) Annotated Bilbiography, Version 1.5 (2008)
5. Zachman, J.A.: A framework for information systems architecture. IBM Systems

Journal 26(3), 276–292 (1987)
6. Kruchten, P.B.: The Rational Unified Process: an introduction. Addison-Wesley, Reading

(1999)
7. Clements, P.C., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford,

J.: Documenting Software Architectures: views and beyond. Addison Wesley, Reading
(2003)

8. Egyed, A., Medvidovic, N.: Architectural Representation in UML with View Integration.
In: 2nd International Conference on the Unified Modelling Language (October 1999)

9. Hilliard, R.: Using the UML for Architectural Description. Springer, Heidelberg (1999)
10. Hofmeister, C., Nord, R.L., Soni, D.: Describing Software Architecture with UML.

Siemens Corporate Research. Kluwer Academic Publishers, Dordrecht (1999)
11. Murer, S., Worms, C., Furrer, F.J.: Managed Evolution. Informatik-Spectrum. Springer,

Heidelberg (2008)

The Role of Contracts in

Distributed Development

Martin Nordio1, Roman Mitin1, Bertrand Meyer1, Carlo Ghezzi2,
Elisabetta Di Nitto2, and Giordano Tamburrelli2

1 ETH Zurich, Switzerland
{Martin.Nordio,Roman.Mitin,Bertrand.Meyer}@inf.ethz.ch

2 Politecnico di Milano, Italy
tambug@gmail.com, carlo.ghezzi@polimi.it, dinitto@elet.polimi.it

Abstract. Distributed software development raises new software engi-
neering challenges resulting from the difficulty of making several teams
cooperate across different countries, time zones and cultures. These ob-
stacles can lead to critical delays or even failures. One of the most effec-
tive techniques for overcoming them is to improve the quality of software
specifications. Our experience with a distributed software project in an
educational environment suggests that Design by Contract techniques
provide a promising solution.

Keywords: Software Requirements Specifications, Distributed Develop-
ment, Interface Specifications, Contracts.

1 Specifications in Distributed Software Development

Whether outsourced [24] or not, todays software projects are ever more often
distributed : developed by two or more teams working in different locations.
Distributed software development poses new software engineering challenges;
previous work has, for example, analyzed how to adapt the old idea of “code
reviews” to this new setup [25]. Here we consider another difficulty of distributed
software development: how to mitigate the risk of misunderstanding software
specifications.

The case of particular interest is the sharing of specifications between a
“client” team which needs a certain functionality and a “supplier” team which
implements that functionality. We will present the use of Design by Contract
techniques [23,27] to express the specifications in a precise yet understandable
way, acceptable to both client and supplier teams.

Section 2 describes the source of the experiments described here: distributed
software projects involving teams from different universities. Section 3 presents
some of the typical problems encountered in the absence of a systematic approach
to specification. Section 4 solves these problems using contracts. Section 5 de-
scribes how our approach has been applied to distributed projects. Finally, we
present the results, related work, and the lessons learnt during the project.

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 117–129, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

118 M. Nordio et al.

2 Context of This Study

While some of the authors have applied the techniques described here in com-
mercial distributed developments, the experience underlying this article is based
on an academic effort rather than an industrial project.

For several years the Chair of Software Engineering at ETH Zurich has taught
a course entitled “Distributed and Outsourced Software Engineering” or DOSE1,
which since 2007 has included a course project pursued in cooperation with other
universities, most recently Politecnico di Milano (Italy), Odessa National Poly-
technic University (Ukraine), the State University of Nizhny Novgorod (Rus-
sia), and University of Debrecen (Hungary). While each university retains its
own course and organization, the project is shared: each project group includes
teams from different universities. Specifically, each group in the current setup is
made of three teams, each including two students from a given university. (This
terminology is needed to understand the rest of the discussion: a group does the
full project and is made of teams, each doing a part of the project; a team is
made of students from one university, but a group involves teams from different
universities.) All software is developed in Eiffel using the EiffelStudio Integrated
Development Environment.

As a result of this project scheme, the students get to experience the chal-
lenges of true distributed development; they face the same difficulties as in a
distributed project in industry, compounded by the specific constraints of a uni-
versity environment. As an example of where an “academic” setup can in fact
be tougher than an industrial one, the option of delaying the final delivery (an
event that, although undesirable, often happens in industry) is not available:
come rain or shine, the university administration requires instructors to give the
students a grade at the end of the semester, a milestone that cannot be moved.

The course allows students to experience first-hand the tasks and challenges of
modern software development, and learn critical skills; they consistently report
that it is a richly rewarding experience. It also provides us with an opportunity
to study issues of distributed development in a controlled environment.

One of these issues is the difficulty of communicating requirements. The diffi-
culty is well known to anyone who has practiced industrial software development;
it is also intuitively clear that project distribution increases it. Our experience
provides concrete evidence of this phenomenon, as will now be described.

3 Specification-Related Errors in Distributed
Development

An example from the 2007 session of the DOSE course [1] illustrates the speci-
fication risks of distributed development.

The project topic was the development of a system to analyze email postings
of computer science events, in mailing lists such as the ECOOP list and SE
1 Until 2006 the course was called “Software Engineering for Outsourced and Offshore

Development”.

The Role of Contracts in Distributed Development 119

World, to feed the Computer Science Event List (CSEL) [8], a Web page of
Informatics Europe (http://events.informatics-europe.org). The automatic part
of the system must identify key elements of a conference announcement, such as
event name, event date and call for papers deadline, to prepare a CSEL entry.
Since the identification cannot be perfect, the system includes a human editing
step to correct any mistakes.

Figure 1 shows the Software Requirements Specification (SRS) as given to the
students.

A. Scope
The system shall identify the elements of a call for paper posted in mailing lists, and
feed them to the CSEL system by sending e-mails in the special format.

B. Definitions, Acronyms and Abbreviations
CSEL: Computer Science Event, http://www.informatics-europe.org/cgi-
bin/informatics events.cgi
Conference Name: Name of the event.
Conference Dates: Starting and ending dates of the event.
Abstract Deadline: The date for the abstract submission.
Submission Deadline: The date for the paper submission.
Conference Category: Kind of the event (symposium, conference, workshop, etc).

C. Product functions
The system shall

C.1. Provide functionalities to extract the information of a conference from an e-mail
(a text e-mail, no html);

C.2. Report the extracted information in a graphical user interface (GUI);
C.3. Allow modifying this information;
C.4. Submit the information to the CSEL system by sending e-mails.

D. Specific requirements
D.1. The system shall be able to extract the elements of a call for paper from text

e-mails. The elements of a call for paper are the following: (1) Conference name, (2)
Conference dates, (3) Abstract deadline, (4) Submission deadline, (5) Place where the
conference takes place, (6) URL of the conference, (7) Conference sponsor, (8) Contact
information, (9) Keywords of the conference, and (10) Conference category.

D.2. The conference category is either “Conference” or “Symposium” or “Workshop”
or “Summer School”.

D.3. The system shall visualize conference information, and allow modifying it. The
system shall feed the approved information by sending e-mail to CSEL as a comma
separated list.

D.4. All the elements from D.1 must be in the e-mail. If any of this information could
not be extracted, the system shall add the keyword NONE in corresponding element.

D.5. The system can send the e-mail only if at least all key elements have been
extracted or introduced by the user. The key elements are: (1) conference name, (2)
conference dates, (3) abstract deadline, (4) submission deadline, (5) place where the
conference takes place, and (6) URL of the conference.

Fig. 1. Example Software Requirements Specification

120 M. Nordio et al.

The teaching team divided the system into three clusters (subsystems):

– A - ANALYZE: automatically extract the essential information.
– B - BEFIT: user interface for interactive correction.
– C - COMBINE: integration of components A, B and the CSEL website.

Correspondingly, each project group was divided into three teams, each from
a given university, for example two teams performing task A and B in Zurich,
and a team C in Odessa.

While undoubtedly not perfect, the requirements document of Figure 1 was
written carefully and would appear to be clear enough. When given to teams
working in different locations, however, it led to misunderstandings that the
specification literature has analyzed [22]. In particular, the following problems
arose. (We use the phrase “Team A” to mean “The team in charge of implement-
ing cluster A in one of the groups,” and similarly for other clusters. Different
examples may involve different groups.)

Case 1. Team A implemented the abstract deadline using the date format
day.month.year where day, month, and year are integers. Team B used a different
format, with integers for the day and year but a string (such as “January” or
“February”) for the month. This misunderstanding, affecting the type of an
attribute, caused a delay in the integration. It can be traced to a lack of precision
of the specification (the SRS).

Case 2. Team C realized that the abstract submission deadline must always
be earlier than the paper submission deadline. Thus, they checked this property
before submitting the conference information to CSEL. If this property did not
hold, an exception was triggered. Team B, in devising the user interface, did
not check for this property and accepted any combination of dates. As a result,
some combinations crashed the system. A similar problem happened to another
group with the starting and the ending conference dates. The problem here is the
specifications failure to state a requirement which appears necessary to someone
trying to understand the system semantics.

Case 3. Team A understood that the category of a conference is “Conference”
or “Symposium” or “Workshop” or “Summer School”, where or is the usual,
non-exclusive boolean disjunction. Team B interpreted it as an exclusive or. As
a result, some test cases passed the checks performed in cluster A but not those
of B, again triggering run-time exceptions and failure. The problem here is the
lack of precision of natural language.

Case 4. The teams used a class called EVENT to model the notion of con-
ference, but had slightly different interpretations of the semantics of this class.
In the view of Team C, class EVENT only models conferences that satisfy basic
validity constraints, such as the Call for Papers deadline appearing before the
notification date. Teams A and B assumed that the class models any confer-
ence,even one with invalid information; they checked the validity of the informa-
tion before submitting it to CSEL. These conflicting conventions were discovered
late in the project and delayed integration. The problem in this case is not in
the original requirements specification but in the lack of precision of module
interface specifications produced during the design phase.

The Role of Contracts in Distributed Development 121

In this 2007 session of the DOSE course, no project succeeded in producing a
system that could be actually deployed, although at least one came tantalizingly
close; it was probably a week or two away from success but, as noted, there is
no possibility of extension in a university course context. In our analysis the
main reason for this result is the accumulation of specification issues such as the
above, each small in itself but leading to mistakes and delays. That so many such
issues could arise in a small system with a fairly straightforward specification
gives an idea of the trouble insufficient specification techniques can cause in large
industrial software developments.

4 Using Contracts to Avoid Specification Errors

Avoiding the kind of problems illustrated above involves technical and non-
technical measures. As an example of the latter, it is always desirable to check
the requirements for satisfaction of the properties listed in the IEEE Standard
on Requirements specification [15], such as absence of ambiguity. Such goals are,
however, quite general, and the standard does not specify how to achieve them
and assess the results.

Using a formal specification technique would remove ambiguity and help
achieve some of the other quality goals. A fully formal approach is, however,
beyond the reach of most teams.

Design by Contract techniques retain some of the benefits of formal methods
but are far easier to teach to developers who are competent software engineers
(or, in our case, software engineering or computer science students) but have not
necessarily received special formal methods training.

The basic idea of Design by Contract [23,27] is to attach partial but rig-
orous specifications to software elements: preconditions and postconditions for
routines, and (in an object-oriented) invariants for classes. Design by Contract
has applications to software construction, documentation, testing (in particular
with the recent development of automatic testing tools such as AutoTest [26,5]),
proper use of programming mechanisms such as inheritance and exception han-
dling, and management. The application of most interest here is to the specifi-
cation of module interfaces.

Specifications using Design by Contract use a subset of the programming
language (typically Eiffel, but others have been proposed, such as Spec# [3] and
JML [18,19]); assertions (contract) elements are boolean expressions, with some
extensions such as the old notation in postconditions.

The class interface in Figure 2, expressed in Eiffel, describes the notion of
event as managed in our example system.

Class EVENT relies on an auxiliary class CATEGORY (presented in Figure 3).
The actual class texts will contain implementations of the features involved

(submit to csel etc.); the above are interface specifications, which can be writ-
ten first and then refined into the implementations, or extracted automatically

122 M. Nordio et al.

1 indexing
description : ”Technical events as managed in the CSEL.”

3
class

5 EVENT

7 feature −− Basic operations

9 submit to csel
−− Submit the conference information by sending an email.

11 require
valid conferences : starting date . earlier than (ending date)

13 valid deadlines : abstract deadline . earlier than (paper deadline)
do

15 end

17 feature −− Implementation

19 name: STRING
starting date : DATE

21 ending date: DATE
abstract deadline : DATE

23 paper deadline : DATE
place , url , sponsor, keywords: STRING

25 a category : CATEGORY

27 invariant
category status : a category . is conference xor

29 a category .is symposium xor
a category .is workshop xor

31 a category .is summer school

33 end

Fig. 2. Interface Specification of a Class EVENT

(by tools of the development environment) from these implementations if they
already exist.

Class EVENT as given serves as a precise specification of the notion of event,
avoiding the errors and ambiguities that occurred during the 2007 project devel-
opment cited above. Note in particular how the class invariant expresses, through
the use of the exclusive-or operator xor, that the different categories of event are
exclusive. The precondition (require clause) of procedure submit to csel states
validity requirements: the starting date must precede the ending date, and the
deadline for abstracts must precede the deadline for papers.

The Role of Contracts in Distributed Development 123

1 indexing
description : ”Conference categories.”

3
class

5 CATEGORY

7 feature −− Status report

9 is conference : BOOLEAN
−− Does this category represent conferences?

11 do
end

13
is symposium: BOOLEAN

15 −− Does this category represent symposiums?
do

17 end

19 is workshop: BOOLEAN
−− Does this category represent workshops?

21 do
end

23
is summer school: BOOLEAN

25 −− Does this category represent summer schools?
do

27 end

29 end

Fig. 3. Interface Specification of a Class CATEGORY

5 Improving the Project Setup

The preceding example suggests that a systematic use of contracts can provide
considerable help towards solving the specification and communication issues
that plague distributed projects. We used the 2008 session of the DOSE course
to assess this conjecture.

A number of characteristics changed between the 2007 and 2008 sessions.
DOSE 2007 [1] had, as noted, the CSEL system as the project theme. In 2007
the project, developed over 11 weeks out of the semesters 13, was divided into
four phases:

– Phase 1: Write specification of each cluster (4 weeks).
– Phase 2: Revise and consolidate the specification into one project document;

develop interface specification using contracts (3 weeks).
– Phase 3: Implement clusters (2 weeks).
– Phase 4: Test system (2 weeks).

124 M. Nordio et al.

As indicated for Phase 2, students were encouraged to use contracts, but
this was only a recommendation. Faced with the difficulties mentioned earlier,
students gradually realized the importance of precise specifications and started
applying contracts more systematically. In the end, however, the delay in apply-
ing these techniques made it impossible to integrate the results into a deployable
system.

DOSE 2008 [2] used a different project. We took advantage of the announce-
ment of a competition in conjunction with the 2009 International Conference on
Software Engineering (ICSE): the SCORE project competition [32]. Specifically,
we chose one of the topics offered in the SCORE competition: “BTW” [28], a
system to provide advice to someone planning a trip to a city. As in 2007, we
divided the project into three clusters to be handled by different teams within
a group; the BTW clusters were:

– Cluster 1 - SYST: GUI and overall organization of the BTW system
– Cluster 2 - GEO: Interface with GIS information and Traffic
– Cluster 3 - PLAN: Route planning and advice

and typical group configurations were:

– (1) Zurich - (2) Nizhny Novgorod - (3) Milano
– (1) Debrecen - (2) Milano - (3) Zurich
– (1) Milano - (2) Zurich - (3) Odessa

The problem domain made it possible to take advantage of an existing system
for city modeling and route planning, the Traffic library [20], developed at ETH
for the purposes of our introductory programming course [16].

While the overall setup was similar to the 2007 session, we changed a number
of elements in light of the lessons learned. We started the project earlier, so that
it could use 13 weeks out of the semesters 14. Recognizing the importance and
difficulty of the specification phase, we extended it to 5 weeks and simplified the
process by bringing the number of phases to three:

– Phase 1: Write specification of each cluster (4 weeks).
– Phase 2: Revise and consolidate the specification into one project document;

develop interface specifications using contracts (5 weeks).
– Phase 3: Implement clusters (4 weeks).

We gave much more precise and prescriptive recommendations to students:

– They were told to get in touch with the other teams in the very first week; this
avoided communication issues and simplified the revision of the requirements
document.

– We introduced a code review to improve the interface specification.
– Students had to implement the projects in two cycles, which helped to find

integrations problems earlier.
– We strongly encouraged them to commit the code daily, and to define and

apply precise commit rules (such as permitting commit only if the code has
been compiled and tested).

Most importantly, we made the inclusion of contract interface specifications
mandatory in the specifications.

The Role of Contracts in Distributed Development 125

6 Results

The results of the 2008 projects confirmed the usefulness of the measures de-
scribed above. The final result of the implemented projects was good: the systems
were integrated and the three clusters worked in the same system. The speci-
fication of the interfaces was improved, and contracts helped to document and
understand the interfaces.

To obtain the students perspective we asked them to fill a feedback question-
naire, which most of them (95%) did.

Most of the students think that contracts helped to develop the project. We
wanted to know how much effort the contracts required. Table 1 shows the
hour/person per team expended in developing the requirements documents with
interface specification using contracts. In average, the development of contracts
took 22.2% of the time used in the requirement phase.

The results of the experience show that contracts were key to develop dis-
tributed projects. The use of contracts in SRS have been useful not only to
avoid misunderstandings but also to specify the interaction between subsystems.
Projects that defined good interfaces using contracts have been able to deploy,
and produce a final system. On the other side, projects that have not specified
the interfaces properly have failed to produce a final system.

To go beyond such assessments, we intend to perform a more objective mea-
surement of the specification effort as part of DOSE 2009.

Table 1. Effort expended developing requirements documents and interfaces with con-
tracts

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Average

Person/hours
SRS (without
contracts)

35 64.6 116 108 39 82 27 34 19 89 28 22 55.3

Person/hours
writing
contracts

20 15 20 20 8 30 8 4 20 30 7 8 15.8

Percentage in
writing
contracts

36.3 18.8 14.7 15.6 17.0 26.7 22.8 10.5 51.2 25.2 20 26.6 22.2

7 Related Work

Industry and academia have been interested in distributed development. Lessons
learnt on educational experiences have been reported [9,7,4]. Gotel et al. [9,10]
describe the lessons learned from the development of a project across three glob-
ally distributed educational institutions. The institutions that participated in

126 M. Nordio et al.

that project were Pace University (US), University of Delhi (India), and Institute
of Technology of Cambodia (Cambodia). They discuss the problems faced in the
projects such as communication (with a twelve hours time difference), project
planning, and cultural aspects. A similar experience is described by Damian
et al. [7]. They report on the teaching experience developing software require-
ments specifications in geographically distributed software development with
three universities (located in Canada, Australia, and Italy), focusing on the
times zones and the cultural differences. These works focus on how to teach a
course in distributed software development. However, they do not cover how to
improve software requirements specifications. A deeper description of existing
works concerning global development and educational experiences is beyond the
scope of this paper and can be found in [4,12,13,29].

Corriveau [6] indentifies the key properties that a contract between the par-
ties involved in outsourcing must satisfy. These properties are expressed with a
model, and this model must be testable, executable, and abstract. This model is
used to test the quality of the developed project, but it does not help to under-
stand the system under development. Our approach is used to solve the problems
of potential misunderstandings in software requirements specifications, and to
improve them. The use of contracts brings the same properties: testable, exe-
cutable, and abstraction. Meyer et al. [21] have described our first experience in
distributed software development, DOSE 2007. They described the experiences
of software engineering projects in local and distributed developments. However,
the role of contracts in software requirements specification is not discussed.

Sutherland et al. [33] report the industrial experience of developing a dis-
tributed project with two companies: SirsiDynix (Utah, US) and StarSoft De-
velopment Laboratories (St. Petersburg, Russia). They analyze and recommend
best practices for globally distributed agile teams. They report that distributed
teams can be as productive as a small collocated team.

Concerning program specifications, many existing works address this issue
from different points of view and with different goals. The fact that natural
language specifications lead to unsatisfactory and ambiguous specifications is
well known and widely accepted. This issue becomes crucial in distributed or
global development settings. Nevertheless, specifications based on natural lan-
guage descriptions even if supported by diagrams (e.g., UML [34]) are still widely
adopted in industrial development. Consequently, several existing approaches
aim at supporting software development with specifications based on natural
language [14,31], however, the most promising techniques rely on the adoption
of formalisms.

Languages such as Alloy [17] can be used to solve the problems of ambiguous
specifications. However, the specification is completely detached from the source
code of the program leading to a traceability gap among code and its spec-
ification. Moreover, concerning UML, it is important to notice the difference
among writing contracts in Eiffel and writing constraints in the Object Con-
straint Language (OCL) [34]. First of all, the former approach offers a precise
and non ambiguous semantics conversely to the UML object constraint language

The Role of Contracts in Distributed Development 127

(several approaches addressed this issue, e.g. [30]). Secondly, OCL suffers from
a traceability gap between the specifications and the implementation, while our
approach does not.

The Java Modeling Language (JML) [18,19] is a behavioral interface speci-
fication language that can be used to specify the behavior of Java modules. It
combines the design by contract approach of Eiffel and the model-based spec-
ification approach of the Larch family of interface specification languages [11].
Although the approach is similar to Eiffel contracts, specifications in JML are
not part of the Java language. Furthermore, Spec# [3] extends C# with formal
specifications. In our approach, the specifications are not restricted to any pro-
gramming language, thus JML and Spec# can be used to specify the interfaces
of distributed projects.

8 Conclusions and DOSE 2009

We have presented an approach to improve software requirements specifications
by integrating contracts to SRS. To measure the results of this approach, we have
developed several distributed projects. Contracts have helped to solve the prob-
lems of misunderstanding and underspecification in SRS. The use of contracts
brings the advantages of automatic testing and better system documentation.
Although the experiments were performed in an academic environment, we be-
lieve that the results are also interesting to industrial software developers.

Since the distributed projects in DOSE 2007 and DOSE 2008 have been an in-
teresting experience, we plan to continue this experiment in 2009. So far, we have
developed projects with two and three geographically different locations. During
DOSE 2009 we have observed that projects distributed in two locations have less
overhead in communication and development than projects developed in three lo-
cations. However,we have not executed any empirical study that shows what is the
overhead. Next year, we plan to analyze this overhead in communication and de-
velopment when projects are distributed in two, three, and four locations. If you
are a member of an academic institution and would like to be part of DOSE 2009,
please contact us to discuss and organize your participation.

Acknowledgements

We would like to thank all the people involved in DOSE 2007 and DOSE 2008
especially Dr. Peter Kolb, Prof. Viktor Gergel, Andrey Zaychikov, Lajos Kollár,
Prof. Juhász István, and Prof. Victor Krissilov; to the students who worked hard
and gave us useful feedback; to Scott West for reviewing and providing helpful
comments on drafts of this paper.

References

1. DOSE 2007 (2007),
http://se.ethz.ch/teaching/2007-f/outsourcing-0273/index.html

2. DOSE 2008 (2008),
http://se.ethz.ch/teaching/2008-h/dose-0273/index.html

http://se.ethz.ch/teaching/2007-f/outsourcing-0273/index.html
http://se.ethz.ch/teaching/2008-h/dose-0273/index.html

128 M. Nordio et al.

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Bruegge, B., Dutoit, A.H., Kobylinski, R., Teubner, G.: Transatlantic project
courses in a university environment. In: 7th Asia-Pacific Software Engineering Con-
ference (APSEC 2000), pp. 30–37 (2000)

5. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: ARTOO: Adaptive Random Testing
for Object-Oriented Software. In: Proceedings of the 30th International Conference
on Software Engineering 2008 (ICSE 2008) (May 2008)

6. Corriveau, J.P.: Testable Requirements for Offshore Outsourcing. In: Meyer, B.,
Joseph, M. (eds.) SEAFOOD 2007. LNCS, vol. 4716, pp. 27–43. Springer, Heidel-
berg (2007)

7. Damian, D., Lanubile, F., Mallardo, T.: Investigating IBIS in a Distributed Edu-
cational Environment: the Design of a Case Study. In: Workshop on Distributed
Software Engineering, vol. 1 (2005)

8. Computer Science Event,
http://www.informatics-europe.org/cgi-bin/informatics_events.cgi

9. Gotel, O., Kulkarni, V., Neak, L.C., Scharff, C., Seng, S.: Introducing Global Sup-
ply Chains into Software Engineering Education. In: Meyer, B., Joseph, M. (eds.)
SEAFOOD 2007. LNCS, vol. 4716, pp. 44–58. Springer, Heidelberg (2007)

10. Gotel, O., Kulkarni, V., Scharff, C., Neak, L.: Students as Partners and Students
as Mentors: An Educational Model for Quality Assurance in Global Software De-
velopment. In: Berkling, K., Joseph, M., Meyer, B., Nordio, M. (eds.) SEAFOOD
2008. LNBIP, vol. 16. Springer, Heidelberg (2009)

11. Guttag, J.V., Horning, J.J., Garl, S.J., Jones, K.D., Modet, A., Wing, J.M.: Larch:
languages and tools for formal specification. Texts and Monographs in Computer
Science (1993)

12. Hawthorne, M.J., Perry, D.E.: Software engineering education in the era of out-
sourcing, distributed development, and open source software: challenges and op-
portunities. In: International Conference on Software Engineering, vol. 27, p. 643.
Springer, Heidelberg (2005)

13. Herbsleb, J.D., Moitra, D.: Global software development. IEEE Software 18(2),
16–20 (2001)

14. Holt, A.: Formal verification with natural language specifications: guidelines, ex-
periments and lessons so far. South African Computer Journal, 253–257 (1999)

15. IEEE: IEEE Recommended Practice for Software Requirements Specifiations.
IEEE Std 830 (1998)

16. Introduction to Programming (Einführung in die Programmierung) - Chair of Soft-
ware Engineering - ETH Zurich,
http://se.ethz.ch/teaching/2008-h/eprog-0001/index.html

17. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11(2), 256–290 (2002)

18. Leavens, G., Baker, A., Ruby, C.: JML: A notation for detailed design. Kluwer
International Series in Engineering and Computer Science, pp. 175–188. Kluwer
Academic Publishers, Dordrecht (1999)

19. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering
Notes 31(3), 1–38 (2006)

20. Traffic Library, http://traffic.origo.ethz.ch/

http://www.informatics-europe.org/cgi-bin/informatics_events.cgi
http://se.ethz.ch/teaching/2008-h/eprog-0001/index.html
http://traffic.origo.ethz.ch/

The Role of Contracts in Distributed Development 129

21. Meyer, B., Piccioni, M.: The allure and risks of a deployable software engineering
project. In: Proceedings of the 21st IEEE-CS Conference on Software Engineering
Education and Training (2008)

22. Meyer, B.: On formalism in specifications. IEEE Software 2(1), 6–26 (1985)
23. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-

wood Cliffs (1997)
24. Meyer, B.: The unspoken revolution in software engineering. IEEE Computer 39(1),

121–124 (2006)
25. Meyer, B.: Design and Code Reviews in the Age of the Internet. In: Berkling,

K., Joseph, M., Meyer, B., Nordio, M. (eds.) SEAFOOD 2008. LNBIP, vol. 16.
Springer, Heidelberg (2009)

26. Meyer, B., Ciupa, I., Leitner, A., Liu, L.L.: Automatic testing of object-oriented
software. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack,
H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 114–129. Springer, Hei-
delberg (2007)

27. Meyer, B. (ed.): ISO/ECMA Eiffel standard (Standard ECMA-367: Eiffel: Analysis,
Design and Programming Language) (June 2006),
http://www.ecma-international.org/publications/standards/Ecma-367.htm

28. BTW Project, http://score.elet.polimi.it/projects.html
29. Richardson, I., Milewski, A.E., Mullick, N., Keil, P.: Distributed development: an

education perspective on the global studio project. In: ICSE 2006: Proceedings of
the 28th international conference on Software engineering, pp. 679–684. ACM, New
York (2006)

30. Richters, M., Gogolla, M.: On formalizing the UML object constraint language
OCL. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp.
449–464. Springer, Heidelberg (1998)

31. Saeki, M., Horai, H., Enomoto, H.: Software development process from natural lan-
guage specification. In: ICSE 1989: Proceedings of the 11th international conference
on Software engineering (1989)

32. SCORE, http://score.elet.polimi.it/
33. Sutherland, J., Viktorov, A., Blount, J., Puntikov, N.: Distributed scrum: Agile

project management with outsourced development teams. In: HICSS 1940, Hawaii
International Conference on Software Systems (2007)

34. UML, http://www.uml.org/

http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://score.elet.polimi.it/projects.html
http://score.elet.polimi.it/
http://www.uml.org/

O. Gotel, M. Joseph, and B. Meyer (Eds.): SEAFOOD 2009, LNBIP 35, pp. 130–135, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Managing Communication among Geographically
Distributed Teams: A Brazilian Case

Ana Carina M. Almeida1,2, Ivaldir H. de Farias Junior1,
and Pedro Jorge de S. Carneiro1,2

1 Federal University of Pernambuco (UFPE) – Informatics Center
Recife – PE – Brasil

{acma2,ihfj,pjsc}@cin.ufpe.br
2 Centro de Estudos e Sistemas Avançados do Recife (C.E.S.A.R)

Rua Bione, 220 – Bairro do Recife – CEP 50030-390
Recife – PE – Brasil

{ana.almeida,pedro.santana}@cesar.org.br

Abstract. The growing demand for qualified professionals is making software
companies opt for distributed software development (DSD). At the project
conception, communication and synchronization of information are critical
factors for success. However problems such as time-zone difference between
teams, culture, language and different development processes among sites could
difficult the communication among teams. In this way, the main goal of this
paper is to describe the solution adopted by a Brazilian team to improve
communication in a multisite project environment. The purposed solution was
based on the best practices described in the literature, and the communication
plan was created based on the infrastructure needed by the project. The outcome
of this work is to minimize the impact of communication issues in multisite
projects, increasing productivity, good understanding and avoiding rework on
code and document writing.

Keywords: Communication, Distributed Software Development.

1 Introduction

Over the last decades, globalization has brought significant impacts to software
development and management processes. Economic forces realized major investments
to convert local markets in to global ones, increasing the significance of Distributed
Software Development (DSD) in organizations today [1], [2].

There are many reasons why an organization should consider adopting a DSD
model, including low-cost advantages, access to a local expertise in order to satisfy
global demands, accelerate software development regarding market needs (time-to-
market), round-the-clock working, and also being close to the customer, in order to
properly understand their needs and business [1], [2], [3], [4], [5]. However, the
adoption of DSD approaches introduces new challenges in Software Engineering area,
such as, temporal, geographical and cultural distances. These challenges affect the

Managing Communication among Geographically Distributed Teams: A Brazilian Case 131

whole development team, but mainly the project managers who need to synchronize
their activities and communication among different sites, with different time zones,
cultural aspects, and usually different development process [1], [2], [5].

In order to have aligned information among sites it is required to elaborate a
communication plan which intends to support the communication and management of
development activities. Unfortunately, the current available quality models for
software development, such as CMMI, MPS.BR, ISO 12207, ISO 15504, do not go
deeply on DSD context, so there is a lack of best practices focus on multisite
development.

For this reason, the purpose of this paper is to describe the solution we found to
improve communication in a Brazilian multisite project that have started two years
ago and already had more than nine releases published. To accomplish this, we talk
about the artifacts, tools and also mention the lessons learned and future works for
improving communication in distributed teams.

This paper is organized as follows: Section 2 gives a brief introduction about
managing communication among DSD; Section 3 explains the Communication Plan;
Section 4 presents the lessons learned and Section 5 shows the conclusions of this
research.

2 Managing Communication among Geographically Distributed
Teams

In order to have success in developing systems it is required to elaborate and track
planning, risks, dependencies, tasks, estimates, team performance and other factors [6].
According to Mulcahy [7], the project communication is the main challenge of the
project manager. It is critical to structure and control communication between team,
stakeholders and company areas in order to achieve the project main purpose [8].

Some researches indicates that using DSD in a project increases the communication
complexity and introduces new challenges, because the teams work in different time
zones and have possible differences in culture and language [3], [4], [6], [8].

Considering this, in 2008, Farias Junior [9] did an exploratory study considering a
lot of DSD projects and noticed that the main communication issues in DSD are: (i)
overage formal communication, (ii) non adequate structure to support communication
among distributed teams, (iii) lacking of face to face meetings and (iv) lack of
knowledge about cultural aspects of the other sites. In his work he also purpose some
good practices to minimize communication issues in DSD projects.

In addition, it was noticed that in the last decade, there are few research groups that
treat this, such as, MuNNDoS [1], DiSEN, and other authors, like, Carmel [4] and
Damian [10], but they do not specify what is needed to be done to have sufficient
communication in multisite development. For sure, specific quality models for DSD
can be very helpful for software industry.

3 Communication Plan

The communication plan and artifacts that we are describing below intended to
improve communication among multisite development. We had 5 sites in Brazilian

132 A.C.M. Almeida, I.H. de Farias Junior, and P.J. de S. Carneiro

territories: 2 sites in the northeast area and 3 in the southeast. Each team has at least
10 system engineers. The sponsor was localized in the United States, they outsourced
the project.

The project aimed to develop a Software Development Kit (SDK) for different
Mobile Platforms. We used different technologies to implement this application. The
site 01 was responsible for creating a framework on top of the Eclipse Platform in an
extensible way and also defining together the other sites a set of features and
standards in order to reuse the main core components among sites.

This section describes which tools were used to align communication among the
development sites and also to allow projects output integration.

To reach such objectives, Mulcanhy [7] recommends elaborating the project
communication planning. This artifact describes the project stakeholders, which
information needs to be aligned among teams and the frequency and technology used
to perform the communication between the development teams and the project
sponsor.

According to Kerzner [8], it is important to identify what needs to be
communicated and which site needs information, the best approach of communication
to use, teams responsibility definition and which is the proper time to communicate
with them.

Table 1 describes the different ways used to share information among project
stakeholders as an example of a communication plan.

Table 1. Communication Plan example

Receiver Necessity / Information
Type

Description Periodicity Collecting
method

Sponsor,
Sites 02,
03, 04, 05

Responses to issues,
questions or doubts
submitted to the framework
mailing list.

Issues, questions or
clarifications submitted
to the mailing list related
to the framework or the
other development sites.

Daily Through the
framework
mailing list.

Sponsor,
Sites 02,
03, 04, 05

Relevant information about
the framework project that
must be shared among teams

Align information among
all team sites.

Biweekly Framework
biweekly
meetings.

We used different ways for communicating among teams. The most commons
were email, instant message, mailing list, wiki and conference calls. We also had
twice a year, face to face meetings.

Below we are summarizing each resource that was used for improving
communication among distributed teams.

− The Kick-off Meeting
We used the kick-off meeting to align information about the project scope with the
whole team every beginning of the release. We elaborated a presentation and sent it to
the whole team some hours before the meeting. During the meeting, we shared the
presentation with all those who attended by Netmeeting tool.

The main scope of the presentation was: release purpose, scope, and planning, the
baseline dates, the risks, assumptions and the team responsibility regarding the release.

Managing Communication among Geographically Distributed Teams: A Brazilian Case 133

− Biweekly Meeting
We had at least two meetings per month with all stakeholders in order to align goal,
priorities, changes on scope, and any other item needed to be discussed.

We scheduled this meeting for the whole year checking the stakeholders’ agenda.
We sent friendly reminder emails 3 days before each the meeting. We also used this
opportunity to encourage all team sites to contribute with the meeting agenda.
Primarily, we posted the preliminary agenda at Wiki site, and then all team members
were able to update the agenda including any desired item to be discussed.

Normally the agenda main topics were: Team Focal Points, Roles and
Responsibilities among teams, Communication Process, Release Planning, Next
Release Scope, Architectural Components, Impacts, Risks and Issues, CCB Session,
Questions and Comments.

− Project Portal
We created a unique repository to share all information about the project in order to
make it available in an easy way to all.

The Project Portal is a collaborative web site that provides all necessary
information for the development teams and guarantees that each team knows the main
goals of the project.

The main information stored there is the project focal points (email and rule),
framework main goals, technical tips and trips (e.g. how to extend the framework),
the release planning, milestones and scope. Support information was also available,
such as, project mailing list, wiki, developer guide, contribution and compliance
processes, deliverables, release dates, bug tracking, and other resources.

− Wiki
We included all technical documentation on wiki site, so the developers could help to
write and share information about the framework architecture with others. It is a very
interesting approach, because all sites were responsible to improve the
documentation, contributing with the topic that they have more knowledge or feel
more self-confident to document.

4 Lessons Learned

It was verified that the Project Portal creation improved the communication among
development teams. Part of this achievement was because all teams were stimulated
to collaborate, sharing information, like, teams’ features schedule and release dates. In
that way, the Project Portal improved the visibility of other teams, creating a unified
product vision that could even help in their features negotiation with the sponsors.

Regarding the contribution and compliance verification processes, it was noticed
that they improved the spirit of a single team, no matter where these were. In addition,
it was observed that by adopting those processes the number of problems related to
differences in the interface appearance, and system behaviors among products
decreased significantly.

Regarding synchronous communication, conference calls were used by demand
through a toll free number. In order to privilege all sites, it is recommended to
schedule the meetings considering all sites time zones. Besides, it is also important to
verify if all teams are comfortable with the meeting time.

134 A.C.M. Almeida, I.H. de Farias Junior, and P.J. de S. Carneiro

In the same way, it was noticed the importance of establishing the meeting duration
and align it with the attendees for how long each topic has to be discussed. Another
helpful practice was to share the created presentation with the teams some hours
before the meeting. These practices helped everyone come focused and prepared to
discuss the highlighted subjects. During these meetings, open ended questions were
used in order to check if the attendees understood the context. In order to share all
decision makings in a quick manner, all team members’ were reported through a short
summary, called meeting minutes. These were sent to the mailing list and were also
available in the project wiki.

As mentioned in section 3, the project mailing list was frequently used to discuss
technical aspects and to communicate team’s vacation and national holidays. Another
simple but very helpful aspect we noticed was that as the mailing list stored a lot of
useful information, it was usually used as an information retrieval tool for, for
example, searching who made the decision or why it was made.

To avoid issues related to information update and accuracy, we decided to use at
the same time a Project Portal and a Wiki. The decision to use both of them was made
because they were used to achieve different goals. The first one was used to store
static content (the content that does not change frequently) that can be updated by the
administrator. For example, the development process that needs to be approved by the
stakeholders. The second one was used to store dynamic content. By this way, the
Wiki was used to store technical related content, for example, the Developer Guide.

Last by not least, a very helpful good practice was the use of ambassadors (people
who travel between sites). This approach helped a lot to establish trust and cohesion
between the teams and sponsors.

5 Conclusions

The nature of the global business environment has led companies to take advantage of
benefits brought on by globalization. It is possible to understand what each region has
to offer the best in terms of comparative advantages, either in terms of cost (human
resources), quality, agility, less time-zone differences, policies, incentives, training,
and number of people available.

On the other hand it is important to understand the challenges which this approach
introduces. The goal of this research was to improve and align communication among
distributed teams.

The research results and lessons learned confirmed that it was possible to mitigate
communication risks and avoid project issues establishing simple infra-structure,
aligning expectation and making the project information available for all. It was also
important to motivate the team members to participate of whole process, contributing
with the information improvement.

References

1. Audy, J.N., Prikladnicki, R.: Desenvolvimento Distribuído de Software, Rio de Janeiro,
Brasil. Elsevier, Amsterdam (2008)

2. Agerfalk, P.J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B., Conchúir, E.O.: A
Framework for Considering Opportunities and Threats in Distributed Software Development.
In: International Workshop on Distributed Software Development, pp. 47–61 (2005)

Managing Communication among Geographically Distributed Teams: A Brazilian Case 135

3. Damian, D., Zowghi, D.: The impact of stakeholders? Geographical distribution on
managing requirements in a multi-site organization. In: RE, pp. 319–330 (2002)

4. Carmel, E.: Global Software Teams – Collaborating Across Borders and Time-Zones.
Prentice Hall, USA

5. James, D.H., Audris, M., Thomas, A.F., Rebecca, E.G.: Distance, dependencies, and delay
in a global collaboration. ACM, Computer Supported Cooperative Work, Philadelphia
(2000)

6. Liang, H.: Distributed Software Development. Leading Edge Forum
7. Mulcahy, R.: Preparatório para o Exame de PMP. 3a Edição. RMC Publications, Inc.

(2007)
8. Kerzner, H.: Project Management – A System Approach to Planning, Scheduling, and

Controling, 8th edn
9. Farias Jr., I.H.: Uma Proposta de Boas Práticas do Processo de Comunicação para Projetos

de Desenvolvimento Distribuído de Software. Dissertação de Mestrado, CIn - UFPE,
Pernambuco (2008)

10. Damian, D., Zowghi, D.: The impact of stakeholders’ geographical distribution on
requirements engineering in a multi-site development organization. In: Proc. of the 10th
IEEE Int’l Conference on Requirements Engineering (RE 2002), Essen, Germany,
pp. 319–328 (2002)

Author Index

Almeida, Ana Carina M. 60, 130
Aquino, Gibeon 60

Balasubramanian, Gayathri 81
Bugayenko, Yegor 96

Chai, Meiping 14
Chandrasekar, Divya 81

de Farias Junior, Ivaldir H. 130
de S. Carneiro, Pedro Jorge 130
Di Nitto, Elisabetta 117

Ganesan, Arul Mozhi 25
Ganesan, Kayal Vizhi 25
Ghezzi, Carlo 1, 117
Gotel, Olly 32

Hosoya, Jun 14

Jia, Hao 45

Meira, Silvio 60
Meyer, Bertrand 117
Mibe, Ryota 14
Mitin, Roman 117
Miyake, Shigeru 14

Musio, Ilario 4
Muthuswamy, Karthik 81

Nobprapai, Ni-On 32
Nordio, Martin 117

Parviainen, Päivi 66

Ramachandran, Ramaseshan 81
Ramasubbu, Narayan 3

Senti, Patrick 102
Shu, Fengdi 45
Souza, Renata 60
Sunetnanta, Thanwadee 32
Suomalainen, Tanja 66

Tamburrelli, Giordano 117
Tan, Yibing 14
Taniguchi, Yoji 14
Tihinen, Maarit 66

Wang, Qing 45

Yang, Ye 45
Yara, Pavan 81

Zhang, Lei 14
Zhang, Xuan 14

	front-matter.pdf
	Decentralized Software Development: Pitfalls and Challenges
	An Empiricist View of Managing Globally Distributed Software Development
	IBM Industry Practice: Challenges in Offshore Software Development from a Global Delivery Center
	Introduction
	The Global Delivery India Program
	Experiences
	Cultural Diversity
	Workforce Capability
	Methodologies
	Creativity
	Productivity
	Infrastructure and Organizational Tools
	Communication
	Meetings and Attentiveness
	Uncertainty and Ambiguity
	Deadlines
	Documentation and Knowledge Transfer
	Assets and Knowledge Management
	Others

	Survey Methodology
	Conclusion and Future Work

	Solution Proposals for Japan-Oriented Offshore Software Development in China
	Introduction
	Survey Results
	Survey Contents
	Existent Problems of Japan-Oriented Offshore Software Development
	Reasons of Main Existent Problems

	Solution Proposals
	Proposal (I): Improved Offshore Development Process
	Proposal (II): Project Management Supporting Tool – HOPE
	Proposal (III): Communication and RC Supporting Tool – FOCUS

	Summary
	References

	Working in Distributed Teams: Challenges, Best Practices, and Guidelines
	Introduction
	Challenges
	Challenges during Ramp-Up
	Cycle Time of Communication
	Technical Expertise
	Schedules and Local Festivals
	Communicating with the Remote Team
	Differences in Cultural Dimensions

	Conclusion
	References

	Quantitative CMMI Assessment for Offshoring through the Analysis of Project Management Repositories
	Introduction and Motivation
	Quantitative CMMI Assessment Model for Offshoring
	Quantitative CMMI Assessment Process and Rules
	Sample Application of Quantitative CMMI Assessment Using the Analysis of Project Management Repositories
	Conclusions and Ongoing Work
	References

	Predicting Fault-Prone Modules: A Comparative Study
	Introduction
	Related Work
	Classification Models for Predicting Fault-Prone Modules
	Code Metrics as Predictors
	Performance Measures for Assessing Classification Models

	Study Design
	Subject System
	Candidate Classification Models, Code Metric Sets, and Performance Indicators
	Preparation of Data

	Results and Analysis
	Summary of Results
	Comparisons of Classification Models
	Comparisons of Metrics Data
	Recommendations

	Threats to Validity
	Conclusions and Future Work
	References

	Effort Drivers Estimation for Brazilian Geographically Distributed Software Development
	Introduction
	Sources of Effort Drivers Estimation for Geographically Distributed Software Development
	Effort Drivers for Brazilian Distributed Software Development
	Project Description and Main Questionnaire Results
	Effort Driver List for Brazilian DSD

	Conclusions and Future Works
	References

	Challenges for Product Roadmapping in Inter-company Collaboration
	Introduction
	Collaborative Product Roadmapping Based on Literature
	Product Roadmapping Process
	Collaboration Modes

	Research Design
	Data Collection and Analysis
	Background of the Respondents

	Empirical Findings
	Important Issues in Collaborative Product Roadmapping
	Creating Product Roadmaps in Inter-company Collaboration
	Product Roadmapping Reflecting to Collaboration Modes
	Collaboration Effects to Product Roadmapping
	Validity and Limitations of the Study

	Discussion and Conclusions
	References

	Global Software Development with Cloud Platforms
	Introduction
	Cloud Computing Paradigm
	Concepts
	Characteristics
	Examples
	Benefits
	Public, Private and Hybrid Clouds

	Cloud Platforms for GSD
	Development
	Testing and Quality Assurance
	IT Operations

	Our Architecture and Service Offerings
	Architecture Overview
	Cloud Service Offerings
	Key Enabling Technologies

	Our Experiments
	Compile Server Farm
	Online Storage Cloud
	Lab Any Where(LAW): Online Virtual Labs

	Conclusions and Future Work

	Competitive Risk Identification Method for Distributed Teams
	Introduction
	Method
	Practical Example
	Conclusion and Future Research

	Model-Centric Approach to Software Design and Stakeholder-Specific Architecture Views in Scope of a Financial Institution
	Introduction
	Importance of IT Systems for Financial Institutions
	Organizational Roles as Stakeholders of Systems
	Documentation Standards Address Stakeholder Concerns
	Context of System Specification and Documentation at Credit Suisse
	Challenges to Address

	A Model-Centric Approach: TSDOC
	Related Work
	Architecture Documentation – A System in Itself
	Common Metamodel of Stakeholder Views
	Collaborative Design: Model Ownership Is Essential
	Stakeholder Views Reference Component Models
	Scalability Requires Automation
	UML Models Annotated, External Documents Attached
	Implementation by Commercial Product Suite

	Experience and Lessons Learnt
	Validation by Piloting Projects
	Lessons Learnt

	Concluding Remarks
	References

	The Role of Contracts in Distributed Development
	Specifications in Distributed Software Development
	Context of This Study
	Specification-Related Errors in Distributed Development
	Using Contracts to Avoid Specification Errors
	Improving the Project Setup
	Results
	Related Work
	Conclusions and DOSE 2009

	Managing Communication among Geographically Distributed Teams: A Brazilian Case
	Introduction
	Managing Communication among Geographically Distributed Teams
	Communication Plan
	Lessons Learned
	Conclusions
	References

	back-matter.pdf

